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Recent Temperature ChangesRecent Temperature Changes

• Positive trends
• Significant over wide 

area
• Recent trends 

significant across U.S. 
Southwest 

1901-2005 trend

1979-2005 trend

source: IPCC, 2007



Recent Precipitation TrendsRecent Precipitation Trends

• Changes generally 
negative in 
Southwest

• Natural variability is 
high

• Significance of 
trends is low

1901-2005 trend

1979-2005 trend

source: IPCC, 2007



More Winter Precipitation Falling as 
Rain 

More Winter Precipitation Falling as 
Rain

• Trends in winter precip and 
snow fraction (1949-2004)

• Reduced snowfall is response 
to warming during winter wet 
days (0-3°C)

• Changes of 2nd half of 20th 
century:

• Red indicates decreasing snow 
fraction

• About 10% decrease in fraction 
of winter precip as snow

• Low to moderate elevations 
(<1500 m) impacted most

Ref: Knowles et al., 2006, J. Climate 19. 

P Snow Fraction



Stream flow is arriving earlier 
for snow-dominated rivers 

Stream flow is arriving earlier 
for snow-dominated rivers

• Trends correspond to a timing shift of 1 to 3 weeks 
and more over the past ~50 years

• Timing shift dominated by 
changes in snowmelt-derived streamflow, partially 
attributed to warming

Ref: Stewart et al., 2005, 
J. Climate 19. 



Looking toward the 
future: end of 21st century 

Looking toward the 
future: end of 21st century

21 modeled changes for 
A1B emissions

2080-2099 minus 1980-1999
Warming is large-scale, 

certain
Precipitation changes more 

regional, less confident
How to make this useful on a 

local level?
.

Precipitation

number of models out of 21 that 
project increases in precipitationsource: IPCC, 2007



Estimating regional impactsEstimating regional impacts

1.  GHG 
Emissions 
Scenario

Adapted from Cayan and Knowles, SCRIPPS/USGS, 2003

2.  Global Climate 
Model4. Land surface 

(Hydrology) Model

3. “Downscaling”

5.  
Operations/impacts 

Models



Multiple 
global 

estimates 
quantify 

uncertainty

“Bookend” Studies to Cope With 
Uncertainties 

“Bookend” Studies to Cope With 
Uncertainties

• Brackets range of 
uncertainty

• Useful where impacts 
models are complex



Downscaling: bringing global signals to 
regional scale 

Downscaling: bringing global signals to 
regional scale

• GCM problems:
– Scale 

incompatibility 
between GCM 
and impacts

– Regional 
Processes not 
well represented

• Resolved by:
−Bias Correction
−Spatial Downscaling

Figure: Wilks, 1995



Biases in GCM SimulationsBiases in GCM Simulations

Observed Data
aggregated to GCM resolution

Raw GCM output
for same period as observations



BCSD Method – “BC”BCSD Method – “BC”
• At each grid cell for “training” period, 

develop monthly CDFs of P, T for
– GCM
– Observations (aggregated to GCM scale)
– Obs are from Maurer et al. [2002]

Wood et al., BAMS 2006

• Use quantile mapping to ensure 
monthly statistics (at GCM scale) 
match

• Apply same quantile mapping to 
“projected” period



BCSD Method – “SD”BCSD Method – “SD”
• Use bias-corrected 

monthly GCM output
• Aggregate obs to GCM 

scale
• Calculate P,T factors 

relative to coarse-scale 
climatology

• Interpolate factors to 
1/8° grid

• Apply to fine-scale 
climatology
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Daily Values from 
rescaled historical values



Generating Regional Hydrologic ImpactsGenerating Regional Hydrologic Impacts

Raw 
GCM 

Output
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• Downscaling of 
GCM Precip and 
Temp

• Use to drive 
hydrology model

• Obtain runoff, 
streamflow, snow



Bracketing Streamflow Impacts: North CABracketing Streamflow Impacts: North CA

0

5000

10000

15000

20000

25000

30000

35000

1 2 3 4 5 6 7 8 9 10 11 12

Month

Fl
ow

, c
fs

1961-90
2070-99: A1fi
2070-99: B1

HadCM3 shows:
• Annual flow drops 20-24%

•• AprilApril--July flow drops 34July flow drops 34--47%47%

•• Shift in center of hydrograph Shift in center of hydrograph 
2323--32 days earlier32 days earlier

• smaller changes with lower 
emissions B1
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PCM shows:
• Annual flow +9% to -29%

•• AprilApril--July flow drops 6July flow drops 6--45%45%

•• Shift in center of hydrograph Shift in center of hydrograph 
33--11 days earlier11 days earlier

• difference between 
emissions pathways more 
pronounced than for 
HadCM3



GCM Simulations: 
models and emissions 

GCM Simulations: 
models and emissions

20th century through 2100 and beyond
>20 GCMs
Multiple Future Emissions Scenarios



Comparing Impacts to VariabilityComparing Impacts to Variability

•11 GCMs, most recent 
generation (IPCC AR4)

•2 Emissions scenarios for each 
GCM: 

-A2
-B1

•Same bias 
correction, 
downscaling, 
hydrologic modeling

Feather R.



Multi-Model Ensemble Projections for 
Feather River 

Multi-Model Ensemble Projections for 
Feather River

•Increase Dec-Feb Flows
+77% for A2
+55% for B1

•Decrease May-Jul
-30% for A2
-21% for B1



Feather River at Oroville DamFeather River at Oroville Dam

All increases in winter and 
decreases in spring-early 
summer flows are high 
confidence (>95%)

Only May-August are differences 
in flow (A2 vs. B1) statistically 
different at >70%

ΔQ for B1

ΔQ for A2

1961-90 Mean



Anticipating an Uncertain FutureAnticipating an Uncertain Future

• Many long-term impacts are significant, models 
agree in some respects

• Differences between scenarios in next 50 years is 
small relative to other uncertainties

• Combine GCMs and emissions scenarios into 
“ensemble” of futures.

• Allows planning with risk analysis



Impact Probabilities for PlanningImpact Probabilities for Planning
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Point at:
120ºW, 38ºN

2/3 chance that loss will 
be at least 40% by mid 
century, 70% by end of 
century

• Combine many future scenarios, 
models, since we don’t know 
which path we’ll follow (22 
futures here)

• Choose appropriate level of risk



Facilitating Regional Impacts 
using multi-model ensembles to capture uncertainty 
Facilitating Regional Impacts 

using multi-model ensembles to capture uncertainty

• PCMDI CMIP3 archive of global projections
• New archive of 112 downscaled GCM runs
• gdo4.ucllnl.org/downscaled_cmip3_projections



Example Using ArchiveExample Using Archive

• Elephant Butte Dam
– From 16 GCMs
– A2 changes

• ΔT = +8.2°F
• ΔP = -8.3%

– B1 changes
• ΔT = +4.5°F
• ΔP = -1.3%

– Standard Deviation
• σp ≈

 
11.4%

• σT ≈
 

1.6°F

Precipitation

Temperature
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