TEXAS WATER DEVELOPMENT BOARD James E. Herring, Chairman Lewis H. McMahan, Member Edward G. Vaughan, Member J. Kevin Ward Executive Administrator Jack Hunt, Vice Chairman Thomas Weir Labatt III, Member Joe M. Crutcher, Member April 30, 2010 Mr. Jonathan Letz Chairman, Plateau Regional Water Planning Group c/o Kerr County 700 Main St., Suite 101 Kerrville, Texas 78028 Re: Socioeconomic Impact Analysis of Not Meeting Water Needs for the 2011 Plateau (Region J) Regional Water Plan Dear Chairman Letz: We have received your request for technical assistance to complete the socioeconomic impact analysis of not meeting water needs. In response, enclosed is a report that describes our methodology and presents the results. Section 1 provides an overview of the methodology, and Section 2 presents results for each water user group with needs. If you have any questions or comments, please feel free to contact me at (512) 463-7928 or by email at stuart.norvell@twdb.state.tx.us. Sincerely, Stuart Norvell Manager, Water Planning Research and Analysis Water Resources Planning Division SN/ao Enclosure Angela Kennedy, Texas Water Development Board c: Our Mission ## Socioeconomic Impacts of Projected Water Shortages for the Plateau (Region J) Regional Water Planning Area Prepared in Support of the 2011 Plateau Regional Water Plan Stuart D. Norvell, Managing Economist Water Resources Planning Division Texas Water Development Board Austin, Texas S. Doug Shaw, Agricultural Economist Water Resources Planning Division Texas Water Development Board Austin, Texas April 2010 ### **Table of Contents** | Section | Title | Page | |---------|---|------| | | Introduction | 3 | | 1.0 | Methodology | 3 | | 1.1 | Economic Impacts of Water Shortages | 3 | | 1.1.1 | General Approach | 8 | | | General Assumptions and Clarifications of the Methodology | 8 | | 1.1.2 | Impacts to Agriculture | 9 | | | Irrigation | 9 | | | Livestock | 12 | | 1.1.3 | Impacts to Municipal Water User Groups | 13 | | | Disaggregation of Municipal Water Demands | 13 | | | Domestic Water Uses | 14 | | | Commercial Businesses | 17 | | | Water Utility Revenues | 18 | | | Horticulture and Landscaping | 18 | | | Recreational Impacts | 19 | | 1.1.4 | Impacts to Industrial Water User Groups | 20 | | 1.1. | Manufacturing | | | | Mining | 20 | | | Steam-electric | 20 | | 1.2 | Social Impacts of Water Shortages | 21 | | 2.0 | Results | 22 | | 2.1 | | 23 | | 2.2 | Overview of Regional Economy | 23 | | 2.3 | Impacts to Agricultural Water User Groups | 24 | | 2.7 | Impacts to Municipal Water User Groups | 24 | | 2.7 | Social Impacts | 26 | | 2.8 | Distribution of Impacts by Major River Basin | 26 | | Appendi | x: Economic Data for Individual IMPLAN Sectors | 29 | | Tables | | | | 1 | Crop Classifications and Corresponding IMPLAN Crop Sectors | 10 | | 2 | Summary of Irrigated Crop Acreage and Water Demand | 10 | | 3 | Average Gross Sales Revenues per Acre for Irrigated Crops | 11 | | 4 | Description of Livestock Sectors | 13 | | 5 | Water Use and Costs Parameters Used to Estimate Domestic Water Demand Functions | 15 | | 6 | Economic Losses Associated with Domestic Water Shortages | 17 | | 7 | Impacts of Municipal Water Shortages at Different Magnitudes of Shortages | 20 | | 8 | Regional Baseline Economy by Water User Group | 23 | | 9 | Economic Impacts of Water Shortages for Irrigation Water User Groups | 24 | | 10 | Economic Impacts of Water Shortages for Municipal Water User Groups | 25 | | 11 | Social Impacts of Water Shortages | 26 | | 12 | Distribution of Impacts by Major River Basin | 27 | ### Introduction Water shortages during drought would likely curtail or eliminate economic activity in business and industries reliant on water. For example, without water farmers cannot irrigate; refineries cannot produce gasoline, and paper mills cannot make paper. Unreliable water supplies would not only have an immediate and real impact on existing businesses and industry, but they could also adversely affect economic development in Texas. From a social perspective, water supply reliability is critical as well. Shortages would disrupt activity in homes, schools and government and could adversely affect public health and safety. For all of the above reasons, it is important to analyze and understand how restricted water supplies during drought could affect communities throughout the state. Administrative rules require that regional water planning groups evaluate the impacts of not meeting water needs as part of the regional water planning process, and rules direct TWDB staff to provide technical assistance: "The executive administrator shall provide available technical assistance to the regional water planning groups, upon request, on water supply and demand analysis, including methods to evaluate the social and economic impacts of not meeting needs" [(§357.7 (4)(A)]. Staff of the TWDB's Water Resources Planning Division designed and conducted this report in support of the Plateau Regional Water Planning Group (Region J). This document summarizes the results of our analysis and discusses the methodology used to generate the results. Section 1 outlines the overall methodology and discusses approaches and assumptions specific to each water use category (i.e., irrigation, livestock, mining, steam-electric, municipal and manufacturing). Section 2 presents the results for each category where shortages are reported at the regional planning area level and river basin level. Results for individual water user groups are not presented, but are available upon request. ### 1. Methodology Section 1 provides a general overview of how economic and social impacts were measured. In addition, it summarizes important clarifications, assumptions and limitations of the study. ### 1.1 Economic Impacts of Water Shortages #### 1.1.1 General Approach Economic analysis as it relates to water resources planning generally falls into two broad areas. Supply side analysis focuses on costs and alternatives of developing new water supplies or implementing programs that provide additional water from current supplies. Demand side analysis concentrates on impacts or benefits of providing water to people, businesses and the environment. Analysis in this report focuses strictly on demand side impacts. When analyzing the economic impacts of water shortages as defined in Texas water planning, three potential scenarios are possible: 1) Scenario 1 involves situations where there are physical shortages of raw surface or groundwater due to drought of record conditions. For example, City A relies on a reservoir with average conservation storage of 500 acre-feet per year and a firm yield of 100 acre feet. In 2010, the city uses about 50 acre-feet per year, but by 2030 their demands are expected to increase to 200 acre-feet. Thus, in 2030 the reservoir would not have enough water to meet the city's demands, and people would experience a shortage of 100 acre-feet assuming drought of record conditions. Under normal or average climatic conditions, the reservoir would likely be able to provide reliable water supplies well beyond 2030. - 2) Scenario 2 is a situation where despite drought of record conditions, water supply sources can meet existing use requirements; however, limitations in water infrastructure would preclude future water user groups from accessing these water supplies. For example, City B relies on a river that can provide 500 acre-feet per year during drought of record conditions and other constraints as dictated by planning assumptions. In 2010, the city is expected to use an estimated 100 acre-feet per year and by 2060 it would require no more than 400 acre-feet. But the intake and pipeline that currently transfers water from the river to the city's treatment plant has a capacity of only 200 acre-feet of water per year. Thus, the city's water supplies are adequate even under the most restrictive planning assumptions, but their conveyance system is too small. This implies that at some point perhaps around 2030 infrastructure limitations would constrain future population growth and any associated economic activity or impacts. - 3) Scenario 3 involves water user groups that rely primarily on aquifers that are being depleted. In this scenario, projected and in some cases existing demands may be unsustainable as groundwater levels decline. Areas that rely on the Ogallala aquifer are a good example. In some communities in the region, irrigated agriculture forms a major base of the regional economy. With less irrigation water from the Ogallala, population and economic activity in the region could decline significantly assuming there are no offsetting developments. Assessing the social and economic effects of each of the above scenarios requires various levels and methods of analysis and would generate substantially different results for a number of reasons; the most important of which has to do with the time frame of each scenario. Scenario 1 falls into the general category of static analysis. This means that models would measure impacts for a small interval of time such as a drought. Scenarios 2 and 3, on the other hand imply a dynamic analysis meaning that models are concerned with changes over a much longer time period. Since administrative rules specify that planning analysis be evaluated under drought of record conditions (a static and random event), socioeconomic impact analysis developed by the TWDB for the state water plan is based on assumptions of Scenario 1. Estimated impacts under scenario 1 are point estimates for years in which needs are reported (2010, 2020, 2030, 2040, 2050 and 2060). They are independent and distinct "what if" scenarios for a particular year and shortages are assumed to be temporary events resulting from drought of record conditions. Estimated impacts measure what would happen if water user groups experience water
shortages for a period of one year. The TWDB recognize that dynamic models may be more appropriate for some water user groups; however, combining approaches on a statewide basis poses several problems. For one, it would require a complex array of analyses and models, and might require developing supply and demand forecasts under "normal" climatic conditions as opposed to drought of record conditions. Equally important is the notion that combining the approaches would produce inconsistent results across regions resulting in a so-called "apples to oranges" comparison. A variety tools are available to estimate economic impacts, but by far, the most widely used today are input-output models (IO models) combined with social accounting matrices (SAMs). Referred to as IO/SAM models, these tools formed the basis for estimating economic impacts for agriculture (irrigation and livestock water uses) and industry (manufacturing, mining, steam-electric and commercial business activity for municipal water uses). Since the planning horizon extends through 2060, economic variables in the baseline are adjusted in accordance with projected changes in demographic and economic activity. Growth rates for municipal water use sectors (i.e., commercial, residential and institutional) are based on TWDB population forecasts. Future values for manufacturing, agriculture, and mining and steam-electric activity are based on the same underlying economic forecasts used to estimate future water use for each category. The following steps outline the overall process. #### Step 1: Generate IO/SAM Models and Develop Economic Baseline IO/SAM models were estimated using propriety software known as IMPLAN PROTM (Impact for Planning Analysis). IMPLAN is a modeling system originally developed by the U.S. Forestry Service in the late 1970s. Today, the Minnesota IMPLAN Group (MIG Inc.) owns the copyright and distributes data and software. It is probably the most widely used economic impact model in existence. IMPLAN comes with databases containing the most recently available economic data from a variety of sources. Using IMPLAN software and data, transaction tables conceptually similar to the one discussed previously were estimated for each county in the region and for the region as a whole. Each transaction table contains 528 economic sectors and allows one to estimate a variety of economic statistics including: - total sales total production measured by sales revenues; - intermediate sales sales to other businesses and industries within a given region; - final sales sales to end users in a region and exports out of a region; - employment number of full and part-time jobs (annual average) required by a given industry including self-employment; - regional income total payroll costs (wages and salaries plus benefits) paid by industries, corporate income, rental income and interest payments; and - **business taxes** sales, excise, fees, licenses and other taxes paid during normal operation of an industry (does not include income taxes). TWDB analysts developed an economic baseline containing each of the above variables using year 2000 data. Since the planning horizon extends through 2060, economic variables in the baseline were allowed to change in accordance with projected changes in demographic and economic activity. Growth rates for municipal water use sectors (i.e., commercial, residential and institutional) are based on TWDB population forecasts. Projections for manufacturing, agriculture, and mining and steam-electric activity are based on the same underlying economic forecasts used to estimate future water use for each category. Monetary impacts in future years are reported in constant year 2006 dollars. It is important to stress that employment, income and business taxes are the most useful variables when comparing the relative contribution of an economic sector to a regional economy. Total sales as reported in IO/SAM models are less desirable and can be misleading because they include sales to other industries in the region for use in the production of other goods. For example, if a mill buys grain from local farmers and uses it to produce feed, sales of both the processed feed and raw corn are counted as "output" in an IO model. Thus, total sales double-count or overstate the true economic value of goods ¹The IMPLAN database consists of national level technology matrices based on benchmark input-output accounts generated by the U.S. Bureau of Economic Analysis and estimates of final demand, final payments, industry output and employment for various economic sectors. IMPLAN regional data (i.e. states, a counties or groups of counties within a state) are divided into two basic categories: 1) data on an industry basis including value-added, output and employment, and 2) data on a commodity basis including final demands and institutional sales. State-level data are balanced to national totals using a matrix ratio allocation system and county data are balanced to state totals. and services produced in an economy. They are not consistent with commonly used measures of output such as Gross National Product (GNP), which counts only final sales. Another important distinction relates to terminology. Throughout this report, the term sector refers to economic subdivisions used in the IMPLAN database and resultant input-output models (528 individual sectors based on Standard Industrial Classification Codes). In contrast, the phrase water use category refers to water user groups employed in state and regional water planning including irrigation, livestock, mining, municipal, manufacturing and steam electric. Each IMPLAN sector was assigned to a specific water use category. #### Step 2: Estimate Direct and Indirect Economic Impacts of Water Needs Direct impacts are reductions in output by sectors experiencing water shortages. For example, without adequate cooling and process water a refinery would have to curtail or cease operation, car washes may close, or farmers may not be able to irrigate and sales revenues fall. Indirect impacts involve changes in inter-industry transactions as supplying industries respond to decreased demands for their services, and how seemingly non-related businesses are affected by decreased incomes and spending due to direct impacts. For example, if a farmer ceases operations due to a lack of irrigation water, they would likely reduce expenditures on supplies such as fertilizer, labor and equipment, and businesses that provide these goods would suffer as well. Direct impacts accrue to immediate businesses and industries that rely on water and without water industrial processes could suffer. However, output responses may vary depending upon the severity of shortages. A small shortage relative to total water use would likely have a minimal impact, but large shortages could be critical. For example, farmers facing small shortages might fallow marginally productive acreage to save water for more valuable crops. Livestock producers might employ emergency culling strategies, or they may consider hauling water by truck to fill stock tanks. In the case of manufacturing, a good example occurred in the summer of 1999 when Toyota Motor Manufacturing experienced water shortages at a facility near Georgetown, Kentucky. As water levels in the Kentucky River fell to historic lows due to drought, plant managers sought ways to curtail water use such as reducing rinse operations to a bare minimum and recycling water by funneling it from paint shops to boilers. They even considered trucking in water at a cost of 10 times what they were paying. Fortunately, rains at the end of the summer restored river levels, and Toyota managed to implement cutbacks without affecting production, but it was a close call. If rains had not replenished the river, shortages could have severely reduced output. To account for uncertainty regarding the relative magnitude of impacts to farm and business operations, the following analysis employs the concept of elasticity. Elasticity is a number that shows how a change in one variable will affect another. In this case, it measures the relationship between a percentage reduction in water availability and a percentage reduction in output. For example, an elasticity of 1.0 indicates that a 1.0 percent reduction in water availability would result in a 1.0 percent reduction in economic output. An elasticity of 0.50 would indicate that for every 1.0 percent of unavailable water, output is reduced by 0.50 percent and so on. Output elasticities used in this study are:⁴ ² Royal, W. "High And Dry - Industrial Centers Face Water Shortages." in Industry Week, Sept, 2000. ³ The efforts described above are not planned programmatic or long-term operational changes. They are emergency measures that individuals might pursue to alleviate what they consider a temporary condition. Thus, they are not characteristic of long-term management strategies designed to ensure more dependable water supplies such as capital investments in conservation technology or development of new water supplies. ⁴ Elasticities are based on one of the few empirical studies that analyze potential relationships between economic output and water shortages in the United States. The study, conducted in California, showed that a significant number of industries would suffer reduced output during water shortages. Using a survey based approach researchers posed two scenarios to different industries. In - if water needs are 0 to 5 percent of total water demand, no corresponding reduction in output is assumed; - if water needs are 5 to 30 percent of total water demand, for each additional one percent of water need that is not met, there is a corresponding 0.50 percent reduction in output; - if water needs are 30 to 50 percent of total water demand, for each additional one percent of water need that is not met, there is a corresponding 0.75 percent reduction in output; and - if
water needs are greater than 50 percent of total water demand, for each additional one percent of water need that is not met, there is a corresponding 1.0 percent (i.e., a proportional reduction). In some cases, elasticities are adjusted depending upon conditions specific to a given water user group. Once output responses to water shortages were estimated, direct impacts to total sales, employment, regional income and business taxes were derived using regional level economic multipliers estimating using IO/SAM models. The formula for a given IMPLAN sector is: $$D_{i,t} = Q_{i,t} * S_{i,t} * E_Q * RFD_i * DM_{i(Q, L, I, T)}$$ #### where: $D_{i,t}$ = direct economic impact to sector *i* in period *t* $Q_{i,t}$ = total sales for sector i in period t in an affected county RFD_{i} = ratio of final demand to total sales for sector i for a given region $S_{i,t}$ = water shortage as percentage of total water use in period t E_{Ω} = elasticity of output and water use $DM_{i(L,I,T)}$ = direct output multiplier coefficients for labor (L), income (I) and taxes (T) for sector i. Secondary impacts were derived using the same formula used to estimate direct impacts; however, indirect multiplier coefficients are used. Methods and assumptions specific to each water use sector are discussed in Sections 1.1.2 through 1.1.4. the first scenario, they asked how a 15 percent cutback in water supply lasting one year would affect operations. In the second scenario, they asked how a 30 percent reduction lasting one year would affect plant operations. In the case of a 15 percent shortage, reported output elasticities ranged from 0.00 to 0.76 with an average value of 0.25. For a 30 percent shortage, elasticities ranged from 0.00 to 1.39 with average of 0.47. For further information, see, California Urban Water Agencies, "Cost of Industrial Water Shortages," Spectrum Economics, Inc. November, 1991. #### General Assumptions and Clarification of the Methodology As with any attempt to measure and quantify human activities at a societal level, assumptions are necessary and every model has limitations. Assumptions are needed to maintain a level of generality and simplicity such that models can be applied on several geographic levels and across different economic sectors. In terms of the general approach used here several clarifications and cautions are warranted: - 1. Shortages as reported by regional planning groups are the starting point for socioeconomic analyses. - 2. Estimated impacts are point estimates for years in which needs are reported (i.e., 2010, 2020, 2030, 2040, 2050 and 2060). They are independent and distinct "what if" scenarios for each particular year and water shortages are assumed to be temporary events resulting from severe drought conditions combined with infrastructure limitations. In other words, growth occurs and future shocks are imposed on an economy at 10-year intervals and resultant impacts are measured. Given, that reported figures are not cumulative in nature, it is inappropriate to sum impacts over the entire planning horizon. Doing so, would imply that the analysis predicts that drought of record conditions will occur every ten years in the future, which is not the case. Similarly, authors of this report recognize that in many communities needs are driven by population growth, and in the future total population will exceed the amount of water available due to infrastructure limitations, regardless of whether or not there is a drought. This implies that infrastructure limitations would constrain economic growth. However, since needs as defined by planning rules are based upon water supply and demand under the assumption of drought of record conditions, it improper to conduct economic analysis that focuses on growth related impacts over the planning horizon. Figures generated from such an analysis would presume a 50-year drought of record, which is unrealistic. Estimating lost economic activity related to constraints on population and commercial growth due to lack of water would require developing water supply and demand forecasts under "normal" or "most likely" future climatic conditions. - 3. While useful for planning purposes, this study is not a benefit-cost analysis. Benefit cost analysis is a tool widely used to evaluate the economic feasibility of specific policies or projects as opposed to estimating economic impacts of unmet water needs. Nevertheless, one could include some impacts measured in this study as part of a benefit cost study if done so properly. Since this is not a benefit cost analysis, future impacts are not weighted differently. In other words, estimates are not discounted. If used as a measure of economic benefits, one should incorporate a measure of uncertainty into the analysis. In this type of analysis, a typical method of discounting future values is to assign probabilities of the drought of record recurring again in a given year, and weight monetary impacts accordingly. This analysis assumes a probability of one. - 4. IO multipliers measure the strength of backward linkages to supporting industries (i.e., those who sell inputs to an affected sector). However, multipliers say nothing about forward linkages consisting of businesses that purchase goods from an affected sector for further processing. For example, ranchers in many areas sell most of their animals to local meat packers who process animals into a form that consumers ultimately see in grocery stores and restaurants. Multipliers do not capture forward linkages to meat packers, and since meat packers sell livestock purchased from ranchers as "final sales," multipliers for the ranching sector do fully account for all losses to a region's economy. Thus, as mentioned previously, in some cases closely linked sectors were moved from one water use category to another. - 5. Cautions regarding interpretations of direct and secondary impacts are warranted. IO/SAM multipliers are based on "fixed-proportion production functions," which basically means that input use including labor moves in lockstep fashion with changes in levels of output. In a scenario where output (i.e., sales) declines, losses in the immediate sector or supporting sectors could be much less than predicted by an IO/SAM model for several reasons. For one, businesses will likely expect to continue operating so they might maintain spending on inputs for future use; or they may be under contractual obligations to purchase inputs for an extended period regardless of external conditions. Also, employers may not lay-off workers given that experienced labor is sometimes scarce and skilled personnel may not be readily available when water shortages subside. Lastly people who lose jobs might find other employment in the region. As a result, direct losses for employment and secondary losses in sales and employment should be considered an upper bound. Similarly, since projected population losses are based on reduced employment in the region, they should be considered an upper bound as well. - 6. IO models are static. Models and resultant multipliers are based upon the structure of the U.S. and regional economies in 2006. In contrast, water shortages are projected to occur well into the future. Thus, the analysis assumes that the general structure of the economy remains the same over the planning horizon, and the farther out into the future we go, this assumption becomes less reliable. - Impacts are annual estimates. If one were to assume that conditions persisted for more than one year, figures should be adjusted to reflect the extended duration. The drought of record in most regions of Texas lasted several years. - 8. Monetary figures are reported in constant year 2006 dollars. ### 1.1.2 Impacts to Agriculture #### Irrigated Crop Production The first step in estimating impacts to irrigation required calculating gross sales for IMPLAN crop sectors. Default IMPLAN data do not distinguish irrigated production from dry-land production. Once gross sales were known other statistics such as employment and income were derived using IMPLAN direct multiplier coefficients. Gross sales for a given crop are based on two data sources: - 1) county-level statistics collected and maintained by the TWDB and the USDA Farm Services Agency (FSA) including the number of irrigated acres by crop type and water application per acre, and - 2) regional-level data published by the Texas Agricultural Statistics Service (TASS) including prices received for crops (marketing year averages), crop yields and crop acreages. Crop categories used by the TWDB differ from those used in IMPLAN datasets. To maintain consistency, sales and other statistics are reported using IMPLAN crop classifications. Table 1 shows the TWDB crops included in corresponding IMPLAN sectors, and Table 2 summarizes acreage and estimated annual water use for each crop classification (five-year average from 2003-2007). Table 3 displays average (2003-2007) gross revenues per acre for IMPLAN crop categories. | IMPLAN Category | TWDB Category | | | |---------------------------|---|--|--| | Oilseeds | Soybeans and other oil crops | | | | Grains | Grain sorghum, corn, wheat and other grain crops | | | | Vegetable and melons | Vegetables and potatoes | | | | Tree nuts | Pecans | | | | Fruits | Citrus, vineyard and other orchard | | | | Cotton | Cotton | | | | Sugarcane and sugar beets | Sugarcane and sugar beets | | | | All other crops | Forage crops, peanuts, alfalfa, hay and pasture, rice and all other crops | | | | Table 2: Summary of Irrigated Crop Acreage and Water Demand for the Plateau Regional Water Planning Area (average 2003-2007) | | | | | | | |--|------------------|-----------------------|----------------------------
------------------------------|--|--| | Sector | Acres
(1000s) | Distribution of Acres | Water Use
(1000s of AF) | Distribution of Water
Use | | | | Grains | 1.48 | 26% | 1.67 | 18% | | | | Tree nuts | 0.34 | 6% | 0.76 | 8% | | | | Fruits | 0.04 | 1% | 0.09 | 1% | | | | Cotton | 0.58 | 10% | 0.82 | 9% | | | | All other crops | 3.28 | 57% | 5.83 | 64% | | | | Total | 1.48 | 26% | 1.67 | 18% | | | Source: Water demand figures are a five year average (2003-2007) of the TWDB's annual Irrigation Water Use Estimates. Statistics for irrigated crop acreage are based upon annual survey data collected by the TWDB and the Farm Service Agency. Values do not include acreage or water use for the TWDB categories classified by the Farm Services Agency as "failed acres," "golf course" or "waste water." | IMPLAN Sector | Gross revenues per acre | Crops included in estimates | |----------------------|-------------------------|---| | Oilseeds | NA | Based on five-year (2003-2007) average weighted by acreage for "irrigated soybeans" and "irrigated other oil crops." | | Grains | \$162 | Based on five-year (2003-2007) average weighted by acreage for "irrigated grain sorghum," "irrigated corn", "irrigated wheat" and "irrigated 'other' grain crops." | | Vegetable and melons | NA | Based on five-year (2003-2007) average weighted by acreage for "irrigated shallow and deep root vegetables," "irrigated Irish potatoes" and "irrigated melons." | | Tree nuts | \$3,468 | Based on five-year (2003-2007) average weighted by acreage for "irrigated pecans." | | Fruits | \$3,155 | Based on five-year (2003-2007) average weighted by acreage for "irrigated citrus," "irrigated vineyards" and "irrigated 'other' orchard." | | Cotton | \$517 | Based on five-year (2003-2007) average weighted by acreage for "irrigated cotton." | | All "other" crops | \$303 | Irrigated figure is based on five-year (2003-2007) average weighted by acreage for "irrigated 'forage' crops", "irrigated peanuts", "irrigated alfalfa", "irrigated 'hay' and pasture" and "irrigated 'all other' crops." | An important consideration when estimating impacts to irrigation was determining which crops are affected by water shortages. One approach is the so-called rationing model, which assumes that farmers respond to water supply cutbacks by fallowing the lowest value crops in the region first and the highest valued crops last until the amount of water saved equals the shortage. For example, if farmer A grows vegetables (higher value) and farmer B grows wheat (lower value) and they both face a proportionate cutback in irrigation water, then farmer B will sell water to farmer A. Farmer B will fallow her irrigated acreage before farmer A fallows anything. Of course, this assumes that farmers can and do transfer enough water to allow this to happen. A different approach involves constructing farm-level profit maximization models that conform to widely-accepted economic theory that farmers make decisions based on marginal net returns. Such models have good predictive capability, but data requirements and complexity are high. Given that a detailed analysis for each region would require a substantial amount of farm-level data and analysis, the following investigation assumes that projected shortages are distributed equally across predominant crops in the region. Predominant in this case are crops that comprise at least one percent of total acreage in the region. The following steps outline the overall process used to estimate direct impacts to irrigated agriculture: - 1. Distribute shortages across predominant crop types in the region. Again, unmet water needs were distributed equally across crop sectors that constitute one percent or more of irrigated acreage. - 2. Estimate associated reductions in output for affected crop sectors. Output reductions are based on elasticities discussed previously and on estimated values per acre for different crops. Values per acre stem from the same data used to estimate output for the year 2006 baseline. Using multipliers, we then generate estimates of forgone income, jobs, and tax revenues based on reductions in gross sales and final demand. #### Livestock The approach used for the livestock sector is basically the same as that used for crop production. As is the case with crops, livestock categorizations used by the TWDB differ from those used in IMPLAN datasets, and TWDB groupings were assigned to a given IMPLAN sector (Table 4). Then we: - 1) Distribute projected water needs equally among predominant livestock sectors and estimate lost output: As is the case with irrigation, shortages are assumed to affect all livestock sectors equally; however, the category of "other" is not included given its small size. If water needs were small relative to total demands, we assume that producers would haul in water by truck to fill stock tanks. The cost per acre-foot (\$24,000) is based on rates charged by various water haulers in Texas, and assumes that the average truck load is 6,500 gallons at a hauling distance of 60 miles. - 3) Estimate reduced output in forward processors for livestock sectors. Reductions in output for livestock sectors are assumed to have a proportional impact on forward processors in the region such as meat packers. In other words, if the cows were gone, meat-packing plants or fluid milk manufacturers) would likely have little to process. This is not an unreasonable premise. Since the ⁵ The rationing model was initially proposed by researchers at the University of California at Berkeley, and was then modified for use in a study conducted by the U.S. Environmental Protection Agency that evaluated how proposed water supply cutbacks recommended to protect water quality in the Bay/Delta complex in California would affect farmers in the Central Valley. See, Zilberman, D., Howitt, R. and Sunding, D. "Economic Impacts of Water Quality Regulations in the San Francisco Bay and Delta." Western Consortium for Public Health. May 1993. 1950s, there has been a major trend towards specialized cattle feedlots, which in turn has decentralized cattle purchasing from livestock terminal markets to direct sales between producers and slaughterhouses. Today, the meat packing industry often operates large processing facilities near high concentrations of feedlots to increase capacity utilization. As a result, packers are heavily dependent upon nearby feedlots. For example, a recent study by the USDA shows that on average meat packers obtain 64 percent of cattle from within 75 miles of their plant, 82 percent from within 150 miles and 92 percent from within 250 miles. | Table 4: Description of Livestock Sectors | | | | | |---|--|--|--|--| | IMPLAN Category TWDB Category | | | | | | Cattle ranching and farming | Cattle, cow calf, feedlots and dairies | | | | | Poultry and egg production | Poultry production. | | | | | Other livestock | Livestock other than cattle and poultry (i.e., horses, goats, sheep, hogs) | | | | | Milk manufacturing | Fluid milk manufacturing, cheese manufacturing, ice cream manufacturing etc. | | | | | Meat packing | Meat processing present in the region from slaughter to final processing | | | | ### 1.1.3 Impacts to Municipal Water User Groups #### Disaggregation of Municipal Water Demands Estimating the economic impacts for the municipal water user groups is complicated for a number of reasons. For one, municipal use comprises a range of consumers including commercial businesses, institutions such as schools and government and households. However, reported water needs are not distributed among different municipal water users. In other words, how much of a municipal need is commercial and how much is residential (domestic)? The amount of commercial water use as a percentage of total municipal demand was estimated based on "GED" coefficients (gallons per employee per day) published in secondary sources. For example, if year 2006 baseline data for a given economic sector (e.g., amusement and recreation services) shows employment at 30 jobs and the GED coefficient is 200, then average daily water use by that sector is (30 x ⁶ Ferreira, W.N. "Analysis of the Meat Processing Industry in the United States." Clemson University Extension Economics Report ER211, January 2003. ⁷ Ward, C.E. "Summary of Results from USDA's Meatpacking Concentration Study." Oklahoma Cooperative Extension Service, OSU Extension Facts WF-562. ⁸ Sources for GED coefficients include: Gleick, P.H., Haasz, D., Henges-Jeck, C., Srinivasan, V., Wolff, G. Cushing, K.K., and Mann, A. "Waste Not, Want Not: The Potential for Urban Water Conservation in California." Pacific Institute. November 2003. U.S. Bureau of the Census. 1982 Census of Manufacturers: Water Use in Manufacturing. USGPO, Washington D.C. See also: "U.S. Army Engineer Institute for Water Resources, IWR Report 88-R-6.," Fort Belvoir, VA. See also, Joseph, E. S., 1982, "Municipal and Industrial Water Demands of the Western United States." Journal of the Water Resources Planning and Management Division, Proceedings of the American Society of Civil Engineers, v. 108, no. WR2, p. 204-216. See also, Baumann, D. D., Boland, J. J., and Sims, J. H., 1981, "Evaluation of Water Conservation for Municipal and Industrial Water Supply." U.S. Army Corps of Engineers, Institute for Water Resources, Contract no. 82-C1. 200 = 6,000 gallons) or 6.7 acre-feet per year. Water not attributed to commercial use is considered domestic, which includes single and multi-family residential consumption, institutional uses and all use designated as "county-other." Based on our analysis, commercial water use is about 5
to 35 percent of municipal demand. Less populated rural counties occupy the lower end of the spectrum, while larger metropolitan counties are at the higher end. After determining the distribution of domestic versus commercial water use, we developed methods for estimating impacts to the two groups. #### Domestic Water Uses Input output models are not well suited for measuring impacts of shortages for domestic water uses, which make up the majority of the municipal water use category. To estimate impacts associated with domestic water uses, municipal water demand and needs are subdivided into residential, and commercial and institutional use. Shortages associated with residential water uses are valued by estimating proxy demand functions for different water user groups allowing us to estimate the marginal value of water, which would vary depending upon the level of water shortages. The more severe the water shortage, the more costly it becomes. For instance, a 2 acre-foot shortage for a group of households that use 10 acre-feet per year would not be as severe as a shortage that amounted to 8 acre-feet. In the case of a 2 acre-foot shortage, households would probably have to eliminate some or all outdoor water use, which could have implicit and explicit economic costs including losses to the horticultural and landscaping industry. In the case of an 8 acre-foot shortage, people would have to forgo all outdoor water use and most indoor water consumption. Economic impacts would be much higher in the latter case because people, and would be forced to find emergency alternatives assuming alternatives were available. To estimate the value of domestic water uses, TWDB staff developed marginal loss functions based on constant elasticity demand curves. This is a standard and well-established method used by economists to value resources such as water that have an explicit monetary cost. A constant price elasticity of demand is estimated using a standard equation: $$w = kc^{(-\epsilon)}$$ ### where: - w is equal to average monthly residential water use for a given water user group measured in thousands of gallons; - k is a constant intercept; - c is the average cost of water per 1,000 gallons; and - ε is the price elasticity of demand. Price elasticities (-0.30 for indoor water use and -0.50 for outdoor use) are based on a study by Bell et al. hat surveyed 1,400 water utilities in Texas that serve at least 1,000 people to estimate demand elasticity for several variables including price, income, weather etc. Costs of water and average use per month per household are based on data from the Texas Municipal League's annual water and ⁹ Bell, D.R. and Griffin, R.C. "Community Water Demand in Texas as a Century is Turned." Research contract report prepared for the Texas Water Development Board. May 2006. wastewater rate surveys - specifically average monthly household expenditures on water and wastewater in different communities across the state. After examining variance in costs and usage, three different categories of water user groups based on population (population less than 5,000, cities with populations ranging from 5,000 to 99,999 and cities with populations exceeding 100,000) were selected to serve as proxy values for municipal water groups that meet the criteria (Table 5).¹⁰ | Table 5: Water Use and Costs Parameters Used to Estimate Water Demand Functions | |---| | (average monthly costs per acre-foot for delivered water and average monthly use per household) | | Community population | Water | Wastewater | Total monthly cost | Avg. monthly use (gailons) | |--------------------------------|---------|------------|--------------------|----------------------------| | Less than or equal to 5,000 | \$1,335 | \$1,228 | \$2,563 | 6,204 | | 5,000 to 100,000 | \$718 | \$1,162 | \$1,880 | 7,950 | | Great than or equal to 100,000 | \$1,047 | \$457 | \$1,504 | 8,409 | Source: Based on annual water and wastewater rate surveys published by the Texas Municipal League. As an example, Table 6 shows the economic impact per acre-foot of domestic water needs for municipal water user groups with population exceeding 100,000 people. There are several important assumptions incorporated in the calculations: - 1) Reported values are net of the variable costs of treatment and distribution such as expenses for chemicals and electricity since using less water involves some savings to consumers and utilities alike; and for outdoor uses we do not include any value for wastewater. - 2) Outdoor and "non-essential" water uses would be eliminated before indoor water consumption was affected, which is logical because most water utilities in Texas have drought contingency plans that generally specify curtailment or elimination of outdoor water use during droughts. Determining how much water is used for outdoor purposes is based on several secondary sources. The first is a major study sponsored by the American Water Works Association, which surveyed cities in states including Colorado, Oregon, Washington, California, Florida and Arizona. On average across all cities surveyed 58 percent of single family residential water use was for outdoor activities. In cities with climates comparable to large metropolitan areas of Texas, the average was 40 percent. Earlier findings of the U.S. Water Resources Council showed a national ¹⁰ Ideally, one would want to estimate demand functions for each individual utility in the state. However, this would require an enormous amount of time and resources. For planning purposes, we believe the values generated from aggregate data are more than sufficient. ¹¹ In Texas, state law requires retail and wholesale water providers to prepare and submit plans to the Texas Commission on Environmental Quality (TCEQ). Plans must specify demand management measures for use during drought including curtailment of "non-essential water uses." Non-essential uses include, but are not limited to, landscape irrigation and water for swimming pools or fountains. For further information see the Texas Environmental Quality Code §288.20. ¹² See, Mayer, P.W., DeOreo, W.B., Opitz, E.M., Kiefer, J.C., Davis, W., Dziegielewski, D., Nelson, J.O. "Residential End Uses of Water." Research sponsored by the American Water Works Association and completed by Aquacraft, Inc. and Planning and Management Consultants, Ltd. (PMCL@CDM). average of 33 percent. Similarly, the United States Environmental Protection Agency (USEPA) estimated that landscape watering accounts for 32 percent of total residential and commercial water use on annual basis.¹³ A study conducted for the California Urban Water Agencies (CUWA) calculated average annual values ranging from 25 to 35 percent.¹⁴ Unfortunately, there does not appear to be any comprehensive research that has estimated non-agricultural outdoor water use in Texas. As an approximation, an average annual value of 30 percent based on the above references was selected to serve as a rough estimate in this study. 3) As shortages approach 100 percent values become immense and theoretically infinite at 100 percent because at that point death would result, and willingness to pay for water is immeasurable. Thus, as shortages approach 80 percent of monthly consumption, we assume that households and non-water intensive commercial businesses (those that use water only for drinking and sanitation would have water delivered by tanker truck or commercial water delivery companies. Based on reports from water companies throughout the state, we estimate that the cost of trucking in water is around \$21,000 to \$27,000 per acre-feet assuming a hauling distance of between 20 to 60 miles. This is not an unreasonable assumption. The practice was widespread during the 1950s drought and recently during droughts in this decade. For example, in 2000 at the heels of three consecutive drought years Electra - a small town in North Texas - was down to its last 45 days worth of reservoir water when rain replenished the lake, and the city was able to refurbish old wells to provide supplemental groundwater. At the time, residents were forced to limit water use to 1,000 gallons per person per month - less than half of what most people use - and many were having water delivered to their homes by private contractors. 15 In 2003 citizens of Ballinger, Texas, were also faced with a dwindling water supply due to prolonged drought. After three years of drought, Lake Ballinger, which supplies water to more than 4,300 residents in Ballinger and to 600 residents in nearby Rowena, was almost dry. Each day, people lined up to get water from a well in nearby City Park. Trucks hauling trailers outfitted with large plastic and metal tanks hauled water to and from City Park to Ballinger. 16 ¹³ U.S. Environmental Protection Agency. "Cleaner Water through Conservation." USEPA Report no. 841-B-95-002. April, 1995. ¹⁴ Planning and Management Consultants, Ltd. "Evaluating Urban Water Conservation Programs: A Procedures Manual." Prepared for the California Urban Water Agencies. February 1992. ¹⁵ Zewe, C. "Tap Threatens to Run Dry in Texas Town." July 11, 2000. CNN Cable News Network. ¹⁶ Associated Press, "Ballinger Scrambles to Finish Pipeline before Lake Dries Up." May 19, 2003. Table 6: Economic Losses Associated with Domestic Water Shortages in Communities with Populations Exceeding 100,000 | Water shortages as a
percentage of total
monthly household
demands | No. of gallons
remaining per
household per day | No of gallons
remaining per person
per day | Economic loss
(per acre-foot) | Economic loss
(per gallon) | |---|--|--|----------------------------------|-------------------------------|
| 1% | 278 | 93 | \$748 | \$0.00005 | | 5% | 266 | 89 | \$812 | \$0.0002 | | 10% | 252 | 84 | \$900 | \$0.0005 | | 15% | 238 | 79 | \$999 | \$0.0008 | | 20% | 224 | 75 | \$1,110 | \$0.0012 | | 25% | 210 | 70 | \$1,235 | \$0.0015 | | 30%ª | 196 | 65 | \$1,699 | \$0.0020 | | 35% | 182 | 61 | \$3,825 | \$0.0085 | | 40% | 168 | 56 | \$4,181 | \$0.0096 | | 45% | 154 | 51 | \$4,603 | \$0.011 | | 50% | 140 | 47 | \$5,109 | \$0.012 | | 55% | 126 | 42 | \$5,727 | \$0.014 | | 60% | 112 | 37 | \$6,500 | \$0.017 | | 65% | 98 | 33 | \$7,493 | \$0.02 | | 70% | 84 | 28 | \$8,818 | \$0.02 | | 75% | 70 | 23 | \$10,672 | \$0.03 | | 80% | 56 | 19 | \$13,454 | \$0.04 | | 85% | 42 | 14 | \$18,091 | \$0.05 | | 90% | 28 | 9 | \$27,363 (\$24,000) ^b | \$0.08 (\$0.07) ^b | | 95% | 14 | 5 | \$55,182 (\$24,000) | \$0.17 (\$0.07) | | 99% | 3 | 0.9 | \$277,728 (\$24,000) | \$0.85 (\$0.07) | | 99.9% | 1 | 0.5 | \$2,781,377 (\$24,000) | \$8.53 (\$0.07) | | 100% | 0 | 0 | Infinite (\$24,000) | Infinite (\$0.07) | ^aThe first 30 percent of needs are assumed to be restrictions of outdoor water use; when needs reach 30 percent of total demands all outdoor water uses would be restricted. Needs greater than 30 percent include indoor use. ^b As shortages approach 100 percent the value approaches infinity assuming there are not alternatives available; however, we assume that communities would begin to have water delivered by tanker truck at an estimated cost of \$24,000 per acre-foot when shortages breached 85 percent. #### Commercial Businesses Effects of water shortages on commercial sectors were estimated in a fashion similar to other business sectors meaning that water shortages would affect the ability of these businesses to operate. This is particularly true for "water intensive" commercial sectors that are need large amounts of water (in addition to potable and sanitary water) to provide their services. These include: - car-washes. - laundry and cleaning facilities, - sports and recreation clubs and facilities including race tracks, - amusement and recreation services, - hospitals and medical facilities, - hotels and lodging places, and - eating and drinking establishments. A key assumption is that commercial operations would not be affected until water shortages were at least 50 percent of total municipal demand. In other words, we assume that residential water consumers would reduce water use including all non-essential uses before businesses were affected. An example will illustrate the breakdown of municipal water needs and the overall approach to estimating impacts of municipal needs. Assume City A experiences an unexpected shortage of 50 acrefeet per year when their demands are 200 acre-feet per year. Thus, shortages are only 25 percent of total municipal use and residents of City A could eliminate needs by restricting landscape irrigation. City B, on the other hand, has a deficit of 150 acre-feet in 2020 and a projected demand of 200 acre-feet. Thus, total shortages are 75 percent of total demand. Emergency outdoor and some indoor conservation measures could eliminate 50 acre-feet of projected needs, yet 50 acre-feet would still remain. To eliminate" the remaining 50 acre-feet water intensive commercial businesses would have to curtail operations or shut down completely. Three other areas were considered when analyzing municipal water shortages: 1) lost revenues to water utilities, 2) losses to the horticultural and landscaping industries stemming for reduction in water available for landscape irrigation, and 3) lost revenues and related economic impacts associated with reduced water related recreation. #### Water Utility Revenues Estimating lost water utility revenues was straightforward. We relied on annual data from the "Water and Wastewater Rate Survey" published annually by the Texas Municipal League to calculate an average value per acre-foot for water and sewer. For water revenues, average retail water and sewer rates multiplied by total water needs served as a proxy. For lost wastewater, total unmet needs were adjusted for return flow factor of 0.60 and multiplied by average sewer rates for the region. Needs reported as "county-other" were excluded under the presumption that these consist primarily of self-supplied water uses. In addition, 15 percent of water demand and needs are considered non-billed or "unaccountable" water that comprises things such as leakages and water for municipal government functions (e.g., fire departments). Lost tax receipts are based on current rates for the "miscellaneous gross receipts tax, "which the state collects from utilities located in most incorporated cities or towns in Texas. We do not include lost water utility revenues when aggregating impacts of municipal water shortages to regional and state levels to prevent double counting. #### Horticultural and Landscaping Industry The horticultural and landscaping industry, also referred to as the "green Industry," consists of businesses that produce, distribute and provide services associated with ornamental plants, landscape and garden supplies and equipment. Horticultural industries often face big losses during drought. For example, the recent drought in the Southeast affecting the Carolinas and Georgia horticultural and landscaping businesses had a harsh year. Plant sales were down, plant mortality increased, and watering costs increased. Many businesses were forced to close locations, lay off employees, and even file for bankruptcy. University of Georgia economists put statewide losses for the industry at around \$3.2 billion during the 3-year drought that ended in 2008. Municipal restrictions on outdoor watering play a significant role. During drought, water restrictions coupled with persistent heat has a psychological effect on homeowners that reduces demands for landscaping products and services. Simply put, people were afraid to spend any money on new plants and landscaping. In Texas, there do not appear to be readily available studies that analyze the economic effects of water shortages on the industry. However, authors of this report believe negative impacts do and would result in restricting landscape irrigation to municipal water consumers. The difficulty in measuring them is two-fold. First, as noted above, data and research for these types of impacts that focus on Texas are limited; and second, economic data provided by IMPLAN do not disaggregate different sectors of the green industry to a level that would allow for meaningful and defensible analysis. ¹⁸ Recreational Impacts Recreational businesses often suffer when water levels and flows in rivers, springs and reservoirs fall significantly during drought. During droughts, many boat docks and lake beaches are forced to close, leading to big losses for lakeside business owners and local communities. Communities adjacent to popular river and stream destinations such as Comal Springs and the Guadalupe River also see their business plummet when springs and rivers dry up. Although there are many examples of businesses that have suffered due to drought, dollar figures for drought-related losses to the recreation and tourism industry are not readily available, and very difficult to measure without extensive local surveys. Thus, while they are important, economic impacts are not measured in this study. Table 7 summarizes impacts of municipal water shortages at differing levels of magnitude, and shows the ranges of economic costs or losses per acre-foot of shortage for each level. ¹⁷ Williams, D. "Georgia landscapers eye rebound from Southeast drought." Atlanta Business Chronicle, Friday, June 19, 2009 ¹⁸ Economic impact analyses prepared by the TWDB for 2006 regional water plans did include estimates for the horticultural industry. However, year 2000 and prior IMPLAN data were disaggregated to a finer level. In the current dataset (2006), the sector previously listed as "Landscaping and Horticultural Services" (IMPLAN Sector 27) is aggregated into "Services to Buildings and Dwellings" (IMPLAN Sector 458). | Water shortages as percent of total municipal demands | Impacts | Economic costs
per acre-foot* | |---|---|----------------------------------| | 0-30% | ✓ Lost water utility revenues ✓ Restricted landscape irrigation and non- essential water uses | \$730 - \$2,040 | | 30-50% | ✓ Lost water utility revenues ✓ Elimination of landscape irrigation and non-essential water uses ✓ Rationing of indoor use | \$2040 - \$10,970 | | >50% | ✓ Lost water utility revenues ✓ Elimination of landscape irrigation and non-essential water uses ✓ Rationing of indoor use ✓ Restriction or elimination of commercial water use ✓ Importing water by tanker truck | \$10,970 - varies | #### 1.1.4 Industrial Water User Groups #### Manufacturing Impacts to manufacturing were estimated by distributing water shortages among industrial sectors at the county level. For example, if a planning group estimates that during a drought of record water supplies in County A would only meet 50 percent of total annual demands for manufactures in the county, we reduced output for each sector by 50 percent. Since projected manufacturing demands are based on TWDB Water Uses Survey data for each county, we only include IMPLAN sectors represented in the TWBD survey database. Some sectors in IMPLAN databases are not part of the TWDB database given that they use relatively small amounts of water - primarily for on-site sanitation and potable purposes. To maintain consistency between IMPLAN and TWDB databases, Standard Industrial Classification (SIC) codes both databases
were cross referenced in county with shortages. Non-matches were excluded when calculating direct impacts. #### Mining The process of mining is very similar to that of manufacturing. We assume that within a given county, shortages would apply equally to relevant mining sectors, and IMPLAN sectors are cross referenced with TWDB data to ensure consistency. In Texas, oil and gas extraction and sand and gravel (aggregates) operations are the primary mining industries that rely on large volumes of water. For sand and gravel, estimated output reductions are straightforward; however, oil and gas is more complicated for a number of reasons. IMPLAN does not necessarily report the physical extraction of minerals by geographic local, but rather the sales revenues reported by a particular corporation. For example, at the state level revenues for IMPLAN sector 19 (oil and gas extraction) and sector 27 (drilling oil and gas wells) totals \$257 billion. Of this, nearly \$85 billion is attributed to Harris County. However, only a very small fraction (less than one percent) of actual production takes place in the county. To measure actual potential losses in well head capacity due to water shortages, we relied on county level production data from the Texas Railroad Commission (TRC) and average well-head market prices for crude and gas to estimate lost revenues in a given county. After which, we used to IMPLAN ratios to estimate resultant losses in income and employment. Other considerations with respect to mining include: - 1) Petroleum and gas extraction industry only uses water in significant amounts for secondary recovery. Known in the industry as enhanced or water flood extraction, secondary recovery involves pumping water down injection wells to increase underground pressure thereby pushing oil or gas into other wells. IMPLAN output numbers do not distinguish between secondary and non-secondary recovery. To account for the discrepancy, county-level TRC data that show the proportion of barrels produced using secondary methods were used to adjust IMPLAN data to reflect only the portion of sales attributed to secondary recovery. - 2) A substantial portion of output from mining operations goes directly to businesses that are classified as manufacturing in our schema. Thus, multipliers measuring backward linkages for a given manufacturer might include impacts to a supplying mining operation. Care was taken not to double count in such situations if both a mining operation and a manufacturer were reported as having water shortages. #### Steam-electric At minimum without adequate cooling water, power plants cannot safely operate. As water availability falls below projected demands, water levels in lakes and rivers that provide cooling water would also decline. Low water levels could affect raw water intakes and outfalls at electrical generating units in several ways. For one, power plants are regulated by thermal emission guidelines that specify the maximum amount of heat that can go back into a river or lake via discharged cooling water. Low water levels could result in permit compliance issues due to reduced dilution and dispersion of heat and subsequent impacts on aquatic biota near outfalls. However, the primary concern would be a loss of head (i.e., pressure) over intake structures that would decrease flows through intake tunnels. This would affect safety related pumps, increase operating costs and/or result in sustained shut-downs. Assuming plants did shutdown, they would not be able to generate electricity. ¹⁹ Section 316 (b) of the Clean Water Act requires that thermal wastewater discharges do not harm fish and other wildlife. Among all water use categories steam-electric is unique and cautions are needed when applying methods used in this study. Measured changes to an economy using input-output models stem directly from changes in sales revenues. In the case of water shortages, one assumes that businesses will suffer lost output if process water is in short supply. For power generation facilities this is true as well. However, the electric services sector in IMPLAN represents a corporate entity that may own and operate several electrical generating units in a given region. If one unit became inoperable due to water shortages, plants in other areas or generation facilities that do not rely heavily on water such as gas powered turbines might be able to compensate for lost generating capacity. Utilities could also offset lost production via purchases on the spot market. Thus, depending upon the severity of the shortages and conditions at a given electrical generating unit, energy supplies for local and regional communities could be maintained. But in general, without enough cooling water, utilities would have to throttle back plant operations, forcing them to buy or generate more costly power to meet customer demands. Measuring impacts end users of electricity is not part of this study as it would require extensive local and regional level analysis of energy production and demand. To maintain consistency with other water user groups, impacts of steam-electric water shortages are measured in terms of lost revenues (and hence income) and jobs associated with shutting down electrical generating units. ### 1.2 Social Impacts of Water Shortages As the name implies, the effects of water shortages can be social or economic. Distinctions between the two are both semantic and analytical in nature – more so analytic in the sense that social impacts are harder to quantify. Nevertheless, social effects associated with drought and water shortages are closely tied to economic impacts. For example, they might include: - demographic effects such as changes in population, - disruptions in institutional settings including activity in schools and government, - conflicts between water users such as farmers and urban consumers, - health-related low-flow problems (e.g., cross-connection contamination, diminished sewage flows, increased pollutant concentrations), - mental and physical stress (e.g., anxiety, depression, domestic violence), - public safety issues from forest and range fires and reduced fire fighting capability, - increased disease caused by wildlife concentrations, - loss of aesthetic and property values, and - reduced recreational opportunities.²¹ ²⁰ Today, most utilities participate in large interstate "power pools" and can buy or sell electricity "on the grid" from other utilities or power marketers. Thus, assuming power was available to buy, and assuming that no contractual or physical limitations were in place such as transmission constraints; utilities could offset lost power that resulted from waters shortages with purchases via the power grid. ²¹ Based on information from the website of the National Drought Mitigation Center at the University of Nebraska Lincoln. Available online at: http://www.drought.unl.edu/risk/impacts.htm. See also, Vanclay, F. "Social Impact Assessment." in Petts, J. (ed) International Handbook of Environmental Impact Assessment. 1999. Social impacts measured in this study focus strictly on demographic effects including changes in population and school enrollment. Methods are based on demographic projection models developed by the Texas State Data Center and used by the TWDB for state and regional water planning. Basically, the social impact model uses results from the economic component of the study and assesses how changes in labor demand would affect migration patterns in a region. Declines in labor demand as measured using adjusted IMPLAN data are assumed to affect net economic migration in a given regional water planning area. Employment losses are adjusted to reflect the notion that some people would not relocate but would seek employment in the region and/or public assistance and wait for conditions to improve. Changes in school enrollment are simply the proportion of lost population between the ages of 5 and 17. ### 2. Results Section 2 presents the results of the analysis. Included are regional level economic data for each water use category, and estimated economic impacts of water shortages for water user groups with reported deficits. According to the 2011 Plateau Regional Water Plan, during severe drought irrigation and municipal water user groups would experience water shortages in the absence of new water management strategies. ### 2.1 Overview of Regional Economy The Plateau regional economy generates nearly \$3.0 billion in gross state product for Texas (nearly \$2.8 billion worth of income and \$211 million in business taxes). The region also provides 55,275 jobs for our state (Table 8). Manufacturing, tourism, mining and agriculture are the primary base economic industries in Region J.²² Municipal sectors, which include businesses that rely on tourism, generate nearly \$2.4 billion per year. | Water use category | Total sales | Intermediate sales | Final sales | jobs | income | Business
taxes | |--------------------|-------------|--------------------|-------------|--------|------------|-------------------| | Irrigation | \$2.93 | \$0.93 | \$1.99 | 50 | \$1.73 | \$0.06 | | Livestock | \$162.16 | \$88.64 | \$73.52 | 2,780 | \$15.01 | \$2.03 | | Manufacturing | \$1,151.36 | \$168.03 | \$983.33 | 6,610 | \$349.07 | \$6.21 | | Mining | \$52.19 | \$44.22 | \$7.96 | 95 | \$28.82 | \$3.13 | | Steam-electric | \$41.34 | \$11.63 | \$29.71 | 130 | \$28.71 | \$4.90 | | Municipal | \$3,831.52 | \$809.64 | \$3,021.89 | 45,611 | \$2,427.64 | \$195.23 | | Regional total | \$5,241.50 | \$1,123.09 | \$4.118.40 | 55.275 | \$2,850.98 | \$211.56 | Based on data from the Texas Water Development Board, and year 2006 data from the Minnesota IMPLAN Group, Inc. ²² Base industries are those that supply markets outside of the region. These industries are crucial to the local
economy and are called the economic base of a region. Appendix A shows how IMPLAN's 529 sectors were allocated to water use category, and shows economic data for each sector. ### 2.2 Impacts of Agricultural Water Shortages According to the 2011 *Plateau Regional Water Plan*, during severe drought farmers in Bandera and Kerr counties of would experiences shortages of irrigation water. In 2010, deficits range from 10 to 25 percent of annual demands. In total, farmers would be short 571 acre-feet in 2010 and 298 acre-feet in 2060 resulting in estimated losses in gross state product (income plus taxes) of roughly \$60,000 per year (Table 9). | Table 9: Economic Impacts of Water Shortages for Irrigation Water User Groups (\$millions) | | | | | | | |--|---|--|--|--|--|--| | Decade | Lost income from reduced crop production ^a | Lost state and local tax revenues from reduced crop production | Lost jobs from reduced crop production | | | | | | | Bandera County | | | | | | 2010 | \$0.0438 | \$0.0018 | 2 | | | | | 2020 | \$0.0438 | \$0.0018 | 2 | | | | | 2030 | \$0.0438 | \$0.0018 | 2 | | | | | 2040 | \$0.0438 | \$0.0018 | 2 | | | | | 2050 | \$0.0438 | \$0.0018 | 2 | | | | | 2060 | \$0.0438 | \$0.0018 | 2 | | | | | | | Kerr County | | | | | | 2010 | \$0.0207 | \$0.0008 | 0 | | | | | 2020 | \$0.0180 | \$0.0007 | 0 | | | | | 2030 | \$0.0310 | \$0.0011 | 0 | | | | | 2040 | \$0.0261 | \$0.0010 | 0 | | | | | 2050 | \$0.0213 | \$0.0008 | 0 | | | | | 2060 | \$0.0167 | \$0.0006 | 0 | | | | ^a Changes to Income and business taxes are collectively equivalent to a decrease in gross state product, which is analogous to Gross Domestic Product measured at the state rather than national level. ### 2.3 Impacts of Municipal Water Shortages Water shortages are projected to occur in Camp Wood and Kerrville. Deficits range from 30 to 100 percent of total annual water use. The costs of domestic water shortages for the region total roughly \$6 million in 2010 and 16 million in 2060 (Table 10). In Camp Wood shortages would effectively halt the operation of some commercial businesses resulting in lost income valued at nearly \$2 million in each decade. | | Table 10: Economic Impac | ts of Water Shortages | for Municipal Water Use | er Groups (\$millions) | | |--------|--|---|--|--|-----------------------------| | Decade | Monetary value of domestic water shortages | Lost income from reduced commercial business activity | Lost state and local taxes from reduced commercial business activity | Lost jobs from
reduced
commercial
business activity | Lost water utility revenues | | | | Kerrvi | ille | | | | 2010 | \$2.69 | \$0.00 | \$0.00 | 0 | \$0.26 | | 2020 | \$9.01 | \$0.00 | \$0.00 | 0 | \$0.34 | | 2030 | \$10.84 | \$0.00 | \$0.00 | 0 | \$0.38 | | 2040 | \$10.95 | \$0.00 | \$0.00 | 0 | \$0.38 | | 2050 | \$12.19 | \$0.00 | \$0.00 | 0 | \$0.42 | | 2060 | \$12.82 | \$0.00 | \$0.00 | 0 | \$0.45 | | | | Camp W | /ood | | | | 2010 | \$3.47 | \$1.84 | \$0.25 | 61 | \$0.03 | | 2020 | \$6.36 | \$1.84 | \$0.25 | 61 | \$0.03 | | 2030 | \$6.14 | \$1.78 | \$0.24 | 59 | \$0.03 | | 2040 | \$5.91 | \$1.71 | \$0.23 | 57 | \$0.03 | | 2050 | \$3.29 | \$1.74 | \$0.24 | 58 | \$0.03 | | 2060 | \$3.37 | \$1.79 | \$0.24 | 59 | \$0.03 | | | | Regional | Total | | | | 2010 | \$5.61 | \$1.84 | \$0.25 | 61 | \$0.29 | | 2020 | \$15.37 | \$1.84 | \$0.25 | 61 | \$0.37 | | 2030 | \$16.97 | \$1.78 | \$0.24 | 59 | \$0.41 | | 2040 | \$16.86 | \$1.71 | \$0.23 | 57 | \$0.41 | | 2050 | \$15.48 | \$1.74 | \$0.24 | 58 | \$0.45 | | 2060 | \$16.19 | \$1.79 | \$0.24 | 59 | \$0.48 | ### 2.7 Social Impacts of Water Shortages As discussed previously, estimated social impacts focus on potential population loss and declines in school enrollment. In 2010 estimated population losses total 80 people with a corresponding reduction in school enrollment of 20 students (Table 14). | Year | Population Losses | Declines in School Enrollment | |------|-------------------|-------------------------------| | 2010 | 80 | 20 | | 2020 | 80 | 20 | | 2030 | 80 | 20 | | 2040 | 80 | 20 | | 2050 | 80 | 20 | | 2060 | 80 | 20 | ### 2.8 Distribution of Impacts by Major River Basin Table 15 displays economic and social impacts by major river basin. Impacts were allocated based on distribution of water shortages by river basin. For instance, if 50 percent of water shortages in River Basin A and 50 percent occur in River Basin B then impacts were split equally among the two basins. | Major River Basin | 2010 | 2020 | 2030 | 2040 | 2050 | 2060 | |-------------------------------|--------|-----------|---------|---------|---------|---------| | | | Colorado |) | | | | | Income* | \$1.22 | \$5.22 | \$6.59 | \$6.52 | \$7.29 | \$6.33 | | Business Taxes | \$0.04 | \$0.07 | \$0.08 | \$0.08 | \$0.10 | \$0.08 | | Jobs | 9 | 18 | 20 | 19 | 23 | 20 | | Population | 11 | 23 | 27 | 23 | 28 | 27 | | Declines in School Enrollment | 3 | 6 | 7 | 7 | 8 | 7 | | | | Guadalup | е . | | | | | Income | \$0.00 | \$0.00 | \$0.00 | \$0.00 | \$0.00 | \$0.00 | | Business Taxes | \$0.00 | \$0.00 | \$0.00 | \$0.00 | \$0.00 | \$0.00 | | Jobs | 0 | 0 | 0 | 0 | 0 | 0 | | Population | 0 | 0 | 0 | 0 | 0 | 0 | | Declines in School Enrollment | 0 | 0 | 0 | 0 | 0 | 0 | | | | Nueces | | | | | | Income | \$7.29 | \$13.05 | \$13.19 | \$13.04 | \$10.93 | \$12.67 | | Business Taxes | \$0.22 | \$0.18 | \$0.16 | \$0.16 | \$0.14 | \$0.16 | | Jobs | 53 | 44 | 40 | 38 | 35 | 40 | | Population | 69 | 57 | 53 | 47 | 42 | 53 | | Declines in School Enrollment | 17 | 14 | 13 | 13 | 12 | 13 | | | | Rio Grand | le | | | | | Income | \$0.00 | \$0.00 | \$0.00 | \$0.00 | \$0.00 | \$0.00 | | Business Taxes | \$0.00 | \$0.00 | \$0.00 | \$0.00 | \$0.00 | \$0.00 | | Jobs | 0 | 0 | 0 | 0 | 0 | 0 | | Population | o | 0 | 0 | 0 | 0 | 0 | | Declines in School Enrollment | 0 | 0 | 0 | 0 | 0 | 0 | | | | San Anton | io | | | | | Income | \$0.00 | \$0.00 | \$0.00 | \$0.00 | \$0.00 | \$0.00 | | Business Taxes | \$0.00 | \$0.00 | \$0.00 | \$0.00 | \$0.00 | \$0.00 | | Jobs | 0 | 0 | 0 | 0 | 0 | 0 | | Population | 0 | 0 | 0 | 0 | 0 | 0 | | Declines in School Enrollment | 0 | 0 | 0 | 0 | 0 | 0 | ^{*} Includes the estimated value of domestic water shortages, which is treated as an income effect when aggregating results across different water user groups. # Appendix: Economic Data for Individual IMPLAN Sectors for the Plateau Regional Water Planning Area | Water Use Category | IMPLAN Sector | IMPLAN
Code | Total Sales | Intermediate
Sales | Final Sales | Jobs | Income | Business
Taxes | |--------------------|--|----------------|-------------|-----------------------|-------------|-------|---------|-------------------| | Irrigation | Grain Farming | 2 | \$0.24 | \$0.00 | \$0.24 | 11 | \$0.23 | \$0.01 | | Irrigation | Tree Nut Farming | 4 | \$1.19 | \$0.00 | \$1.19 | 17 | \$0.84 | \$0.03 | | Irrigation | Fruit Farming | 5 | \$1.30 | \$0.10 | \$1.19 | 28 | \$0.73 | \$0.03 | | Irrigation | Cotton Farming | 8 | \$0.30 | \$0.00 | \$0.30 | 6 | \$0.07 | \$0.00 | | Irrigation | All "Other" Crop Farming | 10 | \$1.00 | \$0.92 | \$0.08 | 11 | \$0.48 | \$0.02 | | Livestock | Animal- except poultry- slaughtering | 67 | \$71.33 | \$19.07 | \$52.25 | 189 | \$6.79 | \$0.38 | | Livestock | Cattle ranching and farming | 11 | \$47.74 | \$33.10 | \$14.64 | 819 | \$3.77 | \$1.01 | | Livestock | Animal production- except cattle and poultry | 13 | \$41.98 | \$35.59 | \$6.39 | 1,768 | \$4.08 | \$0.65 | | Livestock | Poultry and egg production | 12 | \$1.11 | \$0.87 | \$0.24 | 5 | \$0.37 | \$0.00 | | | Total Agric | ulture | \$166.19 | \$89.65 | \$76.52 | 2,854 | \$17.36 | \$2.12 | | | With the second | | | | | | | | |--------------------
---|----------------|-------------|-----------------------|-------------|---------|---------|-------------------| | Water Use Category | IMPLAN Sector | IMPLAN
Code | Total Sales | Intermediate
Sales | Final Sales | Jobs | Income | Business
Taxes | | Mining | Oil and gas extraction | 19 | \$46.70 | \$43.37 | \$3.33 | 60 | \$26.77 | \$2.93 | | Mining | Gold- silver- and other metal ore mining | 23 | \$1.27 | \$0.71 | \$0.56 | 5 | \$0.43 | \$0.04 | | Mining | Sand- gravel- clay- and refractory mining | 25 | \$0.89 | \$0.09 | \$0.79 | 4 | \$0.52 | \$0.03 | | Mining | Support activities for other mining | 29 | \$3.33 | \$0.05 | \$3.28 | 26 | \$1.10 | \$0.13 | | | Total | Mining | \$52.19 | \$44.22 | \$7.96 | \$95.00 | \$28.82 | \$3.13 | | Steam-electric | Power generation and supply | 30 | \$41.34 | \$11.63 | \$29.71 | 127 | \$28.71 | \$4.90 | | Water Use Category | IMPLAN Sector | IMPLAN
Code | Total Sales | Intermediate
Sales | Final Sales | Jobs | Income | Business
Taxes | |--------------------|---|----------------|-------------|-----------------------|-------------|-------|----------|-------------------| | Manufacturing | Aircraft manufacturing | 351 | \$226.46 | \$11.52 | \$214.94 | 466 | \$32.27 | \$0.68 | | Manufacturing | New residential one unit structures | 33 | \$163.43 | \$0.00 | \$163.43 | 1,184 | \$47.67 | \$0.75 | | Manufacturing | Commercial and institutional buildings | 38 | \$87.37 | \$0.00 | \$87.37 | 1,033 | \$40.65 | \$0.51 | | Manufacturing | Motor and generator manufacturing | 334 | \$69.71 | \$6.62 | \$63.09 | 270 | \$20.90 | \$0.45 | | Manufacturing | Plastics plumbing fixtures and all other plastics | 177 | \$61.97 | \$44.90 | \$17.08 | 349 | \$20.27 | \$0.35 | | Manufacturing | Foam product manufacturing | 178 | \$52.44 | \$39.93 | \$12.51 | 227 | \$13.04 | \$0.26 | | Manufacturing | All other electronic component manufacturing | 312 | \$40.30 | \$23.09 | \$17.20 | 149 | \$16.84 | \$0.39 | | Manufacturing | Other rubber product manufacturing | 181 | \$40.05 | \$1.04 | \$39.01 | 208 | \$12.49 | \$0.22 | | Manufacturing | Other new construction | 41 | \$37.81 | \$0.00 | \$37.81 | 472 | \$18.88 | \$0.15 | | Manufacturing | Jewelry and silverware manufacturing | 380 | \$36.60 | \$0.74 | \$35.86 | 179 | \$8.12 | \$0.14 | | Manufacturing | Ready-mix concrete manufacturing | 192 | \$35.72 | \$0.17 | \$35.54 | 151 | \$8.81 | \$0.22 | | Manufacturing | Motor vehicle parts manufacturing | 350 | \$25.76 | \$2.07 | \$23.69 | 74 | \$5.33 | \$0.08 | | Manufacturing | Air and gas compressor manufacturing | 289 | \$25.54 | \$0.26 | \$25.28 | 63 | \$7.47 | \$0.14 | | Manufacturing | Sanitary paper product manufacturing | 134 | \$24.51 | \$0.21 | \$24.30 | 3 | \$17.92 | \$0.07 | | Manufacturing | New residential additions and alterations-all | 35 | \$22.77 | \$0.00 | \$22.77 | 141 | \$7.51 | \$0.11 | | Manufacturing | Doll- toy- and game manufacturing | 382 | \$21.10 | \$0.42 | \$20.67 | 96 | \$5.32 | \$0.10 | | Manufacturing | Highway- street- bridge- and tunnel construct | 39 | \$18.72 | \$0.00 | \$18.72 | 201 | \$8.70 | \$0.11 | | Manufacturing | Wood kitchen cabinet and countertop manufacturing | 362 | \$18.65 | \$14.52 | \$4.12 | 156 | \$7.86 | \$0.13 | | Manufacturing | New multifamily housing structures- all | 34 | \$17.15 | \$0.00 | \$17.15 | 172 | \$7.39 | \$0.04 | | Manufacturing | Other basic organic chemical manufacturing | 151 | \$16.41 | \$3.06 | \$13.35 | 16 | \$1.40 | \$0.06 | | Manufacturing | Water, and sewer and pipeline construction | 40 | \$13.87 | \$0.00 | \$13.87 | 131 | \$5.58 | \$0.08 | | Manufacturing | Hunting and trapping | 17 | \$9.83 | \$0.80 | \$9.02 | 54 | \$3.20 | \$0.57 | | Manufacturing | Commercial printing | 37 | \$6.80 | \$0.00 | \$6.80 | 90 | \$3.35 | \$0.04 | | Manufacturing | Motor vehicle body manufacturing | 139 | \$6.65 | \$3.31 | \$3.35 | 116 | \$4.39 | \$0.05 | | Manufacturing | Agriculture and forestry support activities | 346 | \$6.40 | \$0.37 | \$6.03 | 23 | \$0.98 | \$0.02 | | Manufacturing | Plastics material and resin manufacturing | 18 | \$6.24 | \$3.55 | \$2.69 | 260 | \$4.06 | \$0.05 | | Manufacturing | All other manufacturing | Various | \$53.00 | \$11.20 | \$41.80 | 325 | \$16.19 | \$0.35 | | | Total Manufacturin | ıg | \$1,151.36 | \$168.03 | \$983.33 | 6.612 | \$349.07 | \$6.21 | Based on year 2006 data from the Minnesota IMPLAN Group, Inc. ### **Economic Data for Municipal Water User Groups (\$millions)** | Water Use Category | IMPLAN Sector | IMPLAN
Code | Total Sales | Intermediate
Sales | Final Sales | Jobs | Income | Business
Taxes | |--------------------|---|----------------|-------------|-----------------------|-------------|------------|----------|-------------------| | Municipal | Real estate | \$228.82 | \$90.58 | \$138.24 | 1,268 | \$132.38 | \$28.21 | \$228.82 | | Municipal | Wholesale trade | \$117.81 | \$56.40 | \$61.41 | 827 | \$62.05 | \$17.40 | \$117.81 | | Municipal | Monetary authorities and depository credit in | \$116.47 | \$38.36 | \$78.11 | 567 | \$81.79 | \$1.49 | \$116.47 | | Municipal | Waste management and remediation services | \$53.03 | \$29.81 | \$23.22 | 327 | \$24.93 | \$1.99 | \$53.03 | | Municipal | Scenic and sightseeing transportation and sup | \$78.31 | \$29.38 | \$48.93 | 583 | \$53.31 | \$8.89 | \$78.31 | | Municipal | Services to buildings and dwellings | \$38.41 | \$28.34 | \$10.07 | 765 | \$17.84 | \$0.68 | \$38.41 | | Municipal | Accounting and bookkeeping services | \$29.81 | \$24.21 | \$5.60 | 335 | \$14.87 | \$0.12 | \$29.81 | | Municipal | Telecommunications | \$69.95 | \$24.03 | \$45.93 | 183 | \$29.56 | \$4.95 | \$69.95 | | Municipal | Other State and local government enterprises | \$72.67 | \$23.66 | \$49.01 | 372 | \$24.25 | \$0.01 | \$72.67 | | Municipal | Hotels and motels- including casino hotels | \$44.96 | \$23.16 | \$21.80 | 784 | \$24.02 | \$4.12 | \$44.96 | | Municipal | Truck transportation | \$42.17 | \$22.83 | \$19.33 | 363 | \$17.47 | \$0.40 | \$42.17 | | Municipal | Legal services | \$33.01 | \$20.95 | \$12.06 | 363 | \$19.65 | \$0.62 | \$33.01 | | Municipal | Insurance agencies- brokerages- and related | \$35.69 | \$20.94 | \$14.75 | 416 | \$30.27 | \$0.20 | \$35.69 | | Municipal | Postal service | \$29.53 | \$20.11 | \$9.43 | 441 | \$23.55 | \$0.00 | \$29.53 | | Municipal | Maintenance and repair of nonresidential buil | \$28.93 | \$19.17 | \$9.76 | 265 | \$10.02 | \$0.19 | \$28.93 | | Municipal | Rail transportation | \$38.63 | \$18.68 | \$19.95 | 107 | \$23.75 | \$0.75 | \$38.63 | | Municipal | Food services and drinking places | \$138.65 | \$17.71 | \$120.95 | 2,907 | \$56.63 | \$6.62 | \$138.65 | | Municipal | Couriers and messengers | \$18.36 | \$16.69 | \$1.67 | 395 | \$10.19 | \$0.24 | \$18.36 | | Municipal | Civic- social- professional and similar organ | \$38.86 | \$13.65 | \$25.20 | 1,416 | \$14.44 | \$0.09 | \$38.86 | | Municipal | Management consulting services | \$17.64 | \$13.58 | \$4.06 | 119 | \$9.58 | \$0.07 | \$17.64 | | Municipal | Advertising and related services | \$14.06 | \$13.10 | \$0.95 | 122 | \$5.30 | \$0.09 | \$14.06 | | Municipal | Architectural and engineering services | \$20.60 | \$12.98 | \$7.61 | 184 | \$10.47 | \$0.09 | \$20.60 | | Municipal | Securities- commodity contracts- investments | \$18.42 | \$12.23 | \$6.19 | 155 | \$6.56 | \$0.19 | \$18.42 | | Municipal | General and consumer goods rental except vide | \$29.68 | \$10.07 | \$19.61 | 536 | \$16.49 | \$0.38 | \$29.68 | | Municipal | All other municipal sectors | \$2,477.06 | \$209.01 | \$2,268.05 | 31,811 | \$1,708.31 | \$117.46 | \$2,477.06 | | Municipal | Total municipal | \$3,831.52 | \$809.64 | \$3,021.89 | 45,611 | \$2,427.64 | \$195.23 | \$3,831.52 | Based on year 2006 data from the Minnesota IMPLAN Group, Inc.