

TEXAS DEPARTMENT OF WATER RESOURCES

and and B. Grant and S. Jacobian and and M. Draw and Jacobian

REPORT 218

OCCURRENCE AND QUALITY OF GROUND WATER IN BAYLOR COUNTY, TEXAS

By

Richard D. Preston, Geologist Texas Department of Water Resources

July 1978

TEXAS DEPARTMENT OF WATER RESOURCES

Harvey Davis, Executive Director

TEXAS WATER DEVELOPMENT BOARD

A. L. Black, Chairman Milton Potts John H. Garrett Robert B. Gilmore, Vice Chairman George W. McCleskey Glen E. Roney

TEXAS WATER COMMISSION

Joe D. Carter, Chairman

Dorsey B. Hardeman, Commissioner Joe R. Carroll, Commissioner

Authorization for use or reproduction of any original material contained in this publication, i.e., not obtained from other sources, is freely granted. The Department would appreciate acknowledgement.

> Published and distributed by the Texas Department of Water Resources Post Office Box 13087 Austin, Texas 78711

Effective September 1, 1977, Texas three water resources agencies, the Texas Water Rights Commission, the Texas Water Development Board, and the Texas Water Quality Board, were consolidated to form the Texas Department of Water Resources. A number of publications prepared under the auspices of the predecessor agencies are being published by the TDWR. To effect as little delay as possible in production of these publications, references to these predecessor agencies will not be altered except on their covers and title pages.

avis

Harvey Davis Executive Director

FOREWORD

I DAGED -

TABLE OF CONTENTS

e

AB	STRACT	1
IN		3
	Purpose and Scope	3
	Methods of Investigation	3
	Previous Investigations	4
	Well-Numbering System	4
	Acknowledgements	4
GE	OGRAPHY	5
	Location	5
	Climate	6
	Topography and Drainage	8
	History, Population, and Economy	
GEI	NERAL GEOLOGY	9
	Geologic History	9
	Stratigraphy of Water-Bearing Formations	
	Ordovician-Silurian and Mississippian Systems	9
	Pennsylvanian System	9
		9
	Permian System	11
		11
GEN		11
GEN	IERAL GROUND-WATER HYDROLOGY	11
	Hydrologic Cycle	12
	Source and Occurrence of Ground Water	12

TABLE OF CONTENTS (Cont'd.)

	× .																P	age
	Recharge, Movement, and Discharge of Ground Water		•		•	•						•	•					13
	Hydraulic Characteristics of an Aquifer	•	·	. ,		٠	•											14
	Porosity				•		•	•		•	•	•	2			•		14
	Permeability	÷						•	•	•	÷	•	8	•	•	9		14
	Transmissibility	ž	•	• •					• : :	•	•	•	•	•	•	•		14
	Storage	·	•			Â	ł	<u>.</u>				·	•	•	•	•		15
	Changes in Water Levels	•	•					•	•	Ċ.	•	•	•	•	•	•		15
GEN	ERAL CHEMICAL QUALITY OF GROUND WATER .			•		·	•	°•0	•	.	Ċ.	•	•	•	•	•		16
	Relationship of Water Quality to Use			•	÷	•	٠	÷		•	•	•	•	•	•	k		18
	Irrigation							•		•	•	• 1	•	2	·	·		18
	Industrial		÷	•							•	•	•	•	•			19
	Public Supply		·	•			•	ž.	÷		•••				1			20
	Changes in Chemical Quality	*	·	•	•	•		·		•	٠	٠			•	•		21
	Treatment of Water	•	•	1 1				•	1	•			·	•	•	•		21
000	CURRENCE AND QUALITY OF GROUND WATER	•	·	•		1	·	•			• 11	•			•			21
	Permian System	•	•	•		٠	÷	•7	×	•	•		•	•	•	•		22
	Wichita Group			•	• •	X	•	·	٠	÷	÷	•	·	•	•	•		22
	Clear Fork Group	•		·	• •	11.2	÷	•	1.	÷	•	٠	•	•	S•	•		25
	Quaternary System	• •	•		• •		•	1.			•	•	•	•	÷	5		26
	Pleistocene Series		8	۰.	• •		•	•(1)	•		•	•	•	٠	·			26
	Recent Series		.*	·	• •	•	•	÷		÷	•	•	•	•				28
AV	AILABILITY OF GROUND WATER						•		•	•	•	٠	•	•			i	31
	Seymour Formation	i :	•			•			×	•	•	•	•	·			ás.	32
	Extent of Aquifer			ð.	• 14		1	1¥	·	•					9.	•	LAP 36	32
	Source and Occurrence of Ground Water			٠		•			•	•	•				p•		dag bi	32
	Recharge, Movement, and Discharge of Ground	Wat	er		- 60						1			1	•		Sec.	32

TABLE OF CONTENTS (Cont'd.)

		Pag
	Hydraulic Characteristics of the Aquifer	36
	History of Development	36
	Changes in Water Levels	43
	Well Construction	45
	Availability of Ground Water for Future Development	45
	Conservation of Ground Water	49
ul F	Recent Alluvium	
	ACE-CASING RECOMMENDATIONS FOR WATER-QUALITY PROTECTION	49
		50
OIL-FI	ELD BRINE PRODUCTION AND DISPOSAL	51
C	Quantity and Distribution of Produced Brine	51
C	hemical Quality of Produced Brine	51
ALTEF	ATION OF NATIVE QUALITY OF GROUND WATER	52
	ARY AND CONCLUSIONS	52
	TED REFERENCES	55
		55

TABLES

1.	Stratigraphic Units and Their Water-Bearing Properties			2	10
2.	Source and Significance of Dissolved-Mineral Constituents and Properties of Water			1 qu (? 10	17
3.	Iron and Boron Concentrations in Water From Selected Wells and Springs				29
4.	Results of Aquifer Tests Conducted on Selected Wells Penetrating the Seymour Formation .	•			41
5.	Results of Power-Yield Tests Conducted on Selected Irrigation Wells				43
6.	Records of Water Wells and Springs		pri?		59
7.	Drillers' Logs of Water Wells				85
8.	Chemical Analyses of Water From Wells and Springs		and and		91
9.	Chemical Analyses of Oil-Field Brines				98
10.	Reported Oil-Field Brine Production and Disposal in 1961 and 1967.	Li ta	ih.		99
1.	Oil and Gas Tests Selected as Data-Control Points		ile.		101

TABLE OF CONTENTS (Cont'd.)

Page

FIGURES

		-
1.	Well-Numbering System	5
2.	Map Showing the Location of Baylor County	6
3.	Annual Precipitation at Seymour, 1923-69	6
4.	Average Monthly Precipitation at Seymour and Average Monthly Lake-Surface Evaporation in Baylor County	7
5.	Major Structural Features in North-Central Texas	12
6.	The Hydrologic Cycle	13
7.	Diagram for the Classification of Irrigation Waters Showing Quality of Water From Representative Irrigation Wells in Baylor County	18
8.	Map Showing Chloride, Sulfate, and Dissolved-Solids Content in Water From Wells and Springs	23
9.	Map Showing the Approximate Altitude of the Base of the Seymour Formation in West-Central Baylor County.	33
10.	Map Showing the Approximate Altitude of the Water Table in the Seymour Formation in West-Central Baylor County, Winter 1968-69	37
11.	Map Showing the Approximate Altitude of the Water Table in the Seymour Formation in West-Central Baylor County, Winter 1969-70	39
12.	Hydrographs of Water-Levels in Monthly Observation Wells in the Seymour Formation, January 1969—February 1970	44
13.	Hydrographs of Water-Levels in Yearly Observation Wells in the Seymour Formation, 1955-70	44
14.	Map Showing the Approximate Saturated Thickness of the Seymour Formation, December 1969, and Areas Favorable for Future Development in West-Central Baylor County	47
15.	Diagrams of Chemical Analyses of Ground Water From the Seymour Formation	
15.	and a Typical Oil-Field Brine	53
16.	Geologic Map Showing Location of Wells and Springs	104
17.	Map Showing Location and Amounts of Reported 1961 and 1967 Brine Production and Disposal, Brine-Disposal Wells, and Apparently Contaminated Water Wells	107
18.	Geologic Section A-A'	109
19.	Geologic Section B-B'	111
20.	Geologic Section C-C'	113
21.	Generalized Geologic Section D-D' Through the Seymour Formation	115
22	Generalized Geologic Section E-E' Through the Seymour Formation	117

WATER IN BAYLOR COUNTY, TEXAS

ABSTRACT

Baylor County lies within the drainage basins of the Brazos and Red Rivers in north-central Texas, covering an area of about 857 square miles. Permian rocks of the Wichita and Clear Fork Groups, dipping gently to the northwest, are found at the surface within the county except where they are overlain by erratic deposits of Pleistocene and Recent alluvium of the Quaternary System.

Small amounts of poor quality ground water, generally used for domestic and livestock supplies, are produced in Baylor County from local zones of generally low permeability at or near the outcrop of the rocks of the Wichita and Clear Fork Groups.

Small to moderate quantities of fresh to slightly saline ground water are produced in the county from Recent alluvial deposits. About 17 percent of the wells inventoried produce from this aquifer. The water from this formation is used mostly for irrigation, domestic, and livestock purposes. About 200 acre-feet per year is pumped for irrigation uses from the Recent alluvium in the county. Water quality is generally good in this aquifer. However, there are some local problems that are probably caused by poor quality water flowing in adjacent streams.

The Seymour Formation of Pleistocene age is the major source of ground water in Baylor County. Nearly 80 percent of the wells inventoried produce or have produced small to moderate quantities of fresh to slightly saline water from the Seymour aquifer. Only small quantities of water are usually available from this aquifer. However, in parts of a 73 square-mile area extending from the city of Seymour west to the Knox County line and lying between the Brazos and Wichita Rivers, wells can sustain yields up to 500 gallons per minute and provide water for irrigation, municipal, industrial, domestic, and livestock purposes. In this area, the potential yield of the Seymour is about 10,100 acre-feet per year and the estimated total pumpage is about 5,000 acre-feet per year; thus, an estimated 5,100 acre-feet should be available for development annually. Because of an extremely thin saturated thickness over much of the area, however, only an estimated 1,500 acre-feet per year is actually available for economical future development. About 730 acre-feet was pumped for public supply by the city of Seymour in 1969, and about 3,770 acre-feet was used for irrigation. Water quality is generally good in the Seymour Formation. More than 90 percent of the wells sampled produce water with less than 3,000 milligrams per liter dissolved solids.

There are some indications of very local contamination of ground water by oil-field brines in the Permian and Quaternary rocks in the county, but there were no traces of extensive alteration of the native quality of water by this source. Chloride content ranged from 5 to 3,240 milligrams per liter, and 65 samples contained more than the 250 milligrams per liter recommended. Many of these, however, are not thought to be contaminated, but to contain high natural concentrations. There is some evidence of contamination of ground water from biological waste sources in all aquifers. Forty-five wells produce water containing concentrations of nitrate higher than the recommended 45 milligrams per liter. The nitrate content of samples ranged from < 0.4 to 781 milligrams per liter.

Methods of disposal of oil-field brines may have caused some damage to water quality in the past, but only in local occurrences. In 1961, 12,027,319 barrels of salt water was reported produced with oil and gas in the county. Of this amount, 96.99 percent was reported returned to the subsurface through injection and disposal wells, 0.85 percent was reported placed into surface pits, and 2.16 percent was reported disposed of by other methods. In 1967, 10,258,360 barrels of salt water was reported produced with oil and gas in the county. Of this amount, 99.96 percent was reported injected into the subsurface, and 0.04 percent was reported disposed of by miscellaneous methods. No salt water was reported placed in surface pits for disposal in 1967.

(a) Constant and the constant of the consta

TOARTINGS.

Maria Maria Carana, Angela Maria Caranaa, Angela Maria Carana, A Angela Maria Carana, Ange

 Restaurant (a.e., and a second se second sec

Alignment of the second sec

(a) A second second and the second second

The state of the setting of the equipation of the state of the stat

¹⁶ Courte all demonstration of provide a start back a set of the start of the

WATER IN BAYLOR COUNTY, TEXAS

INTRODUCTION

Purpose and Scope

This investigation is one of several ground-water studies that have been conducted by the staff of the Texas Water Development Board in north-central Texas to meet a growing need for more detailed and accurate ground-water information in this area. The Board recognizes the significance of ground water to this region and is aware of the vital need for obtaining detailed and accurate information on the depth of occurrence of usable-quality water as the basis for providing adequate and equitable protection for those water supplies. Several towns with municipal water supplies in north-central Texas, including Seymour the county seat of Baylor County, are served by ground water or have water wells as a standby supply. In addition to meeting municipal needs for water in the area, ground water is often the sole source supplying domestic, farm, and ranch needs. Reports from the results of investigations in Archer, Brown, Coleman, Jones, Montague, Shackelford, Stephens, Throckmorton, and Young Counties have been published by the Board, and reports for Taylor and Wilbarger Counties are being prepared for publication.

The present study was initiated in September 1968, to gather and compile all available data on the occurrence, quantity, quality, and availability of ground water in Baylor County; to evaluate the data; and to prepare a report for publication by the Board.

The scope of the study included determination of the location, extent, and hydrologic parameters of fresh water-bearing strata and the quantity and quality of all ground water used or available for use within the county. The surface and shallow subsurface geology as it relates to the depth and occurrence of ground water was studied; the methods and amounts of oil-field brine disposal and the chemical character of the brines were compiled; and the effects on water quality that may have been caused by surface or subsurface disposal of oil-field brines, inadequate surface casing, or improperly plugged wells in the county were included.

Methods of Investigation

This study included an inventory of all wells producing water for municipal, irrigation, and industrial use; a representative number of wells supplying water for livestock and domestic usage; and many springs in Baylor County. This inventory consisted of locating the wells accurately and compiling information on the well depth, depth to water in wells, geologic formations in which the wells are completed, methods of well construction, uses of the water produced, and the pumping capacity of the wells. A total of 529 water wells and springs were inventoried.

In conjunction with this inventory, 183 water samples were collected from wells and springs for chemical analysis by the laboratory of the Texas State Department of Health. A study of these analyses was made in an attempt to determine the native chemical characteristics of the ground water or at least the normal ranges of chemical constituents. Areas of possible contamination were located using these ranges and by comparing the analyses made in conjunction with this study with chemical analyses made in the past.

U.S. Geological Survey topographic maps were used to determine surface elevations for each well and spring. These elevations were helpful in comparing the depth to water in one well to that in another, and to determine the aquifer.

Surface and subsurface geologic information, with special emphasis on its relation to the occurrence of ground water, was gathered. This included geologic maps, electrical logs of oil and gas tests, drillers' logs of water wells and test holes, and other pertinent data. Also, nineteen geologic test holes were drilled and logged in the Seymour Formation.

Three pumping tests were conducted on irrigation wells that produce from the Seymour Formation. Power-yield tests, to determine the amount of water produced for each unit of power used, were conducted on several wells with different sizes and types of pumps. Electrical-use data were collected for each irrigation well that was powered by electricity. A study was made of oil-field brine disposal practices within the county and of available information on areas and amounts of brine production and disposal in an attempt to identify possible connections with present or potential contamination of ground water. Locations were determined for salt-water disposal wells used within the county.

Irrigation pumpage was estimated from electrical-use data collected in the power-yield tests. Domestic and livestock pumpage was estimated. Municipal pumpage was obtained from the city of Seymour. These pumpage data were used in conjunction with data collected in a low-flow study of part of the Brazos River within the county to determine figures for recharge, discharge, and storage of ground water within the Seymour Formation in Baylor County.

The data from the water-well inventory, the chemical analyses of ground water and oil-field brines, the inventory of salt-water production and disposal for the years 1961 and 1967 conducted by the Railroad Commission of Texas, and the ground-water pumpage were tabulated. Climatological data significant to the occurrence and use of water in the county were compiled, including precipitation, lake-surface evaporation, and temperature range.

Previous Investigations

C. H. Gordon (1913) reported on the geology and underground waters of the Wichita region (Wichita Falls). His report includes general reference to the occurrence and quality of ground water in Baylor County.

A study of the alluvial deposits of the Brazos River from Knox City to Waco, Texas, discusses in some detail the deposits of the Seymour Formation in Baylor County (Stricklin, 1961).

General information on the geology and ground water in Baylor County and the surrounding north-central Texas area is contained in reconnaissance investigations of ground-water resources of the Red River basin (Baker and others, 1963) and the Brazos River basin (Cronin and others, 1963).

From 1955 until 1960, the U.S. Geological Survey maintained a yearly observation well program in Baylor County. Since 1960, this program has been managed by the Texas Water Development Board (formerly the Texas Water Commission). Much of the data collected within this program has been incorporated into this report. At the present time, six wells are measured annually.

Several publications on the general geology of the north-central Texas area include some data pertinent to Baylor County and are included in the selected references of this report.

Well-Numbering System

The numbers assigned to wells and springs in this report conform to the statewide well-numbering system used by the Texas Water Development Board. Each well and spring is assigned a number to facilitate record keeping and locating the well within the State. This system is based on division of the State into quadrangles formed by degrees of latitude and longitude, and repeated divisions of these quadrangles into smaller ones as illustrated in Figure 1.

The largest quadrangle, a 1-degree quadrangle, is divided into sixty-four 71/2-minute quadrangles, each of which is further divided into nine 21/2-minute quadrangles. Each 1-degree quadrangle in the State has been assigned a number for identification. The 7½-minute quadrangles are numbered consecutively from left to right beginning in the upper left hand corner of the 1-degree quadrangle, and the 2½-minute quadrangles within the 71/2-minute quadrangle are similarly numbered. The first two digits of a well number identify the 1-degree quadrangle, the third and fourth digits identify the 71/2-minute quadrangle, the fifth digit identifies the 21/2-minute quadrangle, and the last two digits designate the order in which the well was inventoried within the 21/2-minute quadrangle. In addition to the seven-digit well number, a 2-letter prefix is used to identify the county. The prefix for Baylor County is AU, and the county lies within the 1-degree quadrangles numbered 20 and 21 that are shown on Figure 1.

Acknowledgements

Appreciation is expressed to the many farmers, ranchers, water well drillers, oil operators, businessmen, and other individuals who generously provided information or cooperated in the collection of data for this report.

Appreciation is also expressed to the personnel of the city of Seymour; the Agricultural Stabilization and Conservation County Committee; the County Commissioner's Court; the U.S. Soil Conservation

Service; the Railroad Commission of Texas; the Texas State Department of Health; the Texas Highway Department; the B-K Electric Cooperative; and other private, local, county, state, and federal agencies that furnished information.

GEOGRAPHY

Location

Baylor County lies in north-central Texas within the Osage Plains Section of the Central

Lowlands Physiographic Province. The county has an area of about 857 square miles and lies generally between 98°56' and 99°28' west longitude and 33°23' and 33°51' north latitude. It is bounded on the north by Wilbarger County, on the east by Archer County, on the south by Throckmorton County, and on the west by Knox and Foard Counties (Figure 2). Seymour, the county seat, lies approximately in the center of the county and is located 51 miles west-southwest of Wichita Falls, 137 miles northwest of Fort Worth, and 100 miles north-northeast of Abilene.

Figure 2.-Location of Baylor County

Climate

The climate in Baylor County is subhumid. At Seymour the average annual rainfall for the period from 1923 to 1969 was 25.57 inches. There was a maximum of 46.16 inches in 1941 and a minimum of 13.05 inches in 1928. The yearly rainfall at Seymour from 1923 to 1969 is shown on Figure 3. At Dundee, in Archer County about 23 miles northeast of Seymour, the average annual rainfall from 1923 to 1969 was 25.06 inches. At Olney, in Young County about 35 miles southeast of Seymour, the average annual rainfall was 24.98 inches from 1944 to 1969. At Munday, in Knox County about 22 miles southwest of Seymour, the average annual rainfall was 24.53 inches from 1913 to 1969.

The average annual mean temperature is about $64^{\circ}F$ ($18^{\circ}C$). The mean maximum temperature for July is $98^{\circ}F$ ($37^{\circ}C$) and the mean minimum temperature for January is $28^{\circ}F$ ($-2^{\circ}C$). There is an annual growing season of about 213 days, with the first frost in fall occurring about November 3 and the last frost in spring about April 3.

Evaporation records for the 26-year period from 1940 to 1965 show an average annual gross lake-surface evaporation of about 76 inches. The average annual net lake-surface evaporation (average annual gross lake-surface evaporation less the average annual effective rainfall) is about 52 inches.

The average monthly distribution of precipitation at Seymour and the average monthly distribution of gross and net lake-surface evaporation in Baylor County are shown on Figure 4.

Figure 3.—Annual Precipitation at Seymour, 1923-1969 (From records of U.S. Weather Service)

- 7 -

Topography and Drainage

A gently rolling terrain, broken by a few low-lying, north-south trending escarpments generally characterizes the topography of the county. Much of the northern one-third consists of badlands developed on the outcrop of the relatively incompetent, thin-bedded sandstones, siltstones, and claystones of the Permian by the Wichita River and its tributaries. The total relief within the county is about 450 feet, with elevations ranging from a low of less than 1,050 feet above mean sea level at Lake Diversion on the Wichita River in the northeast corner of the county to a high of more than 1,500 feet on the Baylor-Throckmorton County line.

Surface-water flow in Baylor County is divided between two of the major drainage basins of Texas, the Red River basin and the Brazos River basin. The drainage divide which separates these two basins enters Baylor County on the west county line just north of U.S. Highway 82 and trends east, passing north of Red Springs and Seymour. Northeast of Seymour the divide turns to the southeast passing just north of the community of Westover and leaves the county about four miles north of the southeast corner of Baylor County.

The north half and the east-central part of the county are drained by the Wichita and North Fork Little Wichita Rivers and their tributaries. Both of these streams flow generally eastward to their confluence with the Red River. Two major reservoirs are located on the Wichita River in Baylor County. Lake Kemp, located in the north-central part of the county was constructed in 1923 by the Wichita County Water Improvement District No. 1 and the city of Wichita Falls, with a capacity of 461,800 acre-feet and covering an area of 20,620 acres. The water was to be used for irrigation, electrical power development, and municipal supply. Wichita County Water Improvement District No. 2 bought interests in the project in 1923. In 1961, the U.S. Army Corps of Engineers investigated the Lake Kemp Dam and reported that due to deterioration of the spillway and outlet works the existing lake was a potential hazard to the valley below the dam. Major reconstruction was indicated and eventually approved in 1970. Modification and reconstruction of the dam will increase the storage capacity of the reservoir to 567,900 acre-feet and the surface area to 24,720 acres.

Lake Diversion is located in the northeast corner of Baylor County and the northwest corner of Archer County, about 20 miles downstream from Lake Kemp, and was built as a part of the same project. Water is released from Lake Kemp to maintain the desired height in Lake Diversion for discharge to the irrigation canals. Lake Diversion has a capacity of 40,000 acre-feet. Wichita County Water Improvement District No. 1 transferred its interest in the project to the city of Wichita Falls in 1961.

The southern part of the county is drained by the Brazos River and its tributaries. The flow is generally southeast where it leaves the county just south and east of the community of Round Timber. The main tributaries of the Brazos River in Baylor County are Millers Creek, which flows from Throckmorton County through the southwest corner of the county into the Brazos about nine miles south of Seymour, and Deep Creek, which flows from about the center of the county south-southeast to enter the river just northwest of Round Timber.

The cities of Haskell, Goree, Munday, and Knox City, formed the North Central Texas Municipal Water Authority and voted to build a reservoir on Millers Creek in southwest Baylor County. Millers Creek Reservoir has a storage capacity of 25,520 acre-feet of which 3,500 acre-feet is authorized for municipal use annually. The reservoir covers an area of 1,900 acres.

History, Population, and Economy

Baylor County was created in 1858 from Fannin County and named for Dr. Henry W. Baylor, a Texas Ranger surgeon. The first surveys of the area were made in 1853, when the county was still an Indian stronghold. As late as 1870, Indians were still hunting buffalo along Pony Creek.

The first attempt at settlement was made in 1855 in the southeastern part of the county along the Brazos River. These first farmer-settlers were driven out by the Indians and none returned until 1874 and 1875. In the meantime, large ranching interests had secured a foothold in the area, and there was a constant struggle between the ranchers and farmers until 1881, when the feud ended in a pitched battle.

In 1879 the county was organized, with the city of Seymour (formerly called Oregon City) as the county seat. The county has been served by three weekly newspapers; The Seymour Cresset (in 1880), The Seymour Scimeter (1881-1886), and The Baylor County Banner (1895 to present).

The discovery of oil in 1906 brought a renewed influx of settlers. In 1880, the county had a population of 715. This had risen to 3,052 in 1900. The oil boom and allied industry brought it to 8,411 in 1910. The population has gradually decreased since then and was 5,893 in 1960. The population of Seymour, the county seat and only incorporated city, was 2,029 in 1910 and rose steadily to 3,789 in 1960.

The highway system in Baylor County includes U.S. Highway 82, 183, 277, and 283; State Highway 199 and several paved farm to market roads. The county is served by the Fort Worth and Denver Railroad. Seymour has a class two airport, but the nearest scheduled airline service is at Wichita Falls.

The economy of Baylor County depends primarily on agriculture, with the production of cotton, grains, and beef cattle predominating. Estimated farm income in 1968 was \$8,155,000. The central, west-central, southwest, and southeast parts of the county are generally devoted to farming. Most of the northern part of the county is ranch country.

There is some manufacturing in Seymour, but the major industry in the county is oil and gas production. In 1968, 1,243,837 barrels of oil was produced in the county, and the total production, as of January 1, 1969, was 43,423,029 barrels. There is also some production of sand and gravel within the county. In 1967, the mineral value of the county was estimated at \$5,294,630.

GENERAL GEOLOGY

Geologic History

Throughout most of geologic time, from the Cambrian Period through the Permian Period, Baylor County and the surrounding north-central Texas area was covered by shallow seas. Much of the earlier periods-Cambrian, Ordovician-Silurian, and Mississippian-is characterized by typical marine deposits of limestone and black shales. These deposits represent relatively long periods of deposition and stable environments. The Pennsylvanian and Permian Periods, however, are characterized by continued rapid transgression and regression of shallow epicontinental seas, leaving a thick sequence of relatively thin-bedded deposits of almost every type of depositional environment from shallow-shelf, through deltaic, fluvial, and continental. At the end of the Paleozoic, the depositional record is broken by a major erosional unconformity which has formed an extensive peneplain that represents much of the present surface topography.

During the Pleistocene Epoch, much of Baylor County and the area to the west and southwest was the site of an extensive outwash plain receiving sediments from a source area to the west. These sediments likely covered most or all of Baylor County at one time. This cycle of deposition is thought to have been initiated and controlled by climatic cycles caused by the advance and retreat of Pleistocene glaciation.

The deposition of this alluvial plain was followed by a renewed cycle of erosion during the Recent Epoch which cut through the outwash deposits leaving remnants that cap the divides of the present drainage system. Associated with the present drainage network, alluvial sediments have been deposited along the floodplain of the larger streams. Often, where the older Pleistocene deposits have been reworked, the two alluvial deposits are interconnected.

Stratigraphy of Water-Bearing Formations

Subsurface rocks in Baylor County range in age from Cambrian to Quaternary. Rocks of the Wichita and Clear Fork Groups of the Permian System and scattered deposits of Pleistocene and Recent alluvium of the Quaternary System outcrop within the county. The general lithology of the rock units are given in Table 1, and the stratigraphic relationships are shown on the geologic sections (Figures 18, 19, and 20).

Ordovician-Silurian and Mississippian Systems

These early and middle Paleozoic Systems are represented in the subsurface by thick massive deposits of marine limestone with some dolomite. Some shales and other clastics are interbedded with the limestone. In Baylor County, the water contained in these rocks is very saline.

Pennsylvanian System

The Pennsylvanian System is present in the subsurface in Baylor County. Surface outcrops are present to the east and southeast of the county. The Pennsylvanian is represented by thin to massive interbedded marine limestones, shales, sandstones, and conglomerates laid down by rapid transgressions and regressions of shallow epicontinental seas. Many of the marine formations have been extensively eroded and are cut by channel deposits of shale, sand, and gravel. On and near the outcrop, many of the Pennsylvanian deposits produce small to moderate amounts of fresh to moderately saline ground water from local permeable zones. In Baylor County, however, these rocks produce only saline water.

BAYLOR COUNTY

Table 1.—Stratigraphic Units and Their Water-Bearing Properties

SYSTEM	SERIES	STRATIGRAPHIC UNITS	APPROXIMATE THICKNESS (FEET)	PREDOMINANT CHARACTER OF ROCKS	WATER-BEARING CHARACTERISTICS
2.2.3	Recent	Alluvium	30	Cross-bedded, lenticular deposits of gravel, sand, silt, and clay along rivers and major tributaries.	Yields fresh to slightly saline water in small quantities to wells.
Quaternary	Pleistocene	Seymour Formation	60	Cross-bedded, lenticular deposits of gravel, sand, silt, and clay on the interstream divides. Usually contains a basal unit of sand and gravel. Often has deposits of secondary caliche near the surface.	Yields fresh to slightly saline water in small to moderate quantities to wells.
		Clear Fork Group	300	Thin-bedded sandstones, and claystones, with a few thin limestones and dolomites.	Yields fresh to moderately saline water in small quantities to wells in the outcrop.
Permian	Leonard	Wichita Group	1,100	Thin limestones, fine-grained sandstones, siltstones and claystones. Some massive limestone and thin shales near the top of the group.	Do.
??		Cisco Group	1,400	Thin limestone beds, massive shales, and channel-fill sandstones.	Not known to yield usable quality water in Baylor County.
Pennsylvanian		Canyon Group	1,500	Massive to thin limestone beds interbedded with massive shales and thin lenticular sandstones.	Do.
		Strawn Group	1,500	Thick units of shale, limestone, and sandstone.	Do.
		Bend Group	200	Thick shale units with some sand and conglomerate.	Do.
Mississippian			300	Massive limestone and shale.	Do.
Ordovician- Silurian		Ellenburger Group	-	Massive limestone.	Do.

Permian System

The Permian System is represented in Baylor County by rocks of the Wichita and Clear Fork Groups. The Wichita outcrops in the eastern two-thirds of the county and the Clear Fork in the western third. These beds dip gently to the west-northwest at about 20 to 40 feet per mile.

The Wichita Group consists of thin limestones, shales, siltstones, and sandstones, with some massive limestones and thin shales near the top of the group. To the south of Baylor County, this group is characterized by well-developed limestone beds interbedded with massive deposits of red and gray shale. Because of the persistence of these limestone beds, they have been used as markers or boundaries in delineating formations within the group. In places, these beds have also been cut by channel deposits of shale, sand, and gravel. In Baylor County and northward, however, the limestones are replaced by deposits of shale, siltstone, and sandstone making it difficult, if not impossible, to delineate the formations.

On or near the outcrop of these beds in Baylor County, small amounts of fresh to moderately saline ground water are produced from erratic local zones of low permeability. In the subsurface, especially in the western part of the county, these rocks produce only brines and may also produce some hydrocarbons.

The Clear Fork Group is generally made up of thin-bedded red siltstones, shales, and sandstones broken by thin erratic lenses of dolomite and calcareous shale. However, in Baylor County, much of the shale which is present as massive beds in the counties to the southwest has been replaced by redbed deposits of sandstone and siltstone. Some anhydrite is found in the subsurface, but it has generally been leached out on the surface exposures.

Small amounts of fresh to moderately saline water are produced from local erratic zones of low permeability at or near the outcrop of rocks of the Clear Fork Group in the county. Down dip these rocks produce only brines.

Quaternary System

The Quaternary System is represented by alluvial deposits of Pleistocene and Recent age. The Pleistocene sediments, named the Seymour Formation for outcrops in Baylor County, consist of interbedded alluvial gravels, sands, silts, and clays laid down by streams in a sheet deposit. These sediments were deposited on a highly eroded surface developed in the underlying Permian rocks and dip very slightly to the southeast (Figures 21 and 22). Recent erosion by the present stream network has reduced the Seymour to patches capping the stream divides. These older deposits often interfinger with more recent alluvial deposits. To the west of Baylor County, the formation contains a thin bed of volcanic ash debris which has been found over much of west and north-central Texas and has been dated as Pleistocene. The formation also contains bones of Pleistocene reptiles and mammals.

Though the Seymour is generally heterogeneous, there is a preponderance of coarser materials at the base, which adds to the water-bearing capability. These rocks produce small to moderate amounts of fresh to slightly saline water in Baylor County.

The Recent alluvium consists of scattered deposits of gravel, sand, silt, and clay developed in and near the floodplains of the rivers and their major tributaries. The alluvium dips generally downstream and toward the river. Many of the sediments which make up these Recent deposits were probably derived from the older Seymour Formation. The Recent alluvium produces small to moderate amounts of fresh to slightly saline water in Baylor County.

Regional Structure

The principal buried structural features affecting the attitude of strata in north-central Texas are illustrated on Figure 5. These structures include the Bend flexure, Red River uplift, Muenster arch, Fort Worth basin, eastern Midland shelf, Concho arch, and the Concho shelf.

Baylor County is on the northern extension of the Concho shelf and is bounded on the north by the Red River uplift. On the Concho shelf, the rocks of Pennsylvanian and Permian age form a westward-dipping homocline. Rock formations underlying the county dip west-northwest at about 40 feet per mile, excluding the channel-fill sandstones that occur in the Pennsylvanian and Permian rocks and the surficial deposits of Quaternary alluvium.

GENERAL GROUND-WATER HYDROLOGY

Ground-water occurrence in north-central Texas and Baylor County is erratic, the aquifers are small in extent and discontinuous, and the yields, in general, are small (less than 100 gallons per minute) to moderate (100 to 1,000 gallons per minute). However, ground

Figure 5.—Major Structural Features in North-Central Texas

water in this area conforms to the same fundamental principles of occurrence as that in other areas of the world.

Hydrologic Cycle

The hydrologic cycle is the sum total of processes and movements of the earth's moisture from the sea, through the atmosphere, to the land, and eventually, with numerous delays en route, back to the sea. All water occurring in Baylor County is derived from precipitation. The water available for use-whether from direct precipitation, streamflow, water from wells, or spring discharge—is captured in transit, and after its use and reuse, is returned to the hydrologic cycle. This cycle is graphically illustrated in Figure 6, which shows the continuing movement of water from the oceans through evaporation to precipitation and its return either directly or ultimately to the ocean.

Source and Occurrence of Ground Water

The ultimate source of all ground water is precipitation, either on the outcrop of the aquifer or through seepage or leakage from rocks above the aquifer. That small portion of the total precipitation which seeps

down through the soil mantle and reaches the water table (the top of the zone within which the voids or pore spaces of the rock material which makes up the aquifer are saturated) is called ground water.

Ground water is said to occur under either water-table (unconfined) or artesian (confined) conditions. Under water-table conditions, the top of the saturated zone is exposed to only the pressure of the atmosphere. When a well taps a water-table aquifer, the water will not rise above the point at which it is encountered. Artesian conditions exist when the aquifer is bounded by an impervious bed and the water is under hydrostatic pressure. When a well taps an artesian aquifer, the water will stand at some point above the top of the aquifer and if the land surface at the well is sufficiently lower than the land surface at the aquifer's outcrop area, the water will flow.

Recharge, Movement, and Discharge of Ground Water

Recharge is the process by which water is added to an underground water-bearing formation (aquifer), whether by direct precipitation on the outcrop, or by subsequent seepage from surface streams, lakes, or overlying rocks. Factors which control the amount of recharge received by any aquifer are the amount and frequency of precipitation, the area and extent of the outcrop, the topography, the type and amount of vegetation, the type and condition of the soil in the outcrop area, and the capacity of the formation to accept recharge.

The direction and rate of movement of water through a porous medium, such as any geologic formation, is influenced by a variety of factors which include the physical nature of the formation-its composition and configuraton; the external pressures applied on the formation; and the fundamental physical laws of gravity and momentum. Also included in these factors are surface tension, friction, atmospheric pressure where the formation encounters the earth's surface, paths of differential permeability, effects of heavy local withdrawal or injection of water, and climatic changes affecting rates of recharge. Generally, however, ground-water movement is from areas of recharge to areas of discharge, and the normal rates of movement are on the order of a few feet to a few tens of feet per year. The steepening of the slope of the water table or piezometric surface around a pumped well will significantly increase the rate of ground-water movement and increase the flow toward the well.

Discharge is any process which removes water from storage within an aquifer whether by natural or artificial means. Natural discharge is outflow from springs and seeps, the baseflow (underflow) to streams, evaporation, transpiration by plants whose root systems reach the water table, and loss through interformational leakage. Artificial discharge is usually pumpage by wells.

Hydraulic Characteristics of an Aquifer

The capacity of an aquifer to hold, transmit, or to yield water to wells depends on several factors which include not only the lithology and grain size of the sediments, but also the porosity and permeability and the coefficients of transmissibility and storage. Also, these factors will vary not only from aquifer to aquifer, but from place to place within an aquifer. Therefore, an aquifer may be more productive in some areas than in others.

Porosity

Porosity is a measure of the volume of pore space within a sediment expressed as a percentage of the total volume of the sediment. It will vary not only with the shape and size of the particles which comprise an aquifer, but also with the sorting of grain sizes and types, and with the amount of compaction and cementation the sediments have undergone. Generally deeper aquifers have undergone a greater degree of compaction and cementation and will generally have a lower porosity than shallow aquifers with similar shapes, sizes, and sorting of grains. The porosity of sedimentary materials ranges from zero to greater than 50 percent. Some representative ranges are given in the following table (Todd, 1959, p. 16):

MATERIAL	POROSITY (percent)
Soils	50-60
Clay	45-55
Silt	40-50
Medium to coarse mixed sand	35-40
Uniform sand	30-40
Fine to medium mixed sand	30-35
Gravel	30-40
Gravel and sand	20-35
Sandstone	10-20
Shale	1-10

Permeability

Permeability is the measure of a sediment's ability to transmit water. It depends not only on the size and number of pore spaces or voids within the sediment, but also on the degree of interconnection of these voids. The coefficient of permeability is expressed as the number of gallons of water moving in 1 day through a vertical section of the aquifer 1 foot square and having a hydraulic gradient of 1 foot per foot or 45 degree slope. Meinzer (1942, p. 453) states that personnel of the United States Geological Survey have measured, in the hydrologic laboratory, coefficients of permeabilities of natural earth materials ranging from about 0.0002 to about 90,000 gpd/ft² (gallons per day per square feet).

Transmissibility

The coefficient of transmissibility is defined as the number of gallons of water that will move in 1 day through a vertical strip of the aquifer 1 foot wide and extending the full saturated thickness of the aquifer, at a hydraulic gradient of 1 foot per foot or a slope of 45 degrees. Thus, the coefficient of transmissibility is the coefficient of permeability applied over the entire saturated thickness of an aquifer.

Storage

The coefficient of storage is a measure of the capacity of an aquifer to yield water. It is defined as the volume of water that is released from or taken into storage by an aquifer per unit surface area of the aquifer per unit change in the component of the head normal to that surface (Todd, 1959, p. 31).

Under artesian conditions, water is yielded due to compression of the sediments and expansion of the water when the piezometric surface is lowered. Under water-table conditions, the yield is due to the influence of gravity and the coefficient of storage is equal to the specific yield. Because of the vast change in pressure needed to produce large amounts of water under artesian conditions, the coefficient of storage is generally much smaller than in aquifers under water-table conditions. Because of these differences, a well pumping from an artesian aquifer will produce a large cone of depression in the piezometric surface in a very short period of time, whereas a well pumping from a water-table aquifer will develop a much smaller cone of depression in the water-table over a much longer period of time. Although no definite limits have been established, Ferris and others (1962) place the range of coefficients of storage for artesian aquifers from about 0.00001 to 0.001 and for water-table aquifers from about 0.05 to 0.30.

Changes in Water Levels

Changes in water levels are due to many causes. Some are of regional significance, whereas others are extremely local. The more significant causes of water-level fluctuations are changes in recharge and discharge. When recharge is reduced, as in the case of a drought, some of the water discharged from the aquifer must be withdrawn from storage and water levels decline. The water levels may be lowered sufficiently to dry up springs or shallow wells. However, when adequate rainfall resumes, the volume of water drained from storage in the aquifer during the drought may be replaced and water levels will rise accordingly. When a water well is pumped, water levels in the vicinity are drawn down in the shape of an inverted cone with its apex at the pumped well. This cone of depression in the water table is illustrated in the following diagram.

The development of this cone depends on the aquifer's coefficients of transmissibility and storage, and on the rate of pumping. As pumping continues, the cone expands and continues to do so until it intercepts a source of replenishment capable of supplying sufficient water to satisfy the pumping demand. This source of replenishment can be either intercepted natural discharge or induced recharge. If the quantity of water received from these sources is sufficient to compensate for the water pumped, the growth of the cone will cease and a balance between recharge and discharge is achieved. In areas where recharge or salvageable natural discharge is less than the amount of water pumped from wells, water is removed from storage in the aquifer to

supply the deficiency and water levels will continue to decline.

Where intensive development has taken place in ground-water reservoirs, each well superimposes its own individual cone of depression on the cone of neighboring wells. This results in the development of a regional cone of depression. When the cone of one well overlaps the cone of another, interference occurs and an additional lowering of water levels occurs as the wells compete for water by expanding their cones of depression. The amount or extent of interference between cones of depression depends on the rate of pumping from each well, the spacing between wells, and the hydraulic characteristics of the aquifer in which the wells are completed. The effects of interference between pumping wells are illustrated in the following diagram.

Water levels in some wells, especially those completed in artesian aquifers, have been known to fluctuate in response to such phenomena as changes in barometric pressure, tidal force, and earthquakes. However, the magnitude of the fluctuations are usually very small.

GENERAL CHEMICAL QUALITY OF GROUND WATER

All ground water contains dissolved-mineral constituents. The type and concentration depend upon the source, movement, and environment of the ground water. Water derived from precipitation is relatively free of mineral matter, but because water has considerable solvent power, it dissolves minerals from the soil and rocks through which it passes. Therefore, the differences in chemical character of ground water reflect, in a general way, the nature of the geologic formations and the soils that have been in contact with the water. The concentration of dissolved solids generally increases with depth, especially where the movement of the water is restricted. Rocks deposited under marine conditions will contain brackish or highly mineralized water unless flushing by fresh water has been accomplished. This flushing action will occur in the outcrop area and a limited distance downdip, depending in part upon the permeability of the rocks.

The chemical quality of ground water that has not been artificially altered is relatively constant, as is the temperature of ground water, which makes it highly desirable for many uses. Included among the factors determining the suitability of ground water as a supply are the limitations imposed by the intended use of the water. Criteria have been developed to cover most categories of water quality, including bacterial content, physical characteristics, and chemical constituents. Water-quality problems associated with the first two categories can usually be alleviated economically, but the removal of undesirable chemical constituents can be difficult and expensive. The source and significance of the principal dissolved-mineral constituents occurring in ground water are summarized in Table 2.

For many purposes the dissolved-solids content constitutes a major limitation of the use of water. A general classification of water by Winslow and Kister (1956, p. 5) based on dissolved-solids content, in mg/l (milligrams per liter), is as follows:

DESCRIPTION	DISSOLVED-SOLIDS CONTENTS (mg/l)
Fresh	Less than 1,000
Slightly saline	1,000 to 3,000
Moderately saline	3,000 to 10,000
Very saline	10,000 to 35,000
Brine	More than 35,000

Table 2.-Source and Significance of Dissolved-Mineral Constituents and Properties of Water

CONSTITUENT		
OR PROPERTY	SOURCE OR CAUSE	SIGNIFICANCE
Silica (SiO ₂)	Dissolved from practically all rocks and soils, commonly less than 30 mg/l. High concentra- tions, as much as 100 mg/l, gener- ally occur in highly alkaline waters.	Forms hard scale in pipes and boilers. Carried over in steam of high pressure boilers to form deposits on blades of turbines. Inhibits deterioration of zeolite-type water softeners.
iron (Fe)	Dissolved from practically all rocks and soils. May also be derived from iron pipes, pumps, and other equipment. More than 1 or 2 mg/l of iron in surface waters generally indicates acid wastes from mine drainage or other sources.	On exposure to air, iron in ground water oxidizes to reddish- brown precipitate. More than about 0.3 mg/lstains laundry and utensils reddish-brown. Objectionable for food processing, tex- tile processing, beverages, ice manufacture, brewing, and other processes. U.S. Public Health Service (1962) drinking-water standards state that iron should not exceed 0.3 mg/l. Larger quantities cause unpleasant taste and favor growth of iron bacteria.
Calcium (Ca) and magnesium (Mg)	Dissolved from practically all soils and rocks, but especially from limestone, dolomite, and gypsum. Calcium and magnesium are found in large quantities in some brines. Magnesium is present in large quantities in sea water.	Cause most of the hardness and scale-forming properties of water; soap consuming (see hardness). Waters low in calcium and magnesium desired in electroplating, tanning, dyeing, and in textile manufacturing.
Sodium (Na) and potassium (K)	Dissolved from practically all rocks and soils. Found also in ancient brines, sea water, indus- trial brines, and sewage.	Large amounts, in combination with chloride, give a salty taste. Moderate quantities have little effect on the usefulness of water for most purposes. Sodium salts may cause foaming in steam boilers and a high sodium content may limit the use of water for irrigation.
Bicarbonate (HCO $_3$) and carbonate (CO $_3$)	Action of carbon dioxide in water on carbonate rocks such as lime- stone and dolomite.	Bicarbonate and carbonate produce alkalinity. Bicarbonates of calcium and magnesium decompose in steam boilers and hot water facilities to form scale and release corrosive carbon dioxide gas. In combination with calcium and magnesium, cause carbon- ate hardness.
Sulfate (SO ₄)	Dissolved from rocks and soils containing gypsum, iron sulfides, and other sulfur compounds. Commonly present in mine waters and in some industrial wastes.	Scifate in water containing calcium forms hard scale in steam boilers. In large amounts, sulfate in combination with other ions gives bitter taste to water. Some calcium sulfate is considered beneficial in the brewing process. U.S. Public Health Service (1962) drinking-water standards recommend that the sulfate content should not exceed 250 mg/l.
Chloride (Cl)	Dissolved from rocks and soils. Present in sewage and found in large amounts in ancient brines, sea water, and industrial brines.	In large amounts in combination with sodium, gives salty taste to drinking water. In large quantities, increases the corrosiveness of water. U.S. Public Health Service (1962) drinking-water stan- dards recommend that the chloride content should not exceed 250 mg/l.
Fluoride (F)	Dissolved in small to minute quantities from most rocks and solls. Added to many waters by fluoridation of municipal sup- plies.	Fluoride in drinking water reduces the incidence of tooth decay when the water is consumed during the period of enamel calcification. However, it may cause mottling of the teeth, depending on the concentration of fluoride, the age of the child, amount of drinking water consumed, and susceptibility of the individual. (Maier, 1950)
Nitrate (NO ₃)	Decaying organic matter, sewage, fertilizers, and nitrates in soil.	Concentration much greater than the local average may suggest pollution. U.S. Public Health Service (1962) drinking-water standards suggest a limit of 45 mg/l. Waters of high nitrate content have been reported to be the cause of methemoglo- binemia (an often fatal disease in infants) and therefore should not be used in infant feeding. Nitrate has been shown to be helpful in reducing inter-crystalline cracking of boiler steel. It encourages growth of algae and other organisms which produce undesirable tastes and odors.
Dissolved solids	Chiefly mineral constituents dis- solved from rocks and soils. Includes some water of crystalli- zation.	U.S. Public Health Service (1962) drinking-water standards recommend that waters containing more than 500 mg/l dissolved solids not be used if other less mineralized supplies are available. Waters containing more than 1000 mg/l dissolved solids are unsultable for many purposes.
Hardness as CaCO ₃	In most waters nearly all the hardness is due to calcium and magnesium, All the metallic cations other than the alkali metals also cause hardness.	Consumes soap before a lather will form. Deposits soap curd on bathtubs. Hard water forms scale in boilers, water heaters, and pipes. Hardness equivalent to the bicarbonate and carbonate is called carbonate hardness. Any hardness in excess of this is called non-carbonate hardness. Waters of hardness as much as 60 ppm are considered soft; 61 to 120 mg/l, moderately hard; 121 to 180 mg/l, hard; more than 180 mg/l, very hard.
Specific conductance (micromhos at 25°C)	Mineral content of the water.	Indicates degree of mineralization. Specific conductance is a measure of the capacity of the water to conduct an electric current. Varies with concentration and degree of ionization of the constituents.
Hydrogen ion concentration (pH)	Acids, acid-generating salts, and free carbon dioxide lower the pH. Carbonates, bicarbonates, hydrox- ides, and phosphates, silicates, and borates raise the pH.	A pH of 7.0 indicates neutrality of a solution. Values higher than 7.0 denote increasing alkalinity; values lower than 7.0 indicate increasing acidity. pH is a measure of the activity of the hydrogen ions. Corrosiveness of water generally increases with decreasing pH. However, excessively alkaline waters may also attack metals.

Relationship of Water Quality to Use

Irrigation

The suitability of water for irrigation purposes depends not only on the chemical quality of the water, but also on soil composition and texture, irrigation practices, types of crops grown, climate, and drainage. In consideration of the quality of water for irrigation, both the concentration and composition of the dissolved constituents are important. The chemical characteristics that seem to be most important in evaluating the quality of water for irrigation are: (1) the relative proportion of sodium to the other cations (called the percent sodium), (2) the sodium-adsorption ratio, (3) the total concentration of soluble salts (usually expressed as the specific conductance), (4) the amount of residual sodium carbonate, and (5) the concentration of boron.

The U.S. Salinity Laboratory Staff (1954, p. 69-82) proposed a system of classification that is commonly used for judging the suitability of water for irrigation use. As shown in Figure 7, the classification is

Figure 7.-Classification of Irrigation Waters Showing Quality of Water From Representative Irrigation Wells in Baylor County (After U.S. Salinity Laboratory Staff, 1954, p. 80)

based on plotting the salinity hazard as measured by the electrical conductivity (specific conductance) against the sodium hazard as measured by the sodium-adsorption ratio (SAR). The SAR is used to express the relative activity of sodium ions in exchange reactions with soil and is defined by the equation:

$$SAR = \frac{Na^{+}}{\sqrt{\frac{Ca^{++} + Mg^{++}}{2}}}$$

where Na⁺, Ca⁺⁺, and Mg⁺⁺ represent the concentrations in milliequivalent per liter (me/I) of the respective ions.

In general, water with low salinity and sodium hazards is suitable for all crops. Water with a high salinity or sodium hazard is unsuitable for continuous irrigation of crops, except those which have a high salinity tolerance and only then under certain ideal soil and drainage conditions. The percent sodium and sodium-adsorption ratio are used to express the relative amount of sodium ions in the water as compared to the amount of calcium and magnesium ions. When water with a high SAR and percent sodium is placed upon soils which are tight and do not drain well, the sodium ions in the water will replace calcium and magnesium ions in the soil. The resulting sodium compounds tend to make the soil highly plastic and will hinder tilling operations and lower the permeability of the soil.

High concentrations of dissolved solids in irrigation water disrupt the osmotic exchange of water between plants and the soil solution (the soil and the water contained in it). This osmotic exchange usually occurs when soil water, with a relatively low concentration of dissolved solids, moves into the root system of a plant to a relatively high concentration of dissolved solids within the plant. When the concentration of dissolved solids in the soil becomes too high, the osmotic exchange may reverse and the plants may lose water, wilt, and die. Also, high concentrations of some ions are toxic to plants. Chloride and sulfate are probably the most injurious that are often found in high concentrations in ground water.

The residual sodium carbonate (RSC) factor is used in assessing the quality of water for irrigation because excessive sodium carbonate concentrations cause soils to break down and lose their permeability, resisting the movement of air and water. Alkali soils will develop and the soil will lose its ability to support plant life. Wilcox (1955, p. 11) gives the following limits for RSC for irrigation waters: above 2.6 me/l (milliequivalents per liter) is not suitable for irrigation, 1.25 to 2.6 me/l is marginal, and water containing less than 1.25 me/l is probably safe.

Boron in irrigation water is essential to plant growth, but only in very small amounts. A deficiency of boron may seriously injure plants. On the other hand, concentrations as low as 1 mg/l may harm plants which are sensitive to boron. As an example, lemons show definite and, at times, economically important injury when irrigated with water containing 1 mg/l of boron, while alfalfa will make maximum growth with water containing 1 to 2 mg/l boron. The following table is often used as a guide in rating irrigation water in relation to boron.

Permissible Limits for Boron of Several Classes of Irrigation Water

CLASSES	OF WATER	SENSITIVE	SEMITOLERANT	TOLERANT
RATING	GRADE	CROPS (mg/l)	CROPS (mg/I)	CROPS (mg/l)
1	Excellent	0.33	0.67	1.00
2	Good	0.33 to 0.67	0.67 to 1.33	1.00 to 2.00
3	Permissible	0.67 to 1.00	1.33 to 2.00	2.00 to 3.00
4	Doubtful	1.00 to 1.25	2.00 to 2.50	3.00 to 3.75
5	Unsuitable	> 1.25	> 2.50	> 3.75

Under most normal conditions of irrigation, however, it is not the quality of the irrigation water that directly affects the growing plants. It is the chemical quality and characteristics of the soil solution. The soil solution always contains a higher concentration of minerals than irrigation water, generally four to eight times as much. In tight soils and fields with poor drainage, application of irrigation water with high or even moderate salinity and sodium hazards will increase the mineral concentration of the soil solution. Sandy soils with relatively high permeabilities and good drainage will allow the excess mineral content to be flushed or leached out by application of large amounts of water. Because of this, water of very poor quality may be used for irrigation if the soil conditions are right and care is taken to select crops with high tolerances for the minerals contained in the water.

Industrial

Ground water used for industry may be classified into four principal categories: cooling water, boiler water, process water, and water used for secondary recovery of oil by water injection.

Although cooling water is usually selected on the basis of its temperature and source of supply, its chemical quality is also significant. Any characteristic that may adversely affect the heat-exchange surface is undesirable. Substances such as magnesium, calcium, iron, and silica may cause the formation of scale. Another objectionable feature that may be found in cooling water is corrosiveness caused by calcium and magnesium chlorides, sodium chloride in the presence of magnesium, acids, oxygen, and carbon dioxide.

Boiler water used for production of steam requires high quality-of-water standards, since extreme temperature and pressure conditions intensify the problems of corrosion and incrustation. Under these conditions, the presence of silica is particularly undesirable as it forms a hard scale or incrustation.

Water coming in contact with, or incorporated into, manufactured products is termed "process water" and is subject to a wide range of quality requirements. These requirements involve physical, biological, and chemical factors. Water used in the manufacture of textiles must be low in dissolved-solids content and free of iron and manganese, which could cause staining. The beverage industry normally requires water free of iron, manganese, and organic substances.

Water used for injection in the secondary recovery of oil is generally that water taken from the oil reservoir. However, this water—usually brine—must generally be supplemented in order to meet the requirements of volume. Careful control must be exercised over the injected water with regard to suspended solids, dissolved gases, microbiological growths, and mineral constituents. Suspended solids in the water, of course, can cause plugging of the reservoir. Hydrogen sulfide, carbon dioxide, and oxygen all have corrosive effects on well equipment, and oxygen reacting with the metallic ions, primarily iron (Fe^{+++}), will cause plugging of the reservoir. Organisms such as iron bacteria, algae, and fungi have an effect of plugging the reservoir or pumping equipment, and the sulfate reducers have a corrosive effect.

Insofar as the mineral constituents are concerned, iron and manganese are undesirable as they cause plugging in injection wells. Sulfates are of interest from a standpoint of deposition. Water that is high in sulfate should not be mixed with water containing appreciable amounts of barium, because this would result in formation of barium sulfate with a very low solubility. The pH value is also significant when corrosion control and the solubilities of calcium carbonate and iron are considered. The higher the pH, the more difficult it is to maintain iron in solution and to keep calcium scale from forming.

Public Supply

The U.S. Public Health Service has established standards for drinking water to be used on common carriers engaged in interstate commerce. The standards are designed primarily to protect the traveling public and are often used to evaluate public water supplies. According to these standards, chemical constituents should not be present in the water supply in excess of the listed concentrations except where more suitable supplies are not available. Some of the standards adopted by the U.S. Public Health Service (1962, p. 7-8) are as follows:

SUBSTANCE	CONCENTRATION (mg/l)
Chloride (Cl)	250
Fluoride (F)	(*)
Iron (Fe)	.3
Manganese (Mn)	.05
Nitrate (NO ₃)	45
Sulfate (SO ₄)	250
Dissolved solids	500

* When fluoride is present naturally in drinking water, the concentration should not average more than the appropriate upper limit shown in the following table:

ANNUAL AVERAGE OF MAXIMUM DAILY AIR TEMPERATURES (°F)		RECOMMENDED CONTROL LI OF FLUORIDE CONCENTRATI (mg/l)	
	LOWER	OPTIMUM	UPPER
50.0 to 53.7	0.9	1.2	1.7
53.8 to 58.3	.8	1.1	1.5
58.4 to 63.8	.8	1.0	1.3
63.9 to 70.6	.7	.9	1.2
70.7 to 79.2	.7	.8	1.0
79.3 to 90.5	.6	.7	.8

Water having concentrations of chemical constituents in excess of the recommended limits may be objectionable for many reasons. According to Maxcy (1950, p. 271), water containing nitrate in excess of 45 mg/l has been related to the incidence of infant cyanosis (methemoglobinemia or "blue baby" disease). A high nitrate concentration is often, but not always, indicative of pollution from organic matter, commonly human or livestock wastes. Iron and manganese in excessive concentrations cause reddish-brown or dark-gray precipitates, which stain clothing and plumbing fixtures. Sulfate in water in excess of 250 mg/l may produce a laxative effect, and water containing chloride exceeding 250 mg/l may have a salty taste. Fluoride in concentrations of about 1 mg/l may reduce the incidence of tooth decay, but excessive concentrations may cause teeth to become mottled (Dean, Arnold, and Elvove, 1942, p. 1155-1159).

Hardness in water is caused principally by calcium and magnesium. Excessive hardness causes increased consumption of soap and induces the formation of scale in hot water heaters and water pipes. The following table shows the commonly accepted standards and classifications of water hardness:

HARDNESS RANGE (mg/l)	CLASSIFICATION
60 or less	Soft
61 to 120	Moderately hard
121 to 180	Hard
More than 180	Very hard

Changes in Chemical Quality

One of the major assets of ground-water supplies is general uniformity of chemical quality and the temperature. The increased demands on an aquifer caused by heavy pumpage, however, may impose new hydrologic conditions on the aquifer which in turn may bring about alteration of the chemical quality of the water produced. This can be dramatically illustrated by the aquifers along the Texas Gulf Coast. The Gulf Coast aquifer consists of several hundred feet of interbedded sands, silts, and shales which dip generally south beneath the Gulf. Under normal conditions, the hydrostatic pressure of fresh water being added to the aquifer's outcrop area keeps the salt water, which occurs far down dip beneath the Gulf, pushed back and an interface is formed between the two waters. Heavy pumpage along the coast, however, will often sufficiently lower the hydrostatic pressure so that salt water may invade the zones that formerly contained fresh water. This type of problem is often found in coastal aquifers.

Water stratification within an aquifer may also cause a problem. Often water quality may vary vertically within an aquifer, and usually the poorer quality water will be found lower in the formation. Heavy development and pumping of an aquifer with this type of stratification may bring drastic changes in the quality of water produced as the amount of good or at least better quality water is reduced and more and more of the poorer quality water is brought into the wells.

Ground-water aquifers are also in danger of pollution from other sources, especially from man's activities. This is true of all aquifers, but especially of shallow water-table aquifers. Municipal and domestic sewage systems (including septic tanks), the wastes from barnyards and feedlots, industrial wastes, and oil-field brine that is improperly disposed of can enter into ground water and render it unfit for most uses.

Treatment of Water

Water that does not meet the requirements of a municipal or industrial user commonly can be treated by various methods so that it will become usable. Treatment methods include softening, aeration, filtration, cooling, dilution or the blending of poor and good quality waters, and addition of chemicals. The limiting factor in treatment is cost. Each water may require a different treatment method which should be designed for that particular water and its intended use. However, once a treatment is established it probably will not have to be changed as the chemical characteristics of uncontaminated ground water remain fairly constant.

OCCURRENCE AND QUALITY OF GROUND WATER

In Baylor County, fresh to moderately saline water is produced from rocks of the Permian and Quaternary Systems. Brines are produced from formations ranging from Cambrian to Permian in age, and are used in secondary recovery and pressure-maintenance oil-field operations. The chemical quality of these brines is discussed later.

Permian rocks of the Wichita and Clear Fork Groups outcrop throughout Baylor County, except in local areas where they are covered by Quaternary alluvial deposits of the Pleistocene and Recent Epochs. Small amounts of ground water are found within shallow, erratic zones of low permeability on or near the outcrop of the Permian rocks, and small to moderate amounts of good quality water are produced from the alluvial sands and gravels of Quaternary age.

During this study, 529 wells, springs, and test holes were inventoried. Seven wells that were inventoried produce or have produced brine from rocks of Permian, Pennsylvanian, and Cambrian ages. Twenty-one test holes were drilled for geologic data. Nine of these test holes were cored and used as observation wells in conducting pumping tests. Electric logs of 12 oil tests (Table 11) were used to construct the geologic cross sections. The largest number (97 percent) of wells were developed in rocks of Quaternary age. The remaining 3 percent of the wells were developed in rocks of the Permian or the Permian in combination with the Quaternary alluvium. There were 228 irrigation wells, 114 domestic and livestock wells, 20 public supply wells, and 10 industrial wells in use. The locations of wells, springs, and test holes are shown on Figure 16.

Water samples were collected for chemical analysis from 183 wells and springs in Baylor County. These analyses are shown on Table 8. There was a wide variety in the chemical quality of water from wells. The following table shows the number of samples falling within various ranges:

RANGE IN DISSOLVED SOLIDS (mg/l)	NUMBER OF ANALYSES	PERCENT OF TOTAL ANALYSES
500 or less	22	12.02
501 to 1,000	72	39.35
1,001 to 1,500	47	25.68
1,501 to 2,000	22	12.02
2,001 to 3,000	8	4.37
Over 3,000	12	6.56

The dissolved solids content of these samples ranged from 240 to 7,870 mg/l. The wide variation in the chemical quality is also reflected in the concentrations of the principal chemical constituents in the samples. The following table gives the ranges in concentration of the principal ions present in ground water:

CHEMICAL CONSTITUENT	MAXIMUM CONCEN- TRATION (mg/l)	MINIMUM CONCEN- TRATION (mg/l)
Silica	98	4
Calcium	680	6
Magnesium	500	5
Sodium	2,040	12
Bicarbonate	1,760	20
Sulfate	1,660	7
Chloride	3,240	5

CHEMICAL CONSTITUENT	MAXIMUM CONCEN- TRATION (mg/l)	MINIMUM CONCEN- TRATION (mg/l)
Fluoride	8.0	< .1
Nitrate	781	< .4

Wells high in dissolved solids and chlorides are possibly contaminated by oil-field brines. Wells high in nitrates are possibly contaminated with biological wastes. The location of wells sampled, well depth, and the chloride, sulfate, and dissolved-solids contents are shown on Figure 8.

Permian System

Wichita Group

Rocks of the Wichita Group cover about the eastern two-thirds of Baylor County, except in areas where they are overlain by Quaternary alluvial deposits. These rocks dip westward beneath the overlying Clear Fork Group.

Four wells were inventoried which produce or have produced small amounts of fresh to moderately saline water from rocks of the Wichita Group in the county. This water is found in erratic, discontinuous zones of generally low permeability at or near the outcrop.

Water samples were collected during the course of this study from two of the four wells completed in rocks of the Wichita Group. A previous analysis was available on well 21-40-501. A comparison of these three analyses shows that the water produced from these rocks is of poor quality. The water is high in chlorides, sulfates, and dissolved solids. One well, 21-40-524, completed in the Wichita Group and the Recent alluvium, has water that is of much better quality than the water from wells penetrating only the Wichita Group. This is indicated in the following table:

WELL	DISSOLVED SOLIDS (mg/l)	CHLORIDE (mg/I)	SULFATE (mg/l)	NITRATE (mg/I)
		WICHITA GROUP		
21-37-905	2,480	356	1,100	184.8
38-203	4,270	2,040	530	42
40-501	5,075	1,355	1,384	anti-
	RECENT	ALLUVIUM AND WICHITA	GROUP	
21-40-524	750	75	106	23.0

The relatively high nitrate concentration of water from wells 21-37-905 and 21-38-203 indicates the possibility of biological contamination. Well 21-38-203 is possibly contaminated by either a septic tank or from a nearby barnyard. The nitrate content in water from well 21-37-905 appears to be a natural occurrence since no houses or barnyards are nearby.

The high chloride concentration of water from well 21-38-203 is a possible indication of contamination from oil-field brines. Since water from well 21-40-501 contained as high a concentration of sulfate as of chloride, it is likely the high concentrations are due to natural mineralization which is common in areas of Permian outcrop. This would probably also explain the high sulfate content of water from well 21-37-905.

Water from only one well (21-38-203) is being used at the present time, but all wells have been used in the past for domestic and livestock supplies.

Three of the wells inventoried, which produce water from the Wichita Group, were hand dug and cased with rock or concrete. Well 21-40-501 was reported drilled and cased with small diameter steel oil-field casing. The wells are equipped with windmills or small jet electric pumps which produce less than 10 gpm (gallons per minute).

Clear Fork Group

The Clear Fork Group outcrops in the western third of Baylor County and yields small amounts of water from local zones of generally low permeability at or near the outcrop. During this study, three wells were inventoried which produce water from rocks of this group. Five other wells were found which produce commingled waters from these rocks and the Seymour Formation.

Samples were collected from each of the wells that produce water exclusively from the rocks of the Clear Fork Group. Two of these wells (21-21-924 and 21-30-119) produce water of fairly good quality, but the third well contained poor quality water. The following table lists the concentrations of several predominant minerals for the three samples:

DISSOLVED SOLIDS		SHLEATE	000,0000
(mg/l)	(mg/l)	(mg/l)	NITRATE (mg/l)
396	208	7	18.0
3,510	1,010	500	781.0
580	58	86	< .4
	SOLIDS (mg/l) 396 3,510	SOLIDS CHLORIDE (mg/l) 396 208 3,510 1,010	SOLIDS (mg/l) CHLORIDE (mg/l) SULFATE (mg/l) 396 208 7 3,510 1,010 500

The high chloride content of well 21-29-311 indicates the possibility of contamination. The extremely high concentration of nitrate in this well (781 mg/l) is possibly the result of pollution from a nearby septic tank or other source of biological waste.

Samples were collected for chemical analysis for the five wells which produce or have produced water from rocks of the Clear Fork Group and the Seymour Formation. These analyses show this water to be of poor quality as indicated by the following table:

	DISSOLVED			
WELL	SOLIDS (mg/l)	CHLORIDE (mg/l)	SULFATE (mg/l)	NITRATE (mg/l)
21-29-202	1,560	290	189	322.3
802	4,830	1,920	600	570
902	3,820	1,590	570	231.0
30-126	1,230	170	201	12.0
701	4,250	1,270	700	496

The high chlorides and dissolved solids of three of the wells may be due to contamination by oil-field brines. The extremely high nitrate concentration in four of the wells is possibly due to waters from nearby septic tanks and barnyards. Most of these wells are hand dug and lined with either fieldstone or concrete.

Seven of the eight wells completed in the Clear Fork and the Clear Fork and Seymour are in use or have been used in the past for domestic or livestock supply. Four wells (21-29-202, 21-29-902, 21-30-126, and 21-30-701) are still in use. Water from wells which contain high chloride and nitrate concentrations should probably not be used for domestic and livestock supply. Water from well 21-30-126 is used to supply the Baylor County Precinct 1 road barn, and is probably of good enough quality for almost any use.

Quaternary System

Pleistocene Series

The Pleistocene Series of rocks is represented in Baylor County by the deposits of the Seymour Formation, which are found in irregular patches capping some of the stream divides within the county and the surrounding area. These deposits are especially well developed in an area just north and northwest of the city of Seymour between the Wichita and Brazos Rivers. Most of the wells that produce water from the Seymour Formation in the county are found within this area.

A total of 387 wells and springs were inventoried which produce or have produced water from the Seymour Formation. Eighty-three wells were unused at the time of this study. Of the remaining 304 wells, the use of water was as follows: domestic and livestock, 73; public supply, 20; industrial, 6; and irrigation, 205.

Chemical analyses were conducted on samples collected from 113 wells and springs during this study. Previous analyses also were available on samples from twelve wells. The ranges in dissolved-solids content of the water samples are as follows:

RANGE IN DISSOLVED SOLIDS (mg/l)	NUMBER OF ANALYSES	PERCENT OF TOTAL ANALYSES	CUMULATIVE PERCENT
500 or less	13	11.50	11.50
501 to 1,000	47	41.60	53.10
1,001 to 1,500	33	29.20	82.30
1,501 to 2,000	12	10.62	92.92
2,001 to 3,000	4	3.54	96.46
Over 3,000	4	3.54	100.00

The dissolved-solids concentrations ranged from 304 to 7,800 mg/l which indicates the quality of water within the Seymour is variable, but generally is fresh to slightly saline since more than 96 percent of the analyses contain less than 3,000 mg/l dissolved solids.

There are some wide variations in the ranges of the principal chemical constituents as shown in the following table:

CHEMICAL CONSTITUENT			MO	GE <u>G/L</u>	
Silica	7		to	98	
Calcium	11		to	360	
Magnesium	7		to	500	
Sodium	21		to	2,040	
Bicarbonate	196	1	to	1,220	
Sulfate	16	;	to	1,660	
Chloride	E	;	to	3,110	
Fluoride					
Nitrate	<	.4	to	525	
Boron		.1	to	2.7	

Many of the samples contain higher concentrations of chloride, sulfate, and nitrate than is recommended by the U.S. Public Health Service (1962, p. 7-8). Thirty-eight samples contain chloride concentrations higher than 250 mg/l, twenty-five contain sulfate concentrations higher than 250 mg/l, and thirty-six contain nitrate concentrations higher than the recommended 45 mg/l.

Although salt-water contamination does not seem to have been extensive in the Seymour Formation, water from a few of the wells which contain high concentrations of chloride possibly have been contaminated by oil-field brines, or other contaminants. Chloride and dissolved-solids concentrations of these wells are shown below:

WELL	CHLORIDE (mg/l)	DISSOLVED SOLIDS (mg/l)
21-22-910	3,110	7,800
30-907	1,450	3,060
803	2,300	6,200

Possible pollution from septic tanks, and the outwash from barnyards and small feedlots does seem to be a problem. Of the 36 samples which contained concentrations of nitrate higher than the recommended 45 mg/l, the following 16 contained more than 100 mg/l:

WELL	NITRATE CONCENTRATION (mg/l)
21-21-602	143.0
701	110.0
925	420.0
22-710	197.4
849	273.0
904	525
29-305	122.3
801	483
30-108	110.0

WELL	NITRATE CONCENTRATION (mg/l)
115	273
116	210
601	156.0
607	202
31-102	210
803	270
39-202	416.0

Water from several of these wells is still used for domestic supplies.

Analyses made prior to this investigation indicate that the chemical quality of Seymour water generally has remained fairly constant. However, a comparison of analyses from wells 21-22-901, 21-30-601, and 21-40-520 indicates substantial improvement in chloride and dissolved-solids content as indicated by the following table:

WELL	CHLO	CHLORIDE CONTENT (mg/I)		DISSOLVE CONT (mg	FENT
	PREVIOUS ANALYSIS		RECENT ANALYSIS	PREVIOUS	RECENT ANALYSIS
21-22-901	2,000		560	NAME OF A DESCRIPTION OF A	in the second
30-601	640		387	2,540	1,520
40-520	401		37	1,318	710

Except for a few wells which are possibly contaminated, water from the Seymour Formation is generally of acceptable quality for use in domestic, livestock, and public supplies.

Because the quality standards of water for different industrial purposes vary so widely depending on the particular needs of the industry using the water, no definite general statement may be made about the use of water from the Seymour Formation for industrial use. However, the quality as indicated by chemical analyses of samples would be suitable for many industrial uses.

The major use of water from the Seymour Formation is for irrigation. In Baylor County, the crops most often irrigated include cotton, maize, wheat, and some coastal bermuda. In judging the suitability of water for irrigation, several factors of water quality, soil type, and topography must be taken into consideration.

As discussed previously, the water-quality factors which affect the use of water for irrigation are the salinity hazard, the sodium hazard, the residual sodium carbonate hazard, and the boron hazard.

The ranges of specific conductance (the measure of salinity hazard) of the water samples collected from wells producing from the Seymour Formation are shown in the following table:

SPECIFIC CONDUCTANCE RANGE (micromhos at 25°C)	NUMBER OF ANALYSES	PERCENT OF TOTAL ANALYSES	CUMULATIVE PERCENT
Less than 250	0	0	0
250 to 750	11	9.73	9.73

SPECIFIC CONDUCTANCE RANGE (micromhos at 25°C)	NUMBER OF ANALYSES		
750 to 2,250	80		
Over 2,250	22		

Over 90 percent of the analyses are classified as high or very high salinity hazard. Because of this, much of the water produced from the Seymour would not normally be used for irrigation. However, since most of the soils have excellent permeability and drainage, and the crops irrigated in the area are generally very salt tolerant, problems arising from use of these waters have not occurred.

The SAR ranges from a low of 0.7 to a high of 18.6, and averages 5.0. Only one analysis is above the medium range.

RSC calculations were made on 22 water samples from irrigation wells producing from the Seymour. These calculations range from 0 to 2.98 me/l (milliequivalents per liter) and average about 0.75 me/l. This RSC range and the excellent soil conditions generally found within the area indicate little if any problem because of residual sodium.

The boron concentrations in samples of water from 31 wells completed in the Seymour Formation are shown in Table 3. The ranges in boron concentrations of these samples are as follows:

RANGE IN BORON CONCENTRATION (mg/l)	NUMBER OF ANALYSES	PERCENT OF TOTAL ANALYSES
0 to 1.0	26	83.87
1.1 to 2.0	3	9.68
2.1 to 3.0	2	6.45

Since more than 80 percent have 1.0 mg/l boron or less, a comparison with the chart of permissible limits of

TOTAL	CUMULATIVE PERCENT
70.80	80.53
19.47	100.00

boron concentration in irrigation waters indicates that most of the water produced from the Seymour in the county rates good to excellent except for crops extremely sensitive to boron.

Recent Series

The Recent Series of rocks is represented in Baylor County by alluvial deposits along and near the floodplains of the major streams. These sediments, usually consisting of interfingering or discontinuous beds of gravel, sand, silt, and clay, are especially well developed along the main stem of the Brazos River.

Eighty-nine wells were inventoried during this investigation which produce or have produced water from the Recent alluvium in Baylor County. Twenty-seven of these wells were not in use during this study. The remaining 62 wells supplied water for domestic and livestock (36 wells), industrial (3 wells), and irrigation (23 wells) purposes.

Water samples were collected for chemical analysis from 55 wells during this study. One sample was bailed from a test hole. Three previous analyses were available for comparison with present water quality. A study of these analyses shows some variation of water quality within the Recent alluvium, but this would be expected because of the erratic nature of its occurrence and generally poor quality of water in the adjacent streams.

The dissolved-solids content of the samples ranged from 240 to 7,870 mg/l. The number of analyses falling within certain ranges of dissolved solids is shown in the following table:

RANGE IN DISSOLVED SOLIDS	NUMBER OF ANALYSES	PERCENT OF TOTAL ANALYSES	CUMULATIVE
(mg/l) 500 or less	8	14.29	14.29
501 to 1,000	22	39.28	53.57
1,001 to 1,500	13	23.21	76.78
1,501 to 2,000	8	14.29	91.07

Table 3.–Iron and Boron Concentrations in Water From Selected Wells and Springs

Analyses are in milligrams per liter.

WELL	IRON (Fe)	BORON (B)	WELL		ON e)	BORON (B)
	Permian-Wichita			Seymour Forma	tion-Cont	inued
21-38-203	0.02	1.2	121		20.04	the star set bloom
	na i tali - tin a pi je		123	01 - 154 <u>- 177</u>	<u>.</u>	.5
	Permian–Clear Fork		124		.13	.5
21-30-119	1.10	0.4	125		.22	.5
Se	eymour, Formation and Permian- Clear Fork, Co-Mingled		261		.02	.5
21-29-802	0.02	2.3	302	10 f	.01	.8
902	.04	.5	304	10 E -	.04	
30-126	.04	.5	369	er 1	.06	.2
701	.04		370	90 L.	84	.5
701	.04	1.3	371	w r	04	.6
	Seymour Formation		601	19 A 1	02	.83
21-21-702	18.50	0.6	606		16	.5
925	.04	.6	607	Leogaetti -	16	.6
22-710	.10	.9	801	9	13	.4
730	.10	.7	31-101		58	.3
819	_	1.0	102		06	.0
849	.10	1.9	804		02	.3
903	_	1.1	40-520		.4	.5
29-205	.10	1.5	10 020		4	103.04
302	t mana ana ana ana a	.46		Recent AI	luvium	
303	end sent de strateste	.40	21-29-101	-		1.0
312	.20	.9	501	0 to 1 am 1 m =		.8
316	.16		503	0.0	06	.6
801		.8	30-608	.1	16	1.5
	.22	2.7	908	nahta synth	1	our contraction of the state
901	.20	2.6	40-510	9.8		.21
30-120	-	.4	527		6	THERE CONSERT
						owners of strandship

Itilis, samples entres entres tender i traje e di sultane sono esti consisteri i tra consisteri diretti alto con torno esti consisteri i transisteri digitat siton diretti all'esti consisteri i transisteri desentrati confesteri all'esti consisteri e desentrati confesteri all'esti consisteri e di sultari i transisteri e di sultari i transisteri e

MOVIDE school and an and an art of the second state

RANGE IN		PE
DISSOLVED	NUMBER	OF
SOLIDS	OF ANALYSES	AN
(mg/l)	1	Contraction of the second
2,001 to 3,000	2	
Over 3,000	3	

Nearly 95 percent of the water samples contain 3,000 mg/l or less of dissolved solids, which would be classified as fresh to slightly saline.

The wide variations in the ranges of the principal chemical constituents are as follows:

Silica	8	to	64
Calcium	13	to	536
Magnesium	9	to	380
Sodium	30	to	1,910
Bicarbonate	198	to	1,760
Sulfate	13	to	1,535
Chloride	9	to	3,240
Fluoride	.5	to	2.8
WELL	DISSO		ED SOLIDS ng/l)
21-38-302			870
39-311		1	,730
313		1	,940
501		4	,010
40-201		1	,970

The water in the Brazos River is often quite high in chlorides, and may have contributed poor quality water to some wells (especially well 21-38-302). Also in the north-central Texas area, water may contain high chlorides from natural sources, especially on or near the outcrop of some of the Permian rock formations. When this natural occurrence of high chlorides is found, however, it is usually associated with equally high or higher concentrations of sulfates derived from the many deposits of gypsum common to this area. Because of this, samples which contained very high concentrations of sulfate were not considered to be contaminated unless they also contained concentrations of chloride much higher than the sulfate content. From the analyses of the samples taken, salt-water contamination apparently has occurred only in a few very local areas in the Recent alluvium in the county.

The high nitrate concentrations in several samples are thought to be an indication of possible biological contamination. These pollution problems are very local

PERCENT OF TOTAL ANALYSES	CUMULATIVE PERCENT
3.57	94.64
5.36	100.00
Nitrate	< .4 to 546.0
Boron	.2 to 1.5

Several samples contained higher concentrations of chloride, sulfate, and nitrate than is recommended by the U.S. Public Health Service (1962, p. 7-8). Nineteen samples contained chloride concentrations in excess of 250 mg/l, 10 contained sulfate concentrations higher than 250 mg/l, and 11 contained nitrate concentrations higher than 45 mg/l. Five wells which produce water with especially high concentrations of chloride may possibly have been contaminated by oil-field brines or other sources of chloride. The dissolved-solids, chloride, and sulfate concentrations of water from these wells are shown in the following table:

CHLORIDE (mg/l)	SULFATE (mg/l)
3,240	1,010
700	125
680	270
1,620	943
630	133

in extent and may have been caused by effluent from septic tanks and the outwash from barnyards and small feedlots. The following wells contained water wit⁺ nitrate concentrations in excess of 100 mg/l:

WELL	NITRATE CONCENTRATION (mg/l)
21-29-101	114
501	147
38-301	158
39-201	121
40-104	110
106	105
532	546

Three of the wells are still used as domestic supplies.

Comparisons of three previous chemical analyses with three recent analyses indicate that water quality has
deteriorated slightly in two instances and improved in one.

A comparison of two samples from well 21-39-201 shows an increase in concentrations of calcium, 6 to 93 mg/l; magnesium, 69 to 84 mg/l; sodium, 12 to 57 mg/l; bicarbonate, 287 to 510 mg/l; and chloride, 33 to 99 mg/l. The sulfate content decreased slightly from 41 to 39 mg/l.

A previous chemical analysis of water from well 21-40-527 when compared with a recent analysis from well 21-40-526, about 150 feet away, shows an increase in sodium, 79 to 318 mg/l; bicarbonate, 437 to 520 mg/l; chloride, 130 to 256 mg/l; nitrate, 4.3 to 20 mg/l; and dissolved-solids, 839 to 1,130 mg/l. Calcium decreased from 139 to 56 mg/l and silica, magnesium, and sulfate decreased slightly.

A previous partial chemical analysis of water from well 21-30-908 contained 32 mg/l sulfate and 2,020 mg/l chloride, indicating possible brine contamination. A recent analysis on well 21-30-903, which is located about 75 feet away, indicates the possibility of some abatement of the problem since the chloride concentration was only 708 mg/l.

SPECIFIC	
CONDUCTANCE	NUMBER
RANGE	OF ANALYSES
	neares a l'availle trea
Less than 250	0
250 to 750	6,000
750 to 2,250	36
Over 2,250	14

As shown on Figure 7, nearly 90 percent of the samples fall within a high or very high salinity hazard class. Normally, the high or very high salinity hazard would make the use of this water for irrigation questionable. However, the generally sandy soils, with high permeability and excellent drainage, and the choice of crops, with relatively high salt tolerance, reduces the salinity hazard.

The range in SAR is from 0.3 to 11.3, with an average of 4.2. This range of SAR is within the low to medium class of sodium hazard on the classification chart.

Residual sodium carbonate calculations were made on five samples taken from irrigation wells producing from the alluvium. These calculations Except in the few previously mentioned cases which show indications of possible pollution or contamination, the chemical analyses of water from wells developed in the Recent alluvium indicate the water is generally of acceptable quality for use in domestic, livestock, and public supplies.

Because the quality standards of water for different industrial purposes vary so widely, depending on the particular needs of the industry using the water, no definite general statements may be made about the use of water from the Recent alluvium deposits in industry. However, the native water quality indicates the water to be suitable for many industrial uses.

Much of the water produced from the Recent alluvium in the county, is used for irrigation, mostly for coastal bermuda grass and feed grains. The same water-quality factors which are normally used to determine the suitability of water for irrigation use also apply to water of the Recent alluvium.

The specific conductance of 56 samples of water from the Recent alluvium ranged from 393 to 10,250 micromhos at 25° C. The following table shows the number and percentage of analyses within certain range groups:

PERCENT OF TOTAL ANALYSES	CUMULATIVE PERCENT
0	0
10.71	10.71
64.29	75.00
25.00	100.00

ranged from 0 to 3.32 me/l and averaged about 1.80 me/l. Because of the excellent soil conditions where this water is used, this range would probably not cause any problems.

The boron concentrations from five analyses ranged from 0.2 to 1.5 mg/l and averaged about 0.8 mg/l (Table 3). Water with these concentrations would be of little danger except for crops which are highly sensitive to boron.

AVAILABILITY OF GROUND WATER

In Baylor County, only the Seymour Formation and the Recent alluvial deposits contain water in sufficient quantities to warrant development.

Seymour Formation

The Seymour Formation is the principal ground-water source in the county, providing much of the water for domestic, livestock, industrial, irrigation, and municipal uses.

Extent of the Aquifer

The formation consists of alluvial gravels, sands, silts, and clays which are interbedded in discontinuous beds and lenses. The upper portion of the formation is generally characterized by secondary accumulations of caliche. The formation outcrops in broken, isolated patches on the stream divides in Baylor County. Most of these areas are small in extent and contain only limited amounts of ground water. About 73 square miles of the Seymour Formation that outcrops in and around the city of Seymour and north and westward to the Knox County line lying between the Brazos and Wichita Rivers is currently the most extensively developed area in the county. Also, the Seymour reaches its greatest saturated thickness here, thereby giving this area the greatest potential for future development in the county. Generally, the following discussions will concern this large area. The approximate altitude of the base of the Seymour Formation in this area is shown on Figure 9. The thickness of the Seymour varies from zero at the edge to a maximum of about 60 feet. There is a maximum saturated thickness of more than 25 feet.

Source and Occurrence of Ground Water

The source of ground water in the Seymour Formation is precipitation falling on the outcrop. The amount (or the percentage of the total yearly precipitation) that is contributed to the aquifer depends on several factors, such as amount, type, and intensity of precipitation; type of soil; climate; topography; and amount and type of vegetative cover. The ground water in storage within the Seymour Formation is found in the pore spaces or voids between the rock particles which make up the formation. These voids are interconnected and the water in storage is under atmospheric pressure. Thus, except possibly in a few local erratic areas where zones of relatively impermeable clay may confine the aquifer, water in the Seymour Formation occurs under water-table (unconfined) conditions.

Only a relatively small part of the annual precipitation actually enters the Seymour Formation as recharge. Most of the rainfall runs off to streams, or evaporates. Much of the portion that enters the ground

is either retained in the soil zone and used by vegetation or is evaporated.

Calculations of recharge and discharge for the Seymour Formation in conjunction with this study indicate that about 10.2 percent of the annual precipitation that falls on the outcrop enters the soil and flows under the force of gravity through the interconnected voids within the formation and reaches storage in the aquifer. With the average annual rainfall of 25.57 inches, this means that about 2.6 inches of water is taken into storage yearly.

Recharge, Movement, and Discharge of Ground Water

Recharge is the amount of water taken into storage in an aquifer from outside sources. In the case of the Seymour Formation, a water-table aquifer, it is that portion of the annual precipitation that is taken into the soil and moves downward by gravity flow until it reaches the water table. Recharge varies locally within the Seymour outcrop area.

The normal movement of ground water is from areas of recharge toward points of discharge. This movement takes place under the influence of the force of gravity. Within the Seymour Formation in Baylor County, the general movement of ground water is to the south and southeast following the general slope of the land surface and the slope of the underlying surface upon which the formation rests. There is some drainage along the northern edge of the outcrop toward the north. This normal flow is usually modified by pumpage of wells and in cases of heavy pumpage, water flows from all directions toward the pumped wells.

Within a porous medium such as the Seymour Formation, the rate of ground-water movement depends on the porosity and the permeability. In sand, the rate of movement has been measured at from 10 to 15 feet per year and in coarse gravels at about 20 or more feet per year. In a mixture of sand and gravel, like the Seymour, the rate may be about 20 feet per year.

Discharge from the Seymour consists of natural discharge and pumpage by wells. The natural discharge includes the flow from springs and seeps, underflow or leakage to another aquifer, baseflow to streams, and evapotranspiration. Springs and seeps occur along most of the edge of the Seymour outcrop. Most of the larger springs are located on the south edge of the outcrop along the Brazos River just west of the city of Seymour. In a shallow water-table aquifer, such as the Seymour,

the flow of the springs depends on the amount of water in storage, thus their flow varies in direct relationship to the amount of rainfall. Many of the smaller springs, especially those along the north edge of the outcrop, have been known to dry up during extended droughts. Many of those on the south side along the Brazos River, however, have never been known to cease flowing.

Leakage or loss of water by the Seymour to the underlying Permian rocks is probably very small, because of the relative impermeability of the sandstones, siltstones, and claystones which make up the Permian. Local instances of leakage are indicated, however, along the southern edge of the Seymour outcrop, where the Seymour is in hydrologic contact with the Recent alluvial deposits along the north side of the Brazos River. Much of the water that flows from springs and seeps along this same stretch is also taken up by these Recent deposits. Most of the natural discharge of the Seymour Formation, except that lost to evapotranspiration, is first discharged into the Recent alluvium and then into the Brazos River.

Evaporation and transpiration are often very significant factors in ground-water discharge. This is especially true in shallow water-table aquifers such as the Seymour Formation. The average annual gross lake surface evaporation of about 75 inches per year and the relatively shallow water table, generally less than 20 feet below the ground surface, indicate a large loss to evaporation during the hot summer months. Evaporation losses from shallow water-table aquifers have been estimated at more than an acre-foot per acre per year in some studies (Hammond, 1969, p. 14). A significant amount of water is also lost each year through transpiration by plants. The amount of water lost depends upon the types of plants, climatic conditions, topography, and soil conditions in the area. Most of the area of Seymour outcrop has been cleared for cultivation, though a few small areas are still covered with mesquite growth. Much of the outcrop area of the Recent alluvium, however, is covered with mesquite and salt cedar. These two plants, called phreatophytes because they usually obtain most of their water from the zone of saturation, are especially obnoxious because they consume large amounts of ground water and have no economic value.

An attempt was made to estimate the recharge rate and the total recharge to the Seymour Formation in the county by calculating the amount of natural discharge (spring flow) and pumpage for 1969. In February 1970, a low-flow study was conducted along the Brazos River from the Knox County line to the bridge at the city of Seymour. Flow measurements were taken at five sites along this stretch of the river. The study was conducted during the winter because evaporation and transpiration losses would be at a minimum, and any gains in flow in the river would approximate the natural discharge of the Seymour Formation across the sections between each two measurements. The following table shows the flows, in cubic feet per second (ft³/s), at each site; the gain in flow, in ft³/s for each section; and the yearly discharge, in acre-feet, which this gain would represent.

MEASURING SITE	FLOW (ft ³ /s)	FLOW SECTION	NET GAIN IN FLOW (ft ³ /s)	YEARLY DISCHARGE REPRESENTED BY NET GAIN (acre-feet)
1	34.6	<u>1</u>	su sonat seath.	sand mat-
2	34.7	A-B	0.1	72.4
3	35.2	B-C	.5	362.5
4	37.8	C-D	2.6	1,882.5
5	30.7	D-E	.9	651.6

On the map showing the altitude of the water table during the winter of 1969-70 (Figure 11), flow lines were drawn at right angles to the water-table contours from flow-measurement sites 2 and 3 and from sites 4 and 5 to where they intersected on the ground-water divide which runs east and west parallel to the river. The two areas delineated by these flow lines represent flow channels within the Seymour Formation. The natural discharge of each area is equal to the amount of water added to the river from that area minus any evapotranspiration losses. In computing the

southward movement of ground water from the two flow channels to the Brazos River, any corresponding northward drainage from areas across the river was considered negligible. Since the measurements were taken when evapotranspiration was essentially zero, the yearly discharge represented by the net gain in flow is equal to the natural discharge or rejected recharge for each respective area. By estimating the total pumpage within each area and adding it to the natural discharge, the total discharge for each flow channel may be calculated. If there was no rise or decline of the water table from winter 1968-69 to winter 1969-70 (Figures 10 and 11), then the total discharge for each area would be equal to total recharge. However, during this period there was a general rise in the water table of about

FLOW CHANNEL	AREA (acres)	TOTAL RECHARGE IN 1969 (acre-feet)
1	3,629	605
2	8,163	3,401

The average recharge rate is about 3.15 inches for 1969. This would represent about 10.2 percent of the total 1969 precipitation. Applied over the entire area of the large outcrop of Seymour between the Brazos and Wichita Rivers (about 73 square miles) this would represent a total recharge of 13,500 acre-feet for 1969. If the same percentage of the average annual rainfall is assumed to be taken into the aquifer, then about 2.6 inches would be added to storage. Thus, under normal rainfall conditions, recharge to the Seymour Formation in the area between the Brazos and Wichita Rivers would equal about 10,100 acre-feet per year.

Hydraulic Characteristics of the Aquifer

In an attempt to derive the hydraulic characteristics (porosity, permeability, transmissibility, and storage) of the Seymour Formation, three aquifer tests were conducted using irrigation wells that produce from the formation. The results of these tests are given in Table 4. Measurements of porosity were not obtained for the Seymour Formation; however, since the water-producing zones generally consist of gravel with a sand matrix, an average porosity of about 20 percent can be assumed (Meinzer, 1923a, p. 11).

Coefficients of transmissibility and storage were calculated using the nonequilibrium method (Cooper and Jacob, 1946, p. 256-534) and pumpage and drawdown figures obtained from the aquifer tests. At each test site, three observation wells were drilled and cased to facilitate these calculations. Coefficients of permeability were derived from each calculated transmissibility by dividing the transmissibilities by the saturated thicknesses. The transmissibilities ranged from about 24,200 gpd (gallons per day) per foot in well 21-30-302 to almost 80,600 gpd per foot in well 21-21-941. The average coefficient of transmissibility was about 50,100 gpd per foot. The permeabilities ranged from about 790 to 2,000 gpd per square foot. The average coefficient of permeability was about 0.5 foot which would make the total recharge greater than the total discharge. The recharge rate in 1969, in inches of water, can be calculated by dividing the total recharge of each flow channel by its surface area. These calculations are summarized in the following table:

RECHARGE RATE IN 1969 (inches)	PERCENT OF 1969 TOTAL
2.0	5.8
5.0	14.5

1,370 gpd per square foot. The average coefficient of storage was about 0.11, and the range from 0.03 to 0.30. Under water-table conditions, such as in the Seymour Formation, the coefficient of storage is equal to the specific yield.

History of Development

Most of the well development in the Seymour Formation has occurred since 1900, although a few livestock and domestic supply wells were reported drilled in Baylor County before that time. It has been reported by "oldtimers" in the county and in other areas where the Seymour Formation is well developed that there were only small amounts of water available from the Seymour 40 or 50 years ago. Through the years, domestic and livestock supplies have been developed over almost all of the Seymour outcrop areas within the county. At the present time, most of the domestic and livestock wells and all of the irrigation, public supply, and industrial wells are developed on that part of the Seymour Formation which extends from the city of Seymour, west to the Knox County line between the Brazos and Wichita Rivers.

Records of 387 wells and springs which produce water from the Seymour Formation in the county were collected during the course of this study. Of these, 205 were used for irrigation, 20 for public supply, 6 for industrial supply, and 73 for domestic and livestock supply. Eighty-three wells were not in use and either abandoned or destroyed. An attempt was made to inventory all irrigation, municipal, and industrial wells and a selected number of livestock and domestic wells in order to provide adequate well coverage.

The total estimated pumpage of ground water from the Seymour Formation during 1969 was about 5,000 acre-feet or 4.5 mgd (million gallons per day). The irrigation pumpage from the Seymour aquifer was about 3,770 acre-feet or 3.4 mgd in 1969, which

Table 4.—Results of Aqui	fer Tests Conducted on Selected
Wells Penetrating	the Seymour Formation

			SATURATED					
			THICKNESS	FIELD CO-	COEFFICIENT			
		DATE	AT END OF	EFFICIENT OF	OF TRANS-	COEFFICIENT		
	TYPE OF	TEST	TEST	PERMEABILITY	MISSIBILITY	OF	YIELD	DRAWDOWN
WELL	WELL	STARTED	(feet)	(gpd/ft ²)	(gpd/ft)	STORAGE	(gpm)	(feet)
21-21-920	Pumped	Apr. 27,1970	35.4	1,874	66,352			
939	Observation	do	38.0	1,774	67,435		470	6.6
940	do	do	39.1	1,866	72,900	0.18	-	4.0
941	do	do	40.2	2,004	80,571	.16	1 - E - S	3.4 2.3
Averages ¹ for	aquifer test number	1		1,880	71,800	0.17		
21-22-903	Pumped	July 21, 1969	29.7	1,674	40 700			
911	Observation	do	35.7	1,248	49,736 44,563		211	10.8
912	do	do	36.7	1,264	46,420	0.04	1.7	4.8
913	do	do	37.7	1,070	40,365	.06 .08	_	3.8 2.8
Averages ¹ for a	aquifer test number :	2		1,310	45,300	0.06		2.0
21-30-302	Pumped	July 14, 1970	30.6	791	24,221		100	
385	Observation	do	37.6	954	35,896	0.01	189	11.9
386	do	do	37.3	955	35,640	0.04	_	4.9
387	do	do	40.0	937	37,491	.30 .03	_	3.7 2.5
Averages ¹ for a	aquifer test number (3		910	33,300	0.12		2.5
Averages ¹ for	all tests			1,370	50,100	0.11		

¹Permeability and transmissibility averages rounded to three significant figures.

represents nearly 75 percent of the total ground-water pumpage.

The estimated pumpage of ground water by use from the Seymour Formation in 1969 is shown below:

	PUN	IPAGE
USE	MILLION GALLONS PER DAY	ACRE-FEET PER YEAR
Irrigation	3.37	3,770
Industry	.14	150
Public supply	.65	730
Rural domestic and livestock	.31	350
Total*	4.47	5,000

*Figures are approximate because some pumpage is based on estimated values.

A few irrigation wells were developed in Baylor County as early as 1950, and several were inventoried which were reported drilled in 1951, 1952, 1953, and 1954. Due to the extended severe drought from the early 1950's until 1957, more than 100 irrigation wells were drilled in the county during 1955, 1956, and 1957. Development continued from 1957 until the present, though at a much slower rate. In 1952, there were about 10 irrigation wells in use in the county and the number has increased to the present 205. Possibly a total of about 300 wells produce or have produced water for irrigation from the Seymour Formation in the county but many have been abandoned or replaced by new wells.

The amount of water pumped for irrigation has varied considerably through the years, first because of increased development, but since 1956, mostly in response to the amount of rainfall. The following table shows the total estimated pumpage of irrigation water from the Seymour from 1952 through 1969:

YEAR	PUMPAGE
	(acre-feet)
1952	60
1953	390
1954	650
1955	880
1956	3,130
1957	2,180
1958	1,380
1959	2,750
1960	2,740
1961	1,550
1962	2,990
1963	3,580
1964	5,060
1965	4,990
1966	4,850

YEAR	PUMPAGE (acre-feet)
1967	3,850
1968	2,100
1969	3,770
Total	46,900

The total pumpage figures were calculated by applying production figures from power-yield tests conducted during this investigation (Table 5) to figures for power consumption by irrigation wells collected from electric power cooperatives. The amount of irrigation pumpage is not expected to vary significantly in the future, except in response to precipitation variations.

The city of Seymour has obtained its municipal water supply for many years from wells tapping the Seymour Formation. There were at least six wells in use in 1948, when two new wells were drilled. In 1949, one of these wells was abandoned. Because of water shortages and drastically lowered water levels during the drought of 1951-57, the city began a search for a more extensive water supply. Test holes were drilled on several tracts near the city in an attempt to develop an adequate supply. During 1956, two additional wells were drilled within the city. In 1959, the city leased the water rights on about 200 acres of land located just north of town and five wells were drilled, and in 1965, an additional six wells were drilled on the lease. In 1969, the city of Seymour was operating 19 public-supply wells. This includes one well used for irrigation in the city park, and one well from which the city sells water to Sun Oil Company for waterflooding. One hundred and eleven acre-feet of water was used by Sun in 1969.

Pumpage of water for municipal usage has remained fairly constant over the last 15 years as is illustrated by the following table:

YEAR	PUMPAGE (acre-feet)
1955	450
1956	820
1957	640
1958	610
1959	500
1960	670
1961	580
1962	590
1963	640
1964	680
1965	680
1966	630
1967	660
1968	670
1969	730
Total	9,550

This represents an average annual pumpage of about 640 acre-feet of water for public supply from the Seymour

Table 5.-Results of Power-Yield Tests Conducted on Selected Irrigation Wells

WELL	OWNER	TYPE OF <u>PUMP</u> 1	PUMP HORSE- <u>POWER</u>	YIELD IN GALLONS PER <u>MINUTE</u>	GALLONS PER KILOWATT <u>HOUR</u>	KILOWATT HOURS PER HOUR
21-22-729	Westley T. Cockroft	т	7.5	155	1,788.5	5.2
809	Franklin Coufal, Jr.	т	7.5	230	2,437.5	3.2
810	do	т	5	190	2,850.0	4.0
844	Florence B. Parker, et al.	т	5	290	4,848.0	3.6
845	do	т	7.5	235	3,057.0	4.6
903	do	т	5	211	3,436.7	3.7
30-117	Emmet Golden, et al.	S	5	60	782.6	4.6
222	Billy W. Golden	т	7.5	65	894.5	4.4
254	Mrs. Denton Powell	т	4.5	100	1,000.0	6.0
302	T. C. Griffin	т	10	189	1,898.1	6.0
329	Emitt Golden & Company	т	10	50	567.6	5.3
337	Bill Elliston	т	15	180	437.8	24.7
339	Lee Wayne McQuire	т	15	210	1,072.3	11.8
341	do	T, Cf	5, 10	195	1,063.6	11.0

¹T, turbine; S, submersible; Cf, centrifugal.

Formation in the county. This aquifer is the sole source of water for the city of Seymour. Monthly variations in pumpage for 1969 are shown on the following table:

MONTH	PUMPAGE
terres and the	(acre-feet)
January	42.4
February	37.4
March	36.5
April	51.4
May	56.3
June	71.5
July	133.4
August	128.4
September	43.1
October	39.5
November	51.7
December	36.4
Total for 1969	728.0

The municipal use of water from the Seymour Formation in the county should remain relatively constant in the future.

Most of the industrial usage of water from the Seymour Formation in Baylor County is confined to small capacity wells supplying small businesses such as service stations and cotton gins. In the past, when the cotton gins were operated by steam power, much more water was used by this industry. Some of the first wells dug in the county were used to supply water for cotton gins. Other industrial operations in the county use only small amounts of water estimated to be about 40 acre-feet in 1969.

Prior to 1900 water from the Seymour Formation had been used for domestic and livestock supplies. In 1969, an estimated 350 acre-feet of water was used for these purposes. Before urbanization reduced the number of people living in the rural areas of the county, a much larger amount of water was probably used each year for domestic and livestock supplies. Pumpage of water from the Seymour Formation in the county for domestic and livestock use will probably remain relatively constant in the future.

Changes in Water Levels

The normal changes in the depth to the water table (water level) within the Seymour Formation are

cyclic in nature. There are two major cycles which may be observed. The first cycle, shown by the hydrographs in Figure 12, includes the seasonal changes from month to month. A monthly water-level measurement program was conducted during 1969 and early 1970, and measurements in selected observation wells were used to construct the hydrographs. The hydrographs show, as might be expected, relatively high water levels during the winter and early spring months, caused by decline in pumping, higher fall and winter precipitation, and lowered evapotranspiration; and a decline of water levels in the summer as a result of less rainfall, increased pumping, and high evapotranspiration.

The second cycle, illustrated by the hydrographs of yearly water-level measurements in Figure 13, is irregular due to long-term periods of high rainfall or drought which generally vary in length and intensity. This cycle is also emphasized by pumpage of ground water, especially for irrigation, because of increased need for water in times of drought. A program of yearly measurements of water levels in selected irrigation wells completed in the Seymour aquifer was initiated in the 1950's by the U.S. Geological Survey. This program is

Figure 13.–Hydrographs of Water Levels in Yearly Observation Wells in the Seymour Formation, 1955-70

now administered by the Texas Water Development Board. Measurements are made in January when the water table should be at its highest.

When a well is pumped and ground water is removed from an aquifer, a depression shaped like an inverted cone is formed in the water-table surface surrounding the pumped well. If several closely spaced wells pump water from the same aquifer, their cones of depression may overlap causing additional lowering of water levels in the area.

Prolonged heavy pumpage causes the water levels in the Seymour Formation to decline rapidly due in part to the thin saturated thickness and limited extent of the aquifer. However, the shallow aquifer is overlain by sandy soil with high permeability which allows rapid infiltration of precipitation. Thus, the Seymour water levels rise in response to the rapid infiltration more quickly than those in deeper aquifers with less permeable overburdens. Because of this rapid recharge to the aquifer, only an extended drought would seriously reduce the amount of water available from the Seymour Formation.

Well Construction

Most of the older wells in the county are hand dug and cased with concrete rings (31 or 42 inches in diameter) or lined with field stone. Most of the dug wells are used for domestic, livestock, and some industrial supplies. However, a few have been reworked or deepened, cased with steel casing, and gravel packed for irrigation use. Some of the older wells of the city of Seymour are large-diameter wells that were hand dug.

Most of the wells developed recently in the county were drilled with rotary rigs known as "bucket rigs." Usually a large hole about 24 to 36 inches in diameter is drilled and the well is cased with steel casing and gravel packed. Occasionally large diameter galvanized culvert is substituted for the steel casing. Major wells used to supply irrigation or municipal water are usually cased with 12-inch, 14-inch, 16-inch, or 18-inch steel casing, while wells supplying water for domestic, livestock, or other purposes are often cased with steel casing that is 6, 8 or 10 inches in diameter. This steel casing is usually torch slotted about 5 to 15 feet above the total depth. A few wells are cased with thin gauge galvanized metal casing or plastic well casing. Several wells which are equipped with centrifugal pumps have a pump pit around the wellhead to place the pump about 7 to 12 feet below the ground surface.

Most of the wells inventoried in the county have pumps powered by electricity, although a few irrigation pumps are powered with butane gas engines.

Most of the domestic, livestock, and industrial supply wells in the county are equipped with small (1/3 or 1/2 horsepower) jet pumps, which generally produce less than 25 gpm.

The larger capacity wells, for irrigation and municipal supply, are equipped with turbine or centrifugal pumps. These large pumps are generally powered with 1 to 15 horsepower motors. A few of the wells are equipped with 1-1/2 to 3 horsepower submersible pumps. These major wells produce from less than 50 gpm to more than 500 gpm, with the average being about 200 gpm.

Availability of Ground Water for Future Development

An estimated 116,000 acre-feet of water was in storage within the Seymour aquifer at the end of 1969. This figure was calculated using the areal extent of the main water-bearing portion of the Seymour Formation, an estimated average saturated thickness of 12.5 feet,

and an average porosity of 20 percent. A part of the water in storage, however, cannot be withdrawn because of molecular forces which bind it to the rock surfaces within the aquifer. Generally, at least in a water-table aquifer such as the Seymour, the specific yield (or storage coefficient) is used as a measure of the amount of water available within an aquifer. By substituting the average specific yield of 14 percent for the 20 percent porosity, it was calculated that it would theoretically be possible to develop 81,000 acre-feet of water from the Seymour Formation in the county. Pumping this amount would be impractical, however, because in dewatering the aquifer (mining the ground water), the capacities and efficiencies of wells producing from the aquifer would be lowered drastically, and perhaps even the general chemical quality of the water would be adversely affected.

The potential yield of an aquifer is defined as the amount of ground water that can be continuously withdrawn from an aquifer without creating abnormally low water levels or exceeding the recharge rate. Thus, the potential yield for the Seymour Formation in the area between the Brazos and Wichita Rivers north and west of the city of Seymour is equal to the total recharge for a year of average rainfall (25.57 inches). This average recharge was calculated at about 10,100 acre-feet per year.

The amount of ground water available for future development would therefore be the potential yield less the average pumpage from the aquifer. Using 5,000 acre-feet per year as the average pumpage, the water available for future development from the Seymour aquifer is about 5,100 acre-feet per year.

An attempt was made to locate areas where at least a part of this 5,100 acre-feet might be economically developed, either by pumping more water from existing wells, or through drilling of new wells. The physical nature of the aquifer generally lends itself to extensive development only where the saturated thickness exceeds 15 feet. Therefore, these areas on the saturated thickness map of the Seymour Formation in west-central Baylor County (Figure 14) were examined closely. Using the average recharge rate, the amount of recharge was calculated for each area with 15 feet or more saturated thickness. If the recharge was higher than the estimated pumpage, the area was designated as favorable for future development; if the pumpage exceeded the recharge, the area was considered not favorable for future development. The areas of future development shown on Figure 14 were calculated to be able to produce about 1,500 acre-feet more water than was produced in 1969. Because of the shallow water table and the large areas with very thin saturated intervals in the Seymour

Not Somerica for

Most of the older vertice in the county a transform and cased with contains ring (2) and argues in observer) in the data with the second close of the cosect and for domestic frequency and some there departed for domestic frequency and some there departed for domestic frequency and some the sodeparted for domestic frequency and some the solution of the departed for domestic frequency and some the solution of the solutio

Most of the stand stand

(C.M., S. C. S. 1997) S. C. S. S. C. S. Song, C. Mite and Y. Faster, Inspire of a constant of the strategy of second symbols, parameters and second symbols, and the strategy of the second symbols, parameters of the strategy of the strategy of the strategy of the symbols.

Mener of new denness of these second wave productions Syl , have a second wave in the old wave product of 172 have and the second by product of the second by protest theory to a

(a) the base of the base of the superior of

Automotion in Granut Water for 2 three days from the

An even of the SCA associate at some or (460) storage with the SCA been at the second of (460). This figure is a contract there are provident of the main while the react contract the SK prove from the second state of the track of the first the second state.

A set of 100 models of 20 models is an examination of 100 model.
 A models is a set of the set of the examination of 100 models is a set of the set of

(a) a provide the probability of the approximation of the balance between the second terms of t

In answer of pound water waters a function development weater stription on the potential mean and the animale room age from the aquifut string 0.000 animale tool room as the callege pro-prior file according methods for function oper sament from the Section configure tool of a file according.

An elamba we can be and the form that the second second and a second sec

aquifer, much of the remainder of the 5,100 acre-feet of water calculated as available for future development is probably impossible or at least impractical to develop. Much of the 3,600 acre-feet difference is lost to evaporation and to seeps and springs along the margins of the aquifer where the saturated thickness is inadequate to sustain the large yields required for irrigation use.

Conservation of Ground Water

Because of its shallow water table and limited areal and vertical extent, the Seymour aquifer in Baylor County is especially sensitive to both overdraft and water-quality contamination. Good, well thought-out conservation measures, however, can maintain the Seymour aquifer in its present state as an adequate source of relatively good quality water for irrigation, municipal, industrial, domestic, and livestock supplies.

Care should be taken to maintain the pumpage within the potential yield of the aquifer. Special consideration should also be used in the spacing of any new or replacement wells in order to avoid interference between the cones of depression. Care should also be used in equipping wells. Large capacity pumps should be avoided.

Because of the relative ease with which contaminants may reach the shallow water table of the Seymour Formation, special care should be taken in the handling and disposal of water, such as oil-field brine or sewage, which might cause deterioration of water quality.

Recent Alluvium

In Baylor County, the Recent alluvium consists of deposits of gravel, sand, silt, and clay along the floodplains of the major streams. These deposits are best developed along the Brazos River. These sediments occur on both sides of the river, but the two most extensive and well-developed areas are found on the north side, one near Round Timber in the southeast part of the county and the second about 3.5 miles southwest of Red Springs along the Knox County line in the west-central part of the county. The width of the outcrop of the Recent alluvium along the Brazos River varies from a minimum of a few hundred feet to a maximum of about 2.5 miles. The thickness of the deposits ranges from zero at the edge of the outcrop up to about 30 feet. The saturated thickness ranges from zero to about 15 feet. The Recent alluvium generally provides small amounts

of ground water to wells for domestic, livestock, and irrigation purposes.

The primary source of water in the Recent alluvium is rainfall on the outcrop and underflow and spring and seep flow from the Seymour Formation. Just west of the city of Seymour, a relatively large amount of water is contributed to the Recent alluvium from the Seymour Formation where the two aquifers are in hydrologic contact.

Ground water within the alluvium occurs under water-table conditions similar to those found in the Seymour Formation. The ground water occurs in the basal portions of the sediments.

Recharge to the Recent alluvium is probably about equal to that of the Seymour Formation since the surface conditions of soil type, topography, and climate are very similar. The rate of recharge computed for the Seymour aquifer is about 10.2 percent of the yearly precipitation, which would be about 2.6 inches. It is estimated that about 3,000 acre-feet of water is received by the Recent alluvium from the Seymour aquifer along the stretch of the Brazos River west from Seymour to the Knox County line. Most of this 3,000 acre-feet of water, however, is lost as spring flow and underflow.

The movement of ground water within the alluvium is generally toward points of discharge along the river. Flow rates are probably less than those of the Seymour Formation, because of the lower hydraulic gradient.

Discharge of ground water from the Recent alluvium consists of evaporation, transpiration by plants, base flow to the river, springflow and pumpage to wells. Evapotranspiration is probably very high because of the shallow water table and the dense growths of mesquite and salt-cedar on the outcrop.

The porosity and permeability of the Recent alluvial deposits are probably in the same range as those of the Seymour Formation, since the two sediments are very similar in composition. The transmissibility is lower because of the reduced saturated thickness. The specific yield is probably also within the same range as that of the Seymour.

A total of 89 wells which produce or have produced water from rocks of the Recent alluvium were inventoried during this study. Twenty-seven have been abandoned or were unused. Of those in use, 36 supplied livestock and domestic water, 3 supplied industrial water, and 23 supplied irrigation water.

Probably the first wells in the county were developed in the Recent alluvial deposits near Round Timber, the site of the first settlement in the county. These wells were developed for domestic and livestock supplies. The first industrial supply well in the county was developed at Round Timber about 1900 to supply water for a cotton gin. Wells are found throughout most of the outcrop area of these sediments along the Brazos River. Several irrigation wells which produce from this aquifer have been in use in the county since 1957. The first wells drilled to produce irrigation water from the Recent alluvium were drilled on the Knox County line in the west-central part of the county. Several new irrigation wells were drilled in 1966 and 1967 near Round Timber. The following table gives the approximate pumpage of water for irrigation from the Recent alluvial deposits from 1957 to 1969:

YEAR	PUMPAGE (acre-feet)
1957	50
1958	20
1959	40
1960	20
1961	10
1962	20
1963	50
1964	40
1965	70
1966	160
1967	150
1968	110
1969	120
Total	860

Most of the irrigation wells completed in these sediments have relatively small yields. Usually several wells are pumped into the same line (a manifold system) or into a central tank. Most of the water pumped from these wells is used to irrigate coastal bermuda grass and feed grains. The total pumpage of water from the Recent alluvium for all purposes, is probably about 200 acre-feet per year.

No comparative measurements are available to show the changes in the water levels of wells completed in the Recent alluvium in Baylor County. It can be assumed, however, because of the shallow water table and unconsolidated sediments, that the aquifer will generally follow the same cycles of water-level fluctuations as the Seymour aquifer. Where these deposits are in hydrologic contact with the Seymour Formation, lowering of the water table in the Seymour lessens the amount of water received by the Recent alluvium and should cause a corresponding lowering of water levels.

Most of the older wells completed in the rocks of the Recent alluvium are hand dug and lined either

with field stone or large diameter concrete rings (generally 31 or 42 inches in diameter). The newer wells, including most of the irrigation-supply wells, are drilled with a rotary rig and cased with steel oil-field casing (usually 10 to 18 inches in diameter). Most of the irrigation wells are gravel packed. Wells for domestic and livestock supply are equipped with small jet pumps powered with 1/3 or 1/2 horsepower electric motors or windmills. These pumps generally supply less than 10 gpm. Most of the irrigation wells are equipped with centrifugal pumps powered with 1, 1-1/2, or 2 horsepower electric motors. The capacity of these wells ranges from about 25 to 75 gpm. Usually the irrigation wells pump into a central tank, from which water is delivered to the field by a large-capacity centrifugal pump.

No attempt was made to calculate either the amount of water in storage within this aquifer or the quantity of water available for development. There are probably areas within the outcrop of the Recent alluvium in the county where small groups of wells similar to those already developed could be drilled and used to supply irrigation water on a relatively small scale. Location of these areas could be accomplished by an extensive test drilling program. Most areas where the thickness of the alluvium exceeds 15 feet should provide sufficient quantities of water for domestic or livestock uses.

Because of the relatively thin saturated thickness, careful planning would be required in locating and equipping wells for irrigation supplies. Wells should be spaced so as to minimize interference. Also, small-capacity pumps should be used to minimize drawdown. Because of the relatively limited supply of water available from this aquifer, overpumping and overdevelopment should be avoided.

SURFACE-CASING RECOMMENDATIONS FOR WATER-QUALITY PROTECTION

The Texas Water Development Board recommends to oil and gas operators and the Railroad Commission of Texas the depth to which usable quality ground water should be protected in drilling for oil and gas. The authority for participation by the Board in this surface-casing program is derived from rules promulgated by the Railroad Commission under authority given that agency by statutes dealing with the regulation of drilling and production activities of the petroleum industry.

Statewide Rule 13 (formerly Rule 12a) of the Railroad Commission requires that operators obtain a

letter from the Texas Water Development Board recommending the depth to which fresh-water strata should be protected when drilling in a new lease or area, if the lease or area is not covered by field rules or lease recommendations. Railroad Commission Rule 8 (formerly Rule 20) requires that all fresh-water strata be protected in drilling or production activities.

In carrying out its duties under Rule 13, the Texas Water Development Board maintains technical data files upon which to base fresh water protection recommendations in all areas of the State, and prepares these recommendations for operators contemplating drilling oil or gas tests. The recommended depth to which ground water of usable quality should be protected in a given area is based on all pertinent information available to the surface casing staff at the time the recommendation is given. Recommended depths in any one area may therefore be revised from time to time as additional subsurface information becomes available.

Known depths of wells producing usable water, or depths of wells which formerly produce water of usable quality, such as domestic, municipal, industrial, livestock, or irrigation wells, are of primary value in determining the depth of usable water. Electric or gamma-ray neutron logs run on oil and gas tests are used in many areas to determine the depth to the base of usable quality ground water. Surface elevation is given special consideration when a recommendation is given in an area that has moderate to high surface relief, as is common to portions of Baylor County. This consideration is imperative when the slope of the land surface does not conform to the dip of the underlying rocks, because of the danger that poor quality water will cause contamination of surface and ground water by moving along the dip of the beds of fresh water zones or to points of discharge in stream channels. All of this information is interpreted in the light of the available knowledge of the geology and ground-water hydrology available on the area involved.

OIL-FIELD BRINE PRODUCTION AND DISPOSAL

Quantity and Distribution of Produced Brine

During 1962, the Railroad Commission of Texas, the Texas Water Pollution Control Board, and the Texas Water Commission cooperated in the collection and tabulation of information submitted by oil and gas operators concerning the 1961 oil-field brine production and disposal in Texas. The Railroad Commission of Texas and the Texas Water Development Board have cooperated in a similar collection and tabulation of the 1967 oil-field brine production and disposal in the State. Table 10 is a summary of the brine production in 1961 and 1967 by oil fields, grouped by arbitrarily defined producing areas. The location and extent of the brine-producing areas in the county and the amount of brine production and method of disposal in each area for 1967 are shown on Figure 17.

The total production of oil-field brines reported for 1967 (10,258,360 barrels) was about 85 percent of the total reported for 1961 (12,027,319 barrels). In 1961, 102,270 barrels or 0.85 percent of the total production was reported disposed of into open, unlined surface-disposal pits. However, no salt water was reported placed into pits for disposal in 1967. This drop is probably due to the no-pit order issued by the Railroad Commission in 1965. In 1961, 11,665,118 barrels or 96.99 percent of the total production of salt water was reported injected into wells for disposal. This includes both pressure maintenance wells and salt-water disposal wells. In 1967, 10,254,710 barrels or 99.96 percent of the total reported production was disposed by injection. In 1961, 259,931 barrels or 2.16 percent of the total reported brine production was disposed of by other miscellaneous methods, such as dumping into surface drainageways or on road and lease surfaces. In 1967, however, miscellaneous disposal was reported for only 3,650 barrels or 0.04 percent of the total brine production.

There have been some significant changes in the distribution of brine production and in the methods of its disposal in the county since 1961 as shown on Figure 17. Four of the areas (areas 3, 8, 10, and 12) ceased producing brine after 1961. In 1961, some brine was being disposed in open-surface pits in areas 1, 2, 9, 12, 13, and 14. In 1967, however, disposal of brine in surface pits had reportedly ceased in all areas. All areas were disposing brine by injection into the subsurface or by other miscellaneous methods.

Chemical Quality of Produced Brine

Chemical analyses of some oil-field brines from various producing zones in Baylor County are tabulated in Table 9. These analyses show the same ions present in the brines that are present in samples from water wells used for domestic and livestock supplies (Table 8). However, the sodium, magnesium, calcium, and chloride ions are present in much greater concentration in the brines.

Table 8 presents chemical analyses in milligrams per liter, which is the preferred metric system unit. Table 9 presents similar data (from Laxon and others, 1960 and B J Service, 1960), but in ppm (parts per million) by weight. Parts per million may be considered equal to milligrams per liter at concentrations less than about 7,000 ppm. At higher concentrations the units are not directly interchangeable, as conversion must take into account the greater differences in density of saline waters.

In the brine samples in Table 9, the sodium concentration ranges from 36,000 to 56,000 ppm. The chloride concentration ranges from 50,500 to 125,050 ppm. The concentration of magnesium ranges from 1,232 to 2,930 ppm. The range in calcium concentration is from 6,190 to 18,390 ppm, and the range in dissolved solids is from 105,000 to more than 202,000 ppm.

ALTERATION OF NATIVE QUALITY OF GROUND WATER

Alteration of the chemical quality of ground and surface water, as evidenced by the chemical analyses of water, has occurred locally in Baylor County. Although a study of the contamination of surface water was not included in the scope of this report, it is impossible to ignore the interrelationship of ground and surface water. Alteration of the chemical quality of surface water may affect the quality of ground water by downward percolation of the altered water, and alteration of ground-water quality may affect surface water by outflow from springs and by contribution to the base flow of streams.

The alteration of the chemical quality of ground water may be due to both natural and artificial means. Natural alteration occurs when water dissolves minerals from the rocks over which it flows or through which it percolates. In Baylor County, natural alteration is evidenced by high sulfate concentration (from anhydrite) and high bicarbonate concentration (from limestone and dolomite).

Artificial alteration of the quality of ground water may be either biological or chemical. Biological contamination is usually evidenced by a high nitrate concentration in the water and is usually due to poor well construction and to location of water wells near septic tanks, livestock feedlots, and barnyards. Several wells in the county seem to be contaminated by one or more of these causes.

Alteration of the chemical quality of ground water may also be associated with the operations of the oil and gas industry. Brine produced with oil and gas may comingle with usable-quality water in several ways. Brines placed in shallow surface pits for disposal may contaminate ground water by downward seepage or percolation. Overflow of brines from surface pits may contaminate surface water. Saline water may move up the bore holes of improperly plugged or cased wells into shallow fresh-water zones, due to natural pressure and the pressure of secondary-recovery injection. Ground-water quality may also be altered by lateral and vertical movement of injection fluids from improperly constructed municipal and industrial waste-disposal wells.

Figure 15 shows diagrams of the chemical analyses of water from some apparently contaminated wells, native quality or apparently unaltered ground water, and a typical oil-field brine. The diagrams illustrate the chemical similarity between a typical oil-field brine and water from wells which have been apparently contaminated by brine. Only a small amount of brine entering a water supply is necessary to change significantly the chemical character of the water. There are only a few indications of apparent contamination in the county probably because efforts have been made and are being made by many petroleum operators to avoid contamination of the soil, surface water, and ground water, especially by curtailing the use of open, unlined surface pits as a means of brine disposal. The locations of wells, apparently contaminated by oil-field brines, are shown on Figure 17.

SUMMARY AND CONCLUSIONS

Approximately 1,500 acre-feet of ground water is available annually for future development from the Seymour aquifer in Baylor County. This is equal to about 1.4 million gallons per day. Development of this additional water would raise the pumpage about 30 percent from 5,000 to 6,500 acre-feet per year. Another 3,600 acre-feet per year was calculated as available, but is impractical to produce because of the thin saturated thickness over much of the outcrop area and the high loss to evaporation.

About 50 percent of the water available from the Seymour Formation is pumped at the present time, mostly for irrigation purposes (about 3,770

acre-feet per year) and municipal uses (about 730 acre-feet per year).

There is a possibility of development of limited supplies of ground water for irrigation purposes from the Recent alluvium along the Brazos River within the county. Special care must be taken in equipping and spacing the wells, however, since the aquifer has limited areal and vertical extent and could easily be overdeveloped.

Contamination of ground-water supplies with oil-field brines has not been an extensive problem within the Seymour Formation and Recent alluvium because of the Railroad Commission of Texas order banning surface-disposal pits. However, the water-producing formations in the county have some problems with possible contamination caused by biological wastes. Many of these problems could be avoided in the future by more careful location of water wells with respect to septic tanks, barnyards, and other sources of organic material; better construction of wells, especially in sealing in the top; and more careful location and construction of septic tanks.

Any future development of water from the Seymour Formation should be preceded by a complete program of test drilling and test pumping of wells to determine local aquifer characteristics. The wells should be drilled at optimum spacing to avoid interference between cones of depression, and they should equipped with pumps selected to provide only the amounts of water which the aquifer can safely produce. Six water-level observation wells are measured and recorded annually by the Texas Water Development Board to determine annual and long-term fluctuations in the water table of the Seymour Formation. One of these wells, 21-22-806, should be dropped from the program because of its proximity to well 21-22-703. Since the six wells now measured represent only a small portion of the outcrop area within the county, several new wells should be added to the program in the future to provide a better average of the entire aquifer. Also, a few wells completed in the Recent alluvium should be added.

A program of periodic water sampling of ground water for chemical analysis to record any possible changes in water quality should be established within the county.

Frequestion - Disagnation of Lower and Analyzing and Communic Waters from a secformation (File Analysis), and an Typical O. Physic (1996).

and the set of the set

Theorem 6 is the applicity of a construction of a seminarial manifest of density and for a construction from the profile of a simulation of a second second bases of all the file of a simulation of a second second second second second appearance for a second second second second second second acception began

Chartes and the set of the second second

Provide Contracting of a contract for the biological memory of the set track previous set is the set and of the track of dominantly bounded of with whith with request to the biological bounded of the set and and bounded reaction bounded of the bound, strendally as reacted to the test of the dominant of the set one and the test of the set of the set of the set of the set of test of the set of the set of the set of the set of test of the set of test of the set of test of the set of the set

And the locare development of several terms that the backgroup of the several of the several of the several of the transformed of the several and that private of these of the method of performance that interaction (10 well) develop be existent of performance and the several method of backwell particular terms and the several method of well methods the method of the several of the terms of the several performance of the several of the terms of the several performance of the several of the terms of the several of the terms of terms of

- B J Service, Inc., 1960, The chemical analyses of brines from some fields in north and west Texas: Am. Inst. Mining, Metal., and Petroleum Engineers.
- Baker, E. T., Jr., and others, 1963, Reconnaissance investigation of the ground-water resources of the Red River, Sulphur River, and Cypress Creek basins, Texas: Texas Water Comm. Bull. 6306.
- Baker, R. C., Hughes, L. S., and Yost, I. D., 1962, Natural sources of salinity in the Brazos River, Texas, with particular reference to the Croton Creek and Salt Croton Creek basins: U.S. Geol. Survey open-file rept.
- Bayha, D. C., 1964, Occurrence and quality of ground water in Stephens County, Texas: Texas Water Comm. Bull. 6412, 96 p.
- —____1967, Occurrence and quality of ground water in Montague County, Texas: Texas Water Devel. Board Rept. 58, 81 p.
- Brown, L. F., Jr., 1959, Problems of stratigraphic nomenclature and classification, upper Pennsylvanian, north-central Texas: Bull. Am. Assoc. Petroleum Geologists, v. 43, pt. 2, p. 2866-2871.
- —____1969a, Geometry and distribution of fluvial and deltaic sandstones (Pennsylvanian and Permian), north-central Texas: Univ. Texas Geol. Circ. 69-4, 47 p.
- —____1969b, Virgil and lower Wolfcamp repetitive environments and the depositional model, north-central Texas: Univ. Texas Geol. Circ. 69-3, 19 p.
- Brown, R. H., and others, 1963, Methods of determining permeability, transmissibility, and drawdown: U.S. Geol. Survey Water-Supply Paper 1536-1, p. 243-341.
- Carr, J. T., Jr., 1967, The climate and physiography of Texas: Texas Water Devel. Board Rept. 53, 27 p.
- Cheny, M. G., 1929, Stratigraphic and structural studies in north-central Texas: Univ. Texas Bull. 2913, 27 p.
- —___1940, Geology of north-central Texas: Bull. Am. Assoc. Petroleum Geologists, v. 24, pt. 1.
- Cheny, M. G., and Goss, L. F., 1952, Tectonics of central Texas: Bull. Am. Assoc. Petroleum Geologists, v. 36, pt. 2, p. 2237-2265.

- Cloud, P. E., Jr., and Barnes, V. E., 1946, The Ellenburger group of central Texas: Univ. Texas Pub. 4621, 472 p.
- Cooper, H. H., Jr., and Jacob, C. E., 1946, A generalized graphical method of evaluating formation constants and summarizing well-field history: Trans. Am. Geophys. Union, v. 27 (4), p. 526-534.
- Criswell, D. R., 1942, Geologic studies in Young County, Texas: Univ. Texas Mineral Resource Survey Circ. 49, p. 5.
- Cronin, J. G., and others, 1963, Reconnaissance investigation of ground-water resources of the Brazos River Basin, Texas: Texas Water Comm. Bull. 6310.
- Cummins, W. F., 1890, The Permian of Texas and its overlying beds: Texas Geol. Survey 1st Ann. Rept.
- _____1891, Report of the geology of north-central Texas: Texas Geol. Survey 2nd Ann. Rept. 1800, p. 357-432.
- _____1893, Notes on the geology of northwest Texas: Texas Geol. Survey 4th Ann. Rept., pt. 1, p. 177-238.
- Cummins, W. F., and Lerch, O., 1891, Report on the geology of north-western Texas: Texas Geol. Survey 2nd Ann. Rept., p. 73-77, 321-325.
- Dallas Morning News, 1969, Texas almanac and state industrial guide, 1970-1971, A. H. Belo Corp., Dallas, Texas.
- Dean, H. T., Arnold, F. A., and Elvove, Elias, 1942, Domestic water and dental caries: Public Health repts., v. 57, p. 1155-1179.
- Dean, H. T., Dixon, R. M., and Cohen, Chester, 1935, Mottled enamel in Texas: U.S. Public Health Service Public Health repts., v. 50.
- Doll, W. L., and others, 1963, Water resources of West Virginia: West Virginia Dept. of Nat. Resource, Div. Water Resources, 134 p.
- Eargle, D. H., 1960, Stratigraphy of Pennsylvanian and lower Permian rocks in Brown and Coleman Counties, Texas: U.S. Geol. Survey Prof. Paper 315-D, 77 p.

- Evans, G. L., and Meade, G. E., 1945, Quaternary of the Texas High Plains: Univ. Texas Pub. 4401, p. 485-507.
- Farris, J. R., and others, 1963, Field conference on the geology of west-central Texas: Southwestern Assoc. Student Geol. Societies, 4th Ann. Field Trip Guidebook, 84 p.
- Ferris, J. G., and others, 1962, Theory of aquifer tests: U.S. Geol. Survey Water-Supply Paper 1536-E, p. 60-174.
- Forgotson, J. M., Jr., 1957, Nature, usage, and definition of marker-defined vertically segregated rock units: Bull. Am. Assoc. Petroleum Geologists, v. 41, pt. 2, p. 2108-2113.
- Frye, J. C., and others, 1948, Correlation of Pleistocene deposits of the central Great Plains with the glacial section: Jour. Geology, v. 56, no. 6, p. 501-525.
- Galagan, D. J., and Lamson, G. F., Jr., 1953, Climate and endemic dental fluorosis: Public Health repts., v. 68, no. 9, p. 497-508.
- Gard, Chris, and others, 1956, Ground water conditions in north-central Texas, Preliminary report: Texas Board Water Engineers unpublished rept.
- Garrett, M. M., and others, 1930, Geologic map of Baylor County, Texas: Univ. Texas Bur. Econ. Geology prelim. ed. map.
- George, W. O., and Hastings, W. W., 1951, Nitrate in the ground water of Texas: Trans. Am. Geophys. Union, v. 32, no. 3, p. 450-456.
- Gillett, P. T., and Janca, I. G., 1965, Inventory of Texas Irrigation, 1958 and 1964: Texas Water Comm. Bull. 6515, 317 p.
- Gordon, C. H., 1913, Geology and underground waters of the Wichita region, north-central Texas: U.S. Geol. Survey Water-Supply Paper 317, 88 p.
- Gould, C. N., 1906, The geology and water resources of the eastern portion of the Panhandle of Texas: U.S. Geol. Survey Water-Supply Paper 154, 64 p.
- Guyton, W. F., and others, 1958, Possible movement of salt from salt-water disposal pits into ground-water reservoirs and surface streams: Unpublished report, 6 p.

- Hammond, W. W., Jr., 1969, Ground-Water resources of Matagorda County, Texas: Texas Water Devel. Board Rept. 91, 42 p.
- Heller, V. G., 1933, The effect of saline and alkaline waters on domestic animals: Oklahoma Agr. and Mech. Coll., Expt. Sta. Bull. 217, 23 p.
- Hem, J. D., 1959, Study and interpretation of the chemical characteristics of natural water: U.S. Geol. Survey Water-Supply Paper 1473, 269 p.
- Hendricks, Leo, 1939, Subsurface division of the Ellenburger Formation in north-central Texas, *in* Contributions to geology: Univ. Texas Pub. 3945, pt. 5.
- Hill, R. T., 1901, Geography and geology of the Black and Grand Prairies, Texas: U.S. Geol. Survey 21st Ann. Rept., pt. 7, 666 p.
- Holmquist, H. J., 1955, Structural development of west-central Texas: Abilene Geol. Soc. Guidebook, p. 19-32.
- Jackson, W. E., 1964, Depositional topography and cyclic deposition in west-central Texas: Bull. Am. Assoc. Petroleum Geologists, v. 48, pt. 1, p. 317-328.
- Jones, T. S., 1953, Stratigraphy of the Permian basin of west Texas: West Texas Geol. Soc.
- Kane, J. W., 1967, Monthly reservoir evaporation rates for Texas, 1940 through 1965: Texas Water Devel. Board Rept. 64, 111 p.
- Laury, R. L., 1962, Geology of the type area, Canyon Group, north-central Texas: Jour. Graduate Research Center, v. 30, no. 3, p. 107-180.
- Laxson, Rowland, and others, 1960, Resistivities and chemical analyses of formation waters from the west-central Texas area: West Central Texas Section, Soc. Petroleum Engineers, A.I.M.E.
- Lee, Wallace, Nickell, C. O., Williams, J. S., and Henbest, L. B., 1938, Stratigraphic and paleontologic studies of the Pennsylvanian and Permian rocks in north-central Texas: Univ. Texas Pub. 3801, 247 p.
- Lloyd, A. M., and Thompson, W. C., 1937, Areal map showing outcrops on the eastern side of the Permian Basin of west Texas: Univ. Texas Bur. Econ. Geology regional geol. map.

- McMillion, L. G., 1958, Ground-water geology in the vicinity of Dove and Croton Creeks, Stonewall, Kent, Dickens, and King Counties, Texas, with special reference to salt-water seepage: Texas Board Water Engineers Bull. 5801, 42 p., 11 fig.
- Magistad, O. C., and Christiansen, J. E., 1944, Saline soils, their nature and management: U.S. Dept. Agriculture Circ. 707.
- Maier, F. J., 1950, Fluoridation of public water supplies: Am. Water Works Assoc. Jour., v. 42, no. 1, pt. 1, p. 1120-1132.
- Maxcy, K. F., 1950, Report on the relation of nitrate concentrations in well waters to the occurrence of methemoglobinemia: Natl. Research Council Bull. Sanitary Engineering and Environment, App. D., p. 265-271.
- Meinzer, O. E., 1923a, The occurrence of ground water in the United States, with a discussion of principles: U.S. Geol. Survey Water-Supply Paper 489, 321 p.
- —____1923b, Outline of ground-water hydrology, with definitions. U.S. Geol. Survey Water-Supply Paper 494, 71 p.
- —___1942, Ground water, in Hydrology: Dover Publications, Inc., New York.
- Moore, R. C., and others, 1944, Correlation of Pennsylvanian formations of North America: Geol. Soc. of Amer. Bull., v. 55, p. 657-706.
- Morris, D. E., 1964, Occurrence and quality of ground water in Young County, Texas: Texas Water Comm. Bull. 6415, 106 p.
- —___1967, Occurrence and quality of ground water in Archer County, Texas: Texas Water Devel. Board Rept. 52, 83 p.
- Ogilbee, William, and Osborne, F. L., Jr., 1962, Ground-water resources of Haskell and Knox Counties, Texas: Texas Water Comm. Bull. 6209, p. 1-40.
- Plummer, F. B., and Moore, R. C., 1921, Stratigraphy of the Pennsylvanian formations of north-central Texas: Univ. Texas Bull. 2132, 228 p.
- Plummer, F. B., and Hornberger, Joseph, Jr., 1935, Geology of Palo Pinto County, Texas: Univ. Texas Bull. 3534, 240 p.

- Preston, R. D., 1969, Occurrence and quality of ground water in Shackelford County, Texas: Texas Water Devel. Board Rept. 100, 58 p.
- 1970, Occurrence and quality of ground water in Throckmorton County, Texas: Texas Water Devel. Board Rept. 113, 51 p.
- Price, R. D., 1978, Occurrence, quality, and availability of ground water in Jones County, Texas: Texas Water Devel. Board Rept. 215, 235 p.
- Prickett, T. A., 1965, Type-curve solution to aquifer tests under water-table conditions: Ground Water, vol. 3, no. 3 (July).
- Scofield, C. S., 1936, The salinity of irrigation water: Smithsonian Inst. Ann. Rept., 1935, p. 275-287.
- Scott, Gayle, and Armstrong, J. M., 1932, The geology of Wise County, Texas: Univ. Texas Bull. 3224, 73 p.
- Sellards, E. H., Adkins, W. S., and Plummer, F. B., 1932, The geology of Texas, v. I, Stratigraphy: Univ. Texas Bull. 3232.
- Sellards, E. H., Baker, C. L., and others, 1934, The geology of Texas, v. II, Structural and economic geology: Univ. Texas Bull. 3401, 884 p., 40 fig., 8 pls.
- Shamburger, V. M., 1967, Ground-water resources of Mitchell and western Nolan Counties, Texas: Texas Water Devel. Board Rept. 50, 175 p.
- Sidwell, Raymond, and Bronaugh, R. L., 1946, Volcanic sediments in north Texas: Jour. Sed. Petrology, v. 16, p. 15-18.
- Stafford, P. T., 1960, Stratigraphy of the Wichita Group in part of the Brazos River Valley, north Texas: U.S. Geol. Survey Bull. 1081-G, p. 261-280.
- Stricklin, F. L., Jr., 1961, Degradational stream deposits of the Brazos River, central Texas: Geol. Soc. of Amer. Bull., v. 72, p. 19-36.
- Sundstrom, R. W., Broadhurst, W. L., and Dwyer, B. B., 1949, Public water supplies in central and north-central Texas: U.S. Geol. Survey Water-Supply Paper 1069.
- Texas State Department of Health, and Texas Game and Fish Commission, 1952a, Preliminary survey of oil-field brine pollution of the upper Brazos River in Young, Stephens, Throckmorton, Shackelford, Jones,

Haskell, Fisher, and Stonewall Counties: Unpublished rept., 14 p.

- Texas State Department of Health, and Texas Game and Fish Commission, 1952b, Supplemental report to preliminary survey of oil-field brine pollution of the upper Brazos River in Young, Stephens, Throckmorton, Shackelford, Jones, Haskell, Fisher, and Stonewall Counties, Texas: Unpublished rept., 44 p.
- _____1953, First annual report of progress for the control of oil-field brines in Young, Stephens, Throckmorton, Shackelford, Jones, Haskell, Fisher, and Stonewall Counties: Unpublished rept., 24 p.
- Texas Water Commission, and Texas Water Pollution Control Board, 1963, A statistical analysis of data on oil-field brine production and disposal in Texas for the year 1961 from an inventory conducted by the Railroad Commission of Texas: Compilation of 17 volumes.
- Theis, C. V., 1935, The relation between the lowering of the piezometric surface and rate and duration of discharge of a well using ground water storage: Trans. Am. Geophys. Union, pt. 2, p. 519-524.
- Thompson, D. R., 1967, Occurrence and quality of ground water in Brown County, Texas: Texas Water Development Board, rept. 46, 143 p.
- Todd, D. K., 1959, Ground-water hydrology: John Wiley and Sons, Inc., New York, 336 p.
- Turner, G. L., 1957, Paleozoic stratigraphy of the Fort Worth Basin: Abilene and Fort Worth Geol. Soc. 1957 Joint Field Trip Guidebook.
- U.S. Geological Survey, 1955, Quality of surface waters for irrigation, western United States, 1952: U.S. Geol. Survey Water-Supply Paper 1362.
- U.S. Public Health Service, 1962, Public Health Service drinking water standards: Public Health Service Pub. 956, 51 p.

- U.S. Salinity Laboratory Staff, 1954, Diagnosis and improvement of saline and alkali soils: U.S. Dept. Agriculture Handbook 60, 160 p.
- Van Siclen, D. C., 1957, Cenozoic strata of the southwestern Osage Plains of Texas: Jour. Geology, v. 65, no. 1, p. 47-60.
- Walker, L. E., 1967, Occurrence and quality of ground water in Coleman County, Texas: Texas Water Development Board, rept. 57, 110 p.
- Walker, W. H., and others, 1965, Preliminary report on ground-water resources of the Havana Region in west-central Illinois: Illinois State Water Survey and State Geol. Survey cooperative ground-water rept. 3, 61 p.
- Walton, W. C., 1962, Selected analytical methods for wells and aquifer evaluation: Illinois Water Survey Bull. 49, 81 p.
- Webb, W. P., ed., 1952, The handbook of Texas: Texas State Historical Assoc., Austin, Texas, 2 volumes.
- Wenzel, L. K., 1942, Methods for determining permeability of water bearing materials with special references to discharging well methods: U.S. Geol. Survey Water-Supply Paper 887, 192 p., 6 fig.
- Wilcox, L. V., 1955, Classification and use of irrigation waters: U.S. Dept. Agriculture Circ. 969, 19 p.
- Wilcox, L. F., Blair, G. Y., and Bower, C. A., 1954, Effect of bicarbonate on suitability of water for irrigation: Soil Sci., v. 77, no. 4, p. 259-266.
- Winslow, A. G., and Kister, L. R., Jr., 1956, The saline water resources of Texas: U.S. geol. Survey Water-Supply Paper 1365, 105 p.
- Wood, H. E., and others, 1941, Nomenclature and correlation of the North American continental Tertiary: Geol. Soc. of Amer. Bull. 52, p. 1-48.
- Wrather, W. E., 1917, Notes of the Permian: Southwestern Assoc. Pet. Geol. Bull. 1, p. 93-106.

Fight Computer and Hadrig, and Electric and an Fight Computation, (1952a). Profession (1976) a real light prime collation of the archive (1976). Present Nation, Straham, Oraceimentary, Oraceiment and American Nation, Straham, Oraceimentary, Oraceiment and American National Straham. On American and American American National Straham. On American American American American National Straham. On American American American American National Straham. On American America Table 6. -- Records of Water Wells and Springs

Water-bearing unit : Qal, Recent alluvium; Qa, Seymour Formation; Pw, Wichita Group; Pcf, Glear Fork Group; PPcs, Cambrian. PPcn, Cambrian.

: Reported water levels given in feet; measured water levels given in feet and tenchs.

Water levels

Method of lift and type of power: B, bucket or bailer; C, Cylinder; Cf, centrifugal; E, electric; C, natural gas, butane, or gasoline; H, hand; J, jet; N, none; Sub, submersible; T, turbine; W, windmill. Number indicates horsepower.

: D, domestic; Ind, industrial; Irr, irrigation; M, none; P, public supply; S, livestock. Use of water

Γ

All wells are drilled unless otherwise noted in remarks.

	REMARKS	Converted oil test used in waterflooding operation.	Dug well, Windmill broken.	Dug well. Springs and seeps along bluff nearby.	Dug well. Wind mill broken.	Dug well.	bo.	Spring flows 25+ gpm,	Dug well. Used as monthly observation well in this study.	Dug well.	Dug well. Windmill broken. Used as monthly	observation well in this study.	Core test drilled for this report. Base of Seymour at 22 feet. Very little water in Seymour. No water in Permian clay and dilatone. <u>N</u>	Well reported drilled one foot into redbeds. Yield reported 50 gpm, Yield drops to 30 gpm after pumping several days.	Dug well. Used as monthly observation well in this study.	Dug well.
	USE OF WATER	Ind	z	D, S	N	53	8	N	\$	D, S	z		z	Irr	os d	60
	METHOD OF LIFT	а 'о	с, и	а, г	о, к	с, w	с, w	Flows	с, w J, Е	J, E	с, и		z	Cf, E 1-1/2	ы г	J, E
	LN	1963 1969	1968	1969	1969	1969 1970	1969 1970		1969 1969 1969 1970 1970	1969	1969	1969 1969 1969 1970	1969	1956 1961 1969 1970	1969 1969 1969 1969 1969	
/KL.	DATE OF MEASUREMENT	19, 15,	7,	13, 21,	13,	11, 21,	11, 21,	ł	23, 15, 17, 13,	11, 21,	12,	13, 15, 13,	7,	19, 14, 21,	2,18,7,8,1,2	
WATER LEVEL	ME	Oct. Nov.	Nov.	Feb.	Feb.	Feb. Jan.	Feb. Jan.		Jan. Apr. July Oct. Mar.	Feb. Jan.	Feb.	Apr. July Sept. Dec. May	July	Apr. Jan. Feb. Jan.	Jan. Apr. July Sept. Dec.	Jan.
MM	BELOW LAND- SURFACE DATUM (ft)	846 846	20.5	27.6 26.9	26.5	19.2 18.9	21.0 20.6	(+)	27.1 26.9 25.3 25.2 25.2	17.1	10.0	10.5 10.5 8.3 7.0	15.0	19.5 21.5 21.2 20.8	21.8 22.3 24.8 21.6 24.4	27.3
	ALTITUDE OF LAND SURFACE (ft)	1, 175	1,256	1,310	1,322	1,403	1,409	1, 388	1,358	1, 351	1, 387		1, 391	1, 354	1, 356	1, 359
	WATER BEARING UNIT	Pw	Qa1	QB	$Q_{\rm S}$	Qs	Qs	qs	Qs	Q5	Qs		Qs	Qs	68 O	Qs
NG	DEPTH (ft)	242 957 875	ŝ	F	1	1	ł	ł	l	1	Ĩ		1	1	1	:
CASING	DIAM- ETER (in.)	10-3/4 7 3	36	42 31	30	36	36	;	30	24	31		E.	10	16	31
	DEPTH OF WELL (ft)	946	27	36	43	25	28	Spring	56	25	19		49	33	28	29
	DATE COMPLETED	1961	ł	:	I	1954	1943	ł	1	1939	;		1969	1956	I.	ł
	DRILLER	Cosden Petroleum Company	1	Donald J. Peacock	Ĩ	:	1	l	1	-	1		Lewis Barnes	Les Jameson	1	1
	OWNER	American Petrofina Company of Texas	Mrs. J. L. Hargraves	Travis J. Peacock	do	Henry P. Arledge	qo	op	Herman Yungman	Henry P. Arledge	do	and a strength	ġ	Trula Burkhalter	Elizabeth Hertel	do
	WELL	20-25-401	33-703	21-21-601	602	102	702	703	801	802	803	\$		106	902	903
			*	¢.	4	*	*	3	4	*	¢.			×	*	

							11			у.						ST		88 ed •2/	
	REMARKS	bug well. Windmill broken.	Reported drilled to 40 feet. Reported drilled 1 foot into redbeds. Gravel packed.	Reported drilled to 37 feet. Reported drilled 1 foot into redbeds. Gravel packed.	Caved, Reported drilled I foot into redbeds. Formerly used as an irrigation supply. Gravel packed.	Reported drilled 43 feet, 1 foot into redbeds. Gravel packed.	Dug well. Dug to redbeds. When pumped with well 21-21-910, reported to make about 250 gpm.	Dug well. Dug to redbeds. See well 21-21-909.	Reported to pump 100 gpm. Gravel packed.	Used as monthly observation well in this study. Reported to make 75 gpm. Gravel packed.	Reported to pump 50 gpm.	Reported to pump 100 gpm.	Reported to pump 60 gpm.	Reported to pump 90 gpm.	Dug well. Pumps into central tank with wells 2:-21-333 and 21:-21-334, distributed by centrifugal pump for irrigation. Reported to pump about 45 gpm.	Reported to pump 600 gpm when drilled. Used as observation well in pumping test of well 21-21-920. Gravel packed.	Pumping rate 125 gpm, measured Apr. 26, 1970. Reported to pump 150 gpm. Gravel packed.	Reported to pump 700 gpm when drilled. Used as muching well for pumping test in this study. Three Observation wells drilled nearby. Pumped at about 465 gpm for 48 hours. Gravel packed.2	Gravel packed.
	USE OF WATER	z	Irr	Irr	z	Irr	Irr	Irr	Irr	Irr	Irr	Irr	Irr	Irr	s, Irr	Irr	Irr	Irr	Irr
	METHOD OF LIFT	с, и	Sub, E 2-1/2	т, Е 3	т, Е 2	Т, Е 2	cf, E 1	т, Е 5	Sub, E 2	Cf, E 1-1/2	cf, E 1	cf, E 1	cf, E 1	cf, E 1	J, E 1-1/3	I, G	т, Е 3	т, с	Cf, E 1
T		1969	1969	1970	57	1956 1956 1969 1970	1970	1969	I	1969 1969 1969 1969 1969	1960		1969	1	1969 1970	1969 1970 1970 1970	1969	1970 1970 1970	1969
	DATE OF MEASUREMENT	23, 1	23, 1	do 21,	1	14, 19, 23, 21,	23, 21,	23, 21,	;	23, 18, 13, 13,	п,	1	4,	ł	4, 21,	5, 29, 30,	5,	27, 29, 30,	5, 21,
A REAL PROPERTY AND A REAL	DA MEAS	Jan. Jan.	Jan.	Jan.		Jan. Apr. Jan.	Jan. Jan.	Jan. Jan.		Jan. Mar. July Sept. Dec.	July		Feb.		Feb. Jan.	Feb. Apr. Apr.	Feb.	Apr. Apr. Apr.	Feb. Jan.
	BELOW LAND- SURFACE DATUM (ft)	23.8 23.6	25.5	25.3 25.0	i i	26.8 23.3 26.5 26.0	22.8 22.8	23.6 23.4	I	24.9 24.7 25.1 25.1 24.8 24.8	20	ł	21.0	Ē	16.4	21.6 20.5 21.9 21.0	22.6	22.0 28.4 22.6	21.1 21.1
	ALTITUDE OF LAND SURFACE (ft)	1,363	1, 356	1,356	1, 357	1, 358	1, 353	1, 353	1, 354	1, 354	1, 354	1, 354	1, 352	1, 352	1, 342	1, 353	1,353	1,353	1,352
	WATER BEARING UNLT	Qs	qs	QB	Qs	QB	Qs.	Qs	qs	Qu.	Qs	qs	Qs	qs	a S	Qs	qs	Qs	Qs
	EPTH (ft)	t	40	37	42	42	1	ţ	1	1	ł	l	ł	33	1	1	1	I	ł
CABLING	DIAM- ETER 1 (in.)	30	20	13	EI	13	24	24	12	12	12	17	21	12	31	15	12	EI	15
	DEPTH OF DETH HT12U	37	36	94	42	42	33	39	42	14	35	32	34	33	28	43	44	77	38
	DATE COMPLETED	1	1956	1956	1956	1956	1955	1956	1957	1960	1956	1958	1959	1956	I .	1956	1955	1956	ł
	DRILLER	:	Les Jameson	do	do	qo	Dudley B. Myers	đo	Les Jameson	ġ	qo	Dale Heard	Les Jameson	op	ł	Les Jameson	do	qo	op
	OMNER	Elizabeth Hertel	Edwin R. Brom	qo	op.	qo	Dudley B. Myers	do	do	qp	Trula Burkhalter	qo	ę	do	Riley P. Henson	Rex Howell	op	do	James H. Waldron and Benjamin C. Moore
	WELL	21-21-904 E	905 E	906	206	806	606	910	116	912	913	914	915	916	116	918	616	920	921
		2						*						*	*			*	

See footnotes at end of table.

MELL	OWNER	DRILLER	DATE COMPLETED	DEPTH OF WELL	DIAM- ETER (in.)	DEPTH (ft)	WATER BEARING UNLT	ALTITUDE OF LAND SURFACE (ft)	BELOW LAND - SURFACE DATUM (ft)		DATE OF MEASUREMENT	TUS	METHOD OF LIFT	USE OF WATER	SANAKAN
21-21-922	22 James H. Waldron and Benjamin C. Moore	Les Jameson	1	38	15	1	Qs	1, 352	20.9 21.0	Feb.	21.	1969	z	N	Drilled and cased for irrigation supply. Not
5	923 W. C. Hertel	Ē	ł	23	31	;	Qs	1,370	15.0 14.0	Feb.		1969	Л, Е	D, S	warpred yet. Otavet packed. Dug well.
*	924 Travis J. Peacock	I	1946	100	1 1	ł	Pef	1, 323	32.8	Apr.	6	1969	z	Z	hase of Seymour Formation reported at 10 feet. No water in Seymour, Water reported sairy when drilled. Windmill broken, Drilled for livestock anonou.
*	Trula Burb	ł	1933	24	31	ĩ	Qa	1, 352	21.3 20.9	Feb. Jan.	26, 21,	1969 1970	Ј, Е	D, S	Dug well.
0	926 do	Les Jameson	1	26	14	1	Qs	1, 353	20.1 20.5 20.8 20.8 20.1	Feb. Mar. June Oct. Jan. May	27, 13, 15, 15,	1969 1969 1969 1970 1970	z	Z	Used as monthly observation well in this study. Formerly used as irrigation supply. Gravel packed.
6	ł	qo	1956	25	18	E	Qa	1, 353	12.9	Apr.	19,	1956	z	z	Silted up in 1967 flood, Formerly used as an irrigation supply. Gravel packed,
6		do	1.956	28	ł	3	qs	1, 353	ł		ł		N	N	Do.
6	Clifford I	Dale Heard	1959	38	13	ł	Qs	1, 348	21.7	Apr.	10,	1969	Т, с	Irr	Reported to pump 100 gpm. Owner uses tractor motor to run pump. Gravel packed.
5		qo	1958	27	13	1	Qs	1, 346	19.7 20.1 22.1 19.0 19.0	Sept. Oct. Feb. May	46, 15, 15,	1969 1969 1970 1970 1970	ы Б	Irr	Well reported to have pumped 400 gpm when first drilled: 200 gpm now. Used as monthly observation well in this study. Oravel packed.
6	931 W. T. Ward	Les Jameson	1964	40	21	1	QB	1, 348	21.9	Apr.	,6	1,969	т, в 3	Irr	Reported to pump about 140 gpm. Gravel packed.
932		qo	1964	39	21	1	Qs	1, 348	20.7	l Ó	op	-	т, Е	Irr	Reported to pump about 160 gpm. Gravel packed,
56	Riley P. H	Ernest Knesek	1969	31	18	31	Q B	1, 336	18.5	Apr.	do 10,	1969	J, E 2	Irr	Mater-level measurement taken three hours after pumping 50 gym for one hour. Pumps into central tank. Mater distributed from gan by 7-1/2 horsepower electric centrifued humb.
934		op	1969	29	1	1	Qs	1, 337	1		ł		J, E 1/2	Irr	Humps into central tank. Water distributed from tank by 7-1/2 horsepower electric centrifugal pump. Reported to pump 30 gpm.
935	5 J. C. Wright, Jr.	Les Jameson	1959	37	13	ł	Qs	1, 354	22.9	June	18,	1969	T, E	Irr	Reported to pump 150 gpm. Gravel packed.
936	6 do	op	1959	42	13	42	Qs	1, 354	23.0	June	26,	1969 St	Sub, E	Irr	Reported to pump 200 gpm. Gravel packed.
937	7 do	do	1961	42	12	42	Qs	1, 354	I		£=	ŝ	Sub, E 1-1/2	Irr	Reported to pump 90 gpm. Gravel packed.
938	8 do	qo	1964	38	œ	38	QB	1, 354	21.8	June	18,	1969	J, Е	D, S	Gravel packed.
										2					

Г		1		-	-		_		-	_							_					
	REMARKS	Used as monthly observation well in this study.	keported rested by driller at 400 gpm. Reported to pump 125 gpm.	Reported tested at 400 gpm by driller. Reported to pump 275 gpm. Gravel norked.	Do.	Reported to pump 35 gpm. Used as monthly observation well in this study. Gravel packed.		Reported to pump 35 gpm. Gravel packed.	bo.	Dug well.	Do.	Dug well. Formerly used as a domestic and livestock supply.	Dug well. Windmill broken. Formerly used as a domestic and livestock supply.	Dug well. Used as monthly observation well in this study.		Dug well.	Do.	Gravel packed.	bo.	. Do.	Used as monthly observation well in this study. Gravel packed.	Gravel packed.
	USE OF WATER	Irr		Irr	Irr	Irr		Irr	Irr	D, S		z	N	N		D, S	D, S		Irr	Irr	Itr	Irr
	METHOD OF LIFT	cf, E	•	T, G	т, с	cf, E 1		Cf, E	cf, E	Э, Е		и	с, и	z	1	В, Н	J, E	T, E 5	T, E 3	т, Е	CE, E 1	т, Е 5
	TN	1969	1970 1970 1970	1969		1969	1970 1970 1970 1970	1969	1.1		1969	1969 1970	1969	1969 1970	1970 1970 1970	1969	1969	1969			1969 1970 1970 1970	-1-
54	DATE OF MEASUREMENT	1.1	12, 18, 16, 1	11,	qo		5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,5,		qo	op	21, 1		12, 1		25, 1 15, 1	12, 1		2, 1	op	op	do 17, 1 13, 1	6
WALER LEVED	ne a	Feb.	Sept. Feb. Apr. May	Feb.		Sept.	Oct. Feb. Mar. Apr.	Feb.		d l	Feb.	Feb. Jan.	Feb.	July Jan.	Mar. Apr. May	Feb.	Apr.	Apr.			Aug. Feb. May	
MA	BELOW LAND- SURFACE DATUM (ft)	16.0	18.6 15.3 15.3	14.0	18.7	14.7 15.2	14.8 14.2 14.0 14.0	14.3	14.3	14.0	16.0	26.9	16.2	11.2 10.8 9.4	8.7 8.6 8.6	13.5	12.8	19.7	20,0	21.0	21.5 22.3 19.4 19.2	;
	ALTITUDE OF LAND SURFACE (ft)	1, 312		1, 313	1, 315	1, 330		1, 330	1, 331	1, 328	1, 333	1, 338	1,333	1, 363	ł	1, 355	1, 309	1, 337	1, 345	1, 337	1, 337	1, 334
	WATER BEARING UNLT	Qs		Qs	qs	Qs		ds	Qs	Qs	Qs	Qs	Qs	Qs		Qs	Qs	Qs	Qs	qs	QB QB	ds.
NG	DEPTH (ft)	T	;	ł	ţ	1	T	ł	ł	ł	ł	1	;	t.	1	I	1	1	ł	1	l.	3
DALGAD	DIAM- ETER (in.)	13		12	12	12		12	89	31	31	31	31	30		36	30	12	12	12	15	15
	DEPTH OF WELL (ft)	28	0	31	31	20		20	22	32	22	27	21	26		26	32	35	36	40	39	36
	DATE COMPLETED	1959	ł.	1959	1959	1964		1964	1964	F	ſ	ł	1	1	9	ł	;	1957	1959	1956	1962	1954
	DRILLER	Les Jameson		op	do	do		op	do	ł.	1	1	E.	1		:	1	Les Jameson	qo	Covey	Les Jameson	Covey
	OWNER	Cora Morris estate		do	op	do		do	do	Mrs. R. E. Morris	Heirs of J. E. Morris	op	do	Mattie Morris estate		Heirs of J. E. Morris	George R. Malone	J. G. Campbell	đo	James E. Doss	qo	do
	MELL	21-22-704		705	206	707		708	607	710	111	712	713	714		715	716	717	718		720	721
		*							*	*	#			_		*	\$				4	

- 63 -

DEFTH DIAH- OF DIAH-	40 15 Qa 1,334 20.3 Apr. 2, 1969 $T_{3}E$ Irr Gravel packed.	40 12 Qs 1,333 19.0 do Gf E Irr Do.	35 12 Qa. 1,337 19.7 do T,E Irr Do.	36 12 36 Qs 1,331 21.5 Apr. 20, 1956 T, G Irr Base of Seymour reported at 34 feet. Reported to 10 pm. Casing slotted 21 to 36 teo.ump about 200 ppm. Casing slotted 21 to 36 feet. Gravel parked.	41 12 43 Qs 1,334 26.7 Apr. 20, 1956 7, G Irr Base of Seymour reported at 41 feet. Reported 28 to 43 26.2 Feb. 11, 1969 'to pump about 200 gpm. Casing alotted 28 to 43 feet. Gravel packed.	41 14 Qs 1,345 21.0 Apr. 24, 1969 Sub, E Irr Gravel packed.	32 42 Qs 1,331 22.2 Jan. 13, 1961 T, 8 Irr Reported to pump 175 gpm. Gravel packed. 21.0 Apr. 10, 1969 3	33 18 Qs 1,326 19.1 Apr. 24, 1969 $T_1 E_{-1/2}$ 1rr Reported to pump 300 gpm. Gravel packed.	23 31 Qs 1,341 18.5 Nov. 21, 1969 N N Dug well. Formerly used as a domestic and Ilivestock supply.	36 14 36 Qs 1,307 15.6 Feb. 27,1969 T, E Irr Reported to pump 200 gpm. Used as monthly 19,0 36,2,3 1969 7,8 25,1969 5 Irr Reported to pump 200 gpm. Used as monthly 17,3 Sapt. 16,1969 5 1969 5 1091 15 12,3 Sapt. 16,1969 15 1969 15 1969 12 12,4 Jam. 15,1969 12,3 1969 13,1969 12,4 13,1970 11,1,2 Appe. 15,1970 11,2 Appe. 15,1970 13,1970 13,13,190	41 14 Qa 1,300 18.7 Jan. 12, 1937 T, E Irr Reported to pump 400 gpm. Yearly observation 20.6 Jan. 14, 1965 10 xell, and monthly observation well in this 23.4 Apr. 23, 1969 14.0 June 17, 1969 13.4 Apr. 15, 1970 13.4 Apr. 15, 1970	36 36 Qa L,302 N N Dug wall. Abandoned, partially cuved. Formerly used for irrigation supply.	41 13 41 Qs 1,302 T, G Irr Reported to Reported to pump 350 gpm in 1961 and 250 gpm in 1969. Gravel packed.	36 14 Qs 1,30k 13.2 Jan. 12, Jan. 14, 1950 N N Weill destroyed 1961. Reported to have pumped 150 gpm.	33 Qs 1,324 21.0 Feb. 21. 1962 T, G Trr Yearly observation vell. Reported to pump 250 22.3 Jan. 19.0 Feb. 21, 1966 22.3 Jan. 19,0 Rpm. Gravel packed. 22.4 Jan. 19,0 Rob. 20,1 1966 20,0 1996 19.9 Qur. 20,1 1967 20,1 1967 20,1 20,1	55 Qa 1,308 N N Core teat drilled for this report. Base of Symour. Symour at 22 feet, Yery liftle water in Segmour. No water in Permian clay and siltstone. J
DATE DEPT COMPLETED VELI	1956 4	1956 4	1954 3	е 	1953 4	1965	1953	1953	1	1951	1953	1941	1959	1955	1955	1969
DRILLER	Covey	do	do	Dickerson and Combs	qo	Les Jameson	Edward Haisler	Buster Tolson	I	Doris Dickerson	Smelley	D. A. Chapman, Sr.	Les Jameson	J. R. Rea	Edward J, Haisler	Lewis Barnes
OWNER	James E. Doss	qo	qo	Paulene Laney	do	W. T. Ward	Edward Haisler	Westley T. Cockroft	C. R. Morris	Carl B. Chapman	Charles W. Hatter, et al.	D. A. Chapman, Jr.	do	Burrell Lee, Jr.	Edward J. Haisler	Burrell Lee, Jr.
MELL	21-22-722	723	724	725	726	727	728	729	* 730	801	802	* 803	* 804	805	806	807

				dimension of	ONTEVO	2				WALEN LEVEL	EVEL	1			
WELL	OHNER	DRILLER	DATE COMPLETED	DEPTH OF WELL (ft)	DIAM- ETER (in.)	DEPTH (ft)	WATER BEARING UNIT	ALTITUDE OF LAND SURFACE (ft)	BELOW LAND- SURFACE DATUM (ft)		DATE OF MEASUREMENT	TN3P	METHOD OF LIFT	USE OF WATER	REMARKS
21-22-	9 Franklin Coufal, Jr.	1	1955	35	15	35	Qa	1, 299	14,9 14.2	Jan.	21, 21,	1969 1970	T, E 10	Irr	Reported to pump about 300 gpm. Gravel packed.
* 810	do	1	1956	38	12	38	Qs	1, 302	12.8	Jan.	21,	1969	Т, Е 5	Irr	Reported to pump about 225 gpm. Fumped 190 gpm during power-yield test on July 24, 1969. Gravel packed.
	I Frank Coufal, Sr.		1955	31	15	1	qs	1, 304	12.7 11.0	Jan.	do 21,	1970	Т, с	Irr	Reported to pump about 250 gpm.
* 812	do	Frank Coufal, Sr.	1954	38	12	ł	Qa	1, 305	ł		ł		Т, Е 5	Irr	Do.
	do	ĩ	1956	E	12	1	Qs.	1,306	13.9	Jan.	21,	1969	T, E 7-1/2	Irr	Pumped 230 gpm during power-yield test on July 16, 1969.
	op	1	1958	45	15	1	Qs	1, 315	23.7	Feb. Jan.	27, 21,	1969 1970	т, Е 5	Irr	Estimated to pump about 200 gpm.
4 815	qo	1	1961	43	15	1	Qs	1, 315	23.7	Feb.	27, 21,	1969	T, E 5	Irr	Do.
	Burrell Lee, Jr.	Burrell Lee, Jr.	1	29	13	f	Qs	1, 317	17	Jan.		1969	J, E	D, S	
* 817	do	J. R. Rea	1955	33	12	1	Qs	1, 305	12.7	Jan.		1970	Т, Е	Irr	Reported to pump 200 gpm. Gravel packed.
818	qo	Les Jameson	1956	33	12	;	qs	1, 305			Ĩ.		T, E 5	Irr	Reported to pump 250 gpm. Gravel packed.
	do	op	1956	33	12	;	Qs	1, 305	í	1	1		T, E 5	Irr	Do.
* 820	-	l	ł	17	30	;	qs	1, 305	13.3	Jan. Jan.	22, 21,	1969 1970	с, w	z	Dug well.
821	N. P. Mitchell	Les Jameson	1961	33	ł	Į.	Qs	1,320	;		ł		И	N	Caved in. Formerly used as frrigation supply.
822	qo	Buster Tolson	1957	33	15	ł	Qs	1, 322	21.1	Jan. Jan.	23, 21,	1969	Т, Е 3	Irr	Two 1-1/2 horsepower motors with pumps.
823	do	op	1957	35	13	ł	Qs	1, 323	21.4	Jan.	23,	1969	T, E	Irr	Do.
824	qo	Dale Heard	1957	34	13	1	qs	1, 323	20.4		qo		т, Е	In	Do.
825	Wallace L. Malone	Les Jameson	1966	31	51	1	Qs	-1, 308	15.8	Feb.	12,	1969	T, E 7-1/2	Itr	Reported to pump 300 gpm. Gravel packed.
826	do	qo	1966	31	15	;	ds	1, 312	1		l.		Τ, Ε 2	Irr	Reported to pump 125 gpm. Gravel packed.
827	Anton Fojt	Doris Dickerson	1952	37	14	Į.	Qs	1, 308	;		1	-	т, с	Irr	Gravel packed.1/
828		do	1952	37	14	1	ğ	1,307	F		:		т, в 2	Irr	Gravel packed.
829	Carl B. Chapman	Les Jameson	1957	37	13	1	Q8	1, 307	1		F		т, с 15	Irr	Reported to pump 200 gpm, Gravel packed.
830		Frank Coufal, Sr.	1957	37	13	37	qs	1, 306	;		ł	-	Т, б	Irr	Reported to pump 150 gpm. Gravel packed.
831	qp	Les Jameson	1	38	15	38	Q8	1, 306	13.1	Feb.	27,	1969	N	z	Drilled for irrigation supply. Gravel packed.
						-						1	Ì	-	

															_							
	REMARKS	Reported to pump 400 gpm. Gravel packed.	Reported to pump 225 gpm. Gravel packed.	Do.	Formerly used as an irrigation supply. Gravel packed.	Gravel packed.	bo.	Gravel packed.	Reported to pump 250 gpm. Gravel packed.	Reported to pump 75 gpm. Gravel packed.	Dug well; drilled deeper, cased, and gravel packed. Reported to pump 250 gpm.	Gravel packed.	Redbeds reported at 41 feet. Reported to pump 200 gpm in 1956 and 160 gpm in 1969. Gravel packed.	Pump is flush with casing, unable to measure. Reported to pump 300 gpm. Pumped 290 gpm during power-yield test on July 24, 1969. Gravel packed.	Reported to pump 400 gpm in 1956 and 225 gpm in 1969. Pumped 235 gpm during power-yield test on July 24, 1969. Gravel packed.	Dug well. Windmill broken.	Reported to pump 300 gpm. Gravel packed.	Reported to pump 250 gpm. Gravel packed.	Dug well.	Do.	Dug well. Reported filled and abandoned in 1961.	Used as pumping well for pumping test in this study. Pumped 211 gpm for eight days. Gravel packed.2
	USE OF WATER	Irr	Itr	Irr	N	Irr	Irr	Irr	Irr	D, S Irr	Irr	Irr	Irr	Irr	Irr	N	Irr	Irr	N	D, S	N	Irr
	METHOD OF LIFT	т, Е	т, Е 5	т, Е	т, с	T, G	T, E 15	T, E LS	Т, с	J, E Cf, E 1-1/2	с, w cf, E 5	т, Е 5	т, в	т, в	т, Е 7-1/2	с, и	T, E 7-1/2	т, Е	с, н	J, E	N	т, Е 5
T		1969				1956		1960 1962 1969	1960 1961 1969	1969		1969			1969	1,969	1969			1961	1943	1969 1969 1969 1969
	Z OF REMENT	27, 19	op	op	op	20, 1	T	14, 1 21, 1 13, 1	10,11	23, 1	op	29,	op	÷	29,	26,	24,	op	ł	13, 24,		22, 21, 30,
TEARD	DATE OF MEASUREMENT	Feb. 2	5	U.		Apr.		Jan. Feb.	Jan. Jan. Apr.	Apr.		Apr.			Apr.	June	.vov.			Jan. Apr.		Jan. July July July
WATER LEVED	BELOW LAND- SURFACE DATUM (ft)	16.1 Fe	16.3	16.1	23.3	15.4 A	1	17.2 J 15.5 F 14.1 M	21.0 21.0 21.0 21.0	19.0 V	13.9	13.2	14.6	;	16.9	5.6	12.8	12.8	:	11.5	12	16.3 17.2 34.2 19.0
1	ALTITUDE OF LAND SURFACE (ft)	1, 311	1, 310	1, 309	1, 316	1, 308	1, 301	1,301	1, 326	1, 305	1, 302	1, 306	1, 299	1, 301	1, 301	1, 350	1, 312	1, 311	1, 322	1, 317	1, 320	1, 301
	MATER 0 BEARING 5 UNLT	Qs	Qa	Qs	çs .	Qa	QB	Qs	Qs	Qs	Qs	Q8	Qs	Qs.	8 Qa	Qs	Qs	Qs	qs	Qs	Qs	da Qa
	(ft)	42	37	37	77	1	1	36	34	1	37	37	42	38	40	27	36	36	1	;	ł	1
CASING	DIAM- ETER (in.)	13	13	13	14	14	14	14	18	14	12	14	13	16	IJ	39	16	16	31	31	48	12
	DEPTH OF WELL E (ft) (ft)	42	37	37	44	37	1	36	34	42	37	37	42	38	40	27	33	33	30	17	26	34
	DATE COMPLETED	1960	1956	1956	1954	1956	1956	1952	1957		1967	1957	1956	1967	1956	;	1962	1962	ł	1928	1	1957
	DRILLER	Les Jameson	J. M. Rea	do	;	J. M. Rea	:	Gower Drilling Company	Edward Haisler	Les Jameson	đo	Franklin Coufal, Jr.	Les Jameson (Covey)	Les Jameson	qo	ł	James M. Rea	qo	ł	Earley W. Samsill	;	Les Jameson
	OGNER	T. E. Graddock	op	op	Frank Coufal, Sr.	Anton Foitik	Lem Bellows estate	do	Edward Haisler	Charles W. Hatter, et al.	D. A. Chapman, Jr.	M. E. Birdwell, et al.	L. Estes Miller	Florence B. Parker, et al.	op	clan Millar	S. E. Williamson	op	qo	Earley W. Samsill	db	Florence et al.
	TIAM	21-22-832	833	834	835	836		838	839	840	841	842	843	844	845	978	847	848	849	901	902	903
	M	21								×									*	44	*	*

See footnotes at end of table.

		DATE	DEPTH	CASING DTAM-		UA TEEN	ALTITUDE		WATER LEVEL	13				
	DRILLER	COMPLETED	-	ETER (in.)	DEPTH (ft)	WAIEK BEARING UNIT	OF LAND SURFACE (ft)-	LAND- SURFACE DATUM (ft)	ME	DATE OF MEASUREMENT		METHOD OF LIFT	USE OF WATER	REMARKS
	I	l	33	31	1	Qs	1, 318	6.0 9.3 6.1 8.5 8.5	Apr. Aug. Sept. Nar. Apr. Mav.	ព័រ សំឡុង សំព័រ ព័រ សំឡុង សំព័រ	1969 1969 1969 1969 1970 1970	a o	D, S	Dug well. Reported dug out to 33 feet in 1941. Used as monthly observation well in this study.
	ľ	ſ	28	30	ł	qs Qs	1, 324	21.5	Apr.			с, к	ŝ	Dug well.
	Les Jameson	1,959	40	13	40	ds.	1,300	17.0	Apr.		1842		Irr	Reported to pump about 160 gpm, Gravel packed.
	ł	1956	31	14	31	Qs	1,298	17.7	June	19, 1	1969 T,	, ¹²	Itr	Gravel packed.
	a	1956	1	14	ł	QB	1,298	1		ł.	μ,	1 E P	Irr	Do.
	ł	ł	3	36	£	qs	1, 302	13.3	June	26, 1	1969 J,	्य	D, S	Dug well.
	i t	ł	Spring	1	1	QB	1, 346	(+)		;	54	Flows	z	Spring flowing about 2 gpm. Water flows from Permian sundatone, but source is Seymour alluvial deposits overlying the older rocks.
	Levis Barnes	1969	17	m	41	3 ⁸	1, 301	20 21.5 18.1 17.3 22.9 19.1	June July July July July	26, 1 11, 1 16, 1 21, 1 29, 1 30, 1	1969 1969 1969 1969 1969	Z	z	Drilled and cased as observation well for pumping test in this study, hase of Seymour at 40.5 feet. Casing pulled after pump test. \vec{y}
	d o	1969	42	n	42	Qs.	1, 301	20 18.7 17.8 17.0 19.8	June July July July July July	26, 1 11, 11, 1 16, 1 21, 1 29, 1 30, 1	1969 1969 1969 1969 1969	и	и	.oc
	q	1969	19	m	41	Qs	1,301	20 18.4 17.7 17.1 20.0 18.8	June July July July July	27, 1 11, 1 16, 1 21, 1 29, 1 29, 1 30, 1	1969 1969 1969 1969 1969	z	N	bo.
Chester Blankenship	ł	1955	34	42 16	1	Qal	1, 308	21.0	June	19, 1	1969 J, E Cf, 10	, Е 0 Е	Irr	On manifold system with well 21-29-105. Reported yield of 2 wells was 150 gpm.
	1	1	41	36	Ĩ	Qs	1,408	18.0 19.5 18.2 17.6 17.5 17.5	Feb. June Aug. Jan. Mar. Apr. May	13, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15	,L 1969 1969 1970 1970 1970 1970 1970	2	co.	Dug well. Used as monthly observation well in this study.
J. W. Elkins	;	ł	18	31	Ð	Qs	1,404	13.8	Feb. Jan.	25, 19 21, 19	1969 J, 1970	ш	D, S	Dug well.
	1	1955	26	42 16	1	Qal	1, 308	20,2	June	19, 19	1969 Cf, 10	E	ц	On manifold system with well 21-29-101. Reported yield of two wells was 150 gpm.
-								5			_			And and and any other states of the

Γ

Ι

- 67 -

ALTITUDE BELOW OF LAND - LAND -	WATER	- 44	-W		_	NLABO
THE OF THE SURFACE MEASUREMENT (ft) (ft) (ft)	DEPTH BEARING (ft) UNIT	6 H		DIAM- ETER (in.)	OF DIAM- WELL ETER (ft) (in.)	DIAM- ETER (in.)
1 1,306 15.2 June 19, 1969	- Qal		1	32 15		32 15
1 1,306 21.7 do	Qal		1	32 15	23	32 15
1 1,306 11.5 do	- Qal	1		15	23 15	15
1 1,306 9.6 do	- Qal	1	5	1 15	21	
1 1,306 10.3 Nov. 21, 1969	25 Qa1		2	12	25	
1,342 23.5 Jan. 23, 23, 21, 21,	30 Qs		ν,	30 15	30	
Pcf 1,402 16.3 Feb. 13,	Qs, Pcf	- 2	9		100	
I, 1, 396 23.0 Feb. 25, 22.1 Jan. 21,	Q8	1	5	33 42	33 42	
11 1,300 13.1 Sept. 16,	Qa1	10	12	23 42	23 42	_
s 1,340 25.7 do	Qs	4	T.	36 31	255	36
s 1,313 4.9 Sept. 17,	68 1		12	11 12	п	
g 1,318 20.3 June 26,	48		14	28 14	28	-
s 1,318	Qs		;		27	1
a 1,380 23.9 Feb. 12, 25.1 Apr. 11, 23.1 Jan. 15, 23.4 May 13,	ds		31	29 31	29	
10 1,393 23.5 Feb. 26, 21.5 0cc. 15, 26, 26, 21.2 Mar. 12, 21, 14, 15, 21.2 Mar. 17, Apr. 12, 21, 17, Apr. 12, 21.1 Apr. 17, Apr. 12, 21, Apr. 13, 21.2 11, Apr. 14,			31	34 31	*E	
Qs 1,369 12.7 Feb. 25, 11.8 Jan. 21,	08		31	19 31	19	
Qa 1,317 17.2 Apr. 8,	ö I		31	24 31	24	
qs 1,317	ö I		31	25 31	25	
Qa 1,315 12.0 Apr. 8,	ð 		30	20 30	20	
Qs 1,329 25.1 June 26,	а !		24	29 24	29	
Pcf 1,350 36.4 June 20,			60		47	47 60

	OWNER	DRILLER	DATE COMPLETED	DEFTH OF WELL (ft)	DIAM- ETER (in.)	DEPTH (ft)	WATER BEARING UNIT	ALTITUDE OF LAND SURFACE (ft)	BELOW LAND- SURFACE DATUM (ft)	L MEA	DATE OF MEASUREMENT	1	METHOD OF LIFT	USE OF WATER	REMARKS
312	21-29-312 Albert Hrneirik	Buster Tolson	1	11	42	1	da Q	1, 309	3.0	Sept.	17,	1969 T.	T, E 1-1/2	D, S Irr	Dug well. Reported to pump about 60 gpm.
313	qo	do	ł	14	12	l.	Qs	1, 308	4.0		op	нн	т, Е 1-1/2	Irr	Reported to pump about 60 gpm.
314	do	do	ł	13	15	ŧ	Qs	1, 304	5.5		op		z	Z	No pump at this date. Occasionally used as irrigation supply. Reported to pump about 50 gpm.
315	qo	3	ł	21	10-3/8	1	Qs	1, 308	13.9		qo	Friet	T, E 1-1/2	Irr	Reported to pump about 60 gpm. Gravel packed.
316	James H. Waldron	Les Jameson	1957	23	6	ł	Qs	1, 321	15.7	Nov.	20, 1	1969 J,		D, S	Gravel packed.
317	Walter E. Malone	1	1	Spring	1	1	Qs	1, 300	(+)		ł	ΕL.	Flows	N	Spring flows about 5 gpm from bluff just above Brazos River.
318	Clyde Chapman	Levis Barnes	1969	106	l.	ł	ds.	1, 396	20	July	8, 1	1969	N	N	Core test drilled for this report, Base of Seymour at 24.5 feet. Very little water in smouth on wher in Permian clay, siltsione, and sandstone, \underline{H}
319	qo	Clyde Chapman	ł	25	œ	;	Qa	1, 396	21.8		do	04 -	Cf, E 1-1/3	In	Used to water orchard. Gravel packed.
501	A. B. Martin, Jr.	Ernest Knesek	1969	17	4	1	Qa.1	1, 297	13+5	Sept.	16, 1	1969	И	N	Reported 4.5 feet of good sand and gravel. Owner plans to case and equip with windmill for livestock supply.
502	do	_	1969	18	ī	4	Qal	1, 295	12.5		op		N	z	Owner reports about 6 feet of good sand and gravel; plans to develop*as an irrigation well.
503	W. C. and W. H. Hertel	Egenbacher	1955	31	31 16	11	Qal	1, 325	20.6	Nov.	19, 1	1969 Cf,	ы Ш	Irr	Measured yield of 72 gpm. Gravel packed.
109	Burrell Lee, Jr.	Lewis Barnes	1969	32	1	;	Qu	1, 353	t		ł		z	z	Core test. Base of Seymour at 30.5 feet. Very little water in Seymour \underline{U}
10/	Baylor County	E		Spring	;	ł	ds.	1, 385	(+)		1	F1	Flows	N	Spring on county road at Knox County line.
801	Tom McMorris	Jim Redman	1952	33	30	:	ds.	;	17.2	July	10, 19	1969 J,	ш	D, S	bug well.
802	Roy Butler	;	1	36	31	1	Qs, Pcf	1,437	8.6	Nov.	19, 19	1969 J,	ы	N	Chloride analysis in 1966 showed 5,300 mg/l.
106	Carl Snyder	ł	1	14	36	3	Qs	1, 389	0.2	Nov.	26, 19	1969	И	N	Dug well. Several seeps and mineral deposits around well, in field, and in ditch along county road.
902	Flint Bibb	:	ł,	44	Î	1	Qs, Pcf	1,401	6.5		op	J,	ы	D, S	Dug well. Owner reports that water taste has recently become unpalatable.
30-101	Burt Meers	Smelly	1955	38	31 16	38	de Ge	1, 338	23.5 22.1 20.3	Jan. Feb.	5, 19 21, 19 18, 19	1956 1961 1970	z	z	Well silted up to 22 feet. Reported to pump 90 gpm.
	op	qo	1957	34	31 14	34	Q8	1, 338	23.7	Jan. Feb.	12, 19 14, 19	1958	N	z	Well silted up above water table. Reported to pump 50 gpm when used as irrigation supply.
	M. M. Busby	J. M. Rea	1955	38	15	39	Qs	1, 339	26.3 26.1	Jan. Jan.	22, 19 22, 19	1969 T, 1970 I-	T, E 1-1/2	LI LI	Reported to pump about 60 gpm. Base of Seymour reported at 38 feet. Gravel packed.
104	do	Les Jameson	1956	34	15	ĩ	da da	1, 336	22.6	Jan.	22, 19	1969 T,	т, Е 3	Irr	Reported to pump about 125 gpm. Gravel packed.
105	op	op	1956	34	13	ł	QB	1, 336	23.2 23.6	Jan.	do 22, 19	1970 T, E	-	Irr	Reported to pump about 90 gpm. Gravel packed.

	1957 20 14 Qa 20 32 Qa 1930 25 31 Qa 21 31 Qa 51 31 Qa 51 31 Qa
22 34 12 34 14 18 22 34 18 3 36 1 20 3 2 1 2 2 3 2 2 1 3 2 5 1 3 2 5 2 5 2 1 3 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5 2 5	33 31 1969 34 10 22 33 18 3 18 3 18 3 18 3 18 3 26 1 21 3 21 3 21 3 21 3
	tyles

See footnotes at end of table.

Table 6. -- Records of Water Wells and Springs

cinued

WELL	OWNER	DRILLER	DATE COMPLETED	DEPTH OF UELL	DIAM- ETER (in.)	DEPTH (ft)	WATER BEARING UNIT	ALTITUDE OF LAND SURFACE (ft)	BELOW LAND- SURFACE DATUM (ft)	W	DATE OF MEASUREMENT		METHOD OF LIFT	USE OF WATER	REMARKS
21-30-129) James H. Waldron	Les Janeson	1957	22	4	ł	Qs	1, 318	16.9	Nov.	20, 1	1969	N	z	Formerly used as irrigation supply. Gravel packed.
130		op	1957	25	œ	ł	ds	1, 318	17.1		op		N	z	Do.
131		Lewis Barnes	1969	40	1	1	Qs	1, 332	1		:		z	N	Core test drilled for this study. Base of Seymour at 16 test. No water in Seymour or in Permian clay and siltstone. \underline{J}
132		op	1969	35	1	ĺ.	Qs.	1, 345	1		ł		z	z	Gore test drilled for this study. Base of Seymour at 10.5 feet. Very little water in Seymour, and Permian clay and siltstone. \underline{J}
133	Delmer F. Styles	ł	ŧ	Spring	;	ì	qa	1,288	÷		ł	0	Cf, E 2	Irr	
201	Walter E. Malone	1	1	Spring	;	;	Qs	1,290	÷			Ē4	Flows	s	Spring flows 10 to 15 gpm.
202	Mrs. Nick Mitchell	Les Jameson	1959	33	14	33	Qs	1,297	15.8 14.9 14.9 15.1	Jan. Mar. May	14, 11 20, 11 15, 11 13, 15	1960 T. 1969 1970 1970	т, Е 10	Itr	Reported teated by driller at 800 gpm. Reported to pump 300 gpm. Yearly observation well, and monthy observation well in this study. Gravel packed.
203		Smelley	1953	23	14	Į.	Qs	1,287	11.8	Jan. Apr.	12, 19 24, 19	1957 T, 1969	²² م	lrr	Reported to pump about 200 gpm.
204	Burrell Lee, Jr.	1	1951	5	S	3	Qs.	1,287	18.6 19.8 10.4 10.3 10.1	Jan. Jan. Nov. Dec. May	5, 12 12, 12 14, 11 18, 15 13, 15 13, 15	1955 C1 1957 1- 1969 1970 1970	Cf, E 1-1/2	Itr	Reported to yield about 75 gpm. Yearly observation well, and monthly observation well in this study.
205	qo	1	1951	23	14	ł	Qs	1,292	24.7	Jan.	12, 15 14, 19	1956 J, 1960 Cf	а а	D, S I	Reported to pump about 60 gpm.
206	-	ſ	1951	22	15	1	Qs	1,288	13.9 14.6	Jan. Jan.	22, 19 22, 19	1969 Cf	63	Irr I	Reported to pump about 200 gpm.
207		Les Jameson	1965	25	6	1	Qs	1,286	;		;	4-G	Cf, E 4-1/2	Irr	Reported to pump about 100 gpm.
208	Westley T. Cockroft	1	1953	23	14	1	Qs	1,287	6.7	Apr.	24, 19	1969 T,	T, E 2	Irr	Reported to pump about 175 gpm.
209		:	1953	23	13	ł	Qs Qs	1,288	12.4		op	cf, 2	ы.	Irr 1	Reported to pump about 125 gpm.
210		ł	1953	24	14	Į.	Qs	1, 288	11.4		op	cf, 1	ia]	Irr	Reported to pump about 100 gpm.
211		:	1953	23	14	;	4s	1,287	11.2		do	Cf.	cf, E 1-1/2	Irr B	Reported to pump about 115 gpm.
212		ł	1953	22	13	1	Qs	1, 288	7.4	Jan.	do 22, 19	1970 T,	т, Е 2	Irr R	Reported to pump about 175 gpm. Gravel packed.
213	Burrell L	Ĩ	1	25	15	1	Qs	1,290	16.3 15.9 15.9 12.4	Jan. Jan. Jan. Mar. Jan.	14, 19 14, 19 22, 19 22, 19 22, 19	1960 Cf 1961 7- 1969 1970	Cf, E 7-1/2	Irr	Reported to pump about 250 gpm.
214	do	1	4	Spring	ł	:	Qs	1,268	£		į	11	Flows	s o g	Estimated to flow about 25 gpm on Jan. 22, 1969. Owner reports flow varies with rainfall, but has never scopped completely.

	DD USE REMARKS F MATER	D, S Old dug well; deepened, cased and gravel packed inside of old concrete cuivert.	Irr Owner reports it pumps about 290 gpm. Reported tested by U.S. Geological Survey at 300 gpm. Base of Seymour reported at 41 feet. Gravel packed.	Irr Owner reports yield of about 230 gpm. Reported tested by U.S. Geological Survey at 400 gpm. Base of Seymour reported at 31 feet. Gravel packed.	Itr	Irr Reported to pump about 200 gpm. A five horsepower centrifugal pump is used to maintain sprinkler pressure. Gravel packed.	N Formerly used as irrigation supply.	Irr Reported to pump about 90 gpm.	 Irr Pumped 65 gpm into sprinkler system during power-yield test on July 23, 1969. 	E Irr Reported to pump about 75 gpm.	N Sand washed in and partially filled casing. Formerly used as irrigation supply. Reported to have pumped about 75 gpm.	E Irr Reported to pump about 150 gpm.	E Irr Reported to pump about 125 gpm. Gravel packed.	E Irr Reported to pump about 200 gpm.	E Irr Reported to pump about 225 gpm. Gravel packed.	E Irr Reported to pump about 250 gpm. Gravel packed.	E Irr Reported to pump about 230 gpm. Gravel packed.	E Irr Reported to pump about 300 gpm. Gravel packed.	E Irr Do.	E Irr Reported to pump about 120 gpm.	E Irr Reported to pump about 150 gpm.	8 Irr Do.
	NETHOD OF LIFT	J, E	Т, Е 5	т, в	Т, Е 5	Т, Е З	z	T, E 2	T, E 7-1/2	CE, E 1-1/2	z	Т, Е 5	ц,	cf, 3	Ĥ	т, в 5	T, E	T, E 10	T, E 10	т, Е 2	F,	н,
T	E.		1969	1969	1969	1969	1969		1969	1.969	4		1969		1969	1969	1969	1970	1969		1969	1969
-1	DATE OF MEASUREMENT	3	22, 22,	22, 22,	22,	23, 22,	23,	op	27,	°,	1	ł.	25,	ł	28, 22,	28, 22,	28, 22,	28, 22,	28,	t. L	28,	28,
WATER LEVEL	DA		Jan. Jan.	Jan. Jan.	Jan.	Jan. Jan.	Jan.		Jan.	Feb.			Apr.		Jan. Jan.	Jan. Jan.	Jan. Jan.	Jan. Jan.	Jan.		Jan.	. adv
WATE	BELOW LAND- SURFACE DATUM (ft)	1	22.4	15.0 14.2	21.0	25.0	26.0	22.9	21.3	14.7	:	;	21.2	1	22.7	20.0 19.6	16.7 16.2	15.1 14.5	23.9	:	22.6	20.2
	ALTITUDE OF LAND SURPACE (ft)	1,306	1, 306	1, 303	1, 307	1, 312	1, 326	1, 326	1, 329	1, 304	1, 304	1, 306	1, 304	1, 306	1,307	1,306	1,304	1, 303	1, 303	1, 305	1, 302	1, 304
	WATER BEARING UNLT	Qs	ğa	ő	Q8	qs	qs	Qs	Ś	QB	Qs	qs	Q8	Q8	Qs	Qs	Qs	Qa	Qs	Qs	Qs	Qs
g	DEPTH (ft)	42	42	33	44	l	:	3	ł	3	1	1	ł	ł	1	I	ł	;	ł	1	ł	;
CASING	DIAM- ETER (in.)	12	12	12	12	12	13	13	14	13	ł	ł	15	ł	15	13	12	15	15	ł	12	EI
	DEPTH OF HELL I (ft)	42	41	32	44	42	32	30	33	24	25	35	36	ł	38	37	39	39	39	37	37	35
	DATE COMPLETED	1956	1957	1956	1959	1960	1958	1958	1968	1956	1956	E	3	ł	1957	1963	1957	1	1965	1963	1956	ł
	DRILLER	Les Jameson	do	qo	do	Dale Heard	Buster Tolson	op	Les Jameson	ť	1	Frank Coufal, Sr.	1	1	Frank Coufal, Sr.	1	Frank Coufal, Sr.		I	ł	1	1
	OWNER	E. G. (Bill) Glover	qo	do	q	N. P. Mitchell	qo	op	Billy W. Golden	0. C. Roden	qo	do	qo	qo	do	0. C. Roden	do	op	Richard Cox	0, C, Roden	op	op
	MELL	21-30-215	216	217	218	219	020	221	222	223	224	225	226	227	228	229	230	231	232	233	234	235
		*					9															

See footnotes at end of table.

				Contraction of the local division of the loc	OMTOWN.	2		-	IM	WALEN LEVEL	VISIA				
	OWNER	DRILLER	DATE COMPLETED	DEPTH OF WELL (ft)	DIAM- ETER (1n.)	DEPTH (ft)	WATER BEARING UNIT	ALTITUDE OF LAND SURFACE (ft)	BELOW LAND- SURFACE DATUM (ft)	ME.	DATE OF MEASUREMENT	TNI	METHOD OF LIFT	USE OF WATER	REMARKS
237	0. C. Roden	1	3	26	15	4	Qs	1, 303	14.8	Feb.	5,	1969	cf, E	Irr	Reported to pump about 50 gpm.
	op	:	ł	25	13	;	qs	1, 303	15.9		op		cf, E 1	Irr	Do.
238	do	1	:	30	13	ł.	Qa	1, 305	19.1		op		GE, E 1-1/2	Irr	Reported to pump about 60 gpm.
	H. W. Fell, Jr.	1	1	15	f1	4	QB	1, 285	9.2	Feb. Jan.	26, 22,	1969 1970	Ј, Е	Ind	Used to supply veterinarian's office.
240 F	Fell & Fell	3	1	25	21	ł	Qs	1, 282	17.2 15.9	Feb. Jan.	26, 22,	1969 1970	Ј, Е	ŝ	Dug well.
241 H	H. W. Fell, Sr.	Les Jameson	1967	25	8	1	Qs	1,282	ł		;		J, E	Д	
	H. W. Fell, Jr.	do	1961	25	42	ł	qs	1, 282	;		1			D, S	
14	Fell & Fell	1	l.	ł	41	ł	98	1,284	0.6	Feb.	26,	1969	T, E 1-1/2	Irr	Dug well. Reported to pump about 75 gpm.
244	do	Les Jameson	1967	20	15	3	Qs	1, 283	7.4		op		T, E 1-1/2	Irr	Reported to pump about 50 gpm. Gravel packed.
245	qo	i.	i.	1	;	1	ŝ	1, 283	1		E.		Z	N	Dug well. Destroyed. Formerly used as irrigation supply.
246	qo	1	ł	18	4.1	ł	Qs Qs	1, 284	8.3 7.6	Feb. Jan.	26, 22,	1969	T, E 1-1/2	Irr	Dug well. Reported to pump about 60 gpm.
247	do	1	I	1	1	1	Qs	1,283	£		I		N	N	Dug well. Destroyed. Formerly used as irrigation supply.
248	q	Les Jameson	1967	26	14	1	Qa	1,282	1		:		T, E 5	Irr	Pumps into tank, Mater distributed from tank to sprinkler system by 20 horsepower centrifugal map, Reported to pump about 200 gpm, Gravel packed.
	do	ł	ł	22	1	1	Qs	1,281	14.3	Feb.	25,	1969	T, E 1-1/2	Irr	Reported to pump about 60 gpm.
	Orville Barrett	I	ł	19	16	ł	Qs	1, 291	10.2	Apr.	2,	1969	z	N	Formerly used as an irrigation supply.
251	qo		1	1	2	Ĩ	Qs	1,291	:		1	-	J, E 1-1/2	N	Do.
252	do	1	;	27	31	1	Qs	1, 293	25.3 23.8	Apr. Jan.	22,	1969	J, E	D, S	Dug well.
	Mrs. Denton Powell	Les Jameson	1,965	32	18	;	s,	1, 295	14.6	Apr.	9, 1	1969 7	T, E 7-1/2	Itt	Reported to pump about 300 gpm. Gravel packed.
254	do	op	1958	22	1	E	Qs	1, 290	10.4	Apr.	24, 1	1969	т, Е 4-1/2	Irr	Reported to pump about 185 gpm. Pumped 100 gpm into sprinkler system during power-yield test on July 24, 1960.
	Raymond Brown	:	1954	24	ł	;	Qs	1, 285	12.9	Apr.	6,1	1969 0	CE, E 2	Irr	Reported to pump about 120 gpm.
	0. C. Roden	;	1956	38	SI	:	Qs	1, 305	20.0	Apr.	28, 1	1969 I	т, Е 3	Irr	Reported to pump about 150 gpm. Gravel packed.
257 No	Morris J. Christian	Les Jameson	1956	32	14	3	qs	1, 293	14.5	June	18, 1	1969 T	T, E 7-1/2	Irr	Reported to pump about 275 gpm. Gravel packed.

- 73 -

Continued
;
Springs
and
Wells
Water
of
Records
1
.9
Table

MILLING DOMUTION				A Designed and		ſ			151-C 100				_	-	
Image Image <th< th=""><th></th><th></th><th>DATE</th><th></th><th></th><th></th><th></th><th>OF LAND SURFACE (ft)</th><th>LAND- LAND- SURFACE DATUM (ft)</th><th>DA</th><th>NEMEN'</th><th></th><th></th><th>USE OF WATER</th><th>REMARKS</th></th<>			DATE					OF LAND SURFACE (ft)	LAND- LAND- SURFACE DATUM (ft)	DA	NEMEN'			USE OF WATER	REMARKS
	Morris J. Christian	Les Jameson	1956	30	16	-	qs	1, 293	12.7	June			2f, E 10	Irr	Reported to pump about 275 gpm. Gravel packed.
and memore 1066 26 1.2 $(0.1, 200)$	W. T. Cockroft	Smelley	ł	19	13	ſ	Qs	1, 295	11.5	Sept.			cf, E 1-1/2	Irr	to pump about 60
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	edwine	Les Jameson	1966	26	16	3	6a	1,286	12.0	Sept.				Irr	Reported slightly sanded up. Reported to pump about 75 gpm.
	40	;	;	22	42	ł	Qs	1,287	12.6		op			D, S	Dug well.
Spring Spring Spring N N N Spring N N N N Spring N		1		Spring	1	;	Qs	1,267	(+)	1	3	7	Flows	N	Spring flows about 15 gpm.
	1	;		Spring	1	;	Qa	1,290	(+)		ł		Flows	s	Do.
Law Jammeson 1968 23 $$ 00 1,266 $$ 00 1,266 $$ 00 1,266 $$ 00 1,266 $$ 00 $1,266$ $$ 00 $1,266$ 0 $1,216$ 00 $1,216$ 00 $1,216$ 100 <th< td=""><td>Walfer E. Palone Burrell Lee, Jr.</td><td>Lewis Barnes</td><td></td><td>21</td><td>ł</td><td>1</td><td>Qa</td><td>1,287</td><td>13</td><td>July</td><td></td><td>6961</td><td>z</td><td>Z</td><td>Core test drilled for this report. Base of Seymour at 20 feet. $\underline{\mathcal{Y}}$</td></th<>	Walfer E. Palone Burrell Lee, Jr.	Lewis Barnes		21	ł	1	Qa	1,287	13	July		6961	z	Z	Core test drilled for this report. Base of Seymour at 20 feet. $\underline{\mathcal{Y}}$
		Lee Jameson	1968	25	ł	ł	Qs	1,286	1		;	i	Cf, E	Irr	to pump about
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	JACK NING City of Seymour	John Kale	1959	ł	£	T	Qs	1,283	12.3	Dec.	2,	1968	T, E 7-1/2	G 4	
	T. C. Griffin	Smelley	1952	45	14	1	ő	1,300	20.1 21.6	July July	14, 18,	1969	T, E 10	lrr	Used as pumping well in pumping test for this study. Three observation holes drilled nearby. Pumped 189 gpm for three days. Gravel packed.2
	op	Colby	1957	47	12	T.	Qs.	1, 301	26.5 20.9 21.2	Jan. June July	27, 18, 14,	1957 1969 1969	Z	z	Well abandoned. Former irrigation supply. Gravel packed.
W. E. Turmer 1948 4.2 18 4.2 0 1,284 19.5 40 $1,0^2$	City of Seymour	1	1924	37	1	1	qs	1,294	17.0	July	2,	1968	T, E 10	р.	Reported to pump about 250 gpm.
1. P. (Buster) Tolson 1957 45 16 45 9a 1,282 13.0 11.1 27 1956 3 T_2 T_1 T_2	op	W. E. Turner	1948	42	18	42	Qs	1,284	18.5		op		T, E 10	<u>a</u> ,	Reported to pump about 400 gpm, Base of Seymour at 42 feet. Gravel packed $\mathcal{\underline{J}}$
hr. coates 1934 20 51 0a 1,288 12.5 Feb. 11, 1970 T_3^{-} E Irr 33 7 0a 1,237 19.4 Nov. 22, 1968 3, E P 0a 1,297 19.4 Nov. 22, 1968 3, E P 0a 1,289 18.3 0a' 1, E P P 0a 1,289 18.3 0a' 1, B P P N. E. Turner 1948 0a 1,289 18.3 0a' 1,0 7, E P N. E. Turner 0a 1,289 18.3 10' 7,068 1,2 P 0a 190 1,2<	do	J. P. (Buster) Tolson	1957	45	16	45	Qa	1, 282	33.0 17.8	July	2,	1957 1968	т, ц	Р	Reported to pump about 85 gpm. Base of Seymour at 43 feet. Gravel packed. $\underline{\mathcal{Y}}$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Mrs. Mamie Coates	Mr. Coates	1954	20	51	ł	Qs	1,288	12.5	Feb.	11,	1970	T, E 2	Irr	Dug well. Reported to pump 60 gpm.
0.1 1.291 18.3 July 2, 1968 T_3 , E P W. E. Turner 1948 42 18 43 03 1,280 18.3 40 T_0 E P 40 03 1,388 17.7 40 T_0 E P 40 03 1,286 19.5 40 T_0 T_1 E P 40 03 1,286 19.5 40 T_1 T_1 E P 04 1,286 1,286 T_2 E P 04 T_1 T_2 E P P P 03 1,286 19.5 10 T_3 T_5		1	;	38	2	- 1	Qa	1,297	19.4	Nov.	22,	1968	J, Е	ч	
W. E. Turner 1948 42 18 43 Qs 1,289 18.3 do $T_1^* E$ P 40 Qs 1,388 17.7 do $T_{-1}^* E$ P 40 Qs 1,286 19.5 do $T_{-1}^* E$ P 40 Qs 1,286 19.5 do $T_{-1}^* E$ P 40 Qs 1,286 19.5 do $T_{-1}^* E$ P 42 12 Qs 1,286 19.5 do $T_{-1}^* E$ P 42 12 Qs 1,282 16.6 $T_{-1}^* E$ P 43 24 40 9 1,281 12.95 $T_{-1}^* E$ Qs 1,281 12.95 13 $T_{-1}^* E$	City of Seymour	1	8	1	;	I	Qs	1,291	18.3	July	2,	1968		Ч	Reported to pump about 300 gpm.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	op	W. E. Turner	1948	42	18	43	Qs	1, 289	18.3		op		T, E 10	а,	Reported to pump about 385 gpm. Base of Seymour at $42~{\rm feet.}\underline{1}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	do	I	1	40	1	;	qs	1, 388	17.7		op		T, E 7-1/2	ец	Reported to pump about 140 gpm.
42 12 Qs 1,282 16.6 do $T_{s}^{T}E$ P J. P. (Buster) Tolson 1956 39 24 39 Qs 1,281 12.0 1019 2,1956 $T_{s}^{T}E$ P J. P. (Buster) Tolson 1956 39 24 49 Qs 1,281 12.0 1019 2,1956 $T_{s}^{T}E$ P	op	I	;	40	1	1	ő	1,286	19.5		op		T, E 7-1/2	da .	t o
J. P. (Buster) Tolson 1956 39 24 39 Qs 1,281 12.0 1419 2, 1956 T, E P 14.5 14.5 1415 14.5 14.5 14.5 14.5 14.5	do	1	1	42	12	ł	Qs	1,282	16.6		op			d	to pump
24 49 08 1,285 13 Aug. 31, 1956 T, E P	do	J. P. (Buster) Tolson	1956	39	24	39		1,281		yIut		1956 1960		£.	dund
do kyou 47 24 1968 3	op	op	1956	65	24	49	Qs	1,285	13,1	Aug. July	31, 2,	1956 1968	т, Е	D4	Reported to pump about 140 gpm. Base of Seymour at 46 feet. \underline{Y}

See footnotes at end of table.
		-	-	_				_		_	_										
	REMARKS	Reported tested by driller at 200 gpm. Drilled for use as public supply, but not used yet.	Reported to pump about 225 gpm. Gravel packed.	Reported to pump about 175 gpm. Gravel packed.	Reported to pump about 200 gpm. Gravel packed.	Reported tested by driller at 200 gpm. Drilled for public supply, but not used yet. Gravel packed.	The City of Seymour is selling water from this well to Sun Oil Company for waterflooding. Reported to pump about 200 gpm. Gravel packed.	Reported to pump about 200 gpm. Gravel packed.	Do.	Reported to pump about 300 gpm. Gravel packed.	Reported to pump about 200 gpm. Gravel packed.	City park well. Reported to pump about 125 gom.	Reported to pump about 300 gpm. Gravel packed,	Reported to pump about 250 gpm. Gravel packed.	Reported to pump about 250 gpm. Pumped 50 gpm into sprinklar system during power-yield test on July 25, 1969. Gravel packed.	Reported to pump about 225 gpm. Gravel packed.	Reported to pump about 100 gpm. Gravel packed.	Reported to pump about 200 gpm. Used as monthly water-level observation well in this study. Gravel packed.	Reported to pump about 200 gpm. Gravel packed.	Do.	Reported to pump about 135 gpm. Gravel packed.
	USE OF WATER	z	đ	£,	đ	z	Ê.	в,	Ρ.	<u>n</u>	<u>е</u> ,	Irr	Irr	Irr	Irr	Irr	Irr	Itr	Irr	Irr	Irr
	TTTL TO TO TO TO TO TO TO TO TO TO TO TO TO	z	T, E 7-1/2	т, Е 5	т, Е 5	z	T, E 40	T, E 7-1/2	T, E 7-1/2	T, E 7-1/2	T, E 7-1/2	Τ, Ε	T, E 7-1/2	T, E 7-1/2	T, E 10	T, E 7-1/2	т, с	о 1	T, G	T, E 10	T, E
	TN		1968	1968	1968 1970			1968	1968	1968 1970	1968		1969	1969	1970	1969	1969	1969 1969 1969 1969 1970	1969	1969	
	DATE OF MEASUREMENT	:	2, 6,	2, 6,	°,	3	Ĩ.	2, 6,	2, 6,	2, 6,	2, 1 6, 1	ŧ	28, 1	28, 1	22, 1	28, 1	13, 1	do 220, 1 25, 1 15, 1 15, 1 15, 1 15, 1	13, 1	3, 1	;
VELA OTEN ANDREATE	DI		Dec. Jan.	Dec. Jan.	Dec. Jan.			Dec. Jan.	Dec. Jan.	Dec. Jan	Dec. Jan.		Jan. Jan.	Jan.	Jan.	Jan.	Mar.	Mar. Aug. June Apr. May	Mar.	Apr.	
	BELOW LAND- SURFACE DATUM (ft)	:	11.1	11.8 11.2	14.5	:	:	12.0	11.0 12.0	11.6 12.0	10.8	ł	21.9 22.0	18.8	28.0	22.3	17.5	21.8 25.3 25.3 21.6 21.5 21.5 21.5	18.5	24.4	ŀ
	ALTITUDE OF LAND SURFACE (ft)	1, 291	1,283	1,285	1,289	1,291	1,292	1,295	1, 293	1, 292	1,292	1,270	1,296	1, 297	1, 297	1,296	1, 296	1,296	1, 296	1,298	1,301
	WATER BEARING UNLT	Qs	ds	Qs	ds	Qs	Qs	Qs	Qs	Qs	Qs	Qs:	Qs	Qs	Qs	Qs	Qs	Qs	Qs	Qs	Qs
	DEPTH (ft)	E	ł	£	ł	38	38	31	29	29	30	ł	ì	i.	1	ţ.	;	1	ţ	t.	4
CONTRACTOR -	DIAM- ETER (in.)	1	ł	ť	Ī	13	13	13	13	13	13	1	13	13	13	15	18	14	13	13	;
ACCASE OF	DEPTH OF MELL (ft)	;	,	;	1	37	37	30	28	28	28	25	44	45	45	40	36	41	40	46	3
-	DATE COMPLETED	1959	1959	1959	1959	1965	1965	1965	1965	1965	1965	1	1958	1966	1958	1958	1964	1	1	1960	
	COM	-	-	1	-	-	H	H	4	a	1		51	SI	51	16	19		'	19	1955
	DRILLER	John Kale	op	db	do	op	do	op	op	op	op	I	Buster Tolson	Les Jameson	Buster Tolson	do	Eddie Joe Orsak, et al.	Franklin Coufal, et al.	do	Buster Tolson	Les Jameson
	OWNER	City of Seymour	op	op	do	do	op	op	do	qp	do	do	Emitt Golden & Company	do	op	do	Ed Hajek	do	op	T. C. Griffin	op
	MELL	21-30-316	317	318	319	320	321	322	323	324	325	326	327	328	329	330	331		333		335
							*	*													

DRILLER COMPLETED VELL FTRI DEPTH CASTING ALTITUDE BELOMM MATER VALUE OF VALUE V	CASTING MATER LIEVEL	REMARKS Reported to pump about 250 gpm. Gravel packed. Bunged about 100 gpm. Into sprinkler system matring power-yield test on July 25, 1969. Gravel packed. Reported to pump about 175 gpm. Gravel packed. Reported to pump about 300 gpm. Marent packed. Reported to pump about 300 gpm. Marent packed. Formerly used as trrigation supply. Reported to have pumped about 100 gpm. Mater pressure on estimation system during power-yield test on July 25, 1960. gsm. Mater pressure on any 25, 1960. Jsm. Mater pressure on a prinkler system during power-yield test on a strrigation supply. Reported to have pumped about 100 gpm. See well 10, 25, 1960. Jsm. Mater pressure on perinkler system by 10 horsepower cartificgal power. Funded about 30 gpm. Nater-level observation well in this study. Carvel packed. Reported to pump about 30 gpm. See well 21-30-343. Gravel packed. Reported to pump about 23 gpm. Gravel packed. Reported to pump about 23 gpm. Gravel packed. Reported to pump about 25 gpm. Gravel packed. Reported to pump about 23 gpm. Gravel packed. Reported to pump about 23 gpm. Gravel packed. Reported to pump about 25 gpm. Gra	USE MATER MATER ILT ILT ILT ILT ILT ILT ILT ILT ILT ILT	METHOD OF LIFT 1, C 1, C 1, S 1, S 1, S 1, S 1, S 1, L 1, L 2, S 1, S 1, S 1, S 1, S 1, S 1, S 1, S 1	1969 1969 1969 1969 1969 1969	TUTE OF UTE OF 3, 0 3, 0 40 40 40 40 40 40 40 40 40 40 40 40 40	Apr. 10 10 10 10 10 10 10 10 10 10 10 10 10	BELOW ILL I ILL I ILL I ILL I ILL I ILL I ILL I ILL 0 25.0 24.0 24.0 24.0 21.1 19.3 11.0 11.0 11.0 11.2 11.							COMPT COMPT 19 19 19 19 19 15 15 19 19 19 11 11 11 11 11	DRILLER ameson ameson do do do do do do do do do do do do do	Di Les Jame Les Jame Les Jan Les Jan Les Jan	ANDER T. C. Griffin Bill Elliston Jae Nayne McGuitre do Lee Ma do do do do do do do do do do
106 10 11 12		480 gpm. Gravel packed. Reported to pump about 130 gpm. Gravel packed.	Irr	ή ή	1969		July		1,300	Qs Qs	; ;	13	40	1956 1955		op	_	Olaf Shipman
		Tested with Hoffmeter on July 24, 1969, pumpe	Irr	Б. 1		;			006 1				1		-	20		00
		to pump about 250 gpm. Gravel	Irr			ŝ		ł	1, 302	Qs	3	13	48	955	1	do		er.
	Matter (f) Matter	to pump about 425 gpm.	Irr	Т, Е		ł		:	1, 302	Qs	Ę	13	48	956		Les Jameson	4	
105 64 73 79,0 7,5 17 0eroret 1 o puny about 20 1055 23 11 60 1,230 1,13 7 1 1056 31 60 1,230 1,130 7 1 1 1 1 </td <td></td> <td>to pump about 225 gpm.</td> <td>Irr</td> <td>т, Е</td> <td></td> <td>÷</td> <td></td> <td>ł</td> <td>1, 297</td> <td>Qs</td> <td>ţ</td> <td>11</td> <td>;</td> <td>968</td> <td>-</td> <td>B</td> <td></td> <td>op</td>		to pump about 225 gpm.	Irr	т, Е		÷		ł	1, 297	Qs	ţ	11	;	968	-	B		op
		to to	Irr	т, Е 15		ł		ł	1, 299	Qs	;	15	;	965		:		rthur Lee Harris
		to pump about 275 gpm.	Irr	т, в		;		ł	1, 304	Qs	ĩ	15	52	954	-	qo		op
	MATTATIONE (1) REMONE (1) MATTATIONE (1) REMONE (1) MATTATIONE (1) REMONE (1)	225 gpm.	Irr	T, E 5		;		ł	1, 307	gs	1	14	53	956	1	op		irner Standlee
		Reported to pump about 45 gpm. Old dug well with windmill nearby.	Itr	т, _Е		1		1	1,285	Qs	:	×	22	:	÷	do		do
		gpm. See	Irr	CE, E 3		qo		11.2	1, 283	Qs	1	00	20	946	-	do		do
		supply.	N	И		op	j.	18.5	1,288	Qs	1	æ	24	945	÷	do		qo
	MATTYTONE REAGM MATTYTONE REAGM NATTONE REAGME R	gpm. See	Irr			op		15.0	1,287	Qs	Ē	ŝ	24	576	ä	op		do
	MATTERING (ft) MATTERING DUTT MATTERING (ft) MATTERING DUTT MATTERING (ft) MATTERING DUTT MATTERING (ft) MATTERING DUTT MATTERING DEFERING (ft) MATTERING DUTT MATTERING DEFERING (ft) MATTERING DEFERING DUTT MATTERING DEFERING DUTT MATTERING DEFERING DUTT MATTERING DEFERING DUTT MATTERING DEFERING DUTT MATTERING DEFERING DUTT MATTERING DEFERING DUTT MATTERING DUTT MATTERING MATTERING MATTERING MATTER	Reported to pump about 50 gpm. See well 21-30-34 Gravel packed.	lrr	T, E 1		op		12.3	1, 284	Qs	I	œ	21	944	ï	op		qo
	MATTATIONE DELOM TALITATIONE MATTATIONE DELOM TALITATIONE MATTATIONE DELOM TALITATIONE MATTATIONE DELOM TALITATIONE MATTATIONE DELOM TALITATIONE MATTATIONE DETON DETON <thdeton< th=""> DE</thdeton<>	Reported to pump about 75 gpm into central tank. Mater distributed through sprinkler system by 10 horsepower centrifugal pump. Gravel packed.	Irr	T, E 1-1/2	1.969	23,	Apr.	11.0	1,286	QB	E	8	20	444	15	qo		nry P. Arledge
	MATTER DEPTH MATTER MATTER (FE) MATTER DEPTH MATTER DEPAH MATTER DEPAH MATTER MATTER	Drilled for irrigation supply, but never used. Gravel packed.	N	N		op		19.3	1,291	da	1	42	43	67	19	do		op
	MATTATIONE BELOW TOWATT MATTATIONE BELOW SURANCE MATTATIONE BELOW TOWATT MATTERO BETONO DETONO DETONO <th< td=""><td>Reported to pump 200 gum, Matter pressure on perinkure system maintained by 10 horsepower centrifugal pump. Humped about 195 gpm into appriature system during powervighted test on July 25, 1969. Used as monthly water-level observation well in this study. Gravel packed.</td><td>I.I.I.</td><td>T, E</td><td>1969 1969 1970 1970</td><td>do 16, 26, 13,</td><td>Sept. Oct. Mar. Nay</td><td>21.0 23.5 21.3 21.1</td><td>1, 291</td><td>Qs</td><td>1</td><td>17</td><td>64</td><td>67</td><td>1</td><td>Les Jameson</td><td>Les</td><td></td></th<>	Reported to pump 200 gum, Matter pressure on perinkure system maintained by 10 horsepower centrifugal pump. Humped about 195 gpm into appriature system during powervighted test on July 25, 1969. Used as monthly water-level observation well in this study. Gravel packed.	I.I.I.	T, E	1969 1969 1970 1970	do 16, 26, 13,	Sept. Oct. Mar. Nay	21.0 23.5 21.3 21.1	1, 291	Qs	1	17	64	67	1	Les Jameson	Les	
	MATTATIONE BELOW TALITATIONE MATTATIONE BELOW BERATIONE MATTATIONE BELOW STREAD MATTATIONE BELOW OF MATTATIONE	Formerly used as irrigation supply. Reported to have pumped about 100 gpm.	N	N		op		26.0	1, 305	Śs	:	36	48	64	19	Lee Wayne McGuire, et al.	Lee	
1965 48 13 $$ Qa 1,303 23.0 Apr. 3, 1969 T, G Tr Reported to pump about 250 1965 32 31 $$ Qa 1,293 16.1 do $T_{3.}$ E T_{maped} about 180 gm into a transported to pump about 180 gm into a transported about 180 gm intoa transported	MATTURE DEPTH MATTURE (#) DECM DEPTH MATTURE DEPTH DEPTHOD OF DEPTH MATTURE OF DEPTHOD MATHOD OF DEPTHOD MATHOD OF DEPTHOD MATHOD OF DEPTHOD MATHOD OF DEPTHOD MATHOD OF DEPTHOD MATHOD OF MATHOD	Reported to pump about 300 gpm. Pumped about 210 gpm into sprinkler system during power-yield test on July 25, 1969. Gravel packed.	Irr	т, е 15	1969	11,	Apr.	24.0	1, 304	Qs.	1	13	49	63	19	op		: Wayne McGuire
1965 48 13 Qa 1,303 23.0 Apr. 3,1969 T, G Irr 1965 32 31 Qa 1,293 16.1 do 1,5 1rr	MATRIE MALTHATION MALTHATION<	Reported to pump about 175 gpm. Gravel packed.	Irr			op		16.0	1, 292	qs	1	31	31	65	19	Les Jameson	Les	
1965 48 13 Qs 1,303 25.0 Apr. 3, 1969 T, G Itr	Deferti Deferti MATRUD MATR DELOM LAND- Cor LAND- DATE OF DATE DATE OF DATE OF DATE OF DATE DATE OF DO DATE DATE DATE OF DO DATE DATE DATE Deferti DATE OF DATE DATE OF DATE DATE OF DATE DATE DATE DATE DATE (ff) DATT C(f) DATE DATE DP DP (ff) DATT C(f) DATE DATE DP DP (ff) DATT C(f) DATE DATE DP DP Qs 1,303 25.0 Apt. 3, 1969 T, G TET	Pumped about 180 gpm into sprinklar system during power-yield test on July 25, 1969. Sravel packed.	Irr	T, E 15		op		16.1	1,293	Qs	1	31	32	55	19	1		1 Elliston
	Definition MALTER DE BELONG DALTE DE LAND DE LAND <td>Seported to pump about 250 gpm. Gravel packed.</td> <td>Itt</td> <td></td> <td>1969</td> <td>з,</td> <td>Apr.</td> <td>25.0</td> <td>1, 303</td> <td>Qs</td> <td>;</td> <td>51</td> <td>48</td> <td>50</td> <td>196</td> <td>Les Jameson</td> <td>Les J</td> <td></td>	Seported to pump about 250 gpm. Gravel packed.	Itt		1969	з,	Apr.	25.0	1, 303	Qs	;	51	48	50	196	Les Jameson	Les J	

					CASING	ING	_			WATER LEVEL	VISI.	1			
MELL	OWNER	DRILLER	DATE COMPLETED	DEPTH OF WELL (ft)	DIAM- ETER (in.)	DEPTH (ft)	WATER BEARING UNLT	OF LAND OF LAND SURFACE (ft)	E BELOW LAND- SURFACE DATUM (ft)		DATE OF MEASUREMENT		METHOD OF LIFT	USE OF WATER	REMARKS
21-30-357	E. L. Pechacek	Buster Tolson	1963	19	61	1	Q8	1,290	11.4	June	19,	1969	Cf, E 1-1/2	Irr	Used mostly to water small orchard.
358	op	qo	1963	19	12	;	Qs	1,290	9.3		op		Т, Е 2	Irr	Pumps about 100 gpm into tank. Water distributed through sprinkler system by 3 horsepower centrikugal pump.
359	do	Ernest Knesek	1964	29	10	ł.	Qs	1,293	13.4		op		T, E 3	Irr	Reported to pump about 125 gpm.
360	do	op	1964	30	42 13	ł	Qs	1,291	14.1		do		Cf, E 1-1/2	Irr	Reported to pump about 75 gpm.
361	do	op	1964	28	10	ł	Qa	1,290	1		do		т, Е 5	Irr	Reported to pump about 200 gpm. Gravel packed.
362	qo	op	1964	22	12	Ĕ	Qs	1,287	11.5		op		T, E 1-1/2	Irr	Reported to pump about 75 gpm. Gravel packed.
363	L. W. Hobbs		1964	25	15	ł	Qs	1,294	10.1		op		N	N	Formerly used as irrigation supply.
364	Dr. C. M. Randall, Jr.	1	1968	19	16	ł.	Qa l	1,257	7.5		op	-	Cf, E 1-1/2	Irr	Reported to pump about 60 gpm. Gravel packed.
365	qo	1	1968	19	12	£	Qa1	1,257	7.8		op	1	CE, E 1-1/2	Itr	bo.
366	op		1968	16	16	;	Qa.1	1,257	5.8		op		Cf, E 1-1/2	Irr	. DO.
367	do	:	1968	18	12	ł	Qa.1	1,257	5.6		op		Cf, E 1-1/2	Irr	Do,
368	Farmer's Co-op Association Gin	Ponder	1954	32	æ	31	QB	1,292	24.4	Oct.	16, 1	1969 J	J, E 1	Ind	Supplies water for cotton gin. Reported to pump about 25 gpm.
369	Bill Elliston	Les Jameson	1969	33	16	39	Qa	1,291	22.4	June Nov.	10, 1	1969 Su	sub, E	D, S	Test pumped by driller at 160 gpm. Gravel packed. \underline{J}
370	Don McDermitt	ар	1969	42	16	42	ds	1,296	19.0	June	23, 1	L 6961	3, Е	Ind	Supplies water for tractor sales and service shop. Tested by driller at 240 gpm, Gravel packed \dot{J}
371	T. C. Griffin	Buster Tolson	1962	46	12	46	ďa	1,298	;		ţ.		J, E]	D, S	Gravel packed.
372	M. A. "Shorty" Doyle	•	;	31	31	£	Qs	1, 296	19.7	Nov.	25, 1	1969 C	Cf, E 1-1/2	Irr	Dug well, Reported to pump about 60 gpm.
373	do	Smelley	1956	42	13	42	Qs	1,297	17.6		op	H	т, с	Irr	Reported to pump about 150 gpm, Gravel packed.
374	Royce D. Standlee	Les Jameson	1956	34	31	;	Qs	I, 293	17.7	Nov.	24, 1	1969 C	Cf, E 1-1/2	Itr	Reported to pump about 75 gpm. Gravel packed.
375	đđ	Smelley	1955	42	12	ł	da Qa	1, 296	1		1	H	т, с	Irr	Well reported buttomed on hard rock, driller unable to penetrate with bucket rig, Possibly Lueders Limestone. Reported to pump about 150 gpm. Gravel packed.
3/6	qo	1	1954	32	42	3	Qs	1, 296	21.0	Nov.	24, 1	1969 CI	сf, Е 5	Irr	Dug well, Reported to pump about 100 gpm.
	Westley Hrncirik	Ernest Knesck	1968	38	16	38	qe	1, 297	18.4	Nov.	25, 1	1969 CJ	Cf, E 1-1/2	Irr	Reported to pump about 75 gpm. Gravel packed.
378	William H. Hertel	do	1969	32	15	1	ds.	1,291	15.9	Nov.	19, 19	1969 Cf	Cf, E 2	Irr	Do.

				DEPTH		Γ			BELOW				COLUMN AND	TOP	
		DRILLER	DATE COMPLETED	OF WELL (ft)	DIAM- ETER (in.)	DEPTH (ft)	WATER BEARING UNLT		LAND- SURFACE DATUM (ft)	D MEA	DATE OF MEASUREMENT	TN	METHOD OF LIFT	USE OF WATER	REMARKS
William H. Hertel	e1	Les Jameson	1951	32	45	t	Qs	1, 291	:	Nov.	19,	1969	z	z	Well sanded up. Formerly used as an irrigation supply.
Bill Elliston		;	1956	35	31	()	da	1,294	14.7	Nov.	18,	1969	Cf, E 10	Irr	Reported to pump about 200 gpm. Gravel packed.
Leonard Kunkel		Buster Tolson	1966	25	41 8		Qal	1,264	5.2	Feb.	20,	1970	T, E 1-1/2	ltr	Reported to pump 60 gpm. Tested about 50 gpm.
op		Leonard Kunkel	1966	IJ	9 17		Qal	1,263	5.1		do		N	N	Dug well. Dug to redbeds at 33 feet. Silted up and caved. Reported to have pumped 45 gpm. Formerly used as an irrigation supply.
City of Seymour		1	1	Spring	ł	1	Qs	1, 303	(+)		ł		Flows	И	Spring in ditch heside gravel city street. Flows about 10 gpm from base of Seymour.
			;	Spring	1	1	qs	1,280	(+)		ł		Flows	N	Spring flows about 5 gpm.
Buck wallace T. C. Griffin		Lewis Barnes	1969	45	£	45		1,299	19.7 19.9 24.8 21.3	July July July July	11, 14, 17, 18,	1969 1969 1969 1969	м	z	Drilled and cased as observation well for pumping test of well 21-20-302 for this survey make of Sermour at 42.5 feet. Casing pulled after pumping test. Watter from sand and gravel. $\underline{\mathcal{Y}}$
op		о Ч	1969	44	n	44	Qs	1, 299	20.1 20.2 23.9 21.6	July July July July July	2, 11, 14, 17, 18,	1969 1969 1969 1969 1969	и	z	.bo.
op		q	1969	45	e	45	Qs	1,299	20.4 20.4 22.9	July July July July	2, 11, 14, 17, 18,	1969 1969 1969 1969 1969	N	z	ро.
E. Keck		qo	1969	41	1	ł	QB	1,297	ł		1		z	z	Core test drilled for this study. Base of Seymour at 40 feet. Water mostly from fine-grained pack sand, \underline{J}
Ernest Knesek		Bugter Tolson	1959	43	31	1	QB	1, 368	29.3	Apr.	25,	1969	z	Ŋ	Formerly used as an irrigation supply.
op		Ernest Knesek	1964	17	31	ł	Qs	1, 368	30.0		op		z	z	Do.
Morris Cockrell	1	qo	1964	25	12	i.	Qs	1, 374	18.0	July	9,	1969	Cf, E	Q	
Ernest Knesek		op	1955	8	40	E	Qs	1,342	2.2	Apr.	25,	1969	cf, E 1	Irr	Reported to pump about 50 gpm.
op		op	1955	12	13	1	Qs	1,340	1.9		op		N	N	Formerly used as an irrigation supply.
e e		qo	1955	10	6	1	Qs	1, 340	.50	0	op		z	Z	Do.
e e		qo	1955	11	15	1	Qs	1,340	1.0		op		N	z	bo.
e 4		1	1955	10	60	1	Qs	1, 340	.40	0	do		z	z	Dug well. Formerly used as an irrigation supply.
op		Ernest Knesek	1964	43	31	;	qs	1,366	30.6		op		N	Z	Formerly used as an irrigation supply.
qu		qo	1964	36	42	ł	Qs	1, 366	30.9		op		z	N	Do.
op		op	1964	36	40	ł.	Qs	1, 365	26.2		op		T, E 2	Irr	Reported to pump about 90 gpm.
ł		c.	1	07	1	1	6s	1, 365	1		ł		J, E	D, S	Old dug well, bailed down to redbeds about 1941.
00			1	31		ł	Qs	1,360	23.8	July	y 3,	, 1969	а, Е	۵	Dug well. Owner reports water-level decline due to irrigation wells north of this well.

- 78 -

withwi						CASING	NG			MA	WATER LEVEL	18T				
1:10:0:11 texts frame, built function texts frame, built function texts frame, built function 100	MELL	OWNER	DRILLER	DATE COMPLETED	DEPTH OF WELL (ft)		DEPTH (ft)		ALTITUDE OF LAND SURFACE (ft)	BELOW LAND- SURFACE DATUM (ft)	MEZ	ATE OF		METHOD OF LIFT	USE OF WATER	REMARKS
	21-30-511		Lewis Barnes	1969	64	1	1	Qs	1,366	£.		1	÷.	z	N	Core test drilled for this report. Base of Symmetrian 42.5 feet. Very little water in Seymour. ¹
0 symmetic outry club from toutry club from truth from				1915	25	17	ł	Qs	1,365	17.8	July	10,	1969		D, S	Dug well.
60 Rate of Tease Spring Spring Spring Spring Spring Spring Spring Spring Spring No No <td>602</td> <td></td> <td>Ernest Knesek</td> <td>1952</td> <td>23</td> <td>42</td> <td>Ę</td> <td>Qs</td> <td>1, 340</td> <td>17.7</td> <td>July</td> <td>6,</td> <td>1969</td> <td></td> <td>Irr</td> <td>Dug well. Used to irrigate greens on golf course</td>	602		Ernest Knesek	1952	23	42	Ę	Qs	1, 340	17.7	July	6,	1969		Irr	Dug well. Used to irrigate greens on golf course
	603		;	3	Spring	1	ł	Qa	1, 332	(+)		ł	1	Flows	N	Seeps and springs along both sides of U.S. 277 and Fort Worth and Denver Railroad right of way.
			Jessie Hajek	1951	25	44	ł	qs	1, 337	14.9	July	2,	1969		ŋ	Dug well.
			1	1	22	42		Qa	1, 352	20.8	Nov.	18,	1969	z	z	Dug well. Formerly used as domestic and live- stock supply.
			ł	1955	14	30		Qs	1, 340	1.6		op		J, E 1-1/2	Irr	to pump about 20
		_	ł	ŀ	29	42	t	Qs	1,354	18.2	Nov.	25,			D, S	Dug well.
			Buster Tolson	1962	22	42 15	13	Qa1	1,272	10.8		op			Ind	Dug well. Feedlot supply well.
01 manual particulation $ 5print 5print 1,381 1,381 (1,1) (1$			I	1	53	31	1	Qs, Pcf	1,412	11.8	Nov.	19,				Dug well. Another house well equipped with jet motor is located just across county road from this well.
000 Grown canteral Percolam Corporation 0^{-1} , V , corean 1^{-5} , 1^{-5}				:	Spring	ł I	1	Qs	1, 318	(+)		;				Several springs and seeps along bluff. Used since first settlement of county.
	802		C. Y. GOUT Drilling	1956	1, 538		1, 361	PPcs	1, 345	E		ł		с, с 30	Ind	Produces from Saddle Creek Sand (Pennsylvanian). Used to waterflood Tannehill sand (Permian). Produces about 22,000 gallons per day.
804 Reality Oil Company Rimen wall Service 1968 $1,512$ $5-1/2$ $1,512$ 7.4 $1,641$ 7.6 1.6	803		qo	1963	1, 505		1,452	PPcs	1, 342	ł		ł		C, E 20	Ind	Do.
	804		Rimes Well Service	1968	1,512		1, 373 1, 512	Pu	1,441	Ē		1		с, Е 20	Ind	Reported to produce water from the Tannehill sand for waterflooding purposes. Reported to up about 9 ppm chloridater Reported to contain 90,000 ppm chloridate
902 Frank Allen $$ $$ 20 20 1 20 20 20 20 20 20 20 20 20 20 20 20 20 20 <			1	ł	22	31	ł	qal	1,245	20.1	Dec.				ŝ	Dug well.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			1	ł	29	31	ł	Qal	1,253	26.9	Dec.				80	bo.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			I	1	14	Ŕ	1	Qal	1,249	11.3	Dec.				ß	Dug well, just east of this well is an numsed detiled well with Just balanch galvanged casing. Depth is 15.9 feet, Namer level is 10.7 feet below land surface. A 20-inft core of massive withe lineatone is marrby; probably lumeders Pormation of Permian.
905 Frank Allen 7 87 ing 7 80 1,310 (+) Flows N Spring in old 906 do 5 Spring 7 9 (+) Flows N Spring in old 906 do 79 47 79 1,310 (+) 700% N Spring in old 907 Joe Hajek 39 47 79 1,340 21,0 July 2,1969 J,E D Dus woll. 908 Howard Smicher 1967 28 19 Qal 1,23 20.8 May 19, 1970 Cf Ind Use dia naterial			Les Jameson	ł	20	ø	1	Qs	1, 318	£		Ē				Well and pump covered with dirt to prevent freezing.
906 do 1.310 (+) Flows N Spring in old gravel 907 Joe Hajek 39 47 Qs 1,340 21.0 July 2,169 Jr Dug weilt. 908 Howard Smucher 1967 28 19 Qai 1,230 21.0 July 2,169 Jr D Dug weilt. 908 Howard Smucher 1967 28 19 Qai 1,233 20.8 Hwy 19,1970 Cf Ind Used in waterflood op	905	_	ŀ	-	Spring	ł	:	qs	1, 310	(+)		1	_	Flows	N	Spring in old gravel pits, flows about 15 gpm.
907 Joe Hajek 39 47 Qs 1,340 21.0 July 2,166 j, g D Dug well. 908 Howard Smutcher 1967 28 19 Qal 1,233 20.8 May 19, 1970 Cf Ind Used in waterflood op			1	1	Spring	£	ł	ds	1, 310	(+)		ł		lows	N	old
908 Howard Smulcher Howard Smulcher 1967 28 19 Qal 1,253 20.8 Nay 19, 1970 Cf Ind			1	ł	39	47	1	sò	1, 340	21.0	July			J, Е	Q	
		1012	Howard Smulcher	1967	28	19	1	Qal	1, 253	20.8	May		1970	Cf	Ind	Used in waterflood operation.

- 79 -

					CLUT OT LAND				100000						
MELL	OWNER	DRILLER	DATE COMPLETED	DEPTH OF WELL (ft)	DIAM- ETER (in.)	DEPTH (ft)	WATER BEARING UNIT	ALTITUDE OF LAND SURFACE (ft)	BELOW LAND- SURFACE DATUM (ft)	D, MEA.	DATE OF MEASUREMENT	-	METHOD OF LIFT	USE OF WATER	REMARKS
21-31-101	Adolph E. Wirz	3	1	20	30	:	Qs	1, 357	2.3	.vov.	23, 1	1969	с, к	D, S	Dug well. Damp spots, seeps and white mineral deposits (probably sulfates) all around field near well.
102	David Wirz	ł	1	64	42	1	Q8	1, 365	5.5		op		ы б	D, S	Dug well. Water from sand and gravel at 15 to 25 feet. Well dug until hit limestone bed at 64 feet; probably lueders Formation of Permian.
401	Ernest Hrncfrik	I	ł	20	31 22	11	Qs	1, 374	9.8	Dec.	12,	1968 0	с, и	s	1
207	Henry Peek		1	Spring	;	1	Qs	1, 355	(+)		Ę	at soul à	Flows	N	Spring flows about 10 gpm.
403	State of Texas	1	ł	Spring	3	ł	Q8	1, 334	(+)		ţ.		Flows	Z	Spring flows about 10 gpm in ditch on morth side of Highway 199.
801	C. C. Sanders		1936	31	42	E	QB	1, 332	24.7	Nov.	22,	1968	с, и	D, S	Dug well. Blow sand at surface, Dug to solid limestone bed.
803	Mrs. Barbara Novac	1	ł	11	100	1	Qs	1, 318	4.1	Feb.	20,	1970	J, E	D, S	Dug well. Reported to have become salty in last few years.
804	Carter H. Taylor	1	1920	41	50	ł	ős	1, 365	11.6	_	op		л , Е	D, S	Dug well. Another well was dug about 15 feet to the northwest and has been used as a cistern.
32-201	Skelly Oil Company	Schultz and Brannan	1960	4,250	11 7	63 2,801	PPcn	1,270	;		I.		Z	z	Formerly used to supply salt water for water- flooding. Re-entry of oil-test. Produced from Canyon reef (Pennsylvanian).
37-501	H. G. Williams	Horn Drilling Company	1964	1,550	2 2	1,490	N	1,400	ł		1		с, Е 5	Ind	Salt water supply well for secondary recovery of oil. Reported to pump about 5 8pm.
601	Oakland Corporation	Kuehn and Roberts	1958	6, 880	10	243 3,004 6,788	D	1, 383	į.		£		S, E 150	Ind	Supplies water for use in waterflood operation. Reported to pump about 300 gpm.
905	Portwood Ranch and Company	1	3	24	96	i	Pw	1,327	19.9	Nov.	22,	1968	С, W	z	Dug well. Windmill broken.
38-201		1	1930	72	36	ł	Pw	1,360	31.9	July	9,	1969	с, и	N	Do.
2 03	-	ł	ł	52	38	ł	N	1, 334	2.2	June	20,	1969	J, E	D, S	Dug well. Reported contaminated by salt water in 1966. Investigated by Railroad Commission of Texas.
105	Vernon Teague	1	1888	31	42	ł	Qal	1,245	26.5	Dec.	17,	1968	J, Е	D, S	Dug well.
50°		;	l	12	31	1	Qa.1	1,227	6.9	Dec.	18,	1968	с, м	Z	Dug well. Windmill broken.
39-101		Les Jameson	1	35	12	3	Qa.1	1,248	22.7		op		т, Е 3	Irr, S	Drilled for use as irrigation supply. Estimated to pump about 100 gpm.
102	2 Joe Glover	Joe Glover and Buster Tolson	1960	80	80	ł	Qal	1, 225	15.5	A. 5	do	2.3	Ј, Е	S	Water level is pumping level. Two pumps on this well. Two other shallow wells nearby, not used now.
201	1 Charles T. Porter	k K	ł	16	31	1	Qa.1	1,212	10.6	Nov.	28,	1968	л, Е	D, S Ind	Dug well. Windmill tower still over well. Well used as a supply for a small feedlot operation.
2 02	2 Horace E. James	J. A. and Bill Warren	1950	20	31	1	Qs	1, 315	15.1	Dec.	13,	1968	л, Е	D, S	Dug well.
2 03	3 Mrs. I. J. Wehmeyer	do	1936	19	31	3	Qal	1,272		_	op			z	Dug well. Formerly domestic and livestock supply.
301	1 Jim Welch		3	20	40	;	Qa.1	1,208	13.7	Nov.	. 14,	1968	J, E	z	

Γ						2.4						-				-				_				-		-	_
	REMARKS	One of 6 wells which pump into central Offictibution line. The 6 wells are reported to pump a total of about 400 gpm. Graval packed.	Do.	Do.	Do.	Do	Do.	Dug well. Windmill broken. Formerly used as livestock supply.	Dug well near large gravel pits with 20 to 25 feet of medium to coarse gravel.	Dug well.	Dug well. Windmill broken. Formerly used as livestock supply.	Dug well.	Do.	Do.	Well, hand augered. Windmill broken. Formerly used as livestock supply.	Well, hand augered.	Dug well, for livestock supply. Well partially caved and washed in.	Windmill pumps well dry in high wind.	Seymour gravels well cemented. Well dug and blasted with dynamite.	Do.	Spring flowing at an estimated 15 gpm from cracks, crevices, and seams of about 15 to 20 feet of well-cemented Seymour gravels.	Dug well.	Do.	Dug well, Another well equipped with a windmill is just east of this well.	Dug well, Windmill tower still over well.	Dug well.	Do.
	USE OF WATER	Irt, S	Irr, S	Irr, S	Irr, S		Irr, S	N	ŝ	D, S	z	ŝ	s	s	z	ŝ	Z	50	D, S	D, S	z	52	S	D, S	D, S	D, S	s
	METHOD OF LIFT	J, E 1-1/2	J, E 1-1/2	J, E 1-1/2	л, Е			с, и	с, и	Ј, Е	с, и	с, ч	J, E	с, к	с, и	с, и	N	с, м	л, Е	J, E	Flows	л, Е		⊒ ສ ຕົວິ	J, E	с, н	с, и
	NT	1968										1968			1968			1968				1968	1968		1968	1	1968
	DATE OF MEASUREMENT	21,	op	op	qo	op	op	op	do	op	op	11,	op	op	17,	op	op	12,	op	op	1	8,	13,	op	14,	;	19,
	MEZ	Nov.										Dec.			Dec.			Dec.				Nov.	Nov.		Nov.		Nov.
	BELOW LAND- SURFACE DATUM (ft)	13.7	14.0	I4.5	15.1	15.0	13.8	10.2	9.8	12.5	16.7	12.0	11.3	9.4	17.7	14.1	8.5	15.2	10.0	12.0	÷	11.9	32.2	1.1	14.5	;	12.4
	ALTITUDE OF LAND SURFACE (ft)	1,220	1,219	1,219	1,220	1,221	1,219	1,201	1,208	1, 202	1, 223	1,204	1,201	1, 197	1,218	1,213	1,207	1,292	1,281	1,290	1,260	1,200	1, 226	1,203	1, 198	1, 196	1,202
	WATER BEARING UNIT	Qa.1	Qa1	Qa.I	Qal	Qa.1	Qal	Qal	Qa1	Qal	Qa1	Qa.1	Qa.1	Qal	Qal	Qa.1	Qa 1	Qs	Qs	Qs	da Qa	Qal	Qa I	Qa.1	Qal	Qal	Qal
	DEPTH (ft)	ł	;	ł	1	;	ł	ł	1	;	ł	ł	;	1	1	;	I.	;	;	ł	1	1	ĩ	1	;	ł	ł
	DIAM- ETER (in.)	16	13	13	13	13	13	30	31	31	24	85	31	28	9	9	31	5	30	52	ł	40	48	36	36	36	36
1 100000	DEPTH OF (ft)	21	22	22	23	24	22	16	13	25	22	15	14	14	26	16	6	16	51	15	Spring	17	35	13	20	20	19
	DATE COMPLETED	1967	1967	1967	1967	1967	1967	1	;	1	1	;	t	ł	1960	1967	t.	1955	1963	ł	1	ł	ł	1915	I	1955	:
	DRILLER	Les Jameson	op	op	do	do	do	1	ł	ł	1	ł	L.	1	Mack Russell	do	qo	Seismograph Crew	Ralph Howe	1	1	ł	3	:	1	Henry Welch	qp
	OWNER	Charles T. Porter	do	do	do	do	do	Lincoln Burns estate	do	Mrs. Mabel Johnson	qo	John Bess Fancher	do	do	Mack Russell	do	qo	Jettie Howe Russell	Ralph Howe	Mildred R. Lunsford	đo	John A. Young, Jr.	Portwood Ranch and Company	Myrton Couch	Bobby Morris	Mrs. S. S. Knox	do
	WELL	21-39-302	303	304	305	306	307	308	309	310	311	312	313	314	501	502					905	40-10T	102	103	-		106
		*							*	*	*	-14	*	4	*	*	*	*	¢ 1	*		4	×	*	*	*	*

- 81 -

Continued
1
Springs
and
Wells
Water
of
Records
1
.9
Table

]	114	and the second s	NAME AND A						
	DATE COMPLETED	DEPTH OF MELL ET (1) (1) (1)	DIAM- ETER DE (in.) (DEPTH BE (ft) 1	MATER C BEARING S UNLT	ALTITUDE OF LAND SURFACE (ft)	BELOW LAND- SURFACE DATUM (ft)	DI MEAS	DATE OF MEASUREMENT		METHOD OF LIFT	USE OF WATER	REMARKS
	1950	16	36	1	Qal	1, 190	13.0	Nov.	19, 1	1968	с, и	s	Dug well.
_	1050	_			041	1,205	15.1	Nov.	20, 1	1968	J, E	D, S	100
	-			1	Qal	1,203	17.7		op	Ē	Ј, Е	z	Dug well. New house well (21-40-108) drilled because this well started to produce gas. Formerly used as domestic and livestock supply.
	ł	12	36	1	Qal	1, 196	6.5		qo		N	z	Dug well. Partially silted up. Formerly used as livestock supply.
	1958	21	42	1	Qal	1,203	11.1		op	8	J, E	D, S	Dug well.
	1958	16	31	1	Qa.1	1,204	11.2		qo	55	с, и	s	Do.
	ì	12	36	:	Qal	1,197	5.2	Nov.	21, 1	1968	с, и	z	Dug well, Windmill broken. Formerly used as livestock supply.
	1	24	7	1	Qal	1,210	18.4		op		Ј, Е	sa	1
	ř.	17	34	F	Qal	1,247	12.4		op		N	z	Dug well. Formerly used as domestic and livestock supply.
	1	40	36	ł	Qal	1,238	31.8	1	op	ſ	с, и	D, S	Dug well.
	;	31	15	;	Qal	1,214	24.7	Nov.	14,	1,968	z	N	Formerly used as domestic and livestock supply.
	I	1	7	ŧ	Qa.1	1, 181	1.6	Nov.	8,	1968	с, w	ŝ	01d dug well; deepened, cased, and gravel packed.
	1955	17	9	ł	Qal	1, 193	13.2	Nov.	14,	1968	с, и	s	
	1	8	30	1	Qa.1	1, 178	6.8		qo		с, и	50	Dug well.
	Ę	;	48	3	Qal	1, 177	6.9		op		N	N	Dug well. Formerly used as domestic and livestock supply.
	;	30	36	ĩ	Qa	1, 237	15.9	Nov.	7,	1968		1 2	Dug well.
	£	31	42	;	Qs	1,273	11.0		op		в C	20	.00
-	;	33	30	1	Qs	1,267	26.9		op		z	z	Dug well, Windmill tower over well, formerly used as livestock supply.
	1	33	45	ł	Qs	1,258	16.7		op		J, E	D, S	Dug well. Two jet pumps. Supplies several houses.
_	ł	20	36	1	Qal	1, 192	13.9	Nov.	8,	1968	х С	z	Dug well. Windmill broken. Formerly used as livestock supply.
	1967	26	10	1	Qal	1, 192	14.1		op		J, E 1-1/2	Irr	Reported to pump about 75 gpm. Pumps into earth tank. Mater distributed through aprinkler system. Gravel packed.
	1961	25	10	E	Qal	1, 193	13.7		op		Z	z	Drilled as an irrigation supply. Not yet equipped when inventoried. Gravel packed.
	1967	26	10	;	Qa.1	1, 194	13.4		op		Z	N	Do.
	1967	24	10	;	Qal	1, 195	13.9		op		N	z	Drilled as an irrigation supply. Gravel packed.
	1967	24	17	ł	Qal	1,192	11.6		op		Z	z	Do.
	1967	23	15	;	Qal	1,190	11.4		op		z	N	Do.
										T			

WELL	NER	DRILLER	DATE COMPLETED	DEPTH OF WELL (ft)	DIAM- ETER (in.)	DEPTH (ft)	WATER BEARING UNIT	ALTITUDE OF LAND SURFACE (ft)	BELOW LAND- SURFACE DATUM (ft)	W	DATE OF MEASUREMENT	LNI	METHOD OF LIFT	USE OF WATER	REMARKS
21-40-513	Portwood Ranch and Company	Les Jameson	1967	24	15	ł	Qal	1, 190	11.1	Nov.	8,	1968	N	И	Drilled as an irrigation supply. Gravel packed.
514	do	op	1,967	24	1.5	F	Qa.1	1, 191	11.3		op		z	И	Do.
515	do	qo	1967	24	17	1	Qa 1	1, 191	11.4		op		N	N	Do.
516	op	qo	1967	24	21	Î	Qa1	1, 192	10.9		op		J, E 2	Irr	Reported to pump about 90 gpm, Pumps into earthon tank, Water distributed through sprinkter system by 10 horsepower centrifugal pump. Gravel packed.
517	db	qp	1967	26	17	1	Qal	1, 192	11.0		op		J, E 2	Irr	.bo.
518	op	E	I	19	30	;	4s	1,245	10.2		op		J, E	D, S	Dug well.
519	ę	*	ŧ	26	36	ŧ	Qs	1,240	6.5		op		z	N	Dug well. Formerly used as domestic and livestock supply.
520		:	3	22	30	1	Qa	1,267	14.6	Nov.	13,	1968	с, и	s	Dug well.
521		8 8	1	34	36	3	Qa.1	1, 197	29.2	Nov.	8,	1,968	с, w	N	Dug well. Windmill broken. Formerly used as domestic and livestock supply.
522	Sam Portwood	1	ł	19	31	ł.	Qa1	1, 199	14.6	Nov.	14,	1968	Ј, Е	D, S	Dug well. Two jet pumps on well. Supplies two households.
523		Buster Tolson	;	33	ล	3	Qa.1	1,206	15.4		qo		J, E	D, S	-
524		ĩ	1936	52	42	1	Qal, Pw	1, 222	41.8		op		с, и	z	Dug well. Windmill broken. Formerly used as domestic and livestock supply.
525		3	1947	15	31	£	QB	1,260	7.9	Nov.	20,	1968	Ј, Е	z	Dug well. Formerly used as domestic and livestock supply.
526	J. B. Guthrie	ł	I	36	36	3	Qal	1,213	28.3	Nov.	.14,	1968	J, E	D, S	Dug well.
527		1	1923	28	48	1	Qal	1,203	18.9		op		с, и	a	Dug well. Originally supplied water to cotton gin. Gin no longer here.
528	_	Ernest Knesek	:	21	15	£	Qal	1, 187	9.4		op		J, Е	D, S	ΞĘ.
529	Jim Welch	1	1	24	30	1	Ś	1, 251	15.3	Nov.	13,	1.968	J, E	D, S	Dug well, New well drilled about 15 feet south of this well. New well drill, adph, atter level, M., feet below land surface; cased with 13-inch oil field casing.
530		1	1917	44	36	:	Qs	1,247	34.8		op		с, и	z	Dug well. Windmill broken. Formerly used as domestic and livestock supply.
531	Mrs. Valer	:	1	28	36	1	Qa.1	1,209	21.7	Nov.	19,	1968	J, E	z	Dug well. Formerly used as domestic and livestock supply.
532		l	l	29	36	ĩ	Qal	1,211	23.9		op		N	D, S	Dug well. Replacement pump not installed when inventoried.
109	Portwood Ranch and Company	1	;	28	30	ł	Q8	1,268	16.0	Nov.	۲,	1968	J, E	2	Dug well. Formerly used to irrigate small orchard.
804	Don Buckalew	ł	1952	28	s	ł	Qa.1	1, 190	ł		ł		з, Е	D, S	-
810	do	:	;	25	30	1	Qa 1	1,198	20.1	Nov.	6,	1968	z	Z	Dug well. Formerly used as domestic and livestock supply.

								the second	The second shall be a second s					
WELL	OWNER	DRILLER	DATE COMPLETED	DEPTH OF WELL (ft)	DIAM- ETER (in.)	DEPTH (ft)	WATER BEARING UNIT	ALTITUDE OF LAND SURFACE (ft)	BELOW LAND- SURFACE DATUM (ft)	DATI MEASU	DATE OF MEASUREMENT	TALL TO GOHTAM	USE OF WATER	REMARKS
21-40-811	21-40-811 Portwood Ranch and	:	1	32	30	3	Qal	1,200	23.5		Nov. 7, 1968 C, W	с, и	52	Dug well. Another old dug well just south of this well not inventoried.
* 812	Company 812 Jim Welch	:	3	28	36	ł	Qal	1,210	26.2	Nov. 13, 1968	13, 1968	J, E	so	Dug well. Formerly also used as domestic supply.
						Ĭ								

- 84 -

THICKNESS	DEPTH
(FEET)	(FEET)

Well 21-21-804

Owner: Henry P. Arledge Driller: Lewis Barnes

Topsoil, brown, moist, sandy	2.5	2.5
Caliche, tan, slightly sandy with some red staining	9.5	12.0
Clay, silty, red-stained, slightly sandy	3.0	15.0
Sand, fine-grained, saturated, reddish- brown, some gravel stringers	2.0	17.0
Clay, hard, red, silty, slightly moist	2.0	19.0
Sand, medium-grained, with 40% clay, quartz sand, rounded	2.0	21.0
Gravel, medium to coarse-grained, rounded	1.0	22.0
Permian, claystone, red, hard, very dry, greenish-blue oxidation halos from 1/2 inch to 6 inches diameter, flaking	27.0	49.0

Well 21-21-939

Owner: Rex Howell Driller: Lewis Barnes

Topsoil, sandy, dark-brown, moist,		
some silt	2.0	2.0
Clay, silty, light-brown, sand pebbles	6.5	8.5
Sand, fine-grained, tan, stained, some clay	2.0	10.5
Caliche, tan, some gravel, stained, some silt	3.5	14.0
Sand, medium-grained, stained red, some caliche, quartz sand, rounded	5.0	19.0
Clay, silty, calcareous, red	1.0	20.0
Sand, medium- to coarse-grained, red	1.0	21.0
Clay, sandy, medium-grained, red, moist	1.0	22.0
Sand, coarse gravel, medium-grained sand, stained red	7.0	29.0
Sand, medium-grained, subrounded quartz, stained red	5.5	34.5
Gravel, fine- to medium-grained, clay, sandy stringers present, rounded	5.0	39.5
Gravel, fine- to coarse-grained, rounded, light and dark minerals	2.5	42.0
Permian, hard red clay, oxidation halos, very dry	1.5	43.5

Well 21-21-940

THICKNESS

(FEET)

DEPTH

(FEET)

Owner: Rex Howell Driller: Lewis Barnes

Topsoil, brown, sandy, moist	2.0	2.0
Clay, silty, gray-tan, with some sand pebbles	7.0	9.0
Caliche, some staining, clay, silty	2.5	11.5
Sand, fine-grained, tan-red, some	dia and in	11.5
medium gravel, some clay stringers	7.5	19.0
Clay, stained red grading to tan, silty	3.0	22.0
Sand, tan, medium-grained, with some gravel pebbles	6.0	28.0
Gravel, coarse- to fine-grained, sub-		
rounded, light and dark minerals	4.0	32.0
Sand, fine- to coarse-grained, with		
gravel pebbles, stained, red, rounded	6.0	38.0
Gravel, coarse-grained, also finer-sized intermixed, stained red, light and		
dark minerals	4.5	42.5
Permian, hard red clay, oxidation		
halos, dry	1.5	44.0

Well 21-21-941

Owner: Rex Howell Driller: Lewis Barnes Topsoil, dark-brown, sandy, moist 2.0 2.0 Silty, tan-gray, some pebbles 6.0 8.0 Caliche, tan, some gravel-sized pebbles, clay, silty 5.0 13.0 Sand, fine- to medium-grained, quartz, stained red, some caliche, some gravel stringers 12.0 25.0 Gravel, fine- to medium-grained, rounded with some clay stringers and some large gravel pebbles 5.0 30.0 Sand, medium- to fine-grained, with gravel stringers, rounded, light and dark minerals 4.0 34.0 Reworked Permian, hard red clay, and sandstone layered 1.0 35.0 Gravel, medium- to coarse-grained, rounded light and dark minerals 7.5 42.5 Permian, red clay, hard-dry, oxidation halos .5 43.0

		THICKNESS (FEET)	(FEET)			(FEET)	(FEET)
	Well 21-21-942	!			Well 21-22-827		
	Owner: G. C. Lar Driller: Lewis Bar				Owner: Anton Fo Driller: Doris Dicke		
Topsoi	l, brown, moist, sandy	2.0	2.0	Caliche		13.0	13.0
	ilty, small pebbles, dry, light-	2.0	4.0	Sand and gravel		23.0	36.0
brown	1	2.0	4.0	Redbeds		3.0	39.0
Clay, sa silt re	andy, fine-grained, dry, some ddish-brown	5.0	9.0				
					Well 21-22-911		
	e, sandy, tan, some staining, staining	3.0	12.0		Owner: Burrell Le		
Sand f	fine-grained, 30% clay, red,				Driller: Lewis Ba	rnes	
	quartz sand	1.5	13.5	Topsoil, dark-brow	n, sandy, moist	2.0	2.0
Sand, f	fine- to medium-grained, with			Clay, sandy, tan, so	me staining with		
50% g round	gravel medium- to coarse-grained ded	7.5	21.0	about 25% silt		8.0	10.0
	literated evidation halo			Caliche, some stain	ing, silty clay	1.0	11.0
	an, mudstone-red, oxidation halo dry and hard	5.5	26.5	Sand, staining, very			
				clay, fine-grained rounded	sand, quartz,	2.5	13.5
	Well 21-22-70	2					01 5

THICKNESS DEPTH

Well 21-22-702

Owner: Jess L. Compton Driller: Les Jameson

Sand and gravel	20.0	20.0
Clay	1.0	21.0
Sand and gravel	18.0	39.0
Coarse gravel; redbeds last few inches	1.0	40.0

Well 21-22-807

Owner: Burrell Lee, Jr. Driller: Lewis Barnes

Topsoil, dark-brown, slightly moist, sandy	2.0	2.0
Clay, tannish, brown, dry, silty, some caliche present	3.0	5.0
Sand, fine-grained, very dirty-red 40%-60% clay, rounded, dry	5.0	10.0
Clay, 30%-50% sand, fine-grained, red, dry	10.0	20.0
Sand and gravel, fine- to coarse-grained, sand and gravel, Permian pebbles, dirty with about 20% clay	2.0	22.0
Permian, siltstone, red, hard, compacted dry, weathered clay also present in various amounts, layered, some sand pebbles present in small		
amounts, oxidation halos, blue-green, from 1/16 to 1/3 inch	33.0	55.0

THICKNESS DEPTH

on

Caliche	13.0	13.0
Sand and gravel	23.0	36.0
Redbeds	3.0	39.0

Topsoil, dark-brown, sandy, moist	2.0	2.0
Clay, sandy, tan, some staining with about 25% silt	8.0	10.0
Caliche, some staining, silty clay	1.0	11.0
Sand, staining, very dirty, 30%-50% clay, fine-grained sand, quartz, rounded	2.5	13.5
Sand, fine-grained, red, 10% clay	8.0	21.5
Sand, medium-grained, rounded, light and dark minerals, with some gravel pebbles	11.5	32.0
Sand, medium- to coarse-grained, 30% gravel, all sizes of grains	4.0	36.0
Gravel, medium- to coarse-grained, rounded, small amounts of clay and sand	4.5	40.5
Permian, clay, red, dry, oxidation halos	0.5	41.0

Well 21-22-912

		Owner: Burrell Lee, Jr. Driller: Lewis Barnes		
Topsoil di	ark-brow	vn, sandy, moist	2.0	2.0
pebbles, 2	20% fine	own-tan with e-grained sand	8.0	10.0
Sand, 30% fine- to n	-50% cla nedium-	ay, stained red, tan, grained	5.5	15.5
Sand, stair rounded		fine-grained,	8.5	24.0
Sand, fine	- to med	lium-grained, with el stringers, light and		
dark min			4.0	28.0
Gravel, me rounded,	edium- t light ar	o coarse-grained, nd dark minerals	3.0	31.0
		coarse-grained,		
minerals		and dark d	3.0	34.0

	THICKNESS (FEET)	DEPTH (FEET)		THICKNESS (FEET)	DEPTH (FEET
Well 21-22-912-Cont	inued		Well 21-29-601		
Sand and gravel, medium- to coarse- grained, rounded, clay stringers	6.5	40.5	Owner: Burrell Lee		
	0.5	40.5	Driller: Lewis Bar	nes	
Permian, clay, red, oxidation halos, dry, very compacted	1.5	42.0	Topsoil, sandy, light-brown, moist	2.0	2.0
			Clay, sandy fine-grained, 20%-40% reddish-brown, slightly moist, caliche		
Well 21-22-913			in various amounts	13.0	15.0
Owner: Burrell Lee Driller: Lewis Barr			Sand, fine-grained, very dry, rounded quartz, 10%-30% clay reddish-brown, caliche from 18-20 feet, consolidated		
Topsoil, dark-brown, moist sandy	2.0	2.0	sand at 22.0-22.5 feet	8.0	23.0
Clay, sandy, dry, tan-gray green, caliche present	8.0	10.0	Sand, fine- to medium-grained, red, very dry rounded, light and dark minerals	5.0	28.0
Clay, 30% to 50% sand, some caliche,			Sand and gravel, fine- and medium-		
stained red	6.0	16.0	grained, dry, 20% clay sized particles	2.5	30.5
Sand, 10% to 15% clay, red, rounded medium- to coarse-grained, with gravel			Permian, siltstone, red, hard, some clay-sized particles, some oxidation		
stringers	4.0	20.0	halos	1.5	32.0
Sand, medium- to coarse-grained, red, rounded, clean, with a few gravel			Well 21-30-117		
stringers	7.0	27.0		ana ang	
Sand, red, rounded, fine-grained, layered clay and gravel stringers,			Owner: Emitt Golden, Driller: Les Jameso		
quartz sand	9.0	36.0	Topsoil	7.0	7.0
Gravel, medium- to coarse-grained, stained red light and dark minerals,			Caliche and sand	17.0	24.0
rounded	4.5	40.5	Sand and gravel	9.0	33.0
ermian, clay, dark-red, very hard,			Redbeds	1.0	34.0
oxidation halos present, silty	0.5	41.0			
			Well 21-30-131		
Well 21-29-318			Owner: Mike Parke	er	
Owner: Clyde Chapn Driller: Lewis Barn	nan		Driller: Lewis Barn	es	
	es		Topsoil, dark-brown, moist	2.0	2.0
opsoil, sandy, fine-grained, 70% slightly moist clay, 30% light-brown	2.0	2.0	Clay, some silt, reddish-brown, dry	7.0	9.0
Clay, very sandy, stained red, dry caliche, fine-grained sand	10.0	12.0	Caliche, sandy, fine-grained, clay, tan with red staining	2.0	11.0
and, fine-grained, dry, quartz, calcareous			Sand, fine-grained, with about 35% clay	2.0	13.0
sand pebbles 20% clay-red and the second state and and gravel, fine- to coarse-grained,	3.0	15.0	Sand and gravel, sand-medium to coarse, gravel—fine to medium, base of		
rounded, all minerals-10% clay, red staining	nafring)_	Transfords to TATS	Seymour at 16 feet	3.0	16.0
ermian, siltstone, weathered, soft	9.5	24.5	Siltstone and mudstone, some clay, hard red, oxidation halos, some		
1/8 inch-1/2 inch oxidation halos-grains visible under hand lens, red	0.5	25.0	stratification, Permian, Clear Fork	24.0	40.0
ermian, siltstone, very dry, hard, layered, red and tan banding. A few			Well 21-30-132		
pebbles present, oxidation halos 1/8 inch-6 inches in diameter	56.0	81.0	Owner: Baylor County Pre		
ermian, sandstone, medium-grained,			Driller: Lewis Barne	S	
compacted non-calcareous cement, dry, dark blackish-red color		an line i te	Topsoil, light-brown, sandy, moist	2.0	2.0
ermian, siltstone, with some fine-	1.5	82.5	Clay, with about 10% fine-grained sand, dark-brown, slightly moist	4.0	6.0
grained sand, tan and red banding	23.5	106.0			

	THICKNESS (FEET)	DEPTH (FEET)		THICKNESS (FEET)
Well 21-30-132-	-Continued		Well 21-	30-306—Continued
Caliche, white to tan, with silt and	sand		Coarse gravel and sand (loc	oks very good) 10.0
pebbles, medium-grained, iron sta base of Seymour at 10.5 feet	ined, 4.5	10.5	Blue clay	1.0
Siltstone and mudstone, blue-green some clay, dry, flaking, some red tan staining, Permian, Clear Fork	and	35.0	w	rell 21-30-310
				r: City of Seymour er: W. E. Turner
Well 21-3	0-264		Topsoil	3.0
Owner: Burre Driller: Lew			Joint clay and pack sand	9.0
Topsoil, dark-brown, sandy, moist	2.0	2.0	Dry sand and gravel	8.0
Clay, with some silt and sand, bro	wn,	11.0	Fine sand and gravel	5.0
10% caliche	9.0	11.0	Red, coarse sand and grave	el 9.0
Sand, fine-grained, with about 309 water at 13 feet	% clay, 3.0	14.0	Coarse, white sand	2.0
Gravel, fine- to medium-grained, v	vith		Coarse, white sand and co	arse gravel 6.0
about 20% sand, base of Seymou 20 feet	or at 6.0	20.0	Red sand	1.0
Mudstone, tan, very hard, with	1.0	21.0		

21.0

Well 21-30-305

oxidation halos, Permian

1.0

	of Seymour . Turner		
Topsoil		3.0	3.0
Red pack sand	1	6.0	9.0
Red sand with	clay balls	9.0	18.0
White sand an	d gravel	7.0	25.0
Red sand and	pea gravel	11.0	36.0
Red, coarse sa	ind	6.0	42.0
Red sandrock	, redbeds	2.0	44.0

Well 21-30-306

Owner: City of Seymour Driller: J. P. "Buster" Tolson

Topsoil	4.0	4.0
Red clay	6.0	10.0
Caliche or white clay	2.0	12.0
Sandy clay-red	3.0	15.0
Sugar sands with some gravel	5.0	20.0
Clay, sand, and gravel	5.0	25.0
Fine sand, some gravel	3.0	28.0
Dry coarse gravel, some clay, water at 33 feet	5.0	33.0

DEPTH

(FEET)

Coarse gravel and sand (looks very good)	10.0	43.0
Blue clay	1.0	44.0

Topsoil	3.0	3.0
Joint clay and pack sand	9.0	12.0
Dry sand and gravel	8.0	20.0
Fine sand and gravel	5.0	25.0
Red, coarse sand and gravel	9.0	34.0
Coarse, white sand	2.0	36.0
Coarse, white sand and coarse gravel	6.0	42.0
Red sand	1.0	43.0

Well 21-30-314

Owner: City of Seymour Driller: J. P. "Buster" Tolson

Topsoil		5.0	5.0
Red, sandy cla	У	8.0	13.0
White sand		5.0	18.0
Red gravel wit	h some clay	1.0	19.0
Sand and grave	el, water at 25 feet	6.0	25.0
Gravel and san	d	8.0	33.0
Soft sand rock		2.0	35.0
Red clay		2.0	37.0
Blue clay		2.0	39.0

Well 21-30-315

Owner: City of Seymour Driller: J. P. "Buster" Tolson

Topsoil	6.0	6.0
Red clay soil	6.0	12.0
Fine river sand	13.0	25.0
Hard, red clay with some rock	3.0	28.0
Fine sand	4.0	32.0
Gravel and sand, water at 34 feet	2.0	34.0
Coarse gravel, very little sand	12.0	46.0
Rock, some gravel	2.0	48.0
Blue shale	1.0	49.0

	THICKNESS (FEET)	DEPTH (FEET)		THICKNESS (FEET)	DEPTH (FEET)
Well 21-30-36	9		Well 21-30-386-Cor	ntinued	
Owner: Bill Elli Driller: Les Jam			quartz, reddish-brown, dry, cemented		
Topsoil, sandy loam	5.0	5.0	pebble throughout this section	8.0	20.0
Red sand	18.0	23.0	Sand, medium- to coarse-grained, 10% to 30% gravel, no clay in section,		
Sand and fine gravel, white	5.0	28.0	rounded gravel	12.0	32.0
Red clay	3.0	31.0	Gravel, coarse- to medium-grained, rounded, all minerals	9.0	41.0
Sand and coarse gravel	7.0	38.0	Permian, mudstone, very hard,		
Redbeds	1.0	39.0	bluish-red, dry	3.0	44.0
Well 21-30-37	0		Well 21-30-387	7	
Owner: Don McDe Driller: Les Jame			Owner: T. C. Gri Driller: Lewis Bar		
Topsoil, sandy loam	6.0	6.0	Topsoil, dark-brown, sandy, moist	2.0	2.0
Red sand	14.0	20.0	Clay, sandy, fine-grained, red, dry, caliche in varying amounts, cemented		
Quick sand	6.0	26.0	pebbles throughout section	20.0	22.0
Water sand, fine	6.0	32.0	Sand, fine- to medium-grained, quartz, rounded, with some fine-grained grave	10.0	32.0
Coarse sand	5.0	37.0	Sand, medium- to coarse-grained, with		
Sand and gravel	4.0	41.0	30% to 50% gravel, fine- to medium- grained, all minerals, rounded	8.0	40.0
Redbeds	1.0	42.0	Gravel, medium- to coarse-grained, rounded, all minerals	2.5	42.5
Well 21-30-38	5		Permian, hard, dry, reddish-blue		
Owner: T. C. Gri Driller: Lewis Ba			mudstone, some silt in section	2.5	45.0
Topsoil, sandy, light-brown, moist,			Well 21-30-388		
fine-grained sand	2.0	2.0	Owner: B. E. Kee Driller: Lewis Bar		
Clay, sandy, fine-grained, dry, caliche present in small amounts	8.0	10.0		103	
Sand, 30% to 50% clay, reddish- brown, fine-grained, dry, quartz	14.0	24.0	Topsoil, dark-brown, sandy, moist clay, light-brown, sandy, 10% to 40% caliche, iron-stained from 8 feet		
Gravel, medium- to fine-grained, rounded, all minerals present, 30%			to 9 feet Clay, silty, reddish-brown, small	2.0	2.0
sand, medium- to coarse-grained, saturated	13.0	37.0	amounts of caliche	8.0	18.0
Gravel, fine- to coarse-grained, rounded, all minerals present, small amounts of			Sand, fine-grained, red, moist, dirty, saturated, 20% clay	2.0	20.0
sand intermixed	5.5	42.5	Sand and gravel, medium- to fine-		
Permian, siltstone, red, hard, very dry	2.0	44.5	grained saturated, clean	20.0	40.0
Well 21-30-386			Permian, mudstone, blue, very hard and dry, stratified	1.0	41.0
Owner: T. C. Grif	fin		Well 21-30-511		
Driller: Lewis Bar	152 - 63			(1) (1)	
Topsoil, light-brown, sandy, moist	2.0	2.0	Owner: Ernest Knes Driller: Lewis Barn		
Clay, sandy, red-tan, with caliche present in various amounts, dry	10.0	12.0	Topsoil, light-brown, sandy, fine- grained, moist	2.0	2.0

THICKNESS	DEPTH
(FEET)	(FEET)

Well 21-30-511-Continued

Clay, silty, some sand pebbles, slightly moist, reddish-brown	5.0	7.0
Clay, sandy, fine-grained, dry, reddish- brown, quartz sand	2.0	9.0
Sand, dirty, 30%-50% clay, dry, reddish-brown, quartz rounded, fine-grained	6.0	15.0
Caliche, sandy, fine-grained, tan, reddish-brown, 50% sand and 50% caliche	2.0	17.0

Well 21-30-511-Continued

THICKNESS DEPTH

(FEET)

(FEET)

Sand, fine - to medium-grained, tan, reddish-brown, 90% quartz, slightly		
moist, rounded, some gravel, medium-grained	9.0	26.0
Sand and gravel, fine - to medium- grained, rounded, all minerals, dry	10.0	36.0
Gravel, fine - to coarse-grained, saturated, rounded, all minerals, very clean; last few inches of Permian-weathered, soft, red,		
dry, reddish-brown, siltstone, with small amounts of clay	6.5	42.5

0.2 Inform Jamese

Table 8.-Chemical Analyses of Water From Wells and Springs (Analyses given in milligrams per million except percent sodium, specific conductance, pH, aodum and sogretion ratio, and readual sodium carbonatec)

1 1 1 1 1	1.1 M J J M 122.7	DEPTH	DAT	E OF	STLICA	CAL-	WACKED -	and a state									SPECIFIC		MUIDOS	RESTDUA
	GWNER	WELL (ft)	COLL	COLLECTION	(2012)	(Ca)	(8W)	(WI)	BONATE (HCO3)	EATE (SO4)	RIDE (CI)	FLUO- RIDE (F)	NI + TRATE (NO3)	DIS- SOLIDS SOLIDS	TOTAL HARDNESS AS CaCO3	SODIUM	CONDUCTANCE (MICROMHOS AT 25°C)	IId	ADSORP- TION RATIO (SAR)	SODIUM CARBON- ATE (RSC)
								Per	Permian, Wichita Group - Pw	Group - Pw										
21-37-905	Portwood Ranch and Company	24	Nov.	22, 1968	16	408	135	165	232	1,100	356	1.4	184.8	2,480	1,580	19.0	2,970	7.6	1.8	Ĩ
38-203	Ignac Hostas	52	Feb.	20, 1970	16	220	252	988	381	530	2,040	2.0	42	4,270	1,590	63.6	6,223	7.8	10.6	ĩ
							Seymou	r Formation a	nd Permian, C	Seymour Formation and Permian, Clear Fork Group - Qs, Pcf	- Qs, Pof									
21-29-202	Henry F. Moore	100	Feb.	13, 1969	31	101	56	344	425	189	290	4.6	322.3	1,560	483	61.0	2.290	7.6	8.9	3
802		36	Nov. 19,	19, 1969	24	263	284	1,033	279	600	1,920	3.2	570	4,830	1,820	55.1	6.630	2.5	5 01	
902	Flint Bibb	44	Dec.	26, 1969	17	680	182	397	312	570	1,590	.7	231.0	3,820	2.450	25.6	5.380	¢ [7 E	
30-126	James H. Waldron	51		20, 1969	22	7 9	45	339	760	201	170	2.8	12.0	1,230	347	67.7	1,830	8.1	7.9	
10/	Gertie Moore	53	Nov.	19, 1969	20	157	198	1,073	680	200	1,270	4.6	496	4,250	1,210	65.7	5,750	7.4	13.3	1
							Recen	st Alluvium an	d Permian, W	Recent Alluvium and Permian, Wichita Group - Qal, Pw	al, Pw									
21-40-524	Sam Portwood	52	Nov. 1	14, 1968	23	41	50	170	530	106	75	1.3	23.0	750	306	54.7	1,147	7.7	4.2	1
								Permian	Permian, Clear Fork Group - Pcf	iroup - Pcf										
21-21-924	Travis J. Peacock	100	Apr.	9, 1969	4	14	\$	130	20	7	1 208	۲. ۷	18.0	396	55	89.7	<i>CLT</i>	4 4	2 6	
29-311	Clyde Chapman	47	June 20,	20, 1969	20	269	169	660	200	200	1,010	1.1	781.0	3.510	1.370	4.12	006 7		0.7	
30-119	Baylor County Precinct 1	18	Sept. 16,	16, 1969	20	62	15	95	442	86	58	1.8	ų. >	580	325	39.0	932	7.5	2.3	E E
								Seym	Seymour Formation - Qs	n · Qs										
21-21-601	Travis J. Peacock	36	Feb. 1	13, 1969	30	102	63	247	459	266	241	1.5	86.0	1,260	520	51.1	1,800	7.7	4.7	:
602	do	43	Ĩ	do	32	73	48	256	700	96	108	1.3	143.0	1,100	381	59.4	1.630	1.7	5.7	3
701	Henry P. Arledge	25	Feb. 1	11, 1969	34	48	26	246	456	112	135	2.4	110.0	076	225	70.4	1,440	8.0	7.1	ł
702	do	28	0	do	32	96	45	256	420	173	248	1.5	95.0	1,170	425	56.3	1,780	7.6	5.3	;
108	Herman Yungman	56	Jan. 2		35	37	40	422	550	138	378	.8	44.0	1,370	256	78.2	2,180	8.3	11.5	1
802	Henry P. Arledge	25			22	100	35	34	478	23	26	1.0	3.5	480	392	15.7	683	7.9	1.	ł
803	do	19	Peb. 1	12, 1969	23	21	20	290	570	84	134	8.0	30.5	890	136	82.3	1,470	7.9	0.11	;
106	Trula Burkhalter	33	Feb.	4, 1969	24	73	110	188	467	189	308	2.4	29.0	1,150	640	39.1	1,920	7.6	3.2	0
902	Elizabeth Hertel	28	Jan. 2	23, 1969	25	48	67	06	459	54	81	2.7	34.0	630	395	33.3	1,041	7.6	2.0	1
016	Dudley B. Myers	39	P	do			147.0	12260.0	2024M						10000	10000	1000 CO 100 CO	No.	1.000	

- 91 -

Table 8. - Chemical Analyses of Water From Wells and Springs -- Continued

DEFINI OCCURRENT (ED) DEFINI OCULACTION (ED) DEFINI OCULACTION (ED) SILE 001 001 001 001 001 001 001 001 001 001 001 001 001 001 001 00 00 00 00 00 00 001 00	INTIVIT INTERT INTER INTER </th <th>INTIM OFF INTERIA OLLACTOR (E5) INTERIA (E5) INTERIA (E1) INTERIA (E10) INTERI</th> <th>DRFTH or, free (cr) DRFTH (cr) <thdrfth (cr) DRFTH (cr) <thd< th=""><th>TLAW</th><th></th><th>21.21.016 Truthalter</th><th>-</th><th>-</th><th>Base Rotor11</th><th></th><th>920 Taula Buckhalter</th><th></th><th>_</th><th>-</th><th></th><th>Cora Morri</th><th>_</th><th>Mrs. R. E. 7</th><th></th><th>-</th><th>George R. M</th><th></th><th>-</th><th></th><th></th><th>804 do</th><th>810 Franklin Coufal, Jr.</th><th>-</th><th></th><th></th><th></th><th>Burrell Lee</th><th>_</th><th></th><th></th><th>820 do</th><th></th></thd<></thdrfth </th>	INTIM OFF INTERIA OLLACTOR (E5) INTERIA (E5) INTERIA (E1) INTERIA (E10) INTERI	DRFTH or, free (cr) DRFTH (cr) DRFTH (cr) <thdrfth (cr) DRFTH (cr) <thd< th=""><th>TLAW</th><th></th><th>21.21.016 Truthalter</th><th>-</th><th>-</th><th>Base Rotor11</th><th></th><th>920 Taula Buckhalter</th><th></th><th>_</th><th>-</th><th></th><th>Cora Morri</th><th>_</th><th>Mrs. R. E. 7</th><th></th><th>-</th><th>George R. M</th><th></th><th>-</th><th></th><th></th><th>804 do</th><th>810 Franklin Coufal, Jr.</th><th>-</th><th></th><th></th><th></th><th>Burrell Lee</th><th>_</th><th></th><th></th><th>820 do</th><th></th></thd<></thdrfth 	TLAW		21.21.016 Truthalter	-	-	Base Rotor11		920 Taula Buckhalter		_	-		Cora Morri	_	Mrs. R. E. 7		-	George R. M		-			804 do	810 Franklin Coufal, Jr.	-				Burrell Lee	_			820 do	
COLLACTION Feb. 4, 1969 Apr. 23, 1969 Apr. 23, 1969 Apr. 23, 1969 Apr. 23, 1969 Feb. 12, 1969 Feb. 11, 1969 Feb. 11, 1969 do 60 Feb. 23, 1969 do 7eb. 23, 1969 Apr. 2, 1969 Apr. 2, 1969 Ang. 8, 1961 Jan. 22, 1969 Jan. 22, 1969	Instruction contraction Feb. Status, (\$102) Call (\$102) Feb. 4, 1969 20 9 Apr. 23, 1969 23 5 Apr. 23, 1969 24 11 Feb. 11, 1969 23 7 Preb. 12, 1969 23 13 Feb. 11, 1969 23 13 Feb. 11, 1969 23 13 Feb. 11, 1969 23 13 Feb. 21, 1969 31 23 Feb. 21, 1969 31 23 Feb. 21, 1969 31 23 Apr. 2, 1969 31 23 Jan. 20, 1939 24 23 Jan. 20, 1969 31 23 Jan. 20, 1969 23 24	Initial contractions Satisfies (Line) Calibits (Line) Satisfies (Lin	Interfere contactrices Statustical (SLID, SLID, SL					28	44	44									cris				23														
EE OF AC 1969 4, 1969 111, 1969 23, 1969 22, 1969 12, 1969 12, 1969 11, 1969 11, 1969 40 40 40 40 40 52, 1969 22, 1969 22, 1969 40 40 52, 1969 52, 1969 40 52, 1969 52, 1969 40 52, 1969 52, 1969 54, 1969 54, 1969 54, 1969 55, 1969 56,	Excertise Stitutise Control 0,1069 (\$102) (\$102) 1,1069 20 9 1,1,1069 20 9 23,10970 23 10 23,10969 23 5 23,10969 23 11 23,10969 23 11 23,10969 23 11 23,10969 23 11 23,10969 23 11 11,1969 23 11 12,1969 23 11 11,1969 23 11 23,1969 31 2 11,1969 23 11 23,1969 31 2 21,1969 31 33 21,1969 33 33 21,1969 33 33 21,1969 33 33 21,1969 33 33 22,1969 33 33 23,1969 33 33 <	Effection Statute of CALM Statute of CALM Modeline of CALM 4, 1069 231,02,0 231,02,0 231,02,0 233,0 2, 1069 20 94 74 1, 1069 23 95 73 2, 1090 236 94 74 2, 1090 236 117 96 73 2, 1090 236 117 73 73 2, 1090 236 117 76 73 2, 1090 236 117 76 73 11, 1069 237 26 116 53 12, 1069 237 90 111 96 46 0 235 90 112 96 66 11, 1069 237 91 136 53 53 0 235 90 112 96 66 66 20, 1039 238 93 93 93 53 53 53 11, 1069	Refer LECTION SILILIAN (S10.2) Call- (S10.2) MOREN- SILILIAN (S10.2) MOREN- SILILIAN (S10.2) <thm< td=""><td></td><td></td><td>Feb.</td><td>Apr.</td><td>Apr.</td><td>Apr.</td><td>Ann.</td><td></td><td>Feb.</td><td>Feb.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>~</td><td></td><td></td><td></td><td>5</td><td></td><td></td><td></td></thm<>			Feb.	Apr.	Apr.	Apr.	Ann.		Feb.	Feb.																	~				5			
Stitutes (\$102) 20 20 23 25 25 25 26 27 26 27 28 23 28 23 28 23 26 27 28 26 27 28 28 28 26 27 28 28 26 27 28 28 28 27 26 27 27 26 27 27 26 27 28 27 26 27 27 26 27 27 26 27 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 26 27 27 26 27 27 26 27 27 26 27 27 27 26 27 27 27 27 27 27 27 27 27 27 27 27 27		Calli- calli- citing (cas) Modelli- strate strate (cas) Modelli- strate strate (cas) Modelli- strate strate (cas) Modelli- strate strate (cas) Modelli- strate strate (cas) Modelli- strate strate strate (cas) Modelli- strate strate strate (cas) Modelli- strate strate strate (cas) Modelli- strate	CAL- CAL- SITEN MAGR- SITEN	ATE OF LECTION			11, 1969	23, 1969	27. 1970	29. 1970	26. 1969	12, 1969			do	11, 1969	do	do		do									do	do	do			E			
	CALI- CLAI- CLAIN (Ca) 94 94 94 94 177 70 1116 86 81 91 42 42 42 42 42 43 55 56 64 44 45 55 56 64 55 55 56 56 56 56 55 55 55 55 55 56 56	MACCINE MACCINE MALCINE MALCINE MACCINE MALONDON MALCINE MA	Akcister Struct Struct (102) (102) (102) (112) 53 53 54 68 68 68 68 68 68 68 68 68 68	SILICA (SL02)		20	28	25	27	26	26	27	24	37	28	25	27	32	30	28	31	2	19	1	ļ	31	28	38	30	25	27	24	ł	ł	21	57	
S001101 S17.0A/A (0.0.3) 200.A/T (0.0.3) 200.A/T Seymout Formation 220 1131 520 1131 520 1131 520 1131 520 1131 520 2430 530 2430 530 2430 530 233 530 234 540 234 540 234 540 234 540 234 540 234 540 234 540 234 540 234 540 234 540 235 540 236 540 236 540 236 540 236 540 236 540 236 526 236 530 236 540 236 540	SILANT- BOANTE SILANT- BOANTE BOANTE BOANTE BOANTE BOANTE BOANTE SILANTE BOANTE SILANTE BOANTE SILANTE SILANTE SILANTE			SUL- FATE (SO4)	s Continued	66	296	283	160	150	255	192	299	68	170	191	46	169	249	89	228	282	198	98	260	164	113	119	214	54	127	129	53	144	187	15	
SOUTUNE (SAD) BICAAD- BICAAD- BIOWATE (SAD) SUITA BICAAD- (RAD) SUITA BICAAD- (RAD) SUITA BICAAD- (RAD) Seymont BICAAD- BIOWATE (RAD) BICAAD- (RAD) SUITA (RAD) SUITA (RA	SILANT- BOANTE SILANT- BOANTE BOANTE BOANTE BOANTE BOANTE BOANTE SILANTE BOANTE SILANTE BOANTE SILANTE SILANTE SILANTE		811 160.0,	GHLO- RIDE (C1)		225	451	408	304	297	178	129	339	105	256	284	149	422	312	72	231	520	287	177	284	205	210	164	212	42	190	148	295	117	274	98	
S031104 STGAR- BOMART STGAR- RATE (R03) STGAR- RATE (R113) STGAR- RATE STGAR- RATE STGAR- RATE STGAR-	SITCAR- BILOAR- BOOMATE (RIDD) SULI- FAUTA (RIDD) CULI- FAUTA (RIDD) DOMATE (RIDD) SULI- FAUTA SULI- FAUTA SULI- FAUTA DOMATE (RIDD) SULI- FAUTA SULI- FAUTA SULI- FAUTA CULI- FAUTA DOMATE (RIDD) SULI- FAUTA SULI- FAUTA SULI- FAUTA CULI- FAUTA CULI- FAUTA SULI- SULIF SULI- FAUTA SULI- FAUTA SULI- FAUTA SULI- FAUTA SULI- FAUTA SULI- FAUTA SULI- FAUTA SULI- FAUTA SULI	RULA- MATE CHIA- (LID) (Sol,1) (C1) (Sol,1) (C1) <td>Conto- tank (c15)(</td> <td>FLUO- RIDE (P)</td> <td></td> <td>1.1</td> <td>6.</td> <td>2.4</td> <td>1.7</td> <td>1.4</td> <td>1.5</td> <td>2.2</td> <td>1.1</td> <td>6.</td> <td>2.0</td> <td>3.8</td> <td>2.3</td> <td>3.2</td> <td>4*8</td> <td>2.4</td> <td>4.3</td> <td>2.0</td> <td>2.0</td> <td>ł</td> <td>1</td> <td>;</td> <td>2.6</td> <td>2.1</td> <td>2.5</td> <td>2.2</td> <td>1.9</td> <td>2.1</td> <td>1</td> <td>ł</td> <td>3.3</td> <td>1.8</td> <td></td>	Conto- tank (c15)(FLUO- RIDE (P)		1.1	6.	2.4	1.7	1.4	1.5	2.2	1.1	6.	2.0	3.8	2.3	3.2	4*8	2.4	4.3	2.0	2.0	ł	1	;	2.6	2.1	2.5	2.2	1.9	2.1	1	ł	3.3	1.8	
SOTURE (0.0) STUA. BOATTS STUA. FATT STU	SITAN- BOACATE BOACATE BOACATE BOACATE BOACATE BOACATE PATE SITAN- FATE PATE CHAD- FATE PATE CHAD- FATE PATE FATE FATE PATE Job Continued (51) (51) (71) Job Continued (50,1) (51) (71) Job Continued (51) (51) (71) Job Continued 236 235 1 2 Job Continued 160 204 1 2 Job Continued 190 204 1 2 Job Continued 190 204 1 2 Job Continued 100 204 1 2 Job Continued </td <td>SUL- bark CHLO- kane (SA,J) CHLO- kane (CI) FILI (CI) Qs- Continued (CI) (CI Qs- Continued 235 1 100 204 215 1 299 203 1 2 110 204 2 1 239 203 1 2 191 204 2 1 239 309 1 2 191 204 2 2 192 239 309 1 2 193 234 2 2 2 194 2 2 2 2 204 2 2 2 2 205 1129 2 2 2 204 2 2 2 2 113 2 2 2 2 214 2 2 2 2 210 2 2 2</td> <td>Shuto- kura (ci) Full kura (ci) 1 225 2 1 225 1 239 1 239 1 239 1 239 1 239 1 239 1 231 2 232 2 233 1 234 2 235 2 236 2 236 2 237 1 238 2 239 1 239 2 234 2 234 2 234 2 234 2 235 2 236 2 237 1 236 2 237 2 236 2 237 2 238 2 239 2</td> <td>NI - TRATE (N03)</td> <td></td> <td>< 0.4</td> <td>6.5</td> <td>0.6</td> <td>42</td> <td>42</td> <td>420.0</td> <td>31.0</td> <td>37.0</td> <td>17.5</td> <td>29.0</td> <td>27.5</td> <td>38.5</td> <td>197.4</td> <td>25.0</td> <td>38.5</td> <td>66.0</td> <td>4. ≥</td> <td>5.5</td> <td>33</td> <td>1</td> <td>42</td> <td>23.5</td> <td>22.0</td> <td>28.0</td> <td>38.5</td> <td>35.5</td> <td>34.0</td> <td>ł</td> <td>1</td> <td>37.5</td> <td>14.4</td> <td></td>	SUL- bark CHLO- kane (SA,J) CHLO- kane (CI) FILI (CI) Qs- Continued (CI) (CI Qs- Continued 235 1 100 204 215 1 299 203 1 2 110 204 2 1 239 203 1 2 191 204 2 1 239 309 1 2 191 204 2 2 192 239 309 1 2 193 234 2 2 2 194 2 2 2 2 204 2 2 2 2 205 1129 2 2 2 204 2 2 2 2 113 2 2 2 2 214 2 2 2 2 210 2 2 2	Shuto- kura (ci) Full kura (ci) 1 225 2 1 225 1 239 1 239 1 239 1 239 1 239 1 239 1 231 2 232 2 233 1 234 2 235 2 236 2 236 2 237 1 238 2 239 1 239 2 234 2 234 2 234 2 234 2 235 2 236 2 237 1 236 2 237 2 236 2 237 2 238 2 239 2	NI - TRATE (N03)		< 0.4	6.5	0.6	42	42	420.0	31.0	37.0	17.5	29.0	27.5	38.5	197.4	25.0	38.5	66.0	4. ≥	5.5	33	1	42	23.5	22.0	28.0	38.5	35.5	34.0	ł	1	37.5	14.4	
BOUIDS (BO) (BO) (BO) (BO) (BO) (BO) (BO) (BO)	BILOM: BOOMTE MATE MATE MATE MATE MATE MATE MATE M	SIII- FAUR (50,1) CHA0- RIMS (11) FLA0- RIMS (12) FLA0- RIMS (12) FLA0- RIMS (12) FLA0- RIMS (12) RIA0- RIMS (12) RIA0- RIA0 RIA0- RIA0 <t< td=""><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>DIS- SOLVED SOLIDS</td><td></td><td>910</td><td>1,600</td><td>1,510</td><td>1,190</td><td>1,150</td><td>1,520</td><td>950</td><td>1,460</td><td>760</td><td>1,240</td><td>1,350</td><td>830</td><td>1,730</td><td>1,740</td><td>200</td><td>1,370</td><td>1,420</td><td>1,150</td><td>872</td><td>1,457</td><td>1,080</td><td>1,000</td><td>870</td><td>1,110</td><td>560</td><td>950</td><td>930</td><td>1,315</td><td>1,194</td><td>1,250</td><td>1,220</td><td>082</td></t<>	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	DIS- SOLVED SOLIDS		910	1,600	1,510	1,190	1,150	1,520	950	1,460	760	1,240	1,350	830	1,730	1,740	200	1,370	1,420	1,150	872	1,457	1,080	1,000	870	1,110	560	950	930	1,315	1,194	1,250	1,220	082
S01001 BUAA S0100 MACA S010	BICAR- BICAR- MATE MODOJJ MODOJJ MODOJJ MODOJJ MODOJJ MODOJJ MODOJJ MODOJJ MODOJJ MODOJJ MODOJJ MODOJJ MODOJJ MODOJJ MODO MODO	SIT: EXT: EXT: (60,1) FLIO- ILIO FLIO- EXT: EXT: (1) FLIO- EXT: (1) RT. (1) M.T. EXT: (1) M.	CHLO- KURD KURD KURD KURD KURD KURD KURD KURD	TOTAL HARDNESS AS CaCO3		240	490	425	240	540	290	456	510	390	346	590	356	190	344	254	457	200	483	526	ł	351	378	497	590	188	360	259	1	I	385	570	5.8
SOUTUS (SOUTO (SOUTO) (SOOTO) (Strokt	RUL (RAX) (RA	GHL0- ILTOR ILTOR ILTOR ILTOR ILTOR ILTO ILTO 233 HIL- RUSS RUSS RUSS RUSS RUSS RUSS RUSS RUS	PERCENT SODIUM		36.0	64.3	66.8	49.7	48.2	32.0	45.5	58.1	42.3	67.5	53.0	1.12	48.1	77.5	59.0	62.0	58.8	51.6	1	ł	63.0	57.6	36.3	41.2	61.2	57.3	68.1	71.0	52.8	64.8	44.44	2 22
Strint (%) Kink (%)	TKAN- (000) SUN- (000) SUN- (SHT- Total Ento- total TLIO- total WT- total DIS- souths Contains souths Contains souths Contains Souths South South Souths South	FILIO- INDE WT. NUME WT. ENVERT DISS- SOUTING CONMAL ADDRESS SOUTING SOUTING CONMAL ADDRESS SOUTING	SPECIFIC CONDUCTANCE CALCRONHOS AT 25°C)		1,550	2,500	2,380	1,880	1,840	2,060	1,510	2,270	1,220	1,990	2,120	1,360	2,560	2,630	1,134	2,120	2,340	1,750	1	:	1,760	1,630	1,390	1,750	865	1,540	1,490	1,900	1,850	1,950		1 085
MULU KUL MUL MUL <td>FXM FUN- SMM FUN- SMM</td> <td>BUL BUL BUL BUL BUL BUL BUL BUL BUL BUL</td> <td>Guilds ITTM FLUS- ITTM MT- RADIE DISS- SOLTS TOOMAL AS GOOS PROFERING AS GOOS TUT TA 0155 NOMAL SOLTS MAG GOOS 235 1.11 < 0.45</td> 9.00 5.5 1,500 5.0 306 1.23 9.00 1,510 5.6 5.0 5.0 306 1.17 <2	FXM FUN- SMM	BUL BUL BUL BUL BUL BUL BUL BUL BUL BUL	Guilds ITTM FLUS- ITTM MT- RADIE DISS- SOLTS TOOMAL AS GOOS PROFERING AS GOOS TUT TA 0155 NOMAL SOLTS MAG GOOS 235 1.11 < 0.45	Hd		7.3	6.7	7.8	7.6	7.5	7.4	1.7	7.6	7.7	7.6	1.7	7.6	7.7	1.7	7.3	2.7	7.8	7.9	3	1	7.3	1.1	7.8	7.7	7.6	2.6	7.8	8.4	8.0	7.8	7.5	2
Buttle (0) Buttle	Model (0000) Wile (0000) Wile (0000) Wile (0000) Wile (0000) Wile (0000) Wile (0000) Wile (0000) Wile (00000) Wile (00000000) Wile (000000000000000000000000000000000000	BIL (MU) (MU) (MU) (MU) (MU) (MU) (MU) (MU)	Gund. TUN KLD WT. RATER UNS- RATE WT. RATER UNS- RATER WT. RATER RESERVE CONSENSIONS PARTER CONSENSIONS PARTER <			2.6	8.0	8.4	4.6	4.3	2.7	3.6	6.2	2.9	7.7	5.4	3.9	5.2	12.7	4.6	6.9	6.4	4.8	ł	i	6.2	5.3	2.5	_	4.3	5.1	6.9	8.0	4.6	7.3	_	4.1
Both (m) RUM- (m)	Introduction Buttle matching with one way on the matching matchind matching matching matchind matching matching matc	HI- (50) TUD- (10) TUD- (10) <th< td=""><td>Guile Internation (UN) FUD (UN) (UN) UN (UN) (UN) UN (UN) (UN) UN (UN) (UN) UN (UN) (UN) UN (UN) (UN) UN (UN) (UN) UN (UN) (UN) UN (UN) UN (UN)</td><td>RESIDUAL SODIUM CARBON- ATE (RSC)</td><td></td><td>0</td><td>1</td><td>ł</td><td>0</td><td>0</td><td>I.</td><td>;</td><td>I</td><td>ţ</td><td>;</td><td>.02</td><td>.95</td><td>3</td><td>:</td><td>ł</td><td>1</td><td>:</td><td>1</td><td>;</td><td>ł</td><td>l</td><td>1.49</td><td>0</td><td>0</td><td>2.98</td><td>.66</td><td>ł</td><td>1</td><td>1</td><td>1.84</td><td>1</td><td>2.07</td></th<>	Guile Internation (UN) FUD (UN) (UN) UN (UN) (UN) UN (UN) (UN) UN (UN) (UN) UN (UN) (UN) UN (UN) (UN) UN (UN) (UN) UN (UN) (UN) UN (UN)	RESIDUAL SODIUM CARBON- ATE (RSC)		0	1	ł	0	0	I.	;	I	ţ	;	.02	.95	3	:	ł	1	:	1	;	ł	l	1.49	0	0	2.98	.66	ł	1	1	1.84	1	2.07

RES IDUAL SODIUM CARBON- ATE (RSC)		4			1	1	1	1				;	:		3	;	1	1	0	ł	8	;	60.	;	1	;	3	;	1	1	1	:	r.
SODIUM ADSORP- TION RATIO (SAR)		0 0	18 G	0.01		8-1		1. 1	6.6	8.0		0.1	6.0	4.4	4.1	5.3	5.9	3.1	1.9	2.6	6.7	6.2	0.4	5.8	6.9	16.5	10.5	2.8	3.6	5.9	4.6	6.2	-
Ы		2 6	0.8	: ;	6				6.2	7.5	5.7	7.8	7.8	7.6	7.5	7.6	7.8	7.1	7.7	7.4	7.7	7.8	7.9	7.6	7.8	7.6	7.9	7.6	7.9	7.7	7.8	7.4	
SPECIFIC CONDUCTANCE (MLCROMHOS AT 25°C)		3. 350	2.380	1	020 6	0rz (r	008 6	2, 920	2.980	4.860	2.520	9.850	1,700	1.159	2,160	1,660	3,460	1,090	752	1,136	1,102	2,180	1,470	1,700	2,600	3,040	2,540	899	1,570	2,980	1,200	559	
PERCENT SODIUM		66.1	87.6	1	6 08		9 69	93.2	65.0	57.8	54.8	67.3	61.5	57.3	49.1	57.7	46.9	46.0	36.2	40.0	72.0	56.8	46.8	59.9	70.4	83.5	73.4	46.2	44.7	49.4	57.4	15.8	
TODAL HARDNESS AS CaCO ₃		650	156	1	474	1	;	610	610	1,280	069	2,160	351	278	660	372	1,090	310	273	379	176	550	456	375	427	258	367	273	767	410	282	270	
SOLIDS SOLVED SIG		2,220	1,660	ł	2.880		2.363	1,940	2,080	3,800	1,810	7,800	1,100	780	1,350	1,070	2,350	189	496	760	740	1,460	096	1,090	1,930	1,850	1,640	570	1,120	2,230	760	357	
NI - TRATE (NO3)		< 0.4	273.0	1	13.0	1	1	41.5	30.5	525	75.0	51.0	65.0	95.0	38.0	64.0	38.5	51	56.0	122.3	80.0	25.5	3.5	3.6	483	13.5	110.0	35.5	273	210	25.5	20.0	
FLUO- RIDE (F)		1.1	.7	ł	4.6	1	ł	2.7	2.6	6.	2.5	5.9	1.6	2.9	1.1	1.0	1.2	1.1	1.2	1.7	2.5	6.	6.	2.0	1.7	2.5	2.4	1.2	3.6	2.5	9.	6.	
CHLO- RIDE (C1)		640	313	2,000	560	600	433	454	454	840	239	3,110	203	11	426	265	730	62	32	69	38	351	107	228	305	710	462	36	16	313	104	7	1
SUL- FATE (SO4)	Continued	429	154	ł	890	:	710	458	550	940	550	1,660	186	94	252	164	420	101	09	18	52	284	194	255	273	197	216	48	125	710	84	39	22
BICAR- BONATE (HCO3)	Seymour Formation - Qs Continued	700	620	357	740	677	450	610	620	540	680	580	465	448	325	342	700	424	332	438	510	240	620	403	482	450	510	458	530	590	499	315	100
(Na)	Seymour 1	580	537	1	890	:	506	474	530	810	382	2,040	258	172	239	233	446	130.2	73	115	206	334	189	259	476	613	466	107	184	410	177	24	N TO BE
MAGNE- SIUM (Mg)		100	15	ł	78	ł	181	66	66	186	107	407	39	33	87	35	148	33	31	44	21	76	60	47	54	42	49	33	69	143	24	27	
CAL- CIUM (Ca)		26	38	ł	19	ł	80	82	82	207	86	195	77	56	119	92	193	02	58	64	36	96	84	72	82	33	65	55	84	129	73	64	98
SILICA (SLO2)		31	19	1	16	I	;	28	24	23	17	19	37	30	30	43	31	24	22	28	30	27	20	22	21	19	18	24	31	25	25	20	06
DATE OF COLLECTION		Apr. 23, 1969	Nov. 24, 1969	0et. 1943	Apr. 24, 1969	Oct. 1943	1	Jan. 22, 1969	July 27, 1969	Apr. 23, 1969	Apr. 24, 1969	June 20, 1969	Feb. 12, 1969	Feb. 25, 1969		Feb. 13, 1969	Sept. 16, 1969	8	26,	26,	25,		17,	20,	.61	26,	12,	25,	Apr. 9, 1969		19,	Oct. 1, 1969	40
OF WELL (ft)		42	30	17	17	26	34	34	34	33	28	Spring	14	18	30	33	36	28	27	96	19	29	1	53	33	14	21	24	40	33	36	18	20
OWNER		Charles W. Hatter, et al.	S. E. Williamson	Earley W. Samsill	do	do	Florence B. Parker, et al.	do	do	Earley W. Samsill	do	Glan Miller	Henry P. Arledge	J. W. Elkins	Charles E. Plunckett	L. D. Offutt	Ed M. Compton	Chester Cox	do	Ned Springs Gin	FLKC Farker	unester Cox	TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT	UGIDIA II SUBA	Tom McMorris	carl snyder, Jr.	Mattie Morris estate	J. Frank Studer	J. G. Campbell	op	G. and L. Oil Company	Hancock Truck Stop	Walter E. Malone
MELL	- L	21-22-840		_	106	<u>y</u> 902	2/ 903	903	903	-							205	J 302 0								5 TO6							123 W

Table 8. – Chemical Analyses of Water From Wells and Springs – Continued

Table 8. - Chemical Analyses of Water From Wells and Springs - Continued

Approximation is a process of the process of	MELL	OWNER	DEFTH OF WELL (ft)	DATE OF COLLECTION	(S102)	CAL- CIUM (Ca)	MAGNE- SIUM (Mg)	SODIUM (Na)	BICAR- BONATE (HCO3)	SUL- FATE (SO4)	CHLO- RIDE (C1)	FLUO- RIDE (F)	NI - TRATE (NO ₃)	DIS- SOLIDS SOLIDS	TOTAL HARDNESS AS CaCO3	PERCENT SODIUM	CONDUCTANCE (MLCROMHOS AT 25°C)	H	ADSORP- TLON RATIO (SAR)	SODIUM CARBON- ATE (RSC)
								Seymour F	ormation - Qs -	- Continued		Ī							Ī	
Matrix (a) (b) (a) (b) (b) (b) (b) (b) (b) (b) (b) (b) (b					00	63	30	126	379	84	65	1.0	92.0	670	283	48.6	1,010	7.6	3.2	1
The functione in the functione interval and the functinterval and the functione interval and the	30-124		27 10		16	6	37	96	400	120	27	1.0		560	296	41.0	854	7.2	2.4	£
Image: interplace int	125		17		1 5	44	99	98	487	57	40	1.5	29.0	265	340	38.4	076	7.8	2.3	ł
I. C. (1111) I. C. (11111) <thi. (11111)<="" c.="" th=""> <thi. (11111)<="" c.="" td=""><td>214</td><td></td><td>Spring</td><td></td><td>17</td><td>F 1</td><td>2</td><td>2</td><td>100</td><td>3.8</td><td>17</td><td>1.0</td><td>39.5</td><td>396</td><td>262</td><td>25.6</td><td>634</td><td>7.5</td><td>1.1</td><td>;</td></thi.></thi.>	214		Spring		17	F 1	2	2	100	3.8	17	1.0	39.5	396	262	25.6	634	7.5	1.1	;
0. 0. 1.0	215		42		22	25	53	14	170		2 8		0 11	550	269	46.1	897	7.6	2.8	ţ
0. 0. 1000 20 0.0. 3, 1,00 20 0.0 71 71 73 70 </td <td>220</td> <td></td> <td>32</td> <td></td> <td>27</td> <td>53</td> <td>33</td> <td>106</td> <td>421</td> <td>ç</td> <td>2</td> <td>C • 7</td> <td></td> <td></td> <td>000</td> <td>67.0</td> <td>1 700</td> <td>7.7</td> <td>7.3</td> <td>2.17</td>	220		32		27	53	33	106	421	ç	2	C • 7			000	67.0	1 700	7.7	7.3	2.17
u, v, v, u, v, v, u, v, v, u, v, u, v, u, u, u, v, u, u, v, u, u, u, u, v, u,	238		30		24	45	45	290	495	178	189	2.9	0.08	1,100	670	2.10	1 069	9 6	0	3
u, u, ru, ru, ru, ru, ru, ru, ru, ru, ru	239		15		22	53	31	146	440	73	23	1.4	42.5	660	263	0.40	1,002			
U.V. TALI, T. 13 0.0 23 31 42 73 230 201 20	241		25	do	23	97	35	130	449	69	20	1.8	28.0	600	259	52.3	966			
Modelia modelia (1) der 3, 109 <lider 109<="" 3,="" li=""> der 3, 1</lider>	646		25	do	22	43	39	131	462	73	51	2.0	29.0	620	267	51.6	976	8.1	C.5	1
Unitation 22 Sec. 27, 190 21 40 21 <td>Care of</td> <td></td> <td>19</td> <td>Apr. 24, 1969</td> <td>20</td> <td>47</td> <td>040</td> <td>52</td> <td>366</td> <td>44</td> <td>18</td> <td>s.</td> <td>29.0</td> <td>431</td> <td>280</td> <td>29.0</td> <td>685</td> <td>6.7</td> <td>1.4</td> <td>;</td>	Care of		19	Apr. 24, 1969	20	47	040	52	366	44	18	s.	29.0	431	280	29.0	685	6.7	1.4	;
Manual manual for a probability of probabilit	1.10		22	Sept. 29. 1969	21	44	54	118	570	52	29	1.5	18.0	620	331	43.4	984	7.6	2.8	E.
C () () () () () () () () () () () () ()	107	-		Dar. 19. 1968	24	45	17	117	410	47	22	1.9	32.5	510	184	58.1	162	7.8	3.8	1
The contrart is a long of the contrart in the contrart is a long of the contrart in the contrart is a long of the contrart in the contrart is a long of the contrart in the contrart is a long of the contrart in the c	TOS		45	1301 11 1061	30	71	62	436.2	540	394	350	1	42	1,580	432	68.0	2,580	1.1	0.6	;
	302	T. C. 6	ç .	1061 61 1000 1000	96	02	53	329	550	294	208	2.0	34.0	1,290	390	64.2	1,900	7.6	7.2	1.16
Cly of Repond J Dec. J Dec.<	302		÷ ;			89	55	126	387	79	94	1.1	60	656	305	1	1	7.9	ĵ	;
	304		n :		1	15	1	56	336	45	26	1.5	42.5	450	273	31.0	705	1.7	1.5	1
h. f. leck 39 on 37 39 37, i	305		74		1	80	35	109	348	68	157	1.5	28.5	680	365	39.4	1,129	7.4	2.5	E
City of Swymout 39 nee 19, 105 30 162 100 62 100 62 100 62 100 120	308		8		36	5	8	87	399	64	50	1.4	59.0	590	318	37.4	206	7.7	2.1	ł
	314		4£		23	26	23	180	462	108	104	9.	44.0	190	283	58.0	1,230	1.1	4.7	1
	321		10		22	26	17	32	278	24	ŝ	.7	22.0	316	209	24.7	490	7.6	1.0	ł
III ILLINGO 2 000 Medication 2 100 200 1,140 390 40.8 1,135 7.4 3.4 III ILLINGO 66 0 1 66 31.1 1,160 390 40.8 1,135 7.4 3.4 III Combinentic 66 100 21 301 1,16 30 40.1 2.00 7.4 3.4 T. G. Oriffin 25 301 1,1 65.0 1,200 660 43.1 2.000 7.4 3.4 Revise Generation 23 301 1,1 65.0 1,200 201 2.0 2.4 1.0 1.0 2.00 7.4 3.4 Revise Generation 23 301 1,1 65.0 1,200 2.00 2.00 2.0 2.4 1.0 1.0 2.00 2.0 2.4 1.0 1.0 2.00 2.0 2.4 1.0 1.0 2.0 2.4 1.0 2.0 2.4 2.1	322		2		2	78	27	62	365	57	38	1.7	24.0	486	307	29.2	766	7.7	1.8	ł
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	309		67		22	118	72	192	479	197	262	1.6	33.5	1,140	590	40.8	1,795	7.4	3.4	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	370		44			136	73	228	467	216	351	1.8	4.0	1,260	640	43.1	2,000	7.4	3.9	1
more the concret. 0.	1/5		36			42	46	416	373	255	387	3.1	65.0	1,420	295	75.4	2,060	8.0	10.5	ł
Erroret Koneak vo vov <	104		0,			11	21	178	373	121	143	8,	42.5	290	277	58.3	1,240	7.5	4.7	1
Email Standacht 23 mar. 31 22 156.0 1,320 310 32.3 2.260 8.0 6.6 do 23 July 10,10960 21 72 96 9.1 7.1 7.0 19.3 2.260 8.0 6.6 Janite Halpic 23 July 2,1960 21 31 54 156 95 31.4 7.0 70 293 3.2.8 1,102 7.9 3.9 Janite Halpic 23 July 2,1960 21 31 54 7.0 237 46.5 7.9 3.9 3.0 Janite Halpic 10 8.00 136 32 24 23 2.1 7.0 299 3.2 7.9 3.9 Janite Halpic 10 8.00 136 323 120 27 2.6 3.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 <t< td=""><td>505</td><td></td><td>2</td><td>1</td><td></td><td>154</td><td>76</td><td>602.0</td><td></td><td>524</td><td>079</td><td>1.4</td><td>129</td><td>2,540</td><td>969</td><td>ł</td><td>3,810</td><td>7.6</td><td>E</td><td>;</td></t<>	505		2	1		154	76	602.0		524	079	1.4	129	2,540	969	ł	3,810	7.6	E	;
do 23 July 2,1969 21 31 54 154 464 96 31 4,1 74,0 720 299 32.8 1,102 7.9 3.9 Janite Halok 23 July 2,1969 21 31 54 45.8 31.5 540 237 46.5 7.8 2.4 kadalph Kohut 14 Nov. 18, 1960 25 42 37 24 2.8 31.5 540 237 46.5 7.8 2.4 kadalph Kohut 14 Nov. 24, 1960 25 42 37 24 2.8 31.5 540 236 7.8 2.4 2.8 3.1 2.4 2.4 2.4 2.4 2.4 2.4 3.1 2.4	603	Emil Simato	Q 1	-		72	80	340		312	387	2.2	156.0	1,520	510	59.3	2,260	8.0	6.6	1
Jenite Molok 23 July 5, 100 24 23 10 428 57 24 2.8 31.5 540 237 46.5 834 7.8 2.8 3.2 46.5 834 7.8 2.8 844 50 14 Nov. 18, 1969 25 129 73 195 373 170 285 2.2 202 1,270 539 39.6 1,900 7.4 3.3 July 28, 0 129 73 195 373 170 285 2.2 202 1,270 59 9.6 1,900 7.4 3.3 July 2, 1800 0 128 1,900 10 1,900 10 1,900 10 1,900 10 10 10 10 10 10 10 10 10 10 10 10 1	609		0 10	-		16	24	154	484	96	51	4.1	74.0	720	299	52.8	1,102	7.9	3.9	1
kudoph Konit 14 vov. 2.9 ku. 2.6, 1969 75 195 73 170 285 2.2 202 1,270 630 39.6 1,900 7.4 Jarry C. Noek 29 ku. 2.6, 1969 75 195 73 36 123 232 1,7 39 940 430 43.9 1,500 7.5	600		G 7	1 1		42	37	104	428	57	24		33.5	240	257	46.5	834	7.8	2.8	1.89
Jarry 1. modek 2. 2010 1.2 2.0 1.2 2.0 1.2 2.0 1.2 2.0 1.2 2.0 2.0 1.2 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2	909		1 00	Nov. 26, 1969		129	75	195	373	170	285		202	1,270	630	39*6	1,900	7.4	3.3	ł
	100	1	Cantao	25		105	40	173	366	125	232		59	640	2.624	45.9	1,500	7.5	_	1

RESTDUAL SODING CARBON- ATE (RSC)		1		:	;	1	1	l i	l	1	1	;	;	Ę	I	ł	ł	;	;	;	;	;	2 t	;	1			0.5			1.96	0.00
SODIUM ADSORP- TION RATIO (SAR)		2.8		1.0	5 · ·	4.4	1.3	0.4				1.4	1.3	1.4	* *	1.6	4.0	1.0	6.2	;	4.2	1.1	3.2	1.3	2.9		5 0	5.6	2.2	3.6	4.3	0 1
IId		7.6	-		•••	e.,	· ·				t. /	7.8	7.8	7.7	•••	7.7	7.4	7.7	7.3	ł	7.7	7.6	8.4	7.3	7.4		1.1	7.8	7.7	7.5	7.8	
SPECIFIC CONDUCTANCE (MICROMIOS AT 25°C)		2,230	OFF A		020 G	100	000	7.570	1 300	1 020	11, 740	0.00	605	812		1,290	1,570	737	479	f	1,082	3,110	825	880	1,510		2.540	1,148	727	2,000	1,015	1 470
PERCENT SODIUM		31.6	1 17	7 65	7 12	0.11	10 6	1)	3.96	0.05	0.00	30.2	28.7		25.8	47.8	20.3	17.3	1	55.0	72.4	52.1	26.2	38.6		53.0	65.4	41.8	42.0	58.3	53 0
TOTAL HARDNESS AS CACO ₃		619	1.570	746	141	007	677	2.970	467	800	196	104	242	116		540	475	347	223	1	299	470	219	355	540		660	216	237	640	230	0.04
DIS- SOLUED SOLUED		1,380	3.060	650	1.460	550	980	6,200	780	1.380	401	101	200	479		810	1.020	463	304	1,318	710	1,990	530	520	960		1,560	770	466	1,320	650	1.010
- IN TRATE (2003)		< 0.4	71.0	<	210	1.0	40.0	270	66	416.0	29.0		40.0	22.0		37.5	36.0	23.0	13.5	07	16.5	27.5	36.0	4. V	15.5		4. >	114.0	38.5	147.0	57.0	4. 2.
FLUO- RIDE (F)		6.0	2.7	1.9	3.0	1.2	1.9	1.2	1.5	1.2	1.5	-		. 2	1997	8.	.7	1.1	.5	ł	3.5	3.2	4.0	1.1	1.1	ĺ	<i>.</i> .	1.9	1.0	9.		2.1
CHLO- RIDE (C1)		357	1,450	32	181	40	116	2,300	141	188	19	76	1	20	H	109	142	24	12	105	37	630	21	31	184		630	64	24	2.98	87	117
SUL- FATE (SO4)	- Continued	44	271	74	201	46	1,40	1,510	59	95	24	24	36	15		125	133	34	16	173	53	311	43	25	89	Qal	32	96	44	233	65	186
BICAR- BONATE (HCO3)	Seymour Formation - Qs - Continued	016	538	590	690	506	640	404	418	510	34.9	331	322	412		484	630	416	268	414	0%9	570	427	510	610	Recent Alluvium - Qal	590	466	365	395	400	670
SODIUM (Na)	Seymour F	194	550	153	402	60	196	1,040	108	133	50	48	85	56		87	200	19	21	323	165	570	110	58	157	Re	340	190	80	214	151	228
MAGNE- SIUM (Mg)		144	248	40	55	59	57	500	64	92	29	30	18	22		9	41	48	16	54	48	57	27	32	63		46	31	31	77	29	65
CAL- CIUM (Ca)		120	222	44	46	62	96	360	81	169	56	47	94	88	1.1.0		123	09	63	82	14	9/	445	90	113		188	35	44	129	44	19
SILICA (SiO ₂)		36	26	18	19	28	25	16	17	36	20	16	17	27	00	0, 10	ŝ,	27	29	28	28	18	27	34	32		32	24	24	Ŧ	21	21
DATE OF		Dec. 17, 1968	July 2, 1969	Nov. 24, 1969	do	Dec. 12, 1968	Nov. 22, 1968	Feb. 20, 1970	do	Dec. 13, 1968	Dec. 12, 1968	do	do	Nov. 7, 1968	do do	1	p	8	8,	6	13,	20,	Nov. 13, 1968	ę	Nov. 7, 1968				Sept. 16, 1969		19,	Nov. 25, 1969
OF WELL (ft)		20	39	20	64	20	31	11	14	20	16	15	15	30	31	12	7 6	2	19	22	22	9	24	44	28		27	34	23	17	31	22
COASEER		Dr. C. M. Randall, Jr. et al.	Joe Hajek	Adolph E. Wirz	David Wirz	Ernest Hrnefrik	C. C. Sanders	Mrs. Barbara Novac	Carter H. Taylor	Horace E. James	Jettie Howe Russell	Ralph Howe	Mildred R. Lunsford	Portwood Ranch and Company	qo	da	4	0	00	00	00	r. II. Brock		00	Correction and Company		Mrs. J. L. Hargraves	Chester Blankenship	A. B. Martin, Jr.	do	W. C. and W. H. Hertel	Baylor Livestock Company
TIIIM		21-30-904	206	31-101	102	401	801		_	39-202	109	602	603	40-502	503	504	205	0.13		070 5			670									30-508

Table 8. --- Chemical Analyses of Water From Wells and Springs -- Continued

	DEPTH OF WELL (ft)	DATE OF COLLECTION	SILLCA (S102)	CAL- CIUM (Ca)	MAGNE- SIUN (Mg)	SODIUM (Na)	BICAR- BONATE (HCO3)	FATE FATE (408)	CHLO- RIDE (C1)	FLUO= RIDE (F)	NI- TRATE (NO3)	DIS- SOLVED SOLIDS	TOTAL. HARDNESS AS CaCO3	PERCENT SOBLUM	SPECIFIC CONDUCTANCE (MICROMHOS AT 25°C)	Hd	ADSORP- TION RATIO (SAR)	RESIDUAL SODIUM CARBON- ATE (RSC)
						Recent Ally	Recent Alluvium - Qal – Continued	ontinued										
			16	300	7.72	1 040 1	560	1.535	1,811	1.9	26.0	5,460	2,398	48.7	6,920	7.4	9.3	ł
Vernon Teague	77	Dec. 10, 1900		17	30	109	426	56	45	9.	34.0	560	262	48.0	889	7.5	2.9	£
Frank Allen	67	14		1	096	435	422	41	708	.7	11.5	1,890	426	68.9	2,680	7.7	9.2	ł
C. M. Randall, Sr. et al.	14	.11,	2				;	32	2,020	;	1	1	1,040	Ę	ł	7.2	4	3
Howard Smulcer	28	8	1	:	1		107	1691	724	2.	158.4	1,100	611	34.7	1,700	7.6	2.6	ł
Vernon Teague	31	17,	17	93	92	100	104	010 1	072.5			7,870	2,650	0'19	10,250	7.9	11.3	1
do	12	Dec. 18, 1968	25	434	380	1016 (1	600	217	39	2.4	6.5	860	367	52.0	1,300	7.8	4.1	1
do	35	do	9	64	20	101	230	121	58	2.3	4.4	730	307	53.8	1,080	7.6	4.1	1
Joe Glover	20	ab	1	ŧ. '	ę :		500	14	55	1	;	1	1	1	1	1	ł	1
Charles T. Porter	16	ţ	1	•	5 1	1 6	019	01	66	1.	121.0	770	580	17.7	1,190	8.1	1.0	ł
do	16		22	66	94	10	047	an t	178	9.1	8.6	1.080	481	50.4	1,700	1.7	2.0	ł
Mrs. 1. J. Wehmeyer	19	13,	21	109	20	224	000	001	27			345	247	23.0	638	7.0	6.	ł
Jim Welch	20	Nov. 14, 1968	18	11	11	2	707	011	6.46		4	1.050	375	61.0	1,760	8.1	6.0	0
C. T. Porter	21	Nov. 21, 1968	8	39	68	267	914	011	ţ,			471	243	45.2	791	7.6	2.6	ł
Lincoln Burns estate	13	do	σ	59	23	92	114	42	2	-		100	3.6.8	75.0	873	8.0	6.7	1
Mrs. Mabel Johnson	25	do	14	22	17	172	490	59	17	2.8	0.01	000	640	1 23	078 6	3 6	8.7	;
do	22	op	20	56	73	462	484	125	200	1.5	14.0	1,730	0+c	1.00	000 1			3
John Bess Fancher	IJ	Dec. 11, 1968	16	78	58	104	600	94	37	1.2	5.0	069	436	1.5	11,090	•	117	
do	14		20	134	133	395	600	270	680	1.2	15.5	1,940	880	49.3	3,050	7.5	5.8	£
3.	14	qu	14	149	103	268	660	401	304	2.1	4. V	1,570	798	42.2	2.330	1.6	4.1	1
00	5	11 1068	¢.	536	191	631	227	943	1,620	1.2	÷. >	4,010	2,000	41.0	5,520	6.9	6.1	ł.
Mack Russell	07	5	1	162	67	109	442	253	208	6.	×. ×	1,030	680	26.0	1,620	7.3	1.8	t
ор ,	0 To	0	64	171	35	271	1,120	43	195	2.1	4° >	1,216	570	32.1	2,200	7.6	2.8	3
00	. ;		1.6	82	28	86	417	76	56		55.0	570	320	36.8	893	7.5	2.0	1
John A. Young, Jr.	1		81	65	99	30	398	21	20	6.	22.0	413	338	16.0	677	7.7	0.7	£
Portwood Kanch and Company	6		2	07	42	75	007	97	39		26.5	491	296	35+5	161	7.8	2.0	1
Myrton Couch	1	÷. 1		001	- 59	422	510	200	345	1.3	110.0	1,420	510	57.8	2,110	7.6	6.2	ł
Bobby Morris	20		6.4	105	40	0.70	007	326	254	5.6	75.0	1,480	530	58.1	2,190	8.0	6.4	ł
Mrs. S. S. Knox	20	Nov. 19, 1968	16	13	68	F.	000	101	18	1.1	105.0	790	358	48.2	1,230	7.8	3.5	ł
do	19	do	21	44	60	153	000	401	10	9.1	4. >	2.150	980	46.2		7.5	5.4	1
do	16	do	18	264	62	388	845	NTo			06	080	458	47.4	1.620	7.5	3.9	ł
Paul Brock	22	Nov. 20, 1968	1.8	74	99	194	067	128	221	1-1	0.45	005	674	6 87		2.6	4.2	1
do	25	op	16	54	66	208	067	191	228	1.1	29.5	1,030	104	7·64	_		_	1
Bobby Brock	15	qo	21	113	89	310	660	264	379	1.1	20.0	1,520	650	0.12		0.7	_	1

Table 8. - Chemical Analyses of Water From Wells and Springs - Continu

amun B block and ha shallon A hatemado ... 8 side

(Weinkow als in the price addition for the first

PT. 2nd a service in chains, 1990 and BJ BRINGS, Inc. 19

906 Portwood Kanch and Company 20 310 do 24, 311 do 24, 321 do 24, 321 do 24, 321 do 24, 322 Sam Portwood 19 323 do 60 34 323 fucutrice 36 36 324 do 28 36 323 fucutrice 36 36 324 do 28 36 323 fucutrice 28 36 323 fucutrice 26 36 323 fucutrice 28 36 333 gas 21 36 36 333 gas <t< th=""><th>Nev. 20, 1968 Nev. 21, 1968 Nev. 21, 1968 Nev. 13, 1968 Nev. 14, 1968 Nev. 1906 Nev. 19106 Nev. 19106</th><th>811.10.04 20 20 20 21 15 16 21 16 21 16 21 22 22 22 22 22 22 22 22 22 22 22 22</th><th>Cable Cable 136 24 62 65 56 56 56 56 63 65 65 65 65 65 65 65 65 65 79 56 67 79 56</th><th>Munk- Munk- (Re) (Re) 53 63 9 61 124 61 122 53 53 51 12 53 53 51 12 53 53 51 12 53 53 53 53 53 53 53 53 53 53 53 53 53</th><th>800108 (40.) 87 86 87 87 84 142 84 84 142 94 142 94 128 137 91 86 62 137 138 137 137 138 137 137 137 137 137 137 137 137 137 137</th><th>MULLIM (101) BICAR- BIL- (10203) BILL- BIL- (10203) Recent Allovium - Qal - Continued 580 Gal Gal Store 640 6 4 J110 4.39 6 6 Store 4.30 6 4 J110 4.39 6 7 J110 4.39 6 7 J110 4.43 1.010 11 J12 4.407 5 7 J13 2.468 1.1 1 J14 7.400 31 1 J13 2.403 113 1 J13 5.10 99 1 1 J13 5.30 133 1 1 1 J13 5.30 133 1<!--</th--><th>Stut Stut (26), 45 660 660 660 1133 133 133 133 133 133 133 133 133 1</th><th>Rttuo- c(11) (C1) 24 620 530 650 1115 74 74 74 74 74 74 74 74 74 74 74 74 74</th><th>FLUO- FLUO- (P) (P) (P) (P) (P) (P) (P) (P)</th><th>NT- TRAVITE (003) 4.0 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 13.5 13.5 13.5 2.4, 0 3.46.0 2.4 2.4 2.4 2.4, 3 2.4, 3 2.4, 0 2.4, 3 2.4, 3 2.4, 3 2.4, 3 2.4, 3 2.4, 3 2.4, 3 2.4, 3 2.4, 3 2.4, 3 2.4, 3 2.4, 3 2.4, 3 2.4, 3 2.4, 3 2.4, 3 2.4, 3</th><th>2,540 80,1785 80,1785 600 590 810 1,970 820 520 1,400 1,400 2,40 2,40 2,40 2,40 2,40 2,40 2,40</th><th>TCDTAL TARTORESS AS GacO₃ 930 930 938 938 938 939 938 939 939 939 939 939</th><th>Personary Sobilited 37.7 32.4 44.3 79.0 50.2 50.2 61.4 44.8 61.4 40.0 99.2 26.2 21.5 21.5 21.5 21.5 232.4 8.5 8.5 232.4 60.0</th><th>Second Second Se</th><th>2,440 1,220 1,220 969 963 9,59 963 1,1,220 1,1,220 1,1,220 1,1,220 1,1,220 1,1,220 1,1,220 1,1,220 1,1,220 1,2,20 1,2</th><th>SPECTFACE CONDUCTACE CONDUCTACE CONTONTACE CULTCRONIOS RATE ALTOS ACRONIA ALTOS 3.550 7.6 6.1 999 7.6 1.9 950 7.6 1.9 951 7.6 1.9 953 7.6 3.1 954 7.6 1.9 955 7.6 3.1 956 7.6 1.9 951 7.6 3.1 953 7.6 3.1 954 7.8 1.1 1.1.210 7.6 3.1 954 7.6 3.1 954 7.8 1.3 1.1.210 7.8 1.1 954 7.8 1.1 954 7.8 1.1 954 7.8 1.1 954 7.8 1.1 954 7.8 1.1 954 7.8 1.1 954 7.8 1.1 954 7.8 1.2 </th></th></t<>	Nev. 20, 1968 Nev. 21, 1968 Nev. 21, 1968 Nev. 13, 1968 Nev. 14, 1968 Nev. 1906 Nev. 19106 Nev. 19106	811.10.04 20 20 20 21 15 16 21 16 21 16 21 22 22 22 22 22 22 22 22 22 22 22 22	Cable Cable 136 24 62 65 56 56 56 56 63 65 65 65 65 65 65 65 65 65 79 56 67 79 56	Munk- Munk- (Re) (Re) 53 63 9 61 124 61 122 53 53 51 12 53 53 51 12 53 53 51 12 53 53 53 53 53 53 53 53 53 53 53 53 53	800108 (40.) 87 86 87 87 84 142 84 84 142 94 142 94 128 137 91 86 62 137 138 137 137 138 137 137 137 137 137 137 137 137 137 137	MULLIM (101) BICAR- BIL- (10203) BILL- BIL- (10203) Recent Allovium - Qal - Continued 580 Gal Gal Store 640 6 4 J110 4.39 6 6 Store 4.30 6 4 J110 4.39 6 7 J110 4.39 6 7 J110 4.43 1.010 11 J12 4.407 5 7 J13 2.468 1.1 1 J14 7.400 31 1 J13 2.403 113 1 J13 5.10 99 1 1 J13 5.30 133 1 1 1 J13 5.30 133 1 </th <th>Stut Stut (26), 45 660 660 660 1133 133 133 133 133 133 133 133 133 1</th> <th>Rttuo- c(11) (C1) 24 620 530 650 1115 74 74 74 74 74 74 74 74 74 74 74 74 74</th> <th>FLUO- FLUO- (P) (P) (P) (P) (P) (P) (P) (P)</th> <th>NT- TRAVITE (003) 4.0 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 13.5 13.5 13.5 2.4, 0 3.46.0 2.4 2.4 2.4 2.4, 3 2.4, 3 2.4, 0 2.4, 3 2.4, 3 2.4, 3 2.4, 3 2.4, 3 2.4, 3 2.4, 3 2.4, 3 2.4, 3 2.4, 3 2.4, 3 2.4, 3 2.4, 3 2.4, 3 2.4, 3 2.4, 3 2.4, 3</th> <th>2,540 80,1785 80,1785 600 590 810 1,970 820 520 1,400 1,400 2,40 2,40 2,40 2,40 2,40 2,40 2,40</th> <th>TCDTAL TARTORESS AS GacO₃ 930 930 938 938 938 939 938 939 939 939 939 939</th> <th>Personary Sobilited 37.7 32.4 44.3 79.0 50.2 50.2 61.4 44.8 61.4 40.0 99.2 26.2 21.5 21.5 21.5 21.5 232.4 8.5 8.5 232.4 60.0</th> <th>Second Second Se</th> <th>2,440 1,220 1,220 969 963 9,59 963 1,1,220 1,1,220 1,1,220 1,1,220 1,1,220 1,1,220 1,1,220 1,1,220 1,1,220 1,2,20 1,2</th> <th>SPECTFACE CONDUCTACE CONDUCTACE CONTONTACE CULTCRONIOS RATE ALTOS ACRONIA ALTOS 3.550 7.6 6.1 999 7.6 1.9 950 7.6 1.9 951 7.6 1.9 953 7.6 3.1 954 7.6 1.9 955 7.6 3.1 956 7.6 1.9 951 7.6 3.1 953 7.6 3.1 954 7.8 1.1 1.1.210 7.6 3.1 954 7.6 3.1 954 7.8 1.3 1.1.210 7.8 1.1 954 7.8 1.1 954 7.8 1.1 954 7.8 1.1 954 7.8 1.1 954 7.8 1.1 954 7.8 1.1 954 7.8 1.1 954 7.8 1.2 </th>	Stut Stut (26), 45 660 660 660 1133 133 133 133 133 133 133 133 133 1	Rttuo- c(11) (C1) 24 620 530 650 1115 74 74 74 74 74 74 74 74 74 74 74 74 74	FLUO- FLUO- (P) (P) (P) (P) (P) (P) (P) (P)	NT- TRAVITE (003) 4.0 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 2.5 13.5 13.5 13.5 2.4, 0 3.46.0 2.4 2.4 2.4 2.4, 3 2.4, 3 2.4, 0 2.4, 3 2.4, 3 2.4, 3 2.4, 3 2.4, 3 2.4, 3 2.4, 3 2.4, 3 2.4, 3 2.4, 3 2.4, 3 2.4, 3 2.4, 3 2.4, 3 2.4, 3 2.4, 3 2.4, 3	2,540 80,1785 80,1785 600 590 810 1,970 820 520 1,400 1,400 2,40 2,40 2,40 2,40 2,40 2,40 2,40	TCDTAL TARTORESS AS GacO ₃ 930 930 938 938 938 939 938 939 939 939 939 939	Personary Sobilited 37.7 32.4 44.3 79.0 50.2 50.2 61.4 44.8 61.4 40.0 99.2 26.2 21.5 21.5 21.5 21.5 232.4 8.5 8.5 232.4 60.0	Second Se	2,440 1,220 1,220 969 963 9,59 963 1,1,220 1,1,220 1,1,220 1,1,220 1,1,220 1,1,220 1,1,220 1,1,220 1,1,220 1,2,20 1,2	SPECTFACE CONDUCTACE CONDUCTACE CONTONTACE CULTCRONIOS RATE ALTOS ACRONIA ALTOS 3.550 7.6 6.1 999 7.6 1.9 950 7.6 1.9 951 7.6 1.9 953 7.6 3.1 954 7.6 1.9 955 7.6 3.1 956 7.6 1.9 951 7.6 3.1 953 7.6 3.1 954 7.8 1.1 1.1.210 7.6 3.1 954 7.6 3.1 954 7.8 1.3 1.1.210 7.8 1.1 954 7.8 1.1 954 7.8 1.1 954 7.8 1.1 954 7.8 1.1 954 7.8 1.1 954 7.8 1.1 954 7.8 1.1 954 7.8 1.2
		-	-	1210		a de la	2 3	21.0	1						-	

Table 8. - Chemical Analyses of Water From Wells and Springs - 1

- 97 -

Table 9.-Chemical Analyses of Oil-Field Brines

(Analyses are in parts per million except pH.)

Data from Laxson and others, 1960 and BJ Service, Inc., 1960

PRODUCING ZONE	FIELD	AVERAGE DEPTH OF WELL	IRON (Fe)	CALCIUM (Ca)	MAGNESIUM (Mg)	SODIUM (Na)	BICARBONATE (HCO ₃)	SULFATE (SO ₄)	CHLORIDE (CI)	DIS- SOLVED SOLIDS	рH
					PERMIAN S	YSTEM					
Camp Colorado lime	Regular		-	11,360	2,050	55,000	23	250	109,800	187,800	6.9
Tannehill sand	FCR (Tannehill)	-	34	7,635	2,066	44,144	31	64	92,196	149,170	5.5
Do.	Regular	1,293	28	7,588	1,974	41,800	16	67	83,515	134,960	6.72
Do.	do	1,222	5	7,870	2,048	41,340	27	54	83,465	134,804	6.81
	do	1,303	78	8,510	2,024	40,630	38	52	83,425	134,679	6.14
Do.	do	1,329	_	7,363	1,908	40,935	60	102	81,605	131,973	6.45
Do.		1,300	43	10,000	1,510	52,400	109	240	103,000	167,302	6.4
Do.	do	1,330	-	9,088	1,908	46,000	20	188	92,350	149,444	5.5
Do.	do			7,480	2,930	46,370	46	0	93,500	150,280	6.38
Do.	do	1,500		10,250	2,040	36,000	30	200	103,200	178,200	6.6
Do.	do	_	-	10,250	2,040	00,000					
					ENNSYLVANIA	NEVETEN					
						AN STOTEN	79	50	50,500	105,000	7.1
Canyon	-	946	4.2	6,190	1,232	1.5				151,944	6.5
Do.	Regular (Saddle Creek)	1,500	45	8,200	1,920	47,600	98	78	94,000	151,944	0.5
	do	1,500	40	7,640	1,320	48,300	109	12	92,000	149,422	6.5
Do.		2,560		7,520	1,728	39,890	125	444	79,500	-	6.8
Do.	Seymour # 1			17,050	2,271	56,000	11	28	123,100		-
Strawn	do	4,700			2,691	55,050	0	69	125,050		_
Caddo	do	5,100		18,390	2,001	00,000					
					CAMPBIAN	OVOTEM					
					CAMBRIAN			10 300	111.000	202,000	5.7
-	Fritz	6,880	33.0	15,400	2,440	47,700	12	292	114,000	202,000	

Table 10.-Reported Oil-Field Brine Production and Disposal in 1961 and 1967

(Quantities reported in barrels)

Production and method of disposal taken from Railroad Commission of Texas 1961 and 1967 salt-water production and disposal questionnaires.

AREA SHOWN ON	stategical states (Sample) stategical (Speed Social Social stategical)		INE JCTION	DISPO INTO I				MISCELL.	ANEOUS
FIGURE 17,	FIELD ¹	1961	1967	1961	1967	1961	1967	1961	1967
1	Glenda-Janis (1,600 Tannehill) County regular	48,285 678,944	119,455 85,775	0 10,996	0	48,285 667,948	119,455 85,775	0	0
	Area Total	727,229	205,230	10,996	0	716,233	205,230	0	0
2	Bomarton (Tannehill "A") Bomarton (Tannehill "C") Bomarton (Tannehill "D") F. C. R. Tannehill Fritz (Tannehill, Upper) County regular	1,800 140,596 750 230,494 50,006 5,348,859	15,577 262,766 0 35,000 124,879 6,572,041	315 1,269 0 0 72,105		1,485 139,327 750 203,494 50,006	15,577 262,766 0 35,000 124,879	0 0 0 0 0	
	Area Total	5,745,505	7,010,263	73,689	0	5,162,823 5,557,885	6,568,391 7,006,613	113,931 113,931	3,650 3,650
3	County regular	83,585	0	0	0	83,585	0	0	0
	Area Total	83,585	0	0	0	83,585	0	0	0
4	Seymour, North (5,000 Strawn)	4,500	5,400	0	0	4,500	5,400	0	0
	Area Total	4,500	5,400	0	ō	4,500	5,400	0	0
5	e contratti								
5	Seymour (Caddo) Seymour Pool Seymour (Strawn) Seymour, East (Strawn)	146,000 1,058,181 104,286 510,000	0 911,334 0 556,122	0 0 0	0 0 0	0 1,058,181 104,286 510,000	0 911,334 0 556,122	146,000 0 0 0	0 0 0
	Area Total	1,818,467	1,467,456	0	0	1,672,467	1,467,456	146,000	0
6	Rendham Mississippi Rendham, North (Mississippi) Rendham, Northwest (Mississippi)	906,620 3,000 0	0 7,765 54,750	0 0 0	0 0	906,620 3,000 0	0 7,765 54,750	0 0 0	0
	Area Total	909,620	62,515	0	0	909,620	62,515	0	0
						(39)	0001	1001	TRE

Table 10. Reported Of Each Unrearrodoution and Purpose in 1861 and 1901 - Continue

AREA		BRI		DISPOS INTO P			CTION WELLS	MISCELL	ANEOUS
SHOWN ON FIGURE 17,	FIELD ¹	1961	1967	1961	1967	1961	1967	1961	1967
7	Rendham	0	30,000	0	0	0	30,000	0	0
1	Rendham Pool	860,720	398,580	0	<u>0</u> 0	860,720	398,580		
	Area Total	860,720	428,580	0	0	860,720	428,580	0	0
		18,080	0	0	0	18,080	0	0	0
8	Freeport (Caddo Lime) Freeport (Mississippi Lime)	237,250	õ	0	0	237,250	0	0	0
	Area Total	255,330	0	0	0	255,330	0	0	0
9	Parkey (Caddo)	2,555	52,891	2,555	0	0	52,891	0	0
5	Area Total	2,555	52,891	2,555	0	0	52,891	0	0
10	Westover, Northeast (Mississippi)	20,000	0	0	0	20,000	0	0	0
10	Area Total	20,000	0	0	0	20,000	0	0	0
							e traversi franciska († 1712)		
11	Darnell (5,030 Conglomerate)	0	36,500	0	0	0	36,500	0	0
	Lilly D (Caddo) & Lilly D (Mississippi)	28,000	0	0	0	28,000	0	0	0
	Westover, East (Caddo)	33,708	32,850	0	0	33,708	32,850		0
	Area Total	61,708	69,350	0	0	61,708	69,350	0	0
						2	0	0	0
12	County regular	120	0	120	0	0		0	
	Area Total	120	0	120	0	0	0	U	U
				10.000	0	0	259,200	0	0
13	U.C.S.L. (Mississippian)	0 46,300	259,200 363,600	0 2,500	0	43,800	363,600	0	0
	County regular	46,300	622,800	2,500	0	43,800	622,800	0	0
	Area Total	48,300	022,000	2,000					
				0	0	127,750	0	0	0
14	Doggie (Lower Gunsight)	127,750 85,775	0	0	0	85,775	õ	0	0
	Westover (Upper Gunsight) Y-B (Gunsight Upper)	7,300	o	7,300	0	0	0	0	0
	County regular	1,270,855	333,875	5,110	0	1,265,745	333,875		
	Area Total	1,491,680	333,875	12,410	0	1,479,270	333,875	0	
	County Total	12,027,319	10,258,360	102,270	0	11,665,118	10,254,710	259,931	3,650
	Percent of Total	100.0%	100.0%	0.85%	0.0%	96.99%	99.96%	2.16%	0.04%

Table 10.—Reported Oil-Field Brine Production and Disposal in 1961 and 1967—Continued

¹Oil or gas fields as assigned by the Railroad Commission of Texas.

- 100 -

Table 11.-Oil and Gas Tests Selected as Data-Control Points

WELL	OPERATOR	LEASE AND WELL	SURVEY	DATE OF ELECTRICAL LOG
20-09-701	Tom B. Medders	Waggoner "C" # 1	Sec. 10, H&TC	June 11, 1955
17-401	Amis & Starr	Cowan # 1	Sec. 93, T&NO	July 21, 1964
25-701	Burk Royalty Co.	Elledge-Furr Unit # 1	TE&L	Mar. 25, 1961
21-21-301	Pure Oil Co.	W. T. Waggoner, est. "A" #1	Sec. 156, Blk. A, BBB&C	Oct. 17, 1955
22-502	do	W. T. Waggoner, est. "E" # 1	Sec. 1, H&TB	June 27, 1957
23-601	S. D. Johnson, et al.	Ballerstedt # 1	Sec. 21, T&NO	Dec. 27, 1950
24-501	Kewanee Oil Co.	Poth #1	Sec. 88, T&NO	July 11, 1956
31-802	E. B. Clark, et al.	C. M. Taylor # 1	Sec. 9, H&TC	July 16, 1951
32-501	Bobby M. Burns, Trustee	Longley # 1	Sec. 228, T&NO	June 25, 1957
37-201	Continental Oil Co.	J. H. Thomas # 1	Sec. 13, Blk. 1, D&WRR	Jan. 20, 1951
38-202	American Liberty Oil Co.	Criswell # 1	Sec. 97, T&NO	May 19, 1949
39-605	A. R. Dillard, et al.	U.C.S.L. # 2	U.C.S.L.	Dec. 12, 1959

where is the first start as the result and as a start of the