# TEXAS WATER DEVELOPMENT BOARD

**REPORT 180** 

# RECONNAISSANCE OF THE CHEMICAL QUALITY OF SURFACE WATERS OF THE RIO GRANDE BASIN, TEXAS

By

H. B. Mendieta United States Geological Survey

This report was prepared by the U.S. Geological Survey under cooperative agreement with the Texas Water Development Board

March 1974

# TEXAS WATER DEVELOPMENT BOARD

John H. McCoy, Chairman Robert B. Gilmore Milton T. Potts Marvin Shurbet, Vice Chairman W. E. Tinsley Carl Illig

Harry P. Burleigh, Executive Director

Authorization for use or reproduction of any original material contained in this publication, i.e., not obtained from other sources, is freely granted. The Board would appreciate acknowledgement.

> Published and distributed by the Texas Water Development Board Post Office Box 13087 Austin, Texas 78711

# TABLE OF CONTENTS

|                                             | Page |
|---------------------------------------------|------|
| ABSTRACT                                    | 1    |
| INTRODUCTION                                | 3    |
| LOCATION AND EXTENT OF RIO GRANDE BASIN     | 3    |
| PHYSIOGRAPHY                                | 3    |
| CLIMATE                                     | 5    |
| CULTURAL FEATURES AND ECONOMIC DEVELOPMENT  | 5    |
| ALLOCATION OF RIO GRANDE WATERS             | 9    |
| DEVELOPMENT OF SURFACE-WATER RESOURCES      | 9    |
| STREAMFLOW RECORDS                          | 11   |
| CHEMICAL-QUALITY RECORDS                    | 12   |
| FACTORS AFFECTING CHEMICAL QUALITY OF WATER | 12   |
| Geology                                     | 14   |
| Streamflow                                  | 14   |
| Irrigation                                  | 17   |
| Oilfield Brines                             | 17   |
| CHEMICAL QUALITY OF SURFACE WATER           | 17   |
| Upper Rio Grande Basin                      | 17   |
| Middle Rio Grande Basin                     | 18   |
| Lower Rio Grande Basin                      | 25   |
| Pecos River Subbasin                        | 25   |
| RELATION OF CHEMICAL QUALITY TO USE         | 26   |
| Domestic Purposes                           | 27   |
| Industrial Use                              | 27   |
| Irrigation                                  | 29   |
| SUMMARY                                     | 30   |
| REFERENCES CITED                            | 33   |

# TABLE OF CONTENTS (Cont'd.)

#### Page

# TABLES

| 1.  | Reservoirs with Capacities of 5,000 Acre-Feet or More in the                                                                                |     |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------|-----|
|     | Rio Grande Basin in Texas                                                                                                                   | 10  |
| 2.  | Source and Significance of Dissolved-Mineral Constituents<br>and Properties of Water                                                        | 13  |
| 3.  | Water-Quality Tolerances for Industrial Applications                                                                                        | 28  |
| 4.  | Sodium and Salinity Hazards of Monthly Samples at Selected<br>Sites in the Rio Grande Basin, 1960-68                                        | 31  |
| 5.  | Boron Concentrations in Monthly Samples at Selected<br>Stations in the Rio Grande Basin, 1960-68                                            | 31  |
| 6.  | Summary Index of Surface-Water Records in the Rio Grande<br>Basin in Texas and Adjacent Areas in New Mexico and<br>Mexico                   | 36  |
| 7.  | Summary of Chemical Analyses of Texas Streams in the<br>Rio Grande Basin                                                                    | 41  |
| 8.  | Summary of Chemical Analyses at Selected Sites on the<br>Rio Grande in New Mexico                                                           | 81  |
| 9.  | Summary of Chemical Analyses at Selected Sites on<br>Mexican Streams in the Rio Grande Basin                                                | 84  |
| 10. | Summary of Chemical Analyses at Miscellaneous Sites on<br>Streams in the Rio Grande Basin                                                   | 94  |
| 11. | Discharge-Weighted Average of Chemical Constituents at<br>Selected Sites in the Rio Grande Basin                                            | 103 |
|     | FIGURES                                                                                                                                     |     |
| 1.  | Index Map Showing River Basins and Coastal Areas of Texas                                                                                   | 4   |
| 2.  | Map Showing Precipitation in the Texas Part of the<br>Rio Grande Basin                                                                      | 7   |
| 3.  | Graph Showing Average Annual Runoff, Drainage Area, and<br>1960 Population of Major River Basins in Texas, as<br>Percentage of State Totals | 9   |
| 4.  | Geologic Map of the Rio Grande Basin in Texas and Mexico                                                                                    | 15  |
| 5.  | Map Showing Irrigation in the Texas Part of the                                                                                             |     |

| 5. | Rio Grande Basin                                                                                   | 19 |
|----|----------------------------------------------------------------------------------------------------|----|
| 6. | Generalized Map of Oil and Gas Fields                                                              | 21 |
| 7. | Discharge-Weighted Average of Dissolved Solids<br>for the Rio Grande and Principal Inflow Stations | 23 |

# TABLE OF CONTENTS (Cont'd.)

| 8.  | Discharge-Weighted Average of Chloride and Dissolved Solids<br>for the Pecos River Below Red Bluff Dam near Orla,<br>Below Grandfalls, and at Girvin | 26  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 9.  | Diagram for the Classification of Irrigation Waters                                                                                                  | 30  |
| 10. | Map Showing Location of Streamflow and Chemical-Quality Data-Collection Sites                                                                        | 111 |

۷

# Page

# RECONNAISSANCE OF THE CHEMICAL QUALITY OF SURFACE WATERS OF THE RIO GRANDE BASIN, TEXAS

#### By H. B. Mendieta

#### ABSTRACT

The kinds and quantities of minerals dissolved in surface waters of the Rio Grande basin are related principally to the geology of the area and return flow from irrigation.

Rocks exposed in the Texas part of the basin range in age from Paleozoic to Quaternary. The upper reaches of the Rio Grande and Pecos River in Texas traverse deposits principally of Quaternary age. During periods when the flow consists principally of seepage from the Quaternary deposits and return flow from irrigation, water in the upper reach of the Rio Grande usually is slightly saline and very hard. Water in the upper reach of the Pecos River and most of its tributaries that traverse the Quaternary deposits is slightly to very saline and very hard.

Deposits of Tertiary age crop out in the upper, middle, and lower reaches of the Mexican side of the Rio Grande basin and in the lower reach of the Texas side of the basin. Water in the Rio Conchos, the principal tributary that traverses the Tertiary deposits in the Mexican side of the basin, is fresh and very hard.

Much of the middle reach of the Rio Grande basin is underlain by rocks of Cretaceous age. Water in streams that traverse these deposits usually is fresh and hard.

Inflow from the Rio Conchos and other tributaries and from springs more than compensates for the saline inflow from the Pecos River, and results in a decrease in dissolved constituents in the middle reach of the Rio Grande. Water in the middle reach of the river usually is fresh and very hard.

Water from International Falcon Reservoir on the lower Rio Grande is used for municipal supply, industry, and irrigation. Return flow from irrigation causes an increase in dissolved constituents downstream from the reservoir.

The concentrations of dissolved solids and sulfate in the Rio Grande upstream from the Rio Conchos usually exceed the limits recommended by the U.S. Public Health Service for drinking water. Water in the Pecos River and some of its tributaries is undesirable for domestic or industrial use because the water usually contains excessive concentrations of dissolved solids, sulfate, and chloride. Water in most of the other streams usually is suitable for domestic supply and many industrial uses. However, the water usually is hard or very hard and may require softening for some uses.

The principal use of surface water in the Rio Grande basin is irrigation. The sodium hazard of water in the Rio Grande usually ranges from low to medium; that of the Pecos River usually is very high. The salinity hazard of water in the Rio Grande and Pecos River usually is high or very high. Thus, the long-term use of these waters for irrigation will require special soil management, good drainage, high leaching, and selection of salt-tolerant crops.

# RECONNAISSANCE OF THE CHEMICAL QUALITY OF SURFACE WATERS OF THE RIO GRANDE BASIN, TEXAS

#### INTRODUCTION

This investigation of the chemical quality of surface waters in the Rio Grande basin is part of a statewide reconnaissance by the U.S. Geological Survey in cooperation with the Texas Water Development Board. This report is the last in a series that summarizes the results of the study of each river basin and intervening coastal areas in Texas. (See list of references.) Figure 1 shows the area of the State covered by this report.

Selected water-quality data for the Rio Grande basin in Mexico and New Mexico are also included because the chemical characteristics of water available for use in Texas are influenced by inflow from these areas.

The purpose of this report is to present, integrate, and summarize selected chemical-quality data that will aid in the proper development, management, and use of the water resources of the basin.

Most of the water-quality data for the Rio Grande and adjoining irrigation drains have been collected by the International Boundary and Water Commission, United States and Mexico. However, the U.S. Bureau of Reclamation and the U.S. Geological Survey have maintained sampling points on the main stem for short periods. Most of the data for the Pecos River basin in Texas have been collected by the U.S. Geological Survey in cooperation with the Texas Water Development Board and its predecessors. During the extensive interagency Pecos River Joint Investigation in 1938-40 (National Resources Planning Board, 1942), the U.S. Geological Survey made the chemical-quality studies.

To supplement data available from these and other chemical-quality programs, the Geological Survey periodically collected and analyzed water from selected sites within the Texas part of the basin. Whenever possible during this reconnaissance, water-quality data were collected over a range of flows. The dissolved-solids concentrations are likely to be highest during low-flow periods and contributions by ground-water inflows, irrigation returns, and municipal and industrial discharges usually can then be more easily identified. The lower concentrations in the medium and flood flows are more representative of the water that would be stored in reservoirs. Wherever possible, the sampling sites selected were at stream-gaging stations so that the discharge-weighted averages and loads of dissolved constituents could be computed and the water quality could be related to flow conditions.

#### LOCATION AND EXTENT OF RIO GRANDE BASIN

The Rio Grande rises in the San Juan Mountains in southwestern Colorado and flows southward across New Mexico to the edge of Texas near El Paso. Thereafter, the river flows south and east for 1,250 miles, forming the boundary between the United States and Mexico, and enters the Gulf of Mexico south of Brownsville, Texas.

The Rio Grande basin encompasses an area of about 335,000 square miles, 135,900 square miles of which are in the United States. Included within this area—in Colorado, New Mexico, Texas, and Mexico—are large closed basins with internal drainage, and only about 89,000 square miles in the United States and 93,000 square miles in Mexico contribute runoff to the Rio Grande. The Texas part of the Rio Grande basin, the largest basin in the State, includes an area of about 48,300 square miles (Figure 1), of which about 9,500 square miles is noncontributing.

The principal tributaries that join the Rio Grande downstream from El Paso are the Pecos and Devils Rivers on the Texas side and the Rio Conchos, Rio Salado, Rio Alamo, and Rio San Juan on the Mexican side.

### PHYSIOGRAPHY

The Rio Grande basin in Texas is in parts of three provinces in three major physiographic divisions—the Basin and Range province of the Intermontane Plateaus, the Great Plains province of the Interior Plains, and the Coastal Plain province of the Atlantic Plain. (Fenneman, 1931).

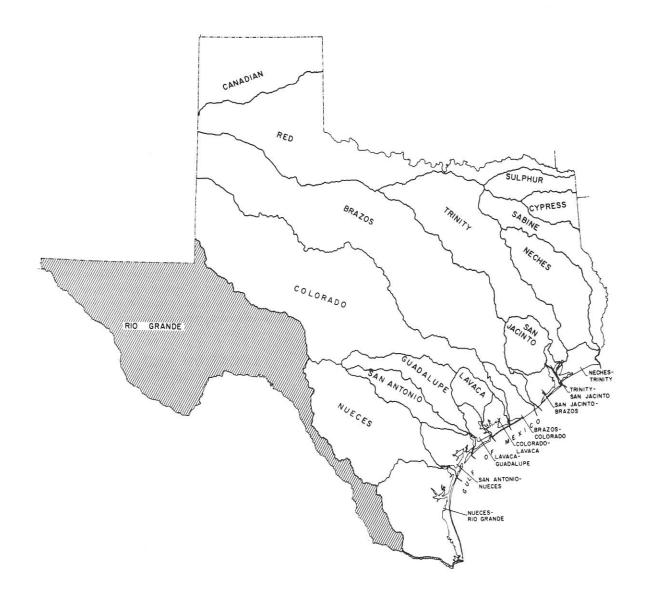



Figure 1.-River Basins and Coastal Areas of Texas

The area between the Rio Grande and the Pecos River subbasin, commonly referred to as the "Trans-Pecos region," is part of the Mexican Highland and Sacramento sections of the Basin and Range province. The Trans-Pecos region is characterized by block plateaus and mature block mountains of gently to strongly tilted strata and undrained desert basins known as "bolsons." A series of mountain ranges, mesas, and peaks extends from the Big Bend of the Rio Grande northwestward into New Mexico. Although these mountains are old and have been eroded severely, the altitude of their highest peaks generally is more than 7,000 feet and is about 8,750 feet at Guadalupe Peak.

The northern part of the Mexican Highland section and the Sacramento section generally are divided into three relatively mountainous areas separated by elongated desert lowlands. The Mesilla Valley is on the west. The Franklin Mountains, the Hueco bolson, the Diablo Plateau including the Hueco and Finlay Mountains, the Salt basin, and the Guadalupe-Delaware-Apache Mountain chain complete the eastward sequence. The general trend of these land features is to the south or southeast.

The mountains and high plateaus in the southern part of the Mexican Highland section are predominantly igneous and volcanic rocks that have block faulted, flexed, tilted, and strongly folded to create the irregular topography of the Big Bend. The Davis Mountains is the largest group of volcanic mountains. With peaks up to 7,835 feet, the Chisos Mountains in the Big Bend National Park are highest of the volcanic groups. The Sierra del Carmen, Santiago, and Del Norte Mountains on the eastern part of the Big Bend are the southernmost highlands in the Basin and Range province.

The Pecos River valley and the central part of the Rio Grande basin as far south as Del Rio lie either in the Pecos Valley, the Edwards Plateau, or the High Plains sections of the Great Plains province. The Pecos Valley section in Texas is an alluvium-filled valley that extends from New Mexico to near Grandfalls where a thin wedge of the High Plains section separates it from the Edwards Plateau section to the south.

The part of the Edwards Plateau west of the Pecos River is known as the Stockton Plateau. Both in the main part of the Edwards Plateau east of the Pecos River and in the Stockton Plateau to the west, the highland plain is characterized by a cap of resistant limestone. Draws that grade into deep gullies and V-shaped valleys dissect the plain, exposing the less resistant limestone. In areas of fissured limestone, recharge of the aquifers is rapid. These aquifers discharge through springs near the perimeter of the plateau.

At the edge of the Edwards Plateau, the Balcones Escarpment defines the beginning of the West Gulf Coastal Plain section of the Coastal Plain province. Here, the Texas part of the Rio Grande basin is a narrow strip of dissected coastal plain. The part of the plain farthest from the Rio Grande is rolling. Nearer the Rio Grande, the area is dissected by the valleys of the intermittent tributaries and the surface is rougher. In the Lower Rio Grande Valley, the basin is restricted to the relatively narrow flood plain or narrow terraces, generally less than 4 miles wide.

#### CLIMATE

The climate of the Rio Grande basin ranges from semiarid to arid (Thornthwaite, 1952). The mean annual precipitation is about 26 inches in the eastern part of the Lower Rio Grande Valley but progressively declines to 20 inches in the western part of the lower valley (Figure 2). However, in some areas adjacent to the Rio Grande in the middle part of the basin, the annual rainfall averages 18 to 20 inches.

Through the Pecos River subbasin and westward to the Big Bend, the mean annual rainfall diminishes rapidly from 20 to 8 inches. In the Trans-Pecos part of the basin, the rainfall generally increases with an increase in altitude. Rainfall in some of the high areas averages as much as 20 inches annually; but toward the internal basin or bolson, 10 inches is normal. As little as 8 inches is normal in the strip immediately adjacent to the Rio Grande.

Most of the middle and upper parts of the Rio Grande basin in Texas have a typical continental climate with wide daily temperature fluctuations. In the lower Rio Grande basin, the climate is tempered by the maritime influence of the prevailing wind. Here, the winters are mild and the summers hot. At higher altitudes, the upper basin has an alpine climate with warm days and cool nights in the summer; winters usually are cool or cold.

### CULTURAL FEATURES AND ECONOMIC DEVELOPMENT

Although the Rio Grande basin contains more than 19 percent of the area of Texas, the basin contributes less than 2 percent of the total runoff from the State and has only about 9 percent of the State's total 1960 population (Figure 3). The percentages cited include the adjacent coastal area, which is almost entirely dependent on the irrigation water diverted from the Rio Grande.

The bulk of the population in the basin is concentrated in the metropolitan areas of El Paso (population 317,462 in 1970), Laredo (population 65,491 in 1970), and the McAllen, Harlingen, Brownsville area of the Lower Rio Grande Valley (population approximately 325,000). Smaller concentrations of population are centered in towns such as Pecos, Fort Stockton, Del Rio, and Eagle Pass.

Ranching is the most widespread enterprise in the Rio Grande basin. Except for small irrigated areas near El Paso and in the Lower Rio Grande Valley, many acres of arid or semiarid land are required to graze one head of cattle. Thus, the ranches usually are large and the number of cattle few. In the middle region of the basin where the Edwards Plateau is rough and rocky, sheep and goats are the principal livestock. Dryland farming within the basin usually is restricted to forage crops for use on the ranches. Hunting lease revenue is a significant source of income for most basin ranchers.

Cotton is the principal crop grown on irrigated areas within the basin. Long-staple cotton is grown in the El Paso area and to a smaller extent in the Pecos area; short-staple cotton is grown on irrigated areas along the middle basin and in the Lower Rio Grande Valley. Planting and harvesting of this crop is almost entirely mechanized so that little physical labor is required.

Alfalfa is an important crop in the El Paso area where it is the base for a diversified livestock industry which includes feedlot operations, dairying, and swine and poultry raising.

Vegetable crops are produced throughout the irrigated areas in the basin. In the El Paso area, the crops are diversified to serve the needs of an isolated trade area. In the Pecos area, the small yet intensive production of cantaloupes is a speciality. From Laredo to the Lower Rio Grande Valley, the winter vegetables and early spring crops are of national importance. In recent years, grain sorghum has become a high-yielding, profitable crop in all irrigated areas.

•



Figure 3.—Average Annual Runoff, Drainage Area, and 1960 Population of Major River Basins in Texas, as Percentage of State Totals

Oil operations are the principal source of revenue in much of the Pecos River subbasin. Most of the oil production in Webb, Zapata, and Starr Counties is just outside the Rio Grande basin, but the basin communities receive the bulk of the business from these operations.

Tourism is another important industry. Increasing numbers of people are visiting the Big Bend National Park and retired or semi-retired persons find the lower valley an annual winter retreat.

### ALLOCATION OF RIO GRANDE WATERS

Two treaties between the United States and Mexico provide for the division of international waters of the Rio Grande. The Rio Grande Compact between Colorado, New Mexico, and Texas and the Pecos River Compact between New Mexico and Texas provide for the division of interstate waters (Texas Water Development Board, 1968).

The United States and Mexico signed a treaty in 1906 providing for the delivery of 60 thousand acre-feet of Rio Grande water annually by the United States to Mexico in the El Paso-Juarez valley above Fort Quitman. Deliveries are in proportionate amounts when the Rio Grande Compact has shortages. A treaty ratified by the United States and Mexico in 1945 dealt with the division of waters from the Rio Grande, the Colorado River, and the Tijuana River. The section pertaining to the Rio Grande allows for the allocation of waters from Fort Quitman to the Gulf of Mexico. The treaty also calls for as many as three major storage dams to provide for water supply, flood control, and the generation of hydroelectric power. The International Boundary and Water Commission administers the responsibilities and obligations set forth by the treaty.

The Rio Grande Compact, approved by the legislatures of Colorado, New Mexico, and Texas in 1939, allocates the uncommitted waters of the Rio Grande above Fort Quitman. Water-delivery schedules are provided from Colorado to New Mexico, from New Mexico to Texas, and to the various irrigation projects.

The waters from the drainage area of the Pecos River were allocated by the Pecos River Compact approved in 1949 by Texas and New Mexico. The Compact also provides for cooperative programs for the salvage of water used by phreatophytes and for alleviation of the excessive salinity of the Pecos River.

#### DEVELOPMENT OF SURFACE-WATER RESOURCES

Because rainfall, streamflow, and runoff within the Rio Grande basin are unevenly distributed, storage projects are required to provide dependable quantities of surface water for municipal supply, irrigation, and industrial use. The capacity, owner, location, and use of the principal reservoirs in the basin are listed in Table 1 (Dowell and Breeding, 1967).

#### Table 1.-Reservoirs With Capacities of 5,000 Acre-Feet or More in the Rio Grande Basin in Texas (From Dowell and Breeding, 1967)

The purpose for which the impounded water is used is indicated by the following symbols: M, municipal; I, industrial; Ir, irrigation; R, recreation; P, hydroelectric power; FC, flood control.

| NAME OF RESERVOIR               | YEAR OPERATION<br>BEGAN | STREAM        | 1/TOTAL STORAGE<br>CAPACITY<br>(ACRE-FEET) | OWNER                                             | COUNTY                                                | USE                   |
|---------------------------------|-------------------------|---------------|--------------------------------------------|---------------------------------------------------|-------------------------------------------------------|-----------------------|
| San Esteban Lake                | 1911                    | Alamito Creek | 18,770                                     | Mrs P. M. Robinson estate                         | Presidio                                              | Ir                    |
| Red Bluff Reservoir             | 1937                    | Pecos River   | 310,000                                    | Red Bluff Water Power<br>Control District         | Eddy (New Mexico),<br>Reeves, and Loving              | Ir                    |
| Lake Balmorhea                  | 1917                    | Sandia Creek  | 6,350                                      | Reeves County Water<br>Improvement District No. 1 | Reeves                                                | Ir                    |
| Devils Lake ≟/                  | 1928                    | Devils River  | 9,200                                      | Central Power & Light Co.                         | Val Verde                                             | Р                     |
| Lake Walk 2/                    | 1929                    | Devils River  | 5,400                                      | Central Power & Light Co.                         | Val Verde                                             | Р                     |
| International Amistad Reservoir | 1968                    | Rio Grande    | 5,325,000                                  | United States and Mexico                          | Coahuila, Mexico and<br>Val Verde, Texas              | M, I,<br>FC, Ir, P, R |
| Casa Blanca Lake                | 1951                    | Chacon Creek  | 20,000                                     | Webb County                                       | Webb                                                  | В                     |
| International Falcon Reservoir  | 1953                    | Rio Grande    | 3,280,700                                  | United States and Mexico                          | Tamaulipas, Mexico,<br>and Starr and Zapata,<br>Texas | M, I,<br>FC, Ir, P, R |

 $\frac{1}{2}$  Total storage capacity is that capacity below the lowest uncontrolled outlet or spillway and is based on the most recent reservoir survey available.  $\frac{2}{2}$  Inundated by International Amistad Reservoir.

Throughout history, irrigation has been the dominant use of Rio Grande waters. The Indians irrigated small plots along the upper valley of the Rio Grande for centuries. Later, the Spanish colonists, who considered river water for irrigation as a commodity essential to the survival of the communities, established riparian rights to the water.

Irrigation in the Rio Grande basin was expanded greatly when the frontier forts were established by the United States. In 1853, water from San Solomon Springs and other springs in the vicinity of Balmorhea were used for irrigation of corn, alfalfa, and other produce raised for consumption in the Fort Davis community. Springflows were utilized by direct diversion until 1917 when Lake Balmorhea was completed to impound the flow diverted from Phantom Lake Springs, the Madera Diversion Dam on Toyah Creek, and San Solomon Springs.

The drainage area of Sandia Creek and the Madera Canal collecting system, which contributes inflow to the reservoir, is only 22 square miles; and the original capacity of the reservoir was 6,500 acre-feet. Nevertheless, an annual diversion of 18,000 acre-feet of water from the reservoir was authorized for the irrigation of 10,600 acres.

In the 1860's, Comanche Springs was used as a water supply for Fort Stockton. Miles of canals were constructed to irrigate several thousand acres of arid land, and shortly thereafter all the flow of the springs was being fully utilized.

Irrigation from the Pecos River in the area from Red Bluff, New Mexico to Girvin, Texas began in 1877. An era of construction of canals and small off-channel reservoirs began in 1888 and continued for more than 35 years. By 1915, 10 major irrigation projects had been started within a 125-mile reach of the Pecos River. Undependable water supply, soil and water salinity, and the lack of technology plagued the projects; and several reorganizations of projects and water districts took place. In 1934, through the efforts of seven irrigation projects, plans were made to finance and construct Red Bluff Dam, which was completed in 1936. Releases from Red Bluff Reservoir have been used to irrigate as much as 28,000 acres, but the amount used varies with the quantity and quality of the water in storage. Since 1940, ground water of fair to marginal quality has been used in Ward and Reeves Counties to supplement surface-water supplies.

San Esteban Lake on Alamito Creek, the first reservoir in the Rio Grande basin in Texas, was completed in 1911 by the St. Stephens Land and Irrigation Company. This project included the 18,770 acre-foot reservoir and 7 miles of canals. The permit from the Texas Board of Water Engineers allowed for the irrigation of 8,500 acres of land, but because of lack of runoff, the lake has been dry most of the time. Ownership has changed several times. In 1962, the Texas Water Commission reduced the water rights to 400 acre-feet to irrigate 200 acres of land.

Devils Lake and Lake Walk on the Devils River, completed in 1928 and 1929 respectively, were constructed by Central Power and Light Company for development of hydroelectric power. These two reservoirs were inundated by International Amistad Reservoir in 1968.

Casa Blanca Lake on Chacon Creek, 3 miles northeast of Laredo, was completed in 1951 by Webb County for recreation and irrigation of a golf course.

International Falcon Reservoir, 80 miles downstream from Laredo, and International Amistad Reservoir, 12 miles northwest of Del Rio, are the largest reservoirs in the Rio Grande basin. International Falcon Reservoir, which has a capacity of 3,280,700 acre-feet at the top of the spillway gates, was completed in 1953. International Amistad Reservoir, which has a capacity of 5,325,000 acre-feet at the top of the flood-control storage space, was completed in 1968. Both of these multipurpose reservoirs were constructed under the 1944 treaty between the United States and Mexico, which called for equitable distribution of the waters of the Rio Grande.

## STREAMFLOW RECORDS

Streamflow records for the Rio Grande date from 1889 when the gaging station, Rio Grande at El Paso, was established by the U.S. Geological Survey (Table 6). A number of stations on the main stem downstream from El Paso were established in 1900 and were operated until 1914. Operation of these stations was suspended from 1914 to 1923, except for a few months in 1919. From 1923 to 1931, gaging stations were operated independently by the United States and Mexico. In 1932, the International Boundary and Water Commission took over the operation of most of the streamflow and water-quality stations to determine an equitable distribution of waters between the United States and Mexico. Records of these stations have been published jointly by the United States and Mexican Sections of the Commission. Figure 10 shows the location of the principal data-collection sites.

The collection of streamflow records for the Pecos River was begun in 1898 when the U.S. Geological Survey established the stream-gaging station Pecos River near Comstock. Since 1900, the International Boundary and Water Commission has maintained a gaging station at or in the vicinity of this site. The high bridge that supported the gage near Comstock was destroyed by a flood in 1954, so the flow of the Pecos River was measured upstream near Shumla until 1967 when the gaging station Pecos River near Langtry was established. The most intensive records of streamflow for the Pecos subbasin were compiled as part of the Pecos River Joint Investigation (National Resources Planning Board, 1942). In 1937, 31 recording stations were operated on the main stem, tributary streams, canals, and drains.

Streamflow at many miscellaneous sites on the Pecos River was measured during low-flow and water-delivery studies in 1964, 1965, 1967, and 1968 (Grozier and others, 1966 and 1968; Spiers and Hejl, 1970). Records of diversion from scores of sites on the Rio Grande and Pecos River have been maintained by the International Boundary and Water Commission, the U.S. Geological Survey, and the U.S. Bureau of Reclamation.

Records of discharge and stage of streams and contents and stages of lakes and reservoirs from 1897 to 1968 have been published in the annual series of U.S. Geological Survey Water-Supply Papers and by the International Boundary and Water Commission Water Bulletins. Beginning with the 1961 water year, streamflow records have been released by the Geological Survey in annual reports. (See table in list of references.) Summaries of discharge records giving monthly and annual totals have been published by the Texas Board of Water Engineers (1958) and the U.S. Geological Survey (1960, 1964a).

# CHEMICAL-QUALITY RECORDS

Daily records of water quality for the Rio Grande in Texas date from August 1, 1905, when the U.S. Geological Survey began sampling at the station Rio Grande at Laredo (Table 6). Sampling at this station was discontinued after one year. The next regular sampling record dates from 1924 when the U.S. Bureau of Reclamation began collecting data on the concentrations of sediment and dissolved solids at the station Rio Grande at El Paso.

Beginning in 1928 and 1929, samples were collected at approximately weekly intervals for the determination of specific conductance and major chemical constituents on the Rio Grande at El Paso, Fabens, and Fort Quitman. Monthly or less frequent sampling and analysis were begun in the 1930's at several other stations in Texas by the U.S. Geological Survey, the United States Section of the International Boundary and Water Commission, and the U.S. Bureau of Reclamation. The samples collected by the Commission were analyzed by the U.S. Department of Agriculture at Riverside, California.

Sampling intervals at regular stations have varied widely. From one to 31 samples during a month have been collected and analyzed. At times, estimated values for constituents have been reported as representative of a month's flow. During the early years, each individual water sample collected by the International Boundary and Water Commission was analyzed. However, during the early 1930's, the system of discharge-weighted composites was adopted.

A composite sample was made for each month at each station by consolidating into a single sample an amount of each individual sample proportional to the river flow at the time the sample was taken. The results of these analyses and corresponding streamflow records were used to calculate annual discharge-weighted averages of selected constituents for each station, provided the records were considered sufficient. The International Boundary and Water Commission calculates weighted averages on a calendar-year basis. In this report, the calendar year was retained as the reporting period for stations operated by the Boundary Commission. However, annual weighted averages for stations operated on the Pecos River by the U.S. Geological Survey were calculated on a water-year (October 1-September 30) basis.

Chemical-quality records for the Rio Grande basin are summarized in Tables 7-11. Complete records are published in an annual series of the U.S. Geological Survey Water-Supply Papers, in reports of the Texas Water Development Board and its predecessor agencies, and in the International Boundary and Water Commission Water Bulletins. (See table in list of references.)

#### FACTORS AFFECTING CHEMICAL QUALITY OF WATER

Surface water normally contains significant amounts of dissolved or suspended materials. These and other constituents or properties such as color, taste, natural and man-made organic substances, radioactive metals, and microorganisms are factors that determine water quality. In this report, only the major chemical constituents are considered because these are the principal factors that limit the use of the water in the Rio Grande basin.

The major chemical constituents usually are dissociated into charged particles or ions. Principal cations (positively charged ions) in natural water are calcium (Ca), magnesium (Mg), sodium (Na), potassium (K), and iron (Fe). Principal anions (negatively charged ions) are carbonate (CO<sub>3</sub>), bicarbonate (HCO<sub>3</sub>), sulfate (SO<sub>4</sub>), chloride (Cl), fluoride (F), and nitrate (NO<sub>3</sub>). The source and significance of the constituents and properties commonly determined by the U.S. Geological Survey are given in Table 2.

Some of the environmental factors that affect the chemical quality of surface waters are climate, geology, patterns and characteristics of streamflow, impoundments and diversions, disposition of municipal and industrial wastes, and irrigation. In the Rio Grande basin, the principal factors that affect the chemical quality of the water are geology and return flow from irrigation.

Table 2.-Source and Significance of Dissolved-Mineral Constituents and Properties of Water methods

| CONSTITUENT<br>OR<br>PROPERTY                                    | SOURCE OR CAUSE                                                                                                                                                                                                                                           | SIGNIFICANCE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Silica (SiO <sub>2</sub> )                                       | Dissolved from practically all<br>rocks and soils, commonly less<br>than 30 mg/l, High concentra-<br>tions, as much as 100 mg/l, gener-<br>ally occur in highly alkaline<br>waters.                                                                       | Forms hard scale in pipes and boilers. Carried over in steam of<br>high pressure boilers to form deposits on blades of turbines,<br>Inhibits deterioration of zeolite-type water softeners.                                                                                                                                                                                                                                                                                                                                                                         |
| Iron (Fe)                                                        | Dissolved from practically all<br>rocks and soils. May also be<br>derived from iron pipes, pumps,<br>and other equipment. More than<br>1 or 2 mg/l of iron in surface<br>waters generally indicates acid<br>wates from mine drainage or<br>other sources. | On exposure to air, iron in ground water oxidizes to reddish-<br>brown precipitate. More than about 0.3 mg/lstains laundry and<br>utensils reddish-brown. Objectionable for food processing, tex-<br>tile processing, beverages, ice manufacture, brewing, and other<br>processes. U.S. Public Health Service (1962) drinking-water<br>standards state that iron should not exceed 0.3 mg/l. Larger<br>quantities cause unpleasant taste and favor growth of iron<br>bacteria.                                                                                      |
| Calcium (Ca) and<br>magnesium (Mg)                               | Dissolved from practically all soils<br>and rocks, but especially from<br>limestone, dolomite, and gypsum.<br>Calcium and magnesium are<br>found in large quantities in some<br>brines. Magnesium is present in<br>large quantities in sea water.         | Cause most of the hardness and scale-forming properties of<br>water; soap consuming (see hardness). Waters low in calcium and<br>magnesium desired in electroplating, tanning, dyeing, and in<br>textile manufacturing.                                                                                                                                                                                                                                                                                                                                             |
| Sodium (Na) and<br>potassium (K)                                 | Dissolved from practically all<br>rocks and soils. Found also in<br>ancient brines, sea water, indus-<br>trial brines, and sewage.                                                                                                                        | Large amounts, in combination with chloride, give a salty taste.<br>Moderate quantities have little effect on the usefulness of water<br>for most purposes. Sodium salts may cause foaming in steam<br>boilers and a high sodium content may limit the use of water for<br>irrigation.                                                                                                                                                                                                                                                                              |
| Bicarbonate (HCO <sub>3</sub> ) and carbonate (CO <sub>3</sub> ) | Action of carbon dioxide in water<br>on carbonate rocks such as lime-<br>stone and dolomite.                                                                                                                                                              | Bicarbonate and carbonate produce alkalinity. Bicarbonates of<br>calcium and magnesium decompose in steam boilers and hot<br>water facilities to form scale and release corrosive carbon dioxide<br>gas. In combination with calcium and magnesium, cause carbon-<br>ate hardness.                                                                                                                                                                                                                                                                                  |
| Sulfate (SO <sub>4</sub> )                                       | Dissolved from rocks and soils<br>containing gypsum, iron sulfides,<br>and other sulfur compounds.<br>Commonly present in mine waters<br>and in some industrial wastes.                                                                                   | Sulfate in water containing calcium forms hard scale in steam<br>boilers. In large amounts, sulfate in combination with other ions<br>gives bitter taste to water. Some calcium sulfate is considered<br>beneficial in the brewing process. U.S. Public Health Service<br>(1962) drinking-water standards recommend that the sulfate<br>content should not exceed 250 mg/l.                                                                                                                                                                                         |
| Chloride (Cl)                                                    | Dissolved from rocks and soils.<br>Present in sewage and found in<br>large amounts in ancient brines,<br>sea water, and industrial brines.                                                                                                                | In large amounts in combination with sodium, gives salty taste to<br>drinking water. In large quantities, increases the corrosiveness of<br>water. U.S. Public Health Service (1962) drinking-water stan-<br>dards recommend that the chloride content should not exceed<br>250 mg/l.                                                                                                                                                                                                                                                                               |
| Fluoride (F)                                                     | Dissolved in small to minute<br>quantities from most rocks and<br>soils. Added to many waters by<br>fluoridation of municipal sup-<br>plies.                                                                                                              | Fluoride in drinking water reduces the incidence of tooth decay<br>when the water is consumed during the period of enamel<br>calcification. However, it may cause mottling of the teeth,<br>depending on the concentration of fluoride, the age of the child,<br>amount of drinking water consumed, and susceptibility of the<br>individual. (Maier, 1950)                                                                                                                                                                                                          |
| Nitrate (NO <sub>3</sub> )                                       | Decaying organic matter, sewage,<br>fertilizers, and nitrates in soil.                                                                                                                                                                                    | Concentration much greater than the local average may suggest<br>pollution. U.S. Public Health Service (1962) drinking-water<br>standards suggest a limit of 45 mg/l. Waters of high nitrate<br>content have been reported to be the cause of methemoglo-<br>binemia (an often fatal disease in infants) and therefore should<br>not be used in infant feeding. Nitrate has been shown to be<br>helpful in reducing inter-crystalline cracking of boiler steel. It<br>encourages growth of algae and other organisms which produce<br>undesirable tastes and odors. |
| Dissolved solids                                                 | Chiefly mineral consti :ents dis-<br>solved from rocks and soils.<br>Includes some water of crystalli-<br>zation.                                                                                                                                         | U.S. Public Health Service (1962) drinking-water standards<br>recommend that waters containing more than 500 mg/l dissolved<br>solids not be used if other less mineralized supplies are available.<br>Waters containing more than 1000 mg/l dissolved solids are<br>unsuitable for many purposes.                                                                                                                                                                                                                                                                  |
| Hardness as CaCO <sub>3</sub>                                    | In most waters nearly all the<br>hardness is due to calcium and<br>magnesium. All the metallic<br>cations other than the alkali<br>metals also cause hardness.                                                                                            | Consumes soap before a lather will form. Deposits soap curd on<br>bathtubs. Hard water forms scale in boilers, water heaters, and<br>pipes. Hardness equivalent to the bicarbonate and carbonate is<br>called carbonate hardness. Any hardness in excess of this is<br>called non-carbonate hardness. Waters of hardness as much as 60<br>ppm are considered soft; 61 to 120 mg/l, moderately hard; 121<br>to 180 mg/l, hard; more than 180 mg/l, very hard.                                                                                                        |
| Specific conductance<br>(micromhos at 25 <sup>0</sup> C)         | Mineral content of the water.                                                                                                                                                                                                                             | Indicates degree of mineralization. Specific conductance is a measure of the capacity of the water to conduct an electric current. Varies with concentration and degree of ionization of the constituents.                                                                                                                                                                                                                                                                                                                                                          |
| Hydrogen ion<br>concentration (pH)                               | Acids, acid-generating salts, and<br>free carbon dioxide lower the pH.<br>Carbonates, bicarbonates, hydrox-<br>ides, and phosphates, silicates,<br>and borates raise the pH.                                                                              | A pH of 7.0 indicates neutrality of a solution. Values higher than<br>7.0 denote increasing alkalinity; values lower than 7.0 indicate<br>increasing acidity. pH is a measure of the activity of the<br>hydrogen ions. Corrosiveness of water generally increases with<br>decreasing pH. However, excessively alkaline waters may also<br>attack metals.                                                                                                                                                                                                            |
|                                                                  |                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

Waters usually are classified in various ways to demonstrate similarities and differences of composition. In the following discussion, which relates chemical quality of water to environmental factors, water is classified on the basis of dissolved-solids content in mg/l (milligrams per liter), principal chemical constituents, and hardness. On the basis of dissolved-solids content, waters are classified as follows:

| DISSOLVED SOLIDS<br>(MG/L) |
|----------------------------|
| Less than 1,000            |
| 1,000 to 3,000             |
| 3,000 to 10,000            |
| 10,000 to 35,000           |
| More than 35,000           |
|                            |

As to geochemical types, waters are classified on the basis of the predominant cations and anions in me/l (milliequivalents per liter). For example, water is classified as a sodium chloride type if the sodium and chloride ions constitute 50 percent or more of the cations and anions respectively. Waters in which one cation and one anion are not clearly predominant are recognized as mixed types and are identified by the names of all the important cations and anions.

On the basis of hardness, waters are classified as soft, moderately hard, hard, or very hard (Table 2).

#### Geology

The amounts and kinds of minerals dissolved in water that drains from areas where municipal and industrial influences are small depend principally on the chemical composition and physical structure of the rocks and soils traversed by the water and on the length of time the water is in contact with the rocks and soils. The amount of minerals available for solution is decreased by leaching; therefore, in areas of high rainfall, the mantle rock and residual soil contain relatively small amounts of readily soluble minerals. These rocks usually yield water of low mineralization. However, in arid or semiarid regions, most soils and rocks are incompletely leached and still contain large amounts of readily soluble material; water in contact with these rocks and soils may become highly mineralized.

The rocks exposed in the Texas part of the basin range in age from Paleozoic to Quaternary (Figure 4). The structure of the rocks and sediments of the basin varies from extremely complex arrangements of several systems in the upper part of the basin to an orderly layering of Tertiary and Quaternary sediments in the lower basin (Davis and others, 1965). The geology in Mexico is adapted from the "Carta Geológica de la República Mexicana" prepared in 1968 by the Comité de la Carta Geológica de Mexico. Chemical analyses of surface water at selected sites in the Rio Grande basin are represented diagrammatically (Stiff, 1951) in Figure 4 to relate chemical composition to geology. The shape of each diagram indicates roughly the degree of mineralization.

The upper reaches of both the Rio Grande and Pecos River in Texas are underlain primarily by deposits of Quaternary age. In the fall and winter, when no water is being released from reservoirs in New Mexico, water in the Rio Grande at El Paso is usually slightly saline and very hard. The principal cation in the water is sodium; the principal anion usually is sulfate, but in some of the more highly mineralized water, the percentage of chloride increases (Figure 4).

Farther downstream at Fort Quitman, the quality of water in the Rio Grande is altered by irrigation return flows. Water passing the Fort Quitman station usually is slightly saline and very hard. Although the principal chemical constituents vary, highly mineralized flows usually are of the sodium chloride type (Figure 4).

In the reach between the daily chemical-quality stations Pecos River below Red Bluff Dam near Orla and at Girvin, which is underlain principally by deposits of Quaternary age, the water usually is moderately or very saline, very hard, and of the sodium chloride type. Water in most tributaries to the Pecos River that traverse rocks of Quaternary age is slightly to very saline, very hard, and of the sodium chloride or mixed sodium chloride sulfate type. However, water in Coyanosa Draw is fresh, ranges from moderately hard to hard, and is of the calcium bicarbonate type (Figure 4).

Extensive deposits of Tertiary age crop out in the upper, middle, and lower reaches of the Mexican side of the Rio Grande basin and in the lower reach of the Texas side. The Rio Conchos is the principal tributary that traverses rocks of Tertiary age on the Mexican side of the basin. Water in the Rio Conchos near Ojinaga usually is fresh, very hard, and of the sodium calcium sulfate type. Water in the Rio Grande at Johnson Ranch near Castolon, which is contributed principally by the Rio Conchos, is usually fresh and very hard. Principal chemical constituents usually are calcium, sodium, and sulfate (Figure 4).

The middle reach of the Rio Grande basin is underlain principally by rocks of Cretaceous age. Streams that traverse the Cretaceous outcrops include the Devils River and San Felipe Creek on the Texas side and Rio San Diego and Rio San Rodrigo on the Mexican side. Water in these streams usually is fresh, hard, and of the calcium bicarbonate type (Figure 4).

#### Streamflow

The patterns and characteristics of unregulated streamflow usually affect the chemical character of the

water in streams. Water discharge, and thus the chemical quality, of any unregulated stream may vary from day to day and even from hour to hour. The variation may be large, such as for smaller streams that flow intermittently in response to storms, or small, if the river is large or if the flow is derived primarily from ground water.

The concentration of dissolved minerals usually varies inversely with the water discharge. The concentrations usually are minimum during periods of high flow because most of the water is surface runoff that has been in contact with soluble minerals of the exposed rocks and soils for a relatively short time. In arid areas, intermittent streams may have high concentrations of dissolved solids at times of high flow when an isolated rainstorm causes only enough flow to scour the streambed.

Between rainstorms, the flow of perennial streams is sustained predominantly by ground water from springs or seeps along the watercourse. This water has been in contact with the rocks and soil for sufficient time to leach appreciable quantities of soluble material and to reach equilibrium. Thus, the concentration of dissolved materials usually is maximum and is nearly constant during low-flow periods.

Through most reaches of the Rio Grande and the Pecos River, the flow is so regulated by upstream reservoirs, diversions, and drainage returns that only at medium or high flows do the normal discharge-concentration relations apply.

#### Irrigation

Because most of the Rio Grande basin is either arid or semiarid, and because most of the water is used for irrigation, repetitive and consumptive usage of water is greater here than in most of the major river basins of North America. Before 1900, shortages of water for irrigation began to occur. Since that time, the total acreage of irrigated lands has been restricted and irrigation rights have been reallocated to achieve the maximum use of available water (Figure 5).

Irrigation returns from surface and ground waters have a significant effect on the use and the quality of the water available throughout the entire reach of the Rio Grande and the Pecos River. The natural quality of water in these streams, which is only marginal or fair, is being seriously impaired by the return flow of water used repetitively for irrigation. The higher salinity of the irrigation return flow is caused by the salinity of the soil through which the water has percolated and by the concentration effect of high evaporation rates throughout the basin.

### Oilfield Brines

Oil is produced in large areas of the Pecos River subbasin, in the middle reaches of the Rio Grande basin, and in the Lower Rio Grande Valley. The principal oil-producing areas (Figure 6) extend eastward from the middle Rio Grande basin and southward from the Lower Rio Grande Valley. Thus, oilfield brines may be transported into or out of the basin.

Improper disposal of brines from these areas has permitted salt to reach the streams. When oil production started more than fifty years ago, little effort was made to protect either surface or ground waters in the area. Unlined surface pits were usually employed to hold the brine produced with the oil. Though some of the water from the pits evaporated, the greater part probably percolated downward and contributed to the salinity of the streams. Brines from abandoned wells and unplugged, or improperly plugged, test holes may also contribute to the salinity of streams.

In recent years, the trend has been to inject the brines back into the producing formation to maintain the formation pressure. Brackish or salt water from other sources may also be injected to repressure the oil-producing formations. Though injection usually is the preferred way of brine disposal, the increased pressure may move the brine upward along fault zones or into unplugged or improperly plugged wells and eventually into surface streams.

The composition of oilfield brines varies; but the principal chemical constituents in order of the magnitude of their concentration (milligrams per liter) are usually chloride, sodium, calcium, and sulfate. Generally, an erratic variation in the ratio of the chloride ion to other major constituents in streams that drain oilfields indicates brine pollution.

Because much of the flow of the Pecos River is naturally saline, detailed studies are necessary to identify the source and quantities of brines contributed by oilfield operations.

### CHEMICAL QUALITY OF SURFACE WATER

## Upper Rio Grande Basin

The flow of the Rio Grande upstream from Texas is regulated by Elephant Butte and Caballo Reservoirs in New Mexico and is derived principally from snowmelt. The quality of the water released from these reservoirs is fairly constant. The discharge-weighted average of the dissolved-solids concentrations at Caballo Dam for the period of record from 1939 to 1948 was about 500 mg/l, and no monthly composite contained as much as 1,000 mg/l. Downstream at Leasburg Dam during the same period, the dissolved solids were less than 5 percent higher. However, the discharge-weighted average concentration of dissolved solids for the same period at the El Paso station was 34 percent greater than that at Leasburg Dam. Most of this increase in concentration resulted from irrigation return flows from the Mesilla Valley irrigation project.

The discharge-weighted average of the dissolved-solids concentrations at El Paso during the 1930-68 period of record was about 800 mg/l. The dissolved-solids concentrations vary seasonally. During the spring and summer when water is released from the upstream reservoirs, the concentrations at El Paso are usually about 600 or 700 mg/l, or only slightly higher than that of water released at the upstream dam.

In the fall and winter when no water is released from the reservoirs, the flow at the EI Paso station is from seepage and delayed return flows and usually contains from 1,000 to 2,000 mg/l dissolved solids. At times, the dissolved solids exceed 2,000 mg/l and has been as high as 3,830 mg/l. The water is very hard (greater than 180 mg/l). The principal cation in the water is sodium; the principal anion usually is sulfate, but in some of the more highly mineralized water, the percentage of chloride increases. During the period 1930-68, the concentration of sulfate in samples from the El Paso station ranged from less than 150 mg/l to more than 1,250 mg/l; the discharge-weighted average was 263 mg/l. The chloride concentration ranged from less than 50 mg/l to more than 1,050 mg/l; the discharge-weighted average was 130 mg/l.

Most of the water passing the El Paso station is diverted by the American Canal in Texas and the Acequia-Madre in Mexico for irrigation and municipal use. Evaporation and leaching of salts from the soils increase the salinity of the water used for irrigation. Return flows and drainage from the irrigated areas cause the residual water in the river downstream from the diversion sites to become more mineralized.

In an inventory of Texas irrigation, Gillett and Janca (1965, p. 16) showed that not a single irrigated acre in El Paso County in 1958 and 1965 depended on surface water alone. Surface supplies were supplemented by wells, most of which are shallow and derive their water from the alluvium. The alluvium is supplied mostly from the percolation of excess irrigation water. Thus, the flow of the Rio Grande is recycled several times, and minerals in the water become extremely concentrated at the lower end of the El Paso Valley.

During extended periods from 1951 to 1959, no flow was recorded at the station near Acala, Texas. During these periods, any irrigation returns and seepage to the river in the reach below the station was diverted again and again until all was used before reaching the station Rio Grande at Fort Quitman. During these periods, the discharge-weighted average concentrations of dissolved solids for the Fort Quitman station reached their lowest values (375 mg/l in 1956, 294 mg/l in 1957, and 375 mg/l in 1965). These waters of low mineralization were from local storm runoff contributed by streams downstream from the irrigated valley of the Rio Grande. When a substantial part of the annual flow at Fort Quitman is from the flow passing the station near Acala or from irrigation return flow, the annual discharge-weighted average concentrations of dissolved solids usually range from 1,000 to 3,000 mg/l. Concentrations in single samples and monthly composites often greatly exceed the annual averages. The highest dissolved-solids concentration in a monthly composite was 10,700 mg/l in June 1953.

Water passing the Fort Quitman station usually is very hard, but the principal chemical constituents vary. Waters of low mineralization usually are of the calcium bicarbonate type; highly mineralized waters usually are of the sodium chloride type. The annual discharge-weighted average concentration of chloride has ranged from 21 mg/l in 1957 and 1965 to 1,640 mg/l in 1964. The discharge-weighted average concentration of sulfate has ranged from 45 mg/l in 1965 to 995 mg/l in 1961.

Since 1950, the water that has passed the station at Fort Quitman seldom has reached the upper Presidio station. Diversions, seepage into the permeable terrane, and evapotranspiration probably consume most of the water. Since 1950, most of the water at upper Presidio has been contributed by mountain creeks or arroyos that join the Rio Grande in the stretch below Fort Quitman.

Until 1945, the discharge-weighted averages of dissolved solids for the upper Presidio station were approximately the same as those for the Fort Quitman station. Since then, and especially since 1950, the flow at Fort Quitman has been small; and the annual discharge-weighted averages of dissolved solids usually have been considerably greater than those for the upper Presidio station (Figure 7).

During the period from 1950 to 1968, the annual discharge-weighted averages of dissolved solids for the Fort Quitman station ranged from 294 to 4,440 mg/l and averaged 2,120 mg/l. During this same period, the annual discharge-weighted averages of dissolved solids for the upper Presidio station ranged from 279 to 1,700 mg/l and averaged 748 mg/l.

#### Middle Rio Grande Basin

Because three-fourths of the flow in the Rio Grande below El Paso comes from the Mexican side, the quality of the inflows from Mexico is of major importance to the quality of water in the Rio Grande and the main stem reservoirs.

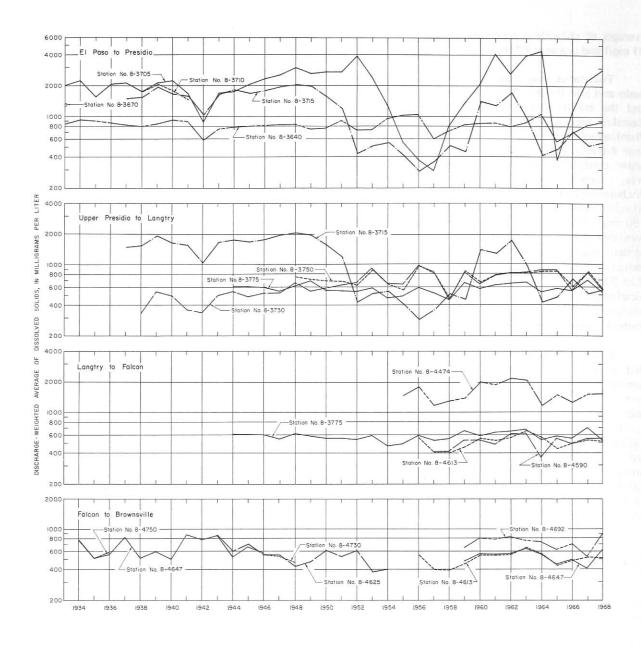



Figure 7.-Discharge-Weighted Average of Dissolved Solids for the Rio Grande and Principal Inflow Stations

Downstream from the upper Presidio station, over one-half million acre-feet of water a year is added to the flow of the Rio Grande by the Rio Conchos, the largest of the Mexican tributaries, to the middle reach of the Rio Grande. The chemical quality of water in the Rio Conchos is shown in Figure 7. Since 1850, when complete use of upper Rio Grande waters in the El Paso Valley began, the yearly discharge-weighted averages of dissolved solids of the water from the Rio Conchos near Ojinaga, Mexico, very closely paralleled and at times were almost identical to those of the Rio Grande at Johnson Ranch near Castolon, a hundred miles downstream. The discharge-weighted average concentrations of dissolved solids for the period from 1950 to 1968 for the two stations were identical, 728 mg/l. Water at both stations was very hard and usually

was of the sodium sulfate or sodium calcium sulfate type.

Chemical analyses of samples from the two stations usually did not include the determination of sulfate. However, the annual discharge-weighted averages of the sulfate concentrations, as calculated from available data for the period from 1950 to 1968, ranged from 158 to 408 mg/l and averaged 291 mg/l for the Rio station Conchos near Ojinaga. The discharge-weighted averages of chloride for the station ranged from 26 to 96 mg/l and averaged 61 mg/l. During this same period, the discharge-weighted average concentrations of sulfate for the station Rio Grande at Johnson Ranch near Castolon ranged from 150 to 409 mg/l and averaged 290 mg/l, the discharge-weighted averages of chloride concentrations ranged from 24 to 91 mg/l and averaged 62 mg/l.

Tributaries that drain from the Texas side of the basin and join the Rio Grande between the Rio Conchos and the station Rio Grande at Johnson Ranch near Castolon include Alamito and Terlingua Creeks. The dissolved-solids content of samples from Alamito Creek near Presidio, which probably is fairly representative of water contributed by other mountain streams in the ranged from 253 to 448 mg/l. area, The discharge-weighted concentrations of dissolved-solids for Alamito Creek near Presidio probably average about 250 mg/l. The water usually is moderately hard or hard. Available data indicate that when the dissolved-solids content exceeds about 300 mg/l, the water is of the sodium bicarbonate type. However, water containing less than 300 mg/l dissolved solids probably is of the calcium bicarbonate type. The chloride content of samples from Alamito Creek ranged from 4.7 to 27 mg/l; the sulfate content ranged from 16 to 51 mg/l.

Water in Terlingua Creek is more mineralized than that in Alamito Creek. The dissolved-solids content of samples from Terlingua Creek near Terlingua ranged from 400 to 1,140 mg/l. Most of the samples were collected during low flow and contained more than 1,000 dissolved solids. mq/l However, the discharge-weighted concentrations of dissolved solids probably average about 500 mg/l. Water in Terlingua Creek usually is very hard and of the sodium calcium sulfate type. The chloride content of samples from Terlingua Creek ranged from 6.4 to 9.5 mg/l; the sulfate content ranged from 135 to 644 mg/l.

Although no major tributaries join the main stream between the stations Rio Grande at Johnson Ranch near Castolon and Rio Grande at Foster Ranch near Langtry, the annual inflow from small tributaries and springs in this reach averages more than 300,000 acre-feet. This inflow usually reduces the concentrations of dissolved solids and variations of chemical quality of water in the Rio Grande. At no time during the period of record has the dissolved solids in composite samples from the Rio Grande at Foster Ranch near Langtry exceeded 1,000 mg/l. During the period from 1944 to 1968, the range of annual discharge-weighted average concentrations were as follows: dissolved solids, 449-699 mg/I; chloride, 29-91 mg/I; and sulfate 161-269 mg/I. The water was very hard and usually of the sodium calcium sulfate type.

The next major contribution to the middle reach of the Rio Grande is the saline flow from the Pecos River. The dissolved-solids discharge-weighted average for the Pecos River near Langtry, just before it joins the Rio Grande, was 1,460 mg/l during the period 1955-68. During this same period, the discharge-weighted average concentration of dissolved solids upstream at the Rio Grande at Foster Ranch near Langtry was 581 mg/l. The variations in salinity of the Pecos River inflow is shown in Figure 7. The quality of the Pecos River water is considered in another section of this report.

The Devils River joins International Amistad Reservoir on the Rio Grande downstream from the Pecos River. Water from Devils River near Juno and at Pafford Crossing near Comstock, Lake Walk, and Cantu and San Felipe Springs contained less than 250 mg/l dissolved solids and were of the calcium bicarbonate type, typical of the Edwards Plateau.

The only water of poor quality collected from the Del Rio area during the reconnaissance was from Eight Mile Creek near Del Rio where concentrations of dissolved solids ranged from 820 to 2,060 mg/I. The source of the flow is a small spring and possibly a flowing well in the area that may be connected to the creek through fractured limestone. The principal constituents of this saline flow are calcium and sulfate.

Single samples from Chacon Creek near Laredo, Los Olmos Creek near Rio Grande City, and La Joya Creek near Samfordyce, which are Texas tributaries to the Rio Grande, were all saline. The concentrations of dissolved solids were 4,420, 11,500, and 5,740 mg/l, respectively. Sodium and chloride were the predominant constituents.

Tributaries that drain from the Mexican side of the basin and join the Rio Grande between International Amistad Reservoir and the station Rio Grande at Laredo include Rio San Diego and Rio San Rodrigo. Water from these streams usually contains less than 400 mg/l dissolved solids, 30 mg/l chloride, and 75 mg/l sulfate. The water is hard or very hard and of the calcium bicarbonate type.

The excellent quality of water from the Devils River and from small spring-fed streams on both sides of the Rio Grande more than compensate for the increased salinity caused by inflow from the Pecos River. The discharge-weighted average concentrations of dissolved solids, chloride, and sulfate for the Rio Grande at Laredo, Texas, during the 1956-68 period were 485 mg/l, 81 mg/l, and 148 mg/l, respectively.

The general improvement in the quality of water in this reach of the Rio Grande occurs in spite of diversions of water by Maverick Canal for powerplant cooling and for irrigation and in spite of the subsequent return of the water to the river. The amount of flow that returns to the river from the powerplant is essentially undiminished; thus, the concentration of salts by evaporation is small. Water from the Maverick Canal is used to irrigate about 35,000 acres above and below Eagle Pass. The amount of water returning to the river is large and the concentration of salts by leaching and evaporation is small. Although considerable quantities of water are diverted, the gain in flow of the Rio Grande between International Amistad Dam and Laredo averages more than 350,000 acre-feet per year.

#### Lower Rio Grande Basin

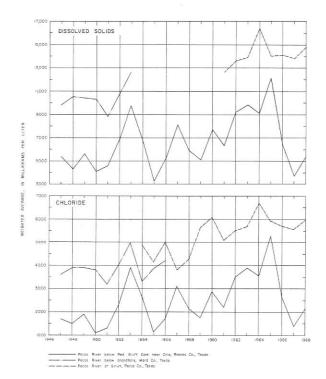
Flow of the Rio Grande in the lower basin is impounded in International Falcon Reservoir. The Rio Salado, in Mexico, also contributes water to International Falcon Reservoir. Although the Rio Salado at Las Tortillas has contained as much as 5,000 mg/l dissolved solids, the discharge-weighted average for the station during the period from 1955 to 1968 was 522 mg/l. During the period from 1956 to 1968, the discharge-weighted average concentrations of dissolved solids, chloride, and sulfate for the Rio Grande below International Falcon Dam were 493 mg/l, 84 mg/l, and 150 mg/l, respectively. The water is very hard and usually is of the mixed type in which no cation or anion predominates.

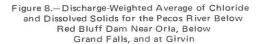
Releases from International Falcon Reservoir provide most of the water used for municipal supply, irrigation, and industrial use in the Lower Rio Grande Valley. However, since 1943, Marte R. Gomez Reservoir on the Rio San Juan in Mexico has provided considerable quantities of water for irrigation in the reach from Ciudad Miguel Aleman, Mexico (near Roma, Texas) to Rio Bravo, Mexico (near Mercedes, Texas). Some of the water used for irrigation drains back into the Rio San Juan before it joins the Rio Grande; but most of the return flows enter the Rio Grande through five drains-the Rancherias and Los Fresnos drains upstream from Fort Ringgold, Texas, and the Los Puerteoitos, Huizache, and Morillo drains downstream from Fort Ringgold. Water contributed to the Rio Grande by the Rio San Juan and these five drains is saline most of the time. The concentration of dissolved solids in Morillo drain averages about 10,000 mg/l, which is several times greater than the average concentration in the other drains.

Inflow of saline water from these sources has caused an increase in the dissolved-solids content of the Rio Grande. During the 1959-68 period, the discharge-weighted average concentration of dissolved solids for the station Rio Grande at Anzalduas Dam was 684 mg/l. Although this concentration would not be excessive in water used for irrigation in other areas, it may adversely affect crop production in the Lower Rio Grande Valley where the mineral content of the soil is high and where leaching of the minerals is restricted because of the high water table, tight structure of the soil, and flat topography.

As a measure to improve the quality of the water in the Lower Rio Grande Valley, the saline water from the Morillo drain has recently been diverted through a 75-mile long channel to the Gulf of Mexico. Preliminary results indicate that diversion of the saline water has caused a significant improvement of the quality of the water in the Rio Grande.

# Pecos River Subbasin


Water in the Pecos River usually is very saline as it enters Texas. In a short reach of about 3 miles in the Malaga Bend of the river in southern Eddy County in New Mexico, about 420 tons of dissolved minerals, mostly sodium chloride, is added daily to the mineral load of the river. The source of the salt is a concentrated brine that percolates upward from an aquifer that underlies the area. An experimental salinity-alleviation project has been in operation at Malaga Bend since August 1963. Brine is being pumped from a well into an evaporation basin to lower the water level in the brine aquifer and thus prevent its seepage into the river. The results of the project are still being evaluated.


The Pecos River receives water of better quality from the Delaware River but the amount is too small to reduce the salinity significantly. When sampled in August 1966, the Delaware River near Red Bluff, New Mexico, contained 1,980 mg/l dissolved solids, 8.8 mg/l chloride, and 1,300 mg/l sulfate. The water was very hard and was of the calcium sulfate type.

Since 1937, the flow of the Pecos River has been impounded in Red Bluff Reservoir. The chemical quality of the outflow from the reservoir has been monitored at the daily sampling station Pecos River below Red Bluff Dam near Orla or 15 miles downstream at the gaging station, Pecos River near Orla. During some periods, the quality of the water at the station near Orla is impaired by saline inflow from Salt (Screwbean) Draw. Therefore, records for the station Pecos River below Red Bluff Dam near Orla are more representative of the chemical quality of outflow from the reservoir.

To supplement chemical-quality records for outflow from Red Bluff Reservoir and to determine the areal variations of the quality of water in the reservoir, the Geological Survey in cooperation with the Red Bluff Water Power Control District conducted a series of water-guality surveys during the period from 1965 to 1968 (Kunze and Rawson, 1970). During each of the surveys, water throughout the reservoir was saline. However, during some periods, water at the surface was much less saline than that at the bottom. For example, on October 12, 1965, the concentration of dissolved solids at a deep site near Red Bluff Dam ranged from 4,260 mg/l at the surface to 10,200 mg/l at a depth of 38 feet. Thus, selected withdrawal of the more saline water from the reservoir during non-irrigating periods would improve the quality of the water available for irrigation.

Evaporation, irrigation returns, and the inflow of highly mineralized ground water or brines from oil fields usually cause a progressive increase of dissolved solids and chloride in the Pecos River between the chemical-guality stations below Red Bluff Dam near Orla and at Girvin (Figure 8). Inflow of ground water downstream from this reach usually results in a reduction in the concentration of dissolved solids. During the period from 1961 to 1968, the discharge-weighted average concentrations of dissolved solids for the stations Pecos River below Red Bluff Dam, at Girvin, and at Shumla (now near Langtry) were 7,770 mg/l, 14,200 mg/l, and 1,600 mg/l, respectively. The discharge-weighted average concentrations of chloride were 3,080 mg/l, 5,820 mg/l, and 572 mg/l, and those of sulfate were 1,880 mg/l, 3,370 mg/l, and 324 mg/l. Water at each of the sites was very hard and of the sodium chloride type. Water-delivery and low-flow studies (Grozier and others, 1966 and 1968; Spiers and Hejl, 1970) generally have documented the increase of dissolved solids in the Pecos River between Red Bluff Dam and Girvin and the reduction thereafter.





Three miles below Red Bluff Reservoir, low flows from Salt (Screwbean) Draw entering the Pecos River are very saline. When sampled in 1947 and 1948, the stream usually contained more than 15,000 mg/l dissolved solids, 7,000 mg/l chloride, and 3,000 mg/l sulfate. The water was very hard and of the sodium chloride type. Infrequent flood inflows probably are of better quality than that of the river. The usual flow of Salt (Screwbean) Draw is less than one cfs (cubic foot per second) and the stream is dry for long periods. Thus, the salt contributions to the Pecos River by Salt (Screwbean) Draw are not a major problem. The concentration of dissolved solids in irrigation returns to the Pecos River through the Barstow drain range from about 7,000 to 9,000 mg/I. These irrigation returns are largely responsible for the progressive increase of the concentration of dissolved solids in the Pecos River between Orla and Girvin.

Water samples collected from Phantom Lake Springs and San Solomon Springs near Toyahvale and from Lake Balmorhea at Balmorhea generally contained more than 2,000 mg/l dissolved solids, 600 mg/l chloride, and 600 mg/l sulfate.

Analyses of samples from Toyah Creek near Pecos and Salt Draw near Pecos show both of these inflows to Toyah Lake to be saline, ranging from about 5,000 to 14,000 mg/l dissolved solids. However, the water of Limpia Creek above and below Fort Davis, is of excellent quality (less than 250 mg/l dissolved solids, 10 mg/l chloride, and 30 mg/l sulfate). The water at the site above Fort Davis is soft to moderately hard; below Fort Davis the water is moderately hard to hard. Water at both sites is of the calcium bicarbonate type.

Toyah Lake overflows infrequently into the Pecos River through lower Toyah Creek. These overflows are usually very saline because of the concentration of the saline inflows by evaporation.

Water from Coyanosa Draw near Fort Stockton, when sampled in 1965 and 1967, contained less than 250 mg/l dissolved solids, 5 mg/l chloride, and 30 mg/l sulfate and was moderately hard or hard. Some of the water from Coyanosa Draw is diverted for irrigation, but most of it goes to ground-water recharge. Therefore, only at times of extreme floods does flow from the draw reach the Pecos River.

Inflow to the middle Pecos River from Live Oak Creek near Old Fort Lancaster was moderately saline (4,610 mg/l dissolved solids) at the time of sampling.

# RELATION OF CHEMICAL QUALITY TO USE

The early studies of the water resources of the western United States dealt heavily on the quantity and not the quality of water. Early irrigation developments on the Pecos River were to a large extent failures because the chemical quality of the water was not considered in the application of irrigation waters. However, during the last few decades, water-quality criteria for specific uses have been established, and water treatment for specific uses has become a science.

## **Domestic Purposes**

Because of differences in individuals, the varying amounts of water they use, and other factors, definition of the safe limits of the mineral constituents in water is difficult. The criteria usually accepted in the United States are those established by the United States Public Health Service. Since 1914, these standards have been used to control the quality of the water used by interstate carriers for drinking and culinary purposes. The widespread use of the standards and technological advances since 1914 have led to a series of revisions, the latest of which was in 1962 (U.S. Public Health Service, 1962). The standards have been accepted by the American Waterworks Association and by most state departments of public health as minimum standards for all public water supplies.

The limits specified by these standards for various constituents are included in the statements under "Significance" in Table 2. Although the recommended limits for dissolved solids, chloride, and sulfate are 500 mg/l, 250 mg/l, and 250 mg/l, respectively, a considerable number of water supplies exceeding these recommended limits have been used for domestic purposes without noticeable adverse effects.

Concentrations of fluoride within a desirable concentration range is beneficial to sound teeth. However, excessive concentrations may cause mottling of teeth enamel. According to the U.S. Public Health Service Drinking Water Standards, the concentration of fluoride should not average more than the appropriate upper limit in the following table:

| ANNUAL AVERAGE<br>OF MAXIMUM<br>DAILY AIR<br>TEMPERATURES (°F)1/ | RECOI<br>LIN | LIC HEALTH SI<br>MMENDED COM<br>NITS (FLUORID<br>NTRATIONS IN<br>OPTIMUM | ITROL<br>E |
|------------------------------------------------------------------|--------------|--------------------------------------------------------------------------|------------|
| 50.0-53.7                                                        | 0.9          | 1.2                                                                      | 1.7        |
| 53.8-58.3                                                        | .8           | 1.1                                                                      | 1.5        |
| 58.4-63.8                                                        | .8           | 1.0                                                                      | 1.3        |
| 63.9-70.6                                                        | .7           | .9                                                                       | 1.2        |
| 70.7-79.2                                                        | .7           | .8                                                                       | 1.0        |
| 79.3-90.5                                                        | .6           | .7                                                                       | .8         |
|                                                                  |              |                                                                          |            |

 $\underline{1}/\operatorname{Based}$  on temperature data obtained for a minimum of 5 years.

On the basis of temperature data for El Paso, Del Rio, and Brownsville, the maximum daily air temperatures average about  $77^{\circ}F$  ( $25^{\circ}C$ ) in the upper Rio Grande basin and about  $83^{\circ}F$  ( $28^{\circ}C$ ) in the middle and lower basin. Thus, the fluoride content of drinking water should not exceed 1.0 mg/l in the upper basin and 0.8 mg/l in the middle and lower basin. The fluoride content of water in the Rio Grande and most of the principal tributaries usually is less than 0.8 mg/l. However, water from several streams or springs including Alamito, Terlingua, and Limpia Creeks, and Phantom Lake and San Solomon Springs often contain more than 1.0 mg/l fluoride.

Most surface waters in the Rio Grande basin are hard or very hard and should be softened if used for domestic purposes.

The concentrations of dissolved solids and sulfate in the Rio Grande upstream from the Rio Conchos usually exceed the limits recommended by the U.S. Public Health Service; the chloride concentration often exceeds the recommended limit. However, the inflow of less mineralized water from the Rio Conchos and other tributaries and springs in the middle reach of the basin reduces the concentrations of dissolved constituents in the main stem. Thus, the concentrations of dissolved solids, chloride, and sulfate in the lower reach of the Rio Grande usually are within the recommended limits.

Water in the Rio Conchos, though of better quality than that in the upstream reach of the Rio Grande, usually contains more than the recommended limits of dissolved solids and sulfate.

Water in the Pecos River and some of its tributaries is more saline than that in the Rio Grande and usually is undesirable for domestic use because of excessive concentrations of dissolved solids, chloride, or sulfate.

The quality of the water in other tributaries to the middle and lower reaches of the Rio Grande generally is superior to that of the Pecos River. The concentrations of dissolved solids, chloride, and sulfate in most of these streams usually are not excessive. However, low flows in Eight Mile, Chacon, Los Olmos, and La Joya Creeks contain more than the recommended limits of dissolved solids, chloride, and sulfate.

Nitrate concentrations in surface waters in the Rio Grande basin usually are considerably less than the 45 mg/l limit recommended by the U.S. Public Health Service. Surface water throughout the basin seldom contains more than 5 mg/l nitrate and often contains less than 1 mg/l.

Although iron determinations usually have not been included in chemical analyses of surface water from the Rio Grande basin, analyses of ground water in the basin (Davis and others, 1965) and analyses of surface waters at selected sites on the Rio Grande and Pecos River indicate that the concentration of iron in surface waters of the basin usually is less than the 0.3 mg/l limit recommended by the U.S. Public Health Service.

#### Industrial Use

The quality requirements for industrial water vary widely (See Table 3). For some purposes such as cooling,

|                                                                                                                                              | 4 GEN-2<br>3 ERAL2                                      | A, B<br>C                                 | :                         | 1               | 1              | с, р<br>с, р               | 00                             | с<br>А,В                                                                           | o                                                                   | <                                                                                  | B        | нт                                                                          |                                                                                           | 1                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | xidized                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|-------------------------------------------|---------------------------|-----------------|----------------|----------------------------|--------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------------------------------------|----------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                              | Na2 <sup>S04</sup><br>T0<br>Na2 <sup>S03</sup><br>RATI0 | ::                                        | 1 to                      | 2 to            | 3 to           | ::                         | 11                             | 1111                                                                               | 11 1                                                                | 111                                                                                | 1        | 111                                                                         | 111                                                                                       | 1                                                                   | ality).<br>300 mg/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | and is o                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                              | CaS04                                                   | ::                                        | 1                         | ł               | ł              | 100-200<br>200-500         | 11                             |                                                                                    |                                                                     | 111                                                                                | ł        | E I. 1                                                                      | 111                                                                                       | 1                                                                   | t-beer qu<br>rrages,<br>ss than                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | pelines                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                              | но                                                      | 11                                        | 50                        | 40              | 30             | 11                         | 11                             | 1111                                                                               |                                                                     | 111                                                                                | ;        | 111                                                                         | 111                                                                                       | 1                                                                   | E dark<br>: beve<br>be le                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ig sgo                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                              | HC03                                                    | ; ;                                       | 50                        | 30              | 5              | 11                         | 11                             | 1111                                                                               | 111                                                                 | 111                                                                                | ;        | 111                                                                         | 111                                                                                       | ł                                                                   | ter of<br>ty for<br>each                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | e, ele                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                              | c03                                                     | 11                                        | 200                       | 100             | 40             | ::                         | ::                             | 1111                                                                               | 11 1                                                                | 111                                                                                | !        | 111                                                                         | 111                                                                                       | 1                                                                   | ng wa<br>factor<br>nould                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | onable                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                              | ы                                                       | 3.1                                       | ł                         | 1               | ł              |                            | 1 -                            | .:::!                                                                              | 11 1                                                                | 111                                                                                | ł        | 111                                                                         | 111                                                                                       | 1                                                                   | mashi<br>satis<br>Na s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | jecti                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                              | ca                                                      | : :                                       | 1                         | ł               | !              | 11                         | 11                             |                                                                                    | :: :                                                                | 1                                                                                  | !        | <b>⊗</b> 11                                                                 | 111                                                                                       | 1                                                                   | skey<br>not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rry ob                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                              | si02                                                    | : :                                       | 05                        | 20              | 5              | 11                         | ; ;                            | ::::                                                                               | 1 1                                                                 | :::                                                                                | ;        | ~25                                                                         | 111                                                                                       | 1                                                                   | ity; whi<br>al water<br>limes.<br>es of Ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | anese ve                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                              | A1203                                                   | ::                                        | 5                         | ÷.              | . 05           | 11                         | ::                             | 1111                                                                               | :: :                                                                | :::                                                                                | 1        | 0.1 I<br>8                                                                  |                                                                                           | י<br>זי                                                             | eer qual<br>municip<br>o form s<br>chlorid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ns. Mang                                                                                                                                                                                                                                                                                                                   |
| us]/<br>ted]                                                                                                                                 | Fe+<br>Mn                                               | 0.5                                       | ł                         | ł               | ;              |                            | .2                             | e 9 9 9                                                                            | .2<br>.2                                                            | 1.0<br>.2<br>.1                                                                    | ۲.       | .05                                                                         | <br>.25<br>1.0                                                                            | .2<br>75 mg                                                         | ght-b<br>tered<br>end t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lutio                                                                                                                                                                                                                                                                                                                      |
| plicatio<br>s Indical                                                                                                                        | Mn                                                      | 0.5                                       | ſ                         | I               | ł              | 1.1                        | .2                             | 22.2                                                                               | .2.02                                                               | .5<br>.1<br>.05                                                                    | .05      | .03                                                                         | .25<br>.25<br>1.0                                                                         | .2<br>-NaCl, 2                                                      | cer of li<br>ality fil<br>uct.<br>Sulfate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | lilute so<br>goods.                                                                                                                                                                                                                                                                                                        |
| trial Ap<br>Except a                                                                                                                         | Fe                                                      | 0.5                                       | :                         | 1               | ł              |                            | .2                             | 22                                                                                 | .2.02                                                               | 1.0<br>.2<br>.1                                                                    | ٦.       | .05                                                                         | .25<br>.25<br>1.0                                                                         | .2<br>ssary; D                                                      | hing wat<br>high qua<br>ky produ<br>acteria,<br>racking.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n from d<br>leather                                                                                                                                                                                                                                                                                                        |
| or Indus<br>r Liter 1                                                                                                                        | Ca                                                      | ::                                        | :                         | ;               | ł              | 100-200<br>200-500         |                                |                                                                                    | :: :                                                                | 111                                                                                | ł        | 111                                                                         | 111                                                                                       |                                                                     | rits mas<br>r. Most<br>ting stic<br>d iron b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | orbs iro<br>des and                                                                                                                                                                                                                                                                                                        |
| rrances f<br>grams Pe                                                                                                                        | TOTAL                                                   | ::                                        | 3,000-                    | 1,000<br>2,500- | 1,500-         | 500<br>1,000               | 11                             | 850                                                                                | 300<br><br>200                                                      | <br>300<br>200                                                                     | 200      | 100                                                                         | 111                                                                                       | er stande                                                           | ioning.<br>n and spi<br>characte<br>ose, caus<br>sulfur ar<br>ists to p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ulose ads<br>ing of hi                                                                                                                                                                                                                                                                                                     |
| ity Tole<br>in Milli                                                                                                                         | Hd                                                      | ; ;                                       | 8.0+                      | 8.5+            | 9.0+           | 6.5-7.0<br>7.0→            | 11                             | 1611                                                                               | ::::                                                                |                                                                                    | ł        | 7.8-8.3                                                                     | 111                                                                                       | king wate                                                           | r condit:<br>wing (gin<br>stent in<br>of sucro<br>such as a<br>CO2 ass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | as cellu<br>in tann                                                                                                                                                                                                                                                                                                        |
| ater-Qual<br>e Limits                                                                                                                        | ALKA-<br>LINITY.<br>(AS<br>CaCO <sub>3</sub> )          | : :                                       | ł                         | ł               | ł              | 75                         | E I                            | 211                                                                                | 30-50                                                               | 111                                                                                | ł        | 50<br>135                                                                   | 111                                                                                       |                                                                     | e for al<br>for bre<br>er consi<br>nversion<br>anisms,<br>h color.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tionable<br>loration                                                                                                                                                                                                                                                                                                       |
| Table 3.—Water-Quality Tolerances for Industrial Applications <sup>J</sup><br>[Allovable Limits in Milligrams Per Liter Except as Indicated] | HARD -<br>NESS                                          | (4)                                       | 75                        | 40              | 8              | 11                         | 25 -75                         | 250<br><br>50                                                                      | 1 201                                                               | 180<br>100<br>100                                                                  | 50       | 8<br>55<br>50-135                                                           | 20<br>20<br>20                                                                            | 20<br>e to Fede                                                     | ansuitabl<br>ements as<br>tion. Wat<br>favors i<br>ol of org<br>o greenis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ron objec<br>and disco                                                                                                                                                                                                                                                                                                     |
| Ta                                                                                                                                           | ODOR                                                    | 11                                        | :                         | ł               | ł              | Low<br>Low                 | Low                            | 0<br>Low<br>Low                                                                    | 111                                                                 |                                                                                    | ł        | :::                                                                         | 111                                                                                       | Low<br>iformance                                                    | e most u<br>require<br>rbonizat<br>w value<br>to contro<br>tends to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | cable. In<br>spots (                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                              | DIS-<br>SOLVED<br>OXYGEN<br>(m1/1)                      | 11                                        | 2                         | .2              | 0              | ::                         | 11                             |                                                                                    | 111                                                                 | 111                                                                                | ţ        | :::                                                                         | 111                                                                                       | <br>on; c-Cor                                                       | e general<br>e general<br>up and cu<br>er, as 16<br>as is alt<br>g(HCO3)2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ure desin<br>ish color<br>y creates<br>0.5 mg/1                                                                                                                                                                                                                                                                            |
|                                                                                                                                              | COLOR<br>+02<br>CON-<br>SUMED                           | ::                                        | 100                       | 50              | 10             | ::                         | 11                             | 1 1 1 1                                                                            |                                                                     |                                                                                    | ł        | 111                                                                         | 111                                                                                       | <br>on, 1950<br>formatio                                            | the sam<br>for syr<br>or greaty<br>cessary<br>esome. Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | temperat<br>ing redd.<br>turbidit<br>alumina                                                                                                                                                                                                                                                                               |
|                                                                                                                                              | COLOR                                                   | 10                                        | 80                        | 40              | 5              | 11                         | 11                             | 1110                                                                               | s   s                                                               | 20<br>15<br>10                                                                     | 5        | 5<br><br>10-100                                                             | 20<br>5-20<br>70                                                                          | 5<br>ussociati<br>No slime                                          | hydrogen<br>.e.<br>nust meet<br>le water<br>! of 7.0<br>ss is ne<br>y troubl.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | cion and<br>ne, caus<br>ese, or<br>residual                                                                                                                                                                                                                                                                                |
|                                                                                                                                              | TUR-<br>BID-<br>ITY                                     | 10                                        | 20                        | 10              | 5              | 10<br>10                   | 10<br>10                       | 2<br>50<br>10                                                                      | 1-5<br><br>2                                                        | 50<br>25<br>15                                                                     | 5        | 5<br>20<br>20                                                               | νν                                                                                        | 5<br>Works A<br>ness; B-1                                           | gae and<br>desirabl<br>illing m<br>s, steri<br>itres pH<br>rosivene<br>tosivene                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | composit<br>/ chlori,<br>, mangan<br>sition;                                                                                                                                                                                                                                                                               |
|                                                                                                                                              | XMISUCIAL                                               | Air Conditioning <sup>3</sup> /<br>Baking | Boiler feed:<br>0+150 psi | 150-250 psi     | 250 psi and up | Brewing:5<br>Light<br>Dark | Canning:<br>Legumes<br>General | Carbonated bev-<br>erages $S_1$<br>Confectionary<br>Cooling $B_1$<br>Food, general | Ice (raw water) 9<br>Laundering<br>Plastics, clear,<br>undercolored | Paper and pulp: 19<br>Groundwood<br>Kraft pulp<br>Soda and sulfite<br>Light paper. | HL-Grade | Rayon (viscose)<br>pulp:<br>Production<br>Manufacture<br>Tanning 1 <u>1</u> | Textiles:<br>General<br>Dyeing 1 <u>2</u><br>Wool scouring <sup>1</sup> 3<br>Cotton band- | agel <u>3</u><br><u>y</u> American Water<br><u>2</u> A-No corrosive | 9 Waters with algae and hydrogen sulfide odors are most unsultable for air conditioning.<br>9 Water for dissilling must meet the same general requirements as for brewing (gin and spirits mashing water of light-beer quality; whiskey mashing water of dark-beer quality).<br>9 Water for dissilling must meet the same general requirements as for brewing (gin and spirits must high there and requires) are not satisfactory for beverages.<br>9 Glear, odorless, sterile water for syrup and carbnization. Water consistent in character, most high quality filtered municipal water not satisfactory for beverages.<br>9 Hard candy requires Hu of 7.0 or greater, as a low value favors inversion of succes, causing sticky product.<br>9 Control of corresiveness is also correol for regainams, such as sulfur and iron bacteria, which tend to form slimes.<br>9 Control of corresiveness is also correol for regainame, such as sulfur and iron bacteria, which tend to form slimes.<br>9 Control of particularly troublesome. Mg(HC03)2 tends to greenish color. CO2 assists to prevent cracking. Sulfates and chlorides of Ca, Mg, Na should each be less than 300 mg/l | (white butts).<br>If Uniformity of composition and temperature desirable. Iron objectionable as cellulose adsorbs iron from dilute solutions. Manganese very objectionable, clogs pipelines and is oxidized<br>to permanganates by chlorine, causing reddish color.<br>If constant composition; residual alumina 0.5 mg/l. |

- 28 -

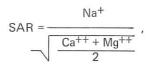
water of almost any quality can be used; for other purposes, such as use in high-pressure boilers, the water must exceed the quality of commercial distilled water.

Excessive hardness of water for industrial supplies is usually objectionable because it causes the formation of scale in boilers, pipes, water heaters, and cooling jackets. When excessive scale forms, heat transfer capacity is lost, flow is restricted, and eventually equipment failure occurs. However, some hardness usually is desirable because it forms a protective coating in pipes and equipment and reduces corrosion.

High dissolved-solids concentrations increase the corrosive properties of water, particularly if chloride is the predominant ion. When both magnesium and chloride concentrations are high, the corrosiveness is increased.

Most surface waters in the Rio Grande basin are hard or very hard and will require softening for some industrial applications.

During some periods, water in the Rio Grande upstream from Fort Quitman is slightly saline. Water in the Pecos River and some of its tributaries are slightly to very saline. Thus, water in these streams is of poor quality for some industrial uses. Water in most of the other streams is suitable for many industrial uses or can be made suitable with a minimum of treatment.


### Irrigation

The suitability of water for irrigation depends primarily on its chemical composition. However, the extent to which chemical quality limits the suitability of a water for irrigation depends on many factors, such as: the nature, composition, and drainage of the soil and subsoil; the amount of water used and the method of application; the control of evaporation; the kind of crops grown; and the climate of the region, including the amounts and distribution of rainfall. Because these factors are highly variable, every method of classifying waters for irrigation is somewhat arbitrary.

According to the U.S. Salinity Laboratory Staff (1954, p. 69), the most important characteristics in determining the quality of irrigation water are: (1) total concentration of soluble salts, (2) relative proportions of sodium to other cations, (3) concentration of boron or other elements that may be toxic, and (4) excess of milliequivalents of bicarbonate over milliequivalents of calcium plus magnesium.

High concentrations of dissolved salts in irrigation water may cause a buildup of salts in the soil solution and may make the soil saline. The increased soil salinity may reduce crop yields drastically by decreasing the ability of the plants to take up water and essential plant nutrients from the soil solution. This tendency of irrigation water to cause a concentration of salts in the soil is called the salinity hazard of the water. The specific conductance of the water is used as an index of the salinity hazard.

High concentrations of sodium relative to the concentrations of calcium and magnesium in irrigation water can adversely affect soil structure. Cations in the soil solution become fixed on the surface of the soil particles; calcium and magnesium tend to flocculate the particles, whereas sodium tends to deflocculate them. This adverse effect on soil structure caused by high sodium concentrations in an irrigation water is called the sodium hazard of the water. An index used for predicting the sodium hazard is the sodium-adsorption ratio (SAR), which is defined by the equation:



where the concentration of the ions are expressed in milliequivalents per liter.

The U.S. Salinity Laboratory Staff (1954) prepared a classification for irrigation waters in terms of salinity and sodium hazards. Empirical equations were used in developing a diagram, reproduced in modified form as Figure 9, which uses SAR and specific conductance in classifying irrigation waters. This classification, although embodying both research and field observations, should be used only for general guidance because many additional factors (such as availability of water for leaching, ratio of applied water to precipitation, and crops grown) affect the suitability of water for irrigation. With respect to salinity and sodium hazards, waters are divided into four classes-low, medium, high, and very high. The classification range encompasses those waters that can be used for irrigation of most crops on most soils as well as those waters that are usually unsuitable for irrigation. Selection of class demarcation is discussed in detail in the publication by the U.S. Salinity Laboratory Staff. Interpretation of the diagram is as follows:

"Low-Salinity Water (C1) can be used for irrigation with most crops on most soils with little likelihood that soil salinity will develop. Some leaching is required, but this occurs under normal irrigation practices except in soils of extremely low permeability."

"Medium-Salinity Water (C2) can be used if a moderate amount of leaching occurs. Plants with moderate salt tolerance can be grown in most cases without special practices for salinity control."

"High-Salinity Water (C3) cannot be used on soils with restricted drainage. Even with adequate drainage, special management for salinity control may be required and plants with good salt tolerance should be selected."

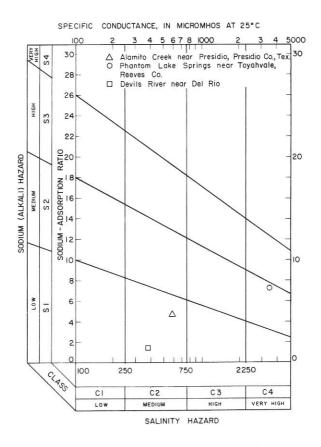



Figure 9.-Classification of Irrigation Waters

"Very High Salinity Water (C4) is not suitable for irrigation under ordinary conditions, but may be used occasionally under very special circumstances. The soils must be permeable, drainage must be adequate, irrigation water must be applied in excess to provide considerable leaching, and very salt-tolerant crops should be selected."

"Low-Sodium Water (S1) can be used for irrigation on almost all soils with little danger of the development of harmful levels of exchangeable sodium. However, sodium-sensitive crops such as stone-fruit trees may accumulate injurious concentrations of sodium."

"Medium-Sodium Water (S2) will present an appreciable sodium hazard in fine-textured soils having high cation-exchange capacity, especially under low-leaching conditions, unless gypsum is present in the soil. This water may be used on coarse-textured or organic soils with good permeability."

"High-Sodium Waters (S3) may produce harmful levels of exchangeable sodium in most soils and will require special soil management—good drainage, high leaching, and organic-matter additions. Gypsiferous soils may not develop harmful levels of exchangeable sodium from such waters. Chemical amendments may be required for replacement of exchangeable sodium, except that amendments may not be feasible with waters of very high salinity."

"Very High Sodium Water (S4) is generally unsatisfactory for irrigation purposes except at low and perhaps medium salinity, where the solution of calcium from the soil or use of gypsum or other amendments may make the use of these waters feasible."

To relate the quality of basin waters to the U.S. Salinity Laboratory Staff's classification for irrigation waters, the sodium and salinity hazards were calculated for key stations with concurrent records from 1960 to 1968.

Data in Table 4 show that the salinity hazard of water throughout the Rio Grande usually is high; whereas the salinity hazard of the Pecos River below Red Bluff Dam near Orla is very high.

The sodium hazard usually ranges from low to medium at the Rio Grande stations but is very high at the Pecos River below Red Bluff Dam near Orla. Thus, the long term use of water from the Rio Grande and Pecos River for irrigation will require special soil management, good drainage, high leaching, and selection of salt-tolerant crops.

Irrigation water from the Devils River near Del Rio and Alamito Creek near Presidio would be classified as having a medium salinity hazard and a low sodium hazard. Water from Phantom Lake Springs near Toyahvale would be classified as having a very high salinity hazard and a medium sodium hazard (Figure 9).

The boron concentrations in samples from the Rio Grande are less than 1 mg/l and usually are less then 0.67 mg/l (Table 5). Thus, the use of the water from the Rio Grande for irrigation presents little likelihood of boron damage. Less tolerant crops might suffer some damage from boron in the El Paso area, but the likelihood of damage in the middle and lower valley is remote because of dilution from rainfall. All samples from the Pecos River at Shumla contained less than 0.33 mg/l boron. Thus, this water can be used on most crops with little likelihood of boron damage.

#### SUMMARY

Surface water in the Rio Grande basin ranges from fresh to very saline. Principal factors that determine the chemical quality include geology and irrigation return flows.

The upper reaches of both the Rio Grande and the Pecos River in Texas traverse deposits of Quaternary age. During fall and winter when the flow consists principally of seepage from the Quaternary deposits and delayed return flow from irrigation, water in the Rio Grande at EI Paso usually contains from 1,000 to 2,000 mg/I

#### Table 4.-Sodium and Salinity Hazards of Monthly Samples at Selected Sites in the Rio Grande Basin, 1960-68

|                                                     | PERCENTAGE OF SAMPLES |          |       |              |                 |        |      |              |  |  |
|-----------------------------------------------------|-----------------------|----------|-------|--------------|-----------------|--------|------|--------------|--|--|
|                                                     | v2                    | SODIUM H | AZARD |              | SALINITY HAZARD |        |      |              |  |  |
| STATION                                             | LOW                   | MEDIUM   | HIGH  | VERY<br>HIGH | LOW             | MEDIUM | HIGH | VERY<br>HIGH |  |  |
| Rio Grande at El Paso, Texas                        | 54                    | 35       | 5     | 6            | 0               | 2      | 62   | 36           |  |  |
| Pecos River below Red Bluff Dam<br>near Orla, Texas | 0                     | 0        | 4     | 96           | 0               | 0      | 0    | 100          |  |  |
| Rio Grande at Laredo, Texas                         | 100                   | 0        | 0     | 0            | 0               | 16     | 84   | 0            |  |  |
| Rio Grande at Anzalduas Dam, Texas                  | 85                    | 15       | 0     | 0            | 0               | 4      | 96   | о            |  |  |

Table 5.—Boron Concentrations in Monthly Samples at Selected Stations in the Rio Grande Basin, 1960-68

|                                | PERCENTAGE OF SAMPLES |               |             |  |  |  |  |  |
|--------------------------------|-----------------------|---------------|-------------|--|--|--|--|--|
| CONCENTRATION OF               | RIO GRANDE            | RIO GRANDE AT | PECOS RIVER |  |  |  |  |  |
| BORON IN MG/L                  | AT EL PASO            | ANZALDUAS DAM | AT SHUMLA   |  |  |  |  |  |
| More than 0.33                 | 68                    | 43            | 99          |  |  |  |  |  |
| More than 0.33; less than 0.67 | 26                    | 53            | 1           |  |  |  |  |  |
| More than 0.67; less than 1.00 | 6                     | 4             | 0           |  |  |  |  |  |

dissolved solids. During the spring and summer when water is released from reservoirs in New Mexico, the dissolved-solids concentrations usually range from 600 to 700 mg/l. The water is very hard. The principal cation in the water is sodium; the principal anion usually is sulfate, but in some of the more highly mineralized water, the percentage of chloride increases. The discharge-weighted average concentrations of dissolved solids, chloride, and sulfate in the Rio Grande at El Paso during the 1930-68 period of record were about 800 mg/l, 130 mg/l, and 263 mg/l, respectively.

Most of the water that passes the EI Paso station is diverted for irrigation and municipal use. Return flows from irrigation cause an increase in the salinity downstream from the diversion sites. When a substantial part of the annual flow of the Rio Grande at Fort Quitman is irrigation return flow, the annual discharge-weighted average concentrations of dissolved solids usually range from 1,000 to 3,000 mg/l. During 1956, 1957, and 1965 when most of the water consisted of local runoff downstream from the irrigated areas, the discharge-weighted average concentrations of dissolved solids for the Rio Grande at Fort Quitman were 375 mg/I, 294 mg/I, and 375 mg/I, respectively. Water passing the Fort Quitman station usually is very hard, but the principal chemical constituents vary. Waters of low mineralization usually are of the calcium bicarbonate type; highly mineralized waters usually are of the sodium chloride type.

Water in the upper reach of the Pecos River in Texas, which traverses deposits of Quaternary age,

usually is moderately or very saline, very hard, and of the sodium chloride type. During the period from 1961 to 1968, the discharge-weighted average concentrations of dissolved solids, chloride, and sulfate for the Pecos River below Red Bluff Dam near Orla were 7,770 mg/l, 3,080 mg/l, and 1,880 mg/l, respectively. Evaporation, irrigation returns, and the inflow of highly mineralized ground water cause an increase in the concentrations of dissolved solids in the reach of the Pecos River between the stations near Orla and at Girvin. However, inflow downstream from this reach usually results in a reduction of dissolved solids and chloride. During the 1961-68 period, the discharge-weighted average concentrations of dissolved solids, chloride, and sulfate for the Pecos River at Shumla were 1,600 mg/l, 572 mg/l, and 324 mg/l, respectively.

Extensive deposits of Tertiary age crop out in the upper, middle, and lower reaches of the Mexican side of the Rio Grande basin and in the lower reach of the Texas side. Water in the Rio Conchos, the principal tributary that traverses rocks of Tertiary age on the Mexican side of the basin, usually is fresh, very hard, and sodium calcium sulfate type. The of the discharge-weighted average concentrations of dissolved solids, chloride, and sulfate for the Rio Conchos near Ojinaga during the period from 1950 to 1968 were 728 mg/I, 61 mg/I, and 291 mg/I. The Rio Conchos contributes more than one-half million acre-feet of water a year to the Rio Grande. Thus, the quality of water in the Rio Grande downstream from the Rio Conchos is very similar to that of the Rio Conchos. During the period from 1950 to 1968, the discharge-weighted

average concentrations for the Rio Grande at Johnson Ranch near Castolon, 100 miles downstream from the Rio Conchos, were: dissolved solids, 728 mg/l; chloride, 62 mg/l; and sulfate, 290 mg/l.

Much of the middle reach of the Rio Grande basin is underlain by rocks of Cretaceous age. Streams that traverse these outcrops include Devils River, San Felipe Creek, Rio San Diego, and Rio San Rodrigo. Water in the streams usually is fresh, hard, and of the calcium bicarbonate type.

Water from these streams and inflow from springs reduce the concentrations of dissolved solids and variations of chemical quality of water in the middle reach of the Rio Grande. During the 1956-68 period, the discharge-weighted concentrations of dissolved solids, chloride, and sulfate for the Rio Grande at Laredo were 485 mg/I, 81 mg/I, and 148 mg/I, respectively.

Flow of the lower Rio Grande is impounded in International Falcon Reservoir. Releases from International Falcon Reservoir provide most of the water for irrigation and municipal and industrial supplies in the Lower Rio Grande Valley. During the period from 1956 to 1968, the discharge-weighted average concentrations of dissolved solids, chloride, and sulfate for the Rio Grande below Falcon Dam were 493 mg/l, 84 mg/l, and 150 mg/l, respectively. Return flows from irrigation and other saline inflows have increased the concentrations of dissolved constituents in the lower Rio Grande, and during the 1959-68 period, the discharge-weighted average concentration of dissolved solids at Anzalduas Dam was 684 mg/l.

The concentrations of dissolved solids and sulfate in the Rio Grande upstream from the Rio Conchos usually exceed the U.S. Public Health Service recommended limits for drinking water. However, the inflow of less mineralized water from the Rio Conchos and other tributaries and springs in the middle reach of the basin reduces the concentrations of dissolved constituents. Thus, the concentrations of dissolved solids, chloride, and sulfate are within the recommended limits from the confluence with the Rio Conchos to the vicinity of Rio Grande City, where saline drains reach the Rio Grande.

Water in the Pecos River and some of its tributaries usually is undesirable for domestic use because of excessive concentrations of dissolved solids, chloride, and sulfate. The quality of the water in other tributaries to the middle and lower reaches of the Rio Grande generally is superior to that of the Pecos River. The concentrations of dissolved solids, chloride, and sulfate in these tributaries usually are not excessive for domestic use.

Nitrate concentrations in surface waters in the Rio Grande basin usually are considerably less than the 45 mg/l limit recommended by the U.S. Public Health Service. The fluoride content of the Rio Grande and most of the principal tributaries usually is less than 0.8 mg/l.

Most surface waters in the basin are hard or very hard and will require softening for some industrial applications. During some periods, water in the Rio Grande upstream from Fort Quitman is slightly saline. Water in the Pecos River and some of its tributaries are slightly to very saline. Thus, water in these streams is of poor quality for some industrial uses. Water in most of the other streams is suitable for many industrial uses.

The principal use of surface water in the Rio Grande basin is irrigation. The salinity hazard of water throughout the Rio Grande usually is high; that of the Pecos River below Red Bluff Dam is very high. The sodium hazard of water in the Rio Grande usually ranges from low to medium; that of the Pecos River usually is very high. Thus, the long-term use of water from the Rio Grande and Pecos River for irrigation will require special soil management, good drainage, high leaching, and selection of salt-tolerant crops.

- American Water Works Association, 1950, Water quality and treatment: Am. Water Works Assoc. Manual, 2d ed., tables 3-4, p. 66-67.
- Blakey, J. F., and Kunze, H. L., 1971, Reconnaissance of the chemical quality of surface waters of the coastal basins of Texas: Texas Water Devel. Board Rept. 130, 49 p., 15 figs.
- Carr, J. T., Jr., 1967, The climate and physiography of Texas: Texas Water Devel. Board Rept. 53, 27 p., 8 figs.
- Comité de la Carta Geológica de México, 1968, Carta geológica de la República Mexicana: Ciudad Universitaria, México, D. F., México, 1 sheet.
- Davis, M. E., and others, 1965, Reconnaissance investigations of the ground-water resources of the Rio Grande basin, Texas: Texas Water Comm. Bull. 6502, 213 p.
- Dowell, C. L., and Breeding, S. D., 1967, Dams and reservoirs in Texas, historical and descriptive information, December 31, 1966: Texas Water Devel. Board Rept. 48, 267 p., 1 pl.
- Fenneman, N. M., 1931, Physiography of western United States: New York, McGraw-Hill Book Co., 534 p.
- Gillett, P. T., and Janca, I. G., 1965, Inventory of Texas irrigation 1958 and 1964: Texas Water Comm. Bull. 6515, 317 p., 6 pls.
- Grozier, R. U., Albert, H. W., Blakey, J. F., and Hembree, C. H., 1966, Water-delivery and low-flow studies, Pecos River, Texas, quantity and quality, 1964 and 1965: Texas Water Devel. Board Rept. 22, 21 p., 6 figs., 2 pls.
- Grozier, R. U., Hejl, H. R., Jr., and Hembree, C. H., 1968, Water-delivery study, Pecos River, Texas, quantity and quality, 1967: Texas Water Devel. Board Rept. 76, 16 p., 6 figs.
- Hughes, L. S., and Leifeste, D. K., 1965, Reconnaissance of the chemical quality of surface waters of the Sabine River basin, Texas and Louisiana: U.S. Geol. Survey Water-Supply Paper 1809-H, 71 p., 14 figs., 1 pl.
- \_\_\_\_\_1967, Reconnaissance of the chemical quality of surface waters of the Neches River basin, Texas: U.S. Geol. Survey Water-Supply Paper 1839-A, 63 p., 9 figs., 4 pls.

- Hughes, L. S., and Rawson, Jack, 1966, Reconnaissance of the chemical quality of surface waters of the San Jacinto River basin, Texas: Texas Water Devel. Board Rept. 13, 45 p., 11 figs., 2 pls.
- Kunze, H. L., 1969, Reconnaissance of the chemical quality of surface waters of the Lavaca River basin, Texas: Texas Water Devel. Board Rept. 92, 23 p., 9 figs.
- —\_\_\_\_1971, Reconnaissance of the chemical quality of surface waters of the Nueces River basin, Texas: Texas Water Devel. Board Rept. 134, 34 p., 8 figs.
- Kunze, H. L., and Lee, J. N., 1967, Reconnaissance of the chemical quality of surface waters of the Canadian River basin, Texas: Texas Water Devel. Board Rept. 68, 29 p., 9 figs.
- Kunze, H. L., and Rawson, Jack, 1970, Water-quality records for Red Bluff Reservoir, Texas and New Mexico, October 1965-August 1968: U.S. Geological Survey open-file rept., 21 p., 1 fig.
- Leifeste, D. K., 1968, Reconnaissance of the chemical quality of surface waters of the Sulphur River and Cypress Creek basins, Texas: Texas Water Devel. Board Rept. 87, 34 p., 13 figs.
- Leifeste, D. K., Blakey, J. F., and Hughes, L. S., 1971, Reconnaissance of the chemical quality of surface waters of the Red River basin, Texas: Texas Water Devel. Board Rept. 129, 72 p., 14 figs.
- Leifeste, D. K., and Hughes, L. S., 1967, Reconnaissance of the chemical quality of surface waters of the Trinity River basin, Texas: Texas Water Devel. Board Rept. 67, 65 p., 12 figs.
- Leifeste, D. K., and Lansford, M. W., 1968, Reconnaissance of the chemical quality of surface waters of the Colorado River basin, Texas: Texas Water Devel. Board Rept. 71, 82 p., 13 figs.
- Maier, F. J., 1950, Fluoridation of public water supplies: Jour. Am. Water Works Assoc., v. 42, pt. 1, p. 1120-1132.
- Maxwell, R. A., and others, 1967, Geology of Big Bend National Park, Brewster County, Texas: Univ. Texas Pub. 6711, 320 p., 152 figs., 11 pls.
- National Resources Planning Board, 1942, Pecos River Joint Investigation-Reports of the participating agencies: Washington, U.S. Govt. Printing Office, 407 p.

- Oetking, P. F., and Feray, D. E. [compilers], 1963, Geologic Highway Map of Texas: Dallas Geol. Soc. map, Dallas, Texas.
- Rawson, Jack, 1967, Study and interpretation of chemical quality of surface waters in the Brazos River basin, Texas: Texas Water Devel. Board Rept. 55, 113 p., 10 figs.
- \_\_\_\_\_1968, Reconnaissance of the chemical quality of surface waters of the Guadalupe River basin, Texas: Texas Water Devel. Board Rept. 88, 38 p., 11 figs.
- \_\_\_\_\_1969, Reconnaissance of chemical quality of surface waters of the San Antonio River basin, Texas: Texas Water Devel. Board Rept. 93, 26 p., 9 figs.
- Spiers, V. L., and Hejl, H. R., Jr., 1970, Quantity and quality of low flow in the Pecos River below Girvin, Texas, February 6-9, 1968: Texas Water Devel. Board Rept. 107, 13 p., 2 figs.
- Stiff, H. A., Jr., 1951, The interpretation of chemical water analysis by means of patterns: Jour. of Petroleum Technology, Oct., p. 15.
- Texas Board of Water Engineers, 1958, Compilation of surface water records in Texas through September 1967: Texas Board Water Engineers Bull. 5807-A, 503 p., 4 pls.
- Texas Water Development Board, 1968, The Texas Water Plan: Texas Water Devel. Board planning rept., 228 p., 37 figs., 4 pls.
- Thornthwaite, C. W., 1952, Evapotranspiration in the hydrologic cycle, *in* The physical basis of water supply and its principal uses, v. 2 of The Physical and Economic Foundation of Natural Resources: U.S. Cong., House Comm. on Interior and Insular Affairs, p. 25-35.
- U.S. Geological Survey, 1960, Compilation of records of surface waters of the United States through September 1950, Part 8, Western Gulf of Mexico basins: U.S. Geol. Survey Water-Supply Paper 1312, 633 p., 2 figs., 1 pl.
- \_\_\_\_\_1964a, Compilation of records of surface waters of the United States, October 1950 to September 1960, Part 8, Western Gulf of Mexico basins: U.S. Geol. Survey Water-Supply Paper 1732, 574 p., 2 figs., 1 pl.

- U.S. Geological Survey, 1964b, Surface water records of Texas, 1964: U.S. Geol. Survey open-file rept.
  - \_\_\_\_1964c, Water quality records in Texas, 1964: U.S. Geol. Survey open-file rept.
- \_\_\_\_\_1965a, Water resources data for Texas, 1965, Part 1, Surface water records: U.S. Geol. Survey open-file rept.
- \_\_\_\_\_1965b, Water resources data for Texas, 1965, Part 2, Water quality records: U.S. Geol. Survey open-file rept.
- \_\_\_\_1966a, Water resources data for Texas, 1966, Part 1, Surface water records: U.S. Geol. Survey open-file rept.
- \_\_\_\_\_1966b, Water resources data for Texas, 1966, Part 2, Water quality records: U.S. Geol. Survey open-file rept.
- \_\_\_\_\_1967a, Water resources data for Texas, 1967, Part 1, Surface water records: U.S. Geol. Survey open-file rept.
- \_\_\_\_\_1967b, Water resources data for Texas, 1967, Part 2, Water quality records: U.S. Geol. Survey open-file rept.
- \_\_\_\_\_1968, Water resources data for Texas, 1968, Part 1, Surface water records: U.S. Geol. Survey open-file rept.
- U.S. Public Health Service, 1962, Drinking water standards, 1962: U.S. Public Health Service Pub. 956, 61 p.
- U.S. Salinity Laboratory Staff, 1954, Diagnosis and improvement of saline and alkali soils: U.S. Dept. of Agriculture Handb. 60, 160 p.
- Vlissides, S. D., 1964, Oil and gas investigations: U.S. Geol. Survey Map OM-214.
- Wood, L. A., Gabrysch, R. K., and Marvin, Richard, 1963, Reconnaissance investigation of the ground-water resources of the Gulf Coast region, Texas: Texas Water Comm. Bull. 6305, 114 p., 18 figs., 15 pls.

### Quality-of-Water Records for the Rio Grande Basin Are Published in the Following Texas Water Development Board Reports (Including Reports Formerly Published by the Texas Water Commission and Texas Board of Water Engineers) and U.S. Geological Survey Water-Supply Papers:

| WATER YEAR | U.S.G.S.<br>WATER-SUPPLY<br>PAPER NO. | T.W.D.B. REPORT NO. | WATER YEAR | U.S.G.S.<br>WATER-SUPPLY<br>PAPER NO. | T.W.D.B. REPORT NO |
|------------|---------------------------------------|---------------------|------------|---------------------------------------|--------------------|
| 1942       | 950                                   | * 1938-45           | 1953       | 1292                                  | *1953              |
| 1943       | 970                                   | * 1938-45           | 1954       | 1352                                  | *1954              |
| 1944       | 1022                                  | * 1938-45           | 1955       | 1402                                  | * 1955             |
| 1945       | 1030                                  | *1938-45            | 1956       | 1452                                  | Bull. 5905         |
| 1946       | 1050                                  | * 1946              | 1957       | 1522                                  | Bull. 5915         |
| 1947       | 1102                                  | *1947               | 1958       | 1573                                  | Bull. 6104         |
| 1948       | 1133                                  | * 1948              | 1959       | 1644                                  | Bull. 6205         |
| 1949       | 1163                                  | * 1949              | 1960       | 1744                                  | Bull. 6215         |
| 1950       | 1188                                  | * 1950              | 1961       | 1884                                  | Bull. 6304         |
| 1951       | 1199                                  | * 1951              | 1962       | 1944                                  | Bull. 6501         |
| 1952       | 1252                                  | * 1952              | 1963       | 1950                                  | Report 7           |

\* "Chemical Composition of Texas Surface Waters" was designated only by water year from 1938 through 1955.

|                     |                                                                                                  | n-of-more        |                                      |                                | TYPE AN                      | TYPE AND PERIOD OF RECORD          |   |                                       |                      |
|---------------------|--------------------------------------------------------------------------------------------------|------------------|--------------------------------------|--------------------------------|------------------------------|------------------------------------|---|---------------------------------------|----------------------|
| Reference<br>number | Stream and location                                                                              | Drainage<br>area | Daily or monthly<br>chemical quality | Daily or monthly<br>discharge  | Periodic<br>chemical quality | Periodic discharge<br>measuroments | ≃ | eservoir Water<br>content temperature | Gage heights<br>only |
| 8-3625              | Rio Grande below Cuballo Dum, New Mexico                                                         |                  | 1939, 1940-50                        | 1938-68                        |                              |                                    |   |                                       |                      |
| 8-3635              | Rio Grande at Leasburg Dum, New Mexico                                                           |                  | 1939, 1940-50                        | ł                              |                              | 1920                               |   |                                       |                      |
| 8-3639              | Rio Grande near Canutillo, Texas                                                                 |                  | ł                                    | 1                              | 1967                         |                                    |   |                                       |                      |
| 8-3640              | Rio Grande at El Paso, Texas                                                                     | 29,267           | 1924-68                              | 1889-1968                      | 1962                         |                                    |   |                                       |                      |
| 8-3645              | Diversions from the Rio Grande-American Canal at<br>El Paso, Texas                               |                  |                                      | 1938-68                        |                              |                                    |   |                                       |                      |
| 8-3650              | Rio Grande below American Dam at El Paso, Texas                                                  | 29,271           |                                      | 1938-68                        |                              |                                    |   |                                       |                      |
| 8-3655              | Diversions from the Rio Grande Acequia Madre at<br>Juarez, Chihuahua, Mexico                     | 1                |                                      | 1938-68                        |                              |                                    |   |                                       |                      |
| 8-3655.5            | Franklin Canal at El Paso, Texas                                                                 |                  |                                      | 1943-68                        |                              |                                    |   |                                       |                      |
| 8-3656              | McKelligon Canyon at El Paso, Texas                                                              | 2.3              |                                      | 1958-68                        |                              |                                    |   |                                       |                      |
| 8-3657              | Inlet to Fort Bliss sump area at El Paso, Texas                                                  | 3.5              |                                      | 1958-61                        |                              |                                    |   |                                       |                      |
| 8-3658              | Government ditch at El Paso, Texas                                                               | 6.4              |                                      | 1958-68                        |                              |                                    |   |                                       |                      |
| 8-3660              | Rio Grande at Ciudad Juarez, Chihuahua, Mexico                                                   | 29,350           |                                      | 1938-56                        |                              |                                    |   |                                       |                      |
| 8-3664              | Riverside Canal near Socorro, Texas                                                              |                  |                                      | 00-076T                        |                              |                                    |   |                                       |                      |
| 8-3665              | Rio Grande-Island station near El Paso, "exas                                                    | 29,951           |                                      | 1938-68                        |                              |                                    |   |                                       |                      |
| 8-3670<br>8-3680    | Rio Grande at Tornillo Bridge, near Fabens, Texas<br>Tornillo Drain at mouth, at Tornillo, Texés | 1                | CC61-6761                            | 1923-68                        | CC 67                        |                                    |   |                                       |                      |
|                     |                                                                                                  |                  |                                      | 27 DODE                        |                              |                                    |   |                                       |                      |
| 8-3683              | Tornillo Canal near Tornillo, Texas                                                              |                  |                                      | /+-076T                        |                              |                                    |   |                                       |                      |
| 8-3689              | Hudspeth Feeder Ganal near Tornillo, Texas                                                       |                  |                                      | 1947-68                        |                              |                                    |   |                                       |                      |
| 8-3695              | Rio Grande-County Line station near El Paso, Texas                                               | 30,610           |                                      | 1938-68                        |                              |                                    |   |                                       |                      |
| 8-3700              |                                                                                                  | I                |                                      | 1900-03                        |                              |                                    |   |                                       |                      |
| 8-3705              | Rio Grande at Fort Quitman, Texas                                                                | 32,035           | 1928-68                              | 1889-1968                      |                              | 1000 1000                          |   |                                       |                      |
| 8-3708              | Wildhorse Creek near Van Horn, Texas                                                             | 1                |                                      |                                | 0061                         | DOLT DOLT                          |   |                                       |                      |
| 8-3710              | Rio Grande at La Nutria, Texas                                                                   | 33,672           | 1930, 193/-41                        | 1933-41                        |                              |                                    |   |                                       |                      |
| 8-3715              | Rio Grande above Rio Conchos near Presidio, Texas<br>(Rio Grande at Upper Presidio)              | 34,988           | 80-0641 (CC41                        | 1900-14, 1919-20,<br>1923-1968 |                              |                                    |   |                                       |                      |
| 8-3725              | Rio Conchos at Cuchillo Parado, Chihuahua, Mexico                                                | 28,147           | 1946, 1947-54                        | 1945-55                        |                              |                                    |   |                                       |                      |
| 8-3730              | Rio Conchos near Ojinaga, Chihuahua, Mexico                                                      | 29,267           | 1935, 1936-68                        | 1896-1968                      |                              |                                    |   |                                       |                      |
| 8-3735              | Rio Grande above Fresidio, Texas<br>(Lower Presidio station)                                     | 64,285           |                                      | 1900-15<br>1923-54             |                              |                                    |   |                                       |                      |
| 8-3740              | Alamito Creek near Presidio, Texas                                                               | 1,504            | 1935, 1936                           | 1932-68                        | 1967, 1968                   |                                    |   |                                       |                      |
| 8-3742              | Rio Grande below Rio Conchos near Presidio, Texas<br>(Presidio, Texas lower Presidio station)    | 66,203           |                                      | 1896-1968                      |                              |                                    |   |                                       |                      |
| 8=3745              | Terlingua Greek near Terlingua, Texas                                                            | 1,070            | 1935, 1947<br>1948-49                | 1932-68                        | 1967, 1968                   |                                    |   |                                       |                      |
| 8-3750              | Río Grande at Johnson Ranch near Castolon, Texas<br>(Río Grande at Johnson Ranch)                | 70,715           | 1948-68                              | 1936-68                        | 1962                         |                                    |   |                                       |                      |
| 8-3755              | Rio Grande at Boquillas station, Texas                                                           | 75,954           |                                      | 1928-36                        |                              |                                    |   |                                       |                      |
| 8=3765              | Rio Grande at Agua Verde station, Texas                                                          | 82,232           |                                      | 1947-48<br>1950<br>1952-56     |                              |                                    |   |                                       |                      |
| 8=3770              | Lozier Greek near Langtry, Texas                                                                 | 1,728            |                                      | 1932-35                        |                              |                                    |   |                                       |                      |
| 8-3772              |                                                                                                  | ł                |                                      | 1961-68                        |                              |                                    |   |                                       |                      |
| 8=3775              | Rio Grande at Langtry, Texas                                                                     | 84,795           | 1944, 1945-68                        | 1900-14<br>1919-20<br>1924-68  | 1952                         |                                    |   |                                       |                      |
| 8-4075              | Pecos River near Red Bluff, New Mexico                                                           | 19,540           | 1937-68                              | 1937-68                        |                              |                                    |   |                                       |                      |
| 8-4085              | Delaware River near Red Bluff, New Mexico                                                        | 689              |                                      | 1912-15<br>1937-68             | 1947, 1966                   |                                    |   |                                       |                      |
|                     |                                                                                                  |                  |                                      |                                |                              |                                    |   |                                       |                      |

Table 6 .--Summary index of surface-water records in the Rio Grande basin in Texas and adjacent areas of New Mexico and Mexico

Table 6.--Summary index of surface-water records in the Rio Grande basin in Texas and adjacent areas of New Mexico and Mexico-Continued

r

|         |                                                                                                                                                             |                  |                                      |                                            | TYPE AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TYPE AND PERIOD OF RECORD          |                      |                      |                      |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|----------------------|----------------------|----------------------|
| number  | Streams and location                                                                                                                                        | Drainage<br>area | Daily or monthly<br>chemical quality | Daily or monthly<br>discharge              | Periodic<br>chemical quality                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Periodic discharge<br>measurements | Reservoir<br>content | Water<br>temperature | Gage heights<br>only |
| 8-4095  | Pecos River near Angeles, Texas                                                                                                                             | 20,540           |                                      | 1914-37                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                      |                      |                      |
| 8-4100  | Red Bluff Reservoir near Orla, Texas                                                                                                                        | 20,720           |                                      |                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    | 1937-68              |                      |                      |
| 8-4101  | Pecos River below Red Bluff Dam, near Orla, Texas                                                                                                           | 20,720           | 1953-68                              | ł                                          | 1947-48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                    |                      | 1953-68              | 1953-68              |
| 8-4115  | Salt (Screwbean) Draw near Orla, Texas                                                                                                                      | 464              |                                      | 1939-40                                    | 1938, 1939, 1940, 1941, 1943, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944, 1944 |                                    |                      |                      | 1957-60              |
| 8-4125  | Pecos River near Orla, Texas                                                                                                                                | 21,300           |                                      | 1937-68                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                      |                      |                      |
| 8-4140  | Pecos River near Porterville (Mentone), Texas                                                                                                               | 21,600           | 1937-41, 1947-52                     | 1922-26                                    | 1968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |                      |                      |                      |
| 8-4145  | Reeves County Water Improvement District No. 2 Canal<br>near Mentone, Texas (Published as "Farmara<br>Independent Canal near Porterville" 1922-25)          | ł                |                                      | 1922-25<br>1939-57<br>1964-68              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                      |                      |                      |
| 8-4150. | Ward County Water Improvement District No. 3 Canal near Barstow, Texas                                                                                      | ł                |                                      | 1939-57<br>1964-68                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                      |                      |                      |
| 8-4165  | Pecos River (above canal) above Barstow, Texas                                                                                                              | 21,800           |                                      | 1916-21                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                      |                      |                      |
| 8-4180  | Ward County Irrigation District No. 1 Canal near<br>Barstow, Texas (Published as "Barstow Canal near<br>Barstow" 1922-25)                                   | I                |                                      | 1922-25<br>1939-57<br>1964-68              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                      |                      |                      |
| 8-4205  | Pecos River at Pecos, Texas                                                                                                                                 | 22,100           | 1939-41                              | 1899-1907<br>1914-15<br>1922-26<br>1939-54 | 1939, 1940, 1941<br>1946, 1947                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 17                                 |                      |                      | 1898                 |
| 8-4245  | Madera Canyon near Toyahvale, Texas                                                                                                                         | 53.8             | 28                                   | 1932-49                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                      |                      |                      |
| 8-4255  | Phantom Lake Spring near Toyahvale, Texas                                                                                                                   | ł                |                                      | 1942-66                                    | 1950, 1967                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1966-68                            |                      | 1948~68              |                      |
| 8-4270  | Griffin Springs at Toyahvale, Texas                                                                                                                         | ł                |                                      | 1931-33<br>1941-65                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1919, 1921-25<br>1966-68           |                      |                      |                      |
| 8-4275  | San Solomon Springs at Toyahvale, Texas                                                                                                                     | 1                |                                      | 1931-33<br>1941-65                         | 1950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1965-68                            |                      | 1950-68              |                      |
| 8-4305  | Lake Balmorhea at Balmorhea, Texas                                                                                                                          |                  |                                      |                                            | 1950                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |                      |                      |                      |
| 8-4310  | Toyah Creek near Pecos, Texas                                                                                                                               | 1,024            | 1939-40<br>1943-44                   | 1939-40                                    | 1939-40, 1943-44<br>1947                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1932                               |                      |                      |                      |
| 8-4315  | Sult Draw near Pecos, Texas                                                                                                                                 | 1,882            | 1939-40<br>1943-44                   | 1939-40<br>1943-45                         | 1947                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                    |                      |                      |                      |
| 8-4317  | Limpia Creek above Fort Davis, Texas                                                                                                                        | 52.4             |                                      | 1965-68                                    | 1966,1967, 1968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                      |                      |                      |
| 8-4318  | Limpia Creek below Fort Davis, Texas                                                                                                                        | 227              |                                      | 1961-68                                    | 1965, 1967                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |                      | 1963-65              |                      |
| 8-4320  | Limpia Creek near Fort Davis, Texas                                                                                                                         | 303              |                                      | 1925-32                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                      |                      |                      |
| 8-4330  | Barilla Creek near Saragosa, Texns                                                                                                                          | 612              |                                      | 1924-26<br>1932                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                      |                      |                      |
| 8-4340  | Toyah below Toyah Lake near Pecos, Texas                                                                                                                    | 3,709            | 1940-41                              | 1939-51                                    | 1948, 1949                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |                      |                      |                      |
| 8-4350  | Grandfalls-Big Valley Ganal near Barstow, Texas                                                                                                             |                  | 1944                                 | 1922-25<br>1939-57<br>1964-68              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                      |                      |                      |
| 8=4355  | Pecos River below Barstow, Texas                                                                                                                            | 25,980           |                                      | 1939-41                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                      |                      |                      |
| 8-4358  | Coyanosa Draw near Fort Stockton, Texas                                                                                                                     | 1,182            |                                      | 1964-68                                    | 1965, 1967                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                    |                      |                      |                      |
| 8-4365  | Pecos County Water Improvement District No. 2 (Upper<br>diversion) Canal near Grandfalls, Texas (Published<br>as "Importal High-line Canal near Grandfalls" | ł                |                                      | 1922-25<br>1939-57<br>1964-68              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                    |                      |                      |                      |

- 37 -

|                     |                                                                                                           | Destand |                                      |                                          | TYPE AN                      | TYPE AND PERIOD OF RECORD          |                      |                      |                      |
|---------------------|-----------------------------------------------------------------------------------------------------------|---------|--------------------------------------|------------------------------------------|------------------------------|------------------------------------|----------------------|----------------------|----------------------|
| keterence<br>number | Stream and location                                                                                       | атеа    | Daily or monthly<br>chemical quality | Duily or monthly<br>discharge            | Periodic<br>chemical quality | Periodic discharge<br>measurements | Reservoir<br>content | Water<br>temperature | Gage heights<br>only |
| 8-4375              | Pacos County Mater Improvement District No. 2 Canal<br>near Importal, Texas                               | i.      |                                      | 1940-57<br>1964-68                       |                              |                                    |                      |                      |                      |
| 8-4376              | Pecos County Water Improvement District No. 3 Canal<br>near Imperial, Texas                               | 1       |                                      | 1940-57<br>1964-68                       |                              |                                    |                      |                      |                      |
| 8-4377              |                                                                                                           | 1       |                                      | 1939-57                                  |                              |                                    |                      |                      |                      |
| 8-4381              | Pecos River near Grandfalls, Texas                                                                        | 27,810  |                                      | 1916-26                                  |                              |                                    |                      |                      |                      |
| 8-4415              | Pecos River below Grandfalls, Texas                                                                       | 27,820  | 1939, 1940-42<br>1946-56             | 1922-26<br>1939-56                       |                              |                                    |                      |                      |                      |
| 8-4445              | Comunche Springs at Fart Stockton, Texas                                                                  | 1       |                                      | 1935-64                                  |                              | 1899-1935<br>1964-1968             |                      |                      |                      |
| 8-4465              | Pecos River near Girvin, Toxas                                                                            | 29,560  | 1939-41<br>1945-47<br>1953-68        | 1939-68                                  |                              |                                    |                      | 1953-59<br>1964-68   |                      |
| 8-4470              | Pecces River near Sheffield, Texas                                                                        | 31,660  | 1939-41<br>1946-47                   | 1921-25<br>1939-49                       |                              |                                    |                      |                      |                      |
| 8-4473              | Pecos River near Pandale, Texas                                                                           |         |                                      |                                          | 1966                         |                                    |                      |                      |                      |
| 8-4474              | Pecos River near Shumla, Toxas                                                                            | 35,162  | 1954-68                              | 1954-67                                  |                              |                                    |                      |                      |                      |
| 8-4474.1            | Pecos River near Langtry                                                                                  |         | 1967-68                              |                                          |                              |                                    |                      |                      |                      |
| 8-4475              | Pecos River near Comstock, Texas                                                                          | 35,293  | 1935, 1936-54                        | 1898<br>1900-54                          | 1952                         |                                    |                      |                      |                      |
| 8-4477              | Pecos River at mouth near Comstock, Texas                                                                 | 3       |                                      | 1961-68                                  |                              |                                    |                      |                      |                      |
| 8-4485              |                                                                                                           | ;       | 1.946-49                             | 1924-68                                  | 1967, 1968                   |                                    |                      |                      |                      |
| 8-4490              | Devils River near Juno, Texas                                                                             | 2,733   |                                      | 1925-49<br>1964-68                       | 1964, 1967, 1968             | 1952-64                            |                      | 1949-68              |                      |
| 8-4491              | Dolan Springs near Loma Alta, Texas                                                                       |         |                                      | 1966-68                                  |                              |                                    |                      |                      |                      |
| 8-4493              | Upper Devils River station near Comstock, Texas                                                           | 3,903   |                                      | 1954-58                                  |                              |                                    |                      |                      |                      |
| 8-4494              | Devils River at Pafford Grossing near Comstock, Texam<br>(Above head of Devils Branch, Amistad Reservoir) | 1       |                                      | 1960-68                                  | 1967, 1968                   |                                    |                      |                      |                      |
| 8-4494.8            | Lake Walk near Del Rio, Texas                                                                             | ł       |                                      | 1952, 1958, 1962-63                      | 1962-63                      |                                    |                      |                      |                      |
| 8-4495              | Devils River near Del Rio, Texas                                                                          | 4,185   |                                      | 1900-14<br>1923-1957                     | 1930-31, 1935-36<br>1944     |                                    |                      |                      |                      |
| 8-4505              | Devils River at mouth near Del Rio, Texas                                                                 | 4,305   | 1944-45                              | 1954-68                                  |                              |                                    |                      |                      |                      |
| 8-4509              | Rio Grande below Amistad Dam, near Del Rio, Texus                                                         | 126,423 |                                      | 1954-68                                  |                              |                                    |                      |                      |                      |
| 8-4511.3            | Eight Mile Crock near Del Rio, Texas                                                                      |         |                                      | 1961-68                                  | 1967, 1968                   |                                    |                      |                      |                      |
| 8-4513              | Cantu Spring on Gienegas Creek near Del Rio, Texas                                                        |         |                                      | 1961-68                                  | 1967                         |                                    |                      |                      |                      |
| 8-4515              | Cienegas Creek near Del Rio, Texas                                                                        | 18      |                                      | 1931-35<br>1965-68                       |                              | 1962-65                            |                      |                      |                      |
| 8-4520              | Arroyo Las Vacas at Cludad Acuna, Coahuila, Mexico                                                        | 358     |                                      | 1938-68                                  |                              | 1935-38                            |                      |                      |                      |
| 8-4525              | Rio Grande near Del Rio, Texas                                                                            | 126,940 |                                      | 1900-15<br>1919-20<br>1924-54<br>1960-68 |                              |                                    |                      |                      |                      |
| 8-4528              | San Felipe Springs at Del Rio, Texas                                                                      | 1       |                                      | 1961-68<br>1961-68                       | 1967                         |                                    |                      |                      |                      |
| 8-4528.3            | San Felipe Creek at Moore Park, Del Rio, Texas                                                            | 1 1     |                                      | 1961                                     |                              |                                    |                      |                      |                      |
| 8-4530              | San Felipe Creek near Del Rio, Texas                                                                      | 99      | 1948, 1949                           | 1931-68                                  | 1967, 1968                   |                                    |                      |                      |                      |
| 8-4535              | Cummers Prash mar Dal Rin Texas                                                                           | 524     |                                      | 1932-35                                  |                              |                                    |                      |                      |                      |

8

Table 6.--Summary index of surface-water records in the Rio Grande basin in Texas and adjacent areas of New Mexico-Continued

| Treat and Totalinand Totalinand Totalinand Totalinand totalingand totalingandand <t< th=""><th>Roferance</th><th></th><th>Davelance</th><th></th><th></th><th>TYPE AND</th><th>TYPE AND PERIOD OF RECORD</th><th></th><th></th><th></th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Roferance |                                                                                                         | Davelance        |                                      |                               | TYPE AND                     | TYPE AND PERIOD OF RECORD |                      |                      |                      |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|---------------------------------------------------------------------------------------------------------|------------------|--------------------------------------|-------------------------------|------------------------------|---------------------------|----------------------|----------------------|----------------------|
| Territor100000100000100000Effection201201201201Effection201201201201201Effection201201201201201Effection201201201201201Effection2010201201201201Effection2010201201201201Effection2010201201201201Effection2010201201201201Effection2010201201201201Effection2010201201201201Effection2010201201201201Effection2010201201201201Effection2010201201201201Effection2010201201201201Effection2010201201201201Effection2010201201201201Effection2010201201201201Effection2010201201201201Effection2010201201201201Effection2010201201201201Effection2010201201201201Effection2010201201201201Effection2010201 <th>umber</th> <th>Stream and location</th> <th>uraınage<br/>area</th> <th>Daily or monthly<br/>chemical quality</th> <th>Daily or monthly<br/>discharge</th> <th>Periodic<br/>chemical quality</th> <th></th> <th>Reservoir<br/>content</th> <th>Water<br/>Lemperature</th> <th>Gage heights<br/>only</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | umber     | Stream and location                                                                                     | uraınage<br>area | Daily or monthly<br>chemical quality | Daily or monthly<br>discharge | Periodic<br>chemical quality |                           | Reservoir<br>content | Water<br>Lemperature | Gage heights<br>only |
| Theorem is the lift, from         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30         30 <th< td=""><td>-4539</td><td>Diversions from the Rio Grande Maverick Canal at<br/>mile 13 near Quemado, Texas</td><td></td><td></td><td>1949-68</td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -4539     | Diversions from the Rio Grande Maverick Canal at<br>mile 13 near Quemado, Texas                         |                  |                                      | 1949-68                       |                              |                           |                      |                      |                      |
| Item is the function of the function o        | 4550      | Pinto Creek near Del Rio, Texas                                                                         | 249              |                                      | 1928-68                       | 1967. 1968                   |                           |                      |                      |                      |
| It of charter beino function, frants       10.25       10.25       10.25         a fix out out registion are function, frants       10       10.35       10.55       10.55         a fix out of the registion are function, fortunation frants       10       10.35       10.55       10.55         a fix out of the registion are function, fortunation frants       10       10.35       10.35       10.55         a fix out of the registion are function, fortunation frants       10       10       10.35       10.55       10.55         a fix out of the registion are function frants       10       10       10       10.55       10.55       10.55         a fix of the registion are function frants       10       10       10       10.55       10.55       10.55         a fix of the registion are function frants       10       10       10       10.55       10.55       10.55         a fix of the registion are function frants       10       10       10       10.55       10.55       10.55         a fix of the registion are function frants       10       10       10.55       10.55       10.55       10.55         a fix of the registion are function frants       10       10       10.55       10.55       10.55       10.55       10.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4555      | Rio San Diego at Jimenez, Coahuila, Mexico                                                              | 848              |                                      |                               | 1935, 1936                   |                           |                      |                      |                      |
| Internet and metric float many formed, real         100-50         100-50           10 Sea Montig mar metric float, fautic         00         100-50, 100-50         100-50           10 Sea Montig mar metric float, fautic         00         100-50, 100-50         100-50           10 Sea Montig mar metric float, fautic         00         100-50, 100-50         100-50           10 Sea Montig mar metric float, fautic         00         100-50         100-50           10 Sea Montig mar metric float, fautic         00         100-50         100-50           10 Sea Montig mar metric float, fautic         100-50         100-50         100-50           10 Sea Montig mar light Pau, rama         100-50         100-50         100-50           10 Sea Montig mar light Pau, rama         100-50         100-50         100-50           10 Sea Montig mar light Pau, rama         100-50         100-50         100-50           10 Sea Montig mar light Pau, rama         100-50         100-50         100-50           10 Sea Montig mar light Pau, rama         100-50         100-50         100-50           10 Sea Montig mar light Pau, rama         100-50         100-50         100-50           10 Sea Montig mar light Pau, rama         100-50         100-50         100-50           10 Sea Montig m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |                                                                                                         |                  | 1952-58                              | 1922-68                       |                              |                           |                      |                      |                      |
| In the distance of and $F_{and}$ (and $F_{and}$ (and) (and $F_{and}) (and (and (F_{and}) (and (and (F_{and}) (and (an$       | 1004      | Kio Grande below Maverick Dam near Quemado, Texas                                                       |                  |                                      | 1965-68                       |                              |                           |                      |                      |                      |
| 10 Sin Bolding near waith landing101035-10, 100-60103-0, 100-60103-0, 100-6010 Sin Bolding near waith landing1135, 130, 100-60103-60103-6010 Sin Bolding near waith landing11135, 130, 100-60103-6010 Sin Bolding near waith landing11130, 130, 100-60103-6010 Sin Bolding near waith landing11130, 130, 130-60103-6010 Sin Bolding near waith landing11130, 130, 130-60103-6010 Sin Bolding near waith landing11130, 130130-60130-6011 Sin Bolding near Waiten Bolding near Waiten Bolding near Waiten Bolding1130-60130-60130-6012 Bolding ter Waiten Bolding near Landing near Waiten Bolding near Landing near Landi                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4565      | Las Moras Creek near Eagle Pass, Texas                                                                  | 166              |                                      | 1932-35                       |                              |                           |                      |                      |                      |
| Ref<br>to the state and at R Mord. Conducta Matci133, 136 $100 \pm 0$ Ref<br>are fage four, state and factor Ref<br>are fage four, state and factor Ref<br>base for bowe Part and Factor Ref<br>base for base for base for base for base for base for base<br>for and factor Ref<br>base for base for                                                        | 4570      | Rio San Rodrigo near El Moral, Coahuila, Mexico                                                         | 699              | 1935-36, 1950-5                      |                               |                              |                           |                      |                      |                      |
| Network find to found at Notacity Nota194-66Network find near Right Near, Yean100-31109-36109-66Network find near Right Near, Yean100-31109-36109-36Network find near Right Near, Yean132-31109-36109-36Network find near Right Near, Near132-31109-36109-36Near Haron Creating Near Link, Neize132-31109-36109-36Near Haron Creating Near Link, Neize23-11193-46109-36Near Link, Neize23-11193-46109-36109-36Near Link, Neize23-11193-46109-36109-36Near Link, Neize23-11193-196109-36109-36Near Link, Neize23-11193-46109-36109-36Near Link, Neize23-11193-46109-36109-36Near Link, Near10-31109-36109-36109-36Near Link, Near <td>1251</td> <td>Rio San Rodrigo near mouth at El Moral, Coahuila, Mexico</td> <td></td> <td>1935, 1936</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1251      | Rio San Rodrigo near mouth at El Moral, Coahuila, Mexico                                                |                  | 1935, 1936                           |                               |                              |                           |                      |                      |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4575      | Return flow to the Rio Grande at Maverick Power Plant<br>near Eagle Pass, Texas                         | l.               |                                      | 1949-68                       |                              |                           |                      |                      |                      |
| Ro Grande at Rupta Paus, Tonai       10,035       10,035       100,000       1005         1       Reserved of at Villa De Fenete, Combult, Merice       1,39       199-56       199-56       199-56         1       Reserved of at Villa De Fenete, Combult, Merice       1,39       199-56       199-56       199-56         1       Reserved of at Villa De Fenete, Combult, Merice       1,39       199-56       199-56       199-56         1       Reserved of at Villa De Fenete, Froma       1,39       199-56       199-56       199-56         1       Reserved mar Laterdo, Trana       1,39       1995-165       199-56       199-56         1       Reserved mar Laterdo, Trana       1,39       1995-66       199-56       199-56         1       Reserved mar Laterdo, Trana       1,39       199-56       199-56       199-56         1       Reserved mar Laterdo, Trana       2,11       1995-66       199-56       199-56         1       Reserved mar Laterdo, Trana       2,11       199-56       199-56       199-56         1       Reserved mar Laterdo, Trana       2,11       199-56       199-56       199-56         1       Reserved mar Laterdo, Trana       2,11       199-56       199-56       199-56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4576      | Diversions from the Rio Grande Maverick Canal extension<br>below the Power Flant near Edgle Pass, Texas |                  |                                      | 1939-68                       |                              |                           |                      |                      |                      |
| 3Resolution of VILID de Fuerte, Coshull, Merico1.20192-66192-66Rent fue de costa de randomic Consting, Texas12, 3/7199-66199-66Rel o facto de randomic Consting, Texas12, 3/7199-66199-66Rel o facto de randomic Consting, Texas13, 3/7199-66199-66Rel o facto e transmic consting on ex Lindio, Texas13, 3/7199-66199-66Rio Grando et Laredo, Texas13, 9/7199-66199-66199-66Rio Grando et Laredo, Texas023, 12199-66192-36Rio Grando et Lareto, Texas16193-66193-36193-66Rio Grando et Lar Torrillar, Tamulipan, Merico24, 10193-56193-36Rio Grando et Cluida Gerereo, Tamulipan, Merico24, 21193-56193-36Rio Grando et Cluidad Gerereo, Tamulipan, Merico24, 21193-36193-36Rio Grando et Cluidad Gerereo, Tamulipan, Merico24, 21193-36193-36Rio Grando et Cluidad Rerreo, Tamulipan, Merico24, 21193-36193-36Rio Grando et Cluidad Merico26, 11193-36193-36193-36Rio Grando et Cluidad Rerreo, Tamulipan, Merico16, 466193-36193-36193-36Rio Grando et Cluidad Merico16, 466193-36193-36193-36Rio Grando et Cluida Rear Tamulipan, Merico16, 466193-36193-36193-36Rio Grando et Cluida Rear Tamulipan, Merico16, 466193-36193-36193-36Rio Grando et Clui Arena16, 466<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4580      | Rio Grande at Eagle Pass, Texas                                                                         |                  | 1938, 1939-54,<br>1955               | 1900-20<br>1922-68            | 1962<br>1963                 |                           |                      |                      |                      |
| Return the face to the Kine constript, Towards Constript, Towards Constript, Towards Constript, Toward Constribut, Constribut, Constribut, Towa | 4581.5    |                                                                                                         | 1,279            |                                      | 1922-68                       |                              |                           |                      |                      |                      |
| Rio Grande at San Antendio Grosting near El Indio, Tenan       12, 30       192-66         Rio Grande at Pulation near Laredo, Tenan       -       13, 30       195-66       193-66         Rio Grande at Laredo, Tenan       13, 30       195-66       193-66       193-66         Rio Grande at Laredo, Tenan       13, 30       195-66       193-66       193-66         Datores Creek near Laredo, Tenan       0.0       193-66       193-66       193-66         Datores Greek near Laredo, Tenan       20, 11       193-66       193-66       193-66         Rio Salado et Cluado Greert, Tenantipae, Motico       2, 4, 17       193-56       193-56         Rio Grande near Zapata, Tenan       161, 22       193-56       193-56       193-56         Rio Grande near Zapata, Tenan       161, 22       193-56       193-56       193-56         Rio Grande near Zapata, Tenan       161, 22       193-56       193-56       193-56         Rio Grande near Zapata, Tenan       161, 23       193-56       193-56       193-56         Rio Grande near Zapata, Tenan       164, 23       193-56       193-56       193-56         Rio Grande near Zapata, Tenan       164, 23       193-56       193-56       193-56         Rio Grande near Zapata, Tenan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4586      | Return flow to the Rio Grande from Maverick Canal<br>Eagle Pass to San Antonio Crossing, Texas          | 1                |                                      | 1959-68                       |                              |                           |                      |                      |                      |
| Bit of Grande at Parlacion ener Larendo, Tona        139.916       139.916         Rio Grande at Larendo, Tona       13,976       130.013       130.013       130.013         Oncean Greek mer Larendo, Tona       13,976       139.016       130.013       130.013       130.013         Oncean Greek mer Larendo, Tona       606       139.513       139.206       139.206       139.206         Oncean Greek mer Larendo, Tona       606       23,212       139.5405       139.206       139.206         Rio Salado at Cuuda Ocereer, Temanitipar, Necico       23,112       1393.51394-53       1392.53       1392.53         Rio Grande mer Zuez, Temanitipar, Necico       163,222       1395.406       1392.53       1392.546         Rio Grande larent Paten, Tona       163,322       1995.405       1992.55       1995.55         Rio Grande larendo, Tona       166,482       1995.55       1995.55       1995.55         Rio Grande larendo, Tona       166,482       1995.55       1995.55       1995.55         Rio Grande lare Roman, Tona       166,482       1995.55       1995.55       1995.55         Rio Grande lare Roman, Tona       166,482       1995.55       1995.55       1995.55         Rio Grande lare Roman, Tona       166,482       1995                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4587      | Rio Grande at San Antonio Crossing near El Indio, Texas                                                 |                  |                                      | 1952-68                       |                              |                           |                      |                      |                      |
| R10 Grande at Laread, Team       13, 976       190, 1955       190, 1955       190, 1955         R10 Grande art Lareto, Team       135, 976       1932-66       1932-66         R10 Grande art Lar Tertillar, Tamulipae, Notico       2, 10       1932-66       1932-66         R10 Grande art Lar Tertillar, Tamulipae, Notico       2, 10       1932-66       1932-66         R10 Salado at Lar Tertillar, Tamulipae, Notico       2, 10       1932-66       1932-66         R10 Salado at Lar Tertillar, Tamulipae, Notico       2, 10       1932-66       1932-66         R10 Grande nat Zapata, Teara       163, 23       1932-35       1932-36         R10 Grande nat Zapata, Teara       16, 42       1932-36       1932-36         R10 Grande nat Zapata, Teara       16, 43       1932-36       1932-36         R10 Grande at Chapeno, Teara       16, 43       1932-36       1932-36         R10 Grande at Chapeno, Teara       16, 43       1932-36       1932-36         R10 Grande at Chapeno, Teara       16, 43       1932-36       1932-36         R10 Grande at Chapeno, Teara       16, 43       1932-36       1932-36         R10 Grande at Chapeno, Teara       16, 43       1932-36       1932-36         R10 Grande at Chapeno, Teara       16, 43       1932-36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4588      | Rio Grande at Palafox near Laredo, Texas                                                                | ;                |                                      | 1959-68                       |                              |                           |                      |                      |                      |
| Chacen Creek near Larcelo, Texas         503         1952           Dolores Creek near San Equetio, Texas         606         1932-66         1932-66           R to Salado at Las Tortillas, Tamaulipae, Mexico         24,877         1954-68         1932-66           R to Salado at Cludad Guerrer, Tamaulipae, Mexico         24,877         1935-53         1932-53           R to Salado at Cludad Guerrer, Tamaulipae, Mexico         25,112         1955-93         1922-53           R to Grande near Zapata, Texa         163,327         1932-36         1932-36           R to Grande near Zapata, Texas         164,428         1932-36         1932-36           R to Grande net Zapata, Texas         164,428         1932-36         1932-36           R to Grande at Clupton, Texas         164,438         1932-36         1932-36           R to Atamo at Cludad Mier, Tamaulipae, Mexico         1,931-31,1953-54         1922-36         1932-36           R to Grande at Clapeno, Texas         166,463         1931-31,1953-54         1932-36         1932-36           R to Grande at Clapeno, Texas         166,463         1931-31,1953-54         1932-36         1932-36           R to Grande at Clapeno, Texas         166,463         1931-31,1953-54         1932-36         1932-36           R of Sande below Texas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4590      | Rio Grande at Latedo, Texas                                                                             | 135,976          | 1905, 1955<br>1956-68                | 1900-13<br>1916-20<br>1922-68 | 1952                         |                           |                      |                      | 1914                 |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |           |                                                                                                         |                  |                                      |                               | 1952                         |                           |                      |                      |                      |
| Rio Salado at Lar Tertillar, Tamulipar, Mexico $24, 87$ $1954-68$ $955-68$ $955-68$ Rio Salado at Ciudad Guerrero, Tamulipar, Mexico $25, 112$ $1935, 1936-533$ $1000-13$ Rio Grande mear Zapata, Texas $163, 327$ $1935, 1936-533$ $1920-53$ Rio Grande mear Zapata, Texas $163, 327$ $1935, 1936-533$ $1922-53$ Rio Grande belor Falcon Banevoir, Texas $164, 482$ $1932-56$ $1932-56$ Rio Grande belor Falcon Banevoir, Texas $164, 482$ $1956-68$ $1932-56$ Rio Grande belor Falcon Man, Texas $166, 462$ $1932-56$ $1932-56$ Rio Grande belor Falcon Man, Texas $166, 464$ $1931-331, 4930, 1900-13$ Rio Grande at Roma, Texas $166, 464$ $1931-331, 4930, 1900-13$ Rio Grande at Roma, Texas $166, 464$ $1931-331, 4930, 1900-13$ Rio Grande at Roma, Texas $166, 464$ $1931-331, 4930, 1900-13$ Rio Grande at Roma, Texas $166, 464$ $1931-391, 930-42$ Rio Grande at Roma, Texas $166, 464$ $1931-391, 930-42$ Rio Grande at Roma, Texas $1069, 100-13$ $1932-56$ Rio San Juan at Ganargo, Tamulipar, Mexico $1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | \$65      |                                                                                                         | 606              |                                      | 1932-36                       |                              |                           |                      |                      |                      |
| Ho Salado at Cludad Guerrero, Tamoulipae, Mexico $25, 112$ $1935, 1936-53$ $1500-13$ Kio Grande mar Zapata, Texas $163, 327$ $193-53$ $1932-53$ Kio Grande mar Zapata, Texas $261$ $193-53$ $1932-53$ International Falcon Reservoir, Texas $164, 422$ $1956-68$ $1932-53$ Rio Grande below Falcon Reservoir, Texas $166, 422$ $1956-68$ $1932-53$ Rio Grande below Falcon Reservoir, Texas $166, 422$ $1959-68$ $1932-54$ Rio Grande below Falcon Ram, Texas $166, 422$ $1930-13$ $1932-68$ $1935$ Rio Grande at Ram, Texas $166, 426$ $1931-31, 930, 300-14$ $1922-54$ $1932-54$ Rio Grande at Ram, Texas $166, 464$ $1931-31, 3193, 343-54$ $1922-54$ $1932-54$ Rio Grande at Roma, Texas $166, 464$ $1931-31, 3193, 343-54$ $1932-54$ $1932-54$ Rio Grande at Romarilo Tamulipae, Mexico $12, 013$ $1935, 936-42$ $1932-54$ $1932-54$ Rio Grande at Romarile Tamarulipae, Mexico $12, 013$ $1935, 936-42$ $1932-54$ $1932-54$ Rio Grande at Romarile Tamarulipae, Mexico $12, 013$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1265      | Rio Salado at Las Tortillas, Tamaulipas, Mexico                                                         | 24,877           | 1954-68                              | 1953-68                       |                              |                           |                      |                      |                      |
| Rio Grande mar Zapata, Team       163, 27       1932-53         El Tagre Arroyo mar Zapata, Team       261       1923-56         International Falcon Baseroit, Team       261       1932-56         Rio Grande act Chapmo, Team       164, 487       1956-68       1956-68         Rio Grande act Chapmo, Team       164, 487       1953-56       1954-68         Rio Grande act Chapmo, Team       164, 482       1951-56       1954-68         Rio Grande act Chapmo, Team       164, 464       1931-313, 1930-56       1922-56         Rio Grande act Roma, Team       166, 464       1931-31, 1930, 1930-13       1922-56         Rio Grande act Roma, Team       166, 464       1931-31, 1935, 1930-42, 1937-43       1922-56         Rio Grande act Roma, Team       12, 013       1933, 1936-42, 1937-43       1933-46         Rio Grande act Romargo, Tamaulipae, Mexico       12, 013       1935       1932-46         Rio Grande act Romargo, Tamaulipae, Mexico       13, 034-46, 1937-43       1932-46       1932-46         Rio Grande act Rio Grande City, Team       1303, 1946-46, 1937-43       1932-46       1943-46         Rio Grande act Rio Grande City, Team       130, 1946-46, 1937-43       1932-46       1943-46         Rio Grande act Rio Grande City, Team       1303, 1944-46, 1937-43       1943                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4600      | Rio Salado at Ciudad Guerrero, Tamaulipas, Mexico                                                       | 25,112           | 1935, 1936-53                        | 1900-13<br>1923-53            |                              |                           |                      |                      |                      |
| El Tigre Arroyo near Zapata, Toxas       261       192-36         International Falcan Reservoir, Taxas       164,482       195-67         Rio Grande belor Falcan Reservoir, Taxa       164,482       195-57         Rio Grande at Rama, Texas       164,646       1931-31         Rio Grande at Roma, Texas       166,646       1931-31         Rio San Juan at Camargo, Tamutipas, Mexico       12,013       1935         Rio Grande at Rio Grande City, Texas       130,01       1943         Rio Grande at Kio Grande City, Texas       130,31       194-46,         Rio Grande at Kio Grande City, Texas       130,31       1932-56         Rio Grande at Kio Grande City, Texas       130,31       1932-66         Rio Grande at Kio Grande City, Texas       130,31       1932-56         Rio Grande at Kio Grande City, Texas       130,31       1932-56<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 605       | Rio Grande near Zapata, Texas                                                                           | 163,327          |                                      | 1932-53                       |                              |                           |                      |                      |                      |
| International Falcon Reservoir, Texas 164,482<br>Rio Grande below Falcon Dan, Texas 166,482<br>Rio Grande act Chapten, Texas 166,464<br>Rio Grande at Rema, Texas 199,193, 1930, 1930-14<br>Rio San Juan at Canargo, Tamaulipae, Mexico 12,013<br>Rio San Juan at Canargo, Tamaulipae, Mexico 12,013<br>Rio San Juan at Canargo, Tamaulipae, Mexico 13,601<br>Rio Grande at Rio Grande City, Texas 180,904<br>Rio Rio Rio Rio Rie Rio Rie                                                                                                                                                                                                                                                                                                                                                                  | 910       | El Tigre Arroyo near Zapata, Texas                                                                      | 261              |                                      | 1932-36                       |                              |                           |                      |                      |                      |
| Rfo Grande below Falcon Dam, Texas         164,482         1956-68         1959-68           Rto Grande at Chapteno, Texas         164,538         1930,         1931-57           Rto Alamo at Chapteno, Texas         164,538         1930,         1932-58           Rto Alamo at Chapteno, Texas         166,463         1930,         1900-14           Rto Grande at Roma, Texas         166,464         1931,930,1900-14         1922-56           Rto San Juan at Santa Rosalia, Tamaulipas, Mexico         12,013         1935,1956-42         1922-43           Rto San Juan at Camargo, Tamaulipas, Mexico         12,013         1935,1956-42         1922-43           Rto San Juan at Camargo, Tamaulipas, Mexico         13,001         1943         232-43           Rto Grande at Fort Ringgold, Rio Grande City, Texas         13,011         1933,1956-46         1922-56           Rto Grande City, Texas         180,901         1933,1954-66         1932-56           Rto Grande City, Texas         180,901         1932,466         1932-56      <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 612       | International Falcon Reservoir, Texas                                                                   | 164,482          |                                      |                               |                              |                           | 1953-68              |                      |                      |
| Rio Grande at Chapeno, Texas         164,538         1953-57           Rio Alamo at Cludad Mier, Tamaulipus, Mexico         1,662         1930,         1920,           Rio Grande at Ream, Texas         16,464         1931,         1935,-56           Rio Grande at Ream, Texas         166,464         1931,         1935,-56           Rio Grande at Ream, Texas         166,464         1931,-33,1935,-56         1922-56           Rio San Juan at Santa Rosaila, Tamaulipas, Mexico         12,013         1935,1936-42,19304,-13         1992,-46           Rio San Juan at Camargo, Tamaulipas, Mexico         12,013         1935,1936-42,19304,-13         1935,46           Rio Grande at Fort Ringgold, Rio Grande City, Texas         180,916         1939,1960-68         1932-56           Rio Grande City, Texas         180,911         1933,1934-46,1932-56         1932-56           Rio Grande City, Texas         180,911         1933,1947-46,1932-56         1932-56           Rio Grande City, Texas         180,911         1933,1947-46,1932-56         1932-56           La Joya Greek at reservoir site near         180,911         1933,1947-46,1932-56         1932-56           Saffordvei, Texas         180,911         1933,1947-46,1932-56         1932-56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ÷613      | Rio Grande below Falcon Dam, Texas                                                                      | 164,482          | 1956-68                              | 1958-68                       | 1954                         |                           |                      |                      |                      |
| Rio Alamo at Cludad Mier, Tamaulipur, Mexico     1,692     1923-68       Rio Grande at Ream, Texan     166,464     1931-33,1930, 1900-14       Rio Grande at Ream, Texan     195,454     1922-54       Rio San Juan at Santa Remaila, Tamaulipas, Mexico     12,013     1935, 1936-42, 1933-43       Rio San Juan at Camargo, Tamaulipas, Mexico     12,013     1935, 1936-42, 1933-43       Rio San Juan at Camargo, Tamaulipas, Mexico     12,013     1935, 1936-46       Rio Grande at Cort Mingold, Mio Grande Gity, Texan     180,306     1933, 1934-46       Rio Grande at No Grande City, Texan     180,901     1932, 36       Rio Grande at No Grande City, Texan     180,901     1934, 46, 1932-54       Rio Grande City, Texan     180,901     1934, 46, 1932-54       La Joya Grande City, Texan     180,901     1932, 36       Saffordvei, Texan     180,901     1931, 1947-46, 1932-54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 615       | Rio Grande at Chapeno, Texas                                                                            | 164,538          |                                      | 1953-57                       |                              |                           |                      |                      |                      |
| Rio Grande af Roma, Texar         166,464         1931-31         1930,         1900-14           Rio San Juan at Santa Rosalia, Tamaulipas, Mexico         12,013         1935-34,         1922-54           Rio San Juan at Santa Rosalia, Tamaulipas, Mexico         12,013         1935, 1956-42,         1920-43           Rio San Juan at Santa Rosalia, Tamaulipas, Mexico         12,013         1935, 1936-42,         1923-43           Rio San Juan at Camargo, Tamaulipas, Mexico         13,001         1943         1934-46           Rio Grande at Fort Ringgold, Rio Grande City, Texas         180,906         1939, 1950-68         1932-56           Los Olmos Creek at rear Rio Grande City, Texas         180,901         1931, 1934-66,         1932-56           Rio Grande at Rio Grande City, Texas         180,901         1931, 1934-66,         1932-56           Rio Grande at Rio Grande City, Texas         180,901         1931, 1934-66,         1932-56           Rio Grande City, Texas         180,901         1931, 1934-66,         1932-56           La Joya Grande City, Texas         180,901         1931, 1934-66,         1932-56           La Joya Grande City, Texas         180,901         1934, 46,         1932-56           La Joya Grande City, Texas         180,901         1934, 46,         1932-56           La Joya                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | +620      | Rio Alamo at Cludad Mier, Tamaulipas, Mexico                                                            | 1,692            |                                      | 1923-68                       |                              |                           |                      |                      |                      |
| Kio San Juan at Santa Revalia, Tamaulipas, Mexico 12,013 1935, 1936-42, 1900-13<br>Kio San Juan at Camargo, Tamaulipas, Mexico 13,001 1954-68<br>Kio Grande at Fort Ringgold, Rio Grande City, Texas 180,996 1959, 1960-68 1953-68<br>Los Olnos Greek maar Rio Grande City, Texas 335<br>Rio Grande at Rio Grande City, Texas 180,941 1933, 1934-46, 1932-36<br>Rio Grande at Rio Grande City, Texas 180,941 1933, 1934-46, 1932-36<br>La Joya Greek at reservoir site mear<br>Saffordvee, Texas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 625       | kio Grande at Roma, Texas                                                                               | 166,464          | 1931-33, 1943-54,<br>1955            | 1900-14<br>1922-54            |                              |                           |                      |                      |                      |
| Kio San Juan at Camargo, Tamaulipan, Mexico 13,601 1954-68<br>Kio Grande at Yort Kinggold, Kio Grande Ciry, Texas 180,396 1959, 1960-68 1935-68<br>Los Olmos Creek arear Kio Grande Ciry, Texas 180,941 1931, 1934-46, 1932-36<br>Kio Grande at Kio Crande Ciry, Texas 180,941 1931, 1934-46, 1932-54<br>La Joya Creek at researvoir site near<br>La Joya Creek at researvoir site near<br>Saffordvee, Texas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1630      | Rio San Juan at Santa Rosalia, Tamaulipas, Mexico                                                       | 12,013           | 1935, 1936-42,<br>1943               | 1900-13<br>1923-43            |                              |                           |                      |                      |                      |
| Rio Grande at Fort Ringgold, Rio Grande City, Taxas         180.396         1959-68           Los Olmos Creek mear Rio Grande City, Texas         535         1932-36           Kio Grande at Rio Grande City, Texas         180.941         1934-46,         1932-54           Kio Grande at Rio Grande City, Texas         180.941         1934-46,         1932-54           La Joya Creek at reservoir site mear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4642      | Rio San Juan at Camargo, Tamaulipas, Mexico                                                             | 13,601           |                                      | 1954-68                       |                              |                           |                      |                      |                      |
| Los Olmos Creek mear Rio Grande City, Texus 535 1932-36<br>Rio Grande at Rio Grande City, Texas 180,941 1933, 1934-46, 1932-54<br>La Joya Creek at reservoir site mear                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4647      |                                                                                                         | 180,396          | 1959, 1960-68                        | 1955-68                       |                              |                           |                      |                      |                      |
| Rio Grande at Rio Grande City, Texas 180,941 1933, 1934-46, 1932-54<br>La Joya Creek at reservoir site near<br>Sanfordvoe, Texase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4650      | Los Olmos Creek near Rio Grande City, Texas                                                             | 535              |                                      | 1932-36                       | 1949                         |                           |                      |                      |                      |
| La Joya Creek at resarvoir site near<br>Saniordroe, Toxas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4655      | Rio Grande at Rio Grande City, Texns                                                                    | 180,941          | 1933, 1934-46,<br>1947               | 19 32-54                      |                              |                           |                      |                      |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | La Joya Creek at reservoir site near<br>Sanfordyce. Texas                                               | ;                |                                      |                               | 6761                         |                           |                      |                      |                      |

Table 6.--Summary index of surface-water records in the Rio Grande basin in Texas and adjacent areas of New Mexico and Mexico--Continued

- 39 -

| Daily or monthly         Daily or monthly         Periodic           chemical quality         discharge         discharge           1945-1950         1953         1953           1945-1950         1953-68         1953-68           1962, 1960-68         1952-68         1953-68           1959, 1960-68         1952-68         1953-68           1954, 1950-68         1953-68         1953-68           1954, 1950-68         1952-68         1953-68           1954, 1955-68         1953-68         1955-68           1956, 1947-44         1955-68         1955-68           1956, 1947-43         1954-69         1955-68           1943-44         1943-44         1955-68           1954-54         1955-68         1955-68           1944, 1943-43         1955-68         1955-68           1944, 1943-43         1955-68         1955-68           1944, 1943-43         1955-68         1955-54           1944, 43         1955-68         1955-54           1944, 43         1955-68         1955-54           1944, 43         1955-68         1955-54           1944, 44         1945-64         1955-68           1944, 44         1945-64 <t< th=""><th></th><th></th><th></th><th></th><th></th><th>TYPE AND</th><th>TYPE AND PERIOD OF RECORD</th><th></th><th></th><th></th></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  |                                                                                    |                  |                                      |                                       | TYPE AND                     | TYPE AND PERIOD OF RECORD                            |                      |                      |                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|------------------------------------------------------------------------------------|------------------|--------------------------------------|---------------------------------------|------------------------------|------------------------------------------------------|----------------------|----------------------|----------------------|
| Contributions from Rto San Juan below Rto Grande City,<br>Texas      1945-1950       Rto Grande at Missico, 8.4 miles above Anzalduas      1962, 1963-68     1953-68       Morilio Drain in Mexico, 8.4 miles above Anzalduas      1962, 1963-68     1952-68       Morilio Drain in Mexico, 8.4 miles above Anzalduas      1962, 1963-68     1952-68       Morilio Drain in Mexico, 8.4 miles above Anzalduas Canal near     182,138     1933-96     1952-68       Rivorsions framilipas, Mexico     182,139     1933-1960-68     1952-68       Rio Grande at Hidalgo, Texas     182,139     1933-94     1953-958       Rio Grande at Hidalgo, Texas     182,139     1943-44     1943-44       Rio Grande at Hidalgo, Texas     182,139     1943-44     1943-44       Rio Grande at Isa Palmas, Tamaulipas, Mexico      1943-44     1943-44       Rio Grande at Isa Palmas, Tamaulipas, Mexico      1943-44     1943-40       Rio Grande at Mercedes Bridgs, Texas     182,133     1945-49     1945-40       Rio Grande at Mercedes Bridgs, Texas     182,133     1945-49     1945-40       Rio Grande at Mercedes Bridgs, Texas     182,131     1945-49     1945-40       Rio Grande at Mercedes Bridgs, Texas     182,131     1945-49     1945-40       Rio Grande at Mercedes Tamaulipus, Mexico <th>terence<br/>umber</th> <th></th> <th>Drainage<br/>area</th> <th>Daily or monthly<br/>chemical quality</th> <th>Daily or monthly<br/>discharge</th> <th>Periodic<br/>chemical quality</th> <th>Periodic discharge Reservoir<br/>measurements content</th> <th>Reservoir<br/>content</th> <th>Water<br/>temperature</th> <th>Gage heights<br/>only</th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | terence<br>umber |                                                                                    | Drainage<br>area | Daily or monthly<br>chemical quality | Daily or monthly<br>discharge         | Periodic<br>chemical quality | Periodic discharge Reservoir<br>measurements content | Reservoir<br>content | Water<br>temperature | Gage heights<br>only |
| Rto Grande at Mtsaton Pumping Plant     1945-1950       Darni In Mesico, 8.4 miles above Anzalduas      1962, 1963-68     1953-68       Darn, Texas     1962, 1961-68     1952-68       Diversions from the Rt of cambe Anzalduas Ganal near     1952, 1960-68     1952-68       Rypons, Tamanipas, Mesico     182,138     1959, 1960-68     1952-68       Rypons, Tamanipas, Mesico     182,138     1959, 1960-68     1952-56       Rio Grande below Anzalduas Dam, Texas     182,138     1959, 1960-68     1952-68       Rio Grande at Hidalgo, Texas     182,139     1959, 1960-68     1952-68       Rio Grande at Baenea Aires, Tamaulipas, Mesico      1943-44     1943-44       Rio Grande at Baenea Aires, Tamaulipas, Mesico      1943-44     1943-44       Rio Grande at Baenea Aires, Tamaulipas, Mesico      1943-44     1943-44       Rio Grande at Mercedea Bridge, Texas     182,113     1945-49     1945-49       Rio Grande at Mercedea Bridge, Texas     182,113     1936-19     1945-49       Rio Grande near San Bentlo, Texas     182,113     1936-39     1945-49       Rio Grande at Matameros, Tamaulipan, Mesico      1942-43     1945-49       Rio Grande at Matameros, Tamaulipan, Mesico     182,113     1936-39     1935-68       Rio Grande at Matameros, Tamaulipan, M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 6660             | Contributions from Rio San Juan below Rio Grande City,<br>Texas                    |                  |                                      | 1953                                  |                              |                                                      |                      |                      |                      |
| Mortlilo Drain in Mexico, 8.4 miles above Anzalduas          1962, 1960-68         1953-68           Daw, Texans         1952, 1960-68         1953-68         1952-68           Diversions from the Rio Grande Anzalduas Canal noar<br>Regiones, Tamaulipau, Mexico         182,138         1959, 1960-68         1953-68           Rio Grande below Anzalduas Dam, Texaa         182,138         1959, 1960-68         1932-53           Rio Grande at Hidalgo, Texas         182,139         1953,44         1943-44           Rio Grande at Hidalgo, Texas         182,139         1943-44         1943-44           Rio Grande at Buenos Aires, Tamaulipae, Mexico          1943-44         1943-44           Rio Grande at Buenos Aires, Tamaulipae, Mexico          1943-44         1943-44           Rio Grande at Buenos Aires, Tamaulipae, Mexico          1943-44         1943-44           Rio Grande at Mercedes Bridge, Texas         182,113         1945-49         1952-68           Rio Grande at Mercedes Bridge, Texas         182,113         1935-41         1943-44           Rio Grande at Mercedes Bridge, Texas         182,113         1945-49         1952-68           Rio Grande at Mercedes Bridge, Texas         182,113         1942-43         1952-68           Rio Grande at Matamoros, Tamuulipan, Mexico <td>8-4677</td> <td>Rio Grande at Mission Pumping Plant</td> <td></td> <td>1945-1950</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8-4677           | Rio Grande at Mission Pumping Plant                                                |                  | 1945-1950                            |                                       |                              |                                                      |                      |                      |                      |
| Diversions from the Rio Grande Anzalduas Canal near<br>Reyross, Tamuilipas, Mexico         1952-68           Rio Grande below Anzalduas Dam, Texas         182,138         1959, 1960-68         1952-68           Rio Grande ar Buenos Anzalduas Dam, Texas         182,139         1959, 1950-68         1953-30           Rio Grande ar Hudus Dam, Texas         182,139         1959, 1960-68         1952-35           Rio Grande ar Hunos Aires, Tamaulipas, Moxico          194,3-44         1953-40           Rio Grande ar Buenos Aires, Tamaulipas, Moxico          194,0-44         1953-40           Rio Grande ar Harey Tamaulipas, Moxico          194,0-44         1952-68           Rio Grande near Progress, Texas         182,173         1935-40         1952-68           Rio Grande near Progress, Texas         182,113         1935-41         1952-68           Rio Grande near San Benito, Texas         182,113         1932-33         1952-68           Rio Grande near San Benito, Texas         182,113         1942-43         1952-68           Rio Grande ar Maramoros, Tamulipan, Mexico         182,121         1932-33         1932-54           Rio Grande ar Isa Panusoros, Tamulipan, Mexico         182,213         1942-43         1932-54           Rio Grande ar Maramoros, Tamulipan, Mexico         182,213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1-4678           | Morillo Drain in Mexico, 8.4 miles above Anzalduas<br>Dam, Texas                   | I                | 1962, 1963-68                        | 1953-68                               |                              |                                                      |                      |                      |                      |
| K10 Grande below Arzalduas Dum, Texas     182,138     1955, 1960-68     1952-68       K10 Grande at Hidalgo, Texas     182,139     1932-32     1932-32       R10 Grande at Buenus Aires, Tamaulipas, Maxico      1943-44     1943-44       R10 Grande at Buenus Aires, Tamaulipas, Maxico      1943-44     1943-46       R10 Grande at Buenus Aires, Tamaulipas, Maxico      1943-44     1943-46       R10 Grande at Marcedea Bridge, Texas     182,173     1943-43     1943-46       R10 Grande at Marcedea Bridge, Texas     182,173     1932-43     1935-46       R10 Grande at Marcedea Bridge, Texas     182,173     1933-93     1935-46       R10 Grande at Marcedea Bridge, Texas     182,187     1938-39     1935-46       R10 Grande at Marcedea Bridge, Texas     182,187     1932-43     1935-46       R10 Grande at Marcedea Bridge, Texas     182,187     1932-43     1935-46       R10 Grande at Marencos, Tamulipus, Mexico     182,117     1932-54     1935-54       R10 Grande at Maroncos, Tamulipus, Mexico     182,215     1932-54     1935-54       R10 Grande at Maroncos, Tamulipus, Mexico     182,215     1937-354     1935-54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -4686            | Diversions from the Rio Grande Anzalduas Canal near<br>Reynosa, Tamaulipas, Mexico |                  |                                      | 1952-68                               |                              |                                                      |                      |                      |                      |
| Rio Grands at Hidalgo, Texas     182,139     1928-32       Rio Grands at Buenus Aires, Tamaulipas, Moxico      1943-44       Rio Grands at Las Falmas, Tamaulipas, Moxico      1945-44       Rio Grands at Las Falmas, Tamaulipas, Moxico      1945-46       Rio Grands at Las Falmas, Tamaulipas, Moxico      1945-46       Rio Grands at Las Falmas, Tamaulipas, Moxico      1946, 1947-46       Rio Grands at Recedes Bridge, Texas     182,173     1945-46       Rio Grands at Recedes Bridge, Texas     182,187     1936-39       Rio Grands at Marcaos, Tamaulipan, Moxico     182,187     1937-45       Rio Grands at Maramoros, Tamaulipan, Moxico     182,187     1937-45       Rio Grands at Maramoros, Tamaulipan, Moxico     182,211     1932-55       Rio Grands at Brownsville, Texas     182,212     1937-45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5-4692           | Rio Grande below Anzulduas Dam, Texas                                              | 182,138          | 1959, 1960-68                        | 1952-68                               |                              |                                                      |                      |                      |                      |
| Rio Grande at Buenos Aires, Tamanilpas, Moxico 1946, 1947-48<br>Rio Grande at Las Falmas, Tamanilpas, Moxico 1946, 1947-48<br>Rio Grande near Pregreso, Texas 182,173<br>Rio Grande at Mercedes Bridge, Texas 182,187<br>Rio Grande near San Benico, Texas 182,187<br>Rio Grande at Matamoros, Tamaulipas, Mexico 182,213<br>Rio Grande at Matamoros, Tamaulipas, Mexico 182,213<br>Rio Grande at Brounsville, Texas 182,213                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 8-4715           | Rio Grande at Hidaigo, Texas                                                       | 182,159          |                                      | 1928-32<br>1935-36<br>1938-39<br>1958 |                              | 1932-34; 1940-51,<br>1959                            |                      |                      |                      |
| Rio Grande at Las Falaas, Tamaulipas, Mexico 1946, 1947-48<br>Rio Grande near Progrese, Texas 182,173<br>Rio Grande at Mercedes Bridge, Texas 182,187<br>Rio Grande near San Benito, Texas 182,187<br>Rio Grande at Matamoros, Tamaulipus, Nexico 182,211<br>Rio Grande at Brownsville, Texas 182,215<br>Rio Grande at Brownsville, Texas 182,215<br>Rio Grande at Brownsville, Texas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3-4720           | Rio Grande at Buenos Aires, Tamaulipas, Maxico                                     | 1                | 1943-44                              | 1943-44                               |                              |                                                      |                      |                      |                      |
| <pre>Rio Grande near Progreso, Texas 182,173 Rio Grande at Marcedes Bridge, Texas Rio Grande near San Benito, Texas 182,187 1938-39 Rio Grande at Matamoros, Tamaulipas, Mexico 182,211 Rio Grande at Brownsville, Texas 182,215 1934, 1935-36, Rio Grande at Brownsville, Texas 182,213 1042, 1052, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053, 1053</pre> | -4730            | Rio Grande at Las Palmas, Tamaulipas, Mexico                                       | ī.               | 1946, 1947-48                        | 1945-49                               |                              |                                                      |                      |                      |                      |
| Rio Grande at Mercedes Bridge, Texas<br>Rio Grande mear San Benito, Texas 182,187 1938-39<br>Rio Grande at Matamoros, Tamaulipas, Mexico 182,211<br>Rio Grande at Matamoros, Tamaulipas, Mexico 182,215 1934, 1935-36,<br>Rio Grande at Brownsville, Texas 182,215 1934, 1935-36,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -4733            | Rio Grande near Progreso, Texas                                                    | 182,173          |                                      | 1952-68                               |                              |                                                      |                      |                      |                      |
| Rio Grande near San Benilo, Texas         182,187         1932-43           Rio Grande at Matamoros, Tanaulipus, Nexico         182,211         1942-43           Rio Grande at Brownsville, Texas         182,215         1934,1935-56,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -4735            | Rio Grande at Mercedes Bridge, Texas                                               | 1                |                                      | 1935-41                               |                              |                                                      |                      |                      | 1910-12,<br>1914-37  |
| Rio Grande at Matamoros, Tamaulipas, Mexico 182,211<br>Kio Grande at Brownsville, Texas 182,215 1934, 1935-36,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5-4737           | Rio Grande near San Benito, Texas                                                  | 182,187          | 1938-39<br>1942-43                   | 1952-68                               |                              |                                                      |                      |                      |                      |
| Rio Grande at Brownsville, Texas 182,215 1934, 1935-36,<br>1937 1033-66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3-4745           | Rio Grande at Matamoros, Tamaulipas, Mexico                                        | 182,211          |                                      | 1901-13<br>1923-54<br>1958            |                              |                                                      |                      |                      |                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8-4750           | Rio Grande at Brownsville, Texas                                                   | 182,215          | 1934, 1935-36,<br>1937, 1943-44      | 1934-68                               |                              |                                                      |                      |                      |                      |

Table 6.--Summary index of surface-water records in the Rio Grande basin in Texas and adjacent areas of New Mexico and Mexico--Continued

| -                                     |                           |                                 |                      |                             | (8             | esults | in mil                                     | ligrams                                   | per lite                      | r except a       | indic | ated)                              |                                       |                                           |                              |                    |                                      |                             |                                       |                                              |      |
|---------------------------------------|---------------------------|---------------------------------|----------------------|-----------------------------|----------------|--------|--------------------------------------------|-------------------------------------------|-------------------------------|------------------|-------|------------------------------------|---------------------------------------|-------------------------------------------|------------------------------|--------------------|--------------------------------------|-----------------------------|---------------------------------------|----------------------------------------------|------|
|                                       |                           |                                 |                      | Mag                         |                | Po-    | Bi-                                        |                                           |                               |                  |       |                                    |                                       | Dia                                       | ssolved                      | solids             | Hard<br>as C                         |                             | So-                                   | Specific                                     |      |
| Date<br>of<br>collection              | Mean<br>Discharg<br>(cfs) | e Silica<br>(SiO <sub>R</sub> ) | Cal-<br>cium<br>(Ca) | Mag-<br>ne-<br>sium<br>(Mg) | Sodium<br>(Na) | tas-   | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> ) | Car-<br>bon-<br>ate<br>(CO <sub>3</sub> ) | Sulfate<br>(SO <sub>4</sub> ) | Chloride<br>(Cl) |       | Ni-<br>trate<br>(NO <sub>3</sub> ) |                                       | Milli-<br>grams<br>per<br>liter<br>(mg/l) | Tons<br>per<br>acre-<br>foot | Tons<br>per<br>day | Cal-<br>cium,<br>Mag-<br>ne-<br>sium | Non-<br>car-<br>bon-<br>ate | dium<br>ad-<br>sorp-<br>tion<br>ratio | duct-<br>ance<br>(micro-<br>mhos at<br>25°C) | рН   |
|                                       |                           |                                 |                      |                             |                |        | 8-3640                                     | ). RIO                                    | GRANDE AT                     | EL PASO, T       | EX.   |                                    |                                       |                                           |                              |                    |                                      |                             |                                       |                                              |      |
| Water Year 1924                       |                           |                                 |                      |                             |                |        |                                            |                                           |                               |                  |       |                                    |                                       |                                           |                              |                    |                                      |                             |                                       |                                              |      |
| Maximum, Jan. 30, 1924                |                           |                                 |                      |                             |                |        | **                                         | (-,-)                                     | 1.1                           |                  |       | 14.00                              | $(x,y) \in \mathcal{C}_{\mathcal{C}}$ | 1300                                      | 1.77                         | 22                 |                                      | 14.24                       |                                       | 12.2                                         | 22   |
| Minimum, Feb. 16                      |                           | 2.2                             | 1.11                 | 07.53                       | 100            |        |                                            | 10.00                                     | 2.2                           |                  | **    | **                                 |                                       | 300                                       | .41                          |                    |                                      |                             |                                       |                                              |      |
| Water Year 1925                       |                           |                                 |                      |                             |                |        |                                            |                                           |                               |                  |       |                                    |                                       |                                           |                              |                    |                                      |                             |                                       |                                              |      |
| Maximum, Jan. 20, 1925                |                           |                                 |                      |                             |                |        |                                            |                                           |                               |                  |       |                                    |                                       | 1400                                      | 1.90                         |                    | -                                    |                             |                                       |                                              |      |
| Minimum, Apr. 15                      |                           |                                 |                      |                             |                | 10 m   |                                            |                                           |                               |                  | 7.7   |                                    |                                       | 500                                       | .68                          |                    | 1.0                                  |                             | 0.0                                   |                                              | 1.1  |
| Water Year 1926                       |                           |                                 |                      |                             |                |        |                                            |                                           |                               |                  |       |                                    |                                       |                                           |                              |                    |                                      |                             |                                       |                                              |      |
| Maximum, Jan. 13, 1926                |                           | 2.5                             |                      | -                           |                |        |                                            |                                           | **                            |                  |       |                                    | -                                     | 1400                                      | 1.90                         | 22                 | 1221                                 | 2.2                         |                                       |                                              |      |
| Minimum, Aug. 25                      |                           | 5.5                             | 0.0                  |                             | -              |        |                                            |                                           |                               |                  |       |                                    |                                       | 700                                       | .95                          |                    |                                      |                             |                                       |                                              |      |
| Water Year 1927                       |                           |                                 |                      |                             |                |        |                                            |                                           |                               |                  |       |                                    |                                       |                                           |                              |                    |                                      |                             |                                       |                                              |      |
| Maximum, Sept. 27, 1927               |                           | 22                              |                      |                             |                |        |                                            |                                           |                               |                  |       |                                    |                                       | 2300                                      | 3.13                         |                    |                                      |                             |                                       |                                              |      |
| Minimum, Feb. 24                      |                           |                                 |                      |                             |                |        |                                            |                                           |                               |                  |       | 17.7.                              |                                       | 600                                       | ,82                          |                    |                                      |                             |                                       | 100                                          |      |
| Water Year 1928                       |                           |                                 |                      |                             |                |        |                                            |                                           |                               |                  |       |                                    |                                       |                                           |                              |                    |                                      |                             |                                       |                                              |      |
| Maximum, Feb. 1, 1928                 |                           |                                 |                      | 0.55                        | 2.0            |        |                                            | 1.00                                      |                               |                  |       |                                    |                                       | 1200                                      | 1.63                         | 02                 | 1221                                 | 20                          | 22                                    | 1212                                         | 22   |
| Minimum, May 2                        |                           | 7.7                             |                      |                             |                |        |                                            |                                           |                               | 10 m m           |       |                                    |                                       | 600                                       | .82                          |                    |                                      |                             |                                       |                                              |      |
| Sept. 18                              |                           |                                 | 7.5                  | 7.7                         | 2.2            | .7.7.) | 25                                         | 0.77.77                                   | 2.2                           |                  |       |                                    |                                       | 600                                       | .82                          |                    |                                      | -                           |                                       |                                              |      |
| Water Year 1929                       |                           |                                 |                      |                             |                |        |                                            |                                           |                               |                  |       |                                    |                                       |                                           |                              |                    |                                      |                             |                                       |                                              |      |
| Maximum, Jan. 16, 1929                |                           |                                 |                      | -                           |                |        |                                            |                                           | 22                            |                  |       |                                    |                                       | 1700                                      | 2.31                         |                    |                                      |                             |                                       |                                              |      |
| Minimum, Aug. 11                      |                           |                                 | H =                  |                             |                |        |                                            | **                                        |                               |                  | ~ *   |                                    |                                       | 400                                       | . 54                         |                    | 77                                   |                             |                                       |                                              |      |
| Water Year 1930                       |                           |                                 |                      |                             |                |        |                                            |                                           |                               |                  |       |                                    |                                       |                                           |                              |                    |                                      |                             |                                       |                                              |      |
| Maximum, Feb. 3, 1930                 |                           |                                 | 126                  | 45                          | 357            |        | 336                                        | 0                                         | 412                           | 406              | -     |                                    |                                       | .1610                                     | 2.19                         |                    | 500                                  | 224                         | 6.9                                   | 2310                                         | 22   |
| Minimum, Aug. 15                      |                           |                                 | 90                   | 40                          | 103            |        | 216                                        | 0                                         | 230                           | 140              |       |                                    |                                       | 744                                       | 1.01                         |                    | 390                                  | 212                         | 2.3                                   | 1060                                         |      |
| Sept. 4                               |                           |                                 | 90                   | 15                          | 160            |        | 264                                        | 0                                         | 213                           | 140              |       |                                    |                                       | 744                                       | 1.01                         |                    | 286                                  | 70                          | 4.1                                   | 1210                                         | **   |
| Water Year 1931                       |                           |                                 |                      |                             |                |        |                                            |                                           |                               |                  |       |                                    |                                       |                                           |                              |                    |                                      |                             |                                       |                                              |      |
| Maximum, Nov. 19, 1930                |                           |                                 | 212                  | 58                          | 559            |        | 312                                        | 0                                         | 449                           | 895              | 100   | 22                                 |                                       | 2400                                      | 3.26                         |                    | 768                                  | 513                         | 8.8                                   | 3700                                         |      |
| Minimum, Aug. 3, 1931                 | 4210                      |                                 | 81                   | 15                          | 111            |        | 192                                        | 0                                         | 202                           | 98               |       |                                    |                                       | 576                                       | .78                          | 6550               | 264                                  | 106                         | 3.0                                   | 920                                          |      |
| Water Year 1932                       |                           |                                 |                      |                             |                |        |                                            |                                           |                               |                  |       |                                    |                                       |                                           |                              |                    |                                      |                             |                                       |                                              |      |
| Maximum, Jan. 27, 1932                | 114                       | **                              | 130                  | 29                          | 379            |        | 366                                        | 0                                         | 394                           | 397              |       |                                    |                                       | 1600                                      | 2.18                         | 492                | 445                                  | 145                         | 7.8                                   | 2430                                         | 122  |
| Minimum, Aug. 19                      | 1410                      |                                 | 63                   | 16                          | 188            |        | 220                                        | 0                                         | 241                           | 142              |       |                                    |                                       | 736                                       | 1.00                         | 2800               | 222                                  | 42                          | 5.5                                   | 1120                                         |      |
| Water Year 1933                       |                           |                                 |                      |                             |                |        |                                            |                                           |                               |                  |       |                                    |                                       |                                           |                              |                    |                                      |                             |                                       |                                              |      |
| Maximum, Jan. 1933                    | 192                       | ×                               | 127                  | 27                          | 316            |        | 278                                        | 0                                         | 409                           | 328              | 122   |                                    |                                       | 1410                                      | 1.92                         | 221                | 1.20                                 | 2.00                        | 11                                    | 2140                                         |      |
| Minimum, Aug                          |                           |                                 | 82                   | 15                          | 127            |        | 200                                        | 0                                         | 219                           | 105              |       |                                    |                                       | 1410<br>687                               | .92                          | 731<br>2890        | 429<br>264                           | 202                         | 6.6                                   | 2140<br>1030                                 |      |
|                                       |                           |                                 |                      |                             |                |        |                                            |                                           |                               | 1000             |       |                                    |                                       | 0.000                                     | 1.00                         | 1. M. C. M.        | 2.014                                | 1.00                        | 2.00                                  | 1030                                         | 1553 |
| Mater Year 1934<br>Maximum, Jan. 1934 | 183                       | 22                              | 129                  | 31                          | 200            |        | 300                                        | 0                                         | 200                           | 202              |       |                                    | 0.01                                  |                                           | 1.12                         |                    |                                      |                             |                                       |                                              |      |
| Minimum, Aug                          |                           | 12                              | 93                   | 20                          | 300<br>149     |        | 329<br>204                                 | 0                                         | 398<br>290                    | 302<br>125       |       | 0.6                                | 0.21                                  | 1440<br>842                               | 1.96                         | 712<br>2960        | 452<br>313                           | 182                         | 6.2                                   | 2060                                         | -    |
| STOCK PROOF                           |                           |                                 | 5.71                 | 1000                        |                |        | 1.0.1                                      |                                           |                               | 100              |       | M10                                | . 2.3                                 | 042                                       | 1.1.14                       | 2900               | 212                                  | 146                         | 3.7                                   | 1260                                         | **   |
| Water Year 1935                       | 100                       |                                 |                      |                             |                |        |                                            |                                           |                               |                  |       |                                    |                                       |                                           |                              |                    |                                      |                             |                                       |                                              |      |
| Maximum, Jan. 1935<br>Minimum, Aug    |                           |                                 | 131<br>80            | 35                          | 317<br>110     |        | 294<br>178                                 | 0                                         | 434<br>232                    | 328              |       | .6                                 | .30                                   | 1480                                      | 2.01                         | 551                | 472                                  | 231                         | 6.3                                   |                                              | 7.8  |
|                                       |                           | 27.27.0                         | 00                   | 17                          | 110            |        | 1/0                                        | U                                         | 232                           | 90               |       | 2.5                                |                                       | 663                                       | .90                          | 2790               | 268                                  | 122                         | 2.9                                   | 994                                          | 7.8  |
|                                       |                           |                                 |                      |                             |                |        |                                            |                                           |                               |                  |       |                                    |                                       |                                           |                              |                    |                                      |                             |                                       |                                              |      |

| Tons         Cluit.           per         Cluit.           per         Mag           day         Mag           329         456           539         456           544         431           2370         200           2370         270           244         231           2370         270           2370         270           233         461           24410         246           647         461           24410         246           533         421           24410         246           547         236           547         2370           2313         232           2401         242           2313         2314 | Tons         Call.<br>ber<br>magnet         Non-<br>car-<br>bor<br>me-<br>stum         Soft<br>soft<br>ate         Soft<br>soft<br>ate         Soft<br>soft<br>ate         Soft<br>soft<br>ate         Soft<br>soft<br>ate         Soft<br>soft<br>ate         Soft<br>soft<br>soft<br>ate         Soft<br>soft<br>soft<br>ate         Soft<br>soft<br>soft<br>ate         Soft<br>soft<br>soft<br>ate         Soft<br>soft<br>soft<br>ate         Soft<br>soft<br>soft<br>ate         Soft<br>soft<br>soft<br>ate         Soft<br>soft<br>soft<br>ate         Soft<br>soft<br>soft<br>ate         Soft<br>soft<br>ate         Soft<br>ate         Soft<br>ate <th>Tons         clum.<br/>mag         Non-<br/>cum.<br/>cum.<br/>mag         sat-<br/>sorra-<br/>sorra-<br/>mag         Non-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sorra-<br/>sor</th> <th>Tons         Call<br/>chart         Non-<br/>bor<br/>me-<br/>sium         Cor-<br/>car-<br/>car-<br/>stratio         ad-<br/>stration           329         53         20         137         3.13           539         53         207         137         3.13           544         431         200         137         3.13           544         431         200         137         3.13           570         270         110         5.4         6.0           673         270         118         3.13         6.0           635         461         210         118         3.16           641         240         128         3.16         6.1           647         243         214         6.0         6.1           2500         293         201         128         3.16           667         263         124         3.16         6.1           2710         273         139         3.7         3.6           2710         273         139         5.7         3.6           771         213         3.08         5.7         3.6           711         213         3.08         5.7         3.6</th> <th>Tons         Call-<br/>ber<br/>me-<br/>sium         Non-<br/>car-<br/>car-<br/>sorr-<br/>me-<br/>stum         Non-<br/>car-<br/>sorr-<br/>me-<br/>sorr-<br/>me-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr-<br/>sorr</th> <th>Tons         Call.<br/>ber<br/>mark         Non-<br/>carlen         ad-<br/>bor<br/>bor<br/>mark         ad-<br/>bor<br/>bor<br/>bor<br/>mark         ad-<br/>bor<br/>bor<br/>bor<br/>bor<br/>bor<br/>bor<br/>bor<br/>bor<br/>bor<br/>bor</th> <th>Tons<br/>ber<br/>mer<br/>day         cum<br/>mar<br/>kas         Non-<br/>ato<br/>bon-<br/>tratio         and-<br/>ato<br/>bon-<br/>tratio         and-<br/>bon-<br/>bon-<br/>tratio         and-<br/>bon-<br/>tratio         and-<br/>ato<br/>bon-<br/>tratio         and-<br/>bon-<br/>tratio         and-<br/>ato<br/>bon-<br/>tratio         and-<br/>bon-<br/>tratio         and-<br/>ato<br/>bon-<br/>tratio         and-<br/>bon-<br/>tratio         and-<br/>tratio         and-tratio</th> <th>Tonse<br/>per<br/>per<br/>me-<br/>sium         cal-<br/>can-<br/>can-<br/>me-<br/>stur         Non-<br/>soft<br/>and-<br/>me-<br/>soft<br/>attention         ad-<br/>soft<br/>attention           2329         6.35         207         6.3           2320         6.35         207         6.3           2320         6.35         207         6.3           2320         2.30         110         3.4           2320         2.30         110         3.4           2330         2.30         118         3.3           240         2.10         118         3.4           240         2.10         118         3.4           240         2.14         5.0         5.1           240         2.31         2.0         5.1           240         2.34         2.14         5.0           2410         2.34         2.13         3.6           2410         2.34         2.13         3.6           2410         2.13         2.14         5.6           2110         2.13         2.13         3.6           2110         2.13         2.13         5.2           2580         2.04         101         3.2           253         2.41         170</th> | Tons         clum.<br>mag         Non-<br>cum.<br>cum.<br>mag         sat-<br>sorra-<br>sorra-<br>mag         Non-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sorra-<br>sor | Tons         Call<br>chart         Non-<br>bor<br>me-<br>sium         Cor-<br>car-<br>car-<br>stratio         ad-<br>stration           329         53         20         137         3.13           539         53         207         137         3.13           544         431         200         137         3.13           544         431         200         137         3.13           570         270         110         5.4         6.0           673         270         118         3.13         6.0           635         461         210         118         3.16           641         240         128         3.16         6.1           647         243         214         6.0         6.1           2500         293         201         128         3.16           667         263         124         3.16         6.1           2710         273         139         3.7         3.6           2710         273         139         5.7         3.6           771         213         3.08         5.7         3.6           711         213         3.08         5.7         3.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Tons         Call-<br>ber<br>me-<br>sium         Non-<br>car-<br>car-<br>sorr-<br>me-<br>stum         Non-<br>car-<br>sorr-<br>me-<br>sorr-<br>me-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr-<br>sorr | Tons         Call.<br>ber<br>mark         Non-<br>carlen         ad-<br>bor<br>bor<br>mark         ad-<br>bor<br>bor<br>bor<br>mark         ad-<br>bor<br>bor<br>bor<br>bor<br>bor<br>bor<br>bor<br>bor<br>bor<br>bor                                                                                                                                                          | Tons<br>ber<br>mer<br>day         cum<br>mar<br>kas         Non-<br>ato<br>bon-<br>tratio         and-<br>ato<br>bon-<br>tratio         and-<br>bon-<br>bon-<br>tratio         and-<br>bon-<br>tratio         and-<br>ato<br>bon-<br>tratio         and-<br>bon-<br>tratio         and-<br>ato<br>bon-<br>tratio         and-<br>bon-<br>tratio         and-<br>ato<br>bon-<br>tratio         and-<br>bon-<br>tratio         and-<br>tratio         and-tratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Tonse<br>per<br>per<br>me-<br>sium         cal-<br>can-<br>can-<br>me-<br>stur         Non-<br>soft<br>and-<br>me-<br>soft<br>attention         ad-<br>soft<br>attention           2329         6.35         207         6.3           2320         6.35         207         6.3           2320         6.35         207         6.3           2320         2.30         110         3.4           2320         2.30         110         3.4           2330         2.30         118         3.3           240         2.10         118         3.4           240         2.10         118         3.4           240         2.14         5.0         5.1           240         2.31         2.0         5.1           240         2.34         2.14         5.0           2410         2.34         2.13         3.6           2410         2.34         2.13         3.6           2410         2.13         2.14         5.6           2110         2.13         2.13         3.6           2110         2.13         2.13         5.2           2580         2.04         101         3.2           253         2.41         170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2370 456<br>2370 456<br>544 41<br>22840 270<br>679 458<br>677 461<br>2410 270<br>647 461<br>2410 286<br>533 471<br>2410 274<br>254 286                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 529         554         207           2370         306         137           5370         300         137           544         431         200           5240         270         116           639         658         214           2370         270         118           635         461         210           2410         266         124           2370         266         124           647         463         214           240         266         124           240         292         149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 529         454         207           2370         300         137           544         2370         116           540         231         214           579         453         214           533         461         210           2470         216         118           635         461         214           2410         226         124           2560         235         461         214           2560         236         118         314           2560         232         423         189           533         423         189         234           2710         270         116         270           2310         274         139         234           2310         270         116         270           2430         270         116         270                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 529         554, 207           2370         300         137           5370         300         137           544         211         200           2240         270         116           2240         270         113           679         458         214           2370         236         461         210           647         463         214         214           2410         246         210         123           5560         292         139         214           233         423         189         214           2510         292         139         234           2700         212         233         234           2710         270         118         270           2710         270         216         126           7110         219         76         76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 529         554         207           2370         356         207           5370         300         137           544         431         200           546         270         116           579         458         214           679         458         214           635         461         210           2410         286         124           2560         286         124           533         461         210           5410         286         139           5560         292         139           531         270         139           533         270         139           5410         270         139           533         270         139           5410         270         136           76         393         198           7110         219         76           2134         219         279           734         318         76           734         313         76           734         316         76           734         316         76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 529         554         207           2370         356         207           5370         300         137           544         431         200           546         270         116           679         458         214           679         458         214           635         461         210           5410         286         124           5560         292         119           533         461         216           5410         270         118           533         423         189           531         270         119           533         270         199           7110         219         76           731         213         270           733         219         76           734         193         76           735         219         270           743         219         76           734         213         26           735         219         76           736         216         270           731         259         97     < | 529         554, 207           2370         556, 207           544, 211         200           2240         211           2370         230           2370         230           2370         230           2370         230           244, 211         200           2370         238           2370         236           2410         240           2410         210           253         461         210           2540         243         118           573         242         189           573         232         139           270         213         234           2710         213         276           2710         213         276           2710         213         76           7110         213         76           733         234         170           2346         213         76           2350         239         273           2580         243         101           655         417         178           659         418         170 </th <th>529         454         207           2370         300         137           544         231         200           2240         231         201           2340         231         214           679         458         214           647         463         214           2356         461         210           2410         236         139           533         461         219           2430         234         101           2310         272         118           2310         272         1198           2110         219         76           2110         219         76           2110         219         76           2110         219         76           2110         219         76           2110         219         76           2110         219         76           2130         219         76           214         219         76           2130         219         76           214         214         170           2150         213         98<!--</th--></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 529         454         207           2370         300         137           544         231         200           2240         231         201           2340         231         214           679         458         214           647         463         214           2356         461         210           2410         236         139           533         461         219           2430         234         101           2310         272         118           2310         272         1198           2110         219         76           2110         219         76           2110         219         76           2110         219         76           2110         219         76           2110         219         76           2110         219         76           2130         219         76           214         219         76           2130         219         76           214         214         170           2150         213         98 </th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4,54<br>300<br>4,31<br>2,70<br>4,58<br>4,63<br>2,66<br>2,92<br>2,92<br>2,92<br>2,92<br>2,92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4,54<br>300<br>2,70<br>2,70<br>4,31<br>4,31<br>2,70<br>2,63<br>2,86<br>2,86<br>2,92<br>2,92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.54<br>300<br>4.31<br>2.70<br>2.70<br>2.86<br>2.86<br>2.86<br>2.86<br>2.86<br>2.92<br>2.92<br>2.92<br>2.70<br>2.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4,54,<br>300,<br>4,31,<br>4,31,<br>4,51,<br>4,53,<br>4,63,<br>2,84,<br>2,92,<br>2,92,<br>2,19,<br>2,19,<br>2,19,<br>2,19,<br>2,19,<br>2,19,<br>2,19,<br>2,19,<br>2,19,<br>2,19,<br>2,19,<br>2,19,<br>2,19,<br>2,19,<br>2,19,<br>2,19,<br>2,19,<br>2,19,<br>2,19,<br>2,19,<br>2,19,<br>2,19,<br>2,19,<br>2,19,<br>2,19,<br>2,19,<br>2,19,<br>2,19,<br>2,19,<br>2,19,<br>2,19,<br>2,19,<br>2,19,<br>2,19,<br>2,19,<br>2,19,<br>2,19,<br>2,19,<br>2,19,<br>2,19,<br>2,19,<br>2,19,<br>2,19,<br>2,19,<br>2,19,<br>2,19,<br>2,19,<br>2,19,<br>2,19,<br>2,19,<br>2,19,<br>2,19,<br>2,19,<br>2,19,<br>2,19,<br>2,19,<br>2,19,<br>2,19,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,<br>2,29,29,20,20,20,20,20,20,20,20,20,20,20,20,20, | 454<br>431<br>431<br>431<br>458<br>453<br>461<br>2453<br>2463<br>2463<br>2463<br>2463<br>2463<br>2463<br>2463<br>246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 4,54<br>100<br>100<br>2,70<br>2,70<br>2,60<br>2,86<br>2,86<br>2,86<br>2,86<br>2,86<br>2,86<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4,5,4<br>3,00<br>2,70<br>2,70<br>2,50<br>2,10<br>2,10<br>2,10<br>2,10<br>2,10<br>2,10<br>2,10<br>2,1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 4,54<br>100<br>2,70<br>2,70<br>2,70<br>2,70<br>2,58<br>2,58<br>2,58<br>2,58<br>2,92<br>2,93<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,19<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2,29<br>2 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>a a a a a a a a</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1.93<br>.94<br>1.91<br>1.03<br>1.87<br>1.12<br>1.12<br>1.94<br>1.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.93<br>.94<br>1.91<br>1.03<br>1.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1,93<br>.94<br>1,91<br>1,91<br>1,12<br>1,12<br>1,12<br>1,02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,93<br>.94<br>1,91<br>1,03<br>1,187<br>1,187<br>1,187<br>1,187<br>1,187<br>1,02<br>1,02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1,93<br>.94<br>1,91<br>1,03<br>1,87<br>1,18<br>1,187<br>1,02<br>1,02<br>1,02<br>1,70<br>89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1,93<br>.94<br>1,91<br>1,03<br>1,87<br>1,187<br>1,187<br>1,02<br>1,02<br>1,70<br>89<br>1,70<br>.92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1,93<br>.94<br>1,91<br>1,03<br>1,187<br>1,187<br>1,187<br>1,70<br>1,70<br>1,70<br>1,70<br>1,70<br>1,70<br>1,89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1, 93<br>.94<br>1, 91<br>1, 91<br>1, 91<br>1, 12<br>1, 92<br>1, 92<br>1, 70<br>1, 72<br>1, 92<br>1, 70<br>1, 92<br>1, 80<br>1, 91<br>1, 68<br>1, 80<br>1, 91<br>1, 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ,18 1400<br>.19 757<br>.29 1370<br>.18 824<br>.35 1430<br>.18 750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .18 1400<br>.19 757<br>.29 1370<br>.18 824                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | .18 1400<br>.19 757<br>.29 1370<br>.18 824<br>.35 1420<br>.18 750<br>.18 750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ,18 1400<br>,19 757<br>,19 1370<br>,18 824<br>,15 1430<br>,18 759<br>,18 759<br>,18 759<br>,13 1260                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | .18 1400<br>.19 757<br>.29 1370<br>.18 824<br>.18 750<br>.18 750<br>.18 750<br>.13 1260<br>.12 515<br>.15 656                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | .18 1400<br>.19 757<br>.29 1370<br>.18 824<br>.18 750<br>.18 750<br>.18 750<br>.12 515<br>.12 515<br>.15 656<br>.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .18 1400<br>.19 757<br>.19 1370<br>.18 824<br>.18 759<br>.18 759<br>.18 759<br>.18 759<br>.12 1260<br>.12 1260<br>.12 156<br>.12 1260<br>.13 | .18 1400<br>.19 757<br>.19 1370<br>.18 824<br>.18 750<br>.18 750<br>.18 750<br>.18 750<br>.18 750<br>.18 750<br>.12 9150<br>.13 056<br>.13 1320<br>.13 1320<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.<br>9.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . 6<br>. 1. 2<br>1. 2<br>1. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $ \begin{array}{c} .6\\ .6\\ .6\\ .1\\ .2\\ .1\\ .2\\ .1\\ .2\\ .1\\ .2\\ .1\\ .2\\ .1\\ .2\\ .1\\ .2\\ .2\\ .2\\ .2\\ .2\\ .2\\ .2\\ .2\\ .2\\ .2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $ \begin{array}{c} 6\\ 6\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2\\ 1,2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 6<br>. 6<br>6<br>1<br>2<br>. 1<br>2<br>1<br>9<br>6<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 251<br>251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0 431 300<br>0 249 111<br>0 238 113                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 408 251<br>0 175 51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 408<br>175<br>375<br>206                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 408 122 122 122 122 125 125 125 125 126 126 125 128 125 126 125 125 125 125 125 125 125 125 125 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 408 251<br>175 218<br>375 218<br>206 93<br>384 235<br>384 235<br>416 253<br>416 253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 408 251 1<br>175 218 1<br>206 93 1<br>386 235<br>220 95<br>222 99<br>223 243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 198 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 431<br>249<br>238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 239 0 408<br>175 0 175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 239 0 408 251<br>175 0 173 51<br>264 0 375 218<br>198 0 206 93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 202 0 408 251<br>175 0 408 251<br>18 251 0 115<br>264 0 375 218<br>29 0 206 25<br>205 0 206 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 239         0         408         251           175         0         175         51           264         0         375         218           264         0         375         218           292         0         384         235           205         0         220         95           203         0         416         235           215         0         416         253           215         0         416         253                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 239     0     408     251      1       239     0     408     251      1       264     0     375     218      1       264     0     375     218      1       203     0     446     235      95        203     0     446     263      99        219     0     203     0     403      99        219     0     203     0     403     243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0 001 101 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122 29 308 286 0 431<br>80 18 135 189 0 249<br>81 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 82 17 137 198 0 238                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 82 17 137 198 0 238<br>114 27 262 239 0 408<br>66 13 79 175 0 175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | B2         17         137         198         0         238         113           114         27         262         239         0         408         251           66         13         79         175         0         175         51           112         26         235         264         0         375         218           78         16         108         175         0         175         218           78         16         108         198         0         375         218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | B2         17         137         198         0         238         113           114         27         262         239         0         408         251           166         13         79         79         175         0         175         51           112         26         235         264         0         375         218           78         16         108         198         0         206         93           78         16         108         198         0         206         93           80         17         139         202         0         364         235                                                                                                                                                                                                                                                                                                                                                                                    | 82         17         137         198         0         238         113           114         27         262         239         0         408         251           112         26         235         79         175         0         175         51           112         26         235         264         0         375         218           112         26         235         264         0         375         218           112         26         108         198         0         206         93           112         27         239         205         0         346         235           122         28         236         0         205         0         206         95           122         28         286         103         0         416         235         95           82         17         121         215         0         215         95         95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 32 $17$ $137$ $198$ $0$ $238$ $113$ $$ $1$ $114$ $27$ $262$ $239$ $0$ $408$ $231$ $$ $1$ $116$ $27$ $262$ $239$ $0$ $408$ $231$ $$ $1$ $112$ $26$ $233$ $264$ $0$ $375$ $218$ $$ $1$ $ 1$ $112$ $26$ $233$ $264$ $0$ $375$ $218$ $$ $1$ $ 1$ $112$ $217$ $219$ $205$ $0$ $336$ $218$ $$ $ 1122$ $218$ $213$ $0$ $213$ $0$ $212$ $$ $                    -$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 286 0 431<br>189 0 249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 52 17 137 198 0 236                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 82 17 137 198 0 2.46<br>114 27 262 2.39 0 4.08<br>66 13 79 175 0 175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 82         1/3         1/3         1/3         1/3         1/3         0         2/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 82         1/3         1/3         1/3         1/3         1/3         1/3         0         2/3         1/3         1/3           114         27         262         239         0         408         251         51           166         13         79         175         0         1/35         51         51           112         26         235         264         0         375         218           18         16         108         198         0         206         93           122         239         292         0         375         218           198         0         206         0         376         235           103         205         0         280         235         93                                                                                                                                                                                                                                                                     | 82         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/1         1/3         1/1         1/3         1/1         1/3         1/3         1/1         1/3         1/1         1/3         1/1         1/3         1/1         1/3         1/1         1/3         1/1         1/3         1/1         1/3         1/1         1/3         1/1         1/3         1/1         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3         1/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 32 $11$ $137$ $138$ $0$ $238$ $113$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-11$ $-111$ $-111$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

|          |                                       |                            |                               |                      |                             | (                 | Result                     | s in mi                                    | lligran                                   | ns per lit                    | er except a       | ind:   | (cated)                            | S                 |                                           |                              |                     |                                      |                             |                                       |                                     |                   |
|----------|---------------------------------------|----------------------------|-------------------------------|----------------------|-----------------------------|-------------------|----------------------------|--------------------------------------------|-------------------------------------------|-------------------------------|-------------------|--------|------------------------------------|-------------------|-------------------------------------------|------------------------------|---------------------|--------------------------------------|-----------------------------|---------------------------------------|-------------------------------------|-------------------|
|          |                                       |                            |                               |                      | Mar                         |                   |                            | Bi-                                        |                                           |                               |                   |        |                                    |                   | Die                                       | ssolved s                    | solids              | Hard<br>as C:                        |                             | So-                                   | Specific<br>con-                    |                   |
|          | Date<br>of<br>collection              | Mean<br>Discharge<br>(cfs) | Silica<br>(SiO <sub>2</sub> ) | Cal-<br>cium<br>(Ca) | Mag-<br>ne-<br>sium<br>(Mg) | Sodium<br>(Na)    | Po-<br>tas-<br>sium<br>(K) | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> ) | Car-<br>bon-<br>ate<br>(CO <sub>3</sub> ) | Sulfate<br>(SO <sub>4</sub> ) | Chloride<br>(Cl)  |        | N1-<br>trate<br>(NO <sub>3</sub> ) |                   | Milli-<br>grams<br>per<br>liter<br>(mg/1) | Tons<br>per<br>acre-<br>foot | Tons<br>per<br>day  | Cal-<br>cium,<br>Mag-<br>ne-<br>sium | Non-<br>car-<br>bon-<br>ate | dium<br>ad-<br>sorp-<br>tion<br>ratio | duct-<br>ance<br>(micro-<br>mhos at | рН                |
|          |                                       |                            |                               |                      |                             |                   | 8-364                      | 0. RIO                                     | GRANDE                                    | AT EL PAS                     | 0, TEXCo          | ontinu | ad                                 |                   |                                           |                              |                     |                                      |                             |                                       |                                     |                   |
|          | <u>1948</u><br>Jan. 1948<br>July      | 126<br>1220                |                               | 118<br>55            | 27<br>18                    | 276<br>133        | **                         | 309<br>126                                 | 0<br>0                                    | 419<br>250                    | 246<br>107        | **     | 1.9<br>2.5                         | 0.25              | 1320<br>691                               | 1.80<br>.94                  | 449<br>2280         | 408<br>212                           | 154<br>109                  | 5.9<br>4.0                            | 1980<br>1050                        | 7.7               |
|          | 1949<br>Feb. 1949<br>Apr              | 146<br>961                 |                               | 84<br>58             | 27<br>17                    | 275<br>125        | 25                         | 173<br>148                                 | 0<br>0                                    | 417<br>216                    | 245<br>106        |        | 1.2                                | .30               | 1220<br>654                               | 1.66<br>.89                  | 481<br>1700         | 318<br>215                           | 176<br>94                   | 6.7<br>3.7                            |                                     | 8.1<br>7.9        |
| Minimum, | <u>1950</u><br>Jan. 1950<br>Mar       | 160<br>781<br>969          |                               | 76<br>78<br>71       | 26<br>16<br>17              | 278<br>111<br>124 |                            | 168<br>210<br>184                          | 0<br>0<br>0                               | 412<br>200<br>215             | 245<br>88<br>103  |        | 1.9<br>.6<br>1.2                   | .29<br>.12<br>.17 | 1190<br>669<br>669                        | 1.62<br>.91<br>.91           | 514<br>1410<br>1750 | 298<br>258<br>244                    | 160<br>86<br>94             | 7.0<br>3.0<br>3.4                     | 994                                 | 7.8<br>7.8<br>8.0 |
|          | <u>1951</u><br>Feb. 1951<br>July      | 118<br>740                 |                               | 91<br>69             | 28<br>22                    | 305<br>144        |                            | 220<br>176                                 | 0<br>0                                    | 435<br>252                    | 269<br>124        |        | .0<br>1.9                          | .35               | 1320<br>757                               | 1.80<br>1.03                 | 421<br>1510         | 342<br>262                           | 162<br>118                  | 7.2<br>3.9                            |                                     | 8.1<br>7.7        |
|          | <u>1952</u><br>Feb. 1952<br>Aug       | 55<br>943                  | **                            | 113<br>65            | 30<br>16                    | 343<br>80         |                            | 305<br>187                                 | 0<br>0                                    | 471<br>146                    | 308<br>76         |        | ,6<br>1,9                          | .41<br>.11        | 1530<br>529                               | 2.08<br>.72                  | 227<br>1350         | 404<br>225                           | 154<br>72                   | 7.4<br>2.3                            |                                     | 8.1<br>7.8        |
| Minimum, | Feb. 1953<br>Mar                      | 52<br>568                  |                               | 109<br>71            | 31<br>15                    | 354<br>98         |                            | 302<br>183                                 | 0<br>0                                    | 476<br>171                    | 312<br>89         |        | .6<br>2.5                          | .42<br>.08        | 1540<br>618                               | 2.09                         | 216<br>948          | 400<br>240                           | 153<br>90                   | 7.72.8                                |                                     | 8.0<br>7.8        |
| Jan, 19  | <u>1954</u><br>Dec. 1953<br>54<br>Aug | 60<br>53<br>190            |                               | 112<br>112<br>72     | 27<br>27<br>14              | 354<br>354<br>133 |                            | 305<br>290<br>183                          | 0<br>0<br>0                               | 434<br>455<br>214             | 330<br>337<br>124 |        | .6<br>,6<br>                       | .34<br>.34<br>.22 | $1530 \\ 1530 \\ 684$                     | 2.08<br>2.08<br>.93          | 248<br>219<br>351   | 392<br>392<br>239                    | 142<br>154<br>89            | 7.8<br>7.8<br>3.7                     | 2310                                | 8.0<br>7.7<br>8.3 |
| Minimum, | Feb. 1955<br>July                     | 5.0<br>243                 |                               | 120<br>90            | 31<br>20                    | 666<br>146        |                            | 320<br>189                                 | 0<br>0                                    | 794<br>290                    | 569<br>124        |        |                                    | .63<br>.08        | 2410<br>801                               | 3.28<br>1.09                 | 32.5<br>526         | 428<br>308                           |                             | 14<br>3.6                             |                                     | 8.3<br>7.8        |
| Minimum, | Feb. 1956<br>July                     | 37<br>161                  |                               | 166<br>92            | 47<br>23                    | 877<br>168        |                            | 323<br>187                                 | 0<br>0                                    | 1070<br>339                   | 805<br>137        |        | . 6<br>. 6                         | .71               | 3180<br>927                               | 4.32<br>1.26                 | 318<br>403          | 608<br>326                           | 342<br>172                  | 15<br>4.0                             |                                     | 8.2<br>8.1        |
| Minimum, | Feb. 1957<br>Aug                      | 2.4<br>772                 |                               | $\substack{191\\64}$ | 36<br>10                    | 934<br>60         |                            | 253<br>175                                 | 0<br>0                                    | 1260<br>128                   | 814<br>44         | 12     | a<br>a                             | 1.02              | 3450<br>428                               | 4.69<br>.58                  | 22,4<br>892         | 625<br>202                           |                             | 16<br>1.8                             |                                     | 8.0<br>8.2        |
| Minimum, | Nov. 1957<br>Aug. 1958                | 9.3<br>1070                |                               | 170<br>84            | 53<br>16                    | 1080<br>102       |                            | 354<br>186                                 | 0<br>0                                    | 1150<br>237                   | 1090<br>76        | ***    | .6<br>.6                           | .90<br>.13        | 3830<br>657                               | 5.21<br>,89                  | 96,2<br>1900        | 642<br>274                           | $351 \\ 121$                | 19<br>2,7                             |                                     | 8.3<br>8.0        |
|          | <u>1959</u><br>Jan. 1959<br>Mar       | 65<br>825                  | 22                            | 142<br>78            | 32<br>15                    | 396<br>95         | 14                         | 295<br>193                                 | 0<br>0                                    | 594<br>192                    | 356<br>78         | 1.0    | a<br>,6                            | .32               | 1750<br>612                               | 2.38                         | 307<br>1360         | 487<br>257                           | 24.6<br>98                  | 7.8<br>2.6                            |                                     | 7.9<br>7.9        |

|                                                                                                |                            |                       |                  |                      |                             |                | ŝ                          | Bl-                                        |                                   |                  |                                             |                                      |                       |            | BIG                                       | Dissolved solids             | shids              | Hard<br>as C                         | Hardness<br>as CaCO <sub>3</sub> | -s                            | Specific<br>con- | 0          |
|------------------------------------------------------------------------------------------------|----------------------------|-----------------------|------------------|----------------------|-----------------------------|----------------|----------------------------|--------------------------------------------|-----------------------------------|------------------|---------------------------------------------|--------------------------------------|-----------------------|------------|-------------------------------------------|------------------------------|--------------------|--------------------------------------|----------------------------------|-------------------------------|------------------|------------|
| Date<br>of<br>collection                                                                       | Mean<br>Discharge<br>(cfs) | e (SiO <sub>2</sub> ) | a Iron<br>) (Fe) | Cal-<br>ctum<br>(Ca) | mag-<br>ne-<br>sium<br>(Mg) | Sodium<br>(Na) | Fo-<br>tas-<br>sium<br>(K) | car-<br>bon-<br>ate<br>(HCO <sub>1</sub> ) | bon-<br>ate<br>(CO <sub>3</sub> ) | Sulfate<br>(SO4) | Chloride<br>(Cl)                            | Fluo- N1-<br>ride trate<br>(F) (NO3) | Ni-<br>trate<br>(NO_) | Bo-<br>(B) | Milli-<br>grams<br>per<br>liter<br>(mg/l) | Tons<br>per<br>acre-<br>foot | Tons<br>per<br>day | Cal-<br>cium,<br>Mag-<br>ne-<br>sium | Non-<br>car-<br>bon-<br>ate      | ad-<br>sorp-<br>tion<br>ratio | 58               | Hq -       |
|                                                                                                |                            |                       |                  |                      |                             |                | 8-364                      | 0. RIO                                     | GRANDE                            | AT EL PAS        | 8-3640. RIO GRANDE AT EL PASO, TEXContinued | ntinue                               | ] _                   | 1          |                                           |                              |                    |                                      |                                  |                               |                  |            |
| Water Year 1960<br>Maximum, Feb. 1960                                                          | 825                        | 11                    |                  | 138<br>78            | 33<br>19                    | 369<br>116     | 11                         | 313<br>181                                 | 00                                | 573<br>237       | 314<br>99                                   | 11                                   | 0.6<br>.6             | 0.37       | 1710<br>667                               | 2.33<br>.91                  | 305<br>1490        | 478<br>272                           | 222<br>123                       | 7.3<br>3.1                    | 2470<br>1080     | 8.2<br>8.2 |
| Mater Year 1961<br>Maximum, Nov. 1960                                                          | 124<br>878                 | <br>24                |                  | 139<br>80            | 31<br>20                    | 323<br>130     | 8.2                        | 290<br>204                                 | 00                                | 541<br>248       | 273<br>105                                  | 0.8                                  | е<br>9.               | .20        | 1570<br>710                               | 2.14                         | 526<br>1680        | 474<br>283                           | 236<br>116                       | 6.4<br>3.3                    | 2280<br>1130     | 8.0        |
| Water Year 1962<br>Maxfmum, Dec. 1961                                                          | 1040                       | 21                    |                  | 134<br>72            | 32<br>16                    | 360<br>123     | 7.8                        | 293<br>183                                 | 0 0                               | 576<br>225       | 305<br>96                                   | : «                                  | 1.2                   | .41<br>.16 | 1670<br>679                               | 2.27                         | 528<br>1910        | 466<br>247                           | 226<br>97                        | 7.3                           | 2400<br>1040     | 8.2        |
| Water Year 1963<br>Maximum, Feb. 1963                                                          | 77                         | 16                    |                  | 138<br>81            | 27<br>16                    | 362<br>124     | 9.0                        | 284<br>205                                 | 00                                | 573<br>219       | 317                                         | ¦∞.                                  | а<br>•                | 44<br>.16  | 1630<br>689                               | 2.22                         | 339<br>1450        | 434<br>267                           | 222<br>99                        | 7.4                           | 2450<br>1070     | 8.1<br>8.1 |
| <u>Water Year 1964</u><br>Maximum, Nay 1964                                                    | 20                         | 11                    |                  | 115<br>81            | 30<br>18                    | 497<br>161     | : ;                        | 303<br>199                                 | 00                                | 631<br>256       | 425<br>138                                  | : :                                  | 1.2                   | .12        | 1920<br>808                               | 2.61<br>1.10                 | 104<br>369         | 409<br>276                           | 160<br>113                       | 11<br>4.2                     | 2900<br>1250     | 8,1        |
| Hater Year 1965<br>MaxInum, Oct. 1964                                                          | 8.1                        | 10                    |                  | 126<br>57            | 39<br>11                    | 702<br>65      |                            | 281<br>159                                 | 00                                | 879<br>130       | 624<br>48                                   | 9.                                   | 5.0<br>.6             | . 70       | 2640<br>431                               | 3.59<br>.59                  | 57.7<br>1080       | 474<br>186                           | 244<br>56                        | 14<br>2.1                     | 3870<br>665      | 8.0        |
| Water Year 1966<br>Maximum, Feb. 1966                                                          | 13                         | ΤI                    |                  | 109<br>73            | 28<br>14                    | 570<br>84      | E E                        | 326<br>189                                 | 00                                | 697<br>168       | 455<br>68                                   | 11                                   | 7.4                   | .47        | 2110<br>549                               | 2.87                         | 74.1<br>1080       | 388<br>238                           | 120<br>82                        | 13<br>2.4                     | 3160<br>832      | 7.9        |
| Mater Year 1967<br>Maximum, Feb. 1967                                                          | ::                         | 11                    |                  | 127<br>82            | 35                          | 422<br>112     | 11                         | 323<br>214                                 | 00                                | 600<br>203       | 354<br>94                                   | 11                                   | 9                     | . 14       | 1740<br>655                               | 2.37                         | 11                 | 460<br>275                           | 194<br>100                       | 8.6                           | 2620<br>1030     | 8.1        |
| Water Year 1968         1967           Maximum, Dec.         1967           Minimum, July 1968 | ::                         | 1.5                   |                  | 125<br>85            | 28<br>17                    | 388<br>135     | 8.2                        | 324<br>217                                 | 0 0                               | 560<br>256       | 314<br>97                                   | 1 00                                 | 2.5                   | .38        | 1685<br>728                               | 2.29<br>.99                  | ::                 | 428<br>282                           | 162                              | 8.2                           | 2460<br>1120     | 8.1        |
| a Less than 0.4 milligrams per liter,                                                          | liter.                     |                       |                  |                      |                             |                |                            |                                            |                                   |                  |                                             |                                      |                       |            |                                           |                              |                    |                                      |                                  |                               |                  |            |

|                                                                                                  | 1000                       |                               |              | 5                    | Mare                |                | ç                   | _                                          |                                   |                  |                                            |                                                   | -                                           |                                           |                              |                    | as CaCO <sub>3</sub>                 | as CaCO,             | So-                                   | -uuo                                            |
|--------------------------------------------------------------------------------------------------|----------------------------|-------------------------------|--------------|----------------------|---------------------|----------------|---------------------|--------------------------------------------|-----------------------------------|------------------|--------------------------------------------|---------------------------------------------------|---------------------------------------------|-------------------------------------------|------------------------------|--------------------|--------------------------------------|----------------------|---------------------------------------|-------------------------------------------------|
| Date<br>of<br>collection                                                                         | Mean<br>Discharge<br>(cfs) | Silica<br>(SiO <sub>s</sub> ) | Iron<br>(Fe) | Cal-<br>clum<br>(Ca) | ne-<br>sium<br>(Mg) | Sodium<br>(Na) | tas-<br>stum<br>(K) | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> ) | bon-<br>ate<br>(CO <sub>3</sub> ) | Sulfate<br>(SO4) | Chloride<br>(Cl)                           | Fluo- N1-<br>ride trate<br>(F) (NO <sub>3</sub> ) | ll- Bo-<br>ate ron<br>IO <sub>3</sub> ) (B) | Milli-<br>grams<br>per<br>liter<br>(mg/l) | Tons<br>per<br>acre-<br>foot | Tons<br>per<br>day | Cal-<br>cíum,<br>Mag-<br>ne-<br>stum | Non-<br>car-<br>bon- | dium<br>ad-<br>sorp-<br>tion<br>ratio | duct-<br>ance pH<br>(mlcro-<br>mhos at<br>25°C) |
|                                                                                                  |                            |                               |              |                      |                     |                |                     | 8-3670.                                    |                                   | RANDE AT         | RIO GRANDE AT TORNILLO BRIDGE NEAR FABENS, | 3RIDGE NEA                                        | AR FABENS                                   | , TEX.                                    |                              |                    |                                      |                      |                                       |                                                 |
| Water Year 1929<br>Maximum, June 5, 1929                                                         | :                          |                               |              | 1                    | :                   | 1              |                     | 3                                          | ;                                 | :                | 1                                          |                                                   |                                             | 2100                                      | 2.86                         |                    | 3                                    | 3                    | 1                                     | :                                               |
| June 16                                                                                          |                            |                               |              | 1                    | 1                   | 1              |                     | 1                                          | ł                                 | ;                | 1                                          |                                                   |                                             | 2100                                      | 2.86                         |                    | 3                                    | ;                    | 1                                     | 1                                               |
| Minimum, Aug. 2                                                                                  | :                          |                               |              | ł                    | ł                   | ł              |                     | ł                                          | ł                                 | ł                | ł                                          |                                                   |                                             | 700                                       | 66,                          |                    | 1                                    | ł                    | 1                                     | 1                                               |
| Water Year 1930<br>Maximum, May 17, 1930                                                         |                            |                               |              | 210                  | 32                  | 481            |                     | 249                                        | 0                                 | 500              | 669                                        |                                                   |                                             | 2160                                      | 2,94                         |                    | 656                                  | 460                  | 8.2                                   | 3280                                            |
| Minimum, Aug. 8                                                                                  | :                          |                               |              | 126                  | 24                  | 150            |                     | 216                                        | 0                                 | 314              | 168                                        |                                                   |                                             | 920                                       | 1.25                         |                    | 414                                  | 237                  | 3.2                                   | 1420                                            |
| Wattr Year 1931<br>Maximum, May 27, 1931                                                         | ::                         |                               |              | 210                  | 30                  | 554<br>192     |                     | 312<br>240                                 | 00                                | 513<br>313       | 783<br>210                                 |                                                   |                                             | 2160<br>996                               | 2.94<br>1.35                 |                    | 690<br>401                           | 434                  | 9.2                                   | 3320<br>1510                                    |
| Water Year 1932         22, 1931           Maximum, Oct. 22, 1931         Minimum, Aug. 16, 1932 |                            |                               |              | 196<br>99            | 53<br>31            | 510<br>211     |                     | 317<br>220                                 | 00                                | 519<br>302       | 723<br>241                                 |                                                   |                                             | 2310<br>1020                              | 3.14<br>1.39                 |                    | 710<br>376                           | 450<br>196           | 8.3                                   | 3390<br>1600                                    |
| Mater Year 1933<br>Naximum, Nov. 18, 1932<br>Minimum, Apr. 1933                                  | ::                         |                               |              | 165                  | 39<br>30            | 420<br>244     |                     | 244<br>266                                 | 00                                | 505<br>302       | 539<br>269                                 |                                                   |                                             | 1840<br>1120                              | 2.50<br>1.52                 |                    | 572<br>381                           | 372<br>163           | 7.6                                   | 2740<br>1610                                    |

| If ic                            | C) pH                                             |                                       |                                                                       | 11                                                | 11                                                         |                                                                | 11                                                         | ::                                                            | 11                                                 | 0 8.0                                            | 0 8.1                                                       | 0 7.9<br>0 8.2                                         | 0 8.2<br>0 8.1                                        |                 |
|----------------------------------|---------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------|--------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------------|-----------------|
| Specific<br>con-                 | 58                                                |                                       | 1111                                                                  | : :                                               | 6170<br>1870                                               | 5280<br>2060                                                   | 5410<br>1660                                               | 3870                                                          | 4210<br>2500                                       | 5820<br>1440                                     | 4270                                                        | 4510<br>2820                                           | 3800<br>2060                                          |                 |
| -os                              | ad-<br>sorp-<br>tion<br>ratio                     |                                       | 1111                                                                  | 11                                                | 12 3.9                                                     | 15<br>6.2                                                      | 14<br>6.1                                                  | 6°3                                                           | 9.7                                                | 11 4.4                                           | 9.0                                                         | 9.1<br>7.1                                             | 8,9                                                   |                 |
| Hardness<br>as CaCO <sub>3</sub> | Non-<br>car-<br>bon-<br>ate                       |                                       | 1111                                                                  | 1.1                                               | 970<br>326                                                 | 728<br>218                                                     | 585<br>128                                                 | 554                                                           | 551<br>394                                         | 886<br>168                                       | 658<br>250                                                  | 704                                                    | 562<br>282                                            |                 |
| Hard<br>as Ci                    | Cal-<br>cium,<br>Mag-<br>ne-<br>stum              |                                       | 1111                                                                  | 11                                                | 1170<br>542                                                | 906<br>454                                                     | 765<br>328                                                 | 7.70<br>4.34                                                  | 796<br>604                                         | 1120<br>310                                      | 867<br>350                                                  | 913<br>592                                             | 728<br>440                                            |                 |
| shids                            | Tons<br>per<br>day                                |                                       | 3111                                                                  | 3.1                                               | 11                                                         | 582<br>4010                                                    | 779<br>4720                                                | 1260<br>2050                                                  | 874<br>1740                                        | 146<br>975                                       | 583<br>1170                                                 | 618<br>2800                                            | 908<br>3470                                           |                 |
| Dissolved solids                 | Tons<br>per<br>acre-<br>foot                      |                                       | 4.35<br>4.35<br>1.90<br>1.90                                          | 5.17<br>1.36                                      | 5.25<br>1.56                                               | $5.24 \\ 1.71$                                                 | 4.79<br>1.47                                               | 3.63<br>2.23                                                  | 3.70<br>2.38                                       | 5.24<br>1.24                                     | 3.77<br>1.75                                                | 4.45<br>2.48                                           | 3.29<br>1.77                                          |                 |
| Dis                              | Mtll11-<br>grams<br>per<br>liter<br>(mg/l)        |                                       | 3200<br>3200<br>1400<br>1400                                          | 3800<br>1000                                      | 3860<br>1150                                               | 3850<br>1260                                                   | 3520<br>1080                                               | 2670<br>1640                                                  | 2720<br>1750                                       | 3850<br>912                                      | 2770<br>1290                                                | 3270<br>1820                                           | 2420<br>1300                                          |                 |
|                                  | Bo-<br>(B)                                        |                                       | (11)                                                                  | 11                                                | {                                                          | 11                                                             | E I                                                        | 1.1                                                           | 0.28                                               | .55                                              | .41                                                         | . 44                                                   | .30                                                   |                 |
|                                  | Ni-<br>trate<br>(NO <sub>3</sub> )                |                                       | 1111                                                                  | 11                                                | ξ.                                                         | 1.1                                                            | 1-1                                                        | 1.1                                                           | 4.3                                                | 1                                                | 1.2                                                         | 2.5                                                    | .6                                                    |                 |
|                                  | Fluo- N1-<br>ride trate<br>(F) (NO <sub>3</sub> ) | TEX.                                  | 1111                                                                  | 11                                                | 11                                                         | 1 1                                                            | t t                                                        | 11                                                            | 1.1                                                | 1.4                                              | 1.1                                                         | 33                                                     | 11                                                    |                 |
|                                  | Chloride<br>(Cl)                                  | 8-3705. RIO GRANDE AT FORT QUITMAN, " | 1111                                                                  | : :                                               | 1640                                                       | 1650<br>363                                                    | 1350<br>284                                                | 985<br>525                                                    | 973<br>447                                         | 1410<br>237                                      | 957<br>404                                                  | 1030<br>572                                            | 843<br>364                                            |                 |
|                                  | Sulfate<br>(SO4)                                  | ADE AT FOR'                           | 1111                                                                  | 11                                                | 669<br>328                                                 | 674<br>354                                                     | 605<br>270                                                 | 543<br>410                                                    | 549<br>426                                         | 736<br>230                                       | 599<br>334                                                  | 622<br>418                                             | 535<br>338                                            |                 |
|                                  | bon-<br>ate<br>(CO <sub>3</sub> )                 | IO GRAI                               | 1111                                                                  | 14                                                | 00                                                         | 00                                                             | 00                                                         | 00                                                            | 00                                                 | 00                                               | 00                                                          | 00                                                     | 00                                                    |                 |
| Bi-                              | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> )        | 3705. R                               | 1111                                                                  | 13                                                | 240<br>264                                                 | 216<br>288                                                     | 220<br>244                                                 | 262<br>293                                                    | 299<br>257                                         | 282<br>172                                       | 255<br>121                                                  | 255<br>215                                             | 203<br>193                                            |                 |
| Å                                | F0-<br>tas-<br>sium<br>(K)                        | -8                                    | 1111                                                                  | 11                                                | 1.1                                                        | 1 :                                                            | ł i                                                        | 11                                                            | 13                                                 | 1.1                                              | 11                                                          | 1.1                                                    | 11                                                    |                 |
|                                  | Sodium<br>(Na)                                    |                                       | 1111                                                                  | 1.1                                               | 935<br>206                                                 | 1060<br>305                                                    | 894<br>254                                                 | 644<br>447                                                    | 629<br>305                                         | 855<br>180                                       | 608<br>308                                                  | 633<br>394                                             | 554<br>273                                            |                 |
| Mare                             | ne-<br>sium<br>(Mg)                               |                                       | 1111                                                                  | 1.1                                               | 92<br>37                                                   | 30                                                             | 62<br>23                                                   | 62<br>23                                                      | 46<br>53                                           | 90<br>19                                         | 65<br>21                                                    | 72                                                     | 53<br>29                                              |                 |
|                                  | Cal-<br>ctum<br>(Ca)                              |                                       | 1111                                                                  | 1.1                                               | 316<br>156                                                 | 270<br>132                                                     | 204<br>93                                                  | 206<br>135                                                    | 244<br>154                                         | 300<br>92                                        | 240<br>105                                                  | 248<br>168                                             | 205<br>129                                            |                 |
|                                  | Iron<br>(Fe)                                      |                                       |                                                                       |                                                   |                                                            |                                                                |                                                            |                                                               |                                                    |                                                  |                                                             |                                                        |                                                       |                 |
|                                  | Silica<br>(SiO <sub>2</sub> )                     |                                       | 1111                                                                  | 1.1                                               | ł ł                                                        | 11                                                             | E E                                                        | : :                                                           | 11                                                 | 11                                               | 11                                                          | : ;                                                    | 11                                                    |                 |
|                                  | Mean<br>Discharge [S]<br>(cfs)                    |                                       | 1111                                                                  | ::                                                | 11                                                         | 56<br>1180                                                     | 82<br>1620                                                 | 175<br>462                                                    | 119<br>368                                         | 14<br>396                                        | 78<br>337                                                   | 70<br>570                                              | 139<br>990                                            |                 |
|                                  | Date<br>of<br>collection                          |                                       | ter Year 1928<br>Maximum, Oct. 25, 1927<br>Nov. 15                    | Let Year 1929<br>Maximum, June 10, 1929           | Ler Year 1930<br>Maximum, May 26, 1930<br>Minimum, Aug. 15 | Water Year 1931<br>Maximum, July 31, 1931<br>Minimum, Aug. 14, | Let Year 1932<br>Maximum, May 9, 1932<br>Minimum, Sept. 30 | Lter Year 1933<br>Maximum, May 1933<br>Minimum, Oct. 28, 1932 | ter Year 1934<br>Maximum, May 1934<br>Minimum, Feb | tter Year 1935<br>Maximum, May 1935              | Water Year 1936<br>Naximum, Apr. 1936<br>Minimum, Oct. 1935 | Mater Year 1937<br>Naximum, Mar. 1937<br>Minimum, Sept | tter Year 1938<br>Maximum, Aug. 1938<br>Minimum, July | Water Year 1939 |
|                                  |                                                   |                                       | Water Year 1928<br>Maximum, Occ.<br>Nov. 15<br>Minimum, May<br>Aug. 7 | Water Year 1929<br>Maximum, June<br>Minimum, Aug. | Water Year 1930<br>Maximum, May<br>Minimum, Aug.           | Water Year<br>Maximum, .<br>Minimum, .                         | Water Year 1932<br>Maximum, May 9<br>Minimum, Sept.        | Water Year 1933<br>Maximum, May<br>Minimum, Oct.              | Water Year 1934<br>Maximum, May<br>Minimum, Feb.   | Water Year 1935<br>Maximum, May<br>Minimum, Aug. | Water Year<br>Maximum, 4<br>Minimum, 6                      | Mater Year<br>Maximum, 1<br>Minimum, 1                 | Water Year 1938<br>Maximum, Aug.<br>Minimum, July     | Water Year      |

|                                        |         |                    |                               |              |                     |                |                     |                                    |                                   |                  |                  |          |                                    |                   | Die                                       | solved a                     | olids              | Hard                                 |                             |                               | Specific        |      |
|----------------------------------------|---------|--------------------|-------------------------------|--------------|---------------------|----------------|---------------------|------------------------------------|-----------------------------------|------------------|------------------|----------|------------------------------------|-------------------|-------------------------------------------|------------------------------|--------------------|--------------------------------------|-----------------------------|-------------------------------|-----------------|------|
|                                        | Date    | Mean               |                               | <br>Cal-     | Mag-                |                | Po-                 | Bi-<br>car-                        | Car-                              |                  |                  |          |                                    |                   |                                           |                              |                    | as C                                 | aCO,                        | So-<br>dium                   | con-            |      |
|                                        |         | Discharge<br>(cfs) | Silica<br>(SiO <sub>2</sub> ) | cium<br>(Ca) | ne-<br>sium<br>(Mg) | Sodium<br>(Na) | tas-<br>sium<br>(K) | bon-<br>ate<br>(HCO <sub>3</sub> ) | bon-<br>ate<br>(CO <sub>3</sub> ) | Sulfate<br>(SO₄) | Chloride<br>(Cl) |          | Ni-<br>trate<br>(NO <sub>3</sub> ) | Bo-<br>ron<br>(B) | Milli-<br>grams<br>per<br>liter<br>(mg/1) | Tons<br>per<br>acre-<br>foot | Tons<br>per<br>day | Cal-<br>cium,<br>Mag-<br>ne-<br>sium | Non-<br>car-<br>bon-<br>ate | ad-<br>sorp-<br>tion<br>ratio | ance<br>(micro- | pH   |
|                                        |         |                    |                               |              |                     |                | 8-3705              | . RIO G                            | RANDE A                           | T FORT QU        | ITMAN, TEX.      | Cont     | inued                              |                   |                                           |                              |                    |                                      |                             |                               |                 |      |
| Water Year 1940                        |         |                    |                               |              |                     |                |                     |                                    |                                   |                  |                  |          |                                    |                   |                                           |                              |                    |                                      |                             |                               |                 |      |
| Maximum, Apr. 194<br>Minimum, June     |         | 54<br>228          |                               | 258<br>148   | 76<br>36            | 763<br>362     |                     | 228<br>202                         | 0                                 | 694              | 1210             | -        | 0.6                                | 0.27              | 3280                                      | 4.46                         | 478                | 956                                  |                             | 11                            | 5160            | 8.   |
|                                        |         | 44.0               | 7.5                           | 190          | 50                  | 302            |                     | 202                                | U                                 | 432              | 509              |          | 1,9                                |                   | 1710                                      | 2.33                         | 1050               | 515                                  | 349                         | 7.0                           | 2660            | 8.   |
| Mater Year 1941<br>Maximum, Feb. 194   |         | 115                | 22                            | 224          | 55                  | 605            |                     | 070                                | 0                                 | 417              | 000              |          | 1. 20                              | 1.0               |                                           | 0.000                        | 1222               |                                      |                             |                               |                 |      |
| Minimum, Sept                          |         | 1190               |                               | 105          | 22                  | 242            |                     | 273<br>180                         | 0                                 | 617<br>287       | 900<br>309       |          | 1.9                                | .43               | 2680<br>1130                              | 3.65                         | 832<br>3630        | 788                                  | 564<br>206                  | 9.4                           | 4030<br>1790    | 8.   |
| Mater Year 1942                        |         |                    |                               |              |                     |                |                     |                                    |                                   |                  |                  |          |                                    | 1.4.0             | 1200                                      | *104                         |                    | 293                                  | 200                         | 51.0                          | 1790            | 1.10 |
| Maximum, Nov. 194                      |         | 411                |                               | 191          | 47                  | 511            |                     | 256                                | 0                                 | 554              | 714              |          | 1.9                                | .36               | 2320                                      | 3.15                         | 2570               | 672                                  | 462                         | 8.6                           | 3520            | 7.9  |
| Minimum, May 1942                      | 2       |                    | 5.5                           | 68           | 17                  | 128            | -                   | 145                                | 0                                 | 221              | 124              |          | 1.2                                | .13               | 691                                       | .94                          | 9380               | 241                                  | 122                         | 3.6                           | 1070            | 8.   |
| June                                   |         | 4030               | 2.21                          | 76           | 17                  | 124            | 100                 | 169                                | 0                                 | 216              | 124              |          | 1.9                                | .20               | 691                                       | .94                          | 7520               | 260                                  | 122                         | 3.3                           | 1090            | 7.3  |
| ater Year 1943                         |         |                    |                               |              |                     |                |                     |                                    |                                   |                  |                  |          |                                    |                   |                                           |                              |                    |                                      |                             |                               |                 |      |
| Maximum, Aug. 194<br>Minimum, Oct. 194 |         | 93<br>1080         |                               | 216<br>103   | 65<br>25            | 657<br>236     |                     | 201<br>185                         | 0                                 | 616<br>314       | 1020             |          |                                    | .42               | 2910                                      | 3.96                         | 731                | 806                                  |                             | 10                            | 4410            | 7.   |
| minimum, occ. 19-                      | ******* | 1000               |                               | 105          | 23                  | 230            |                     | 185                                | 0                                 | 514              | 289              |          | 1.9                                | .21               | 1150                                      | 1.56                         | 3350               | 358                                  | 206                         | 5.4                           | 1780            | 7.1  |
| Mater Year 1944<br>Maximum, Apr. 194   | Q.      | 231                |                               | 170          | 47                  | 471            |                     | 0.1.1                              |                                   |                  | 20.              |          |                                    |                   |                                           |                              |                    |                                      |                             |                               |                 |      |
| Minimum, Sept                          |         | 690                |                               | 127          | 31                  | 301            |                     | 211 217                            | 0                                 | 491<br>361       | 681<br>391       |          |                                    | .33               | 2090<br>1400                              | 2.84                         | 1300<br>2610       | 617<br>444                           | 444<br>266                  | 8.2                           | 3230<br>2160    | 8.1  |
|                                        |         |                    |                               |              |                     |                |                     |                                    |                                   |                  |                  |          |                                    | 0.655             |                                           |                              | 1010               | 444                                  | 200                         | 4.6                           | 2100            | 0    |
| Mater Year 1945<br>Maximum, June 194   | 45      | 71                 | 122                           | 227          | 70                  | 710            | 22                  | 206                                | 0                                 | 659              | 1100             |          | .0                                 | .42               | 3110                                      | 4.23                         | 596                | 854                                  | 686                         | 11                            | 4730            | 8.3  |
| Minimum, Apr                           |         | 321                |                               | 162          | 40                  | 398            |                     | 250                                | 0                                 | 441              | 557              |          | . 6                                | . 26              | 1820                                      | 2.48                         | 1580               | 570                                  | 366                         | 7.2                           | 2840            | 8.   |
| Water Year 1946                        |         |                    |                               |              |                     |                |                     |                                    |                                   |                  |                  |          |                                    |                   |                                           |                              |                    |                                      |                             |                               |                 |      |
| Maximum, Aug. 194                      |         | 41                 |                               | 310          | 104                 | 1050           |                     | 225                                | 0                                 | 929              | 1650             |          | .6                                 | .61               | 4370                                      | 5.94                         | 484                | 1200                                 | 1020                        | 13                            | 6600            | 7.8  |
| Minimum, Oct. 194                      | 5       | 951                |                               | 154          | 37                  | 382            | ~ ~                 | 251                                | 0                                 | 426              | 515              | (+,+)    | ,6                                 | , 32              | 1760                                      | 2.39                         | 4520               | 539                                  | 334                         | 7.1                           | 2720            | 7.9  |
| √ater Year 1947                        |         |                    |                               |              |                     |                |                     |                                    |                                   |                  |                  |          |                                    |                   |                                           |                              |                    |                                      |                             |                               |                 |      |
| Maximum, July 194                      |         | 33                 |                               | 341          | 117                 | 1150           |                     | 229                                | 0                                 | 1020             | 1840             | $\sim -$ | . 6                                | .64               | 4820                                      | 6.55                         | 429                | 1330                                 | 1140                        | 14                            | 7360            | 7.9  |
| Minimum, Oct. 194                      | +6      | 487                |                               | 145          | 35                  | 349            |                     | 235                                | 0                                 | 410              | 467              | (7,73)   | 2.5                                | 2.2               | 1620                                      | 2.20                         | 2130               | 506                                  | 314                         | 6.7                           | 2510            | 7.9  |
| Water Year 1948                        | 121     |                    |                               |              |                     |                |                     |                                    |                                   |                  |                  |          |                                    |                   |                                           |                              |                    |                                      |                             |                               |                 |      |
| Maximum, July 194<br>Minimum, June     |         | 63<br>127          |                               | 323<br>168   | 119                 | 1230<br>534    |                     | 133<br>194                         | 0                                 | 1070             | 1970             |          | 2.5                                | ,69               | 5190                                      | 7.06                         | 883                | 1290                                 |                             | 15                            | 7660            | 7.7  |
| nentman, sunerry                       |         | 1.27               |                               | 100          | 14.7                | 3.34           |                     | 194                                | 0                                 | 510              | 791              |          | 1.2                                |                   | 2210                                      | 3.01                         | 758                | 614                                  | 455                         | 9.3                           | 3520            | **   |
| Mater Year 1949                        | N.      |                    |                               | 215          | 0.5                 | 1000           |                     |                                    |                                   |                  | 11202            |          |                                    |                   |                                           |                              |                    |                                      |                             |                               |                 |      |
| Maximum, May 1949<br>Minimum, Sept     |         | 91<br>501          |                               | 315<br>144   | 95<br>36            | 1000<br>375    | 10                  | 273<br>198                         | 0                                 | 905<br>420       | 1570<br>516      |          | .6<br>2.5                          | .58               | 4240                                      | 5.76                         | 1040<br>2310       | 1180<br>506                          | 954<br>344                  | 13                            | 6460            | 8.0  |
|                                        |         | 1000               |                               | 553.         | 1977                | 21.5.45        |                     | 1.70                               |                                   | +44              | 510              |          | 6.3                                | - 26              | 1710                                      | 6 + 3 h                      | 2310               | 206                                  | 344                         | 7.2                           | 2660            | 8.1  |
| Mater Year 1950<br>Maximum, Apr. 195   | 50      | 73                 |                               | 312          | 99                  | 1030           |                     | 256                                | 0                                 | 940              | 1610             |          |                                    | 50                | 1050                                      | 5 01                         | 057                | 1100                                 | 20495                       |                               | 2000            | 1200 |
| Minimum, July                          |         | 534                |                               | 141          | 34                  | 356            |                     | 202                                | 0                                 | 401              | 495              |          | $1.9 \\ 3.1$                       | .59               | 4350<br>1650                              | 5.91                         | 857<br>2380        | 1190                                 | 977<br>328                  | 13<br>7.0                     | 6250<br>2550    | 7.8  |
|                                        |         |                    |                               |              |                     |                |                     |                                    |                                   | 002              | 1.00             |          | 1.1                                |                   | 1050                                      | E + 6.44                     | 2300               | 4.34                                 | 320                         | 7.9                           | 2000            | 1.9  |
| Maximum, Apr. 1951                     | 1       | 8.0                |                               | 246          | 105                 | 1000           |                     | 1.94                               | 0                                 | 1000             |                  |          |                                    | 14.7              |                                           | San Charles                  |                    |                                      |                             |                               |                 |      |
| constantia, apr., 193                  |         | 128                | 22                            | 346<br>66    | 125<br>12           | 1220           | 22                  | 174                                | õ                                 | 1230             | 2000             | + +      | . 6                                | . 73              | 5150                                      | 7.01                         | 111                | 1380                                 | 1230                        | 14                            | 7650            | 7.8  |

|                                              |                           |                                         |              |                      |                             |                | (Resul                     | s in m                                     | lligra                                    | ms per li        | ter except       | as ind   | icated                             | )         |                                           |                                         |                    |                                      |                             |                                       |                                              |            |
|----------------------------------------------|---------------------------|-----------------------------------------|--------------|----------------------|-----------------------------|----------------|----------------------------|--------------------------------------------|-------------------------------------------|------------------|------------------|----------|------------------------------------|-----------|-------------------------------------------|-----------------------------------------|--------------------|--------------------------------------|-----------------------------|---------------------------------------|----------------------------------------------|------------|
|                                              |                           |                                         |              |                      |                             |                |                            | Bi-                                        |                                           |                  |                  |          |                                    |           | Dis                                       | ssolved                                 | solids             | Hard<br>as C:                        |                             | So-                                   | Specific<br>con-                             |            |
| Date<br>of<br>collection                     | Mean<br>Discharg<br>(cfs) | e Silica<br>(SiO <sub>s</sub> )         | Iron<br>(Fe) | Cal-<br>cium<br>(Ca) | Mag-<br>ne-<br>sium<br>(Mg) | Sodium<br>(Na) | Po-<br>tas-<br>sium<br>(K) | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> ) | Car-<br>bon-<br>ate<br>(CO <sub>3</sub> ) | Sulfate<br>(SO4) | Chloride<br>(Cl) |          | Ni-<br>trate<br>(NO <sub>3</sub> ) |           | Milli-<br>grams<br>per<br>liter<br>(mg/1) | Tons<br>per<br>acre-<br>foot            | Tons<br>per<br>day | Cal-<br>cium,<br>Mag-<br>ne-<br>sium | Non-<br>car-<br>bon-<br>ate | dium<br>ad-<br>sorp-<br>tion<br>ratio | duct-<br>ance<br>(micro-<br>mhos at<br>25°C) | рН         |
|                                              |                           |                                         |              |                      |                             |                | 8-3705                     | . RIO G                                    | RANDE /                                   | T FORT QU        | ITMAN, TEX.      | Cont     | inued                              |           |                                           |                                         |                    |                                      |                             |                                       |                                              |            |
| Water Year 1952                              |                           |                                         |              |                      |                             |                |                            |                                            |                                           |                  |                  |          |                                    |           |                                           |                                         |                    |                                      |                             |                                       |                                              |            |
| Maximum, Mar. 1952<br>Minimum, Aug           |                           | **                                      |              | 508<br>140           | 168<br>32                   | 1550<br>270    | 12                         | 257<br>202                                 | 0<br>0                                    | 1290<br>295      | 2690<br>434      | 00       | 0.0                                | 0.77      | 6850<br>1320                              | $\begin{array}{c}9.32\\1.80\end{array}$ | 99.9<br>10.7       | 1960<br>483                          | 1750<br>318                 | 15<br>5.3                             | 9840<br>2080                                 | 7.8<br>7.8 |
| Water Year 1953                              | 1.6                       |                                         |              | 872                  | 293                         | 2010           |                            | 1.55                                       |                                           | 1710             | 1000             |          |                                    |           | 10400                                     |                                         |                    |                                      |                             |                                       |                                              |            |
| Maximum, June 1953<br>Minimum, July          |                           |                                         |              | 105                  | 293                         | 2440<br>230    |                            | 135<br>156                                 | 0                                         | 1710<br>240      | 4820<br>347      |          | .6<br>5.6                          | .9<br>,23 | 10700<br>1100                             | 14.6<br>1.50                            | 46.2<br>713        | 3380<br>359                          | 3270<br>232                 | 18<br>5.3                             | 15200<br>1790                                | 8.0        |
| <u>Water Year 1954</u><br>Maximum, Oct. 1953 | 8                         |                                         |              | 794                  | 2.54                        | 1900           |                            | 159                                        | 0                                         | 1420             | 3950             |          |                                    | .68       | 0120                                      | 10.4                                    | 19.7               | 20.20                                | 2000                        | 12                                    | 12200                                        | 2.0        |
| Minimum, Aug. 1954                           |                           | 22                                      |              | 60                   | 14                          | 125            |                            | 171                                        | 0                                         | 137              | 144              |          | 2.5                                | . 23      | 9120<br>603                               | 12.4                                    | 226                | 3020<br>207                          | 2900<br>67                  | 15<br>3.8                             | 12800<br>1010                                | 7.8        |
| Water Year 1955                              |                           |                                         |              |                      |                             |                |                            |                                            |                                           |                  |                  |          |                                    |           |                                           |                                         |                    |                                      |                             |                                       |                                              |            |
| Maximum, Mar. 1955                           |                           |                                         |              | 831                  | 281                         | 1970           |                            | 131                                        | 0                                         | 1430             | 4190             |          | , 6                                | .72       | 9150                                      | 12.4                                    | 3.95               | 3230                                 | 3120                        |                                       | 13300                                        | 7.8        |
| June<br>Minimum, July                        |                           | ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) |              | 831<br>59            | 281 8.5                     | 1970<br>37     |                            | 131<br>201                                 | 0                                         | 1430<br>70       | 4190<br>20       |          | 1.2                                | .13       | 9150<br>338                               | 12.4                                    | 1.48               | 3230<br>182                          | 3120<br>18                  | 15                                    | 1 3300<br>505                                | 8.0        |
|                                              |                           |                                         |              |                      | 010                         |                |                            | 2.01                                       | 0                                         | 10               | 20               |          | 1.12                               | .15       | 350                                       | .40                                     |                    | 102                                  | 10                          | 1.4                                   | 305                                          | 0.0        |
| Water Year 1956<br>Maximum, Nov. 1955        |                           | 1221                                    |              | 775                  | 256                         | 1930           | 2.2                        | 247                                        | 0                                         | 1490             | 2000             |          |                                    |           |                                           |                                         | 5.41               |                                      |                             |                                       |                                              |            |
| Minimum, Aug. 1956                           |                           |                                         |              | 58                   | 9.5                         | 33             | 22                         | 232                                        | 0                                         | 51               | 3880<br>11       | 02       | ы<br>, б                           | .55       | 9340<br>294                               | 12.7                                    | 9.84<br>72.2       | 2980<br>184                          | 2780<br>0                   | 15                                    | 12800<br>472                                 | 7.8        |
| Water Year 1958                              |                           |                                         |              |                      |                             |                |                            |                                            |                                           |                  |                  |          |                                    |           |                                           |                                         |                    |                                      |                             |                                       |                                              |            |
| Maximum, Sept. 1958                          |                           |                                         |              | 78                   | 9.7                         | 58             |                            | 131                                        | 0                                         | 195              | 35               | $\sim$ - | 3.1                                | ,06       | 491                                       | .67                                     | 430                | 234                                  | 126                         | 1.6                                   | 720                                          | 7.8        |
| Minimum, Oct. 1957                           | 19                        |                                         |              | 32                   | 4.0                         | 59             | 전전                         | 163                                        | 0                                         | 59               | 20               |          | 2.5                                | .19       | 256                                       | .35                                     | 13.1               | 96                                   | 0                           | 2.6                                   | 425                                          | 8.0        |
| Water Year 1959                              |                           |                                         |              |                      |                             |                |                            |                                            |                                           |                  |                  |          |                                    |           |                                           |                                         |                    |                                      |                             |                                       |                                              |            |
| Maximum, Feb. 1959                           |                           |                                         |              | 694                  | 188                         | 1490           | .75                        | 256                                        | 0                                         | 1220             | 3030             |          | 1.2                                | . 54      | 7550                                      | 10.3                                    | 4.28               | 2510                                 | 2300                        | 13                                    | 10600                                        | 7.9        |
| Minimum, July                                | 20                        | 12                                      |              | 165                  | 8.6                         | 6.7            | 6.6                        | 140                                        | 0                                         | 340              | 4.6              | 0.8      | , 6                                | .03       | 657                                       | .89                                     | 35.5               | 448                                  | 333                         | .1                                    | 840                                          | 7.8        |
| Water Year 1960                              |                           |                                         |              |                      | 222                         |                |                            |                                            |                                           |                  |                  |          |                                    |           |                                           |                                         |                    |                                      |                             |                                       |                                              |            |
| Maximum, Mar. 1960<br>Minimum, Oct. 1959     |                           |                                         |              | 715                  | 224 26                      | 2130<br>292    |                            | 250<br>198                                 | 0                                         | 1750<br>409      | 3780<br>330      |          | 1.2                                | 1.0       | 9640<br>1350                              | 13.1                                    | 28.6<br>61.8       | 2700                                 |                             | 18                                    | 13300                                        | 7.9        |
|                                              |                           |                                         |              |                      |                             | 676            |                            | 190                                        | 0                                         | 405              | 330              |          | 1.2                                | .40       | 1350                                      | 1.09                                    | 01.8               | 410                                  | 248                         | 6.3                                   | 2080                                         | 7.8        |
| Mater Year 1961<br>Maximum, July 1961        | 1.6                       | 30                                      |              | 541                  | 191                         | 2020           | 12                         | 192.1                                      | 0                                         | 1750             | 2000             | 1.2      | 2.2                                | 1000      |                                           |                                         |                    |                                      |                             |                                       |                                              |            |
| Minimum, Aug                                 |                           |                                         |              | 73                   | 9.2                         | 65             | 12                         | 241<br>177                                 | 0                                         | 1750<br>93       | 3220<br>87       | 1.0      | 1.2                                | .14       | 8310 499                                  | 11.3                                    | 35.9               | 2140 220                             | 1940<br>75                  | 19                                    | 12000                                        | 7.8        |
| Manage Wages 1042                            |                           |                                         |              |                      |                             |                |                            |                                            |                                           |                  |                  |          | 1.00                               | 1.00      |                                           | .00                                     |                    | 22.0                                 | 15                          | 1.9                                   | 747                                          | 1.0        |
| <u>Water Year 1962</u><br>Maximum, Mar. 1962 | 6.5                       |                                         |              | 626                  | 213                         | 2140           |                            | 247                                        | 0                                         | 1810             | 3590             | 22       | 170                                | 1.0       | 8930                                      | 10.1                                    | 157                | 0110                                 | 0.01.0                      | 10                                    | 10505                                        | a 2        |
| Minimum, Sept                                |                           |                                         |              | 171                  | 34                          | 380            |                            | 273                                        | õ                                         | 469              | 497              | 22       | 1,9                                | .29       | 1790                                      | 12.1 2.43                               | 2340               | 2440<br>568                          | 2240<br>344                 | 19<br>6.9                             | 12500<br>2680                                | 7.9        |
| Water Year 1963                              |                           |                                         |              |                      |                             |                |                            |                                            |                                           |                  |                  |          |                                    |           |                                           |                                         |                    |                                      |                             |                                       |                                              |            |
| Maximum, June 1963                           |                           |                                         |              | 624                  | 241                         | 2270           | 10.00                      | 247                                        | 0                                         | 1890             | 3790             |          | .6                                 | 1.1       | 9340                                      | 12.7                                    | 194                | 2550                                 | 2350                        | 20                                    | 13000                                        | 7.9        |
| Minimum, Aug                                 | 38                        |                                         |              | 136                  | 15                          | 196            | 7,75                       | 303                                        | 0                                         | 203              | 268              |          | 1.2                                | .27       | 1050                                      | 1.43                                    | 108                | 399                                  | 150                         | 4.3                                   | 1650                                         | 7.9        |
| Water Year 1964                              |                           |                                         |              |                      |                             |                |                            |                                            |                                           |                  |                  |          |                                    |           |                                           |                                         |                    |                                      |                             |                                       |                                              |            |
| Maximum, Apr. 1964                           |                           |                                         |              | 482                  | 292                         | 2060           | **                         | 232                                        | 0                                         | 1810             | 3420             | 22       | 1.2                                | 1.1       | 8740                                      | 11.9                                    | 54.3               | 2400                                 | 2210                        | 18                                    | 12400                                        | 7.8        |
| Minimum, Sept                                | 4.2                       |                                         |              | 69                   | 7.5                         | 43             | 44.141                     | 250                                        | 0                                         | 63               | 19               |          | 1,2                                | ,06       | 357                                       | .49                                     | 4.05               | 2.04                                 | 0                           | 1.3                                   | 570                                          | 8.1        |
|                                              |                           |                                         |              |                      |                             |                |                            |                                            |                                           |                  |                  |          |                                    |           |                                           |                                         |                    |                                      |                             |                                       |                                              |            |

|                                                              |          |                            |                               |                      | Mag                         |                | Po-                           | Bi-                                        | Can                                       |                  |                  |                      |                                    |                   | Dis                                       | solved a                     | olids              | Hard<br>as C                         |                             | So-                                   | Specific<br>con-                             | -  |
|--------------------------------------------------------------|----------|----------------------------|-------------------------------|----------------------|-----------------------------|----------------|-------------------------------|--------------------------------------------|-------------------------------------------|------------------|------------------|----------------------|------------------------------------|-------------------|-------------------------------------------|------------------------------|--------------------|--------------------------------------|-----------------------------|---------------------------------------|----------------------------------------------|----|
| Da<br>o<br>colle                                             |          | Mean<br>Discharge<br>(cfs) | Silica<br>(SiO <sub>2</sub> ) | Cal-<br>cium<br>(Ca) | Mag-<br>ne-<br>sium<br>(Mg) | Sodium<br>(Na) | tas-<br>sium                  | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> ) | Car-<br>bon-<br>ate<br>(CO <sub>3</sub> ) | Sulfate<br>(SO₄) | Chloride<br>(Cl) | Fluo-<br>ride<br>(F) | Ni-<br>trate<br>(NO <sub>3</sub> ) | Bo-<br>ron<br>(B) | Milli-<br>grams<br>per<br>liter<br>(mg/1) | Tons<br>per<br>acre-<br>foot | Tons<br>per<br>day | Cal-<br>cium,<br>Mag-<br>ne-<br>sium | Non-<br>car-<br>bon-<br>ate | dium<br>ad-<br>sorp-<br>tion<br>ratio | duct-<br>ance<br>(micro-<br>mhos at<br>25°C) | pH |
|                                                              |          |                            |                               | <br>                 |                             |                | 8-3705                        | . RIO G                                    | RANDE A                                   | AT FORT QU       | TITMAN, TEX.     | Cont                 | inued                              |                   |                                           |                              |                    |                                      |                             |                                       |                                              |    |
| Water Year 1965                                              |          |                            |                               |                      |                             |                |                               |                                            |                                           |                  |                  |                      |                                    |                   |                                           |                              |                    |                                      |                             |                                       |                                              |    |
| Maximum, Sept. 1965.                                         |          |                            | **                            | 83                   | 13                          | 38             |                               | 329                                        | 0                                         | 62               | 12               |                      | 0.6                                | 0.02              | 417                                       | 0.57                         | 1.24               | 260                                  | 0                           | 1.0                                   | 638                                          | 7. |
| Minimum, Aug                                                 |          | 2.1                        | -                             | 60                   | 5.4                         | 29             |                               | 232                                        | 0                                         | 30               | 11               |                      | 1,2                                | . 14              | 310                                       | .42                          | 1.76               | 172                                  | 0                           | 1.0                                   | 455                                          | 7  |
| Vater Year 1966                                              |          |                            |                               |                      |                             |                |                               |                                            |                                           |                  |                  |                      |                                    |                   |                                           |                              |                    |                                      |                             |                                       |                                              |    |
| Maximum, Sept. 1966.                                         |          | 176                        |                               | 136                  | 29                          | 298            |                               | 226                                        | 0                                         | 361              | 399              |                      | 1.9                                | .23               | 1420                                      | 1.93                         | 674                | 458                                  | 272                         | 22.1                                  | 2000                                         |    |
| Minimum, July                                                |          |                            | 11                            | 66                   | 4.4                         | 57             | 4.7                           | 177                                        | ö                                         | 106              | 35               | 0.9                  | 6.2                                | .04               | 403                                       | .55                          | 15.1               | 183                                  | 38                          | 6.1                                   | 2220<br>611                                  | 8. |
|                                                              |          |                            |                               |                      |                             |                |                               |                                            |                                           |                  |                  |                      |                                    |                   | 465                                       |                              |                    | 105                                  | 50                          | 1.0                                   | 011                                          | 11 |
| ater Year 1967                                               |          |                            |                               |                      |                             |                |                               |                                            |                                           |                  |                  |                      |                                    |                   |                                           |                              |                    |                                      |                             |                                       |                                              |    |
| Maximum, May 1967                                            |          |                            |                               | 660                  | 235                         | 2390           |                               | 217                                        | 0                                         | 2020             | 3950             |                      | 1.2                                | 1.18              | 9940                                      | 13.5                         |                    | 2620                                 |                             | 20                                    | 13800                                        | 7. |
| Minimum, June                                                |          | **                         |                               | 91                   | 12                          | 53             |                               | 207                                        | 0                                         | 148              | 51               |                      | 7.4                                | .21               | 521                                       | .71                          |                    | 276                                  | 106                         | 1.4                                   | 770                                          | 7. |
| ater Year 1968                                               |          |                            |                               |                      |                             |                |                               |                                            |                                           |                  |                  |                      |                                    |                   |                                           |                              |                    |                                      |                             |                                       |                                              |    |
| Maximum, May 1968                                            |          |                            |                               | 577                  | 209                         | 2220           | $({\bf x}_{i}) = {\bf y}_{i}$ | 174                                        | 0                                         | 1920             | 3560             |                      | . 6                                | .92               | 8860                                      | 12.0                         |                    | 2300                                 | 2160                        | 20                                    | 12800                                        | 7. |
| Minimum, July                                                |          | + -                        | 16                            | 123                  | 21                          | 191            | 9.0                           | 284                                        | 0                                         | 292              | 197              | .8                   | 1.9                                | .21               | 1000                                      | 1.36                         |                    | 393                                  |                             | 4.2                                   |                                              | 8. |
|                                                              |          |                            |                               |                      |                             |                |                               | 8-3710                                     | . RIO (                                   | GRANDE AT        | LA NUTRIA,       | TEX.                 |                                    |                   |                                           |                              |                    |                                      |                             |                                       |                                              |    |
|                                                              |          |                            |                               | <br>                 |                             |                |                               |                                            |                                           |                  |                  |                      |                                    |                   |                                           |                              |                    |                                      |                             |                                       |                                              |    |
| Period, Jan Aug. 193                                         |          |                            |                               |                      |                             |                |                               |                                            |                                           |                  |                  |                      |                                    |                   |                                           |                              |                    |                                      |                             |                                       |                                              |    |
| Maximum, Apr. 29, 19                                         |          |                            |                               | 248                  | 63                          | 697            |                               | 161                                        | 0                                         | 702              | 1080             |                      | 1.9                                |                   | 3090                                      | 4.20                         | 167                | 880                                  | 748                         | 10                                    | 14800                                        | 7. |
| Minimum, Aug. 31                                             |          | 276                        |                               | 66                   | 8.8                         | 75             |                               | 166                                        | 0                                         | 102              | 91               |                      | 4.3                                | .14               | 465                                       | .63                          | 347                | 201                                  | 65                          | 2.3                                   | 677                                          | 7. |
| Jater Year 1937                                              |          |                            |                               |                      |                             |                |                               |                                            |                                           |                  |                  |                      |                                    |                   |                                           |                              |                    |                                      |                             |                                       |                                              |    |
| Maximum, Apr. 30, 19                                         | 7        | 83                         |                               | 285                  | 81                          | 833            |                               | 176                                        | 0                                         | 778              | 1350             |                      | 35                                 | .54               | 3750                                      | 5.10                         | 840                | 1040                                 | 900                         | 11                                    | 5570                                         | 7. |
| Minimum, Sept                                                |          | 594                        |                               | 133                  | 27                          | 281            |                               | 200                                        | 0                                         | 346              | 378              |                      | 1.9                                | .7.7              | 1370                                      | 1.87                         | 2200               | 444                                  | 280                         | 5.8                                   | 2120                                         | 8. |
| ater Year 1938                                               |          |                            |                               |                      |                             |                |                               |                                            |                                           |                  |                  |                      |                                    |                   |                                           |                              |                    |                                      |                             |                                       |                                              |    |
| Maximum, Oct., Nov.,                                         | Dec 1027 | 413                        |                               | 187                  | 49                          | 484            |                               | 215                                        | 0                                         | 526              | 687              |                      | ~                                  | . 39              | 2180                                      | 2.96                         | 2430               | 120                                  | 100                         |                                       | 0.000                                        |    |
| Minimum, Sept. 1938.                                         |          |                            |                               | 97                   | 22                          | 206            |                               | 169                                        | õ                                         | 264              | 246              |                      | .6                                 | . 19              | 963                                       | 1.31                         | 3150               | 670<br>330                           | 493<br>192                  | 8.1                                   | 3390<br>1540                                 | 8. |
|                                                              |          |                            |                               |                      |                             |                |                               |                                            |                                           |                  |                  |                      | 212                                | 200               | 0.055                                     |                              | 1000               | 10.000                               | ~                           |                                       | 10.000                                       |    |
| later Year 1939                                              |          |                            |                               |                      |                             |                |                               |                                            |                                           |                  |                  |                      |                                    |                   |                                           |                              |                    |                                      |                             |                                       |                                              |    |
| Maximum, Apr. 1939                                           |          |                            |                               | 228                  | 64                          | 643            |                               | 182                                        | 0                                         | 671              | 975              |                      | . 6                                | .42               | 2860                                      | 3.89                         | 595                | 833                                  | 684                         | 9.7                                   | 4330                                         | 8. |
| Minimum, July                                                |          | 117                        |                               | 142                  | 29                          | 343            |                               | 148                                        | 0                                         | 377              | 509              |                      |                                    |                   | 1570                                      | 2.13                         | 496                | 473                                  | 352                         | 6.9                                   | 2520                                         | 8. |
| ater Year 1940                                               |          |                            |                               |                      |                             |                |                               |                                            |                                           |                  |                  |                      |                                    |                   |                                           |                              |                    |                                      |                             |                                       |                                              |    |
| Maximum, Apr. 1940.,                                         |          | 25                         |                               | 248                  | 65                          | 638            |                               | 177                                        | 0                                         | 711              | 989              |                      | , 6                                | . 54              | 2890                                      | 3.93                         | 195                | 888                                  | 743                         | 9.3                                   | 4490                                         | 8. |
| Minimum, Aug                                                 |          |                            |                               | 68                   | 12                          | 154            |                               | 143                                        | 0                                         | 197              | 157              |                      | 6.8                                |                   | 721                                       | .98                          | 884                | 218                                  | 100                         | 4.5                                   | 1150                                         | 8. |
|                                                              |          |                            |                               |                      |                             |                |                               |                                            |                                           |                  |                  |                      |                                    |                   |                                           |                              |                    |                                      |                             |                                       |                                              |    |
| about Manuel 10/1                                            |          |                            |                               |                      |                             |                |                               |                                            |                                           |                  |                  |                      |                                    |                   |                                           |                              |                    |                                      |                             |                                       |                                              |    |
| ater Year 1941<br>Maximum New 1940                           |          | 17/                        |                               | 107                  | 6.0                         | 6.97           |                               | 100                                        | 0                                         | 600              | 0.00             |                      |                                    |                   | 04.00                                     | 0.00                         | 11.00              | 100                                  | 27.2                        |                                       |                                              |    |
| ater Year 1941<br>Maximum, Nov. 1940<br>Minimum, Sept. 1941. |          |                            |                               | 194<br>78            | 52<br>15                    | 574<br>169     |                               | 188<br>141                                 | 0                                         | 600<br>209       | 822<br>198       |                      | 8.1                                | .16               | 2490<br>809                               | $3.39 \\ 1.10$               | 1170<br>3890       | 699<br>256                           | 545<br>140                  | 9.4<br>4.6                            | 3770<br>1290                                 | 7. |

(Results in milligrams per liter except as indicated)

|          |                                                          |                            |                               |              |                      |                             |                | (Resul                     | ts in m                                    | illigra                                   | ums per li                    | ter except       | as ind | icated                                           | )                 |                                           |                              |                                                  |                                      |                             |                                       |                                              |            |
|----------|----------------------------------------------------------|----------------------------|-------------------------------|--------------|----------------------|-----------------------------|----------------|----------------------------|--------------------------------------------|-------------------------------------------|-------------------------------|------------------|--------|--------------------------------------------------|-------------------|-------------------------------------------|------------------------------|--------------------------------------------------|--------------------------------------|-----------------------------|---------------------------------------|----------------------------------------------|------------|
|          |                                                          |                            |                               |              |                      |                             |                |                            | Bi-                                        | 0                                         |                               |                  |        |                                                  |                   | Dia                                       | solved a                     | solids                                           | Hard<br>as C                         |                             | So-                                   | Specific<br>con-                             |            |
|          | Date<br>of<br>collection                                 | Mean<br>Discharge<br>(cfs) | Silica<br>(SiO <sub>2</sub> ) | Iron<br>(Fe) | Cal-<br>cium<br>(Ca) | Mag-<br>ne-<br>sium<br>(Mg) | Sodium<br>(Na) | Po-<br>tas-<br>sium<br>(K) | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> ) | Car-<br>bon-<br>ate<br>(CO <sub>3</sub> ) | Sulfate<br>(SO <sub>4</sub> ) | Chloride<br>(Cl) |        | Ni-<br>trate<br>(NO <sub>3</sub> )               | Bo-<br>ron<br>(B) | Milli-<br>grams<br>per<br>liter<br>(mg/1) | Tons<br>per<br>acre-<br>foot | Tons<br>per<br>day                               | Cal-<br>cium,<br>Mag-<br>ne-<br>sium | Non-<br>car-<br>bon-<br>ate | dium<br>ad-<br>sorp-<br>tion<br>ratio | duct-<br>ance<br>(micro-<br>mhos at<br>25°C) | рН         |
|          |                                                          |                            |                               |              |                      |                             |                | 8-                         | 3715. RI                                   | CO GRAN                                   | DE AT UPP                     | ER PRESIDIC      | , TEX. |                                                  |                   |                                           |                              |                                                  |                                      |                             |                                       |                                              |            |
| Maximum, | . <u>28 - Sept. 27, 1935</u><br>Mar. 28, 1935<br>June 29 | 1,5<br>74                  |                               |              | 409<br>43            | 96<br>8.4                   | 721<br>56      |                            | 132<br>171                                 | 0<br>0                                    | 945<br>61                     | 1360<br>51       |        | 0.0                                              | 0.63              | 4030<br>344                               | 5,48                         | 16.3<br>68.7                                     | 1420<br>142                          | 1310<br>2                   | 8.3<br>2.0                            | 5750<br>525                                  | 7.2<br>7.3 |
|          | 1936<br>Apr. 18, 1936<br>July 28                         | 2.4<br>123                 |                               |              | 350<br>74            | 78<br>14                    | 595<br>142     |                            | 212<br>148                                 | 0<br>0                                    | 755<br>159                    | 1080<br>189      |        | $1.9 \\ 1.2$                                     | .37<br>.15        | 3190<br>695                               | 4.34<br>.95                  | 20.7<br>231                                      | 1190<br>242                          | 1020<br>120                 | 7.5<br>4.0                            | 4840<br>1140                                 | 7.8<br>7.5 |
|          | <u>1937</u><br>May 1937<br>Aug                           | 2.2<br>159                 |                               |              | 337 -<br>59          | 78<br>13                    | 600<br>72      |                            | 179<br>206                                 | 0<br>0                                    | 739<br>113                    | 1090<br>48       |        | 8.7<br>3.7                                       | .46               | 3240<br>426                               | 4.41<br>.58                  | $\begin{smallmatrix}&19.2\\183\end{smallmatrix}$ | 1160<br>201                          | 1020<br>32                  | 7.7<br>2.2                            | 4660<br>646                                  | 7.7<br>8.3 |
|          | <u>1938</u><br>May 1938<br>Sept                          | 79<br>995                  |                               |              | 209<br>89            | 52<br>18                    | 503<br>168     |                            | 171<br>154                                 | 0<br>0                                    | 567<br>227                    | 774<br>204       |        | 1.2<br>2.5                                       | .24<br>.14        | 2390<br>831                               | $3.25 \\ 1.13$               | 510<br>2230                                      | 735<br>295                           | 594<br>109                  | 8.0<br>4.3                            | 3600<br>1340                                 | 8.2<br>7.8 |
|          | 1939<br>Apr. 1939<br>Aug.                                | 25<br>451                  |                               |              | 351<br>98            | 75<br>17                    | 664<br>205     |                            | 232<br>145                                 | 0<br>0                                    | 805<br>268                    | 1140<br>263      |        | .6                                               | .47               | 3420<br>993                               | 4.65<br>1.35                 | 231<br>1210                                      | $\frac{1180}{316}$                   | 994<br>197                  | 8.4<br>5.0                            | 5020<br>1600                                 | 8.3<br>8.1 |
|          | <u>1940</u><br>Apr. 1940<br>June                         | 11<br>155                  |                               |              | 315<br>109           | 72<br>13                    | 618<br>138     |                            | 182<br>118                                 | 0<br>0                                    | 753<br>265                    | 1060<br>174      |        | .6<br>1.9                                        | **                | 3110<br>831                               | 4.23<br>1.13                 | 92.4<br>348                                      | 1080<br>328                          | 934<br>231                  | 8.2<br>3.3                            | 4710<br>1280                                 | 8.3<br>8.1 |
|          | <u>1941</u><br>Mar. 1941<br>July                         | 68<br>694                  |                               |              | 293<br>82            | 70<br>14                    | 662<br>181     |                            | 226<br>138                                 | 0<br>0                                    | 774<br>224                    | 1080<br>218      |        | .6<br>2.5                                        | .16               | 3220<br>853                               | $4.38 \\ 1.16$               | 591<br>1600                                      | 1020<br>260                          | 834<br>147                  | 9.0<br>4.9                            | 4610<br>1350                                 | 8.2<br>7.8 |
|          | <u>1942</u><br>Nov. 1941<br>Sept. 1942                   | 580<br>2530                |                               |              | 219<br>90            | 54<br>19                    | 552<br>158     |                            | 231<br>195                                 | 0<br>0                                    | 616<br>240                    | 816<br>175       |        | $\begin{array}{c} . \ 6 \\ 1  . \ 2 \end{array}$ | .42<br>.21        | 2520<br>868                               | 3.43<br>1.18                 | 3950<br>5930                                     | 768<br>302                           | 578<br>142                  | 8.7<br>4.0                            | 3850<br>1310                                 | 7.9<br>8.0 |
|          | 1943<br>Aug. 1943<br>Oct. 1942                           | 45.3<br>1290               |                               |              | 286<br>113           | 65<br>24                    | 580<br>235     |                            | 237<br>198                                 | 0<br>0                                    | 708<br>320                    | 928<br>287       |        | .6                                               | .44<br>.25        | 2960<br>1160                              | 4.03<br>1.58                 | 360<br>4040                                      | 978<br>381                           | 784<br>219                  | 8.1<br>5.2                            | 4290<br>1800                                 | 8.3<br>7.8 |
|          | <u>1944</u><br>May 1944<br>July                          | 127<br>359                 |                               |              | 205<br>122           | 55<br>25                    | 565<br>287     |                            | 184<br>169                                 | 0<br>0                                    | 634<br>346                    | 825<br>385       |        | = =<br>. 6                                       | .42               | 2510<br>1330                              | 3.42<br>1.81                 | 861<br>1290                                      | 736<br>408                           | 586<br>270                  | 9.0<br>6.2                            | 3880<br>2040                                 | 8.3<br>8.0 |
|          | <u>1945</u><br>Aug. 1945<br>July                         | 18<br>521                  |                               |              | 311<br>77            | 68<br>13                    | 646<br>142     |                            | 230<br>145                                 | 0<br>0                                    | 803<br>214                    | 1030<br>152      |        | .0<br>1.9                                        | .49<br>.14        | 3230<br>743                               | 4.39<br>1.01                 | 157<br>1050                                      | 1060<br>245                          | 867<br>126                  | 8.7<br>3.9                            | 4660<br>1120                                 | 7.9        |
|          | <u>1946</u><br>Apr. 1946<br>Sept                         | 15<br>350                  |                               |              | 398<br>61            | 92<br>12                    | 764<br>137     |                            | 201<br>91                                  | 0<br>0                                    | 1000<br>178                   | 1310<br>173      |        | 3.1                                              | .57               | 3920<br>647                               | 5.33<br>.88                  | 159<br>611                                       | 1370<br>202                          | 1200<br>127                 | 8.9<br>4.2                            | 5700<br>1010                                 | 7.9<br>7.8 |

|            |                                       |                            |                               |              |                      |                             |                | (Result                    | s in mi                                    | 11igra                                    | ms per lit       | er except        | as ind | icated)                                       |                   |                                           |                              |                                                                   |                                                          |                             |                                       |                                              |            |
|------------|---------------------------------------|----------------------------|-------------------------------|--------------|----------------------|-----------------------------|----------------|----------------------------|--------------------------------------------|-------------------------------------------|------------------|------------------|--------|-----------------------------------------------|-------------------|-------------------------------------------|------------------------------|-------------------------------------------------------------------|----------------------------------------------------------|-----------------------------|---------------------------------------|----------------------------------------------|------------|
|            |                                       |                            |                               |              |                      | Mag                         |                | De                         | Bi-                                        | 0                                         |                  |                  |        |                                               |                   | Dis                                       | solved                       | solids                                                            | Hard<br>as C                                             |                             | So-                                   | Specific                                     |            |
|            | Date<br>of<br>collection              | Mean<br>Discharge<br>(cfs) | Silica<br>(SiO <sub>2</sub> ) | Iron<br>(Fe) | Cal-<br>cium<br>(Ca) | Mag-<br>ne-<br>sium<br>(Mg) | Sodium<br>(Na) | Po-<br>tas-<br>sium<br>(K) | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> ) | Car-<br>bon-<br>ate<br>(CO <sub>3</sub> ) | Sulfate<br>(SO₄) | Chloride<br>(Cl) |        | Ni-<br>trate<br>(NO <sub>3</sub> )            | Bo-<br>ron<br>(B) | Milli-<br>grams<br>per<br>liter<br>(mg/l) | Tons<br>per<br>acre-<br>foot | Tons<br>per<br>day                                                | Cal-<br>cium,<br>Mag-<br>ne-<br>sium                     | Non-<br>car-<br>bon-<br>ate | dium<br>ad-<br>sorp-<br>tion<br>ratio | duct-<br>ance<br>(micro-<br>mhos at<br>25°C) | рН         |
|            |                                       |                            |                               |              |                      |                             | 8              | 3-3715.                    | RIO GR/                                    | NDE A                                     | r upper pr       | ESIDIO, TEX      | Cor    | tinued                                        |                   |                                           |                              |                                                                   |                                                          |                             |                                       |                                              |            |
| Water Year | 1947                                  |                            |                               |              |                      |                             |                |                            |                                            |                                           |                  |                  |        |                                               |                   |                                           |                              |                                                                   |                                                          |                             |                                       |                                              |            |
| Maximum,   | July 1947<br>Sept                     |                            |                               |              | 618<br>78            | 98<br>18                    | 926<br>190     |                            | 574<br>93                                  | 0                                         | 1570<br>254      | 1360<br>243      |        | $\begin{smallmatrix}12\\1.9\end{smallmatrix}$ | 0.25              | 5230<br>882                               | 7.11<br>1.20                 | 2.97<br>298                                                       | $   \begin{array}{r}     1950 \\     266   \end{array} $ | 1480<br>190                 | 9.1<br>5.1                            | 8100<br>1330                                 | 7.9<br>7.9 |
|            | <u>1948</u><br>May 1948<br>Aug        |                            |                               |              | 586<br>30            | 144<br>4.9                  | 1100<br>67     |                            | 116<br>76                                  | 0<br>0                                    | 1510<br>77       | 1970<br>73       |        | 1.2<br>1.9                                    | . 75              | 5820<br>309                               | 7,92<br>,42                  | .94<br>34.5                                                       | 2060<br>95                                               | 1960<br>33                  | 11<br>3.0                             | 8040<br>505                                  | 7,9<br>8,0 |
|            | <u>1949</u><br>Apr. 1949<br>July      |                            |                               |              | 407<br>64            | 92<br>8.3                   | 760<br>107     |                            | 160<br>85                                  | 0<br>0                                    | 1030<br>164      | 1330<br>137      |        | .6<br>1.9                                     | .56               | 4010<br>566                               | 5.45<br>.77                  | 56.3<br>67.2                                                      | 1400<br>194                                              | 1260<br>124                 | 8.8<br>3.3                            |                                              | 7.6<br>7.7 |
|            | <u>1950</u><br>Apr. 1950<br>Aug       |                            |                               |              | 364<br>80            | 96<br>16                    | 880<br>210     |                            | 182<br>195                                 | 0<br>0                                    | 1060<br>210      | 1410<br>242      |        | .6<br>3.7                                     | .15               | 4210<br>963                               | 5,73<br>1,31                 | 13.6<br>512                                                       | 1300<br>267                                              | 1150<br>108                 | 11<br>5.6                             | 6160<br>1480                                 | 8.0        |
|            | <u>1951</u><br>Mar. 1951<br>Aug       |                            |                               |              | 498<br>45            | 116<br>6.2                  | 955<br>56      |                            | 215<br>157                                 | 0<br>0                                    | 1230<br>103      | 1680<br>17       |        | .6<br>2.5                                     | .59               | 4890<br>353                               | 6,65<br>,48                  | 19.8<br>26.7                                                      | 1720<br>138                                              | 1540<br>9                   | 10<br>2,1                             | 6960<br>507                                  | 7.7<br>7.8 |
|            | <u>1952</u><br>Apr. 1952<br>July      |                            |                               |              | 95<br>48             | 14<br>8.0                   | 106<br>63      |                            | 116<br>153                                 | 0<br>0                                    | 260<br>104       | 115<br>43        |        | 2.5<br>6.2                                    | .10               | 728<br>382                                | .99<br>.52                   | 8.45<br>167                                                       | 296<br>152                                               | 200<br>28                   | 2.7<br>2.2                            | 1070<br>569                                  | 7.8<br>7.7 |
|            | <u>1953</u><br>June 1953<br>Aug       |                            |                               |              |                      |                             | 93<br>75       |                            | 165<br>165                                 | 0<br>0                                    |                  | 43<br>71         |        |                                               |                   | 721<br>485                                | .98<br>.66                   | $     \begin{array}{c}       11.3 \\       68.1     \end{array} $ | 298<br>202                                               | 162<br>67                   | 2.3<br>2.3                            | 989<br>729                                   | 8.0        |
|            | <u>1954</u><br>Sept. 1954<br>Apr      |                            |                               |              | 55                   | 4.1                         | 236<br>53      |                            | 207<br>168                                 | 0<br>0                                    | <br>80           | 393<br>35        |        | 4,3                                           | .03               | 1330<br>353                               | 1.81<br>.48                  | 241<br>4.58                                                       | 542<br>155                                               | 372<br>18                   | 4,4<br>1.8                            | 2100<br>550                                  | 8.0        |
|            | 1955<br>Nov. 1954<br>Aug. 1955        |                            |                               |              |                      |                             | 589<br>53      |                            | 165<br>146                                 | 0<br>0                                    |                  | 962<br>39        |        |                                               |                   | 2850<br>346                               | 3,88<br>,47                  | .08<br>61.7                                                       | 975<br>149                                               | 840<br>29                   | 8.2<br>1.9                            | 4290<br>531                                  |            |
|            | <u>1956</u><br>Nov. 1955<br>Aug. 1956 |                            |                               |              |                      |                             | 801<br>38      |                            | 168<br>140                                 | 0<br>0                                    | 72               | 1420<br>20       |        |                                               | **                | 4550<br>279                               | 6.19<br>.38                  | .98<br>28.6                                                       | 1650                                                     | 1510                        | 8.6                                   | 6220<br>455                                  | ÷.         |
|            | <u>1957</u><br>June 1957<br>May       |                            |                               |              |                      |                             | 46<br>25       |                            | 141<br>168                                 | 0<br>0                                    |                  | 23<br>14         |        |                                               |                   | 544<br>250                                | . 74<br>. 34                 | 39.7<br>12.2                                                      | 288<br>136                                               | 172<br>0                    | 1.2<br>.9                             | 751<br>377                                   |            |
|            | <u>1958</u><br>May 1958<br>Oct. 1957  |                            |                               |              |                      |                             | 1              |                            |                                            | 0<br>0                                    |                  |                  |        |                                               |                   | 817<br>296                                | 1.11<br>.40                  | .13<br>32.0                                                       | 446<br>156                                               | 381<br>53                   | .8<br>1.3                             | 1010<br>471                                  |            |

| -                                                                  |    |                            |                               |              |                      | Mag                         |                | Po-    | Bi-                                        | Gen                                       |                               |                  |         |                                    |                   | Dis                                       | solved s                     | solids                                  | Hard<br>as C:                        |                             | So-                                           | Specific<br>con-                             |    |
|--------------------------------------------------------------------|----|----------------------------|-------------------------------|--------------|----------------------|-----------------------------|----------------|--------|--------------------------------------------|-------------------------------------------|-------------------------------|------------------|---------|------------------------------------|-------------------|-------------------------------------------|------------------------------|-----------------------------------------|--------------------------------------|-----------------------------|-----------------------------------------------|----------------------------------------------|----|
| Date<br>of<br>collecti                                             | on | Mean<br>Discharge<br>(cfs) | Silica<br>(SiO <sub>2</sub> ) | Iron<br>(Fe) | Cal-<br>cium<br>(Ca) | Mag-<br>ne-<br>sium<br>(Mg) | Sodium<br>(Na) | tas-   | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> ) | Car-<br>bon-<br>ate<br>(CO <sub>3</sub> ) | Sulfate<br>(SO <sub>4</sub> ) | Chloride<br>(Cl) |         | N1-<br>trate<br>(NO <sub>3</sub> ) | Bo-<br>ron<br>(B) | Milli-<br>grams<br>per<br>liter<br>(mg/1) | Tons<br>per<br>acre-<br>foot | Tons<br>per<br>day                      | Cal-<br>cium,<br>Mag-<br>ne-<br>sium | Non-<br>car-<br>bon-<br>ate | dium<br>ad-<br>sorp-<br>tion<br>ratio         | duct-<br>ance<br>(micro-<br>mhos at<br>25°C) | рН |
|                                                                    |    |                            |                               |              |                      |                             | 8              | -3715. | RIO GRA                                    | NDE A1                                    | UPPER PR                      | ESIDIO, TEX      | Con     | tinued                             |                   |                                           |                              |                                         |                                      |                             |                                               |                                              |    |
| later Year 1959                                                    |    |                            |                               |              |                      |                             |                |        |                                            |                                           |                               |                  |         |                                    |                   |                                           |                              |                                         |                                      |                             |                                               |                                              |    |
| Maximum, Dec. 1958<br>Minimum, June 1959                           |    | 0.59<br>20                 |                               |              |                      |                             | 1150<br>59     |        | 232<br>171                                 | 0                                         |                               | 2110<br>23       |         |                                    |                   | 6490<br>386                               | 8.83                         | $\begin{array}{c}10.3\\20.8\end{array}$ | 2320<br>174                          | 2130<br>34                  | $\begin{smallmatrix}10\\1.9\end{smallmatrix}$ | 8680<br>595                                  |    |
| Vater Year 1960<br>Maximum, Aug. 1960<br>Minimum, Oct. 1959        |    |                            |                               |              |                      |                             | 192<br>46      |        | $\frac{169}{149}$                          | 0                                         |                               | 239<br>34        |         |                                    |                   | 1010<br>343                               | 1.37<br>.47                  | 404<br>11.1                             | 350<br>172                           | 212<br>49                   | $\begin{array}{c} 4.5\\ 1.5\end{array}$       | 1570<br>542                                  |    |
| <mark>dater Year 1961</mark><br>Maximum, Feb. 1961<br>Minimum, May |    |                            |                               |              |                      |                             | 808<br>60      |        | 212<br>131                                 | 0<br>0                                    |                               | 1130<br>41       |         |                                    |                   | 3510<br>462                               | 4.77                         | 199<br>59.5                             | 960<br>216                           | 787<br>108                  | $11 \\ 1.8$                                   | 5210<br>711                                  | -  |
| Mater Year 1962<br>Maximum, Sept. 1962<br>Minimum, Oct. 1961       |    |                            |                               |              |                      |                             | 206<br>40      |        | 236<br>145                                 | 0                                         |                               | 234<br>27        |         |                                    |                   | 1030<br>479                               | 1.40                         | 553<br>15.5                             | 343<br>242                           | 150<br>124                  | $\begin{array}{c} 4.8\\ 1.1 \end{array}$      | 1570<br>645                                  |    |
| Nater Year 1963<br>Maximum, Feb. 1963                              |    |                            |                               |              | (8.8)                |                             | 858            |        | 273                                        | 0                                         |                               | 1210             |         |                                    |                   | 3680                                      | 5.00                         | 18.9                                    | 1050                                 | 824                         | 12                                            | 5480                                         |    |
| Minimum, May                                                       |    | 5.2                        |                               |              | -                    | 1.1                         | 66             |        | 168                                        | 0                                         | 57.0                          | 52               |         | 5775                               | 100               | 490                                       | .67                          | 6.88                                    | 229                                  | 92                          | 1,9                                           | 757                                          | -  |
| Mater Year 1964<br>Maximum, Dec. 1963<br>Minimum, June 1964        |    |                            |                               |              | 1                    |                             | 711<br>40      |        | 262<br>70                                  | 0                                         |                               | 961<br>19        |         |                                    |                   | 3140<br>307                               | 4.27<br>.42                  | 50.0<br>.99                             | 828<br>127                           | 613<br>70                   | $11 \\ 1.6$                                   | 4620<br>435                                  | -  |
| Water Year 1965<br>Maximum, Sept. 1965<br>Minimum, Aug             |    |                            |                               |              |                      |                             | 55<br>51       |        | 137<br>137                                 | 0                                         |                               | 21<br>19         |         |                                    |                   | 475<br>463                                | .65                          | 44.9<br>5.75                            | 220                                  | 108<br>102                  | 1.6<br>1.5                                    | 680<br>645                                   | -  |
| Water Year 1966<br>Maximum, Sept. 1966                             |    |                            |                               |              |                      | 202                         | 104            |        | 166                                        | 0                                         |                               | 115              |         |                                    |                   | 622                                       | . 85                         | 694                                     | 256                                  | 120                         | 2.8                                           | 986                                          | 2  |
| Minimum, Aug                                                       |    |                            |                               |              |                      | · -                         | 49             |        | 162                                        | 0                                         | (44)                          | 28               |         |                                    |                   | 412                                       | . 56                         | 101                                     | 204                                  | 72                          | 1.5                                           | 634                                          | ×  |
| <u>Mater Year 1967</u><br>Maximum, Jan. 1967<br>Minimum, Aug       |    |                            | 8                             |              | 733                  | 162                         | 1370<br>62     | 21     | 134<br>140                                 | 0<br>0                                    | 2070                          | 2320<br>28       | 0.9     | 0,6                                | 0.75              | 7150<br>438                               | 9.72<br>.60                  |                                         | 2500<br>208                          | 2390<br>93                  | $\overset{12}{\overset{1.9}{}}$               | 9460<br>702                                  | 7. |
| Mater Year 1968<br>Maximum, Feb. 1968<br>Minimum, Sept             |    |                            |                               |              |                      | 22                          | 251<br>66      |        | 156<br>194                                 | 0                                         |                               | 214<br>28        |         |                                    |                   | 1280<br>486                               | 1,74<br>.66                  |                                         | 414<br>226                           | 286<br>66                   | $5.4 \\ 1.9$                                  | 1870<br>715                                  | -  |
|                                                                    |    |                            |                               |              |                      |                             |                | 8      | -3740.                                     | ALAMIT                                    | O CREEK NE                    | AR PRESIDIO      | ), TEX. |                                    |                   |                                           |                              |                                         |                                      |                             |                                               |                                              |    |
| Period, Feb. 1935 - Jan.<br>Maximum, Apr. 28, 1935.                |    | 2.0                        |                               |              | 35                   | 4.7                         | 107            |        | 327                                        | 0                                         | 44                            | 22               |         | 3.1                                | 0.26              | 484                                       | 0.66                         | 2.61                                    | 108                                  | 0                           | 4.5                                           | 628                                          | 7. |
| Minimum, June 11                                                   |    |                            |                               |              | 23                   | 6.6                         | 23             |        | 141                                        | 0                                         | 14                            | 6.4              |         | . 0                                | .11               | 155                                       | .21                          | 249                                     | 84                                   | 0                           | 1.1                                           | 259                                          | 7. |

### (Peculta is millionume new liter except as indicated)

|                                                                |                            |                               |              |              |                             |                | ŝ                  |                                            |                                           |                  |                                         |                              |                                   |      | Disso   | Dissolved solids             | lds                | Hardness<br>as CaCO <sub>3</sub>     | co.                  |                                       | Specific                                     |
|----------------------------------------------------------------|----------------------------|-------------------------------|--------------|--------------|-----------------------------|----------------|--------------------|--------------------------------------------|-------------------------------------------|------------------|-----------------------------------------|------------------------------|-----------------------------------|------|---------|------------------------------|--------------------|--------------------------------------|----------------------|---------------------------------------|----------------------------------------------|
| Date<br>of<br>collection                                       | Mean<br>Discharge<br>(cfs) | Silica<br>(SiO <sub>2</sub> ) | Iron<br>(Fe) | ctum<br>(Ca) | mag-<br>ne-<br>sium<br>(Mg) | Sodium<br>(Na) | Fo-<br>tas-<br>(K) | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> ) | Car-<br>bon-<br>ate<br>(CO <sub>3</sub> ) | Sulfate<br>(SO4) | Chloride<br>(CI)                        | Fluo- h<br>ride tr<br>(F) (h | Ni- Bo-<br>trate ron<br>(NO3) (B) |      | 1 10 10 | Tons<br>per<br>acre-<br>foot | Tons<br>per<br>day | Cal-<br>cfum,<br>Mag-<br>ne-<br>stum | Non-<br>car-<br>bon- | dium<br>ad-<br>sorp-<br>tion<br>ratio | duct-<br>ance<br>(micro-<br>mhos at<br>25°C) |
|                                                                |                            |                               |              |              |                             |                | 8-3)               | 14.5. TEB                                  | TINGUA                                    | CREEK NE4        | 8-3745. TERLINGUA CREEK NEAR TERLINGUA, | IA, TEX.                     |                                   |      |         |                              |                    |                                      |                      |                                       |                                              |
| <pre>Period, Mar. 1 - Dec. 31, 1935 Naximum, May 1, 1935</pre> |                            |                               |              | 135          | 23                          | 245            |                    | 192                                        | 0                                         | 749              | 25                                      |                              |                                   | 22   | 1360    | 1.84                         | 2.94               | 433                                  | 276                  | 5.1                                   | 1770                                         |
| Minimum, June 11                                               | 4270                       |                               |              | 50           | 3.2                         | 85             |                    | 249                                        | 0                                         | 113              | 5.0                                     |                              | 1.2 .                             | . 19 | 421     | .57                          | 4850               | 138                                  | 0                    | 3.1                                   | 612                                          |
| <pre>Period, June 1 = Sept. 30, 1947 Maximum, Sept. 1947</pre> | 3.90                       |                               |              | 103          | 12                          | 171            |                    | 245                                        | 0                                         | 436              | 18                                      |                              |                                   | 19   |         | 1.31                         | 10.1               | 304                                  | 104                  | 4.3                                   | 1320                                         |
| Minimum, Aug                                                   |                            |                               |              | 52           | 5.8                         | 86             |                    | 124                                        | 0                                         | 220              | 8.9                                     |                              | 4.3 .                             | . 19 | 485     | . 66                         | 74.6               | 153                                  | 52                   | 3.0                                   | 662                                          |
| Water Year 1948<br>Maximum, Jan. 1948                          |                            |                               |              | 113          | 18                          | 185            |                    | 193                                        | 0                                         | 565              | 14                                      |                              | 5.6 .                             | 16 1 | 1050    | 1.43                         | 9.92               | 355                                  | 196                  | 4.3                                   | 1410                                         |
| Minimum, July                                                  | 196                        |                               |              | 32           | 3.5                         | 60             |                    | 136                                        | 0                                         | 98               | 6.7                                     |                              |                                   | 1    | 324     | .44                          | 171                | 56                                   | 0                    | 2.7                                   | 436                                          |
| Mater Year 1949<br>Maximum, May 1949                           |                            |                               |              | 93           | 11                          | 231            |                    | 286                                        | 0                                         | 501              | 19                                      |                              | 6.8                               | 1    | 0011    | 1.49                         | 9,80               | 277                                  | 42                   | 6.0                                   | 1530                                         |
| Minimum, July                                                  | 180                        |                               |              | 40           | 3.6                         | 83             |                    | 156                                        | 0                                         | 156              | 7.8                                     |                              |                                   | 1    | 419     | 4.3                          | 204                | 116                                  | 0                    | 2 1                                   | 202                                          |

|                                                                            |                                        |                               |              |                      |                             | (                | Result                     | s in mi                                        | lligrar                                   | ns per lit       | er except a                                    | as ind | icated)                                         | )            |                                           |                              |                                         |                                      |                             |                                       |                                           |            |
|----------------------------------------------------------------------------|----------------------------------------|-------------------------------|--------------|----------------------|-----------------------------|------------------|----------------------------|------------------------------------------------|-------------------------------------------|------------------|------------------------------------------------|--------|-------------------------------------------------|--------------|-------------------------------------------|------------------------------|-----------------------------------------|--------------------------------------|-----------------------------|---------------------------------------|-------------------------------------------|------------|
|                                                                            |                                        |                               |              |                      |                             |                  |                            | Bi-                                            |                                           |                  |                                                |        |                                                 |              | Die                                       | solved a                     | olids                                   | Hard<br>as Ca                        |                             | So-                                   | Specific<br>con-                          |            |
| Date<br>of<br>collection                                                   | Mean<br>Discharge<br>(cfs)             | Silica<br>(SiO <sub>2</sub> ) | Iron<br>(Fe) | Cal-<br>cium<br>(Ca) | Mag-<br>ne-<br>sium<br>(Mg) | Sodium<br>(Na)   | Po-<br>tas-<br>sium<br>(K) | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> )     | Car-<br>bon-<br>ate<br>(CO <sub>3</sub> ) | Sulfate<br>(SO4) | Chloride<br>(Cl)                               |        | Ni-<br>trate<br>(NO <sub>3</sub> )              |              | Milli-<br>grams<br>per<br>liter<br>(mg/l) | Tons<br>per<br>acre-<br>foot | Tons<br>per<br>day                      | Cal-<br>cium,<br>Mag-<br>ne-<br>sium | Non-<br>car-<br>bon-<br>ate | dium<br>ad-<br>sorp-<br>tion<br>ratio | duct-                                     | рН         |
|                                                                            |                                        |                               |              |                      |                             |                  | 8-                         | 3750. R                                        | IO GRAI                                   | IDE AT JOE       | INSON RANCH                                    | , TEX. |                                                 |              |                                           |                              |                                         |                                      |                             |                                       |                                           |            |
| Water Year 1948<br>Maximum, Jan. 1948<br>Minimum, July                     | 677<br>700                             |                               |              | 100<br>69            | 20<br>8.5                   | 160<br>96        |                            | 204<br>158                                     | 0<br>0                                    | 319<br>211       | 139<br>50                                      |        | 0.6                                             | 0.22         | 904<br>581                                | 1.23<br>.79                  | 1650<br>1100                            | 332<br>208                           | 164<br>78                   | 3.8<br>2.9                            | 1360<br>849                               | 7.8        |
| Water Year 1949<br>Maximum, Apr. 1949<br>Minimum, Aug                      | 402<br>2930                            |                               |              | 148<br>78            | 16<br>7.7                   | 194<br>57        |                            | 159<br>143                                     | 0<br>0                                    | 617<br>182       | 74<br>28                                       | 14 M   | 1.9<br>3.7                                      | , 21<br>, 10 | 1220<br>500                               | 1,66                         | 1320<br>3960                            | 432<br>225                           | 302<br>108                  | 4.1<br>1.7                            |                                           | 7.7        |
| Water Year 1950<br>Maximum, Jan. 1950<br>Minimum, Aug                      |                                        |                               |              | 85<br>72             | 19<br>9.0                   | 160<br>77        | **                         | 153<br>165                                     | 0<br>0                                    | 284<br>174       | 155<br>51                                      |        | 2.5<br>2.5                                      | .19<br>.11   | 853<br>522                                | 1.16<br>.71                  | 2370<br>2650                            | 291<br>217                           | 166<br>82                   | 4.1<br>2.3                            |                                           | 8.0<br>7.8 |
| <u>Water Year 1951</u><br>Maximum, Dec. 1950<br>Minimum, June 1951         | 772<br>703                             |                               |              | 109<br>70            | 21<br>8.9                   | 188<br>85        |                            | 193<br>168                                     | 0<br>0                                    | 327<br>181       | 196<br>41                                      |        | $egin{smallmatrix} 1.9\\ 1.9 \end{smallmatrix}$ | .27          | 1010<br>515                               | 1.37<br>.70                  | 2110<br>978                             | 360<br>212                           | 202<br>74                   | 4.3<br>2.5                            |                                           | 8.0<br>7.9 |
| Water Year 1952<br>Maximum, Mar. 1952<br>Minimum, July                     | 165<br>4880                            |                               |              | 76                   | 7.8                         | 169<br>49        |                            | 184<br>140                                     | 0<br>0                                    | 181              | 105<br>21                                      |        | 3.7                                             | .10          | 993<br>471                                | 1.35<br>.64                  | 442<br>6210                             | 342<br>222                           | 191<br>108                  | 4.0<br>1.4                            | 1370<br>652                               | 7.8        |
| Water Year 1953<br>Maximum, Apr. 1953<br>Minimum, Aug                      | $\begin{array}{c} 7.7\\199\end{array}$ |                               |              |                      |                             | 186<br>87        | **                         | $\begin{smallmatrix}159\\153\end{smallmatrix}$ | 0<br>0                                    | 72<br>72         | 133<br>48                                      |        |                                                 |              | 1090<br>654                               | 1.48<br>.89                  | 22.7<br>351                             | 384<br>288                           | 254<br>173                  | 4.1<br>2.2                            | 1580<br>933                               | <br>7.8    |
| <u>Water Year 1954</u><br>Maximum, Dec. 1953<br>Mar. 1954<br>Minimum, June | 155<br>72<br>718                       | 10 M                          |              |                      |                             | 180<br>195<br>61 | **                         | 189<br>160<br>195                              | 0<br>0<br>0                               | **               | 131<br>131<br>21                               |        | 2                                               |              | 1100<br>1100<br>537                       | 1.49<br>1.49<br>.73          | 460<br>214<br>1040                      | 388<br>388<br>244                    | 233<br>256<br>84            | 4.0<br>4.3<br>1.7                     | 1540<br>1570<br>751                       |            |
| <u>Water Year 1955</u><br>Maximum, Jan. 1955<br>Minimum, Aug               | 244<br>2810                            | 15                            |              | 122                  | 22                          | 193<br>49        |                            | 160<br>146                                     | 0<br>0                                    | 480              | 138<br>43                                      |        | .6                                              | .36          | $\begin{array}{c} 1110\\ 419 \end{array}$ | 1.51<br>.57                  | 731<br>3180                             | 397<br>209                           | 266<br>89                   | 4.2<br>1.5                            | 1580<br>626                               | 8.2        |
| Water Year 1956<br>Maximum, May 1956<br>Minimum, Oct. 1955                 | 125<br>2470                            | **                            |              | **<br>**             |                             | 204<br>58        | **                         | 169     163                                    | 0<br>0                                    |                  | 144<br>34                                      |        | 11                                              |              | 1180<br>456                               | 1,60<br>.62                  | 398<br>3040                             | 428<br>204                           | 289<br>70                   | $4.3 \\ 1.8$                          | $\begin{array}{c} 1660\\ 665 \end{array}$ |            |
| Water Year 1957           Maximum, Dec. 1956           Minimum, July 1957  |                                        | <br>17                        |              | 116                  | 9.8                         | 175<br>71        | 5.5                        | $\frac{198}{211}$                              | 0<br>0                                    | 277              | 101<br>23                                      | 0,8    | 1.2                                             | .17          | 1060<br>624                               | 1.44<br>.85                  | 970<br>386                              | 387<br>330                           | 224<br>158                  | 3.9<br>1.7                            | 1470<br>908                               | 8.0        |
| Water Year 1958<br>Maximum, Apr. 1958<br>Minimum, May                      |                                        |                               |              |                      |                             | 233<br>60        |                            | 154<br>178                                     | 0                                         |                  | $\begin{smallmatrix} 168\\12\end{smallmatrix}$ |        |                                                 |              | 1360<br>374                               | 1.84<br>.51                  | 103<br>63.6                             | 458<br>147                           | 331<br>2                    | 4.7<br>2.2                            | 1880<br>539                               |            |
| Water Year 1959<br>Maximum, Mar. 1959<br>Minimum, Sept                     |                                        | 11                            |              | 22                   | 22                          | 229<br>76        |                            | 153<br>183                                     | 0                                         |                  | 172<br>46                                      |        |                                                 |              | 1380<br>544                               | 1.88                         | $\begin{array}{c}1290\\3470\end{array}$ | 488<br>239                           | 362<br>89                   | $4.5 \\ 2.1$                          | 1890<br>799                               |            |

\_

| Matter<br>bell<br>(sig)         Title<br>(sig)         Title<br>(sig) | i                                                      | 1                          |                               |              | Mac                 |                | ç                          | Bi-                                        | ł                                 |                  |                  |                      |      |     | Diss        | Dissolved solids             | sbl                | Hardness<br>as CaCO <sub>3</sub>     | Hardness<br>as CaCO, | -0S        | Specific    |     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|----------------------------|-------------------------------|--------------|---------------------|----------------|----------------------------|--------------------------------------------|-----------------------------------|------------------|------------------|----------------------|------|-----|-------------|------------------------------|--------------------|--------------------------------------|----------------------|------------|-------------|-----|
| Motione intermediate         Motione i                                                                 | of<br>of<br>collection                                 | Mean<br>Discharge<br>(cfs) | Silics<br>(SiO <sub>2</sub> ) | ctum<br>(Ca) | ne-<br>stum<br>(Mg) | Sodium<br>(Na) | F0-<br>tas-<br>stum<br>(K) | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> ) | bon-<br>ate<br>(CO <sub>3</sub> ) | Sulfate<br>(SO4) | Chloride<br>(Cl) | Fluo-<br>ride<br>(F) |      |     |             | Fons<br>per<br>tcre-<br>foot | Tons<br>per<br>day | Cal-<br>ctum,<br>Mag-<br>ne-<br>stum |                      |            |             |     |
| 900         131         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13         13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                        |                            |                               |              |                     | 8              | 3750.                      | RIO GRA                                    | NDE AT                            | JOHNSON R        | ANCH, TEX.       | Conti                | panu |     |             |                              |                    |                                      |                      |            |             |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Water Year 1960<br>Maximum, May 1960                   |                            | 13                            | 11           | ::                  | 214<br>60      | 11                         | 134<br>180                                 | 00                                | 11               | 145<br>28        | 11                   | 1 f  | 11  | 1160        | 1.58                         | 730<br>4610        | 381<br>225                           | 271<br>78            | 4.8        | 1670        | 1.1 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Water Year 1961<br>Maximum, Apr. 1961                  |                            | 1.1                           | 11           | * *                 | 206<br>88      | 11                         | 153<br>149                                 | 00                                | 1.1              | 126<br>44        | 11                   | 11   | 11  | 1160<br>627 | L.58                         | 620<br>1930        | 391<br>276                           | 266<br>154           | 4.5        | 1640<br>929 | 11  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>162</u><br>1962                                     |                            |                               |              | 5                   | 219<br>90      | 3                          | 143                                        | 00                                |                  | 140<br>36        | 1                    |      |     | 1170<br>619 | 1.59<br>.84                  | 354<br>2340        | 379<br>248                           | 262                  | 2.5        | 1680<br>877 | 7.7 |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1963                                                   | -                          | 11                            | : :          | 11                  | 204<br>80      | 1.1                        | 166<br>176                                 | 00                                | 11               | 124<br>37        | 11                   | 11   | 11  | 1130        | 1.54<br>.90                  | 842<br>3050        | 368<br>299                           | 232                  | 4.6<br>2.0 | 1580        | 11  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Water Year 1964<br>Maximum, Apr. 1964                  |                            | 1.1                           | 11           | 11                  | 215<br>92      | 11                         | 165<br>186                                 | 00                                | 11               | 145<br>44        | 1.1                  | 11   | 3.1 | 1140<br>614 | 1.55                         | 536<br>2040        | 376                                  | 24.1<br>104          | 4,8<br>2,5 | 1640<br>886 | E   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Water Year 1965<br>Maximum, Apr. 1965                  |                            | 11                            | ::           | 11                  | 221<br>89      | 11                         | 1,56<br>1,89                               | 00                                | 11               | 134              | 11                   | 11   | 11  | 1200<br>628 | 1.63                         | 515<br>2170        | 366<br>281                           | 238<br>126           | 5.0        | 1640<br>918 | 11  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u>Nater Year 1966</u><br>Maximum, Apr. 1966           |                            | ET                            | 11           | 11                  | 243<br>42      | I I                        | 165<br>165                                 | 00                                | E Le             | 157<br>28        | 3.3                  | : 1  | 11  | 1300<br>412 | 1.77                         | 246<br>11500       | 430                                  | 294<br>82            | 5.1        | 1850        | 1 1 |
| 1968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Water Year 1967<br>Maximum, May 1967                   |                            | 11                            | : :          | 11                  | 242<br>87      | 1.1                        | 159<br>189                                 | 00                                | 3.1              | 14.7<br>3.7      | 11                   | 11   | 11  | 1270<br>633 | 1.73                         | 11                 | 390<br>267                           | 260<br>112           | 5.3        | 1770<br>887 | 1.1 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Mater Year 1968<br>Maximum, Mar. 1968<br>Minimum, Sept |                            | E E -                         | E E          | 11                  | 237<br>56      | 11                         | 174<br>187                                 | 00                                | 11               | 174<br>20        | 1 1                  | 11   | 11  |             | .60                          | : 1                | 473<br>208                           | 330<br>54            | 4.7<br>1.7 | 1920<br>640 | 11  |

|                                                                            |                          |                                   |              |                      |                             | (Rest                                          | lts in                     | millig                                     | rams pe                                   | er liter e                    | xcept as in      | dicate | d)                                       |                   |                                           |                              |                    | 1                                    |                             | 1                                     |                                     |                   |
|----------------------------------------------------------------------------|--------------------------|-----------------------------------|--------------|----------------------|-----------------------------|------------------------------------------------|----------------------------|--------------------------------------------|-------------------------------------------|-------------------------------|------------------|--------|------------------------------------------|-------------------|-------------------------------------------|------------------------------|--------------------|--------------------------------------|-----------------------------|---------------------------------------|-------------------------------------|-------------------|
|                                                                            |                          |                                   |              |                      |                             |                                                |                            | Bi-                                        | a                                         |                               |                  |        |                                          |                   | Dis                                       | ssolved :                    | solids             | Hard<br>as C:                        | ness<br>aCO <sub>3</sub>    | So-                                   | Specific<br>con-                    |                   |
| Date<br>of<br>collection                                                   | Mean<br>Dischar<br>(cfs) | ge (Silica<br>(SiO <sub>2</sub> ) | Iron<br>(Fe) | Cal-<br>cium<br>(Ca) | Mag-<br>ne-<br>sium<br>(Mg) | Sodium<br>(Na)                                 | Po-<br>tas-<br>sium<br>(K) | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> ) | Car-<br>bon-<br>ate<br>(CO <sub>3</sub> ) | Sulfate<br>(SO <sub>4</sub> ) | Chloride<br>(Cl) |        | Ni-<br>trate<br>(NO <sub>3</sub> )       | Bo-<br>ron<br>(B) | Milli-<br>grams<br>per<br>liter<br>(mg/1) | Tons<br>per<br>acre-<br>foot | Tons<br>per<br>day | Cal-<br>cium,<br>Mag-<br>ne-<br>sium | Non-<br>car-<br>bon-<br>ate | dium<br>ad-<br>sorp-<br>tion<br>ratio | duct-<br>ance<br>(micro-<br>mhos at | рН                |
|                                                                            |                          |                                   |              |                      |                             |                                                |                            | 8-377                                      | 5. RIO                                    | GRANDE AT                     | LANGTRY,         | CEX.   |                                          |                   |                                           |                              |                    | 0                                    |                             |                                       |                                     |                   |
| Period, Apr. 1 - Sept. 30, 1944<br>Maximum, July 1944<br>Minimum, Sept     | 1090                     |                                   |              | 95<br>49             | 15<br>7,1                   | 144<br>57                                      |                            | 200<br>134                                 | 0<br>0                                    | 256<br>104                    | 131<br>41        |        | 1.9<br>1.9                               |                   | 816<br>368                                | 1.11                         | 2400<br>6990       | 300<br>151                           | 136<br>41                   | 3,6<br>2,0                            | 1220<br>545                         | 8.1<br>7.9        |
| Water Year 1945<br>Maximum, Dec. 1944<br>Minimum, July 1945                |                          |                                   |              | 103<br>66            | 25<br>7.8                   | 176<br>55                                      |                            | 199<br>145                                 | 0<br>0                                    | 305<br>152                    | 187<br>31        |        |                                          | 0.08              | $971 \\ 449$                              | 1.32<br>.61                  | 3070<br>7420       | 359<br>197                           | 196<br>78                   | 4.0<br>1.7                            | 1470<br>634                         | 7.9<br>7.7        |
| Water Year 1946<br>Maximum, Jan. 1946<br>Minimum, Sept                     |                          |                                   |              | 88<br>57             | 25<br>8,0                   | 196<br>56                                      |                            | $\frac{169}{146}$                          | 0<br>0                                    | 317<br>137                    | 201<br>24        |        | $\begin{array}{c} 1.9\\ 8.1 \end{array}$ | .26               | 985<br>404                                | 1,34<br>.55                  | 3430<br>5040       | 324<br>174                           | 186<br>54                   | 4.7<br>1.8                            | 1510<br>596                         | 7.9<br>7.5        |
| Mater Year 1947<br>Maximum, Jan. 1947<br>Minimum, Sept                     |                          |                                   |              | 85<br>60             | 22<br>7.2                   | 157<br>46                                      |                            | 183<br>147                                 | 0<br>0                                    | 269<br>128                    | 148<br>22        |        | 2.5<br>3.7                               | .22<br>.17        | 838<br>368                                | 1.14<br>.50                  | 3190<br>4450       | 302<br>180                           | 152<br>60                   | $^{3.9}_{1.5}$                        | 1280<br>569                         | 8.0<br>7.7        |
| Water Year 1948<br>Maximum, Jan. 1948<br>Minimum, May                      |                          |                                   |              | 84<br>59             | 21<br>16                    | $\begin{smallmatrix}116\\-66\end{smallmatrix}$ |                            | 201<br>180                                 | 0<br>0                                    | 244<br>135                    | 97<br>50         | 22     | $\frac{1.9}{4.3}$                        | .13               | 721<br>478                                | .98<br>.65                   | 1790<br>804        | 294<br>212                           | 129<br>64                   | 2,9<br>2,0                            | 1080<br>719                         | 8.1               |
| Water Year 1949<br>Maximum, Jan. 1949<br>Minimum, Apr                      |                          |                                   |              | 83<br>51             | 23<br>10                    | 139<br>47                                      |                            | 174<br>143                                 | 0                                         | 268<br>100                    | 132<br>37        |        | 2.5<br>3.7                               | .20<br>.09        | 801<br>368                                | 1.09<br>.50                  | 1910<br>1020       | 301<br>170                           | 158<br>52                   | 3.5<br>1.6                            | 1210<br>561                         | 8.0<br>8.0        |
| Water Year 1950           Maximum, Dec. 1949           Minimum, Sept. 1950 |                          |                                   |              | 75<br>58             | 21<br>6.3                   | 135<br>41                                      |                            | 145<br>132                                 | 0<br>0                                    | 250<br>119                    | 133<br>21        |        | 5.6<br>5.6                               | .19<br>.09        | 779<br>353                                | 1.06<br>.48                  | 2650<br>3250       | 274<br>170                           | 156<br>61                   | 3.6<br>1.4                            | 1150<br>526                         | 8.2<br>7.8        |
| Water Year 1951           Maximum, Nov. 1950           Minimum, May 1951   |                          |                                   |              | 82<br>57             | 20<br>11                    | 138<br>59                                      |                            | 157<br>153                                 | 0                                         | 255<br>133                    | 135<br>39        |        | $1.9 \\ 3.7$                             | .20               | 779<br>434                                | 1.06                         | 2420<br>1590       | 286<br>187                           | 158<br>62                   | $3.5 \\ 1.9$                          | 1170<br>635                         | 7.8<br>7.9        |
| Water Year 1952           Maximum, Aug. 1952           Minimum, July       |                          |                                   |              | 91<br>82             | 21<br>7,9                   | 92<br>49                                       |                            | 156<br>143                                 | 0<br>0                                    | 270<br>194                    | 76<br>23         |        | 3,7<br>3,7                               | . 11<br>. 11      | 713<br>478                                | .97<br>.65                   | 1290<br>6810       | 312<br>238                           | 185<br>120                  | 2.3<br>1.4                            | $\substack{1020\\694}$              | 7.7<br>7.8        |
| <u>Water Year 1953</u><br>Maximum, Oct. 1952<br>Mar. 1953<br>Minimum, Nay  | 475                      |                                   |              | 93<br>80<br>56       | 20<br>23<br>22              | 88<br>102<br>59                                |                            | 138<br>178<br>165                          | 0<br>0<br>0                               | 278<br>252<br>146             | 73<br>78<br>53   |        | $3.1 \\ 3.1 \\ 3.1 \\ 3.1$               | .07<br>.21<br>.18 | 691<br>691<br>441                         | . 94<br>. 94<br>. 60         | 905<br>886<br>313  | 314<br>296<br>232                    | 200<br>150<br>96            | 2.6<br>1.9                            | 995<br>1010<br>697                  | 7.9<br>8.0<br>8,0 |
| Water Year 1954<br>Maximum, Feb. 1954<br>Minimum, Apr                      |                          |                                   |              | 77<br>40             | 23<br>7.5                   | 104<br>47                                      |                            | 177<br>85                                  | 0<br>0                                    | 255<br>109                    | 73<br>38         |        | 1.9                                      | .21               | 676<br>316                                | .92<br>.43                   | 821<br>1600        | 286<br>130                           | 141<br>61                   | 2.7<br>1.8                            | $\substack{1000\\436}$              | 8.0               |
| Water Year 1955<br>Maximum, Feb. 1955<br>Minimum, June                     |                          |                                   |              | 85<br>67             | 22<br>9.4                   | 115<br>27                                      |                            | 177<br>187                                 | 0                                         | 290<br>86                     | 79<br>18         |        | .6<br>2.5                                | .17<br>.09        |                                           | .98<br>.46                   | 1010<br>1150       | 304<br>206                           | 158<br>52                   | 2.0                                   | 1050<br>509                         | 8.2<br>7.9        |

(Results in milligrams per liter except as indicated)

|                                                          | Preto                                                               | ,                          |                               |              | i            | Mag-                |                | Do-         | Bi-                                        | 30 J                              |                    |                  |                                                   |            |                    | Dise                                      | Dissolved solids             | lids               | Hardness<br>as CaCO <sub>3</sub> | 1e88<br>CO3          | -s                                    | Specific<br>con- |            |
|----------------------------------------------------------|---------------------------------------------------------------------|----------------------------|-------------------------------|--------------|--------------|---------------------|----------------|-------------|--------------------------------------------|-----------------------------------|--------------------|------------------|---------------------------------------------------|------------|--------------------|-------------------------------------------|------------------------------|--------------------|----------------------------------|----------------------|---------------------------------------|------------------|------------|
| .1                                                       | u                                                                   | Mean<br>Discharge<br>(cfs) | Silica<br>(SiO <sub>a</sub> ) | Iron<br>(Fe) | clum<br>(Ca) | ne-<br>stum<br>(Mg) | Sodium<br>(Na) | stum<br>(K) | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> ) | bon-<br>ate<br>(CO <sub>3</sub> ) | Sulfate<br>(SO4)   | Chloride<br>(Cl) | Fluo- NI-<br>ride trate<br>(F) (NO <sub>3</sub> ) |            | (B) Normalized Bo- | M1111-<br>grams<br>per<br>liter<br>(mg/l) | Tons<br>per<br>acre-<br>foot | Tons<br>per<br>day | Cal-<br>clum,<br>Mag-<br>ne-     | Non-<br>car-<br>bon- | dium<br>ad-<br>sorp-<br>tion<br>ratio | 5.8              | Нď         |
|                                                          |                                                                     |                            |                               |              |              |                     |                | 8-3775.     | RIO                                        | GRANDE                            | GRANDE AT LANGTRY, | (, TEX Continued | ntinued                                           | _          |                    |                                           |                              |                    |                                  |                      |                                       |                  |            |
| Water Year 19<br>Maximum, Fer<br>Minimum, Ma             | Marter Year 1956<br>Maximum, Feb. 1956                              | 648<br>456                 | 11                            |              | 94<br>63     | 23<br>14            | 120<br>44      | 1.1         | 183<br>184                                 | 00                                | 303<br>110         | 85<br>35         | 11                                                | 1.2 0      | 0.21               | 758<br>382                                | 1.03<br>.52                  | 1330<br>470        | 328<br>216                       | 178<br>66            | 2.9                                   | 1110             | 8.0        |
| Water Year 1957<br>Maximum, Aug.<br>Minimum, Apr.        | Ler Year 1957<br>Maximum, Aug. 1957                                 | 922<br>1500                | 11                            |              | 137<br>53    | 1.7<br>8.8          | 81<br>24       | 11          | 192                                        | 00                                | 371<br>60          | 48<br>18         | 11                                                | 1.9        | .18                | 802<br>265                                | 1,09                         | 2000<br>1070       | 411<br>168                       | 254<br>42            | 1.7                                   | 1100             | 8.2        |
| Water Year 19<br>Maximum, Dec<br>Minimum, Sej            | <u>Water Year 1958</u><br>Maximum, Dec. 1957<br>Minimum, Sept. 1958 | 653<br>8620                | 11                            |              | 94<br>78     | 22<br>8.9           | 126<br>46      | 11          | 177<br>168                                 | 00                                | 334<br>154         | 81<br>23         | 14                                                | 2.5        | .26                | 822<br>438                                | 1.12                         | 1450<br>10200      | 326<br>230                       | 181<br>93            | 3.0                                   | 1170             | 7.9        |
| Water Year 19<br>Maximum, Dec<br>Minimum, Oci            | Water Year 1959<br>Maximum, Dec. 1958                               | 1360<br>21700              | E I                           |              | 121<br>68    | 22<br>6.6           | 138<br>37      | : :         | 186<br>153                                 | 00                                | 398<br>123         | 101              | 11                                                | 4.3<br>4.3 | .11                | 943<br>363                                | 1,28                         | 3460               | 394<br>196                       | 242                  | 3.0                                   | 1320<br>561      | 7.8        |
| Water Year 1960<br>Maximum, Dec.<br>Minimum, Sept        | Ler Year 1960<br>Maximum, Dec. 1959                                 | 802<br>3160                | 11                            |              | 98<br>75     | 21<br>8.4           | 126<br>57      | 1.1         | 189<br>193                                 | 00                                | 329<br>142         | 82<br>30         | 11                                                | 1.9        | . 23               | 808<br>451                                | 1.10                         | 1750<br>3850       | 330<br>221                       | 175                  | 3.0                                   | 1170             | 7.9        |
| <u>Water Year 19</u><br>Maximum, Nov<br>Minimum, Jun     | Mater Year 1961<br>Naximum, Nov. 1960                               | 1350<br>2570               | 11                            |              | 99<br>77     | 18<br>9.1           | 131<br>50      | 11          | 183<br>174                                 | 00                                | 310<br>151         | 99<br>30         | 11                                                | 3.1        | .12                | 829<br>427                                | 1,13                         | 3020<br>2960       | 322<br>228                       | 172<br>86            | 3.2                                   | 1190             | 8.1<br>7.8 |
| Water Year 1962<br>Maximum, Dec.<br>Minimum, June        | tter Year 1962<br>Maximum, Dec. 1961                                | 813<br>1010                | 11                            |              | 85<br>71     | 19<br>8.8           | 128<br>70      | 1.1         | 192<br>165                                 | 00                                | 301                | 73<br>41         | E I                                               | 1.9        | .33                | 767<br>515                                | 1.04                         | 1680               | 290<br>214                       | 132                  | 3.3<br>2.1                            | 1100             | 8.1<br>8.1 |
| <u>Nater Year 1963</u><br>Maximum, Jan.<br>Minimum, June | Let Year 1963<br>MaxAnum, Jan. 1963                                 | 821<br>1250                | 26                            |              | 100<br>91    | 21<br>9.7           | 150<br>42      | 6.3         | 206<br>192                                 | 00                                | 318<br>158         | 115<br>28        | 1.5                                               | 3.7        | . 24               | 897<br>449                                | 1.22                         | 1990               | 334<br>267                       | 110                  | - 0<br>- 1                            | 1310             | 7.9        |
| Water Year 1964<br>Maximum, Dec.<br>Minimum, Sepc        | Ler Year 1964<br>Maximum, Dec. 1963<br>Minimum, Sept. 1964          | 811<br>4670                | 11                            |              | 94<br>73     | 18<br>5.6           | 126<br>20      | 1.1         | 205                                        | 00                                | 308<br>54          | 74<br>14         | 1.                                                | 3.1        | .22                | 783<br>286                                | 1.06                         | 1710<br>3610       | 311<br>204                       | 143<br>34            | 3.1                                   | 1130             | 7.8        |
| <u>Mater Year 1965</u><br>Maximum, Jan.<br>Minimum, June | Lter Year 1965<br>Maximum, Jan. 1965.<br>Minimum, June              | 828<br>2940                | 20                            |              | 83<br>80     | 20<br>5.7           | 131<br>31      | 6.3         | 179<br>217                                 | 00                                | 311<br>86          | 69<br>18         | 1.7                                               | 5.0<br>1.9 | .32                | 795<br>346                                | 1.08                         | 1780<br>2750       | 290<br>222                       | 144                  | 3.3                                   | 1100             | 8.1        |
| Water Year 1966<br>Maximum, Jan.<br>Minimum, Apr.        | Ler Year 1966<br>Maximum, Jan. 1966.<br>Minimum, Apr                | 660<br>786                 | 23                            |              | 94<br>72     | 19<br>9.0           | 130<br>40      | 4.7         | 189<br>195                                 | 00                                | 324<br>95          | 73<br>30         | 1.7                                               | 3.7        | .30                | 804<br>372                                | 1.09                         | 1430<br>789        | 312<br>216                       | 158<br>56            | 3.2                                   | 1170             | 8.0        |
| Water Year 1967<br>Maximum, Nov.<br>Minimum, Sept        | Ler Year 1967<br>Maximum, Nov. 1966                                 | 11                         | 11                            |              | 107<br>79    | 21.5                | 153<br>66      | 11          | 186<br>201                                 | 0 0                               | 387<br>160         | 98<br>28         | 1.1                                               | 3.1        | .17                | 933<br>497                                | 1.27                         | 13                 | 352<br>228                       | 200<br>55            | 3.5                                   | 1330             | 7.8        |
| Water Year 1968<br>Maximum, Jan-<br>Minimum, Sept        | ter Year 1968<br>Maximum, Jan 1968                                  | ::                         | 24                            |              | 83<br>75     | 19<br>5.8           | 134<br>54      | 5.5         | 177<br>210                                 | 0 0                               | 322<br>125         | 73<br>19         | 1.5                                               | 3.7        | .18                | 783<br>436                                | 1.06                         | 11                 | 286<br>210                       | 140<br>38            | $3.4 \\ 1.6$                          | 1130<br>648      | 7.8        |
| a Less than 0.                                           | a Less than 0.4 milligrams per liter.                               | r                          |                               |              |              |                     |                |             |                                            |                                   |                    |                  |                                                   |            |                    |                                           |                              |                    |                                  |                      |                                       |                  |            |

(Results in milligrams per liter except as indicated)

- 57 -

|                  |                                 |                                         |                   |                          |                      |                       | Bi-               |                                           |                               |                      |                        | _                                              | a                                           | Dissolved solids             | solids               | Hard<br>as C                         | Hardness<br>as CaCO <sub>3</sub> | So-              | Specific                | -0                |
|------------------|---------------------------------|-----------------------------------------|-------------------|--------------------------|----------------------|-----------------------|-------------------|-------------------------------------------|-------------------------------|----------------------|------------------------|------------------------------------------------|---------------------------------------------|------------------------------|----------------------|--------------------------------------|----------------------------------|------------------|-------------------------|-------------------|
| P P G            | Mean<br>Discharge [Sli<br>(cfs) | Silica Iron<br>(SiO <sub>s</sub> ) (Fe) | (Ca)              | - Mag-<br>n sium<br>(Mg) | - Sodium<br>) (Na)   | n tas-<br>sium<br>(K) | 5                 | Car-<br>bon-<br>ate<br>(CO <sub>3</sub> ) | Sulfate<br>(SO <sub>4</sub> ) | Chloride<br>(C1)     | Fluo-<br>ride 1<br>(F) | N1- Bo-<br>trate ron<br>(NO <sub>3</sub> ) (B) | ) milli-<br>grams<br>per<br>liter<br>(mg/l) | Tons<br>per<br>acre-<br>foot | Tons<br>per<br>day   | Cal-<br>cium,<br>Mag-<br>ne-<br>sium | Non-<br>car-<br>bon-             |                  | 58                      | Ηď                |
|                  |                                 |                                         |                   |                          |                      | 8-4101.               | PECOS             | RIVER B                                   | RIVER BELOW RED 1             | BLUFF DAM NE         | DAM NEAR ORLA,         | , TEX,                                         |                                             |                              |                      | _                                    |                                  |                  |                         |                   |
|                  | 9.2<br>5 1                      | 23<br>9.0<br>13                         | 776<br>572<br>690 | 367<br>234<br>318        | 4480<br>1800<br>2350 | 111                   | 112<br>123<br>122 | 000                                       | 3020<br>2080<br>2490          | 7050<br>2850<br>3890 |                        | 111                                            | 15700<br>7590<br>9820                       | 21.2<br>10.3<br>13.3         | 390<br>205<br>398    | 3430<br>2390<br>3030                 | 3250<br>2290<br>2930             | 33<br>16<br>19   | 22500<br>11100<br>14300 | 7.6<br>7.8        |
| 12<br>148<br>88  |                                 | 221                                     | 792<br>356<br>498 | 362<br>91<br>167         | 4330<br>1040<br>1700 | 111                   | 111<br>106<br>106 | 000                                       | 3010<br>1100<br>1720          | 6850<br>1620<br>2650 |                        | 8,0                                            | 15300<br>4280<br>6790                       | 20.7<br>5.82<br>9.25         | 496<br>1710<br>1610  | 3460<br>1260<br>1930                 | 3280<br>1180<br>1840             | 32<br>13<br>17   | 21900<br>6620<br>10000  | 7.4               |
| 15<br>399<br>217 |                                 | 51<br>10<br>11                          | 470<br>268<br>317 | 207<br>69<br>84          | 3240<br>593<br>743   | 111                   | 97<br>134<br>132  | 0 0 0                                     | 1800<br>826<br>978            | 5050<br>900<br>1150  |                        | 1.8                                            | 10900<br>2730<br>3350                       | 14.7<br>3.71<br>4.56         | 441<br>2940<br>1960  | 2020<br>952<br>1140                  | 1940<br>842<br>1030              | 31<br>8.4<br>9.6 | 16200<br>4280<br>5160   | 7.5               |
| 79<br>32<br>125  |                                 | 17<br>14<br>13                          | 642<br>450<br>531 | 175<br>93<br>131         | 1700<br>650<br>1090  | 111                   | 119<br>125<br>112 | 000                                       | 2130<br>1350<br>1680          | 2620<br>1000<br>1690 |                        | 1.5                                            | 7340<br>3620<br>5190                        | 9.98<br>4.92<br>7.06         | 1570<br>313<br>1750  | 2320<br>1510<br>1860                 | 2220<br>1400<br>1770             | 15<br>7.3<br>11  | 10200<br>5090<br>7340   | 7.9<br>8.0        |
| 12<br>131<br>61  |                                 | 15<br>6.4<br>8.5                        | 656<br>442<br>612 | 285<br>81<br>197         | 3680<br>836<br>2000  | 111                   | 88<br>68<br>107   | 000                                       | 2440<br>1310<br>2070          | 5800<br>1300<br>3140 |                        | 1.6                                            | 12900<br>4010<br>8080                       | 17.4<br>5.45<br>10.9         | 418<br>1420<br>1330  | 2810<br>1440<br>2340                 | 2740<br>1380<br>2250             | 30<br>9.6<br>18  | 18200<br>5920<br>11600  | 7.6               |
| 42<br>216<br>73  |                                 | 10                                      | 576<br>455<br>491 | 216<br>116<br>147        | 2310<br>1000<br>1390 | 111                   | 130<br>119<br>120 | 000                                       | 2010<br>1500<br>1640          | 3650<br>1510<br>2160 |                        | 3.0                                            | 8840<br>4660<br>5900                        | 12.0<br>6.34<br>8.02         | 1000<br>2720<br>1160 | 2330<br>1610<br>1830                 | 2220<br>1510<br>1730             | 21<br>11<br>14   | 12900<br>6740<br>8620   | 7.2               |
| 03               | 3.2<br>3.4<br>84                | 18<br>15<br>14                          | 400<br>418<br>463 | 0 135<br>8 116<br>8 135  | 1670<br>893<br>1150  |                       | 175<br>143<br>136 | 000                                       | 1310<br>1340<br>1550          | 2600<br>1280<br>1760 |                        | 4.0                                            | 6220<br>4240<br>5140                        | 8.46<br>5.77<br>6.99         | 53.6<br>38.9<br>1170 | 1550<br>1520<br>1710                 | 1410<br>1400<br>1600             | 18<br>10<br>12   | 9670<br>6280<br>7280    | 7.2               |
| 0                | 9.7<br>1.3                      | 14<br>17<br>12                          | 600<br>530<br>568 | ) 286<br>) 180<br>3 202  | 3640<br>1500<br>1910 | 187                   | 126<br>138<br>134 | 000                                       | 2380<br>1860<br>2050          | 5680<br>2320<br>2930 |                        | 111                                            | 12700<br>6480<br>7730                       | 17.3<br>8.81<br>10.5         | 333<br>22.7<br>1290  | 2670<br>2060<br>2250                 | 2570<br>1950<br>2140             | 31<br>14<br>17   | 18000<br>9300<br>11000  | 7.3               |
| 19               | 198<br>3.8<br>125               | 16<br>13                                | 585<br>470<br>533 | 5 196<br>0 157<br>1 174  | 1780<br>1100<br>1420 | 111                   | 124<br>107<br>123 | 000                                       | 2000<br>1500<br>1840          | 2800<br>1820<br>2230 |                        | 10.1                                           | 7440<br>5120<br>6270                        | 10.1<br>6.96<br>8.53         | 3980<br>52.5<br>2120 | 2270<br>1820<br>2050                 | 2160<br>1730<br>1940             | 11<br>11<br>14   | 10400<br>7630<br>8950   | 7.2               |
| 9 9              | 69<br>1.7<br>61                 | 9,9<br>17<br>8,3                        | 675<br>640<br>669 | 5 270<br>0 203<br>0 249  | 2550<br>1740<br>2270 | 111                   | 115<br>151<br>119 | 000                                       | 2550<br>2180<br>2440          | 3950<br>2700<br>3540 | 1.2                    | 3.3.3                                          | 10000<br>7560<br>9240                       | 13.7<br>10.3<br>12.4         | 1860<br>34.7<br>1520 | 2800<br>2430<br>2690                 | 2700<br>2310<br>2590             | 21<br>15<br>19   | 13400<br>10600<br>12900 | 7.0<br>7,4<br>7.1 |

|                            |                            |                               |    |                      | Mag-                |                | Po-                 | Bi-                                        | Car-        |                  |                  |        |                                    |       | Dis                                       | ssolved s                                | olids              | Hard<br>as C                         | ness<br>aCO,                | So-                                   | Specific                                     | -   |
|----------------------------|----------------------------|-------------------------------|----|----------------------|---------------------|----------------|---------------------|--------------------------------------------|-------------|------------------|------------------|--------|------------------------------------|-------|-------------------------------------------|------------------------------------------|--------------------|--------------------------------------|-----------------------------|---------------------------------------|----------------------------------------------|-----|
| Date<br>of<br>collection   | Mean<br>Discharge<br>(cfs) | Silica<br>(SiO <sub>2</sub> ) |    | Cal-<br>cium<br>(Ca) | ne-<br>sium<br>(Mg) | Sodium<br>(Na) | tas-<br>sium<br>(K) | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> ) | bon-<br>ate | Sulfate<br>(SO4) | Chloride<br>(Cl) |        | N1-<br>trate<br>(NO <sub>3</sub> ) |       | Milli-<br>grams<br>per<br>liter<br>(mg/1) | Tons<br>per<br>acre-<br>foot             | Tons<br>per<br>day | Cal-<br>cium,<br>Mag-<br>ne-<br>sium | Non-<br>car-<br>bon-<br>ate | dium<br>ad-<br>sorp-<br>tion<br>ratio | duct-<br>ance<br>(micro-<br>mhos at<br>25°C) | pH  |
|                            |                            |                               |    |                      |                     | 8-4101.        | PECOS               | RIVER BI                                   | ELOW RE     | D BLUFF D        | AM NEAR ORL      | A, TEX | (Con                               | tínue | I.                                        |                                          |                    |                                      |                             |                                       |                                              |     |
| Water Year 1963            |                            |                               |    |                      |                     |                |                     |                                            |             |                  |                  |        |                                    |       |                                           |                                          |                    |                                      |                             |                                       |                                              |     |
| Maximum, Oct. 1-31, 1962   |                            | 12                            |    | 690                  | 265                 | 2680           |                     | 119                                        | 0           | 2560             | 4200             |        |                                    |       | 10500                                     | 14.2                                     | 2860               | 2810                                 | 2710                        | 22                                    | 14000                                        | 7.2 |
| Nov. 1-30                  | . 212                      | 12                            |    | 700                  | 276                 | 2670           |                     | 134                                        | 0           | 2540             | 4200             |        |                                    |       | 10500                                     | 14.2                                     | 6010               | 2880                                 | 2770                        |                                       | 14300                                        | 7.0 |
| Minimum, July 1-31, 1963   |                            | 8.1                           |    | 655                  | 211                 | 1940           | 57                  | 95                                         | 0           | 2270             | 3120             |        |                                    |       | 8310                                      | 11.3                                     | 1590               | 2500                                 | 2420                        | 17                                    | 11400                                        | 6.5 |
| Weighted Average           | . 54                       | 9.8                           |    | 677                  | 258                 | 2480           |                     | 117                                        | 0           | 2440             | 3910             |        |                                    |       | 9850                                      | 13.3                                     | 1440               | 2750                                 | 2650                        | 21                                    | 13400                                        | 6.8 |
| Vater Year 1964            |                            |                               |    |                      |                     |                |                     |                                            |             |                  |                  |        |                                    |       |                                           |                                          |                    |                                      |                             |                                       |                                              |     |
| Maximum, Sept. 20-30, 1964 | . 4.7                      | 17                            |    | 640                  | 283                 | 3820           |                     | 124                                        | 0           | 2410             | 6000             |        |                                    |       | 13200                                     | 18.0                                     | 168                | 2760                                 | 2660                        | 32                                    | 18600                                        | 6.8 |
| Minimum, Dec. 1-31, 1963   | . 12                       | 11                            |    | 550                  | 206                 | 1830           |                     | 108                                        | 0           | 1940             | 2900             |        |                                    |       | 7490                                      | 10.2                                     | 243                | 2220                                 | 2130                        | 17                                    | 10800                                        | 7.5 |
| Weighted average           |                            | 11                            |    | 644                  | 244                 | 2270           |                     | 116                                        | 0           | 2330             | 3570             |        | 2.2                                |       | 9130                                      | 12.4                                     | 784                | 2610                                 | 2510                        | 19                                    | 12600                                        | 6.8 |
| √ater Year 1965            |                            |                               |    |                      |                     |                |                     |                                            |             |                  |                  |        |                                    |       |                                           |                                          |                    |                                      |                             |                                       |                                              |     |
| Maximum, May 1-31, 1965    | . 1.2                      | 3.1                           |    | 770                  | 328                 | 4040           |                     | 108                                        | 0           | 2850             | 6450             |        |                                    |       | 14400                                     | 19.8                                     | 47.1               | 3280                                 | 3160                        | 31                                    | 21800                                        | 6.8 |
| Minimum, Oct. 1-31, 1964   |                            | 1.4                           |    | 600                  | 221                 | 2250           | 67                  | 89                                         | 0           | 2100             | 3720             |        | -                                  |       | 9020                                      | 12.2                                     | 65.4               | 2400                                 | 2330                        |                                       | 12900                                        | 6.4 |
| Weighted average           |                            | 8.8                           | ŝ. | 686                  | 276                 | 3370           |                     | 145                                        | 0           | 2420             | 5340             |        |                                    |       | 12200                                     | 16.5                                     | 298                | 2850                                 | 2730                        |                                       | 18300                                        | 6.8 |
| √ater Year 1966            |                            |                               |    |                      |                     |                |                     |                                            |             |                  |                  |        |                                    |       |                                           |                                          |                    |                                      |                             |                                       |                                              |     |
| Maximum, Nov. 12-30, 1965  | 4.7                        | 10                            |    | 520                  | 238                 | 3790           |                     | 124                                        | 0           | 2010             | 5900             |        |                                    |       | 12500                                     | 17.0                                     | 159                | 2280                                 | 2180                        | 3.4                                   | 19000                                        | 6.8 |
| Minimum, Sept. 1-30, 1966  | . 56                       | 8.2                           |    | 430                  | 86                  | 1200           | 44                  | 109                                        | 0           | 1260             | 1900             |        | 2.5                                |       | 4980                                      | 6.77                                     | 754                | 1430                                 | 1340                        |                                       | 7560                                         | 7.0 |
| Weighted average           |                            | 6.8                           |    | 461                  | 120                 | 1660           | 54                  | 112                                        | 0           | 1440             | 2650             |        |                                    |       | 6440                                      | 8.77                                     | 503                | 1640                                 | 1550                        |                                       | 9900                                         | 6.8 |
| Water Year 1967            |                            |                               |    |                      |                     |                |                     |                                            |             |                  |                  |        |                                    |       |                                           |                                          |                    |                                      |                             |                                       |                                              |     |
| Maximum, July 3-10, 1967   | . 197                      | 8.3                           |    | 380                  | 106                 | 1480           | 54                  | 137                                        | 0           | 1170             | 2400             |        |                                    |       | 5670                                      | 7.71                                     | 3020               | 1380                                 | 1270                        | 17                                    | 8890                                         | 7.0 |
| Minimum, Apr. 1-30         |                            | 5.7                           |    | 260                  | 53                  | 540            | 21                  | 127                                        | 0           | 720              | 870              |        | 1.2                                |       | 2530                                      | 3.44                                     | 3360               | 866                                  | 762                         | 8.0                                   | 3980                                         | 7.6 |
| Weighted average           |                            | 7.1                           |    | 294                  | 64                  | 788            | 28                  | 132                                        | 0           | 863              | 1260             |        | 1.6                                | 3     | 3380                                      | 4.59                                     | 1930               | 1010                                 |                             | 11                                    | 5270                                         | 7.5 |
| Water Year 1968            |                            |                               |    |                      |                     |                |                     |                                            |             |                  |                  |        |                                    |       |                                           | 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1. |                    |                                      | 200                         |                                       | 2470                                         |     |
| Maximum, July 8-14, 1968   |                            | 8.2                           |    | 452                  | 150                 | 2300           |                     | 116                                        | 0           | 1580             | 3550             |        |                                    |       | 8100                                      |                                          |                    | 1740                                 | 1650                        |                                       | 12200                                        | 7.6 |
| Minimum, Nov. 1-6, 1967    |                            | 8.8                           |    | 348                  | 84                  | 980            |                     | 124                                        | 0           | 1030             | 1500             |        | 6.1                                |       | 4020                                      |                                          |                    | 1210                                 | 1110                        |                                       | 6010                                         | 6.9 |
| Weighted average           |                            | 7.8                           |    | 402                  | 115                 | 1360           |                     | 125                                        |             | 1300             | 2120             |        |                                    |       | 5380                                      |                                          |                    | 1480                                 | 1370                        |                                       | 8250                                         | 7.6 |

×

|                                                                                                |                            |                               |                   |                         |                             |                     |                                                    | Bi-                                        |                                           |                        |                      |                          |                     |            | Dise                                      | Dissolved solids             | ids                   | Hardness<br>as CaCO <sub>3</sub>     | CO3                  | -s                                    | Specific               |            |
|------------------------------------------------------------------------------------------------|----------------------------|-------------------------------|-------------------|-------------------------|-----------------------------|---------------------|----------------------------------------------------|--------------------------------------------|-------------------------------------------|------------------------|----------------------|--------------------------|---------------------|------------|-------------------------------------------|------------------------------|-----------------------|--------------------------------------|----------------------|---------------------------------------|------------------------|------------|
| Date<br>of<br>collection                                                                       | Mean<br>Discharge<br>(cfs) | Silica<br>(SIO <sub>2</sub> ) | (Fe)              | Cal-<br>clum<br>(Ca)    | Mag-<br>ne-<br>sium<br>(Mg) | Sodium<br>(Na)      | Po-<br>tas-<br>slum<br>(K)                         | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> ) | Car-<br>bon-<br>ate<br>(CO <sub>3</sub> ) | Sulfate<br>(SO4)       | Chloride<br>(Cl)     | Fluo-<br>ride t<br>(F) ( | N1-<br>rate<br>NO3) | Bo-<br>(B) | Mill1-<br>grams<br>per<br>liter<br>(mg/1) | Tons<br>per<br>acre-<br>foot | Tons<br>per<br>day    | Cal-<br>ctum,<br>Mag-<br>ne-<br>stum | Non-<br>car-<br>bon- | dium<br>ad-<br>sorp-<br>tion<br>ratio | .5.8                   | Hď         |
| -                                                                                              |                            |                               |                   |                         |                             |                     |                                                    | 8-4125.                                    |                                           | PECOS RIVER NEAR ORLA, |                      | TEX.                     |                     |            |                                           |                              |                       |                                      |                      |                                       |                        |            |
| Period, July - Sept. 1937<br>Maximum, Aug. 21-31, 1937<br>Minimum, July 1-10                   | 637<br>244                 | 20<br>11                      | 0.04              | 4 506<br>8 442          | 113<br>78                   | 626<br>351          | 12<br>11                                           | 118<br>82                                  | 0 1                                       | 1560<br>1340           | 980<br>525           | 11                       | 1.7                 | 0.06       | 3870<br>2810                              | 5,26<br>3,82                 | 6660<br>1850          | 1730<br>1420                         | 1630<br>1350         | 4.4                                   | 5330<br>3790           | 3.3        |
| Water Year 1938<br>Maximum, Sept. 11, 13-20, 1938<br>Minimum, Oct. 1-10, 1937                  | 169<br>162<br>301          | 17<br>18<br>15                | . 06<br>. 06      | 5 540<br>4 487<br>5 520 | 130<br>100<br>116           | 711<br>454<br>557   | $\begin{smallmatrix}&21\\7,6\\16\end{smallmatrix}$ | 108<br>116<br>110                          | 0 0 0                                     | 1690<br>1460<br>1610   | 1120<br>712<br>868   | 111                      | $1.0 \\ 1.2 \\ 1.4$ |            | 4290<br>3300<br>3760                      | 5.83<br>4.49<br>5.11         | 1960<br>1440<br>3060  | 1880<br>1630<br>1770                 | 1790<br>1530<br>1680 | 4.7<br>3.4<br>3.9                     | 5980<br>4420<br>5080   | 111        |
| Mater Year 1939<br>Maximum, Sept. 21-30, 1939<br>Minimum, June 21-22<br>Weighted average       | 226<br>592<br>256          | 16<br>11<br>13                | .06               | 6 618<br>- 371<br>7 583 | 183<br>60<br>161            | 883<br>301<br>773   | 24<br><br>21                                       | 114<br>90<br>109                           | 000                                       | 2000<br>1020<br>1890   | 1460<br>485<br>1240  | 0.8                      | 1.5<br>3.0<br>1.7   | .07        | 5250<br>2300<br>4740                      | 7.14<br>3.13<br>6.45         | 3200<br>3670<br>3280  | 2300<br>1170<br>2120                 | 2200<br>1100<br>2030 | 5.3<br>2.7<br>4.9                     | 7230<br>3250<br>6460   | 111        |
| Mater Year 1940<br>Maximum, Aug. 17, 1940<br>Minimum, June 29-30                               | 11<br>280<br>152           | 1 I S                         |                   | 592                     |                             |                     | <br>20                                             |                                            | 111                                       | <br>2020               | 3630<br>382<br>1670  | 1.0                      | 1.8.1               | 1 1 8      | 9580<br>1700<br>5640                      | 13.0<br>2.31<br>7.67         | 283<br>1290<br>2320   | 2300                                 | 2200                 | 1.9                                   | 13600                  | 111        |
| Water Year 1941<br>Maximum, Mar. 11-20, 1941<br>Minimum, May 26-31                             | 3.7<br>1060<br>1280        | 12<br>8.0<br>18               | .07<br>.08<br>.08 | 7 738<br>8 303<br>8 364 | 275<br>54<br>72             | 1640<br>188<br>280  | 11                                                 | 110<br>87<br>121                           | ~ ° ° ¦                                   | 2540<br>849<br>1070    | 2700<br>318<br>434   | .6<br>.0                 | .8<br>1.2<br>3.0    |            | 7980<br>1780<br>2310                      | 10.9<br>2.42<br>3.14         | 80<br>5080<br>8000    | 2970<br>978<br>1200                  | 2880<br>906<br>1110  | <br>1.9<br>2.5                        | 10900<br>2520<br>3150  | :::        |
| Mater Year 1947<br>Maximum, Sept. 1-10, 1947<br>Minimum, Oct. 1-10, 1946<br>Weighted average   | 50<br>31<br>125            | 111                           | 111               | - 668<br>- 408<br>- 554 | 263<br>66<br>185            | 2200<br>528<br>1050 | 111                                                | 117<br>73<br>116                           | 000                                       | 2400<br>1090<br>1840   | 3500<br>880<br>1720  | 111                      | <br>1.0<br>3.1      | 111        | 9090<br>3010<br>5410                      | 12.4<br>4.09<br>7.36         | 1230<br>252<br>1830   | 2750<br>1290<br>2140                 | 2650<br>1230<br>2050 | 18<br>6.4<br>9.9                      | 12900<br>4330<br>7640  | 111        |
| Water Year 1948<br>Maximum, Oct. 21-31, 1947<br>Minimum, June 1-2, 1948                        | . 187<br>. 114             | 14<br>19                      | 111               | - 692<br>- 215<br>- 376 | 317<br>16<br>135            | 2300<br>108<br>946  | 111                                                | 28<br>56<br>113                            | 000                                       | 2820<br>547<br>1280    | 3550<br>155<br>1510  | 111                      | 2.8                 | 1.1.1      | 9700<br>1090<br>4310                      | 13.2<br>1.48<br>5.86         | 17.0<br>550<br>1330   | 3030<br>602<br>1490                  | 2970<br>556<br>1400  | 18<br>1.9<br>11                       | 13500<br>1640<br>6520  | 111        |
| Water Year 1949<br>Maximum, Oct. 21-31, 1948<br>Minimum, June 12-13, 1949<br>Weighted average  | 6.8<br>. 24<br>. 88        | 12<br>18<br>15                | 111               | - 549<br>- 256<br>- 485 | 231<br>73<br>184            | 1790<br>457<br>1210 | 111                                                | 103<br>53<br>114                           | 000                                       | 1970<br>830<br>1750    | 2870<br>725<br>1900  | 111                      | 2.2                 | 1 1 1      | 7480<br>2390<br>5590                      | 10.2<br>3.25<br>7.60         | 137<br>155<br>1330    | 2320<br>939<br>1970                  | 2270<br>896<br>1870  | 16<br>6.5<br>12                       | 11200<br>3730<br>8220  | 111        |
| Nater Year 1950<br>Maximum, Oct. 11-20, 1949<br>Minimum, Sept. 26-30, 1950<br>Weighted average | . 6.2<br>. 12<br>. 195     | 13<br>9,9<br>19               | 111               | - 530<br>- 240<br>- 474 | 206<br>34<br>153            | 1340<br>282<br>702  | 111                                                | 101<br>81<br>117                           | 000                                       | 1880<br>635<br>1610    | 2160<br>440<br>1110  | ( ) )                    | <br>5.0             | 111        | 6180<br>1690<br>4130                      | 8,40<br>2,30<br>5,60         | $104 \\ 54.8 \\ 2170$ | 2170<br>739<br>1810                  | 2090<br>672<br>1720  | 13<br>4.5<br>7.2                      | 8900<br>2580<br>5800   | 7.7        |
| Mater Year 1951<br>Maximum, Sept. 1-30, 1951<br>Minimum, Oct. 1-4, 1950<br>Weighted average    | . 20<br>. 83               | 23<br>11<br>21                | 111               | - 590<br>- 241<br>- 505 | 219<br>34<br>164            | 1500<br>270<br>813  | 111                                                | 96<br>70<br>109                            | 000                                       | 2120<br>635<br>1750    | 2380<br>430<br>1260  | 111                      | <br>4.5<br>1.4      | 113        | 6880<br>1660<br>4580                      | 9.36<br>2.26<br>6.23         | 372<br>372<br>1880    | 2370<br>742<br>1930                  | 2290<br>684<br>1840  | 13<br>4.3<br>8.0                      | 10100<br>2560<br>6420  | 7.2<br>7.3 |
| Mater Year 1952<br>Maximun, June 1-30, 1952<br>Minimum, Apr. 16-19<br>Weighted average         | . 72<br>. 386<br>. 68      | 28<br>16<br>21                | 111               | - 632<br>- 510<br>- 601 | 252<br>101<br>212           | 1830<br>637<br>1460 | 111                                                | 106<br>122<br>106                          | 000                                       | 2370<br>1430<br>2120   | 2850<br>1050<br>2310 | 111                      | 5.5                 | 111        | 8010<br>3810<br>6780                      | 10.9<br>5.18<br>9.22         | 1560<br>3970<br>1240  | 2610<br>1690<br>2370                 | 2520<br>1590<br>2280 | 16<br>6.6<br>13                       | 11300<br>5440<br>9690, | 7.0        |
|                                                                                                |                            |                               |                   |                         |                             |                     |                                                    |                                            |                                           |                        |                      |                          |                     |            |                                           |                              |                       |                                      |                      |                                       |                        |            |

(Results in milligrams per liter except as indicated)

| a                                |                                                   | 75 TR         | r.                                                                                   |                                                                    |                                                                   |                                                                                            |                                                                           |                                                                     |                                                                   |                                                                                                             |                                                                                           |                                                                        |
|----------------------------------|---------------------------------------------------|---------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| 0                                | pH                                                |               | 1.1                                                                                  | 111                                                                | 111                                                               | 111                                                                                        | 3 1 1                                                                     | 111                                                                 | 111                                                               | 7.5                                                                                                         | 7.9                                                                                       | 7.6<br>8.1                                                             |
| Specific                         | 58                                                |               | 13200<br>9120                                                                        | 16000<br>3950<br>12800                                             | 17300<br>1290<br>4890                                             | 14200<br>3190<br>4620                                                                      | 16500<br>1480<br>13800                                                    | 15800<br>13600<br>14900                                             | 16400<br>13000<br>14700                                           | 15600<br>16500<br>12200<br>14400                                                                            | 18200<br>5310<br>12500                                                                    | 16800<br>1590<br>15000                                                 |
| ŝ                                | -dium<br>ad-<br>sorp-<br>tion<br>ratio            |               | 21                                                                                   | 20<br>4.1<br>4.1                                                   | 21<br>1.9                                                         | 17<br>3.7                                                                                  | 21<br>2.6<br>18                                                           | 20<br>17<br>19                                                      | 21<br>17<br>19                                                    | 21<br>21<br>16<br>18                                                                                        | 23<br>8.4<br>17                                                                           | 21<br>5.2<br>19                                                        |
| Hardness<br>as CaCO <sub>3</sub> | Non-<br>car-<br>bon-                              |               | 3240<br>2470                                                                         | 3270<br>1480<br>2940                                               | 3400<br>365<br>1390                                               | 3180<br>1090<br>1410                                                                       | 3440<br>252<br>3050                                                       | 3550<br>3120<br>3260                                                | 3220<br>2830<br>3140                                              | 3240<br>3250<br>2710<br>3130                                                                                | 3650<br>1230<br>2700                                                                      | 3620<br>136<br>3260                                                    |
| Hard<br>as Ci                    | Cal-<br>clum,<br>Mag-<br>ne-<br>stum              |               | 3320<br>2560                                                                         | 3420<br>1560<br>3070                                               | 3570<br>430<br>1480                                               | 3340<br>1210<br>1530                                                                       | 3540<br>339<br>3160                                                       | 3630<br>3240<br>3360                                                | 3380<br>2930<br>3280                                              | 3400<br>3390<br>2830<br>3260                                                                                | 3810<br>1310<br>2820                                                                      | 3740<br>316<br>3380                                                    |
| solids                           | Tons<br>per<br>day                                |               | 11                                                                                   | 2110<br>3930<br>1300                                               | 2060<br>1960<br>5240                                              | 1350<br>78300<br>13800                                                                     | 1710<br>932<br>744                                                        | 559<br>396<br>572                                                   | 1420<br>559<br>737                                                | 862<br>838<br>858<br>702                                                                                    | 667<br>1330<br>742                                                                        | 863<br>39.9<br>554                                                     |
| Dissolved solids                 | Tons<br>per<br>acre-<br>foot                      |               | 13.7<br>10.2                                                                         | $15.2 \\ 4.09 \\ 12.4$                                             | 16.3<br>1.09<br>4.75                                              | 13.6<br>3.18<br>4.52                                                                       | 15.8<br>1.06<br>13.3                                                      | 15.5<br>13.2<br>14.3                                                | 15.6<br>12.2<br>14.1                                              | 15.5<br>15.5<br>11.8<br>14.0                                                                                | 17.5<br>4.62<br>12.0                                                                      | $16.6 \\ 1.34 \\ 14.6 $                                                |
| DIE                              | Millit-<br>grams<br>per<br>liter<br>(mg/l)        |               | 10000<br>7510                                                                        | 11300<br>3010<br>9110                                              | 12100<br>798<br>3490                                              | 10000<br>2340<br>3320                                                                      | 11700<br>776<br>9840                                                      | 11500<br>9780<br>10600                                              | 11400<br>9000<br>10500                                            | 11400<br>11500<br>8700<br>10400                                                                             | 13000<br>3400<br>8860                                                                     | 12300<br>984<br>10800                                                  |
|                                  | Bo-<br>(B)                                        |               |                                                                                      |                                                                    |                                                                   |                                                                                            |                                                                           |                                                                     |                                                                   |                                                                                                             |                                                                                           |                                                                        |
| TCBLEG                           | Fluo- Nl-<br>ride trate<br>(F) (NO <sub>3</sub> ) |               | 2.0                                                                                  | 2.0<br>3.5                                                         | 1.0<br>3.4                                                        | 4.5<br>3.5<br>2.3                                                                          | 1.0                                                                       | 1 1 1                                                               | 111                                                               | : : : :                                                                                                     | 2.0                                                                                       | 12                                                                     |
| 48 100                           | Fluo-<br>ride<br>(F)                              | , TEX.        | 3 1                                                                                  | 2.0<br><br>2.0                                                     | 1.3<br>.0                                                         | 2.0                                                                                        | 111                                                                       | 111                                                                 |                                                                   | 1111                                                                                                        | 111                                                                                       | 111                                                                    |
| Ter except                       | Chloride<br>(C1)                                  | GRANDFALLS,   | 3220<br>1990                                                                         | 4350<br>564<br>3240                                                | 4800<br>175<br>924                                                | 3640<br>428<br>811                                                                         | 4600<br>225<br>3640                                                       | 4250<br>3470<br>3920                                                | 4470<br>3250<br>3900                                              | 4470<br>3130<br>3860                                                                                        | 5000<br>1210<br>3250                                                                      | 4700<br>195<br>4030                                                    |
| IT Jad Su                        | Sulfate<br>(SO <sub>4</sub> )                     | RIVER BELOW   | 2950<br>2300                                                                         | 2950<br>1440<br>2670                                               | 2980<br>312<br>1340                                               | 2850<br>1070<br>1340                                                                       | 3020<br>171<br>2780                                                       | 3280<br>2910<br>3020                                                | 2930<br>2640<br>2890                                              | 2940<br>2960<br>2540<br>2860                                                                                | 3410<br>994<br>2520                                                                       | 3300<br>303<br>2960                                                    |
| TTREE                            | Car-<br>bon-<br>ate<br>(CO <sub>3</sub> )         | COS RI        | 00                                                                                   | 000                                                                | 000                                                               | 000                                                                                        | 000                                                                       | 000                                                                 | 000                                                               | 0000                                                                                                        | 000                                                                                       | 000                                                                    |
| B1-                              | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> )        | 8-4415, PECOS | 96<br>106                                                                            | 179<br>98<br>168                                                   | 202<br>80<br>119                                                  | 204<br>136<br>143                                                                          | 125<br>106<br>135                                                         | 97<br>144<br>123                                                    | 190<br>119<br>160                                                 | 192<br>172<br>147<br>155                                                                                    | 190<br>104<br>152                                                                         | 139<br>219<br>147                                                      |
| Theon                            | Po-<br>tas-<br>(K)                                | 8-4           | 11                                                                                   | 23                                                                 | 22<br>13<br>14                                                    | 30<br>13                                                                                   | 111                                                                       | 111                                                                 | []]]                                                              | 1111                                                                                                        | 111                                                                                       | 111                                                                    |
|                                  | Sodtum<br>(Na)                                    |               | 2010<br>1256                                                                         | 2720<br>373<br>2030                                                | 2960<br>92<br>585                                                 | 2250<br>294<br>519                                                                         | 2850<br>112<br>2300                                                       | 2690<br>2210<br>2480                                                | 2820<br>2070<br>2470                                              | 2800<br>2820<br>2000<br>2430                                                                                | 3200<br>696<br>2070                                                                       | 2970<br>213<br>2540                                                    |
|                                  | Mag-<br>ne-<br>stum<br>(Mg)                       |               | 325<br>227                                                                           | 365<br>73<br>308                                                   | 394<br>30<br>112                                                  | 359<br>71<br>111                                                                           | 390<br>23<br>337                                                          | 403<br>342<br>371                                                   | 366<br>322<br>353                                                 | 373<br>372<br>307<br>356                                                                                    | 437<br>157<br>293                                                                         | 409<br>27<br>371                                                       |
|                                  | Cal-<br>ctum<br>(Ca)                              |               | 796<br>652                                                                           | 770<br>506<br>725                                                  | 783<br>123<br>429                                                 | 748<br>366<br>429                                                                          | 779<br>98<br>712                                                          | 789<br>736<br>734                                                   | 750<br>644<br>730                                                 | 748<br>746<br>630<br>719                                                                                    | 804<br>268<br>646                                                                         | 822<br>82<br>742                                                       |
|                                  | Iron<br>(Fe)                                      |               | 0.08                                                                                 | .08                                                                | .03<br>.07                                                        | .05<br>.08                                                                                 | 111                                                                       | 111                                                                 | 1 1 1                                                             | 1111                                                                                                        | :::                                                                                       | 1   1                                                                  |
|                                  | Silica<br>(SiO <sub>2</sub> )                     |               | 30                                                                                   | 13<br><br>21                                                       | 19<br>10<br>20                                                    | 38<br>24<br>24                                                                             | 111                                                                       | 30                                                                  | 1.7<br>18<br>19                                                   | 19<br>14<br>22                                                                                              | 16<br>18<br>20                                                                            | 13<br>44<br>19                                                         |
|                                  | Mean<br>Discharge<br>(cfs)                        |               | 11                                                                                   | 69<br>483<br>53                                                    | 63<br>911<br>556                                                  | 50<br>12400<br>1540                                                                        | 54<br>445<br>28                                                           | 18<br>15<br>20                                                      | 46<br>23<br>26                                                    | 28<br>27<br>28<br>25                                                                                        | 19<br>145<br>31                                                                           | 26<br>15<br>19                                                         |
|                                  | Date<br>of<br>collection                          |               | Period, Mar. 27 - Sept. 30, 1939<br>Maximum, June 11-20, 1939<br>Minimum, July 11-19 | Ler Year 1940<br>Maximum, Mar. 21-31, 1940<br>Minimum, Ang. 10     | tter Year 1941<br>Maximum, Feb. 1-10, 1941<br>Minimum, May 27     | Ler Year 1942<br>Maximum, Apr. 11-20, 1942<br>Minimum, Oct. 1-10, 1941<br>Weighted average | Ler Year 1947<br>Maximum, Mar. 1-10, 1947<br>Minimum, June 5              | <pre>ter Year 1948</pre>                                            | Lerr Year 1949<br>Maximum, Jan. 11-20, 1949<br>Minimum, May 1-10  | ter Year 1950<br>Maximum Dec. 1-31, 1949<br>Feb. 1-28, 1950<br>Minimum, Occ. 1-31, 1949<br>Weighted average | ter Year 1951<br>Maximum, May 1-5, 1951<br>Minimum, Oct. 1-4, 7, 1950<br>Weighted average | <u>Ler Year 1952</u><br>Maximum, Mar. 1-31, 1952<br>Mitaimum, Apr. 2-4 |
| -                                |                                                   |               | Period, Mar.<br>Maximum, J<br>Minimum, J                                             | Water Year 1940<br>Maximum, Mar.<br>Minimum, Aug.<br>Weighted aver | Water Year 1941<br>Maximum, Feb.<br>Minimum, May<br>Weighted aver | Water Year 1942<br>Maximum, Apr.<br>Minimum, Oct.<br>Weighted aver                         | <u>Mater Year 1947</u><br>Maximum, Mar.<br>Minimum, June<br>Weighted aver | Mater Year 1948<br>Maximum, Mar.<br>Minimum, Sept.<br>Weighted aver | Water Year 1949<br>Maximum, Jin.<br>Minimum, May<br>Weighted aver | Mater Year 1950<br>Maximum, Dec.<br>Feb. 1-28,<br>Minimum, Oct.<br>Weighted aver                            | Mater Year 1951<br>Maximum, May<br>Minimum, Oct.<br>Weighted aver-                        | Water Year 1952<br>Maximum, Mar.<br>Minimum, Apr.<br>Weighted avera    |

| - 10/2/14/14                                       |                            |                               |              | anti Denni al        | Man                         |                | De                         | Bi-                                        | 0.000                                     |                               |                  |      |                                    | Dis                                       | ssolved                      | solids             | Hard<br>as Ca                        |                             | So-                                   | Specific                            |      |
|----------------------------------------------------|----------------------------|-------------------------------|--------------|----------------------|-----------------------------|----------------|----------------------------|--------------------------------------------|-------------------------------------------|-------------------------------|------------------|------|------------------------------------|-------------------------------------------|------------------------------|--------------------|--------------------------------------|-----------------------------|---------------------------------------|-------------------------------------|------|
| Date<br>of<br>collection                           | Mean<br>Discharge<br>(cfs) | Silica<br>(SiO <sub>2</sub> ) | Iron<br>(Fe) | Cal-<br>cium<br>(Ca) | Mag-<br>ne-<br>sium<br>(Mg) | Sodium<br>(Na) | Po-<br>tas-<br>sium<br>(K) | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> ) | Car-<br>bon-<br>ate<br>(CO <sub>3</sub> ) | Sulfate<br>(SO <sub>4</sub> ) | Chloride<br>(Cl) | ride | Ni-<br>trate<br>(NO <sub>3</sub> ) | Milli-<br>grams<br>per<br>liter<br>(mg/1) | Tons<br>per<br>acre-<br>foot | Tons<br>per<br>day | Cal-<br>cium,<br>Mag-<br>ne-<br>sium | Non-<br>car-<br>bon-<br>ate | dium<br>ad-<br>sorp-<br>tion<br>ratio | duct-<br>ance<br>(micro-<br>mhos at | рН   |
|                                                    |                            |                               |              |                      |                             | 8              | -4415.                     | PECOS                                      | RIVER E                                   | BELOW GRAN                    | DFALLS, TEX      | Cor  | tinued                             |                                           |                              |                    |                                      |                             |                                       |                                     |      |
| <u>ter Year 1953</u><br>Maximum, Feb. 9-10, 14-15, |                            |                               |              |                      |                             |                |                            |                                            |                                           |                               |                  |      |                                    |                                           |                              |                    |                                      |                             |                                       |                                     |      |
| 18-20, 1953                                        |                            | 14                            |              | 894                  | 522                         | 7890           | -                          | 190                                        | 0                                         | 3340                          | 12700            |      | 2.2                                | 25500                                     | 34.1                         | 1310               | 4380                                 | 4230                        |                                       | 36100                               | 7.   |
| Minimum, Oct. 1-31, 1952                           |                            | 23                            |              | 782                  | 391                         | 2430           |                            | 135                                        | 0                                         | 3090                          | 3920             | +-   |                                    | 10700                                     | 14.4                         | 404                | 3560                                 | 3450                        |                                       | 15100                               | 7.1  |
| Weighted average                                   | 13                         | 17                            |              | 805                  | 419                         | 3110           |                            | 150                                        | 0                                         | 3230                          | 5000             |      |                                    | 12700                                     | 17.1                         | 446                | 3730                                 | 3610                        | 22                                    | 17600                               |      |
| ter Year 1954                                      |                            |                               |              |                      |                             |                |                            |                                            |                                           |                               |                  |      |                                    |                                           |                              |                    |                                      |                             |                                       |                                     |      |
| Maximum, May 1-31, 1954                            |                            | 7.9                           |              |                      |                             | 2930           |                            | 128                                        | 0                                         | 3170                          | 4800             |      |                                    |                                           |                              |                    | 3520                                 |                             | 21                                    | 17100                               | 8,   |
| Minimum, June 14                                   |                            |                               |              |                      |                             |                |                            | 130                                        | 0                                         |                               | 129              |      |                                    |                                           | 10.00                        |                    | 246                                  | 139                         |                                       | 904                                 | 8.   |
| Weighted average                                   | 15                         |                               |              |                      |                             | 2120           |                            | 148                                        | 0                                         | 2380                          | 3290             |      | **                                 | 200                                       | <b>1</b> .1                  |                    | 2570                                 | 2450                        | 18                                    | 12100                               | -    |
| ter Year 1955                                      |                            |                               |              |                      |                             |                |                            |                                            | 121                                       |                               | 100000           |      |                                    |                                           |                              |                    | 10004000000                          | 1212/2/2                    |                                       | 1100000                             |      |
| Maximum, Jan. 1=31, 1955                           |                            |                               |              | ~ ~                  |                             | 3170           |                            | 187                                        | 0                                         | 3040                          | 5180             |      |                                    |                                           |                              |                    | 3620                                 | 3460                        |                                       | 17600                               | 7.1  |
| Minimum, Oct. 7, 1954                              |                            | 15                            |              |                      |                             | 703            |                            | 85                                         | 0                                         | 677                           | 1180             | -    | 4.0                                | 3150                                      |                              | 493                | 840                                  | 770                         |                                       | 4760                                | 7.1  |
| Weighted average                                   | 18                         |                               |              |                      |                             | 2380           |                            | 140                                        | 0                                         | 2500                          | 3860             |      |                                    |                                           |                              |                    | 2930                                 | 2820                        | 19                                    | 13800                               | -    |
| ter Year 1956                                      |                            |                               |              |                      |                             |                |                            | 2.2                                        | 1                                         |                               |                  |      |                                    |                                           |                              |                    | 12122                                | 2222                        | 22                                    |                                     | 20   |
| Maximum, July 1-31, 1956                           |                            |                               |              |                      |                             | 3250           |                            | 93                                         | 0                                         | 3310                          | 5280             |      | -00.00                             |                                           |                              |                    | 3810                                 |                             | 23                                    | 17700                               | 7.   |
| Minimum, Oct. 6-13, 1955                           |                            |                               |              |                      |                             | 928            |                            | 111                                        | 0                                         | 1780                          | 1520             |      |                                    |                                           |                              |                    | 2000                                 | 1910                        | 9.0                                   | 7070                                | 7.   |
| Weighted average                                   | 20                         |                               |              |                      |                             | 2580           | 5.7                        | 144                                        | 0                                         | 2750                          | 4160             |      |                                    |                                           | 5.5                          | 7.7                | 3200                                 | 3080                        | 20                                    | 14800                               | - 12 |

(Results in milligrams per liter except as indicated)

(Results in milligrams per liter except as indicated)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | :                          |                               |              | į                 | Mag                 |                      | ď                   | Bi-                                        | 100                               |                      |                          |                      |                                                       |         | Dist                                      | Dissolved solids             | ids                  | Hard<br>as Ca                        | Hardness<br>as CaCO <sub>3</sub> | -so-                                 | Specific<br>con-        | 0          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------------------|-------------------------------|--------------|-------------------|---------------------|----------------------|---------------------|--------------------------------------------|-----------------------------------|----------------------|--------------------------|----------------------|-------------------------------------------------------|---------|-------------------------------------------|------------------------------|----------------------|--------------------------------------|----------------------------------|--------------------------------------|-------------------------|------------|
| of<br>collection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                   | Mean<br>Discharge<br>(cfs) | Silica<br>(SiO <sub>2</sub> ) | Iron<br>(Fe) | ctum<br>(Ca)      | ne-<br>sium<br>(Mg) | Sodium<br>(Na)       | tas-<br>shum<br>(K) | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> ) | bon-<br>ate<br>(CO <sub>3</sub> ) | Sulfate<br>(SO4)     | Chloride<br>(Cl)         | Fluo-<br>ride<br>(F) | Fluo- Ni- I<br>ride trate r<br>(F) (NO <sub>3</sub> ) | (B) (B) | Milli-<br>Rrams<br>per<br>liter<br>(mg/1) | Tons<br>per<br>acre-<br>foot | Tons<br>per<br>day   | Cal-<br>cium,<br>Mag-<br>ne-<br>stum | Non-<br>car-<br>bon-             | ad-<br>ad-<br>sorp-<br>tion<br>ratio | <u> </u>                | PH         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   |                            |                               |              |                   |                     |                      |                     | 8-4465.                                    |                                   | RIVER NEA            | PECOS RIVER NEAR GIRVIN, | TEX.                 |                                                       |         |                                           |                              |                      |                                      |                                  |                                      |                         |            |
| Mater Year 1940<br>Maximum, Apr. 21-30, 1940<br>Minimum, Aug. 12-15<br>Weighted average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1940              | 40<br>145<br>71            | 13                            | 0.04         | 822<br>548<br>741 | 497<br>135<br>394   | 3350<br>769<br>2620  | 31                  | 171<br>120<br>155                          | 000                               | 3700<br>1760<br>3080 | 5260<br>1180<br>4150     | 2.6<br><br>2.3       | 0.3<br>3.0<br>1.2                                     |         | 14500<br>4450<br>11100                    | 19.7<br>6.05<br>1.51         | 1570<br>1740<br>2130 | 4090                                 | 111                              | 111                                  | 19100<br>6200           | 111        |
| Period         Oct.         1,1940         June         30.           1941         Naximum         Apr.         11-20,1941         11.         11.           Maximum         Mar.         19-20,1941         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11.         11. <td< td=""><td>June 30,<br/>1941,</td><td>52<br/>910<br/>490</td><td>111</td><td>111</td><td>778<br/><br/>444</td><td>486<br/><br/>135</td><td>3510<br/><br/>814</td><td>111</td><td>130<br/>108<br/>127</td><td>000</td><td>3490<br/>384<br/>1500</td><td>5550<br/>206<br/>1240</td><td>111</td><td>.0</td><td></td><td>13900<br/>1060<br/>4210</td><td>18.9<br/>1.44<br/>5.73</td><td>1950<br/>2600<br/>5570</td><td>3950</td><td>3830</td><td>111</td><td>19000<br/>1480<br/>5910</td><td>1.1.1</td></td<> | June 30,<br>1941, | 52<br>910<br>490           | 111                           | 111          | 778<br><br>444    | 486<br><br>135      | 3510<br><br>814      | 111                 | 130<br>108<br>127                          | 000                               | 3490<br>384<br>1500  | 5550<br>206<br>1240      | 111                  | .0                                                    |         | 13900<br>1060<br>4210                     | 18.9<br>1.44<br>5.73         | 1950<br>2600<br>5570 | 3950                                 | 3830                             | 111                                  | 19000<br>1480<br>5910   | 1.1.1      |
| Mater Year 1945<br>Maximum, May 1945                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   | 11                         | 1.1                           | 11           | 836<br>620        | 473<br>309          | 2950<br>1880         | 1.1                 | 152<br>196                                 | 0 0                               | 3490<br>2510         | 4790<br>2980             | 11                   | 9.0                                                   |         | 13600<br>8860                             | 18.6<br>12.0                 | 11                   | 4030<br>2820                         | 3910<br>2660                     | 26                                   | 17600                   | 7.8        |
| Water Year 1947<br>Maximum, Aug. 11-20, 1947<br>Minimum, June 10-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1947              | 22<br>45                   | 111                           | 111          | 836<br>334<br>751 | 544<br>179<br>462   | 3520<br>1150<br>3110 | 111                 | 88<br>80<br>137                            | 000                               | 3970<br>1390<br>3420 | 5500<br>1810<br>4870     | 111                  | 1.5                                                   |         | 14400<br>4900<br>12700                    | 19.4<br>6.7<br>17.1          | 855<br>595<br>1650   | 4320<br>1570<br>3770                 | 4250<br>1500<br>3660             | 23<br>13                             | 19400<br>7500<br>17400  | 111        |
| Water Year 1954<br>Maximum, Sept. 1-30, 1954<br>Minimum, June 16-18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1954              | 6,9<br>186<br>23           | 111                           | 111          | 111               | 111                 | 4070<br>310<br>3170  | 111                 | 57<br>154<br>110                           | 000                               | 4210<br>491<br>3160  | 6300<br>570<br>4910      | 111                  | I E E                                                 |         | 111                                       | 111                          | 111                  | 4400<br>640<br>3360                  | 4350<br>514<br>3270              | 27<br>5.3<br>24                      | 21500<br>2870<br>17000  | 6.8<br>7.9 |
| Water Year 1955<br>Maximum, May 1-31, 1955<br>Minimum, Oct. 6-8, 1954<br>Weighted average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 55                | 18<br>658<br>32            | 111                           | t E E        | 111               | E E E               | 3980<br>82<br>2650   | T E E               | 105<br>75<br>109                           | 000                               | 4010<br>1200<br>2930 | 6200<br>108<br>4170      | 111                  | 111                                                   |         | 111                                       | 111                          | :::                  | 4300<br>1240<br>3200                 | 4220<br>1180<br>3110             |                                      | 20800<br>2260<br>14800  |            |
| Warter Year 1956<br>Maximum, July 23-31, 1956<br>Minimum, Oct. 1-31, 1955<br>Weighted average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 955               | 13<br>41<br>26             | 111                           | 111          | 111               | 111                 | 4660<br>1860<br>3180 | 111                 | 64<br>49<br>102                            | 000                               | 4690<br>2340<br>3350 | 7380<br>2900<br>5010     | 13.1                 | 111                                                   |         | 111                                       | 111                          | 111                  | 5080<br>2540<br>3670                 | 5030<br>2500<br>3580             | 28<br>16<br>23                       | 23800<br>11200<br>17200 | 7.2        |
| Nater Year 1957<br>Maximum, Sept. 1-20, 1957<br>Mintmum, Apr. 25-26, 28<br>Weighted average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1957              | 14<br>964<br>38            | 111                           | ::::         | 111               | 1.131               | 4620<br>36<br>2430   | 1.1.1               | 70<br>82<br>107                            | 000                               | 4670<br>332<br>2520  | 7150<br>51<br>3800       | 111                  | 111                                                   |         | 111                                       | 111                          | ())                  | 4880<br>411<br>2770                  | 4820<br>344<br>2680              | 29<br>.8                             | 23400<br>924<br>13300   | 7.5        |
| Marter Year 1958<br>Maxfmum, Aug. 1-31, 1958<br>Minimum, Sept. 27-28<br>Weighted average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 958               | 10<br>1650<br>38           | 1 11                          | 111          | 132               | 12                  | 4990<br>57<br>2760   | <br>9.6             | 86<br>70<br>117                            | 000                               | 4470<br>330<br>2720  | 7800<br>75<br>4290       | 111                  | 5.0 1                                                 |         | 111                                       | E E I                        | E E I                | 5000<br>379<br>3000                  | 4930<br>322<br>2910              | 31<br>1.3<br>22                      | 24700<br>988<br>14700   | 7.2<br>8.0 |

|                                                                                            |                            |                               |              |                      |                             | Ŭ                    | Results                    | in mi.                        | .ligran                                   | is per lite          | (Results in milligrams per liter except as indicated) | s indi                   | (botco)               |         |                                           |                              |                      |                                      |                                  |                               |                         |                                                                    |
|--------------------------------------------------------------------------------------------|----------------------------|-------------------------------|--------------|----------------------|-----------------------------|----------------------|----------------------------|-------------------------------|-------------------------------------------|----------------------|-------------------------------------------------------|--------------------------|-----------------------|---------|-------------------------------------------|------------------------------|----------------------|--------------------------------------|----------------------------------|-------------------------------|-------------------------|--------------------------------------------------------------------|
|                                                                                            |                            |                               |              |                      | ;                           |                      | 1                          | B1-                           | (                                         |                      |                                                       |                          |                       |         | Dla                                       | Dissolved solids             | lids                 | Hard<br>as C                         | Hardness<br>as CaCO <sub>3</sub> | s;                            | Specific<br>con-        | 0                                                                  |
| Date<br>of<br>collection                                                                   | Mean<br>Discharge<br>(cfs) | Silica<br>(SiO <sub>2</sub> ) | Iron<br>(Fe) | Cal-<br>ctum<br>(Ca) | Mag-<br>ne-<br>stum<br>(Mg) | Sodium<br>(Na)       | Po-<br>tas-<br>stum<br>(K) | car-<br>bon-<br>ate<br>(HCO,) | car-<br>bon-<br>ate<br>(CO <sub>3</sub> ) | Sulfate<br>(SO4)     | Chloride<br>(Cl)                                      | Fluo-<br>ride t<br>(F) ( | N1-<br>trate<br>(NO3) | (B) B0- | Milli-<br>grams<br>per<br>liter<br>(mg/l) | Tons<br>per<br>acre-<br>foot | Tons<br>per<br>day   | Cal-<br>cium,<br>Mag-<br>ne-<br>stum | Non-<br>car-<br>bon-<br>ate      | ad-<br>sorp-<br>tion<br>ratio | <u> </u>                | pH<br>t                                                            |
|                                                                                            |                            |                               |              |                      |                             |                      | 8-4465                     | PECOS                         | RIVER                                     | NEAR GIRV            | 8-4465, PECOS RIVER NEAR CIRVIN, TEXContinued         | ont inu                  | po                    |         |                                           |                              |                      |                                      |                                  |                               |                         |                                                                    |
| Mater Year 1959<br>Naximum, Sept. 1-30, 1959<br>Minimum, July 18-24                        | 10<br>43                   | 1.9                           |              | 460                  |                             | 5020<br>1390<br>3650 | 11                         | 63<br>80<br>130               | 000                                       | 4650<br>1830         | 8000<br>2150                                          | ( ( )                    | 111                   |         | : ; ;                                     | 111                          | 111                  | 5000<br>1910                         | 4950<br>1850                     | 31<br>14<br>26                | 23900<br>8640           | 7.28.0                                                             |
| weighted dverage                                                                           |                            | 13                            |              | 6 13                 |                             | 5300<br>5300         | : :                        | 59<br>85                      |                                           | 4930<br>2280         | 8100<br>8100                                          | 1 1                      | 11                    |         | { {                                       | 11                           | 11                   | 4960                                 | 4910                             | 32                            | 25300                   | 6.8                                                                |
| Weighted average                                                                           | 24                         | ł                             |              | X<br>T               | ţ                           | 3930                 | ł                          | 121                           | 0                                         | 3490                 | 6180                                                  | 1                        | ł                     |         | ł                                         | ł                            | ł                    | 3810                                 | 3710                             | 28                            | 19900                   | ł                                                                  |
| Water Year 1961<br>Maximum, June 1-23, 1961<br>Minimum, Mar, 28-29                         | 39<br>34<br>34             | 14<br>11<br>8.9               |              | 900<br>125<br>656    | 650<br>35<br>405            | 4940<br>319<br>3370  | 111                        | 84<br>108<br>121              | 000                                       | 4410<br>392<br>3070  | 7600<br>470<br>5150                                   | 111                      | : 8:1                 |         | 18500<br>1410<br>12700                    | 25.2<br>1.92<br>17.1         | 1950<br>1270<br>1170 | 4920<br>456<br>3300                  | 4850<br>368<br>3200              | 30<br>6.5<br>25               | 24200<br>2350<br>17200  | 6.7<br>7.8                                                         |
| Water Year 1962<br>Maximum, Sept. 1-30, 1962<br>Minimum, May 20-31                         | 17<br>81<br>28             | 9.2<br>9.6<br>10              |              | 940<br>410<br>742    | 645<br>185<br>438           | 5020<br>1580<br>3570 | 111                        | $64 \\ 67 \\ 118$             | 000                                       | 4540<br>1550<br>3330 | 7900<br>2520<br>5560                                  | 111                      | 1 1 1                 |         | 19000<br>6290<br>13700                    | 25.9<br>8.55<br>18.4         | 872<br>1380<br>1040  | 5000<br>1780<br>3660                 | 4940<br>1730<br>3560             | 31<br>16<br>25                | 24200<br>9350<br>18400  | 7.3<br>7.0<br>6.9                                                  |
| Water Year 1963<br>Maximum, May 1-31, 1963<br>Minimum, Nov. 1-30, 1962<br>Weighted average | 11<br>184                  | 8.7<br>9.5<br>10              |              | 740<br>745<br>797    | 698<br>305<br>428           | 5380<br>2870<br>3640 | 111                        | 75<br>107<br>117              | 000                                       | 4800<br>2730<br>3340 | 8400<br>4550<br>5740                                  | 111                      | 111                   |         | 20300<br>11300<br>14000                   | 27.6<br>15.3<br>18.9         | 603<br>5610<br>1400  | 5220<br>3110<br>3750                 | 5160<br>3030<br>3660             | 32<br>22<br>26                | 24800<br>15000<br>18100 | 7,3<br>7,4<br>7,0                                                  |
| Water Year 1964<br>Maximum, Sept. 1-19, 1964<br>Minimum, Sept. 24-25                       | 7, 3<br>104<br>18          | 4.1<br>8.8<br>9.0             |              | 1180<br>480<br>841   | 1020<br>193<br>549          | 8020<br>1430<br>4340 | 111                        | 75<br>78<br>149               | 000                                       | 6690<br>1790<br>3930 | 12400<br>2250<br>6790                                 | 111                      | 111                   |         | 28800<br>6190<br>16600                    | 40.0<br>8.42<br>22.3         | 568<br>1740<br>307   | 7150<br>1990<br>4360                 | 7090<br>1930<br>4240             | 41<br>14<br>28                | 34600<br>8980<br>21400  | $   \begin{array}{c}     6.4 \\     7.1 \\     6.8   \end{array} $ |
| Mater Year 1965<br>Maximum, June 13, 1965<br>Minimum, June 14-16                           | 466<br>189<br>23           | 6.1<br>5.7                    |              | <br>162<br>672       | 46                          | 5680<br>412<br>3710  | 111                        | 140<br>146<br>143             | 000                                       | 3870<br>460<br>3250  | 9300<br>630<br>5920                                   |                          | 2.2                   |         | 20500<br>1790<br>14100                    | 27.8<br>2.43<br>19.0         | 25800<br>913<br>876  | 4900<br>593<br>3750                  | 4790<br>473<br>3630              | 35<br>7.4<br>25               | 28700<br>3010<br>19300  | 6.9<br>7.7<br>6.9                                                  |
| <u>Water Year 1966</u><br>Maximum, June 1-7, 1966<br>Minimum, Sept. 1-2                    | 9.7<br>106<br>21           | .9<br>14<br>3.7               |              | 910<br>308<br>712    | 715<br>45<br>478            | 5630<br>359<br>3660  | 76<br>115<br>59            | 130<br>114<br>132             | 000                                       | 4950<br>848<br>3380  | 8300<br>542<br>5820                                   | 111                      | 5.0                   |         | 20400<br>2190<br>14200                    | 27.7<br>2.98<br>19.3         | 534<br>627<br>805    | 5210<br>954<br>3740                  | 5100<br>860<br>3630              | 32<br>5.1<br>25               | 26900<br>3230<br>20100  | 6.8<br>7.8<br>7.0                                                  |
| Water Year 1967<br>Maximum, Apr. 1-12, 1967<br>Minimum, May 29-30                          | . 18<br>54<br>. 18         | 9 5 9<br>9 5 9                |              | 845<br>285<br>736    | 576<br>102<br>458           | 4580<br>808<br>3520  | 51<br>18<br>45             | 141<br>70<br>104              | 000                                       | 4060<br>1060<br>3440 | 7200<br>1280<br>-5560                                 | 111                      | 151                   |         | 17400<br>3590<br>13800                    | 23.6<br>4.88<br>18.8         | 846<br>523<br>671    | 4480<br>1130<br>3720                 | 4370<br>1070<br>3630             | 30<br>10<br>25                | 24700<br>5510<br>19600  | 7.6<br>7.7<br>6.9                                                  |
| <u>Mater Year 1968</u><br>Maximum, July 1-20, 1963<br>Minimum, July 21-31                  | 11                         | 4.5<br>5.0                    |              | 980<br>720           | 620<br>404                  | 4580<br>3050         | 23                         | 52<br>44                      | 00                                        | 4490<br>3160         | 7320<br>4800                                          |                          | 11                    |         | 18100<br>12200                            | 24.6<br>16.6                 | 11                   | 5000<br>3460                         | 4950                             | 28<br>23                      | 23700                   | 7,4<br>7.3                                                         |

| ont           |
|---------------|
| 0             |
| a tu          |
| ba            |
| Grande        |
| Rio (         |
| the           |
| $1\mathbf{n}$ |
| streams       |
| Texas         |
| of            |
| analyses      |
| chemical      |
| of            |
| . = = Summary |
| ē 7           |
| Labl          |
|               |

inued

|                                       |                            |                               |                                           |                             |                                       | (Resul                     | ts in mi                                   | illigra                                   | ms per li                     | ter except             | as ind               | licated                                  | )                 |                                           |                                                  |                                             |                                      |                                           |                                         |                                     |                                                |
|---------------------------------------|----------------------------|-------------------------------|-------------------------------------------|-----------------------------|---------------------------------------|----------------------------|--------------------------------------------|-------------------------------------------|-------------------------------|------------------------|----------------------|------------------------------------------|-------------------|-------------------------------------------|--------------------------------------------------|---------------------------------------------|--------------------------------------|-------------------------------------------|-----------------------------------------|-------------------------------------|------------------------------------------------|
|                                       |                            |                               |                                           |                             |                                       |                            | Bi-                                        |                                           |                               |                        |                      |                                          |                   | Dis                                       | ssolved s                                        | olids                                       | Hard<br>as Ca                        |                                           | So-                                     | Specific<br>con-                    |                                                |
| Date<br>of<br>collection              | Mean<br>Discharge<br>(cfs) | Silica<br>(SiO <sub>2</sub> ) | Cal-<br>cium<br>(Ca)                      | Mag-<br>ne-<br>sium<br>(Mg) | Sodium<br>(Na)                        | Po-<br>tas-<br>sium<br>(K) | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> ) | Car-<br>bon-<br>ate<br>(CO <sub>3</sub> ) | Sulfate<br>(SO <sub>4</sub> ) | Chloride<br>(Cl)       | Fluo-<br>ride<br>(F) | Ni-<br>trate<br>(NO <sub>3</sub> )       | Bo-<br>ron<br>(B) | Milli-<br>grams<br>per<br>liter<br>(mg/1) | Tons<br>per<br>acre-<br>foot                     | Tons<br>per<br>day                          | Cal-<br>cium,<br>Mag-<br>ne-<br>sium | Non-<br>car-<br>bon-<br>ate               | dium<br>ad-<br>sorp-<br>tion<br>ratio   | duct-<br>ance<br>(micro-<br>mbos at | рН                                             |
|                                       |                            |                               |                                           |                             |                                       |                            | 8-4474.                                    | PECOS                                     | RIVER NE                      | AR SHUMLA,             | TEX.                 |                                          |                   |                                           |                                                  |                                             |                                      |                                           |                                         |                                     |                                                |
| <u>1955</u><br>Mar. 1955<br>July      |                            |                               | 178<br>80                                 | 85<br>22                    | 497<br>122                            |                            | 159<br>140                                 | 0                                         | 544<br>130                    | 84.5<br>209            |                      | 1.9<br>4,3                               | 0.26              | 2290<br>706                               | 3.12<br>.96                                      | 1160<br>925                                 | 796<br>288                           | 666<br>174                                | 7.7<br>3.1                              | 3700<br>1140                        | 7.9<br>7.9                                     |
| <u>1956</u><br>Mar. 1956<br>Oct. 1955 |                            |                               | 186<br>116                                | 89<br>49                    | 531<br>253                            |                            | $\frac{156}{174}$                          | 0<br>0                                    | 569<br>282                    | 901<br>429             |                      | 1.2<br>5.6                               | .26<br>.20        | 2490<br>1280                              | 3.39<br>1.74                                     | 1100<br>1030                                | 828<br>489                           | 701<br>346                                | 8.0<br>5.0                              | 3890<br>2100                        | 8.1<br>8.0                                     |
| <u>1957</u><br>Mar. 1957<br>May       |                            |                               | 215<br>84                                 | 107<br>20                   | 706<br>122                            |                            | 149<br>140                                 | 0<br>0                                    | 717<br>160                    | $\substack{1180\\199}$ |                      | 1,2<br>,6                                | .32<br>.08        | 3210<br>733                               | $\begin{array}{c} 4.36 \\ 1.00 \end{array}$      | 1420<br>5560                                | 975<br>292                           | 852<br>176                                | $9.8 \\ 3.1$                            | 4890<br>1160                        | 7.9<br>8.0                                     |
| <u>1958</u><br>Mar. 1958<br>Sept      |                            |                               | 182<br>58                                 | 88<br>10                    | 558<br>49                             |                            | $\begin{array}{c} 181 \\ 149 \end{array}$  | 0                                         | 548<br>55                     | 938<br>82              |                      | 2.5<br>2.5                               | .21<br>.05        | 2600<br>366                               | 3.53<br>.50                                      | 1480<br>1310                                | 818<br>188                           | 670<br>66                                 | 8.5<br>1.5                              | 4030<br>616                         | 8.2<br>7.8                                     |
| <u>1959</u><br>Mar, 1959<br>Sept      |                            |                               | 175<br>82                                 | 82<br>26                    | $\frac{517}{149}$                     |                            | 174<br>160                                 | 0<br>0                                    | 496<br>144                    | 878<br>248             |                      | 2.5<br>2.5                               | ,27<br>,10        | 2480<br>803                               | 3.37<br>1.09                                     | 1250<br>939                                 | 772<br>308                           | 629<br>177                                | $\begin{array}{c} 8.1\\ 3.7\end{array}$ | $3800 \\ 1310$                      | 7.9<br>8.0                                     |
| 1960<br>Apr. 1960<br>Oct. 1959        |                            |                               | 165<br>87                                 | 78<br>28                    | 499<br>154                            |                            | 165<br>159                                 | 0<br>0                                    | 473<br>172                    | 851<br>252             |                      | $\begin{array}{c} 2.5\\ 6.2 \end{array}$ | .24<br>.11        | 2320<br>842                               | $\substack{3.16\\1.15}$                          | 124 <b>0</b><br>3730                        | 732<br>330                           | 596<br>200                                | 8.0<br>3.7                              | 3640<br>1380                        | 7.7<br>7.7                                     |
| <u>1961</u><br>Apr. 1961<br>June      |                            |                               | $\begin{array}{c} 211 \\ 106 \end{array}$ | 122<br>44                   | 781<br>275                            |                            | $\begin{array}{c} 136\\ 162 \end{array}$   | 0                                         | 740<br>268                    | 1320<br>446            |                      | .6<br>3.7                                | . 33<br>. 18      | 3450<br>1300                              | 4.69<br>1.77                                     | $\frac{1490}{2630}$                         | 1030<br>444                          | 916<br>312                                | 11<br>5.7                               | 5320<br>2140                        | 7.9<br>7.9                                     |
| <u>1962</u><br>Mar. 1962<br>Sept      |                            |                               | 189<br>100                                | 87<br>31                    | 578<br>228                            |                            | 156<br>164                                 | 0<br>0                                    | 570<br>206                    | 984<br>369             |                      | $\begin{array}{c} 1.9\\ 3.1 \end{array}$ | .26<br>.13        | 2660<br>1080                              | 3.62<br>1.47                                     | 1060<br>688                                 | 830<br>378                           | 702<br>244                                | 8.7<br>5.1                              | 4150<br>1750                        | 7.9<br>8.0                                     |
| 1963<br>Dec. 1962<br>Oct              |                            |                               | 258<br>97                                 | 102<br>25                   | 801<br>178                            |                            | $\begin{array}{c}176\\179\end{array}$      | 0<br>0                                    | 768<br>159                    | 1330<br>295            |                      | 7.4<br>5.6                               | .29<br>.11        | 3570<br>950                               | $\begin{array}{c} 4.86\\ 1.29 \end{array}$       | 1810<br>1270                                | 1060<br>344                          | 920<br>196                                | 11<br>4.2                               | 5370<br>1450                        | 7.7<br>7.7                                     |
| <u>1964</u><br>Mar. 1964<br>Sept      |                            |                               | 183<br>83                                 | 90<br>13                    | $\begin{array}{c} 630\\91\end{array}$ |                            | 146<br>186                                 | 0<br>0                                    | 574<br>92                     | 1060<br>152            |                      | 1.2<br>3.7                               | . 24<br>. 12      | 2730<br>572                               | 3.71<br>.78                                      | 892<br>4620                                 | 830<br>263                           | $\begin{array}{c} 710 \\ 110 \end{array}$ | 9.5<br>2.4                              | 4380<br>945                         | 7.5<br>8.2                                     |
| <u>1965</u><br>Apr. 1965<br>May       |                            |                               | 158<br>93                                 | 74<br>30                    | 499<br>204                            |                            | 165<br>159                                 | 0<br>0                                    | 453<br>184                    | 851<br>339             |                      | $\begin{array}{c} 1,9\\ 3,1 \end{array}$ | .31<br>.12        | 2290<br>1040                              | $\begin{smallmatrix}3.11\\1.41\end{smallmatrix}$ | $\begin{array}{c} 1150 \\ 1070 \end{array}$ | 698<br>356                           | 562<br>226                                | 8.2<br>4.7                              | 3570<br>1650                        | 7.8<br>8.0                                     |
| <u>1966</u><br>Mar. 1966<br>Apr       |                            |                               | 144<br>78                                 | 71<br>18                    | 467<br>123                            |                            | 153<br>146                                 | 0<br>0                                    | 421<br>118                    | 784<br>206             |                      | 1.2<br>3.7                               | .18               | 2050<br>659                               | 2.79                                             | 692<br>822                                  | 652<br>270                           | 527<br>150                                | 7.9<br>3.2                              | 3350<br>1100                        | 8.0<br>8.0                                     |
| <u>1967</u><br>Mar, 1967<br>July      |                            | 12                            | 141<br>89                                 | 68<br>35                    | 439<br>221                            |                            | $\begin{array}{c} 177\\ 165 \end{array}$   | 0<br>0                                    | 411<br>200                    | 720<br>356             | 0,8                  | 2.5                                      | .12<br>.12        | 1970<br>1080                              | 2.68<br>1.47                                     |                                             | 631<br>367                           | 486<br>232                                | 7.6<br>5.0                              | 3200<br>1760                        | 8.0<br>7.7                                     |
| <u>1968</u><br>Apr. 1968<br>Aug       |                            |                               | 161<br>71                                 | 79<br>23                    | 538<br>138                            |                            | 153<br>153                                 | 0<br>0                                    | 494<br>128                    | 890<br>225             |                      | $^{,6}_{3,1}$                            | , 21<br>, 07      | 2360<br>719                               | 3.21<br>.98                                      |                                             | 726<br>272                           | 601<br>146                                | 8.7<br>3.6                              | 3760<br>1190                        | $egin{smallmatrix} 8.1\ 8.1 \end{smallmatrix}$ |

|                                                  |                                       |         | B1-            |                                           |                   |                                                   |            | DIS                                        | Dissolved solids             | lids               | Hardness<br>as CaCO,                                  |                  | So- Specific                                              | If le           |
|--------------------------------------------------|---------------------------------------|---------|----------------|-------------------------------------------|-------------------|---------------------------------------------------|------------|--------------------------------------------|------------------------------|--------------------|-------------------------------------------------------|------------------|-----------------------------------------------------------|-----------------|
| mag-<br>ne- Sodium Po-<br>sium (Na) sium<br>(Mg) | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |         |                | bon-<br>bon-<br>ste<br>(SO <sub>4</sub> ) | Chloride<br>(CI)  | Fluo- Ni-<br>ride trate<br>(F) (NO <sub>4</sub> ) | Bo-<br>(B) | Millit-<br>grams<br>per<br>liter<br>(mg/l) | Tons<br>per<br>acre-<br>foot | Tons<br>per<br>day | Cal-<br>Cal-<br>Non-<br>Cium, car-<br>ne-<br>sium ate | 1                | dium duct-<br>ad-<br>sorp-<br>tion mhos at<br>ratio 25°C) | t-<br>co-<br>c) |
|                                                  |                                       | 8-4475. | 75. PECOS      | DS RIVER NEAR                             | AR COMSTOCK, TEX. | ×.                                                |            |                                            |                              |                    |                                                       | -                |                                                           | -               |
| 265 1770<br>35 226                               |                                       | 38      | 207 0<br>381 0 | 1890<br>115                               | 2790              | 1.9                                               | 0.67       | 784.0<br>114.0                             | 10.7                         | 4570<br>34500      | 2180 2010<br>429 117                                  | 0 16             | 11100                                                     | 7.7 0           |
| 99 562<br>14 94                                  |                                       | 20      | 192 0<br>139 0 | 781<br>163                                | 881<br>129        | 4.3<br>11                                         | .26        | 2900<br>617                                | 3.94<br>.84                  | 2610<br>31300      | 992 836<br>266 152                                    | 56 7.8<br>52 2.5 | 3 4230<br>940                                             | 7.4             |
| 141 893<br>21 114                                |                                       | 20      | 159 0<br>69 0  | 967<br>149                                | 1430<br>183       | 4.3<br>6.8                                        | .32        | 4010<br>632                                | 5,45                         | 2460<br>474        | 1230 1100<br>227 170                                  | 0 11 0           | 6050<br>1030                                              | ) 8.2<br>9.8,5  |
| 135 850<br>39 227                                |                                       | 22      | 125 0<br>138 0 | 1120<br>312                               | 1320<br>357       | 1.9<br>8.7                                        | .30        | 4100<br>1270                               | 5.57<br>1.73                 | 34.30<br>0.700     | 1330 1230<br>444 332                                  | 50 10<br>52 4.7  | 5930                                                      | ) 8.1<br>9.8.1  |
| 120 757<br>49 283                                |                                       | 14      | 166 0<br>142 0 | 884<br>364                                | 1190<br>434       | 2.5                                               | .35        | 3570<br>1430                               | 4.86<br>1.95                 | 2520<br>2060       | 1090 958<br>500 383                                   | 8 10<br>13 5.5   | 5240                                                      | 1 7.9           |
| 149 969<br>45 292                                |                                       | 11      | 145 0<br>L15 0 | 1100                                      | 1520<br>462       | .6<br>2.5                                         | .40        | 4370<br>1440                               | 5.95<br>1.96                 | 3080<br>2340       | 1330 1210<br>470 376                                  | 0 12<br>6 5.9    | 6490<br>2280                                              | 17,9<br>18,3    |
| 148 981<br>62 406                                |                                       | 12      | 170 0<br>149 0 | 1040                                      | 1580<br>640       | .6<br>3.1                                         | .40        | 4400<br>1860                               | 5,98<br>2,53                 | 3360<br>3620       | 1300 1160<br>604 482                                  | s0 12<br>12 7.2  | 6180<br>2970                                              | 7.6             |
| 208 1260<br>73 329                               |                                       | 10      | 104 0<br>130 0 | 1620<br>1140                              | 2000<br>494       | 1.2                                               | .22        | 5920<br>2710                               | 8,05<br>3.68                 | 12200<br>57100     | 1830 1750<br>1260 1160                                | 0 13             | 8220                                                      | 7.5             |
| 157 956<br>110 690                               |                                       | 112     | 70 0<br>115 0  | 1190<br>812                               | 1520<br>1,080     | 2.5<br>1.9                                        | .40        | 4460<br>3150                               | 6.06<br>4.29                 | 4370<br>2740       | 1340 1280<br>965 870                                  | 0 11 0.7         | 6390                                                      | 7.7             |
| 162 1060<br>64 391                               |                                       | 11      | 112 0<br>128 0 | 1230<br>519                               | 1670<br>603       | 1.9                                               | 40,40      | 4800<br>1960                               | 6,53<br>2.66                 | 3800<br>2840       | 1400 1310<br>640 536                                  | 0 12<br>6 6.7    | 6850<br>2920                                              | 7,9<br>8,1      |
| 151 988<br>54 329                                |                                       | 10      | 154 0<br>107 0 | 1160<br>459                               | 1550<br>510       | .6                                                | -16        | 4510<br>1710                               | 6.13<br>2.32                 | 3540<br>3400       | 1360 1240<br>567 479                                  | 0 12<br>9 6.0    | 6470<br>2560                                              | 7.4             |
| 171 1130<br>45 288                               |                                       |         | 88 0           | 1280                                      | 1810              | 1.9                                               | 44.        | 2040                                       | 6.86                         | 4030               | 1470 1400                                             | 0 13             | 7310                                                      | 7.9             |

•

Table 7.--Summary of chemical analyses of Texas streams in the Rio Grande--Continued

|                                                 | 120 V                            |                                                |                               |              |                      | Mag                                  |                | Po-     | Bi-                                        | 0.00                                      |                               |                  |                      |                                                |                   | Dis                                       | ssolved                      | solids             | Hard<br>as C:                        |                             | So-                                   | Specific     |            |
|-------------------------------------------------|----------------------------------|------------------------------------------------|-------------------------------|--------------|----------------------|--------------------------------------|----------------|---------|--------------------------------------------|-------------------------------------------|-------------------------------|------------------|----------------------|------------------------------------------------|-------------------|-------------------------------------------|------------------------------|--------------------|--------------------------------------|-----------------------------|---------------------------------------|--------------|------------|
| 5                                               | Date<br>of<br>collection         |                                                | Silica<br>(SiO <sub>2</sub> ) | Iron<br>(Fe) | Cal-<br>cium<br>(Ca) | Mag-<br>ne-<br>sium<br>(Mg)          | Sodium<br>(Na) | tas-    | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> ) | Car-<br>bon-<br>ate<br>(CO <sub>3</sub> ) | Sulfate<br>(SO <sub>4</sub> ) | Chloride<br>(Cl) | Fluo-<br>ride<br>(F) | Ni-<br>trate<br>(NO <sub>3</sub> )             | Bo-<br>ron<br>(B) | Milli-<br>grams<br>per<br>liter<br>(mg/l) | Tons<br>per<br>acre-<br>foot | Tons<br>per<br>day | Cal-<br>cium,<br>Mag-<br>ne-<br>sium | Non-<br>car-<br>bon-<br>ate | dium<br>ad-<br>sorp-<br>tion<br>ratio | (micro-      |            |
|                                                 |                                  |                                                |                               |              |                      |                                      | 1              | 8-4475. | PECOS                                      | RIVER                                     | NEAR COMST                    | POCK, TEX        | -Conti               | nued                                           |                   |                                           |                              |                    |                                      |                             |                                       |              |            |
|                                                 | 947<br>ar. 1947                  | 235<br>1470                                    |                               |              | 212<br>70            | 122<br>24                            | 774<br>139     |         | 107<br>117                                 | 0                                         | 867<br>164                    | 1230<br>214      |                      | $3.1 \\ 8.7$                                   | 0.31              | 3470<br>735                               | 4.72<br>1.00                 | 2200<br>2910       | 1030<br>274                          |                             | 10<br>3.7                             |              | 7.7<br>7.8 |
| <u>Water Year 1</u><br>Maximum, J<br>Minimum, J | <u>948</u><br>Jan, 1948<br>fuly  | 215<br>685                                     |                               |              | 219<br>56            | 113<br>17                            | 698<br>93      |         | 171<br>120                                 | 0<br>0                                    | 802<br>108                    | 1120<br>145      |                      | 2.5<br>11                                      | .26               | 3230<br>537                               | 4.39<br>.73                  | 1880<br>993        | 1010<br>208                          | 869<br>110                  | 9.6<br>2.8                            | 4880<br>865  | <br>7.8    |
| Minimum, J                                      | lan, 1949<br>luly                | 220<br>848                                     |                               |              | 204<br>93            | 110<br>32                            | 686<br>186     |         | 135<br>163                                 | 0<br>0                                    | 769<br>213                    | 1110<br>290      |                      | 3.7<br>4.3                                     | .27               | 3200<br>985                               | 4.35<br>1.34                 | 1900<br>2260       | 962<br>362                           | 852<br>228                  | 9.6<br>4.3                            | 4800<br>1540 | 7.8        |
|                                                 | 950<br>Apr. 1950<br>Muly         | 203<br>574                                     |                               |              | 184<br>73            | 100<br>22                            | 633<br>126     |         | 129<br>135                                 | 0<br>0                                    | 677<br>142                    | 1020<br>195      |                      | 3.7<br>6.8                                     | .27               | 2850<br>699                               | 3.87<br>.95                  | 1560<br>1080       | 869<br>274                           | 764<br>163                  | 10<br>3.3                             |              | 7.8<br>7.8 |
|                                                 | <u>951</u><br>'eb. 1951<br>tay   | 258<br>326                                     |                               |              | 228<br>97            | $\begin{array}{c}119\\41\end{array}$ | 755<br>257     |         | 154<br>125                                 | 0                                         | 828<br>280                    | 1230<br>417      |                      | 2.5<br>2.5                                     | .32<br>.14        | 3400<br>1230                              | 4.63<br>1.67                 | 2370<br>1080       | 1060<br>412                          | 936<br>309                  | 10<br>5,5                             |              | 7.8        |
|                                                 | 952<br>pr. 1952<br>uly           | 155<br>141                                     |                               |              | 205<br>117           | 107<br>60                            | 684<br>340     |         | 153<br>146                                 | 0<br>0                                    | 737<br>374                    | 1100<br>551      |                      | 2.5<br>3.1                                     | .23<br>.26        | 3120<br>1580                              | 4.25<br>2.15                 | 1310<br>602        | 953<br>537                           | 828<br>417                  | 9.6<br>6.4                            |              | 7,8<br>7,7 |
|                                                 | <u>953</u><br>lar. 1953          | $\begin{smallmatrix}161\\270\end{smallmatrix}$ |                               |              | 208<br>76            | 114<br>24                            | 694<br>121     |         | 157<br>141                                 | 0<br>0                                    | 735<br>151                    | 1140<br>195      |                      | $\begin{smallmatrix}&1.9\\11\end{smallmatrix}$ | .32<br>.13        | 3110<br>676                               | 4.23                         | 1350<br>493        | 990<br>288                           | 861<br>173                  | 9.6<br>3.1                            |              | 7.8<br>7.8 |
|                                                 | <u>.954</u><br>far. 1954<br>fune | 142<br>29500                                   |                               |              | 157<br>66            | 83<br>6.7                            | 478<br>28      |         | 128<br>156                                 | 0                                         | 521<br>53                     | 808<br>50        |                      | .6<br>3.7                                      | .18<br>.11        | 2280<br>324                               | 3,10<br>.44                  | 874<br>25800       | 734<br>192                           | 630<br>65                   | 7.6<br>.9                             |              | 7.9<br>8,2 |

(Results in milligrams per liter except as indicated)

|                                                                                      |                            |                    |                |                |                               |                       | 6                          | -B1-                                       |                                           |                      |                                           |                                                   |                      |                                | Diss                                      | Dissolved solids             | lids                 | Hardness<br>as CaCO <sub>3</sub>     | CO3                  | -os                                   | Specific<br>con-         | -0                       |
|--------------------------------------------------------------------------------------|----------------------------|--------------------|----------------|----------------|-------------------------------|-----------------------|----------------------------|--------------------------------------------|-------------------------------------------|----------------------|-------------------------------------------|---------------------------------------------------|----------------------|--------------------------------|-------------------------------------------|------------------------------|----------------------|--------------------------------------|----------------------|---------------------------------------|--------------------------|--------------------------|
| Date<br>of<br>collection                                                             | Mean<br>Discharge<br>(cfs) | e (SIO2)<br>(SIO2) | a Iron<br>(Fe) | (Ca)           | - Mag-<br>ne-<br>stum<br>(Mg) | Sodium<br>(Na)        | Po-<br>tas-<br>sium<br>(K) | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> ) | Car-<br>bon-<br>ate<br>(CO <sub>3</sub> ) | Sulfate<br>(SO4)     | Chloride<br>(Cl)                          | Fluo- N1-<br>ride trate<br>(F) (NO <sub>3</sub> ) |                      | Bo-M4<br>ron R<br>(B) R<br>(m) | Milli-<br>grams<br>per<br>liter<br>(mg/l) | Tons<br>per<br>acre-<br>foot | Tons<br>per<br>day   | Cal-<br>cium,<br>Mag-<br>ne-<br>sium | Non-<br>car-<br>bon- | dium<br>ad-<br>sorp-<br>tion<br>ratio | <u> </u>                 | pH t                     |
|                                                                                      |                            |                    |                |                |                               |                       | 8-44                       | 85. 600                                    | DENOUGH                                   | I SPRINGS            | 8-4485, GOODENOUGH SPRINGS NEAR COMSTOCK, | DCK, TEX.                                         |                      |                                |                                           |                              |                      |                                      |                      |                                       |                          |                          |
| Water Year 1946                                                                      |                            |                    |                |                |                               |                       |                            |                                            |                                           |                      |                                           |                                                   |                      |                                |                                           |                              |                      |                                      |                      |                                       |                          |                          |
| Maximum, Jan. 1946                                                                   | 110<br>103<br>208          |                    |                | 31<br>24<br>24 | 14<br>10<br>10                | 15<br>13<br>12        |                            | 134<br>102<br>104                          | 000                                       | 29<br>23<br>21       | 16<br>13<br>12                            |                                                   | 6.8 0.<br>3.7<br>7.4 | 0.05<br>.03<br>.09             | 228<br>169<br>169                         | 0,31<br>,23<br>,23           | 67.7<br>47.0<br>94.9 | 137<br>102<br>100                    | 27<br>18<br>15       | 0.6<br>.5                             | 4.38<br>2.80<br>2.53     | 7.9                      |
| Marter Year 1947<br>Maximum, Oct. 1946                                               | 193<br>183                 |                    |                | 68<br>19       | 9.1<br>11                     | 9.4                   |                            | 224<br>82                                  | 0 0                                       | 20                   | 11                                        |                                                   | 8.1<br>6.2           | .02                            | 257<br>154                                | 35                           | 134<br>76.1          | 206<br>94                            | 22<br>27             | с.<br>5                               | 421<br>246               | 7.9                      |
| Water Year 1948<br>Maximum, Mar. 1948.<br>Apr., Nay. June.<br>July.<br>Minimum, Sept | 125<br>126<br>128<br>128   |                    |                | 62<br>69<br>37 | - 14<br>13<br>13<br>13        | 16<br>14<br>13        |                            | 228<br>250<br>250<br>149                   | 0000                                      | 30<br>25<br>25<br>25 | 17<br>16<br>14<br>14                      |                                                   | 5.6<br>6.8<br>8.1    | 50.                            | 301<br>301<br>301<br>191                  | 41<br>41<br>26               | 102<br>97.5<br>61.4  | 212<br>226<br>234<br>148             | 25<br>22<br>29<br>26 | 0444                                  | 453<br>489<br>481<br>338 | 8.0<br>8.2<br>7.8<br>8.1 |
| Mater Year 1949<br>Mater Nev. 1948<br>Jan. 1949<br>Minhaum, Sept                     | 132<br>112<br>112          |                    |                | 73<br>65<br>43 | 12<br>13<br>11                | 11<br>14<br>9.9       |                            | 251<br>230<br>159                          | 000                                       | 24<br>29<br>23       | 14<br>15<br>11                            |                                                   | 8.7<br>6.8<br>6.2    | 05                             | 287<br>287<br>228                         | .39<br>.31                   | 102<br>86,8<br>86,2  | 232<br>215<br>153                    | 26<br>26<br>23       | 6. 4. 4.                              | 476<br>466<br>334        | 7.9<br>8.1<br>8.2        |
|                                                                                      |                            |                    |                |                |                               |                       | -8                         | 8-4530. S                                  | SAN FELIPE                                | CREEK                | NEAR DEL                                  | RIO, TEX.                                         |                      |                                |                                           |                              |                      |                                      |                      |                                       |                          |                          |
| Period, Jan. 1 - Sept. 30, 1948<br>Maximum, Apr. 1948                                | 13<br>45                   |                    |                | 81<br>48       | 13<br>9.0                     | 11 0                  |                            | 261<br>164                                 | 00                                        | 37<br>14             | 27<br>15                                  |                                                   | 9.3<br>8.7           |                                | 353<br>206                                | .48                          | 12.4<br>25.0         | 253<br>156                           | 39<br>22             | 0.6<br>.4                             | 372<br>351               | 8.0                      |
| Mater Year 1949<br>Maximum, Nov. 1948<br>Mar. 1949<br>Minimum, Feb                   | 66<br>78<br>155            |                    |                | 80<br>75<br>58 | 9.1<br>8.8<br>6.8             | 1 9.7<br>8 14<br>8 11 |                            | 260<br>225<br>175                          | 000                                       | 15<br>33<br>25       | 16<br>22<br>17                            |                                                   | 9.9<br>12            | 00<br>00                       | 309<br>309<br>243                         | .42<br>.42                   | 55.1<br>65.1<br>102  | 236<br>223<br>173                    | 23<br>38<br>30       | 644                                   | 492<br>503<br>391        | 7.8<br>8.1<br>8.1        |

|            |                                       |                            |                               | <br>                 |                             |                | (Resul                     | ts in m                                        | illigra                                   | ms per li                     | ter except                                     | as inc | iicated                                 | )                 |                                           |                              |                                            |                                          |                             |                                          |                  |              |
|------------|---------------------------------------|----------------------------|-------------------------------|----------------------|-----------------------------|----------------|----------------------------|------------------------------------------------|-------------------------------------------|-------------------------------|------------------------------------------------|--------|-----------------------------------------|-------------------|-------------------------------------------|------------------------------|--------------------------------------------|------------------------------------------|-----------------------------|------------------------------------------|------------------|--------------|
|            |                                       |                            |                               |                      |                             |                |                            | Bi-                                            |                                           |                               |                                                |        |                                         |                   | Dis                                       | solved s                     | olids                                      | Hard<br>as Ca                            |                             | So-                                      | Specific<br>con- |              |
|            | Date<br>of<br>collection              | Mean<br>Discharge<br>(cfs) | Silica<br>(SiO <sub>s</sub> ) | Cal-<br>cium<br>(Ca) | Mag-<br>ne-<br>sium<br>(Mg) | Sodium<br>(Na) | Po-<br>tas-<br>sium<br>(K) | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> )     | Car-<br>bon-<br>ate<br>(CO <sub>3</sub> ) | Sulfate<br>(SO <sub>4</sub> ) | Chloride<br>(Cl)                               |        | Ni-<br>trate<br>(NO <sub>3</sub> )      | Bo-<br>ron<br>(B) | Milli-<br>grams<br>per<br>liter<br>(mg/1) | Tons<br>per<br>acre-<br>foot | Tons<br>per<br>day                         | Cal-<br>cium,<br>Mag-<br>ne-<br>sium     | Non-<br>car-<br>bon-<br>ate | dium<br>ad-<br>sorp-<br>tion<br>ratio    | duct-            | рН           |
|            |                                       |                            |                               |                      |                             |                | 1                          | 8-4580,                                        | RIO GR                                    | ANDE AT E                     | AGLE PASS,                                     | TEX.   |                                         |                   |                                           |                              |                                            |                                          |                             |                                          |                  |              |
| Maximum, I | Sept. 1938<br>May 1938<br>July        |                            |                               | 117<br>53            | 40<br>9,2                   | 212<br>43      |                            | 162<br>132                                     | 0<br>0                                    | 317<br>82                     | 326<br>40                                      |        | $^{11}_{4,3}$                           | 0.17              | 1180<br>331                               | 1.60<br>.45                  | 5290<br>18200                              | 456<br>171                               | 323<br>63                   | $\begin{array}{c} 4.3\\ 1.4 \end{array}$ |                  | 8.0<br>8.0   |
|            | <u>1939</u><br>Jan. 1939<br>Aug       |                            |                               | 113<br>57            | 34<br>14                    | 190<br>80      |                            | 181<br>145                                     | 0<br>0                                    | 278<br>135                    | 253<br>62                                      |        | 2.5                                     | .15<br>.14        | 1040<br>485                               | 1.41                         | 7100<br>8110                               | 420<br>200                               | 272<br>81                   | 4.0<br>2.5                               | 1610<br>714      | 8.2<br>8.3   |
|            | <u>1940</u><br>Feb. 1940<br>June      |                            |                               | 104<br>65            | 34<br>16                    | 194<br>77      |                            | 189<br>143                                     | 0                                         | 275<br>126                    | 259<br>100                                     |        | 1.9<br>3.7                              | .17               | 1040<br>485                               | 1,42                         | 5950<br>4060                               | 398<br>228                               | $243 \\ 111$                | 4.2<br>2.2                               | 1630<br>804      | 8,0<br>8,3   |
|            | <u>1941</u><br>June 1941<br>May       |                            |                               | 213<br>79            | 38<br>15                    | 212<br>86      |                            | 143<br>149                                     | 0<br>0                                    | 592<br>168                    | 297<br>98                                      |        | 2.5<br>3.1                              | , 22<br>, 12      | 1560<br>632                               | 2.12<br>.86                  | 25400<br>10600                             | 688<br>259                               | 570<br>137                  | 3.5<br>2.3                               | 2190<br>898      | 8.1<br>7.7   |
|            | 1942<br>Jan. 1942<br>Sept             |                            |                               | 194<br>79            | 67<br>15                    | 367<br>94      |                            | 160<br>140                                     | 0<br>0                                    | 622<br>193                    | 555<br>106                                     |        | 3.1<br>2.5                              | .23               | 2020<br>640                               | 2,75<br>.87                  | 20000<br>44800                             | $\begin{array}{c} 758\\ 261 \end{array}$ | 627<br>146                  | 5.8<br>2.5                               | 2990<br>954      | 7.6<br>7.9   |
|            | <u>1943</u><br>Jan, 1943<br>July      |                            |                               | 126<br>72            | 43<br>15                    | 233<br>117     |                            | $\begin{smallmatrix}112\\143\end{smallmatrix}$ | 0<br>0                                    | / 40<br>187                   | 321<br>136                                     |        | 3.1<br>3.7                              | .25<br>.14        | 1320<br>662                               | 1.80<br>.90                  | 11400<br>9470                              | 492<br>242                               | 400<br>125                  | 4.6<br>3.3                               |                  | 8.0<br>8.0   |
|            | <u>1944</u><br>Mar. 1944<br>Sept      |                            |                               | 90<br>67             | 36<br>11                    | 224<br>72      |                            | 133<br>151                                     | 0                                         | 308<br>130                    | 303<br>77                                      |        | 1.9<br>3.7                              | , 25<br>, 06      | 1110<br>493                               | 1.51<br>.67                  | $\begin{array}{c} 6140\\ 11900\end{array}$ | 372<br>212                               | 263<br>88                   | 5.0<br>2.2                               | 1750<br>753      | 8.0<br>8.0   |
|            | <u>1945</u><br>Dec, 1944<br>July 1945 |                            |                               | 91<br>73             | 33<br>14                    | 204<br>98      |                            | 143<br>133                                     | 0<br>0                                    | 291<br>182                    | $\begin{smallmatrix}276\\111\end{smallmatrix}$ |        | $1.9 \\ 3.7$                            | .12<br>.09        | $\begin{array}{c}1030\\618\end{array}$    | 1.40<br>.84                  | 5980<br>11100                              | 360<br>240                               | 244<br>132                  | 4.7<br>2.8                               | 1630<br>930      | $7.9 \\ 8.1$ |
|            | <u>1946</u><br>Mar. 1946<br>June      |                            |                               | 90<br>49             | 40<br>10                    | 251<br>48      |                            | 101<br>140                                     | 0<br>0                                    | 351<br>72                     | 347<br>57                                      |        | $\begin{array}{c} 2.5\\ 4.3\end{array}$ | .23<br>,08        | 1210<br>346                               | 1.64<br>.47                  | 5820<br>4860                               | 388<br>164                               | 305<br>50                   | 5.5<br>1.6                               |                  | 7.8<br>7.8   |
|            | <u>1947</u><br>Jan. 1947<br>Sept      |                            |                               | 83<br>64             | 27<br>11                    | 157<br>57      |                            | 161<br>154                                     | 0<br>0                                    | 244<br>129                    | 196<br>48                                      |        | 2.5<br>6.2                              | .20               | 853<br>441                                | 1.16<br>.60                  | 6060<br>7110                               | 320<br>205                               | 188<br>78                   | 3.8<br>1.7                               | 1340<br>650      | 8.0<br>7.9   |
|            | 1948<br>Jan. 1948<br>June             |                            |                               | 84<br>32             | 28<br>5.3                   | 150<br>23      |                            | 174<br>87                                      | 0<br>0                                    | 234<br>40                     | 190<br>26                                      |        | 3.7<br>3.7                              | .15<br>.12        | 838<br>184                                | 1.14<br>.25                  | 3530<br>7650                               | 324<br>102                               | 182<br>32                   | 3.6<br>1,0                               | 1330<br>301      | 8.0          |
|            | <u>1949</u><br>Jan, 1949<br>Aug       |                            |                               | 73<br>66             | 27<br>8.6                   | 139<br>45      |                            | 137<br>143                                     | 0<br>0                                    | 217<br>116                    | 131<br>43                                      |        | 5.0<br>8.1                              | .18<br>.11        | 779<br>412                                | 1.06<br>.56                  | 3890<br>9390                               | 292<br>200                               | 180<br>83                   | 3.5<br>1.4                               |                  | 7.9<br>8.0   |

|                               |                            |                               |              |                      |                             |                | Е       | 31-   |                                           |                               |                  |      |                                    |       | Dis                                       | solved a                     | olids              | Hard<br>as Ca                        | ness<br>aCO <sub>3</sub>    | So-                                   | Specific                            |         |
|-------------------------------|----------------------------|-------------------------------|--------------|----------------------|-----------------------------|----------------|---------|-------|-------------------------------------------|-------------------------------|------------------|------|------------------------------------|-------|-------------------------------------------|------------------------------|--------------------|--------------------------------------|-----------------------------|---------------------------------------|-------------------------------------|---------|
| Date<br>of<br>collection      | Mean<br>Discharge<br>(cfs) | Silica<br>(SiO <sub>2</sub> ) | Iron<br>(Fe) | Cal-<br>cium<br>(Ca) | Mag-<br>ne-<br>sium<br>(Mg) | Sodium<br>(Na) | tas- be | on-   | Car-<br>bon-<br>ate<br>(CO <sub>3</sub> ) | Sulfate<br>(SO <sub>4</sub> ) | Chloride<br>(Cl) |      | Ni-<br>trate<br>(NO <sub>3</sub> ) |       | Milli-<br>grams<br>per<br>liter<br>(mg/1) | Tons<br>per<br>acre-<br>foot | Tons<br>per<br>day | Cal-<br>cium,<br>Mag-<br>ne-<br>sium | Non-<br>car-<br>bon-<br>ate | dium<br>ad-<br>sorp-<br>tion<br>ratio | duct-<br>ance<br>(micro-<br>mbos at | рН      |
|                               |                            |                               |              |                      |                             |                | 8-4580. | RIO G | RANDE                                     | AT EAGLE                      | PASS, TEX        | Cont | inued                              |       |                                           |                              |                    |                                      |                             |                                       |                                     |         |
| later Year 1950               | 0.000                      |                               |              | -24                  | 22                          | 11100          |         | 1352  |                                           | 102857                        | 20201            |      | 27.2                               |       | 2223                                      | 121122                       | 22.222             | 012-0                                | 1222                        |                                       | 2220                                |         |
| Maximum, Jan. 1950            |                            |                               |              | 71                   | 23                          | 122            |         | 146   | 0                                         | 195                           | 151              |      |                                    | 0.18  | 699                                       | 0.95                         | 5150               | 272                                  | 152                         | 3.2                                   | 1110                                | 7.      |
| Minimum, Oct. 1949            | 5060                       |                               |              | 64                   | 13                          | 69             |         | 151   | 0                                         | 122                           | 77               |      | 5.6                                | .15   | 463                                       | .63                          | 6330               | 212                                  | 89                          | 2.1                                   | 742                                 | 8.      |
| later Year 1951               |                            |                               |              |                      |                             |                |         |       |                                           |                               |                  |      |                                    |       |                                           |                              |                    |                                      |                             |                                       |                                     |         |
| Maximum, Feb. 1951            |                            |                               |              | 83                   | 28                          | 153            |         | 159   | 0                                         | 250                           | 192              |      | 4.3                                | .17   | 846                                       | 1.15                         | 3680               | 325                                  | 195                         | 3.7                                   | 1340                                | 7.      |
| Minimum, June                 | 2630                       |                               |              | 75                   | 12                          | 60             |         | 175   | 0                                         | 115                           | 67               |      | 1,9                                | .10   | 449                                       | .61                          | 3190               | 234                                  | 91                          | 1.7                                   | 712                                 | 8,      |
| later Year 1952               |                            |                               |              |                      |                             |                |         |       |                                           |                               |                  |      |                                    |       |                                           |                              |                    |                                      |                             |                                       |                                     |         |
| Maximum, Feb. 1952            |                            |                               |              |                      |                             | 141            |         | 183   | 0                                         |                               | 190              |      |                                    |       | 875                                       | 1.19                         | 2020               | 353                                  | 203                         | 3.3                                   | 1340                                | · · · · |
| Minimum, May                  | . 2200                     |                               |              |                      |                             | 51             |         | 159   | 0                                         |                               | 69               |      |                                    | 1777  | 412                                       | . 56                         | 2450               | 206                                  | 76                          | 1.5                                   | 652                                 | 1       |
| later Year 1953               |                            |                               |              |                      |                             |                |         |       |                                           |                               |                  |      |                                    |       |                                           |                              |                    |                                      |                             |                                       |                                     |         |
| Maximum, Feb. 1953            |                            |                               |              |                      |                             | 140            |         | 169   | 0                                         |                               | 188              |      |                                    |       | 838                                       | 1.14                         | 1360               | 326                                  | 187                         | 3.4                                   | 1300                                | -       |
| Minimum, Aug                  | 1200                       |                               |              |                      |                             | 37             |         | 165   | 0                                         |                               | 43               |      |                                    |       | 360                                       | .49                          | 1460               | 204                                  | 68                          | 1.1                                   | 566                                 | 8,      |
| later Year 1954               |                            |                               |              |                      |                             |                |         |       |                                           |                               |                  |      |                                    |       |                                           |                              |                    |                                      |                             |                                       |                                     |         |
| Maximum, Mar. 1954            |                            |                               |              |                      | ** **                       | 1.24           |         | 169   |                                           |                               | 156              |      |                                    |       | 728                                       | , 99                         | 863                | 298                                  | 160                         | 3.1                                   | 1150                                | -       |
| Minimum, June                 | 47000                      |                               |              |                      |                             | (10)           |         | 2.5   | 0.0                                       | 1000                          |                  |      | 2,70                               |       | 272                                       | , 37                         | 34500              | <b>*</b> .*.                         |                             | 2.2                                   | 422                                 | 17      |
| Period, Oct. 1954 - June 1955 |                            |                               |              |                      |                             |                |         |       |                                           |                               |                  |      |                                    |       |                                           |                              |                    |                                      |                             |                                       |                                     |         |
| Maximum, Feb. 1955            | . 1070                     |                               |              |                      |                             | 135            |         | 153   | 0                                         |                               | 181              |      | 20                                 |       | 824                                       | 1,12                         | 2380               | 343                                  | 218                         | 3.2                                   | 1270                                | -       |
| Minimum, June                 | . 1740                     |                               |              |                      |                             | 74             |         | 171   | 0                                         |                               | 110              |      |                                    | 44 mi | 522                                       | . 71                         | 2450               | 251                                  | 110                         | 2.0                                   | 827                                 | -       |

Results in milligrams per liter except as indicated)

| DarMean         DarWean         Softium         For         Call         Mader<br>International<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situational<br>situatisituational<br>situational<br>situational<br>situational<br>situational<br>situat |                                                     |                          |                            |                               |                      |                             |                | 1   | Bi-        | (      |            |                  |                      |                       |            | DLe                                       | Dissolved solids             | solids             | Hardness<br>as CaCO <sub>s</sub>     | ness<br>aCO <sub>3</sub> | -9S                              | Specific    | 2      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|--------------------------|----------------------------|-------------------------------|----------------------|-----------------------------|----------------|-----|------------|--------|------------|------------------|----------------------|-----------------------|------------|-------------------------------------------|------------------------------|--------------------|--------------------------------------|--------------------------|----------------------------------|-------------|--------|
| Bibb         Bibl. Bibb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                     | Date<br>of<br>collection | Mean<br>Discharge<br>(cfs) | Silica<br>(SiO <sub>s</sub> ) | Cal-<br>cium<br>(Ca) | Mag-<br>ne-<br>sium<br>(Mg) | Sodium<br>(Na) |     |            |        |            | Chloride<br>(Cl) | Fluo-<br>ride<br>(F) | N1-<br>trate<br>(NO3) | Bo-<br>(B) | Milli-<br>grams<br>per<br>liter<br>(mg/l) | Tons<br>per<br>acre-<br>foot | Tons<br>per<br>day | Cal-<br>cium,<br>Mag-<br>ne-<br>stum | Non-<br>car-<br>bon-     | ad-<br>sorp-(<br>tion r<br>ratio | 8.8         | H<br>H |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     |                          |                            |                               |                      |                             |                |     | 8-4590     | J. RIO | GRANDE AT  | LAREDO, TE       | X.                   |                       |            |                                           |                              |                    |                                      |                          |                                  |             |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Water Year 19<br>Maximum, Ma<br>Minimum, Sey        | <u>156</u><br>rr. 1956   |                            | 11                            | 11                   | L1                          | 146<br>59      | E E | 156<br>143 | 00     | ĒĒ         | 183<br>103       | 11                   | E E                   | 11         | 816<br>427                                | 1.11                         | 1770<br>1960       | 330<br>216                           | 202<br>99                | 11                               | 1300        | 11     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Water Year 19<br>Maximum, Man<br>Minimum, Man       | <u>157</u><br>1957       |                            | 11                            | 1 1                  | 11                          | 145<br>28      | 11  | 169<br>140 | 00     | ::         | 181<br>37        | 11                   | 11                    | 11         | 835<br>281                                | 1.14                         | 2530<br>16700      | 321<br>162                           | 182 48                   | 3.5                              | 1300        | : :    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Water Year 19<br>Maximum, Ap<br>Minimum, Se         | pt                       |                            | 11                            | 1.1                  | E E                         | 135<br>27      | ΤP  | 156<br>149 | 00     | 11         | 192<br>25        | 11                   | 11                    | 11         | 774<br>296                                | 1,05                         | 2300<br>11500      | 312<br>172                           | 184 50                   | с.<br>с.                         | 1220        | 11     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Water Year 19<br>Maximum, Ma<br>Minimum, Oc         | r. 1959                  |                            | ; ;                           | 11                   | 3.3                         | 115<br>39      | 3.3 | 161<br>153 | 00     | : :        | 104<br>27        | 11                   | 11                    | 11         | 662<br>379                                | .90                          | 4410<br>30300      | 284<br>202                           | 152                      | 3.0                              | 1020        | 11     |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Water Year 19<br>Maximum, Jan<br>Minimum, Oc        | <u>60</u><br>n. 1960     |                            | 24                            | 82                   | 21                          | 104<br>48      | 4.3 | 177<br>156 | 00     | 195        | 122<br>59        | 0.8                  | 5.0                   | 0.18       | 692<br>387                                | .94                          | 4860<br>6660       | 292<br>207                           | 08<br>148                | 2.6                              | 1060        | 8.1    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>Mater Year 19</u><br>Maximum, Ap<br>Minimum, Juu | ne. 1961                 |                            | 11                            | 11                   | 11                          | 124<br>30      | 3.3 | 143<br>140 | 00     | : :        | 162<br>33        | 11                   | 11                    | 11         | 717<br>299                                | .98                          | 2500<br>8800       | 287<br>167                           | 170                      | 3.2                              | 1150        | 11     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Water Year 19<br>Maximum, Ma<br>Minimum, Sey        | <u>.62</u><br>pr. 1962   |                            | 11                            | 1.1                  | 11                          | 121<br>71      | E E | 138<br>148 | 00     | :          | 151<br>55        | E.I                  | 11                    | 11         | 678<br>508                                | .92                          | 2270<br>4060       | 270<br>223                           | 156                      | 3.2<br>2.1                       | 1110        | 11     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Water Year 19.<br>Maximum, Dec<br>Minimum, Oct      | 63<br>c. 1962            |                            | 11                            | 1-1                  | 1.1                         | 190<br>77      | 1.1 | 162<br>157 | 00     | 11         | 243<br>66        | 11                   | 11                    | 11         | 978<br>515                                | 1.33                         | 4780<br>6050       | 356<br>218                           | 224<br>89                | 4.4<br>2.3                       | 1560        | 11     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Water Year 19<br>Maximum, Ma<br>Minimum, Sey        | <u>164</u><br>r. 1964    |                            | t i                           | 11                   | 1.1                         | 132<br>16      | 11  | 159<br>110 | 00     | 11         | 138<br>16        | t t                  | ł i                   | 11         | 749<br>184                                | 1.02                         | 2550               | 286<br>121                           | 156                      | 3.4<br>.6                        | 1160<br>309 | 11     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Water Year 19<br>Maximum, Fei<br>Minimum, Jun       | <u>165</u><br>р. 1965    |                            | 3.4                           | : :                  | ::                          | 110<br>51      | 1.1 | 128<br>166 | 00     | ;;         | 121<br>63        | 11                   | 1.1                   | 11         | 780<br>388                                | 1.06                         | 4420<br>6430       | 240<br>198                           | 135<br>62                | 3.1<br>1.6                       | 1010<br>635 | 11     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Water Year 19<br>Maximum, Fei<br>Minimum, May       | 1966.<br>b. 1966.        |                            | 11                            | 11                   | 11                          | 117<br>48      | 11  | 165<br>137 | 0.0    | 11         | 124<br>61        | 11                   | 11                    | 11         | 704<br>359                                | .96                          | 2640<br>5010       | 279<br>176                           | 144                      | 3.1                              | 1070        | 11     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Water Year 194<br>Maximum, Mat<br>Minimum, Sep      | 67<br>r.<br>pt. 1967     |                            | 11                            | : :                  | 11                          | 128<br>47      | 11  | 159<br>143 | 0.0    | 13         | 206<br>41        | E E                  | 11                    | E E        | 747<br>367                                | 1.02                         | 2940<br>7730       | 283<br>172                           | 153<br>54                | 3.3<br>1.6                       | 1140        | 11     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Water Year 196<br>Maximum, Jai<br>Minimum, Jul      | 68<br>n. 1968            |                            | 28<br>22                      | 72<br>61             | 20<br>12                    | 110<br>54      | 3.9 | 177<br>156 | 0.0    | 207<br>108 | 101<br>55        | 6.<br>9.             | 3.7                   | . 15       | 671<br>412                                | .91<br>.56                   | 11                 | 262<br>200                           | 116                      | 3.0                              | 1010        | 7.8    |

(Results in milligrams per liter except as indicated)

- 71 -

|     |                          |                            |                               |              |                      | Mar                         |                | <b>D</b> -                 | Bi-                                        | 0                                         |                                           |                  |        |                                    |                   | Die                                       | solved                       | solids               | Hard<br>as Ca                                  |                             | So-                                           | Specific<br>con-                             | -                 |
|-----|--------------------------|----------------------------|-------------------------------|--------------|----------------------|-----------------------------|----------------|----------------------------|--------------------------------------------|-------------------------------------------|-------------------------------------------|------------------|--------|------------------------------------|-------------------|-------------------------------------------|------------------------------|----------------------|------------------------------------------------|-----------------------------|-----------------------------------------------|----------------------------------------------|-------------------|
|     | Date<br>of<br>collection | Mean<br>Discharge<br>(cfs) | Silica<br>(SiO <sub>z</sub> ) | Iron<br>(Fe) | Cal-<br>cium<br>(Ca) | Mag-<br>ne-<br>sium<br>(Mg) | Sodium<br>(Na) | Po-<br>tas-<br>sium<br>(K) | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> ) | Car-<br>bon-<br>ate<br>(CO <sub>3</sub> ) | Sulfate<br>(SO4)                          | Chloride<br>(C1) | rue    | Ni-<br>trate<br>(NO <sub>3</sub> ) |                   | Milli-<br>grams<br>per<br>liter<br>(mg/1) | Tons<br>per<br>acre-<br>foot | Tons<br>per<br>day   | Cal-<br>cium,<br>Mag-<br>ne-<br>sium           | Non-<br>car-<br>bon-<br>ate | dium<br>ad-<br>sorp-<br>tion<br>ratio         | duct-<br>ance<br>(micro-<br>mhos at<br>25°C) | рH                |
|     |                          |                            |                               |              |                      |                             |                | 8-                         | 4613. R                                    | IO GRAN                                   | NDE BELOW                                 | FALCON DAM       | , TEX. |                                    |                   |                                           |                              |                      |                                                |                             |                                               |                                              |                   |
|     | 1956                     | 421<br>1850                |                               |              | 84<br>64             | 24<br>14                    | 128<br>61      |                            | 147<br>137                                 | 0<br>0                                    | 228<br>132                                | 160<br>72        |        | а<br>1.9                           | 0.26              | 735<br>412                                | 1.00                         | 835<br>2060          | 308<br>210                                     | 188<br>102                  | 3.2<br>1.8                                    |                                              | 8.0<br>8.0        |
|     | 1957                     | 328<br>2770                |                               |              | 85<br>51             | 25<br>9.4                   | 138<br>39      |                            | 159<br>122                                 | 0<br>0                                    | 246<br>69                                 | 163<br>53        |        | a<br>1.2                           | .22               | 786<br>311                                | 1.07                         | 696<br>2330          | 316<br>165                                     | 186<br>65                   | 3.4<br>1.3                                    | 1220<br>506                                  | 7.9               |
|     | 958<br>1957              |                            | 11                            |              | 63<br>55             | 13<br>10                    | 68<br>52       |                            | 143<br>140                                 | 0<br>0                                    | 123<br>87                                 | 85<br>64         |        | a<br>a                             | .15<br>.13        | 473<br>370                                | .64<br>.50                   | 5400<br>3220         | 213<br>179                                     | 96<br>64                    | 2.0<br>1.7                                    |                                              | 7.9<br>8.0        |
|     | 1959<br>1958             |                            |                               |              | 66<br>60             | $16 \\ 8.9$                 | 72<br>40       |                            | 125<br>137                                 | 0                                         | 171<br>98                                 | 82<br>39         |        | .6<br>2.5                          | ,15<br>,10        | 510<br>347                                | .69<br>.47                   | 2690<br>17800        | 231<br>186                                     | 128<br>73                   | $\begin{array}{c} 2.1\\ 1.3 \end{array}$      |                                              | 7.9               |
|     | 1960<br>1959             |                            | 12                            |              | 67<br>65             | 21<br>17                    | 92<br>74       | 4.7                        | 132<br>126                                 | 0<br>0                                    | 193<br>168                                | 103<br>82        | 0.8    | а<br>1.2                           | .22<br>.16        | 596<br>503                                | .81<br>.68                   | 5020<br>2150         | 253<br>232                                     | 144<br>128                  | 2.5<br>2.1                                    |                                              | 7.8               |
|     | 1960<br>1961             | 701<br>3310                |                               |              | 67<br>60             | 16<br>15                    | 87<br>80       | **                         | 131<br>128                                 | 0<br>0                                    | 188<br>149                                | 90<br>89         |        | .6<br>.6                           | , 22<br>, 21      | 575<br>509                                | . 78<br>. 69                 | 1090<br>4550         | 234<br>212                                     | 126<br>107                  | 2.5                                           |                                              | 8.0               |
|     | 1962                     | 612<br>4570                | 13                            |              | 65<br>66             | 17<br>16                    | 103<br>80      | <br>5.1                    | 132<br>135                                 | 0<br>0                                    | 195<br>173                                | 108<br>82        | 1.0    | .6<br>.6                           | .11<br>.16        | 595<br>513                                | .81<br>.70                   | 983<br>6330          | 230<br>230                                     | 122<br>120                  | 2.9<br>2.3                                    | 912<br>831                                   | 7.5               |
|     | 1963<br>1962             | 951<br>839                 |                               |              | 86<br>69             | 18<br>17                    | 123<br>97      |                            | 145<br>134                                 | 0<br>0                                    | 224<br>198                                | 146<br>103       | **     | 6.2<br>.6                          | .25<br>.19        | 706<br>578                                | , 96<br>, 79                 | 1810<br>1310         | 286<br>240                                     | 167<br>130                  | 3.2<br>2.7                                    |                                              | 7.9               |
|     | 1963<br>1964             | 1000<br>739                | 11                            |              | 69<br>72             | 17<br>15                    | 105<br>99      |                            | 128<br>140                                 | 0<br>0                                    | 208<br>206                                | 107<br>102       |        | .6<br>.6                           | ,17<br>,14        | 649<br>579                                | .88<br>.79                   | 1750<br>1160         | $\begin{smallmatrix}241\\243\end{smallmatrix}$ | 136<br>128                  | 2.9<br>2.8                                    |                                              | 7.8               |
| Aug | 1965                     | 1360                       | 10                            |              | 60<br>56<br>52       | 12<br>13<br>9.7             | 69<br>70<br>51 | 4.7                        | 137<br>137<br>128                          | 0<br>0<br>0                               | 130<br>125<br>101                         | 76<br>78<br>53   | .6<br> | .6<br><br>2.5                      | .19<br>.13<br>.15 | 455<br>455<br>364                         | .62<br>.62<br>.50            | 4590<br>1670<br>1690 | 200<br>193<br>170                              | 87<br>80<br>65              | $\begin{array}{c} 2.1\\ 2.2\\ 1.7\end{array}$ | 720                                          | 7.8<br>7.8<br>7.8 |
|     | 1966<br>1965             |                            |                               |              | 66<br>60             | 16<br>15                    | 84<br>76       |                            | 146<br>137                                 | 0<br>0                                    | 158<br>141                                | 92<br>85         |        | 1.2<br>.6                          | .18<br>.16        | 519<br>472                                | .71<br>.64                   | 2240<br>1080         | 230<br>210                                     | 110<br>98                   | 2.4<br>2.3                                    |                                              | 7.8<br>7.8        |
|     | 1967<br>1966             |                            | 19                            |              | 65<br>59             | 16<br>12                    | 96<br>76       | 5.5                        | 131<br>128                                 | 0<br>0                                    | $\begin{array}{c} 191 \\ 146 \end{array}$ | 97<br>80         | .8     | .0<br>.0                           | $^{+13}_{-18}$    | 582<br>470                                | , 79<br>, 64                 | 3580<br>1610         | 228<br>195                                     | 121<br>90                   | 2.8<br>2.4                                    |                                              | 7.7               |
|     | 1968<br>1967             | 1000                       |                               |              | 64<br>63             | 16<br>12                    | 87<br>70       |                            | $131 \\ 134$                               | 0<br>0                                    | 176<br>149                                | 89<br>66         |        | 1.9                                | .17               | 550<br>456                                | .75                          | 1230                 | 224<br>206                                     | 116<br>96                   | $2.5 \\ 2.1$                                  |                                              | 8.0<br>7.7        |

a Less than 0.4 milligrams per liter.

|                                                                     |                            |                               |              |                      |                             | 2                 | Results | in mi                                      | ligram                            | (Results in milligrams per liter except | r except :                      | as indicated)                                     | (pa                                     |                                           |                              |                       |                                      |                                  |                                         |                     |                   |
|---------------------------------------------------------------------|----------------------------|-------------------------------|--------------|----------------------|-----------------------------|-------------------|---------|--------------------------------------------|-----------------------------------|-----------------------------------------|---------------------------------|---------------------------------------------------|-----------------------------------------|-------------------------------------------|------------------------------|-----------------------|--------------------------------------|----------------------------------|-----------------------------------------|---------------------|-------------------|
|                                                                     |                            |                               |              |                      | Max                         |                   | ο<br>Ω  | Bi-                                        |                                   |                                         |                                 |                                                   |                                         | ηq                                        | Dissolved solids             | olids                 | Hard<br>as C                         | Hardness<br>as CaCO <sub>3</sub> | - So-                                   | Specific<br>con-    |                   |
| Date<br>of<br>collection                                            | Mean<br>Discharge<br>(cfs) | Silica<br>(SiO <sub>g</sub> ) | Iron<br>(Fe) | Cal-<br>ctum<br>(Ca) | mag-<br>ne-<br>sium<br>(Mg) | Sodium<br>(Na)    | 60      | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> ) | bon-<br>ate<br>(CO <sub>3</sub> ) | Sulfate<br>(SO4)                        | Chloride<br>(Cl)                | Fluo- Ni-<br>ride trate<br>(F) (NO <sub>3</sub> ) | - Bo-<br>te ron<br>0 <sub>3</sub> ) (B) | Milli-<br>grams<br>per<br>liter<br>(mg/l) | Tons<br>per<br>acre-<br>foot | Tons<br>per<br>day    | Cal-<br>cium,<br>Mag-<br>ne-<br>stum | Non-<br>car-<br>bon-<br>ate      | - dium<br>ad-<br>sorp-<br>tion<br>ratio | 5 8                 | Hq                |
|                                                                     |                            |                               |              |                      |                             |                   |         | 8-462                                      | 5. RIO                            | GRANDE AT                               | 8-4625, RIO GRANDE AT ROMA, TEX | 1.                                                |                                         |                                           |                              |                       |                                      |                                  |                                         |                     |                   |
| Period, Mar. 4 - Sept. 5, 1930<br>Maximum, Apr. 8, 1930             | в                          |                               |              | 99<br>63             | 28<br>13                    | 141<br>61         |         | 144<br>144                                 | 00                                | 246<br>123                              | 210<br>70                       |                                                   |                                         | 864<br>400                                | 1,18                         | F I                   | 363<br>211                           | 245<br>93                        | 3.2<br>1.8                              | 1260<br>640         | 11                |
| Mater Year 1931<br>Maximum, Mar. 4, 1931<br>Minimum, Oct. 6, 1930   | 3110                       |                               |              | 111                  | 30<br>6,1                   | 138<br>76         |         | 168<br>120                                 | 00                                | 257<br>96                               | 210<br>84                       | 4.4                                               | 11                                      | 895<br>355                                | 1.22<br>.48                  | 7520                  | 401<br>152                           | 264<br>54                        | 3.0                                     | 1250<br>570         | 11                |
| Mater Year 1932<br>Maximum, Peb. 11, 1932                           | 2520<br>2950               |                               |              | 114                  | 29<br>11                    | 214<br>76         |         | 171<br>171                                 | 00                                | 317<br>91                               | 284<br>57                       |                                                   | 11                                      | 1100<br>356                               | 1.50                         | 7480<br>2840          | 405<br>150                           | 265<br>10                        | 4.6                                     | 1700<br>510         | 11                |
| <u>Mater Year 1933</u><br>Maximum, Jan, 6, 1933<br>Minimum, Sept. 2 | 5940<br>5400               | 15                            |              | 130<br>72            | 33<br>18                    | 220<br>98         |         | 195<br>168                                 | 0 0                               | 323<br>176                              | 312<br>112                      | 3.7                                               |                                         | 1120<br>636                               | 1.52<br>.86                  | 18000<br>9270         | 459<br>252                           | 299                              | 4.5                                     | 1840<br>940         | 11                |
| Water Year 1943<br>Maximum, Nov. 20-27, 1942<br>Minimum, Nov. 11-13 | 4970<br>5900               |                               |              | 156<br>62            | 44<br>14                    | 245<br>62         |         | 154<br>143                                 | 00                                | 483<br>106                              | 335<br>82                       | 1.5                                               | 1 I                                     | 1360<br>444                               | 1.85                         | 18200<br>7070         | 570<br>212                           | 444<br>95                        | 4.5<br>1.9                              | 2130                | 11                |
| Water Year 1944<br>Naximum, Apr. 1944                               | 1540<br>14200              |                               |              | 05<br>16             | 37<br>8.1                   | 223<br>48         |         | 131                                        | 00                                | 323<br>86                               | 310<br>51                       | 1.9                                               | - 0.26<br>9 .12                         | 1120<br>338                               | 1.52<br>.46                  | 4660<br>13000         | 378<br>158                           | 272                              | 5.0                                     | 1780                | 8.0<br>7.9        |
| Mater Year 1945<br>Maximum, Jan. 1945<br>Feb<br>Minimum, Oct. 1944  | 2760<br>2590<br>6490       |                               |              | 92<br>93<br>80       | 34<br>33<br>17              | 203<br>200<br>102 |         | 134<br>148<br>165                          | 000                               | 307<br>302<br>178                       | 274<br>262<br>122               | 2.5<br>1.9<br>2.5                                 | 5 .20<br>9 .15<br>5 .08                 | 1040<br>1040<br>632                       | 1.41<br>1.41<br>.86          | 7750<br>7270<br>11100 | 367<br>366<br>268                    | 258<br>244<br>134                | 4.5<br>2.7                              | 1650<br>1620<br>994 | 7.7<br>7.9<br>7.9 |
| <u>Mater Year 1946</u><br>Maximum, Mar. 1946<br>Minimum, June       | 1720<br>7320               |                               |              | 97<br>50             | 41<br>10                    | 262<br>55         |         | 125<br>124                                 | 00                                | 369<br>90                               | 357<br>67                       | .6<br>3.7                                         | 6 .24<br>7 .11                          | 1300<br>382                               | 1.77                         | 6040<br>7550          | 414<br>168                           | 311                              | 5.6                                     | 2010<br>607         | 7.8               |
| Mater Year 1947<br>Maximum, Apr. 1947                               | 14.00<br>7930              |                               |              | 78<br>50             | 31<br>8.8                   | 171<br>52         |         | 120<br>120                                 | 00                                | 266<br>106                              | 236<br>49                       | 5.6                                               | 6 .22<br>7 .11                          | 875<br>368                                | 1.19                         | 3310<br>7880          | 323<br>160                           | 225<br>62                        | 4,1<br>1,8                              | 1460<br>570         | 7.8               |
| Mater Year 1948<br>Maximum, Feb. 1948                               | 1860<br>11500<br>13800     |                               |              | 78<br>41<br>42       | 29<br>7.4<br>6.8            | 159<br>32<br>31   |         | 143<br>112<br>112                          | 000                               | 260<br>62<br>62                         | 197<br>32<br>34                 | 2.5<br>6.2<br>2.5                                 | 22 .17                                  | 868<br>265<br>265                         | 1.18<br>.36                  | 4360<br>8230<br>9870  | 312<br>132<br>133                    | 194<br>40<br>42                  | 3.9<br>1.2<br>1.2                       | 1350<br>400<br>404  | 7.9               |
| Water Year 1949<br>Maximum, Jan. 1949<br>Minimum, Apr               | 1950<br>14400              |                               |              | 82<br>41             | 30<br>7.7                   | 145<br>53         |         | 153                                        | 00                                | 247<br>89                               | 191<br>55                       | 3.7<br>3.7                                        | 7 .22                                   | 846<br>331                                | 1,15                         | 4450<br>12900         | 327<br>135                           | 202<br>52                        | 3.5                                     | 1330<br>535         | 7.8               |
| Mater Year 1950<br>Maximum, Feb. 1950<br>Minimum, Oct. 1949         | 2460<br>5650               |                               |              | 69                   | 24<br>13                    | 126<br>76         |         | 134                                        | 00                                | 205<br>142                              | 154<br>87                       | 5.6<br>5.6                                        | 6 .15<br>6 .15                          | 728<br>507                                | 66                           | 4840<br>7730          | 272<br>226                           | 162<br>103                       | 3.3                                     | 1120<br>809         | 7.9               |
|                                                                     |                            |                               |              |                      |                             |                   |         |                                            |                                   |                                         |                                 |                                                   |                                         |                                           |                              |                       |                                      |                                  |                                         |                     |                   |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | So-<br>dium<br>ad-<br>sorp-<br>tion<br>mhos at<br>ratio<br>25°C) |                                           |           | 4.0 1400 7.9<br>1.3 578 7.8         | 4.1 1450 7.8<br>1.9 689 7.8<br>1.4 650                                  | 3.7 1360 7.8<br>.7 376 7.9                           | 2.1 803 8,0<br>.8 405 7.9                                 | 1.4 646 8.1                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|-------------------------------------------|-----------|-------------------------------------|-------------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------|-----------------------------------------------------------------------------|
| Mean<br>(cfb)         Mean<br>(cfb)         Silies<br>(slop)         Ten<br>(cfb)         Bi-<br>(cfb)         Car-<br>(cfb)         Bi-<br>(cfb)         Dissolved solids<br>(ratio<br>(cfb)         Dissolved solids<br>(cb)         Dissolved solids <td></td> <td>1 Sec. 28 194</td> <td></td> <td>212<br/>84</td> <td>216<br/>82<br/>110</td> <td>216<br/>48</td> <td>103</td> <td>, 08<br/>80</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  | 1 Sec. 28 194                             |           | 212<br>84                           | 216<br>82<br>110                                                        | 216<br>48                                            | 103                                                       | , 08<br>80                                                                  |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Hardn<br>as Ca                                                   | Cal-<br>cium,<br>Mag-<br>ne-<br>stum      |           | 322<br>202                          | 336<br>198<br>224                                                       | 346<br>156                                           | 236<br>152                                                | 220                                                                         |
| Mean         Maternal         Carl-<br>ne         Maternal         Po-<br>curration         Bit-<br>curration         Carl-<br>curration         Bit-<br>curration         Carl-<br>curration         Bit-<br>curration         Pit-<br>curration         Bit-<br>curration         Bi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Dissolved solids                                                 | Tons<br>per<br>day                        | -         | 3520<br>5330                        | 1750<br>2790<br>2330                                                    | 1420<br>2880                                         | 7160<br>2200                                              |                                                                             |
| Mean         Maternal         Carl-<br>ne         Maternal         Po-<br>curration         Bit-<br>curration         Carl-<br>curration         Bit-<br>curration         Carl-<br>curration         Bit-<br>curration         Pit-<br>curration         Bit-<br>curration         Bi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                  | Tons<br>per<br>acre-<br>foot              |           | 1.19<br>.54                         | 1.25<br>.60                                                             | 1.18                                                 | . 73                                                      | .56                                                                         |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                  | Milli-<br>grams<br>per<br>liter<br>(mg/l) |           | 875<br>397                          | 919<br>441<br>441                                                       | 868<br>243                                           | 537<br>265                                                | 412<br>426                                                                  |
| Mean<br>(cfb)         Mean<br>(cfb)         Sulta<br>(slop)         Mag-<br>transponder<br>(red)         Mag-<br>transponder<br>(red)         Mag-<br>transponder<br>(red)         Mag-<br>transponder<br>(red)         Hou-<br>transponder<br>(red)         Hu-<br>transponder<br>(red)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                  |                                           |           | 0.18                                | .13                                                                     | .23                                                  | .19                                                       | .12                                                                         |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N1-<br>trate<br>(NO_)                                            |                                           | p         |                                     | 3.7                                                                     | 1,9<br>9,3                                           | 2.5                                                       | 1.9                                                                         |
| Mean<br>Discharge<br>(cfb)         Silitica<br>(Fb)         Fron<br>Cal-<br>cium<br>(Fb)         Mag-<br>bin-<br>cium<br>(Fb)         Mag-<br>bin-<br>bin-<br>cium<br>(Fb)         Bi-<br>bin-<br>bin-<br>bin-<br>bin-<br>bin-<br>bin-<br>bin-<br>bi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                  |                                           | ontinue   |                                     |                                                                         |                                                      |                                                           |                                                                             |
| Mean<br>Discharge<br>(cfs)         Silical<br>(sts)         Fon<br>(cal)         Mag-<br>ne-<br>(can)         Mag-<br>ne-<br>(nan)         Mag-<br>stum<br>(nan)         Bi-<br>ear-<br>(nan)         Bi-<br>ear-<br>ato<br>(nan)         Bi-<br>ear-<br>ato<br>(nan)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Chloride<br>(Cl)                                                 |                                           |           | 216<br>48                           | 223<br>71<br>38                                                         | 209<br>21                                            | 92<br>25                                                  | 58<br>67                                                                    |
| Mean         Bilical<br>(cfs)         Fron<br>(cfs)         Cal-<br>brance<br>(cfs)         Mag-<br>(cfs)         Sodium<br>tas-<br>(va)         Po-<br>ear-<br>tas-<br>(va)         Bil-<br>ear-<br>(va)         Cal-<br>ban-<br>tas-<br>(va)         Bu-<br>ear-<br>tas-<br>(va)         Bu-<br>ear-<br>tas-<br>(va)         Bu-<br>ear-<br>tas-<br>(va)         Bu-<br>ear-<br>tas-<br>(va)         Bu-<br>ear-<br>tas-<br>(va)         Bu-<br>ear-<br>tas-<br>(va)         Bu-<br>tas-<br>(va)         Bu-<br>tas-<br>tas-<br>(va)         Bu-<br>tas-<br>tas-<br>tas-<br>(va)         Bu-<br>tas-<br>tas-<br>tas-<br>(va)         Bu-<br>tas-<br>tas-<br>tas-<br>(va)         Bu-<br>tas-<br>tas-<br>tas-<br>tas-<br>tas-<br>tas-<br>tas-<br>tas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Sulfate<br>(SO4)                                                 |                                           | E AT ROMA | 261<br>98                           | 265<br>119<br>158                                                       | 255<br>52                                            | 134<br>56                                                 | 102                                                                         |
| Mean         Slitca<br>(cfs)         From<br>(sta)         Cal-<br>me-<br>(rad)         Mag-<br>me-<br>sium<br>(Na)         Sodium<br>tas-<br>(Na)         Po-<br>sium<br>(Na)         Bit<br>Mag-<br>sium<br>(Na)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                  |                                           | ) GRAND   | 0.0                                 | 000                                                                     | 00                                                   | 0 0                                                       | 00                                                                          |
| Mean<br>Discharge<br>(cis)         Silica<br>(sio)         From<br>(cal)         Mag-<br>me-<br>sium<br>(Na)         Sodium<br>tas-<br>(Na)         Po-<br>sium<br>(Na)           1         1         1         1         1         1           1         1         1         1         1         1         1           1         1         1         1         1         1         1         1           1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | B1-                                                              | car-<br>bon-<br>ate<br>HCO <sub>1</sub> ) |           | 134<br>143                          | 146<br>142<br>138                                                       | 159<br>131                                           | 162<br>128                                                | 171<br>98                                                                   |
| Mean<br>Discharge<br>(cis)         Silica<br>(SiO <sub>2</sub> )         Iron<br>(Fe)         Cal-<br>chum<br>(cis)         Mag-<br>ne-<br>sium<br>(Mg)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                  |                                           | 8-46      |                                     |                                                                         |                                                      |                                                           |                                                                             |
| Mean<br>Discharge<br>(cis)         Silica<br>(sil)         Iron<br>(cal-<br>(cis)         Cal-<br>(cal-<br>(cal)           1490         910         910         910           1110         1490         79         910           1110         1040         79         910           1110         1090         79         910           1110         1090         910         79           1110         1090         59         74           1110         1090         51         74           1110         1070         51         74           1110         1070         52         74           1110         1070         52         74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                  | Sodium<br>(Na)                            |           | 165<br>42                           | 171<br>63<br>47                                                         | 156<br>20                                            | 75<br>23                                                  | 48<br>46                                                                    |
| Mean         Stitteal         Fron           Diascharge         Stitteal         Fron           (cis)         (re)         (re)            4940             4940             3070                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mag-<br>ne-<br>sium<br>(Mg)                                      |                                           |           | 30                                  | 33<br>12<br>9.7                                                         | 34<br>6.7                                            | 13<br>5.5                                                 | 11                                                                          |
| Discharge Silitea Iron<br>(cfs) (cfs) (Fe) (Fe) (cfs) (Fe) (Fe) (fe) (fe) (fe) (fe) (fe) (fe) (fe) (f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Cal-<br>cium<br>(Ca)                                             |                                           |           | 79<br>59                            | 80<br>60<br>74                                                          | 82<br>51                                             | 73<br>52                                                  | 71<br>45                                                                    |
| Dilacitarge (SiO <sub>4</sub> )<br>(cfs) (cfs) (cf                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                  |                                           |           |                                     |                                                                         |                                                      |                                                           |                                                                             |
| Discintee<br>Discintee<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs)<br>(cfs |                                                                  |                                           |           |                                     |                                                                         |                                                      |                                                           |                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1                                                                | Mean<br>Discharge<br>(cfs)                |           | 1490<br>4970                        | 704<br>2340<br>1960                                                     | 607<br>4390                                          | 4940<br>3070                                              | 1730                                                                        |
| Date Od collection with the second of collection with the second of collection with the second secon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                  | uc                                        |           | ter Year 1951<br>Maximum, Feb. 1951 | ter Year 1952<br>Maximum, Apr. 1952.<br>Minimum, Oct. 1951<br>June 1952 | ter Year 1953<br>Maximum, Feb. 1953<br>Minimum, Sept | tter Year 1954<br>Maximum, May 1954<br>Minimum, Oct. 1953 | <u>Pariod, Oct. 1, 1954 - Jan. 31.</u><br><u>1955</u><br>Maximum, Jan. 1955 |

| basinContinued |
|----------------|
| Grande         |
| Rio            |
| the            |
| th.            |
| streams        |
| Texas          |
| õ              |
| analyses       |
| chemical       |
| of             |
| 7Summary       |
| Table          |

(Results in milligrams per liter except as indicated)

|                                                             | i                        |                            |                               |              |                      | Mare                        |                | Ğ                          | Bi-                                        | 100                               |                                      |                  |                             |                     |                                       | Diss                                      | Dissolved solids             | Ids                | Hardness<br>as CaCO,                 | less<br>CO,                 | -so-                                 | Specific<br>con-                             |            |
|-------------------------------------------------------------|--------------------------|----------------------------|-------------------------------|--------------|----------------------|-----------------------------|----------------|----------------------------|--------------------------------------------|-----------------------------------|--------------------------------------|------------------|-----------------------------|---------------------|---------------------------------------|-------------------------------------------|------------------------------|--------------------|--------------------------------------|-----------------------------|--------------------------------------|----------------------------------------------|------------|
| 0                                                           | Date<br>of<br>collection | Mean<br>Discharge<br>(cfs) | Silica<br>(SiO <sub>s</sub> ) | Iron<br>(Fe) | Cal-<br>cium<br>(Ca) | mag-<br>ne-<br>sium<br>(Mg) | Sodium<br>(Na) | F0-<br>tas-<br>sium<br>(K) | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> ) | bon-<br>ate<br>(CO <sub>3</sub> ) | Sulfate<br>(SO <sub>4</sub> )        | Chloride<br>(Cl) | Fluo-1<br>ride ti<br>(F) (( | N1-<br>rate<br>NO3) | Ton Bo-<br>HM Ton H<br>(B) H<br>(B) H | Milli-<br>grams<br>per<br>liter<br>(mg/l) | Tons<br>per<br>acre-<br>foot | Tons<br>per<br>day | Cal-<br>cíum,<br>Mag-<br>ne-<br>stum | Non-<br>car-<br>bon-<br>ate | ad-<br>ad-<br>sorp-<br>tion<br>ratio | duct-<br>ance<br>(micro-<br>mhos at<br>25°C) | Hq         |
|                                                             |                          |                            |                               |              |                      |                             | 8-46           | 47. RIG                    | CRANDI                                     | Z AT FO                           | 8-4647. RIO GRANDE AT FORT RINGGOLD, | RIO              | GRANDE CITY,                | Y, TEX.             |                                       |                                           |                              |                    |                                      |                             |                                      |                                              |            |
| Period, Jan. 1 - Sept. 30, 1959<br>Maximum, Aug. 1959       | apt. 30, 1959            | 2130<br>6560               |                               |              | 72<br>62             | 16<br>15                    | 86<br>4.5      |                            | 146<br>160                                 | 00                                | 169<br>113                           | 66<br>45         |                             | 1.9 0<br>5.0        | 0.21                                  | 553<br>399                                | 0.75<br>.54                  | 3180<br>7070       | 246<br>215                           | 126<br>84                   | 2.4<br>1.3                           | 876<br>621                                   | 8.1<br>8.0 |
| Mater Year 1960<br>Maximum, Nov. 1959                       |                          | 862<br>1220                |                               |              | 74<br>65             | 18<br>13                    | 109<br>83      |                            | 140                                        | 00                                | 191<br>155                           | 151<br>19        |                             | $1.2 \\ 3.7$        | .21                                   | 633<br>503                                | .68                          | 1470<br>1660       | 262<br>216                           | 146                         | 2.5                                  | 1010<br>818                                  | 8.1<br>7.8 |
| Mater Year 1961<br>Maximum, Dec. 1960                       | 00                       | 587<br>4100                |                               |              | 71<br>61             | 22<br>15                    | 137<br>80      |                            | 163<br>123                                 | 00                                | 225<br>156                           | 142<br>87        |                             | 6                   | .26                                   | 725<br>488                                | 66.<br>99                    | 1150<br>5400       | 267<br>211                           | 134                         | 3.7<br>2.4                           | 1150                                         | 7.9        |
| Marer Year 1962<br>Maximum, July 1962                       | ,2                       | 1170<br>1550               | 12                            |              | 68<br>70             | 19<br>4.9                   | 119<br>78      | 5,1                        | 138<br>146                                 | 00                                | 208<br>130                           | 129<br>78        | 0.8                         | .6<br>1.9           | .27                                   | 661<br>476                                | .90<br>.65                   | 2090<br>1990       | 246<br>196                           | 132                         | 3.3                                  | 1040                                         | 7.8        |
| Water Year 1963<br>Maximum, Aug. 1963                       | 33                       | 2100<br>863                |                               |              | 70<br>67             | 18<br>15                    | 118            |                            | 139<br>135                                 | 00                                | 206<br>177                           | 128<br>122       |                             | 9.<br>9.            | .27                                   | 680<br>606                                | .92                          | 3860<br>1410       | 2.52<br>2.29                         | 138                         | 3.2<br>3.1                           | 1030                                         | 7.9        |
| Marer Year 1964<br>Maximum, Feb. 1964                       |                          | 769<br>1910                |                               |              | 72<br>64             | 19<br>9.2                   | 123<br>78      |                            | 149<br>134                                 | 00                                | 222<br>143                           | 132<br>80        |                             | .6                  | . 23                                  | 681<br>459                                | . 93                         | 1410<br>2370       | 255                                  | 133                         | 3.4                                  | 1090                                         | 7.9        |
| Water Year 1965<br>Maximum, Aug. 1965<br>Minimum, Oct. 1964 |                          | 1490<br>2510               |                               |              | 60<br>55             | 14<br>8.5                   | 82<br>51       |                            | 143<br>140                                 | 00                                | 135<br>96                            | 96<br>55         |                             | $1.2 \\ 1.9$        | .06                                   | 507<br>361                                | 69.<br>67                    | 2040<br>2450       | 206<br>173                           | 88<br>58                    | 2.5                                  | 802<br>585                                   | 7.8        |
| Water Year 1966<br>Maximum, Mar. 1966                       |                          | 821<br>3850                |                               |              | 70<br>62             | 17<br>13                    | 112<br>75      |                            | 153<br>156                                 | 00                                | 183<br>117                           | 125<br>84        |                             | 9.9                 | .22                                   | 629<br>444                                | .86<br>.60                   | 1390<br>4620       | 244<br>206                           | 120<br>78                   | 3.1                                  | 995<br>758                                   | 7.9<br>7.9 |
| Mater Year 1967<br>Maximum, June 1967<br>Minimum, Sept      | 77                       | 3180<br>45600              |                               |              | 73<br>54             | 17<br>5.6                   | 110<br>34      |                            | 159<br>128                                 | 00                                | 205<br>73                            | 113<br>39        |                             | .6<br>3.7           | .08                                   | 645<br>276                                | .38                          | 5540<br>34000      | 2.52<br>1.58                         | 122<br>52                   | 3.0                                  | 988<br>473                                   | 7,6        |
| Water Year 1968<br>Maximum, Sept. 1968                      | 168                      |                            |                               |              | 78<br>69             | 20<br>11                    | 109<br>61      |                            | 126<br>156                                 | 00                                | 223<br>125                           | 129<br>71        |                             | 2.5                 | .26                                   | 681<br>447                                | .93<br>.61                   | 16200              | 276<br>216                           | 174<br>88                   | 2.9<br>1.8                           | 1050 717                                     | 8.0<br>7.9 |
|                                                             |                          |                            |                               |              |                      |                             |                |                            |                                            |                                   |                                      |                  |                             |                     |                                       |                                           |                              |                    |                                      |                             |                                      |                                              |            |

|                                                                               |                            |                               |                      |                             |                                               | (Resul                     | ts in m                                    | illigra                                   | ams per li                    | ter except                                                     | as in   | dicated                                   | )                 |                                           |                              |                    |                                      |                             |                                       |                                              |            |
|-------------------------------------------------------------------------------|----------------------------|-------------------------------|----------------------|-----------------------------|-----------------------------------------------|----------------------------|--------------------------------------------|-------------------------------------------|-------------------------------|----------------------------------------------------------------|---------|-------------------------------------------|-------------------|-------------------------------------------|------------------------------|--------------------|--------------------------------------|-----------------------------|---------------------------------------|----------------------------------------------|------------|
|                                                                               |                            |                               |                      |                             |                                               |                            | Bi-                                        |                                           |                               |                                                                |         |                                           |                   | Dis                                       | solved                       | solids             | Hard<br>as Ca                        |                             | So-                                   | Specific<br>con-                             |            |
| Date<br>of<br>collection                                                      | Mean<br>Discharge<br>(cfs) | Silica<br>(SiO <sub>2</sub> ) | Cal-<br>cium<br>(Ca) | Mag-<br>ne-<br>sium<br>(Mg) | Sodium<br>(Na)                                | Po-<br>tas-<br>sium<br>(K) | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> ) | Car-<br>bon-<br>ate<br>(CO <sub>3</sub> ) | Sulfate<br>(SO <sub>4</sub> ) | Chloride<br>(Cl)                                               |         | Ni-<br>trate<br>(NO <sub>3</sub> )        | Bo-<br>ron<br>(B) | Milli-<br>grams<br>per<br>liter<br>(mg/1) | Tons<br>per<br>acre-<br>foot | Tons<br>per<br>day | Cal-<br>cium,<br>Mag-<br>ne-<br>sium | Non-<br>car-<br>bon-<br>ate | dium<br>ad-<br>sorp-<br>tion<br>ratio | duct-<br>ance<br>(micro-<br>mhos at<br>25°C) | рН         |
|                                                                               |                            |                               |                      |                             |                                               | 8-                         | 4655, R                                    | IO GRAN                                   | DE AT RIC                     | GRANDE CI                                                      | ry, tex | <                                         |                   |                                           |                              |                    |                                      |                             |                                       |                                              |            |
| Period, Feb. 3 - Sept. 13, 1933<br>Maximum, Apr. 6, 1933<br>Minimum, Sept. 13 |                            |                               | 99<br>73             | 37<br>19                    | 197<br>37                                     |                            | 189<br>186                                 | 0<br>0                                    | 292<br>105                    | 263<br>49                                                      |         | 6.8<br>8.7                                |                   | 1040<br>420                               | 1.41                         | 17200<br>23200     | 401<br>259                           | 246<br>106                  | 4.3<br>1.0                            | 1580<br>620                                  |            |
| M <u>ater Year 1934</u><br>Maximum, June 1934<br>Minimum, Oct. 3, 1933        |                            |                               | 133<br>54            | 59<br>8,0                   | 209<br>29                                     |                            | 168<br>171                                 | 0                                         | 172<br>35                     | 495<br>30                                                      |         | 44<br>3.1                                 | 0.27              | 14 00<br>396                              | 1,90<br>.54                  | 17500<br>46800     | 574<br>167                           | 436<br>27                   | 3.8<br>1.0                            | 2180<br>430                                  |            |
| <u>Jater Year 1935</u><br>Maximum, Mar. 1935<br>Minimum, Sept                 |                            |                               | 98<br>74             | 39<br>15                    | 171<br>40                                     |                            | 157<br>176                                 | 0<br>0                                    | 341<br>104                    | 219<br>50                                                      |         | 2.5<br>3.1                                | .25<br>.09        | 1030<br>382                               | 1.40<br>.52                  | 5980<br>30500      | 406<br>247                           | 278<br>102                  | 3.7<br>1.1                            | 1550<br>637                                  | 8.1<br>7.6 |
| <u>Water Year 1936</u><br>Maximum, Feb. 1936<br>Minimum, Sept                 |                            |                               | 100<br>39            | 34<br>12                    | $\begin{smallmatrix}139\\37\end{smallmatrix}$ |                            | 193<br>115                                 | 0<br>0                                    | 267<br>73                     | 182<br>35                                                      |         | 8,7<br>1,9                                | .17<br>.12        | 882<br>338                                | 1,20<br>.46                  | 7360<br>18600      | 388<br>147                           | 230<br>53                   | 3,1<br>1,3                            | 1340<br>506                                  | 8.0<br>8.4 |
| Water Year 1937<br>Maximum, Apr. 1937<br>Minimum, Oct. 1936                   |                            |                               | 95<br>58             | 38<br>19                    | 190<br>86                                     |                            | 142<br>104                                 | 0<br>0                                    | 309<br>168                    | 254<br>99                                                      |         | 1.9                                       |                   | $\substack{1030\\441}$                    | 1.40<br>.60                  | 5530<br>12900      | 392<br>222                           | 276<br>138                  | 4.2<br>2.5                            | 1630<br>797                                  | 7.8<br>8.3 |
| Water Year 1938<br>Maximum, Mar. 1938<br>Minimum, Sept                        |                            |                               | 100<br>57            | 37<br>10                    | 203<br>43                                     |                            | 134<br>151                                 | 0<br>0                                    | 334<br>84                     | $     \begin{array}{r}       271 \\       36     \end{array} $ |         | $\begin{array}{c} 1.9 \\ 6.8 \end{array}$ | .20               | 1100<br>346                               | 1.49<br>.47                  | 8730<br>23900      | 402<br>185                           | 292<br>62                   | 4,4<br>1,4                            | 1700<br>538                                  | 7,9<br>7.8 |
| Water Year <u>1939</u><br>Maximum, Jan. 1939<br>Minimum, Sept                 |                            |                               | 96<br>66             | 30<br>13                    | 158<br>74                                     |                            | 165<br>138                                 | 0<br>0                                    | $\frac{246}{134}$             | 206<br>80                                                      |         | $\begin{array}{c} 1.2\\ 2.5 \end{array}$  | $^{.18}_{.13}$    | 897<br>471                                | 1.22<br>.64                  | 7820<br>6070       | 364<br>220                           | 229<br>106                  | 3.6<br>2.2                            | 1380<br>747                                  | 8.2<br>8.0 |
| Water Year 1940<br>Maximum, Jan. 1940<br>Minimum, June                        |                            |                               | 96<br>51             | 34<br>6.9                   | 180<br>46                                     |                            | 175<br>118                                 | 0<br>0                                    | 268<br>88                     | 232<br>43                                                      |         | 2.5<br>2.5                                | .13               | 963<br>324                                | 1.31<br>.44                  | 6340<br>9620       | 380<br>154                           | 237<br>58                   | 4.0<br>1.6                            | 1510<br>525                                  | 8,0<br>8,3 |
| Water Year 1941<br>Maximum, July 1941<br>Minimum, Oct. 1940                   |                            |                               | 137<br>55            | 27<br>9.6                   | 157<br>61                                     |                            | 149<br>132                                 | 0<br>0                                    | 357<br>109                    | 214<br>57                                                      |         | $8.7 \\ 1.9$                              | .15<br>.15        | 1060<br>382                               | 1.44<br>.52                  | 26500<br>7910      | 452<br>176                           | 330<br>68                   | 3.2<br>2.0                            | 1570<br>619                                  | 7.8        |
| Water Year 1942<br>Maximum, Dec. 1941<br>Minimum, Sept. 1942                  |                            |                               | 179<br>61            | 63<br>9.5                   | 34.4<br>58                                    |                            | 154<br>149                                 | 0                                         | 580<br>110                    | 514<br>60                                                      |         | 3.1<br>3.1                                | .25<br>.11        | $1900 \\ 419$                             | 2.59<br>.57                  | 31800<br>34600     | 705<br>192                           | 579<br>70                   | $5.6 \\ 1.8$                          | 2820<br>656                                  | 7.8<br>7.8 |
| Water Year 1943<br>Maximum, Feb. 1943<br>Minimum, Oct. 1942                   |                            |                               | 121<br>76            | 42<br>14                    | 230<br>78                                     |                            | 131<br>158                                 | 0<br>0                                    | 413<br>158                    | 313<br>90                                                      |         | 3.1<br>3.1                                | .25<br>.13        | 1270<br>551                               | 1.73<br>.75                  | 11600<br>23200     | 474<br>247                           | $\frac{368}{118}$           | 4.6<br>2.2                            | 1940<br>850                                  | 7,9<br>7.8 |
| Water Year 1944<br>Maximum, Apr. 1944<br>Minimum, Aug                         |                            |                               | 89<br>49             | 38<br>7.9                   | 227<br>47                                     |                            | 124<br>118                                 | 0<br>0                                    | 313<br>94                     | 314<br>45                                                      |         | 1.9                                       | .22<br>.11        | 1120<br>338                               | 1.53                         | 4960<br>18800      | 376<br>156                           | 274<br>60                   | 5.1<br>1.6                            | 1790<br>527                                  | 8,2<br>7.8 |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |                |  |           |            | Ê          | _          |         |            |            |                            |            |      | Dis         | Dissolved solids | olids           | Hardness<br>as CaCO <sub>3</sub> | ness<br>aCO <sub>3</sub> | Ś          | Specific     | 0                    |                       |  |                                           |                              |                    |                                      |  |                                       |                                            |      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----------------|--|-----------|------------|------------|------------|---------|------------|------------|----------------------------|------------|------|-------------|------------------|-----------------|----------------------------------|--------------------------|------------|--------------|----------------------|-----------------------|--|-------------------------------------------|------------------------------|--------------------|--------------------------------------|--|---------------------------------------|--------------------------------------------|------|
| IOV          IOV         IOV         IOV         IOV         IOV         IOV         IOV         IOV <th <="" colspan="10" th=""><th></th><th>Mean<br/>Discharge<br/>(cfs)</th><th>(SIO2</th><th>(Fe)</th><th></th><th><br/></th><th></th><th></th><th>(CO3)</th><th></th><th></th><th>Fluo-<br/>ride<br/>(F)</th><th>N1-<br/>trate<br/>(NO3)</th><th></th><th>Milli-<br/>grams<br/>per<br/>liter<br/>(mg/l)</th><th>Tons<br/>per<br/>acre-<br/>foot</th><th>Tons<br/>per<br/>day</th><th>Cal-<br/>cium,<br/>Mag-<br/>ne-<br/>stum</th><th></th><th>dium<br/>ad-<br/>sorp-<br/>tion<br/>ratio</th><th>duct-<br/>ance<br/>(micro<br/>mhos a<br/>25°C)</th><th>pH .</th></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <th></th> <th>Mean<br/>Discharge<br/>(cfs)</th> <th>(SIO2</th> <th>(Fe)</th> <th></th> <th><br/></th> <th></th> <th></th> <th>(CO3)</th> <th></th> <th></th> <th>Fluo-<br/>ride<br/>(F)</th> <th>N1-<br/>trate<br/>(NO3)</th> <th></th> <th>Milli-<br/>grams<br/>per<br/>liter<br/>(mg/l)</th> <th>Tons<br/>per<br/>acre-<br/>foot</th> <th>Tons<br/>per<br/>day</th> <th>Cal-<br/>cium,<br/>Mag-<br/>ne-<br/>stum</th> <th></th> <th>dium<br/>ad-<br/>sorp-<br/>tion<br/>ratio</th> <th>duct-<br/>ance<br/>(micro<br/>mhos a<br/>25°C)</th> <th>pH .</th> |   |                |  |           |            |            |            |         |            |            | Mean<br>Discharge<br>(cfs) | (SIO2      | (Fe) |             | <br>             |                 |                                  | (CO3)                    |            |              | Fluo-<br>ride<br>(F) | N1-<br>trate<br>(NO3) |  | Milli-<br>grams<br>per<br>liter<br>(mg/l) | Tons<br>per<br>acre-<br>foot | Tons<br>per<br>day | Cal-<br>cium,<br>Mag-<br>ne-<br>stum |  | dium<br>ad-<br>sorp-<br>tion<br>ratio | duct-<br>ance<br>(micro<br>mhos a<br>25°C) | pH . |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |                |  |           |            |            | RIO GRA    | ANDE AT | RIO        | CITY,      | L Cont                     | Linued     |      |             |                  |                 |                                  |                          |            |              |                      |                       |  |                                           |                              |                    |                                      |  |                                       |                                            |      |
| 0.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Mater Year 1945<br>Maximum, Dec. 1944                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |                |  | 100       | 191<br>75  |            | 174        |         | 282<br>143 | 256<br>86  |                            |            | 0.20 | 1010<br>515 | 1.38             | 804.0<br>1.7100 | 380<br>242                       | 238<br>110               | 4.3<br>2.1 | 1590         | 7.9                  |                       |  |                                           |                              |                    |                                      |  |                                       |                                            |      |
| 19.1 :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Water Year 1946<br>Maximum, Mar. 1946                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |   |                |  | 98<br>51  |            |            | 123<br>126 |         | 366<br>95  | 349<br>68  |                            | 4.3<br>5.6 | . 25 | 1250<br>397 | 1.70             | 6310<br>8150    | 415<br>163                       | 314<br>60                |            | 1960<br>621  | 7.9                  |                       |  |                                           |                              |                    |                                      |  |                                       |                                            |      |
| state         10         1         5.403         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10 </td <td>Period. Det. 1, 1942 - June 30,<br/>1942<br/>Maximum, Apr. 1947</td> <td></td> <td></td> <td></td> <td>78<br/>51</td> <td>174<br/>62</td> <td></td> <td>123<br/>113</td> <td></td> <td>260<br/>100</td> <td>233<br/>74</td> <td></td> <td>6.2<br/>3.7</td> <td>. 09</td> <td>971<br/>412</td> <td>1.32</td> <td>4060<br/>7200</td> <td>312<br/>172</td> <td>211<br/>78</td> <td>4.3<br/>2.1</td> <td>1440</td> <td>7.9<br/>8.1</td>                                                                                                                | Period. Det. 1, 1942 - June 30,<br>1942<br>Maximum, Apr. 1947                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |   |                |  | 78<br>51  | 174<br>62  |            | 123<br>113 |         | 260<br>100 | 233<br>74  |                            | 6.2<br>3.7 | . 09 | 971<br>412  | 1.32             | 4060<br>7200    | 312<br>172                       | 211<br>78                | 4.3<br>2.1 | 1440         | 7.9<br>8.1           |                       |  |                                           |                              |                    |                                      |  |                                       |                                            |      |
| Tetter, 10, 103         Tester, 103 <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>1-4692.</td><td></td><td>ANDE BELOW</td><td></td><td></td><td>zx.</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |   |                |  |           |            |            | 1-4692.    |         | ANDE BELOW |            |                            | zx.        |      |             |                  |                 |                                  |                          |            |              |                      |                       |  |                                           |                              |                    |                                      |  |                                       |                                            |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ariod, Mar. 1 - Sept. 30, 1959<br>Maximum, Aug. 1959                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | 21             |  | 80        | 143<br>71  | 5.1        |            |         | 206<br>134 | 194<br>87  | 0.6                        | 01         | 0.34 | 765<br>520  | 1.04             | 31.0<br>5380    | 286<br>234                       | 173                      | 3.7<br>2.0 | 1230<br>796  | 8.0<br>7.8           |                       |  |                                           |                              |                    |                                      |  |                                       |                                            |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ater Year 1960<br>Maximum, Mar. 1960                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | <sup>∞</sup> ا |  | 119<br>63 | 274<br>98  |            |            |         | 324<br>185 | 394<br>117 | . 9                        | 9.9        | .62  | 1290<br>613 | 1.75             | 3180<br>3540    | 442<br>250                       | 294<br>138               |            | 2090<br>960  | 7.9                  |                       |  |                                           |                              |                    |                                      |  |                                       |                                            |      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Lter Year 1961<br>Maximum, Nov. 1960<br>Minimum, Sept. 1961                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |   | 11             |  | 116<br>67 | 272<br>120 | 11         | 183<br>128 |         | 317<br>180 | 394<br>153 | . 11                       | 8<br>9     | .67  | 1310<br>632 | 1.78             | 2400<br>5100    | 430<br>249                       | 280<br>144               | 5.7        | 2080<br>1040 | 8.0<br>8.0           |                       |  |                                           |                              |                    |                                      |  |                                       |                                            |      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tter Year 1962<br>Maximum, July 1962<br>Minimum, Jan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | 16<br>13       |  | 100       | 283<br>111 | 5.5        |            |         | 336<br>195 | 383<br>131 | 8.8                        | 9.         | .17  | 1280<br>633 | 1.74             | 3370<br>3520    | 383<br>255                       | 260<br>142               | 6.3<br>3.0 | 2060<br>1020 | 7,9                  |                       |  |                                           |                              |                    |                                      |  |                                       |                                            |      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | trer Year 1963<br>Maximum, July 1963                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |   | 14             |  | 99<br>83  | 234<br>121 | 6.6        |            |         | 304<br>203 | 311<br>145 | 1.0                        | 3.1<br>a   | .22  | 1110<br>662 | 1.51             | 1960<br>5450    | 369<br>275                       | 245<br>147               | 5.5<br>5.9 | 1760         | 7.8<br>8.0           |                       |  |                                           |                              |                    |                                      |  |                                       |                                            |      |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | tter Year 1964<br>Maximum, Aug. 1964<br>Minimum, May                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | - | 11             |  | 81        | 209        | 1 1        | 131<br>146 |         | 298<br>203 | 255<br>135 | E E                        | а<br>. б   | .35  | 990<br>663  | 1.35             | 1790<br>2920    | 315<br>256                       | 208<br>136               |            | 1570         | 8.1<br>7.8           |                       |  |                                           |                              |                    |                                      |  |                                       |                                            |      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Maximum, Mar. 1965                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |   | 11             |  | 81        | 163<br>74  | 1.1        | 165<br>128 |         | 111<br>161 | 218<br>85  | 11                         | .6         | .41  | 790<br>442  | 1.07             | 2350<br>1980    | 280<br>177                       | 145                      |            | 1280<br>715  | 7.8                  |                       |  |                                           |                              |                    |                                      |  |                                       |                                            |      |
| 196                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ter Year 1966<br>Maximum, Feb. 1966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | 11             |  | 93<br>61  | 218<br>93  | 1 I<br>1 I | 159<br>134 |         | 261<br>156 | 291<br>106 | 11                         | а<br>.6    | .17  | 1040<br>535 | 1.41             | 2550<br>12300   | 336<br>216                       | 206<br>106               |            | 1670<br>861  | 7.8                  |                       |  |                                           |                              |                    |                                      |  |                                       |                                            |      |
| 1967                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ler Year 1967<br>Maximum, Oct. 1966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3 | ;;;            |  | 91<br>53  |            | 1 ;        | 156<br>131 |         | 288<br>81  | 322<br>41  | 11                         | .6         | .65  | 1100<br>295 | 1.50             | 2670<br>24900   | 333<br>156                       | 206<br>49                | 5.8<br>1.4 | 1770         | 7.8<br>8.0           |                       |  |                                           |                              |                    |                                      |  |                                       |                                            |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ter Year 1968<br>Maximum, Nov. 1967                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |   | 11             |  | 119<br>74 | 219<br>84  | 1.1        | 186<br>159 |         | 268<br>134 | 324<br>106 | 11                         | 5.6        | .48  | 1130<br>534 | 1.54<br>.73      | 11800<br>24500  | 406<br>230                       | 254                      | 4.7        | 1800<br>869  | 7.7                  |                       |  |                                           |                              |                    |                                      |  |                                       |                                            |      |

- 77 -

a Less than 0.4 milligram per liter

|                                                                            |                            |                                               |                      |                             |                                        |                            | Bi-                                            | -                                         |                               |                  |        |                                    |            | Dis                                       | ssolved s                    | olids              | Hard<br>as Ca                        |                             | S0-                                   | Specific                                     | -          |
|----------------------------------------------------------------------------|----------------------------|-----------------------------------------------|----------------------|-----------------------------|----------------------------------------|----------------------------|------------------------------------------------|-------------------------------------------|-------------------------------|------------------|--------|------------------------------------|------------|-------------------------------------------|------------------------------|--------------------|--------------------------------------|-----------------------------|---------------------------------------|----------------------------------------------|------------|
| Date<br>of<br>collection                                                   | Mean<br>Discharge<br>(cfs) | Silica<br>(SiO <sub>2</sub> )                 | Cal-<br>cium<br>(Ca) | Mag-<br>ne-<br>sium<br>(Mg) | Sodium<br>(Na)                         | Po-<br>tas-<br>sium<br>(K) | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> )     | Car-<br>bon-<br>ate<br>(CO <sub>3</sub> ) | Sulfate<br>(SO <sub>4</sub> ) | Chloride<br>(Cl) | ride   | Ni-<br>trate<br>(NO <sub>3</sub> ) |            | Milli-<br>grams<br>per<br>liter<br>(mg/l) | Tons<br>per<br>acre-<br>foot | Tons<br>per<br>day | Cal-<br>cium,<br>Mag-<br>ne-<br>sium | Non-<br>car-<br>bon-<br>ate | dium<br>ad-<br>sorp-<br>tion<br>ratio | duct-<br>ance<br>(micro-<br>mhos at<br>25°C) |            |
|                                                                            |                            |                                               | <br>                 |                             |                                        | RIO                        | GRANDE /                                       | AT MISS                                   | ION PUMPI                     | NG PLANT, N      | EAR M  | ISSION,                            | TEX.       |                                           |                              |                    |                                      |                             |                                       |                                              |            |
| <u>Mater Year 1947</u><br>Maximum, May 9-11, 1947<br>Minimum, June 21-30   |                            |                                               | 167<br>54            | 62<br>10                    | 225<br>35                              |                            | 110<br>124                                     | 0<br>0                                    | 669<br>74                     | 265<br>50        |        | $^{1.8}_{4.0}$                     |            | 1440<br>333                               |                              |                    | 672<br>176                           | 582<br>74                   | 3.8<br>1.1                            | 2170<br>522                                  |            |
| <u>∛ater Year 1948</u><br>Maximum, Mar. 11-20, 1948<br>Minimum, June 28-30 |                            | 31<br>20                                      | 96<br>33             | 34<br>3.1                   | 181<br>35                              |                            | 165<br>134                                     | 0<br>0                                    | 304<br>29                     | 225<br>19        |        | 4.0<br>4.2                         |            | 956<br>209                                | 1.30<br>.28                  |                    | 380<br>95                            | 244<br>0                    | 4.0<br>1.6                            | 1550<br>319                                  | 11         |
| Mater Year 1949<br>Maximum, Feb. 20-25, 1949<br>Minimum, Mar 1-5           |                            | $\begin{smallmatrix}&21\\13\end{smallmatrix}$ | 98<br>46             | 32<br>8.5                   | 205<br>44                              |                            | 178<br>112                                     | 0<br>0                                    | 295<br>73                     | 258<br>53        |        | 4.8<br>4.2                         | 0.48       | 1000<br>315                               | 1.36<br>.43                  |                    | 376<br>150                           | 230<br>58                   | 4.6<br>1.6                            | 1640<br>501                                  | 8.0        |
| M <u>ater Year 1950</u><br>Maximum, May 1-13, 1950<br>Minimum, May 28-31   |                            | 22<br>13                                      | 86<br>52             | 37<br>13                    | 249<br>66                              |                            | 143<br>124                                     | 0<br>0                                    | 290<br>114                    | 345<br>73        |        | 2.8<br>4.4                         |            | 1100<br>396                               | 1.50<br>.54                  |                    | 366<br>183                           | 250<br>82                   | 5.7<br>2.1                            | 1870<br>678                                  |            |
|                                                                            |                            | anata                                         | <br>                 |                             |                                        |                            | 8-4720.                                        | RIO GI                                    | RANDE AT E                    | UENOS AIRES      | 5, ТАМ | AULI PAS                           |            |                                           |                              |                    |                                      |                             |                                       |                                              |            |
| Period, May - Sept. 1943<br>Maximum, May 1943<br>Minimum, June             |                            |                                               | 82<br>65             | 28<br>15                    | 161<br>91                              |                            | 115<br>124                                     | 0<br>0                                    | 254<br>153                    | 224<br>114       |        | 2.5                                | .20        | 875<br>551                                | 1,19<br>.75                  | 6830<br>7590       | 321<br>224                           | 226<br>122                  | 3.9<br>2.6                            | 1390<br>879                                  | 7,9<br>8,1 |
| Period, Oct. 1943 - Aug. 1944<br>Maximum, Apr. 1944<br>Minimum, Aug        |                            |                                               | 90<br>55             | 35<br>9.7                   | $\begin{array}{c} 218\\51 \end{array}$ |                            | 131<br>137                                     | 0<br>0                                    | $\frac{319}{100}$             | 296<br>49        |        | 1,9                                | .23<br>.09 | 1100<br>375                               | 1.49<br>.51                  | 2290<br>12400      | 368<br>176                           | 261<br>64                   | $4.9 \\ 1.7$                          | 1740<br>580                                  | 8.0<br>7.9 |
|                                                                            |                            |                                               |                      |                             |                                        |                            | 8-4730                                         | , RIO (                                   | GRANDE AT                     | LAS PALMAS       | ΤΑΜΑ   | ULI PAS                            |            |                                           |                              |                    |                                      |                             |                                       |                                              |            |
| Period, Nov. 1945 - Sept. 1946<br>Maximum, Mar. 1946<br>Minimum, June      |                            |                                               | 108<br>52            | 38<br>7.8                   | 229<br>52                              |                            | $\begin{smallmatrix}170\\131\end{smallmatrix}$ | 0<br>0                                    | 342<br>85                     | 309<br>57        |        | $1.9 \\ 4.3$                       | .21        | 1200<br>360                               | 1.63<br>.49                  | 3340<br>7040       | 426<br>160                           | 288<br>54                   | 4.8<br>1.8                            | 1900<br>574                                  | 7.9<br>7.9 |
| Water Year 1947<br>Maximum, Apr. 1947<br>Minimum, Aug                      |                            |                                               | 74<br>50             | $\frac{27}{9,1}$            | 170<br>51                              |                            | 113<br>119                                     | 0                                         | 251<br>102                    | 224<br>51        |        | 3.7<br>3.1                         | .26<br>.13 | 882<br>360                                | 1.20<br>.49                  | 2310<br>7380       | 296<br>162                           | 203<br>64                   | 4.3<br>1.7                            | 1390<br>568                                  | 7,8<br>7,8 |
| Mater Year 1948<br>Maximum, Feb. 1948<br>Minimum, Sept                     |                            |                                               | 83<br>49             | 28<br>8.6                   | 160<br>46                              |                            | 154<br>122                                     | 0<br>0                                    | 255<br>88                     | 203<br>44        |        | 2.5<br>3.7                         | .20        | 875<br>324                                | 1.19<br>.44                  | 4110<br>11500      | 323<br>157                           | 196<br>57                   | $3.9 \\ 1.6$                          | 1380<br>537                                  | 8.1<br>8.0 |

|                                              |                            |                               |              |                      |                      |                |                              |                                            |                                   |                  |                                          |                      |                      |       | Dlaso                                            | Dissolved solids             | lds                | Hardness<br>as CaCO <sub>3</sub>     | CO.                  | s'                                    | Specific<br>con-                             |
|----------------------------------------------|----------------------------|-------------------------------|--------------|----------------------|----------------------|----------------|------------------------------|--------------------------------------------|-----------------------------------|------------------|------------------------------------------|----------------------|----------------------|-------|--------------------------------------------------|------------------------------|--------------------|--------------------------------------|----------------------|---------------------------------------|----------------------------------------------|
| Date<br>of<br>collection                     | Mean<br>Discharge<br>(cfs) | Silica<br>(SIO <sub>2</sub> ) | Iron<br>(Fe) | Cal-<br>ctum<br>(Ca) | mag-<br>sium<br>(Mg) | Sodium<br>(Na) | Fo-<br>tas-<br>sium<br>(K) ( | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> ) | bon-<br>ate<br>(CO <sub>3</sub> ) | Sulfate<br>(SO4) | Chloride<br>(Cl)                         | Fluo-<br>ride<br>(F) | N1-<br>rate<br>N0_3) | (B) F | M41111-<br>grams<br>per<br>1 iter<br>f<br>f<br>f | Tons<br>per<br>acre-<br>foot | Tons<br>per<br>day | Cal-<br>cium,<br>Mag-<br>ne-<br>stum | Non-<br>car-<br>bon- | dium<br>ad-<br>sorp-<br>tion<br>ratio | duct-<br>ance<br>(micro-<br>mhos at<br>25°C) |
|                                              |                            |                               |              |                      |                      |                | 80                           | -4737.                                     | RIO GRA                           | NDE NEAR         | 8-4737, RIO GRANDE NEAR SAN BENITO, TEX. | D, TEX.              |                      |       |                                                  |                              |                    | Ī                                    |                      |                                       |                                              |
| Water Year 1938                              |                            |                               |              |                      |                      |                |                              | 3                                          |                                   |                  |                                          |                      |                      |       |                                                  |                              |                    |                                      |                      |                                       |                                              |
| Maximum, May 13, 1938                        |                            |                               |              | 104                  | 29                   |                |                              | 119                                        | 0                                 | 283              | 234                                      |                      | ł                    |       | ł                                                |                              |                    | 381                                  | ł                    | 3.5                                   | ł                                            |
| Minimum, July 28                             | 3                          |                               |              | 52                   | 8.9                  | 21             |                              | 146                                        | 0                                 | 45               | 30                                       |                      | 4.7                  |       | 1                                                |                              |                    | 168                                  | ł                    | 1-1                                   | ł                                            |
| <u>Water Year 1939</u><br>Maximum Mav 6 1919 |                            |                               |              | 176                  | 67                   | 6796           |                              | 146                                        | c                                 | 600              | 300                                      |                      | ;                    |       | 1440                                             |                              |                    | 079                                  |                      | 2.1                                   |                                              |
| the second of the second                     |                            |                               |              | -                    | 1                    | 4 -            |                              | 1                                          | 2                                 |                  |                                          |                      |                      |       |                                                  |                              |                    | 2                                    |                      | 1                                     |                                              |
| Minimum, May 16                              | 2                          |                               |              | 65                   | 9.2                  | 97             |                              | 134                                        | 0                                 | 74               | 20                                       |                      | 1                    |       | 324                                              |                              |                    | 186                                  |                      | 1.5                                   |                                              |
| Water Year 1942                              |                            |                               |              |                      |                      |                |                              |                                            |                                   |                  |                                          |                      |                      |       |                                                  |                              |                    |                                      |                      |                                       |                                              |
| imum, Feb. 27, 1942                          |                            |                               |              | 188                  | 72                   | 356            |                              | 162                                        | 0                                 | 625              | 535                                      |                      | 1.0                  |       | 1860                                             |                              |                    | 765                                  | 632                  | 9.6                                   | 2950                                         |
| Minimum, May 3                               | a                          |                               |              | 110                  | 6.9                  | 2.58           |                              | 184                                        | 0                                 | 365              | 34.0                                     |                      | 1.2                  |       | 1210                                             |                              |                    | 452                                  | 300                  | 5,3                                   | 0%61                                         |
| Water Year 1943                              |                            |                               |              |                      |                      |                |                              |                                            |                                   |                  |                                          |                      |                      |       |                                                  |                              |                    |                                      |                      |                                       |                                              |
| imum, May 16-17, 1943                        |                            |                               |              | 241                  | 16                   | 391            |                              | 142                                        | 0                                 | 1030             | 450                                      |                      | 4.0                  |       | 2280                                             |                              |                    | 976                                  | 860                  | 5.4                                   | 3240                                         |
| Minimum, May 28-31                           |                            |                               |              | 58                   | 15                   | 67             |                              | 126                                        | 0                                 | 123              | 83                                       |                      | 3.0                  |       | 411                                              |                              |                    | 206                                  | 10.5                 | 0 0                                   | 756                                          |

| R1-                                | 1                                          | _   |                                                 |                         |                                         |                                                |                                              | Dissolved solids     | solids             | Hardness<br>as CaCO <sub>3</sub>                                                                                    |                                           | So- Specific                                        | fle              |
|------------------------------------|--------------------------------------------|-----|-------------------------------------------------|-------------------------|-----------------------------------------|------------------------------------------------|----------------------------------------------|----------------------|--------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------------------------|------------------|
|                                    | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> ) |     | Car-<br>bon- Su<br>ate (S<br>(CO <sub>3</sub> ) | Sulfate Chl<br>(SO4) (( | Chloride Fluo-<br>tride (<br>(C1) (F) ( | NI- Bo-<br>trate ron<br>(NO <sub>3</sub> ) (B) | 3) milli-<br>grams<br>per<br>liter<br>(mg/l) | Tons<br>per<br>acre- | Tons<br>per<br>day | Cal-<br>Cal-<br>Mag-<br>b<br>b<br>b<br>b<br>b<br>b<br>b<br>b<br>b<br>b<br>b<br>b<br>b<br>b<br>b<br>b<br>b<br>b<br>b | Non- ad<br>car- gou<br>bon- th<br>bon- ra | dium duct-<br>ad-<br>sorp-<br>tion mhos at<br>z5°C) | t-<br>e pH<br>at |
| 8-4750. RIO GRANDE AT BROWNSVILLE, | 8-4750. RIO                                |     | GRANDE                                          | AT BROWNSY              | VILLE, TEX.                             |                                                |                                              |                      |                    |                                                                                                                     |                                           |                                                     |                  |
| 141 0                              |                                            |     | - 64                                            | 065                     | 247                                     | 3.1                                            | 1300                                         | 0 1.77<br>4 .78      | 3290               | 515 4                                                                                                               | 400 4.1                                   | 1 1870                                              |                  |
| 178 0<br>178 0                     |                                            | 0.0 | 30                                              | 304<br>73               | 210<br>32                               | 5.6 0.22<br>8.7                                |                                              | 985 1.34<br>338 .46  | 1280<br>17800      | 861<br>861                                                                                                          | 254 3.<br>52 1.                           | 3.5 1520<br>1.1 532                                 | 0 7.8<br>2 7.7   |
| 176 0<br>76 0                      |                                            | ~ ~ | 26<br>10                                        | 262<br>100              | 181<br>52                               | 8.9<br>6.                                      | .22 8                                        | 897 1.22<br>419 .57  | 5720<br>10800      | 371                                                                                                                 | 226 3.<br>67 L                            | 3.2 1360<br>1.9 651                                 | 0 7.9<br>1 8.6   |
| 145 0<br>82 0                      |                                            | 0.0 | 35                                              | 350<br>114              | 231<br>57                               | 0.9                                            | .12 10                                       | 1040 1.42<br>441 .60 | 5030<br>11400      | 424<br>145                                                                                                          | 306 3.<br>78 2.                           | 3.9 1620<br>2.0 694                                 | 0 7.8<br>4 8.6   |
| 220 0<br>135 0                     |                                            | 0.0 | 55                                              | 584<br>135              | 16<br>91                                | 5 0 7                                          | 3.4                                          | 11                   | :;                 | 678 2<br>213                                                                                                        | 498 4<br>102 2                            | 4.6 2420<br>2.0 795                                 |                  |
| 168 0<br>124 0                     |                                            | 0.0 | 3(                                              | 308<br>126              | 260<br>92                               | 3.8                                            | 11                                           | н с<br>1 г           | 11                 | 380<br>201                                                                                                          | 242 4<br>100 2                            | 4.6 1650<br>2.3 722                                 | 11               |

| (mg/1)         100f         slum         ate         ate         ate           533         0.73          231         104         2.4           533         0.73          231         104         2.4           533         0.73          231         106         2.0           539         1.10         5.02         237         38         4.0           922         .71         4.42         2.24         8.4         2.6           927         1.06         2.06         316         4.6         4.6           507         .69         2.46         205         18         2.7           507         .69         2.06         315         4.6         4.6           507         .69         2.05         18         2.7         4.6 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.73<br>.65<br>.65<br>.71<br>.71<br>.4,62<br>.69<br>2,600<br>.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 1,10<br>.71<br>.69<br>.69                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 779<br>507<br>449                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 60.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 05 821                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| C 61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 76 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 115                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 95.I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Minimum Auto 1942                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

Table 8 .-- Summary of chemical analyses at selected sites on the Rio Grando in New Mexico

- 81 -

### Table & -- Summary of chemical analyses at selected sites on the Rio Grande in New Mexico--Continued

|                                                                         |                            |                               | <br>                 |                                                                                                   |                       | (Resul                     | ts in m                                    | illigr                                    | ams per 1                                | iter except           | as in   | dicated                            | 1)                |                                                                               |                              |                    |                                      |                                                                                |                                       |                                     |                          |
|-------------------------------------------------------------------------|----------------------------|-------------------------------|----------------------|---------------------------------------------------------------------------------------------------|-----------------------|----------------------------|--------------------------------------------|-------------------------------------------|------------------------------------------|-----------------------|---------|------------------------------------|-------------------|-------------------------------------------------------------------------------|------------------------------|--------------------|--------------------------------------|--------------------------------------------------------------------------------|---------------------------------------|-------------------------------------|--------------------------|
|                                                                         |                            |                               |                      |                                                                                                   |                       |                            | Bi-                                        |                                           |                                          |                       |         |                                    |                   | Di                                                                            | ssolved a                    | solids             | Hard<br>as C                         |                                                                                | So-                                   | Specific<br>con-                    |                          |
| Date<br>of<br>collection                                                | Mean<br>Discharge<br>(cfs) | Silica<br>(SiO <sub>2</sub> ) | Cal-<br>cium<br>(Ca) | Mag-<br>ne-<br>sium<br>(Mg)                                                                       | Sodium<br>(Na)        | Po-<br>tas-<br>sium<br>(K) | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> ) | Car-<br>bon-<br>ate<br>(CO <sub>3</sub> ) | Sulfate<br>(SO <sub>4</sub> )            | Chloride<br>(Cl)      |         | Ni–<br>trate<br>(NO <sub>3</sub> ) | Bo-<br>ron<br>(B) | Milli-<br>grams<br>per<br>liter<br>(mg/1)                                     | Tons<br>per<br>acre-<br>foot | Tons<br>per<br>day | Cal-<br>cium,<br>Mag-<br>ne-<br>sium | Non-<br>car-<br>bon-<br>ate                                                    | dium<br>ad-<br>sorp-<br>tion<br>ratio | duct-<br>ance<br>(micro-<br>mbos at | pH                       |
|                                                                         |                            |                               |                      |                                                                                                   |                       | 8-36                       | 35. RIG                                    | GRAND                                     | E AT LEAS                                | BURG DAM, N           | IEW MEX | 100                                |                   |                                                                               |                              |                    |                                      |                                                                                |                                       |                                     |                          |
| <u>Period, Jan Sept. 1939</u><br>Maximum, Jan. 1939<br>Minimum, July    |                            |                               | 119<br>63            | 22<br>15                                                                                          | 140<br>83             |                            | 208<br>164                                 | 0<br>0                                    | 294<br>178                               | 126<br>51             |         | 0.6                                | 0.18              | 868<br>522                                                                    | 1.18<br>.71                  |                    | 386<br>216                           | 215<br>82                                                                      | 3.1<br>2.5                            |                                     | 8.2<br>8.1               |
| <u>Water Year 1940</u><br>Maximum, Jan. 1940<br>Minimum, Apr<br>June    |                            |                               | 108<br>75<br>75      | 19<br>17<br>17                                                                                    | 286<br>98<br>100      |                            | 278<br>173<br>177                          | 0<br>0<br>0                               | 266<br>219<br>222                        | 360<br>69<br>67       |         | .6<br><br>.6                       | ,28<br>,15<br>,18 | $     \begin{array}{r}       1260 \\       618 \\       618     \end{array} $ | 1,71<br>,84<br>,84           |                    | 346<br>257<br>258                    | $     \begin{array}{r}       118 \\       115 \\       113     \end{array}   $ | 6.7<br>2.7<br>2.7                     | 932                                 | 8.0<br>8.0<br>8.3        |
| <u>Water Year 1941</u><br>Maximum, Dec. 1940<br>Minimum, Sept. 1941     |                            |                               | 117<br>64            | 24<br>13                                                                                          | 155<br>77             |                            | 228<br>155                                 | 0<br>0                                    | 329<br>168                               | 133<br>55             |         | .6<br>1.9                          | .19<br>.16        | 949<br>507                                                                    | 1.29                         |                    | 388<br>213                           | 202<br>86                                                                      | 3.4<br>2.3                            |                                     | 7.9<br>7.9               |
| Water Year 1942<br>Maximum, Jan. 1942<br>Minimum, July<br>Aug.<br>Sept. |                            |                               | 96<br>59<br>58<br>59 | $     \begin{array}{c}       18 \\       11 \\       11 \\       11 \\       11     \end{array} $ | 129<br>58<br>56<br>59 |                            | 220<br>150<br>157<br>160                   | 0<br>0<br>0                               | 241<br>144<br>138<br>137                 | 117<br>34<br>36<br>38 |         | .6<br>.6<br>.6                     | .07<br>.06<br>.10 | 772<br>419<br>419<br>419                                                      | 1.05<br>.57<br>.57<br>.57    |                    | 314<br>191<br>190<br>193             | 134<br>68<br>61<br>62                                                          | 3.2<br>1.8<br>1.8<br>1.8              | 647<br>636                          | 7.8<br>7.8<br>7.9<br>8.0 |
| <u>Water Year 1943</u><br>Maximum, Jan. 1943<br>Minimum, July           |                            |                               | 99<br>62             | 19<br>11                                                                                          | 110<br>64             |                            | 228<br>167                                 | 0                                         | 248<br>139                               | 89<br>48              |         | .6<br>1.9                          | .13<br>.09        | 743<br>441                                                                    | 1,01<br>.60                  |                    | 326<br>200                           | 138<br>64                                                                      | 2.7<br>2.0                            |                                     | 7.8<br>8.0               |
| <u>Water Year 1944</u><br>Maximum, Jan. 1944<br>Minimum, Mar<br>Apr     |                            |                               | 102<br>66<br>67      | 19<br>13<br>13                                                                                    | 131<br>73<br>74       |                            | 229<br>178<br>178                          | 0<br>0<br>0                               | 266<br>158<br>161                        | 118<br>51<br>50       |         | .6<br>                             | .17<br>.14<br>.13 | 816<br>485<br>485                                                             | 1.11<br>.66<br>.66           |                    | 333<br>221<br>221                    | 146<br>76<br>76                                                                | $\substack{3.1\\2.1\\2.2}$            | 749                                 | 7.9<br>7.8<br>7.8        |
| Water Year 1945<br>Maximum, Jan. 1945<br>Minimum, Mar                   |                            |                               | 100<br>67            | $\frac{21}{13}$                                                                                   | 134<br>73             |                            | 217<br>179                                 | 0<br>0                                    | $\begin{array}{c} 297\\ 159 \end{array}$ | 110<br>50             |         | . 6                                | .20<br>.08        | 831<br>485                                                                    | 1.13                         |                    | 338<br>220                           | 160<br>73                                                                      | 3.2<br>2.1                            |                                     | 7.8<br>7.8               |
| <u>Water Year 1946</u><br>Maximum, Jan. 1946<br>Minimum, Mar<br>May     |                            |                               | 108<br>65<br>63      | $\begin{smallmatrix}&2&1\\&1&3\\&1&3\end{smallmatrix}$                                            | 130<br>74<br>75       |                            | 242<br>176<br>172                          | 0<br>0<br>0                               | 288<br>159<br>162                        | 106<br>52<br>52       |         | .6                                 | .16<br>.18<br>.12 | 838<br>485<br>485                                                             | 1.14<br>.66<br>.66           |                    | 357<br>212<br>214                    | 158<br>70<br>70                                                                | 3.0<br>2.2<br>2.2                     | 755                                 | 7.8<br>8.2<br>7.9        |
| <u>Water Year 1947</u><br>Maximum, Jan, 1947<br>Minimum, Apr<br>June    |                            |                               | 109<br>67<br>65      | 23<br>15<br>16                                                                                    | 138<br>88<br>89       |                            | 245<br>181<br>174                          | 0<br>0<br>0                               | 303<br>185<br>193                        | 111<br>62<br>64       |         | , 6<br><br>. 6                     | ,08<br>.04<br>.16 | 875<br>559<br>559                                                             | 1.19<br>.76<br>.76           |                    | 366<br>228<br>228                    | 164<br>80<br>84                                                                | 3.1<br>2.5<br>2.6                     |                                     | 7.8<br>7.9<br>7.9        |
| Water Year 1948<br>Maximum, Feb. 1948<br>Minimum, Sept                  |                            |                               | 107<br>66            | 24<br>14                                                                                          | 147<br>74             |                            | 223<br>180                                 | 0<br>0                                    | 330<br>159                               | 129<br>63             |         | 1.2<br>1.9                         | $.16 \\ .11$      | 919<br>507                                                                    | 1.25<br>.69                  |                    | 366<br>224                           | 184<br>76                                                                      | 3.3<br>2.1                            |                                     | 7.9<br>7.9               |

|                                                            |                         | (Fe) C                             |                                                                                       |
|------------------------------------------------------------|-------------------------|------------------------------------|---------------------------------------------------------------------------------------|
|                                                            | ne- Sodium<br>sium (Na) | Cal- mag-<br>cium ne-<br>(Ca) (Mg) | SILICA Iron Cal- news- Sodium<br>(SIO <sub>4</sub> ) (Fe) (Ca) alum (Na)<br>(Mg) (Mg) |
|                                                            |                         |                                    |                                                                                       |
| 8-3635. RIO GRANDE AT LEASBURG DAM, NEW MEXICO - Continued | 8-3635                  | 8-3635                             | 8-3635                                                                                |
|                                                            |                         |                                    |                                                                                       |
| 135                                                        | 23                      | 23                                 | 23                                                                                    |
| 11                                                         | 13                      | 13                                 | 13                                                                                    |
| 7.1                                                        | 13                      |                                    | 13                                                                                    |
|                                                            | 3                       | 3                                  | 3                                                                                     |
| 137                                                        | 24                      |                                    | 24                                                                                    |
| 68                                                         | 11                      | 11                                 | 11                                                                                    |

Table 8,---Summary of chemical analyses at selected sites on the Kio Grande in New Maxico--Continued

#### Table 9.--Summary of chemical analyses at selected sites on Mexican streams in the Rio Grande basin.

| -                  |                                          |                            | · · · ·                       |              |                       |                             |                                                 | (Resul                     | ts in m                                    | filligr                                   | ams per 1                     | iter except          | as in  | dicated                            | 1)                       |                                           |                              |                    |                                      |                                         |                                          |                              |                      |
|--------------------|------------------------------------------|----------------------------|-------------------------------|--------------|-----------------------|-----------------------------|-------------------------------------------------|----------------------------|--------------------------------------------|-------------------------------------------|-------------------------------|----------------------|--------|------------------------------------|--------------------------|-------------------------------------------|------------------------------|--------------------|--------------------------------------|-----------------------------------------|------------------------------------------|------------------------------|----------------------|
|                    |                                          |                            |                               |              |                       |                             |                                                 |                            | Bi-                                        | -                                         |                               |                      |        |                                    |                          | Dis                                       | solved                       | solids             | Hard<br>as Ca                        |                                         | So-                                      | Specific                     |                      |
| -                  | Date<br>of<br>collection                 | Mean<br>Discharge<br>(cfs) | Silica<br>(SiO <sub>2</sub> ) | Iron<br>(Fe) | Cal-<br>cium<br>(Ca)  | Mag-<br>ne-<br>sium<br>(Mg) | Sodium<br>(Na)                                  | Po-<br>tas-<br>sium<br>(K) | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> ) | Car-<br>bon-<br>ate<br>(CO <sub>3</sub> ) | Sulfate<br>(SO <sub>4</sub> ) | Chloride<br>(Cl)     |        | Ni-<br>trate<br>(NO <sub>3</sub> ) |                          | Milli-<br>grams<br>per<br>liter<br>(mg/1) | Tons<br>per<br>acre-<br>foot | Tons<br>per<br>day | Cal-<br>cium,<br>Mag-<br>ne-<br>sium | bon-                                    | dium<br>ad-<br>sorp-<br>tion<br>ratio    | mhos at                      | 1                    |
|                    |                                          |                            |                               |              |                       |                             |                                                 | 8-3725                     | RIO CO                                     | ONCHOS                                    | AT CUCHIL                     | LO PARADO,           | CHIHUA | AHUA                               |                          |                                           |                              |                    |                                      |                                         |                                          |                              |                      |
| Maximum, A         | <u>- Sept. 1946</u><br>.ug. 1946<br>.ept |                            |                               |              | 9.5<br>52             | 12<br>6.2                   | 90<br>39                                        |                            | 120<br>141                                 | 0<br>0                                    | 306<br>103                    | 50<br>12             |        | 1.9                                | 0.15                     | 691<br>331                                | 0.94<br>.45                  |                    | 288<br>154                           | 190<br>39                               | 2.3<br>1.4                               | 953<br>481                   | 7.<br>7.             |
|                    | 947<br>July 1947                         |                            |                               |              | 111<br>56             | 16<br>7.2                   | 121<br>40                                       |                            | $144 \\ 146$                               | 0<br>0                                    | 379<br>110                    | 75<br>16             |        | $\frac{1.9}{2.5}$                  | .21                      | 860<br>382                                | 1.17<br>.52                  |                    | 342<br>168                           | 224<br>48                               | $\begin{array}{c} 2.8\\ 1.3 \end{array}$ | 1200<br>502                  | 7.<br>7.             |
| Minimum, N         | 948<br>pr. 1948<br>lov. 1947             | e                          |                               |              | 79<br>79<br>74        | 14<br>13<br>24              | 127<br>69<br>74                                 |                            | 162<br>188<br>180                          | 0<br>0<br>0                               | 274<br>204<br>194             | 83<br>30<br>35       |        | $1.9 \\ 1.9 \\ 1.9 \\ 1.9$         | .19<br>.17<br>.14        | 735<br>544<br>544                         | 1.00<br>.74<br>.74           |                    | 257<br>249<br>285                    | 124<br>95<br>138                        | $3.4 \\ 1.9 \\ 1.9 \\ 1.9$               | 1080<br>784<br>775           | 8.<br>7.<br>7.       |
| June<br>Minimum, F | 949<br>Iny 1949                          |                            |                               |              | 101<br>78<br>61<br>54 | 12<br>15<br>9.6<br>9.5      | 100<br>122<br>57<br>62                          |                            | 113<br>135<br>164<br>146                   | 0<br>0<br>0                               | 349<br>317<br>148<br>145      | 54<br>64<br>27<br>34 |        | 1.9<br>1.9<br>1.9<br>2.5           | .25<br>.28<br>.16<br>.10 | 743<br>743<br>449<br>449                  | 1.01<br>1.01<br>.61          |                    | 302<br>258<br>191<br>172             | 210<br>148<br>56<br>52                  | 2.5<br>3.3<br>1.8<br>2.1                 | $1040 \\ 1060 \\ 640 \\ 640$ | 7.<br>7.<br>7.<br>8. |
|                    | <u>950</u><br>uug. 1950<br>uly           |                            |                               |              | 124<br>71             | 10<br>7.9                   | 66<br>46                                        |                            | 129<br>148                                 | 0<br>0                                    | 335<br>149                    | 30<br>21             |        | 4.3<br>3.1                         | .10                      | 706<br>441                                | ,96<br>,60                   |                    | 352<br>210                           | 24.6<br>88                              | 1.5<br>1.4                               | 946<br>602                   | 7.<br>8.             |
|                    | . <u>951</u><br>.pr. 1951<br>lune        |                            |                               |              | 72<br>60              | 15<br>11                    | $\begin{smallmatrix} 116\\83 \end{smallmatrix}$ |                            | 147<br>145                                 | 0<br>0                                    | 270<br>185                    | 61<br>38             |        | $3.1 \\ 1.2$                       | .17                      | 676<br>522                                | .92<br>.71                   |                    | 240<br>196                           | 120<br>78                               | 3.3<br>2.6                               | 981<br>726                   | 7.<br>8.             |
|                    | . <u>952</u><br>Apr. 1952<br>July        |                            |                               |              | 88                    | 11                          | $\begin{smallmatrix}173\\-44\end{smallmatrix}$  |                            | $\begin{array}{c}162\\149\end{array}$      | 0<br>0                                    | 213                           | 131<br>25            |        | <br>3.7                            | .10                      | 985<br>537                                | 1.34<br>.73                  |                    | 314<br>266                           | 182<br>144                              | $\begin{array}{c} 4.2\\ 1.2\end{array}$  | 1420<br>722                  | 7.                   |
|                    | 1953<br>Spr. 1953<br>Gept                |                            |                               |              | н.н.<br>7.7.          |                             | 285<br>76                                       |                            | 162     168                                | 0<br>0                                    |                               | 294<br>44            |        |                                    |                          | 1270<br>618                               | 1,73<br>,84                  |                    | 374<br>284                           | $\begin{array}{c} 242\\ 146\end{array}$ | 6.4<br>2.0                               | 1980<br>871                  | 1                    |
|                    | 1954.<br>Apr. 1954                       |                            |                               |              |                       |                             | 232<br>41                                       |                            | 165     159                                | 0<br>0                                    |                               | 225<br>21            |        |                                    | **                       | 1260<br>515                               | 1.71<br>.70                  |                    | 428<br>288                           | 293<br>158                              | $4.9 \\ 1.0$                             | 1860<br>720                  | -                    |

(Results in milligrams per liter except as indicated)

### Table 9 .-- Summary of chemical analyses at selected sites on Mexican streams in the Rio Grande basin -- Continued

|          |                                              |                            |                               |                      |                             | (                                                              | Result                     | s in mi                                    | lligram                                   | as per lit                    | er except a      | s indi | cated)                             |                   |                                           |                              |                    |                                      |                             |                                          |                                              |            |
|----------|----------------------------------------------|----------------------------|-------------------------------|----------------------|-----------------------------|----------------------------------------------------------------|----------------------------|--------------------------------------------|-------------------------------------------|-------------------------------|------------------|--------|------------------------------------|-------------------|-------------------------------------------|------------------------------|--------------------|--------------------------------------|-----------------------------|------------------------------------------|----------------------------------------------|------------|
|          |                                              |                            |                               |                      |                             |                                                                |                            | Bi-                                        |                                           |                               |                  |        |                                    |                   | Die                                       | solved /                     | soltds             | Hard<br>as Ca                        |                             | So-                                      | Specific<br>con-                             |            |
|          | Date<br>of<br>collection                     | Mean<br>Discharge<br>(cfs) | Silica<br>(SiO <sub>2</sub> ) | Cal-<br>cium<br>(Ca) | Mag-<br>ne-<br>sium<br>(Mg) | Sodium<br>(Na)                                                 | Po-<br>tas-<br>sium<br>(K) | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> ) | Car-<br>bon-<br>ate<br>(CO <sub>3</sub> ) | Sulfate<br>(SO <sub>4</sub> ) | Chloride<br>(Cl) |        | Ni-<br>trate<br>(NO <sub>3</sub> ) | Bo-<br>ron<br>(B) | Milli-<br>grams<br>per<br>liter<br>(mg/1) | Tons<br>per<br>acre-<br>foot | Tons<br>per<br>day | Cal-<br>cium,<br>Mag-<br>ne-<br>sium | Non-<br>car-<br>bon-<br>ate | dlum<br>ad-<br>sorp-<br>tion<br>ratio    | duct-<br>ance<br>(micro-<br>mhos at<br>25°C) | рН         |
|          |                                              |                            |                               |                      |                             |                                                                | 8-                         | 3730. RI                                   | O CONC                                    | HOS NEAR (                    | DJINAGA, CH      | THUAHU | A                                  |                   |                                           |                              |                    |                                      |                             |                                          |                                              |            |
| Maximum, | <u> Sept. 1935</u><br>May 1935<br>Sept       |                            |                               | 88<br>38             | 18<br>3.9                   | 159<br>21                                                      |                            | 156<br>115                                 | 0<br>0                                    | 310<br>50                     | 142<br>6.7       |        |                                    | 0.31              | 866<br>232                                | 1.18<br>.32                  |                    | 294<br>110                           | 166<br>16                   | 4.0<br>.9                                | 1270<br>317                                  | 7.6<br>7.7 |
|          | <u>1936</u><br>May 16, 1936<br>Oct. 31, 1935 |                            |                               | 112<br>70            | 19<br>10                    | 119<br>43                                                      |                            | 161<br>166                                 | 0<br>0                                    | 335<br>154                    | 93<br>17         |        |                                    | .31<br>.14        | 860<br>409                                | 1.17<br>.56                  |                    | 356<br>216                           | 224<br>80                   | 2.7<br>1.3                               | 1210<br>596                                  | 7.8<br>7.8 |
|          | <u>1937</u><br>Aug. 15, 1937<br>June 12      |                            |                               | 104<br>48            | 18<br>8.8                   | 143<br>49                                                      |                            | 197<br>131                                 | 0<br>0                                    | 299<br>96                     | 110<br>40        |        | .6<br>.6                           | .24<br>.11        | 904<br>353                                | 1.23                         |                    | 334<br>157                           | 172<br>50                   | 3.4<br>1.7                               | 1230<br>614                                  | 8.0<br>8.0 |
|          | <u>1938</u><br>May 1938<br>Sept              |                            |                               | 88<br>44             | 17<br>6.9                   | 130<br>36                                                      |                            | 178<br>129                                 | 0<br>0                                    | 286<br>61                     | 92<br>27         |        | 6.8<br>1.9                         | .18<br>.05        | 765<br>279                                | 1.04<br>.38                  |                    | 290<br>140                           | 145<br>34                   | 3.3<br>1.3                               | 1130<br>424                                  | 8.1<br>7.8 |
|          | <u>1939</u><br>June 1939<br>Aug              |                            |                               | 96<br>70             | 16<br>9,4                   | 105<br>54                                                      |                            | 157<br>154                                 | 0<br>0                                    | 294<br>146                    | 66<br>25         |        | . 6                                | .16               | 757<br>426                                | 1.03                         |                    | 306<br>213                           | 177<br>86                   | 2.6<br>1.6                               | 1030<br>615                                  | 8.3<br>8.1 |
|          | <u>1940</u><br>Apr. 1940<br>Aug              |                            |                               | 81<br>55             | 17<br>8,5                   | 124<br>46                                                      |                            | 176<br>146                                 | 0<br>0                                    | 272<br>111                    | 80<br>21         |        | ,6<br>1,9                          | .26<br>.13        | 713<br>360                                | .97<br>.49                   |                    | 274<br>172                           | 129<br>52                   | 3.3                                      | 1060<br>535                                  | 8.3<br>8.3 |
|          | 1941<br>Apr. and May 1941<br>Sept            |                            |                               | 141<br>51            | 11<br>6.1                   | 71<br>30                                                       |                            | 140<br>127                                 | 0<br>0                                    | 373<br>89                     | 36<br>14         |        | 1.9                                | .17               | 772<br>294                                | 1.05                         |                    | 400<br>153                           | 286<br>49                   | $\begin{array}{c} 1.5\\ 1.1 \end{array}$ |                                              | 7.8<br>7.8 |
|          | <u>1942</u><br>May 1942<br>Sept              |                            |                               | 100<br>41            | 17<br>5,5                   | $     \begin{array}{r}       124 \\       21     \end{array} $ |                            | 175<br>137                                 | 0<br>0                                    | 317<br>45                     | 87<br>7.1        |        | .6<br>1.9                          | . 08              | 787<br>235                                | 1.07<br>.32                  |                    | 318<br>126                           | 175<br>14                   | 3.0<br>.8                                | $\begin{array}{c} 1160\\ 335\end{array}$     | 7.9<br>7.9 |
|          | <u>1943</u><br>May 1943<br>Oct. 1942         |                            |                               | 85<br>59             | 14<br>7.4                   | 98<br>38                                                       |                            | 167<br>164                                 | 0<br>0                                    | 241<br>99                     | 65<br>16         |        | .6<br>1.2                          | .20<br>.08        | 669<br>353                                | .91                          |                    | 270<br>177                           | 132<br>42                   | $\begin{array}{c} 2.6\\ 1.2 \end{array}$ | 959<br>514                                   | 8.0<br>7.8 |
|          | <u>1944</u><br>Jan. 1944<br>Sept.            |                            |                               | 88<br>56             | 16<br>6.9                   | 123<br>45                                                      |                            | 208<br>127                                 | 0<br>0                                    | 238<br>117                    | 95<br>30         |        | .6<br>1.9                          | .19<br>.09        | 721<br>375                                | .98<br>.51                   |                    | 286<br>167                           | 116<br>63                   | 3.2<br>1.5                               | 1080<br>542                                  | 7.9<br>7.9 |
|          | <u>1945</u><br>May 1945<br>July              |                            |                               | 102<br>65            | 17<br>8.1                   | 134<br>47                                                      |                            | 180<br>149                                 | 0<br>0                                    | 319<br>137                    | 104<br>24        |        | 1.9                                | .19<br>.05        | 838<br>412                                | 1.14<br>.56                  |                    | 326<br>196                           | 178<br>74                   | 3.2<br>1.5                               |                                              | 8.1<br>7.9 |
|          | <u>1946</u><br>Dec. 1945<br>Oct              |                            |                               | 95<br>54             | 15<br>7.1                   | 113<br>44                                                      |                            | 218<br>148                                 | 0<br>0                                    | 265<br>108                    | 71<br>18         |        | 1.9                                | .13<br>.07        | 743<br>346                                | 1.01                         |                    | 301<br>164                           | 122<br>44                   | 2.8<br>1.5                               |                                              | 7.7<br>7.9 |
|          |                                              |                            |                               |                      |                             |                                                                |                            |                                            |                                           |                               |                  |        |                                    |                   |                                           |                              |                    |                                      |                             |                                          |                                              |            |

|                                                             |                            |                                |              |              |                             |                | Å                          | Bi-                                        | ć                                 |                               |                      |                      |                |                                                | Disso           | Dissolved solids             | ds                 | Hard<br>as Ci                        | Hardness<br>as CaCO,        | -os                                   | Specific    | 0          |
|-------------------------------------------------------------|----------------------------|--------------------------------|--------------|--------------|-----------------------------|----------------|----------------------------|--------------------------------------------|-----------------------------------|-------------------------------|----------------------|----------------------|----------------|------------------------------------------------|-----------------|------------------------------|--------------------|--------------------------------------|-----------------------------|---------------------------------------|-------------|------------|
| Date<br>of<br>collection                                    | Mean<br>Discharge<br>(cfs) | Silica.<br>(SiO <sub>2</sub> ) | Iron<br>(Fe) | cium<br>(Ca) | nage<br>ne-<br>sium<br>(Mg) | Sodium<br>(Na) | ro-<br>tas-<br>stum<br>(K) | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> ) | bon-<br>ate<br>(CO <sub>3</sub> ) | Sulfate<br>(SO <sub>4</sub> ) | Chloride<br>(Cl)     | Fluo-<br>ride<br>(F) |                | Bo-<br>ron grams<br>(B) per<br>liter<br>(mg/l) |                 | Tons<br>per<br>acre-<br>foot | Tons<br>per<br>day | Cal-<br>cfum,<br>Mag-<br>ne-<br>stum | Non-<br>car-<br>bon-<br>ate | dium<br>ad-<br>sorp-<br>tion<br>ratio | 38          | Hd +       |
|                                                             |                            |                                |              |              |                             | 8-3            | 8-3730. RI                 | LO CONCI                                   | HOS NEA                           | RIO CONCHOS NEAR OJINAGA,     | , CHIHUAHUAContinued | AConti               | baut           |                                                |                 |                              |                    |                                      |                             |                                       |             |            |
| Water Year 1947<br>Muximum, July 1947                       |                            |                                |              | 112<br>53    | 18<br>7.4                   | 131<br>43      |                            | 153<br>142                                 | 00                                | 374<br>105                    | 96<br>22             |                      | 1.2 0.26       | 9110575                                        | 890 I<br>360    | 1,21                         |                    | 354<br>162                           | 228<br>46                   | 3.0<br>1,5                            | 1270<br>507 | 8.0<br>7.8 |
| Mater Year 1948<br>Markimum, May 1948<br>Mintmum, Nov. 1947 |                            |                                |              | 91<br>80     | 16                          | 122            |                            | 151<br>184                                 | 00                                | 320<br>204                    | 74                   | 1                    | . á.<br>L. 2.1 | .20 7                                          | 787 I<br>544    | 1.07                         |                    | 290<br>250                           | 166<br>100                  | 3.1                                   | 1120<br>807 | 8.0<br>7.8 |
| Mater Year 1949<br>Maximum, May 1949                        |                            |                                |              | 128<br>57    | 15<br>7.7                   | 119<br>63      |                            | 156<br>153                                 | 00                                | 402<br>148                    | 74<br>32             | 25                   | 1.2 .2         | .24 8                                          | 897 I           | 1.22                         |                    | 382<br>173                           | 255<br>48                   | 2.6                                   | 1240        | 7.9        |
| Mater Year 1950<br>Maximum, Aug. 1950                       |                            |                                |              | 131<br>61    | 11                          | 67<br>63       |                            | 141<br>156                                 | 00                                | 340<br>156                    | 37<br>34             |                      | 3.7 .1         | 14 2                                           | 713<br>441      | . 97<br>. 60                 |                    | 372<br>194                           | 256<br>66                   | 1.5                                   | 982<br>668  | 7.7<br>8.1 |
| Mater Year 1951<br>Maximum, Apr. 1951                       |                            |                                |              | 82<br>61     | 16                          | 126<br>84      |                            | 184<br>153                                 | 0 0                               | 284<br>187                    | 71<br>71             | 267                  | 1.2 .2         | 28                                             | 757 I           | 1.03                         |                    | 2.70<br>2.04                         | 119                         | 3.3                                   | 1070<br>787 | 7.9        |
| Mater Year 1952<br>Maximum, Apr. 1952<br>Minimum, July      |                            |                                |              | 82           | 10                          | 167<br>44      |                            | 186<br>141                                 | 00                                |                               | 135<br>27            | 4                    | 6.8            | 10                                             | 1000 I          | 1.36<br>.64                  |                    | 376<br>246                           | 224                         | 3.7                                   | 1440<br>666 |            |
| Mater Year 1953<br>Maximum, May 1953                        |                            |                                |              | 11           | ;;                          | 185<br>87      |                            | 146<br>183                                 | 00                                | 11                            | 204<br>60            |                      | + 1            | 12                                             | 1 1210 1 699    | 1.64<br>.95                  |                    | 476<br>319                           | 356<br>169                  | 3.7                                   | 1760        | 3.3        |
| Mater Year 1954<br>Maximum, June 1954                       |                            |                                |              | 11           | 11                          | 181<br>56      |                            | 140<br>148                                 | 00                                | 11                            | 174<br>32            |                      | 1.1            | 1                                              | 1190 I<br>426 I | L.62<br>.58                  |                    | 470<br>198                           | 354<br>76                   | 3.6                                   | 1680<br>624 | 11         |
| Mater Year 1955<br>Maximum, June 1955                       |                            |                                |              | 11           | 11                          | 236<br>52      |                            | 156<br>165                                 | 00                                | 11                            | 238<br>46            |                      | 11             | 11                                             | 1 1300 1<br>544 | 1.77                         |                    | 448<br>268                           | 320                         | 4,8<br>1,4                            | 1910<br>764 | 11         |
| Mater Year 1956<br>Naximum, Apr. 1956                       |                            |                                |              | 11           | 11                          | 202<br>56      |                            | 196<br>153                                 | 00                                | 11                            | 156<br>29            |                      | 11             | 11                                             | 1230 I<br>478   | 1.67<br>.65                  |                    | 475<br>229                           | 314                         | 4.0<br>1.6                            | 1730        | 11         |
| Mater Year 1957<br>Maximum, Dec. 1956                       |                            |                                |              | 11           | 1 1                         | 174<br>105     |                            | 210<br>171                                 | 00                                | 11                            | 97<br>55             |                      |                |                                                | 1060 1<br>750 1 | 1.44                         |                    | 383<br>317                           | 210<br>177                  | 3.9<br>2.6                            | 1470        | 1.1        |
| Mater Year 1958<br>Maximum, July 1958<br>Minimum, Sept      |                            |                                |              | 173          | 24                          | 182<br>39      |                            | 165<br>156                                 | 0 0                               | 570                           | 149<br>16            |                      | 9.1            | 22 12                                          | 1290 1<br>375   | 1.75                         |                    | 528<br>194                           | 394<br>66                   | 3.4                                   | 1760<br>553 | 1.8        |
|                                                             |                            |                                |              |              |                             |                |                            |                                            |                                   |                               |                      |                      |                |                                                |                 |                              |                    |                                      |                             |                                       |             |            |

Table 9 .-- Summary of chemical analyses at selected sites on Mexican streams in the Rio Grands basin--Continued

### Table 9.--Summary of chemical analyses at selected sites on Mexican streams in the Rio Grande basin--Continued

|                                          |                                  | 1744                       |                               |              | 1018 - 64            | Mag                         |                | Po-     | Bi-                                        | Car-    |                               |                                               |      |                                    |      | Dis                                       | solved a                     | solids             | Hard<br>as Ca                        |                             | So-                                   | Specific<br>con-           | 3   |
|------------------------------------------|----------------------------------|----------------------------|-------------------------------|--------------|----------------------|-----------------------------|----------------|---------|--------------------------------------------|---------|-------------------------------|-----------------------------------------------|------|------------------------------------|------|-------------------------------------------|------------------------------|--------------------|--------------------------------------|-----------------------------|---------------------------------------|----------------------------|-----|
|                                          | Date<br>of<br>collection         | Mean<br>Discharge<br>(cfs) | Silica<br>(SiO <sub>2</sub> ) | Iron<br>(Fe) | Cal-<br>cium<br>(Ca) | Mag-<br>ne-<br>sium<br>(Mg) | Sodium<br>(Na) | tas-    | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> ) | bon-    | Sulfate<br>(SO <sub>4</sub> ) | Chloride<br>(Cl)                              | ride | Ni-<br>trate<br>(NO <sub>3</sub> ) |      | Milli-<br>grams<br>per<br>liter<br>(mg/l) | Tons<br>per<br>acre-<br>foot | Tons<br>per<br>day | Cal-<br>cium,<br>Mag-<br>ne-<br>sium | Non-<br>car-<br>bon-<br>ate | dium<br>ad-<br>sorp-<br>tion<br>ratio | duct-<br>ance<br>(micro-   | -   |
|                                          |                                  |                            |                               |              |                      |                             | 8-             | 3730, R | IO CONC                                    | HOS NE. | AR OJINAG/                    | А, СНІНИАНИ                                   | ACon | tinuéd                             |      |                                           |                              |                    |                                      |                             |                                       | 27                         |     |
|                                          | 1959<br>Gar. 1959<br>Det. 1958   |                            |                               |              |                      |                             | 209<br>36      |         | 204<br>143                                 | 0<br>0  |                               | $\begin{smallmatrix}138\\16\end{smallmatrix}$ |      |                                    |      | 1300<br>360                               | 1.77<br>.49                  |                    | 475<br>194                           | 308<br>76                   | 4.2                                   | 1770<br>544                |     |
|                                          | 1960<br>Det. 1959<br>Aug. 1960   |                            |                               |              |                      |                             | 197<br>58      |         | 171<br>169                                 | 0<br>0  |                               | $\frac{119}{31}$                              |      |                                    |      | 1110<br>485                               | 1.51<br>.66                  |                    | 380<br>227                           | 240<br>88                   | 4.4<br>1.7                            | 1560<br>686                |     |
| Minimum, J                               | Apr. 1961<br>July                |                            |                               |              | 83                   | 11                          | 184<br>104     |         | 183<br>159                                 | 0<br>0  | 264                           | 119<br>55                                     |      | 1,9                                | 0.13 | $\begin{array}{c}1040\\618\end{array}$    | 1.41<br>.84                  |                    | 353<br>252                           | 203<br>122                  | 4.3<br>2.8                            | 1490<br>946                | 7.9 |
| Minimum, S                               | 1ay 1962<br>Sept                 |                            |                               |              |                      |                             | 219<br>90      |         | 168<br>134                                 | 0<br>0  |                               | 140<br>38                                     |      |                                    |      | 1100<br>654                               | 1.49<br>.89                  |                    | 336<br>277                           | 198<br>167                  | 5.2<br>2.3                            | 1620<br>914                |     |
| Minimum, S                               | Mar. 1963<br>Sept                |                            |                               |              |                      |                             | 186<br>97      |         | 168<br>198                                 | 0<br>0  |                               | 110<br>48                                     |      |                                    |      | 1030<br>699                               | 1.40<br>.95                  |                    | 334<br>291                           | 196<br>129                  | 4.4<br>2.5                            | 1470<br>957                |     |
|                                          | 1964<br>Apr. 1964<br>Sept        |                            |                               |              |                      |                             | 203<br>118     |         | 201<br>186                                 | 0<br>0  |                               | 118<br>59                                     |      |                                    |      | 1080<br>713                               | 1.47                         |                    | 358<br>274                           | 193<br>122                  | 4.7<br>3.1                            | 1540<br>1020               |     |
| Water Year 1<br>Maximum, M<br>Minimum, S | 1965<br>May 1965<br>Sept         |                            |                               |              |                      |                             | 223<br>113     |         | 180<br>198                                 | 0<br>0  |                               | 124<br>53                                     |      |                                    |      | 1120<br>699                               | 1.52<br>.95                  |                    | 332<br>258                           | 184<br>96                   | 5.3<br>3.1                            | $     1580 \\     1000   $ |     |
|                                          | <u>966</u><br>Apr. 1966<br>Sept. |                            |                               |              |                      |                             | 213<br>40      |         | 204<br>162                                 | 0       |                               | 130<br>21                                     |      |                                    |      | 1150<br>382                               | 1.57                         |                    | 384<br>194                           | 216<br>62                   | 4.7                                   | 1630<br>567                |     |

#### (Results in milligrams per liter except as indicated)

and the second second

|                                                                                         |                            |                               |      |              | -                           |                 | ,                    | B1-               |                      |                  |                                     |                                                   |                     | н                                          | Dissolved solids             | solids             | Hardness<br>as CaCO <sub>3</sub>     | ness<br>tCO <sub>3</sub> | -so-                          | Specific<br>con-  | 0              |
|-----------------------------------------------------------------------------------------|----------------------------|-------------------------------|------|--------------|-----------------------------|-----------------|----------------------|-------------------|----------------------|------------------|-------------------------------------|---------------------------------------------------|---------------------|--------------------------------------------|------------------------------|--------------------|--------------------------------------|--------------------------|-------------------------------|-------------------|----------------|
| Date<br>of I<br>collection                                                              | Mean<br>Discharge<br>(cfs) | Silica<br>(SiO <sub>s</sub> ) | (Fe) | ctum<br>(Ca) | Mag-<br>ne-<br>stum<br>(Mg) | Sodium<br>(Na)  | Fo-<br>tas-<br>(K) ( | 3                 | bon-<br>ate<br>(CO3) | Sulfate<br>(SO4) | Chloride F<br>(CI)                  | Fluo- Ni-<br>ride trate<br>(F) (NO <sub>3</sub> ) | te ron<br>(B)       | Millit-<br>grams<br>per<br>liter<br>(mg/l) | Tons<br>per<br>acre-<br>foot | Tons<br>per<br>day | Cal-<br>cfum,<br>Mag-<br>ne-<br>shum | Non-<br>car-<br>bon-     | ad-<br>sorp-<br>tion<br>ratio | 58                | Hd             |
|                                                                                         |                            |                               |      |              |                             |                 | 8-4                  | 8-4555, RIO       | SAN                  | JIEGO AT J       | DIEGO AT JIMENEZ, COAHULLA          | VIIOH                                             |                     |                                            |                              |                    |                                      |                          |                               |                   |                |
| Period, Jan Sept. 1951<br>Maximum, Apr. 1951                                            |                            |                               |      | 39           | 10                          | 25<br>16        |                      | 173<br>115        | 00                   | 61<br>42         | 28<br>26                            | 11                                                | 1.9 0.11<br>1.2 .07 | 1 346                                      | 0.47                         |                    | 188<br>138                           | 46<br>44                 | 0.8<br>.6                     | 478<br>328        | 8.0            |
| Mater Year 1952<br>Maximum, Feb. 1952<br>Minimum, Oct. 1951<br>Dec                      |                            |                               |      | 1 S S        | 12<br>9.8                   | 20<br>20<br>15  |                      | 210<br>168<br>165 | 000                  | <br>45<br>46     | 23<br>30<br>21                      | 2                                                 | 2.5 .09<br>2.5 .07  | - 346<br>9 272<br>7 272                    | .47<br>.37                   |                    | 228<br>186<br>181                    | 56<br>49<br>46           | 9.95                          | 506<br>425<br>414 | <br>8.1<br>8.0 |
| Mater Year 1953<br>Maximum, Nov. 1952<br>Dec                                            |                            |                               |      | []]]         | 111                         | 22<br>19<br>13  |                      | 200<br>209<br>174 | 000                  | : : :            | 28<br>24<br>12                      |                                                   | 111                 | 375<br>375<br>272                          |                              |                    | 236<br>236<br>183                    | 72<br>64<br>40           | 6.4                           | 538<br>532<br>402 | <br>7,8        |
| Mater Year 1954<br>Maximum, Nov. 1953<br>Dec                                            |                            |                               |      | 111          | 111                         | 14<br>13<br>9.9 |                      | 229<br>212<br>104 | 000                  | 111              | 18<br>18<br>12                      |                                                   |                     | - 331<br>- 331                             | .45<br>.45<br>.21            |                    | 224<br>223<br>124                    | 36<br>50<br>40           | 5.                            | 488<br>474<br>280 | 111            |
| Mater Year 1955<br>Naximum, July 1955<br>Minimum, Oct. 1954                             |                            |                               |      | 70           | =                           | 11              |                      | 193<br>117        | 00                   | 54               | 30                                  | н.                                                | 1.2 .10             | 0 338<br>- 176                             | 3.46                         |                    | 222<br>122                           | 63<br>27                 | 10.4                          | 505<br>292        | 8.0            |
| Water Vear 1956<br>Maximum, Apr. 1956<br>Minimum, Oct. 1955<br>Dec                      |                            |                               |      | 111          | ΕEE                         | 17<br>15<br>16  |                      | 223<br>183<br>192 | 000                  | 111              | 23<br>18<br>19                      |                                                   | 111                 | - 331<br>- 272<br>- 272                    | 24, 1<br>76, 3<br>76, 3      |                    | 232<br>189<br>196                    | 50<br>39<br>38           | vivi4                         | 515<br>436<br>443 | E E E          |
| Mater Year 1957<br>Bistimum, Nov. 1956                                                  |                            |                               |      | 11           | 11                          | 17              |                      | 241<br>145        | 0 0                  | 11               | 27<br>8.9                           | - 25 - 124                                        | 11                  | - 353                                      | 3 .48                        |                    | 252<br>132                           | 55<br>14                 | ΰü                            | 561<br>276        | 11             |
| Water Year 1958<br>Naximum, Aug. 1958                                                   |                            |                               |      |              |                             | 17<br>9.9       |                      | 190<br>160        | 00                   |                  | 22<br>8.9                           |                                                   | . 05                | - 324<br>5 243                             | 44, 144<br>12, 133           |                    | 220<br>168                           | 64<br>36                 | ΰų                            | 510<br>373        | 7.8            |
| Period, Mar. 1935 - Jan. 1936<br>Maximum, Mar. 13, 1935<br>Minimum, Oct. 28             | 39<br>434                  |                               |      | 92<br>67     | 13<br>8.3                   | 42<br>6,0       |                      | 216<br>196        | 0 0                  | 116<br>29        | 49<br>17                            | 9 F                                               | 2.5 .14<br>3.2 .09  | 4 444<br>9 230                             | 60<br>0                      | 46.8<br>270        | 283<br>202                           | 106                      | 1.1                           | 669<br>408        | 7.4            |
|                                                                                         |                            |                               |      |              |                             |                 | 8-4570,              | RIO               | SAN ROD              | RIGO NEAR        | SAN RODRIGO NEAR EL MORAL, COAHUILA | VIINHVOC                                          |                     |                                            |                              |                    |                                      |                          |                               |                   |                |
| <pre>Period, Feb. 1935 - Jan. 1936<br/>Maximum, Apr. 17, 1935<br/>Minimum, May 17</pre> | 6.8<br>2150                |                               |      | 68<br>34     | 7.7<br>4.1                  | 19<br>5.3       |                      | 237<br>117        | 00                   | 32<br>7.2        | 19<br>3.2                           | 0.2                                               | 0.6 .05             | 5 350                                      | 0 .48<br>9 .15               | 6.43               | 201<br>102                           | 6                        | .2                            | 457               | 7.5            |
|                                                                                         |                            |                               |      |              |                             |                 |                      |                   |                      |                  |                                     |                                                   |                     |                                            |                              |                    |                                      |                          |                               |                   |                |

Table 9, --Summary of chemical analyses at selected sites on Mexicun atreams in the Rio Grande basin -- Continued

#### Table 9. -- Summary of chemical analyses at selected sites on Mexican streams in the Rio Grande basin--Continued

|                                                                            |                            |                               |                     |                      | Mar                         |                  | Po-    | Bi-                                        | Car-        |                               |                                         |       |                                    |                      | Die                                       | solved                       | abilos             | Hard<br>as C                                   |                             | So-                                   | Specific<br>con-                             | -                 |
|----------------------------------------------------------------------------|----------------------------|-------------------------------|---------------------|----------------------|-----------------------------|------------------|--------|--------------------------------------------|-------------|-------------------------------|-----------------------------------------|-------|------------------------------------|----------------------|-------------------------------------------|------------------------------|--------------------|------------------------------------------------|-----------------------------|---------------------------------------|----------------------------------------------|-------------------|
| Date<br>of<br>collection                                                   | Mean<br>Discharge<br>(cfs) | Silica<br>(SiO <sub>s</sub> ) | Iron<br>(Fe)        | Cal-<br>cium<br>(Ca) | Mag-<br>ne-<br>sium<br>(Mg) | Sodium<br>(Na)   | tas-   | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> ) | bon-        | Sulfate<br>(SO <sub>4</sub> ) | Chloride<br>(Cl)                        | ride  | Ni-<br>trate<br>(NO <sub>3</sub> ) |                      | Milli-<br>grams<br>per<br>liter<br>(mg/1) | Tons<br>per<br>acre-<br>foot | Tons<br>per<br>day | Cal-<br>cium,<br>Mag-<br>ne-<br>sium           | Non-<br>car-<br>bon-<br>ate | dium<br>ad-<br>sorp-<br>tion<br>ratio | duct-<br>ance<br>(micro-<br>mhos at<br>25°C) |                   |
|                                                                            |                            |                               | No. Per la Companya |                      |                             |                  | 8-4570 | . RIO :                                    | SAN ROI     | DRIGO NEAR                    | EL MORAL,                               | COAHU | ILA C                              | ontinu               | ed                                        |                              |                    |                                                |                             |                                       |                                              |                   |
| Period, Jan Sept. 1950<br>Maximum, Apr. 1950<br>Sept<br>Minimum, June      |                            |                               |                     | 59<br>67<br>45       | 16<br>9.8<br>6.2            | 21<br>20<br>11   |        | 195<br>193<br>145                          | 0<br>0<br>0 | 49<br>62<br>24                | 24<br>24<br>12                          |       | 4.3<br>3.7<br>1.9                  | 0.10<br>.05<br>.03   | 331<br>331<br>199                         | 0.45<br>.45<br>.27           |                    | 212<br>208<br>138                              | 52<br>49<br>19              | 0.6<br>.6<br>.4                       | 481<br>503<br>312                            | 8.0<br>8.0<br>7.8 |
| Water Year 1951<br>Maximum, Dec. 1950<br>Minimum, Feb. 1951<br>Sept        |                            |                               |                     | 65<br>54<br>54       | 11<br>7.5<br>9.5            | 23<br>9,9<br>9,0 |        | 178<br>179<br>172                          | 0<br>0<br>0 | 64<br>24<br>23                | 27<br>8.5<br>12                         |       | 5.6<br>1.9<br>2.5                  | . 14<br>. 05<br>. 08 | 331<br>228<br>228                         | ,45<br>,31<br>,31            |                    | 207<br>165<br>174                              | 62<br>18<br>32              | .7<br>.3<br>.3                        |                                              | 7.9<br>7.8<br>8.0 |
| <u>Water Year 1952</u><br>Maximum, Mar. 1952<br>Minimum, May               |                            |                               |                     |                      |                             | 18<br>6.7        |        | 203<br>159                                 | 0<br>0      |                               | 21<br>8,9                               |       |                                    |                      | 331<br>199                                | .45                          |                    | 226<br>152                                     | 59<br>22                    | .5<br>.2                              | 497<br>305                                   |                   |
| <u>Water Year 1953</u><br>Maximum, Jan. 1953<br>Minimum, Mar               |                            |                               |                     | 71                   | 7.1                         | 10<br>10         |        | 174<br>140                                 | 0<br>0      | 68                            | $\begin{array}{c} 11 \\ 11 \end{array}$ |       | 3.7                                | . 03                 | 301<br>235                                | . 41<br>. 32                 |                    | 206<br>163                                     | 63<br>48                    | .3<br>.3                              | 442<br>357                                   | 8.1               |
| <u>Water Year 1954</u><br>Maximum, Sept. 1954<br>Minimum, June             |                            |                               |                     |                      |                             | 32<br>5.1        |        | 101<br>113                                 | 0<br>0      |                               | 43<br>5,3                               |       |                                    |                      | 331<br>154                                | .45<br>.21                   |                    | $\begin{smallmatrix}179\\104\end{smallmatrix}$ | 96<br>12                    | 1.0<br>.2                             | 505<br>228                                   |                   |
| <u>Water Year 1955</u><br>Maximum, Jan. 1955<br>Feb<br>Minimum, Oct. 1954  |                            |                               |                     | 71                   | 8.4                         | 20<br>23<br>6.7  |        | 180<br>171<br>115                          | 0<br>0<br>0 | 61<br>                        | 28<br>32<br>7.1                         |       | 6.2                                | . 09                 | 338<br>338<br>147                         | .46<br>.46<br>.20            |                    | 212<br>212<br>104                              | 65<br>72<br>9.5             | .6<br>.7<br>i ,3                      | 508<br>515<br>225                            | 8.2               |
| Water Year 1956<br>Maximum, Feb. 1956<br>Minimum, Apr                      |                            |                               |                     |                      |                             | 18<br>7.8        |        | 235<br>153                                 | 0<br>0      |                               | 27<br>8.9                               |       | in a<br>in a                       |                      | 331<br>199                                | ,45<br>.27                   |                    | 236<br>155                                     | 43<br>30                    | , 5<br>, 3                            | 525<br>323                                   |                   |
| Water Year 1957<br>Maximum, Mar. 1957<br>Minimum, Apr.                     |                            |                               |                     |                      | 65<br>65                    | 10<br>3.9        |        | $\begin{array}{c} 177\\ 134 \end{array}$   | 0<br>0      |                               | 12<br>5,3                               |       |                                    |                      | 235<br>169                                | .32<br>.23                   |                    | 181<br>126                                     | 36<br>16                    | .3<br>.2                              | 385<br>260                                   |                   |
| <u>Water Year 1958</u><br>Maximum, Oct. 1957<br>Minimum, June 1958<br>Aug. |                            |                               |                     |                      |                             | 21<br>5.7<br>8.3 |        | 192<br>153<br>143                          | 0<br>0<br>0 |                               | 25<br>11<br>11                          |       |                                    |                      | 331<br>199<br>199                         | .45<br>.27<br>.27            |                    | 215<br>146<br>135                              | 58<br>21<br>18              | , 6<br>, 2<br>, 3                     | 500<br>313<br>307                            |                   |

| -0                               | pH                                                |                    | 7.8<br>7.8                                        | 8.0                                               | 11                                                                | 1 1                                               | 11                                                       | 1 1                                              | 11                                                            | 1.1                                               | 7.8                                                   | : :                                                      | 7.6                                                  | 11                                                    | 1-1                                                    |
|----------------------------------|---------------------------------------------------|--------------------|---------------------------------------------------|---------------------------------------------------|-------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------|--------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------|--------------------------------------------------------|
| Specific<br>con-                 |                                                   |                    | 1960<br>466                                       | 1360<br>455                                       | 3020                                                              | 510<br>372                                        | 2500<br>382                                              | 2680<br>426                                      | 4610<br>1160                                                  | 5900<br>787                                       | 5620<br>710                                           | 6130<br>400                                              | 2250<br>290                                          | 2620<br>396                                           | 3240<br>491                                            |
| -os                              | dium<br>ad-<br>sorp-<br>tion<br>ratio             |                    | 3.6<br>1.4                                        | 2.7                                               | 5.8                                                               | 1.7                                               | 7.0                                                      | 4,4<br>.6                                        | 5.2<br>2.3                                                    | 7.9                                               | 7.2<br>1.6                                            | 7.9<br>7.                                                | 4.8<br>.6                                            | 5.0                                                   | 5.7                                                    |
| ness<br>ICOs                     | Non-<br>car-<br>bon-                              |                    | 660<br>59                                         | 336<br>42                                         | 761<br>36                                                         | 8<br>5 8<br>5 8                                   | 320<br>48                                                | 706<br>46                                        | 1400<br>257                                                   | 1780<br>136                                       | 1740                                                  | 1890                                                     | 520<br>5                                             | 638<br>24                                             | 855<br>50                                              |
| Hardness<br>as CaCO <sub>3</sub> | Cal-<br>cium,<br>Mag-<br>ne-<br>sium              |                    | 562<br>144                                        | 438<br>184                                        | 826<br>158                                                        | 182<br>138                                        | 470<br>162                                               | 839<br>176                                       | 1490<br>372                                                   | 1870<br>256                                       | 1870<br>245                                           | 2000<br>165                                              | 601<br>140                                           | 744<br>161                                            | 935<br>160                                             |
| alids                            | Tons<br>per<br>day                                |                    |                                                   |                                                   |                                                                   |                                                   |                                                          |                                                  |                                                               |                                                   |                                                       |                                                          |                                                      |                                                       |                                                        |
| Dissolved solids                 | Tons<br>per<br>acre-<br>foot                      |                    | 1.85                                              | 1.34.34                                           | 3,02<br>.31                                                       | . 32                                              | 2,46<br>.33                                              | 2.76<br>.35                                      | 5.06<br>1.07                                                  | 6.73<br>.68                                       | 6.42<br>.62                                           | 7.11                                                     | 2.17                                                 | 2.71                                                  | 3.21                                                   |
| Dla                              | Milli-<br>grams<br>per<br>liter<br>(mg/l)         |                    | 1360<br>294                                       | 985<br>287                                        | 2220<br>228                                                       | 397<br>235                                        | 1810<br>243                                              | 2030<br>257                                      | 3720<br>787                                                   | 4950<br>500                                       | 4720<br>456                                           | 5230<br>265                                              | 1600<br>176                                          | 1990<br>235                                           | 2360<br>309                                            |
|                                  | Bo-<br>(B)                                        |                    | 0.41                                              | <br>67'                                           | 11                                                                | 11                                                | 11                                                       | 11                                               | 11                                                            | 11                                                | 2.07                                                  | 11                                                       |                                                      | 11                                                    | 11                                                     |
|                                  | Fluo- N1-<br>ride trate<br>(F) (NO <sub>3</sub> ) | TAMAULIPAS         | 1.9                                               | 1.2                                               | 11                                                                | : 1                                               | 11                                                       | 11                                               | 11                                                            | 11                                                | 36                                                    | 11                                                       | 3.1                                                  | 1 1                                                   | 11                                                     |
|                                  | Chloride ris<br>(Cl) (F                           |                    | 282<br>46                                         | 142<br>35                                         | 459                                                               | 62<br>32                                          | 518<br>15                                                | 306<br>21                                        | 585<br>104                                                    | 798<br>62                                         | 680<br>57                                             | 835<br>18                                                | 307<br>7.1                                           | 331<br>15                                             | 441<br>35                                              |
|                                  | Sulfate<br>(SO <sub>4</sub> )                     | AT LAS TORTILLAS,  | 478<br>73                                         | 412                                               | 11                                                                | 11                                                | 11                                                       | î l                                              | : 1                                                           | 11                                                | 2220                                                  | 11                                                       | 662                                                  | 1.1                                                   | 11                                                     |
| l                                | bon-<br>ate<br>(CO3)                              | SALADO             | 00                                                | 0 0                                               | 00                                                                | 00                                                | 0 0                                                      | 00                                               | 0 0                                                           | 0 0                                               | 0 0                                                   | 0 0                                                      | 0 0                                                  | 0 0                                                   | 0 0                                                    |
| Bi-                              | car-<br>bon-<br>ate<br>(HCO <sub>1</sub> )        | 8-4597. RIO SALADO | 125<br>104                                        | $126 \\ 176$                                      | 79<br>149                                                         | 119<br>104                                        | 183<br>140                                               | 162<br>159                                       | 116                                                           | 110<br>146                                        | 159                                                   | 134<br>165                                               | 99<br>165                                            | 129<br>168                                            | 98<br>134                                              |
| ģ                                | ras-<br>tas-<br>sium<br>(K)                       | 8-459              |                                                   |                                                   |                                                                   |                                                   |                                                          |                                                  |                                                               |                                                   |                                                       |                                                          |                                                      |                                                       |                                                        |
|                                  | Sodtum<br>(Na)                                    |                    | 199<br>38                                         | 130<br>21                                         | 382<br>15                                                         | 53                                                | 347<br>16                                                | 294<br>17                                        | 459<br>103                                                    | 781<br>61                                         | 717<br>56                                             | 810<br>22                                                | 271<br>17                                            | 316<br>16                                             | 401                                                    |
|                                  | mag-<br>stum<br>(Mg)                              |                    | 42<br>6.7                                         | 26                                                | 11                                                                | 11                                                | 11                                                       | 11                                               | 11                                                            | 11                                                | 201                                                   | 11                                                       | 57                                                   | ł į                                                   | 11                                                     |
|                                  | Cal-<br>clum<br>(Ca)                              |                    | 156                                               | 133                                               | 11                                                                | 11                                                | ; ;                                                      | 11                                               | ;;;                                                           | L f                                               | 418                                                   | 11                                                       |                                                      |                                                       | 11                                                     |
|                                  | Iron<br>(Fe)                                      |                    |                                                   |                                                   |                                                                   |                                                   |                                                          |                                                  |                                                               |                                                   |                                                       |                                                          |                                                      |                                                       |                                                        |
|                                  | Silica<br>(SiO <sub>2</sub> )                     |                    |                                                   |                                                   |                                                                   |                                                   |                                                          |                                                  |                                                               |                                                   |                                                       |                                                          |                                                      |                                                       |                                                        |
|                                  | Mean<br>Discharge<br>(cfs)                        |                    |                                                   |                                                   |                                                                   |                                                   |                                                          |                                                  |                                                               |                                                   |                                                       |                                                          |                                                      |                                                       |                                                        |
|                                  | Date<br>of L<br>collection                        |                    | ter Year 1954<br>Maximum, Jan. 1954               | ter Year 1955<br>Maximum, July 1955               | Ler Year 1956<br>Maximum, Dec. 1955 and Jan, 1956<br>Minimum, Aug | Lter Year 1957<br>Maximum, Oct. 1956              | Lter Year 1958<br>Martimum, Mart. 1958                   | tter Year 1959<br>Maximum, May 1959              | tter Year 1960<br>Maximum, Apr. and May 1960<br>Minimum, Sept | tter Year 1961<br>Maximum, Apr. 1961              | tter Year 1962<br>Maximum, Jan. 1962<br>Minimum, Sept | tter Yoar 1963<br>Maximum, Feb. 1963                     | tter Year 1964<br>Maximum, Jan. 1964<br>Minimum, Aug | tter Year 1965<br>Maximum, Aug. 1965<br>Minimum, Sept | Water Year 1966<br>Maximum, Mar. 1966.<br>Minimum, Apr |
|                                  | 1                                                 |                    | Water Year 1954<br>Maximum, Jan.<br>Minimum, July | Mater Year 1955<br>Maximum, July<br>Minimum, Aug. | <u>Mater Year 1956</u><br>Maximum, Dec.<br>Mininum, Aug.          | Mater Year 1957<br>Maximum, Oct.<br>Minimum, Mar. | <u>Mater Year 1958</u><br>Maximum, Mar.<br>Minimum, Sept | Mater Year 1959<br>Maximum, May<br>Minimum, Oct. | Mater Year 1960<br>Maximum, Apr.<br>Minimum, Sept.            | Mater Year 1961<br>Maximum, Apr.<br>Minimum, Sept | Water Year 1962<br>Maximum, Jan.<br>Minimum, Sept     | <u>Mater Year 1963</u><br>Maximum, Feb.<br>Minimum, Apr. | Water Year 1964<br>Maximum, Jan,<br>Minimum, Aug.    | Water Year 1965<br>Maximum, Aug.<br>Minimum, Sept.    | <u>Mater Year 19</u><br>Maximum, Ma<br>Minimum, Ap     |

Table 9.--Summary of chemical analyses at selected sites on Mexican streams in the Rio Grande basin--Continued

|                                             | Date                                        |                            |                               |              |                      | Mag-                |                | Po-          | Bi-                                        | Car-        |                                         |                  |        |                                          |                   | Di                                        | ssolved a                    | solids             | Hard<br>as C                         |                             | So-                                      | Specific<br>con-                             | -          |
|---------------------------------------------|---------------------------------------------|----------------------------|-------------------------------|--------------|----------------------|---------------------|----------------|--------------|--------------------------------------------|-------------|-----------------------------------------|------------------|--------|------------------------------------------|-------------------|-------------------------------------------|------------------------------|--------------------|--------------------------------------|-----------------------------|------------------------------------------|----------------------------------------------|------------|
| -                                           | of<br>collection                            | Mean<br>Discharge<br>(cfs) | Silica<br>(SiO <sub>2</sub> ) | Iron<br>(Fe) | Cal-<br>cium<br>(Ca) | ne-<br>sium<br>(Mg) | Sodium<br>(Na) | tas-<br>sium | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> ) | bon-<br>ate | Sulfate<br>(SO₄)                        | Chloride<br>(Cl) | True   | Ni-<br>trate<br>(NO <sub>3</sub> )       | Bo-<br>ron<br>(B) | Milli-<br>grams<br>per<br>liter<br>(mg/l) | Tons<br>per<br>acre-<br>foot | Tons<br>per<br>day | Cal-<br>cium,<br>Mag-<br>ne-<br>sium | Non-<br>car-<br>bon-<br>ate | dium<br>ad-<br>sorp-<br>tion<br>ratio    | duct-<br>ance<br>(micro-<br>mhos at<br>25°C) |            |
|                                             |                                             |                            |                               |              |                      |                     |                | 8-4600       | . RIO S                                    | ALADO       | AT CIUDAD                               | GUERRERO,        | TAMAUL | PAS                                      |                   |                                           |                              |                    |                                      |                             |                                          |                                              |            |
|                                             | - <u>Sept. 1935</u><br>pr. 7, 1935<br>ly 24 |                            |                               |              | 287<br>45            | 93<br>4.5           | 403<br>41      |              | 132<br>106                                 | 0           | 1200<br>92                              | 430<br>39        |        |                                          | 1.2               | 2720<br>313                               | 3.70<br>.43                  |                    | 1100<br>131                          | 989<br>44                   | 5.3<br>1.6                               |                                              | 7.3<br>7.5 |
|                                             | 1 <u>36</u><br>ig. 21, 1936<br>ily 23       |                            |                               |              | 290<br>74            | 108<br>13           | 451<br>63      |              | 112<br>112                                 | 0<br>0      | 1400<br>181                             | 429<br>72        |        | 1.2<br>,6                                | 1.35<br>.21       | 3000<br>513                               | 4.08<br>.70                  |                    | 1170<br>239                          | 1080<br>148                 | 5.7<br>1.8                               | 3600<br>755                                  | 7.7<br>7.7 |
| Water Year 19<br>Maximum, Ap<br>Minimum, Au | 1 <u>37</u><br>pr. 15, 1937<br>ng. 19       |                            |                               |              | 356<br>46            | 125<br>6.6          | 504<br>32      |              | 134<br>92                                  | 0           | 1570<br>90                              | 524<br>31        |        | <sup>27</sup> .6                         | 1.59<br>.10       | 3400<br>279                               | 4.63<br>.38                  |                    | 1400<br>141                          | 1290<br>66                  | 5.8<br>1.2                               |                                              | 8.1<br>8.4 |
| Mater Year 19<br>Maximum, Fe<br>Minimum, Se | 938<br>b. 1938<br>pt                        |                            |                               |              | 365<br>63            | 131<br>10           | 561<br>37      |              | $\begin{array}{c} 131\\113\end{array}$     | 0           | 1650<br>109                             | 585<br>41        |        |                                          | 1.73              | 3650<br>353                               | 4.97<br>.48                  |                    | $1450 \\ 199$                        | 1340<br>106                 | $\begin{array}{c} 6.4\\ 1.1 \end{array}$ |                                              | 7.8<br>7.7 |
| Minimum, Se                                 | pt                                          |                            |                               |              | 314<br>56            | 110<br>7.7          | 439<br>29      |              | 117<br>120                                 | 0           | 1300<br>73                              | 534<br>33        |        | 2.5<br>6.8                               | .86<br>.15        | 2850<br>288                               | 3.87<br>.39                  |                    | 1230<br>171                          | 1140<br>73                  | 5.4<br>1.0                               |                                              | 8.2<br>7.9 |
|                                             | 40<br>y 1940<br>v. 1939                     |                            |                               |              | 66<br>38             | 15<br>7.2           | 70<br>25       |              | 117<br>126                                 | 0<br>0      | 161<br>40                               | 80<br>22         |        | 3.7<br>3.7                               | .22<br>.07        | 500<br>206                                | .68<br>.28                   |                    | 226<br>124                           |                             | 2.0<br>1.0                               | 778<br>353                                   | 8.0<br>7.9 |
|                                             | 4 <u>1</u><br>r. 1941                       |                            |                               |              | 238<br>58            | 89<br>7.1           | 408<br>32      |              | 100<br>132                                 | 0           | 1040<br>77                              | 498<br>35        |        | .6<br>2.5                                | 1.26<br>.13       | 2520<br>309                               | 3.43<br>.42                  |                    | 962<br>172                           | 880<br>64                   | 5.7<br>1.1                               |                                              | 7.7<br>8.0 |
|                                             | 4 <u>2</u><br>r. 1942                       |                            |                               |              | 225<br>48            | 81<br>7.8           | 375<br>36      |              | 104<br>109                                 | 0<br>0      | 969<br>86                               | 445<br>37        |        | $\begin{array}{c} 1.2\\ 1.9 \end{array}$ | 1.10              | 2300<br>301                               | 3.13<br>.41                  |                    | 894<br>151                           | 809<br>62                   | 5.4<br>1.3                               |                                              | 7.8<br>7.4 |
|                                             | <u>43</u><br>r. 1943                        |                            |                               |              | 433<br>65            | 182<br>12           | 719<br>63      |              | 100<br>118                                 | 0<br>0      | 2190<br>158                             | 741<br>59        |        | 3.7                                      | 2,09              | 4650<br>463                               | 6.33<br>.63                  |                    | 1830<br>212                          | 1750<br>115                 | 7.3<br>1.9                               |                                              | 7.8<br>8.3 |
|                                             | <u>44</u><br>r. 1944<br>g.                  |                            |                               |              | 375<br>46            | 147<br>6.1          | 599<br>22      |              | 106<br>127                                 | 0<br>0      | 1870<br>57                              | 611<br>19        |        | 2.5                                      | 1.70              | 3930<br>243                               | 5.35                         |                    | 1540<br>141                          | 1450<br>37                  | 6.6<br>.8                                |                                              | 8.0<br>7.7 |
|                                             | <u>45</u><br>g. 1945<br>t. 1944             |                            |                               |              | 248<br>81            | 97<br>17            | 400<br>67      |              | 94<br>163                                  | 0<br>0      | 1230<br>154                             | 390<br>85        |        |                                          | 1.35              | 2590<br>529                               | 3.52<br>.72                  |                    | 1020<br>272                          | 942<br>138                  | 5.4<br>1.8                               |                                              | 7.7<br>7.9 |
|                                             | <u>46</u><br>r. 1946<br>pt                  |                            |                               |              | 298<br>55            | 126<br>9.1          | 501<br>40      |              | $\begin{array}{c}113\\114\end{array}$      | 0<br>0      | $\begin{array}{c} 1470\\116\end{array}$ | 516<br>36        |        | 1.9                                      | 1.36              | 3230<br>353                               | 4.39<br>.48                  |                    | 1260<br>175                          | 1170<br>82                  | $6.1 \\ 1.3$                             |                                              | 7.8        |

## Table 9, --Summary of chemical analyses at selected sites on Mexican streams in the Rio Grande basin--Continued

### Table 9 .-- Summary of chemical analyses at selected sites on Mexican streams in the Rio Grande basin -- Continued

|                                |                            |                               |                      | Mar                         |                | Po-    | Bi-                                        | 0                                         |                  |                  |                      |                                    |                   | Dis                                       | solved a                     | solids             | Hard<br>as C                         | ness<br>aCO <sub>3</sub>    | So-                                      | Specific<br>con- | -          |
|--------------------------------|----------------------------|-------------------------------|----------------------|-----------------------------|----------------|--------|--------------------------------------------|-------------------------------------------|------------------|------------------|----------------------|------------------------------------|-------------------|-------------------------------------------|------------------------------|--------------------|--------------------------------------|-----------------------------|------------------------------------------|------------------|------------|
| Date<br>of<br>collection       | Mean<br>Discharge<br>(cfs) | Silica<br>(SiO <sub>2</sub> ) | Cal-<br>cium<br>(Ca) | Mag-<br>ne-<br>sium<br>(Mg) | Sodium<br>(Na) | tas-   | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> ) | Car-<br>bon-<br>ate<br>(CO <sub>3</sub> ) | Sulfate<br>(SO4) | Chloride<br>(Cl) | Fluo-<br>ride<br>(F) | Ni-<br>trate<br>(NO <sub>3</sub> ) | Bo-<br>ron<br>(B) | Milli-<br>grams<br>per<br>liter<br>(mg/l) | Tons<br>per<br>acre-<br>foot | Tons<br>per<br>day | Cal-<br>cium,<br>Mag-<br>ne-<br>sium | Non-<br>car-<br>bon-<br>ate | dium<br>ad-<br>sorp-<br>tion<br>ratio    | mhos at          |            |
|                                |                            |                               |                      |                             | 8-460          | ). RIO | SALADO                                     | AT CIU                                    | DAD GUERRE       | RO, TAMAUL       | IPAS                 | Continu                            | ied               |                                           |                              |                    |                                      |                             |                                          |                  |            |
| 947<br>pr. 1947                |                            |                               | 386<br>53            | 162<br>7.4                  | 613<br>33      |        | 123<br>125                                 | 0<br>0                                    | 1950<br>89       | 602<br>30        |                      | 1.9<br>5.0                         | 1.88              | 4110<br>324                               | 5.59<br>.44                  |                    | 1630<br>163                          | 1530<br>60                  | $\begin{array}{c} 6.6\\ 1.1 \end{array}$ |                  | 7.7<br>7.8 |
| 948<br>eb. 1948<br>ept         |                            |                               | 302<br>49            | 128<br>7.7                  | 458<br>28      |        | 142<br>107                                 | 0<br>0                                    | 1490<br>87       | 453<br>28        |                      | 3.1<br>3.7                         | 1.13<br>,15       | 3160<br>265                               | 4.30<br>.36                  |                    | 1280<br>154                          | 1160<br>67                  | 5.6<br>1.0                               | 3950<br>455      | 7.8<br>7.8 |
| 949<br>ar. 1949<br>pr          |                            |                               | 325<br>53            | 140<br>11                   | 509<br>48      |        | 149<br>85                                  | 0<br>0                                    | 1590<br>141      | 528<br>47        |                      | 9.9<br>3,7                         | 1.54<br>.17       | 3410<br>382                               | 4.64<br>.52                  |                    | 1390<br>177                          | 1260<br>107                 | 6.0<br>1.6                               |                  | 7.6<br>7.6 |
| <u>950</u><br>ar. 1950<br>une  |                            |                               | 375<br>71            | 164<br>13                   | 572<br>57      |        | 133<br>124                                 | 0<br>0                                    | 1860<br>173      | 562<br>53        |                      | 3.7<br>6.8                         |                   | 3810<br>485                               | 5.18<br>.66                  |                    | 1610<br>232                          | 1500<br>130                 | 6.2<br>1.6                               | 4670<br>727      | 7.7<br>7.8 |
| <u>951</u><br>lar. 1951<br>ept |                            |                               | 356<br>50            | 162<br>7.8                  | 560<br>26      |        | $137 \\ 116$                               | 0<br>0                                    | 1790<br>81       | 564<br>25        |                      | 3.1<br>2.5                         | 1.45              | 3790<br>301                               | 5.16<br>.41                  |                    | 1560<br>158                          | 1440<br>62                  | 6.2<br>.9                                |                  | 7.8<br>8.0 |
| 952<br>eb. 1952<br>ct. 1951    |                            |                               | 35                   | 6.8                         | 198<br>23      |        | 132<br>98                                  | 0<br>0                                    | 47               | 234<br>25        |                      | 6.8                                | .10               | 1470<br>221                               | 2.00                         |                    | 626<br>115                           | 517<br>35                   | 3.4<br>.9                                | 2020<br>344      | 7.9        |
| <u>953</u><br>pr. 1953         |                            |                               |                      |                             | 70<br>14       |        | 113<br>153                                 | 0                                         |                  | 82<br>14         |                      |                                    |                   | 537<br>228                                | .73                          |                    | 253<br>170                           | 160<br>44                   | 1.9                                      | 818<br>374       | 8.0        |

|                                                                          |                            |                               |              |                      |                             | 0                     | (Results                   | - F                                               | milligrams                   | per liter                     | except as             | s [ndicated]         | (p)                                            | a                                         | Dissolved solids             | olids              | Haro                                         | Hardness<br>as CaCO. | -98               | - 01                                                   | -9                |
|--------------------------------------------------------------------------|----------------------------|-------------------------------|--------------|----------------------|-----------------------------|-----------------------|----------------------------|---------------------------------------------------|------------------------------|-------------------------------|-----------------------|----------------------|------------------------------------------------|-------------------------------------------|------------------------------|--------------------|----------------------------------------------|----------------------|-------------------|--------------------------------------------------------|-------------------|
| Date<br>of<br>collection                                                 | Mean<br>Discharge<br>(cfs) | Silica<br>(SiO <sub>a</sub> ) | Iron<br>(Fe) | Cal-<br>ctum<br>(Ca) | Mag-<br>ne-<br>stum<br>(Mg) | Sodium<br>(Na)        | Po-<br>tas-<br>sium<br>(K) | b1-<br>car-<br>bon-<br>ate<br>(HCO <sub>3</sub> ) | Car-<br>bon-<br>ate<br>(CO3) | Sulfate<br>(SO <sub>4</sub> ) | Chloride<br>(Cl)      | Fluo-<br>ride<br>(F) | N1- Bo-<br>trate ron<br>(NO <sub>3</sub> ) (B) | Milli-<br>grams<br>per<br>liter<br>(mg/l) | Tons<br>per<br>acre-<br>foot | Tons<br>per<br>day | Cal-<br>Cal-<br>cium,<br>Mag-<br>ne-<br>shum | Non-<br>car-<br>bon- | 0 0 7             | a con-<br>duct-<br>ance<br>(micro-<br>mhos at<br>25°C) | pH                |
|                                                                          |                            |                               |              |                      |                             |                       | 8-4630.                    | RIO                                               | SAN JUAN                     | AT SANTA                      | ROSALIA, '            | TAMAULIPAS           |                                                |                                           |                              |                    |                                              |                      |                   |                                                        |                   |
| Period, Mar Sept. 1935<br>Maximum, Mar. 8, 1935<br>Minimum, Sept. 26     |                            |                               |              | 160<br>61            | 77<br>11                    | 317<br>22             |                            | 168<br>169                                        | 00                           | 742<br>72                     | 342<br>19             | ŝ                    | 8.7 0.66<br>8.7 .09                            | 1880<br>295                               | 2,56<br>,40                  |                    | 717<br>198                                   | 580<br>60            | 5.1<br>.7         | 2550<br>456                                            | 7.6<br>7.6        |
| Water Year 1936<br>Maximum, Jan. 23, 1936<br>Minimum, July 27            |                            |                               |              | 92<br>69             | 30<br>12                    | 80<br>33              |                            | 170                                               | 0 0                          | 252<br>115                    | 81<br>27              | 22<br>8,7            | 7 .07                                          | 898<br>365                                | 1.22                         |                    | 354<br>220                                   | 215<br>97            | $1.8 \\ 1.0$      | 992<br>525                                             | 7.8               |
| Mater Year 1937<br>Maximum, May 17, 1937                                 |                            |                               |              | 95<br>52             | 47<br>11                    | 247<br>29             |                            | 69<br>114                                         | 00                           | 487<br>98                     | 301<br>22             | 4 -                  | 4.3 .41<br>1.2 .12                             | 1270<br>324                               | 1.73                         |                    | 430<br>176                                   | 373<br>82            | 5.2               | 1940<br>510                                            | 8.5               |
| Mater Year 1938<br>Maximum, Oct. 18, 1937<br>Minimum, Aug. 1938          |                            |                               |              | 118<br>57            | 49.7                        | 202<br>26             |                            | 135<br>132                                        | 0 0                          | 514<br>82                     | 197<br>25             | 11                   | 1.9 .48<br>1.9 .09                             | 1260<br>294                               | 1.72                         |                    | 494<br>172                                   | 384<br>64            | 4.0               | 1760                                                   | 8.0               |
| Mater Year 1939<br>Maximum, Aug. 1939<br>Minimum, June<br>Sept           |                            |                               |              | 122<br>61<br>66      | 22<br>13                    | 105<br>57<br>60       |                            | 113<br>113<br>138                                 | 000                          | 371<br>143<br>139             | 101<br>57<br>51       | 1.1                  | 2.5<br>1.9<br>1.9 .17                          | 809<br>419<br>419                         | 1.10<br>.57                  |                    | 394<br>206<br>214                            | 302<br>113<br>100    | 2.3<br>1.7<br>1.8 | 1180<br>666<br>642                                     | 7.9<br>8.1<br>7.9 |
| Mater Vear 1940<br>Maximum, Apr. 1940.<br>May.<br>May                    |                            |                               |              | 95<br>83<br>55       | 31<br>29<br>10              | 126<br>159<br>31      |                            | 143<br>114<br>138                                 | 000                          | 352<br>326<br>68              | 110<br>165<br>26      | i i n                | 1.9 .28<br>1.9 .33<br>3.7                      | 875<br>875<br>324                         | 1.19<br>1.19                 |                    | 365<br>325<br>180                            | 248<br>232<br>67     | 2.9<br>3.8<br>1.0 | 1260<br>1350<br>437                                    | 8.2<br>7.8<br>8.2 |
| Mater Year 1941<br>Maximum, Mar. 1941<br>Minimum, Nov. 1940<br>Dec       | 2010 14                    |                               |              | 98<br>52<br>49       | 30<br>11<br>9.2             | 92<br>30<br>29        |                            | 1170<br>117<br>105                                | 000                          | 291<br>100<br>96              | 89<br>21              | 11                   | 1.9 .24<br>1.9                                 | 750<br>294<br>294                         | 1.02<br>.40                  |                    | 368<br>176<br>160                            | 228<br>80<br>74      | 2.1<br>1.0<br>1.0 | 1060<br>448<br>459                                     | 7.8<br>7.7        |
| Water Year 1942<br>Maximum, Dec. 1941                                    |                            |                               |              | 98<br>66             | 33<br>13                    | 88<br>38              |                            | 167<br>151                                        | 00                           | 298<br>111                    | 84<br>35              | 8.8                  | 8.7 .29<br>8.1 .15                             | 779<br>390                                | 1.06                         |                    | 379<br>220                                   | 242<br>96            | 2.0<br>1.1        | 1080<br>585                                            | 7.9               |
| Period, Sept. 1942 - Mar. 1943<br>Maximum, Mar. 1943                     |                            |                               |              | 87<br>75             | 34<br>13                    | 114<br>37             |                            | 118<br>152                                        | 00                           | 360<br>148                    | 97<br>30              | С                    | 3.7 .25<br>4.3 .10                             | 831<br>426                                | 1.13                         |                    | 356<br>241                                   | 258<br>116           | 2.6               | 1190                                                   | 7.7               |
|                                                                          |                            |                               |              |                      | 8-46                        | 8-4678. MORILLO DRAIN | LO DRAI                    | II                                                | MEXICO,                      | 8.4 RIVER                     | MILES ABOVE ANZALDUAS | JE ANZALDI           | IAS DAM,                                       | TEX.                                      |                              |                    |                                              |                      |                   |                                                        |                   |
| Period, Jan Sopt. 1962<br>Maximum, July 1962<br>Minimum, June            |                            |                               |              | 535<br>394           | 274<br>171                  | 3390<br>2090          |                            | 177<br>232                                        | 00                           | 2550<br>1630                  | 5100<br>3160          | 1,                   | .6 8.7<br>1,9 5.4                              | 12500<br>7940                             | 17.0<br>10.8                 |                    | 2460<br>1690                                 | 2320<br>1500         | 30<br>30          | 17500                                                  | 7.7<br>7.8        |
| Water Year 1963<br>Naximum, Aug. 1963                                    |                            |                               |              | 619<br>447           | 366<br>237                  | 3940<br>2570          |                            | 237<br>222                                        | 0 0                          | 3100                          | 5910<br>3850          | 2                    | .6 9.4<br>2.5 6.2                              | 14700<br>9710                             | 20.0<br>13.2                 |                    | 3050<br>2090                                 | 2850<br>1910         | 31<br>24          | 20200<br>13300                                         | 7.8<br>7.8        |
| Mater Year 1964           Maximum, Oct. 1963           Minimum, May 1964 |                            |                               |              | 558<br>329           | 278<br>118                  | 3540<br>1560          |                            | 197<br>232                                        | 0.0                          | 2480<br>1320                  | 5320<br>2240          | 1                    | .6 8.4<br>1.2 5.8                              | 12800<br>5900                             | 17.4<br>8.02                 |                    | 2540<br>1310                                 | 2370<br>1120         | 31<br>19          | 18000                                                  | 8.2<br>7.9        |
| Mater Year 1965<br>Maximum, Mar. 1965                                    |                            |                               |              | 461                  | 211<br>131                  | 2940<br>1700          |                            | 140<br>201                                        | 0.0                          | 2280<br>1370                  | 4240<br>2450          | 2.                   | 2.5 8.2<br>4.6                                 | 10500<br>6330                             | 14.3<br>8.61                 |                    | 2020<br>1320                                 | 1900                 | 28<br>20          | 15000<br>9200                                          | 7.9               |
| Mater Year 1966<br>Maximum, Mar. 1966                                    |                            |                               |              | 530<br>298           | 263<br>118                  | 3350<br>1520          |                            | 195<br>165                                        | 0.0                          | 2470<br>1290                  | 4910<br>2220          |                      | .6 8.8<br>.6 4.3                               | 12000<br>5780                             | 16.3<br>7,86                 |                    | 2400<br>1230                                 | 2240                 | 30<br>19          | 16800<br>8680                                          | 7.9               |
|                                                                          |                            |                               |              |                      |                             |                       |                            |                                                   |                              |                               |                       |                      |                                                |                                           |                              |                    |                                              | 100 300              | 15154             | hul                                                    | 1                 |

Table 9, -- Summary of chemical analyses at selected sites on Mexican streams in the Rio Grande basin -- Continued

## Table 10--Summary of chemical analyses at miscellaneous sites on streams in the Rio Grande basin

|          |                                         |                            |                               |              |                      | Mag                         |                | Po-          | Bi-                                        | 0                                         |                               |                  |         |                                    | Dis                                       | solved a                     | solids             | Hard<br>as Ca                        |                             | So-                                   | Specific                 | c  |
|----------|-----------------------------------------|----------------------------|-------------------------------|--------------|----------------------|-----------------------------|----------------|--------------|--------------------------------------------|-------------------------------------------|-------------------------------|------------------|---------|------------------------------------|-------------------------------------------|------------------------------|--------------------|--------------------------------------|-----------------------------|---------------------------------------|--------------------------|----|
|          | Date<br>of<br>collection                | Mean<br>Discharge<br>(cfs) | Silica<br>(SiO <sub>z</sub> ) | Iron<br>(Fe) | Cal-<br>cium<br>(Ca) | Mag-<br>ne-<br>sium<br>(Mg) | Sodium<br>(Na) | tas-<br>sium | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> ) | Car-<br>bon-<br>ate<br>(CO <sub>3</sub> ) | Sulfate<br>(SO <sub>4</sub> ) | Chloride<br>(Cl) |         | Ni-<br>trate<br>(NO <sub>3</sub> ) | Milli-<br>grams<br>per<br>liter<br>(mg/1) | Tons<br>per<br>acre-<br>foot | Tons<br>per<br>day | Cal-<br>cium,<br>Mag-<br>ne-<br>sium | Non-<br>car-<br>bon-<br>ate | dium<br>ad-<br>sorp-<br>tion<br>ratio | duct-<br>ance<br>(micro- | pH |
|          |                                         |                            |                               |              |                      |                             |                |              | 8-3639.                                    | RIO GR                                    | ANDE NEAR                     | CANUTILLO,       | TEX.    |                                    |                                           |                              |                    |                                      |                             |                                       |                          |    |
| ct. 24,  | 1967                                    |                            | 26                            |              | 136                  | 28                          | 278            | 15           | 306                                        | 0                                         | 468                           | 245              | 0.7     | 2.0                                | 1350                                      |                              |                    | 454                                  | 204                         | 5.7                                   | 2040                     | 7  |
|          |                                         |                            |                               |              |                      |                             |                | 8~           | 3708, W                                    | LLDHORS                                   | E CREEK N                     | EAR VAN HOF      | UN, TEX |                                    |                                           |                              |                    |                                      |                             |                                       |                          |    |
| ug, 25,  | 1966                                    | 200                        | 19                            |              | 49                   | 4.6                         | 8.6            | 8.5          | 184                                        | 0                                         | 9.4                           | 2.4              | 0.4     | 0.5                                | 192                                       | 0.26                         | 104                | 141                                  | 0                           | 0.3                                   | 317                      | 7  |
|          |                                         |                            |                               |              |                      |                             |                |              | CAPOT                                      | CREEK                                     | NEAR CAN                      | DELARIA, TE      | x.      |                                    | <br>                                      |                              |                    |                                      |                             |                                       |                          |    |
| tar. 30, | 1961                                    | a0.17                      | 29                            |              | 19                   | 0.6                         | 183            |              | 350                                        | 0                                         | 117                           | 27               |         | 0.0                                | 549                                       | 0.75                         |                    | 50                                   | 0                           | 11                                    | 867                      | 7  |
|          |                                         |                            |                               |              |                      |                             |                | 8            | -3740.                                     | ALAMITO                                   | CREEK NE                      | AR PRESIDIO      | ), TEX. |                                    |                                           |                              |                    |                                      |                             |                                       |                          |    |
|          | 1967                                    |                            | 62                            |              | 24                   | 2.2                         | 100            | 3.0          | 262                                        | 0                                         | 43                            | 18               | 1.5     |                                    | 384                                       | 0.52                         | 1.85               | 69                                   | 0                           |                                       | 553                      |    |
|          | • • • • • • • • • • • • • • • • • • • • |                            | 61                            |              | 42                   | 2.7                         | 104            | 2.8          | 312                                        | 0                                         | 47                            | 23               | 1.5     | 1.5                                | 438                                       | .60                          |                    | 116                                  | 0                           | 4.2                                   | 633                      |    |
|          | ••••••                                  | .6                         | 63                            |              | 35                   | 2.6                         | 113            | 3.3          | 307                                        | 0                                         | 51                            | 27               | 1.9     | . 2                                | 448                                       | .61                          | .71                | 98                                   | 0                           | 5,0                                   | 650                      |    |
|          |                                         |                            | 32                            |              | 46                   | 2.8                         | 36             | 4.2          | 224                                        | 0                                         | 16                            | 4.7              | , 8     | .2                                 | 253                                       | . 34                         |                    | 126                                  | 41                          | 1.4                                   |                          |    |
|          |                                         |                            | 27                            |              | 48                   | .8                          | 40             | 3.9          | 222                                        | 0                                         | 18                            | 5.4              | .8      | 2.5                                | 255                                       | .35                          |                    | 123                                  | 0                           | 1.6                                   | 385                      |    |
|          | 1069                                    |                            | 64                            |              | 36                   | 2.3                         | 100            | 3.0          | 306                                        | 0                                         | 39                            | 16               | 1.8     | .0                                 | 412                                       |                              |                    | 100                                  | 0                           | 4.4                                   | 590                      |    |
|          | 1968                                    |                            | 22                            |              | 22                   |                             |                | **           | 296<br>312                                 | 0<br>0                                    |                               | 14<br>14         | 77      | 177                                |                                           |                              |                    | 97<br>102                            | 0<br>0                      | 5 B.                                  |                          |    |
|          |                                         |                            |                               |              |                      |                             |                | 8-3          | 745, TE                                    | RLINGUA                                   | CREEK NE                      | AR TERLING       | JA, TEX | i.                                 |                                           |                              |                    |                                      |                             |                                       |                          |    |
| Jan. 3,  | 1967                                    |                            | 26                            |              | 142                  | 17                          | 172            | 5.6          | 218                                        | 0                                         | 584                           | 8.4              | 1.3     | 3,8                                | 1070                                      | 1.46                         |                    | 424                                  | 246                         | 3.6                                   | 1430                     | 7  |
| far. 3   |                                         |                            | 2.5                           |              | 144                  | 1.8                         | 176            | 5.8          | 214                                        | 0                                         | 600                           | 9.5              | 1.3     | 2.8                                | 1090                                      | 1.48                         |                    | 434                                  | 258                         | 3.7                                   | 1600                     | 7  |
|          |                                         |                            | 24                            |              | 149                  | 19                          | 183            | 5.8          | 2.06                                       | 0                                         | 644                           | 8.6              | 1.6     | 3.5                                | 1140                                      | 1.55                         |                    | 450                                  | 281                         | 3.8                                   | 1520                     | 7  |
|          |                                         |                            | 21                            |              | 56                   | 3.7                         | 74             | 3.2          | 200                                        | 0                                         | 135                           | 7.2              | 1.1     | .8                                 | 400                                       | - 54                         |                    | 1.54                                 | 0                           | 2.6                                   | 606                      | 7  |
|          |                                         | 550                        | 17                            |              | 142                  | 8.3                         | 138            | 5.2          | 242                                        | 0                                         | 468                           | 6.4              | 1.9     | .2                                 | 906                                       | 1.23                         | 1350               | 388                                  | 190                         | 3.0                                   |                          |    |
|          |                                         |                            | 30                            |              | 129                  | 18                          | 177            | 5.6          | 158                                        | 0                                         | 616                           | 8.0              | 1,4     | 2.8                                | 1070                                      | 22                           |                    | .396                                 | 266                         | 3.9                                   |                          |    |
|          | 1968                                    |                            |                               |              |                      |                             |                |              | 150                                        | 0                                         |                               | 7.6              |         |                                    |                                           |                              |                    | 402                                  | 279                         |                                       | 1430                     |    |
| Apr. 1   |                                         |                            |                               |              |                      |                             | - "            |              | 185                                        | 0                                         |                               | 6.8              | 4.4     | (44)                               | (44)<br>(44)                              | **                           |                    | 354                                  | 202                         |                                       | 1250                     | 7. |
|          |                                         |                            |                               |              |                      |                             | 8-             | 3750.        | RIO GRA                                    | NDE AT                                    | JOHNSON R                     | ANCH NEAR O      | ASTOL   | N, TEX                             |                                           |                              |                    |                                      |                             |                                       |                          |    |
| Apr. 30, | 1962                                    |                            | 20                            | 0.01         | 102                  | 21                          | 240            |              | 139                                        | 0                                         | 540                           | 128              | 2.1     | 0.0                                | 1120                                      | 1.52                         |                    | 341                                  | 227                         | 5.6                                   | 1630                     | 7  |

## Table 10, -- Summary of chemical analyses at miscellaneous sites on streams in the Rio Grande basin--Continued

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                         |                            |                               |              |                                          |                                                             |                                                                  |                            | Bi-                                        | ~                                         |                                                                               |                                                                                                |         |                                    |      | Die                                                    | ssolved                      | solids             | Hard<br>as C                                                                  |                             | So-                            | Specific<br>con-                                                                                                                                                                                                                                         |    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|----------------------------|-------------------------------|--------------|------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------|----------------------------|--------------------------------------------|-------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------|------------------------------------|------|--------------------------------------------------------|------------------------------|--------------------|-------------------------------------------------------------------------------|-----------------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Date<br>of<br>llection                                  | Mean<br>Discharge<br>(cfs) | Silica<br>(SiO <sub>2</sub> ) | Iron<br>(Fe) | Cal-<br>cium<br>(Ca)                     | Mag-<br>ne-<br>sium<br>(Mg)                                 | Sodium<br>(Na)                                                   | Po-<br>tas-<br>sium<br>(K) | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> ) | Car-<br>bon-<br>ate<br>(CO <sub>3</sub> ) | Sulfate<br>(SO <sub>4</sub> )                                                 | Chloride<br>(Cl)                                                                               |         | Ni-<br>trate<br>(NO <sub>3</sub> ) |      | Milli-<br>grams<br>per<br>liter<br>(mg/l)              | Tons<br>per<br>acre-<br>foot | Tons<br>per<br>day | Cal-<br>cium,<br>Mag-<br>ne-<br>sium                                          | Non-<br>car-<br>bon-<br>ate |                                | duct-<br>ance<br>(micro-<br>mhos at<br>25°C)                                                                                                                                                                                                             |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                         |                            |                               |              |                                          |                                                             |                                                                  |                            | 8-3775                                     | 5. RIO                                    | GRANDE A'I                                                                    | LANGTRY, 1                                                                                     | CEX.    |                                    |      |                                                        |                              |                    |                                                                               |                             |                                |                                                                                                                                                                                                                                                          |    |
| me 17, 1952                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                         | 1180                       | 20                            | 0,01         | 168                                      | 24                                                          | 108                                                              | 2.4                        | 188                                        | 0                                         | 537                                                                           | 19                                                                                             | 0.7     | 2.5                                | 0.25 | 1010                                                   | 1.37                         |                    | 518                                                                           | 364                         | 2.1                            | 1280                                                                                                                                                                                                                                                     | 7. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                         |                            |                               |              |                                          |                                                             |                                                                  | 8-408                      | 5, DELAN                                   | JARE R                                    | EVER NEAR                                                                     | RED BLUFF,                                                                                     | NEW ME  | XICO                               |      |                                                        |                              |                    |                                                                               |                             |                                |                                                                                                                                                                                                                                                          |    |
| ст. 15, 1947<br>ид. 24, 1966                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                         |                            | 11                            |              | 669<br>570                               | 86<br>7.8                                                   | 131<br>7.7                                                       | 4.9                        | 77<br>136                                  | 0<br>0                                    | 1960<br>1300                                                                  | 145<br>8.8                                                                                     | 0.2     | 0.8                                |      | 3030<br>1980                                           |                              |                    | 2020<br>1450                                                                  | 1340                        | 1.3<br>.1                      | 3440<br>2160                                                                                                                                                                                                                                             | 6. |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                         |                            |                               |              |                                          |                                                             |                                                                  | 8-4                        | 115, SAI                                   | T (SC                                     | REWBEAN) I                                                                    | RAW NEAR OF                                                                                    | RLA, TE | cx.                                |      |                                                        |                              |                    |                                                                               |                             |                                |                                                                                                                                                                                                                                                          |    |
| $\begin{array}{rrrr} r. 10, 15, 20, 25\\ rr. 31, \dots, r. 31, rr. 31,$ | 24, 29<br>4, 29<br>23, 28<br>23, 28<br>23, 28<br>23, 28 |                            |                               |              | 1080<br>1140<br>1080<br>1070<br>1070<br> | 615<br>598<br>575<br>570<br>559<br><br><br><br><br><br><br> | 6120<br>5940<br>5690<br>5600<br><br><br><br><br><br><br><br><br> |                            | 107 115 131 136 120                        |                                           | 3730<br>3800<br>3650<br>3680<br>3720<br><br><br><br><br><br><br><br><br><br>- | 10300<br>10000<br>9690<br>9350<br>9410<br><br><br><br><br>8000<br>7400<br>7400<br>2600<br>2600 |         |                                    |      | 21900<br>21600<br>20700<br>20800<br>20400<br>20400<br> |                              |                    | 5240<br>5290<br>5080<br>5020<br>4980<br><br><br><br><br><br><br><br><br><br>- |                             | 37<br>36<br>35<br>36<br>35<br> | 30000<br>29500<br>28600<br>28600<br>28600<br>27800<br>27800<br>27800<br>26900<br>26100<br>25500<br>25500<br>25500<br>25500<br>25500<br>25500<br>25500<br>25500<br>25500<br>25500<br>25500<br>25500<br>25500<br>24100<br>24100<br>24700<br>11800<br>24500 |    |

|                          |                            |                               |              |                      |                             |                             |                              |                                           |                                                               |                                          |                          |                      |                                                   |                                |                                           | the second se |                    |                                      |                             |                               |                                              |     |
|--------------------------|----------------------------|-------------------------------|--------------|----------------------|-----------------------------|-----------------------------|------------------------------|-------------------------------------------|---------------------------------------------------------------|------------------------------------------|--------------------------|----------------------|---------------------------------------------------|--------------------------------|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------|--------------------|--------------------------------------|-----------------------------|-------------------------------|----------------------------------------------|-----|
|                          |                            |                               |              |                      |                             |                             |                              |                                           |                                                               |                                          |                          |                      |                                                   |                                | 881/1                                     | SULUE BOLLOS                                                                                                    | SDL                | as CaCO <sub>3</sub>                 | CO.                         | -so:                          | Specific<br>con-                             |     |
| Date<br>of<br>collection | Mean<br>Discharge<br>(cfs) | Silica<br>(SiO <sub>2</sub> ) | Iron<br>(Fe) | Cal-<br>cium<br>(Ca) | Mag-<br>ne-<br>sium<br>(Mg) | Sodium<br>(Na)              | Po-<br>tas-<br>sium<br>(K) ( | car-<br>bon-<br>ate<br>HCO <sub>3</sub> ) | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> ) (CO <sub>3</sub> ) | Sulfate<br>(SO4)                         | Chloride<br>(Cl)         | Fluo-<br>ride<br>(F) | Fluo- N1-<br>ride trate<br>(F) (NO <sub>3</sub> ) | Bo-<br>Mi<br>(B)<br>(B)<br>(m) | Milli-<br>grams<br>per<br>liter<br>(mg/l) | Tons<br>per<br>acre-<br>foot                                                                                    | Tons<br>per<br>day | Cal-<br>cium,<br>Mag-<br>ne-<br>sium | Non-<br>car-<br>bon-<br>ate | ad-<br>sorp-<br>tion<br>ratio | duct-<br>ance<br>(micro-<br>mhos at<br>25°C) | Hq  |
|                          |                            |                               |              |                      |                             | 8-4                         | (15, SA)                     | T (SCR                                    | EWBEAN)                                                       | 8-4115. SALT (SCREWBEAN) DRAW NEAR ORLA, |                          | XCo                  | TEX Continued                                     |                                |                                           |                                                                                                                 |                    |                                      |                             |                               |                                              |     |
|                          |                            |                               |              |                      |                             |                             |                              |                                           |                                                               | ;                                        | 7600                     |                      |                                                   |                                | 1                                         |                                                                                                                 |                    | 1                                    |                             | ŝ                             | 23400                                        |     |
| Mar. 1, 1948             |                            |                               |              | E I                  |                             |                             |                              |                                           | 1                                                             | 3                                        | 7400                     |                      |                                                   |                                | ł                                         |                                                                                                                 |                    | ţ                                    |                             | ŝ                             | 23400                                        |     |
| Mar. 5                   |                            |                               |              |                      | ;                           | 1                           |                              | ł                                         | ;                                                             | 3                                        | 7300                     |                      |                                                   |                                | 1                                         |                                                                                                                 |                    | i.                                   |                             | Ē                             | 23400                                        |     |
| Mar 15                   |                            |                               |              | ;                    | 1                           | ł                           |                              | ţ                                         | ;                                                             | 1                                        | 74,00                    |                      |                                                   |                                | Ĩ.                                        |                                                                                                                 |                    | 1                                    |                             | :                             | 23700                                        |     |
| Mar. 20.                 |                            |                               |              | 1                    | ł                           | ł                           |                              | ł                                         | t                                                             | ł                                        | 7400                     |                      |                                                   |                                |                                           |                                                                                                                 |                    | 1                                    |                             |                               | 00066                                        |     |
| Mar. 25.                 |                            |                               |              | 1                    | Ì                           | 1                           |                              | ł                                         | ł                                                             | £                                        | 7500                     |                      |                                                   |                                | ;                                         |                                                                                                                 |                    |                                      |                             | 1                             | 002.72                                       |     |
| Mar. 30                  |                            |                               |              | 1                    | 1                           | ł                           |                              | ł                                         | f                                                             | i,                                       | 00/1                     |                      |                                                   |                                |                                           |                                                                                                                 |                    | 1                                    |                             | 1                             | 24700                                        |     |
| Apr. 5                   |                            |                               |              | ŀ                    | ł                           | ł                           |                              | 1                                         |                                                               |                                          | 1/00                     |                      |                                                   |                                | ;                                         |                                                                                                                 |                    | 1                                    |                             | ţ                             | 24700                                        |     |
| Apr. 10                  |                            |                               |              | E E                  | 1                           | 50                          |                              |                                           | : :                                                           |                                          | 8100                     |                      |                                                   |                                | į                                         |                                                                                                                 |                    | 1                                    |                             | ł                             | 25300                                        |     |
| Apr. 15                  |                            |                               |              | 1                    |                             |                             |                              | 3                                         |                                                               | 5                                        | 8000                     |                      |                                                   |                                | ţ                                         |                                                                                                                 |                    | t                                    |                             | Ē                             | 25300                                        |     |
| Apr. 20                  |                            |                               |              | 8                    | l                           |                             |                              |                                           | 3                                                             | 3                                        | 8000                     |                      |                                                   |                                | ţ                                         |                                                                                                                 |                    | 1                                    |                             | 1                             | 25300                                        |     |
| Apr. 25                  |                            |                               |              |                      |                             |                             |                              | 3                                         | ;                                                             | ;                                        | 2850                     |                      |                                                   |                                | 1                                         |                                                                                                                 |                    | 1                                    |                             | 1                             | 11500                                        |     |
| May 1                    |                            |                               |              |                      |                             | 3                           |                              | ;                                         | ł                                                             | ;                                        | 7700                     |                      |                                                   |                                | 4                                         |                                                                                                                 |                    | 1                                    |                             | 1                             | 24700                                        |     |
| May D                    |                            |                               |              | ;                    | 1                           | ł                           |                              | ł                                         | ł                                                             | ł                                        | 7900                     |                      |                                                   |                                | 1                                         |                                                                                                                 |                    | ł                                    |                             | ł                             | 24700                                        |     |
| May 11                   |                            |                               |              | ţ                    | ł                           | i.                          |                              | ł                                         | Ę                                                             | ł                                        | 7800                     |                      |                                                   |                                | ł                                         |                                                                                                                 |                    | ł                                    |                             | ×                             | 24700                                        |     |
|                          |                            |                               |              |                      |                             |                             | 8                            | 8-4140.                                   | PECOS R                                                       | IVER NEAB                                | RIVER NEAR MENTONE, TEX. | TEX.                 |                                                   |                                |                                           |                                                                                                                 |                    |                                      |                             |                               |                                              |     |
| Sept. 25, 1968           |                            | 8.0                           |              | 320                  | 50                          | 595                         |                              | 79                                        | 0                                                             | 922                                      | 910                      | 0,4                  | 2.2                                               |                                | 2840                                      |                                                                                                                 |                    | 1000                                 | 952                         | 8,2                           | 4230                                         | 7.5 |
|                          |                            |                               |              |                      |                             | BARSTOW IRRIGATION CANAL AT | RIGATIC                      | N CANA                                    | L AT HI                                                       | HIGHWAY 80                               | CROSSING EAST OF         | AST OF               | BARSTOW,                                          | 4, TEX.                        |                                           |                                                                                                                 |                    |                                      |                             |                               |                                              |     |
| Mar. 13, 1947            |                            |                               |              | 692                  | 2.54                        | 1480                        |                              | 145                                       | 0                                                             | 2420                                     | 2380                     |                      | 1.5                                               |                                | 7300                                      |                                                                                                                 |                    | 2770                                 |                             | 12                            | 0666                                         |     |
|                          |                            |                               |              |                      |                             |                             |                              | 8-4205                                    | . PECOS                                                       | 8-4205, PECOS RIVER AT PECOS,            | PECOS, TE                | TEX.                 |                                                   |                                |                                           |                                                                                                                 |                    |                                      |                             |                               |                                              |     |
| 0.00 0 107.6             |                            |                               |              | 652                  | 7.0.0                       | 1240                        |                              | 112                                       | 0                                                             | 0761                                     | 2050                     |                      |                                                   |                                | 6060                                      |                                                                                                                 |                    | 2310                                 |                             | =                             | 8620                                         |     |
| Mar. 13, 1947            |                            |                               |              | 682<br>782           | 283                         | 1490                        |                              | 209<br>133                                | 00                                                            | 2320<br>2760                             | 2500                     |                      |                                                   |                                | 7380<br>8950                              |                                                                                                                 |                    | 2870<br>3420                         |                             | 12<br>14                      | 10100                                        |     |
|                          |                            |                               |              |                      |                             |                             | B                            | BARSTOW                                   | DRAIN                                                         | O. I NEAF                                | NO. 1 NEAR BARSTOW, TEX. | TEX.                 |                                                   |                                |                                           |                                                                                                                 |                    |                                      |                             |                               |                                              |     |
|                          |                            |                               |              |                      |                             |                             |                              |                                           |                                                               |                                          |                          |                      |                                                   |                                | and and                                   |                                                                                                                 |                    | 1000                                 |                             |                               |                                              |     |
| 0ct. 9, 1946             |                            |                               |              | 733                  | 327                         | 1920<br>2000                |                              | 134 232                                   | 00                                                            | 2790<br>2820                             | 2980<br>3180             |                      |                                                   |                                | 8790<br>9210                              | 11.9                                                                                                            |                    | 3280                                 |                             | 15                            | 11900                                        |     |
| Mar. 13.                 |                            |                               |              | 805                  | 347                         | 1980                        |                              | 234                                       | 0                                                             | 2840                                     | 3250                     |                      |                                                   |                                | 9340                                      | 12.6                                                                                                            |                    | 3430                                 |                             | 15                            | 12700                                        |     |
| May 15                   |                            |                               |              | 74.2                 | 309                         | 2020                        |                              | 68                                        | 0 0                                                           | 2740<br>2870                             | 3170                     |                      | 8.4                                               |                                | 9210                                      |                                                                                                                 |                    | 3190                                 |                             | 16                            | 12500                                        |     |
| OCE. 10                  |                            |                               |              | 344                  | 140                         | 0404                        |                              | 1000                                      | 1                                                             | 2                                        | 1                        |                      |                                                   |                                |                                           |                                                                                                                 |                    |                                      |                             |                               |                                              |     |

| basin==Continued |
|------------------|
| o Grande         |
| Rio              |
| the              |
| 5                |
| 1 streams        |
| uo s             |
| site             |
| miscellaneous    |
| at               |
| analyses         |
| chemical         |
| of               |
| Sumary           |
| e 10             |
| Table            |

|                                                                                            |                            |                               |              |                                 | ;                               |                                      | \$                         | Bl-                                        |                                   |                              |                                              |                                                   |                                              |                                                            | Dissolved solids              | d solids           | Haas                                 | Hardness<br>as CaCO <sub>3</sub> |                               | 01                                           | -11-         |
|--------------------------------------------------------------------------------------------|----------------------------|-------------------------------|--------------|---------------------------------|---------------------------------|--------------------------------------|----------------------------|--------------------------------------------|-----------------------------------|------------------------------|----------------------------------------------|---------------------------------------------------|----------------------------------------------|------------------------------------------------------------|-------------------------------|--------------------|--------------------------------------|----------------------------------|-------------------------------|----------------------------------------------|--------------|
| Date<br>of<br>collection                                                                   | Mean<br>Discharge<br>(cfs) | Silica<br>(SiO <sub>2</sub> ) | Iron<br>(Fe) | Cal-<br>ctum<br>(Ca)            | Mag-<br>ne-<br>sium<br>(Mg)     | Sodium<br>(Na)                       | Po-<br>tas-<br>sium<br>(K) | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> ) | bon-<br>ate<br>(CO <sub>3</sub> ) | Sulfate<br>(SO4)             | Chloride<br>(Cl)                             | Fluo- N1-<br>ride trate<br>(F) (NO <sub>3</sub> ) | N1- Bo-<br>rate ron<br>NO <sub>3</sub> ) (B) | <pre>Milli-<br/>m grams<br/>per<br/>liter<br/>(mg/l)</pre> | r<br>r<br>f<br>foot           | Tons<br>per<br>day | Cal-<br>clum,<br>Mag-<br>ne-<br>slum | n, Non-<br>s- bon-<br>ate        | ad-<br>sorp-<br>tion<br>ratio | duct-<br>ance<br>(micro-<br>mhos at<br>25°C) | e pH         |
|                                                                                            |                            |                               |              |                                 |                                 |                                      | B                          | BARSTOW 1                                  | DRAIN N                           | IO. 2 NEAR                   | DRAIN NO. 2 NEAR BARSTOW, TEX.               | cex.                                              |                                              |                                                            |                               |                    |                                      |                                  |                               |                                              |              |
| Oct 9, 1946<br>Feb. 27, 1947<br>Mar. 13.<br>Mar. 16.<br>Oct 16.                            |                            |                               |              | 668<br>784<br>748<br>748<br>748 | 217<br>271<br>315<br>259<br>257 | 1250<br>1300<br>1610<br>1280<br>1300 |                            | 113<br>78<br>232<br>84<br>121              | 00000                             | 2170<br>2630<br>2720<br>2510 | 2070<br>2200<br>2620<br>2170                 |                                                   | 1.5<br>5.0                                   | 6430<br>7220<br>8150<br>6970<br>7050                       | 00000                         |                    | 2560<br>3070<br>3220<br>2930<br>2940 |                                  | 11<br>10<br>12<br>10<br>10    | 8970<br>9780<br>9780<br>9630<br>9570         |              |
|                                                                                            |                            |                               |              |                                 |                                 |                                      | BAI                        | BARSTOW DI                                 | DRAIN NO.                         | 2-B                          | NEAR BARSTOW,                                | TEX.                                              |                                              |                                                            |                               |                    |                                      |                                  |                               |                                              |              |
| Mar. 13, 1947                                                                              |                            |                               |              | 732                             | 259                             | 1550                                 |                            | 144                                        | 0                                 | 2550                         | 2480                                         |                                                   |                                              | 7640                                                       | 0                             |                    | 2890                                 | 0                                | 13                            | 10300                                        |              |
|                                                                                            |                            |                               |              |                                 |                                 |                                      | B                          | BARSTOW 1                                  | DRAIN N                           | NO. 3 NEAR BARSTOW,          |                                              | TEX.                                              |                                              |                                                            |                               |                    |                                      |                                  |                               |                                              |              |
| Oct. 9, 1946.<br>Mar. 15, 1947.<br>Oct. 16.<br>Oct. 16.                                    | (m)) <b>m</b> (m m         |                               |              | 702<br>730<br>774<br>742        | 258<br>291<br>305<br>294        | 1390<br>1450<br>1490<br>1550         |                            | 104<br>82<br>150<br>144                    | 0000                              | 2580<br>2650<br>2730<br>2740 | 2170<br>2370<br>2450<br>2450                 |                                                   | 7.5                                          | 7150<br>7540<br>7820<br>7850                               | 0000                          |                    | 2810<br>3020<br>3190<br>3060         |                                  | 1111                          | 9680<br>10400<br>10500<br>10600              |              |
|                                                                                            |                            |                               |              |                                 |                                 |                                      | 8-4255.                    |                                            | OM LAKE                           | PHANTOM LAKE SPRINGS 1       | NEAR TOYAHVALE,                              | JALE, TEX.                                        | sx.                                          |                                                            |                               |                    |                                      |                                  |                               |                                              |              |
| Jan. 28, 1950.<br>Feb. 15, 1967.<br>Mar. 22                                                | 7.31                       | 16<br>18<br>18                |              | 187<br>190<br>188               | 95<br>83<br>78                  | 473<br>470<br>470                    | <br>21<br>20               | 282<br>280<br>284                          | 000                               | 695<br>684<br>696            | 660<br>655<br>650                            |                                                   | 0.2<br>1.0<br>2.0                            | 2260<br>2260<br>2260                                       | 50 3.07<br>50 3.07<br>50 3.07 | 44.5<br>43.8       | - 857<br>5 816<br>8 790              | 626<br>586<br>558                | 7.0                           | 3410<br>3500<br>3500                         | 7.5          |
| Sept. 14                                                                                   | ¢                          | 17<br>16                      |              | 198<br>180                      | 82<br>82                        | 465                                  | 21                         | 284<br>236                                 | 00                                | 688<br>692                   | 660<br>670                                   |                                                   | ۰.<br>v                                      | 225                                                        |                               |                    |                                      |                                  |                               |                                              |              |
|                                                                                            |                            |                               |              |                                 |                                 |                                      | 8-4275.                    | SAN                                        | SOLOMOP                           | SOLOMON SPRINGS              | AT TOYAHVALE,                                | LE, TEX.                                          |                                              |                                                            |                               |                    |                                      |                                  |                               |                                              |              |
| Jan. 28, 1950                                                                              |                            | 19                            |              | 179                             | 06                              | 421                                  |                            | 273                                        | 0                                 | 635                          | 600                                          |                                                   | 1.5                                          | 2080                                                       | 30 2.83                       |                    | 816                                  | 593                              | 6.4                           | 3180                                         | 8.1          |
|                                                                                            |                            |                               |              |                                 |                                 |                                      | 8=                         | 8=4305, LAKE                               |                                   | BALMORHEA AT                 | BALMORHEA,                                   | , TEX.                                            |                                              |                                                            |                               |                    |                                      |                                  |                               |                                              |              |
| Jan. 28, 1950                                                                              |                            | 11                            |              | 184                             | 92                              | 464                                  |                            | 245<br>153                                 | 00                                | 689<br>1000                  | 650<br>680                                   |                                                   | 1.2                                          | 2230                                                       | 30 3.03                       | 2                  | 838<br>736                           | 636                              | 7.0                           | 3330<br>3620                                 | 9.7.8<br>8.2 |
|                                                                                            |                            |                               |              |                                 |                                 |                                      |                            | 8-4310.                                    | TOYAH                             | CREEK NEA                    | 8-4310. TOYAH CREEK NEAR PECOS, TEX.         | EX.                                               |                                              |                                                            |                               |                    |                                      |                                  |                               |                                              |              |
| Aug. 16, 1939<br>Aug. 19<br>Aug. 19<br>Aug. 25<br>Aug. 25<br>Aug. 20<br>Aug. 20<br>Sept. 2 |                            |                               |              | 366<br>366                      | 6111111                         | 1010                                 |                            | 256                                        | °                                 | 1600<br><br><br>             | 1430<br>1520<br>1550<br>1550<br>1530<br>1610 |                                                   |                                              | 5000                                                       | 00111111                      |                    |                                      |                                  |                               | 7020<br>7080<br>7280<br>7140<br>7490<br>7490 |              |
| Sept. 5                                                                                    | 2                          |                               |              | t                               | ł                               | ł                                    |                            | ł                                          | ł                                 | ł                            | 1600                                         |                                                   |                                              | *                                                          | :                             |                    |                                      |                                  |                               | 16.57                                        |              |

Table 10 --- Summary of chemical analyses at miscellaneous sites on streams in the Rio Grande basin -- Continued

- 97 -

|                                                                                                     |                            |                                 |              |                                 | 1                            |                                    |                            | B1-                        |                                           |                                      |                                                              |                  |                                                                           |                                    | Disso                             | Dissolved solids             | tds                | Hard<br>as C                         | Hardness<br>as CaCO, | s.                                    | Specific<br>con-                                      | -0                       |
|-----------------------------------------------------------------------------------------------------|----------------------------|---------------------------------|--------------|---------------------------------|------------------------------|------------------------------------|----------------------------|----------------------------|-------------------------------------------|--------------------------------------|--------------------------------------------------------------|------------------|---------------------------------------------------------------------------|------------------------------------|-----------------------------------|------------------------------|--------------------|--------------------------------------|----------------------|---------------------------------------|-------------------------------------------------------|--------------------------|
| Date<br>of<br>collection                                                                            | Mean<br>Discharge<br>(cfs) | Silica<br>(SiO <sub>2</sub> )   | Iron<br>(Fe) | Cal-<br>clum<br>(Ca)            | Mag-<br>ne-<br>stum<br>(Mg)  | Sodium<br>(Na)                     | Po-<br>tas-<br>sium<br>(K) | 0                          | Car-<br>bon-<br>ate<br>(CO <sub>3</sub> ) | Sulfate<br>(SO <sub>4</sub> )        | Chloride<br>(Cl)                                             | Pluo-<br>(F)     | - N1-<br>trate<br>(NO <sub>3</sub> )                                      | Bo-<br>ron<br>(B)<br>per<br>(mg/1) |                                   | Tons<br>per<br>acre-<br>foot | Tons<br>per<br>day | Cal-<br>clum,<br>Mag-<br>ne-<br>stum | Non<br>car-<br>bon   | dium<br>ad-<br>sorp-<br>tion<br>ratio |                                                       | pH                       |
|                                                                                                     |                            |                                 |              |                                 |                              |                                    | 8-43                       | 10. TOY                    | AH CREEI                                  | K NEAR PEC                           | 8-4310. TOYAH CREEK NEAR PECOS, TEXContinued                 | -Contir          | bout                                                                      |                                    |                                   |                              |                    |                                      |                      |                                       |                                                       |                          |
| Sept. 6, 1939.<br>Sept. 9.<br>Sept. 11.<br>Sept. 15.<br>Sept. 20.<br>Sept. 20.<br>Mar. 13. 1947.    |                            |                                 |              | 348<br>111                      | 2444<br>557                  | 1420                               |                            | 183                        | 111100                                    | <br><br>1950<br>4250                 | 1630<br>1680<br>1680<br>1620<br>1980<br>4930                 |                  |                                                                           | 14                                 | 14100                             |                              | 61.8               | <br><br><br>1870<br>3920             | 1720                 | 25                                    | 7640<br>7590<br>7450<br>7450<br>7390<br>8860<br>18400 |                          |
|                                                                                                     |                            |                                 |              |                                 |                              |                                    |                            | 8-4.31                     | 8-4315, SALT                              | DRAW NEAR PECOS,                     | t PECOS, T                                                   | TEX.             |                                                                           |                                    |                                   |                              |                    |                                      |                      |                                       |                                                       |                          |
| Mar. 13, 1947                                                                                       |                            |                                 |              | 462<br>366                      | 290<br>251                   | 1670<br>1460                       |                            | 376<br>190                 | 0.0                                       | 2040<br>1820                         | 2520<br>2170                                                 |                  |                                                                           |                                    | 7170<br>6160                      |                              |                    | 2350<br>1950                         |                      | 15                                    | 10400<br>9100                                         |                          |
|                                                                                                     |                            |                                 |              |                                 |                              |                                    | 8-1                        | 8-4317. LIMPIA             |                                           | REEK ABOVE                           | CREEK ABOVE FORT DAVIS.                                      | IS, TEX.         |                                                                           |                                    |                                   |                              |                    |                                      |                      |                                       |                                                       |                          |
| Sept. 2, 1966.<br>Sept. 13.<br>Aug. 1, 1967.<br>Aug. 1, 1967.                                       | 143<br>7.6<br>             | <br>36<br>34<br>27              |              | 11<br>27<br>28<br>26<br>16      | 1.5<br>3.9<br>3.6<br>2.3     | 2.9<br>10<br>7.9<br>8.1<br>4.9     | 3.7<br>3.2<br>1.7          | 39<br>82<br>84<br>48       |                                           | 5.2<br>23<br>27<br>20                | 1.6<br>11<br>5.6<br>5.2<br>2.6                               | 0.0<br>4.<br>6.  | 0, 5<br>6, 7<br>8, 7<br>8, 7<br>8, 7<br>8, 7<br>8, 7<br>8, 7<br>8, 7<br>8 |                                    | <br><br>152 (<br>93               | 0.21                         |                    | 34<br>83<br>80<br>80<br>80           | 2<br>16<br>11<br>10  | 0.2<br>.4<br>.5<br>.5                 | 84<br>218<br>208<br>195<br>126                        | 7.4<br>6.8<br>7.1<br>7.1 |
| Sept. 5.                                                                                            | 1                          | 33                              |              | 22                              | 3.2                          |                                    |                            | 71                         | 0 UMPTA C                                 | 19<br>REFK RELOW                     | - 71 0 19 4.7 .5<br>8-4418 IIMPIA CREEK BELOW PORT DAVIS TEX | C. TEO           |                                                                           |                                    |                                   |                              |                    | 89                                   | 9                    | 4.                                    | 1//1                                                  |                          |
| May 14, 1965.<br>Feb. 15, 1967.<br>Sept. 14.                                                        | 38.6<br><br>-9             | 18<br>30<br>35                  |              | 22<br>44<br>45                  | 4.2<br>5.4<br>5.9            | 13<br>17<br>18                     | 3.6                        | 98<br>165<br>169<br>180    | 0000                                      | 11<br>22<br>21<br>20                 | 4.5<br>9.1<br>8.4                                            | 0.6<br>.9<br>1.8 | 8, 0, 0, 0,<br>                                                           |                                    | 122 (<br>213<br>220<br>230        | 0.17<br>.29<br>.30           | 0.52               | 72<br>133<br>142                     | 0000                 | 0.7<br>.6<br>.7                       | 317<br>332<br>337<br>341                              | 7.1                      |
| 0ct. 18                                                                                             | E.                         | 32                              |              | 85                              | 0.1                          | 21                                 | 8-4340.                    | 184<br>TOYAH               |                                           | ELOW TOYAL                           | 2.9 9.0<br>BELOW TOYAH LAKE NEAR                             | 1 11             |                                                                           |                                    | _                                 |                              |                    | 691                                  | 2                    | n,                                    |                                                       | 3                        |
| July 24-27, 1948.<br>July 24-20.<br>July 24-30.<br>July 31- Aug. 1.<br>Aug. 3-4.<br>May 3-11, 1949. | 280                        | 9.2<br>8.0<br>8.1<br>8.1<br>8.4 |              | 628<br>754<br>408<br>632<br>808 | 86<br>116<br>37<br>80<br>234 | 1000<br>1520<br>218<br>808<br>1850 |                            | 51<br>38<br>38<br>53<br>53 | 00000                                     | 2370<br>3050<br>1190<br>2160<br>2710 | 1130<br>1740<br>265<br>980<br>2920                           |                  | 2.0<br>2.0<br>2.0                                                         |                                    | 2250<br>2210<br>2150<br>4690<br>1 | 11.6                         |                    | 1920<br>2360<br>1170<br>1910<br>2980 | 2930                 | 9.9<br>14<br>2.8<br>8.0<br>15         | 6900<br>9320<br>2780<br>6020<br>12000                 | 7.5                      |
|                                                                                                     |                            |                                 |              |                                 |                              |                                    | 8-4358.                    |                            | COYANOSA D                                | DRAW NEAR 1                          | FORT STOCKTON,                                               |                  | TEX.                                                                      |                                    |                                   |                              |                    |                                      |                      |                                       |                                                       |                          |
| May 13, 1965.                                                                                       | 0.10                       | 19<br>24                        |              | 38<br>58                        | 4.2<br>3.3                   | 16<br>7.0                          | 6.9                        | 164<br>172                 | 0 0                                       | 7.8<br>29                            | 2.1                                                          | 0.3              | 1.5<br>8.                                                                 |                                    | 170<br>219                        | 0.23                         |                    | 112<br>158                           | 0<br>17              | 0.7                                   | 315                                                   | 7.5                      |

Table 10,-+Summary of chemical analyses at miscellaneous sites on streams in the Nio Grande busin--Continued

Table 1Q --Summary of chemical analyses at miscellaneous sites on streams in the Rio Grande basin --Continued

|                                                                          |                           |                                  |                   |                      |                            |                                |                            | B1-                                        |                                           |                               |                                               |                                 |                                                   |                  | D18.                                      | LUISSOIVED SOUIDS            | lds                              | Hardness<br>as CaCO <sub>3</sub>       | Hardness<br>as CaCO,       | -so-                                       | Specific                               | 0                                      |
|--------------------------------------------------------------------------|---------------------------|----------------------------------|-------------------|----------------------|----------------------------|--------------------------------|----------------------------|--------------------------------------------|-------------------------------------------|-------------------------------|-----------------------------------------------|---------------------------------|---------------------------------------------------|------------------|-------------------------------------------|------------------------------|----------------------------------|----------------------------------------|----------------------------|--------------------------------------------|----------------------------------------|----------------------------------------|
| Date<br>of<br>collection                                                 | Mean<br>Discharg<br>(cfs) | ge Silica<br>(SiO <sub>3</sub> ) | a Iron<br>s) (Fe) | (Ca)                 | ne-<br>me-<br>sium<br>(Mg) | - Sodium<br>) (Na)             | Po-<br>tas-<br>shum<br>(K) | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> ) | Car-<br>bon-<br>ate<br>(CO <sub>3</sub> ) | Sulfate<br>(SO <sub>4</sub> ) | Chloride<br>(C1)                              | -                               | Fluo- N1-<br>ride trate<br>(F) (NO <sub>3</sub> ) | Bo- Bo- Main (B) | Milli-<br>grams<br>per<br>liter<br>(mg/l) | Tons<br>per<br>acre-<br>foot | Tons<br>per<br>day               | Cal-<br>ctum,<br>Mag-<br>ne-<br>stum   | Non-<br>car-<br>bon-       | dium<br>ad-<br>sorp-<br>tion<br>ratio      | <u> </u>                               | pH<br>t                                |
|                                                                          |                           |                                  |                   |                      |                            |                                | PE                         | PECOS RIVER                                | 0                                         | ILES SOUTH                    | MILES SOUTH OF MCCAMEY,                       | Y, TEX.                         |                                                   |                  |                                           |                              |                                  |                                        |                            |                                            |                                        |                                        |
| June 3, 1950                                                             |                           |                                  |                   |                      |                            |                                |                            | 98                                         | 0                                         | 2200                          | 3500                                          |                                 |                                                   |                  |                                           |                              |                                  | 2640                                   |                            |                                            | 13500                                  | 7.7                                    |
|                                                                          |                           |                                  |                   |                      |                            | LIVE OAK CREEK NORTH OF        | CREEK N                    | ORTH OF                                    |                                           | TIGHWAY 290                   | U.S. HIGHWAY 290 NEAR OLD FORT LANCASTER, TEX | FORT L                          | ANCASTER                                          | R, TEX.          |                                           |                              |                                  |                                        |                            |                                            |                                        |                                        |
| Dec. 7, 1959                                                             | a10                       | 20                               |                   | 365                  | 98                         | 1230                           | 2.18                       | 338                                        | 0                                         | 24.50                         |                                               |                                 |                                                   |                  | 4610                                      | 6.27                         |                                  | 1310                                   | 1140                       | 15                                         | 7800                                   | 7.2                                    |
|                                                                          |                           |                                  |                   |                      |                            |                                |                            | 8-4473.                                    | PECOS                                     | RIVER NEAL                    | 8-4473, PECOS KIVER NEAR PANDALE, TEX         | TEX.                            |                                                   |                  |                                           |                              |                                  |                                        |                            |                                            |                                        |                                        |
| Dec. 1, 1966                                                             | 145                       |                                  |                   |                      |                            |                                |                            |                                            |                                           |                               | 725                                           |                                 |                                                   |                  |                                           |                              |                                  |                                        |                            |                                            | 2980                                   |                                        |
|                                                                          |                           |                                  |                   |                      |                            |                                |                            | 8-4475.                                    | PECOS                                     | RIVER NEAL                    | 8-4475. PECOS RIVER NEAR COMSTOCK,            | , TEX.                          |                                                   |                  |                                           |                              |                                  |                                        |                            |                                            |                                        |                                        |
| June 17, 1952                                                            | 114                       | 9.0                              | 0,02              | 2 165                | 103                        | 583                            | 2.4                        | 138                                        | 0                                         | 627                           | 930                                           | 0.9                             | 1.0 (                                             | 0,39             | b2490                                     | 3,39                         |                                  | 835                                    | 722                        | 8,8                                        | 4110                                   | 7.6                                    |
|                                                                          |                           |                                  |                   |                      |                            |                                | 8-44                       | 85, 600                                    | DENOUGH                                   | I SPRINGS 1                   | 8-4485, GOODENOUGH SPRINGS NEAR COMSTOCK, TEX | OCK, TE                         | ×.                                                |                  |                                           |                              |                                  |                                        |                            |                                            |                                        |                                        |
| Jan. 11, 1967.<br>Mart. 1.<br>Mary 3.<br>Jaly 5.<br>Sept. 2.             |                           | 32220                            |                   | 72<br>73<br>73<br>74 | 11<br>12<br>12<br>12<br>12 | 9.5<br>11<br>7.2<br>9.9        | 1.6<br>1.6<br>1.7<br>1.5   | 251<br>250<br>246<br>252<br>252            | 00000                                     | 25<br>26<br>24<br>25<br>26    | 11<br>12<br>10<br>10                          | 0<br>8<br>6<br>1<br>2<br>2<br>3 | 6.3<br>7.2<br>6.8<br>6.8<br>6.4                   |                  | 278<br>282<br>268<br>278<br>280           | 0.38<br>.38<br>.36<br>.38    |                                  | 233<br>233<br>232<br>233<br>238<br>238 | 28<br>28<br>30<br>32<br>32 | 0<br>0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0 | 472<br>466<br>454<br>460               | 7.5<br>7.7<br>7.8<br>7.4               |
| Nov. 8                                                                   | 525                       | 13                               |                   | 30<br>60             | 11<br>11                   | 8.3<br>9.9                     | 111                        | 115<br>215<br>216                          | 000                                       | 20<br>21                      | 8,8<br>9,8<br>9,3                             | 4.<br>7.                        | 6.9<br>6.4                                        |                  | 154<br>237<br>                            | ; ; ;                        |                                  | 116<br>195<br>203                      | 22<br>19<br>26             | <u></u> !                                  | 260<br>408<br>416                      | 7.8<br>7.4<br>7.4                      |
|                                                                          |                           |                                  |                   |                      |                            |                                |                            | 8-4490.                                    | . DEVILS                                  | RIVER                         | NEAR JUNO,                                    | TEX.                            |                                                   |                  |                                           |                              |                                  |                                        |                            |                                            |                                        |                                        |
| July 16, 1964.<br>Jan. 26, 1967.<br>Mar. 16.<br>Apr. 25.<br>July 5.      | 23.4<br>                  | 16<br>16<br>17<br>17             |                   | 48<br>61<br>56<br>50 | 14<br>15<br>15<br>15<br>15 | 17<br>8.3<br>8.2<br>7.2<br>8.7 | 1.7<br>1.2<br>1.5          | 222<br>237<br>236<br>222<br>207            | 00000                                     | 10<br>11<br>10<br>10          | 13<br>13<br>13<br>12<br>12                    | 0.4<br>4.<br>1.<br>4.<br>4.     | 2.2<br>9.6<br>8.2<br>4.2                          |                  | 230<br>252<br>250<br>236<br>222           | 0.31<br>.34<br>.34<br>.32    | <br>30.5<br>27.1<br>21.5<br>16.6 | 177<br>214<br>214<br>214<br>201<br>186 | 0<br>20<br>20<br>19<br>17  | 0<br>9 5 5 6<br>9 6                        | 387<br>432<br>432<br>411<br>375        | 7.3<br>7.6<br>7.4<br>7.8               |
| Amg. 10.<br>Oct. 30.<br>Dec. 4.<br>Preb 8. 1968.<br>Apr. 22.<br>July 22. |                           | 111222                           |                   | 57<br>60<br>32<br>   | 11122111                   | 8.2<br>8.4<br>11               | 1.6                        | 226<br>236<br>153<br>217<br>217<br>222     | 000000                                    | ===:::                        | 13<br>13<br>14<br>14<br>12                    | 040111                          | 5.3<br>7.4<br>5.9                                 |                  | 240<br>248<br>182<br>                     | ę                            | 20.3                             | 204<br>211<br>142<br>192<br>200<br>200 | 19<br>16<br>20<br>22<br>15 |                                            | 404<br>432<br>319<br>401<br>401<br>401 | 7.5<br>7.6<br>7.5<br>7.5<br>7.5<br>7.5 |

### Table 10. -- Summary of chemical analyses at miscellaneous sites on streams in the Rio Grande basin--Continued

|                                        |                                                            |                            |                               |                           |                                  |                                  |                                        | ~                               | Bi-                                        |                                           |                                      |                              |                             |                                       |                                  | Dis                                       | solved a                             | olids              | Hard<br>as Ca                          |                             | So-                                   | Specific<br>con-                       | -                                      |
|----------------------------------------|------------------------------------------------------------|----------------------------|-------------------------------|---------------------------|----------------------------------|----------------------------------|----------------------------------------|---------------------------------|--------------------------------------------|-------------------------------------------|--------------------------------------|------------------------------|-----------------------------|---------------------------------------|----------------------------------|-------------------------------------------|--------------------------------------|--------------------|----------------------------------------|-----------------------------|---------------------------------------|----------------------------------------|----------------------------------------|
|                                        | Date<br>of<br>collection                                   | Mean<br>Discharge<br>(cfs) | Silica<br>(SiO <sub>x</sub> ) |                           | Cal-<br>cium<br>(Ca)             | Mag-<br>ne-<br>sium<br>(Mg)      | Sodium<br>(Na)                         | Po-<br>tas-<br>sium<br>(K)      | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> ) | Car-<br>bon-<br>ate<br>(CO <sub>3</sub> ) | Sulfate<br>(SO <sub>4</sub> )        | Chloride<br>(C1)             | Fluo-<br>ride<br>(F)        | Ni-<br>trate<br>(NO <sub>3</sub> )    | Bo-<br>ron<br>(B)                | Milli-<br>grams<br>per<br>liter<br>(mg/1) | Tons<br>per<br>acre-<br>foot         | Tons<br>per<br>day | Cal-<br>cium,<br>Mag-<br>ne-<br>sium   | Non-<br>car-<br>bon-<br>ate | dium<br>ad-<br>sorp-<br>tion<br>ratio | duct-<br>ance<br>(micro-<br>mbos at    |                                        |
|                                        |                                                            |                            |                               |                           |                                  |                                  | 8-449/                                 | 4. DEVI                         | LS RIVE                                    | R AT P                                    | AFFORD CRO                           | SSING NEAR                   | COMST                       | эск, ті                               | sx.                              |                                           |                                      |                    |                                        |                             |                                       |                                        |                                        |
| 4ar, 14<br>4ay 2<br>July 18<br>Sept. 6 | 1967                                                       |                            | 12<br>12<br>12<br>16<br>14    |                           | 57<br>48<br>44<br>40<br>52<br>50 | 13<br>13<br>13<br>14<br>12<br>13 | 6.8<br>6.8<br>7.2<br>7.6<br>6.7<br>7.1 | 1,2<br>1.1<br>1.2<br>1.5<br>1.5 | 219<br>194<br>186<br>177<br>205            | 0<br>0<br>0<br>0                          | 8.0<br>8.2<br>8.0<br>7.6<br>8.2      | 10<br>11<br>11<br>11<br>10   | 0,2<br>.1<br>.4<br>.3<br>.4 | 10<br>7.6<br>5.8<br>4.8<br>6.2<br>6.9 |                                  | 226<br>203<br>194<br>190<br>211<br>204    | 0.31<br>.28<br>.26<br>.26<br>.29     |                    | 196<br>173<br>163<br>157<br>179<br>178 | 16<br>14<br>11<br>12<br>11  | 0.2<br>.2<br>.3<br>.2                 | 398<br>362<br>342<br>324<br>363<br>362 | 7.6<br>7.3<br>7.6<br>7.6<br>7.3<br>7.6 |
| Jan. 10,                               | 1968                                                       |                            | 9.9                           |                           | 54                               | 14                               | 7.9                                    |                                 | 217<br>183                                 | 0<br>0                                    | 8.8                                  | 11<br>11                     | .5                          | 7.0                                   |                                  | 220                                       |                                      |                    | 192<br>166                             | 14<br>16                    | . 2                                   | 394<br>343                             | 7.5<br>7.5                             |
|                                        |                                                            |                            |                               |                           |                                  |                                  |                                        | 8                               | 3-4494.8                                   | . LAKE                                    | WALK NEAD                            | DEL RIO, '                   | TEX.                        |                                       |                                  |                                           |                                      |                    |                                        |                             |                                       |                                        |                                        |
| Oct. 20,<br>Feb. 19,                   | 1952<br>1958<br>1962<br>1963                               |                            | 13<br>12<br>12<br>12          | 0.04<br>.03<br>.01<br>.02 | 46<br>54<br>55<br>57             | 10<br>8.2<br>12<br>12            | 6.0<br>7.2<br>5.5<br>9.8               | 0.4                             | 180<br>194<br>208<br>218                   | 0<br>0<br>0<br>0                          | 6.6<br>6.4<br>6.8<br>7.6             | 9.5<br>7.8<br>9.8<br>14      | 0.3                         | 5.0<br>8.7<br>8.0<br>7.1              | 0.36                             | 203<br>206<br>b 232<br>241                | 0.28                                 | 0.28               | 156<br>168<br>187<br>192               | 8<br>9<br>16<br>13          | 0.2<br>.2<br>.2<br>.3                 | 340<br>333<br>381<br>388               | 7.6<br>7.8<br>7.3<br>7.4               |
|                                        |                                                            |                            |                               |                           |                                  |                                  |                                        |                                 | 3-4495.                                    | DEVILS                                    | RIVER NE                             | AR DEL RIO,                  | TEX,                        |                                       |                                  |                                           |                                      |                    |                                        |                             |                                       |                                        |                                        |
|                                        | Mar. 19, 1930<br>Apr. 22<br>May 5<br>June 2<br>July 1      |                            |                               |                           | 60<br>45<br>57<br>48<br>39       | 12<br>9.0<br>19<br>12<br>7.1     | 27<br>3.4<br>19                        |                                 | 192<br>192<br>168<br>193<br>168            | 0<br>0<br>0<br>0<br>0                     | 10<br>10<br>16<br>                   | 14<br>28<br>14<br>14<br>14   |                             |                                       |                                  | 232<br>300<br>200<br>256<br>185           | 0.32<br>.41<br>.27<br>.35<br>.25     |                    | 200<br>150<br>220<br>170<br>126        | 43<br>0<br>83<br>12<br>0    | 1 .0<br>.1<br>.7                      | 320<br>440<br>360<br>330<br>320        |                                        |
|                                        | Sept. 2<br>Oct. 1<br>Nov. 28<br>Feb. 16, 1931<br>June 18   | <br><br>598<br>588         |                               |                           | 51<br>42<br>81<br>52<br>57       | 6.0<br>4.0<br>5.0<br>4.0<br>6.0  | 42<br><br>41<br>26                     |                                 | 144<br>216<br>240<br>264<br>240            | 0<br>0<br>0<br>0                          | 15<br>16<br>8.2                      | 14<br>14<br>14               |                             |                                       | 11                               | 180<br>214<br>270<br>278<br>192           | . 24<br>. 29<br>. 37<br>. 38<br>. 26 |                    | 152<br>122<br>223<br>146<br>167        | 34<br>0<br>26<br>0<br>0     | 1.7<br>1.5<br>.9                      | 370<br>370<br>490<br>410<br>370        |                                        |
|                                        | Mar. 5, 1935<br>Apr. 12.<br>May 30.<br>June 6.<br>July 24. | 158<br>4720<br>1180        |                               |                           | 53<br>42<br>31<br>35<br>50       | 13<br>9.7<br>4.6<br>3.0<br>9.8   | $11 \\ 12 \\ 6.7 \\ 4.6 \\ 12$         |                                 | 204<br>171<br>111<br>117<br>209            | 0<br>0<br>0<br>0<br>0                     | 6.7<br>7.2<br>1.4<br>7.2             | 14<br>14<br>3,2<br>4,6<br>17 |                             | 8.7<br>3.7<br>6.8<br>18<br>4.3        | 0.05<br>.05<br>.03<br>.05<br>.03 | 225<br>266<br>162<br>142<br>256           | .31<br>.36<br>.22<br>.19<br>.35      |                    | 184<br>144<br>97<br>100<br>166         | 17<br>4<br>6<br>4<br>0      | .4<br>.4<br>.3<br>.2<br>.4            | 368<br>350<br>182<br>195<br>354        | 7.3<br>7.6<br>7.6<br>7.4<br>7.7        |
|                                        | Aug. 26<br>Sept. 9<br>Oct. 2<br>Dec. 3<br>Dec. 2, 1936     | 20400<br>896<br>560        |                               |                           | 46<br>39<br>51<br>58<br>58       | 13<br>2.7<br>10<br>11<br>10      | 13<br>5.1<br>7.4<br>10<br>13           |                                 | 196<br>121<br>196<br>223<br>222            | 0<br>0<br>0<br>0<br>0                     | 9.6<br>3.8<br>5.3<br>4.3<br>5.3      | 13<br>5.0<br>10<br>12<br>13  |                             |                                       | .05<br>.03<br>.05<br>.08<br>.06  | 219<br>148<br>223<br>235<br>263           | .30<br>.20<br>.30<br>.32<br>.36      |                    | 166<br>108<br>168<br>192<br>186        | 4<br>8<br>7<br>9<br>4       | . 4<br>. 2<br>. 3<br>. 4              | 347<br>203<br>347<br>390<br>389        | 8.2<br>7.6<br>7.4<br>7.8<br>8.1        |
|                                        | Mar. 1944<br>Apr<br>May<br>Jung<br>July                    | 270<br>315<br>282          |                               |                           | 39<br>36<br>28<br>35<br>34       | 14<br>13<br>10<br>12<br>12       | 14<br>13<br>10<br>11<br>11             |                                 | 171<br>160<br>124<br>157<br>156            | 0<br>0<br>0<br>0                          | $12 \\ 12 \\ 9, 1 \\ 11 \\ 11 \\ 11$ | 19<br>18<br>14<br>15<br>15   |                             | 1.9<br><br>1.9                        | .06                              | 213<br>199<br>154<br>191<br>184           | .29<br>.27<br>.21<br>.26<br>.25      |                    | 155<br>145<br>113<br>138<br>136        | 14<br>14<br>11<br>9<br>8    | .5<br>.4<br>.4                        | 354<br>329<br>256<br>316<br>304        | 8.3<br><br>7.9                         |
|                                        | Aug<br>Sept                                                |                            |                               |                           | 33<br>38                         | 12<br>5.1                        | 11<br>6.9                              |                                 | 147     123                                | 0<br>0                                    | 10<br>7.7                            | $14 \\ 7.1$                  |                             |                                       |                                  | 176<br>162                                | .24                                  |                    | 129<br>115                             | 8<br>14                     | .4<br>.3                              | 292<br>246 1                           | 11 M.<br>16 M.                         |

### Table 10.--Summary of chemical analyses at miscellaneous sites on streams in the Rio Grande basin--Continued

|                          |                            |                               |              |                      |                             |                |                            | Bi-                                        |                                           |                               |                  |         |                                    |      | Dis                                       | solved a                     | olids              | Hard<br>as Ca                        |                             | So-                                   | Specific        |     |
|--------------------------|----------------------------|-------------------------------|--------------|----------------------|-----------------------------|----------------|----------------------------|--------------------------------------------|-------------------------------------------|-------------------------------|------------------|---------|------------------------------------|------|-------------------------------------------|------------------------------|--------------------|--------------------------------------|-----------------------------|---------------------------------------|-----------------|-----|
| Date<br>of<br>collection | Mean<br>Discharge<br>(cfs) | Silica<br>(SiO <sub>2</sub> ) | Iron<br>(Fe) | Cal-<br>cium<br>(Ca) | Mag-<br>ne-<br>sium<br>(Mg) | Sodium<br>(Na) | Po-<br>tas-<br>sium<br>(K) | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> ) | Car-<br>bon-<br>ate<br>(CO <sub>3</sub> ) | Sulfate<br>(SO <sub>4</sub> ) | Chloride<br>(Cl) | ride    | Ni-<br>trate<br>(NO <sub>3</sub> ) |      | Milli-<br>grams<br>per<br>liter<br>(mg/1) | Tons<br>per<br>acre-<br>foot | Tons<br>per<br>day | Cal-<br>cium,<br>Mag-<br>ne-<br>sium | Non-<br>car-<br>bon-<br>ate | dium<br>ad-<br>sorp-<br>tion<br>ratio | ance<br>(micro- | рН  |
|                          |                            |                               |              |                      |                             |                | 8-4                        | 511.3.                                     | EIGHT N                                   | ILE CREEK                     | NEAR DEL F       | RIO, TE | ex.                                |      |                                           |                              |                    |                                      |                             |                                       |                 |     |
| Jan. 20, 1967            |                            | 3.3                           |              | 475                  | 39                          | 12             | 3.6                        | 102                                        | 0                                         | 1210                          | 17               | 0.4     | 0.2                                |      | 1810                                      | 2.46                         |                    | 1350                                 | 1260                        | 0.1                                   | 2020            | 7.3 |
| far. 1                   |                            | 5.7                           |              | 532                  | 41                          | 13             | 3.1                        | 78                                         | 0                                         | 1410                          | 19               | .2      | .0                                 |      | 2060                                      | 2.80                         |                    | 1500                                 | 1430                        | .1                                    | 2220            | 7.0 |
| Sept. 7                  |                            | 8.8                           |              | 222                  | 15                          | 7.1            | 4.1                        | 122                                        | 0                                         | 478                           | 12               | .5      |                                    |      | 820                                       | 1.12                         |                    | 616                                  | 516                         | .1                                    | 1050            | 7.  |
| lov. 8                   |                            | 5.3                           |              | 328                  | 2.5                         | 11             |                            | 96                                         | 0                                         | 812                           | 14               | . 5     | 1.8                                |      | 1240                                      |                              |                    | 922                                  | 843                         | .2                                    | 1500            | 7.  |
| 4ar. 13, 1968            |                            |                               |              |                      |                             |                |                            | 77                                         | 0                                         |                               | 10               |         |                                    |      |                                           |                              |                    | 880                                  | 817                         |                                       | 1400            | 7.  |
|                          |                            |                               |              |                      |                             |                | 8                          | -4513.                                     | CANTU 5                                   | PRINGS ON                     | CINEGAS CR       | EEK NE  | AR DEL                             | R10, | TEX.                                      |                              |                    |                                      |                             |                                       |                 |     |
| Jan. 11, 1967            |                            | 13                            |              | 87                   | 7.6                         | 8.8            | 1.1                        | 271                                        | 0                                         | 16                            | 14               | 0.1     | 7.4                                |      | 288                                       | 0.39                         |                    | 248                                  | 26                          | 0.2                                   | 498             | 7.1 |
| dar. 1                   |                            | 12                            |              | 86                   | 7.7                         | 9.8            | 1.2                        | 273                                        | 0                                         | 16                            | 16               | .5      | 7.2                                |      | 290                                       | .39                          |                    | 246                                  | 22                          | . 3                                   | 493             | 7.4 |
| day 3                    |                            | 13                            |              | 86                   | 7.3                         | 8.7            | 1.2                        | 273                                        | 0                                         | 13                            | 14               | .3      |                                    |      | 283                                       | .38                          |                    | 244                                  | 21                          | . 2                                   | 491             | 7.1 |
| July 6                   |                            | 13                            |              | 87                   | 7.2                         | 9.1            | 1.2                        | 273                                        | 0                                         | 14                            | 15               | .3      |                                    |      | 288                                       | . 39                         |                    | 246                                  | 23                          | . 3                                   | 483             | 7.  |
| Sept. 7                  |                            | 12                            |              | 98                   | 8.2                         | 14             | 1.3                        | 2.74                                       | 0                                         | 32                            | 28               | .3      |                                    |      | 337                                       | .46                          |                    | 278                                  | 54                          | . 4                                   | 563             | 7.  |
| Nov. 8                   |                            | 7.6                           |              | 90                   | 7.8                         | 10             |                            | 283                                        | 0                                         | 16                            | 17               | .3      | 6.0                                |      | 294                                       |                              |                    | 256                                  | 24                          | . 3                                   | 514             | 7.  |
|                          |                            |                               |              |                      |                             | 8-             | 4528.3                     | . SAN F                                    | ELIPE (                                   | CREEK AT M                    | OORE PARK,       | DEL R   | IO, TEX                            |      |                                           |                              |                    |                                      |                             |                                       |                 |     |
| Jan. 10, 1967            |                            | 12                            |              | 78                   | 6.9                         | 4.9            | 1.1                        | 253                                        | 0                                         | 7.2                           | 8.7              | 0.2     | 9.0                                |      | 252                                       | 0.34                         |                    | 223                                  | 16                          | 0.1                                   | 439             | 7.  |
| Mar. 7                   |                            | 12                            |              | 78                   | 5.9                         | 5.4            | .7                         | 246                                        | 0                                         | 8.2                           | 9.8              | .0      | 9.4                                |      | 251                                       | . 34                         |                    | 223                                  | 21                          | . 2                                   | 437             | 7.  |
| May 2                    |                            | 12                            |              | 77                   | 7.0                         | 4.8            | 1.1                        | 243                                        | 0                                         | 8.4                           | 9.6              | .3      | 6.6                                |      | 246                                       | . 33                         |                    | 221                                  | 22                          | .1                                    | 428             | 7.  |
| July 5                   |                            | 12                            |              | 77                   | 6.7                         | 6.3            | .9                         | 243                                        | 0                                         | 9.4                           | 10               | . 2     |                                    |      | 250                                       | . 34                         |                    | 220                                  | 20                          | .2                                    | 423             | 7.  |

b Residue on evaporation at 180°C

### Table 10.--Summary of chemical analyses at miscellaneous sites on streams in the Rio Grande basin--Coutinued

|                                                      |                           |                              |              |                                 |                                 |                               | Po-                             | Bi-                                        | 0                                         |                                |                                                   |            |                                                                                                     | Die                                       | ssolved                           | solids             | Hard<br>as C                         | ness<br>aCO3                | So-                                   | Specific                                     | -                     |
|------------------------------------------------------|---------------------------|------------------------------|--------------|---------------------------------|---------------------------------|-------------------------------|---------------------------------|--------------------------------------------|-------------------------------------------|--------------------------------|---------------------------------------------------|------------|-----------------------------------------------------------------------------------------------------|-------------------------------------------|-----------------------------------|--------------------|--------------------------------------|-----------------------------|---------------------------------------|----------------------------------------------|-----------------------|
| Date<br>of<br>collection                             | Mean<br>Discharg<br>(cfs) |                              | Iron<br>(Fe) | Cal-<br>cium<br>(Ca)            | Mag-<br>ne-<br>sium<br>(Mg)     | Sodium<br>(Na)                | tas-                            | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> ) | Car-<br>bon-<br>ate<br>(CO <sub>3</sub> ) | Sulfate<br>(SO₄)               | Chloride<br>(C1)                                  |            | - Ni-<br>trate<br>(NO <sub>3</sub> )                                                                | Milli-<br>grams<br>per<br>liter<br>(mg/1) | Tons<br>per<br>acre-<br>foot      | Tons<br>per<br>day | Cal-<br>cium,<br>Mag-<br>ne-<br>sium | Non-<br>car-<br>bon-<br>ate | dium<br>ad-<br>sorp-<br>tion<br>ratio | duct-<br>ance<br>(micro-<br>mhos at<br>25°C) | 1                     |
|                                                      |                           |                              |              |                                 |                                 |                               | 8-4                             | 530. SA                                    | N FELI                                    | PE CREEK N                     | EAR DEL RI                                        | O, TEX     | ζ.                                                                                                  |                                           |                                   |                    |                                      |                             |                                       |                                              |                       |
| am. 10, 1967<br>ar. 7<br>ay 2<br>uly 10<br>ept. 6    |                           | 13<br>12<br>13<br>13<br>11   |              | 80<br>81<br>80<br>80<br>86      | 7.7<br>8.2<br>7.6<br>8.2<br>8.5 | 7.9<br>9.1<br>9.0<br>10<br>10 | 1.1<br>1.3<br>1.2<br>1.4<br>1.6 | 250<br>251<br>244<br>250<br>262            | 0<br>0<br>0<br>0                          | 14<br>19<br>17<br>20<br>22     | 12<br>14<br>13<br>14<br>16                        | , 3<br>, 3 | $     \begin{array}{c}       13 \\       11 \\       13 \\       9.8 \\       7.9     \end{array} $ | 272<br>279<br>274<br>280<br>292           | 0.37<br>.38<br>.37<br>.38<br>.40  | 547                | 231<br>236<br>231<br>233<br>250      | 26<br>30<br>31<br>28<br>35  | 0.2<br>.3<br>.3<br>.3<br>.3           | 467<br>470                                   | 7<br>7<br>7<br>7<br>7 |
| fov. 7<br>fan. 11, 1968<br>far. 5                    |                           | 11<br>11                     |              | 82<br>80                        | 8.6<br>8.9                      | 9.0<br>9.2                    |                                 | 255<br>250<br>244                          | 0<br>0<br>0                               | 20<br>20                       | 15<br>14<br>13                                    |            | 9,2<br>11                                                                                           | 280<br>278                                |                                   |                    | 240<br>236<br>228                    | 31<br>31<br>28              | . 3<br>. 3                            |                                              | 7<br>8<br>7           |
|                                                      |                           |                              |              |                                 |                                 |                               | l                               | 3-4550.                                    | PINTO                                     | CREEK NEAL                     | R DEL RIO,                                        | TEX.       |                                                                                                     |                                           |                                   |                    |                                      |                             |                                       |                                              |                       |
| an. 5, 1967<br>ar. 8.<br>ay 17.<br>uly 19<br>ept. 13 |                           | 7.9<br>6.0<br>18<br>30<br>13 |              | 162<br>155<br>152<br>190<br>106 | 9.7<br>9.1<br>10<br>14<br>6.9   | 73<br>76<br>82<br>108<br>52   | 2,1<br>1,8<br>2,9<br>3,5<br>3,8 | 144<br>128<br>114<br>86<br>93              | 0<br>0<br>0<br>0                          | 114<br>122<br>112<br>144<br>67 | 262<br>255<br>280<br>390<br>186                   |            | $9.5 \\ 1.2$                                                                                        | 714<br>697<br>714<br>924<br>482           | 0.97<br>.95<br>.97<br>1.26<br>.66 |                    | 444<br>424<br>420<br>532<br>293      |                             | 1.5<br>1.6<br>1.7<br>2.0<br>1.3       | 1280                                         | 777                   |
| ov. 15<br>an. 9, 1968<br>ar. 6<br>ay 15              |                           | 6.4                          |              | 120                             | 6.8<br><br>                     | 47<br><br>                    |                                 | 151<br>116<br>127<br>128                   | 0<br>0<br>0<br>0                          | 70<br>                         | 165<br>250<br>241<br>273                          | . 2        | 1.3                                                                                                 | 491<br><br>                               |                                   |                    | 328<br>412<br>408<br>452             | 204<br>317<br>304<br>347    | 1.1                                   |                                              | 767                   |
|                                                      |                           |                              |              |                                 |                                 |                               | ł                               | 8-4580,                                    | RIO GR                                    | ANDE AT E                      | AGLE PASS,                                        | TEX.       |                                                                                                     |                                           |                                   |                    |                                      |                             |                                       |                                              |                       |
| lar. 5, 1962<br>eb. 19, 1963                         |                           | 13<br>17                     | 0.01         | 78<br>83                        | 23<br>23                        | 115<br>136                    |                                 | 184<br>182                                 | 0<br>0                                    | 182<br>210                     | $\begin{smallmatrix}1&36\\&1&60\end{smallmatrix}$ | 0.9<br>1.0 | 3.8<br>3.0                                                                                          | b 679<br>730                              | 0,92                              |                    | 289<br>302                           | 138<br>152                  | 2.9<br>3.4                            | $\begin{array}{c} 1070\\ 1170 \end{array}$   |                       |
|                                                      |                           |                              |              |                                 |                                 |                               |                                 | CH/                                        | CON CR                                    | EĘK NEAR I                     | LAREDO, TEX                                       |            |                                                                                                     |                                           |                                   |                    |                                      |                             |                                       |                                              |                       |
| iny 27, 1949                                         |                           | 7,2                          |              | 248                             | 143                             | 1090                          |                                 | 327                                        | 0                                         | 1630                           | 1140                                              |            | 0.0                                                                                                 | 4420                                      | 6.01                              |                    | 1210                                 | 939                         | 14                                    | 6430                                         | 7.                    |
|                                                      |                           |                              |              |                                 |                                 |                               | 8-4650                          | LOS 01                                     | MOS CR                                    | EEK NEAR I                     | RIO GRANDE                                        | CITY,      | TEX.                                                                                                |                                           |                                   |                    |                                      | 1918                        |                                       |                                              | _                     |
| ay 27, 1949                                          | 10                        | 23                           |              | 684                             | 89                              | 3560                          |                                 | 106                                        | 0                                         | 1070                           | 6100                                              |            |                                                                                                     | 11500                                     | 15.6                              |                    | 2080                                 | 1990                        | 34                                    | 18700                                        | 7                     |
|                                                      |                           |                              |              |                                 |                                 | Г                             | A JOYA                          | CREEK /                                    | T RESE                                    | RVOIR SIT                      | E NEAR SAMF                                       | ORDYCI     | e, tex.                                                                                             |                                           |                                   |                    |                                      |                             |                                       |                                              |                       |
| ay 27, 1949                                          |                           | 58                           |              | 124                             | 78                              | 1870                          |                                 | 222                                        | 0                                         | 1150                           | 2350                                              |            |                                                                                                     | 5740                                      | 7.81                              |                    | 630                                  | 448                         | 32                                    | 9340                                         | 7                     |
|                                                      |                           |                              |              |                                 |                                 |                               |                                 |                                            |                                           |                                |                                                   |            | -                                                                                                   |                                           |                                   |                    |                                      |                             |                                       |                                              |                       |

(Results in milligrams per liter except as indicated)

b Residue on evaporation at 180°C

## Table 11.--Discharge-weighted average of chemical constituents at selected sites in the Rio Grande basin

|                  | Mana                       |                               |                      | Mag-                |                | Po-          | Bi-                                        | Car-        |                  |                  |                      |       |                   | Die                                       | ssolved                      | solids             | Hard<br>as Ca                        | ness<br>aCO <sub>3</sub>    | So-                                   | Specific<br>con-                             |    |
|------------------|----------------------------|-------------------------------|----------------------|---------------------|----------------|--------------|--------------------------------------------|-------------|------------------|------------------|----------------------|-------|-------------------|-------------------------------------------|------------------------------|--------------------|--------------------------------------|-----------------------------|---------------------------------------|----------------------------------------------|----|
| CALENDAR<br>YEAR | Mean<br>Discharge<br>(cfs) | Silica<br>(SiO <sub>z</sub> ) | Cal-<br>cium<br>(Ca) | ne-<br>sium<br>(Mg) | Sodium<br>(Na) | tas-<br>sium | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> ) | bon-<br>ate | Sulfate<br>(SO₄) | Chioride<br>(Cl) | Fluo-<br>ride<br>(F) |       | Bo-<br>ron<br>(B) | Milli-<br>grams<br>per<br>liter<br>(mg/1) | Tons<br>per<br>acre-<br>foot | Tons<br>per<br>day | Cal-<br>cium,<br>Mag-<br>ne-<br>sium | Non-<br>car-<br>bon-<br>ate | dium<br>ad-<br>sorp-<br>tion<br>ratio | duct-<br>ance<br>(micro-<br>mhos at<br>25°C) | at |
|                  |                            |                               |                      |                     |                |              | 8-3640                                     | . RIO (     | GRANDE AT        | EL PASO, TH      | ex,                  |       |                   |                                           |                              |                    |                                      |                             |                                       |                                              |    |
| 933              | 841                        |                               |                      |                     |                |              |                                            |             |                  |                  |                      |       | 1440              | 846                                       | 1.15                         | 1920               |                                      |                             |                                       |                                              |    |
| 934              | 702                        |                               |                      | 2.2                 | 17.7           |              |                                            | 10.0        | -                | $+\infty$        |                      |       |                   | 926                                       | 1.26                         | 1760               |                                      |                             |                                       |                                              |    |
| 935              | 635                        |                               | **                   |                     | 57.74          |              | 17.7                                       | 10.0        |                  |                  |                      | 10.00 |                   | 912                                       | 1.24                         | 1560               |                                      |                             |                                       | 2.2                                          |    |
| 936              | 653                        |                               | 99                   | 21                  | 160            |              | 217                                        | 0           | 292              | 141              |                      | 3.1   |                   | 868                                       | 1.18                         | 1530               | 332                                  | 155                         | 3.8                                   | 1300                                         |    |
| 937              | 741                        |                               | 91                   | 21                  | 154            |              | 207                                        | 0           | 268              | 139              |                      | 1.2   |                   | 831                                       | 1,13                         | 1660               | 311                                  | 142                         | 3.8                                   | 1260                                         |    |
| 938              | 766                        |                               | 89                   | 19                  | 149            |              | 206                                        | 0           | 256              | 132              |                      | 1.2   | 0.17              | 801                                       | 1.09                         | 1660               | 303                                  | 134                         | 3.7                                   | 1230                                         |    |
| 939              | 707                        |                               | 93                   | 20                  | 156            |              | 215                                        | 0           | 276              | 138              |                      | 1.2   | .20               | 846                                       | 1.15                         | 1610               | 316                                  | 140                         | 3.8                                   | 1290                                         |    |
| 940              | 625                        |                               | 96                   | 22                  | 172            |              | 220                                        | 0           | 302              | 152              |                      | . 6   |                   | 919                                       | 1.25                         | 1550               | 332                                  | 152                         | 4.1                                   | 1390                                         |    |
| 941              | 706                        |                               | 92                   | 21                  | 169            |              | 212                                        | 0           | 295              | 143              |                      | 1.2   | .24               | 890                                       | 1.21                         | 1700               | 314                                  | 140                         | 4.1                                   | 1340                                         |    |
| 942              | 2150                       |                               | 71                   | 14                  | 93             |              | 182                                        | 0           | 189              | 69               |                      | . 6   | .13               | 581                                       | . 79                         | 3380               | 234                                  | 86                          | 2.6                                   | 876                                          |    |
| 943              | 873                        |                               | 86                   | 18                  | 133            |              | 218                                        | 0           | 233              | 116              |                      | . 6   | .18               | 750                                       | 1.00                         | 1120               |                                      |                             |                                       |                                              |    |
| 944              | 843                        |                               | 86                   | 18                  | 145            |              | 218                                        | 0           | 252              | 123              |                      | . 0   | .17               | 730                                       | 1.02                         | 1770               | 289                                  | 110                         | 3.4                                   | 1150                                         |    |
| 945              | 786                        |                               | 89                   | 19                  | 146            |              | 232                                        | õ           | 254              | 122              |                      | .6    | .18               | 801                                       | 1.09                         | 1790               | 289                                  | 110                         | 3.7                                   | 1190                                         |    |
| 946              | 688                        |                               | 87                   | 19                  | 152            |              | 228                                        | ŏ           | 258              | 126              |                      | . 6   | . 10              | 816                                       | 1,11                         | 1520               | 300<br>294                           | 110<br>106                  | 3.7                                   | 1210<br>1250                                 |    |
| 947              | 634                        |                               | 87                   | 20                  | 155            |              | 223                                        | 0           | 269              | 130              |                      | . 6   | . 20              | 824                                       | 1.12                         | 1410               | 300                                  | 118                         | 3.9                                   | 1250                                         |    |
| 948              | 595                        |                               | 75                   | 20                  | 160            |              | 180                                        | 0           | 282              | 1.11.11          |                      |       |                   | 200                                       |                              |                    | 029 8 6 6                            |                             |                                       |                                              |    |
| 949              | 640                        |                               | 69                   | 18                  | 147            |              | 174                                        | õ           | 282              | 133<br>125       |                      | 2.5   |                   | 838                                       | 1.14                         | 1350               | 272                                  | 124                         | 4.2                                   | 1250                                         |    |
| 950              | 653                        |                               | 78                   | 18                  | 144            |              | 202                                        | 0           | 244              | 123              |                      | .6    | .20               | 750                                       | 1.02                         | 1300               | 246                                  | 104                         | 4.1                                   | 1160                                         |    |
| 951              | 348                        |                               | 80                   | 22                  | 182            |              | 195                                        | 0           | 292              | 123              |                      | , 6   | .18               | 772                                       | 1.05                         | 1360               | 268                                  | 102                         | 3.8                                   | 1170                                         |    |
| 952              | 391                        |                               | 79                   | 19                  | 134            |              | 206                                        | 0           | 292              | 125              |                      | 1.2   | .22               | 904<br>735                                | 1.23                         | 849<br>776         | 290                                  | 130                         | 4.6                                   | 1380                                         |    |
| 063              | 24.1                       |                               | 12.25                | 2.2                 |                |              |                                            |             |                  |                  |                      |       |                   |                                           |                              | 110                | 1. F. S.                             | 1.0.4                       |                                       | 1150                                         |    |
| 953              | 365                        |                               | 82                   | 18                  | 135            |              | 214                                        | 0           | 223              | 119              |                      | 1.2   | .18               | 743                                       | 1.01                         | 732                | 278                                  | 1.02                        | 3.5                                   | 1130                                         |    |
| 954              | 129                        |                               | 87                   | 20                  | 197            |              | 198                                        | 0           | 308              | 184              |                      |       | .22               | 956                                       | 1.30                         | 333                | 301                                  | 138                         | 4.9                                   | 1470                                         |    |
| 955              | 93                         |                               | 110                  | 24                  | 192            |              | 184                                        | 0           | 392              | 169              |                      | 1.2   | . 19              | 1010                                      | 1.38                         | 254                | 375                                  | 224                         | 4.3                                   | 1520                                         |    |
| 956              | 79<br>193                  |                               | 111                  | 25                  | 194            |              | 198                                        | 0           | 404              | 160              |                      | . 6   | .23               | 1050                                      | 1.43                         | 2.2.4              | 380                                  | 218                         | 4.3                                   | 1540                                         |    |
| 957              | 193                        |                               | 72                   | 14                  | 105            |              | 181                                        | 0           | 192              | 89               |                      | 5.5   | .16               | 596                                       | .81                          | 311                | 239                                  | 91                          | 3.0                                   | 027                                          |    |
| 958              | 543                        |                               | 88                   | 17                  | 116            |              | 186                                        | 0           | 260              | 86               |                      |       | .17               | 721                                       | .98                          | 1060               | 288                                  | 135                         | 3.0                                   | 1070                                         |    |
| 959              | 533                        |                               | 93                   | 19                  | 149            |              | 217                                        | 0           | 269              | 130              |                      |       | .16               | 831                                       | 1.13                         | 1200               | 310                                  | 132                         | 3.7                                   | 1260                                         |    |
| 960              | 521                        |                               | 96                   | 21                  | 154            |              | 222                                        | 0           | 299              | 127              |                      | . 6   | .18               | 860                                       | 1.17                         | 1210               | 325                                  | 143                         | 3.7-                                  | 1300                                         |    |
| 961              | 415                        |                               | 91                   | 21                  | 166            |              | 221                                        | 0           | 299              | 133              |                      |       | .22               | 868                                       | 1.18                         | 973                | 311                                  | 130                         | 4.1                                   | 1320                                         |    |
| 962              | 520                        |                               | 87                   | 18                  | 151            |              | 210                                        | 0           | 272              | 124              |                      | . 6   | .19               | 801                                       | 1.09                         | 1120               | 290                                  | 118                         | 3.9                                   | 1230                                         |    |
| 963              | 714                        |                               | 93                   | 18                  | 164            |              | 226                                        | 0           | 280              | 141              |                      | . 6   | .23               | 875                                       | 1.19                         | 1690               | 308                                  | 122                         | 6 1                                   | 1220                                         |    |
| 964              | 89                         |                               | 96                   | 2.2                 | 224            |              | 229                                        | 0           | 340              | 199              |                      | 1.2   | .22               | 1060                                      | 1.44                         | 255                | 308                                  | 142                         | 4.1                                   | 1320                                         |    |
| 965              | 280                        |                               | 67                   | 13                  | 97             |              | 179                                        | ö           | 174              | 78               |                      | 1.2   | . 11              | 566                                       | .77                          | 428                | 218                                  | 71                          | 2.9                                   | 1620                                         |    |
| 966              | 427                        |                               | 85                   | 15                  | 119            |              | 217                                        | õ           | 224              | 93               |                      | .6    | .14               | 691                                       | .94                          | 797                | 274                                  | 96                          | 3.1                                   | 866<br>1050                                  |    |
| 967              | 321                        |                               | 89                   | 18                  | 151            |              | 226                                        | 0           | 271              | 120              |                      | 1.2   | .11               | 816                                       | 1.11                         | 191                | 296                                  | 111                         | 3.1                                   | 1240                                         |    |
|                  |                            |                               | 97                   | 19                  | 168            |              | 225                                        | õ           | 310              | 132              |                      | . 6   | .18               | 890                                       | 1.21                         |                    | 322                                  | 138                         | 4.1                                   | 1340                                         |    |

(Results in milligrams per liter except as indicated)

8-3670. RIO GRANDE AT TORNILLO BRIDGE NEAR FABENS, TEX.

1310 1.78 990

- 103 -

| 1                                                     |                      | Ηď                                                |                                     | : 1  | 1    | 7.9          | 8.0  | 8.2  | 8.2  | 6.1  |      | 8.0<br>8 1 | 8.0  | 8.0  | 8.0  | i.   | 6.1   | 6.7   | 1        | 7.8  | 8.0  |          | 8        | 3    | I.   | 8.0   | 7.9         | 0 0   | 1            | 7.8  | 7.9  | 0.8  |
|-------------------------------------------------------|----------------------|---------------------------------------------------|-------------------------------------|------|------|--------------|------|------|------|------|------|------------|------|------|------|------|-------|-------|----------|------|------|----------|----------|------|------|-------|-------------|-------|--------------|------|------|------|
|                                                       | Specific<br>con-     | duct-<br>ance<br>(micro-<br>mhos at<br>25°C)      |                                     | 1.3  | 1    | 3320<br>3270 | 2750 | 3340 | 3510 | 1370 |      | 2620       | 3200 | 3600 | 3950 | 4670 | 4030  | 4110  | 5770     | 3670 | 1970 | 58.5     | 471      | 1210 | 2060 | 3130  | 3970        | 0100  | 6350         | 575  | 3310 | 4390 |
|                                                       | -os                  | sorp-<br>tion<br>tratio                           |                                     | 10   | 1    | 7.3          | 7.0  | 8.1  | 8.4  | 4.2  |      | 0.7        | 8.0  | 8.7  | 9.3  | Ξ    | 9.6   | 10.5  | 11       | 8.4  | 5.6  | 1 -<br>1 | 2.1      | 3.5  | 5.9  | 7.5   | 9.0         |       | 10           | 1.0  | 8.2  | 10   |
|                                                       | ess<br>CO3           | Non-<br>car-<br>bon-                              |                                     | 1    | ;    | 464          | 382  | 450  | 484  | 158  |      | 332        | 414  | 484  | 541  | 660  | 552   | 538   | 912      | 909  | 279  | 12       | 6        | 161  | 276  | 442   | 577         | 1000  | 1060         | 0 0  | 518  | 610  |
|                                                       | Hardness<br>as CaCO, | Cal-<br>clum,<br>Mag-<br>ne-<br>stum              |                                     | i I  | ł    | 664<br>654   | 563  | 648  | 682  | 304  |      | 517        | 620  | 684  | 750  | 846  | 750   | 782   | 1120     | 746  | 418  | 701      | 124      | 292  | 451  | 654   | 812         | 1000  | 1270         | 232  | 969  | 978  |
|                                                       | olids                | Tons<br>per<br>day                                |                                     | 5190 | 847  | 1160         | 1820 | 1210 | 0701 | 4170 |      | 1790       | 1600 | 1130 | 874  | 854  | 1310  | 1270  | 156      | 183  | 72   | 71       | 5.3      | 108  | 67   | 395   | 266         |       | 52           | 2.3  |      | ŝ    |
|                                                       | Dissolved solids     | Tons<br>per<br>acre-<br>foot                      |                                     | 2.72 | 2.12 | 2.84         | 9.39 | 2.91 | 3.07 | 2.29 |      | 2.31       | 2.82 | 3.16 | 3.52 | 4.14 | 3.58  | 3.73  | 5.25     | 3.29 | 1.73 | 9/ -     | 07.      | 1.09 | 1.88 | 2.84  | 3.66        |       | 5.43<br>6.04 | .51  | 3.05 | 3.94 |
|                                                       | DIBI                 | Milli-<br>grams<br>per<br>liter<br>(mg/l)         |                                     | 2000 | 1560 | 2120         | 1260 | 2140 | 2260 | 1630 |      | 1220       | 2070 | 2320 | 2590 | 3040 | 2630  | 2740  | 3860     | 2420 | 1270 | 200      | 294      | 801  | 1380 | 2090  | 4110        | 10000 | 3990         | 375  | 2240 | 2900 |
|                                                       |                      | Bo-<br>ron<br>(B)                                 |                                     | ; ;  | ļ    |              | 66 6 | 1    |      | .18  |      | .30        | 10.  | 1    | .38  | ţ    | .43   | 14.   | :        | .36  | .24  |          | l        | ł    | 1    | .39   | .40         | 18    | 20*          | .13  | . 33 | .38  |
| cated)                                                |                      | N1-<br>trate<br>(NO <sub>3</sub> )                |                                     | ; ;  | ł    | $3.7 \\ 1.2$ | 1 0  | 1.2  | 1.2  | 2.5  |      | 1.2        | ¢ 9  | 1.9  | 1.9  | 1.2  | 2.5   | 5 C   | 1        | 9.   | 1.9  | ł        | 2.5      | Ę    | 1    | 1,2   | 1.9         | 3     | 6 · T        | 1    | 4,3  | 1.9  |
| ibni s                                                |                      | Fluo- N1-<br>ride trate<br>(F) (NO <sub>3</sub> ) | TEX.                                |      |      |              |      |      |      |      |      |            |      |      |      |      |       |       |          |      |      |          |          |      |      |       |             |       |              |      |      |      |
| (Results in milligrams per liter except as indicated) |                      | Chloride<br>(Cl)                                  | 8-3705. RIO GRANDE AT FORT QUITMAN, | 1    | ł    | 672<br>678   | 538  | 189  | 731  | 192  |      | 496        | 532  | 753  | 846  | 1060 | 874   | 936   | 1400     | 006  | 426  | 113      | 21       | 168  | 348  | 588   | 1380<br>842 |       | 1540         | 21   | 763  | 950  |
| s per lite                                            |                      | Sulfate<br>(SO4)                                  | ADE AT FOR                          | :    | 1    | 488<br>485   | 1.96 | 500  | 529  | 254  | Ş    | 424        | 438  | 556  | 602  | 693  | 614   | 639   | 824      | 480  | 245  | 137      | 76       | 218  | 406  | 562   | 995<br>673  |       | 957          | 6.5  | 508  | 700  |
| ligram                                                |                      | bon-<br>ate<br>(CO <sub>3</sub> )                 | IO GRAD                             | 1    | 1    | 00           | 0    | >0   | 0    | 0 0  |      | 0 0        | 5 0  | 0    | 0    | 0    | 0     | 0 0   | 0        | 0    | 0    | 0 0      | 00       | 0    | 0    | 0     | 00          |       | 0 0          | 0    | 00   | 0    |
| i in mil                                              | Bl-                  |                                                   | 3705. R                             | 1    | ł    | 245<br>220   | 100  | 242  | 241  | 211  |      | 226        | 229  | 245  | 254  | 228  | 242   | 215   | 254      | 173  | 170  | 165      | 162      | 160  | 213  | 258   | 309<br>287  |       | 250          | 283  | 217  | 287  |
| Results                                               | 4                    | Fo-<br>tas-<br>(K)                                | *                                   |      |      |              |      |      |      |      |      |            |      |      |      |      |       |       |          |      |      |          |          |      |      |       |             |       |              |      |      |      |
| ~                                                     |                      | Sodium<br>(Na)                                    |                                     | 1    | 1    | 455          | 000  | 471  | 504  | 368  | 110  | 369        | 392  | 527  | 583  | 206  | 601   | 635   | 874      | 530  | 261  | 126      | 55       | 01.1 | 286  | 443   | 949<br>591  |       | 1030         | 34   | 464  | 668  |
|                                                       |                      | Mag-<br>ne-<br>sium<br>(Mg)                       |                                     | 1    | 1    | 46<br>48     | 00   | 44   | 4.8  | 35   | 0.2  | 37         | 37   | 75   | 56   | 67   | 57    | 60    | 89       | 57   | 29   | 11       | 4.4      | 91   | 29   | 43    | 88          |       | 106          | 10   | 52   | 60   |
|                                                       |                      | Cal-<br>ctum<br>(Ca)                              |                                     | ;    | 1    | 191          | 6.71 | 187  | 194  | 147  | 0    | 146        | 151  | 190  | 207  | 229  | 208   | 207   | 302      | 204  | 119  | 99       | 61<br>42 | 10   | 133  | 161   | 317         |       | 313          | 76   | 116  | 241  |
|                                                       |                      | Iron<br>(Fe)                                      |                                     |      |      |              |      |      |      |      |      |            |      |      |      |      |       |       |          |      |      |          |          |      |      |       |             |       |              |      |      |      |
|                                                       |                      | Silica<br>(SiO <sub>s</sub> )                     |                                     |      |      |              |      |      |      |      |      |            |      |      |      |      |       |       |          |      |      |          |          |      |      |       |             |       |              |      |      |      |
|                                                       |                      | Discharge<br>(cfs)                                |                                     | 295  | 141  | 206<br>246   | 0.00 | 252  | 171  | 457  | 0671 | 1          | 374  | 181  | 125  | 701  | 185   | 171   | 30<br>15 | 28   | 21   | 8.1      | 6.7      | 50   | 18   | 70    | 24<br>102   |       | 32<br>A 4    |      | 44.9 |      |
|                                                       |                      | CALENDAR<br>YEAR                                  |                                     | 1933 | 1934 | 1936.        |      | 1939 | 1940 | 1941 | 1342 | 1.4        | 1944 | 19/6 | 1947 | 8761 | 1949. | 1950. | 1952     | 1953 | 1954 | 1955     | 1956     | 1050 | 1959 | 1960. | 1961        |       | 1963         | 1965 | 1967 | 1968 |

Table 11 .--Discharge-weighted average of chemical constituents at selected sites in the Rio Grande basin--Continued

|                                  | Hq                                                | 1                        | 8.0<br>8.2<br>8.1<br>7.8                                                         | [                                           | 8.0<br>8.0<br>8.2<br>8.1<br>7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 8.0<br>8.0<br>7.9<br>7.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.9<br><br>7.8<br>7.9                |                                      |                                          | 111111                                        |
|----------------------------------|---------------------------------------------------|--------------------------|----------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|------------------------------------------|-----------------------------------------------|
| Specific<br>con-                 | duct-<br>ance<br>(micro-<br>mhos at<br>25°C)      |                          | 2670<br>3220<br>2720<br>2240                                                     |                                             | 2320<br>2360<br>2940<br>2540<br>26410                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1570<br>2580<br>2720<br>2740<br>2740                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2970<br>3110<br>3010<br>2360<br>1790 | 625<br>761<br>833<br>613<br>460      | 525<br>786<br>674<br>2110<br>1890        | 2520<br>1360<br>618<br>618<br>773<br>773      |
|                                  | ad-<br>sorp-<br>tion<br>ratio                     |                          | 7.2<br>8.2<br>7.6<br>6.6                                                         |                                             | 6.4<br>6.5<br>6.9<br>6.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.6<br>7.0<br>7.1<br>7.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.7<br>8.2<br>7.9<br>6.7<br>5.5      | 2.0<br>2.5<br>2.0<br>1.8<br>1.4      | 1.2<br>2.2<br>5.8<br>5.4                 | 7.0<br>1.4<br>1.6<br>1.8                      |
| iess<br>CO.                      | Non-<br>car-<br>bon-<br>ate                       |                          | 363<br>453<br>360<br>294                                                         |                                             | 326<br>328<br>424<br>361<br>336                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 187<br>344<br>361<br>343<br>371                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 418<br>426<br>416<br>322<br>249      | 56<br>66<br>126<br>68<br>30          | $67 \\ 71 \\ 71 \\ 299 \\ 289 \\ 289 \\$ | 326<br>188<br>80<br>107<br>153<br>142         |
| Hardness<br>as CaCO <sub>3</sub> | Cal-<br>clum,<br>Mag-<br>ne-<br>stum              |                          | 520<br>598<br>506<br>431                                                         |                                             | 478<br>472<br>572<br>498<br>482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 349<br>506<br>520<br>534                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 586<br>576<br>564<br>454<br>376      | 180<br>197<br>261<br>186<br>146      | 186<br>223<br>202<br>452<br>424          | 514<br>327<br>211<br>287<br>287<br>248        |
| olids                            | Tons<br>per<br>day                                |                          | 1650<br>1070<br>855<br>2360                                                      |                                             | 849<br>1260<br>805<br>682<br>2680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4450<br>1410<br>1600<br>1180<br>884                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 400<br>239<br>786<br>575<br>77.1     | 20.7<br>16.7<br>99.9<br>37.1<br>2.64 | 8.20<br>72.3<br>12.3<br>174<br>76.0      | 225<br>63.5<br>1.47<br>4.26<br>94.3           |
| Dissolved solids                 | Tons<br>per<br>acre-<br>foot                      |                          | 2.31<br>2.79<br>2.37<br>1.96                                                     |                                             | 2.03<br>2.05<br>2.58<br>2.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1.38<br>2.27<br>2.41<br>2.42<br>2.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.65<br>2.74<br>2.64<br>2.07<br>1.62 | - 58<br>- 74<br>- 55<br>- 38         | .48<br>.70<br>.62<br>1.90<br>1.74        | 2.31<br>1.28<br>.57<br>.65<br>.97             |
| Dis                              | Milli-<br>grams<br>per<br>liter<br>(mg/l)         |                          | 1700<br>2050<br>1740<br>1440                                                     |                                             | 1490<br>1510<br>1900<br>1620<br>1550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1010<br>1670<br>1770<br>1680<br>1780                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1950<br>2010<br>1940<br>1520<br>1190 | 426<br>515<br>544<br>404<br>279      | 353<br>515<br>456<br>1400<br>1280        | 1700<br>941<br>419<br>478<br>713<br>515       |
|                                  | Bo-<br>(B)                                        |                          |                                                                                  | TEX.                                        | 0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11118                                | 11111                                | 11111                                    | 1111115                                       |
|                                  | Fluo- N1-<br>ride trate<br>(F) (NO <sub>3</sub> ) | 1                        | $   \begin{array}{c}     1.9 \\     1.2 \\     2.5 \\     3.1 \\   \end{array} $ | DIO, TI                                     | $1.2 \\ 1.9 \\ .6 \\ 1.9 \\ 1.9 \\ 1.9 \\ 1.9 \\ 1.9 \\ 1.9 \\ 1.9 \\ 1.9 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\ 1.1 \\$ | $1.2 \\ 1.2 \\ 1.2 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 \\ 2.5 $ | 2.5<br>1.9<br>2.5<br>2.5<br>2.5      | 11111                                | 11111                                    | 1111114                                       |
|                                  | Fluo-<br>ride<br>(F)                              | TEX.                     |                                                                                  | PRESI                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |                                      |                                          |                                               |
|                                  | Chloride<br>(Cl)                                  |                          | 526<br>666<br>538<br>421                                                         | RIO GRANDE ABOVE RIO CONCHOS NEAR PRESIDIO, | 437<br>450<br>590<br>467                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 232<br>485<br>492<br>528                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 582<br>637<br>603<br>445<br>342      | 43<br>62<br>32<br>20<br>20           | 19<br>64<br>36<br>361<br>315             | 459<br>180<br>22<br>21<br>142<br>38<br>38     |
|                                  | Sulfate<br>(SO4)                                  | RIO GRANDE AT LA NUTRIA, | 421<br>499<br>436<br>370                                                         | OVE RIO CC                                  | 371<br>381<br>471<br>410<br>387                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 288<br>439<br>450<br>464                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 513<br>508<br>407<br>296             |                                      | 11111                                    | 111111                                        |
| Č                                | bon-<br>ate<br>(CO <sub>3</sub> )                 | RIO GR                   | 0000                                                                             | ANDE AB                                     | 00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 00000                                |                                      | 00000                                    | 000000                                        |
| Bl-                              | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> )        | 8-3710.                  | 192<br>177<br>178<br>178                                                         | RIO GRA                                     | 185<br>176<br>181<br>181<br>168<br>179                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 198<br>199<br>196<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 206<br>183<br>181<br>160<br>154      | 152<br>160<br>165<br>144<br>142      | 145<br>137<br>159<br>187<br>165          | 228<br>169<br>137<br>137<br>137<br>137<br>137 |
| Ę                                | stum<br>(K)                                       | 80                       |                                                                                  | 8-3715.                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |                                      |                                          |                                               |
|                                  | Sodium<br>(Na)                                    |                          | 378<br>459<br>392<br>314                                                         | 8                                           | 320<br>326<br>414<br>355<br>332                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 199<br>364<br>355<br>367<br>388                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 427<br>455<br>433<br>246             | 63<br>81<br>36<br>39                 | 37<br>75<br>64<br>283<br>283             | 364<br>165<br>47<br>55<br>121<br>64           |
| Mac                              | ne-<br>sium<br>(Mg)                               |                          | 36<br>43<br>29                                                                   |                                             | 32<br>39<br>33<br>31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 22<br>35<br>36<br>36                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40<br>42<br>38<br>25                 | 1:1:1                                | 11111                                    | 111111                                        |
|                                  | clum<br>(Ca)                                      |                          | 148<br>169<br>145<br>126                                                         |                                             | 138<br>138<br>165<br>145<br>142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 103<br>145<br>148<br>145<br>155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 170<br>162<br>163<br>133<br>109      | E [ ] ] ]                            | 11111                                    |                                               |
|                                  | Iron<br>(Fe)                                      |                          |                                                                                  |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |                                      |                                          |                                               |
|                                  | Silica<br>(SiO <sub>a</sub> )                     |                          |                                                                                  |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                      |                                      |                                          |                                               |
|                                  | Discharge<br>(cfs)                                |                          | 359<br>194<br>608                                                                |                                             | 211<br>309<br>157<br>156<br>641                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1630<br>313<br>335<br>261<br>184                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 76<br>44<br>150<br>24                | 18<br>12<br>68<br>34<br>3.5          | 8.6<br>52<br>10<br>22<br>22              | 49<br>25<br>1.3<br>49<br>49                   |
|                                  | CALENDAR                                          |                          | 1938.<br>1939.<br>1940.<br>1941.                                                 |                                             | 1937.<br>1938.<br>1930.<br>1940.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1942.<br>1943.<br>1946.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1947.<br>1948.<br>1949.<br>1950.     | 1952.<br>1953.<br>1954.<br>1956.     | 1957.<br>1958.<br>1959.<br>1960.         | 1962<br>1963<br>1964<br>1965<br>1965<br>1966  |

Table 11 --- Discharge-weighted average of chemical constituents at selected sites in the Rio Grande basin--Continued

| Table Total         Millit         Tons           (P)         (NO <sub>4</sub> )         (B)         Frans.         Tons         Tons           (P)         (NO <sub>4</sub> )         (B)         Frans.         Tons         Tons           (P)         (NO <sub>4</sub> )         (B)         Frans.         Tons         Tons           (NO <sub>4</sub> )         (B)         Frans.         Tons         Per         Per           (NO <sub>4</sub> )         (B)         Frans.         Tons         Per         Per           (NO <sub>4</sub> )         (B)         Frans.         Tons         Per         Per           (ASTO4A)         TX.         ASTO4A         110         1150           3.1         206         96         96         2380           2.5         636         636         92         2380           1.9         0.20         656         92         1050 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TEX.<br>.5<br>.1<br>.1<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0<br>.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 74.3 1.01<br>706 .96<br>684 .93<br>0.20 676 .92<br>616 .92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 868 1.18 391<br>8640 .87 1080<br>559 .75<br>549 1.20<br>809 1.10 7100<br>809 1.100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 449         .01         3440            853         1.16         1960            654         .89         2300            779         1.06         7300            816         1.111         1620                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 809         1,10         1530            849         1,16         1350            846         1,15         1200            846         1,15         1200            846         1,15         1200            846         1,15         1200            846         1,15         1200            846         1,15         1200            846         1,15         1200            846         1,15            551         .75                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.9          610         0.83         3020           1.9         0.15         610         .83         3010           2.6         .17         596         .81         2820           3.1         -         618         .82         2820           3.1         -         596         .73         2820           3.1         -         618         .78         2820           3.1         -         618         .84         1.460                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3.7          588         .80         2910           3.7         .14         559         .76         2540           3.1         .15         559         .76         140           2.1         .15         559         .76         140           2.1         .15         559         .76         140           4.3         .17         588         .80         714                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1.9         .19         662         .90         2410           2.5         .19         581         .79         2840           11.2         .20         632         .86         270           2.5         .20         632         .86         2270           2.5         .20         659         .91         1990           1.9         .20         669         .91         1910                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3.1         .16         537         .73           3.1         .17         981         .79           3.7         .13         551         .75           3.7         .17         551         .75           3.7         .17         551         .75           3.7         .17         553         .75           3.1         .11         537         .73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

Table 11--Disclarge-weighted average of chemical constituents at selected sites in the Rip Grande busin--Continued

Table 11 .-- Discharge-weighted average of chemical constituents at selected sites in the Rio Grande basin-- Continued

|                                           |                                 |                               |              |                                 | Mag-                       |                                 | Po-                 | Bi-                                        | Car-                              |                                 |                                 |      |                                    |                                  | Di                                        | ssolved a                            | solids                               | Hard<br>as Ca                        |                                 | So-                                   | Specific                                     |                                 |
|-------------------------------------------|---------------------------------|-------------------------------|--------------|---------------------------------|----------------------------|---------------------------------|---------------------|--------------------------------------------|-----------------------------------|---------------------------------|---------------------------------|------|------------------------------------|----------------------------------|-------------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------|---------------------------------------|----------------------------------------------|---------------------------------|
| CALENDAR<br>YEAR                          | Mean<br>Discharge<br>(cfs)      | Silica<br>(SiO <sub>z</sub> ) | Iron<br>(Fe) | Cal-<br>cium<br>(Ca)            | ne-<br>sium<br>(Mg)        | Sodium<br>(Na)                  | tas-<br>sium<br>(K) | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> ) | bon-<br>ate<br>(CO <sub>3</sub> ) | Sulfate<br>(SO <sub>4</sub> )   | Chloride<br>(Cl)                |      | Ni-<br>trate<br>(NO <sub>3</sub> ) | Bo-<br>ron<br>(B)                | Milli-<br>grams<br>per<br>liter<br>(mg/1) | Tons<br>per<br>acre-<br>foot         | Tons<br>per<br>day                   | Cal-<br>cium,<br>Mag-<br>ne-<br>sium | Non-<br>car-<br>bon-<br>ate     | dium<br>ad-<br>sorp-<br>tion<br>ratio | duct-<br>ance<br>(micro-<br>mhos at<br>25°C) | pł                              |
|                                           |                                 |                               |              |                                 |                            |                                 |                     | 8-4474.                                    | PECOS                             | RIVER NEA                       | R SHUMLA, T                     | EX.  |                                    |                                  |                                           |                                      |                                      |                                      |                                 |                                       |                                              |                                 |
| 1955<br>1956<br>1957<br>1958<br>1958      | 286<br>158<br>540<br>372<br>405 |                               |              | 125<br>138<br>105<br>111<br>114 | 53<br>63<br>37<br>44<br>46 | 292<br>361<br>225<br>251<br>283 |                     | 157<br>148<br>150<br>161<br>162            | 0<br>0<br>0<br>0                  | 320<br>388<br>255<br>269<br>284 | 502<br>613<br>371<br>424<br>470 |      | 3.7<br>1.9<br>1.2<br>3.1<br>3.7    | 0.19<br>.17<br>.14<br><br>.16    | 1440<br>1740<br>1160<br>1290<br>1380      | 1.96<br>2.37<br>1.58<br>1.75<br>1.87 | 1110<br>742<br>1690<br>1300<br>1510  | 528<br>602<br>416<br>457<br>474      | 400<br>481<br>292<br>325<br>341 | 5.5<br>6.4<br>4.8<br>5.1<br>5.7       | 2330<br>2770<br>1850<br>2030<br>2220         | 8.0                             |
| 1960<br>1961<br>1962<br>1963<br>1964      | 204<br>236<br>186<br>148<br>439 |                               |              | 144<br>131<br>159<br>151<br>109 | 66<br>64<br>65<br>65<br>35 | 414<br>399<br>457<br>446<br>230 |                     | 157<br>148<br>164<br>165<br>182            | 0<br>0<br>0<br>0                  | 398<br>384<br>437<br>420<br>221 | 704<br>669<br>767<br>749<br>386 |      | 3.1<br>2.5<br>3.1<br>1.9<br>3.1    | 23<br>21<br>21<br>22<br>22<br>16 | 1950<br>1840<br>2120<br>2050<br>1150      | 2.65<br>2.50<br>2.88<br>2.79<br>1.57 | 1070<br>1170<br>1060<br>819<br>1360  | 628<br>589<br>664<br>644<br>415      | 500<br>468<br>530<br>508<br>266 | 7,2<br>7,1<br>7,7<br>7,6<br>4,9       | 3100<br>2960<br>3280<br>3230<br>1860         | 7.9<br>7.9<br>7.8<br>7.8        |
| 1965<br>1966<br>1967<br>1968              | 233<br>263<br>                  |                               |              | 116<br>104<br>112<br>114        | 48<br>39<br>51<br>50       | 318<br>258<br>318<br>324        |                     | 170<br>171<br>171<br>170                   | 0<br>0<br>0                       | 288<br>240<br>298<br>301        | 530<br>426<br>521<br>532        |      | 2.5<br>2.5<br>1.9<br>1.2           | .17<br>.13<br>.16<br>.17         | 1490<br>1230<br>1470<br>1490              | 2.03<br>1.67<br>2.00<br>2.03         | 937<br>873<br>                       | 486<br>421<br>488<br>492             | 346<br>281<br>348<br>352        | 6.3<br>5.5<br>6.3<br>6.4              | 2400<br>2010<br>2420<br>2430                 | 7.9<br>8.0<br>7.9<br>7.9        |
|                                           |                                 |                               |              |                                 |                            |                                 |                     | 8-4590                                     | D. RIO                            | GRANDE AT                       | LAREDO, TE                      | х.   |                                    |                                  |                                           |                                      |                                      |                                      |                                 |                                       |                                              |                                 |
| 1956<br>1957<br>1958<br>1959<br>1960      | 4450<br>6310<br>3490<br>3250    |                               |              |                                 |                            | 91<br>54<br>50<br>76<br>75      |                     | 156<br>147<br>156<br>162<br>163            | 0<br>0<br>0<br>0<br>0             |                                 | 115<br>65<br>51<br>85<br>80     |      |                                    |                                  | 588<br>404<br>419<br>529<br>529           | 0.80<br>.55<br>.57<br>.72<br>.72     | 1710<br>4850<br>7140<br>4980<br>4640 | 264<br>200<br>214<br>248<br>244      | 136<br>80<br>86<br>115<br>110   | 2.4<br>1.7<br>1.5<br>2.1<br>2.1       | 928<br>637<br>647<br>825<br>825              |                                 |
| 1961.<br>1962.<br>1963.<br>1964.<br>1965. | 1950<br>1790<br>4310<br>2440    |                               |              |                                 |                            | 70<br>99<br>98<br>49<br>84      |                     | 152<br>153<br>156<br>135<br>156            | 0<br>0<br>0<br>0                  |                                 | 77<br>107<br>102<br>51<br>93    |      |                                    |                                  | 485<br>603<br>625<br>360<br>551           | .66<br>.82<br>.85<br>.49<br>.75      | 4310<br>3170<br>3020<br>4190<br>3630 | 226<br>250<br>256<br>182<br>232      | 101<br>125<br>128<br>72<br>104  | 2.0<br>2.7<br>2.7<br>1.6<br>2.4       | 770<br>945<br>952<br>580<br>848              |                                 |
| 1966<br>1967<br>1968                      | 2460                            |                               |              |                                 |                            | 71<br>82<br>81                  |                     | 155     161     164                        | 0<br>0<br>0                       |                                 | 65<br>78<br>79                  |      |                                    |                                  | 493<br>544<br>551                         | .67<br>.74<br>.75                    | 4850                                 | 220<br>234<br>236                    | 94<br>102<br>102                | 2:1<br>2.3<br>2.3                     | 754<br>829<br>834                            |                                 |
|                                           |                                 |                               |              |                                 |                            |                                 | 8-4                 | 613. R                                     | to gran                           | DE BELOW                        | FALCON DAM,                     | TEX. |                                    |                                  |                                           |                                      |                                      |                                      |                                 |                                       |                                              | -                               |
| 1956<br>1957<br>1958<br>1958<br>1959      | 2060<br>6930<br>3530            |                               |              | 73<br>58<br>59<br>69<br>68      | 17<br>12<br>10<br>13<br>18 | 82<br>56<br>52<br>57<br>83      |                     | 154<br>141<br>138<br>150<br>137            | 0<br>0<br>0<br>0                  | 169<br>99<br>107<br>138<br>181  | 95<br>69<br>57<br>62<br>92      |      | 1.2<br><br>1.9<br>3.1<br>.6        | 0.14<br>.11<br>.14<br>.13<br>.17 | 544<br>397<br>390<br>456<br>551           | 0.74<br>.54<br>.53<br>.62<br>.75     | 3830<br>2210<br>7300<br>4350<br>4250 | 254<br>193<br>191<br>228<br>243      | 127<br>78<br>78<br>105<br>131   | 2.2<br>1.8<br>1.6<br>1.6<br>2.3       | 639<br>620<br>709                            | 8.0<br>7.9<br>7.9<br>7.9        |
| 1961.<br>1962.<br>1963.<br>1964.<br>1965. | 2930<br>2210<br>2000            |                               |              | 67<br>67<br>77<br>67<br>60      | 17<br>16<br>16<br>16<br>12 | 86<br>89<br>109<br>94<br>62     |                     | 137<br>138<br>141<br>137<br>146            | 0<br>0<br>0<br>0                  | 180<br>183<br>210<br>184<br>119 | 91<br>94<br>117<br>97<br>69     |      | .6<br>.6<br>1.2                    | .17<br>.17<br>.18<br>.17<br>.15  | 544<br>559<br>647<br>559<br>434           | .74<br>.76<br>.88<br>.76<br>.59      | 4490<br>4420<br>3860<br>3020<br>3750 | 239<br>233<br>258<br>232<br>198      | 126<br>120<br>143<br>120<br>78  | 2.4<br>2.5<br>3.0<br>2.7<br>1.9       | 875<br>877<br>1010<br>885                    | 7.9<br>7.9<br>7.7<br>7.9<br>7.8 |
| 1966.<br>1967<br>1968                     | 2850                            | ē.                            |              | 60<br>63<br>66                  | 14<br>14<br>14             | 80<br>84<br>80                  |                     | 134<br>135<br>139                          | 0<br>0<br>0                       | 150<br>173<br>166               | 86<br>83<br>80                  |      | 1,2                                | .16                              | 485<br>522<br>515                         | .66<br>.71<br>.70                    | 3220                                 | 208<br>216<br>223                    | 98<br>106<br>109                | 2.4<br>2.5<br>2.3                     | 825                                          | 7.8                             |

(Results in milligrams per liter except as indicated)

a/ Samples collected near Langtry, 3.5 miles downstream after July 1, 1967.

# Table 11. -- Discharge-weighted average of chemical constituents at selected sites in the Rio Grande basin--Continued

|                                              |                             |                               |              |                             |                                  |                               | (Resul                     | ts in mi                                                | 11igra                                    | ms per li                       | ter except                     | as ind               | icated                             | )                                |                                           |                                      |                                         | 1                                    |                                 |                                       |                                              |                                        |
|----------------------------------------------|-----------------------------|-------------------------------|--------------|-----------------------------|----------------------------------|-------------------------------|----------------------------|---------------------------------------------------------|-------------------------------------------|---------------------------------|--------------------------------|----------------------|------------------------------------|----------------------------------|-------------------------------------------|--------------------------------------|-----------------------------------------|--------------------------------------|---------------------------------|---------------------------------------|----------------------------------------------|----------------------------------------|
|                                              |                             |                               |              |                             |                                  |                               |                            | Bi-                                                     |                                           |                                 |                                |                      |                                    |                                  | Dis                                       | solved a                             | solids                                  | Hard<br>as Ca                        |                                 | So-                                   | Specific<br>con-                             |                                        |
| CALENDAR<br>YEAR                             | Mean<br>Discharge<br>(cfs)  | Silica<br>(SiO <sub>2</sub> ) | Iron<br>(Fe) | Cal-<br>cium<br>(Ca)        | Mag-<br>ne-<br>sium<br>(Mg)      | Sodium<br>(Na)                | Po-<br>tas-<br>sium<br>(K) | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> )              | Car-<br>bon-<br>ate<br>(CO <sub>3</sub> ) | Sulfate<br>(SO₄)                | Chloride<br>(Cl)               | Fluo-<br>ride<br>(F) | Ni-<br>trate<br>(NO <sub>3</sub> ) | Bo-<br>ron<br>(B)                | Milli-<br>grams<br>per<br>liter<br>(mg/l) | Tons<br>per<br>acre-<br>foot         | Tons<br>per<br>day                      | Cal-<br>cium,<br>Mag-<br>ne-<br>sium | Non-<br>car-<br>bon-<br>ate     | dium<br>ad-<br>sorp-<br>tion<br>ratio | duct-<br>ance<br>(micro-<br>mhos at<br>25°C) | рН                                     |
|                                              |                             |                               |              |                             |                                  |                               |                            | 8-462                                                   | 25. RIC                                   | GRANDE A                        | T ROMA, TEX                    |                      |                                    |                                  |                                           |                                      |                                         |                                      |                                 |                                       |                                              |                                        |
| 1943<br>1944<br>1945<br>1945<br>1946<br>1947 | 5140<br>3620<br>4500        |                               |              | 68<br>75<br>63<br>62        | 17<br>21<br>15<br>16             | 101<br>125<br>94<br>90        |                            | 138<br>135<br>129<br>135                                | 0<br>0<br>0<br>0                          | 163<br>204<br>157<br>158        | 125<br>157<br>111<br>103       |                      | 1.9<br>1.9<br>5.6<br>4.3           | 0.15<br>.15<br>.14               | 853<br>596<br>699<br>559<br>544           | 1.16<br>.81<br>.95<br>.76<br>.74     | 8610<br>8270<br>6830<br>6790<br>5210    | 237<br>271<br>220<br>222             | 124<br>160<br>114<br>112        | 2.8<br>3.3<br>2.9<br>2.6              | 937<br>1110<br>880<br>858                    | 8,0<br>7,9<br>7,8<br>7,9               |
| 1948<br>1949<br>1950<br>1951<br>1952         | 5960<br>3080<br>2550        |                               |              | 55<br>61<br>75<br>66<br>79  | 13<br>13<br>17<br>15<br>18       | 62<br>70<br>95<br>80<br>85    |                            | 130<br>131<br>149<br>148<br>156                         | 0<br>0<br>0<br>0                          | 115<br>132<br>183<br>147<br>190 | 71<br>82<br>110<br>91<br>96    |                      | 5.0<br>4.3<br>4.3<br>3.1           | .15                              | 426<br>471<br>603<br>529<br>603           | . 58<br>. 64<br>. 82<br>. 72<br>. 82 | 5260<br>7580<br>5010<br>3640<br>2300    | 190<br>204<br>258<br>227<br>273      | 84<br>98<br>136<br>106<br>145   | 2.0<br>2.1<br>2.6<br>2.3<br>2.2       | 657<br>742<br>949<br>814<br>922              | 7.9<br>7.8<br>7.7                      |
| 1953<br>1954                                 |                             |                               |              | 57<br>61                    | 11<br>11                         | 48<br>52                      |                            | $   \begin{array}{r}     136 \\     153   \end{array} $ | 0                                         | 92<br>98                        | 56<br>63                       |                      | 6.8<br>2.5                         | .12<br>.14                       | 375<br>397                                | .51<br>.54                           | 1630<br>3140                            | 185<br>197                           | 74<br>72                        | 1.5<br>1.6                            | 576<br>633                                   | 7.9<br>8.0                             |
| N-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1      |                             |                               |              |                             |                                  | 8-46                          | 47. RIG                    | GRANDE                                                  | AT FO                                     | RT RINGGO                       | .D, RIO GRAD                   | IDE CT               | TY, TE                             | κ.                               |                                           |                                      |                                         |                                      |                                 |                                       |                                              |                                        |
| 1959<br>1960<br>1961<br>1962<br>1963         | . 3040<br>. 3250<br>. 3090  |                               |              | 71<br>70<br>67<br>69<br>76  | 14<br>18<br>18<br>15<br>16       | 64<br>87<br>90<br>92<br>109   |                            | 156<br>140<br>139<br>141<br>147                         | 0<br>0<br>0<br>0                          | 143<br>181<br>182<br>183<br>203 | 71<br>97<br>97<br>99<br>118    |                      | .6<br>.6<br>.6                     | 0.12<br>.19<br>.19<br>.20<br>.21 | 478<br>559<br>579<br>574<br>640           | 0.65<br>.76<br>.76<br>.78<br>.87     | 4800<br>4590<br>4910<br>4790<br>4180    | 2 36<br>246<br>240<br>2 36<br>2 58   | 108<br>130<br>126<br>120<br>137 | 1.8<br>2.4<br>2.5<br>2.6<br>3.0       | 752<br>886<br>892<br>894<br>1000<br>886      | 7.9<br>7.9<br>7.9<br>7.9<br>7.8<br>8.0 |
| 1964<br>1965<br>1966<br>1967<br>1968         | . 3280<br>. 2890<br>. 8240  |                               |              | 69<br>61<br>63<br>62<br>76  | 15<br>12<br>13<br>9.6<br>17      | 93<br>67<br>83<br>58<br>99    |                            | 143<br>148<br>142<br>140<br>147                         | 0<br>0<br>0<br>0                          | 179<br>122<br>146<br>119<br>189 | 97<br>73<br>89<br>63<br>113    |                      | .6<br>1.2<br>1.2<br>3.1<br>1.9     | ,18<br>,15<br>,17<br>,14<br>,22  | 559<br>449<br>500<br>412<br>618           | .76<br>.61<br>.68<br>.56<br>.84      | 3410<br>3980<br>3900                    | 232<br>201<br>211<br>194<br>259      | 115<br>80<br>95<br>80<br>138    | 2.7<br>2.1<br>2.5<br>1.8<br>2.7       | 711<br>799<br>657<br>963                     | 7.8<br>7.8<br>7.9<br>7.8               |
|                                              |                             |                               |              |                             |                                  |                               | 8-                         | -4655. R                                                | IO GRA                                    | NDE AT RI                       | ) GRANDE CI                    | ry, te               | х.                                 |                                  |                                           |                                      |                                         |                                      |                                 |                                       |                                              |                                        |
| 1934<br>1935<br>1936<br>1937<br>1938         | . 9320<br>. 7030<br>. 3650  |                               |              | 58<br>92<br>70              | 20<br>25<br>15                   | 83<br>129<br>78               |                            | 117<br>156<br>148                                       | 0<br>0<br>0                               | 160<br>246<br>143               | 102<br>160<br>90               |                      | <br>1.9<br>2.5<br>4.3              | .13                              | 767<br>516<br>559<br>816<br>515           | 1.04<br>.70<br>.76<br>1.11<br>.70    | 8610<br>13000<br>10600<br>8040<br>11800 | 228<br>332<br>236                    | 132<br>205<br>114               | 2.4<br>3.1<br>2.2                     | 876<br>1260<br>807                           | <br>8.3<br>7.9<br>7.9                  |
| 1939<br>1940<br>1941<br>1942<br>1943         | . 5520<br>. 10600<br>. 9600 |                               |              | 74<br>64<br>111<br>85<br>86 | 18<br>14<br>23<br>23<br>25       | 99<br>80<br>131<br>133<br>152 |                            | 143<br>135<br>139<br>135<br>134                         | 0<br>0<br>0<br>0                          | 173<br>135<br>288<br>235<br>250 | 120<br>96<br>172<br>170<br>196 |                      | 3.1<br>2.5<br>3.7<br>3.1<br>2.5    | .16                              | 500<br>875<br>779                         | .81<br>.68<br>1.19<br>1.06<br>1.15   | 7080<br>7450<br>25000<br>20200<br>8860  | 260<br>216<br>372<br>305<br>318      | 142<br>106<br>258<br>194<br>208 | 2.7<br>2.4<br>2.9<br>3.3<br>3.7       | 947<br>791<br>1300<br>1200<br>1320           | 8.0<br>8.0<br>7.8<br>7.8<br>7.9        |
| 1944<br>1945<br>1946                         | . 4410                      |                               |              | 65<br>74<br>64              | $     15 \\     19 \\     16   $ | 84<br>114<br>100              |                            | 138<br>137<br>132                                       | 0<br>0<br>0                               | 145<br>195<br>163               | 100<br>140<br>118              |                      | 1.9<br>2.5<br>5:0                  |                                  | 662                                       | ,71<br>.90<br>.79                    | 10800<br>7880<br>7550                   | 223<br>262<br>224                    | 110<br>150<br>116               | $2.4 \\ 3.1 \\ 2.9$                   | 826<br>1040<br>912                           | 7.9<br>7.9<br>7.9                      |

-

\_

\_

| Table 11Discharge-weighted | average of cher | mical constituents | at selected | sites in t | he Rio Grande | basinContinued |
|----------------------------|-----------------|--------------------|-------------|------------|---------------|----------------|
|                            |                 |                    |             |            |               |                |

| CALENDAR<br>YEAR                                             |                                                      | Silica<br>(SiO <sub>2</sub> ) | Cal-<br>cium<br>(Ca)                         | Mag-<br>ne-<br>sium<br>(Mg)            | Sodium<br>(Na)                                       | tas- t | Bi-                                                         |                                           | n- Sulfate                                           | Chloride<br>(Cl)                                     | ride   | - Ni-<br>trate<br>(NOg) |                                        | Dissolved solids                                     |                                                            |                                                              | Hardness<br>as CaCO <sub>3</sub>                     |                                                      | 50-                                                         | Specific<br>con-                                            |                                                      |
|--------------------------------------------------------------|------------------------------------------------------|-------------------------------|----------------------------------------------|----------------------------------------|------------------------------------------------------|--------|-------------------------------------------------------------|-------------------------------------------|------------------------------------------------------|------------------------------------------------------|--------|-------------------------|----------------------------------------|------------------------------------------------------|------------------------------------------------------------|--------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------|
|                                                              |                                                      |                               |                                              |                                        |                                                      |        | car-<br>bon-<br>ate<br>(HCO <sub>3</sub> )                  | Car-<br>bon-<br>ate<br>(CO <sub>3</sub> ) |                                                      |                                                      |        |                         |                                        | Milli-<br>grams<br>per<br>liter<br>(mg/1)            | Tons<br>per<br>acre-<br>foot                               | Tons<br>per<br>day                                           | Cal-<br>cium,<br>Mag-<br>ne-<br>sium                 | Non-<br>car-<br>bon-<br>ate                          |                                                             | duct-<br>ance<br>(micro-<br>mbos at                         |                                                      |
|                                                              |                                                      |                               |                                              |                                        |                                                      | 8-46   | 92. RI                                                      | ) GRANI                                   | DE BELOW A                                           | NZALDUAS DA                                          | M, TEX | ζ.                      |                                        |                                                      |                                                            |                                                              |                                                      |                                                      |                                                             |                                                             |                                                      |
| 1959<br>1960<br>1961<br>1963<br>1963<br>1964<br>1965<br>1966 | 1390<br>1690<br>1460<br>1120<br>1090<br>1460<br>1990 |                               | 78<br>83<br>78<br>81<br>82<br>73<br>68<br>72 | 17<br>23<br>22<br>20<br>19<br>16<br>18 | 107<br>150<br>153<br>160<br>144<br>143<br>112<br>135 |        | 156<br>149<br>142<br>143<br>146<br>138<br>148<br>148<br>145 | 0<br>0<br>0<br>0<br>0<br>0                | 178<br>226<br>227<br>236<br>230<br>214<br>160<br>189 | 132<br>196<br>194<br>202<br>174<br>173<br>139<br>169 |        | 3.1<br>.6<br>.6<br>.6   | .35<br>.35<br>.29<br>.30<br>.28<br>.29 | 647<br>801<br>787<br>831<br>772<br>735<br>625<br>699 | 0,88<br>1,09<br>1,07<br>1,13<br>1,05<br>1,00<br>.85<br>.95 | 2620<br>3010<br>3590<br>3280<br>2330<br>2160<br>2460<br>3760 | 264<br>302<br>289<br>291<br>286<br>260<br>234<br>252 | 137<br>180<br>172<br>174<br>166<br>147<br>112<br>134 | 2.9<br>3.8<br>3.9<br>4.1<br>3.7<br>3.9<br>3.2<br>3.2<br>3.7 | 1020<br>1290<br>1280<br>1320<br>1230<br>1180<br>988<br>1130 | 7.9<br>8.0<br>7.8<br>7.9<br>7.9<br>7.9<br>7.9<br>7.9 |
| 1967<br>1968                                                 | 6000                                                 |                               | 69<br>90                                     | 12<br>23                               | 89<br>169                                            |        | 148<br>145                                                  | 0                                         | $\frac{140}{249}$                                    | 110<br>223                                           |        | 3.1                     | .25                                    | 529<br>890                                           | .72<br>1.21                                                |                                                              | 222<br>321                                           | 100<br>202                                           | 2.6                                                         | 858<br>1410                                                 | 7.9<br>7.9                                           |
|                                                              |                                                      |                               |                                              |                                        |                                                      | 1      | 8-4730.                                                     | RIO C                                     | RANDE AT                                             | LAS PALMAS,                                          | TEX.   |                         |                                        |                                                      |                                                            |                                                              |                                                      |                                                      |                                                             |                                                             |                                                      |
| 1946<br>1947<br>1948                                         |                                                      |                               | 63<br>63<br>59                               | 14<br>15<br>13                         | 91<br>87<br>69                                       |        | 133<br>134<br>138                                           | 0<br>0<br>0                               | 151<br>154<br>123                                    | 105<br>100<br>81                                     |        | 3.7<br>4.3<br>4.3       | 0.13                                   | 544<br>537<br>463                                    | 0.74<br>.73<br>.63                                         | 5240<br>3960<br>4580                                         | 216<br>221<br>204                                    | 106<br>111<br>90                                     | 2.7<br>2.5<br>2.1                                           | 861<br>842<br>730                                           | 7.9<br>7.9<br>                                       |
|                                                              |                                                      |                               | <br>                                         |                                        |                                                      | 8      | -4750.                                                      | RIO GI                                    | RANDE AT I                                           | ROWNSVILLE                                           | TEX.   |                         |                                        |                                                      |                                                            |                                                              |                                                      |                                                      |                                                             |                                                             | -                                                    |
| 1934<br>1935<br>1936                                         | 6740                                                 |                               | <br>65                                       | <br>16                                 | 87                                                   |        | 129                                                         | <br>0                                     | <br>166                                              |                                                      |        | <br>3.1                 |                                        | 757<br>507<br>581                                    | 1.03<br>.69<br>.79                                         | 6930<br>9230<br>8640                                         |                                                      | <br><br>123                                          | <br><br>2,5                                                 | <br>924                                                     | 8,2                                                  |

- 109 -

