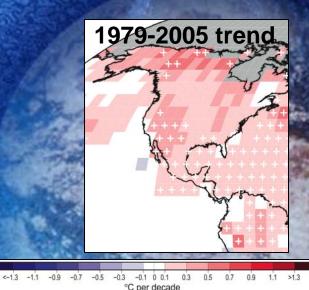
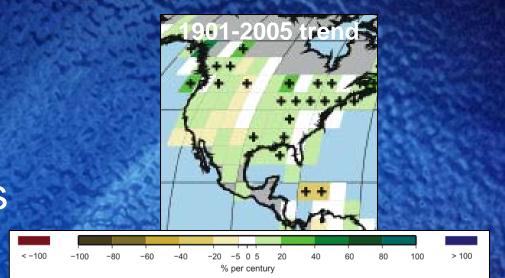

Downscaling global climate change projections for assessment of water resources impacts

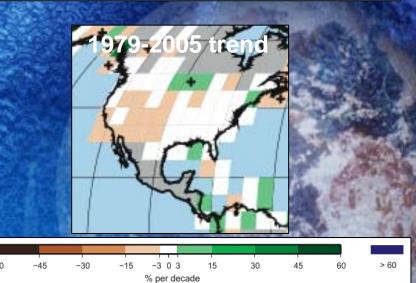
Ed Maurer Civil Engineering


Texas Water Development Board Far West Texas Climate Change Conference June 17, 2008

Recent Temperature Changes

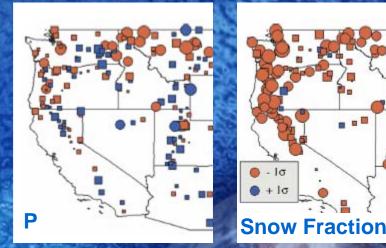
- Positive trends
 Significant over wide area
- Recent trends significant across U.S. Southwest




<-20 -17 -14 -11 -0.8 -0.5 -0.2 0 0.2 0.5 0.8 1.1 1.4 1.7 >20 °C per century

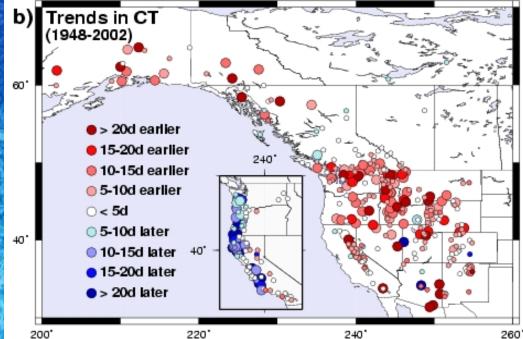
Recent Precipitation Trends

- Changes generally negative in Southwest
 Natural variability is high
- Significance of trends is low



source: IPCC, 2007

More Winter Precipitation Falling as Rain

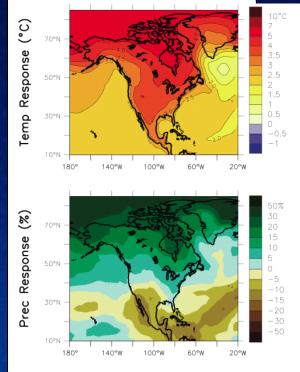

- Trends in winter precip and snow fraction (1949-2004)
- Reduced snowfall is response to warming during winter wet days (0-3°C)
- Changes of 2nd half of 20th century:
- Red indicates decreasing snow fraction
- About 10% decrease in fraction of winter precip as snow
- Low to moderate elevations (<1500 m) impacted most

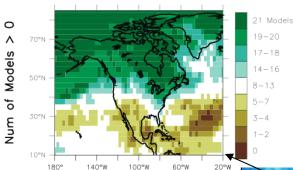
Ref: Knowles et al., 2006, J. Climate 19.

Stream flow is arriving earlier for snow-dominated rivers

- Trends correspond to a timing shift of 1 to 3 weeks and more over the past ~50 years
- Timing shift dominated by changes in snowmelt-derived streamflow, partially attributed to warming

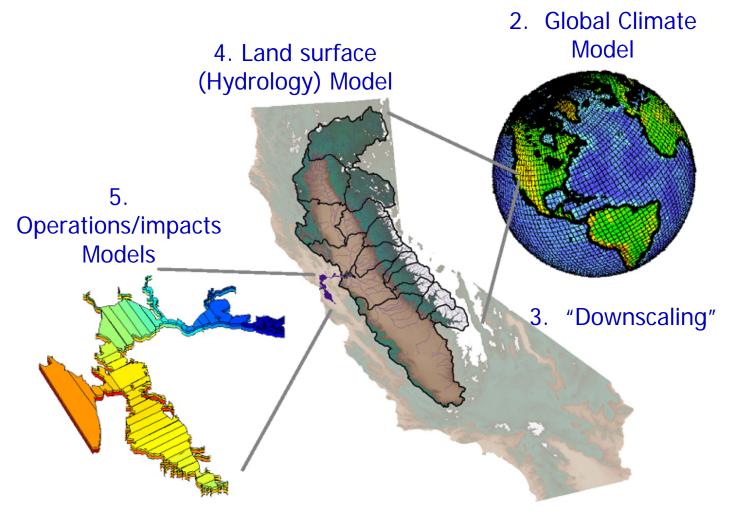
Ref: Stewart et al., 2005, J. Climate 19.


Looking toward the future: end of 21st century


21 modeled changes for A1B emissions
2080-2099 minus 1980-1999
Warming is large-scale, certain

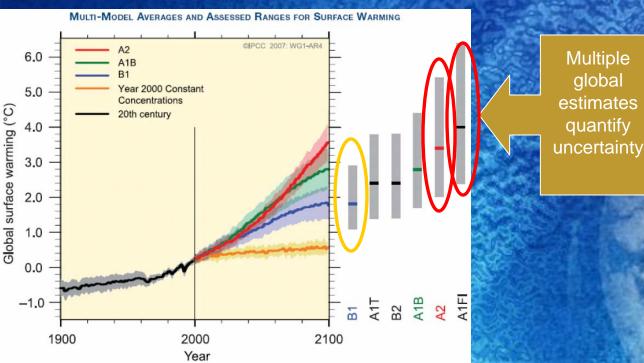
Precipitation changes more regional, less confidentHow to make this useful on a local level?

number of models out of 21 that project increases in precipitation


Annual

source: IPCC, 2007

Estimating regional impacts

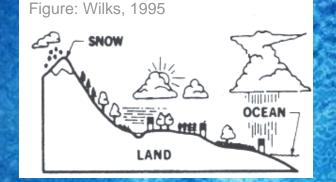


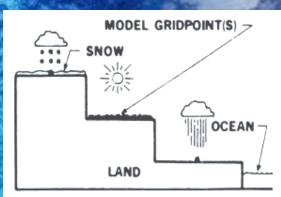
1. GHG Emissions Scenario

Adapted from Cayan and Knowles, SCRIPPS/USGS, 2003

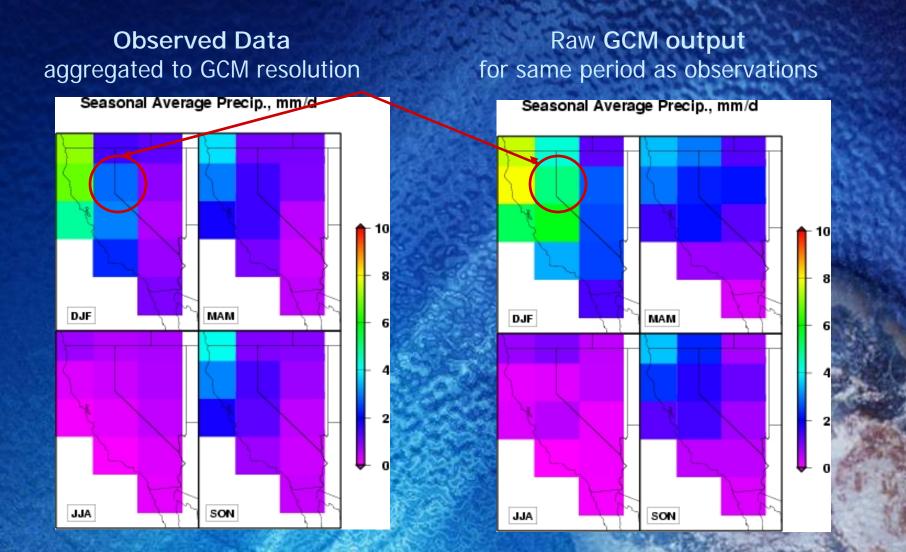
"Bookend" Studies to Cope With Uncertainties

- Brackets range of uncertainty
- Useful where impacts models are complex

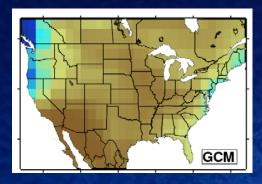

AOGCM	Equilibrium climate sensitivity (°C)
1: BCC-CM1	n.a.
2: BCCR-BCM2.0	n.a.
3: CCSM3	2.7
4: CGCM3.1(T47)	3.4
5: CGCM3.1(T63)	3.4
6: CNRM-CM3	n.a.
7: CSIRO-MK3.0	3.1
8: ECHAM5/MPI-OM	3.4
9: ECHO-G	3.2
10: FGOALS-g1.0	2.3
11: GFDL-CM2.0	2.9
12: GFDL-CM2.1	3.4
13: GISS-AOM	n.a.
14: GISS-EH	2.7
15: GISS-ER	2.7
16: INM-CM3.0	2.1
17: IPSL-CM4	4.4
18: MIROC3.2(hires)	4.3
19: MIROC3.2(medres)	4.0
20: MRI-CGCM2.3.2	3.2
21: PCM	2.1
22: UKMO-HadCM3	3.3
23: UKMO-HadGEM1	4.4


Downscaling: bringing global signals to regional scale

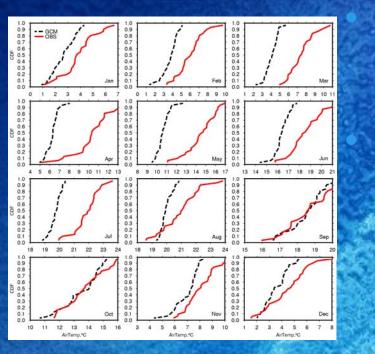
GCM problems:


- Scale incompatibility between GCM and impacts
- Regional Processes not well represented
- Resolved by:

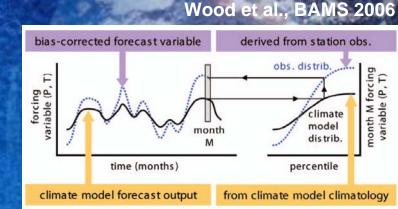
 Bias Correction
 Spatial Downscaling



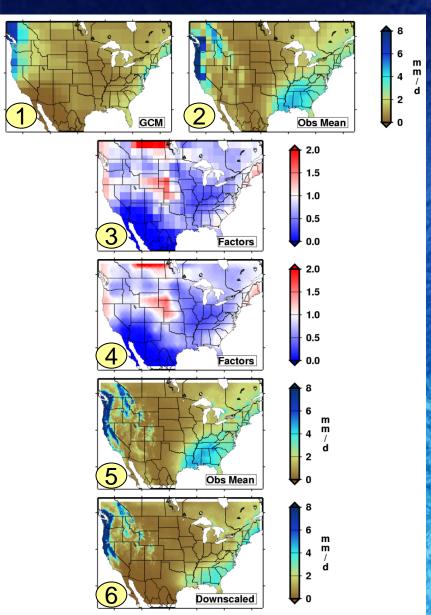
Biases in GCM Simulations



BCSD Method – "BC"


 At each grid cell for "training" period, develop monthly CDFs of P, T for
 – GCM

Observations (aggregated to GCM scale)
Obs are from Maurer et al. [2002]



Use quantile mapping to ensure monthly statistics (at GCM scale) match

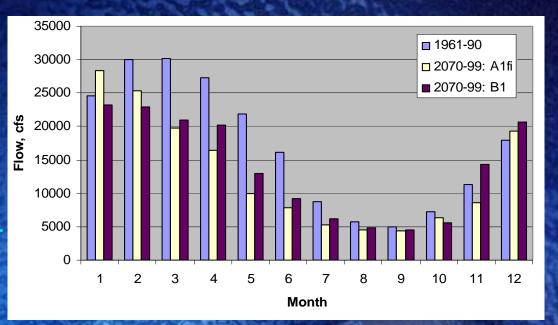
Apply same quantile mapping to "projected" period

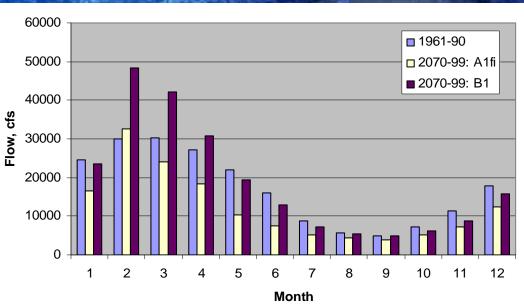
BCSD Method – "SD"

Use bias-corrected monthly GCM output 1 Aggregate obs to GCM scale² Calculate P,T factors relative to coarse-scale climatology $3 = \frac{1}{2}$ (P) 3 **1** - **2** (T) Interpolate factors to 1/8° grid 4 Apply to fine-scale climatology 6 = **4** * **5** (P) **6** +(5)(4) Daily lues fi resca

Generating Regional Hydrologic Impacts

- Downscaling of GCM Precip and Temp
- Use to drive hydrology model
 Obtain runoff, streamflow, snow



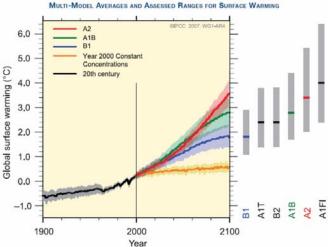

W_sW₂¢ W₂ Laver 2 Soil Moisture, W

Bracketing Streamflow Impacts: North CA

HadCM3 shows:

- Annual flow drops 20-24%
- April-July flow drops 34-47%
- Shift in center of hydrograph 23-32 days earlier
- smaller changes with lower emissions B1
- PCM shows:
- Annual flow +9% to -29%
- April-July flow drops 6-45%
- Shift in center of hydrograph
 3-11 days earlier
- difference between emissions pathways more pronounced than for HadCM3

GCM Simulations:


models and emissions

- 20th century through 2100 and beyond
 >20 GCMs
- Multiple Future Emissions Scenarios

1 realization

WCRP CMIP3 Multi-Model Data

multiple realizations

	Plontrl	PDcntrl	20C3M	Commit	SRESA2	SRESA1B	SRESB1	1%to2x	1%to4x	Slabcntl	2xCO2	AMIP
BCC-CM1, China		2	4				2	1	1			4
BCCR-BCM2.0, Norway	1		1	1	1	1	1	1				
CCSM3, USA	2	1	9	5	5	7	8	1	1	1	1	1
CGCM3.1(T47), Canada	1		5	5	5	5	4	1	1	1	1	
CGCM3.1(T63), Canada	1		1			1	1	1		1	1	
CNRM-CM3, France	1		1	1	1	1	1	1	1			1
CSIRO-Mk3.0, Australia	2		3	1	1	1	1	1		1	1	
CSIRO-Mk3.5, Australia	1		1	1	1	1	1	1				
ECHAM5/MPI-OM, Germany	1		4	3	3	4	3	3	1	1	1	3
ECHO-G, Germany/Korea	1	1	5	4	3	3	3	1	1			
FGOALS-g1.0, China	3		3	3		3	3	3				3
GFDL-CM2.0, USA	1		3	1	1	1	1	1	1	1	1	
GFDL-CM2.1, USA	1		3	1	1	1	1	1	1			
GISS-AOM, USA	2		2			2	2					
GISS-EH, USA	1		5			4		1				
GISS-ER, USA	1		9	1	1	5	1	1	1	1	1	4
INGV-SXG, Italy	1		1		1	1		1	1			
INM-CM3.0, Russia	1		1	1	1	1	1	1	1	1	1	1
IPSL-CM4, France	1	1	2	1	1	1	1	1	1			6
MIROC3.2(hires), Japan	1		1			1	1	1		1	1	1
MIROC3.2(medres), Japan	1		3	1	3	3	3	3	3	1	1	3
MRI-CGCM2.3.2, Japan	1	1	5	1	5	5	5	1	1	1	1	1
PCM, USA	1	1	4	3	4	4	4	5	1			1
UKMO-HadCM3, UK	2		2	1	1	1	1	1				
UKMO-HadGEM1, UK	1		1		1	1		2	1	1	1	1

Comparing Impacts to Variability

•11 GCMs, most recent generation (IPCC AR4)

•2 Emissions scenarios for each GCM:

42°

41°

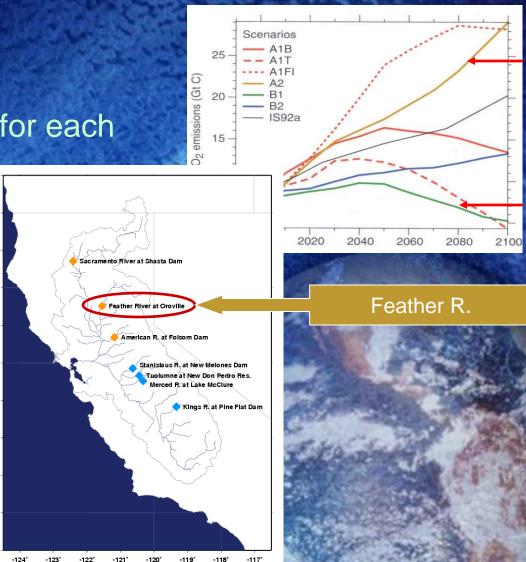
40°

39°

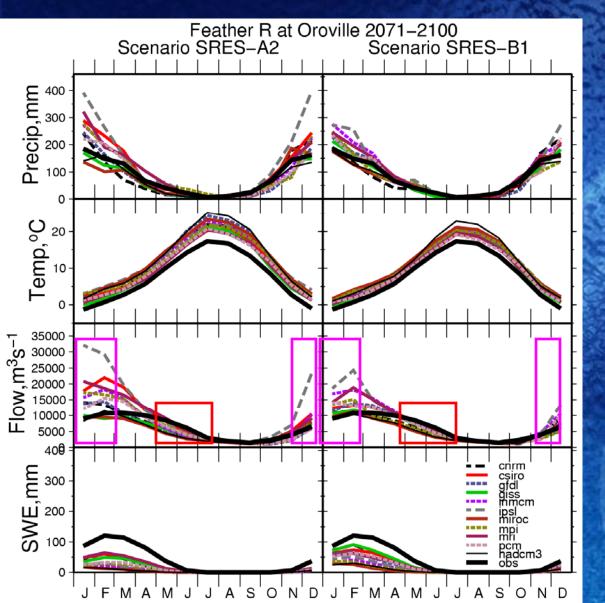
38°

37°

36°

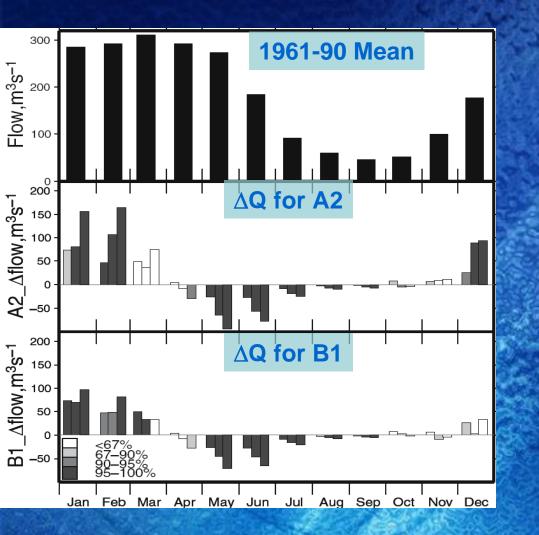

35°

34°


33

-A2 -B1

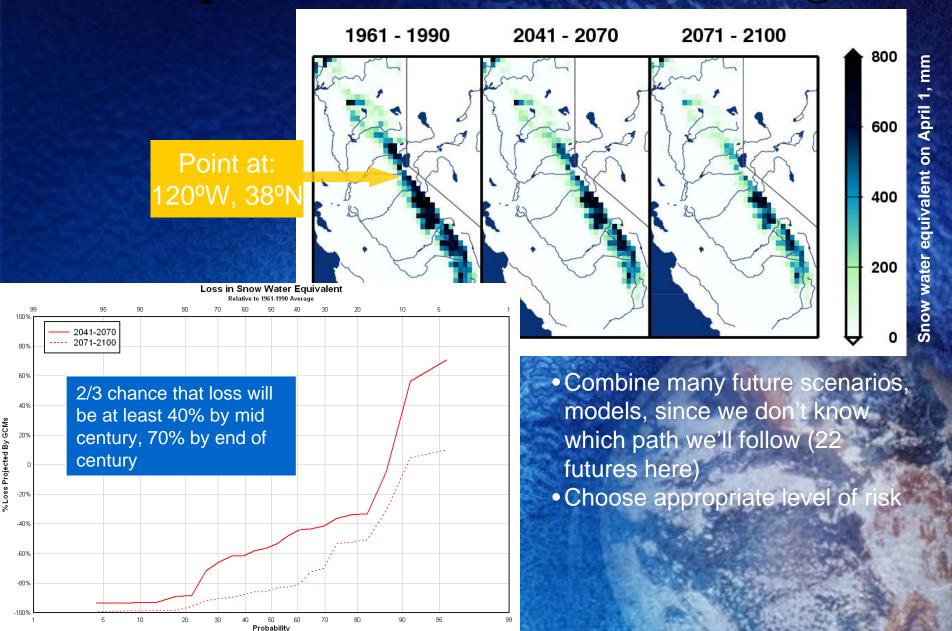
•Same bias correction, downscaling, hydrologic modeling



Multi-Model Ensemble Projections for Feather River

Increase Dec-Feb Flows +77% for A2 +55% for B1
Decrease May-Jul -30% for A2 -21% for B1

Feather River at Oroville Dam


All increases in winter and decreases in spring-early summer flows are high confidence (>95%)

Only May-August are differences in flow (A2 vs. B1) statistically different at >70%

Anticipating an Uncertain Future

- Many long-term impacts are significant, models agree in some respects
- Differences between scenarios in next 50 years is small relative to other uncertainties
- Combine GCMs and emissions scenarios into "ensemble" of futures.
- Allows planning with risk analysis

Impact Probabilities for Planning

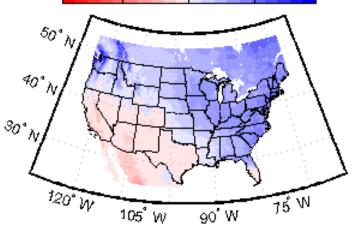
Facilitating Regional Impacts using multi-model ensembles to capture uncertainty

- PCMDI CMIP3 archive of global projections
- New archive of 112 downscaled GCM runs
- gdo4.ucllnl.org/downscaled_cmip3_projections

Downscaled Climate Projections Archive

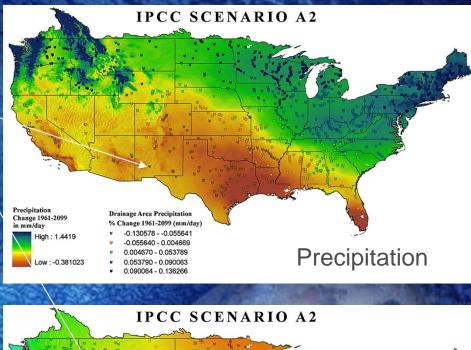
The form below permits retrieval of data subsets according to user selections for variables, models, emissions scenarios, time periods, geographical areas, series versus statistical output, and output format. Submissions are constrained so that retrieval requests do not exceed approximately 2 gigabytes per request (form responds to user selections to indicate whether the specified request is within this size constraint). Requests are queued at LLNL Green Data Oasis for processing. When request has been processed and made ready for download, user is notified via email submitted in the form

Submit Request


Request Size (Mb, limit of 2000)				
NetCDF ASCII Units				
No Analysis	0	0	0	
Statistics	0	0	0	

Variables & Projections Temporal & Spatial Extent Options & Info Tools

Variables	?
☐ Precipitation Rate (mm/day) ☐ Surface Air Temperature (deg C)	


Emissions Scenarios, Climate Models and Runs ?						
De-select all runs	None	None	None			
Select all runs	All	All	All			
	A1b	A2	B1			
bccr_bcm2_0						
cccma_cgcm3_1						
cnrm_cm3						
csiro_mk3_0						
gfdl_cm2_0						
gfdl_cm2_1						
giss_model_e_r						
inmcm3_0						
ipsl_cm4						
miroc3_2_medres						
miub_echo_g						

Example Using Archive

 Elephant Butte Dam - From 16 GCMs A2 changes • ΔT = +8.2°F • $\Delta P = -8.3\%$ - B1 changes • $\Delta T = +4.5^{\circ}F$ • $\Delta P = -1.3\%$ - Standard Deviation σ_p ≈ 11.4% • σ_τ≈ 1.6°F

 Inconstruction
 Inconstruction

 Inconstruction
 Inconstruc

