

TEXAS DEPARTMENT OF WATER RESOURCES

REPORT 279

OCCURRENCE AND QUALITY OF GROUND WATER IN THE VICINITY OF BROWNSVILLE, TEXAS

By Richard D. Preston, Geologist

TEXAS DEPARTMENT OF WATER RESOURCES

Charles E. Nemir, Executive Director

TEXAS WATER DEVELOPMENT BOARD

Louis A. Beecherl Jr., Chairman Glen E. Roney W. O. Bankston George W. McCleskey, Vice Chairman Lonnie A. "Bo" Pilgrim Louie Welch

TEXAS WATER COMMISSION

Felix McDonald, Chairman Lee B. M. Biggart, Commissioner John D. Stover, Commissioner

Authorization for use or reproduction of any original material contained in this publication, i.e., not obtained from other sources, is freely granted. The Department would appreciate acknowledgement.

Published and distributed by the Texas Department of Water Resources Post Office Box 13087 Austin, Texas 78711

ABSTRACT

The City of Brownsville in 1972 requested technical and financial assistance from the Texas Water Development Board (now Texas Department of Water Resources) in regard to water-supply possibilities. In order for the Board to provide financial assistance, an evaluation of all possible water-supply sources was needed. This report is a description of the evaluation made of the availability and quality of ground water in the general area of the city.

The study encompasses an area of approximately 150 square miles (390 km²). Information was collected on 168 existing wells, and 21 test holes were drilled by the City of Brownsville as a part of the study. Some 179 water samples were collected for chemical analysis. These included samples from each producing zone encountered in the 21 test holes. Two comprehensive pumping tests were conducted on existing high-capacity wells.

All data indicate three distinct producing zones within the area, with only the deep zone (150 to 225 feet or 46 to 69 m) capable of producing significant amounts of usable quality water. Generally, water quality within this zone deteriorates gradually from less than 1,000 milligrams per liter (mg/l) dissolved solids some 12 miles (19 km) west of Brownsville to more than 10,000 mg/l within the eastern part of the city.

At least 350,000 acre-feet (432 hm³) of fresh to slightly saline water is calculated to be in storage within this deep zone in the study area. Water-quality maps indicate three areas that are feasible for development of additional ground water. Computer simulations of pumpage within these areas indicate that the development of more than 10 million gallons per day (34 million I/d) of water with less than 2,000 mg/l dissolved solids is possible without disastrous effects of dewatering the aquifer or deterioration of water quality.

Veril arest

TABLE OF CONTENTS

		Page
ABS	TRACT	iii
INTR	RODUCTION	1
	Location and Extent of the Area	1
1	Purpose and Scope	1
	Previous Investigations	2
	Climate	3
	Topography and Drainage	3
	History, Population, and Economy	5
,	Well-Numbering System	6
	Acknowledgements	7
MET	RIC CONVERSIONS TABLE	8
GEO	LOGY AS RELATED TO THE OCCURRENCE OF GROUND WATER	9
	General Stratigraphy and Structure	9
1	Physical Characteristics and Water-Bearing Properties of the Lower Rio Grande Valley Aquifer	јола У 9
GEN	ERAL GROUND-WATER HYDROLOGY	10
ı	Hydrologic Cycle	10
	Source and Occurrence of Ground Water	11
ı	Recharge, Movement, and Discharge of Ground Water	12
1	Hydraulic Characteristics of Aquifers	12
	Porosity	12

TABLE OF CONTENTS—CONTINUED

		Page
	Permeability	13
	Transmissibility	13
	Storage	13
	Development of Ground Water	14
	Changes in Water Levels	15
GEI	NERAL CHEMICAL QUALITY OF GROUND WATER	16
	Relationship of Water Quality to Use	19
	Irrigation	19
	Industrial	21
	Public Supply	22
	Domestic and Livestock	26
	Changes in Chemical Quality	27
	Treatment of Water	28
oc	CURRENCE AND QUALITY OF GROUND WATER IN BROWNSVILLE AND VICINITY	28
GR	OUND-WATER AVAILABILITY IN THE LOWER RIO GRANDE VALLEY AQUIFER	39
	Occurrence	39
	Recharge, Movement, and Discharge	40
	Aquifer Characteristics	45
	Well Construction and Yields	45
	Availability	46
	Areas Most Favorable for Future Development	48

TABLE OF CONTENTS—CONTINUED

	Parties of the second control of the second			
SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 49				
SE	SELECTED REFERENCES			
	TABLES			
1.	Source and Significance of Dissolved-Mineral Constituents and Properties of Water	17		
2.	Records of Wells and Test Holes	57		
3.	Drillers' Logs of Wells	66		
4.	Water Levels in Observation Wells	86		
5.	Chemical Analyses of Water from Selected Wells and Test Holes	92		
	FIGURES			
1.	Map Showing Location of the Study Area	2		
2.	Graph of Yearly Rainfall at Brownsville, 1900-1976	3		
3.	Graphs of Average Monthly Rainfall at Brownsville and Average Monthly Lake-Surface Evaporation in Cameron County	4		
4.	Diagram of the Well-Numbering System	7		
5.	Diagram of the Hydrologic Cycle	11		
6.	Diagram Showing the Classification of Lower Rio Grande Valley Aquifer Waters for Irrigation	20		

TABLE OF CONTENTS—CONTINUED

	P	age
7.	Map Showing the Dissolved-Solids Concentration in Water from the Deep Zone	33
8.	Map Showing the Chloride Concentration in Water from the Deep Zone	
9.	Map Showing the Sulfate Concentration in Water from the Deep Zone	37
10.	Map Showing Approximate Altitude of Water Levels in Wells in the Deep Zone	
11.	Map Showing the Best Areas for Future Ground-Water Development	43
12.	Diagrams of Typical Well Construction Used to Produce Water from Sand and Gravel in Brownsville and Vicinity	
13.	Map Showing Location of Wells, Test Holes, and Oil Tests	

OCCURRENCE AND QUALITY OF GROUND WATER IN THE VICINITY OF BROWNSVILLE, TEXAS

INTRODUCTION

Location and Extent of the Area

Brownsville, the county seat of Cameron County, is the southernmost city in Texas. The city lies on the United States border with Mexico, on the north bank of the Rio Grande about 25 miles (40 km) upstream from the Gulf of Mexico (Figure 1). Most of the city lies within the Rio Grande floodplain on the delta of the river.

Cameron County includes 896 square miles (2,321 km²) and is bounded on the west by Hidalgo County, on the north by Willacy County, on the south by Mexico, and on the east by the Gulf of Mexico.

The study area lies within the Lower Valley area of the Gulf Coastal Plain physiographic province. Brownsville is one of the major points of entry to Mexico and is located 160 highway miles (260 km) south of Corpus Christi, 275 miles (442 km) south-southeast of San Antonio, 202 miles (325 km) southeast of Laredo, and 331 miles (533 km) south of Austin. Brownsville is over 800 miles (1,290 km) south of the northwest corner of the Texas Panhandle, the most northern part of the State.

The present study included the City of Brownsville and an area to the west along the Rio Grande. This area included about 150 square miles (390 km²), bounded on the east side by Paredes Line Road (Farm Road 1847) and extending north to San Benito, west to Los Indios, and south to the Rio Grande (Figure 1).

Purpose and Scope

In 1972, the Public Utilities Board of the City of Brownsville requested that the Texas Department of Water Resources (then the Texas Water Development Board) conduct an inventory and evaluation of water-supply possibilities for the city. This was to include a determination of the availability and quality of ground-water supplies in the vicinity of Brownsville and an evaluation of the city's existing well field which consists of seven wells in the northwest part of Brownsville.

Figure 1.-Location of the Study Area

Since existing data on the area were sketchy and out-of-date, a detailed study of the entire ground-water situation was initiated in September 1972. Specific data on ground-water occurrence, availability, and quality were to be collected and reviewed and used to make recommendations on the possible development of a supplemental supply of ground water for the City of Brownsville. Thus, the specific purpose of the study was the collection of adequate data to provide the city with accurate recommendations.

The scope of the study included the determination of the location and extent of water-bearing strata and the quantity and quality of water available for development. This also included the determination of any possible problems which might occur as a result of

heavy prolonged pumpage (especially the migration of poor quality water into the producing zone).

The project was part of a coordinated study of ground- and surface-water problems conducted for the City of Brownsville by the Department under the supervision of W. L. Ivey, formerly with the Texas Department of Water Resources. The ground-water portion of the study was conducted under the general direction of C. R. Baskin, Fred L. Osborne, Jr., and Dr. Tommy R. Knowles of the Department of Water Resources, and under the direct supervision of A. Wayne Wyatt, formerly with the Department.

Previous Investigations

During the late 1940's and 1950's, the U.S. Geological Survey collected data on ground-water availability and use within the Lower Rio Grande Valley, especially in conjunction with the ground water produced from alluvial deposits which were used as supplemental irrigation and public supplies. This work culminated in 1954 in the publication of Board of Water Engineers Bulletin 5403, "Ground-Water Resources of Cameron County, Texas," by O. C. Dale and W. O. George; and in 1960, Bulletin 6014, "Ground-Water Resources of the Lower Rio Grande Valley Area, Texas," by R. C. Baker and O. C. Dale was published. The latter bulletin covered Hidalgo, Starr, Willacy, and Cameron Counties.

General information on the area is included in the Texas Water Commission's Bulletin 6305, "Reconnaissance Investigation of the Ground-Water Resources of the Gulf Coast Region, Texas" (L. A. Wood and others), and 6502, "Reconnaissance Investigation of the Ground-Water Resources of the Lower Rio Grande Basin, Texas," by R. C. Baker.

Several studies on Tertiary and Quaternary geology of the region are listed in the Selected References section of this report.

Climate

The lower Rio Grande Valley has a semitropical, subhumid climate. In Cameron County, the growing season average 341 days. There is a mean annual temperature of 74 °F (23 °C), with an average July maximum of 95 °F (35 °C) and an average January minimum of 51 °F (11 °C). A record minimum of 12 °F (-11 °C) was recorded at Brownsville in February 1899, and a record maximum of 104 °F (40 °C) in September 1947.

Yearly rainfall at Brownsville averaged 26.1 inches (66.3 cm) for the 77-year period from 1900 to 1976. The maximum yearly total of 60.06 inches (152.5 cm) was recorded in 1886 and the minimum of 8.88 inches (22.6 cm) in 1870. The yearly rainfall at Brownsville is shown on Figure 2.

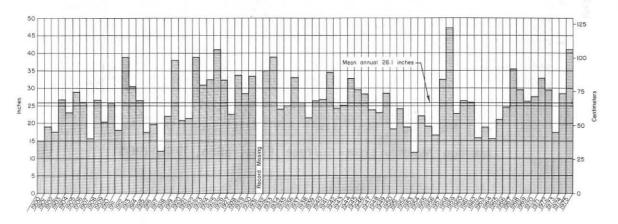


Figure 2.—Yearly Rainfall at Brownsville, 1900-1976 (From Records of National Weather Service)

Evaporation records for the 26-year period from 1940 to 1965 show an average annual gross lake-surface evaporation of about 56 inches (142 cm). The average annual net lake-surface evaporation (average annual gross lake-surface evaporation less the average annual effective rainfall) is about 30 inches (76 cm).

The average monthly distribution of rainfall and the average monthly distribution of gross and net lake-surface evaporation are shown on Figure 3.

Topography and Drainage

The study area lies within the West Gulf Coast section of the Coastal Plain physiographic province. Most of the area is a part of the low-lying, delta portion of the Rio Grande floodplain. The land surface is gently rolling to flat, sloping gradually toward the coast and the river. The area is crossed by many extremely sinuous waterways locally called resacas. These are the abandoned, former courses of the Rio Grande and its tributaries. Other meander scars or abandoned river beds also exist and are evidenced by elongated, curved but often unconnected low-lying areas which are subject to frequent flooding.

Before the construction of International Falcon Dam and Reservoir and other lakes on the Rio Grande, the entire lower valley area was subject to flooding during times of high river flow. A

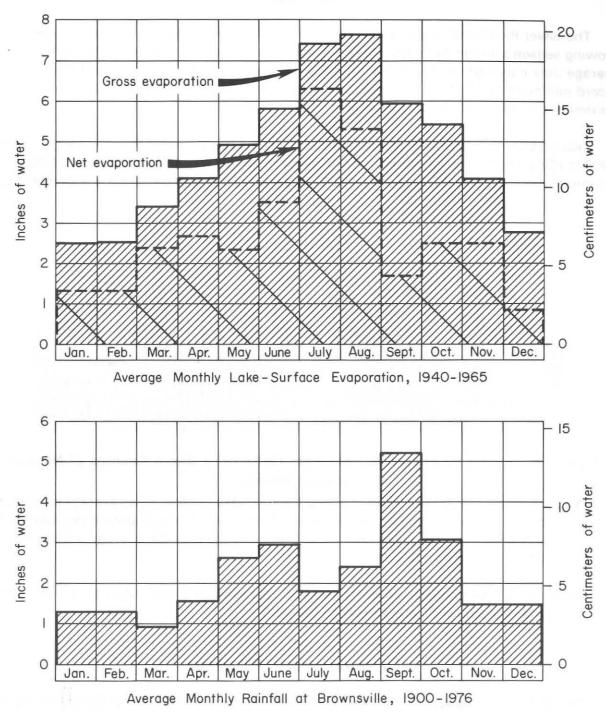


Figure 3.—Average Monthly Rainfall at Brownsville and Average Monthly Lake-Surface Evaporation in Cameron County (From Kane, 1967, and Records of National Weather Service)

system of levees, paralleling the river, also helps to prevent flooding in the Valley. These levees are maintained by the International Boundary and Water Commission.

Only the part of the study area within these levees is actually drained by the Rio Grande. The area outside of the natural and artificial levees is drained by the numerous resacas, including the Resaca del Rancho Viejo and the Resaca de los Cuates. These eventually empty into either the several lakes or bays along the Laguna Madre or into the Laguna Madre itself. Many small dams

along each of the resacas hold much of the water in storage except during times of high rainfall and runoff. Additional drainage is induced over much of the area artificially, however, by means of a system of drainage canals. The high water table and relatively poor natural drainage has interfered with agriculture, especially in conjunction with irrigation practices, making the system of drainage canals necessary.

History, Population, and Economy

The Brownsville and Cameron County area has been a part of almost every phase of the discovery and development of Texas. Some of the first explorers of the Western Hemisphere landed at the mouth of the Rio Grande in 1520 and pushed inland about 18 to 20 miles (29 to 32 km). Between 1720 and 1747, several attempts were made to settle the area, but all failed. In the period from 1758 to 1761, several large ranches were set up by Spanish people from Mexico. A trade center was established at the present site of Matamoros and Brownsville. The area continued as a part of the Mexican State of Tamaulipas until 1836 when the Rio Grande was claimed as the southern boundary of the newly formed Republic of Texas. During the Mexican War of 1845, after Texas became part of the United States, several major battles were fought in the Brownsville area (these included the Battle of Palo Alto and the Battle of Resaca de la Palma). The first settlement by anglos also began in 1845 when Fort Brown was constructed at the present site of Brownsville.

Cameron County was created and organized in 1848 with Brownsville as the county seat. The county originally consisted of 3,300 square miles (8,550 km²) taken from Nueces County. It was later reduced to 896 square miles (2,321 km²) by the creation of Kenedy and Willacy Counties.

During the War between the States, Brownsville became a thriving city as a major overseas shipping point for the southern States. A steady stream of cotton moved out and supplies moved in avoiding the Federal blockade of other southern ports. The last land battle of the war was won by Confederate forces at Palmito Ranch near Brownsville in May 1865, several weeks after Appomattox.

Slow population growth continued within the area until accelerated by the two world wars during the twentieth century. This rapid growth, combined with increased tourism and the construction of Port Brownsville, has made Brownsville the major city of the Lower Rio Grande Valley.

In the census of 1860, Cameron County had a population of 6,028, which increased to 10,999 in 1870. Growth continued at about the same rate through the early 1880's but then population stabilized until after 1900. From 1900 to 1920, county population more than doubled, from 16,095 to 36,662, and it doubled again by 1930 to 77,540. By 1950, the population had reached 125,170, and it climbed to 151,098 in 1960. In 1970, however, the county population had dropped to 140,368.

In 1860, the City of Brownsville had a population of 2,734. Steady growth has continued until the present. The 1970 population was 52,522.

The City of Brownsville and the study area have a broad-based economy with major contributions from agribusiness, shipping, manufacturing, and tourism.

Citrus fruits and vegetables are the major crops, and cotton and grain sorghum are also important. There is renewed interest in growing sugarcane in the area. The long growing season allows double and even triple cropping. Over 150,000 acres (60,700 hm²) is irrigated in Cameron County from both surface-water and ground-water sources. Yearly farm income averages over \$40 million in the county with three-fourths from fruit, vegetables, cotton, and grain sorghum.

Port Brownsville, completed in 1936 with a 17-mile (27-km) ship channel connecting with the Gulf of Mexico, has contributed greatly to the economy of Brownsville. Serving not only the Texas part of the Lower Rio Grande Valley, but northeastern Mexico and Monterrey as well, the Port handles not only foreign shipping but is the southern end point of the Gulf Intracoastal Waterway. A combined total of 4,911,267 short tons was handled in 1969. The major import is crude petroleum and the principal export is grain. The Port Brownsville ship channel also serves the Brownsville shrimp fleet and harbor. Manufacturing in Brownsville includes representatives of the machinery and chemical industries. The shrimp fleet at Port Brownsville is a large one and there are large seafood plants in the area. About \$62 million was added to the economy of Cameron County in 1970 by manufacturing. Retail trade was more than \$91 million in Brownsville during 1967.

One of the fastest growing facets of Brownsville's economy is the mushrooming tourist and winter vacation industry. The city is one of the major gateways to Mexico, and increasing numbers of both Mexican and United States tourists are crossing the international bridges every year. Many retired people spend the entire winter in the area, and an increasing number are making the Lower Rio Grande Valley their permanent home. The warm semitropical climate and the proximity to the Gulf of Mexico and Mexico have made Brownsville an ideal retirement and winter vacation center.

Well-Numbering System

The numbers assigned to wells and springs in this report conform to the statewide wellnumbering system used by the Texas Department of Water Resources. Each well and spring is assigned a seven-digit number to facilitate record keeping and locating the well within the State. This system is based on division of the State into quadrangles formed by degrees of latitude and longitude, and repeated subdivision of these quadrangles into smaller ones as illustrated in Figure 4.

The largest quadrangle, a one-degree quadrangle, is divided into sixty-four $7\frac{1}{2}$ -minute quadrangles, each of which is further divided into nine $2\frac{1}{2}$ -minute quadrangles. Each one-degree quadrangle in the State has been assigned a number for identification. The $7\frac{1}{2}$ -minute quadrangles are numbered consecutively from left to right beginning in the upper left hand corner of the one-degree quadrangle, and the $2\frac{1}{2}$ -minute quadrangles within the $7\frac{1}{2}$ -minute quadrangle are similarly numbered. The first two digits of a well number identify the one-degree quadrangle, the third and fourth digits identify the $7\frac{1}{2}$ -minute quadrangle, the fifth digit identifies the $2\frac{1}{2}$ -minute quadrangle, and the last two digits designate the order in which the well was inventoried within the $2\frac{1}{2}$ -minute quadrangle.

On the well-location map of this report (Figure 13), the one-degree quadrangles are indicated by open-block numerals 88 and 89, the 7½-minute quadrangles are labeled near their corners, and the last three digits of each well number are shown at the well location.

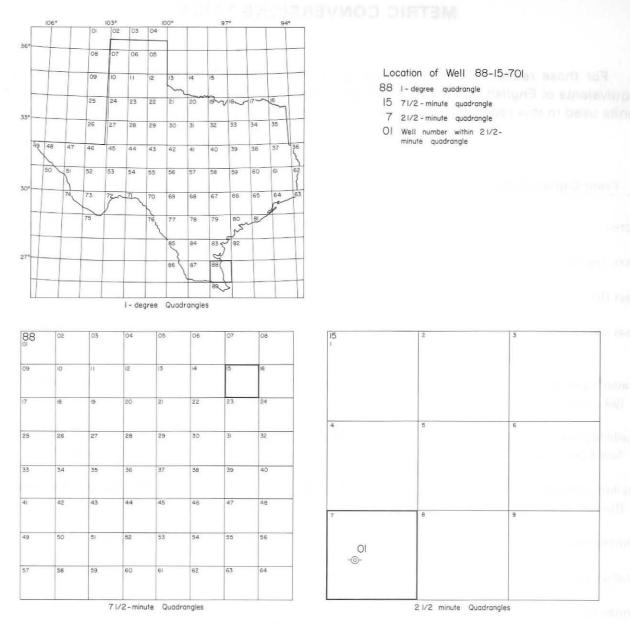


Figure 4.-Well Numbering System

Acknowledgements

The author would like to recognize the invaluable assistance provided by many people during the course of this study. Special thanks are due to Jack Coffee, Candy Hernandez, and Moe Hastings of the Public Utilities Board of the City of Brownsville.

Appreciation is expressed to the many farmers, ranchers, water well drillers, businessmen, and other individuals who generously provided information or cooperated in the collection of data for this report.

Appreciation is also expressed to personnel of the City of Brownsville, the Agricultural Stabilization and Conservation County Committee, and other private, local, county, state, and federal agencies which furnished aid and information.

METRIC CONVERSIONS TABLE

For those readers interested in using the International System (SI) of Units, the metric equivalents of English units of measurement are given in parentheses in the text. The English units used in this report may be converted to metric units by the following conversion factors:

From English units	Multiply by	To obtain metric units
acres	.4047	square hectometers (hm²)
acre-feet (acre-ft)	.001233	cubic hectometers (hm³)
feet (ft)	.3048	meters (m)
feet per mile (ft/mi)	.189	meters per kilometer (m/km)
gallons per minute (gal/min)	.06309	liters per second (I/s)
gallons per day per square foot [(gal/d)/ft²]	40.74	liters per day per square meter [(I/d)/m²]
gallons per day per foot [(gal/d)/ft]	12.418	liters per day per meter [(I/d)/m]
horsepower (electric) hp	746	watts (w)
inches (in)	2.54	centimeters (cm)
miles (mi)	1.609	kilometers (km)
million gallons per day (million gal/d)	3.785	million liters per day (million I/d)
square miles (mi²)	2.590	square kilometers (km²)

To convert degrees Fahrenheit to degrees Celsius use the following formula:

°C = 0.556 (°F-32)

GEOLOGY AS RELATED TO THE OCCURRENCE OF GROUND WATER

General Stratigraphy and Structure

The study area lies within the Rio Grande embayment on the delta of the Rio Grande. Recent fluvial and deltaic sediments are at the surface throughout Cameron County. Several thousand feet of similar, loosely consolidated or unconsolidated fluvial, deltaic, and shallow marine deposits underlie the study area. Several generally recognizable geologic units of late Tertiary and early Quaternary age produce fresh to slightly saline water to the north and northwest of the study area. These units, which include the Oakville Sandstone, Goliad Sand, and Lissie Formation, are not easily definable in the subsurface within the immediate vicinity of Brownsville, however. The interval which corresponds to these beds contains only water of very poor quality within the study area.

These complexly interbedded deposits of clay, silt, sand, and gravel make up a system dipping gently to the east toward the Gulf of Mexico. Within this system, the percentage of fine sediments increases to the east, and individual beds or interbedded intervals thicken to the east. This causes a steepening of dip of these beds toward the Gulf. The actual dip is extremely hard to determine because of the interbedded nature of the deposits, but it should be considerably less than 50 feet per mile (10 m/km), perhaps 20 feet per mile (4 m/km).

This gentle homocline is further modified within the lower coastal area by several low-profile salt domes similar to those common throughout most of the Texas Gulf Coastal area. Because of the extreme thickness of overlying sediments, most of the salt domes within the Rio Grande embayment do not show much penetration and there is little surface evidence. Some minor faulting also occurs within the general area. However, within the immediate study area there is no evidence of either salt domes or faulting.

Physical Characteristics and Water-Bearing Properties of the Lower Rio Grande Valley Aquifer

The Lower Rio Grande Valley aquifer or aquifer system, within the study area, is made up of all or part of the Goliad Sand, the Lissie Formation, the Beaumont Clay, and various Recent alluvial deposits. Because of similarities within these units, especially in the most eastern part of the Lower Valley (which includes the Brownsville area), boundaries between these units are difficult to recognize. The complex vertical and horizontal intergradations of sand and gravel units also make the entire sequence act as one aquifer, at least on a regional scale. Therefore, in a narrow band along the river in southeastern Starr County, in south and east Hidalgo County, and in west and southeast Cameron County, the entire water-bearing sequence, which extends from the surface down to 400 or 500 feet (120 or 150 m), is considered as a unit called the Lower Rio Grande Valley aquifer. Regionally, this aquifer is equivalent to the Gulf Coast aquifer as named in some previous studies (Texas Water Development Board, 1977).

This whole sequence of rocks, from the Goliad Sand through the Recent alluvium, is made up of clay, silt, sand, and gravel, mostly of fluvial or deltaic origin. Some small amounts of shallow marine clay may be present locally within the Lissie Formation and the Beaumont Clay. Generally,

usable quality water is restricted to the upper 500 feet (150 m) of the section. In the study area, no fresh to slightly saline water (containing less than 3,000 milligrams per liter dissolved solids) is known to occur at depths greater than about 300 feet (90 m), and within the city limits of Brownsville 225 feet (69 m) is the maximum depth of occurrence. Therefore, it seems that, at least within the study area, producing zones of fresh to slightly saline water are confined to the deposits of Pleistocene and Recent age, and the section which correlates with the Goliad Sand, Lissie Formation, and Beaumont Clay contains only relatively small amounts of saline water.

In and around Brownsville, the aquifer is made up of thick accumulations of river floodplain and delta deposits. The resulting system consists of complexly interbedded clay, silt, sand, and gravel beds. The clays and silts generally are laid down in sheet deposits of varying thickness. A few relatively widespread sheetlike beds of very fine sand can also be recognized. Generally, however, the beds of sand are tabular or linear in form. This elongate nature is even more apparent in the beds made up of coarser sand and gravel. This arrangement is the result of the partial restriction of sand and gravel deposition to the buried former stream courses.

The preponderance of finer material was readily apparent in samples taken during the drilling of the 21 test holes for the study. In all of the test holes, most of the material coarser than fine sand was confined to the depth interval between 150 and 225 feet (46 and 69 m). Beds of coarse sand and fine gravel of varying thickness are found at this interval over most of the study area, and this seems to be the only interval capable of producing large amounts of water in the vicinity of Brownsville. There also seems to be gradual lessening of coarser material toward the Gulf, even in the 150 to 225 foot (46 to 69 m) interval, and in the southeastern test holes (89-04-903 and 89-05-701) the section consisted almost exclusively of fine sand and clay.

GENERAL GROUND-WATER HYDROLOGY

In the Lower Rio Grande Valley aquifer, ground water occurs under a variety of conditions which range from pure water-table to artesian conditions. The water throughout the aquifer system, however, conforms to the fundamental hydraulic principles as outlined by Meinzer, Todd, and others (See Selected References).

Hydrologic Cycle

The complicated system of movement and processes through which the earth's water travels from the oceans, through the atmosphere, to the land surfaces, and back to the sea, is called the hydrologic cycle. This cycle is graphically illustrated in Figure 5. Water for any use, whatever the source, is captured in transit and ultimately, after use, is returned to the hydrologic cycle. Thus each use of water adds a loop to the hydrologic cycle.

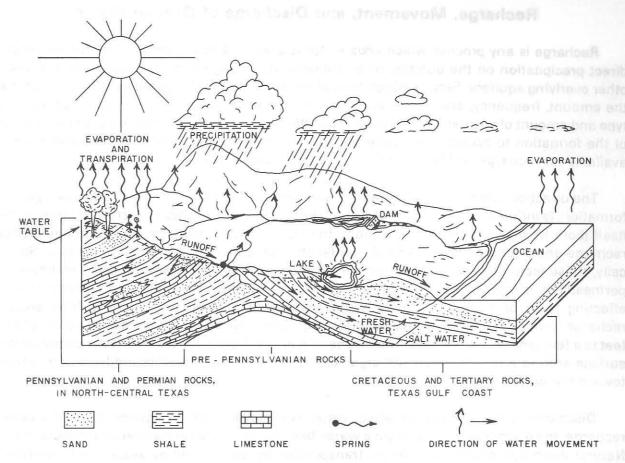


Figure 5.—The Hydrologic Cycle

Source and Occurrence of Ground Water

The ultimate source of most ground water is precipitation. This may be through direct precipitation on the outcrop of the aquifer, downward seepage from overlying beds, or loss from surface waterways where they cross the outcrop. The small percentage of total precipitation which seeps through the soil and reaches the water table is called ground water. The water table is the top of the zone within which the voids or pore spaces which make up the aquifer are saturated or filled with water.

Ground water is said to occur under either water-table (unconfined) or artesian (confined) conditions. Under water-table conditions, the top of the saturated zone is exposed to only the pressure of the atmosphere. When a well taps a water-table aquifer, the top of the water in the well will stand level with the top of the zone of saturation. Artesian conditions exist when the entire thickness of the aquifer is saturated and the top of an aquifer is bounded by a bed through which water will pass only with difficulty. The source of water in the artesian aquifer, usually the outcrop area, is generally at a higher elevation, and the force of gravity on the water that has infiltrated down through the aquifer imparts an added pressure to the water. When a well taps an artesian aquifer, the water will stand at some point above the top of the aquifer. If the land surface at the well is sufficiently lower than the land surface at the aquifer's outcrop area, water will flow from the well. In many cases, however, conditions may exist which cause an aquifer to have characteristics somewhere between those of an ideal water-table aquifer and those of an ideal artesian aquifer.

Recharge, Movement, and Discharge of Ground Water

Recharge is any process which adds water to a water-bearing zone or aquifer, whether by direct precipitation on the outcrop, or by subsequent seepage from surface streams, lakes, or other overlying aquifers. Factors which control the amount of recharge received by an aquifer are the amount, frequency, and type of precipitation, the extent of the outcrop, the topography, the type and amount of vegetation, the type and conditions of soil in the outcrop area, and the capacity of the formation to accept water (often, when an aquifer is full, a part of the water normally available for recharge will be passed off as rejected recharge).

The direction and rate of movement of water through a porous medium, such as a geologic formation, is influenced by a variety of factors, which include the physical nature of the formation itself (both its makeup and configuration), the locations and amounts of natural and artificial recharge and discharge, and the fundamental physical laws of gravity and momentum. Specifically, these factors include surface tension, friction, atmospheric pressure, paths of differential permeability, effects of heavy local withdrawal or injection of water, and climatic changes affecting rates of recharge. Generally, however, ground-water movement is from areas of recharge to areas of discharge. Normal rates of ground-water movement are on the order of a few feet to a few tens of feet per year. The steepening of the slope of the water table or potentiometric surface around a pumped well will significantly increase the rate of ground-water movement toward the well.

Discharge is the process by which water is removed from an aquifer. As in the case of recharge, the discharge of water from a water-bearing unit is also by natural and artificial means. Natural discharge occurs as leakage, transpiration by plants, and by evaporation. Artificially, water is discharged through wells by pumpage.

Hydraulic Characteristics of Aquifers

The capacity of an aquifer to hold, transmit, or yield water to wells depends on several characteristics which include porosity and coefficients of permeability, transmissibility, and storage. These factors will vary not only from aquifer to aquifer but from place to place within an aquifer. Therefore, an aquifer may be more productive in some areas than in others.

Porosity

Porosity is a measure of the total empty space within a formation expressed as a percentage of the total volume of the formation. It varies not only with the shape and size of the particles which comprise an aquifer, but also with the sorting of grain sizes and types, and with the amount of compaction and cementation the sediments have undergone. Generally, deeper aquifers have undergone a greater degree of compaction and cementation and, therefore, usually have a lower porosity than shallow aquifers with similar particle shapes, sizes, and sorting of grains. The porosity of sedimentary materials ranges from zero to greater than 50 percent. Some representative ranges are given in the following table (Todd, 1959, p. 16):

Material Material	Porosity (percent)
Soils	
Clay	
Silt	40-50
Medium to coarse mixed sand	35-40
Uniform sand	
Fine to medium mixed sand	30-35
Gravel	30-40
Gravel and sand	
Sandstone	
Shale	1-10

Permeability

Permeability is a measure of the ability of sediments or other rocks to transmit water. It depends not only on the size and number of pore spaces or voids within the rock, but also on the degree of interconnection of these voids. The coefficient of permeability is generally expressed as the number of gallons of water moving in 1 day through a vertical section of an aquifer 1 foot square and having a hydraulic gradient of 45 degrees. Meinzer and Wenzel (1942, p. 453) state that the U.S. Geological Survey has measured coefficients of permeability of natural earth materials ranging from about 0.0002 to more than 90,000 gallons per day per square foot [0.0081 to more than 3,700,000 (I/d)/m²].

Transmissibility

Transmissibility is a measure of an aquifer's ability to transmit water and it varies from area to area within an aquifer depending on its thickness. The coefficient of transmissibility is generally defined as the number of gallons of water that will move in 1 day through a vertical strip of the aquifer 1 foot wide and extending the full saturated thickness of the aquifer, with a hydraulic gradient of 45 degrees. Thus, the coefficient of transmissibility is equal to the field coefficient of permeability times the saturated thickness of the aquifer.

Storage

The coefficient of storage is a measure of the capacity of an aquifer to yield water. It is defined as the volume of water that is released from or taken into storage by an aquifer per unit surface

area of the aquifer per unit change in the component of head normal to that surface (Todd, 1959, p. 31).

Under artesian conditions, water is yielded due to the compression of the sediments and expansion of the water when the potentiometric surface is lowered by pumping. Under water-table conditions, however, the coefficient of storage is equal to the specific yield. The coefficient of storage is generally much smaller for aquifers that are under artesian conditions than those under water-table conditions. Also, because of these differences, a well pumping from an artesian aquifer will produce a large cone of depression in the potentiometric surface in a very short time, while a well pumping from a water-table aquifer will develop a smaller cone of depression in the water table over a much longer time. Ferris and others (1962) indicate that, in general, the range of coefficients of storage for artesian aquifers is from about 0.00001 to 0.001, and the range for water-table aquifers from about 0.05 to 0.30.

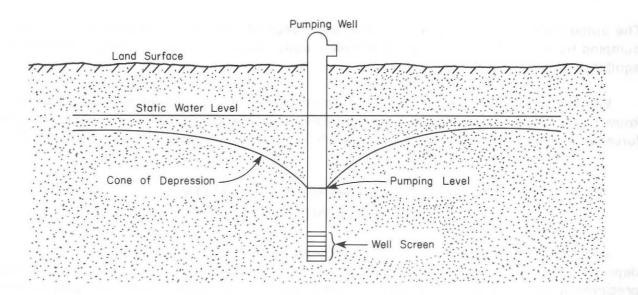
Development of Ground Water

Ground-water supplies for domestic and livestock, irrigation, industrial, and municipal uses are often preferable, where available, to surface-water supplies. Several factors control the development of ground water for each use, however.

For irrigation supplies, the most important factors are water quality and the amount of ground water available for development. It is especially critical in irrigation to be able to supply large quantities of water within relatively short time periods. In aquifers which do not supply large enough quantities to individual wells, several wells pumped together may often supply sufficient water for irrigation.

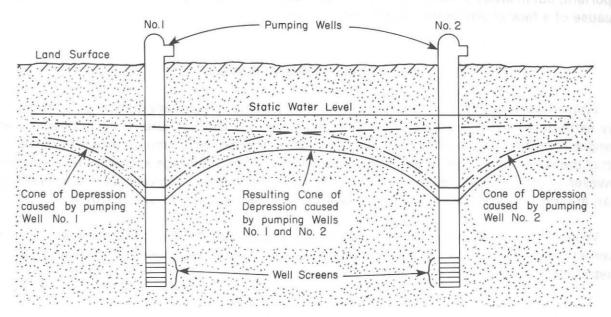
Development of ground water for public supply also requires large quantities of water, but the time factor is not so critical. Water for public supplies may be built up in times of slack usage to take care of peak usage periods. Water quality is critical in municipal water supplies, however. Ground water for public supply is usually developed using well fields (several wells in one general area which pump into central tanks or pipelines). These well fields are generally located in areas where relatively large amounts of good quality water may be obtained. Often, however, especially in some areas of north-central, west, and south Texas, ground-water supplies of rather limited quantities and of poor quality have been developed for public use because of the lack of any better supply from either ground-water or surface-water sources.

Most industrial uses of ground water depend on water quality. This is especially true of "process water" (water that comes into contact with, or is incorporated into, manufactured products). If ground water meets the quality requirements of an industry, it is often preferred over surface water because the quality of ground water from any one supply source is usually very constant. The temperature of ground water from any one source is also usually constant making ground water useful in industrial cooling processes.


The many recent advances in desalination processes (especially flash distillation and reverse osmosis processes) have made the development of supplies of poor quality ground water more feasible. In areas where sources of good quality water are limited or nonexistent, this is especially important. Cost of these processes is still so high, however, that they would usually be limited to industrial or public-supply development.

In domestic and livestock supply, the amount of water or capacity of wells is generally not of prime importance. As with municipal supplies, the water may be pumped during times of slack usage and stored for periods of peak use. Also, as in public supplies, water quality is extremely important, but in areas of water scarcity ground-water supplies of poor quality may be developed because of a lack of any better dependable sources.

Changes in Water Levels


Water-level changes may be due to many causes, some of regional significance and others of only extremely local significance. The most significant causes of water-level fluctuations are changes in recharge or discharge. When recharge is reduced, as in times of extended drought, a part of the water discharged from an aquifer is withdrawn from storage and water levels decline. However, when adequate rainfall resumes, the volume of water which was drained from storage in an aquifer during drought may be replaced and water levels will rise accordingly.

When a well is pumped, water levels in the vicinity are drawn down in the shape of an inverted cone with its apex at the pumped well. This cone of depression in the water table is illustrated in the following diagram.

The development of growth of this cone depends on the aquifer's coefficients of transmissibility and storage and on the pumping rate. As pumping continues, the cone expands and will continue to do so until it intercepts a source of replenishment capable of supplying sufficient water to satisfy the pumping demand. This source can be either intercepted natural discharge or induced recharge. If the quantity of water received from these sources is sufficient to compensate for the water pumped, the growth of the cone will cease and new balances between recharge and discharge are achieved. In areas where recharge or salvageable natural discharge is less than the amount of water pumped from wells, water is removed from storage in the aquifer to supply the deficiency and water levels continue to decline.

Where intensive development has taken place in ground-water reservoirs, each well superimposes its own individual cone of depression on the cones of neighboring wells. This results in the development of a regional cone of depression. When the cone of one well overlaps the cone of another, interference occurs, and an additional lowering of water levels occurs as the wells compete for water by expanding their cones of depression. The effects of interference between pumping wells are illustrated in the following diagram.

The amount or extent of interference between cones of depression depends on the rate of pumping from each well, the spacing between wells, and the hydraulic characteristics of the aquifer in which the wells are completed.

Water levels in some wells, especially those completed in artesian aquifers, have been known to fluctuate in response to such phenomena as changes in barometric pressure, tidal force, and earthquakes. The magnitude of such fluctuations, however, is usually very small.

GENERAL CHEMICAL QUALITY OF GROUND WATER

All ground water contains dissolved mineral constituents. The type and concentration depends upon the source, movement, and environment of the ground water. Water derived from precipitation is relatively free of mineral matter, but because water has considerable solvent power, it dissolves minerals from the soil and rocks through which it passes. Therefore, the differences in the chemical character of ground water reflect, in a general way, the nature of the geologic formations and the soils that have been in contact with the water. The concentration of dissolved solids generally increases with depth, especially where the movement of the water is restricted. Rocks deposited under marine conditions will contain brackish or highly mineralized water unless flushing by fresh water has been accomplished. This flushing action will occur in the outcrop area and to a limited distance downdip, depending in part upon the permeability of the rocks.

The chemical quality of ground water that has not been artificially altered is relatively constant, as is the temperature of ground water, which makes it highly desirable for many uses.

Included among the factors determining the suitability of ground water as a supply are the limitations imposed by the intended use of the water. Criteria have been developed to cover most categories of water quality, including bacterial content, physical characteristics, and chemical constituents. Water-quality problems associated with the first two categories can usually be alleviated economically, but the removal of undesirable minerals dissolved in water is often very difficult and expensive. The source and significance of the principal dissolved-mineral constituents occurring in ground water are summarized in Table 1.

Table 1.—Source and Significance of Dissolved-Mineral Constituents and Properties of Water

(Adapted from Doll and others, 1963, p. 39-43)

Constituent or Property	Source or Cause	Significance
Silica (SiO2)	Dissolved from practically all rocks and soils, commonly less than 30 mg/l. High concentrations, as much as 100 mg/l, generally occur in highly alkaline waters.	Forms hard scale in pipes and boilers. Carried over in steam of high pressure boilers to form deposits on blades of turbines. Inhibits deterioration of zeolite-type water softeners.
Iron (Fe)	Dissolved from practically all rocks and soils. May also be derived from iron pipes, pumps, and other equipment.	On exposure to air, iron in ground water oxidizes to reddish-brown precipitate. More than about 0.3 mg/l stain laundry and utensils reddish-brown. Objectionable for food processing, textile processing, beverages, ice manufacture, brewing, and other processes. Texas Department of Health (1977) drinking water standards state that iron should not exceed 0.3 mg/l. Larger quantities cause unpleasant taste and favor growth of iron bacteria.
Calcium (Ca) and Magnesium (Mg)	Dissolved from practically all soils and rocks, but especially from limestone, dolomite, and gypsum. Calcium and magnesium are found in large quantities in some brines. Magnesium is present in large quantities in sea water.	Cause most of the hardness and scale-forming properties of water; soap consuming (see hardness). Waters low in calcium and magnesium desired in electroplating, tanning, dyeing, and in textile manufacturing.
Sodium (Na) and Potassium (K)	Dissolved from practically all rocks and soils. Found also in oil-field brines, sea water, industrial brines, and sewage.	Large amounts, in combination with chloride, give a salty taste. Moderate quantities have little effect on the usefulness of water for most purposes. Sodium salts may cause foaming in steam boilers and a high sodium content may limit the use of water for irrigation.
Bicarbonate (HCO3) and Carbonate (CO3)	Action of carbon dioxide in water on carbonate rocks such as limestone and dolomite.	Bicarbonate and carbonate produce alkalinity. Bicarbonates of calcium and magnesium decompose in steam boilers and hot water facilities to form scale and release corrosive carbon-dioxide gas. In combination with calcium and magnesium, cause carbonate hardness.
Sulfate (SO4)	Dissolved from rocks and soils con- taining gypsum, iron sulfides, and other sulfur compounds. Commonly present in some industrial wastes.	Sulfate in water containing calcium forms hard scale in steam boilers. In large amounts, sulfate in combination with other ions gives bitter taste to water. Texas Department of Health (1977) drinking water standards recommend that the sulfate content should not exceed 300 mg/l.
Chloride (CI)	Dissolved from rocks and soils. Present in sewage and found in large amounts in oil-field brines, sea water, and industrial brines.	In large amounts in combination with sodium, gives salty taste to drinking water. In large quantities, increases the corrosiveness of water. Texas Department of Health (1977) drinking water standards recommend that the chloride content should not exceed 300 mg/l.
Fluoride (F)	Dissolved in small to minute quanti- ties from most rocks and soils. Added to many waters by fluoridation of municipal supplies.	Fluoride in drinking water reduces the incidence of tooth decay when the water is consumed during the period of enamel calcification. However, it may cause mottling of the teeth, depending on the concentration of fluoride, the age of the child, amount of drinking water consumed, and susceptibility of the individual (Maier, 1950, p. 1120-1132).
Nitrate (NO3)	Decaying organic matter, sewage, fertilizers, and nitrates in soil.	Concentration much greater than the local average may suggest pollution. Texas Department of Health (1977) drinking water standards suggest a limit of 45 mg/l (as NO3) or 10 mg/l (as N). Waters of high nitrate content have been reported to be the cause of methodological content have been reported to be the cause of methodological content have been reported to be the cause of methodological content have been reported to be the cause of methodological content and provided the suggestion of the cause of methodological content and provided the suggestion of the cause of methodological content and provided the cause of met

nemia (an often fatal disease in infants) and therefore should not be used

Table 1.—Source and Significance of Dissolved-Mineral Constituents and Properties of Water—Continued

Constituent		
or Property	Source or Cause	a: :=
and the same of th		
Nitrate NO3—Continued		in infant feeding (Maxcy, 1950, p. 271). Nitrate shown to be helpful in re- ducing inter-crystalline cracking of boiler steel. It encourages growth of algae and other organisms which produce undesirable tastes and odors.
Boron (B)	A minor constituent of rocks and of natural waters.	An excessive boron content will make water unsuitable for irrigation. Wilcox (1955, p. 11) indicated that a boron concentration of as much as 1.0 mg/l is permissible for irrigating sensitive crops; as much as 2.0
		mg/I for semitolerant crops; and as much as 3.0 mg/I for tolerant crops. Crops sensitive to boron include most deciduous fruit and nut trees and navy beans; semitolerant crops include most small grains, potatoes and some other vegetables, and cotton; and tolerant crops include alfalfa, most root vegetables, and the date palm.
Dissolved solids	Chiefly mineral constituents dissolved from rocks and soils.	Texas Department of Health (1977) drinking water standards recommends that waters containing more than 1,000 mg/l dissolved solids not be used if other less mineralized supplies are available. For many purposes the dissolved-solids content is a major limitation on the use of water.
Hardness as CaCO3	In most waters nearly all the hardness is due to calcium and magnesium. All of the metallic cations other than the alkali metals also cause hardness.	Consumes soap before a lather will form. Deposits soap curd on bathtubs. Hard water forms scale in boilers, water heaters, and pipes. Hardness equivalent to the bicarbonate and carbonate is called carbonate hardness. Any hardness in excess of this is called non-carbonate hardness. Waters of hardness up to 60 mg/l are considered soft; 61 to 120 mg/l, moderately hard; 121 to 180 mg/l, hard; more than 180 mg/l,
	0.5	very hard.
Sodium-adsorption ratio (SAR)	Sodium in water.	A ratio for soil extracts and irrigation waters used to express the relative activity of sodium ions in exchange reactions with soil (U.S. Salinity Laboratory Staff, 1954, p. 72, 156). Defined by the following equation:
		Na ⁺
		$SAR = \frac{Na^+}{\sqrt{Ca^{++} + Mg^{++}}},$
		where Na +; Ca ++ , and Mg ++ represent the concentrations in milli- equivalents per liter (me/I) of the respective ions.
Residual sodium carbonate (RSC)	Sodium and carbonate or bicarbonate in water.	As calcium and magnesium precipitate as carbonates in the soil, the relative proportion of sodium in the water is increased (Eaton, 1950, p. 123-133). Defined by the following equation:
		$RSC = (CO_3^- + HCO_3^-) - (Ca^{++} + Mg^{++})$
		where CO3 - , HCO3 - , Ca ++ , and Mg ++ represent the concentrations in milliequivalents per liter (me/I) of the respective ions.
Specific conductance micromhos at 25°C)	Mineral content of the water.	Indicates degree of mineralization. Specific conductance is a measure of the capacity of the water to conduct an electric current. Varies with concentration and degree of ionization of the constituents.
Hydrogen ion concentration (pH)	Acids, acid-generating salts, and free carbon dioxide lower the pH. Carbonates, bicarbonates, hydroxides, phosphates, silicates, and borates raise the pH.	A pH of 7.0 indicates neutrality of a solution. Values higher than 7.0 denote increasing alkalinity; values lower than 7.0 indicate increasing acidity. pH is a measure of the activity of the hydrogen ions. Corrosiveness of water generally increases with decreasing pH. However, excessively alkaline waters may also attack metals. The Texas Department of Health drinking water standards recommends a pH greater than 7.

For many purposes the dissolved-solids content constitutes a major limitation on the use of water. A general classification of water by Winslow and Kister (1956, p. 5) based on dissolved-solids content in parts per million (ppm) is as follows:

Description	Dissolved-solids content (ppm)
Fresh	Less than 1,000
Slightly saline	1,000 to 3,000
Moderately saline	3,000 to 10,000
Very saline	10,000 to 35,000
Brine	More than 35,000

In recent years, most laboratories have begun reporting analyses in milligrams per liter (mg/l) instead of ppm. Up to concentrations of about 7,000, these units are essentially identical. The analyses in this report are reported in mg/l. Only a few exceed 7,000 mg/l; to calculate these in parts per million, a density correction must be made using the following formula:

Relationship of Water Quality to Use

Irrigation

The suitability of water for irrigation purposes depends not only on the chemical quality of the water, but also on soil composition and texture, irrigation practices, types of crops grown, climate, drainage, and the quantity of water applied. In consideration of the quality of water for irrigation, both the concentration and composition of the dissolved constituents are important. The chemical characteristics that seem to be most important in evaluating the quality of water for irrigation are: (1) the relative proportion of sodium to the other cations (called the percent sodium), (2) the sodium-adsorption ratio (the relative activity of sodium ions in exchange reactions with the soil, as compared with calcium and magnesium ions), (3) the total concentration of soluble salts (usually expressed as the specific conductance), (4) the amount of residual sodium carbonate, and (5) the concentration of boron.

The U.S. Salinity Laboratory Staff (1954, p. 69-82) proposed a system of classification that is commonly used for judging the suitability of water for irrigation use. The classification is based on plotting the salinity hazard as measured by the electrical conductivity (specific conductance) against the sodium hazard as measured by the sodium-adsorption ratio (SAR). This classification is illustrated in Figure 6. This figure indicates that waters pumped from the Lower Rio Grande

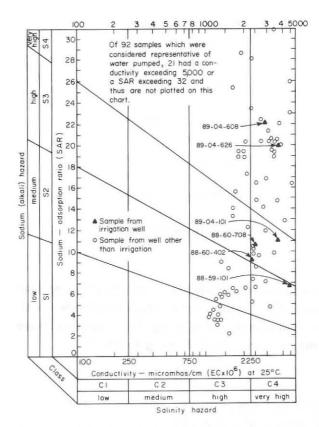


Figure 6.—Classification of Lower Rio Grande Valley Aquifer Waters for Irrigation (After U.S. Salinity Laboratory Staff, 1954, p. 80)

Valley aquifer fall in two salinity hazard classes which are high (C3) and very high (C4). Additionally, the plot shows that waters from the aquifer have sodium hazard classes which range from low (S1) through very high (S4). Based on this information, it is recommended that any waters considered for irrigational purposes to be thoroughly evaluated by experts.

In general, water with low salinity and sodium hazards is suitable for all crops. Water with a high salinity or sodium hazard is unsuitable for continuous irrigation of crops, except for those crops which have a high salinity tolerance and only then under certain ideal soil and drainage conditions. The percent sodium and sodiumadsorption ratio are used to express the relative amount of sodium ions in the water as compared to the amount of calcium and magnesium ions. When water with a high SAR and high percent sodium is placed upon soils which are tight and do not drain well, the sodium ions in the water will replace calcium and magnesium ions in the soil. This tends to make the soil highly plastic and will hinder tilling operations and lower the permeability of the soil.

The residual sodium carbonate (RSC) factor is used in assessing the quality of water for irrigation because excessive sodium carbonate concentrations cause soils to break down and lose their permeability, restricting the movement of air and water. Alkali soils will develop and the soil will lose its ability to support plant life. Wilcox (1955, p. 11) gives the following limits for RSC for irrigation waters: above 2.6 me/l (milliequivalents per liter) is not suitable for irrigation, 1.25 to 2.6 me/l is marginal, and water containing less than 1.25 me/l probably is safe.

The salinity hazard to growing plants is twofold. The first effect of high concentrations of dissolved solids in irrigation water is to disrupt the osmotic exchange of water between the plants and the soil. This osmotic exchange usually consists of water being taken into the plant's root systems, coming from relatively low concentrations of minerals in the soil water to relatively high concentrations within the plant. When the concentration in the soil becomes too high, the plants may lose water, wilt, and even die.

The second effect is the danger of high concentrations of some ions which are toxic to plants. Chloride and sulfate are probably the most injurious ions that are often found in high concentrations in ground water.

Boron in irrigation water is essential to plant growth, but only in very small amounts. A deficiency of boron may seriously injure plants, but on the other hand concentrations as low as 1 mg/l may harm plants which are sensitive to boron. A striking example of this is that lemons show definite and, at times economically important injury when irrigated with water containing 1 mg/l

of boron, while alfalfa will make maximum growth with water containing 1 to 2 mg/l of boron. The following table is often used as a guide in rating irrigation water in relation to boron content (Scofield, 1936):

Permissible Limits for Boron of Several Classes of Irrigation Water

Classes of Water		Sensitive	Semitolerant	Tolerant
Rating	Grade	crops (mg/l)	(mg/l)	crops (mg/l)
1	Excellent	< 0.33	< 0.67	< 1.00
2	Good	0.33 to 0.67	0.67 to 1.33	1.00 to 2.00
3	Permissible	0.67 to 1.00	1.33 to 2.00	2.00 to 3.00
4	Doubtful	1.00 to 1.25	2.00 to 2.50	3.00 to 3.75
5	Unsuitable	> 1.25	> 2.50	> 3.75

Under most normal conditions of irrigation, however, it is not the quality of the irrigation water that directly affects the growing plants, it is the chemical quality and characteristics of the soil solution (the soil and the water contained in it). The soil solution always contains a higher concentration of minerals than the applied irrigation water, generally 4 to 8 times as much; and in tight soils and fields with poor drainage, irrigation with water of high or even moderate salinity and sodium hazards will only cause further concentration of the problems. Sandy soils with relatively high permeabilities and good drainage will allow the excess mineral content to be flushed or leached out by application of large amounts of water. Because of this, water of even very poor quality may be used for irrigation if the soil conditions are right and care is taken to select crops with high tolerances for the minerals contained in the water.

Industrial

Water that is suitable for industrial use may not be acceptable for human consumption, and different standards may apply for each type of industry. Ground water used for industry may be classified into four principal categories: cooling water, boiler water, process water, and water used for secondary recovery of oil by water injection.

Although cooling water is usually selected on the basis of its temperature and source of supply, its chemical quality is also significant. Any characteristic that may adversely affect the heat-exchange surfaces is undesirable. Substances such as magnesium, calcium, iron, and silica may cause the formation of scale. Another objectionable feature that may be found in cooling water is corrosiveness caused by calcium and magnesium chlorides, sodium chloride in the presence of magnesium, acids, and oxygen and carbon dioxide gases.

Boiler water used for production of steam requires high quality-of-water standards, since extreme temperature and pressure conditions intensify the problems of corrosion and incrusta-

tion. Under these conditions the presence of silica is particularly undesirable as it forms a hard scale or incrustation.

Water coming in contact with, or incorporated into, manufactured products is termed "process water" and is subject to a wide range of quality requirements. These requirements involve physical, biological, and chemical factors. Water used in the manufacture of textiles must be low in dissolved-solids content and free of iron and manganese, which could cause staining. The beverage industry normally requires water free of iron, manganese, and organic substances.

Water used for injection in the secondary recovery of oil is generally that water taken from the oil reservoir. However, this water, usually brine, must generally be supplemented in order to meet the requirements of volume. Careful control must be exercised over the injected water with regard to suspended solids, dissolved gases, microbiological growths, and mineral constituents. Suspended solids in the water, of course, can cause plugging of the reservoir. Hydrogen sulfide, carbon dioxide, and oxygen all have corrosive effects on well equipment, and oxygen reacting with the metallic ions, primarily iron, will cause plugging of the reservoir. Organisms such as iron bacteria, algae, and fungi also have an effect of plugging the reservior or pumping equipment, and the sulfate reducers have a corrosive effect. Insofar as the mineral constituents are concerned, iron and manganese are undesirable as they cause plugging in injection wells. Sulfates are of interest from a standpoint of deposition. Water that is high in sulfate should not be mixed with water containing appreciable amounts of barium, because this would result in formation of barium sulfate which has a very low solubility. The pH value is also significant when corrosion control and the solubilities of calcium carbonate and iron are considered. The higher the pH, the more difficult it is to maintain iron in solution and to keep calcium scale from forming.

Public Supply

Through the years, the U.S. Public Health Service established standards for drinking water to be used on common carriers engaged in interstate commerce. These standards were designed primarily to protect the traveling public. Prior to June 1977, they were used extensively to evaluate public water supplies. According to these standards, chemical constituents should not have been present in the water supply in excess of the listed concentrations except where more suitable supplies are not available. Some of the standards initially adopted by the U.S. Public Health Service (1962, p. 7-8) were as follows:

Substance	Concentration (mg/l)
Chloride (CI)	250
Fluoride (F)	(*)
Iron (Fe)	.3
Manganese (Mn)	.05
Nitrate (NO ₃)	45

Substance	Concentration (mg/l)
Sulfate (SO ₄)	250
Total dissolved solids	500

^{*} When fluoride was present naturally in drinking water, the concentration could not average more than an appropriate upper limit which ranged from 0.8 to 1.7 mg/l depending upon the annual average of maximum daily air temperatures.

As the first step in setting national standards for drinking water quality and to implement the 1974 Safe Drinking Water Act, the U.S. Environmental Protection Agency (1975) issued drinking water standards on December 10, 1975. The standards apply to all public water systems as of June 1977. These standards are now enforced in Texas by the Texas Department of Health.

The standards which relate to municipal supplies consist of two types, primary and secondary standards (Texas Department of Health, 1977). Primary standards deal with dissolved mineral constituents and regulations affecting the health of system customers. Secondary standards deal with the esthetic qualities of the water. As defined by the Texas Department of Health, municipal systems to which primary and secondary standards selectively apply are classified as three types as follows:

- A "Public Water System" is any system for the delivery to the public of piped water for human consumption, if such a system has four or more service connections or regularly serves at least 25 individuals daily for at least 60 days out of the year.
- A"Community Water System" is any system which serves at least four or more service connections or regularly serves 25 permanent type residents for at least 180 days per year.
- A"Non-community Water System" is defined as any public water system which is not a community water system.

Maximum limits for dissolved minerals set in the primary standards which are applicable to community water systems are as follows:

Contaminant	Maximum level (mg/l)	
Arsenic (As)	0.05	
Barium (Ba)	1.0	
Cadmium (Cd)	.01	

level (mg/l)
0.05
.05
.002
.01
.05
45
10

Except for nitrate content, none of the above contaminant levels for toxic minerals applies to non-community water systems. The maximum of 10 mg/l nitrate as nitrogen (about 45 mg/l nitrate as NO₃) applies to community and non-community systems alike.

The maximum permitted level of fluoride still varies according to the annual average of the maximum daily air temperatures. However, the maximum permitted levels have changed. In the Brownsville area, the maximum limit is 1.4 mg/l.

In addition to the previously stated requirements, limits are set on various organic chemicals and coliform bacteria. Maximum levels for coliform bacteria apply to community and non-community water systems. The organic chemicals include endrin, lindane, toxaphene, 2, 4-D, etc., which are pesticides, and these apply to community water systems. There are also stringent rules regarding general sampling and the frequency of sampling which apply to all public water systems. Additionally, community water systems are subject to rigid radiological sampling and analytical requirements.

The recommended secondary standards which are applicable to all public water systems are as follows:

Constituent	Maximum level	
Chloride (CI)	300 mg/l	
Color	15 color units	
Copper (Cu)	1.0 mg/l	
Corrosivity	Non-corrosive	
Foaming agents	.5 mg/l	

Constituent	Maximum level	
Hydrogen sulfide (H ₂ S)	0.05	5 mg/I varus lagisinum mi
Iron (Fe)	.3	mg/I been ended to me
Manganese (Mn)	.05	5 mg/l
Odor	3	Threshold Odor Number
pH	> 7.0	
Sulfate (SO ₄)	300	mg/I
Dissolved solids	1,000	mg/I
Zinc (Zn)	5.0	mg/I

The above secondary standards are recommended limits, except for water systems which were not in existence as of the effective date of these standards. For water systems which are constructed after the effective date, no source of supply which does not meet the recommended secondary standards may be used without written approval by the Texas Department of Health. The determining factor will be whether there is an alternate source of supply of acceptable chemical quality available to the area to be served.

After July 1, 1977, for all instances in which drinking water does not meet the recommended limits and is accepted for use by the Texas Department of Health, such acceptance is valid only until such time as water of acceptable chemical quality can be made available at reasonable cost to the area in question from an alternate source. At such time, either the water which was previously accepted would have to be treated to lower the constituents to acceptable levels, or water would have to be secured from the alternate source.

Water having concentrations of chemical constituents in excess of the recommended limits may be objectionable for many reasons. Brief explanations for these objections, as well as the significance of most of the constituents, are made in Table 1. Additional comments regarding some of the constituents follow.

According to Maxcy (1950, p. 271), water containing nitrate in excess of 45 mg/l has been related to the incidence of infant cyanosis (methemoglobinemia or "blue baby" disease). A high nitrate concentration is often, but not always, indicative of pollution from organic matter, commonly human or livestock wastes. Iron and manganese in excessive concentrations cause reddish-brown or dark-gray precipitates, which stain clothing and plumbing fixtures. Sulfate in water in excess of 250 to 300 mg/l may produce a laxative effect and may have a gypsiferous taste. Water containing chloride exceeding 250 to 300 mg/l may have a salty taste. Fluoride in concentrations of about 1 mg/l may reduce the incidence of tooth decay, but excessive concentrations may cause teeth to become mottled (Dean, Arnold, and Elvove, 1942, p. 1155-1159).

Domestic and Livestock

Ideally, waters used for rural domestic purposes should be as free of contaminants as those used for municipal purposes; however, often this is not economically possible. At present, there are no controls placed on private, domestic or livestock wells. In general, the chemical constituents of waters used for domestic purposes should not exceed the concentrations shown in the following table, except in those areas where more suitable supplies are not available (Texas Department of Health, 1977).

Substance	Concentration (mg/l)
Chloride (CI)	300
Fluoride (F)	1.4*
Iron (Fe)	.3
Manganese (Mn)	.05
Nitrate (as N)	10
Nitrate (as NO ₃)	45
Sulfate (SO ₄)	300
Dissolved solids	1,000

^{*} Maximum fluoride content based on annual average of maximum daily air temperatures of 84.6 °F (29.2 °C).

Many areas of Texas do not have and cannot obtain domestic water supplies which meet the above recommended standards; however, supplies which do not meet these standards have been used for long periods of time without any apparent ill effects to the user. It is not generally recommended that water used for drinking purposes contain more than a maximum of 2,000 mg/l dissolved solids; however, water containing somewhat higher mineral concentrations has been used where water of better quality was not available.

Generally, water used for livestock purposes is subject to the same quality limitations as those relating to drinking water for humans; however, the tolerance limits of the various chemical constituents as well as the dissolved-solids concentration may be considerably higher for livestock than that which is considered satisfactory for human consumption. The type of animal, the kind of soluble salts, and the respective amount of soluble salts determine the tolerance limits (Heller, 1933, p. 22). In the western United States, cattle may tolerate drinking water containing nearly 10,000 mg/l dissolved solids providing these waters contain mostly sodium and chloride (Hem, 1970, p. 324). Waters containing high concentrations of sulfate are usually considered undesirable for livestock use. Many investigators recommend an upper limit of dissolved solids

near 5,000 mg/l as necessary for maximum growth and reproduction. Hem (1970, p. 324) cited a publication of the Department of Agriculture of the state of Western Australia as recommending the following maximum upper limits for dissolved-solids concentration in livestock water.

Animal	Maximum dissolved-solids concentration (mg/l)
Poultry	2,860
Hogs	4,290
Horses	6,435
Cattle (dairy)	7,150
Cattle (beef)	10,000
Adult sheep	12,900

Changes in Chemical Quality

One of the major assets of ground-water supplies is the general uniformity of chemical quality and temperature. Increased demands on an aquifer caused by heavy pumpage, however, may impose new hydrologic conditions on the aquifer which in turn may bring about alteration of the chemical quality of the water produced. This can be dramatically illustrated by the aquifers along the Texas Gulf Coast. The aquifer called the Gulf Coast aquifer consists of several hundred feet of interbedded sands, silts, and shales which dip generally southeast under the Gulf. Under normal conditions, the hydrostatic pressure of fresh water being added to the aquifer's outcrop area keeps the salt water, which occurs far downdip under the Gulf, pushed back and an interface is formed between the two waters. Heavy pumpage along the coast, however, can sufficiently lower the hydrostatic pressure so that salt water invades the zones that formerly contained fresh water. This type of problem is often found in coastal aquifers.

Water stratification within an aquifer may also cause a problem. Often water quality may vary vertically within an aquifer, and usually the poorer quality water will be found lower in the formation. Heavy development and pumping of an aquifer with this type of stratification may bring drastic changes in the quality of water produced as the amount of better quality water is reduced and more and more of the poorer quality water is brought into the wells.

Aquifers are also in danger of contamination from other sources, including man's activities. This is true of all aquifers, but especially of shallow water-table aquifers. Municipal and domestic sewage systems (including septic tanks), the wastes from barnyards and feedlots, industrial wastes, and oil-field brine that is improperly handled or disposed of can enter into ground water and render it unfit for most uses.

Treatment of Water

Water that does not meet the requirements of a municipal or industrial user commonly can be treated by various methods so that it will become usable. Treatment methods include softening, aeration, filtration, cooling, dilution or the blending of poor and good quality waters, and addition of chemicals. In extreme cases, various desalinization processes may be used. These include distillation, reverse osmosis, freezing, electrodialysis, and ion exchange. Although still very expensive, the reverse osmosis and distillation processes have been made increasingly effective and economical during the past few years.

OCCURRENCE AND QUALITY OF GROUND WATER IN BROWNSVILLE AND VICINITY

In Brownsville and vicinity, fresh to saline ground water is produced from alluvial deposits of Pleistocene and Recent (Quaternary) age. Recent alluvial deposits lie at the surface throughout the study area and over most of Cameron County. These fluvial and deltaic sediments are underlain by several thousand feet of very similar but older Quaternary and Tertiary deposits. Regionally, the erratic horizontal and vertical intergradations of beds allow this entire system to interact. Locally, however, individual sand beds or lenses are effectively separated. There is a wide range in water quality within the system, and extreme quality variations occur within very short distances both horizontally and vertically. Within most of the study area, water of usable quality that has been found occurs within the upper 300 feet (91 m) of the section. This system of interbedded clay, silt, sand, and gravel has been designated as the Lower Rio Grande Valley aquifer.

During the course of this study, 168 wells were inventoried (Table 2). All of these wells produce from rocks of the Lower Rio Grande Valley aquifer except for a few oil and gas tests which were inventoried for use of their electric logs. A total of 21 test holes were drilled by the City of Brownsville in conjunction with this study. Electric, gamma ray, and other types of logs were run on these test holes, and 15 of the test holes were cased for use as water level and water quality observation wells. An additional seven irrigation test holes were also inventoried.

Of the remaining wells, 132 were in use during the study. The uses or former uses of the wells are as follows:

Domestic and livestock	55
Industrial	8
Irrigation	55
Public supply	14

The locations of all wells are shown on Figure 13.

A total of 179 water samples were collected from 87 of the wells and test holes during the study. Several duplicate samples were taken from some wells at various time intervals, especially

during the pumping tests conducted for the study. These also included samples collected from several depth intervals within the test holes drilled in conjunction with the study. Chemical analyses were performed on these samples by the Texas Department of Health laboratories. These analyses and historical analyses from previous studies and other sources are listed in Table 5.

The wide range in chemical quality of water from the Lower Rio Grande Valley aquifer within the study area is indicated in the table which follows. The table shows the number of analyses within certain ranges of dissolved-solids content and includes analyses collected from the shallow producing zones in the test holes.

Range in dissolved			amounts of sen 5:
solids (mg/l)	Number of analyses	Percent of total analyses	Cumulative percent
1,000 or less	12	10.9	10.9
1,001 to 2,000	38	34.5	45.4
2,001 to 3,000	23	20.9	66.3
3,001 to 4,000	9	8.2	74.5
4,001 to 5,000	6	5.5	80.0
5,001 to 10,000	15	13.6	93.6
more than 10,000	7	6.4	100.0

The dissolved-solids content of all water samples collected during the study ranged from a minimum of 552 mg/l to a maximum of 37,800 mg/l. Similar variations occur in the concentrations of the individual mineral constituents, especially chloride, sulfate, and sodium as shown below, in mg/l:

Silica	1 to 50	Sulfate	69 to 6,700
Calcium	8 to 1,050	Chloride	62 to 17,900
Magnesium	6 to 1,480	Fluoride	0.6 to 5.6
Sodium	59 to 10,800	Nitrate	0.4 to 14.0
Bicarbonate	17 to 740	Boron	0.5 to 12.6

Iron 0.002 to 21.0

Almost all of the samples contained higher concentrations of chloride, sulfate, and total dissolved solids than is recommended by the Texas Department of Health and the U.S. Environmental Protection Agency under the provisions of the Safe Drinking Water Act of 1974.

In drilling the 21 test holes for the study, each significant producing zone was tested and a water sample collected for chemical analysis. Generally, either two or three producing zones were encountered in each hole.

Shallow Zone.—Within and immediately to the west of Brownsville, there is a shallow water producing zone which occurs at depths of less than 75 feet (23 m). This zone produces limited amounts of very poor quality ground water. Sand thicknesses within this zone are very erratic and the zone probably is not present throughout the entire study area. Eight analyses were run on water from this zone. The content of dissolved solids ranged from 1,170 to 37,800 mg/l. The following table shows the concentrations of selected constituents from these eight analyses representing the shallow zone:

Well	Producing interval (ft)	Chloride (mg/l)	Sulfate (mg/l)	Sodium (mg/l)	Dissolved solids (mg/l)
88-60-806	16-39	17,900	6,300	10,800	37,800
89-04-210	22-45	3,160	2,270	2,330	8,700
89-04-211	46-80	2,500	2,550	2,060	8,000
89-04-302	29-37	209	247	375	1,170
89-04-627	24-46	6,400	6,700	5,800	20,400
89-04-630	22-45	1,310	1,530	1,610	5,000
89-04-632	0-25	990	1,740	1,250	4,750
89-05-405	22-45	6,320	5,200	5,170	18,100

Well 89-04-302 is about 20 feet (6 m) from the Water Conservation and Improvement District No. 6 canal which carries Rio Grande water to Olmito and Los Fresnos, and probably received surface water from leaks in the canal. Because of the great difference in quality of water in this shallow zone and in underlying zones, it seems that, at least locally, the shallow zone is effectively separated hydrologically. Any change in the hydraulic balance, however, might tend to cause some migration of water between the zones. The very poor quality water contained in the shallow zone may be attributed to several sources. Among these are sea water blown from the Gulf of Mexico during tropical storms and hurricanes, leaching of minerals deposited on the salt flats, and the concentration of minerals caused by evaporation and plant usage of the water through osmosis and transpiration.

Middle Zone.—Between depths of 75 and 150 feet (23 and 46 m), most of the test holes penetrated one or more water-bearing sand beds which will be referred to as the middle zone. Much like in the shallow zone, occurrence and thickness of individual sand beds was very erratic as would be expected in this type of sediments. General conclusions on the quality of water produced from this middle zone can be drawn, however. Fifteen water samples for chemical analyses were collected from the zone during the test hole drilling program. In addition, seven samples were analyzed which came from existing wells producing from sands in this zone. The occurrence and thickness of sand within this interval seemed much more erratic than in the upper zone. Perhaps because of this, variations in water quality also seemed highly erratic. Generally, however, concentrations of dissolved solids and chloride appear to increase to the east and southeast. Ranges of concentration of the major chemical constituents in water samples from the middle zone were as follows, in mg/l:

Silica	20 to 50	Sulfate	210 to 5,240
Calcium	8 to 680	Chloride	112 to 5,730
Magnesium	6 to 392	Fluoride	1.0 to 2.7
Sodium	259 to 3,860	Nitrate	0.4 to 15.0
Bicarbonate	282 to 660	Boron	0.8 to 12.5

The concentration of dissolved solids ranged from 1,180 to 13,450 mg/l and iron from 0.04 to 7.15 mg/l. Of the nine samples in which dissolved solids exceeded 5,000 mg/l, only those from two wells, 89-04-209 and 89-05-102, were from sands in excess of 100 feet (30 m) in depth. It seems probable that most of the sand beds within this middle zone which produce ground water with relatively high concentrations of dissolved solids, sodium, chloride, and sulfate may be in more or less direct hydraulic contact with the beds in the shallow zone which contain highly mineralized water. Thus, the middle zone may represent a transitional interval between the shallow zone containing highly saline water in the area just west of Brownsville and a deep zone which contains water that is generally of much better quality within this area.

Deep Zone.—All of the major wells (irrigation, industrial, and public supply) and most of the smaller capacity domestic and livestock wells in the study area produce water from sand and gravel beds in the 150 to 225 foot (46 to 69 m) depth interval which will be referred to as the deep zone. In the northwestern part of the area, a few wells do produce ground water of relatively good quality from still deeper zones. Well 88-60-708, for example, produces water containing less than 2,000 mg/l dissolved solids from the 250 to 271 foot (76 to 83 m) interval. In the area just to the west of the City of Brownsville and within the city limits, however, only minor amounts of very poor quality ground water occur at depths greater than 225 feet (69 m).

Samples from 75 wells and test holes which were completed at depths greater than 150 feet (46 m) were collected and analyzed during this study. In test hole 89-04-631, samples were collected from two producing zones deeper than 150 feet (46 m). The dissolved-solids content in the 76 analyses representing the deep zone ranged from a minimum of 770 mg/lto a maximum of 11,900 mg/l, and the number of analyses within certain salinity ranges was as follows:

Range in dissolved			Middle Zone
solids (mg/l)	Number of analyses	Percent of total analyses	Cumulative percent
1,000 or less	11	14.5	14.5
1,001 to 2,000	27	35.5	50.0
2,001 to 3,000	21	27.6	77.6
3,001 to 4,000	5	6.6	84.2
4,001 to 5,000	4	5.3	89.5
5,001 to 7,500	5	6.6	96.1
7,501 to 10,000	2	2.6	98.7
more than 10,000	1	1.3	100.00

Ranges of concentration for individual mineral constituents in the analyses of water from the deep zone are as follows, in mg/l:

Silica	1	to 46	Bicarbonate	17	to 640
Calcium	16	to 510	Sulfate	171	to 2,080
Magnesium	14	to 370	Chloride	83	to 5,430
Sodium	127	to 3,260	Fluoride	0.	6 to 3.5
Boron	0.5	to 6.6	Nitrate	0.4	4 to 7.0
		Iron 0.002	to 9.0		

A definite regional pattern is present in the quality distribution of ground water produced from the deep zone, as shown in Figures 7, 8, and 9. They show lines connecting equal concentrations of dissolved solids, chloride, and sulfate, respectively. Essentially the same pattern of distribution is readily discernable on each of the three maps. The best quality water is found in the most westerly part of the study area along the Rio Grande. Here several wells produce water containing less than 1,000 mg/l dissolved solids from sand and gravel beds within the deep zone. Concentrations of sulfate, chloride, and sodium are also generally very low relative to concentrations in water from wells to the east and northeast. From this relatively limited area of good quality water, the salinity of ground water produced from the deep zone increases steadily toward the southeast, east, northeast, and north, especially in the concentrations of sodium, sulfate, chloride, and dissolved solids. This increase is generally gradual toward the east at least into the western part of the City of Brownsville. From the city well field in the northwest part of the city, however, significant salinity increases take place within very short distances to the northeast,

east, and southeast. Water produced from city well 5 (well 89-04-616) contained a chloride concentration of 670 mg/l, sodium concentration of 730 mg/l, and dissolved-solids concentration of 2,370 mg/l in a sample collected May 3, 1973. Water produced from about the same depth interval from test hole 8 (89-05-102), which is located 3.1 miles (5.0 km) northeast of city well 5, was more than twice as saline as the water from city well 5. Test hole 1 (89-05-404), located at City Water Plant Number 2 about 3.5 miles (5.6 km) east of city well number 5, and test hole 13 (89-04-903), located in Amigoland only 2.6 miles (4.2 km) south-southeast of city well 5, show even more drastic deterioration in the quality of water produced from the same zone. The following table shows the concentrations of chloride, sulfate, sodium, and dissolved-solids from city well 5, these three test holes, and other wells and test holes which indicate the rapid worsening in ground-water quality from the west side of the City of Brownsville toward the north, east, and southeast.

Well	Date of sample	Sodium (mg/l)	Sulfate (mg/l)	Chloride (mg/l)	Dissolved Solids (mg/l)
89-04-616	May 3, 19	73 730	670	560	2,370
89-04-631	Apr. 21, 19	73 1,650	1,320	2,300	5,930
89-04-903	Apr. 21, 19	73 3,260	3,080	5,430	11,900
89-05-101	Oct. 19, 19	72 1,790	1,660	2,070	6,200
89-05-102	Mar. 24, 19	73 1,530	1,260	1,870	5,200
89-05-201	Oct. 17, 19	72 2,150	1,680	2,980	7,500
89-05-404	Apr. 23, 19	73 2,430	1,470	4,230	9,070
89-05-701	Apr. 19, 19	73 2,340	1,530	3,760	8,490

From this table it is apparent that the increase in chloride concentration is much more drastic than the increase in sodium or sulfate concentration, as might be expected if this increase is a result of mixing with sea water. This increase probably continues from Brownsville toward the Laguna Madre and the Gulf of Mexico, as several test holes which had previously been drilled between Brownsville and Port Isabel and Boca Chica were reported to yield only highly saline water.

GROUND-WATER AVAILABILITY IN THE LOWER RIO GRANDE VALLEY AQUIFER

Occurrence

Within the Lower Rio Grande Valley aquifer, ground water occurs within the pore spaces of the various unconsolidated or very slightly consolidated beds of clay, silt, sand, and gravel which

make up the aquifer. Even though the entire section is usually saturated to within a few inches or at most a few feet of the land surface, little or no water can be derived from much of the section. The extremely small pore spaces in the clay and silt portions of the section prevent the movement of sufficient quantities of water to a well, even though the clay may contain much more water than nearby sands. Therefore, most wells are completed in beds of sand or gravel.

Because of the highly complex nature of the system of deltaic and fluvial sediments which make up the Lower Rio Grande Valley aquifer, the character of individual beds often changes quickly, both laterally and vertically. The complex intergradation and interfingering of the beds of the various sediment types (clay, sand, silt, gravel) not only control the availability of water to wells, but also cause significant changes in water quality over very short distances.

Recharge, Movement, and Discharge

Recharge of water to the Lower Rio Grande Valley aguifer is derived from rainfall on the outcrop and from seepage of surface waters where the Rio Grande and other streams (mostly resacas or meander scars) cross the outcrop of sediments with relatively high permeability. In the immediate vicinity of the City of Brownsville, the shallow water-producing zone, which is less than 75 feet (23 m) in depth, contains extremely poor quality water (dissolved-solids content in excess of 30,000 mg/l in one sample). This indicates that in this immediate area direct downward percolation of precipitation is not the prime source of recharge to the major producing zone which contains better quality water between depths of 150 and 225 feet (46 and 69 m). Surface-water flow records for the Rio Grande indicate that there are significant water losses, especially during drought conditions, between Brownsville and the upstream measuring stations. Water-level data, as shown on Figure 10, indicate that the Rio Grande is losing water from a point near the City of Landrum to the west edge of the City of Brownsville. It seems probable that these streamflow losses are the source of much of the recharge to the major producing zone (deep zone) of the Lower Rio Grande Valley aquifer within the study area. Water-quality maps (Figures 7, 8, and 9) also show possible indications of recharge of water of better quality, particularly in three areas. The first is at Villa Nueva, the Los Fresnos Pump Station, and the settling basin just north of the Los Fresnos Pump Station. Recharge by river water in this area is a possible explanation of the seemingly isolated area of better quality water outlined on Figure 11 as Area 3. The second area is just east and northeast of San Pedro. The third area is at Los Indios in the westernmost part of the study area. Here two large settling basins seem to be losing river water to the deep zone. Recharge from this source seems to be at least partially responsible for the good quality of water in the deep zone in Area 1 of Figure 11.

Generally speaking, ground-water movement is in the direction of slope of the potentiometric surface as determined from water levels in wells and is from areas of recharge to areas of discharge. Within the Lower Rio Grande Valley aquifer, movement of ground water is generally to the southeast and east toward the coast (Figure 10). The gradient of the potentiometric surface is generally less than 10 feet per mile (2 m/km). Heavy withdrawals, however, would probably cause some reversal of the normal direction of flow and might easily lead to updip migration of poor quality water. Additionally, deterioration of existing well casing or lack of adequate casing might also allow upward migration of water under artesian pressure into overlying beds that may be under lower artesian pressure or water-table conditions.

Water is removed from the Lower Rio Grande Valley aquifer by both natural and artificial discharge. Natural discharge in this area is generally confined to underflow and local return flow to the Rio Grande (there is possibly some springflow, but only in very limited amounts), underflow toward and under the coast, and, of course, evaporation and transpiration losses. Losses from evapotranspiration are probably significant in the study area, because of the relatively low precipitation rate, the high rate of evaporation, and the high water table. Artificially, water is discharged through wells by pumping.

Losses of artesian pressure in the vicinity of heavily pumped wells may also allow increased downward percolation of water from upper zones into the pumped zone. This may be a problem where casing has deteriorated and saline water is present in upper zones. This may lead to water-quality problems, especially in the eastern part of the study area where very poor quality water overlies the major producing zone.

Aquifer Characteristics

Various calculation of the hydraulic characteristics of the sands and gravels which make up the Lower Rio Grande Valley aquifer have been performed in the past. These indicate a wide range in transmissibility, permeability, and storage coefficients for these sediments. Tests conducted by U.S. Geological Survey personnel on wells belonging to the City of Harlingen indicated an average of $54,000 \, (\text{gal/d})/\text{ft} \, [671,000 \, (\text{I/d})/\text{m}]$ for the coefficient of transmissibility, $900 \, (\text{gal/d})/\text{ft}^2 \, [36,700 \, (\text{I/d})/\text{m}^2]$ for the coefficient of permeability, and 0.00044 for the coefficient of storage.

Two comprehensive pumping tests were conducted on wells producing from the Lower Rio Grande Valley aquifer during this study. These tests were analyzed using the leaky artesian formula (Walton, 1962). The first of these tests was conducted using one of the City of Brownsville public supply wells (city well 5, which is well 89-04-616) as a pumping well. Other nearby city wells and two cased test holes (drilled for this study) were used as water-level observation wells for the test. Data from this test indicate an average aquifer coefficient of transmissibility of 80,000 (gal/d)/ft [993,000 (l/d)/m] and an average coefficient of storage of 0.000025. All of these wells were slotted within the 150 to 200 foot (46 to 61 m) depth interval and are within the City of Brownsville's well field in the northwest part of the city.

The second pumping test was conducted using an irrigation well, 88-60-708, located about 8 ½ miles (13.7 km) northwest of the city well field, as the pumped well. Several nearby irrigation wells and one test hole drilled for the study were used as water-level observation wells during the test. Average aquifer coefficients calculated from the results of this test were transmissibility, 100,000 (gal/d)/ft [1,240,000 (l/d)/m] and storage, 0.0016.

Well Construction and Yields

Many existing wells within the study area are used for domestic or livestock supply. These wells were generally drilled with a rotary rig and are cased with small diameter, 3 to 5 inch (7.6 to 12.7 cm), steel or plastic casing. A few are equipped with factory manufactured screens, but most are either torch or hacksaw slotted. The steel casing deteriorates rapidly, especially in areas where very poor quality water occurs in the shallow zone. Most of these wells are equipped with 1/3, 1/2, or 3/4 horsepower electric jet or submersible pumps which produce 10 gallons per

minute (0.63 l/s) or less. In the future, plastic casing would be preferable, unless the steel casing is cemented through the shallow water-bearing zones. Factory screens should also be used because of the extremely fine sands encountered in most of the area.

Larger capacity wells have been constructed in several ways, depending on the intended use. Most irrigation wells were drilled 12 to 20 inches (30.5 to 50.8 cm) in diameter and cased with 10 to 18 inch (25.4 to 45.7 cm) steel casing. This casing was usually torch slotted within the producing interval. Occasionally, these irrigation wells were gravel packed. Public supply wells were drilled with similar diameters and were almost always gravel packed. Public supply wells were usually completed with factory screens. Both irrigation and public supply wells are usually equipped with large-capacity turbine pumps powered with electricity or butane. Motor horse-power ranges from 10 to more than 80 (7,500 to more than 59,700 w). Production capacity ranges up to about 2,500 gallons per minute (158 l/s) with an average rate of about 1,000 gallons per minute (63 l/s).

All future large capacity wells (irrigation, industrial, or public supply) should be drilled with a large diameter, possibly in excess of 20 inches (50.8 cm), especially through the shallow water-producing zone which usually contains poor quality water. Large-diameter surface casing should be set and cemented through this zone. The well could then be completed at a diameter slightly smaller than the surface casing. High-capacity wells should be underreamed with the producing horizon, and equipped with factory screens selected according to grain-size analyses of formation samples from the producing zones. All wells should be gravel packed using a graded gravel of optimum size as indicated by grain-size analyses of samples from the producing zone. In general, pump sizes should be selected to keep the capacity of individual wells below 1,000 gallons per minute (63 1/s). Some typical well constructions are illustrated on Figure 12.

Availability

Large amounts of ground water are contained in the Lower Rio Grande Valley aquifer within the study area. Useful production of much of this water is impractical, however, not only because of the poor quality of much of the water, but also because of severe limitations in the yields of wells completed in the shallow and middle zones of the aquifer.

At least 350,000 acre-feet (432 hm³) of fresh to slightly saline ground water (containing less than 3,000 mg/l dissolved solids) is in storage within the deep zone of the aquifer. This total was derived using the area within the 3,000 mg/l dissolved solids contour on Figure 7 which is about 100 square miles (259 km²), a net sand and gravel thickness of about 35 feet (11 m) in the deep zone within this area, and a conservative figure for porosity of 15 percent. A relatively large part of this water should be available for development from the aquifer on a continuing basis.

In order to determine what effects heavy prolonged pumpage would have on the aquifer, a series of computer simulations were conducted using a well field drawdown model, IMAGEW-1 (Texas Water Development Board, 1973). Using the aquifer characteristics calculated from the pumping tests performed for the study, simulations were run using the present city wells, other more ideally located wells within the western part of Brownsville, and several irrigation wells located about 8 miles (12.9 km) to the west of the city as producing wells. The series of simulations included rates of pumpage for each set of wells varying from 1.5 million to 9.0 million gallons per day (5.7 million to 34.1 million I/d).

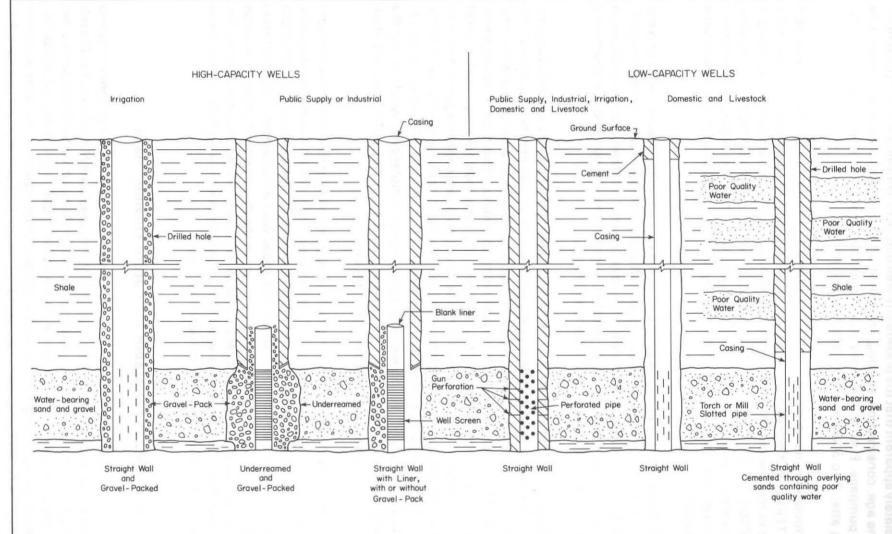


Figure 12
Typical Well Construction Used to Produce Water
From Sand and Gravel in Brownsville and Vicinity

It was immediately apparent that the present city well field of Brownsville was not suitable for long-term use. The age, construction, spacing, and condition of these seven wells would preclude prolonged heavy pumpage. Even at the lower production rates, projected water levels fell below the pump setting after 2 to 3 years of simulated pumpage using the city well field.

Additional simulations using wells laid out in a north-south line through the city well field were conducted. These wells were spaced 2,000 feet (610 m) apart. The gradual development of a well field laid out in this manner could supply from 1.5 million to 7.5 million gallons per day (5.7 million to 28.4 million I/d). With optimum spacing, only six wells could be drilled within this area, and after 7 to 10 years the projected water levels would be below the pump settings in the present city wells and the decline of water levels would seriously affect the production of water from wells completed in the deep zone.

Any well field developed within the western part of the city, either the present wells or wells drilled with optimum spacing, would probably cause sufficient drawdown to bring about significant deterioration of water quality after only a few years of use. This deterioration could result from updip migration of poor quality water within the producing horizon and the downward percolation of very poor quality water from overlying zones.

A well field developed in the western part of the study area should provide several additional benefits, however. Not only should the water produced over a large area contain less than 2,000 mg/l dissolved solids, but the area is much farther from any sources of poor quality water that might eventually lead to deterioration in chemical quality. In addition, this area is also closer to probable areas of recharge from the Rio Grande, and pumping tests indicate a high coefficient of transmissibility in the western part of the study area. An elongated field containing at least 8 to 10 wells could be developed within the area containing fresh to slightly saline ground water and still maintain spacing of 2,000 feet (610 m) or more between individual wells. This would minimize interference between wells and, as determined by computer simulations, would allow the production of at least 9.0 million to 10.0 million gallons per day (34.1 million to 37.9 million I/d) on a long-term basis without disastrous effects on the aquifer.

Since the aquifer is practically full and in a state of approximate equilibrium, any significant increase in pumpage should bring about an increase in recharge. Most recharge seems to be derived directly from the Rio Grande; therefore, there should almost always be an adequate source to replace water removed from the aquifer. The speed with which water is replenished to the aquifer at pumping locations would depend, however, on the distance from areas of recharge to areas of pumpage as well as the aquifer characteristics, and computer simulations indicate that after initiation of additional pumpage there would be a considerable time lag before water-level drawdowns in wells are modified by the increased recharge.

Areas Most Favorable for Future Development

On Figure 11, broad areas have been delineated from which ground water containing less than 2,000 mg/l of dissolved solids can be developed from the deep zone of the Lower Rio Grande Valley aquifer. Area 1 on this map is the first choice for future ground-water development. Not only is much of the area underlain by water with less than 1,000 mg/l dissolved solids, but computer simulations and pumping tests of wells indicate that the aquifer in this area is capable of yielding in excess of 10 million gallons per day (37.9 million I/d) over a prolonged period. In

addition, this area is located at some distance from any known sources of poor quality water. Also, the area is favorably located along the Rio Grande, which is thought to be the prime source of recharge to the aquifer, and the configuration of the contours on the water-quality and water-level maps (Figures 7, 8, 9, and 10) seem to indicate that the aquifer is receiving additional recharge from the lakes or settling basins located just northeast of Los Indios.

Areas 2 and 3, also outlined on Figure 11, are not as desirable for future development as Area 1 because of their limited extent and proximity to areas containing poor quality water. Both areas, however, offer suitable sites for the development of ground water.

Bordering the southeast edge of Area 3, a small region within the western part of the City of Brownsville might also be suitable for limited and short-term development. This region includes the city well field and extends to the northeast and southwest. Ground water which might be produced from this area should initially have less than 2,500 mg/l of dissolved solids. The quality might soon deteriorate, however, because of the proximity of this area to areas containing water of much poorer quality.

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

Large amounts of ground water are in storage in the upper 225 feet (69 m) of the Lower Rio Grande Valley aquifer within the immediate vicinity of Brownsville. In this area, the aquifer may be considered to consist of three more or less separate producing zones, which can generally be differentiated both by water-producing characteristics (transmissibility, net sand thickness, particle sizes, etc.) and chemical quality of the produced water. These zones include a shallow zone (0 to 75 feet deep, or 0 to 23 m) and a middle zone (75 to 150 feet or 23 to 46 m) which produce only limited amounts of ground water, often of poor quality. The quality of water produced from the shallow zone is especially poor over much of the area; two wells produced water with dissolved-solids concentrations in excess of 20,000 mg/l. The deep zone (150 to 225 feet or 46 to 69 m) is capable of producing large amounts of water, and over much of the study area the produced water contains dissolved-solids concentrations of less than 3,000 mg/l.

Although the availability of ground water from the deep zone in the Brownsville area is also restricted by water-quality problems, at least 350,000 acre-feet (432 hm³) of fresh to slightly saline ground water is estimated to be in storage in the deep zone of the Lower Rio Grande Valley aquifer within the study area. The high transmissibility of the sands and gravels within this zone should allow the development of a large part of this water for irrigation use, and with proper treatment, possibly including desalination in some areas, for municipal and industrial supplies as well.

Because of the extremely complex nature of the aquifer, future ground-water development should be based on a program of preliminary test-hole drilling and test pumping, chemical analyses of water from the various sands, optimum well completion, and the spacing of wells to avoid large concentrated withdrawals of ground water in small areas.

Since the aquifer is at present essentially in a state of equilibrium, any significant increase in ground-water withdrawals should result in increased recharge of surface water into the aquifer, both directly from the Rio Grande and the numerous resacas, and from the several municipal and irrigation district lakes or holding basins. A considerable time lag should be evident between

initiation of additional pumpage and modification of resulting drawdowns by the increased recharge, however.

If at all possible, most future development of large-capacity wells, especially for public supply, should be confined to Areas 1, 2, and 3, as outlined on Figure 11, with Area 1 being the most preferred. Development from these areas should at least minimize the updip migration of very poor quality water which is contained within the deep zone in the east and north parts of the study area.

Extreme care should be exercised in the drilling, casing, and completion of wells in the region, especially in areas where the shallow zone (0 to 75 feet deep, or 0 to 23 m) contains highly mineralized water. All wells should be cemented through the upper water-bearing zones that are not intended to be developed. Use of plastic casing in small-diameter wells would also help to minimize deterioration of casing by these highly saline waters and the possible resulting contamination of better quality water in the main producing zone.

All new large-capacity wells, especially those for municipal supply, should be underreamed and gravel packed. Because of the extremely fine, well sorted sands which occur through much of the section in this area, factory manufactured screens should be placed in all new wells. If at all possible formation samples should be analyzed to determine the optimum slot size to prevent the abrasive fine sands from entering the wells. Many wells and pumps have been lost in the past as a result of torch or hacksaw slotted casing.

SELECTED REFERENCES

- Bailey, T. L., 1926, The Gueydan, a new middle Tertiary formation from the southwestern Coastal Plain of Texas: Univ. Texas Bull. 2645, 187 p.
- Baker, R. C., 1965, Reconnaissance investigation of the ground-water resources of the Lower Rio Grande basin, Texas: Texas Water Comm. Bull. 6502, p. L1 to L34.
- Baker, R. C., and Dale, O. C., 1961, Ground-water resources of the Lower Rio Grande Valley area, Texas: Texas Board of Water Engineers Bull. 6014, v. 1, 88 p., v. II, 340 p.
- Bernard, H. A., and LeBlanc, R. J., 1965, Resume' of the Quarternary geology of the northwestern Gulf of Mexico Province, *in* The Quaternary of the United States: New Jersey, Princeton Univ. Press, p. 137-185.
- Bernard, H. A., LeBlanc, R. J., and Major, C. F., 1962, Recent and Pleistocene geology of southeast Texas, in Geology of the Gulf Coast and central Texas and guidebook of excursions: Houston Geol. Soc., Ann. Meeting Geol. Soc. America and associated societies, Houston, Texas, p. 175-224.
- Broadhurst, W. L., 1941, A few notes regarding ground water in Brownsville-San Benito-La Feria district, Texas: U.S. Geol. Survey open-file rept.
- Broadhurst, W.L., Sundstrom, R. W., and Rowley, J. H., 1950, Public water supplies in southern Texas: U.S. Geol. Survey Water-Supply Paper 1070, 114 p., 1 pl.
- Carr, J. T., Jr., 1967, The climate and physiography of Texas: Texas Water Devel. Board Rept. 53, 27 p.
- Cooper, H. H., Jr., and Jacob, C. E., 1946, A generalized graphical method for evaluating formation constants and summarizing well-field history: Am. Geophys. Union Trans., v. 27, no. 4, p. 526-534.
- Dale, O. C., and George, W. O., 1954, Ground-water resources of Cameron County, Texas: Texas Board of Water Engineers Bull. 5403, 64 p.
- Dallas Morning News, 1971, Texas almanac and state industrial guide, 1972-1973: A. H. Belo Corp., 704 p.
- Darton, N. H., Stephenson, L. W., and Gardner, Julia, 1937, Geologic map of Texas: U.S. Geol. Survey map.
- Davis, S. N., and DeWiest, R. J. M., 1966, Hydrogeology: New York, John Wiley & Sons, Inc., 448 p.
- Dean, H. T., Arnold, F. A., and Elvove, Elias, 1942, Domestic water and dental caries: Public Health Repts., v. 57, p. 1155-1179.
- Dean, H. T., Dixon, R. M., and Cohen, 1935, Mottled enamel in Texas: Public Health Repts., v. 50., p. 424-442.

- Deussen, Alexander, 1914, Geology and underground waters of the southeastern part of the Texas Coastal Plain: U.S. Geol. Survey Water-Supply Paper 335, 365 p., 9 pls.
- _____1924, Geology of the coastal plain of Texas west of Brazos River: U.S. Geol. Survey Prof. Paper 126, 139 p.
- Doering, J. A., 1935, Post-Fleming surface formations of coastal southeast Texas and south Louisiana: Am. Assoc. Petroleum Geologists Bull., v. 19, no. 5, p. 651-688.
- _____1956, Review of Quaternary surface formations of Gulf Coast region: Am. Assoc. Petroleum Geologists Bull., v. 40, no. 8, p. 1816-1862.
- Doll, W. L., Myers, G., and Archer, R. J., 1963, Water resources of West Virginia: West Virginia Dept. Nat. Resources, Div. Water Resources, 134 p.
- Eaton, F. M., 1950, Significance of carbonates in irrigation waters: Soil Sci., v. 59, p. 123-133.
- Ferris, J. G., Knowles, D. B., Brown, R. H., and Stallman, R. W., 1962, Theory of aquifer tests: U.S. Geol. Survey Water-Supply Paper 1536-E, 174 p.
- Fisk, H. N., 1938, Geology of Grant and La Salle Parishes: Louisiana Geol. Survey Bull. 10, 246 p.
- _____ 1940, Geology of Avoyelles and Rapides Parishes: Louisiana Geol. Survey Bull. 18, 240 p.
- _____1944, Geological investigation of the alluvial valley of the lower Mississippi River: Vicksburg, Miss., U.S. Army Corps of Engineers, Miss. River Comm., 78 p.
- _____1947, Fine-grained alluvial deposits and their effects on Mississippi River: Vicksburg, Miss., U.S. Army Corps of Engineers, Miss. River Comm., 82 p.
- _____1959, Padre Island and the Laguna Madre flats, coastal south Texas, in Second geography conference held on April 6-9, 1959, at Coastal Studies Institute, Louisiana State University: Office of Naval Research and National Academy of Sciences, Washington, D. C., p. 103-151.
- Fisk, H. N., and McFarlan, E., Jr., 1955, Late Quaternary deltaic deposits of the Mississippi River, in Crust of the earth: Geol. Soc. America Special Paper 62, p. 279-302.
- Galagan, D. J., and Lamson, G. F., Jr., 1953, Climate and endemic dental fluorosis: Public Health Repts., v. 68, no. 9, p. 497-508.
- Garner, L. E., 1967, Sand resources of Texas Gulf Coast: Univ. Texas, Bur. Econ. Geology, Rept. of Inv. no. 60, 85 p., 12 figs., 6 pls.
- Gillett, P. T., and Janca, I. G., 1965, Inventory of Texas irrigation, 1958 and 1964: Texas Water Comm. Bull. 6515, 317 p.

- Heller, V. G., 1933, The effect of saline and alkaline waters on domestic animals: Oklahoma Agr. and Mech. Coll. Expt. Sta. Bull. 217, 23 p.
- Hem, J. D., 1970, Study and interpretation of the chemical characteristics of natural water: U.S. Geol. Survey Water-Supply Paper 1473, 2d ed., 363 p.
- Ivy, W. L., 1973, Potentials for a near-term alternative water supply for Brownsville, Texas: Texas Water Devel. Board mimeo. rept., 21 p.
- Jacob, C. E., 1944, Notes on determining permeability by pumping tests under water-table conditions: U.S. Geol. Survey open-file rept.
- ______1950, Flow of ground water, chap. 5, in Rouse, Hunter, Engineering hydraulics: New York, John Wiley and Sons.
- Kane, J. W., 1967, Monthly reservoir evaporation rates for Texas, 1940 through 1965: Texas Water Devel. Board Rept. 64, 111 p., 7 pls.
- Lohr, E. W., and Love, S. K., 1954, The industrial utility of public water supplies in the United States, 1952, pt. 2: U.S. Geol. Survey Water-Supply Paper 1300, 462 p., 3 figs., 5 pls.
- Maier, F. J., 1950, Fluoridation of public water supplies: Am. Water Works Assoc. Jour., v. 42, no. 1, pt. 1, p. 1120-1132.
- Maxcy, K. F., 1950, Report on the relation of nitrate concentrations in well waters to the occurrence of methemoglobinemia in infants: Nat'l. Research Council Bull. Sanitary Eng. and Environment, p. 265-271, App. D.
- Meinzer, O. E., 1923, The occurrence of ground water in the United States, with a discussion of principles: U.S. Geol. Survey Water-Supply Paper 489, 321 p.
- Meinzer, O. E., and Wenzel, L. K., 1942, Movement of ground water and its relation to head, permeability, and storage, in Physics of the earth, pt. 9, Hydrology: New York, McGraw-Hill Book Co., p. 444-478.
- Metcalf, R. J., 1940, Deposition of Lissie and Beaumont Formations of the Gulf Coast of Texas: Am. Assoc. Petroleum Geologists Bull., v. 24, no. 4, p. 693-700.
- Moore, E. W., 1940, Progress report of the committee on quality tolerances of water for industrial uses: New England Water Works Assoc. Jour., v. 54, p. 263, 271.
- Myers, B. N., 1969, Compilation of results of aquifer tests in Texas: Texas Water Devel. Board Rept. 98, 532 p.
- Ogden, L., 1965, Estimating transmissibility with one drawdown: Ground Water, Jour. of the Technical Division of the Nat'l. Water Well Assoc., v. 3, no. 3, p. 51-55.
- Price, W. A., 1933, Role of diastrophism in topography of Corpus Christi area, south Texas: Am. Assoc. Petroleum Geologists Bull., v. 17, no. 8, p. 907-962.

- Price, W. A., 1958, Sedimentology and Quaternary geomorphology of south Texas: Gulf Coast Assoc. Geol. Soc. Trans., v. 8, p. 41-75.
- Prickett, T. A., 1965, Type-curve solution to aquifer tests under water-table conditions: Ground Water, v. 3, no. 3 (July), p. 5-14.
- Raber, Oran, 1937, Water utilization by trees, with special reference to the economic forest species of the north temperature zone: U.S. Dept. Agr. Misc. Pub. 257, p. 1-97.
- Root, E. L., and Harrison, J. W., 1937, Water table survey in the lower Rio Grande Valley; pt. 1, Willacy County, Texas; pt. 2, Cameron County Water Improvement District No. 2; pt. 6, Cameron County Water Control and Improvement District No. 5; and sec. 1 of pt. 9, Cameron County Water Improvement District No. 6: Texas Board Water Engineers dupl. repts.
- Rose, N. A., 1954, Investigation of ground-water conditions in Hidalgo, Cameron, and Willacy Counties in the Lower Rio Grande Valley, Texas: Lower Rio Grande Valley Chamber of Commerce dupl. rept.
- Scofield, C. S., 1936, The salinity of irrigation water: Smithsonian Inst. Ann. Rept., 1934-35, p. 275-287.
- Sellards, E. H., Adkins, W. S., and Plummer, F. B., 1932, The geology of Texas, v. 1, Stratigraphy: Univ. Texas Bull. 3232, 1007 p.
- Sellards, E. H., and Baker, C. L., 1934, The geology of Texas, v. II, Structural and economic geology: Univ. Texas Bull. 3401, 884 p.
- Taylor, T. U., 1907, Underground water of the Coastal Plain of Texas: U.S. Geol. Survey Water-Supply Paper 190, 73 p., 3 pls.
- Texas Department of Health, 1977, Drinking water standards governing drinking water quality and reporting requirements for public water supply systems: Adopted by the Texas Board of Health July 1, 1977, revised November 30, 1977, dupl. rept., 17 p.
- Texas Water Development Board, 1973, Well field drawdown model IMAGEW-1: Texas Water Devel. Board Program Documentation and Users Manual, 37 p.
- _____1975, Inventories of irrigation in Texas, 1958, 1964, 1969, and 1974: Texas Water Devel. Board Rept. 196, 265 p.
- _____1977, Continuing water resources planning and development for Texas: Texas Water Devel. Board planning rept. (Draft), v. 1 and 2, 1043 p.
- Theis, C. V., 1935, The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground-water storage: Am. Geophys. Union Trans., 16th Ann. Mtg., pt. 2, p. 519-524.

- Theis, C. V., 1938, The significance and nature of the cone of depression in ground-water bodies: Econ. Geology, v. 33, no. 8, p. 889-902.
- Thornbury, W. D., 1954, Principles of geomorphology: New York, John Wiley and Sons, Inc., 590 p.
- _____1956, Regional geomorphology of the United States: New York, John Wiley and Sons, Inc., 582 p.
- Todd, D. K., 1959, Ground-water hydrology: New York, John Wiley and Sons, Inc., 336 p.
- Trowbridge, A. C., 1923, A geologic reconnaissance in the Gulf Coastal Plain of Texas near the Rio Grande: U.S. Geol. Survey Prof. Paper 131-D, 123 p.
- ______ 1932, Tertiary and Quaternary geology of the lower Rio Grande region, Texas: U.S. Geol. Survey Bull. 837, 260 p., 9 pls.
- U.S. Public Health Service, 1962, Public Health Service drinking water standards: Public Health Service Pub. 956, 61 p.
- U.S. Salinity Laboratory Staff, 1954, Diagnosis and improvement of saline and alkali soils: U.S. Dept. Agr. Handb. 60, 160 p.
- Walker, W. H., and others, 1965, Preliminary report on ground-water resources of the Havana region in west-central Illinois: Illinois State Water Survey and State Geol. Survey cooperative ground-water Rept. 3, 61 p.
- Walton, W. D., 1962, Selected analytical methods for wells and aquifer evaluation: Illinois Water Survey Bull. 49, 81 p.
- Waters, J. A., McFarland, P. W., and Lea, J. W., 1955, Geologic framework of the Gulf Coastal Plain of Texas: Am. Assoc. Petroleum Geologists Bull., v. 39, no. 9, p. 1821-1850.
- Webb, W. P., 1952 ed, The handbook of Texas: Texas State Historical Assoc., Austin, Texas, v. 1 and 2, 977 p. and 953 p.
- Weeks, A. W., 1933, Lissie, Reynosa, and Upland terrace deposits of Coastal Plain of Texas between Brazos River and Rio Grande: Am. Assoc. Petroleum Geologists Bull., v. 17, no. 5, p. 453-487.
- _____ 1937, Miocene, Pliocene, and Pleistocene formations in Rio Grande region, Starr and Hidalgo Counties, Texas: Am. Assoc. Petroleum Geologists Bull., v. 21, no. 4, p. 491-499.
- 1945, Oakville, Cuero, and Goliad Formations of Texas Coastal Plain between Brazos River and Rio Grande: Am. Assoc. Petroleum Geologists Bull., v. 29, no. 12, p. 1721-1732.
- Wenzel, L. K., 1942, Methods for determining permeability of water-bearing materials, with special reference to discharging-well methods, with a section on direct laboratory methods and bibliography on permeability and laminar flow by V. C. Fishel: U.S. Geol. Survey Water-Supply Paper 887, 192 p.

- Wilcox, L. V., 1955, Classification and use of irrigation waters: U.S. Dept. Agr. Circ. 969, 19 p.
- Wilcox, L. V., Blair, G. Y., and Bower, C. A., 1954, Effect of bicarbonate on suitability of water for irrigation: Soil Sci., v. 77, no. 4, p. 259-266.
- Winslow, A. G., and Kister, L. R., Jr., 1956, Saline-water resources of Texas: U.S. Geol. Survey Water-Supply Paper 1365, 105 p.
- Wood, L. A., 1956, Availability of ground water in the Gulf Coast region of Texas: U.S. Geol. Survey open-file rept., 55 p., 26 pls.
- Wood, L. A., Gabrysch, R. K., and Marvin, Richard, 1963, Reconnaissance investigation of the ground-water resources of the Gulf Coast region, Texas: Texas Water Comm. Bull. 6305, 123 p., 18 figs., 15 pls.

Table 2. -- Records of Wells and Test Roles

All wells are drilled unless otherwise noted in the remarks column.

Water Lovel

Mater Lovel

Method of lift and type of power: G. cylinder; Gi. centrifugal; R. electric; G. gasoline, oil, butane, or diesel engine; N. none; Sub, submersible; T. turbine; M. windmill.

Use of water

D. domestic; Ind. industrial; Irr. irrigation; J. jet; N. none; P. public supply; S. livestock.

Old Well Number		From Bulletin 6014									:•								
	Remarks	Yearly observation well, Yield 886 gal/min by U.S. Geological Survey measurement. L	Yearly observation well, \underline{y}	1	2	1	TI TI	\underline{y} . Reported yield 900 gal/min.	\underline{y} Reported yield 900 gal/min. Unused irrigation well, \underline{y}	Before of yield 900 gal/min. Unused frrigation well, \underline{y}	Reported yield 900 gal/min. Unused irrigation well. \underline{y} \underline{y} Yearly observation well. \underline{y}	Reported yield 900 gal/min. Unused irrigation well. \underline{y} Yearly observation well. \underline{y}	Beported yield 900 gal/min. Unused irrigation well. <u>J</u> Yearly observation well. <u>J</u>	Reported yield 900 gal/min. Unused irrigation well. 19 19 Yearly observation well. 19		Reported yield 900 gal/min. Unused irrigation well. y Yearly observation well. y Reported yield 800 gal/min. y Reported yield 1,000 gal/min. y	Reported yield 900 gal/min. Unused irrigation well. 1/2 Yearly observation well. 1/2 Reported yield 800 gal/min. 1/2 Reported yield 800 gal/min. 1/2 Reported yield 800 gal/min. 1/2	Reported yield 900 gal/min. Unused irrigation well, <u>ij</u> Yearly observation well, <u>ij</u> Reported yield 800 gal/min, <u>ij</u> Reported yield 1,000 gal/min, <u>ij</u> Reported yield 800 gal/min, <u>ij</u> Reported yield 994 gal/min, <u>ij</u>	Reported yield 900 gal/min. Unused irrigation well. <u>ij</u> Yearly observation well. <u>ij</u> Reported yield 800 gal/min. <u>ij</u> Reported yield 1,000 gal/min. <u>ij</u> Reported yield 994 gal/min. <u>ij</u> Reported yield 995 gal/min. <u>ij</u>
Use	of	Irr	Irr	Q	Irr		Q	D Tri	Tr. N	Irr N	Irr N Irr Irr Irr	Irr N N Lrr Irr	D Irr N N D D D D D D D D D D D D D D D D D	D Itr N N Itr D D D D D D D D D D D D D D D D D D D	D Irr N N Irr Irr Irr Irr Irr Irr Irr Irr	D N N Itra D D D D D D D D D D D D D D D D D D D	D N N N N N N N N N N N N N N N N N N N	D N N N Itr. Itr. Itr. Itr. Itr. Itr. Itr. Itr.	D Irr Irr Irr Irr Irr Irr Irr Irr Irr Ir
Method	of 11ft	T, E,	T,G,	J, E,	T,G,		J, E,	J, E, 1 T, G, 72	J, E, T, G, 72 T, G, T, G,	7, E, 7, E, 7, E, 7, E, 7, E, 7, E,	J, E, T, G, T, G, T, B, T, B, T, B, T, B,	J, E, T, G, T, G, T, B, T, B, T, B, 55, T, B, 60,	J, E, T, G, 7, 2, 7, 2, 7, 5, 7, 8, 7, 8, 5, 5, 7, 8, 6, 0 1, E, 1,	7, E, 7, C, 7, C, 7, C, 7, S, 7, S, 7, B, 7, B, 7, B, 7, B, 7, B, 1, E, 1, E, 1, E, 1, E, 60	7, E, F, E, T, E, T, E, T, E, T, E, T, E,	3, E, E, 72, 72, 75, 75, 75, 75, 75, 75, 75, 75, 75, 75	J, E, J, E, T, G, T, G, T, G, T, B, G,	J, E, J, E, T, G, T, G, T, G, T, G, T, G, T, G, T, B, T, B, T, B, T, B, T, C, G,	J, E, T, G, T, B, T, B, T, B, T, B, G,
Date of	measurement	Sept. 12, 1957	July 24, 1952	Jan. 1944	ı		1	1 1	 0ct. 27, 1962	Oct.	Oct. 27, Aug. 19, Sept. 12,	Oct. 27, Aug. 19, Sept. 12,	Oct. 27, Aug. 19, Sept. 12,	Oct. 27, Aug. 19, Sept. 12,	Oct. 27, Aug. 19, Sept. 12,	Oct. 27, Aug. 19, Sept. 12,	Aug. 19, Sept. 12, Sept. 23, June 25,		Sept. 25, Sept. 25, June 25,
Below Land-	surface datum (ft)	27.6 3/	18.9 3/	9	1	:		9	137	 137 16. 7. 71	L 4	rj 4	r, 4.	L 4 4	L 4 4	r, 4. 4	7. 4. 4. 1.	r 4 4 4	r 4 4 + 4
Altitude of land	surface (ft)	51	65	51	90	53		65	49	49 51 49	49 51 49 52	49 51 52 50	49 49 49 50 50	49 49 52 50 50	49 49 50 50 50 50	49 49 50 50 50 53	51 50 50 50 52 53 53	49 49 50 50 50 53 53	52 50 50 50 50 50 50 50 51 50 50 50 50 50 50 50 50 50 50 50 50 50
		LRGV	op	op	op	op		op	op op	op op	op op op	ŷ ŷ ŷ ŷ ŷ	op op op op	op op op op op	op op op op op op	op op op op op op	op op op op op op op	0 0 0 0 0 0 0 0 0 0 0	op op op op op op op op
	Depth (ft)	168	200	151	162	164		256	256	256 169 166	256 169 166 346	256 169 166 346 160	256 169 166 346 160 160	256 169 166 346 160 168	256 169 166 346 160 160 200	256 169 166 346 160 160 200 200	256 169 166 346 1160 1200 200 200	256 169 166 346 160 185 200 200 200 201	256 169 166 346 160 160 200 200 200 200 200
		12	17	6	12	2		12											
	(ft)	168	394	151	163	164		257	169	169	257 169 166 346	257 169 166 346 160	257 169 166 346 160	257 169 166 346 160 166	257 169 166 346 160 160 185	257 169 166 346 160 160 200 200	257 169 166 346 160 160 200 200 200	257 169 166 160 160 185 200 200 200 200	257 169 166 160 160 185 200 200 201 194 194
completed		1952	1952	1944	1952	1953		1952	1952	1952 1962 1952	1952 1962 1952 1952	1952 1962 1952 1952 1956	1952 1962 1952 1952 1956	1952 1952 1952 1956 1956 1956	1952 1962 1952 1956 1968 1952	1952 1962 1952 1956 1956 1952 1952	1952 1962 1952 1956 1952 1952 1952	1952 1952 1952 1956 1952 1952 1952 1952	1952 1952 1952 1956 1952 1952 1952 1952
	Driller	A & T Drilling Co.	op	Waldrey & Morrow	A & T Drilling Co.	Odle Gilliland		A & T Drilling Co.	A & T Drilling Co.	A & T Drilling Co. do Virdell Drilling Co.	A & T Drilling Co. do Virdell Drilling Co. Tom Wilkinson	A & T Drilling Co. do Virdell Drilling Co. Tom Wilkinson	do do Virdell Drilling Go. Tom Wilkinson Powell Drilling Co.	do do Virdell Drilling Co. Tom Wilkinson Powell Drilling Co. A & T Drilling Co.	do do Virdell Drilling Co. Tom Wilkinson Powell Drilling Co. A & T Drilling Co. Tom Wilkinson	do do Virdell Drilling Co. Tom Wilkinson Powell Drilling Co. A & T Drilling Co. Tom Wilkinson	do Virdell Drilling Go. Tom Wilkinsom Powell Drilling Go. A & T Drilling Go. Tom Wilkinson Tom Wilkinson do	do virdell Drilling Co. Tom Wilkinson Powell Drilling Co. A & T Drilling Co. Tom Wilkinson do do	do do Virdell Drilling Go. Tom Wilkinson Powell Drilling Co. A & T Drilling Co. Tom Wilkinson do do do
	Owner	Oscar Thiems	Jack Garrett	Emil Kaufman	B. F. Morrow	C. D. Echols	_	V. E. Morrow	E. Morrow D. Echols	E. Morrow D. Echols H. Palmer							В	Б	Б
	Well	88~59~101	102	103 E	104 B	105		106											

See footnotes at end of table.

						Casing	60			Wat	Water level					
Date	Date	Date		Depth of	570	-		Water	Altitude of land	Below land-	Date of	40.5	Method	Use		Old Well Number
Well, Owner Driller completed well (ft)	Driller completed	completed		well (ft)		1000	Depth b	766	surface (ft)	surface datum (ft)	measurement	200	of 11ft	of	Remarks	From Bulletin 6014
88-59-302 Guadalupe Garza Powell Drilling Co. 1968 120	Powell Drilling Co. 1968	1968		120		2	103	LRGV	40	115	Apr. 16,	, 1968	J, E, 1/2	q	Not presently used, no electricity. $\underline{\mathbb{L}}$	- 3
303 John Scalef 1952 165	1952	1952		165		12	165	op	48	ĵ.	1	2	1,6,	z	Former irrigation well.	1
304 George W. Gamble A & T Drilling Co. 1948 464	A & T Drilling Co. 1948	1948		494		14	328	op	47	22		1948	T, G,	lrr	2)	F-63
305 G. W. McCain do 1948 310	do 1948	1948		310		12	310	op	45	100	E	E	T, G, 54	Irr	Reported yield 450 gal/min. 2	F-62
306 do Tom Wilkingon 1952 386	Tom Wilkinson 1952	1952		386		12	385	op	949	179		1952	T, E,	Irr	Reported yield 1,750 gal/min.] J	F-61
401 Tom Tanamachi Gene Liberty 1952 160	Gene Liberty 1952	1952		160		12	160	op	55	16.3 3/	Mar. 2,	, 1959	T, B, 145	Irr	Yearly observation well. Reported yield 900 gal/min.	K-15
402 Steve Gallaway do 1952 160	do 1952	1952		160		10	160	op	52	10.1	Sept. 28,	, 1972	T, G, 50	Irr	Reported yield 650 gal/min.	K-17
403 Edward E. Billings 1957 176	1957	1957		176		12	176	op	57	13.5	Oct. 18,	, 1972	T, E, 50	Irr	1	1
404 Ricardo Aquilar Tom Wilkinson 1952 174	Tom Wilkinson 1952	1952		174		12	174	op	55	13.0	Sept. 20,	, 1972	T,G,	Irr	Yaeld 560 gal/min by U.S. Geological Survey measurement.	K-16
405 M. de los Santos do 1952 184	do 1952	1952		184		12	184	op	67		1	5	T, G, 65	Irr	У	K-14
502 O. W. Pucker do 1952 200	W. Tucker do 1952 200	1952 200	200			1.2	200	op	45	18.9 3/	Sept.	4, 1952	т, е,	Irr	Yearly observation well. Reported yield 770 gal/min. U	K-11
503 B. H. Barlow Powell Drilling Co. 1968 150	H. Barlow Powell Drilling Co. 1968 150	1968 150	150			2	150	op	94	16	Apr. 29,	, 1968	J, E,	Q	N.	ŝ
504 R. C. Carmichael Odie Gilliland 1972 150	Odie Gilliland 1972 150	1972 150	150			2	150	op	48	15	Mar. 5,	, 1972	J, E,	۵	ı	ì
505 Johnny I. Pitts A & T Drilling Co. 1953 177	A & T Drilling Co. 1953	1953		177		16	175	qo	45	i .	1		T, G,	z	Former irrigation well, 1	1
506 Bent M. Crawford 0. B. Martin 1952 184	0. B. Martin 1952 184	1952 184	184			12	184	op	45	32		1970	T, G, 50	Irr		Î
507 Mary E. Coakley Tom Wilkinson 1952 199	Tom Wilkinson 1952 199	1952 199	199			12	199	op	94	0.9	Oct. 17,	, 1952	T, G,	z	Former irrigation well, \underline{I}_{I}	K-13
L. C. Poth A & T Drilling Co. 1948 290	A & T Drilling Co. 1948 290	1948 290	290			14	290	op	48	18		1948	T, G	z	Former irrigation well, 2/	K-3
601 Furukawa do 1953 190	do 1953 190	1953 190	190			12	190	op	849	32 34 19	May Aug. 30, Mar. 2,	1954 1, 1957 1, 1959	Т, С	Irr	Ti.	K-52
602 La Paloma School 1939 150	1939	1939		150		2	150	op	94	I.	1		z	z	Former school supply. Sandpoint well.	K-23
603 R. L. McGarr Odie Gilliland 1969 172	Odie Gilliland 1969	1969		172		2	172	op	65	19	Oct. 7,	, 1969	J, E, 3/4	Q	У	ŧ
604 Robert N. Jonies 1952 180	1952	1952		180		20	180	op	45	11.5	Oct. 16,	, 1972	T, E,	Irr		1
605 Island Farms, Inc 1952 200	1952	1952		200		Ŋ	200	op	45	17.3	Oct. 19,	19, 1972	S, E,	Ind	Supplies feedlot,	1
						\dashv	\dashv						\dashv			

See footnotes at end of table.

	Old Well Number From Bulletin 6014	К-10	ı	K-18	K-21	K-28	ŧ	į	1	1	Î	Ĭ	1	1	Ĭ	K-25	K-51	K-27	F-78	1	1	L.	K-6	
	Remarks	Reported yield 950 gal/min. y	å	Former irrigation well. Yield 868 gal/min by U.S. Geological Survey measurement, $\underline{\mathcal{Y}}$	Irrigation test hole. 2	Abandoned.	J.	й	Ti.	Л	The state of the s	Ti and the state of the state o	/F	T.	¥	75	Л	Reported yield 850 gal/min. 2/	Yearly observation well. (Former irrigation well. Yield with 75 hp turbine 700 gal/min by U.S. Geological Survey measurement. 1	1	Yearly observation well. Yield 2,097 gal/min by U.S. Geological Survey measurement. J	1	24	
	Use of water	Itr	Q	z	z	z	Д	p,s	ra.	Ind	Q	Q	D	Q	Q	Irr	Trt	Irr	D, S	τα	Irr	Irr	Irr	
	Method of 11ft	T, E, 50	J, E,	T, G,	z	z	J, E	J, E,	J, E, 3/4	J, E,	J, E,	3, E, 3/4	J, E,	J, E,	J, E,	T, G, 85	H	T, E,	J, E	J, E, 3/4	T, E,	Т, Е,	T, G, 97	
Water level	Date of measurement	May 5, 1952 May 1954	Sept. 28, 1972	op	1	Apr. 17, 1941	Dec. 4, 1970	July 30, 1971 Sept. 19, 1972	Apr. 9, 1968	Apr. 2, 1968	May 14, 1967	Apr. 5, 1968	May 31, 1966	Dec. 20, 1969	Apr. 6, 1968	i	Apr. 1954	1	Sept. 12, 1957	1	Mar. 2, 1959	t t	į	Section 1
Wate	Below land- surface datum (ft)	20	15	15.1		18	22	28 16.9	16	17	32	16	35	18	17	ŀ	33	1	27.4 3	1	12.3 3	1	:	101
	Altitude of land surface (ft)	47	55	14	47	47	45	95	43	47	67	47	51	949	20	649	51	8.7	40	34	34	44	67	No. of London
	Water bearing unit	LRGV	op	op	op	op	op	op	op	op	op	op	op	op	op	op	op	op	op	op	op	op	op	
Casing	Depth (ft)	174	170	173	1	1	170	175	169	167	172	176	183	175	148	295	260	275	174	į	204	200	303	
Cas	et Di	16	2	12	1	2	2	2	2	2	23	2	2	2	2	20	16	12	12	2	14	16	20	
	Depth of well (ft)	174	170	173	306	750	170	175	169	175	172	176	183	178	156	295	260	275	174	200	204	200	303	
	Date	1952	1963	1952	1952	1934	1970	1971	1968	1968	1967	1968	9961	0261	1968	1952	1952	1952	1952	1	1951	1953	1952	
	Driller	A & T Drilling Co.	Odie Gilliland	A & T Drilling Co.	do		Powell Drilling Co.	Odie Gilliland	qo	go	op	op	op	qo	op	Henry Cleveland	op	op	ор	Odie Gilliland	A & T Drilling Co.	op	Henry Cleveland	
	Owner:	G. B. Smith	J. W. Meadows	op	Jack Garrett	Encantada School	Ernesto Garcia	Pablo Escamille	Carlos Zepeda	op	Dionicio Esparza	op	Mrs. R. T. Leal	Irima García	Salvador Perez	Jose Escamilla	Lee Joe Wood	Carlos Zepeda	Louis Stanley	Pilar Cabrera	J. G. Ballinger	Sam Porter Corp.	Pilar Cabrera	
	Well	88-59-607	701	702	801	106	902	903	506	905	906	206	908	606	910	911	912	913	60-101	102	401	402	403	
			*			÷	*	*	*	*	*	*	*		÷				4	*	*	*		

See footnotes at end of table.

Part
Constr. Driller Completed Ord Constr. Const.
Completed Date Order O
Corner Decembered Decembered Oct Decembered Oct Decembered Oct Decembered Oct Decembered Oct Oct Decembered Oct
Date Date Date Optimized Optimiz
December December
December December
Complete Complete
Depth Dept
Date Completed Completed
E. A. Brady E. A. Brady Rice Tract Community Well 1. Lyle and Smith A & T Drilling Co. Barreda Estate Tom Wilkinson Jum Brooks A. H. Fernandez Tom Wilkinson L. F. Wilkinson Otto Walk Filar Cabrera Tom Wilkinson Co. N. Gilliland A. H. Fernandez Co. Ben Benson Carlos Watson A. H. Fernandez Co. Ben Enson Corlos Watson A & T Drilling Co. W. Costillano Odie Gilliland Dr. McCamy A & T Drilling Co. W. Costillano Odie Gilliland L. T. Canales List Tamez L. T. Ganales List Tamez L. T. Boswell Fred Fielder
E. A. Brady Rice Tract Community Well I Lyle and Smith A & T Drilling Co. Barreda Estate Jule and Smith A. H. Fernandez L. F. Wilkinson John Prentias John Prentias L. F. Wilkinson L. F. Wilkinson A. H. Fernandez John Prentias Com Wilkinson A Go Gilliland A H. Fernandez John Prentias Com Wilkinson A H. Fernandez Adams Gardens Drilling Co. N. Costillano Adams Gardens Drilling Co. Wictor Guajardo Adams Gardens Drilling Co. Wictor Guajardo A & T Drilling Co. Wictor Guajardo A & T Drilling Dr. McCamy A & T Drilling L. T. Canales L. T. Boswell Fred Fielder
88-60-404 405 405 501 502 503 503 504 505 506 507 702 702 703 704 704

See footnotes at end of table.

Matter							Casing	1g			Wate	Water level					
Heart, Stand Lagues Otte Cilling Co. 1970 118 2 40 40 40 40 40 40 4		Well	Owner		Date	Depth of well (ft)		pth ft.)		Altitude of land surface (ft)	Below land- surface datum (ft)	Date		Method of 11ft	Use of water	Remarks	01d Well Number From Bulletin 6014
No. Sept. Sept. No. Sept. Sept.	89	-04-110	Mrs. Raul Lopez	Powell Drilling Co.	1970	187	2	187	LRGV	41	20	24,	1970	J, E	a	Я	
No. 10 N		111	Rudy Garza	Odie Gilliland	1970	188	2	ŧ	op	67	87	11,	1970	J, E	Q	J.	t T
Parateal bolitiques do	-	112	R. Rego	op	1969	212	2	1	op	43	35	30,		3,8	Q	J.	1
Villa Namos Sciolati do		113	Pasqual Rodriques	op	1971	190	2	190	op	45	70	20,		J, E	Q	J.	1
Concise Naterial Nitchilling Co. 1952 237 12 237 240 40 21.0	20	114	Villa Nueva School	op	1939	192	1-1/2	1	op	777	1	:		J, E	Ω4	Supplies school.	į
Notice State Sta		115	Charles Russell	Virdell Drilling Co.	1952	237	1.2	237	op	43	;	1		H	z	Former irrigation well. 14	K-46
No. 11. Fernandee		201	Carlos Watson	Raul Tijerina	1950	220	10	220	op	04	21.0		1952	T(N)	z	Former irrigation well.	K-42
Hear, Allice Mayer Gow Wilkinson 1931 236 12 245 640 38 17 649 1951 5.56 117 105		202	A. H. Fernandez	A & T Drilling Co.	1951	305	f	i	op	4.1	;	1		Z	z	Irrigation test hole. y	L-21
WE1, Alice Mayer Tow Wilkleinson 1921 245 265 38 17 Aug. 19, 1922 7, 6, 7 Inc. 17, 7 17, 7 17, 7 20 40 20 40 20 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 40 20 20 40 20 40 20 20 40 20 20		203	qo	op	1951	230	77	230	op	38	20	-	1951	T,G	Irr	F.	1-20
doctore & Wente A & T Drilling Co. 1957 211 ide 211 7, 5, 5 17, 5 17, 5 17, 5 17, 5 17, 5 17, 5 17, 5 17, 5 17, 5 17, 5 17, 5 17, 5 17, 5 17, 5 17, 5 17, 5 17, 7 17, 5		204	Mrs. Alice Mayer	Tom Wilkinson	1951	245	12	245	op	38	1.7			T,G, 97	Irr	π	1-22
doevege H. Bingley do do 1957 225 16 225 60 33 13 Aug. 26, 1952 7.6, 1975 17. Transplayed and do 1952 190 12 190 60 33 13 Aug. 26, 1952 7.6, 1975 17. Transplayed and Mater Vonservution and Rader Water Well Co. 1973 200 4-1/2 200 60 31 5.9 Apr. 2, 1973 N N N Algorovement District do 1973 220 N N N N N N N N N N N N N N N N N N		205	Porter & Wentz	A & T Drilling Co.	1957	211	16	211	op	31)I	:		T, E,	Irr	73	L-40
Water Conservation and Number of Course II. Bingley do 1973 200 4-1/2 200 do 42 15.4 34 Apr. 2, 1973 Tr.0, 1455 Tr.0, 1455 Tr.0, 1456 Tr.0, 1457 Tr.0, 1417 Tr.0, 1417 Tr.0, 1417 Tr.0, 1417 Tr.0, 1517 Tr.0, 1517 <th< td=""><td></td><td>206</td><td>op</td><td>o p</td><td>1957</td><td>225</td><td>91</td><td>225</td><td>op</td><td>32</td><td>:</td><td>:</td><td></td><td>T, E,</td><td>Irr</td><td>ï</td><td>L-41</td></th<>		206	op	o p	1957	225	91	225	op	32	:	:		T, E,	Irr	ï	L-41
Whiter Conservation and dosmarks with the state with Co. 40. 42. 15.4 3 Apr. 2, 1973 N N do do. do 40. 31 5.9 40. 31 5.9 40. N		207	George H. Bingley	op	1952	190	12	190	op	33	13	Aug. 28, 1	1952	T, G,	Irr	Fi.	1-23
do do do do l'1973 220 N DO	*	208	Water Conservation and Improvement District No. 6		1973	200	4-1/2	200	op	42	শা	2,	1973	z	z	Test hole, observation well drilled for this study, $\underline{\mathcal{Y}} / \underline{\mathcal{Z}}$:
Valley International domother tensor and between the substitutional domother tensor and between the substitutional dependence de de des des des des des des des des	4	209	op	op	1973	200	4-1/2	200	op	31	m	2,	1973	z	z	Test hole, observation well drilled for this study. Originally drilled to 205 feet, $J_1 \ \underline{g}_2$	1
do do 1973 235 N do 36 N N N N H N N N N N N N N N	4	210	Valley International Properties	qo	1973	220	z	z	op	30	ī	*		N	z	Test hole drilled for this study, $y \underline{y}$	3
Do Jennings Odie Gilliland 1966 177 2 177 40 60 66 177 60 177 60 177 60 177 60 177 60 177 60 177 60 177 60 177 60 177 60 177 60 177	4	211	op	op	1973	235	×.	z	op	36	;	1		z	z	qo	1
Mrs. F. Ceyanes do 1970 37 2 37 do 31 10 oct. 1, 1970 J.E D Robin Pate do 1970 180 2 180 do 23 16 June 2, 1970 J.E P Floyd Hoel Tom Wilkerson 1953 260 12 260 do 28 16 Apr. 1954 T.G N N Rigoberto Cuellar Odie Gilliland 1972 165 3 155 do 22 4 Apr. 19,6 1,6 N 1,6	*	301	Jo Jennings	Odie Gilliland	1966	177	2	177	op	56	16	20,	1966	J, E,	Ω	Ti.	;
Robin Pate do 1970 180 2 180 do 23 18 Jue 2, 1970 Jue 7, 1970 Jue 7, 1970 Jue 7, 1970 Jue 7, 1970 Jue P Rigoberto Coellar Odie Gillitand 1972 180 2 do 32 1954 Tue Jue 15 1,12 Jue 1,12 do 22 1,12 Jue 1,12 Jue 1,12 20 do 22 1,12 Jue 1,12 20 do 22 1,12 1,12 1,12 20 do 22 1,12 1,12 1,12 20 do 22 20 4 1,12 <td< td=""><td>*</td><td>302</td><td>Mrs. F. Ceyanes</td><td>op</td><td>1970</td><td>37</td><td>2</td><td>37</td><td>op</td><td>31</td><td>10</td><td>1,</td><td>1970</td><td>J, E</td><td>۵</td><td>J.</td><td>:</td></td<>	*	302	Mrs. F. Ceyanes	op	1970	37	2	37	op	31	10	1,	1970	J, E	۵	J.	:
Floyd Hoel Tom Wilkerson 1953 260 12 60 do 28 16 Apr. 1954 T.G N Rigoberto Coellar Odie Gilliland 1972 180 2 do 32 1, E Ind M. G. Ortiz 1929 165 3 155 do 22 1, E 2	d	303	Robin Pate	op	1970	180	2	180	op	23	18	2,	1970	J, E	p.	Я	:
Rigoberto Coellar Odie Gilliland 1972 180 2 do 32 1,E, Ind M. G. Ortiz 1929 165 3 155 do 22 3,E 3,E 1,E, 1,B, 1,E, 1,B 1,B 1,E, 1,B 1,		304	Floyd Hoel	Tom Wilkerson	1953	260	12	260	op	28	16	Apr.	1954	T, G	z	Former irrigation well, slotted 215-260 feet.	1,-42
H. B. Fleming do 1945 204 4 204 do 29 9 Sept. 1945 J.E D,S Texas Parks and Wild- Rader Water Well Co. 1973 210 4-1/2 200 do 32 9.6 3 do N N N A. Garcia A. Garcia	*	305	Rigoberto Cuellar	Odie Gilliland	1972	180	2	į	op	32	:	1		J, E,	Ind	Supplies truck garage.	1
H. B. Fleming do 1945 204 4 206 do 29 9 Sept. 1945 J.E D.S. Texas Parks and Wild- Rader Water Well Co. 1973 211 4-1/2 210 do 35 8.2 3 Apr. 2, 1973 N N A. Garcia do 1973 220 4-1/2 200 do 32 9.6 3 do N N N		306	M. G. Ortiz	4	1929	165	6	155	op	22	1	:		J, E	D, S		L-24
Texam Parks and Wild- Rader Water Well Co. 1973 211 4-1/2 210 do 35 8.2 3 Apr. 2, 1973 N N N Life Dept. A. Garcia do 1973 220 4-1/2 200 do 32 9.6 3 do N N N		307	H. B. Fleming	op	1945	204	4	20%	op	53			1945 1954	J, E	D, S	й	L-25
A. García do 1973 220 4-1/2 200 do 32 9.6 3 do N	*	308	Texas Parks and Wild- life Dept.	Rader Water Well Co.	1973	211	4-1/2	210	op	35	M)	2,	1973	z	z	Test hole, observation well drilled for this study, $\underline{y},\underline{y},\underline{y}$:
	*	309	A. García	op	1973	220	4-1/2		op	32		op		×	z	op	;

See footnotes at end of table.

See footnotes at end of table.

Old Well Number From Bullerin	6014	1-36	L-30	L-33	L-29	L-32	L-28	-	:	*	*	1	E.		1	1 1	1 1 1	1 1 1 1	1 1 1 7	1 1 1 1 7 1	1 1 1 1 1 1 1	1 1 1 1 7 1 1	1 1 1 1 1 1 1 1 1 1	1 1 1 1 7 1 1 1 1 1
Remarks		City of Brownsville well 6. Used as observation well in pump test of City well 5. Measured yield 1,100 gal/min. $\underline{y}\underline{y}$	City of Brownsville well 2. Used as observation well in pump test of City well 5. $\underline{2}\underline{ }$	City of Brownsville well 3. $\frac{1}{2}$	Formerly City of Brownsville well 1. Abandoned. 2	Test hole drilled for public supply, 1/2	Oil test hole. 2	Supplies retail store.	π	Ti.	1	Tent hole, observation well drilled for this report. Used as observation well in pump test $y \le 2$ originally drilled to 207 feet.	Test hole, observation well drilled for this report. $\underline{y},\underline{z}$		Test hole, observation well drilled for this report. Used as observation well in pump test (See Table 4). Well depth measured, \underline{y} \underline{z}	Test hole, observation well drilled for this report. Used as observation well in pump test (See Table 4). Well depth measured. $\underline{y}\underline{y}$ Test hole, observation well drilled for this report. Well depth measured, $\underline{y}\underline{y}$	Test hole, observation well drilled for this report. Used as observation well in pump test (See Table 4). Well depth measured, $\underline{y}\underline{y}$ (See Tole, observation well drilled for this report. Well depth measured, $\underline{y}\underline{y}$ rest hole, observation was ared, $\underline{y}\underline{y}$ Tast hole drilled for this report. Flugged and abandoned. Well depth measured, $\underline{y}\underline{y}$	rvation well drilled sobservation well in Well in Well and well drilled revation well drilled either wester 1 ½ od for this report. 1 depth measured, ½ 2 as used for dewatering spool.	Test hole, observation well drilled for this expect. Used as observation well in pump test (See Table 4). Well depth measured, \underline{y} \underline{y} report. Well depth measured, \underline{y} \underline{y} report. Well depth measured, \underline{y} \underline{y} report. Well depth measured, \underline{y} \underline{y} was tooke the drilled for this report. Plugged and abandoned. Well depth measured, \underline{y} \underline{y} sand point wells used for devatering excavation for new swimming pool.	Test hole, observation well drilled for this report. Used as observation well in pump test (See Table 4). Well depth measured, $\underline{y}\underline{y}$ (See Table 4). Well depth measured, $\underline{y}\underline{y}$ (Test hole, observation well drilled for this report, Well depth measured, $\underline{y}\underline{y}$ (Sand point wells used for this report, Plugged and abandoned. Well depth measured, $\underline{y}\underline{y}$ (Sand point wells used for dewatering excavation for new swimming pool. Test hole for public supply, \underline{y} (Test hole, observation well drilled for this study, Water-level recorder installed Oct. 20, 1973, $\underline{y}\underline{y}$	Test hole, observation well drilled for this export, Used as observation well in pump test (See Table 4). Well depth measured, $\underline{y}\underline{y}$ report. Well depth measured, $\underline{y}\underline{y}$ report. Well depth measured, $\underline{y}\underline{y}$ report. Well depth measured, $\underline{y}\underline{y}$ for this report. Well depth measured, $\underline{y}\underline{y}$ sand point wells used for devatering excavation for new swimming pool. Yes thole for public supply, \underline{y} rest hole, observation well drilled for this study, water-level recorder installed Oct. 20, 1733. $\underline{y}\underline{y}$ water-level recorder installed Oct. 20, Test hole drilled for this study. Plugged and abandoned, Well depth measured, $\underline{y}\underline{y}$	Went hole, observation well drilled for this servation well drilled for this servation well in pump test. See Table 4). Well depth measured, $\underline{y}\underline{y}$ tent hole, observation well drilled for this report. Well depth measured, $\underline{y}\underline{y}$ test hole drilled for this report. Plugged and bandoned. Well depth measured, $\underline{y}\underline{y}$ is and point wells used for desatering excavation for new srimming pool. Fest hole for public supply, \underline{y} test hole for public supply, \underline{y} test hole for public supply, \underline{y} test hole for this study. Water-level recorder installed oct. 20, 1973, $\underline{y}\underline{y}$ test hole drilled for this study. Plugged and bandoned. Well depth measured, $\underline{y}\underline{y}$	Test hole, observation well drilled for this report. Used as observation well in pump test (See Table 4). Well depth measured, $y g$ report. Well depth measured, $y g$ resport. Well depth measured, $y g$ rest hole drilled for this report. Plugged and abandoned. Well depth measured, $y g$ and point wells used for devatering excavation for new swimming pool. Test hole for public supply, g rest hole, observation well drilled for this study. Water-level recorder installed oct. 20, 1973, $y g g$ rest hole drilled for this study which depth measured. $y g$ rest hole, observation well drilled for this study, $y g g$ rest hole, observation well drilled for this study. $y g g$	Test hole, observation well drilled for this report, used as observation well in pump test (See Table 4). Well depth measured, \underline{y} \underline{y} great hole, observation well drilled for this report. Well depth measured, \underline{y} \underline{y} Test hole drilled for this report. Plugged and abandoned. Well depth measured, \underline{y} \underline{y} \underline{y} from new swimming pool. Test hole, well depth measured, \underline{y}
Use of	warer	9 0 3 H	d _a	d	z	z	z	Ind	D, S	D 3	D, Irr	z	Z z		Z							10		
Method of	+	T, E,	T, E,	T, E,	T, E,	Z	z	J, E	J, E	J, E	J,E D	Z	z		×	× ×	z z z	z z z z	z z z z z	* * * * * * *	* * * * * * * *	× × × × × × × × × × × × × × × × × × ×	X	N N N N N N N N N N N N N N N N N N N
	4		_	H,	_	Ζ4	~	J,	_	-	٦,		_		<i>z</i> .									
level Date of measurement		. 30, 1953	23, 1952	:	1952	;	1	:	30, 1968	22, 1970	1 7	2, 1973	op		qo	do 18, 1973								
Water level	_	Sept.	Oct.		July				July	Dec.		3/ Apr.	ला	-	ě)	y Apr.								
Below Land- surface datum	(ft)	21.1	14.3	ł	14	ì	;	1	17	16	I	10.7	11.4		11.0									
Altitude of land surface	(11)	34	34	33	35	38	33	37	36	30	30	37	33		37	37	30	37 30 30	37 30 30 35	31 31 31 31 31 31	37 30 30 31 31	31 30 30 30 30 30 30 30 30 30 30 30 30 30	37 30 31 31 31 30 19	37 30 30 30 11 14 14
Water		LRGV	op	op	op	op	1	LRGV	op	op	op	ор	op		op	ор ор	op op op	g g g g	op op op op	op op op op	op op op op op	op	op op op op op op op	op op op op op op op
ipth (ft)	(41)	203	196	194	198	į,	1	1	į	;	180	195	203	1 0.6	130	202	202 N	N N 2 2 3	8 Z Z 7	20 I N N 20 20 20 20 20 20 20 20 20 20 20 20 20	202 N N 2220 N N 2300 N N 2500 N N N N N N N N N N N N N N N N N N	Z Z N N Z 0 Z 1 Z 2 Z 2 Z 2 Z 2 Z 2 Z 2 Z 2 Z 2 Z 2	20 1 N N 20 20 2 20 2 20 2 20 2 20 2 20	202 N N 202 L N N 202 L N N 202 L N N 202 L N N N N N N N N N N N N N N N N N N
Casing Diam- erer De	(4111-)	12	20,12	17	20,12	t	;	2	2	2	4	4-1/2	4-1/2	4-1/2		4-1/2	4-1/2 N	4-1/2 N	4-1/2 N	4-1/2 N N 	4-1/2 N N 4-1/2	4-1/2 N N + -1/2	4-1/2 N N 4-1/2 A-1/2	4-1/2 N N 4-1/2 2 4-1/2
Depth of well	(447)	203	203	194	200	503	12,053	100	195	190	180	195	207	307		204	204	204	204 25 25 300	204 228 25 300 226	204 228 25 300 226	204 25 300 202 202 180	204 228 25 300 202 202 202 203	204 228 25 300 226 202 202 205 205 230
Date		1953	1952	1953	1952	1952	1950	1	1968	1970	1972	1973	1973	1973		1973	1973	1973 1973 1973	1973 1973 1973	1973 1973 1973 1952 1952	1973 1973 1973 1973	1973 11973 11973 11973 11973	1973 1973 1973 1973 1973 1973	1973 1973 1973 1973 1973 1973
Driller		Virdell Drilling Co.	op	op	Texas Water Supply Corp.	op	The Texas Co.	1	Odie Gilliland	Powell Drilling Co.	1	Rader Water Well Co.	op	op		op	op op	9 9 !	do do Texas Water Supply Corp.	do do Texas Water Supply Gorp. Rader Drilling Co.	do Texas Water Supply Corp. Rader Drilling Co.	do Corp. Rader Drilling Co. do	do Texas Water Supply Corp. Rader Drilling Co. do Odie Gilliland Rader Water Well Co.	do
Owner		City of Brownsville	op	do	op	op	P. J. Davis	Mr. McDaniel	James Haywood	George A. Lopez	Vance Wilson	City of Brownsville	M. J. Tipton, Sr.	City of Brownsville		Pedro Rocha	Fedro Rocha City of Brownsville	Fedro Rocha City of Brownsville Del Mar Motel	Pedro Rocha City of Brownsville Del Mar Motel City of Brownsville	Pedro Rocha Clty of Brownsville Del Mar Motel City of Brownsville do	Pedro Rocha City of Brownsville Del Mar Motel City of Brownsville do do Robert Mathers	Pedro Rocha Clty of Brownsville Del Mar Motel City of Brownsville do Ao Mando Joe Guerra	Pedro Rocha City of Brownsville Del Mar Motel City of Brownsville do do Mando Joe Guerra Joe A. Bestiero	Pedro Rocha City of Brownsville Del Mar Motel City of Brownsville do Abando Joe Guerra Joe A. Bestiero Enrique Valentin Est.
Well		89-04-617	618	619	620	621	622	623	624	625	626	627	628	629	4	069	630	631	631 632 632	630 631 632 901				
W		89-0						4	4:	4	*	*	*	*	E	*	* *	* * *	* * *	*_ * * *	* * * * *	* * * * * * *	* * * * * * *	* * * * * * * *

ee footnotes at end of table.

Table 2. -- Records of Wells and Test Holes -- Continued

	Old Well Number From Bulletin 6014	у.		too salty. L-27	this	this	ged and
	Remarks	Abandoned domestic well, water too salty.		Test drilled for irrigation, but water too salty. $\underline{\mathcal{Y}}$	Test hole, observation well drilled for this study.	Test hole, observation well drilled for this study. Well depth measured.	Test hole drilled for this study. Plugged and
	Use of water	z	D	z	z	z	z
	Method of lift	z	Cf 1/2	z	z	z	z
level	Date of measurement	Oct. 18, 1972	1	1	3/ Apr. 2, 1973	9.0 3 Apr. 16, 1973	;
Water level	Below land- surface datum (ft)	3.8	1	1	11.1 3 A	9.0 3/ A	:
	Altitude of land surface (ft)	23	31	28	30	29	26
	Water of land bearing surface unit (ft)	LRGV	op	op	op	op	op
ng	ipth (ft)	i i	t E	211	205	224	z
Casing	Diam- eter (in.)	55	2	10	4-1/2	4-1/2	z
	Depth of well (ft)	225	212	211	240	243	225
	Date	;	1957	1946	1973	1973	1973
	Driller	Keith	1	Ted Pursley	Rader Water Well Co.	op	op
	Owner	Mogel	Jo and Fred Wagner	Fleming	City of Brownsville	op	op
	Well	89-05-401	402	403	404	405	701
		89					

* Chemical analysis of water from this well in Table 5.

J Driller's log of well in Table 3.

Z Electric or gamma ray log available in files of the Texas Department of Water Resources.

Additional water-level measurements in Table 4.

Table 3.—Drillers' Logs of Wells

	THICKNESS (FEET)	DEPTH (FEET)		THICKNESS (FEET)	DEPTH (FEET)
,	Well 88-59-101		Well 88-	59-107	
	ner: Oscar Thieme A & T Drilling Company		Owner: C. Driller: A & T Dr		
Surface soil	6	6	Surface	6	6
Clay	24	30	Sand with clay streaks	56	62
Sand and clay	65	95	Broken sand and clay	31	93
Clay	10	105	Sand	49	142
Sand	30	135	Gravel with sand streaks	7	149
Clay	20	155	Clay	2	151
Gravel	13	168	Gravel	16	167
			Clay	2	169
,	Well 88-59-104		Well 88-	E0 201	
	vner: B. F. Morrow		Owner: D.		
Driller:	A & T Drilling Company			rilling Company	
Surface soil	6	6	Sand with streaks of clay	26	26
Sand	19	25	Sand	8	34
Clay	35	60	Clay, yellow	8	42
Sand with clay streaks	40	100	Sand, black, fine grained	16	58
Sand	20	120	Clay with streaks of sand	22	80
Clay	4	124	Sand, black, fine grained	15	95
Sand and gravel	39	163	Clay, blue	10	105
			Sand	5	110
9	Well 88-59-105		Clay, blue	5	115
	wner: C. D. Echols iller: Odie Gilliland		Gravel	51	166
Topsoil	4	4	Well 88	-59-202	
Clay	26	30		. Kawamar n Wilkinson	
Sand (salty)	20	50	Surface soil	10	10
Clay	70	120	Sand	19	29
Fine sand	14	134	Clay	17	46
Clay	12	146	Sand	59	105
Sand and gravel	11	157	Clay	16	121
_	7	164	Sand	13	134
			Julia		455 5 0500

Table 3.—Drillers' Logs of Wells—Continued

		THICKNESS (FEET)	DEPTH (FEET)			THICKNESS (FEET)	DEPTH (FEET)
	Well 88-59	-202—Continued			Well 8	8-59-208	
Gravel, sandy	y, and clay	16	150			rman Johnson om Wilkinson	
Clay		3	153	Surface soil		17	17
Sand		28	181	Sand		33	50
Clay		15	196	Clay		10	60
Sand		15	211	Sand		45	105
Clay		7	218	Clay		16	121
Sand with so	me gravel	69	287	Sand		29	
Gravel		59	346	Gravel		42	150
							(0.7,27)
	Well 8	8-59-205		Clay		2	194
		W. D. Todd Drilling Company					
Surface soil		6	6		Well 88	3-59-209	
Sand		165	171		Owner: Ge	eorge Oyama	
Gravel		14	185		Driller: 10	m Wilkinson	on will
Gravei		14	165	Surface soil		15	15
	Well 8	8-59-206		Sand		21	36
		: T. Oyama		Clay		53	89
	Driller: To	om Wilkinson		Sand with clay	y streaks	31	120
Surface soil		6	6	Sand and clay		31	151
Clay		32	38	Clay		15	166
Sand		8	46	Gravel		31	197
Clay, sandy		13	59	Clay		4	201
Sand		112	171				
Gravel		22	193		Wall 88	3-59-210	
Clay		7	200		Owner: Ra	ay McDonald m Wilkinson	
	Well 8	8-59-207		Surface clay		18	18
		er: T. Date om Wilkinson		Sand		38	56
Surface clay	Dimor. 10	8	8	Clay		33	89
Sand		56	64	Sand		30	119
		51				19	138
Clay			115	Clay			
Sand		22	137	Sand		10	148
Clay		3	140	Gravel		57	205
Gravel		60	200	Clay		7	212

Table 3.—Drillers' Logs of Wells—Continued

		THICKNESS (FEET)	DEPTH (FEET)		THICKNESS (FEET)	DEPTH (FEET)
	Well 88-59-3	01		Well 88-59-306	6—Continued	
	Owner: G. W. M Driller: Tom Wilk			Sand	15	305
Surface soil		15	15	Clay	15	320
Sand		40	55	Gravel, fine, with sand	65	385
Clay		55	110	Clay, hard	1	386
Sand		10	120	Well 8	8-59-405	
Gravel		60	180	Owner: M.	de los Santos	
				Driller: To	om Wilkinson	
	Well 88-59-3	02		Clay	29	29
	Owner: Guadalupe Driller: Powell Drilling			Sand	32	61
Topsoil		2	2	Clay	31	92
Clay, gray		24	26	Clay, sandy	30	122
Sand, gray		27	53	Sand	23	145
Clay, brown		45	98	Gravel	38	183
Sand, gray an	d brown	15	113	Clay	1	184
Clay, blue		7	120			
				Well 8	8-59-502	
	Well 88-59-3	06			D. W. Tucker om Wilkinson	
	Owner: G. W. M Driller: Tom Wilk			Surface soil and clay	29	29
Surface soil		15	15	Clay	61	90
Sand		14	29	Clay and sand	10	100
Clay		10	39	Clay	21	121
Sand		13	52	Clay, sandy	19	140
Clay		28	80	Gravel	58	198
Sand		11	91	Clay	2	200
Clay		7	98			
Sand		25	123		8-59-503	
Clay		13	136		3. H. Barlow Drilling Company	
Gravel		15	151	Clay, brown	48	48
Clay		87	238	Sand, brown	32	80
Clay, sandy		6	244	Clay, brown	20	100
Sand with sha	ale streaks	30	274	Sand, gray-brown	46	146
Clay		16	290	Gravel (1/2 to 3/4 inch)	4	150

Table 3.—Drillers' Logs of Wells—Continued

		THICKNESS (FEET)	DEPTH (FEET)			THICKNESS (FEET)	DEPTH (FEET)
	Well 88-59-5	05			Well 88	-59-603	
	Owner: Johnny T Driller: A & T Drilling					L. McGarr ie Gilliland	
Surface		6	6	Topsoil		5	5
Clay		14	20	Clay		36	41
Sand and cla	у	33	53	Sand (salty)		22	63
Clay		49	102	Clay		89	152
Sand and cla	y streaks	13	115	Sand		13	165
Clay		10	125	Gravel		7	172
Sand		20	145				
Clay and hard	d streaks	4	149				
Sand and gra	avel	4	153		Well 88	-59-607	
Gravel and s	and streaks	22	175			. B. Smith	
Clay		2	177		Driller: A & T D	rilling Company	
				Surface soil		7	7
				Clay		3	10
	Well 88-59-5	07		Sand		16	26
	Owner: Mary E. C Driller: Tom Wilk			Clay		34	60
Surface soil		10	10	Sand		35	95
Clay		65	75	Clay		30	125
Sand		42	117	Sand and grave	el	49	174
Clay		30	147				
Sand		3	150				
Gravel		49	199		Well 88	-59-702	
						V. Meadows brilling Company	
				Surface soil		8	8
	Well 88-59-6	01		Sand		18	26
	Owner: —Furni Driller: A & T Drilling			Clay		10	36
Surface soil		6	6	Sand		50	86
Sand		24	30	Clay		38	124
Clay		37	67	Sand		8	132
Sand and cla	ay	51	118	Clay		8	140
Clay		40	158	Sand		10	150
Gravel		32	190	Gravel		23	173

Table 3.—Drillers' Logs of Wells—Continued

		THICKNESS (FEET)	DEPTH (FEET)		THICKNESS (FEET)	DEPTH (FEET)
	Well 88-	59-902		v	Vell 88-59-905	
	Owner: Erne Driller: Powell D			Ow Dri	ner: Carlos Zepeda ller: Odie Gilliland	
Clay, gray		12	12	Topsoil	4	4
Clay, brown		16	28	Clay	34	38
Silt, brown		7	35	Sand	13	51
Clay, brown		11	46	Clay	57	108
Silt, gray		6	52	Sand	9	117
Clay, brown		48	100	Clay	46	163
Sand, fine gra	ay	58	158	Sand and gravel	12	175
Clay, mixed in	n sand, fine, gray	4	162		Vell 88-59-906	
Gravel (½ inc	:h)	8	170			
				Dri	er: Dionicio Esparza ller: Odie Gilliland	
				Topsoil	6	6
	Well 88-	59-903		Clay	57	63
	Owner: Pabl			Sand (water is fair)	27	90
	Driller: Odi			Shale and clay streaks	75	165
Topsoil		3	3	Sand and rock	7	172
Clay		37	40			
Sand (fair wa	ater)	9	49		Vell 88-59-907	
Clay		111	160		er: Dionicio Esparza ller: Odie Gilliland	
Sand and gra	avel	15	175	Topsoil	4	4
				Clay	34	38
				Sand	17	55
	Well 88	-59-904		Clay	51	106
		rlos Zepeda ie Gilliland		Sand	9	115
T11	Driller. Od	4	4	Clay	40	155
Topsoil		35	39	Sand	13	168
Clay		11	50	Gravel	8	176
Sand		55	105			
Clay		10	115	,	Well 88-59-908	
Sand		33	148		ner: Mrs. R. T. Leal iller: Odie Gilliland	
Clay		12	160	Topsoil	8	8
Fine sand		9	169	Clay	7	15
Gravel		9	109	5,4,	5.1	

Table 3.-Drillers' Logs of Wells-Continued

	T	HICKNESS (FEET)	DEPTH (FEET)		THICKNESS (FEET)	DEPTH (FEET)
	Well 88-59-908—Co	ontinued		v	Vell 88-59-912	
Sand		23	38		ner: Lee Joe Wood er: Henry Cleveland	
Clay		34	72	Clay	70	70
Sand		10	82	Sand	25	05
Clay		43	125	Clay	10	105
Sand		20	145	Sand	12	
Clay		15	160			117
Sand		7	167	Clay	18	135
Rock and gravel		14	181	Sand	20	155
Loose pea gravel		2	183	Clay	9	164
				Gravel	40	204
	Well 88-59-909	9		Clay	2	206
	Owner: Irima Gar			Sand and gravel	21	227
	Driller: Odie Gillila	and		Clay	11	238
Clay		20	20	Gravel	22	260
Fine sand		8	28			
Hard clay		12	40	v	Vell 88-60-101	
Fine sand		8	48		ner: Louis Stanley	
Clay		5	53		er: Henry Cleveland	
Medium sand		6	59	Clay	24	24
Clay		3	62	Sand, broken	16	40
Fine sand		6	68	Shale	45	85
Clay		97	165	Sand	5	90
Sand and gravel		13	178	Shale, clay	70	160
				Gravel	12	172
				Shale	2	174
	Well 88-59-910)				
	Owner: Salvador Pe Driller: Odie Gillila			W	/ell 88-60-401	
Topsoil		4	4	Own Driller: A	ner: J. G. Ballinger & T Drilling Company	
Clay		36	40	Surface soil	6	6
Sand		15	55	Sand	12	18
Clay		53	108	Clay	77	95
Sand		7	115	Sand	63	158
Clay		25	140	Gravel	32	190
Sand		16	156	Sand	14	204

Table 3.—Drillers' Logs of Wells—Continued

		THICKNESS (FEET)	DEPTH (FEET)		THICKNESS (FEET)	DEPTH (FEET)
	Well 88-60-	503		Well 88-60-7	03—Continued	
	Owner: A. H. Fei Driller: Tom Wil			Clay	72	152
Class	Diller. Tom vvii	15	l de	Sand	12	164
Clay		20	15 35	Rocks and gravel	5	169
Clay		101	136			
HEADER I					88-60-705	
Sand		28	164		Victor Guajardo Odie Gilliland	
Gravel, sandy		12	176	Topsoil	6	6
Clay, imbedded	i gravei	9	185	Clay	19	25
Clay		28	213	Sand	30	55
Sand		31	244	Clay	50	105
Gravel		55	299	Sand	15	120
Clay		3	302	Clay	55	175
	Well 88-60-	702				
	Owner: Carlos V			Sand and gravel	21	196
	Driller: A & T Drillin			Well	88-60-710	
Surface soil		16	16		: J. T. Canales	
Sand		38	54		: Fred Fielder	
Clay with sand	streaks	114	168	Surface soil	16	16
Sand		10	178	Sand	24	40
Sand and grave	əl	18	196	Sand and clay	125	165
Clay		12	208	Gravel	15	180
Sand		22	230	Clay	13	193
Sand and grave	əl	10	240	Gravel	109	302
Clay		5	245			
Sand and grave	el	29	274	Well	88-60-711	
Clay		2	276		L. T. Boswell Fred Fielder	
1 900 000 1000				Surface soil	12	12
	Well 88-60-7	703		Clay	42	54
	Owner: N. Cost Driller: Odie Gil			Sand	109	163
Topsoil		5	5	Sand and gravel	33	196
Clay		25	30	Clay	12	208
Fine sand (a litt	tle salty)	30	60	Sand and gravel	31	239
Fine brown san		20	80	Clay	3	242

Table 3.—Drillers' Logs of Wells—Continued

		THICKNESS (FEET)	DEPTH (FEET)		THICKNESS (FEET)	DEPTH (FEET)
	Well 88-60-71	1—Continued		Well 8	38-60-802	
Sand and	d gravel	24	266	Owner: Driller: T	Balbino Rego om Wilkinson	
Clay		13	279	Surface soil	29	29
				Clay	6	35
	Well 88-6	0.740		Sand	54	89
	1.55.70.57.77			Clay	31	120
	Owner: Ben Driller: A & T Dril			Clay, sandy	25	145
Surface s	soil	12	12	Sand	5	150
Sand		58	70	Gravel	61	211
Clay		56	126	Clay	30	241
Sand		8	134	Clay, with sand streaks	24	265
Clay		20	154	Gravel	46	311
Sand		12	166	Glavei	40	(F-5-7)
Sand and	d gravel	19	185	Well 8	88-60-806	
Clay	•	26	211	Owner: Valley In	ternational Properties	
Sand and	daravel	21	232	(City of Brownsy	ille arranged drilling) Vater Well Company	
Clay	1 graver	2	234	Soil	1	1
	(assural	48		Brown clay	19	20
Sand and	i gravei		282	Fine brown sand	18	
Sand		18	300		16	38
				Clay with broken spots (sands?) at 65 and 90 feet	82	120
	Well 88-6	0-719		Sand with clay streaks	15	135
	Owner: Sam-P	270-71 A.M.		Clay and sand streaks	15	150
	(City of Brownsville a Driller: Rader Wate	arranged drilling)		Sand with hard streaks,		
0-11	Dillier. Nader Wate		2	possibly gravel	15	165
Soil		1	1	Broken clay and sand streaks	30	195
Clay		7	8	Clay with hard streaks	5	200
Sand wit feet	h clay streaks at 60 to 70	77	85			
Clay and	sand streaks	10	95	Well 8	8-60-902	
Clay with	sand streak at 120 feet	55	150		ester Wheelock ille arranged drilling)	
Sand and		30	180		ater Well Company	
Clay		15	195	Black soil	2	2
	d gravel (large gravel at		.55	Brown to red broken clay	58	60
	265 feet)	75	270	Sand with clay streaks	25	85
Clay or ti	ght sand	5	275	Broken clay and sand streaks	20	105

Table 3.-Drillers' Logs of Wells-Continued

		THICKNESS (FEET)	DEPTH (FEET)		THICKNESS (FEET)	DEPTH (FEET)
	Well 88-60-	902—Continued		Well 89-04-	105—Continued	
Brown clay		20	125	Clay	58	180
Sand with clay	streaks	57	182	Sand and gravel	22	202
Sand and grave	el	18	200			
Sand with clay	streaks	60	260	We	ell 89-04-106	
	Well 89	-04-101			er: Marcos Zavala er: Odie Gilliland	
		T. Canales red Fielder		Topsoil	5	5
Surface soil an		25	25	Clay	16	21
	id Salid	171	196	Sand	29	50
Clay and sand			3556	Clay	97	147
Sand		6	202	Sand rock	43	190
Gravel		28	230	Rock and gravel	10	200
Clay		44	274			
Sand		54	328			
				We	ell 89-04-107	
		-04-104 Raul Lopez			: Catholic Church er: Odie Gilliland	
		rilling Company		Topsoil	5	5
Surface soil		8	8	Clay	25	30
Clay, sandy		162	170	Sand	16	46
Sand and grave	el	63	233	Clay	58	104
Clay		7	240	Fine sand	12	116
Sand and grave	el	34	274		74	
Clay		2	276	Clay		190
				Sand and gravel	42	232
	Well 89	-04-105				
		rto Rodriquez lie Gilliland		We	ell 89-04-108	
Topsoil	Driner, Od		3		r: Antonio Salizar er: Odie Gilliland	
Clay		25	28	Topsoil	5	5
Sand		17	45	Clay	30	35
Clay		11	56	Sand (fair)	15	50
Sand		9	65	Clay	140	190
Clay		45	110	Sand and gravel	15	205
Sand		12	122	Gravel	7	212

Table 3.—Drillers' Logs of Wells—Continued

	THICKNESS (FEET)	DEPTH (FEET)		THICKNESS (FEET)	DEPTH (FEET)
Well 89-04	-109		Well 89-04-112—	Continued	
Owner: Amend Driller: Odie (Clay	19	64
Topsoil	5	5	Sand	3	68
Clay	31	36	Clay	60	128
Sand (water fair)	14	50	Sand	5	133
Clay	140	190	Clay	14	147
	18	208	Sand	5	152
Sand and gravel	10	208	Clay	28	180
Well 89-04	-110		Sand rock	15	195
Owner: Mrs. Ra Driller: Powell Drill			Gravel	17	212
Clay, gray, brown, tan-in order	27	27			
Sand, gray to tan	19	46	Well 89-0		
Clay, gray	80	126	Owner: Pasqui Driller: Odie		
Sand and silt, gray	50	176	Topsoil	3	3
Sand	9	185	Clay	37	40
Gravel (1/2 inch)	2	187	Sand (fair) water	14	54
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			Clay	114	168
Well 89-04	-111		Sand and gravel	22	190
Owner: Rudy Driller: Odie G			(did not go to bottom of gravel)		
Topsoil	5	5			
Clay	56	61	Well 89-0		
Sand	9	70	Owner: Charl Driller: Virdell Dr		
Clay	10	80	Surface sand and clay	26	26
Sand	21	101	Sand with small gravel	22	48
Clay	25	126	Clay	22	70
Sand	14	140	Sand with clay streaks	10	80
Clay	29	169	Gravel, fine, with sandy clay streaks	15	95
Sand and gravel	19	188	Sand, fine grained, with streaks		
(did not go to bottom of strata)			of clay	45	140
			Clay	5	145
Well 89-04			Sand, fine grained, with streaks of clay	30	175
Owner: R. F Driller: Odie G			Gravel, small	20	195
Clay	22	22	Gravel, large	40	235
Sand	24	46	Clay	2	237

		THICKNESS (FEET)	DEPTH (FEET)		THICKNESS (FEET)	DEPTH (FEET)
	Well 89-04	-202		w	/ell 89-04-207	
	Owner: A. H. Fe Driller: A & T Drillin				: George H. Bingley & T Drilling Company	
Surface soil		6	6	Surface soil	6	6
Sand		46	52	Clay	24	30
Clay		25	77	Sand	25	55
Sand		16	93	Clay	20	75
Clay, sand stre	eaks	74	167	Sand	27	102
Sand and grav	vel	47	214	Clay	33	135
Sand, clay stre	eaks	39	253	Sand	10	145
Clay		52	305	Clay	14	159
				Sand	20	179
	Well 89-04	203		Gravel	11	190
	Owner: A. H. Fe					
	Driller: A & T Drillin			w	ell 89-04-208	
Surface soil		7	7		ater Conservation and	
Clay, sandy		10	17	Improvement District Number 6 (City of Brownsville arranged drilling) Owner: Rader Water Well Company		
Sand		22	39			
Clay		25	64	Sandy soil	14	14
Sand, clay stre	eaks	29	93	Brown and gray silty clay w some caliche	ith 19	33
Clay		95	188	Streaks of fine brown sand		- 12
Gravel, sand s	streaks	40	228	yellow clay	32	65
Sand		2	230	Fine brown sand	37	102
				Streaks of sand and clay	33	135
				Fine gray-brown sand	16	151
	Well 89-04-	204		Fine sand with streaks of cl	ay 25	176
	Owner: Mrs. Alic Driller: Tom Wi			Coarse dark sand and fine g	gravel 19	195
Surface soil	-,	4	4	Salmon colored clay	10	205
Clay		64	68			
Sand		22	90	W	ell 89-04-209	
		15	105		ater Conservation and nent District Number 6	
Clay				(City of Brov	vnsville arranged drilling) er Water Well Company	
Sand		50	155		er water well company	3
Clay		10	165	Topsoil		3
Sand and clay		31	196	Broken tan and gray clay wi fine brown sand and sele	nite	100
Gravel		49	245	crystals	17	20

		THICKNESS (FEET)	DEPTH (FEET)		THICKNESS (FEET)	DEPTH (FEET)
	Well 89-04-209-	-Continued			Well 89-04-301	
Fine gray s	and	17	37		Owner: Jo Jennings Driller: Odie Gilliland	
silty clay	, yellow, and gray clay and with a few streaks of fine I some selenite crystals	76	113	Surface soil	8	100 B
Fine dark g	ray sand	9	122	Clay	23	31
Brown and	yellow silty clay	37	159	Sand	11	42
Streaks of s	sand and gravel	38	197	Clay	63	105
Brown clay		8	205	Sand	22	127
Drown day		•	200	Clay	23	150
	Well 89-04-2	210		Sand	27	177
	Owner: Valley Internation					
	(City of Brownsville arra Driller: Rader Water W	anged drilling)				
	Driller. Rader Water W				Well 89-04-302	
Soil		2	2		Owner: Mrs. F. Ceyanes	
Clay		20	22		Driller: Odie Gilliland	
Sand		28	50	Topsoil	4	4
Clay with s	and streaks, very	65	115	Clay	23	27
	brown sand	18	133	Fine sand	10	37
	ome sand streaks	27	160			
Gray sand		35	195		Well 89-04-303	
Sand and g	ravel	20	215		Owner: Robin Pate Driller: Odie Gilliland	
Clay		5	220	Topsoil	5	5
	100 H 240 H 2 1	and the second		Clay	25	30
	Well 89-04-2 Owner: Valley Internation			Soft muck	10	40
	(City of Brownsville arra	anged drilling)		Clay	125	165
	Driller: Rader Water W	reli Company		Coarse sand	15	180
Soil		1	1	Coarse sand	15	180
Brown clay		47	48			
Sand with s	some clay	32	80		Well 89-04-307	
Sand and c	lay streaks	30	110		Owner: H. B. Fleming	
Clay		25	135		Driller: Odie Gilliland	
Sand with o	clay streaks	10	145	Soil, clay	149	149
Clay with s	ome sand streaks	30	175	Sandstone	2	151
Sand and g	ravel with some clay	50	225	Clay, white	19	170
Broken clay		10	235	Sand, hard and soft st	reaks, gravel 34	204

	THICKNESS (FEET)	DEPTH (FEET)		THICKNESS (FEET)	DEPTH (FEET)
Well 89-04-	308		Well 8	9-04-502	
Owner: Texas Parks and W (City of Brownsville arr	anged drilling)	ent	Owner: Driller: Powell	Floyd Condit Drilling Company	
Driller: Rader Water W			Clay, tan	6	6
Soil	1	1	Sand, gray	32	38
Broken clay and sand	19	20	Clay, tan	52	90
Fine brown sand	35	55	Sand, gray	12	102
Clay with sand streaks	15	70	Silt, gray		120
Sand	20	90	Sand, clay mixed, tan	10	* 130
Clay with sand streaks	30	120	CONTROL OF THE PROPERTY OF THE	6	
Clay	15	135	Clay, tan		136
Sand and clay streaks	10	145	Sand, tan	17	153
Clay with sand streaks	40	185	Well 8	9-04-503	
Sand and gravel	20	205	Owner: G	Seorge Allala	
Clay with hard streaks	10	215	Driller: Powell	Drilling Company	
and the success case and a success success success and a success succe			Clay, gray	75	75
Well 89-04-	309		Sand, gray	26	101
Owner: A. Ga	rcia		Clay, brown	79	180
(City of Brownsville arra Driller: Rader Water W			Sand, gray	20	200
Soil	1	1	Clay, gray	10	210
Clay with sand streak at 60 feet	72	73	Well 8	9-04-504	
Sand with clay streaks at 75 and 90 feet	22	95		elando T. Garza Drilling Company	
Clay with sand streaks	80	175	Clay, light	52	52
Sand and gravel	20	195	Silt, dark	19	71
Clay with hard streaks	10	205	Clay, light	69	140
Clay with soft streaks	15	220	Sand, dark	50	190
Well 89-04-	501		Clay, light	5	195
Owner: Lloyd E			Well 8	9-04-505	
Driller: Powell Drillin				red Rusteberg, Jr.	
Silt, light brown	8	8		Drilling Company	
Sand, fine, dark	29	37	Clay, light	26	26
Mixed sand and clay	38	75	Sand, gray	4	30
Sand, coarse, light gray	30	105	Clay, tan	30	60
Clay, light gray	31	136	Sand, dark	20	80
Sand, coarse, light gray	53	189	Clay	25	105

	1	THICKNESS (FEET)	DEPTH (FEET)			THICKNESS (FEET)	DEPTH (FEET)
	Well 89-04-505—	Continued		v	Well 89-04-508—0	Continued	
Mixed silt and o	clay	25	130	Clay, tan		5	160
Clay		10	140	Sand, tan		48	208
Sand gray		62	202				
Clay, dark		18	220		Well 89-0	04-510	
	Well 89-04-5	06			Owner: Jimi City of Brownsville Driller: Rader Wate	arranged drilling)	
	Owner: Hector C			Soil and clay		5	5
	Driller: Odie Gill	iland		Fine brown and	d gray sand	30	35
Clay		15	15	Tan to brown o	clay	35	70
Sand		27	42	Sand and clay	streaks	5	75
Clay		18	60	Clay		10	85
Sand		20	80	Fine brown sar	nd	10	95
Clay		25	105	Brown to tan c	lay	35	130
Sand		10	115	Fine light color	red clay	55	185
Clay		11	126	Clay with soft s		10	195
Course sand		21	147	A COMMITTEE OF THE PARTY OF THE			
Clay		8	155		Well 89-0	04-601	
Sand		23	178		Owner: City of Driller: Virdell Dr	Ilina Compony	
	Well 89-04-5	07		Topsoil		3	3
	Owner: Lloyd E.	Horn		Sand		7	10
	Driller: Powell Drilling	Company		Clay		18	28
Clay		16	16	Sand		23	51
Sand		24	40	Clay		26	77
Clay		36	76	Sand		33	110
Sand		39	115	Clay with sand	streaks	38	148
Clay and sand n	nixed	30	145	Sand		20	168
Sand		40	185	Gravel		28	196
				Clay		2	198
	Well 89-04-5						
	Owner: Dr. Vital Lo Driller: Powell Drilling				Well 89-0		
Clay, tan		14	14		Owner: City of Driller: Virdell Dr		
Sand, gray-dark		40	54	Topsoil		4	4
Sand, tan		101	155	Clay		30	34

		THICKNESS (FEET)	DEPTH (FEET)		THICKNESS (FEET)	DEPTH (FEET)
	Well 89-04-603	—Continued		Well	89-04-607	
Sand		11	45		: Tom Foutch T Drilling Company	
Clay		27	72	Surface	6	6
Sand		45	117	Sand	34	40
Clay		52	169		68	
Gravel		21	190	Clay and sand		108
Clay		3	193	Sand	12	120
				Clay	71	191
	Well 89-04	-604		Sand and gravel	20	211
	Owner: Pete Driller: Powell Drill			Clay	1	212
Clay, gray		10	10			
Silt, tan and	gray	36	46	Well	89-04-608	
Clay, dark		119	165		ternational Golf Course	
Sand, coarse	e arev	27	192		F Drilling Company	
A F	o, gray	per entre	102	Surface soil	8.	8
	Well 89-04	-605		Clay	60	68
	Owner: M. M. H			Sand	129	197
	Driller: Powell Drill	ing Company		Sand and small gravel	29	226
Clay, light ta	in	18	18	Clay	2	228
Sand, gray		32	50			
Granulated of	clay, brown and gray	14	64	Well	89-04-609	
Clay, brown		11	75	100	ours Food Company	
Sand, gray		15	90		T Drilling Company	
Clay, tan		30	120	Surface	6	6
Sand, gray		10	130	Clay	12	18
Sand and cla	ay mix	20	150	Sand and clay streaks	29	47
Sand, gray		20	170	Sand	2	49
				Clay	27	76
	Well 89-04	-606		Sand and clay streaks	32	108
	Owner: Mary Driller: Odie C			Clay and sand streaks	32	140
Topsoil		5	5	Sand and clay streaks	24	164
Clay		26	31	Fine gravel	12	176
Soft muck sa	and	9	40	Clay	10	186
Clay		135	175	Gravel	11	197
Sand		15	190	Clay	3	200

	THICKNESS (FEET)	DEPTH (FEET)		THICKNESS (FEET)	DEPTH (FEET)
Well 89-0	4-610		Well 89-04-613—	Continued	
Owner: Win M Driller: Powell Dri			Clay, gray	48	163
Clay, brown	8	8	Sand, gray	27	190
Silt, brown	6	14	Sand	?	7
Clay, brown	76	90	Well 89-	04-614	
Sand and silt, gray	60	150	Owner: Pet		
Clay, gray	20	170	Driller: Odi	e Gilliland	
Sand, gray	15	185	Topsoil	5	5
Sand and gravel (fine)	10	195	Clay	70	75
Gravel (1 inch)	2	197	Fine sand	45	120
			Clay	10	130
Well 89-0	4-611		Coarse sand	17	147
Owner: Dr. H. Driller: Odie			Well 89-	04-615	
Topsoil	5	5	Owner: Mrs. Fra Driller: Odio		
Clay	70	75	Topsoil	6	6
Fine sand	25	100	Clay	10	16
Clay	10	110	Fine sand, brown (water fair)	14	30
Coarse sand	17	127	Clay	10	40
Well 89-04	4-612		Sand, gray	10	50
Owner: Judge G			Clay	55	105
Driller: Odie			Fine sand	21	126
Topsoil	6	6	Clay and shale	44	170
Clay	44	50	Fine sand	19	189
Fine sand (salty)	20	70	Sand and gravel	8	197
Clay	13	83			
Sand	21	104	Well 89-0		
Well 89-04	I-613		Owner: City of Driller: Virdell Dr		
Owner: Reta			Topsoil	4	4
Driller: Powell Dril			Sand and clay	6	10
Clay, brown	11	11	Clay	20	30
Clay, gray	19	30	Sand	12	42
Clay, brown	75	105	Clay	30	72
Sand, brown	10	115	Sand	62	134

Table 3.—Drillers' Logs of Wells—Continued

		THICKNESS (FEET)	DEPTH (FEET)		THICKNESS (FEET)	DEPTH (FEET)
	Well 89-04-616—	Continued		Well 89-04-621—(Continued	
Clay		36	170	Clay	54	152
Gravel		25	195	Sand, fine grained	44	196
Clay		2	197	Clay and sand	19	215
				Clay, sand streaks	127	342
	Well 89-04-6			Sand, clay streaks	36	378
	Owner: City of Brow Driller: Virdell Drilling			Clay	24	402
Topsoil		4	4	Sand and gravel, fine grained	65	467
Clay		28	32	Shale	21	488
Sand		9	41	Sand	15	503
Clay		32	73			
Sand		78	151	Well 89-0)4-624	
Clay		15	166	Owner: Jame Driller: Odie		
Gravel		34	200	Topsoil	6	6
Clay		3	203	Clay	44	50
	W-II 90 04 6	10		Fine sand	20	70
	Well 89-04-6			Clay	13	83
	Owner: City of Brov Driller: Virdell Drilling	Company		Medium sand	15	98
Topsoil		4	4	Clay	5	103
Clay		26	30	Sand	9	112
Sand		16	46	Clay	49	161
Clay		26	72	Fine sand	14	175
Sand		28	100	Medium sand	5	180
Sand and cla	У	34	134	Rock and gravel	15	195
Clay		36	170			
Gravel		22	192	Well 89-0)4-625	
Clay		2	194	Owner: Georg Driller: Powell Dr		
	Well 89-04-6	21		Clay, brown	21	21
	Owner: City of Brov Driller: Texas Water S			Sand, gray	19	40
Surface soil		15	15	Silt and clay mix, brown and gray	46	86
Sand, fine gr	ained, with streaks			Clay, brown	69	155
of wood		24	39	Sand, fine, gray	18	173
Clay, gumbo		13	52	Gravel, pea size	5	178
Sand, with st	treaks of clay	46	98	Sand, tight pack, gray	12	190

	THICKNESS (FEET)	DEPTH (FEET)		THICKNESS (FEET)	DEPTH (FEET)	
Well 89-04-6	27		Well 89-04-629	—Continued		
Owner City of Boo	a.villa		Fine beauty and with a few			
Owner: City of Bro Driller: Rader Water W			Fine brown sand with a few streaks of clay	60	130	
Brown surface soil	5	5	Brown and gray clay	28	158	
Broken clay, brown, gray, tan, and yellow, with some selenite			Sand and gravel	41	199	
crystals	27	32	Red, gray, brown silty clay	101	300	
Sand with clay streaks	8	40				
Broken, plastic and silty clay,			Well 8	9-04-630		
tan, yellow, and red	22	62	Owner: F	Pedro Rocha		
Very fine brown sand with clay streaks	43	105		lle arranged drilling ater Well Company		
			Soil	1	A STREET	
Sand	50	155	25-572	9	10	
Clay with some sand streaks	5	160	Clay with sand streaks Sand with clay streaks	35	10	
Sand and gravel	30	190		10		
Light silty clay	17	207	Broken clay and sand streaks		55	
Well 89-04-6	28		Clay with broken spots	58	113	
			Sand	2	115	
Owner: M. J. Tipt (City of Brownsville arra Driller: Rader Water W	nged drilling)		Clay and broken clay	45	160	
	J. J		Very broken clay	10	170	
Brown and gray silty clay soil	5	5	Sand and gravel	26	196	
Brown, gray, yellow, and tan clay and silty clay, with a			Clay	4	200	
few streaks of fine sand and some selenite crystals	67	72				
Streaks of fine to medium sand			Well 8	9-04-631		
and tan silty clay	38	110	***************************************	5 64 661		
Gray, brown, and red silty clay	30	140		of Brownsville ater Well Company		
Brown and red silty clay with some fine sand, sand increasing			Fill	4	4	
with depth	37	177	Brown and gray clay	3	7	
Sand and gravel	26	203	Fine brown sand with clay streak	s 18	25	
Clay	4	207	Clay with several streaks of sand	40	65	
W II 00 04 0			Sand	16	81	
Well 89-04-6			Clay	66	147	
Owner: City of Bro Driller: Rader Water W			Sand	43	190	
Brown silty clay, with some			Clay and sand streaks	5	195	
sand, selenite crystals, and broken glass and other fill			Sand with streaks of clay	15	210	
in the top 10 to 15 feet	33	33	Sand with streams of clay	10	220	
Broken sand and clay, tan			Janu	10	220	
and gray	37	70	Clay	5	225	

	THICKNESS (FEET)	DEPTH (FEET)		THICKNESS (FEET)	DEPTH (FEET)
Well 89	-04-902		Well 89-05-102-	-Continued	
	of Brownsville Iter Well Company		Buff clay with a few streaks of sand from 55 to 60 feet	30	05
Sandy soil	3	3		30	65
Gray-brown silty clay	15	18	Fine sand and silty sand with a few streaks of clay at 75 to 80 feet	60	125
Fine brown sand with some silty clay	20	38	Sand and clay streaks	15	140
Tan, brown, and gray clay		100,000	Gray to blue clay	19	159
and silty clay with thin	05	70		6	
sand streaks	35	73	Clay with sand streaks	0	165
Fine brown sand	11	84	Sand and gravel	35	200
Tan plastic clay with some fine sand in last few feet	66	150	Clay	5	205
Fine brown sand with a few	Later la				
streaks of clay and silt	43	193	Well 89	9-05-403	
Coarse sand and fine to medium gravel	22	215	Owner: —Fleming Driller: Ted Pursley		
Clay and silty clay	11	226	Surface soil	3	3
J.D	nove research		Caliche, shaly	11	14
Well 89	-04-903		Shale, sticky	33	47
(City of Brownsvill	pert Mathers le arranged drilling) liter Well Company		Sand	34	81
	5	5	Shale, sticky	36	117
Surface clay and soil	b	5	Sand	23	140
Fine brown sand with clay streaks	15	20	Shale, sticky	20	160
Tan to brown broken clay	40	60	Sand	11	171
Clay with some sand streaks	25	85	Sand, hard	16	187
Fine brown sand	10	95	Gravel	11	198
Tan clay	35	130	Sand and gravel	13	211
Sand with hard streaks	50	180			
Sand and gravel	10	190	Well 89	0-05-404	
Tan clay	10	200		of Brownsville	
Well 90	-05-102			ater Well Company	
			Topsoil	5	5
(City of Brownsvill	A. Bestiero e arranged drilling) ter Well Company		Clay	15	20
Soil	2	2	Silty clay	14	34
			Very fine, brown silty sand	21	55
Brown and buff clay and silty clay	28	30	Brown and gray clay and silty clay with some streaks		
Fine silty sand	5	35	of very fine sand	102	157

Table 3.—Drillers' Logs of Wells—Continued

	THICKNESS (FEET)	DEPTH (FEET)			CKNESS EET)	DEPTH (FEET)
Well 89-05-4	04—Continued		Well 8	9-05-405—Continue	d	
Very fine dark silty sand with a few thin beds of clay	41	198	Sand and gravel		35 10	245 255
Sand and gravel	37	235	Olay			
Brown and gray clay	5	240		Well 89-05-701		
Well 89-05-405			Owner: City of Brownsville Driller: Rader Water Well Company			
			Fill		5	5
Owner: City of Driller: Rader Wat			Broken clay		15	20
Soil	1	1	Sand		7	27
Broken clay	16	17	Clay and broken clay		48	75
Sand with clay streaks	28	45	Sand		20	95
Clay	22	67	Clay		20	115
Sand with clay streaks	31	98	Sand		5	120
Clay with sand streaks	27	125	Clay		52	172
Sand	15	140	Sand and gravel		18	190
Clay	40	180	Clay		2	192
Sand and gravel	25	205	Sand		23	215
Clay	5	210	Clay		10	225

Table 4.—Water Levels in Observation Wells Water-level measurements in feet below land surface

ì	DATE	WATER LEVEL	D	DATE	WATER LEVEL		DATE	WATER LEVEL
	Well 88-59-	101		Well 88-59	201	Wel	88-59-401-	-Continued
	Owner: Oscar	Thiem		Owner: D. H.	Palmer	Aug.	16, 1971	15.1
Sept.	12, 1957	27.6	Aug.	19, 1952	17.7	Aug.	8, 1972	13.0
Mar.	2, 1959	15.8	May	3, 1954	17.5	Aug.	28, 1973	13.4
Aug.	30, 1960	14.1	Sept.	30, 1957	26.2			
June	26, 1962	17.3	Feb.	3, 1959	10.5		Well 88-5	
Aug.	15, 1963	19.1	Aug.	30, 1960	12.2		Owner: O. W	
Aug.	26, 1964	24.5				Sept.	4, 1952	18.9
Aug.	11, 1965	18.7		Well 88-59		Sept.	12, 1957	24.7
July	28, 1966	20.9		Owner: T. Kav		Aug.	30, 1960	17.1
July	27, 1967	20.5	Sept.	12, 1957	29.4	June	26, 1962	15.7
Aug.	28, 1968	21.3	Mar.	2, 1959	17.5	Aug.	15, 1963	17.0
Aug.	19, 1969	20.7	Aug.	30, 1960	14.9	Aug.	26, 1964	20.4
Aug.	20, 1970	14.6	June	26, 1962	19.8	Aug.	12, 1965	15.7
Aug.	17, 1971	16.4	Aug.	15, 1963	23.0	July	28, 1966	13.5
Aug.	17, 1972	14.7	Aug.	10, 1965	22.2	July	27, 1967	23.1
Sept.	19, 1972	14.7	July	28, 1966	19.3	Aug.	28, 1968	16.3
			Aug.	28, 1968	21.2	Aug.	19, 1969	15.9
			Aug.	19, 1969	20.1	Aug.	19, 1970	11.6
	Well 88-59-	102	Aug.	20, 1970	19.7	Aug.	16, 1971	11.3
	Owner: Jack G		Aug.	16, 1971	20.0	Aug.	7, 1972	7.7
July	24, 1952	18.9	Aug.	7, 1972	17.4	Aug.	28, 1973	7.5
Sept.	11, 1957	34.6	Aug.	28, 1973	17.7		Well 88-60	0-101
Mar.	2, 1959	17.2		Well 88-59-	401		Owner: Louis	
Aug.	30, 1960	14.7	0:	wner: Tom Ta		Sept.	12, 1957	27.4
June	26, 1962	14.2	Mar.	2, 1959	16.6	Mar.	2, 1959	15.1
Aug.	14, 1963	16.9	June	26, 1962	18.4	Aug.	30, 1960	17.3
Aug.	11, 1965	17.7	Aug.	15, 1963	21.1	June	26, 1962	21.0
July	28, 1966	14.3	Aug.	26, 1964	22.4	Aug.	15, 1963	21.4
July	27, 1967	16.6	Aug.	12, 1965	16.6	Aug.	26, 1964	22.5
	30, 1968	14.8	July	28, 1966	16.5	Aug.	11, 1965	20.1
Aug.	20, 1970	14.3			14.1	50		
Aug.			Aug.	28, 1968		July	28, 1966	20.1
Aug.	16, 1971	15.1	Aug.	19, 1969	13.8	July	26, 1967	21.0
Aug.	8, 1972	13.2	Aug.	19, 1970	14.5	Aug.	28, 1968	20.0

Table 4.—Water Levels in Observation Wells—Continued

D	ATE	WATER LEVEL	D	ATE	WATER	NATAN ANY D		WATER
Well	88-60-101—0	Continued		Well 88-60-	702	Well	89-04-101—	-Continued
Aug.	19, 1969	19.5	O	wner: Carlos	Watson	July	27, 1967	24.1
Aug.	19, 1970	15.0	Aug.	20, 1952	24.5	Aug.	28, 1968	21.5
Aug.	16, 1971	16.5	Sept.	12, 1957	30.6	Aug.	18, 1969	19.3
Aug.	7, 1972	13.8	Mar.	2, 1959	15.1	Aug.	19, 1970	21.1
Aug.	29, 1973	13.2				Aug.	16, 1971	33.5
				Well 88-60-	708	Aug.	7, 1972	16.4
			Owne	r: Sams-Porter	Corporation	Aug.	28, 1973	15.3
	Well 88-60-4	101	July	3, 1957	31.0			
c	Owner: J. G. Ba	llinger	Oct.	11, 1972	18.8			
Mar.	2, 1959	12.3	May	10, 1973	18.9			
Aug.	15, 1962	14.4	May	12, 1973	43.81			
Aug.	26, 1964	16.1					Well 89-04	4-208
Aug.	18, 1970	12.1		Well 88-60-	719			servation and ict Number 6
			Owne	r: Sams-Porter	Corporation			
Aug.	19, 1970	10.0	May	3, 1973	15.8	Apr.	2, 1973	15.4
Aug.	7, 1972	8.4	May	4, 1973	16.0	Apr.	3, 1973	15.5
			May	10, 1973	16.6	Apr.	4, 1973	15.6
			May	13, 1973	17.0	Apr.	5, 1973	15.7
	Well 88-60-7	701	June	13, 1973	19.7	Apr.	8, 1973	15.8
	Owner: Ben Be	nson	June	14, 1973	19.4	Apr.	12, 1973	14.7
Sept.	12, 1957	25.6	June	15, 1973	23.3	Apr.	17, 1973	14.6
Mar.	2, 1959	16.1	June	16, 1973	27.8	Apr.	18, 1973	14.5
Aug.	30, 1960	15.9	June	18, 1973	28.5	May	3, 1973	15.8
June	27, 1962	18.7	June	19, 1973	25.7	May	9, 1973	16.2
Aug.	15, 1963	18.6	June	20, 1973	21.3	May	14, 1973	16.5
Aug.	26, 1964	20.5	Oct.	19, 1973	12.7	June	12, 1973	16.8
Aug.	12, 1965	18.9	Out.	10, 1070	12.7	June	13, 1973	17.8
July	28, 1966	17.5		Well 89-04-	101	June	15, 1973	18.5
July	27, 1967	20.0		Owner: J. T. C	anales	June	16, 1973	18.8
Aug.	18, 1969	17.7	June	27, 1962	30.2	June	17, 1973	19.2
Aug.	19, 1960	14.8	Aug.	15, 1963	22.8	June	18, 1973	19.5
Aug.	16, 1971	16.0	Aug.	26, 1964	32.1	June	20, 1973	19.6
Aug.	7, 1972	10.9	Aug.	11, 1965	23.8	Oct.	17, 1973	12.2
Aug.	28, 1973	11.1	July	28, 1966	27.0	Oct.	19, 1973	12.1
. rug.			July			Jul	,	

Table 4.—Water Levels in Observation Wells—Continued

D	ATE	WATER LEVEL	D	ATE	WATER LEVEL		DATE	WATER
	Well 89-04-20	9	Well	89-04-308	-Continued	Well	89-04-309-	-Continued
	r: Water Conserv		Apr.	20, 1973	8.3	Oct.	15, 1973	9.2
Apr.	2, 1973	5.9	May	3, 1973	8.7	Oct.	16, 1973	9.3
Apr.	4, 1973	6.0	May	4, 1973	8.9		Well 89-04	4-510
Apr.	5, 1973	6.1	May	9, 1973	9.1		Owner: Jimm	y Hollon
Apr.	9, 1973	6.2	June	12, 1973	10.8	Apr.	2, 1973	13.4
Apr.	10, 1973	6.1	June	13, 1973	11.3	Apr.	3, 1973	13.5
Apr.	12, 1973	6.0	June	15, 1973	11.5	Apr.	4, 1973	13.7
Apr.	16, 1973	6.1	June	16, 1973	11.6	Apr.	5, 1973	13.9
Apr.	17, 1973	6.0	June	17, 1973	11.8	Apr.	8, 1973	13.7
May	3, 1973	6.8	June	18, 1973	11.9	Apr.	9, 1973	13.6
May	4, 1973	7.0	June	19, 1973	12.1	Apr.	10, 1973	13.5
		7.3	June	20, 1973	12.4	Apr.	12, 1973	13.6
May	9, 1973		June	21, 1973	12.0	Apr.	15, 1973	13.5
May	14, 1973	7.6				Apr.	16, 1973	13.4
June	12, 1973	9.5		Wall 90 0	4 200	Apr.	17, 1973	13.3
June	14, 1973	9.7		Well 89-0		:10:	18, 1973	13.4
June	15, 1973	10.1	•	Owner: A.		Apr.		
June	16, 1973	10.4	Apr.	2, 1973	9.6	Apr.	20, 1973	13.3
June	17, 1973	10.6	Apr.	5, 1973	9.7	Apr.	22, 1973	13.2
June	18, 1973	10.9	Apr.	8, 1973	9.8	May	2, 1973	14.4
June	19, 1973	11.3	Apr.	11, 1973	9.7	May	3, 1973	14.6
June	20, 1973	11.6	Apr.	15, 1973	9.7	May	4, 1973	14.7
Oct.	17, 1973	4.8	Apr.	20, 1973	9.7	May	9, 1973	14.2
	Well 89-04-30	18	May	3, 1973	- 10.1	May	14, 1973	14.4
Owne	r: Texas Parks an		May	4, 1973	10.7	June	12, 1973	14.2
	Department		May	14, 1973	10.6	June	13, 1973	14.6
Apr.	2, 1973	8.2	June	12, 1973	12.0	June	14, 1973	15.1
Apr.	3, 1973	7.2	June	13, 1973	12.2	June	15, 1973	15.7
Apr.	4, 1973	8.2	June	15, 1973	11.9	June	16, 1973	16.0
Apr.	5, 1973	8.3	June	16, 1973	12.0	June	17, 1973	16.3
Apr.	9, 1973	8.2	June	17, 1973	12.3	June	18, 1973	16.5
Apr.	10, 1973	8.4	June	18, 1973	16.5	June	19, 1973	16.8
Apr.	11, 1973	8.3	June	19, 1973	16.8	June	20, 1973	17.1
Apr.	15, 1973	8.3	June	20, 1973	17.1	Oct.	21, 1973	11.5

Table 4.—Water Levels in Observation Wells—Continued

D	ATE	WATER LEVEL	D	ATE	WATER LEVEL	ASTAN ID/AL		WATER
	Well 89-04	-602		Well 89-04-	627	Well	89-04-628-	-Continued
Ow	ner: City of B	rownsville	Ow	ner: City of Br	ownsville	Apr.	4, 1973	13.9
Sept.	30, 1953	22.4	Apr.	2, 1973	10.7	Apr.	5, 1973	14.2
Sept.	30, 1957	16.9	Apr.	3, 1973	22.0	Apr.	8, 1973	11.8
Aug.	30, 1960	10.3	Apr.	4, 1973	16.5	Apr.	9, 1973	11.5
Aug.	15, 1963	14.5	Apr.	5, 1973	16.7	Apr.	10, 1973	11.3
July	28, 1966	19.2	Apr.	10, 1973	9.6	Apr.	11, 1973	11.9
July	27, 1967	21.8	Apr.	11, 1973	13.0	Apr.	12, 1973	11.8
Aug.	28, 1968	15.0	Apr.	12, 1973	14.8	Apr.	13, 1973	12.1
Aug.	19, 1970	14.1	Apr.	13, 1973	11.1	Apr.	14, 1973	11.5
Aug.	16, 1971	18.7	Apr.	14, 1973	10.2	Apr.	15, 1973	11.1
Aug.	7, 1972	11.5	Apr.	15, 1973	9.8	Apr.	16, 1973	11.0
Aug.	28, 1973	10.7	Apr.	16, 1973	9.7	Apr.	17, 1973	10.9
			Apr.	17, 1973	9.6	Apr.	18, 1973	10.7
			Apr.	18, 1973	9.3	Apr.	20, 1973	10.5
	Well 89-04		Apr.	19, 1973	9.4	Apr.	21, 1973	10.6
	ner: City of B		Apr.	21, 1973	9.0	Apr.	22, 1973	10.5
Apr.	2, 1973	12.2	May	9, 1973	14.2	Apr.	23, 1973	10.4
Apr.	3, 1973	20.5	June	12, 1973	14.5	Apr.	24, 1973	11.8
Apr.	4, 1973	18.2	June	13, 1973	44.3	May	2, 1973	15.4
Apr.	5, 1973	18.4	June	14, 1973	44.5	May	3, 1973	15.8
Apr.	11, 1973	14.9	June	15, 1973	44.8	May	4, 1973	14.0
Apr.	12, 1973	16.7	June	16, 1973	44.3	May	9, 1973	12.7
Apr.	13, 1973	12.8	June	17, 1973	44.5	Oct.	16, 1973	9.9
Apr.	14, 1973	11.9	June	18, 1973	44.7		(200.40 E) E) E) E) E)	
Apr.	15, 1973	11.6	June	19, 1973	45.0		Well 89-04	1-629
Apr.	16, 1973	11.4	June	20, 1973	45.2	Ow	ner: City of I	Brownsville
Apr.	17, 1973	11.3			45.7	Apr.	2, 1973	11.0
Apr.	18, 1973	11.0	June	21, 1973		Apr.	3, 1973	21.7
Apr.	21, 1973	10.9	Oct.	18, 1973	8.0	Apr.	4, 1973	16.4
Apr.	22, 1973	10.8	Oct.	20, 1973	7.8	Apr.	5, 1973	16.7
Арг.	23, 1973	10.6		Well 89-04-	628	Apr.	10, 1973	10.0
May	14, 1973	12.2		wner: M. J. Ti		Apr.	11, 1973	13.1
Oct.	18, 1973	18.6		(City of Brown		Apr.	12, 1973	14.9
Oct.	20, 1973	18.3	Apr.	2, 1973	11.4	Apr.	13, 1973	11.0
			Apr.	3, 1973	13.7			

Table 4.—Water Levels in Observation Wells—Continued

D	ATE	WATER LEVEL	D)ATE	WATER LEVEL		OATE	WATER
Well	89-04-629—Co	ntinued	Well	89-04-630—0	Continued	Well	89-05-102—	Continued
Apr.	14, 1973	10.2	May	4, 1973	12.6	June	18, 1973	14.7
Apr.	15, 1973	9.7	May	9, 1973	11.4	June	19, 1973	1.8
Apr.	16, 1973	9.6	May	14, 1973	11.8	Oct.	15, 1973	0.4
Apr.	17. 1973	9.5	June	13, 1973	13.3	Oct.	16, 1973	11.4
Apr.	18, 1973	9.3	June	14, 1973	14.5	Oct.	19, 1973	0.4
Apr.	19, 1973	9.4	June	15, 1973	15.4			
Apr.	20, 1973	9.3	June	16, 1973	15.5		Well 89-05-	
Apr.	21, 1973	9.1	June	17, 1973	15.6	Ow	ner: City of Br	rownsville
Apr.	22, 1973	9.0	June	18, 1973	15.7	Apr.	2, 1973	11.1
Apr.	23, 1973	9.0	June	19, 1973	16.0	Apr.	3, 1973	11.2
Apr.	24, 1973	12.2	June	20, 1973	16.2	Apr.	4, 1973	11.1
May	9, 1973	14.3	June	21, 1973	16.3	Apr.	5, 1973	11.3
June	12, 1973	14.6	Oct.	15, 1973	9.8	Apr.	10, 1973	11.4
June	13, 1973	42.7				Apr.	11, 1973	11.3
June	14, 1973	43.1				Apr.	15, 1973	11.3
June	15, 1973	43.2		Well 89-05-	102	Apr.	18, 1973	11.4
June	16, 1973	42.9	0	wner: Joe A. I	Bestiero	Apr.	20, 1973	11.2
June	17, 1973	43.0	Apr.	2, 1973	0.0	Apr.	23, 1973	11.2
June	18, 1973	43.4	Apr.	5, 1973	0.0	Apr.	24, 1973	10.9
June	20, 1973	43.8	Apr.	8, 1973	0.7	May	3, 1973	10.7
June	21, 1973	43.9	Apr.	12, 1973	0.7	May	9, 1973	10.8
Oct.	18, 1973	8.1	Apr.	16, 1973	0.7	May	14, 1973	10.7
Oct.	20, 1973	7.8	Apr.	18, 1973	0.6	June	12, 1973	11.7
001.	20, 1070	72.00	Apr.	21, 1973	0.7	June	14, 1973	11.8
	Well 89-04-63	30	Apr.	23, 1973	0.6	June	17, 1973	11.9
-	Owner: Pedro Ro	ocha	May	3, 1973	0.9	June	18, 1973	12.1
Apr.	18, 1973	10.4	May	9, 1973	1.1	Oct.	15, 1973	10.4
Apr.	20, 1973	10.3	May	14, 1973	1.3	Oct.	16, 1973	10.3
Apr.	21, 1973	10.2	June	12, 1973	13.0	Oct.	17, 1973	10.1
Apr.	22, 1973	10.2	June	13, 1973	1.7			
Apr.	23, 1973	10.1	June	14, 1973	1.8		Well 89-05-	405
Apr.	24, 1973	10.4	June	15, 1973	4.5	Ow	ner: City of B	rownsville
May	2, 1973	12.8	June	16, 1973	1.6	Apr.	16, 1973	9.0
May	3, 1973	13.0	June	17, 1973	13.6	Apr.	17, 1973	8.8

Table 4.—Water Levels in Observation Wells—Continued

	DATE	WATER LEVEL	D	ATE	WATER LEVEL	D	DATE	WATER LEVEL
Well	89-05-405—0	Continued	Well	89-05-405-	Continued	Well	89-05-405—	Continued
Apr.	18, 1973	8.7	May	14, 1973	9.6	June	16, 1973	11.3
Apr.	20, 1973	8.6	June	12, 1973	9.7	June	17, 1973	11.5
Apr.	24, 1973	8.2	June	13, 1973	10.1	June	18, 1973	15.7
May	3, 1973	9.7	June	14, 1973	10.7	June	19, 1973	16.0
May	4, 1973	9.8	June	15, 1973	11.1	June	20, 1973	16.2
						June	21, 1973	16.3

¹Measurement affected by pumping.

(Analyses given in milligrams per liter except percent sodium, pH, sodium adsorption ratio, and residual sodium carbonate)
Water-bearing unit: All wells pump from the Lower Rio Grande Valley aquifer.
Dissolved solids: The bicarbonate "reported" is converted by computation (multiplying by 0.4917) to an equivalent amount of carbonate, and the carbonate figure is used in the computation of this sum.
Analyses by Texas State Department of Health.

Well	Producing interval (ft)	Depth of well (ft)	Date of collection	Silica (SiO ₂)	Iron (Fe)	Cal- cium (Ca)	Magne- sium (Mg)	Sod- ium (Na)	Potas- sium (K)	Bicar- bonate (HCO ₃)	Sul- fate (SO ₄)	Chlo- ride (Cl)	Fluo- ride (F)	Ni- trate (NO ₃)	Boron (B)	Dis- solved solids	Total hard- ness as CaCO ₃	Specific conduct- ance (micromhos at 25°C)	рН	Per- cent sod- ium	Sodium adsorp- tion ratio (SAR)	
88-59-101	**	168	Sept. 3, 1952	43	**	280	115	537		258	387	1,200	0.6	6.0	0.6	2,696	1,170	4,710	7.7	50	6.8	0
103	145-151	151	Sept. 21, 1972	44	144	73	24	167		390	143	134	1.0	3.5	. 5	781	282	1,180	7.5	56	4.3	- 7
105	***	164	Oct. 12, 1972	41	1.6	243	84	419		355	490	750	.8	4.5	. 9	2,210	950	3,250	7.3	49	5.9	0
204	**	166	Sept. 25, 1972	36	5.2	139	100	463	**	407	580	590	.8	5.5	1.3	2,120	760	3,030	7.4	57	7.3	0
502	**	200	Oct. 30, 1952	46	155	68	28	322		437	326	192	~~:	3.5	. 5				**	144		
Do.	**	do	May 28, 1969	22	***	225	80	970	28	289	432	1,680	1.0	10.5					22	1922		9.2
503	142-147	150	Sept. 26, 1972	50	200	120	42	436		465	462	402	1.0	< .4	1.0	1,740	474	2.500	7.4	67	8.7	0
504		do	Sept. 25. 1972	41	200	151	55	429	**	454	457	500	1.0	3.5	.9	1,860	610	2,600	7.3	61	7.6	0
603	165-172	172	Oct. 12, 1972	39	**	96	49	298	**	418	471	173	.8	2.5	.9	1,340	444	1,880	7.5	60	6.1	0
605	**	200	Oct. 19, 1972	38	.02	85	32	464	**	495	483	320	1.0	< .4	1.4	1,670	344	2,400	7.5	75	10,8	1.2
701	**	170	Sept. 28, 1972	35		26	29	156		443	171	83	.8	1.5	. 5	770	310	1,145	7.4	52	3.8	1.0
901	**	750	Apr. 17, 1941		**	113	22	59		340	127	62		2.5		22	***		22	26	1.3	. (
902	84.	170	Sept. 19, 1972	32	**	76	31	164	22	426	205	93	. 9	< .4	. 6	810	319	1,190	7.6	53	4.0	. 6
903	163-175	175	do	41	.02	219	34	127		433	296	232	.7	2.0	.6	1,170	690	1,680	7.5	29	2.1	0
904	163-169	169	Sept. 20, 1972	37	22	82	25	215		447	243	125	1.3	3.5	.8	950	309	1,400	7.7	60	5.3	1.1
905	167-175	175	do	30	**	91	41	297	7.7	500	451	137	.9	< .4		1,290	398	1,800	7.5	62	6.4	.2
906	166-172	172	do	37		64	29	212		466	181	130	1.2	2.0	.9	890	280	1,330	7.6	62	5.5	2.0
907	170-176	176	do	46	**	64	31	227	-	462	258	107	.9	2.5	.8	960	287	1,400	7.7	63	5.8	1.8
908	181-183	183	do	38	**	89	44	179	**	444	281	111	.9	3.5	.6	970	405	1,400	8.0	49	3.8	0
910	148-156	156	Sept. 29, 1972	46		88	38	259		487	392	112	1.3	1.5	.8	1,180	377	1,660	7.6	60	5.8	. 9
60-101		174	May 8, 1952	42		172	73	650		369	705	770		.5	1.5	2,594	729	4,160	7.3	66.0	10.4	0
Do.	**	do	July 8, 1952	31	**	167	78	610	**	420	700	710	1.0	< .4	.7	2,504	740	3,560	7.8	64.3	9.7	0
Do.	**	do	Sept. 19, 1972	31		169	75	610	***	399	730	720	1.0	< .4	1.7	2,530	730	3,520	7.4	64.5	9.8	0
102	**	200	Oct. 14, 1972	34	**	66	45	880	**	610	760	700	1.2	< .4	3.0	2,790	348	3,950	7.9	85	20.4	3.0
401	**	204	Jan. 8, 1952	50		112	63	626	*-	399	812	500	.6	4.0	1.0		**			72	11.7	. 6
402		200	Мау 3, 1973	44	44	99	40	430		540	540	224	1.2	6.0		1,650	412	2,350	7.5	69	9.2	.6
502		166	Sept. 20, 1972	46		182	75	830		520	1,110	720	1.0	< .4	2.5	3,220	760	4,220	7.5	70	13.0	.0
701	(A.S.)	290	June 23, 1952	34	**	111	60	790		501	894	650	1.0		2.1			4,300	7.5	77	15.0	.0
703	156-165	169	Sept. 19, 1972	35	1991	80	41	436	7,7	510	540	258	1.0	2.5	1.4	1,650	367	2,350	7.5	72	9.8	. 9
705	188-196	196	Sept. 20, 1972	32		100	23	446	**	530	520	259	1.0	1.5	1.8	1,640	343	2,300	7.7	74	10.4	1.8
																8	- 1					

Table 5. -- Chemical Analyses of Water from Selected Water Wells and Test Holes--Continued

	1		1	T	1		_									_	_	_				
								-		the state of	HART I	relia durina	-	Constr	e mesta	1	40.00	1194				
0.1	9.6	IL	9.7	056,2	88€	099 'T	0.2	4٠ >	1.2	797	055	045		687	47	87	-	76	ор	208	802-561	601
0.	4.8	57	7.7	1,400	554	076	۲.	4. >	۲.	661	250	422	**	591	77	SOT		32	Sept. 19, 1972	ор		801
0.	0.4	TS	7.7	1,420	786	076	8.	7' >	9.	OSI	852	868		183	77	78		82	Sept. 21, 1972	212	212-761	401
7*5	20.5	78	7.7	066,8	253	056,5	3.6	۷٠ >	6.1	987	069	079		054	33	47		82	Sept. 28, 1972	200		901
0.	9.9	09	6.7	2,140	200		9.1	9.	1.2	572	075	423		342	23	EII		32	Z461 '97 '3dəg	202	**	SOI
0.	1.11	69	1.8	3,700	709					004	909	76€		829	23	122		76	Feb. 21, 1950	328		101-70-68
0.	7.81	7/	5.7	059'9	1,050	046 '7	I.E	ካ ' >	0.1	087,1	1,210	664		066'I	152	213	74.	32	ор	081		204
0.	1.98	88	7.8	8,700	059	007'9	2.5	ታ' >	40.	3,020	1,020	Δī		011,2	€8	121	05.	I	2461 '91 '190	240	144	104-19
1.6	8.82	56	7.7	1,990	84	1,230		8.8	6.	658	280	677		157	L	4	24	ī	6761 ,61 ,350	ор	44	Do.
9.8	1,05	76	1.8	027,2	76	088,1	1.1	3.0	1.1	230	977	333		099	91	ot		τ	1973 June 21, 1973	ор	ор	Do.
7.2	7,61	16	9.7	2,100	ZOT	1,340	0.1	4.5	1.	585	60E	867		997	41	ÞΙ		1	June 12, 1973	ор	ор	po.
6.5	6.81	78	€.8	096'Z	218	086'1	1.2	<i>L</i> •	2.1	025	677	075		079	677	ታታ	1.9	32	Mar. 29, 1973	507	183-204	Do.
4.1			7.7	016 '01	2,560	005'01	6*7	2.3	£.I	04I,E	065,€	668		2,700	293	075	55.	82	Mar. 28, 1973	56	69-89	206
0.	2.21	τZ	2.7	086,2	076	076	4.2	ካ ' >	0.1	1,320	096	917		0/0'T	701	500		75	2761 ,81 .350	081		106
0.	£.9I	SZ	8.7	066 '7	022	099'€	2.2	۲.	0.1	041'1	096	164		070'1	96	151	2.30	35	6761 ,01 .1qA	ор	8/I-SST	Do.
0.	5.02	EZ	2.7	12,000	007,8	008,75	9.21	0.7	6.4	006 '41	006,8	377		008,01	1,480	1,050	2.4	52	E761 , 9 . 1973	861	6E+9I	908
4.2	7.61	06	9.7	2,080	901	09E'T		1.6	0.1	252	707	886		047	41	SI	**	ī	E761 ,01 ,150	ор	ор	Do.
3.5	7*11	88	1.1	2,130	ETT	087'1	0.1	8.2	1.1	520	OTS	990	**	187	53	20	**	7	E761 ,EI anul	ор	ор	po.
6*7	2.51	64	0.8	007'7	767	07/ T	9.1	6.	Z.I	052	065	075		567	67	04	80.I	32	Apr. 26, 1973	ор	230-233	po.
0,	2.9	25	8.7	056'7	078	2,130	9.1	7.2	1.1	977	089	045		817	59	228	21.7	66	Apr. 24, 1973	275	06-49	614
0,	12.0	79	7.7	004'5	046'1	095'5	6.2	5.I	Z.1	1,280	005'T	988		070'1	EVI	315		32	Sept. 21, 1972	072	200-270	604
0.	4.11	74	4.7	2,750	623	046'1		1.6	2.1	325	089	767		075	77	46		37	op	ор	ор	Do.
0.	ι.ιι	13	9.7	089'Z	432	010'2		ŋ· >	τ.τ	332	720	005		085	47	56		48	ор	ор	ор	Do.
0.	2.11	٤4	9.7	2,700	627	086 'T		6.	1.2	330	069	005		088	77	46		7.5	ор	ор	ор	Do.
0.	6.01	٤٧	9.7	2,700	423	076'1		7.1	Z.I	930	049	005		075	57	96		76	ор	op	op	.od
0.	2.11	73	9.7	2,700	623	1,950		y· >	7.2	716	089	015		052	47	16		48	ор	ор	op	Do.
0.	2.11	£L	9.1	059'Z	027	056 'T		5.	7.1	320	049	015		065	57	76		7.5	ор	ор	ор	.ou
0.	0.11	23	5.7	029,2	814	056'T		£*S	7.2	320	089	467		075	47	06		75	ор	ор	op	Do.
0.	6.01	23	5.7	019'7	SIT	016'1		5.4	z.1	320	099	667		OIS	ረ ቱ	88		48	E791 , L1 YAM	ор	ор	Do.
0.	1.11	23	9.7	019'2	717	1,920		1.1	2.1	309	049	005		025	۲ 7	78		. 46	op	ор	ор	po.
0.	7.01	٤٧	9*4	2,600	60%	088'T		τ•τ	2.1	60E	099	005		005	57	06		66	E791 ,01 YAM	ор	ор	po.
2.0	9.01	٤٢	2.7	2,500	392	018,1		0.7	1.1	280	089	067		787	27	78		46	6791 ,25 .3qA	172	240-250	804-09-88
																				r gradient	**************************************	ACCESSION CONTROL OF
Residus sodius ste ste ste ste	mulbo2 -qroabs noll ollst (AA2)	- 194 Juso - bos mui	Нq	Specific conduct- ance (micromhos ac 25°C)	Total hard- ses as caCO3	-sid bevios sbiios	Boron	ит- ит-	Fluo- ride (F)	chlo- chlo-	-Iu2 fate (so ₄)	Bicar- bonate (HCO ₃)	Potas- (K)	-bo2 mul (BN)	-ongaM muta (gM)	-laD mula (aD)	Iron	\$111ca (\$10 <u>2</u>)	Date of collection	Of well Depth	Producing interval (ft)	TIPM

Table 5. --Chemical Analyses of Water from Selected Water Wells and Test Holes--Continued

Residual sodium carbon- ate (RSC)	0.7	1.2	2.6	3.0	2.1	2.0	2.5	3.0	0.	7.9	1.3	0.	0.	6.8	9.4	0.9	5.7	.2	0.	.3	8.	0.	3.8	0.	5.1	4.7	4.4	4.3	4.6	0.	9.9	8.4
Sodium adsorp- tion ratio (SAR)	29.3	32.9	36.4	34.8	22.0	21.3	12.3	8,3	0.6	19.2	0.9	14.3	14.8	19.6	30.2	21.9	35.1	5.3	4.4	9.1	0.6	5.3	15.4	7.4	22.1	19.4	20.8	19.0	28.1	13.6	20.3	83.7
Per- cent sod- lum	16	93	76	96	85	85	80	72	51	16	63	75	92	06	96	16	16	11	11	74	74	53	82	65	89	98	87	85	96	19	80	92
Hd	6.7	8.5	7.8	8.6	7.4	7.5	7.9	8.0	7.5	8.2	7.8	7.8	7.5	8.1	8.4	8,3	8.4	6.7	7.2	7.5	9.7	6.7	7.8	6.7	8.4	7.7	7.8	9.7	8.2	8.9	6.7	6.7
Specific conduct- ance (micromhos at 25°C)	3,900	4,000	4,000	4,000	4,200	4,210	2,230	1,650	1,470	1,930	1,530	3,850	3,810	2,110	1,960	2,390	1,990	620	635	1,850	1,850	2,400	2,700	2,400	2,960	3,050	3,230	3,420	2,280	7,280	2,750	2,570
Total shard- ness (ras CaCO3 s	204	163	134	142	352	351	245	258	398	86	320	260	550	117	577	113	36	70	84	254	245	536	222	536	178	246	225	285	70	1,910	176	116
Dis- h solved n solids	2,810	2,820	2,730	2,750	2,980	2,880	1,480	1,110	1,010	1,270	1,020	2,780	2,810	1,430	1,270	1,580	1,280	331	337	1,210	1,160	1,282	1,910	1,282	2,018	2,130	2,240	2,380	1,510	6,000 1	1,850	1,720
Boron (B) s	2.1	1	;	1	1	3.1	1.6	1.4	9.	1.2	1.2	2.3	1	2.0	2.7	2.0	1.1	1	.2	1	1	1	2.3	1	2.7	1	2.7	3.1	2.3	1	1	2.7
Nf- Lrate (NO ₃)	3.1	2.1	2.5	6.4	1.5	7.0	4.	7.	4.	4.	4.	4.	1.1	9.	4.	4.	2.5	3.3	4.3	9*	4.	8.	4.	9.	1.5	9.	4.	4.	4.	4.	4.	4.
							v	٧	v	v	v	V		V	v	v							٧				V	V	v	٧	v	v
Fluo- ride (F)	1.3	1,2	1.6	1.5	1.8	1.7	1.2	1.1	1.9	1.2	1.0	6.	1.0	2.7	2.0	2.3	2.2	9.	5.	1,2	1.2	œ	1.2	1.1	1.9	2.0	2.4	1.2	1.6	1.1	2.0	2.0
Chlo- ride (Cl)	810	830	820	810	800	810	331	179	170	208	182	720	720	252	234	373	314	126	118	300	293	572	372	229	455	458	530	260	284	1,760	372	326
Sul- fate (SO ₄)	820	830	740	240	810	720	372	264	350	260	222	850	860	347	210	351	286	2.5	77	296	260	69	550	510	530	220	019	059	312	2,160	474	410
Bicar- bonate (HCO ₃)	296	278	326	360	999	550	453	495	261	019	473	644	855	260	630	510	395	101	95	333	349	340	570	607	530	290	550	019	099	282	620	099
Potas- B sium b (K) (-	:	:	1	:	0.4	:	:	;	:	1	1	;	:	:	1	1	1	1	;	1	1	1	-	:	;	1	0.4	;	:	1	1
	096	026	026	950	026	920 4.	444	306	187	6443	250	780	800	487	794	240	471	102	93	336	324	283	290	352	089	200	720	240 4	240	1,370	620	290
Sod- fum (Na)	ŭ,	51	U.	U.	ŭ,	5,	7	6.1	-	7	- 64		33	7	7	45	7	-		6.1	61		ar t	(63)			15		W.I	1,2	•	23
Magne- slum (Mg)	25	32	26	27	43	42	34	33	22	14	949	73	73	16	9	1.5	4	Ν	6	25	22	72	37	64	25	35	29	37	6	333	32	15
Cal- clum (Ca)	40	13	11	12	70	17	42	48	122	17	53	104	100	20	80	21	7	19	19	19	62	96	65	88	30	14	43	53	13	216	1.8	22
(Fe)	1	i i	:	!	1	1	;	į	1	1	1	1	1	;	2.6	.43	1	;	-	:	1	;	.02	1	1	ì	1	;	ì	;	1	;
Silica (SiO ₂)	1	-	1	00	28	30	32	34	32	30	32	34	34	24	30	30	1	ı	2	21	21	22	32	36	32	30	31	32	29	20	29	29
Date of S collection (June 12, 1973	June 21, 1973	Oct. 16, 1973	Dec. 13, 1973	op	op	Sept. 21, 1972	op	Sept. 20, 1972	op	Sept. 28, 1972	Oct. 18, 1972	Apr. 10, 1973	Oct. 12, 1972	Mar. 30, 1973	Mar. 31, 1973	June 12, 1973	Oct. 21, 1973	Dec. 11, 1973	op	op	Jan. 7, 1953	op	Sept. 26, 1972	op	May 12, 1973	Sept. 20, 1972	op	op	op	op	Sept. 22, 1972
Depth of well (ft)	220	op	op	op	op	op	191	185	202	178	185	200	op	op	195	op	op	op	op	op	op	200	193	190	228	op	200	197	127	104	180	147
Producing interval (ft)	179-199	op	op.	op	op	op	;	1	1	;	165-185	1	1	;	80-95	179-194	op	op	qo	op	op	1	175-190	1	158-228	op	ı	1	;	1	1	134-147
Well	89-04-309	Do.	Do.	Do.	Do.	Do.	503	504	205	905	203	508	Do.	509	210	Do.	Do.	Do.	Do.	Do.	Do.	602	603	909	809	Do.	609	019	119	612	613	614

Table 5. --Chemical Analyses of Water from Selected Water Wells and Test Holes --Continued

Residual sodium carbon- ate (RSC)	4.1	3.5	3.1	3.2	2.8	2.8	2.7	2.8	2.8	2.8	2.6	3.1	2.7	2.3	2.6	2.7	2,5	2.7	2.8	2.7	2,8	2.8	2.8	2.7	2.6	2.7	2.7	2.4	2.4	2.2	2.4	2.4	0.9
Sodium adsorp- tion ratio (SAR)	19.6	16.9	17.0	17.7	17.3	18.0	18.2	17.8	17.8	17.6	17.7	18.1	18.4	18,3	18.8	18.6	18.4	18.7	18.7	18.7	18.8	18.6	18.9	18.7	19.0	18.6	18.7	18.2	18.2	18.9	18.2	18.2	14.1
Per- cent sod- fum	85	83	83	84	83	83	84	83	83	83	83	89	84	83	84	96	84	84	84	84	84	84	94	84	84	84	84	83	83	84	83	83	98
н	7.6	8,2	7.7	7.8	7.9	7.8	7.7	7.8	7.8	7.8	7.7	7.8	7.7	7.7	7.6	8.6	7.5	7.7	7.5	8.0	7.5	7.5	7.5	7.7	7.7	7.6	7.6	7.6	9.7	9.7	7.7	9.7	8.1
Specific conduct- ance (micromhos at 25°C)	3,470	3,050	3,290	3,250	3,330	3,330	3,330	3,350	3,350	3,350	3,350	3,190	3,330	3,300	3,320	3,370	3,370	3,220	3,370	3,380	3,370	3,360	3,380	3,370	3,370	3,250	3,350	3,380	3,320	3,350	3,300	3,400	1,750
Total hard- ness as CaCO ₃	290	288	301	307	318	318	321	318	316	318	322	309	321	334	326	315	324	315	309	311	309	306	308	315	316	313	313	331	331	312	328	331	142
Dis- solved solids	2,440	2,130	2,240	2,300	2,330	2,350	2,370	2,360	2,380	2,350	2,370	2,310	2,410	2,440	2,430	2,400	2,400	2,370	2,410	2,400	2,400	2,400	2,430	2,360	2,430	2,370	2,380	2,420	2,440	2,440	2,420	2,430	1,170
Bor on (B)	3,2	2.4	2.5	į	1	1	1	1	:	1	1	1	;	ŀ	1	;	}	1	1	;	t t	1	1	:	;	1 1	1	1 1	;	1	;	1	1.8
Ni- trate (NO ₃)	0.4	4.	'n	4.	4.	7.	4.	4.	4.	4.	4.	4.	4,	5.	7.	4.	.7	5.	5.	4.	.5	1.0	5	7.	7.	5	5.	7.	4.	4.	4.	4.	4.
Fluo- ride (F)	1.7	7.6	1.8	1.8	1.8	1.9	1.9	1.7	1.8	1.8	1.9	1.4	1.4	1,4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.4	1.5	1.2 <
Chlo- ride r (Cl)	570	427	625	200	530	510	520	540	550	540	260	625	580	260	009	580	019	530	580	290	290	290	290	260	620	260	260	260	580	009	580	580	187
-	029	630	029	089	089	069	200	089	069	089	029	069	029	710	049	099	630	630	029	029	059	099	089	059	930	650	099	200	200	029	089	049	246
Sul- fare (SO ₄)	9	9	9	9	9	9	7	9	9	9	9	9	9	7	9	9	9	9	9	9	9	9	9	9	9	9	9	7	7	9	9	9	N
Bicar- bonate (HCO3)	919	570	260	570	260	260	260	260	260	260	550	570	260	550	260	550	550	550	550	550	550	550	550	550	550	550	550	550	550	550	550	550	240
Potas- slum (K)	;	1	1	1	;	i i	1	1	;	1	1	1	1	1	;	;	1	1	1	:	1	1	1	;	1	;	t t	1	1	1	:	1	1
Sod- fum (Na)	770	099	680	710	710	740	750	730	730	720	730	730	260	770	780	260	760	761	760	260	260	750	260	760	780	160	260	260	260	770	260	760	388
Magne- slum (Mg)	36	39	38	04	14	41	51	43	43	41	42	42	41	949	05	07	42	39	39	38	39	38	38	07	41	07	07/	44	777	05	45	577	18
Cal- cium (Ca)	57	51	58	56	58	09	777	95	95	59	59	54	19	58	49	09	09	19	09	62	59	09	09	59	59	09	59	59	59	59	. 57	59	27
(Fe)	1	91.0	.17	1	;	1	;	;	!	;	;	1	1	1	1	!	1	;	1	ĵ	1	;	1	1	1	1	1	;	ì	1	1	1	1
Silica (S10 ₂)	30	34	32	32	32	32	32	32	32	32	34	28	30	28	28	30	28	29	30	31	30	30	30	26	28	28	28	28	30	28	28	28	30
	1972	1972	1973	30, 1973	1973			2, 1973		3, 1973		12, 1973		13, 1973		14, 1973		1973		1973		1973		18, 1973		19, 1973		20, 1973		21, 1973		22, 1973	1972
Date of collection	Sept. 28, 1972	12,	. 1,		1,	op	op		op		op		op		op		op	15,	op	e 16,	op	17,	op		op		qo		op		op		. 19,
- 8	Sep	Oct.	Apr.	Apr.	May			May		May		June		June		June		June		June		June		June		June		June		June	_	June	Oct.
Depth of well (ft)	197	op	op	op	op	op	op	op	op	op	op	op	op	op	op	op	qo	op	op	do	op	qo	op	op	op	op	op	op	op	op	op	op	100
Producing interval (ft)	189-197	182-197	op	op	op	op	op	op	op	op	op	op	op	op	op	op	do	op	op	op	qo	op	op	op	op	op	1						
Well	89-04-615	919	Do.	Do.	Do.	Do.	Do.	Do.	Do.	Do.	Do.	Do.	Do.	Do.	Do.	Do.	Do.	Do.	Do.	Do.	Do.	Do.	Do.	Do.	Do.	Do.	Do.	Do.	Do.	Do.	Do.	Do.	623

Table 5, -- Chemical Analyses of Water from Selected Wells and Test Holes -- Continued

Residual sodium carbon- ate (RSC)	5.9	6.2	3.0	0	1.8	3.7	0.	2.9	2.9	2.9	3.3	80	9.9	2.0	1.5	1.6	0.	6.9	9.9	6.1	0.9	0.	0.	1	0.		1.5	;	0.	;	0.	1	0.
Sodium adsorp- tion ratio (SAR)	19.1	20.3	20.0	Ę	15.3	30.8	20.4	19.8	34.9	51.1	18.8	15.3	39.1	15.6	15.1	15.2	29.3	20.7	39.1	41.5	50.4	23.7	21.0	;	16.5	33.3	36.3	1	37.0	1	22.4	;	20.9
Per- cent sod- ium	90	16	84	Ē	80	93	82	85	56	26	98	62	96	18	62	80	98	89	96	26	86	92	42	ì	72	85	96	-;	82	1	9/	;	77
Нd	7.9	8.1	9.7	7.8	7.8	8.8	7.8	8.1	8.7	6.3	8.3	7.9	8.9	7.6	9.7	7.6	6.7	8.2	8.5	8.8	8.9	7.8	7.7	6.7	7.3	6.7	8.2	7.6	6.7	7.8	7.5	7.5	7.6
Specific conduct- ance (micromhos at 25°C)	2,120	2,110	3,850	12,000	3,360	3,550	4,630	3,670	3,520	3,500	2,960	3,470	3,150	3,200	3,210	3,200	6,300	6,300	2,660	2,650	2,610	8,350	5,780	7,450	5,450	4,240	4,170	3,930	12,000	12,000	7,850	9,930	6,880
Total hard- ness as (CaCO ₃	1.20	105	340	3,575	382	146	476	321	111	55	222	418	89	348	3,210	377	268	568	53	65	29	1,380	780	1,240	1,080	372	171	59	1,780	2,800	1,210	1,830	1,000
Dis- solved solids	1,420	1,390	2,740	20,400	2,330	2,420	3,370	2,510	2,450	2,390	2,020	2,460	2,070	2,230	2,250	2,230	5,000	1,860	1,850	1,810	1,760	7,000	4,550	5,930	4,750	3,130	2,860	2,620	12,300	11,900	6,200	8,100	5,200
Boron (B) s	1.8	1.6	3.1	17.0 2	2.6	f	3.2	2,9	1	1	2.4	2.8	1	2.5	2.5	2.3	3.4	2.7	1.6	1.6	1	4.4	3.4	4.0	3.8	2.8	2.0	1	12.5	6.6	3.9	1	1
Ni- trate (NO ₃)	1.5	4.	4.	7.0	.5	1.7	1.3	.7	1.9	2.5	2.5	.7	7.0	4.	4.	89.	14.0	6.	2.4	3.0	4.3	1.9	1.3	2.3	2.1	.7	.5	0.6	2.5	5.5	4.	2.9	5.1
Fluo- ride t (F)	1.9	3.5	1.7	3.6	1.3	1.4	1.1	1.6	1.2	1.6	2.0	1.2	1.3	1.4	1.5	1.6	5.6	2.3	2.0	2.0	1.8	2.2	1.9	2.1	2.7	1.7	1.2	1.4	2.7	1.2	1.1	1.1	1.1
	280 1	273 3	079	6,400 3	500	670 1	850 1	630 1	670 1	650 1	453 2	550 1	530 1	510	30	510 1	310	357 2	405 2	405 2	394 1	2,680 2	1,730	2,300 2	990 2	1,000 1	1,000	810	2,620 2	5,430	2,070 1	3,460 1	1,870 1
Chlo- ride (Cl)	1924	100	_	2000	_	-	_	_	_	_		-		•			1,		-		-	-					_				1870	<u> </u>	
Sul- fate (SO ₄)	332	313	820	6,700	700	049	1,040	750	730	069	580	750	009	650	019	610	1,530	486	510	486	470	1,660	096	1,320	1,740	760	670	530	4,240	2,080	1,660	1,600	1,260
Bicar- bonate (HCO ₃)	510	510	009	630	580	405	260	570	317	248	478	260	300	550	260	260	620	630	471	433	406	325	443	439	740	794	273	270	290	400	470	354	466
Potas- sium (K)	Į.	ŧ	;	1	1	į	į	i	1	31	9	f	1	1	1	1	£	i	1	1	1	ş	9	11.0	;	1	f	1	į	1	1	:	: 1
Sod- fum (Na)	483	482	850	5,800	069	850	1,030	820	850	860	650	720	740	029	680	680	1,610	620	029	099	650	2,030	1,350	1,650	1,250	066	1,110	980	3,590	3,260	1,790	2,230	1,530
Magne- slum (Mg)	17	16	45	487	53	32	63	949	23	10	59	26	13	949	47	54	72	22	00	80	4	175	86	159	109	62	27	11	235	370	153	227	157
cfum (Ca)	20	16	62	630	99	57	88	53	7	5	42	7.5	2	49	92	9/	109	35	6	9	9	264	150	234	252	79	1,4	2	323	510	230	357	144
(Fe)	1	i,	0.022	2.78	09.	í	21.0	79.	3	1	1,45	94.	i	1	;	1	.50	.22	;	1	1	• 76	1.52	4.80	1.2	1.45	;	ł	.2	1.6	1	2.1	3.0
Silica (Si0 ₂)	30	32	56	23	34	-	20 2	31	-	-	59	36	Ť	21	33	34	20	32	Ä	1	7	32	37	35	39	31			30	36	35	32	31
	19, 1972	18, 1972	20, 1972	21, 1973	23, 1973	18, 1973	15, 1973	19, 1973	12, 1973	16, 1973	19, 1973	23, 1973	18, 1973	13, 1973	op	op	16, 1973	17, 1973	13, 1973	21, 1973	16, 1973	21, 1973	op	op	23, 1973	7, 1973	12, 1973	18, 1973	1, 1973	2, 1973	19, 1972	24, 1973	op
Date of collection	0et. 1	Oct. 1	Nov. 2	Mar. 2	Mar. 2	Oct. 1	Mar. 1	Mar. 1	June 1	Oct. 1	Mar. 1	Mar. 2	Oct. 1	Dec. 1	Р	Р	Apr. 1	Apr. 1	June 1	June 2	Oct. 1	Apr. 2	P	P	Apr. 2	Mar.	June 1	Oct. 1	Apr.	Apr.	Oct. 1	Mar. 2	~
Depth of well (ft)	195	190	180	195	op	op	207	op	op	op	300	op	op	307	op	op	204	op	op	op	op	228	op	op	25	226	op	op	202	op	180	1	1
Producing interval (ft)	Į)	ı	1	24-46	175-195	173-195	93-113	181-203	op	op	112-134	176-196	i	173-195	op	op	22-45	180-202	do	op	op	69-82	152-179	205-228	25	1	200-220	op	76-89	166-188	1	115-135	183-199
We11	89-04-624	625	979	627	Do.	Do.	628	Do.	Do.	Do.	629	Do.	Do.	Do.	Do.	Do.	630	Do.	Do.	Do.	Do.	631	Do.	Do.	632	902	Do.	Do.	903	Do.	05-101	102	Do.

Table 5 .- "Chemical Analyses of Water from Selected Wells and Test Holes -- Continued

Residual sodium carbon- ate (RSC)	0.0	0.	0.	0.	:	1	0.	1	0.	0.	0.	0.	0*	0.	0.	1.1	0.	0.	0.	0.	:
Sodium adsorp- tion ratio (SAR)	22.0	30.4	23.8	12.3	1	i	28.2	3	22.2	37.1	17.8	19.3	19.2	24,3	23.1	27.0	24.4	19.7	19.9	31.2	1
Per- cent sod- fum	78	87	7.5	70	1	1	81	1	82	75	7.1	82	78	98	85	90	87	62	62	74	:
Н	7.6	7.7	7.3	7.5	7.4	7.7	7.4	7.3	7.2	7.7	7.8	8.0	7.7	7.7	7.8	8.6	7.9	7.4	7.5	7.6	7.5
Specific conduct- ance (micromhos at 25°C)	6,400	6,540	9,350	3,980	10,540	8,650	7,720	7,770	5,490	12,000	7,160	4,260	5,560	4,750	4,800	6,090	4,700	5,570	5,570	12,000	10,030
Total hard- ness as CaCO ₃	950	504	1,540	730	1,990	2,250	7,720	1,073	630	3,680	1,350	477	760	422	522	234	342	069	710	2,880	1,960
Dis- solved solids	5,200	4,710	7,500	3,010	8,400	9,070	7,150	7,130	4,440	18,100	5,700	3,170	4,130	3,580	3,460	2,830	3,230	4,010	4,140	13,450	8,490
Boron (B)	3.5	I.	3.9	2.1	3.6	3.7	2.4	5.8	I	6.3	3.2	2.4	3.4	2.3	2.2	1	:	1	3.4	7.2	6.4
Ni- trate (NO ₃)	1.3	2.5	4.	4.	4.	5.3	1.3	1.4	1.3	3.9	1.5	1.1	1.9	2.9	3.3	2.9	3.7	5.5	1.3	4.1	1,3
Fluo- ride (F)	1.2	1.6	1.0	1.0	1.7	1.2	4.3	4.3	2.6	4.4	1.1	1.1	1.3	1.1	1.0	1.3	1.2	1.8	1.7	2.4	1.3
Chlo- ride (Cl)	1,820	1,910	2,980	049	3,680	4,230	1,460	1,440	840	6,320	2,080	850	1,250	1,100	1,070	078	1,050	1,240	1,260	5,730	3,760
Sul- fate (SO ₄)	1,290	1,000	1,680	1,040	1,610	1,470	2,980	2,950	1,930	6,200	1,370	910	1,120	1,040	1,030	790	006	1,050	1,130	2,730	1,530
Bicar- bonate (HCO ₃)	476	174	366	540	300	364	520	520	344	079	210	520	530	332	294	357	267	540	540	386	405
Potas- sium (K)	1	;	;	1 1	0.91	23	1	1	i i	1	1	:	;	1	1	1	;	5.0	;	:	1
Sod- fum (Na)	1,560	1,570	2,150	770	2,260	2,430	2,100	2,120	1,280	5,170	1,510	970	1,220	1,150	1,090	950	1,040	1,190	1,220	3,860	2,340
Magne- sium (Mg)	123	100	214	69	258	302	138	142	69	570	173	62	66	79	42	90	89	9/8	88	392	250
cium (Ca)	176	37	266	179	369	404	193	196	138	530	256	8.9	143	39	38	11	28	138	138	510	372
Iron (Fe)	1	1	;	1	3.74	1.78	1	ļ	1	1.49	.12	9.	4.	į,	1	:	1	:	ï	*0*	.82
Silica (SiO ₂)	23	1	39	44	19	28	16	1.8	11	36	30	32	32	1	,	H	4	30	30	28	39
Date of collection	June 12, 1973	16, 1973	17, 1973	12, 1972	22, 1973	23, 1973	12, 1973	21, 1973	17, 1973	11, 1973	op	12, 1973	15, 1973	12, 1973	21, 1973	16, 1973	12, 1973	qo	op	18, 1973	19, 1973
4 0	June	Oct.	Oct.	Oct.	Feb.	Apr.	June	June	Oct.	Apr.		Apr.	Apr.	June	June	Oct.	Dec.			Apr.	Apr.
Depth of well (ft)	205	i i	230	212	240	op	op	op	op	1	1	ŧ	225	qo	op	op	255	op	op	ì	1
Producing interval (ft)	184-204	1	:	1	165-225	1	165-205	op	op	22-45	06-29	120-143	202-225	201-224	op	op	op	op	op	75-95	175-192
Well	89-05-101	Do.	201	89-05-402	707	Do.	Do.	Do.	Do.	405	Do.	Do.	Do.	Do.	Do.	Do.	Do.	Do.	Do.	701	Do.