

Summary of the 2021 South Central Texas (L) Regional Water Plan¹

Texas' regional water plans

Regional water plans are funded by the Texas Legislature and developed every five years based on conditions that each region would face under a recurrence of a historical drought of record. The 16 regional water plans are developed by local representatives in a public, bottom-up process. The regional plans are reviewed and approved by the TWDB and become the basis for the state water plan. Regional and state water plans are developed to

- provide for the orderly development, management, and conservation of water resources,
- prepare for and respond to drought conditions, and
- make sufficient water available at a reasonable cost to ensure public health, safety, and welfare and further economic development while protecting the agricultural and natural resources of the entire state.

The South Central Texas (L) Regional Water Planning Area includes all or parts of 21 counties (Figure L.I). The South Central Texas Region includes counties that are located in whole or in part in the Rio Grande, Nueces, San Antonio, Guadalupe, Lavaca, and Colorado river basins and the San Antonio-Nueces, Lavaca-Guadalupe, and Colorado-Lavaca coastal basins. Major urban population centers include the cities of San Antonio, Victoria, Seguin, New Braunfels, and San Marcos which are located within Bexar, Victoria, Guadalupe, Comal, and Hays counties, respectively. The regional economy is dominated by the trades and services and manufacturing sectors with much smaller, but significant, contributions from the agricultural and mining sectors. The 2021 South Central Texas (L) Regional Water Plan can be found on the TWDB website at

http://www.twdb.texas.gov/waterplanning/rwp/plans/2021/#region-l.

¹ Planning numbers presented throughout this document and as compared to the 2022 Interactive State Water Plan may vary due to rounding.

Guadalupe River Hays Kendall Comal Caldwell Guadalupe Gonzales Bexar Medina Uvalde Wilson Dewitt Atascosa Karnes Frio Zavala Victoria Goljad Calhoun Dimmit Refugio San Antonio River LaSalle Region L Nueces River ~~ Major Rivers Cities Existing Reservoirs Carrizo-Wilcox Aquifer (outcrop) Carrizo-Wilcox Aquifer (subsurface) Edwards (Balcones Fault Zone) Aquifer (outcrop) Edwards (Balcones Fault Zone) Aquifer (subsurface)

Figure L.1 - South Central Texas (L) regional water planning area

Hickory Aquifer*

Gulf Coast Aquifer

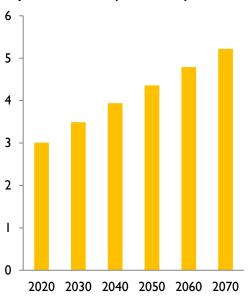
Queen City Aquifer (outcrop)*
Queen City Aquifer (subsurface)*
Sparta Aquifer (outcrop)*
Sparta Aquifer (subsurface)*
Trinity Aquifer (outcrop)
Trinity Aquifer (subsurface)
Yegua-Jackson Aquifer*

Ellenburger-San Saba Aquifer*

Edwards-Trinity (Plateau) Aquifer (outcrop)

Plan highlights

- Additional supply needed in 2070—401,000 acre-feet per year
- Recommended water management strategy volume in 2070—737,000 acre-feet per year
- 57 recommended water management strategy projects with a total capital cost of \$4.12 billion
- Conservation accounts for 23 percent of 2070 strategy volumes
- Groundwater development accounts for 23 percent of 2070 strategy volumes; new major reservoirs
 account for 14 percent of 2070 strategy volumes; and aquifer storage and recovery accounts for 10
 percent of 2070 strategy volumes


Population and water demands

Approximately 10 percent of the state's 2020 population were projected to reside in the South Central Texas (L) Region. Between 2020 and 2070, the region's population is projected to increase 73 percent (Table L.4, Figure L.2). By 2070, the total water demands for the region are projected to increase 26 percent (Table L.4).

Existing water supplies

The South Central Texas (L) Region has a variety of surface water and groundwater supply sources, with more than two-thirds of the existing water supply in the region associated with groundwater (Table L.I, Figure L.3). By 2070 the total water supply is projected to increase I percent (Table L.4). This projected increase in supply is primarily a result of increased municipal demands supplied by groundwater and reuse.

Figure L.2 - Projected population for 2020–2070 (in millions)

Needs

As the population increases in the South Central Texas (L) Region, so will the municipal water needs. From 2020 to 2070, municipal needs are projected to increase 767 percent (Table L.4). In the event of drought, Region L is projected to have a total water supply need of 204,000 acre-feet in 2020 (Table L.4).

Recommended water management strategies and cost

The South Central Texas (L) Planning Group recommended a variety of water management strategies and projects that would overall provide more water than is required to meet future needs (Figures L.4 and L.5, Tables L.2 and L.3). In all, the 259 strategies and 57 projects would provide 737,000 acre-feet of additional water supply by the year 2070 at a total capital cost of \$4.12 billion.

Recommended water management strategies meet all identified needs in the plan except for 174,000 acre-feet per year associated with irrigation, manufacturing, mining, and steam-electric power uses in 2020. Unmet needs decrease to approximately 155,000 acre-feet per year in 2070 and are associated with irrigation and mining uses. An unmet need does not prevent an associated entity from pursuing development of additional water supply.

Conservation

Conservation strategies represent 23 percent of the total volume of water associated with all recommended strategies in 2070. The South Central Texas (L) plan recommends that municipal water user groups with water use of 140 gallons per capita per day or greater reduce their per capita water use by I percent per year until 140 gallons per capita per day is reached. For municipal water user groups with water use less than 140 gallons per capita per day, the plan recommends per capita water use be reduced by a quarter of a percent per year.

Table L.1 - Existing water supplies for 2020 and 2070 (acre-feet per year)

Water supply source	2020	2070
Surface water		
Canyon Lake/Reservoir	77,000	75,000
Guadalupe Run-of-River	58,000	58,000
Calaveras Lake/Reservoir	37,000	37,000
Texana Lake/Reservoir	31,000	31,000
Coleto Creek Lake/Reservoir	24,000	24,000
Remaining surface water (sources providing less than 2% each)	29,000	29,000
Surface water subtotal:	256,000	254,000
Groundwater		
Carrizo-Wilcox Aquifer	339,000	340,000
Edwards-BFZ Aquifer	249,000	250,000
Gulf Coast Aquifer System	49,000	48,000
Trinity Aquifer	48,000	51,000
Remaining groundwater (sources providing less than 2% each)	33,000	34,000
Groundwater subtotal:	717,000	722,000
Reuse	29,000	39,000
Region total	1,002,000	1,014,000

Note: Total values in this table are presented as rounded actual total values rather than the sum of rounded values to provide consistent referencing of total values.

Figure L.3 - Share of existing water supplies by water source in 2020 (percent)

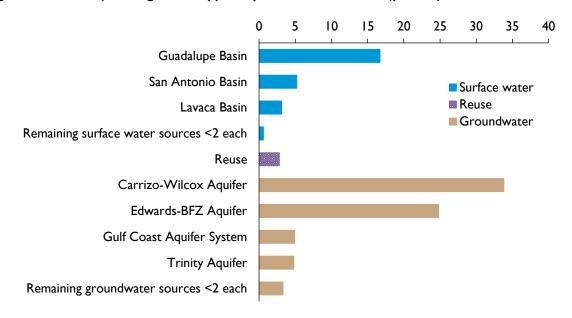


Table L.2 - Ten recommended water management strategy projects with largest capital cost

Recommended water management strategy project	Online Decade	Sponsor(s)	Associated capital cost
SAWS - Expanded Brackish Wilcox Project	2040	San Antonio Water System	\$819,805,000
GBRA MBWSP	2030	Guadalupe-Blanco River Authority	\$403,046,000
GBRA New Appropriation (Lower Basin)	2030	Guadalupe-Blanco River Authority	\$381,960,000
		Guadalupe-Blanco River Authority;	
ARWA/GBRA Shared Facilities Project	2020	Alliance Regional Water Authority	\$352,877,000
SAWS Advanced Meter Infrastructure	2020	San Antonio Water System	\$208,060,000
Recycled Water Program - SAWS	2030	San Antonio Water System	\$196,963,028
CRWA - Brackish Wilcox Groundwater	2030	Canyon Regional Water Authority	\$177,944,000
ARWA Phase 2	2040	Alliance Regional Water Authority	\$130,526,000
		Cibolo Valley Local Government	
Cibolo Valley LCG Carrizo Project	2030	Corporation	\$130,277,000
GBRA Victoria County Steam-electric Project	2030	Guadalupe-Blanco River Authority	\$117,260,000
Other recommended projects	various	47 various	\$1,203,737,000
	\$4,122,455,028		

^{*} Capital costs associated with the CRWA Siesta project have been corrected. Total capital costs may vary from those presented in the 2021 Region L Regional Water Plan.

Table L.3 - Ten recommended water management strategies with largest supply volume assigned to water user groups

Recommended water management strategy name	2070 projected population served by strategy*	Number of water user groups served	Strategy volume in acre-feet per year in 2070
Municipal Water Conservation	4,763,000	106	167,000
SAWS Expanded Brackish Groundwater Project	2,880,000	I	70,000
GBRA Lower Basin Storage Project	33,000	2	60,000
Drought Management - SAWS	2,880,000	I	57,000
FE - CPS Direct Recycle Pipeline	na	I	50,000
GBRA Lower Basin New Appropriation	na	2	41,000
Reuse - SAWS - Reuse Water Programs	2,880,000	I	40,000
FE - SAWS ASR Treatment Plant Expansion	2,880,000	I	34,000
ARWA/GBRA Project (Phase I)	758,000	9	29,000
Local Groundwater Development	173,000	22	28,000
Other recommended strategies	na	113	162,000
	Total a	737,000	

Note: Total values in this table are presented as rounded actual total values rather than the sum of rounded values to provide consistent referencing of total values.

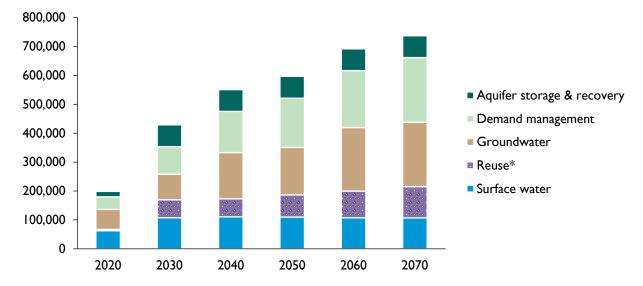

^{*} Multiple strategies may serve portions of the same population

Table L.4 - Population, existing supplies, demands, needs, and strategies 2020-2070 (acre-feet per year)

	Decade	2020	2030	2040	2050	2060	2070	Change
	Population	3,013,000	3,491,000	3,937,000	4,357,000	4,795,000	5,219,000	73%
Existing supplies	Surface water	256,000	253,000	250,000	251,000	253,000	254,000	-1%
	Groundwater	717,000	719,000	721,000	722,000	722,000	722,000	1%
	Reuse	29,000	34,000	39,000	39,000	39,000	39,000	34%
	Total water supplies	1,002,000	1,005,000	1,009,000	1,011,000	1,014,000	1,014,000	1%
	Municipal	415,000	468,000	518,000	568,000	619,000	668,000	61%
	County-other	18,000	18,000	19,000	20,000	26,000	32,000	78%
	Manufacturing	73,000	83,000	83,000	83,000	83,000	83,000	14%
B	Mining	49,000	50,000	49,000	45,000	41,000	41,000	-16%
Demands	Irrigation	359,000	359,000	359,000	358,000	358,000	358,000	0%
	Steam-electric	106,000	106,000	106,000	106,000	106,000	106,000	0%
	Livestock	32,000	32,000	32,000	32,000	32,000	32,000	0%
	Total water demand	1,051,000	1,115,000	1,164,000	1,211,000	1,264,000	1,320,000	26%
	Municipal	24,000	48,000	83,000	121,000	164,000	208,000	767%
	County-other	1,000	1,000	1,000	1,000	3,000	9,000	800%
	Manufacturing	10,000	13,000	13,000	13,000	13,000	13,000	30%
Needs	Mining	16,000	17,000	15,000	12,000	10,000	9,000	-44%
	Irrigation	131,000	132,000	134,000	136,000	138,000	141,000	8%
	Steam-electric	22,000	22,000	22,000	22,000	22,000	22,000	0%
	Total water needs	204,000	232,000	268,000	305,000	350,000	401,000	97%
	Municipal	186,000	322,000	442,000	487,000	578,000	618,000	232%
	County-other	1,000	1,000	1,000	1,000	4,000	10,000	900%
Strategy	Manufacturing	3,000	21,000	21,000	21,000	21,000	21,000	600%
supplies	Mining	6,000	8,000	9,000	10,000	11,000	11,000	83%
	Steam-electric	3,000	77,000	77,000	77,000	77,000	77,000	2467%
	Total strategy supplies	199,000	429,000	551,000	596,000	692,000	737,000	270%

Note: Total values in this table are presented as rounded actual total values rather than the sum of rounded values to provide consistent referencing of total values. Calculated percent change is based on rounded values.

Figure L.4 - Volume of recommended water management strategies by water resource (acre-feet per year)

^{*}Strategy volume at a scale not represented in the figure in at least one decade

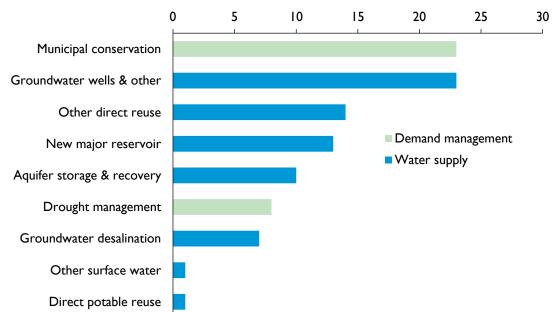


Figure L.5 - Share of recommended water management strategies by strategy type in 2070 (percent)

South Central Texas (L) voting planning group members (2017–2021)

Suzanne B. Scott, river authorities (Chair); Tim Andruss, water districts; Donna Balin, environment; John Byrum, river authorities; Pat Calhoun, counties; Gene Camargo, water utilities; Curt Campbell, groundwater management areas; Rey Chavez, industries; Alan Cockerell, water utilities; Will Conley, counties; Don Dietzmann, groundwater management areas; Blair Fitzsimons, agriculture; Charlie Flatten, environment; Vic Hilderbran, groundwater management areas; Kevin Janak, electric generating utilities; Tom Jungman, agriculture; John Kight, counties; Russell Labus, water districts; Glenn Lord, industries; Doug McGookey, small business; Daniel Meyer, groundwater management areas; Gary Middleton, municipalities; Con Mims, river authorities; Kevin Patteson, river authorities; Illiana Pena, environment; Robert Puente, municipalities; Humberto Ramos, water districts; Steve Ramsey, water utilities; Weldon Riggs, agriculture; David Roberts, small business; Roland Ruiz, water districts; Diane Savage, groundwater management areas; Greg Sengelmann, water districts; Mitchell Sowards, small business; Heather Sumpter, groundwater management areas; Tom Taggart, municipalities; lan Taylor, municipalities; Diane Wassenich, public; Bill West, river authorities; and Adam Yablonski, agriculture.

For more information on Texas or specific regions, counties, or cities, please visit the 2022 Interactive State Water Plan website: **2022.texasstatewaterplan.org**.

Texas Water Development Board 1700 North Congress Avenue, Austin, Texas 78701 512-463-7847 www.twdb.texas.gov