TEXAS WATER DEVELOPMENT BOARD

Report 136

GROUND-WATER RESOURCES OF MONTGOMERY COUNTY, TEXAS

NOVEMBER 1971

TEXAS WATER DEVELOPMENT BOARD

REPORT 136

GROUND-WATER RESOURCES OF MONTGOMERY COUNTY, TEXAS

By

Barney P. Popkin United States Geological Survey

Prepared by the U.S. Geological Survey in cooperation with the Texas Water Development Board Montgomery County Commissioners Court San Jacinto River Authority and the City of Conroe

November 1971

TEXAS WATER DEVELOPMENT BOARD

W. E. Tinsley, Chairman Robert B. Gilmore Milton T. Potts

Marvin Shurbet, Vice Chairman John H. McCoy Carl Illig

Harry P. Burleigh, Executive Director

Authorization for use or reproduction of any material contained in this publication, i.e., not obtained from other sources, is freely granted without the necessity of securing permission therefor. The Board would appreciate acknowledgement of the source of original material so utilized.

Published and distributed by the Texas Water Development Board Post Office Box 13087 Austin, Texas 78711

TABLE OF CONTENTS

	Page
ABSTRACT	1
INTRODUCTION	3
Location and Extent of the Area	3
Purpose and Scope of the Investigation	3
Previous Investigations	3
Methods of Investigation	4
Well-Numbering System	4
Acknowledgments	4
Population and Economy of the Area	4
Physiography and Drainage	8
Climate	8
GROUND-WATER HYDROLOGY	9
General Geology	9
Source and Occurrence of Ground Water	9
Hydrologic Units	11
Catahoula Sandstone	11
Lower Part of the Jasper Aquifer	11
Upper Part of the Jasper Aquifer	15
Burkeville Aquiclude	15
Evangeline Aquifer	15
Chicot Aquifer	15
Hydraulic Properties of the Aquifers	15
Recharge, Movement, and Discharge of Ground Water	30
CHEMICAL QUALITY OF GROUND WATER	30
Relationship of Quality of Water to Use	32
Water Quality in the Hydrologic Units	34

TABLE OF CONTENTS (Cont'd.)

Page

Catahoula Sandstone	34
Lower Part of the Jasper Aquifer	34
Upper Part of the Jasper Aquifer	34
Burkeville Aquiclude	34
Evangeline Aquifer	34
Chicot Aquifer	35
Water-Quality Problems	35
Disposal of Oil-Field Brines	35
Protection of Water Quality in Oil-Field Drilling Operations	35
DEVELOPMENT OF GROUND WATER	35
Use of Ground Water	35
Water-Level Declines and Land-Surface Subsidence	37
Well Construction	38
AVAILABILITY OF GROUND WATER	49
NEED FOR FUTURE STUDIES	51
REFERENCES CITED	53

TABLES

1.	Well Numbers Used in This Report and Corresponding Numbers Used in Older Reports	5
2.	Hydrogeologic Units Used in This Report and in Reports on Adjacent Counties	10
3.	Characteristics of the Hydrologic Units in Montgomery County	12
4.	Summary of Aquifer Tests in the Upper Part of the Jasper Aquifer in Montgomery and Adjacent Counties	31
5.	Source and Significance of Dissolved-Mineral Constituents and Properties of Water	33
6.	Estimated Use of Ground Water in Montgomery County, 1966	38
7.	Records of Wells in Montgomery and Adjacent Counties	55
8.	Drillers' Logs of Wells in Montgomery and Adjacent Counties	82
9.	Water Levels in Wells in Montgomery and Adjacent Counties	107

TABLE OF CONTENTS (Cont'd.)

		Page
10.	Chemical Analyses of Water From Wells in Montgomery and Adjacent Counties	118
11.	Field Analyses of Water From Wells in Montgomery and Adjacent Counties	125

FIGURES

1.	Map Showing Location of Montgomery County	3
2.	Graph Showing Annual Precipitation at Conroe, 1931-66	8
3.	Graph Showing Average Monthly Precipitation at Conroe, 1931-66	9
4.	Graph Showing Average Monthly Temperature at Conroe, 1931-66	9
5.	Photograph of Well TS-60-53-502, the Largest Capacity Flowing Well in Montgomery County	11
6.	Map Showing the Approximate Altitude of the Base of the Catahoula Sandstone	13
7.	Map Showing the Approximate Altitude of the Base of the Lower Part of the Jasper Aquifer and Base of the Sand Containing Fresh Water in the Aquifer	17
8.	Map Showing the Approximate Altitude of the Base of the Lower Part of the Jasper Aquifer and Base of the Sand Containing Slightly Saline Water in the Aquifer	19
9.	Map Showing the Approximate Altitude of the Base of the Upper Part of the Jasper Aquifer and Areas Where Slightly Saline Water is Present in the Aquifer	21
10.	Map Showing the Approximate Altitude of the Base of the Burkeville Aquiclude	23
11.	Map Showing the Approximate Altitude of the Base of the Evangeline Aquifer and the Thickness of Fresh Water-Bearing Sands in the Chicot and Evangeline Aquifers	25
12.	Map Showing the Approximate Altitude of the Base of the Chicot Aquifer and the Approximate Altitude of Water Levels in Wells Screened in the Aquifer, 1966-67	27
13.	Graph Showing Relation of Drawdown to Transmissibility and Distance	29
14.	Photograph Showing a Comparison of New and Corroded Check Valves	36
15.	Graph Showing Comparison Between Depth of Sands Containing Fresh to Slightly Saline Water and the Depth of Protection Required in Oil Fields in Montgomery County	37
16.	Hydrographs of Water Levels in Wells Tapping the Upper Part of the Jasper Aquifer at Conroe	39
17.	Map Showing the Approximate Altitude of Water Levels in Wells Screened in the Upper Part of the Jasper Aquifer, 1966-67	41
18.	Map Showing Approximate Altitude of Water Levels in Wells Screened in the Evangeline Aquifer, 1942-43	43
19.	Map Showing Approximate Altitude of Water Levels in Wells Screened in the Evangeline Aquifer, 1966-67	45

TABLE OF CONTENTS (Cont'd.)

		Page
20.	Hydrograph of Selected Water Levels in a Well Tapping the Chicot Aquifer at Conroe	47
21.	Map Showing the Approximate Altitude of the Base of Fresh Water in the Report Area	133
22.	Map Showing the Approximate Thickness of Fresh Water-Bearing Sands Below the Burkeville Aquiclude	135
23.	Map Showing the Approximate Altitude of the Base of Slightly Saline Water in the Report Area	137
24.	Map Showing the Approximate Thickness of Fresh to Slightly Saline Water-Bearing Sands Below the Burkeville Aquiclude	139
25.	Hydrogeologic Map Showing Location of Wells in Montgomery and Adjacent Counties	141
26.	Hydrologic Section A-A'	143
27.	Hydrologic Section B-B', Harris and Montgomery Counties	145
28.	Hydrologic Section C-C', Walker, Montgomery, and Harris Counties	147
29.	Hydrologic Section D-D', Montgomery and Harris Counties	149

GROUND-WATER RESOURCES OF MONTGOMERY COUNTY, TEXAS

ABSTRACT

Ground water in Montgomery County is contained in sands of the Catahoula Sandstone, lower part of the Jasper aquifer, upper part of the Jasper aquifer, Burkeville aquiclude, Evangeline aquifer, and Chicot aquifer. The Chicot, Evangeline, and upper part of the Jasper generally contain fresh water throughout the county. The Catahoula Sandstone and lower part of the Jasper contain fresh and slightly saline water in the northern and central parts of the county. The Evangeline transmits about 10 mgd (million gallons per day) and the upper part of the Jasper transmits about 3.5 mgd. The quality of water in the aquifers is good and can be used for most purposes.

The ground-water resources of the county are practically untapped. In 1966, about 6.2 mgd of ground water was used for all purposes. The principal uses,

about 2.6 mgd, were for rural domestic and livestock supplies. Almost all of the water was obtained from the Evangeline and the upper part of the Jasper.

About 80 million acre-feet of fresh ground water is in storage in Montgomery County. However, most of this water cannot be economically produced. Calculations based on the transmission capacity of the Evangeline and upper part of the Jasper indicate that about 65 mgd could be obtained with pumping levels not exceeding 400 feet along an assumed line of discharge in the latitude of Conroe. Probably as much as 150 mgd could be pumped with only moderate water-level declines and land-surface subsidence. If the rejected recharge in the outcrop areas were salvaged, an additional 140,000 acre-feet per year (125 mgd) of water would be available.

GROUND-WATER RESOURCES OF MONTGOMERY COUNTY, TEXAS

INTRODUCTION

Location and Extent of the Area

Montgomery County is in southeastern Texas in the West Gulf Coastal Plain physiographic province (Fenneman, 1938). It is bordered by Walker County on the north, San Jacinto and Liberty Counties on the east, Harris County on the south, and Waller and Grimes Counties on the west. Peach Creek is the boundary with San Jacinto County, and Spring Creek forms most of the boundary with Harris County. Montgomery County, which is adjacent to the Houston metropolitan area, has an area of 1,090 square miles (Figure 1).

Figure 1.-Location of Montgomery County

Purpose and Scope of the Investigation

The Montgomery County ground-water investigation was started in May 1966 as a cooperative project of the Texas Water Development Board, the San Jacinto River Authority, the Montgomery County Commissioners Court, the city of Conroe, and the U.S. Geological Survey. Its purpose was to determine the occurrence, quality, and quantity of the ground-water resources of Montgomery County and to describe the availability and dependability of sources of water suitable for municipal supply, industrial use, and irrigation. A related purpose was to determine areas of present or potential ground-water pollution.

The study included a determination of: (1) the extent and location of sands containing fresh water (dissolved solids less than 1,000 milligrams per liter) and slightly saline water (dissolved solids of 1,000 to 3,000 milligrams per liter); (2) the quantity of ground water pumped and the effect of pumping on water levels; (3) the hydraulic characteristics of the aquifers; and (4) the quantity of ground water available for development.

Previous Investigations

The first investigation of the ground-water resources of Montgomery County was that of Taylor (1907), who discussed briefly the railroad wells at Dobbin and Conroe. Deussen (1914) discussed the geology and ground-water resources of the county in more detail. Both reports contained records of wells, drillers' logs, and chemical analyses of water samples.

Livingston (1939) inventoried 56 wells in Montgomery County and published chemical analyses and drillers' logs. Rose (1943) described 138 wells and published chemical analyses, drillers' logs, and columnar sections of sands.

Wood (1956) and Wood, Gabrysch, and Marvin (1963) discussed the ground-water supplies potentially available from the principal water-bearing units in the Gulf Coast region of Texas, including Montgomery County. Wood and Gabrysch (1965) discussed the hydrology of the Houston district, including parts of Montgomery County. Measurements of water levels in wells in Montgomery County have been made since 1931 as part of the observation-well program in Texas. Records of these measurements have been published by the Texas Water Development Board and the U.S. Geological Survey (see Rayner, 1959; Sayre, 1957; and Hackett, 1962).

Methods of Investigation

The investigation of the ground-water resources of Montgomery County included an inventory of 497 wells in the county and 81 wells in adjacent counties, including all industrial, public supply, and irrigation wells, and a representative number of livestock and domestic wells (Table 7).

Figure 25 shows the location of inventoried wells and test holes. Electrical logs of test holes were used to correlate and evaluate the subsurface characteristics of the water-bearing sands. Drillers' logs (Table 8), electrical logs of selected test holes, and analyses of samples of water collected from a large number of wells (Table 10) were used to determine the chemical quality of the water and the total thickness of sands containing fresh to slightly saline water.

Field analyses of water from selected wells were made to determine pH at the time of sampling (Table 11). Pumping test data (Table 4) were collected to determine the hydraulic characteristics of the fresh water-bearing sands. Measurements of water levels in wells and records of past measurements were used to determine the effects of pumping. Pumpage of ground water for municipal supply, industrial use, and irrigation was inventoried. Elevations of water wells were determined from U.S. Geological Survey topographic maps. Climatological records and streamflow records were collected and analyzed.

Well-Numbering System

The well-numbering system used in this report is a statewide system adopted by the Texas Water Development Board.

A 2-letter prefix to the well number is used to identify each county. The prefix assigned to Montgomery County is TS. Prefixes assigned to adjacent counties are:

COUNTY	PREFIX	COUNTY	PREFIX
Grimes	ĸw	San Jacinto	wu
Harris	LJ	Walker	YU
Liberty	SB	Waller	YW

Under this system, each one-degree quadrangle in the State is given a number consisting of two digits from 01 to 89. These are the first two digits in the well number. The one-degree quadrangles are divided into 7½-minute quadrangles which are given two-digit numbers from 01 to 64. These are the third and fourth digits of the well number. Each 7½-minute quadrangle is subdivided into 2½-minute quadrangles which are given a single digit number from 1 to 9. This is the fifth digit of the well number. Each well within a 2½-minute quadrangle is given a two-digit number in the order in which it is inventoried, starting with 01. These are the last two digits of the well number.

All of Montgomery County is within the 1-degree quadrangle 60. The second two digits are shown in the upper left corner of each 7½-minute quadrangle on the well location map (Figure 23); the last three digits appear at the well location.

In order to facilitate the use of well data from other reports, the previously inventoried wells were assigned new State numbers. The old and new numbers are cross-referenced in Table 1.

Acknowledgments

The author acknowledges the assistance of those who contributed data and helped with the preparation of this report. Particular thanks are due the officials of Humble Oil and Refining Company; Texaco, Incorporated; Tennessee Gas and Transmission Company; and the City of Conroe for their assistance in supplying records of their wells and oil and gas tests.

Drillers of water wells generously supplied drillers' logs, electrical logs, and well-completion data. Layne-Texas Company and Con-Tex Water Wells were especially helpful. Property owners granted access to their lands, wells, and records. The active and retired employees of Humble Oil and Refining Company, Superior Oil Company, Sun Oil Company, and Tidewater Oil Company gave generous field assistance in locating many of the old flowing water wells in the Conroe and Lake Creek oil fields.

Population and Economy of the Area

Montgomery County had a population of 2,384 in 1850. By 1900, the population had increased to 17,067. The oil boom in the 1930's did not substantially increase the county population because the city of Humble, in Harris County, served as the operation headquarters. During the period 1950-70, the population increased from 24,504 to 46,950. Conroe, with a population of 10,931 in 1970, is the county seat. Willis, Montgomery, and Cut and Shoot are among the smaller communities.

The county serves as a recreational center for much of the Houston area. The Sam Houston National Forest, the W. Goodrich Jones State Forest, the Boy Scout camp (Camp Strake), and numerous lakes, camps, and country clubs are integral parts of the county's recreational facilities. Lake Conroe, the 32.8 square-mile lake under construction on the West Fork San Jacinto River, will add to these facilities.

Table 1.-Well Numbers Used in This Report and Corresponding Numbers Used in Older Reports

Montgomery County

ROSE 1943	LIVINGSTON 1939	RAYNER 1959	SAY RE 1957	HACKETT 1962	DEUSSEN	
				1002	1014	
2	-	_	-			TS-60-34-602
3	2	-	-	-	_	60-42-306
4		-		-	_	60-42-304
6		_	_		/84	60-42-305
						00-42-303
7	3	-	—	-	783	60-42-307
8	-	-		-	-	60-42-809
9 10	-		-	-	_	60-35-804
11				_	-	60-35-805
					_	00-33-600
12	-		-	_	_	60-43-201
13	-		-	-	-	60-35-901
14	-	-	-	-	-	60-36-502
_	16	16	-	_	_	60-36-401 60 45 106
						60-45-106
20	_			-	-	60-37-408
21	-	-	-	_	-	60-37-102
22	22	22	22	-	-	60-45-505
23		_	_	_	-	60-36-302
				_	-	60-29-701
26	-	_	_	-	_	60-37-303
27	_	-	-	-	-	60-37-302
28		-	_	-	-	60-37-301
29	29	29	29	29	-	60-45-803
					-	60-45-801
31		-	_	_	-	60-37-503
36	_	144	-	36	-	60-37-401
43	-				-	60-44-402
45	45	- 45		_	_	60-44-403 60 52 502
						00-55-505
46	46	46	46	46	-	60-53-504
47	-	-	_	-	-	60-44-501
40	_	_	_	_	-	60-44-502
50		_	_	_	_	60-44-601
						00 ++ 002
51		-		-	-	60-45-403
53	- 21		_	-	_	60-45-510
55	-	_		-	/90	60-45-506 60 45 502
56	23	145	_	56	_	60-45-502
57	-	57	57	-	-	60-45-104
59 60	24	_	-	-	-	60-45-511
61	-	_	_	_	_	60-45-408 60-45-401
63	_	_		_	_	60-45-611
64	-	-	_		-	60-45-609
69	_	-	-	-	-	60-47-608
70	_	-	_	-		60-47-607
71	-	_	-	_	-	60-47-605
72	-	-	-	_	_	60-54-201
73	-	-	_	-		60-54-103
75	-	_	_	-	_	60-46-801
81	-	_	-	-	_	60-46-709
83	-	-	-	-	-	60-46-706
60 86	-	-	-	_		60-53-308
88	_	_	_	_		60-53-309 60-53-601
89	-	_	_	_	_	60-53-304

Table 1.--Well Numbers Used in This Report and Corresponding Numbers Used in Older Reports-Continued

ROSE 1943	LIVINGSTON 1939	RAYNER 1959	SAYRE 1957	HACKETT 1962	DEUSSEN 1914	THIS REPORT
00						TO CO 50 005
90	—	-				15-60-53-305
91	_	-	-	—	—	60-53-306
92	—	-	-	-	_	60-53-307
93	-	-	-			60-53-303
94	35	-	-	-		60-53-201
95	_	—	-		-	60-45-706
96		-		—	—	60-45-702
98	—	-	-		<u> </u>	60-44-801
99		-	-	_		60-52-106
101	_		_	-	-	60-52-101
102	_	_	_			60-52-104
104	_	-	-		-	60-51-306
105	-		-	_		60-51-302
110	41	-		_		60-50-302
111	-		-	-	-	60-50-605
112	_	_		-	_	60-50-606
113	—	-	-	_		60-51-403
114	_	-	-	_		60-51-401
115	-	_	-	-	-	60-51-502
116	-	-	-	-	-	60-51-901
117	-	_	-	_	_	60-51-905
118		-	-	_	-	60-52-403
121	54	-		_		60-61-206
122	50	-	—	<u> </u>	_	60-53-706
123	47	-	-			60-53-806
124	48	_		_	_	60-53-502
125	40	_	_			60 52 501
120		_	_			60 54 602
123						60 55 201
137	_				_	60 55 501
152	_			_	_	00-55-505
133		-	-	_	_	60-55-805
134	_	-	-	-	_	60-55-701
139	56	_	-	_	-	60-62-601
-		140	140	140		60-45-107
-	-	141	-	_	-	60-45-409
_	- -	142	_	_		60-35-201
-	_	143	-	-		60-35-202
-	_	146		-		60-45-108
-	8	_	_	-	_	60-37-704
	28	-	_	_	_	60-45-408
_	30	_		-		60-45-801
-	42	-	-	-	_	60-52-204

Grimes County

CROMACK	TURNER	
1943	1939	THIS REPORT
36	_	KW-60-18-701
51	_	60-26-205
64	_	60-26-702
65	-	60-26-703
66	-	60-26-704
67	_	60-26-705
68	_	60-26-706
194	_	60-34-101
206	_	60-34-801
205	_	60-42-101
209	-	60-42-502
210	_	60-42-103
216	-	60-42-702
217	-	60-42-801
218	-	60-42-802

Table 1.-Well Numbers Used in This Report and Corresponding Numbers Used in Older Reports-Continued

Harris County				
WHITE AND OTHERS 1944	LIVINGSTON AND TURNER 1939	THIS REPORT		
93 298	93 —	LJ-60-61-504 65-06-305		
	Walker County			
WINSLOW 1950 I-34 J-18 J-19 K-11 K-18		THIS REPORT YU-60-26-201 60-27-601 60-29-705 60-29-705 60-29-803		
	Welley Courts	60-29-902		
	Waller County			
FLUELLEN 1952		THIS REPORT		
D-14		YW-60-58-203		

Montgomery County derives its income principally from the petroleum and timber industries. Farming, dairying, gravel production, and beef cattle production also contribute to the economy of the area. The discovery of oil near Conroe in 1931 was the beginning of large-scale oil production. Over 400 million barrels of oil were produced in the county prior to 1966. Consequently, petrochemical industries and refineries have been established.

Physiography and Drainage

The topographic surfaces vary from almost flat near the larger streams and in the southern part of the county to hilly in the northern part. Altitudes range from about 45 feet above mean sea level in the southeastern corner of the county to about 440 feet in the northwestern corner.

The county is in the San Jacinto River drainage basin in which the primary drainage trends from northwest to southeast. The larger streams are the West Fork San Jacinto River, Peach, Spring, Stewart, and Caney Creeks. Secondary drainage which is roughly west to east is principally by Lake and Spring Creeks. The primary drainage is controlled by the southeasterly slope of the land surface while the secondary drainage is controlled to a large extent by the occurrence of alternating outcrops of sand and clay. West Fork San Jacinto River has a stream gradient of about 5 feet per mile in the northern part of the county and about 3 feet per mile in the central and southern parts. Caney Creek has a gradient of 8 to 12 feet per mile in the northern part of the county and about 5 feet per mile in the central and southern parts. Spring Creek has a gradient of about 5 feet per mile in the southwestern part of the county and about 3 feet per mile in the southeastern part.

Climate

Montgomery County has a warm humid climate. Precipitation averages about 47 inches annually (Figures 2 and 3). Droughts occur infrequently and generally are not prolonged. The average annual gross lake surface evaporation rate from 1940 through 1965 was 49.5 inches (Kane, 1967).

The average annual temperature at Conroe (Figure 4) is about 20° C (68° F). Temperatures below freezing occur on the average of only 22 days per year; temperatures above 38° C (100° F) are unusual. The mean date for the first frost is November 30; the mean date for the last frost is March 7. The county has a growing season of about 268 days.

Figure 2.—Annual Precipitation at Conroe, 1931-66

Figure 3.-Average Monthly Precipitation at Conroe, 1931-66

Figure 4.-Average Monthly Temperature at Conroe, 1931-66

GROUND-WATER HYDROLOGY

General Geology

The geologic units that contain fresh to slightly saline water in Montgomery County are, from oldest to youngest: the Catahoula Sandstone of Miocene age; the Fleming Formation of Miocene age; the Goliad Sand of Pliocene age; the Willis Sand of Pliocene(?) age; the Bentley Formation, Montgomery Formation, and Beaumont Clay of Pleistocene age; and the alluvium of Holocene age (Table 2). These units consist of alternating beds of sand and clay with minor amounts of gravel. Local occurrences of limestone are reported in some drillers' logs.

Except for the Catahoula Sandstone and most of the Goliad Sand, all of these geologic units are exposed within the county. The Catahoula crops out north of Montgomery County. The Goliad Sand of Pliocene age, which dips at a rate of 40 feet per mile, is overlapped by the Willis Sand of Pliocene(?) age, which dips at a rate of 10 feet per mile; consequently, the Goliad is exposed only in the deeper stream valleys. The units crop out in belts that are approximately parallel to the coast. The younger units, which crop out nearer the coast, form a plain composed of remnants of terraces; the older units, which crop out farther inland at higher elevations, form cuestas or sand hills.

The formations dip toward the Gulf at an angle greater than the slope of the land surface, and the dip increases with depth. For example, the base of the Catahoula Sandstone dips about 90 feet per mile while the base of the Willis Sand dips about 10 feet per mile. Intermediate beds dip at rates ranging from 85 to 40 feet per mile.

The major structural features are the deep-seated Conroe Dome and the northern flanks of the highly faulted, deep-seated Tomball Dome and the Piercement Humble Dome, which are mostly in adjacent Harris County. These domes cause a flattening of the regional dip and thinning of the overlying water-bearing units.

More detailed discussions of the geology of the area can be found in the publications of Deussen (1914), Sellards, Adkins, and Plummer (1932), Doering (1935), Michaux and Buck (1936), Fisk (1940), Metcalf (1940), Weeks (1945), Bernard, LeBlanc, and Major (1962), and Bernard and LeBlanc (1965a and 1965b). Table 2 correlates the geologic units and the hydrologic units used in this and other reports. Montgomery County is included in the Beaumont sheet of the Geologic Atlas of Texas (Bureau Economic Geology, 1968).

Source and Occurrence of Ground Water

The principal source of ground water in Montgomery County is rainfall within the county and in adjoining areas to the north. Most precipitation runs off, evaporates, or is transpired by plants. Only a small part of it percolates through the soil and into the underlying rocks.

Ground water in Montgomery County occurs under two conditions—water-table and artesian. Watertable conditions exist where the water is under atmospheric pressure only and the water table is free to rise or fall in response to changes in the volume of water stored. Water-table conditions occur in the outcrop areas of the water-bearing rocks.

Artesian conditions exist where an aquifer, or water-bearing unit, is overlain by a less permeable bed that confines the water under hydrostatic pressure. Artesian conditions occur downdip from the outcrops of the aquifers. Under these conditions, water in wells will rise above the top of the aquifer. If the pressure head is

HYDROGEOLOGIC UNITS USED IN OTHER REPORTS			GIC UNITS USED IN OTHER REPORTS UNITS USED IN THIS REPORT				
Walker County, Winslow (1950, plate 2)	Houston District, Lang and Winslow (1950, plate 1)	Houston District, Wood and Gabrysch (1965, figure 3)	San Jacinto County, Sandeen (1968) <u>1</u> /	System	Series	Geologic Unit	Hydrologic Unit
			Alluvium		Holocene	Alluvium	
	Beaumont Clay and Alta Loma Sand	Beaumont Clay and Alta Loma Sand	Chicot aquifer	Quaternary	Pleistocene	Beaumont Clay Montgomery Formation Bentley Formation	Chicot aquifer
Willis Sand					Pliocene (?)	Willis Sand	
(Absent)	Zone 3, 4, 5, 6, 7	Heavily pumped layer	Evangeline aquifer		Pliocene	Goliad Sand	Evangeline aquifer
Lagarto Clay	Zone 2	Zone 2	Burkeville aquiclude	Tertiary	Tertiary		Burkeville aquiclude
Oakville Sandstone	Zone 1	Zone 1	Jasper aquifer		Miocene	Fleming Formation	Upper part of Jasper aquifer
Catahoula Sandstone							Lower part of Jasper aquifer
			Catahoula Sandstone			Catahoula Sandstone	Catahoula Sandstone
Jackson Group, undifferentiated			Jackson Group		Eocene	Jackson Group	

Table 2.--Hydrogeologic Units Used in This Report and in Reports on Adjacent Counties

1/ Also, Liberty County (Anders and others, 1968) and Austin and Waller Counties (Wilson, 1967).

Figure 5.-Well TS-60-53-502, the Largest Capacity Flowing Well in Montgomery County

high enough, water in a well may rise to an altitude greater than that of the land surface, causing the well to flow. Figure 5 is a recent photograph of the largest capacity flowing well in Montgomery County (460 gallons per minute from end of casing 8 feet above land surface, August 19, 1966).

Hydrologic Units

Two types of hydrologic units considered in ground-water studies are aquifers and aquicludes. An aquifer is a geologic formation, group of formations, or a part of a formation that contains and transmits water. An aquiclude is a relatively impermeable formation, group of formations, or part of a formation that may contain water but is relatively impermeable or incapable of transmitting significant quantities in comparison to the adjacent aquifers.

In Montgomery County, the aquifers consist of semi-consolidated or unconsolidated sand, interbedded with clay; the aquicludes consist of clay that in some places includes sand. Six hydrologic units are recognized: the Catahoula Sandstone, the lower part of the Jasper aquifer, the upper part of the Jasper aquifer, the Burkeville aquiclude, the Evangeline aquifer, and the Chicot aquifer. The relationship of these units to those in adjacent areas is shown in Table 2. Characteristics of these units in Montgomery County are given in Table 3. Hydrologic sections are shown on Figures 26, 27, 28, and 29.

Catahoula Sandstone

The Catahoula Sandstone, which consists of sand overlain by clay, is the deepest fresh water-bearing unit in the county. Figure 6 shows the approximate altitude of the base of the Catahoula, which extends from about 1,500 feet below sea level in the northwestern corner of the county to more than 5,000 feet below sea level in the southeastern part. Figure 6 also shows the extent of the fresh and slightly saline water in the aquifer.

Lower Part of the Jasper Aquifer

The lower part of the Jasper aquifer is separated from the upper part mainly on the basis of lithology. The upper part is mostly massive sand, composing 50-80 percent of the aquifer; the lower part is mostly interbedded sand and clay, with the sand composing 30-60 percent of the aquifer.

Table 3.-Characteristics of the Hydrologic Units in Montgomery County

HYDROLOGIC UNIT	APPROXIMATE THICKNESS (FEET)	GENERAL DIP OF BASE (FEET PER MILE)	PERCENT SAND	AVERAGE COEFFICIENT OF PERMEABILITY (GPD/FT ²)	REMARKS
Chicot aquifer	0-200	10	60-80	500 ^ª /	 Aquifer consists of unconsolidated sands and gravels, often ferruginous. Red sands and gravels in the Chicot overlie white clays and sands in the Evangeline. Chicot and Evangeline aquifers may be distinguished by differences in self potential curve on electrical logs. Aquifer contains very fresh, often acidic and iron-rich water. Small wells developed; large capacity wells may be developed in southeastern part of county.
Evangeline aquifer	0-1300	40	40-70	250 ^a ⁄	Water levels higher than in the Chicot aquifer, except in southeastern part of county. Contains fresh water. Small wells developed; large capacity wells may be developed except in areas near the upper limit of the outcrop.
Burkeville aquiclude	0- 300	40	0-20	-	Massive blanket clay with thin interbeds of sand to massive silty sands. Small wells developed in a few areas where fresh water is present.
Upper part of Jasper aquifer	100- 400	50	50-80	240	Massive blanket sand with thin interbeds of clay to massive sandy clays. Large wells developed in some areas, but may be developed in all areas except in extreme northwest corner of county. Fresh, often hard water.
Lower part of Jasper aquifer	1100-2200	85	30-60	-	Contains interbedded sands and clays. Lower part of Jasper aquifer and Catahoula Sandstone may be distinguished by differences in self potential curve on electrical logs. Large quantities of slightly and moderately saline water. Moderate quantities of fresh water. Generally, water at base of unit is more saline than at top of Lower Catahoula Sandstone.
Catahoula Sandstone	300- 500	90	30-50	-	Massive sand underlies clay, silty sands, or moderately saline water-bearing sand. Contains moderate quantities of fresh water, and appears to be less consolidated and more permeable than the sands above it.

^a/ Estimated from data in adjoining counties.

The lower part of the Jasper aquifer contains only small amounts of fresh water in Montgomery County. Figure 7 shows the approximate altitude of the base of the lower part of the Jasper aquifer and the base of the sand containing fresh water in the aquifer. Figure 8 shows the approximate altitude of the base of the lower part of the Jasper aquifer and the base of the sand containing slightly saline water in the aquifer.

Upper Part of the Jasper Aquifer

The upper part of the Jasper aquifer consists of a massive sand below the base of the Burkeville aquiclude. The aquifer correlates with "Zone 1" in the Houston district (Lang and Winslow, 1950, pl. 1) and with most of the fresh water-bearing sands of the upper part of the Jasper aquifer in San Jacinto (Sandeen, 1968), Liberty (Anders, McAdoo, and Alexander, 1968), and Austin and Waller (Wilson, 1967) Counties. Figure 9 shows the approximate altitude of the base of the upper part of the Jasper aquifer and the areas where slightly saline water is present in the aquifer.

Burkeville Aquiclude

The Burkeville aquiclude consists of a generally massive clay near the top of the Fleming Formation. The aquiclude correlates with "Zone 2" in the Houston district (Lang and Winslow, 1950, pl. 1, and Wood and Gabrysch, 1965, fig. 3). It is the same unit described as the Burkeville aquiclude in reports on Liberty (Anders and others, 1968), Austin and Waller (Wilson, 1967), and San Jacinto (Sandeen, 1968) Counties. Figure 10 shows the approximate altitude of the base of the Burkeville aquiclude.

Evangeline Aquifer

The Evangeline aquifer, which is an important source of water in the Houston area, is composed of a sequence of alternating sands and clays of the Goliad Sand and the part of the Fleming Formation above the Burkeville aquiclude. In the northern part of the county, remnants of the Willis Sand and younger deposits, which are in hydraulic continuity with the Evangeline, are included in the Evangeline aquifer. The base of the aquifer correlates with the base of "Zone 3" in the Houston district (Lang and Winslow, 1950, pl. 1). The Evangeline aquifer is the same hydrologic unit referred to as the "Heavily Pumped Layer" by Wood and Gabrysch (1965, fig. 4). The base of the unit correlates with the base of the Evangeline aquifer as described in reports in neighboring counties.

Figure 11 shows the approximate altitude of the base of the Evangeline aquifer and the thickness of fresh water-bearing sands in the Chicot and Evangeline aquifers.

Chicot Aquifer

The Chicot is a continuous aquifer in the southern part of the county. It consists of the Willis Sand, Bentley and Montgomery Formations, and younger deposits. As previously explained, remnants of these formations in the northern part of the county are included in the Evangeline. The base of the Chicot aquifer is not everywhere the base of the Willis Sand. The Alta Loma Sand in the Houston district (Wood and Gabrysch, 1965, fig. 3) is the basal part of the Chicot aquifer. Figure 12 shows the approximate altitude of the base of the Chicot aquifer and the approximate altitude of water levels in wells screened in the aquifer, 1966-67. The thickness of fresh water-bearing sands in the Chicot and Evangeline aquifers can be seen on Figure 11.

Hydraulic Properties of the Aquifers

"The worth of an aquifer as a fully developed source of water depends largely on two inherent characteristics: its ability to store and its ability to transmit water" (Ferris and others, 1962, p. 70). These characteristics are expressed by the coefficient of storage and the coefficient of transmissibility.

The coefficients of transmissibility and storage are used to predict theoretical drawdown in water levels in wells caused by pumping. Figure 13 shows the theoretical drawdown of water levels in wells at distances up to 10 miles from a well or group of wells pumping 1 mgd for 1 year. Calculations to obtain the curves were based on the different assumptions of coefficients of transmissibility and storage shown on the graph.

Little is known about the hydrologic properties of the Catahoula Sandstone and the lower part of the Jasper aquifer in Montgomery County. A short aquifer test performed on wells tapping the Catahoula Sandstone in the city of Huntsville (Walker County) indicates coefficients of transmissibility, permeability, and storage of 27,400 gpd (gallons per day) per foot, 200 gpd per square foot, and 0.0037, respectively (Winslow, 1950, p. 19).

The coefficient of storage of an aquifer is the volume of water it releases from or takes into storage per unit surface area of the aquifer per unit change in the component of head normal to that surface. Under water-table conditions, the coefficient of storage is nearly equal to the specific yield, which is the amount of water a saturated formation will yield by draining under the force of gravity. The storage coefficients of aquifers under water-table conditions range from about 0.05 to 0.30 while those under artesian conditions range from about 0.00001 to 0.001. Under artesian conditions, the coefficient of storage is a measure of the elasticity of the water and the aquifer. Additionally, in places in Montgomery County where significant water-level

Figure 13.-Relation of Drawdown to Transmissibility and Distance

declines have caused land-surface subsidence, the storage coefficient is also a measure of the water released from compaction of clay beds.

Permeability is a measure of the ability of an aquifer to transmit water. The coefficient of permeability is defined as the rate of flow of water in gallons per day through a cross-sectional area of one square foot under a hydraulic gradient of one foot per foot at a temperature of $16^{\circ}C$ ($60^{\circ}F$). In field practice, the

temperature adjustment is disregarded and the permeability is then understood to be a field coefficient at the prevailing water temperature. The coefficient of transmissibility is the product of the field coefficient of permeability and the saturated thickness of the aquifer.

The coefficients of storage and transmissibility of the upper part of the Jasper aquifer were determined by 9 aquifer tests made in 6 wells near Conroe and at Cleveland (Liberty County). The test data were analyzed by the Theis recovery method (Wenzel, 1942, p. 95-97) or by the Theis recovery method as modified by Cooper and Jacob (1946, p. 526-534). The results of the tests are shown in Table 4. The calculated values of permeability are based on the total amount of sand believed to be contributing to the well.

The coefficients of permeability ranged from 150 to 300 gpd per square foot, and averaged 240 gpd per square foot. The average permeability is within the range of 212 to 272 gpd per square foot observed in Austin and Waller Counties by Wilson (1967, p. 13), and very close to the 247 gpd per square foot observed in San Jacinto County by Sandeen (1968). Based on an average saturated thickness of 150 feet and an average permeability of 240 gpd per square foot, the average composite transmissibility of the upper part of the Jasper aquifer is about 36,000 gpd per foot. The coefficients of transmissibility determined from the tests averaged 33,500 gpd per foot. This value is greater than obtained by Wilson (1967, p. 13) and Sandeen (1968).

Little is known about the transmissibility or storage characteristics of the Evangeline and Chicot aquifers in Montgomery County. Although a few large-capacity wells are completed in the Evangeline, none are completed in the Chicot. However, the characteristics of these aguifers have been extensively tested in Harris and other counties where the aquifer has been developed by wells. Wood and Gabrysch (1965, figs. 34 and 35) indicate a range in transmissibility from 50,000 to 150,000 gpd per foot and a storage coefficient of 0.0025 in the "Heavily Pumped Layer," or Evangeline aquifer in the northern part of the Houston district. The average coefficient of permeability of the "Heavily Pumped Layer" in this area is about 300 gpd per square foot (Wood and Gabrysch, 1965, figs. 33 and 34). Wilson (1967) calculated an average permeability of 215 gpd per square foot from 26 tests in Austin and Waller Counties. The estimated average permeability in the Evangeline aquifer in Montgomery County is 250 gpd per square foot, and the estimated average composite transmissibility of the full thickness of the Evangeline is 50,000 gpd per foot.

The Chicot aquifer in Montgomery County was not tested. The average permeability of the "Alta Loma" in southern Harris and northern Galveston Counties is about 500 gpd per square foot (Wood and Gabrysch, 1965, figs. 36 and 37). This figure is probably near the average permeability of the aquifer in Montgomery County. Based on a permeability of 500 gpd per square foot, the average composite transmissibility is about 25,000 gpd per foot.

Recharge, Movement, and Discharge of Ground Water

The Chicot and Evangeline aquifers and the upper part of the Jasper aquifer crop out in Montgomery County and are recharged by precipitation on the outcrops. Part of the water infiltrates to the zone of saturation and then moves downdip through the aquifer. The Catahoula Sandstone and the lower part of the Jasper aquifer crop out north of Montgomery County; in Montgomery County these aquifers are recharged by downdip movement of water from the outcrop area.

The amount of precipitation on the outcrops exceeds the amount that can be transmitted through the aquifers, and a large part of the rainfall runs off into streams. A lesser part of the water that infiltrates to the zone of saturation emerges as spring flow that maintains the base flow of the streams. The base flow is regarded as rejected recharge. As development increases the transmission capacities of the aquifers, the present rejected recharge will move through the aquifers as recharge and the base flow of the streams will be reduced.

Ground water moves from areas of recharge to areas of discharge under the influence of gravity. The general direction of movement is downdip toward the areas of natural or artificial discharge. The rate of movement is dependent upon the hydraulic gradient, the permeability of the aquifer, and the temperature of the water. The rate of general movement is about 20, 40, and 60 feet per year in the upper part of the Jasper, in the Evangeline, and in the Chicot aquifers, respectively. In areas of ground-water withdrawal, ground water moves from all directions into the areas being pumped.

Ground water is discharged naturally and artificially. Natural discharge is by springs, seeps, and transpiration. Artificial discharge is by pumping from wells and by drainage from pits and channels.

CHEMICAL QUALITY OF GROUND WATER

The chemical constituents in the ground water in Montgomery County originate principally from the soil and rocks through which the water has moved and thus reflect the differences in the mineral content of the geologic formations with which the water has been in contact. The quantities of some constituents, especially sodium and chloride, indicate the extent of removal of connate water by flushing. Generally, the chemical content of the water increases with depth. The temperature of ground water near the land surface is generally about the same as the mean air temperature of the region but increases with depth. General discussions of the quality of ground water are included in A Primer on Water Quality by Swenson and Baldwin (1965) and in the Study and Interpretation of the Chemical Characteristics of Natural Water by Hem (1959). The chemical analyses of water from selected wells are given in Table 10.

Table 4.—Summary of Aquifer Tests in the Upper Part of the Jasper Aquifer in Montgomery and Adjacent Counties

WELL	0	DATE F TEST	COEFFICIENT OF TRANSMIS- SIBILITY (GPD/FT)	FIELD COEFFICIENT OF PERMEABIL- ITY (GPD/FT ²)	COEFFICIENT OF STORAGE	TYPE OF TEST	REMARKS
TS-60-45-402	July	24, 1966	41,600	210	-	Rª∕	Measurements by driller. Well pumped at 1200 gpm for 24 hours.
do	July	25, 1966	39,400	200	-	R	Do.
TS-60-45-503	Apr.	24, 1954	40,600	300	-	R	Pumped well at 1000 gpm for 24 hours.
TS-60-45-505	June	24, 1942	44,000	300	4.7×10 ⁻⁵	ب ه،	Pumped TS-60-45-504 at 440 gpm for 9 hours. Observed drawdown and recovery in TS-60-45-505.
do		do	44,000	300	3.1x10 ⁻⁴	I	Pumped TS-60-45-506 at 110 gpm for 10 hours. Observed recovery in TS-60-45-505.
TS-60-45-506	June	24, 1942	50,200	280	6.6×10 ⁻⁴	I	Pumped TS-60-45-504 at 440 gpm for 3½ hours. Observed drawdown in TS-60-45-506.
TS-60-45-507	Nov.	2, 1953	20,500	150	-	R	Measurements by driller. Well pumped at 750 gpm for 3½ hours.
SB-60-48-202	Dec.	2, 1965	11,300	230		R	Measurements by driller. Well pumped at 600 gpm for 24 hours.
do	Jan.	14, 1966	10,000	200	_	R	Flowed 60 gpm.

₫/ Recovery test.

b/ Interference test.

Relationship of Quality of Water to Use

The major factors that determine the suitability of a water supply are the limitations imposed by the contemplated use of the water. Among the various criteria established for water quality are: bacterial content; physical characteristics, such as temperature, odor, color, and turbidity; and chemical constituents. Usually, the bacterial content and the undesirable physical properties can be alleviated economically, but the removal of undesirable chemical constituents can be difficult and expensive.

The dissolved-solids content is an indication of the chemical quality of the water. A general classification of water based on dissolved-solids content, in mg/I (milligrams per liter), is as follows (modified from Winslow and Kister, 1956):

DESCRIPTION	DISSOLVED-SOLIDS CONTENT (MG/L)
Fresh	Less than 1,000
Slightly saline	1,000 to 3,000
Moderately saline	3,000 to 10,000
Very saline	10,000 to 35,000
Brine	More than 35,000

The U.S. Public Health Service (1962) has established and periodically revises standards of drinking water to be used on common carriers engaged in interstate commerce. The standards are widely accepted for evaluating domestic and public water supplies. According to the standards, chemical constituents should not be present in a public water supply in excess of the listed concentrations shown in the following table, except where other more suitable supplies are not available:

	CONCENTRATION
SUBSTANCE	(MG/L)
Chloride (CI)	250
Fluoride (F)	1.01⁄
Iron (Fe)	0.3
Nitrate (NO ₃)	45
Sulfate (SO ₄)	250
Dissolved solids	500

 $1\!\!/$ Based on annual average of maximum daily air temperature records at Conroe, Texas.

Table 5 is a summary of the source and significance of dissolved-mineral constituents and the properties of water. The quality of water requirements for industrial uses range widely, as almost every industrial requirement has different standards. In general, water used for industry may be placed in three categories—process water, cooling water, and boiler water. Process water is the term used for the water incorporated into or in contact with the manufactured products. Water for cooling and boiler uses should be noncorrosive and relatively free of scale-forming constituents. In boiler water the presence of silica is undesirable because it forms a hard scale or encrustation, the scale-forming tendency increasing with the pressure in the boiler (Moore, 1940, p. 263). Suggested water-quality toler-ances for a number of industries have been summarized by Hem (1959, p. 250-254) and Moore (1940).

Several factors other than the chemical quality are involved in determining the suitability of water for irrigation. The type of soil, adequacy of drainage, crops grown, climatic conditions, and quantity of water used have an important bearing on the continued productivity of irrigated land.

A classification for judging the quality of a water for irrigation was proposed in 1954 by the U.S. Salinity Laboratory Staff (1954, p. 69-82). This classification, which is now commonly used, is based on the salinity hazard as measured by the electrical conductivity of the water and the sodium hazard as measured by the SAR (sodium-adsorption ratio). Sodium can be a significant factor in evaluating the quality of irrigation water because water with a high SAR will cause the soil structure to break down by deflocculating the colloidal soil particles. Consequently, the soil can become plastic, thereby causing poor aeration and low water availability. This possibility is especially true of fine-textured soils. Wilcox (1955, p. 15) stated that the system of classification of irrigation waters proposed by the Laboratory Staff "... is not directly applicable to supplemental waters used in areas of relatively high rainfall". Wilcox (1955, p. 16) indicated that generally water may be used safely for supplemental irrigation if its conductivity is less than 2,250 microhos per centimeter at 26°C and its SAR is less than 14.

Another factor in assessing the quality of water for irrigation is the RSC (residual sodium carbonate) in the water. Excessive RSC will cause the water to be alkaline, and the organic material in the soil will tend to dissolve. The soil may become a grayish-black and the land areas affected are referred to as "black alkali". Wilcox (1955, p. 11) states that laboratory and field studies have resulted in the conclusion that water containing more than 2.5 epm (equivalents per million) RSC is not suitable for irrigation. Water containing from 1.25 to 2.5 epm is marginal, and water containing less than 1.25 epm RSC probably is safe. However, the successful use of marginal water for irrigation might be made possible by proper irrigation practices and use of soil

CONSTITUENT OR PROPERTY	SOURCE OR CAUSE	SIGNIFICANCE
Silica (SiO ₂)	Dissolved from practically all rocks and soils, commonly less than 30 mg/l. High concentra- tions, as much as 100 mg/l, gener- ally occur in highly alkaline waters.	Forms hard scale in pipes and boilers. Carried over in steam of high pressure boilers to form deposits on blades of turbines. Inhibits deterioration of zeolite-type water softeners.
lron (Fe)	Dissolved from practically all rocks and soils. May also be derived from iron pipes, pumps, and other equipment. More than 1 or 2 mg/l of iron in surface waters generally indicates acid wastes from mine drainage or other sources.	On exposure to air, iron in ground water oxidizes to reddish- brown precipitate. More than about 0.3 mg/lstains laundry and utensils reddish-brown. Objectionable for food processing, tex- tile processing, beverages, ice manufacture, brewing, and other processes. U.S. Public Health Service (1962) drinking-water standards state that iron should not exceed 0.3 mg/l. Larger quantities cause unpleasant taste and favor growth of iron bacteria.
Calcium (Ca) and magnesium (Mg)	Dissolved from practically all soils and rocks, but especially from limestone, dolomite, and gypsum, Calcium and magnesium are found in large quantities in some brines. Magnesium is present in large quantities in sea water.	Cause most of the hardness and scale-forming properties of water; soap consuming (see hardness). Waters low in calcium and magnesium desired in electroplating, tanning, dyeing, and in textile manufacturing.
Sodium (Na) and potassium (K)	Dissolved from practically all rocks and soils. Found also in ancient brines, sea water, indus- trial brines, and sewage.	Large amounts, in combination with chloride, give a salty taste. Moderate quantities have little effect on the usefulness of water for most purposes. Sodium salts may cause foaming in steam boilers and a high sodium content may limit the use of water for irrigation.
Bicarbonate (HCO ₃) and carbonate (CO ₃)	Action of carbon dioxide in water on carbonate rocks such as lime- stone and dolomite.	Bicarbonate and carbonate produce alkalinity. Bicarbonates of calcium and magnesium decompose in steam boilers and hot water facilities to form scale and release corrosive carbon dioxide gas. In combination with calcium and magnesium, cause carbon- ate hardness.
Sulfate (SO4)	Dissolved from rocks and soils containing gypsum, iron sulfides, and other sulfur compounds. Commonly present in mine waters and in some industrial wastes.	Sulfate in water containing calcium forms hard scale in steam boilers. In large amounts, sulfate in combination with other ions gives bitter taste to water. Some calcium sulfate is considered beneficial in the brewing process. U.S. Public Health Service (1962) drinking-water standards recommend that the sulfate content should not exceed 250 mg/l.
Chloride (Cl)	Dissolved from rocks and soils. Present in sewage and found in large amounts in ancient brines, sea water, and industrial brines.	In large amounts in combination with sodium, gives salty taste to drinking water. In large quantities, increases the corrosiveness of water. U.S. Public Health Service (1962) drinking-water stan- dards recommend that the chloride content should not exceed 250 mg/l.
Fluoride (F)	Dissolved in small to minute quantities from most rocks and soils. Added to many waters by fluoridation of municipal sup- plies.	Fluoride in drinking water reduces the incidence of tooth decay when the water is consumed during the period of enamel calcification. However, it may cause mottling of the teeth, depending on the concentration of fluoride, the age of the child, amount of drinking water consumed, and susceptibility of the individual. (Maier, 1950)
Nitrate (NO ₃)	Decaying organic matter, sewage, fertilizers, and nitrates in soil.	Concentration much greater than the local average may suggest pollution. U.S. Public Health Service (1962) drinking-water standards suggest a limit of 45 mg/l. Waters of high nitrate content have been reported to be the cause of methemoglo- binemia (an often fatal disease in infants) and therefore should not be used in infant feeding. Nitrate has been shown to be helpful in reducing inter-crystalline cracking of boiler steel. It encourages growth of algae and other organisms which produce undesirable tastes and odors.
Dissolved solids	Chiefly mineral constituents dis- solved from rocks and soils. Includes some water of crystalli- zation.	U.S. Public Health Service (1962) drinking-water standards recommend that waters containing more than 500 mg/l dissolved solids not be used if other lass mineralized supplies are available. Waters containing more than 1000 mg/l dissolved solids are unsuitable for many purposes.
Hardness as CaCO ₃	In most waters nearly all the hardness is due to calcium and magnesium. All the metallic cations other than the alkali metals also cause hardness.	Consumes soap before a lather will form. Deposits soap curd on bathtubs. Hard water forms scale in boilers, water heaters, and pipes. Hardness equivalent to the bicarbonate and carbonate is called carbonate hardness. Any hardness in excess of this is called non-carbonate hardness. Waters of hardness as much as 60 ppm are considered soft; 61 to 120 mg/l, moderately hard; 121 to 180 mg/l, hard; more than 180 mg/l, very hard.
Specific conductance (micromhos at 25 ⁰ C)	Mineral content of the water.	Indicates degree of mineralization. Specific conductance is a measure of the capacity of the water to conduct an electric current. Varies with concentration and degree of ionization of the constituents.
Hydrogen ion concentration (pH)	Acids, acid-generating salts, and free carbon dioxide lower the pH. Carbonates, bicarbonates, hydrox- ides, and phosphates, silicates, and borates raise the pH.	A pH of 7.0 indicates neutrality of a solution. Values higher than 7.0 denote increasing alkalinity; values lower than 7.0 indicate increasing acidity. pH is a measure of the activity of the hydrogen ions. Corrosiveness of water generally increases with decreasing pH. However, excessively alkaline waters may also

amendments. Furthermore, the degree of leaching will modify the permissible limit to some extent (Wilcox, Blair, and Bower, 1954, p. 265).

Boron is essential to proper plant nutrition, but an excessive boron content will make water unsuitable for irrigation. Wilcox (1955, p. 11) indicated that a boron concentration of as much as 1.0 mg/l is permissible for irrigating sensitive crops.

Water Quality in the Hydrologic Units

Fresh water in Montgomery County is generally free of excessive chemical constituents that are harmful to health, and is therefore suitable for public supply and domestic use. Though water-quality demands of various industries are different (Collins, 1926; Conklin, 1956; Hem, 1959; Mussey, 1955 and 1957), ground water in Montgomery County is generally suitable for industrial use. The water is also suitable for irrigation because it generally contains low concentrations of toxic constituents, and the soils are generally sandy and well drained. Records of laboratory analyses of water from wells in Montgomery and adjacent counties are given in Table 10. Records of field analyses are given in Table 11.

Catahoula Sandstone

Electrical-log interpretations indicate that fresh water-bearing sands are present in the Catahoula Sandstone in the northern and central part of Montgomery County (Figure 6). Where fresh water is present in the Catahoula, it is generally overlain by slightly or moderately saline water. The maximum thickness of sand containing fresh water is 160 feet, which occurs about 5 miles northwest of Willis. The average fresh-water sand thickness in the county is about 100 feet. The maximum thickness of sand containing slightly saline water is 200 feet, which occurs northwest of the town of Montgomery. Natural gas is present in the fresh and slightly saline water-bearing sand on the flanks of the Conroe Dome.

Lower Part of the Jasper Aquifer

Electrical-log interpretations indicate that as much as 270 feet of fresh water-bearing sand is present in the lower part of the Jasper aquifer in the northern and central parts of the county. Slightly saline water is also present in the aquifer as shown on Figure 8.

Upper Part of the Jasper Aquifer

The upper part of the Jasper aquifer contains water that is generally fresh, hard, and alkaline. Samples from wells 725 feet or less in depth were of the calcium bicarbonate type; those from wells 1,100 feet or more in depth were of the sodium bicarbonate type. Dissolved-solids content ranged from 49 to 665 mg/l, but in most of the samples ranged from 300 to 500 mg/l. Most of the samples had a pH ranging from 7.5 to 8.0. Hardness ranged from 10 to 258 mg/l, but generally ranged from 60 to 180 mg/l. Very hard water is found in wells in the outcrop area and south of the outcrop in a belt about 15 miles wide. Wells south of this belt yield soft water.

Electrical logs indicate that there are areas in the southern part of the county where slightly saline water is present in the upper part of the Jasper aquifer. The locations of these areas are shown on Figure 9.

Temperatures of water from 38 flowing or pumped wells screened in the Evangeline aquifer and in the upper part of the Jasper aquifer indicate a thermal increase of about 1°C per 125 feet increase in depth (1°F per 70 feet). However, a larger gradient exists near the Humble Dome. Based on the thermal gradient, fresh water as warm as 35° C (95° F) is probably present at the base of the upper part of the Jasper aquifer.

Burkeville Aquiclude

Only one water well, TS-60-34-502, completed in sands within the Burkeville aquiclude was sampled in Montgomery County. Electrical-log interpretations indicate that as much as 65 feet of fresh water-bearing sand is present in the aquiclude. However, this sand is discontinuous because the Burkeville is mostly clay.

Evangeline Aquifer

Analyses of water from wells in the Evangeline aquifer indicate that water in this unit is generally fresh and hard, with the hardest water occurring in or near the outcrop area. Electrical-log interpretations indicate that water in the aquifer is fresh throughout most of the county. Dissolved solids ranged from 66 to 3,420 mg/l. However, most of the samples had a dissolved-solids content that ranged from 250 to 400 mg/l.

Only three samples had dissolved-solids content greater than 700 mg/l. Two came from wells (TS-60-53-302 and TS-60-53-311) in areas of abandoned salt-water disposal pits, and the other came from a well (LJ-65-06-305) near the Humble Dome. Hardness ranged from 21 to 1,890 mg/l, but the range for most samples was from 60 to 180 mg/l. Hardness exceeded 500 mg/l in samples from two wells (TS-60-53-302 and TS-60-53-311) in areas of abandoned salt-water disposal pits. All of the soft water came from wells south of the outcrop area. The samples that had a dissolved-solids content greater than 400 mg/l, but less than 700 mg/l came from wells developed in or near the outcrop area. The pH of the water samples ranged from 5.5 to 8.2, but most of the samples had a pH of 6.5 to 7.5. Samples with a pH of less than 6.5 came from shallow wells south of the outcrop area.

Chicot Aquifer

Water from the Chicot aquifer is generally soft and fresh. Hardness ranged from 8 to 140 mg/l, but was generally less than 60 mg/l. The pH ranged from 5.0 to 7.5, but most of the samples had a pH of 5.0 to 6.7. Dissolved solids ranged from 36 to 268 mg/l, but most of the samples had a dissolved-solids content of less than 150 mg/l.

Water-Quality Problems

Although most of the water contained in the upper part of the Jasper, the Evangeline, and the Chicot aquifers is fresh, some water-quality problems, involving waters that are hard, corrosive, or iron-bearing, exist in Montgomery County. All of these problems can be effectively eliminated by proper well-completion methods or water treatment.

The most popular treatment for hardness is the use of an ion exchange or zeolite softener. A cold lime-soda softening precipitator may be used to remove hardness, iron, and manganese. Treatment for water hardness is not commonly used in Montgomery County because the people have become adjusted to using hard water, and industrial water usage is still slight.

Corrosive (acidic) ground waters are found in the Evangeline and Chicot aquifers. Such water may corrode pump parts (Figure 14), plumbing fixtures, and iron casings in less than a year of contact. Table 11 shows field measurements of pH and other parameters.

There are two possible sources of iron in water in Montgomery County. One source is the solution of iron from ferruginous sands and gravels. The other source is corrosion of well casings and water distribution systems by water of low pH.

To alleviate the problem of iron caused by acidic water acting on ferrous metal, materials such as fiberglass, stainless steel, or plastics may be used in the construction of the well and distribution system. Iron may be removed by aeration, which precipitates the iron, and by filtration which removes the precipitate from the water. Various lime and oxidizing filters may also be used to treat water with high iron content.

Disposal of Oil-Field Brines

According to data obtained from the files of the Texas Railroad Commission (Texas Water Commission

and Texas Water Pollution Control Board, 1963), about 26 million barrels of oil-field brine was produced in Montgomery County during 1961. Of this total, 9.2 percent was disposed of by miscellaneous means, 4.3 percent was diverted to surface pits, and 86.5 percent was disposed of by injection through wells that penetrated deep formations.

The disposal pits in Montgomery County have been located generally in sandy soils. Some of these pits were abandoned because overflow of the brine tended to destroy vegetation and to contaminate nearby streams. Seepage from the pits contaminates shallow ground water. A large number of these pits once existed in the Conroe Oil Field, and shallow sands in some areas of abandoned pits still contain brine. A water sample from well TS-60-53-311 completed in one such area contained 2,140 mg/l chloride. The Texas Railroad Commission issued orders, effective January 1, 1969, to close all salt-water disposal pits in the State.

The disposal of oil-field brines has not resulted in widespread damage to the chemical quality of the ground-water supplies in Montgomery County, but damage has occurred in local areas. Considerable care is currently exercised in the disposal of brines and other municipal and industrial wastes.

Protection of Water Quality in Oil-Field Drilling Operations

The Texas Railroad Commission requires that drilling contractors use casing and cement or by alternative protection devices to protect fresh-water strata from contamination. In recent years, the Texas Water Development Board has made recommendations to the oil operators and the Railroad Commission on the depths to which the water of usable quality should be protected. Where oil or gas fields are established, the recommended depths are incorporated in the field rules. Figure 15 shows the depth of protection required by the Texas Railroad Commission and the depth of fresh to slightly saline water in various oil fields in Montgomery County. The water-bearing strata in the older fields are, in general, not as well protected as in the more recently developed fields.

DEVELOPMENT OF GROUND WATER

Use of Ground Water

During the early days of settlement of Montgomery County, the only water used was for domestic and livestock purposes. This water was drawn from shallow dug wells, natural and developed springs and ponds, and streams. Deussen (1914, p. 306) reported that as early as 1901, deep wells had been drilled to supply the steam boilers of locomotives. The

Figure 15.-Comparison Between Depth of Sands Containing Fresh to Slightly Saline Water and the Depth of Protection Required in Oil Fields in Montgomery County

earliest reported deep wells were drilled in towns that had railroad switches, such as Fostoria, Wilburton, Esperanza, Conroe, Tamina, and Splendora. The search for oil brought in many flowing water wells, some of which are still in use.

During the period 1910-43, ground water was developed for public supply, saw mills, railroads, oil and gas production, and pipeline stations. By the mid-1950's, the city of Conroe developed a well field, and recreational camps and clubs used drilled wells. By 1960, a few petroleum-related industries moved near Conroe and developed deep wells. The most recent ground-water developers are the small communities and real estate subdivisions.

The use of ground water has increased with the increase in population and industry. In 1850, probably less than 0.5 mgd (million gallons per day) of ground

water was withdrawn. In 1900, about 3.5 mgd was produced; in 1940, about 4.7 mgd was withdrawn. About 6.2 mgd was pumped from ground-water aquifers in Montgomery County in 1966. Table 6 shows, by aquifers, the quantity of ground water that was pumped for public supply, rural domestic and livestock, industrial, and irrigation uses in the county in 1966. The figures are based on population data and industrial usage estimates. About 81 percent of the ground water withdrawal in 1966 was for public supply, domestic supply, and livestock uses; about 18 percent was for industrial use, and 1 percent for irrigation. The upper part of the Jasper supplied 3.50 mgd; the Evangeline, 2.64 mgd; and the Chicot, 0.05 mgd.

Water-Level Declines and Land-Surface Subsidence

Periodic measurements of water levels have been made in Montgomery County since 1931 (Tables 7 and 9). According to Deussen (1914, p. 304-306). Livingston (1939, p. 1-6), and Rose (1943, p. 2-17), wells completed in the upper part of the Jasper aguifer in the early 1900's flowed as much as 750 gpm. Static water levels in these wells at that time were as follows: about 45 feet above land surface at Tamina, 20 feet above land surface at Conroe and Dobbin, and 25 feet above land surface at Fostoria. By the mid-40's, many of the wells at Conroe stopped flowing, and in 1967, some water levels were 30 feet below land surface. However, some of the wells still flow. Static water levels in the flowing wells in 1966-67 are as follows: about 20 feet above land surface at Tamina, 10 feet above land surface at Dobbin, and 5 feet above land surface at Fostoria. Since development began, water levels have declined as much as 50 feet in wells tapping the upper part of the Jasper aquifer at Conroe, 10 feet at Dobbin, 20 feet at Fostoria, and 25 feet at Tamina. Figure 16 shows the fluctuations of water levels in two wells completed in the upper part of the Jasper aquifer at Conroe. The long-term decline of these water levels is probably related to pumpage, but variations in average rainfall may cause short-term fluctuations.

Figure 17 shows the approximate altitude of water levels in wells screened in the upper part of the Jasper aquifer, based on measurements made in the 1966-67 period. The average hydraulic gradient is 2.7 feet per mile.

Water levels have declined in wells completed in the Evangeline aquifer. According to Deussen (1914, p. 304-306), Livingston (1939, p. 1-6), and Rose (1943, p. 2-17), water levels in wells developed in this aquifer at Fostoria and Tamina were about 10 and 5 feet above land surface in the 1900's, but these wells no longer flow. Many wells completed in this aquifer in the Conroe Oil Field during the 1930's and 1940's flowed, but by the early 1950's, many of them stopped flowing. Since

Table 6.-Estimated Use of Ground Water in Montgomery County, 1966

		AQUIFER (MGD)			
USE	UPPER PART OF JASPER	EVANGELINE	CHICOT	TOTAL (MGD)	PERCENTAGE
Public supply	2.28	0.07	_	2.35	37.9
Rural domestic and livestock	.53	2.07	0.05	2.65	42.9
Industrial	.69	.44	-	1.13	18.2
Irrigation	-	.06¥	-	.061⁄	1.0
Totals	3.50	2.64	0.05	6.19	100.0

1/ 70 acre-feet, from 1964 records (Gillett and Janca, 1965, p. 20).

development began, water levels in wells tapping the Evangeline aquifer have declined as much as 50 feet at Fostoria and 35 feet at Tamina.

Figures 18 and 19 show the altitude of water levels in wells in the Evangeline aquifer measured in 1942-43 and 1966-67. The average hydraulic gradient increased from 4.3 to 5.4 feet per mile from 1943 to 1967. Water levels declined 10 to 25 feet in the Conroe area and 40 to 50 feet in the southeastern part of the county. The rate of water-level decline in the southeastern part of the county was as much as 2.1 feet per year. The areas of pumpage changed very little. Pumpage from the Evangeline increased about 0.5 mgd to 2.5 mgd between 1943 and 1967. Ground water taken from the "Heavily Pumped Layer" in Harris County, the equivalent of the Evangeline in Montgomery County, has lowered water levels in wells tapping the Evangeline aquifer in the southeastern part of Montgomery County.

Water levels in the Chicot aquifer, which are closely related to fluctuations of recharge, do not show a long-term trend. Figure 12 shows water levels in wells completed in the aquifer. The average hydraulic gradient is about 3.8 feet per mile. Figure 20 shows the fluctuation of selected water levels in a well tapping the Chicot at Conroe.

Water-level declines have caused some subsidence of the land surface in the southern part of Montgomery County. Withdrawal of water from the artesian aquifers results in an immediate decrease in the hydraulic pressure in the aquifers. The resulting pressure difference between the sands and clays causes water to move from the clays into the sands, and the clays are compressed. Some of the clay particles are permanently rearranged and the clay is permanently compacted. As compression and compaction of the beds occur, the land surface subsides (Winslow and Doyel, 1954; Winslow and Wood, 1959). Slight decreases of altitude along the level lines established by the U.S. Coast and Geodetic Survey show that less than 0.5 foot of land surface subsidence has occurred between 1943 and 1964 in the southern half of Montgomery County (Gabrysch, 1967, fig. 19). This probably has been caused by the large ground-water withdrawals in the adjacent Houston district. However, greater amounts of subsidence may have occurred in Montgomery County in the vicinity of oil, gas, and salt-water withdrawals.

Well Construction

Most large capacity wells in Montgomery County are in the Conroe area. When a well is to be drilled for municipal or industrial use, a small diameter test hole is drilled by the hydraulic-rotary method to the depth desired, usually to the base of the upper part of the Jasper aquifer. During drilling, formation samples are collected, and upon completion of the test holes, an electrical log may be run.

If the data collected indicate favorable conditions, the test hole is reamed from 16 to 24 inches in diameter from the surface to or near the top of the first sand to be screened. A 12- to 20-inch diameter casing, called the pump pit, or surface casing, is installed and cemented into place. The section of sand to be screened is then reamed to a large diameter hole (about 30 inches) using the largest reamer that can pass the surface casing. The screen is then installed and the bottom of the screen is closed off with a back-pressure valve.

The wells are finished with a perforated section of pipe 6 to 14 inches in diameter that has been wrapped with stainless steel wire (fiberglass was used in a recently completed well, TS-60-45-605, for the casing below the pump pit and the well screen). In gravel-packed wells, the openings in the screen range from 0.040 to 0.050 inches in diameter. This opening is larger than the

diameters of most of the sand grains but smaller than the diameters of most of the gravel particles in the gravel pack. Blank pipe of the same diameter as the screen extends above 100 feet from the top of the screen into the surface casing. Sized gravel is placed around the screen by means of a gravel tube, which is withdrawn as the annular space is filled with gravel. The gravel increases the effective diameter of the well and protects the screen from caving of the sand.

The well is developed by surging, swabbing, pumping, back-washing, by the use of chemicals, or by a combination of these processes until the specific capacity and sand-water ratio is satisfactory. Finally, the well is tested by pumping for 4 to 24 hours, during which time samples of water are collected for chemical analyses.

The size and type of pump installed depends principally upon the pumping lift and the quantity of water reeded. In general, municipal and industrial wells in Montgomery County have high-capacity, deep-well turbine pumps powered by electricity. The wells produce from 200 to 1,200 gpm (gallons per minute). Pump settings range from about 50 to 200 feet below land surface. Specific capacities range from 3 to 12 gallons per minute per foot of drawdown.

Most of the small-capacity wells that furnish water for domestic use and small industry in the county are completed with a straight wall and a single screen. The size of the screen and pipe ranges from 1-1/4 to 4 inches. In some small-capacity wells more than one size of screen or pipe may be used.

In the construction of some small-capacity municipal, industrial, and domestic wells, 4- or 6-inch casing is cemented from the surface to the top of the sand to be developed. Then a slightly smaller size screen is lowered through the pipe and set in the sand. A short section (1 to 10 feet) of blank pipe and a lead nipple are placed on top of the screen. The lead nipple is battered down to form a seal between the surface pipe and the pipe to which the screen is attached. The screen is usually stainless steel or plastic because these materials are resistant to corrosion. The openings in the screen range from 0.08 to 0.018 inch in diameter, which is smaller than the diameter of most of the sand grains.

Most small-capacity wells are equipped with small jet pumps or air compressors. Larger jet pumps, smallcapacity deep well turbines, and submersible pumps are also common.

AVAILABILITY OF GROUND WATER

The availability of water for future development from the aquifers in Montgomery County is dependent upon a number of factors. The most important are: the ability of the aquifers to transmit water; the amount of water in storage; the rate of recharge to the aquifers; the chemical quality of the water; and economic factors including the cost of wells.

The altitude of the base of fresh water ranges from 1,670 feet below sea level in the northwestern corner of the county to 3,870 feet below sea level in the central part (Figure 21).

The potential for development of the fresh-water resources of Montgomery County is greater in the areas where the total thickness of sands is greater. Figure 22 shows the thickness of sands containing fresh water below the Burkeville aquiclude (sands in the Catahoula Sandstone and in the lower and upper parts of the Jasper aquifer). The thickness of the sands ranges from 30 to 550 feet, and averages about 200 feet.

The sands of the Evangeline and Chicot aquifers (the sands above the Burkeville aquiclude) contain only fresh water. Figure 11 is a map of the base of the Evangeline aquifer showing the thickness of fresh waterbearing sands in the Evangeline and Chicot aquifers. These sands are as thick as 570 feet in the southeastern part of the county and average about 250 feet throughout the county.

The altitude of the base of slightly saline water ranges from less than 1,500 feet below sea level in the west central part of the county to 3,870 feet below sea level in the central part (Figure 23). The thickness of sand below the Burkeville aquiclude containing fresh to slightly saline water ranges from 80 to 780 feet (Figure 24).

Storage calculations were based on an estimated 250-foot thickness of fresh water-bearing sands above the Burkeville aquiclude and an estimated 200-foot thickness of fresh water-bearing sands below the Burkeville. A porosity of thirty percent is assumed. The volume of fresh water stored in the aquifers underlying Montgomery County is estimated to be about 80 million acre-feet, of which 40 million acre-feet is in the Evangeline and Chicot aquifers, 30 million acre-feet is in the upper part of the Jasper aquifer, and 10 million acre-feet is below the upper part of the Jasper. Theoretically, about half of this amount of water could be drained from the aquifers assuming no recharge. By orderly development and by utilizing recharge, the quantity of ground water economically recoverable may in time greatly exceed the quantity of water now in storage.

A large quantity of water is available from artesian storage and from compaction of clays. The water from clay compaction cannot be replaced by natural processes. On the basis of studies made in the Houston area, when compaction occurs, it is estimated that 0.5 to 1.0 foot of land-surface subsidence will occur per 100 feet of water-level decline (Winslow and Doyel, 1954, p. 143), thus releasing from storage an equivalent volume of water.

The calculations of the present quantity of water moving through an aquifer are based upon the transmissibility of the aquifer, the hydraulic gradient, and width of the aquifer. Coefficients of transmissibility of 36,000 gpd per foot and 50,000 gpd per foot were assumed for the upper part of the Jasper aguifer and the Evangeline aquifer, respectively. On the basis of these assumptions, about 3.4 mad, or 3,800 acre-feet per year, is moving through the upper part of the Jasper aquifer across a line perpendicular to the hydraulic gradient at Conroe. Approximately 9.5 mgd, or 10,600 acre-feet per year, is moving through the Evangeline aquifer across this line. These figures are based on the present hydraulic gradients of 2.7 feet per mile in the upper part of the Jasper aquifer and 5.4 feet per mile in the Evangeline aquifer.

One of the principal factors in determining the quantity of water available is the ability of an aquifer to transmit water to wells. The transmission capacity of an aquifer, as defined by Wood and others (1963, p. 98), is the quantity of water that can be transmitted through a given width of an aquifer at a given hydraulic gradient. Calculations of the potential transmission capacity of the upper part of the Jasper aquifer and the Evangeline aquifer in Montgomery County were based on these assumptions:

1. Water levels will be lowered to 400 feet below land surface along a line that is perpendicular to the direction of water movement and approximately parallel to the outcrop of the aquifers. This line, which would pass through Conroe, about 19 miles southeast of the outcrop, would be 36 miles long.

2. Recharge to the aquifer occurs only along a line, parallel to the line of discharge, that is in the middle of the outcrop area.

3. Water levels in the area of the outcrop will not decline.

4. The hydraulic gradient is the slope of a straight line between the average altitude of the water levels at the outcrop and the altitude of the water levels at the line of discharge. After water levels are lowered to 400 feet along the line of discharge, the hydraulic gradient would be 24 feet per mile.

5. All sands between the line source of recharge and the line of wells will transmit water from the outcrop to the line of discharge. These sands have an average thickness of 300 feet and an average coefficient of permeability of 250 gpd per square foot. The coefficient of transmissibility is 75,000 gpd per foot.

Under these conditions, the transmission capacity of the upper part of the Jasper and the Evangeline aquifers would be 65 mgd, or 72,800 acre-feet per year. An even greater perennial supply of fresh water can be obtained if the fresh water-bearing sands in the lower Catahoula Sandstone, and lower part of the Jasper and the Chicot aquifers are developed.

The area of the outcrop of the Evangeline and upper part of the Jasper aquifers comprises about 790 square miles in Grimes, Montgomery, and Walker Counties. About 1.7 inches of recharge per year would be required in this area to maintain a transmission capacity of 65 mgd. This quantity of required recharge is rather small compared to the quantity available in other parts of southeastern Texas. If the rejected recharge (spring flow) in the outcrop areas were salvaged, an additional 140,000 acre-feet of water per year (125 mgd) would be available. Calculations of rejected recharge are based on streamflow records for Caney Creek near Splendora from 1944 to 1967, Peach Creek at Splendora from 1944 to 1967, Spring Creek near Spring from 1939 to 1967, and West Fork San Jacinto River near Conroe from 1924 to 1927 and 1939 to 1967.

Another way to estimate the quantity of fresh ground water available for development in Montgomery County is to compare this area to areas having similar hydrologic systems in which large developments have taken place, such as the Houston district and Liberty County. Observations of the performance of the aquifers in response to large withdrawals have been made in the 5,000 square miles of the Houston district since 1929. Pumping in the Houston district is from the Chicot and Evangeline aguifers exclusively. Pumpage of ground water in the Katy and Houston areas was about 186 mgd in 1960 and 278 mgd in 1965 (Gabrysch, 1967, p. 11). Since development began, water levels have declined as much as 50 feet in the Katy area and 250 feet in the Houston area (Wood and Gabrysch, 1965, fig. 10; Gabrysch, 1967, p. 21).

In 1965, about 51 mgd was pumped in Liberty County, and about 200 mgd was estimated to be perennially available from properly spaced wells developed in the Chicot and Evangeline aquifers, without excessive water-level declines (Anders and others, 1968, p. 30 and 46). The water-bearing beds in Liberty County are considered to be less prolific than those in the Houston district. The upper part of the Jasper aquifer, which contains fresh water along the northern boundary of Liberty County, was not included in this estimate.

It was conservatively estimated that about 56 mgd could be pumped from wells developed in the Chicot and Evangeline aquifers in the southern part of Austin and Waller Counties (Wilson, 1967, p. 68).

The aquifers in Montgomery County are very similar to those in Austin, Waller, and Liberty Counties, and in the Houston and Katy areas. Montgomery County, in fact, is the recharge area for much of the ground water withdrawn in the Houston district. With the proper spacing and development of wells, about 150 mgd of ground water could be pumped perennially from the upper part of the Jasper, Evangeline, and Chicot aquifers in Montgomery County, with only moderate water-level declines and land-surface subsidence. Additional supplies of fresh water could be obtained from sands below the upper part of the Jasper. Currently, about 6.2 mgd, or 4 percent of the available supply is being used.

A ground-water development of 150 mgd in Montgomery County probably would affect large scale ground-water development in adjoining areas, especially in the Houston district. The effect in the Houston district would be an accelerated decline in water levels and probably a reduction in the yields of wells.

Wells yielding 1,000 gpm could be developed anywhere in Montgomery County, and in many areas, wells yielding 3,000 gpm could be developed. This is confirmed in Waller and Harris Counties (Wilson, 1967, Table 5; Lang and Winslow, 1950, p. 6) by yields of wells developed in sands similar to those present in Montgomery County.

The upper part of the Jasper aquifer will probably be developed first in Montgomery County because it contains softer water which is under the highest pressure head. With increased pumping, the head in the upper part of the Jasper will be lowered, and as a result, more wells will be completed in the Evangeline aquifer. Except in areas of large withdrawals, wells completed in the Evangeline aquifer will have higher water levels than those completed in the Chicot aquifer. Eventually, the Chicot aquifer will be developed.

NEED FOR FUTURE STUDIES

The present investigation described the basic hydraulic framework of the aquifers. A continuing program of hydrologic data collection is prerequisite to

efficient development of the ground-water resources. This work should include the following:

1. A continuing inventory should be conducted of all new large-capacity wells, including the collection of drillers' and electrical logs and well completion data. Annual inventories of the quantities of ground water used should be made.

2. Periodic measurements of water levels in representative wells should be made to observe changes in the hydraulic gradients and to observe the effect of pumping. An adequate number of wells in the recharge areas should be included.

3. Pumping tests should be made on new largecapacity wells to more accurately determine the aquifer characteristics.

4. Measurements of base flow of streams should be made to determine more accurately the quantities of rejected recharge available for future use.

5. U.S. Coast and Geodetic Survey benchmarks should be relevelled to determine land-surface subsidence.

6. A study should be conducted of the relationships between acid ground water, rainfall, and forest cover; and between hard ground water and limy and clayey soils as a method of delineating areas of corrosive ground water.

The continuing program of basic-data collection must extend into adjoining counties because the effects of the development in nearby areas will affect the ground-water supplies in Montgomery County. The area of observation should include, in addition to Montgomery County, at least half of Walker County and parts of the other adjoining counties.

- Anders, R. B., McAdoo, G. D., and Alexander, W. H., Jr., 1968, Ground-water resources of Liberty County, Texas: Texas Water Devel. Board Rept. 72, 140 p.
- Bernard, H. A., and LeBlanc, R. J., 1965a, Résumé of the Quaternary geology of the northwest Gulf of Mexico, *in* the Quaternary of the United States: New Jersey, Princeton Univ. Press, p. 137-185.
- ____1965b, Résumé of Quaternary geology of the northwestern Gulf of Mexico province: Shell Devel. Co., EPR Pub. 400.
- Bernard, H. A., LeBlanc, R. J., and Major, C. F., 1962, Recent and Pleistocene geology of southeast Texas, *in* Geology of the Gulf Coast and central Texas and guidebook of excursions: Houston Geol. Soc., Ann. Meeting Geol. Soc. of America and associated societies, Houston, Texas., p. 175-224.
- Bureau of Economic Geology, 1968, Geologic atlas of Texas, Beaumont sheet: Univ. Texas, Bur. Econ. Geology map.
- Collins, W. D., 1926, Relations between quality of water and industrial development in the United States: U.S. Geol. Survey Water-Supply Paper 559, 43 p.
- Conklin, H. L., 1956, Water requirements of the carbon-black industry: U.S. Geol. Survey Water-Supply Paper 1330-B, p. 73-101.
- Cooper, H. H., Jr., and Jacob, C. E., 1946, A generalized graphical method for evaluating formation constants and summarizing well-field history: Am. Geophys. Union Trans., v. 27, p. 526-534.
- Darton, N. H., Stephenson, L. W., and Gardner, Julia, 1937, Geologic map of Texas: U.S. Geol. Survey geol. map.
- Deussen, Alexander, 1914, Geology and underground waters of the southeastern part of the Texas Coastal Plain: U.S. Geol. Survey Water-Supply Paper 335, 365 p.
- Doering, John, 1935, Post-Fleming surface formations of southwest Texas and south Louisiana: Am. Assoc. Petroleum Geologists Bull., v. 19, no. 5, p.651-688.
- Fenneman, N. M., 1938, Physiography of eastern United States: New York, McGraw-Hill Book Co., Inc., 714 p.
- Ferris, J. G., Knowles, D. B., Brown, R. H., and Stallman, R. W., 1962, Theory of aquifer tests: U.S. Geol. Survey Water-Supply Paper 1536-E, 173 p.

- Fisk, H. N., 1940, Geology of Avoyelles and Rapides Parishes: Louisiana Dept. Conserv. Bull. 18, 240 p., 50 figs.
- Gabrysch, R. K., 1967, Development of ground water in the Houston district, Texas, 1961-65: Texas Water Devel. Board Rept. 63, 35 p.
- Gillett, P. T., and Janca, I. G., 1965, Inventory of Texas irrigation, 1958 and 1964: Texas Water Comm. Bull. 6515, 317 p.
- Hackett, O. M., 1962, Ground-water levels in the United States, 1956-59, south-central states: U.S. Geol. Survey Water-Supply Paper 1549, 192 p.
- Hem, J. D., 1959, Study and interpretation of the chemical characteristics of natural water: U.S. Geol. Survey Water-Supply Paper 1473, 269 p.
- Jones, P. H., 1952, Electric-logging methods, principles of interpretation, and applications in ground-water studies: U.S. Geol. Survey open-file rept., 34 p.
- Kane, J. W., 1967, Monthly reservoir evaporation rates for Texas, 1940 through 1965: Texas Water Devel. Board Rept. 64, 111 p.
- Lang, J. W., and Winslow, A. G., 1950, Geology and ground-water resources of the Houston district, Texas: Texas Board Water Engineers Bull. 5001, 55 p.
- Livingston, Penn, 1939, Records of wells, drillers' logs, water analyses, and map showing location of wells in Montgomery County, Texas: Texas Board Water Engineers duplicated rept., 13 p.
- Maier, F. J., 1950, Fluoridation of public water supplies: Am. Water Works Assoc. Jour., v. 42, pt. 1, p. 1120-1132.
- Metcalf, R. J., 1940, Deposition of Lissie and Beaumont Formations of the Gulf Coast of Texas: Am. Assoc. Petroleum Geologists Bull., v. 24, no. 4, p. 693-700.
- Michaux, F. W., Jr., and Buck, E. O., 1936, Conroe Oil Field, Montgomery County, Texas, Am. Assoc. Petroleum Geologists Bull., vol. 20, no. 6, p. 736-779.
- Moore, E. W., 1940, Progress report on the committee on quality tolerances of water for industrial uses: New England Water Works Assoc. Jour., v. 54, p. 261-272.
- Mussey, O. D., 1955, Water requirements of the pulp and paper industry: U.S. Geol. Survey Water-Supply Paper 1330-A, p. 1-71.

- Mussey, O. D., 1957, Water requirements of the rayon and acetate fiber industry: U.S. Geol. Survey Water-Supply Paper 1330-D, p. 141-179.
- Rayner, F. A., 1959, Records of water-level measurements in Chambers, Liberty, and Montgomery Counties, Texas, 1931 through April 1958: Texas Board Water Engineers Bull. 5901, 33 p.
- Rose, N. A., 1943, Records of wells, drillers' logs, water analyses, and map showing locations of wells in Montgomery County, Texas: Texas Board Water Engineers duplicated rept., 30 p.
- Sandeen, W. M., 1968, Ground-water resources of San Jacinto County, Texas: Texas Water Devel. Board Rept. 80, 89 p.
- Sayre, A. N., 1957, Water levels and artesian pressures in observation wells in the United States, 1955, Pt. 4, South-central states: U.S. Geol. Survey Water-Supply Paper 1407, 216 p.
- Sellards, E. H., Adkins, W. S., and Plummer, F. B., 1932, The geology of Texas, v. 1, Stratigraphy: Univ. Texas Bull. 3232, 1007 p.
- Swenson, H. A., and Baldwin, H. L., 1965, A primer on water quality: Washington, U.S. Govt. Printing Office, 27 p.
- Taylor, T. U., 1907, Underground waters of the Coastal Plain of Texas: U.S. Geol. Survey Water-Supply Paper 190, 73 p.
- Texas Water Commission and Texas Water Pollution Control Board, 1963, A statistical analysis of data on oil field brine production and disposal in Texas for the year 1961 from an inventory conducted by the Texas Railroad Commission: Summary vol., 81 p.
- U.S. Public Health Service, 1962, Public Health Service drinking water standards: Public Health Service Pub. 956, 61 p.
- U.S. Salinity Laboratory Staff, 1954, Diagnosis and improvement of saline and alkali soils: U.S. Dept. Agr. Handbook 60, 160 p.
- Weeks, A. W., 1945, Oakville, Cuero, and Goliad Formations of Texas Coastal Plain between Brazos River and Rio Grande: Am. Assoc. Petroleum Geologists Bull., v. 29, no. 12, p. 1721-1732.

- Wenzel, L. K., 1942, Methods for determining permeability of water-bearing materials, with special reference to discharging-well methods: U.S. Geol. Survey Water-Supply Paper 887, 192 p.
- Wilcox, L. V., 1955, Classification and use of irrigation waters: U.S. Dept. Agr. Circ. 969, 19 p.
- Wilcox, L. V., Blair, G. Y., and Bower, C. A., 1954, Effect of bicarbonate on suitability of water for irrigation: Soil Sci., v. 77, no. 4, p. 259-266.
- Wilson, C. A., 1967, Ground-water resources of Austin and Waller Counties, Texas: Texas Water Devel. Board Rept. 68, 231 p.
- Winslow, A. G., 1950, Geology and ground-water resources of Walker County, Texas: Texas Board Water Engineers Bull. 5003, 48 p.
- Winslow, A. G., and Doyel, W. W., 1954, Land-surface subsidence and its relation to the withdrawal of ground water in the Houston-Galveston region, Texas: Economic Geol., v. 49, no. 4, p. 413-422.
- Winslow, A. G., and Kister, L. R., 1956, Saline-water resources of Texas: U.S. Geol. Survey Water-Supply Paper 1365, 105 p.
- Winslow, A. G., and Wood, L. A., 1959, Relation of land subsidence to ground-water withdrawals in the upper Gulf Coast Region, Texas: Mining Eng., Am. Inst. of Mining Eng., Ann. Meeting, 13 p.
- Wood, L. A., 1956, Availability of ground-water in the Gulf Coast Region of Texas: U.S. Geol. Survey open-file rept., 55 p.
- Wood, L. A., and Gabrysch, R. K., 1965, Analog model study of ground water in the Houston district, Texas: Texas Water Comm. Bull. 6508, 103 p.
- Wood, L. A., Gabrysch, R. K., and Marvin, Richard, 1963, Reconnaissance investigation of the ground-water resources of the Gulf Coast Region, Texas: Texas Water Comm. Bull. 6305, 123 p.

Table 8.-Drillers' Logs of Wells in Montgomery and Adjacent Counties

	THICKNESS (FEET)	DEPTH (FEET)		THICKNESS (FEET)	DEPTH (FEET)
Montgomery C	ounty		Sand, medium, white and black	37	401
Well TS-60-29	-802		Shale	1	402
Owner: Mrs. N Driller: Con Tax Wa	ferrill		Well TS-60-34	4-604	
Sand and red clay	12	10	Owner: Robert	E. Webb	
Sand brown	12	12	Driller: Tomball D	Drilling Co.	
	12	24	Soil	8	8
Clay with graver	129	153	Shale, red	7	15
Sand, white	30	183	Sand	6	21
Well TS-60-34	-502		Shale, blue	5	26
Owner: Texas Forest Driller: Layne-Te	Product Co. exas Co.		Sand	12	38
Сіау	5	5	Shale	29	67
Sand, soft	39	44	Sand, salt and pepper	22	89
Clay, brown	24	68	Well TS-60-34	4-903	
Clay, sandy	8	76	Owner: Gr	ay	
Sand, fine and clay, broken	8	84	Driller: Con-Tex Wa	ter Well Co.	
Shale, tough, brown and blue	27	111	Clay	31	31
Sand, fine, white	23	134	Sand	19	50
Shale, sandy	6	140	Sand and clay	4	54
Shale, soft, sandy	22	162	Sand	19	73
Shale, tough, brown, and blue	25	187	Well TS-60-35	5-302	
Sand, hard, fine, and			Owner: J. A. I	Bond	
shale with lime streaks	31	218	Driller: Con-Tex Wat	ter Well Co.	
Shale	3	221	Clay, red and sand	20	20
Shale, sandy, and lime	4	225	Clay and iron ore	32	52
Shale, sandy	4	229	Sand and sandy shale	4	56
Shale, tough	7	236	Sand, white	20	76
Shale, sandy	15	251	Shale and lime streaks	28	104
Shale, tough	12	263	Sand, gray and black	22	126
Shale, sand with hard lime streaks	28	291	Sand, shale, and lime	6	132
Rock	1	292	Well TS-60-35	-802	
Sand and shale, broken	12	304			
Sand and shale, streaks	14	318	Driller: Falker	nbury	
Sand and shale, broken	6	324	Clay and rock	70	70
Sand, fine, white and black	11	335	Sand	10	80
Shale	2	337	No record	5	85
Sand, medium, white and black	9	346	Sand	20	105
Rock	1	347	Clay	90	195
Shale, sandy	17	364	Sand, fine	25	220

Table 8.-Drillers' Logs of Wells in Montgomery and Adjacent Counties-Continued

	THICKNESS (FEET)	DEPTH (FEET)				
Well TS-60-35-802-Continued						
Clay and rock	235	455				
Clay	65	520				
Sand	70	590				
Well TS-60-36-20	01					
Owner: Bonanza C Driller: Con-Tex Water	orp. Well Co.					
Clay	18	18				
Sand with clay	12	30				
Sand	44	74				
Clay with sand	11	85				
Sand	20	105				
Sand, hard	1	106				
Clay and gravel	13	119				
Sand	34	153				
Clay and lime	85	238				
Sand	17	255				
Shale and lime	29	284				
Sand, hard with clay streaks	90	374				
Sand with shale streaks	25	399				
Shale	33	432				
Sand	38	470				
Sand and shale	3	473				
Well TS-60-36-401, partial log						
Owner: Luther E.	Hall il Co					
Soil	8	8				
Sand	40	48				
Shale	12	60				
Shale, sandy	25	85				
Shale, sticky	100	185				
Shale and boulders	65	250				
Shale, sticky	60	310				
Sand, artesian flow	20	330				
Shale, sticky	30	360				
Sand, hard	24	384				
Shale, sticky	64	448				
Sand, artesian flow	22	470				

	THICKNESS (FEET)	DEPTH (FEET)
Shale and boulders	42	512
Shale, sticky	108	620
Shale, sandy	130	750
Sand, artesian flow	24	774
Shale	46	820
Shale, sticky	130	950
Sand, water	22	972
Shale and boulders	52	1,024
Shale, sticky	76	1,100
Sand	12	1,112
Shale, sticky	18	1,130
Shale	44	1,174
Sand and boulders	47	1,221
Shale	89	1,310
Shale, sticky	90	1,400
Sand, artesian flow	24	1,424
Shale	36	1,460
Total depth		4,316

Well TS-60-36-601

Owner: Hulan Lakes Subdivision Driller: Con-Tex Water Well Co.

67	67				
29	96				
2	98				
1	99				
6	105				
39	144				
14	158				
2	160				
34	194				
18	212				
23	235				
3	238				
11	249				
29	278				
9	287				
6	293				
37	330				
	67 29 2 1 6 39 14 2 34 18 23 3 11 29 9 6 37				
	THICKNESS (FEET)	DEPTH (FEET)		THICKNESS (FEET)	DEPTH (FEET)
-------------------------------	---------------------	-----------------	------------------------	---------------------	-----------------
Well TS-60-36-601	-Continued		Clay and gravel	44	69
Sand and shale	16	346	Sand, hard and clay	11	80
Sand	38	384	Shale	24	104
Sand, hard streaks, and shale	45	429	Shale with lime	67	171
Sand	32	461	Sand	36	207
Well TS-60-3	37-103		Well TS	60-37-304	
Owner: Ray F	. Weston		Owner: Aftor	n Park Subdivision	
Driller: Con-Tex W	later Well Co.		Driller: Ke	rns Water Wells	
Clay and ore	12	12	Clay	14	14
Sand and red clay	27	39	Sand	17	31
Clay and gravel streaks	24	63	Clay	7	38
Sand, hard and red clay	11	74	Sand	1	39
Sand, hard streaks	10	84	Clay	12	51
Clay and sand	4	88	Sand, red	17	68
Sand, gray and black	9	97	Clay	38	106
Clay and sand streaks	8	105	Sand with hard streaks	11	117
Sand, brown	6	111	Clay, sand	9	126
Clay	23	134	Sand	8	134
Shale and hard sandy lime	16	150	Clay and rock	93	227
Shale and lime	27	177	Sand and rock	11	238
Sand, firm	32	209	Sand	18	256
Shale and lime	8	217	Clay and rock	38	294
Sand	36	253	Rock and sand	8	302
Well TS-60-	37-105		Sand	60	362
Owner: Robert	Hardy, Jr.		Well TS	S-60-37-401	
Driller: Con-Tex v	Vater Well Co.	40	Owner: City	of Willis, Well 1	
	16	16	Class condu	ayne-Texas Co.	05
Sand, hard	6	22		25	25
Clay with sand streaks	41	63	Clave	15	40
Sand, hard and sandy lime	33	90	Ciay	20	50
Clay with lime	16	112	Sanu	50	120
Clay	5	117		50	130
Sand and shale	29	146	Clay, sandy	11	141
Sand	37	183		27	168
Well TS-60-	37-202		Clay with hard streaks	76	244
Owner: S. N	Noviski		Sand, hard	10	254
Driller: Con-Tex V	Vater Well Co.		Shale	22	276

8

25

8

17

Clay and gravel

Sand

Sand, hard fine

Shale

21

23

297

320

	THICKNESS (FEET)	DEPTH (FEET)	
Well TS-60-37-401-C	ontinued		Sand and I
Sand, hard	13	333	Clay and li
Sand, fine	28	361	Lime, sand
Shale	4	365	Clay and sa
			Sand with
Weil 15-60-37-4	403		Lime, hard
Driller: Layne-Tex	s, well 3 as Co.		Sand, hard
Clay	10	10	
Sand	50	60	
Clay, sandy	205	265	
Clay, sandy and sand streaks	19	284	Clay
Clay	28	312	Sand
Sand	39	351	Clay
Clay, sandy	53	404	Sand
Sand and clay streaks	46	450	Clay
Clay	20	470	Sand
Sandrock	3	473	Hard strea
Sand	8	481	Sand
Clay	10	491	Clay
Sand and shale streaks	38	529	
Shale	71	600	
Sand	10	610	
Shale, sandy	63	673	Clay and re
Sand streaks and shale	17	690	Rock
Sand	20	710	Broken for shale san
Shale	37	747	Sand, hard
Sand	19	766	Shale
Shale, sandy	34	800	Formation
Sand	57	857	Shale
Shale, sandy	10	867	Sand. soft
Sand	13	880	
Shale, sandy	33	913	

Well TS-60-37-405

Owner: H. E. Harrison Driller: Con-Tex Water Well Co.

Sand and gravel	30	30
Clay with sand streaks	40	70
Clay	70	140

	THICKNESS (FEET)	DEPTH (FEET)
Sand and lime streaks	38	178
Clay and lime streaks	104	282
Lime, sandy	8	290
Clay and sand	28	318
Sand with clay streaks	22	340
Lime, hard	1	341
Sand, hard and soft	14	355

Well TS-60-37-406

Owner: R. B. Howard Driller: Con-Tex Water Well Co.

Clay	54	54
Sand	28	82
Clay	12	94
Sand	11	105
Clay	5	110
Sand	10	120
lard streaks	1	121
Sand	9	130
Clay	2	132

Well TS-60-37-701

Owner: W. L. Massey Driller: Kerns Water Wells

Clay and rock	116	116
Rock	2	118
Broken formation of shale, sand, rock	24	142
Sand, hard, brown, fine	8	150
Shale	70	220
Formation, hard	20	240
Shale	13	253
Sand, soft, brown	27	280

Well TS-60-37-703

Owner: Camp Agnes Arnold (Girl Scouts of America) Driller: Layne-Texas Co.

Soil	3	3
Clay, red sandy	3	6
Sand and gravel	26	32
Gravel and clay	10	42
Clay	236	278

	THICKNESS (FEET)	DEPTH (FEET)	
Well TS-60-37-703-Co	ontinued		
Sand and boulders	11	289	
Clay	111	400	
Clay, sandy	3	403	
Sand, fine	20	423	
Clay	39	462	
Clay, sandy	11	473	
Clay	25	498	
Sand, fine	17	515	
Clay	5	520	
Sand	2	522	
Clay	20	542	
Clay, sticky	44	586	
Clay, sandy	24	610	
Clay, sticky	109	719	
Clay	16	735	
Sand	8	743	
Clay, sticky	20	763	
Clay, sandy	25	788	
Clay, sticky	37	825	
Clay and hard sandy layers	9	834	
Sand and clay layers	49	883	
Sand	30	913	
Sand and boulders	5	918	
Clay	13	931	
Well TS-60-37-902			
Owner: Carl Currie			

Driller: Con-Tex Water Well Co.

Сіау	21	21
Sand and gravel	24	45
Clay with sand and gravel streaks	12	57
Сіау	27	84
Sand, hard and clay streaks	10	94
Sand, trashy	7	101
Clay	2	103
Sand, hard streaks	1	104
Sand	4	108
Clay	7	115

	THICKNESS (FEET)	DEPTH (FEET)
Sand	4	119
Clay	44	163
Sand, hard streaks	5	168
Sand	13	181
Hard streaks	1	182
Sand	39	221
Clay	1	222

Well TS-60-37-904

Owner: S. C. Boone Driller: Con-Tex Water Well Co.

Sand and red clay	24	24
Sand and red gravel	12	36
Clay	3	39
Sand and clay	3	42
Sand	33	75

Well TS-60-42-202

Owner: Robert and James Herzog Driller: Tomball Drilling Co.

Soil	2	2
Shale	26	28
Sand	13	41
Shale	17	58
Sand	46	104
Shale	6	110
Sand	9	119
Shale	19	138
Sand	28	166

Well TS-60-42-307

Owner: Gulf, Colorado and S.F. R.R. Driller: W. J. Giles

Clay, yellow	12	12
Sand, shale and gravel	10	22
Rock, white lime	2	24
Clay, brown	4	28
Rock, white lime	2	30
Clay, brown	2	32
Rock, white lime	3	35
Clay, brown and white	20	55

	THICKNESS (FEET)	DEPTH (FEET)
Well TS-60-42-307-C	ontinued	
Rock, white lime	3	58
Clay, gray	40	98
Sand, brown	16	114
Gumbo, gray	51	165
Rock, white lime	3	168
Clay, gray	20	188
Gumbo, gray	12	200
Shale, red	12	212
Gumbo, brown	34	246
Sand, blue	31	277
Shale, hard blue	13	290
Rock, white lime	21	311
Sand, blue	23	334
Rock, white lime	6	340
Sand, blue and shale	34	374
Gumbo, blue	23	397
Shale, blue and sand	14	411
Rock, white lime	8	419
Sand, blue and shale	25	444
Shale, hard blue	33	477
Gumbo, blue	28	505
Rock, white lime	2	507
Gumbo, blue	13	520
Water sand	40	560
Gumbo, brown	26	586
Rock, white lime	2	588
Sand, fine-grained, blue	4	592
Rock, white lime	1	593
Shale, gray	19	612
Sand, white	4	616
Rock, sand	3	619
Sand, hard	14	633
Sand and shale	22	655
Rock, sand	2	657
Sand	35	692
Rock, sand	3	695
Sand	51	746

	(FEET)	(FEET)
Well TS-60-42-501	I	
Owner: A. C. Coum Driller: Con-Tex Water V	es Vell Co.	
Sand and clay, red	40	40
Clay, red	4	44
Sand, brown	14	58
Clay, brown	13	71
Clay and lime	26	97
Lime, hard	3	100
Sand with clay	8	108
Clay with hard lime streaks	82	190
Clay, white sandy	24	214
Sand	33	247
Well TS-60-42-90	1	
Owner: Toby Smit Driller: Carl Rude	th H	
Clay, yellowish	40	40
Clay, white	40	80
Sand	18	98
Well TS-60-43-10	2	
Owner: J. R. Litt Driller: Con-Tex Water N	le Nell Co.	
Clay, lime streaks	113	113
Sand	7	120
Clay, lime streaks	3	123
Sand	8	131
Clay	2	133
Sand, hard streaks	9	142
Sand	20	162
Well TS-60-43-201		
Owner: Keith Dickson Driller: Layne-Texas Co.		
Sand, gravel and clay	35	35
Clay	30	65
Clay and boulders	94	159
Sand, hard	29	188

THICKNESS

DEPTH

251

273

287

63

22

14

Clay

Clay, sandy

Clay with sandy clay layers

	THICKNESS (FEET)	DEPTH (FEET)
Well TS-60-43-201—Co	ontinued	
Sand	8	295
Clay	15	310
Shale, sandy	15	325
Rock	1	326
Shale	55	381
Shale, sandy	22	403
Shale	77	480
Clay and boulders	18	498
Shale, sandy	13	511
Shale	29	540
Shale, sandy	10	550
Shale	105	655
Sand	22	677
Shale, sandy	5	682
Well TS-60-43-2	03	
Owner: A. B. Ha Driller: Kerns Water	mil Wells	
Clay and sand	45	45
Sand	15	60
Clay	30	90
Hard formation	2	92
Shale and hard lime	128	220
Sand	3	223
Shale and lime	4	227
Sand	5	232
Lime, hard and shale	48	280
Shale, hard and lime	6	286
Sand	7	293
Shale	21	314
Sand and lime	9	323
Shale	5	328
Sand, soft	9	337
Shale and lime	67	404
	~	

	THICKNESS (FEET)	DEPTH (FEET)
Sand, hard streaks	14	113
Clay and lime	57	170
Sand	26	196
Clay and lime	51	247
Sand	22	269

Well TS-60-43-302

Owner: Paul Hoffart Driller: Con-Tex Water Well Co.

Clay, gravel and ore	65	65
Lime and shale	13	78
Sand streaks and shale	29	107
Shale	38	145
Sand	3	148
Shale, sand streaks	97	245
Sand	12	257
Shale	17	274
Sand	5	279
Shale	2	281
Sand	7	288
Shale	4	292
Sand	46	338

Well TS-60-43-502

Owner: J. H. Kurth, Jr. Driller: Falkenburg

Clay	32	32
Sand	5	37
Clay and rock	284	321
Sand	43	364

Well TS-60-43-601

Owner: James L. Slowey Driller: Con-Tex Water Well Co.

Clay with lime	110	110
Sand	17	127

Well TS-60-43-702

Owner: John Waters Driller: Con-Tex Water Well Co.

Sand	7	7
Sand and gravel, red	40	47
Sand, red	25	72

Well TS-60-43-301

Owner: W. S. Taliver Driller: Con-Tex Water Well Co.		
Sand and clay	78	
Clay	21	

78

99

	THICKNESS (FEET)	DEPTH (FEET)
Well TS-60-43-702-C	ontinued	
Clay and gravel streaks	9	81
Clay and sand streaks	25	106
Clay	14	120
Clay and gravel	14	134
Sand	14	148
Clay	18	166
Sand	19	185
Shale	3	188

Well TS-60-43-703

Owner: J. Neeves Driller: Con-Tex Water Well Co.

Clay, red	14	14
Sand, red	10	24
Clay	2	26
Sand, white	17	43
Sand and gravel, white	9	52
Clay	2	54
Sand, white	25	79

Well TS-60-43-901

Owner: E. B. Hethcoth Driller: Con-Tex Water Well Co.

Sand and clay	36	36
Clay, brown	9	45
Sand with clay, red	12	57
Clay with gravel streaks	76	133
Clay with sand streaks	47	180
Clay and lime	100	280
Clay with sandy lime	88	368
Sand	22	390

Well TS-60-44-104

Owner: B. J. Higgins Driller: Con-Tex Water Well Co.

Clay, red	13	13
Sand and clay, sand and gravel, red	81	94
Sandstone, broken and shale	8	102
Sand with hard streaks	10	112
Shale and lime	98	210
Sand, dark gray	17	227

Well TS-60-44-204			
Owner: Mrs. Libie Vick Driller: Kerns Water Wells			
Clay	58	58	
Sand, fine brown	40	98	
Hard formation	11	109	
Well TS-60-44-3	02		
Owner: G. A. Will Driller: Con-Tex Water	kson ' Well Co.		
Sand and clay, red	14	14	
Clay, brown and gray	59	73	
Clay and gravel streaks, gray	8	81	
Clay and lime	28	109	
Lime, hard sand and clay streaks	11	120	
Clay and lime	35	155	
Clay, sand and lime	6	161	
Sand	22	183	
Shale and lime, blue	56	239	
Lime, hard	2	241	
Shale, sandy and lime	16	257	
Sand	12	269	
Shale	15	284	
Sand, gray	52	336	
Clay	11	347	
Sand	26	373	
Clay	19	392	
Sand, blue	30	422	

THICKNESS

(FEET)

DEPTH

(FEET)

Well TS-60-44-401

Owner: Charles Glass Driller: Kerns Water Wells

Clay, sand and gravel	18	18
Clay	18	36
Sand, brown	20	56
Сlay	42	98
Sand, hard brown	26	124
Clay	29	153
Sand, soft	17	170
Clay	3	173
Sand, soft	30	203
Clay and rock	4	207

	THICKNESS (FEET)	DEPTH (FEET)	
Well TS-60-44-4	02		:
Owner: Wayne Bro Driller: J. A. Wall	oyles ling		
Clay and sand	168	168	
Clay, yellow	22	190	
Clay, blue	40	230	
Clay and sand	22	252	
Clay, blue	40	292	
Rock	1	293	
Clay	19	312	
Sand	23	335	
Clay	40	375	
Clay and sand	20	395	
Clay	83	478	
Sand	21	499	
Sand and gravel	89	588	
Clay and boulders	244	832	
Sand	59	891	
Well TS-60-44-5	503		
Owner: John E. S Driller: Con-Tex Wate	ykora r Well Co.		
Clay, red	23	23	
Sand and gravel	37	60	
Clay, white	41	101	
Clay with sand streaks	44	145	
Sand with hard streaks	17	162	
Sand, brown	22	184	
Well TS-60-44-	506		
Owner: Charles S. Driller: Con-Tex Wate	. Scott er Well Co.		
Surface sand and clay	45	45	
Clay	41	86	
Sand	46	132	
Sand with hard streaks	13	145	
Sand with clay	34	179	
Sand, clay and hard lime	16	195	
Clay	12	207	
Clay with lime	11	218	

	THICKNESS (FEET)	DEPTH (FEET)
Shale, hard	16	290
Lime, hard sandy, and shale	16	306
Lime, hard	13	319
Shale and lime	11	330
Sand and shale	68	398
Sand	24	422

Well TS-60-44-702

Owner: H. E. Norman Driller: Con-Tex Water Well Co.

Sand and gravel, red	22	22
Clay with gravel, brown	86	108
Sand, hard streaks	4	112
Sand	7	119
Clay	16	135
Sand	25	160

Well TS-60-44-801

Owner: Superior Oil Co. Driller: Luther Patterson

Soil	24	24
Sand	21	45
Shale	44	89
Sand	49	138
Shale	2	140
Shale, sandy	23	163

Well TS-60-45-105

Owner: Panorama Development Co. Driller: Layne-Texas Co.

Clay, sandy and clay	5	5
Clay, sandy	7	12
Sand, brown	13	25
Sand and gravel	25	50
Сіау	57	107
Sand, fine brown	31	138
Shale and sandy shale	353	491
Shale, sandy and streaks of sand	58	549
Shale and sandy shale	75	624
Sand, broken and streaks of shale	31	655
Shale, sandy and streaks of sand	115	770

274

56

Shale, hard and lime

THICKNESS DEPTH (FEET) (FEET)

Well TS-60-45-105-Continued

Sand, fine	15	785
Shale	23	808
Sand, broken	21	829
Shale	3	832
Sand	24	856
Shale	19	875
Sand	15	890
Shale, sandy and streaks of sand	10	9 00
Sand	21	921
Shale, sandy and streaks of sand	29	950
Sand and gravel	76	1,026
Sand	67	1,093
Shale	10	1,103

Well TS-60-45-201

Owner: Montgomery County Airport Driller: Layne-Texas Co.

Sand	4	4
Сіау	17	21
Clay, sandy	22	43
Сіау	8	51
Sand	19	70
Clay	3	73
Sand	14	87
Sand and gravel	17	104
Clay, sandy	16	120
Clay and boulders	21	141
Shale, hard	8	149
Rock	1	150
Shale, hard	54	204
Shale, sandy	20	224
Shale, hard	61	285
Rock	3	288
Shale, hard streaks	248	536
Shale, sandy	35	571
Sand	21	592
Shale, sandy	5	597
Sand and gravel	10	607
Shale	2	609

Well TS-60-45-402 Owner: City of Conroe Driller: Katy Drilling Co			
	40	10	
	12	12	
Clay	47	59	
Sand	60	119	
Clay	14	133	
Sand	37	170	
Clay	59	229	
Sand with rock strips	27	256	
Clay, hard	132	388	
Sand	20	408	
Clay with sand strips	67	475	
Sand	55	530	
Clay	41	571	
Sand	50	621	
Clay	3	624	
Sand	31	655	
Clay	30	685	
Sand	35	720	
Clay	77	797	
Sand	14	811	
Clay	16	827	
Sand	21	848	
Clay	35	883	
Sand	21	904	
Rock	1	905	
Sand	1	906	
Clay	19	925	
Rock and sand	77	1,002	
Clay	25	1,027	
Sand and limerock	122	1,149	
Shale, hard	156	1,305	
Sand, hard and rocky	18	1,323	
Shale, hard	78	1,401	

THICKNESS DEPTH (FEET)

(FEET)

Well TS-60-45-407

Owner: Wayne H. Edwards Driller: Con-Tex Water Well Co.

Clay and red ore	12	12
Clay and red sand	12	24

	THICKNESS (FEET)	DEPTH (FEET)		THICKNESS (FEET)	DEPTH (FEET)
Well TS-60-45-407-(Continued		Shale, blue	30	518
Clay, red	41	65	Gumbo	10	528
Sand, red and white	51	116	Shale, blue	20	548
Clay and lime	62	178	Shale, chocolate	18	566
Sand	38	216	Rock	3	569
Clay and lime	86	302	Sand, blue shale and boulders	59	628
Shale, sandy with sand streaks	32	334	Sand and blue shale mixed	41	669
Lime, hard and shale	4	338	Shale, chocolate	20	689
Sand and lime	9	347	Gumbo, soft	20	709
Lime, hard	2	349	Shale, blue	41	750
Shale and lime	70	419	Shale, hard	20	770
Shale with sand streaks	52	471	Rock, soft and chocolate shale	20	790
Shale, hard and lime	8	479	Shale	17	807
Sand	32	511	Rock, soft	3	810
	100		Gumbo, soft	40	850
Well TS-60-45	-408		Gumbo, tough	40	890
Owner: J. S. Hunt and Driller: Layne-Te	I R. E. Floyd exas Co.		Shale	19	9 09
Sand and clay	22	22	Rock, soft	20	929
Sand, white	38	60	Gumbo and boulders	61	990
Clay, yellow	55	115	Gumbo, tough	20	1,010
Sand	14	129	Gumbo	20	1,030
Clay	15	144	Sand and shale mixed	20	1,050
Sand	19	163	Water sand	41	1,091
Sand and gravel	12	175	Rock, soft and sand	20	1,111
Clay, yellow	58	233	Water sand	41	1,152
Sand	10	243	Sand and gravel	20	1,172
Clay	81	324	Well TS-60-	45-505	
Shale	14	338	Owner: City of C	oproe Well 1	
Clay	7	345	Driller: D. G	i. Hamil	
Rock	1	346	Clay, red	60	60
Clay	20	366	Sand	30	90
Shale, blue and brown	20	386	Clay	15	105
Clay, tough	40	426	Sand	35	140
Shale	21	447	Сіау	45	185
Gumbo	10	457	Sand	45	230
Shale, blue	18	475	Clay	75	305
Rock	2	477	Sand	12	317
Gumbo	11	488	Clay	63	380

	THICKNESS (FEET)	DEPTH (FEET)		THICKNESS (FEET)	DEPTH (FEET)
Well TS-60-45-505	-Continued		Rock, sand	16	334
Sand	10	390	Gumbo	42	376
Rock, sand	4	394	Rock	2	378
Sand	18	412	Gumbo	85	463
Shale	186	598	Rock	2	465
Rock, hard	14	612	Gumbo and shale	102	567
Sand, fine and blue	28	640	Rock, lime	22	589
Shale, chocolate	80	720	Sand	9	598
Shale, chocolate and scattering rock	170		Shale	33	631
Bock, hard	170	890	Gumbo	51	682
Shale	6	896	Sand, hard	13	695
Shale scattering rock	64	960	Shale and gumbo	41	736
Bock and cand bearing water	120	1,080	Sand, red	29	765
Rock bord	150	1,230	Gumbo and shale	180	945
Shele hive	6	1,236	Rock	23	968
Shale, blue	24	1,260	Shale, tough blue and gumbo	18	986
	7	1,267	Gumbo and shale	61	1.047
	33	1,300	Rock and sand	9	1.056
	20	1,320	Shale, tough	5	1.061
Shale, blue	20	1,340	Rock	3	1 064
Gumbo, blue	15	1,355	Gumbo	23	1 087
HOCK	25	1,380	Sand, coarse	24	1 1 1 1
Shale, chocolate	32	1,412	Sand and rock		1 1 1 9
Rock, soft	8	1,420	Shale and gravel	, 21	1 1 20
Sand, blue	16	1,436	Sand	- 1	1,135
Rock	28	1,464	Shale, tough and soft rock	46	1 102
Well TS-60-45	-506		Sand, coarse	22	1,192
Owner: Gulf, Colorado	and S.F. R.R.		Rock, sand	20	1,214
Driller: R. C. D	avant		Sand, coarse	33	1,240
Sand and clay	14	14	Shale, tough	6	1,270
Clay, yellow	44	58		0	1,202
Sand, coarse	24	82	Well TS-60-4	5-605	
Clay, yellow	99	181	Owner: Jefferson Chen Driller: Lavne-T	nical Co., Well 6 Texas Co	
Sand, yellow	21	202	Clay, red	19	10
Clay, tough red	33	235	Clay, white	70	18
Rock, sand	6	241	Sand	16	90
Gumbo, gray	55	296	Clav. red	10	106
Rock, sand	7	303	Sand	22	128
Gumbo	15	210		35	163

Shale

5

168

318

15

Gumbo

	THICKNESS (FEET)	DEPTH (FEET)
Well TS-60-45-	-606	
Owner: Jefferson Chemi Driller: Layne-Te	cal Co., Well 4 xas Co.	
Clay	85	85
Sand, yellow and gravel	25	110
Shale	5	115
Sand, white	52	167
Sand, fine	30	197
Shale	9	206
Shale and sandy shale	15	221
Shale	81	302
Shale, sandy	21	323
Shale	37	360
Sand, fine and hard streaks	18	378
Shale	118	496
Sand, fine	10	506
Shale, sandy and streaks of shale	24	530
Shale	48	578
Sand, fine	37	615
Shale	42	657
Sand, fine	24	681
Rock	2	683
Sand and lignite	10	693
Shale	38	731
Shale and sandy shale	24	755
Sand	5	760
Shale, sandy	14	774
Sand, fine and shale streaks	9	783
Sand and layers of rock	14	797
Shale and sandy shale	12	809
Shale and sticky shale	76	885
Rock and hard sand streaks	7	892
Sand	12	904
Rock	2	906
Shale	34	940
Shale, sandy	7	947
Sand	26	973
Shale	13	986
Sand, fine and layers of sandy shale	44	1,030

	THICKNESS (FEET)	DEPTH (FEET)
Shale, sandy	12	1,042
Sand	42	1,084
Shale and sandy shale	18	1,102
Shale, sandy	10	1,112
Sand, fine	8	1,120
Shale and sandy shale	46	1,166
Sand, broken	12	1,178
Shale, sandy and sand streaks	36	1,214
Shale, sandy	21	1,235
Shale	26	1,261
Shale, sandy and sand streaks	40	1,301
Sand	24	1,325
Shale, sandy	12	1,337
Shale	16	1,353

Well TS-60-45-607

Owner: Jefferson Chemical Co., Well 5 Driller: Layne-Texas Co.

Soil	3	3
Clay	62	65
Clay, sandy and streaks of sand	13	78
Sand	27	105
Clay	20	125
Sand and streaks of clay	42	167
Clay, sandy	5	172

Well TS-60-45-608

Owner: Columbia Carbon Co., Well 9 Driller: Layne-Texas Co.

Fill	2	2
Clay, soft	12	14
Clay, white	18	32
Clay and breaks of sandy clay	30	62
Sand, coarse and gravel	43	105
Clay and streaks of coarse sand	29	134
Clay, hard	17	151
Clay and streaks of sand	90	241
Clay and few boulders	103	344
Clay and boulders	77	421
Shale, streaks of sand, and boulders	121	542

	THICKNESS (FEET)	DEPTH (FEET)
Well TS-60-45-608-	Continued	
Rock, sand	2	544
Shale	14	558
Shale and sandy shale	18	576
Shale, sandy shale, and sand breaks	38	614
Shale, hard	165	779
Sand	3	782
Sand and shale	8	790
Shale and sandy shale	76	866
Shale and rock layers	5	871
Rock	3	874
Sand, fine	24	898
Shale and sandy shale	24	922
Sand and shale streaks	15	937
Shale	31	968
Sand	7	975
Boulders	4	979
Shale, sand and breaks of fine sand	11	990
Shale, hard	21	1,011
Sand, fine green	61	1,072
Sand, fine and breaks of shale	19	1,091
Shale and breaks of sandy shale	19	1,110
Shale and sand breaks	5	1,115

Well TS-60-45-703

Owner: Camp Martha F. Madeley (Girl Scouts of America) Driller: Lowry Water Wells, Inc.

Clay, gray	10	10
Sand	45	55
Shale	19	74
Sand with broken shale	100	174
Shale, white, soft	90	264
Clay, tough, white	82	346
Sand and sandrock	14	360
Clay, tough, white	139	499
Sand with white clay	16	515
Gumbo, sandy and tough	42	557
Sand, tough, broken	32	589
Shale, sandy	18	607

	THICKNESS (FEET)	DEPTH (FEET)
Sand, good	23	630
Shale, sandy	5	635
Sand, broken and shaley	8	643
Well TS-60-45	-805	
Owner: Walter M. Driller: Layne-Te	Mischer xas Co.	
Clay, sandy	3	3
Sand and gravel	20	23
Clay	21	44
Sand	21	65
Clay	23	88
Clay, sandy	6	94
Sand	50	144
Clay	5	149
Sand	4	153
Clay	11	164
Sand and clay layers	31	195
Clay	16	211
Sand	4	215
Clay	29	244
Hard streaks	2	246
Sand	4	250
Clay	71	321
Clay and hard layers	5	326
Sand	14	340
Clay and sand	4	344
Clay, sand and hard layers	18	362
Clay	36	398
Sand and clay layers	10	408
Clay and sand streaks	9	417
Clay, sticky	8	425
Clay, sand streaks and hard layers	70	495
Clay, sandy	35	530
Clay	10	540
Clay, sandy	50	590
Sand and hard streaks	26	616
Shale	2	618
Sand and shale layers	66	684

	THICKNESS (FEET)	DEPTH (FEET)
Well TS-60-45-805-Co	ontinued	
Shale, sandy and sand	25	709
Shale and sandy shale	28	737
Sand and shale layers	11	748
Shale and sandy shale	42	790
Shale, sand and hard streaks	10	800

Well TS-60-46-102

Owner: Thelbert Sheffield Driller: Keens Water Wells

Clay	17	17
Sand	13	30
Clay	13	43
Sand	58	101
Clay	16	117
Sand	18	135
Clay	5	140
Sand and gravel	29	169
Clay	6	175
Sand	5	180
Clay	2	182

Well TS-60-46-204

Owner: Rigley Owens (KNRO Radio) Driller: Con-Tex Water Well Co.

Clay and sand	8	8
Clay and iron ore	10	18
Sand and clay, red	7	25
Sand	35	60

Well TS-60-46-303

Owner: William G. Vaughn Driller: Con-Tex Water Well Co.

Clay and iron ore	44	44
Sand with clay, red	4	48
Sand	35	83
Clay	2	85
Sand	36	121

Driller: Con-Tex Wat	ter Well Co.	
Clay and sand, red	34	34
Clay with sand streaks	5	39
Sand, white	20	59
Sand and white gravel	43	102
Sand and red gravel	33	135
Sand, hard	12	147
Sand, gray and black	11	158
Shale, blue	30	188
Sand streaks and shale	6	194
Sand streaks, hard and shale	18	212
Sand	6	218
Shale, sandy blue	9	227

Well TS-60-46-707

Owner: Charles B. Wrightsman

THICKNESS

(FEET)

DEPTH

(FEET)

Well TS-60-46-708

Owner: Pladger Phenix Driller: Con-Tex Water Well Co.

СІау	17	17
Sand	13	30
Sand and gravel	13	43
Clay and sand	6	49
Sand	16	65
Shale, blue	15	80
Shale and hard sand streaks	7	87
Sand, hard	2	89
Sand	27	116
Shale	18	134
Sand	30	164
Sand, shale and lime	32	196

Well TS-60-46-801

Owner: Humble Oil Co. Driller: Luther Patterson

СІау	24	24
Shale, sandy	21	45
Shale	66	111
Sand and rock	74	185
Shale	250	435

	THICKNESS (FEET)	DEPTH (FEET)		THICKNESS (FEET)	DEPTH (FEET)
Well TS-60-46-801	-Continued		Sand, broken	45	168
Shale, sandy	41	476	Rock	2	170
Shale	43	519	Shale	34	204
Shale, sandy	69	588	Sand, broken	51	255
Shale	14	602	Shale	98	353
Rock	30	632	Sand	7	360
Shale	8	640	Shale	7	367
Sand	30	670	Sand	30	397
Well TS-60-4	17-606		Shale	5	402
Owner: Foster Lumb	ar Co. Woll 1		Sand	28	430
Driller: W. J.	. Giles		Shale	106	536
Sand and gravel	60	60	Rock	2	538
Clay, red	40	100	Shale	113	651
Gravel and gumbo	50	150	Sand	19	670
Sand, packed	25	175	Shale	22	692
Rock, gray	20	195	Sand	28	720
Gumbo	25	220	Shale	18	738
Sand, packed	27	247	Sand	52	790
Gumbo	135	382	Shale	14	804
Sand	10	392	Sand	62	866
Gumbo	27	419	Sand, broken	41	907
Gravel	21	440	Shale	4	911
Gravel and gumbo	18	458	Sand	26	937
Gumbo	76	534	Shale	177	1,114
Gravel	30	564	Sand	23	1,137
Gumbo	22	586	Shale	7	1,144
Rock	2	588	Sand	60	1,204
Boulders	8	596	Shale	5	1,209
Gumbo	10	606	Sand	5	1,214
Shale and gumbo	160	766	Shale	5	1,219
Water-bearing sand and gravel	40	806		Well TS-60-50-302	
Well TS-60-47-609			Owner: City of Magnolia		
Owner: Foster Lumb Driller: Lavne-T	er Co., Well 5 exas Co		Clay vellow	Driller: McMasters-Pomeroy	
No record	4	Д	Sand	/5	/5
Soil and clay	20	24	Clav	20	95
Sand, broken	71	95	Sand	20	121
Shale, sandy	28	123	Pack sand	25	146
	~~			42	188

	THICKNESS (FEET)	DEPTH (FEET)
Well TS-60-50-302-C	ontinued	
Hard rock	16	204
Sand and boulders	74	278
Gumbo	125	403
Rock	2	405
Gumbo and boulders	110	515
Sand, hard pack	89	604
Sand, fine-grained	36	640
Shale, brown	67	707
Rock, hard lime	1	708
Shale, brown	10	718
Sand	23	741
Pack sand	32	773
Gumbo	10	783
Hard sand	25	808
Shale, brown	20	828
Sand	7	835
Shale and gumbo	148	983
Sand and shale	45	1,028
Gumbo	38	1,066
Sand and gravel	19	1,085
Gumbo	97	1,182
Shale and boulders	10	1,192
Gumbo, tough	108	1,300
Sand and gumbo	7	1,307
Rock	2	1,309
Sand	12	1,321
Lime rock	4	1,325
Sand	22	1,347
Gumbo	4	1,351
Rock	4	1,355
Sand	28	1,383
Gumbo, sand and lime	6	1,389
Pack sand	41	1,430
Shale, blue	16	1,446
Gumbo, tough	6	1,452

Owner: T. A. Satterwhite Driller: Leo R. Doyle			
Clay, red	45	45	
Sand	10	55	
Clay, brown	5	60	
Sand	7	67	
Clay, white, brown	23	90	
Sand	20	110	
Clay, white	10	120	
Sand	20	140	
Clay	5	145	
Sand	25	170	

Well TS-60-51-103

THICKNESS DEPTH

(FEET)

(FEET)

Well TS-60-51-204

Owner: Frank McWhorter Driller: C. A. Rudel

Clay, red	50	50
Sand, fine	10	60
Sand, mixed and clay	20	80
Clay, red	30	110
Clay, bluish	40	150
Sand	20	170

Well TS-60-51-301

Owner: Superior Oil Co., Well 3 Driller: Layne-Texas Co.

Soil	3	3
Clay and gravel	9	12
Sand	5	17
Clay, yellow	61	78
Sand and clay layers	78	156
Clay	6	162
Sand and fine gravel	45	207
Clay	3	210

Well TS-60-51-302

Owner: Superior Oil Co., Well 2 Driller: Layne-Texas Co.

Sandy soil	3	3
Sand, red and clay and gravel	18	21

	THICKNESS (FEET)	DEPTH (FEET)	
Well TS-60-51-302Cc	ontinued		
Sand, yellow and fine gravel	17	38	
Clay, red and yellow	61	99	
Sand	32	131	
Clay, soft yellow	15	146	
Sand	61	207	
Clay, yellow	з	210	
Well TS-60-51-50	06		
Owner: Lester Good Driller: Lowry Water W	dson ells, Inc.		
Clay, red, iron ore	30	30	
Sand, red	52	82	
Clay, white	44	126	
Sand, good	37	163	
Shale, broken	10	173	
Sand, broken	10	183	
Sand, good	28	211	
Well TS-60-51-90	2		
Owner: Dr. M. D. Mer Driller: C. A. Rud	edith el		
Clay, red	60	60	
Sand, fine	10	70	
Sand and clay mixed	20	90	
Clay, yellow	30	120	
Clay, bluish, soft	30	150	
Clay streaks and rock	10	160	
Water sand	20	180	
Well TS-60-52-101	I		
Owner: Superior Oil Co., Driller: Layne-Texas	. Well 1 Co.		:
Soil	14	14	
Clay	51	65	;
Clay , sandy	20	85	:
Sand, fine-grained and clay	49	134	(
Clay, sandy	19	153	5
Sand	9	162	5
Clay, sandy	20	182	ę

Sand, coarse-grained

	THICKNESS (FEET)	DEPTH (FEET)
Clay	60	282
Sand	44	326
Clay	33	359
Sand, coarse-grained	7	366
Clay and sandy clay	42	408
Sand	6	414
Clay	18	432
Sand	4	436
Sand and clay	28	464
Rock	1	465
Clay	14	479
Sand	6	485
Shale	16	501
Sand, fine-grained, and hard layers	26	527
Shale	66	593
Sand	32	625
Sand with thin clay layers	8	633
Clay	26	659
Sand	17	676
Clay	18	694
Sand	72	766
Clay	10	776

Well TS-60-52-104

Owner: Superior Oil Co. Driller: Layne-Texas Co.

Soil	4	4
Clay	75	79
Sand	53	132
Clay	3	135
Sand	124	259
Clay	51	310
Sand	9	319
Sand, broken and clay	49	368
Clay	3	371
Shale	78	449
Sand, fine-grained	18	467
Shale and layers of sand	40	507
Shale	23	530

222

40

	THICKNESS (FEET) Well TS-60-52-104—Continued	DEPTH (FEET)
Sand	10	540
Gumbo	5	545
Clay	49	594
Sand	56	650
Rock	1	651
Clay	40	691
Sand, broken	7	698
Sand	54	752
Clay, sandy	8	760
Sand	24	784
Clay	5	789
Well TS-60-52-706		
Owner: J. M. Williams Driller: Norman R. Corgey		

Soil	9	9
Clay	9	18
Sand	22	40
Clay	5	45
Sand	30	75
СІау	15	90
Gravel	10	100
Clay	4	104
Sand	6	110
Clay	8	118
Sand	23	141

Well TS-60-52-806

Owner: Frank Martin Driller: Leo Doyle

Clay	17	17
Sand	33	50
Clay	25	75
Sand	20	95
Clay	15	110
Sand	24	134

	(FEET)	(FEET)		
Well TS-60-53-102				
Owner: John F. Driller: Con-Tex Wa	Adams ter Well Co.			
Clay with red sand	24	24		
Sand with gravel	16	40		
Clay with red gravel	23	63		
Sand and gravel	15	78		
Well TS-60-53	3-103			
Owner: W. G. Jones State Forest Driller: Frye Drilling Co.				
Soil	12	12		
Sand, red and clay	10	22		
Sand and gravel	20	42		
Clay, sandy	30	72		
Shale and gravel	10	82		
Gumbo, yellow	30	112		
Sand	20	132		

THICKNESS

10

40

10

20

142

182

192

212

DEPTH

Owner: W. G. Jones State Forest Driller: Layne-Texas Co.		
Clay	30	30
Sand and gravel	50	80
Clay	41	121
Sand	88	209

Well TS-60-53-104

Sand and thin shale

Shale with thin shale layers

Shale and sand

Shale

Well TS-60-53-202

Owner: Ted Brannon Driller: Con-Tex Water Well Co.

Sand, white	23	23
Clay, red	8	31
Sand, red and white	21	52
Clay with gravel	35	87
Sand	12	99

THICKNESS	DEPTH	THICKNESS	DEPTH
(FEET)	(FEET)	(FEET)	(FEET)

Well TS-60-53-302

Owner: C, Layton		
Driller: Con-Tex Water Well Co.		

Sand	5	5
Clay	15	20
Sand	20	40
Clay	20	60
Sand	12	72
Clay	9	81
Sand	11	92
Clay	13	105
Sand, coarse, white	43	148
Clay	12	160
Sand, fine white	35	195

Well TS-60-53-805

Owner: Lake Chateau Woods Driller: Con-Tex Water Well Co.

Sand and clay, red	25	25
Sand and gravel, red	46	71
Clay	8	79
Sand	14	93
Clay with lime	76	169
Sand	28	197
Clay with lime	11	208
Sand and gravel	28	236

Well TS-60-54-101

0	wner: Hui	mble C	lub	
Driller:	Con-Tex	Water	Well	Co.

14	14
19	33
15	48
10	58
17	75
27	102
28	130
16	146
29	175
20	195
	14 19 15 10 17 27 28 16 29 20

Well TS-60-54-402

Owner: G. A. Nelson Driller: Con-Tex Water Well Co.

Clay and gravel	28	28
Sand, white and gravel	23	51
Clay	29	80
Sand and clay streaks	15	95
Clay, blue and gravel	22	117
Sand	13	130

Well TS-60-54-604

Owner: John F. Freeman Driller: Con-Tex Water Well Co.

Сіау	18	18
Sand and gravel	11	29
Clay and sand	11	40
Sand	10	50
Clay and sand	6	56
Sand and gravel	22	78
Shale	4	82
Sand	38	120

Well TS-60-55-202

Owner: L. E. Jernigen Driller: Noak Drilling Co.

Clay, red and iron ore	22	22
Clay, white	8	30
Sand and fine gravel	34	64
Clay, red and white	8	72
Sand	48	120
Sand and clay streaks	10	130
Clay, red and white	35	165
Sand	11	176
Clay	3	179
Sand	9	188
Sand and lime with rock streaks	6	194
Clay	39	233
Sand	25	258

Sand

THICKNESS	DEPTH
(FEET)	(FEET)

Well TS-60-55-504

Owner: Philip Dearing Driller: C & C Contractors

Soil, sandy	2	2
Iron ore, sandy	8	10
Shale, off white	8	18
Sand, reddish and shale	8	26
Clay, gray	14	40
Shale, red and blue	8	48
Water sand and gravel	32	80

Well TS-60-55-801

Owner: John Calhoun Driller: Con-Tex Water Well Co.

Clay	12	12
Sand, red	38	50
Clay	12	62
Sand, red	38	100
Clay	16	116
Sand, white, coarse	53	169

Well TS-60-55-901

Owner: D. V. Robinson Driller: Noak Drilling Co.

Soil	7	7
Clay, red	3	10
Water sand	4	14
Clay, blue	6	20
Sand and gravel	17	37
Clay, blue with streaks	5	42
Sand, fine-grained	16	58
Sand, coarse and fine gravel	12	70
Clay, blue with streaks	2	72
Sand, fine	10	82

Well TS-60-55-904

Owner: San Jacinto Girl Scouts Driller: Lowry Water Wells, Inc.

Clay, red	37	37
Sand	94	131
Clay, white and shale	37	168

	THICKNESS (FEET)	DEPTH (FEET)
Sand	24	192
Shale, loose and broken	116	308
Sand, top loose and broken	28	336
Sand, good	17	353

Well TS-60-55-905

	Owner: San Jacinto G Driller: Lowry Water V	vner: San Jacinto Girl Scouts iller: Lowry Water Wells, Inc.	
Clay, red		35	35

Well TS-60-58-205

Owner: A. D. McMillian

101

66

Driller: Tomball Drilling Co.

Soil	5	5
Shale	3	8
Sand and broken rock	12	20
Shale, sandy	6	26
Sand	29	55
Shale	3	58
Sand, gravel and iron ore	28	86
Shale, blue	64	150
Sand	10	160

Well TS-60-61-206, partial log

Owner: C. L. Fitch Driller: Brains

Clay	20	20
Sand, white	79	99
Clay	3	102
Sand, white	36	138
Clay	11	149
Sand	4	153
Gumbo	37	190
Sand, hard	26	216
Shale and boulders	40	256
Rock and gumbo	10	266
Rock and sand	13	279
Shale and boulders	21	300
Shale, red and brown	68	368
Gumbo, red	11	379

	THICKNESS (FEET)	DEPTH (FEET)	
Well TS-60-61-206, pa	rtial log-Continued		Sand and boulders
Sand, hard	15	394	Shale, blue
Gumbo, pink	102	496	Pack sand and boulders
Rock	2	498	Shale, blue
Shale, brown	32	530	Sand, hard white
Gumbo, pink	10	540	Sand, blue and white
Shale, brown	12	552	Gumbo
Gumbo, pink	10	562	Total depth
Rock	2	564	
Gumbo	5	569	
Rock	1	570	0
Gumbo, pink	10	580	Shale, yellow
Sand and boulders	8	588	Water sand with streaks
Gumbo, pink and boulders	47	635	Sand and shale
Shale, blue	15	65 0	Shale
Gumbo, pink	13	663	Sand and shale
Shale, sandy	14	677	Shale and shells
Gumbo, pink	51	728	Sand with streaks of sha
Sand, blue	22	750	Shale
Sand, blue water	15	765	Sand
Shale, blue	23	788	Shale
Shale, white sandy	4	792	Shale, sticky
Rock, hard	17	809	Shale, sandy
Shale, blue	17	826	Shale
Water sand	92	918	Shale, sandy
Gumbo	32	950	Shale
Shale, sandy and boulders	45	995	Sand
Gumbo	15	1,010	Shale
Lime, sandy	25	1,035	Sand, hard
Shale and gumbo	49	1,084	Sand, hard, lime and shel
Shale, sandy and boulders	16	1,100	Shale
Gumbo and lime	95	1,195	Shale and shells
Shale, blue and boulders	15	1,210	Shale with streaks of sand
Gumbo	8	1,218	Sand
Water sand	7	1,225	Shale and shells
Gumbo, pink, blue and brown	90	1,315	Shale and lime
Sand, blue gumbo	3	1,318	Shale and shells
Shale, pink and blue	10	1,328	Shale with sand streaks

	THICKNESS (FEET)	DEPTH (FEET)
Sand and boulders	43	1,371
Shale, blue	16	1,387
Pack sand and boulders	15	1,402
Shale, blue	32	1,434
Sand, hard white	6	1,440
Sand, blue and white	15	1,455
Gumbo	75	1,530
Total depth		2,285

Well TS-60-62-301

Owner: Floyd Oil Co. Driller: -

10	590	Shale vellow		
	500		45	45
8	588	Water sand with streaks of shale	291	336
47	635	Sand and shale	84	420
15	65 0	Shale	45	465
13	663	Sand and shale	731	1,196
14	677	Shale and shells	130	1,326
51	728	Sand with streaks of shale	61	1,387
22	750	Shale	217	1,604
15	765	Sand	25	1,629
23	788	Shale	53	1,682
4	792	Shale, sticky	78	1,760
17	809	Shale, sandy	280	2,040
17	826	Shale	920	2,960
92	918	Shale, sandy	35	2,995
32	950	Shale	45	3,040
45	995	Sand	40	3,080
15	1,010	Shale	126	3,206
25	1,035	Sand, hard	8	3,214
49	1,084	Sand, hard, lime and shell	58	3,272
16	1,100	Shale	118	3,390
95	1,195	Shale and shells	322	3,712
15	1,210	Shale with streaks of sand	90	3,802
8	1,218	Sand	70	3,872
7	1,225	Shale and shells	359	4.231
0	1,315	Shale and lime	225	4,456
3	1,318	Shale and shells	310	4 766
0	1,328	Shale with sand streaks	16	A 792
				4,102

THICKNESS	DEPTH
(FEET)	(FEET)

Well TS-60-62-301—Continued			
Shale	188	4,970	
Sand, hard	4	4,974	
Shale, sandy	41	5,015	
Shale and lime shells	130	5,145	
Shale and shells	140	5,285	
Shale, sandy	40	5,325	
Shale with streaks of sand	84	5,409	
Shale and shells	252	5,661	
Shale with breaks of lime and shell	706	6,367	
Shale	250	6,617	

Well TS-60-62-601

Owner: Baker Brothers Driller: H. R. Adams

Sand	150	150	
Clay, red	15	165	
Sand and boulders	25	190	
Clay	15	205	Clay
Sand	45	250	Sand
Clay and gravel	30	280	Clay
Sand	45	325	Sand
Gumbo, blue	15	340	Rock
Sand	55	395	Clay
Clay, sandy	20	415	Sand
Clay	35	450	Clay
Sand	90	540	Sand
Clay	25	565	Clay
Sand	65	630	Sand
Clay	20	650	Clay
Sand	80	730	Sand
Gumbo	10	740	Clay
Clay, sandy	26	766	Sand
Gumbo	20	786	Rock
Artesian water sand	94	880	Sand
Gumbo, tough	6	886	
Gumbo	24	910	
Shale, sandy	22	932	
Sand	3	935	Soil
Shale, sandy	5	940	Sand

	THICKNESS (FEET)	DEPTH (FEET)
Sand	8	948
Shale	4	952
Sand	6	958
Gumbo	9	967
Sand	13	980
Gumbo	12	992

Well TS-60-63-101

Owner: H. L. McConnell Driller: C & C Contractors

Soil	3	3
Clay, yellowish-brown	37	40
Sand, fine	10	50
Clay, bluish	6	56
Water sand	18	74

Well TS-60-63-105

Owner: New Laney Independent School Dist. Driller: Noack

lay	60	60
and	37	97
Clay	44	141
and	4	145
lock and sand	7	152
Clay	29	181
and	14	195
Clay	7	202
and	41	243
Clay	41	284
and	11	295
Clay	11	306
and	3	309
Clay	5	314
and	38	352
lock and clay	14	366
and	27	393

Well TS-60-63-403

Owner: V. H. Edwards Driller: C & C Contractors

3	3
35	38

	THICKNESS (FEET)	DEPTH (FEET)		THICKNESS (FEET)	DEPTH (FEET)
Well TS-60-63-403-0	Continued		Shale	76	712
Clay, streaks of red and blue	9	47	Sand and shale streaks	36	748
Shale, hard blue	14	61	Sand	23	771
Water sand, gray with black specks	20	81	Shale	16	787
			Sand and shale streaks	5	792
Grimes Coun	ty		Sand	43	835
Well KW-60-42	802		Shale	17	852
Owner: — Driller: Seismograp	oh Crew		Shale, sandy	15	867
Sand, fine-grained	18	18	Sand	12	879
Clay, sandy	39	57	Shale	4	883
Sand, fine-grained	13	70	Shale, sandy	8	891
Clay, calcareous	265	335	Shale	8	899
Silt, fine-grained sand, some lime	32	367	Sand and shale streaks	15	914
Clay, calcareous	40	407	Sand	15	929
Sand, some lime	21	428	Shale, blue and gray	56	985
Clay, calcareous	10	438	Shale, sandy	21	1,006
Sand, some lime and clay breaks	34	472	Shale	26	1,032
Clay, calcareous	21	493	Shale, sandy	75	1,107
Sand, silty and some lime	12	505	Sand	43	1,150
Clay, calcareous	100	605	Shale	13	1,163
Sand, silty and some lime	20	625	Sand	26	1,189
Liberty Cour			Shale, sandy	5	1,194
Liberty Coun	101		Sand	26	1,220
Well SB-60-48-			Sand and shale streaks	25	1,245
Driller: Layne-Te	xas Co.		Shale	10	1,255
Sand	10	10	Shale, sandy	8	1,263
Clay	90	100	Sand	39	1,302
Sand and gravel	14	114	Sand and thin shale breaks	33	1,335
Shale, sandy	160	274	Shale	2	1,337
Sand	61	335	Well SB-60)-48-102	
Shale	44	379	Owner: City of Cl	eveland. Well 1	
Clay	10	389	Driller: Layne	э-Texas Co.	
Sand	7	396	Soil	8	8
Shale	32	428	Clay	44	52
Shale, sandy	69	497	Sand	24	76
Shale	51	548	Clay	14	90
Shale and sand	69	617	Sand	12	102
Sand, hard	19	636	Clay	24	126

Sand, hard

	THICKNESS (FEET)	DEPTH (FEET)		THICKNESS (FEET)	DEPTH (FEET)
Well SB-60-48-102-	-Continued		Sand	6	26
Clay, soft, sandy	18	144	Clay	24	50
Sand	9	153	Sand	29	79
Clay	54	207	Сіау	2	81
Sand	12	219	Sand	29	110
Clay	16	235	Clay	5	115
Clay breaks, sand and gravel	16	251	Sand	30	145
Clay	30	281	Clay	61	206
Sand	9	290	Sand, coarse and gravel	11	217
Sand and gravel	53	343	Clay	17	234
Clay	87	430	Gravel	51	285
Sand	24	454	Clay, soft, yellow, and sand	4	289
Clay	70	524	Sand and gravel	25	314
Hard layers	1	525	Clay with sand breaks	21	335
Clay, sandy, and breaks of sand	9	534	СІау	98	433
Сіау	84	618	Hard layers	1	434
Sand	18	636	Clay	61	495
Clay, sandy	4	640	Hard layers	2	497
Clay	8	648	Clay	29	526
Shale, hard, sticky	19	667	Hard layers	1	527
Clay	87	754	Clay	83	610
Sand	20	774	Sand	26	636
Clay	20	794	Clay	10	646
Sand breaks and shale	21	815	Gumbo	105	751
Sand	17	832	Sand	19	770
Shale	13	845	Shale, sticky	21	791
			Shale, hard, sandy	22	813
Well SB-60-44	8-103		Sand breaks and shale	17	830
Owner: City of Cleve Driller: Layne-T	erand, well 2 exas Co.		Shale, sticky	80	910
Soil	6	6	Sand	16	926
Clay, soft, yellow	14	20	Shale, sticky	3	929

	DATE	WATER LEVEL		DATE	WATER LEVEL		DATE	WATER LEVEL
	Montgomery Cou	nty	June	16, 1955	50.18	Feb.	9, 1966	50.86
	Well TS-60-35-20	01	Sept.	20	50.41	June	22	50.67
	Owner: Flower Fo	llett	Dec.	21	50.60	Dec.	2	50.85
Nov.	28, 1952	56.03	Feb.	14, 1956	50.63	Feb.	15, 1967	51.13
Dec.	22	55.87	June	13	50.83			
Feb.	2, 1953	55.99	Sept.	21	51.04	-	Well TS-60-3	7-401
June	22	55.98	Dec.	11	51.27		wner: City of W	illis, Well 1
Oct.	2	56.18	Feb.	19, 1957	51.36	June	10, 1942	180.70
Dec.	9	56.34	June	13	51.42	Dec.	9, 1955	185.11
Feb.	16, 1954	56.27	Sept.	13	51.62	Feb.	14, 1956	185.00
June	14	56.19	Dec.	12	51.70	Sept.	21	197.26
Sept.	28	56.54	Feb.	20, 1958	51.51	Dec.	11	187.07
Dec.	14	56.59	June	10	51.12	Feb.	19, 1957	186.71
Feb.	4, 1955	56.83	Sept.	17	51.37	June	13	186.33
June	16	57.03	Dec.	16	51.48	Sept.	13	187.18
Sept.	20	57.26	Feb.	12, 1959	51.33	Dec.	12	186.71
Dec.	21	57.94	June	16	51.37	Feb.	20, 1958	186.26
Feb.	12, 1956	57.37	Sept.	23	51.50	June	10	186.25
June	13	57.54	Dec.	17	51.38	Sept.	17	187.33
Sept.	21	59.91	Mar.	1, 1960	51.34	Dec.	16	187.08
Dec.	11	Dry	June	10	51.05	⊢eb.	12, 1959	186.53
Feb.	19, 1957	Dry	Sept.	19	50.99	June	16	186.70
June	13	Dry	Feb.	23, 1961	50.28	Sept.	23	187.05
Dec.	12	Dry	June	15	49.95	Mar.	1, 1960	186.27
		~	Dec.	13	50.07	Sept.	19	186.21
		2	Feb.	20, 1962	49.92	FeD.	23, 1961	185.19
Nov	29 1052	E0 22	June	19	49.87	Dec.	13	185.54
Dec	28, 1952	10.32	Sept.	25	50.10	FeD.	20, 1962	185.88
Eeb	2 1952	40.17	Dec.	14	50.36	Sept.	20	186.23
lune	2, 1900	49.30	Mar.	1, 1963	50.12	Dec.	14, 1962	186.48
Oct	2	49.30	Feb.	17, 1964	50.55	Fob	1, 1903	186.06
Dec	2	49.53	June	17	50.27	Feb.	17, 1964	186.61
Dec.	9 16 1054	49.48	Sept.	18	50.72	Feb.	10, 1965	188.04
100.	14	49.45	Dec.	2	50.60	Feb.	9, 1966	190.59
Sent	28	40.82	Feb.	2, 1965	50.48	reD.	19, 1967	190.69
Dec	20	43.03	June	1	50.49		Well TS-60-38	-801
Eah	1 1055	49.92	Sept.	16	50.68	с	Owner: Finch-Ja	icobsen
raD.	4, 1900	49.4/	Dec.	3	50.93	Dec.	9, 1965	21.96
						Sept.	13, 1966	21.49

ſ	DATE	WATER LEVEL	DA	ATE	WATER LEVEL	C	DATE	WATER LEVEL
Well	TS-60-38-801–0	Continued	v	Vell TS-60-45-	104	Sept.	18, 1947	39.11
Sept.	16, 1966	21.31	0	wner: R. E. Hi	x and	Dec.	18	39.92
Sept.	18	21.54		J. W. Bolingho	ouse	Feb.	18, 1948	39.94
Oct.	10	21.70	Oct.	3, 1940	44.40	June	16	40.88
Oct.	24	21.68	Dec.	5	44.20	Sept.	28	41.27
Oct.	25	21.74	Jan.	27, 1941	43.57	Dec.	16	41.80
Nov.	6	21.75	Feb.	26	43.35	Feb.	14, 1949	41.92
Nov.	21	21.88	Apr.	8	42.53	June	15	41.61
Nov.	23	21.90	June	3	42.16	Sept.	28	42.02
Dec.	2	21.87	July	3	41.82	Dec.	19	41.61
Dec.	13	21.87	Aug.	15	41.93	Feb.	14, 1950	40.86
Dec.	28	21.73	Sept.	19	42.02	June	20	39.78
Jan.	12, 1967	21.71	Nov.	4	40.67	Sept.	26	40.64
Feb.	13	21.69	Dec.	16	40.45	Dec.	7	41.38
Feb.	15	21.50	Jan.	22, 1942	40.43	Mar.	5, 1951	41.51
Feb.	28	21.56	May	7	39.10	June	19	42.32
Mar.	26	21.31	July	29	39.05	Sept.	20	42.98
Apr.	18	21.48	Sept.	18	38.72	Dec.	11	43.34
			Jan.	20, 1943	38.81	Feb.	11, 1952	43.32
	Well TS-60-38-	805	Mar.	28	39.53	June	23	43.97
C	Owner: Finch-Ja	cobsen	July	21	39.53	Sept.	9	44.14
Dec.	9, 1965	12.04	Aug.	26	39.66	Oct.	22	44.33
Sept.	9, 1966	13.71	Jan.	28, 1944	40.52	Feb.	2, 1953	44.53
Sept.	16	13.00	May	29	40.07	June	22	44.69
Sept.	18	13.11	July	21	40.48	Oct.	2	44.92
Oct.	24	13.92	Sept.	18	40.63	Dec.	9	44.93
Nov.	6	13.41	Dec.	13	40.94	Feb.	16, 1954	44.98
Nov.	21	13.45	Jan.	24, 1945	40.33	June	14	45.30
Nov.	23	13.51	Mar.	26	39.56	Sept.	28	45.49
Dec.	2	13.88	June	15	39.16	Dec.	14	45.54
Dec.	13	13.30	Jan.	11, 1946	39.76	Feb.	7, 1955	45.34
Dec.	28	13.17	Мау	27	39.07	June	16	45.74
Jan.	12, 1967	13.16	July	10	39.02	Sept.	20	Well
Feb.	13	14.06	Sept.	20	39.78			destroyed
Feb.	15	13.18	Dec.	6	39.30		Well TS-60-45	5-106
Feb.	28	13.20	Jan.	31, 1947	37.7 9		Owner: R. E.	. Hix
Apr.	18	12.96	Mar.	17	38.09	Nov.	13, 1931	16.00
			June	4	37.94	Nov.	25	15.98

	DATE	WATER LEVEL	ſ	DATE	WATER LEVEL	D	ATE	WATER LEVEL
Well	TS-60-45-106-0	Continued		Well TS-60-45	107	June	21, 1943	8.39
Dec.	2, 1931	15.46		Owner: J. M. I	Liles	Aug.	26	4.84
Dec.	9	12.90	June	10, 1940	10.86	Jan.	28, 1944	.63
Dec.	15	11.38	June	11	10.42	June	3	5.92
Dec.	22	9.79	June	12	10.20	July	21	8.60
Dec.	29	10.70	June	13	9.99	Sept.	18	9.54
Jan.	5, 1 932	5.42	June	15	9.88	Dec.	13	7.61
Jan.	12	2.18	June	21	10.22	Jan.	24, 1945	6.05
Jan.	19	6.41	June	26	10.54	Mar.	26	6.08
Jan.	28	4.78	July	1	10.20	June	15	6.88
Feb.	2	7.50	July	16	9.05	Jan.	11, 1946	7.07
Feb.	9	8.78	Aug.	21	11.12	May	27	4.89
Feb.	15	9.27	Oct.	4	12.13	July	10	6.21
Feb.	22	2.26	Dec.	5	9.29	Sept.	20	9.00
Mar.	7	5.59	Jan.	9, 1941	8.64	Dec.	6	5.43
Mar.	14	7.19	Jan.	18	8.48	Jan.	31, 1947	4.71
Mar.	21	8.66	Jan.	24	8.32	Mar.	17	6.57
Mar.	28	9.90	Jan.	31	8.54	June	4	6.49
Apr.	4	9.84	Feb.	14	8.50	Sept.	18	9.91
Apr.	11	11.06	Feb.	22	8.45	Dec.	18	8.93
Apr.	18	11.10	Feb.	27	8.19	Feb.	18, 1948	7.75
Apr.	25	11.25	Mar.	25	7.07	June	16	9.84
May	2	11.62	May	13	6.45	Sept.	28	11.36
May	9	11.95	May	27	7.70	Dec.	16	12.06
May	16	11.75	June	10	6.70	Feb.	14, 1949	10.48
July	25	14.60	June	20	5.62	June	15	9.59
Aug.	31	15.50	July	8	6.85	Sept.	28	11.19
Sept.	27	12.78	July	30	7.20	Dec.	19	7.19
Oct.	21	16.43	Aug.	15	7.98	Feb.	14, 1950	6.46
Feb.	7, 1938	31.71	Sept.	3	8.77	June	20	6.69
May	13	30.80	Sept.	19	9.26	Sept.	26	10.33
Oct.	26	43.84	Nov.	4	5.48	Dec.	7	11.45
Dec.	17	43.39	Dec.	16	7.24	Mar.	5, 1951	11.57
Jan.	26, 1939	43.96	Jan.	22, 1942	7.78	June	19	11.75
May	24	43.84	July	29	6.28	Sept.	20	12.59
Aug.	3	44.70	Sept.	18	1.85	Dec.	11	13.09
			Jan.	20, 1943	5.70	Feb.	11, 1952	12.36
			Mar.	28	7.23	June	23	11.02

i	DATE	WATER LEVEL	D	ATE	WATER LEVEL		DATE	WATER LEVEL
Well	TS-60-45-107-0	Continued	Oct.	4, 1940	12.59	Sept.	20, 1946	9.14
Sept.	12, 1952	12.56	Dec.	5	10.16	Dec.	6	5.87
Dec.	22	12.52	Jan.	9, 1941	9.44	Jan.	31, 1947	5.13
Feb.	2, 1953	13.17	Jan.	18	9.25	Mar.	17	6.88
June	22	10.53	Jan.	24	9.08	June	4	6.82
Oct.	2	12.17	Jan.	31	9.28	Sept.	18	9.96
Dec.	9	12.59	Feb.	14	9.21	Dec.	18	9.24
Feb.	16, 1954	10.80	Feb.	22	9.19	Feb.	18, 1948	8.09
June	14	11.99	Feb.	27	8.95	June	16	10.01
Oct.	28	13.16	May	25	7.88	Sept.	28	11.42
Dec.	14	11.91	May	13	8.26	Dec.	16	12.07
Feb.	7, 1955	9.69	May	27	8.34	Feb.	14, 1949	10.78
June	16	11.33	June	10	7.45	June	15	9.84
Sept.	20	12.61	June	20	6.52	Sept.	28	11.34
Dec.	21	13.18	July	8	7.66	Dec.	19	7.73
Feb.	14, 1956	10.85	July	30	7.91	Feb.	14, 1950	6.97
June	13	11.86	Aug.	15	8.61	June	20	7.04
Sept.	21	13.47	Sept.	3	9.31	Sept.	26	10.42
Dec.	11	13.75	Sept.	19	9.82	Dec.	7	11.98
Feb.	19, 1957	13.67	Nov.	4	6.40	Mar.	5, 1951	12.17
June	13	11.30	Dec.	16	7.93	June	19	12.33
Sept.	13	13.29	Jan.	29, 1942	8.16	Sept.	20	13.12
Dec.	12	10.90	Sept.	18	8.30	Dec.	11	13.64
June	1958	9.59	Jan.	20, 1943	7.69	Feb.	11, 1952	13. 06
	Well TS-60-45-1	108	Mar.	28	9.02	June	23	11.67
	Owner: J. M. L	iles	June	21	10.04	Sept.	12, 1953	13.14
June	8 1940	11.65	Aug.	26	10.28	Dec.	22, 1952	13.31
June	10	11.47	Jan.	28, 1944	8.92	Feb.	2	12.86
June	11	11.08	June	3	7.77	June	22	11.22
June	12	10.72	July	21	10.22	Oct.	2	12.79
June	13	10.79	Sept.	18	11.15	Dec.	9, 1953	13.22
June	15	10.75	Dec.	13	8.95	Feb.	16, 1954	11.58
June	21	10.94	Jan.	24, 1945	8.04	June	14	12.54
June	26	11.21	Мау	26	7.93	Sept.	28	13.23
July	1	10.94	June	15	8.64	Dec.	14	12.76
July	16	10.73	Jan.	11, 1946	9.00	Feb.	7, 1955	10.76
Aug.	21	11.66	May	27	6.88	June	16	12.02
			July	10	8.03	Sept.	20	13.22

	DATE	WATER LEVEL	DA	ΔTE	WATER LEVEL	D	ATE	WATER LEVEL
Well	TS-60-45-1080	Continued	١	Well TS-60-45-	504	Sept.	16, 1965	35.98
Dec.	21, 1955	13.79	Owner	: City of Conr	oe, Well 2	Dec.	3	30.77
Feb.	14, 1956	11.88	June	16, 1956	26.16	Feb.	9, 1966	27.76
June	13	12.56	Sept.	21	34.68	June	22	25.77
Sept.	21	14.03	Dec.	11	21.85	Dec.	2	24.14
Dec.	11	14.31	Feb.	19, 1957	21.17	Feb.	15, 1967	25.95
Feb.	19, 1957	14.29	June	13	23.10			. E0E
Apr.	25	12.08	Sept.	13	28.20	0	Well 13-00-4:	
June	13	12.03	Dec.	12	21.49	luna	2 1021	roe, wen 1
Sept.	13	13.83	Feb.	20, 1958	22.86	Aug	12	+ .02 2.72
Dec.	12	11.79	June	10	30.90	Aug.	12	3.73
Feb.	20, 1958	10.38	Sept.	17	25.48	June	15 1939	2.67
June	10	10.82	Dec.	16	25.48	Aug	3	1 79
Sept.	17	13.24	Feb.	12, 1959	24.92	Sent	25	7.69
Dec.	16	11.99	June	16	27.12	Dec.	19	1.65
Feb.	12, 1959	10.91	Sept.	23	32.01	Feb.	15, 1940	1.32
June	16	10.04	Dec.	17	25.13	May	1	.94
	Wall TS-60-45-	409	Mar.	1, 1960	26.11	June	28	2.30
Owne	r: Texas Hinhwa		June	10	28.95	Aug.	21	11.83
Nov.	18 1938	32.36	Sept.	19	30.77	Dec.	5	.40
Dec.	17	32.54	Feb.	23, 1961	35.70	Feb.	26, 1941	.09
Jan.	26, 1939	32.43	June	15	29.16	May	4	+ .65
Mar.	4	31.74	Sept.	19	28.43	June	3	+ .99
Mav	24	31.61	Dec.	13	33.84	July	3	+ .50
Aug.	3	32.15	Feb.	20, 1962	28.83	Sept.	3	1.35
Sept.	25	32.40	June	19	21.58	Nov.	4	+ .44
Dec.	19	33.00	Sept.	25	26.86	Dec.	16	+ .77
Feb.	15, 1940	32.80	Dec.	14	29.22	Jan.	22, 1942	+ .25
May	1	33.10	Mar.	1, 1963	22.88	May	7	+ .79
June	28	32.20	June	20	21.16	June	24	+ .90
Aug.	21	31.90	Oct.	4	27.71	Jan.	20, 1943	+ 1.07
Oct.	4	32.20	Dec.	2	22.90	June	21	.80
Dec.	5	31.50	Feb.	17, 1964	24.16	Aug.	26	.75
Jan.	27, 1941	30.20	June	17	24.37	Jan.	28, 1944	+ .66
Feb.	26	28.70	Sept.	18	33.80	May	29	+ 1.08
Apr.	8	27.99	Dec.	2	25.53	Sept.	18	4.65
June	3	27.42	Feb.	10, 1965	23.46			
July	3	25.80	June	1	24.53			

D	ΑΤΕ	WATER LEVEL	D	ATE	WATER LEVEL		DATE	WATER LEVEL
Well 1	S-60-45-505(Continued	Dec.	14, 1954	16.40	May	13, 1938	27.45
Dec.	13, 1944	.26	Føb.	4, 1955	23.82	Oct.	26	29.98
Jan,	24, 1945	.05	June	16	Well	Nov.	18	29.21
Mar.	26	1.62			destroyed	Dec.	17	29.50
June	15	6.50		Well TS-60-45	-507	Jan.	26, 1939	28.36
Jan.	11, 1946	3.95	O	wner: City of	Conroe	Mar.	4	26.72
May	27	1.33	Dec.	16, 1948	+ 12.00	May	24	28.56
July	10	10.57	Oct.	1954	2.00	Aug.	3	28.96
Sept.	20	4.30	Dec.	8, 1955	11.42	Sept.	25	29.56
Dec.	6	6.88	Jan.	13, 1967	20.21	Dec.	19	30.40
Jan.	31, 1947	5.87				Feb.	15, 1940	30.39
Mar.	17	+ .51		Well TS-60-45	5-706	May	1	29.90
June	4	.64	Ov	vner: Elizabeti	n Moody	June	28	29.52
Sept.	18	2.63	May	1941	Flows	Aug.	25	29.94
Sept.	28, 1948	11.11	Nov.	9, 1966	4.22	Oct.	4	30.25
Dec.	16	3.40	Feb.	28, 1967	4.23	Dec.	5	Well
Feb.	14, 1949	2.44		Well TS-60-4	5-801			destroyed
June	15	2.30		Owner: L. Jo	hnson			
Sept.	28	1.79	June	3, 1931	26.20		Well 15-60-4	-803
Dec.	19	2.06	Aug.	12	24.30		Owner: Brown	Estate
Feb.	14, 1950	1.16	Nov.	25	25.77	Nov.	18, 1931	24.45
June	20	1.23	Dec.	15	23.68	Nov.	25	24.83
Sept.	26	3.22	Jan.	19, 1932	20.70	Dec.	2	24.48
Dec.	7	6.55	Jan.	29	17.93	Dec.	9	23.15
Mar.	5, 1951	4.73	Mar.	21	18.50	Dec.	15	22.42
June	19	11.53	Apr.	25	19.64	Dec,	22	20,94
Sept.	20	10.24	May	21	21.88	Dec.	29	20.78
Dec.	11	8.42	July	25	24.34	Jan.	5, 1932	20.34
Feb.	11, 1952	3.89	Sept.	27	25.68	Jan.	12	18.54
June	23	10.79	Oct.	21	27.12	Jan.	19	18.70
Sept.	12	11.81	Nov.	26	27.48	Jan.	28	16.78
Dec.	22	13.27	Dec.	30	26.91	Feb.	2	16.82
Feb.	2, 1953	11.78	Jan.	25, 1933	29.80	Feb.	9	17.53
June	22	19.74	Mar.	15	25.84	Feb.	15	17.82
Oct.	10	19.07	Aug.	21, 1935	26.45	Feb.	29	15.98
Dec.	9	11.72	Feb.	27, 1936	25.84	Mar.	7	15.45
Feb.	16, 1954	12.29	Feb.	7, 1938	27.22	Mar.	14	16.29
June	14	14.86				Mar.	21	16.37
C	28	21.26						

I	DATE	WATER LEVEL	C	DATE	WATER LEVEL	I	DATE	WATER LEVEL
Well	TS-60-45-803-	-Continued	Jan.	27, 1941	21.25	Dec.	16, 1948	24.87
Mar.	28, 1932	16.76	Feb.	26	20.60	Feb.	14, 1949	24.92
Apr.	4	18.27	Apr.	8	19.05	June	15	22.12
Apr.	11	18.70	June	3	17.93	Sept.	28	23.63
Apr.	18	18.84	July	3	17.00	Dec.	19	18.79
Apr.	25	19.31	Sept.	3	19.88	Feb.	14, 1950	15.83
May	2	20.46	Sept.	19	20.53	June	20	14.52
May	9	20.78	Nov.	4	13.96	Sept.	26	21.28
May	16	20.86	Dec.	16	15.71	Dec.	7	23.16
July	1	22.15	Jan.	22, 1942	17.06	Mar.	5, 1951	24.18
Sept.	27	2 3.9 0	May	7	14.26	June	19	24.54
Oct.	21	24.65	July	29	15.37	Sept.	20	25.25
Nov.	26	24.82	Sept.	18	15.90	Dec.	11	25.72
Dec.	30	24.64	Jan.	20, 1943	15.23	Jan.	13, 1952	26.00
Jan.	25, 1933	24.79	Mar.	28	16.81	Feb.	11	26.30
Mar.	15	21.00	June	21	18.85	June	23	24.40
May	8	22.87	Aug.	26	19.63	June	30	24.39
Nov.	24, 1934	25.86	Jan.	28, 1944	19.84	July	31	24.83
May	29, 1935	16.00	May	29	15.38	Aug.	2	24.81
Aug.	21	21.60	July	21	18.55	Sept.	2	25.20
Feb.	27, 1936	20.75	Sept.	18	21.21	Sept.	9	25.30
Feb.	7, 1938	22.31	Dec.	13	20.00	Dec.	22	25.95
May	13	22.64	Jan.	24, 1945	16.48	Dec.	23	25.97
Oct.	26	24.25	Mar.	26	16.38	Jan.	7, 1953	25.75
Nov.	18	24.48	June	15	15.46	Feb.	2	25.60
Dec.	17	24.80	Jan.	11, 1946	20.90	Mar.	5	25.26
Jan.	26, 1939	22.48	Мау	27	15.51	Mar.	12	25.03
Mar.	4	21.61	July	10	14.71	Mar.	23	24.83
May	24	23.35	Sept.	20	19.48	Mar.	30	24.70
Aug.	3	23.65	Dec.	6	15.63	Apr.	6	24.61
Sept.	25	24.46	Jan.	31, 1947	13.48	Apr.	14	24.67
Dec.	19	25.30	Mar.	17	15.71	Apr.	20	24.74
Feb.	15, 1 940	25.04	June	4	16.24	Mar.	21	21.82
May	1	24.76	Sept.	18	21.67	June	1	21.82
June	28	24.26	Dec.	18	22.25	June	22	22.91
Aug.	25	24.52	Feb.	18, 1948	21.65	July	7	23.32
Oct.	4	25.10	June	16	22.52	Aug.	1	23.86
Dec.	5	24.00	Sept.	28	24.01	Sept.	3	24.32

ſ	DATE	WATER LEVEL		DATE	WATER LEVEL		DATE	WATER LEVEL
Well	TS-60-45-803-	Continued	May	17, 1958	21.78	Oct.	4, 1963	23.86
Oct.	1, 1953	24.65	June	1	22.15	Dec.	2	24.43
Nov.	1	25.07	July	1	23.13	Feb.	17, 1964	24.14
Dec.	27	25.16	Aug.	1	23.75	Dec.	2	24.01
Jan.	29, 1954	24.75	Sept.	1	24.36	Jan.	4, 1965	24.00
Feb.	10	24.58	Oct.	22	24.56	Feb.	4	23.82
Mar.	1	24.66	Nov.	27	24.29	Mar.	20	22.70
Apr.	3	25.04	Dec.	16	24.41	Apr.	29	22.80
May	1	25.19	Jan.	23, 1959	24.69	May	17	22.81
June	14	25.52	Feb.	12	23.15	June	30	22.30
July	30	25.63	Mar.	13	22.83	July	31	22.99
Aug.	1	25.75	Apr.	14	21.24	Aug.	29	23.64
Sept.	1	25.99	June	16	20.73	Sept.	24	24.08
Oct.	24	25.90	Aug.	20	22.31	Oct.	30	24.44
Nov.	14	26.13	Sept.	23	22.79	Nov.	30	24.48
Dec.	26	26.18	Dec.	17	23.07	Dec.	1	24.50
Jan.	31, 1955	25.66	Mar.	1, 1960	18.81	Jan.	17, 1966	23.38
Feb.	18	25.03	May	31	20.44	Feb.	4	22.53
Mar.	31	24.66	June	10	20.92	Mar.	25	21.18
Apr.	3	24.56	Aug.	4	18.58	Apr.	15	21.19
May	1	24.83	Sept.	19	18.52	May	2	20.50
June	1	25.06	Oct.	7	19.46	June	27	20.42
June	16	25.20	Nov.	18	16.50	July	31	21.81
July	26	25.56	Dec.	29	13.58	Aug.	31	22.34
Au g .	18	25.76	Jan.	18, 1961	12.04	Sept.	30	23.18
Sept.	20	25.94	Feb.	20	11.98	Oct.	29	23.32
Oct.	27	26.21	Feb.	23	11.05	Nov.	28	23.87
June	13, 1957	25.95	Apr.	3	13.62	Dec.	24	24.17
June	16	25.99	May	9	15.61	Jan.	5, 1967	24.25
July	1	25.91	June	15	17.69	Feb.	15	24.27
Aug.	1	26.08	July	28	13.96	Mar.	9	24.49
Sept.	25	26.00	Sept.	19	15.02	Apr.	18	22.44
Oct.	15	25.96	Dec.	13	19.58			2006
Nov.	23	25.06	Feb.	20, 1962	19.02			riabten
Dec.	31	24.48	June	19	20.03	Nov	18 1020	ngnton Der
Feb.	28, 1958	21.68	Dec.	14	22.94	Nov.	10, 1930	3.05
Mar.	13	21.60	Mar.	1, 1963	19.72	Lec.	76 1020	3.53
Apr.	5	21.88	June	20	22.43	Jan.	20, 1939 A	2.33
						14101.		1.56

D	ATE	WATER LEVEL		DATE	WATER LEVEL		DATE	WATER LEVEL
Well T	rs-60-45-806C	ontinued	Dec.	17, 1938	23.53	May	27, 1946	14.63
May	24, 1939	3.44	Jan.	26, 1939	22.27	July	10	13.75
Aug.	3	3.84	Mar.	4	22.91	Sept.	20	14.18
Sept.	25	3.78	May	24	22.56	Dec.	6	12.26
Dec.	19	4.50	Aug.	3	23.55	Jan.	31, 1947	10.73
			Sept.	23	24.15	Mar.	17	10.50
	Well TS-60-47-6	607	Dec.	19	23.80	June	4	11.24
Owner:	Foster Lumber	Co., Well 2	Feb.	15, 19 40	23.40	Sept.	18	13.16
	1914	+ 10.00	May	1	24.02	Dec.	18	13.45
June	5, 1942	14.95	June	28	24.10	Feb.	18, 1948	13.05
Jan.	26, 1966	6.98	Aug.	25	24.40	June	16	20.71
	Well TS-60-51-3	302	Oct.	4	24.40	Sept.	28	14.10
Owne	r: Superior Oil C	o., Well 2	Dec.	5	22.15	Dec.	16	15.36
	1942	84.00	Jan.	27, 1941	23.30	Feb.	14, 1949	14.82
June	23	84.04	Feb.	26	21.86	June	15	14.98
Dec.	6, 1966	88.40	Apr.	8	23.32	Sept.	28	14.91
			June	3	23.81	Dec.	19	13.93
	Well TS-60-53-	503	July	3	24.38	Feb.	14, 1950	12.88
c	owner: Blair and	Sons	Sept.	3	23.20	June	20	16.28
Nov.	18, 1931	16.20	Nov.	4	20.59	Sept.	26	17.39
Dec.	15	15.98	Dec.	16	21.10	Dec.	7	19.30
Jan.	19, 1932	16.21	Jan.	22, 1942	20.78	Mar.	5, 1951	16. 0 9
Mar.	21	16.28	May	7	21.60	June	19	14.83
May	21	15.60	July	29	19.02	Sept.	20	15.03
July	1	15.82	Sept.	18	19.23	Dec.	11	15.40
Aug.	31	16.04	Jan.	20, 1943	17.16	Feb.	11, 1952	15.33
Sept.	27	21.18	Mar.	28	18.43	June	23	14.20
Nov.	26	21.60	June	21	21.46	June	30	14.24
Dec.	30	21.20	July	26	20.63	July	31	14.44
Jan.	25, 1933	21.74	Jan.	28, 1944	20.87	Sept.	12	14.97
Nov.	29, 1934	23.71	May	29	19.29	Dec.	22	15.50
May	29, 1935	24.08	July	21	20.98	Feb.	2, 1953	15.72
Aug.	21	26.78	Sept.	18	20.69	June	22	14.33
Feb.	27, 1936	22.34	Dec.	13	17.61			
Feb.	6, 1938	21.56	Jan.	23, 1945	16.75		Well TS-60-5	3-504
May	13	21.70	Mar.	26	16.93	Ov	vner: E. W. Cas	tleschouldt
Oct.	26	24.13	June	15	17.96	June	2, 1931	29.80
Nov.	18	24.17	Jan.	11, 1946	15.11	Aug.	12	29.43
						Dec.	15	29.38

I	DATE	WATER LEVEL		DATE	WATER LEVEL		DATE	WATER LEVEL
Well	TS-60-53-504-0	Continued	Jan.	27, 1941	30.68	Sept.	28, 1948	28.06
Jan.	19, 1932	29.50	Feb.	26	28.90	Dec.	16	27.98
Feb.	29	29.28	Apr.	8	31.30	Feb.	14, 1949	27.88
Mar.	21	28.91	June	3	30.96	June	15	28.23
Apr.	25	29.67	July	3	31.45	Sept.	28	23.23
May	21	29.46	Aug.	15	31.75	Dec.	19	27.26
July	1	30.57	Sept.	19	31.05	Feb.	14, 1950	27.46
Aug.	31	30.08	Nov.	4	29.52	Sept.	26	27.86
Sept.	27	29.60	Dec.	16	30.97	Dec.	7	28.15
Oct.	21	31.60	Jan.	22, 1942	31.37	Mar.	5, 1951	28.05
Nov.	26	29.97	Мау	7	30.82	June	19	28.40
Dec.	30	29.77	July	29	31.04	Sept.	20	28.48
Jan.	25, 1933	29,84	Sept.	18	30.25	Dec.	11	28.66
Mar.	15	30.24	Jan.	20, 1943	30.39	Feb.	11, 1952	28.52
May	8	29.98	Mar.	28	29.96	June	23	28.94
June	24	31.44	June	21	30.12	June	30	28.88
Nov.	29, 1934	20.24	Aug.	26	30.35	Juły	31	28.83
May	29, 1935	30.52	Jan.	28, 1944	29.53	Sept.	12	29.03
July	21	30.87	Мау	29	29.30	Dec.	22	28.90
Feb.	27, 1936	30.15	July	21	29.73	Feb.	2, 1953	29.15
Aug.	13	38.91	Sept.	18	29.56	June	22	29.33
Feb.	6, 1938	30.35	Dec.	13	29.41	Oct.	2	29.65
May	13	30.19	Jan.	24, 1945	28.98	Dec.	9	29.43
Oct.	26	32.30	Mar.	26	29.16	Feb.	16, 1954	29.48
Nov.	18	30.79	June	15	29.27	June	14	30.38
Dec.	17	30.73	Jan.	11, 1946	28.52	Sept.	28	30.65
Jan.	26, 1939	39.90	May	27	28.56	Dec.	4	27.87
Mar.	4	39.73	July	10	28.65	Feb.	4, 1955	29.93
May	24	31.01	Sept.	20	28.96	June	16	30.38
Aug.	3	30.92	Dec.	6	28.45	Sept.	20	30.50
Sept.	25	31.55	Jan.	31, 1947	28.04	Dec.	21	30.29
Dec.	19	31.38	Mar.	17	27.96	Feb.	14, 1956	30.15
Feb.	15, 19 40	30.44	June	4	27.92	June	13	30.85
May	1	29.52	Sept.	18	28.08	Sept.	21	30.72
June	28	31.64	Dec.	18	27.76	Dec.	11	30.77
Aug.	25	31.96	Feb.	18, 1948	27.66	Feb.	19, 1957	30.89
Oct.	4	31.78	June	16	28.14	June	13	39.92
Dec.	5	30.62				Sept.	13	31.05

WATER DATE LEVEL		WATER LEVEL	D	ATE	WATER LEVEL	D	ATE	WATER LEVEL
Well 1	FS -60-53-5 0 4—	Continued	Feb.	20, 1962	56.90	Aug.	29, 1966	96.28
Dec.	12, 1957	30.75	Mar.	1, 1963	58.94	Feb.	14, 1967	95.44
Feb.	20, 1958	30.49	Mar.	4, 1964	60.75		Waller Cour	ntv
June	10	30.85	Feb.	10, 1965	62.64	,	Well YW-60-5	B-201
Sept. 17		Well	Feb.	9, 1966	63.85	Own	er: Cameron I	ron Works
		destroyed	Feb.	15, 1967	65.82	Dec.	11, 1959	88.00
Harris County				Well LJ-60-61-504		June	30, 1965	93.24
Well LJ-60-60-103			Ow	Owner: I. and G. N. R. R.			3, 1966	89.18
Owne	r: City of Tom	ball, Well 3		1931	Flows			
	1958	64.00	Oct.	29, 1963	80.41			
Feb.	23, 1961	56.43						

WELL		DATE OF ANALYSIS	рII	SPECIFIC CONDUCTANCE (MICROMHOS AT 25°C)	CAS ING MATER IAL	SCREEN MATER IAL	REMARKS		
Montgomery County									
ਕੁ TS-60-28-901		June 27, 1966	6.4	725	Steel	Steel	Reported iron problem. Iron conduc- tor pipe pulled and found corroded. Clear water sample turned red in about 5 hours after sampling.		
	29-701	do	6.9	450	Concrete		Reported hardness problem. Uses special soap to lather. Water not used for cooking. Water has offen- sive taste.		
	801	June 28, 1966		740	Steel	Stee1	Reported no iron problem.		
	903	June 27, 1966	7.4	650	do	do	Reported hardness problem.		
a∕	36 - 302	do	7.8	425	do	do	Reported no iron problem.		
	303	July 27, 1966	7.1		do	do	Do.		
	405	Nov. 3, 1966	6.3	350	Concrete		Reported iron problem. Observed corrosion on plumbing fixtures and iron discoloration on ceramics.		
<u>a</u> /	37-102	June 27, 1966	5.9	130	Rock		Reported iron problem when plumb- ing fixtures were iron. Installa- tion of plastic and copper fix- tures ended problem. Conductor pipe is plastic.		
	201	June 28, 1966		700	Concrete		Reported no iron problem.		
	308	June 27, 1966	5.2	75	Plastic	Plastic	Reported occasional iron problem. Observed corroded plumbing fix- tures.		
	406	June 28, 1966	7.2	550	Steel	Steel	Reported hardness problem. Uses special soap to lather.		

Table 11.--Field Analyses of Water From Wells in Montgomery and Adjacent Counties--Continued

WELL	DATE OF ANALYSIS	рН	SPECIFIC CONDUCTANCE (MICROMHOS AT 25°C)	CAS ING MATER IAL	SCREEN MATERIAL	REMARKS
TS-60-37-501	June 28, 1966	5.7	42	Steel	Steel	Reported soft water. Reported no iron problem. Observed no corro- sion in well or in distribution system.
504	Aug. 28, 1966	5.3	145	Plastic		Reported iron problem when casing was iron. Formerly replaced iron casing yearly because of corrosion. Substitution of plastic casing ended iron problem.
a/ 602	June 30, 1966	5.6		Concrete		Reported iron problem. "Water gets rusty during heavy rain."
901	June 28, 1966		310	Steel	Steel	Reported no iron problem.
902	June 21, 1966		390	do	do	Do.
903	June 28, 1966		130	Concrete		Do.
38-401	July 8, 1966	5.7	52	do		Reported no iron problem. Water distribution system is plastic.
506	do	6.7	75	do		Reported iron problem when well is first turned on.
701	do	5.6	68	Plastic		Reported no iron problem.
<u>a</u> / 44 - 602	July 1, 1966		590	Steel	Steel	Do.
803	Nov. 28, 1966		210	do	do	Observed corrosion on casing.
45-202	July 5, 1966	5.6	135	do	do	Reported iron problem only when well is first turned on. Reported soft water.
WELL	DATE OF ANALYSIS	рH	SPECIFIC CONDUCTANCE (MICROMHOS AT 25° C)	CAS ING MATER IAL	SCREEN MATER IAL	REMARKS
----------------------------	------------------------	-----	--	----------------------	---------------------	---
<u>а</u> / TS -60 -45 -203	July 5, 1966	5.3	120	Plastic	Plastic	Reported iron problem developed a few months after well was com- pleted. Iron problem diminishes with increased water usage. Ob- served rust stains on enamel of sinks and tubs. Water distribution system is iron.
602	Oct. 24, 1966		80	Steel	Steel	Reported iron problem developed 15 to 18 months after well was completed. Air compressor "knocks out the iron."
802	June 17, 1966	6.5	200	Concrete		Reported no iron problem. "Water occasionally blue." Water distri- bution system is copper.
<u>a</u> / 46-101	July 6, 1966	7.3	625	Steel	Stee1	Reported no iron problem. Water distribution system is plastic.
201	do		65	do	do	Reported iron problem when well pumps only occasionally.
203	July 12, 1966	5.7	180	Concrete		Reported iron problem. Reported iron deposition in water heater. Water distribution system is iron.
301	July 6, 1966	5.9	145	Wood		Reported no iron problem. Conduc- tor pipe is plastic.
404	do		195	Steel	Steel	Reported iron problem.
405	July 13, 1966	6.6	290	Concrete		Reported no iron problem.
601	July 6, 1966		115	do		Reported iron problem. Water dis- tribution system is iron. Conduc- tor pipe is plastic.

See footnote at end of table.

- 127 -

WELL	DATE OF ANALYSIS	рН	SPECIFIC CONDUCTANCE (MICROMHOS AT 25°C)	CAS ING MATER IAL	SCREEN MATERIAL	REMARKS
TS-60-46-602	July 6, 1966		110	Plastic	Plastic	Reported iron and hardness prob lems. Water distribution system is iron and is reportedly corroded.
603	July 12, 1966	6.5	175	Concrete		Reported iron problem. Conductor pipe is plastic.
703	July 13, 1966		290	Steel	Steel	Reported iron problem. Water dis- tribution system is iron.
803	July 12, 1966		150	do	do	Reported no iron problem. Well pumped with air compressor. Water treated with filter.
<u>a</u> / 47 - 102	May 26, 1966	5.7		Concrete		Reported occasional iron problem. Reported soft water.
407	do	6.2		do		Reported no iron problem. Conduc- tor pipe is plastic.
<u>a</u> / 501	May 25, 1966	6.9		Stee1	Steel	Reported iron problem.
503	do	6.3		do	do	Reported iron problem decreases as well is pumped.
610	May 27, 1966	7.1		do	do	Reported iron problem. Observed corrosion on casing and storage tank.
801	do	7.8		do	do	Reported no iron problem. Reported soft water.
53 - 203	Nov. 21, 1966		700	do	do	Reported no iron problem.
54 - 301	June 15, 1966	5.9	410	Concrete		Reported iron problem. Conductor pipe is iron.
303	do	8.2	3 70	Steel	Steel	Reported no iron problem.

See footnote at end of table.

WELL	DATE OF ANALYSIS	PН	SPECIFIC CONDUCTANCE (MICROMHOS AT 25°C)	CAS ING MATER IAL	SCREEN MATER IAL	REMARKS
TŠ-60-54-304	June 15, 1966	6.4	180	Concrete		Reported no iron problem. Conduc- tor pipe is plastic.
401	June 10, 1966	5.4	280	Steel		Reported iron problem. Conductor pipe is plastic.
502	do	6.9		do	Steel	Reported no iron problem.
503	June 16, 1966	7.7	540	do	do	Do.
601	do	7.5	440	do	do	Reported no iron problem. Conduc- tor pipe is plastic.
602	do	7.4	510	Concrete		Reported no iron problem.
604	June 15, 1966	7.5	380	Steel	Steel	Reported no iron problem. Reported hardness problem.
605	do	7.6	480	do	do	Reported iron problem in original 72-foot-deep well. Well deepened to 154 feet, and no iron problem encountered. Occasional hardness problem.
606	June 16, 1966	6.9		Wood		Reported no iron problem.
801	June 10, 1966	6.3		Steel	Steel	Reported iron problem, especially when water is allowed to settle. Water distribution system is plas- tic.
802	do	6.7		do	do	Reported iron problem.
902	do	7.5		do	do	Reported no iron problem.
903	do	7.1		do	do	Reported occasional iron problem.

See footnote at end of table.

	WELL	DATE OF ANALYSIS	рН	SPECIFIC CONDUCTANCE (MICROMHOS AT 25°C)	CAS ING MATER IAL	SCREEN MATERIAL	REMARKS
TS	s-60-54 -90 4	June 10, 1966	7.2		Concrete		Reported no iron problem. Water distribution system and conductor pipe are plastic.
শ্র	55 - 204	May 27, 1966	7.1		Steel	Steel	Reported no iron or hardness prob- lems.
	305	do	7.6		do	do	Reported no iron problem.
	702	June 6, 1966	7.5		do	do	Do.
	704	do	7.5		do	do	Do.
	902	do	7.6		Plastic	Plastic	Reported no iron or hardness prob- lems.
	903	do	7.6		Steel	Steel	Reported no iron problem.
	904	do	8.2		do	do	Do.
a/	62 - 302	June 16, 1966	7.3		do	do	Reported no iron problem. Reported hardness problem.
	303	June 9, 1966	7.1		Plastic	Plastic	Reported no iron problem.
	63-102	June 20, 1966	6.5	240	Steel	Steel	Reported iron problem. Observed corroded pump. Water used only to wash trucks.
	103	June 7, 1966	7.9		do	do	Reported no iron problem.
	401	June 9, 1966	6.1		do	do	Reported iron problem.

See footnote at end of table.

WELL	DATE OF ANALYSIS	рН	SPECIFIC CONDUCTANCE (MICROMHOS AT 25°C)	CAS ING MATER IAL	SCREEN MATERIAL	REMARKS
			San	Jacinto County		
a/ WU-60-47-302	Oct. 5, 1965	6.2		Steel	Steel	Reported iron problem. Original iron casing corroded by water and replaced. "Water makes bad coffee." Water is filtered before use.
				Walker County		
YU-60-29-702	June 27, 1966	7.1	1,150	do	do	Reported "slightly hard and alkaline" water.

a See Table 10 for a more complete laboratory chemical analysis.

