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Executive Summary  

Strong summer droughts over the Southern Great Plains region are often characterized by rapid 

intensification in the late-spring and early-summer. The decreased rainfall in these drought years are 

coupled with strong increases in summertime temperature extremes, as for example, was the case with 

the 2011 drought over Texas and the Great Plains drought in 2012. Dynamic climate models failed to 

predict these summer droughts. This is largely due to model weaknesses in predicting summer rainfall, 

underestimating summer rainfall variance, and weaknesses in capturing soil moisture feedbacks. By 

contrast, climate models are more reliable in capturing the variability in large-scale circulation features 

and temperature during winter and spring.  

Observations show that severe-to-extreme summer drought events over Texas are preceded by 

dry springs. Over the period 1895-2014, there were 13 severe-to-exceptional droughts (defined as the 

12-monthly Standardized Precipitation Index for August ≤ -1.2) over Texas. Ninety two percent of these 

drought events were characterized by anomalously low rainfall in the spring (March through May). Dry 

springs cause anomalous high pressure systems and anticyclonic (clockwise) flow in the prevailing wind 

system, which lead to subsidence (sinking motion) in the atmosphere. Such subsidence persists through 

much of the summer and inhibits rainfall from convective (rising motion) processes.  This work explored 

the potential predictability of strong summer droughts, and the feasibility of using a process-based 

empirical model to predict summer droughts, over the Southern Great Plains based on such persistent 

drought-inducing atmospheric circulation patterns and surface dryness in spring.  

We developed a process-based statistical model to provide an early warning indicator of 

summer (meteorological) drought based on the anomalous large-scale middle tropospheric (that is, 500 

hectopascals level, or approximately 5,500 meters above sea level) circulation, convective inhibition 

energy (a numerical measure in meteorology indicating the negative energy available in the 

environment to prevent development of convective weather systems), and land surface moisture 
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conditions in spring (March to May). We used the three aforementioned conditions in spring (March, 

April, and seasonal mean March through May conditions) as inputs to our statistical model to predict 

cumulative rainfall deficits or surplus (referred to as the cumulative rainfall anomalies hereinafter) 

during May-July and the six-month standardized precipitation index (a rainfall based drought index) for 

July. 

Comparison of the hindcasts made using the statistical model with the observations shows that 

the model can predict summer droughts over Texas and the southern Great Plains region in spring with 

skill levels acceptable decision makers (~60 percent or higher) — particularly those tasked with drought 

emergency management.  The drought indicator shows higher success rates in correctly predicting the 

occurrence of dry or wet summers than the baseline drought predictability (that is, autocorrelation of 

rainfall anomalies) and forecasts from dynamical models over south central, central, northern and 

eastern Texas, western Louisiana, most of Oklahoma and southern Kansas at three to six months lead 

time. In all realizations of the model, we find that the grid points with the highest skill scores lie within 

Texas. The best skill is achieved when using April initial conditions of the three predictor variables. As a 

rule of thumb, if there is a high pressure system at 500 hectopascals over the Southern Great Plains, 

very high values of convective inhibition, and dry land-surface conditions in the region in April, there is a 

strong probability of an impending intense summer drought over this region. 

We made a first forecast for the summer of 2014 using observed April fields. The forecast 

showed abnormally wet conditions, which better matched observed conditions than the dynamical 

model forecast from the National Oceanic and Atmospheric Administration’s Climate Prediction Center 

for this region.   

We developed a combined dynamic-statistical prediction approach to assess the feasibility of 

providing an early warning of summer drought at the four- to six-month lead time.  This approach uses 

the ensemble mean dynamic prediction for April conditions, initialized by observed conditions in 
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January, February and March, respectively, as input to the statistical model to predict May through July 

rainfall anomalies, or the six-monthly Standardized Precipitation for July, at the 6-month, 5-month and 

4-month lead time.  The categorical seasonal forecasts (that is, probabilistic estimates of whether a 

season will be below-, near- or above-normal) from the indicator provide added information on drought 

susceptibility for upto six-month lead time with the skill levels acceptable to decision makers.  Of 

notable interest is the ability of this combined dynamic and statistical approach to hindcast the 2011 

summer drought in January with upto six month lead time. This implies that the 2011 summer drought 

over Texas could have been predicted in January 2011.  

Given the performance of the drought early warning indicator over Texas, we will explore the 

possibility for providing summer drought forecasts from January onwards to the Texas Drought 

Preparedness Council, state emergency management initiatives, and water planners. Such forecasts 

would ideally be made available to the public through the TWDB’s drought web page and the Water 

Data for Texas web site.   
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1. Introduction 

Strong summer droughts over the U.S. Southern Great Plains region (110°W-92°W and 24°N-40°N) are 

often characterized by rapid intensification in the late-spring and early-summer. The decreased rainfall 

in these drought years are coupled with strong increases in summertime temperature extremes, as 

shown, for example, by the 2011 drought over Texas and the 2010 Great Plains drought. Dynamic 

climate models did not predict these summer droughts (Seager and others, 2013; Hoerling and others, 

2013; Kumar and others, 2013).  They are also unable to provide more skill than that provided by the 

autocorrelation of rainfall anomalies permits, particularly during summer over the U.S. Great Plains 

(Quan and others, 2012). This is in part due to model limitations in representing summer thunderstorms 

and land-surface feedbacks, which occur at scales much smaller than the current spatial resolution of 

climate models, and due to models underestimating rainfall variance (Kam and others, 2014). By 

contrast, climate models are more reliable in capturing the variability in large-scale circulation features 

and temperature during winter and spring.  

What causes drought onset over the US Southern Great Plains? Our prior drought research 

based on observational data indicates that severe-to-extreme summer drought events over Texas are 

preceded by dry springs (Fernando, 2014). The phenomenon of dry springs preceding strong summer 

droughts was also documented earlier by Namias (1982) for the U.S. Great Plains.  The strongest 

drought events that occurred over the southern Great Plains since 1948 show some salient 

characteristics. A marked decrease in rainfall from April through July is led by sharp increases in 

temperature at the surface and at 700 hectopascals, and a decrease in relative humidity in April. These 

changes lead to strong convective inhibition energy (CIN) — a numerical measure in meteorology 

indicating the negative energy available in the environment to prevent development of convective 

weather systems — in April and May. It is also accompanied by an increased geopotential height and 

persistent negative vorticity (indicating subsidence) at mid-to higher levels of the atmosphere from April 
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to June (Figure 1). The persistence of rainfall anomalies from winter through early-spring leads to 

significant cumulative soil moisture deficits, a reduction in evapotranspiration, and an increase in 

sensible heating to balance the decrease in evapotranspiration. This leads to increased temperature at 

the surface. Drought years with persistent rainfall anomalies from winter through spring are 

characterized by strong westerly winds in April, particularly at 850 hectopascals (approximately 1 

kilometer above the surface). These winds advect warm dry air eastwards over Texas from the Mexican 

plateau. Dry air advection, and the associated cap inversion, cause an increase in temperature at 700 

hectopascals, and sharp increases in convective inhibition in April and May. These anomalous conditions 

are also the main causes of drought in the summer of Texas (Myoung and Nielsen-Gammon, 2010). 

Droughts in Texas are generally associated with colder than normal sea surface temperatures in 

the equatorial Pacific corresponding to La Niña events (Ropelewski and Halpert 1986; 1987; Schubert 

and others, 2009). La Niña-induced cooler SST anomalies are usually established in the fall, which 

contribute to winter drought over Texas. This is because a La Niña event induces the poleward 

displacement of the sub-tropical jet stream, which deflects winter storm tracks to the north of their 

climatological location and causes a reduction of precipitation over the U.S. Southern Great Plains 

(Eichler and Higgins, 2006; Kousky and Ropelewski, 1989). The reduction in winter precipitation leads to 

soil moisture deficits and increased surface temperature. The increase in surface temperature in turn 

leads to 1000-500 hectopascals geopotential height thickness over the southern United States, which 

could explain the presence of a mid-tropospheric high in the spring over the region.  

However, La Niñas do not always cause summer droughts. Historically, about 11 percent of La 

Niña-induced winter droughts over Texas ended in spring.  Those that persisted through spring tended 

to develop into severe [-1.2 ≤ Standarized Precipitation Index ≤ -1.5] to extreme droughts (Standardized 

Precipitation Index ≤ -1.5) in summer (Fernando and others, in preparation).  
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Figure 1: Time series of average anomalous monthly (a) rainfall, (b) maximum temperature at the 
surface and relative humidity, (c) temperature at 700 hectopascals and convective inhibition, (d) 
streamfunction at 200, 500 and 850 hectopascals, and (e) relative vorticity at 200, 500 and 850 
hectopascals for the 7 strongest droughts over the southern Great Plains from 1948‒2013.  

 

What causes the persistence of a summer drought, once it is established? Many studies have 

emphasized the importance of regional land-atmosphere feedbacks in affecting drought persistence 

(Lyon and Dole, 1995; Hong and Kalnay, 2002). Dry soils represent the cumulative impact of deficit 

precipitation and provide a positive feedback, further enhancing precipitation deficits (Mueller and 

Seneviratne, 2012). Modeling analyses identified the Central United States, including much of Texas, as 

an area of strong coupling between soil moisture and precipitation (Koster and others, 2004).   Fernando 

and others (in-prep), in investigating whether drought memory is due to the persistence of remote 

forcing or due to land surface feedbacks, found that dry soil moisture anomalies over the South Central 

United States might have a stronger influence on positive 500 hectopascals height anomalies 2 to 3 

weeks later than that of  remote forcing in the late-spring/early-summer.  
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Building on the above understanding of the causes that initiate and maintain persistent drought, 

we use the following circulation and land surface fields in spring (April, March, and average March 

through May) to build a statistical model to predict cumulative summer rainfall (e.g. May through July 

seasonal rainfall or July SPI6): 

a) Geopotential height at 500 hectopascals 

b) Difference in temperature at 700 hectopascals and surface dewpoint (proxy for convective 

inhibition, Myoung and Nielsen-Gammon, 2010) 

c) Soil moisture 

We address the following questions: Can summer drought over the southern Great Plains be predicted 

empirically? How sensitive is the statistical prediction tool to predict season? Can such a prediction 

scheme outperform baseline drought predictability and drought predictions from dynamical models? 

What lead times are skillful for issuing the spring forecast of summer drought? How sensitive is the 

statistical prediction tool to data input? 
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2. Datasets and methods 

2.1: Datasets 

We used monthly 500 hectopascals geopotential height, temperature at 700 hectopascals, 2-meter 

dewpoint temperature and 0−10 cm depth liquid volumetric soil moisture (non-frozen) for April, March, 

and March through May (MAM) from the National Centers for Environmental Prediction Climate 

Forecast System Reanalysis (CFSR, Saha and others, 2010) for 1982−2010 and derive monthly values of 

the same fields from 6-hourly Climate Forecast System version 2 (CFSv2) realtime data for the period 

2011−2013. We accessed the CFSR and CFSv2 data through the Data Library of the International 

Research Institute for Climate and Society (http://iridl.ldeo.columbia.edu). We used the Climate 

Forecast System Reforecasts (Saha and others, 2014) for hindcasts at the three-month (3.5), two-month 

(2.5), and one-month (1.5) lead times of April 500 hectopascals geopotential height, temperature at 700 

hectopascals, 2-meter dewpoint temperature and 0−10cm depth liquid volumetric soil moisture for the 

time periods 1982−2013. The data from 1982−2010 are from the Climate Forecast System Reanalysis 

and Reforecasts archive and the data from 2011-2014 were from the 6-hourly CFSv2 realtime data. The 

latitudinal means were removed from the 500 hectopascals geopotential height data.  

We used 500 hectopascals geopotential height and temperature at 700 hectopascals from 

monthly means of analyzed state meteorology product (MAIMNPANA); relative humidity and air 

temperature at 925 hectopascals from the 3-hourly instantaneous meteorology product (MAI3CPASM); 

and root zone soil wetness data from the monthly mean land surface diagnostics product 

(MATMNXLND) for April 1982-2013 from the National Aeronautics and Space Administration (NASA) 

Modern Era Retrospective-analysis for Research and Applications (MERRA, Rienecker and others, 2011). 

Monthly dewpoint is derived using the 3-hourly relative humidity and air temperature fields.  We access 

MERRA data using OPeNDAP/DODS access to the NASA GES DISC GrADS data server 

http://iridl.ldeo.columbia.edu/
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(http://goldsmr3.sci.gsfc.nasa.gov/dods). The latitudinal means are removed from the 500 hectopascals 

geopotential height data.  

We used daily soil moisture, aggregated to monthly values, from the merged active and passive 

microwave retrievals product of the European Space Agency Climate Change Initiative Essential Climate 

Variable Soil Moisture (ECV-SM) dataset version 1 (http://www.esa-soilmoisture-cci.org; Liu and others, 

2012; Liu and others, 2011; Wagner and others, 2012) for the period 1982−2010. These data are 

available at 25 km resolution.   

We obtained the ensemble mean of the three-month lead time May through July (MJJ) rainfall, 

for the period 1982−2010, using all the ensemble members (listed in parentheses) of seven models 

participating in the North American Multi-model Ensemble Project (NMME, Kirtman and others, 2013).  

These models are the CMC1-CanCM3 (10), CMC2-CanCM4 (10), COLA-RSMAS-CCSM3 (6), GFDL-CM2p1-

aer04 (10), GFDL-CM2p5-FLOR-A06 (12), NASA-GMAO-062012 (12), and CFSv2 (28). We also obtained 

ensemble mean monthly rainfall for 1982−2010 from the NMME to derive hindcasts of the Standardized 

Precipitation Index (SPI6).  

We obtained observed values of July SPI6, for the period 1982−2014, from SPI-CAMSOPI_six-

month dataset (http://iridl.ldeo.columbia.edu/SOURCES/.IRI/.Analyses/.SPI/.SPI-CAMSOPI_six-month/) made 

available through the International Research Institute for Climate and Society.  The SPI analysis uses the 

CAMS_OPI [Climate Anomaly Monitoring System (CAMS) and Out-going longwave radiation Precipitation 

Index (OPI), Janowiak and Xie, 1999] satellite and raingauge merged data product from the Climate 

Prediction Center (CPC, http://www.cpc.ncep.noaa.gov/products/global_precip/html/wpage.cams_opi.html).  

We used monthly 1˚x1˚ rainfall from the CPC global land precipitation dataset (Chen and others, 

2002) to derive seasonal rainfall for MJJ and June through August (JJA) for period 1982-2014.  

All data fields cover the domain 24N-40N and 110W to 92W. We refer to this domain as the 

South Central United States. All atmospheric and soil moisture fields were aggregated to the monthly 

http://goldsmr3.sci.gsfc.nasa.gov/dods
http://www.esa-soilmoisture-cci.org/
http://iridl.ldeo.columbia.edu/SOURCES/.IRI/.Analyses/.SPI/.SPI-CAMSOPI_6-Month/
http://www.cpc.ncep.noaa.gov/products/global_precip/html/wpage.cams_opi.html


15 
 

time step when such aggregated was needed prior to extracting the fields for April. All data fields were 

regridded to 1° horizontal resolution. At this resolution, there are 323 grid cells over the study domain.  

 

2.2: Statistical prediction tool 

All fields were converted to standardized anomalies, using the base period 1982−2012, prior to 

analysis. Original predictor inputs could have multicollinearity, noise, and variance irrelevant to the 

drought prediction. Therefore, we first applied Multivariate Empirical Orthogonal Function Analysis 

(EOF)1 to the three predictor fields as a way to filter out noise and highlight the most coherent spatial 

and temporal variances. We retained the first two EOF modes, accounting for at least 70 percent of the 

variance in the predictor fields, to minimize the potential multicollinearity of the original predictor 

fields. The two retained EOF modes are linear combinations of the three predictor variables and 

represent the highest fraction of co-variability in the original predictor fields.   

The data vector we use has the three predictor input datasets. The original 3-dimensional input 

data of 17 latitude points, 19 longitude points and 33 years (1982−2014) are transformed into a 10659 x 

1 matrix prior to multivariate EOF analysis using the Singular Value Decomposition (SVD) algorithm.  

Singular Value Decomposition is a method used to compute EOFs by factorizing the data matrix.  The 

two EOF modes we retained were subjected to Rotated Empirical Orthogonal Function Analysis (REOF, 

Richman 1986). Details on the variance explained by each EOF mode for every iteration of the model run 

used in this study are given in Annexure 1. The technique is designed to extract components from 

unrotated EOFs as individual portions of variance belonging to empirically distinct inter-correlational 

                                                            
1 Empirical Orthogonal Function analysis is a data compression technique such that a dataset containing a large 
number of samples is reduced to a dataset that captures the dominant modes (or correlated variance), which 
explain a large fraction of the squared total co-variance among these fields. The new variables are linear 
combinations of the original variables and represent the highest possible proportion of co-variability found in the 
original dataset (Wilks, 2006, pg. 463). 
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complexes in the dataset (Barnston and Livezey, 1987).  In rotation, principal component weights are 

designed to maximize the variance in the selected modes. We used the Varimax (Richman, 1986 and 

references therein) to rotate the EOFs is an orthogonal rotation (Richman, 1986).  Orthogonal rotations 

must satisfy the equation: 

𝐵 = 𝐴𝑇−1 

Where,  

B –  𝑘 𝑥 𝑚 rotated EOF loadings matrix 

A – 𝑘 𝑥 𝑚 initial unrotated loading matrix 

T – 𝑚 𝑥 𝑚 orthonormal transformation matrix 

As T is an orthonormal matrix, 

𝑇𝑇𝑇  = 𝑇𝑇𝑇 = 𝐼 

 

Varimax attempts to simplify the EOF modes of B to achieve simple structure (Richman, 1986) such that:  

  

𝑉 =.
2 2.

2.
∗ 𝑖𝑖 𝑖𝑖𝑖=1𝑖=1.

  
2 2𝑘𝑘.

  
�𝑘 ∑ �𝑏 � −  �∑ 𝑏 � �.

 𝑘.

Where,𝑗 = 1 … . .𝑉∗   

  

𝑉∗ - simplicity of an EOF mode 

𝑚 – number of modes 

𝑏 – EOF loadings 

We input the spatial loadings of the rotated EOF modes as predictor variables to a Canonical Correlation 

Analysis (CCA) model. The predictand variable is summer rainfall (i.e. either July SPI6 or seasonal 
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average MJJ rainfall). CCA identifies a sequence of pairs of patterns in two multivariate datasets. Linear 

combinations of the original data are produced by projecting the original data onto the identified 

patterns. New variables — known as “canonical variates” — that maximize interrelationships between 

the two data sets are then identified [Wilks, 2006, pg. 509]. CCA can be used as a statistical forecasting 

technique if one of the input data fields is observed prior to the other field (e.g. the predictand or the ‘y’ 

field) (von Storch and Zwiers, 2002). Such application of CCA has been undertaken in forecasting SSTs 

(Landman and Mason, 2001), in predicting seasonal temperatures over land (Shabbar and Barnston, 

1996), and in predicting ENSO episodes (Barnston and ven den Dool, 1993). When using CCA for 

forecasting purposes, a simple linear regression model is constructed that relates the predictand 

canonical variates 𝑤𝑚 to the predictor canonical variates 𝑣𝑚 (Wilks, 2006, pg. 509). 

𝑤𝑚 = �̂�0,𝑚 + �̂�1,𝑚𝑣𝑚 

where 𝑚 = 1,2……M  (M – the number of canonical pairs) 

We used the Climate Predictability Tool (CPT, http://iri.columbia.edu/our-

expertise/climate/tools/cpt/) to run the CCA model. Forecast skill assessment was undertaken using 

cross-validation (Michaelson, 1987; Barnston and Ropelewksi, 1992) over a 24 year training period from 

1982 through 2005. We use a cross validation window of three years. The strength of the predictor fields 

was assessed based on the goodness-of-fit between the cross-validated forecasts and the observation 

time series. Goodness-of-fit is a measure of the average correlation between the cross-validated 

forecasts and the observation time series. The measure is reported for every possible combination of 

predictor and predictand modes. When the goodness-of-fit value is closer to 1 the correlation between 

the predictor and predictand fields is stronger.  

Model skill was assessed in two steps. First, the skill of deterministic forecasts of seasonal 

cumulative rainfall or the six-monthly Standardized Precipitation Index was assessed using Spearman’s 

Ranked Correlation between observations and predictions at each grid point. Second, the skill of 

http://iri.columbia.edu/our-expertise/climate/tools/cpt/
http://iri.columbia.edu/our-expertise/climate/tools/cpt/
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probabilistic forecasts was assessed using the Two Alternate Forced Choice score for forecast categories 

(2AFC; Mason and Weigel, 2009), and the area under the Relative Operating Characteristics curve for 

the below-normal category (ROC; Mason and Graham, 2002) at each grid point. The 2AFC score ranges 

from 0 to 100 percent. If the 2AFC score is greater than 50 percent, it means that the forecast is able to 

discriminate beyond random guessing. The value of 0.5 indicates that the forecast cannot do better than 

a forecast made using purely climatology. The ROC score also ranges from 0 to 1 and only a score 

greater than 0.5 indicates that the forecast is able to discriminate beyond random guessing.  

To address the question of whether the statistical prediction improves on baseline drought 

predictability, we compared the Spearman’s Ranked Correlation for observed versus predicted July SPI6 

with persistence (measured as the autocorrelation function) of April SPI6. To assess if the statistical 

prediction improves on dynamical prediction skill, we also compared the 2AFC and ROC skill from three-

month lead NMME forecasts of MJJ precipitation with the same skill scores for forecast MJJ precipitation 

from the indicator.  

To address the question of what season and lead times are feasible for issuing the spring 

prediction of summer drought conditions, we ran the model using observed predictor fields for March, 

April and MAM and with 3-, 2-, and one-month forecasts and real-time observations of the predictor 

fields. For example, if the optimum lead-time for the predictor is April, we used January (three-month), 

February (two-month), and March (one-month) forecasts and observed values of April mean fields as 

the predictors versus either July SPI6 or MJJ mean rainfall as the predictand.  The best lead times were 

assessed based on the three skill metrics listed above.  
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3.  Results 
 

3.1: Predictor season 

The best skill is achieved when using April initial conditions of the three predictor variables — 

that is, 500 hectopascals geopotential height, difference in temperature between 700 hectopascals and 

dewpoint at the surface, and soil moisture — to predict July SPI6 (Figure 1, first column). March initial 

conditions yields poor skill. Using March through May (MAM) average initial conditions improves the 

prediction skill compared to using only March initial conditions. However, it still shows a lower skill 

compared to that obtained using April initial conditions.  

 

3.2: Predictand variation 

As a first step, we use both July SPI6 and MJJ seasonal rainfall as the predictand (that is, the 

variable that is predicted). The former is a commonly used drought indicator, and includes comprises a 

measure of rainfall departures from the mean over the preceding 6 month period. The latter, being a 

measure of the cumulative rainfall over MJJ, permits a better assessment of the prediction skill of our 

empirical model. For both predictands, our model shows better skill than using JJA seasonal rainfall 

(Figure 2). The skill is higher with July SPI6, particularly over the domain 100˚W-96˚W and 32˚N-38˚N. 

The reasons for poor skill when using JJA as the predictand could be due to the influence of tropical 

synoptic systems in August.   

A time series plot at a grid point falling within the region with high skill shows that the indicator 

captures very well the observed sign (red line with circle) of the July SPI6 (i.e. whether wet or dry) for 

the period of analysis (Figure 4), although the severity of the events is not captured as well. This is an 

area that needs further study to improve skill at the local level in capturing the magnitudes of the 

observed drought events.   
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Figure 2: Skill level as depicted by the Spearman’s Correlation (top), Relative Operating Characteristics 
Area (below-normal) (middle), and two-alternative Forced Choice (forecast categories) (bottom), using 
April (left), March (center) and March through May seasonal average (right) initial conditions for the 
predictor fields.  
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Figure 3:  Skill level as depicted using the Spearman’s Correlation (top), Relative Operating 
Characteristics Area (below-normal) (middle), and two-alternative Forced Choice (forecast categories) 
(bottom), using May through July seasonal rainfall, July through August seasonal rainfall (center), and 
July SPI6 (right) as the predictand.  
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Figure 4: Time series plot of observed (blue bar) six-monthly Standardized Precipitation Index for July 
(July SPI6) and indicator-predicted July SPI6 at the grid point 33˚N and 99˚W for the period 1982-2014. 
The correlation coefficient between the two time series is depicted as r.  

 

3.3: Statistical prediction skill versus baseline predictability and dynamical 
predictions 

The skill of the indicator beats baseline predictability (red, right column) over south central, 

central northern and eastern Texas, western Louisiana, most of Oklahoma (except for the western-most 

edge of the panhandle) and southern Kansas. However, over west Texas, New Mexico and southeastern 

Colorado, the indicator does not provide more skill than that which can be achieved from the pure 

persistence of April SPI6.   

 In terms of deterministic forecast skill, the indicator outperforms the dynamical predictions of 

ensemble mean MJJ rainfall from the NMME over Texas much of the central and eastern regions of the 

study domain (Figure 6, right panel). There is small region in the north of the domain where the 

dynamical forecast outperforms the statistical forecast. However, In terms of the categorical forecast 

skill, the indicator clearly outperforms the dynamical prediction from the 2AFC (forecast categories) and 

ROC (below-normal) skill scores, particularly over Texas (Figure 6, left and center panels).   
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Figure 5: Comparison of Spearman correlation between predicted and observed six-monthly 
Standardized Precipitation Index (SPI6) for July (left), baseline predictability represented as the 
autocorrelation function (ACF) of April SPI6 with July SPI6 (center), and the difference between 
prediction skill and baseline predictability.  

 

 

Figure 6: Forecast skill depicted using Spearman’s correlation (top), Relative Operating Characteristics 
Area (below-normal)(middle), and two-Alternate Forced Choice (forecast categories) (bottom), for the 
indicator forecast of the six-monthly Standardized Precipitation Index for July (July SPI6) using April 
initial conditions (top), and the North American Multi-model Ensemble mean three-month lead 
prediction of July SPI6 (bottom).    
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3.4: Lead times for forecast 
We studied what lead times were feasible for issuing the summer drought forecast using April 

forecast fields.  Using a threshold of 0.6 or 60 percent, the skill level typically acceptable to emergency 

managers in the State of Texas2, we find that the percentage of grid points with the 2AFC (forecast 

categories) greater than 60 percent increases from 54 percent for forecasts initialized with three-month 

lead time forecasts of April fields to 70 percent for forecasts initialized with one-month lead forecasts of 

April fields. This percentage increases to 89 percent for forecasts initialized with realtime April fields. 

The percentage of grid points with ROC (below-normal) greater than 0.5 increases from 50 percent for 

forecasts initialized with three-month lead forecasts of April fields, to 67 percent for the forecasts 

initialized with one-month lead forecasts of April fields, and 87 percent for forecasts initialized with 

realtime April fields (Figure 7).  Thus, it is clear that the categorical forecasts issued using April forecast 

fields at the three-month lead-time onwards are able to discriminate beyond random guessing over at 

least 50 percent of the domain. This increases steadily as the forecast lead-time decreases. The region of 

best skill lies over north-central Texas and Oklahoma. Over much of Texas, the categorical forecasts 

provide added information on drought susceptibility from the three-month lead time onwards (Figure 8, 

warm colors). The grid points with the highest ROC and 2AFC scores lie within Texas. The deterministic 

forecast skill, represented here by the Spearman’s correlation coefficient, shows that the number of grid 

points with correlation values exceeding 0.6 is at 8 for the forecasts initialized with three-month lead 

April forecast fields, 14 for forecasts initialized with two-month lead April forecast fields, 17 for forecasts 

initialized with one-month lead April forecast fields, and 51 for forecasts initialized with realtime April 

fields. Here too, the region of best skill (Figure 8, warm colors) is located over Texas and Oklahoma. The 

spatial distribution of the region with best skill expands southwards as we move through lead times 3- to 

realtime. As noted previously, the highest skill is found within the domain of 100˚W-90˚W and 32˚N-

38˚N.  
                                                            
2 Mike Bewley (personal communication, 2012) 
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 Forecasts of the 2011 drought made using 3-, 2-, one-month lead forecast fields, and realtime 

observations, of April circulation and soil moisture fields as initial conditions, show how the spatial 

extent and magnitude of below-normal probabilities increases as the lead time reduces (Figure 9). Of 

interest is the ability of the indicator to forecast the 2011 drought event even at six-month (January) 

lead time, using three-month lead forecasts of April predictor fields as initial conditions.  

 

 

Figure 7: Prediction skill for forecasts using April forecast fields initialized with January, February and 
March observations, and for forecasts made using observed April fields. Prediction skill is expressed as 
the percentage of grid points with the 2-Alternate Forced Choice (forecast categories) exceeding 50 
percent (blue line), percentage of grid points with Relative Operating Characteristics Area (below-
normal) exceeding 0.5 (green line), and number of grid points with Spearman’s correlation exceeding 0.6 
(red line).                                                                                
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Figure 8: Forecast skill depicted using Spearman’s correlation (left), 2-Alternate Forced Choice (forecast 
categories) (center), and Relative Operating Characteristics Area (below-normal) (right), using three-
month (six-month lead forecast), two-month (five-month lead forecast), one-month (four-month lead 
forecast) April forecast fields and realtime April observations (three-month lead forecast) as initial 
conditions.   
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Figure 9: Six- to three-month lead categorical forecasts of the 6-monthly Standardized Precipitation 
Index for July (SPI6) in 2011 (top, from left to right), and observed July SPI6 in 2011 (bottom). 

 

3.5: Indicator sensitivity to data input 
Comparison of indicator skill with April reanalysis predictor fields from MERRA versus CFSR 

shows that skill levels are higher using CFSR reanlysis data (Figure 10). When we varied the soil moisture 

field by replacing soil moisture from CFSR with observed soil moisture from ECV-SM soil moisture data 

set, we find modest improvements in skill over the western and northern regions (Figure 11).  
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3.6: Comparison of the 2014 indicator and official NOAA forecasts from the 

NMME 

 The official precipitation forecast for MJJ issued in April by the National Oceanographic and 

Atmospheric Administration (NOAA) using the NMME showed higher probabilities of below-normal 

rainfall over central and eastern Texas, southeastern Oklahoma and Louisiana, and higher probabilies of 

above-normal precipitation occurring over New Mexico and Colorado (Figure 12, center). Over west 

Texas and the Panhandle region, the forecast shows higher probabilities of above normal precipitation 

occurring over much of Texas and below normal precipitation over the western region in New Mexico 

and Colorado (Figure 12, middle). The observed total precipitation anomaly for MJJ shows northern and 

southeastern Texas as having received above normal rainfall, with western and southern Texas and 

southern New Mexico as having received below normal rainfall (Fig. 14, right). Statistics for the southern 

region from the National Climate Data Center (NCDC) shows that the MJJ season of 2014 had a 1.35 inch 

positive rainfall anomaly and the season ranked as the “94th wettest MJJ” 

(http://www.ncdc.noaa.gov/cag/time-series/us/106/00/pcp/3/07/1895-

2014?base_prd=true&firstbaseyear=1980&lastbaseyear=2010).  In synthesis, the indicator performed 

better than the official NOAA forecast in getting the nature of the rainfall anomaly correct. This was 

particularly the case over Texas.  

 

http://www.ncdc.noaa.gov/cag/time-series/us/106/00/pcp/3/07/1895-2014?base_prd=true&firstbaseyear=1980&lastbaseyear=2010
http://www.ncdc.noaa.gov/cag/time-series/us/106/00/pcp/3/07/1895-2014?base_prd=true&firstbaseyear=1980&lastbaseyear=2010
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Figure 10: Forecast skill depicted using Spearman’s correlation (top), Relative Operating Characteristics 
Area (below-normal)(middle), and 2-Alternate Forced Choice (forecast categories) (bottom), using April 
predictor fields from the Climate Forecast Reanalysis (left) and from the Modern-Era Retrospective 
Analysis for Research and Applications (right).  

 

Figure 11: Forecast skill depicted Spearman’s correlation (top), Relative Operating Characteristics Area 
(below-normal)(middle), and 2-Alternate Forced Choice (forecast categories) (bottom), where the soil 
moisture field is varied using Climate Forecast System Reanalysis  volumetric soil moisture (left) and 
Essential Climate Variable-Soil Moisture data (right).  
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Figure 12: Statistical prediction (left), official forecast using the North American Multi-model Ensemble, 
and observed precipitation anomalies for the 2014 May through July season. 

4. Conclusions and recommendations for further study 

Summer droughts (depicted using either the six-monthly Standardized Precipitation Index for 

July or May through July rainfall) over the southern Great Plains region can be predicted with skill levels 

acceptable to decision makes (~60 percent or higher) using large-scale circulation and land surface 

moisture fields in April. The best skill is achieved when using April initial conditions of the three 

predictor variables – i.e. 500 hectopascals geopotential height, difference in temperature between 700 

hectopascals and dewpoint at the surface, and soil moisture – to predict July SPI6. 

The early warning indicator is able to capture the spatial pattern and magnitude of past drought 

events and non-drought events well. It exceeds baseline predictability over most of Texas and 

Oklahoma. Categorical seasonal forecasts (that is, probabilistic estimates of whether a season will be 

below-, near- or above-normal) from the indicator provide added information on drought susceptibility 

from the six-month lead time onwards over Texas. In all model realizations, we find that the grid points 
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with the highest skill scores lie within Texas. Of interest is the ability of the indicator to forecast the 

2011 drought event even at six-month (January) lead time.  

Higher skill scores were obtained when the statistical forecast was initialized using April fields 

from the CFSR compared to fields from MERRA. Reasons for such a difference are unclear and warrant 

further investigation using possibly an ensemble mean of reanalysis fields from CFSR, MERRA and 

possibly ERA-Interim (Dee and others, 2011)3, NCEP 20th century reanalysis (Compo and others, 2011), 

and the North American Regional Reanalysis (Mesinger and others, 2006).  

Modest improvement in skill were obtained, over the western and northern regions of the study 

domain, when we varied the soil moisture field by replacing soil moisture from CFSR with observed soil 

moisture from ECV soil moisture data set.  

 The indicator forecast for summer 2014, initialized in April 2014, showed abnormally wet 

conditions and matches observed conditions better than the forecast from NOAA’s Climate Prediction 

Center.  

 Given the performance of the drought early warning indicator over Texas, will explore the 

possibility for providing real-time summer drought forecasts from January onwards to the Drought 

Preparedness Council, state emergency management initiatives and water planners. Such forecasts 

would ideally be made available to the public through the TWDB’s drought web page and the Water 

Data for Texas web site.  

 

 

                                                            
3 ERA-Interim is the reanalysis of the global atmosphere produced by the European Center for Medium-Range 
Weather Forecasts (ECMWF) from 1979-present. 
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Appendix 1: Table with variance explained by the EOF modes 
 

 

 
Input data field 

 
EOF1 

 

 
EOF2 

 
EOF3 

CFS Reanalysis predictor fields and observed July SPI6    
Apr 53.6% 33.9% 12.5% 
Mar 83.66% 15.11% 1.23% 
MAM 84.21% 15.22% 0.57% 
    

CFSR predictor fields in April and observed rainfall/SPI6    
MJJ    
JJA rainfall    
July SPI6 53.6% 33.9% 12.5% 
    

MERRA predictor fields in April and observed July SPI6 47.34% 30.55% 22.11% 
    
CFSR hindcast fields for April and observed rainfall and 
observed SPI6 

   

three-month 42.67% 31.77% 25.55% 
two-month 39.04% 31.63% 29.34% 
one-month 39.84% 34.33% 25.83% 

    
CFSR predictor circulation fields and soil moisture from 
ECV CCI 

53.64% 41.45% 4.91% 

    
CFSR predictor circulation fields and soil moisture/soil 
moisture proxy combined from ECV CCI and SIF 

41.56% 33% 25.43% 

    
 
Table 1: Percentage variance explained by the three EOF modes for each variation in input data 
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Appendix 2: Canonical Correlation Analysis input window in the Climate 
Predictability Tool 
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Appendix 3: Sample Rotated EOF input data for Canonical Correlation Analysis using the 
Climate Predictability Tool 
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Errata 
 

This technical note was first posted online on 3 February 2015. Subsequently, we realized that an 

acknowledgement section had not been included. The acknowledgement section is now included 

on page 32 of the technical note.  
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