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1 Introduction 

The TexaB Water Development Board (TWDB) supported research activities at the Center 
for Subsurface Modeling, The University of TexaB at Austin (UT Austin), during the fiscal 
year 1998-99. The principal investigators on this project were Clint Dawson and Mary F. 
Wheeler. Jennifer Proft, a graduate student in Computational and Applied Mathematics at 
UT Austin, WaB also involved in the project. During this fiscal year, we accomplished the 
following; 

• Included an iterative solver capability in the TWDB codes TxBLEND 2D and TxBLEND 
3D . 

• Developed a finite volume-baBed code for transport equations on unstructured, two­
dimensional grids. 

Below we describe in more detail the methodologies and computer codes developed. All 
codes and related papers have been delivered to Junji Matsumoto at the TWDB. 

2 TxBLEND Modifications 

During the PaBt year, we replaced the direct solvers in TxBLEND 2D and TxBLEND 3D 
with NSPCG iterative routines in order to decreaBe the overall computational time. NSPCG 
is a Fortran package to solve large sparse systems of linear equations using iterative methods, 
developed by the Center for Numerical Analysis at The University of TexaB at Austin. These 
routines aB well aB a complete description of the iterative methods and their usage can be 
found online at http://rene.ma.utexaB.edu/CNA/NSPCG/ 

• Center for Subsurface Modeling, SHC 413, University of Texas, Austin, TX 78712 
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Changes to the TxBLEND code are clearly delineated within the files txblend.f (2D 
version) and txblend3d.f (3D version). Some additional variables have been defined for use 
by the NSPCG routines: 

Variables defined in TxBLEND 
iiaz, jjaz 
iiac, jjac 
zmatrix, cmatrix 
zcoef, ccoef 
iwkspc, iwkspz 
nw, inw, mdim 
nzz, nzc, maxnzs 
ubar,mdim,xp,xip 
wksp 
iparm 
rparm 
level 
ier 
val 
tokeepc, tokeepz 
ntp, maxntp 
include 

integer arrays for sparse storage to solve Z (H) 
integer arrays for sparse storage to solve C 
real arrays of coefficient matricies in sparse storage 
integer arrays to describe coefficient matricies 
integer arrays for NSPCG workspace 
integers of NSPCG-specific parameters 
integers of NSPCG-specific parameters 
reals of NSPCG-specific parameters 
real array for NSPCG workspace 
integer array of NSPCG-specific parameters 
real arrays of NSPCG-specific parameters 
integer to control level of NSPCG feedback 
integer to describe error conditions encountered 
real number to provide initial guess for solution 
real arrays to store parameters overwritten 
integers to describe tapering elements (3d only) 
integer array to define matrix assembly (3d only) 

Within the TxBLEND code itself, certain lines have been commented out to prevent 
interference with the iterative solvers, and external routines specific to the NSPCG package 
have been declared. 

In order to replace the direct solvers in the 2D version, construction of parameters 
and/ or calls to iterative solvers are located in three places within the TxBLEND code. 
Concentration variable C is solved prior to entering the outer loop, and once at the end 
of each outer loop iteration. The coefficient matrix for surface elevation variable Z (H) 
is constructed the first time through the outer loop, and thereafter only if the wet/dry 
condition has changed. Utilizing this decomposition, the Z variable is solved each "Picard" 
cycle within each outer loop iteration succeeding the construction of the right-hand side. 

Likewise, in order to replace the direct solvers in the 3D version, construction of pa­
rameters and/or calls to iterative solvers are located in two places within the TxBLEND 
code. The coefficient matrix for surface elevation variable Z (H) is constructed the first time 
through the outer loop, and thereafter only if the wet/dry condition has changed. Utilizing 
this decomposition, the Z variable is solved each "Picard" cycle within each outer loop iter­
ation succeeding the construction of the right-hand side. Concentration variable C is solved 
for each level of each iteration, providing the bulk of the computational time. 

2 



2.1 Additional Subroutines in TxBLEND 

The NSPCG subroutines contained in files nspcgl .f, nspcg2.f, nspcg3.f, nspcg4.f and nspcg5.f 
have been added to the 2D and 3D TxBLEND packages. These routines will iteratively 
solve a sparse matrix system using single precision floating point operations. We have in­
corporated the Jacobi preconditioner and the Orthogonalized Conjugate Gradient Method 
(ODIR) accelerator to solve the nonsymmetric matricies arising from the calculation of the 
concentration in the convection-diffusion equation. Similarly, the Jacobi preconditioner and 
the Conjugate Gradient (CG) accelerator solve the symmetric matricies arising from the 
calculation of the surface elevation in the generalized wave continuity equation. Any ad­
ditional subroutines not defined within file assembler.f are contained within the NSPCG 
package. 

The file assembler.f containing routines assemblenon, assemblesym, errorcontrol, sbini, 
sbsij, sbendn, store and restore has been added to the 2D TxBLEND package in order to 
arrange matrix entries into the sparse storage coordinate format utilized by NSPCG. It 
effectively replaces the previous routine assmbl1.f. 

The file assembler.f containing routines includearray, geologicalfeatures, assemblenon, 
assemblesym, errorcontrol, sbini, sbsij, sbendn, store and restore has been added to the 3D 
TxBLEND package in order to arrange matrix entries into the sparse storage coordinate 
format utilized by NSPCG. It effectively replaces the previous routines assmbll.f and 
assmbI3·f. 

Additional Subroutines 
INCLUDEARRAY 

GEOLOGICALFEATURES 

ASSEMBLENON 

ASSEMBLESYM 

ERRORCONTROL 
SBINI 
SBSIJ 

SBENDN 
STORE 
RESTORE 

2.2 TxBLEND Usage 

Delineates circumstances under which nodes are known, 
unknown, or defined within a tapering element (3d only) 
Modifies matrix for known nodes due to river inflow, 
tidal boundaries, or placement in bathymetry (3d only) 
Assembles local element matrix into nonsymmetric 
global structure 
Assembles local element matrix into symmetric 
global structure 
Handles errors returned from NSPCG 
Initializes coefficient arrays iia, jja, matrix, and iwksp 
Sets individual entries in the matrix and builds a 
linked list representation of the global structure 
Restructures the linked list into final sparse storage form 
Stores parameters overwritten by NSPCG 
Restores parameters overwritten by NSPCG 

Before calling the NSPCG iterative solver package, the coefficient matrix must first be 
stored in sparse matrix coordinate format. To do so, the subroutines described in section 3 
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have been incorporated. The right-hand-side determines the unique solution to the matrix 
equation. 

A single call to NSPCG begins the iterative solution cycle after the parameters have been 
initialized. For a complete description of the NSPCG calling sequence and parameters, refer 
to the NSPCG User's Guide at http://rene.ma.utexas.edu/CNA/NSPCG/usernsp 

Specifically, parameter arrays iparm and rparm tailor the iterative solver behavior and 
may be modified subsequent to being initialized by subroutine DFAULT. In particular, 
iparm( 3) controls the level of output provided by NSPCG and can be useful for debugging. 

iparm( 3) < 0 no output 
= 0 fatal error messages only (default) 
= 1 warning messages and minimum output 
= 2 reasonable summary 
= 3 parameter values and informative comments 
= 4 approximate solution after every iteration 

Also of use may be rparm(1) to control the stopping test value, which may be modified 
by NSPCG according to the relative machine precision. rparm(1) (zeta) is the stopping 
test value or approximate relative accuracy desired in the final computer solution. Iteration 
terminates when the stopping test is less than zeta. If the method does not converge in the 
maximum allowed iterations, zeta is reset to an estimate of the relative accuracy achieved. 
[Default 10-6 ] 

NSPCG calling parameter ier is an error flag to indicate the type of error encountered 
during iteration and possibly stop execution. A zero value on output indicates no error oc­
curred; a negative value on output indicates a fatal error was detected during the iteration, 
while a positive value on output indicates a warning error was detected during the itera­
tion. NSPCG will output all errors and warnings to the output file defined by TxBLEND 
parameter W. 

3 Development of a two-dimensional finite volume trans­
port code and application to Galveston Bay simula­
tion 

The Runge Kutta Discontinuous Galerkin (RKDG) scheme is a locally conservative finite 
element (finite volume) method of formal high-order accuracy for advection equations de­
veloped in a series of papers by Cockburn and Shu [4, 1,2,3,6, 5]. As described in TICAM 
report 99-16, Dawson and Proft have applied the method with piecewise linear approximat­
ing spaces to transport equations on triangular grids [7]. Here we describe the method, 
discuss the structure of a code implementing the method, and present numerical results for 
the code on simulation data from Galveston Bay. 
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3.1 RKDG Formulation 

We consider the following conservation law: 

(~C)t + \7 . (uc) = 0 on n x (0, TJ, (1) 

c(x,O) = co(x) on n x {O} 

where n is a bounded domain in JR2 with Lipschitz boundary on. The vector u(x, t) 
represents a given velocity field. In porous media applications, ~ is the porosity of the 
medium, while in shallow water applications it is the water column height. We assume ~ 
and u are related by a continuity equation: 

~t + \7. u = O. (2) 

We discretize n into triangles K. Following [7], we mUltiply (1) by a test function 
Wh E W h = {Wh E LOO(n) : Wh IKE Pl(K),VK E n} where pi(K) denotes the space of 
polynomials on triangle K of degree at most 1. Integrating by parts over each triangle, we 
obtain the weak formulation: find Ch E Wh such that VWh E Wh , 

(3) 

where 

Ta = L Ch(X, t) u(x, t) . \7wh(x)dx (4) 

Tb = L! Ch(X, t) u(x, t) . ne,K Wh(X) dr, 
eE8K e 

(5) 

where the summation in n is over all edges in the mesh, and Ile,K is the unit outward normal 
to oK. The resulting equation can be put in ODE form and discretized in time using a 
total variation diminishing Runge-Kutta integration [8, 9]. Because Ch is discontinuous 
across element boundaries we evaluate Ch on oK using upwinding, based on the sign of 
u . ne,K' If oK is part of the boundary of n and the flux U· n is negative (n = outward unit 
normal to on, we specify Ch as an inflow concentration, otherwise this part of the boundary 
is an outflow /noflow boundary. To further enhance the stability of the method and eliminate 
possible spurious oscillations in the approximate solution, a local slope limiting operator is 
introduced in the time-marching algorithm. The resulting form is 

(6) 

where Mi(i is the inverse of the mass matrix. 
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3.2 RKDG method applied to Galveston Bay simulation 

The advection scheme described above has been incorporated into a hydrodynamic and 
transport simulator. In this simulator we have used the ADCIRC code to compute elevations 
and velocities. The elevations and velocities are then postprocessed so that the discrete 
continuity equation 

(7) 

is satisfied over each element K and each hydrodynamic time step ilt = tk _ tk-l. 

The Fortran-gO driver for this simulator is contained in the file tracer.f90. The driver 
reads in appropriate ADCIRC data and calls the RKDG subroutine hyperbolic contained 
in file hyperbolic.f90. All other files in this package are supporting routines for the RKDG 
method. We have tested this simulator on a Galveston Bay data set. 

After reading in grid data resulting from ADCIRC, the driver will initialize the concen­
tration of the tracer. For this simulation, the concentration is defined initially to be 0.0 
everywhere in the triangular grid except at one element within the shipping channel per­
turbed to be 1.0 for the duration of the simulation. Simulation parameters specified by the 
user are then defined before looping over each outer time step. For each step ilt, the driver 
will compute various parameters before advecting forward in time by calling the RKDG 
scheme using linear basis functions (hyperbolic) and by calling a scheme using constant ba­
sis functions (advect) for comparison. The resulting RKDG solution for each step is written 
to a file for graphical output. The driver algorithm is as follows: 

Read in grid data 
Initialize concentration of tracer 
Define simulation parameters 
Do k = 1, numsteps 

Compute parameters 

End do 

Read in volume and flux data at time level tk - 1 

Compute CFL condition for the RKDG scheme 
Check the mass balance 

Advect solutions forward to time level tk 

Call advect, a constant in space scheme 
Call hyperbolic, the RKDG linear in space scheme 

Output solution 

Project RKDG solution to nodal points for tecplot 
Write ascii data to files 
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Our primary concern is in obtaining valid higher-order results as a solution to the ad­
vection equation. The use of linear basis functions discontinuous across each element in 
the RKDG method will produce less diffusive, more accurate results than will the scheme 
utilizing constant basis functions. For stability, the advective time step must satisfy a 
CFL condition. Thus, although the user has control over how long the simulation will run 
(~t*numsteps), the inner loop time step is defined within the program itself. Note that the 
outer loop time step ~t is defined by the ADCIRC data. 

File hyperbolic.f90 contains the subroutine hyperbolic defining the RKDG method. The 
subroutine is passed an initial time to = t k - 1 and loops over each inner time step until 
final time tf = tk. The subroutine will initialize some structures and L2 project the initial 
condition from pO, the space of polynomials of degree at most zero, to pI, the space of 
polynomials of degree at most one, before begining the Runge-Kutta integration loop over 
each inner advecting time step. The solution for each inner time step is a weighed averaging 
of approximations evaluated at the begining of each step and halfway between each step. 
Upon completion of the inner loop, the integral average over each element is returned to the 
driver for output. The RKDG algorithm is as follows: 

Initialize structures 
L2 project initial condition to pI 
Slopelimit approximation Ch 

Do from to to tf 

Compute Lh at beginning of time step 

Compute term Ta 
Compute term Tb 
Multiply by Mi/ 

Obtain first approximation Ch 

Slopelimit approximation Ch 

Compute Lh half way through time step 

Compute term Ta 
Compute term Tb 
Multiply by Mi/ 

Obtain second approximation Ch 

Slopelimit approximation Ch 

End do 

3.3 RKDG Useage 

This package entails twelve Fortran-90 files, a makefile for compilation, and ADCIRC data 
files: 
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RKDG Files 
tmcer.f90 
ouUecplot./90 

vaLpar./90 
hyperbolic./90 
12proj_slopelmt./90 
computeLh.f90 
compute Ta./90 
compute Tb.f90 
methods./90 
userDefined.f90 
integmte./90 
ftux./90 
adcgrid. dat 
mcftux.dat 
elemvols.dat 
watcol.dat 

Contains driver routine and pO solution routine 
Contains routines to project solution to nodal points and 
output in Tecplot FEM format 
Contains definitions for global values and parameters 
Contains RKDG driver routine to compute pI solution 
Contains L2 projection and slopelimiting routines 
Contains routine for computing Lh(Ch, Wh) 
Contains routine for computing term Ta defined over interior 
Contains routine for computing term Tb defined over edges 
Contains supporting routines for the RKDG scheme 
Contains specified boundary conditions 
Contains supporting routines for all integration 
Contains definitions of velocity and flux terms 
ADCIRC grid data 
Mass conservative flux data 
Element volume data 
Water column data 

With appropriate parameters defined by the user, the program will output the concen­
tration values at each nodal point in the mesh for each outer loop timestep to file out­
put.plt. The solution is in Tecplot FEM format and can be immediately read into Tecplot 
for simulation. To modify the boundary conditions, the user may set Dirichlet conditions 
for particular boundary elements via subroutines setBoundaryElements and /orceBC in file 
userDefined./90. The default is to assume zero inflow concentration. 

Within file tmcer./90, the user defines simulation parameters to control the amount 
of feedback during a run as well as the length of time to compute. These user specified 
parameters include: 

Parameters 
numsteps 

callhyp 
calladv 
feedback 

tol 

Integer number of outer time steps to be taken during simulation 
period where finaltime = ~t*numsteps (max 192) 
Logical flag to call RKDG scheme for solution 
Logical flag to call po scheme for solution 
Logical flag to display current solution at each outer time step 
to standard out 
Real value to define the tolerance of the lowest value displayed 
as feedback (does not affect solution written to output. pit 

The current problem set to run in the RKDG package is defined by a zero initial condition 
and tracer injection to one element within the shipping channel. This problem can be 
changed by modifying files hyperbolic.f90 and tracer./90. Results presented below for this 
problem demonstrate the solution after 6, 12, 18 and 24 hours of simulated time. The tracer 
presents a rather sharp front as it flows into the bay with the current, drifts back through 
the shipping channel, and begins to spread further into the bay area with the current. 

8 



References 

[1] B. COCKBURN and C.W. SHU. Tvb runge-kutta local projection discontinuous 
galerkin finite element method for scalar conservation laws ii: general framework. Math. 
Comp., 52:411-435,1989. 

[2] B. COCKBURN and C.W. SHU. Tvb runge-kutta local projection discontinuous 
galerkin finite element method for scalar conservation laws iii: one dimensional systems. 
Comput. Phys., 84:90-113, 1989. 

[3] B. COCKBURN and C.W. SHU. Tvb runge-kutta local projection discontinuous 
galerkin finite element method for scalar conservation laws iv: the multidimensional 
case. Math. Comp., 54:545-581, 1990. 

[4] B. COCKBURN and C.W. SHU. The runge-kutta local projection pi-discontinuous 
galerkin method for scalar conservation laws. M2 AN, 25:337-361, 1991. 

[5] B. COCKBURN and C.W. SHU. The local discontinuous galerkin method for time­
dependent convecton-diffusion systems. SIAM J. Numer. Anal., submitted, 1997. 

[6] B. COCKBURN and C.W. SHU. Tvb runge-kutta local projection discontinuous 
galerkin finite element method for scalar conservation laws v: multidimensional systems. 
J. of Comput. Phys., 141:199-224, 1998. 

[7] C. DAWSON and J. PROFT. Adaptive stencil and discontinuous galerkin methods for 
transport equations on triangular grids. TICAM Report 99-16, May 1999. 

[8] C.W. SHU. Total-variation-diminishing time discretizations. SIAM J. Sci. Stat. Com­
put., 9:1073-1084, 1988. 

[9] C.W. SHU and S. OSHER. Efficient implementation of essentially non-oscillatory shock 
capturing schemes. J. Comput. Phys., 77:439-471, 1988. 

9 



3.28E+06 

-1 . .'1"'= +Ult, -1.~:e' 
x 

x 



Adaptive Stencil and Discontinuous Galerkin Methods 

for Transport Equations on Triangular Grids 

by 

Jennifer Kay Proft, M.S.C.A.M. 

The University of Texas at Austin, 1999 

SUPERVISOR: Clint Dawson 

Abstract 
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first-order linear and nonlinear hyperbolic equations on two dimen­
sional domains. Numerical results for constant and variable coefficient 
linear advection problems are presented. 
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1 Introduction 

In this report we describe numerical methods for solving first-order linear 
and nonlinear hyperbolic equations on two dimensional domains discretized 
into triangular elements. There are special difficulties associated with solving 
these unsteady, time-dependent problems such as spontaneous shock forma­
tion and steep gradients even in the presence of smooth initial conditions. 

We focus on high-resolution schemes for advection problems that achieve 
higher-order accuracy while suppressing spurious oscillations. Implementa­
tion of an operator splitting technique renders these schemes useful for the 
solution of advection-dominated diffusion equations as well. 

In particular, we investigate two locally conservative second order meth­
ods for the solution of hyperbolic conservation laws by comparing numerical 
convergence rates and by examining the results of a variable coefficient linear 
advection problem. An Adaptive Flux Stencil finite volume method devel­
oped by Durlofsky, Engquist, and Osher [22] is compared to a Runge-Kutta 
Discontinuous Galerkin finite element method developed in a series of papers 
by Cockburn and Shu [12, 9, 10, 11, 14, 13]. 

This report is outlined as follows. In the next section we discuss physical 
models for advection-diffusion equations and hyperbolic conservation laws. 
We also discuss splitting techniques and present a model advection problem. 
In section 3 we describe the Discontinuous Galerkin method, and in section 
4 we describe the Adaptive Flux Stencil method. Finally, in section 5 we 
present some numerical results for the methods applied to two-dimensional 
test problems. 

1.1 Background 

One of the earliest so called "high-resolution" schemes was introduced by 
Boris and Book in [5] in the context of a flux-limiting algorithm, and a 
wide class was analyzed by Sweby [37]. Leveque defines these methods as 
possessing the following features [30]: 

• At least second order accuracy on smooth solutions and in smooth re­
gions of a solution even when discontinuities are present elsewhere. 

• Sharp resolution of discontinuities without excessive smearing. 

• The absence of spurious oscillations in the computed solution. 
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• An appropriate form of consistency with the weak form of the conser­
vation law, required if we hope to converge to weak solutions. 

• Nonlinear stability bounds that, together with consistency, allow us to 
prove convergence as the grid is refined. 

• A discrete form of the entropy condition, allowing us to conclude that 
the approximations converge to the physically correct weak solution. 

The development of high-resolution methods is non-trivial due to the 
mathematical and numerical difficulties of these types of problems. Because 
discontinuities may exist in the solution, we work with a weak form of the 
conservation law. However, it becomes necessary to apply physical knowledge 
of the problem in order to obtain the correct entropy-satisfying solution, since 
there often exists more than one weak solution to the conservation law with 
the same initial data. Straightforward application of first-order accurate 
methods generally result in a solution profile that is very smeared in regions 
near a discontinuity, while standard second-order accurate methods result 
in solutions that are highly oscillatory near the discontinuity. Subsequently, 
methods which are at least second order accurate and limit the oscillation of 
the solution were constructed. 

The original development of successful slope- and flux-limiting methods 
was in one. space dimension [28, 32, 37]. Multidimensional methods must 
incorporate additional behavior arising in two and three-dimensional prob­
lems. Typically, the geometry can be complicated and the structure of the 
discontinuities is more complex in these problems. The Riemann problem in 
one dimension, for example, can be solved in closed form, and discontinuity 
curves in the (x, t) plane are simply straight lines passing through the origin. 
However, in two dimensions only some special cases of the Riemann problem 
have been solved analytically. 

A class of numerical methods developed in [25, 26, 27, 35, 36], called 
essentially non-oscillatory schemes (ENO), construct a piecewise linear in­
terpolant of the flux function that is the least oscillatory over various choices 
of interpolating polynomials. This is the main idea behind the Triangular 
Based Adaptive Flux Stencil scheme developed by Durlofsky et al in [22] that 
we examine. Durlofsky subsequently applied this technique to the modeling 
of two phase flow through porous media in [21]. 

Recently, other multidimensional extensions of one-dimensional algorithms 
have been developed in, for exampie, [4, 15]. Alternative flux-limiting meth­
ods that possess a total variation diminishing or total variation boundedness 
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property (TVD, TVB) as described below are a current research topic as well. 
In particular, we examine the Runge-Kutta Discontinuous Galerkin method 
developed in a series of papers by Cockburn and Shu [12, 9, 10, 11, 14, 13]. 

LeSaint and Raviart [29], first introduced the Discontinuous Galerkin fi­
nite element method for solving the neutron transport equation, which is a 
linear version of the hyperbolic conservation law. The method was rendered 
explicit in time by Chavent and Salzano [7] and was applied to hyperbolic 
problems by Chavent and Cockburn [6]. Subsequent papers by Cockburn 
and Shu generalized this scheme to systems and to multidimensions while 
incorporating a practical slope limiter. We will examine the Runge-Kutta 
Discontinuous Galerkin method developed by Cockburn and Shu for advec­
tion problems and compare it to the Adaptive Flux method developed by 
Durlofsky, Engquist and Osher. 

1.2 Description of Results 

We implement these two methods and compare our results on two test prob­
lems. The Discontinuous Galerkin method demonstrates convergence rates 
approaching l.55 in the £2 norm and 1.86 in the £1 norm for a linear advec­
tion problem. The Adaptive Flux method demonstrates convergence rates 
approaching 1.60 and 1.72 respectively. For both methods, the results of the 
rotating cone problem exhibit accurate and well-resolved solution profiles for 
2048 elements. 

Both methods are straightforward to implement numerically and give 
good results insofar as they approach the optimal rate of convergence and 
accurately resolve a solution profile with sharp gradients. The computational 
efficiency of one method over another is not significantly distinguishable. The 
extremely local computational domain render them suitable for efficient par­
allel implementation. The methods can easily handle complicated geometries 
as they are applicable to unstructured triangular meshes. The main advan­
tage of these methods over others is their high parallelizability and higher 
order accuracy, rendering them suitable for advection-dominated flow com­
putations. 
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2 Preliminaries 

2.1 Notation and Definitions 

Here we define the notation we used throughout this report. Let Q be a 
polygonal bounded domain in JRd, d = 1,2, or 3 with Lipschitz boundary. 
Recall the usual Sobolev space definitions: 

• V(Q) = {v: Q -+ JR: (fn Iv(x)IPdx)l/P < oo}; 

• LOO(Q) = {v: Q -+ JR: maxxEnlv(x) I ::; oo}; 

• Lioc(Q) = {v : v E Lk V compact K C int Q}; 

• wm,p(Q) = {v : v E Lioc(Q) : Ilfllwm,p(n) < oo}; 

and the norms associated with these spaces: 

• IlfIILP(n) = (fn 11(x)IPdx)1/P; 

• 11111£2(n) = Un lJ(x)l2dx)1/2; 

• IlfIILOO(n) = ess sUPXfnlJ(X)I; 

• Ilfllwm.p(n) = (Liai:Sm liD'" 11Itp(n))1/P
, p < 00; 

Define the time-space norms: 

• IlfIILq(LP) = (J; IIf(" t) Illp(n)dt f/ q
; 

• IlvIILOO(L') = maxo:St:ST Ilv(" t)IIL'; 

Define the L2(Q) inner product as: 

(1, g)n = In fg dx. 

To distinguish integration over lines, we define: 

< f,g >an= { fg dx. 
Jan 

Recall the Cauchy-Schwartz inequality: 

! Ivwl ::; Ilvll . Ilwll, 

and Young's inequality: 

1 c 
ab < _a2 + _b2 a, b, c E JR, c > O. 

- 2c 2' 

4 



2.2 Physical Models 

Numerous physical applications give rise to advection-diffusion equations. 
Operator splitting techniques such as those discussed in the next section 
render analysis of advection equations pertinent to the analysis of advection­
diffusion equations as well. The standard transport equation is an advection­
diffusion equation based on conservation of mass [3J. Advection and hydrody­
namic dispersion control the flux into and out of an elemental volume, while 
source/sink terms of solute mass within a volume are the result of chemical or 
biochemical reactions. The physical process of advection is solute movement 
attributed to transport by flow; the process of hydrodynamic dispersion is a 
result of mechanical mixing and molecular diffusion [23J. This model ari§~s 
in transport phenomena applications such as secondary oil recovery, tumor 
cell growth, and contaminant transport. 

For example, the principal differential equation that describes transport of 
dissolved reactive constituents in saturated isotropic porous media is [3, 19J: 

¢Ut + \7 . (/-LU - D\7u) = ¢i + qu, (x, t) E Q x (0, TJ, (1) 

for Q a bounded domain in IRd
, d = 1, 2, or 3, T > 0, where 

u = {u/ q > 0, 
U q < ° (2) 

and we define q to be a sum of point sources q+ and sinks q- (Dirac measures). 
In porous media applications, U represents the concentration of some chemical 
component, ¢ is the porosity of the medium and may also include adsorption 
effects, /-L is the Darcy velocity and D is a diffusion/ dispersion tensor, assumed 
to be symmetric and at worst positive semi-definite. 

In this report we are primarily concerned with the analysis and approx­
imation of the advection equation modeling hyperbolic conservation laws. 
Additional physical processes that give rise to these equations include gas 
dynamics and fluid dynamics. In particular, the Euler equations of gas dy­
namics model interesting physical problems such as the shock tube problem, 
the flow of air around a vehicle, meteorology weather-prediction problems, 
and are related to the shallow water equations. 
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2.3 Splitting Techniques 

Here we describe time-splitting techniques which can be applied to advection­
diffusion-type equations, whereby advection and diffusion are approximated 
by different solution procedures. One particular splitting for the transport 
equation results in the approximation of a hyperbolic and a parabolic equa­
tion at each time step: given un E Wh E L2 (n), solve the hyperbolic equation 

(3) 

The solution generated at this step, U, is the initial condition for the parabolic 
equation 

u; + V' . g* (4) 
g* -DV'u*. 

The solution generated here will approximate un+1 = u(tn+1
). 

A number of methods for advection-dominated diffusion equations have 
been based on the above splitting. For example, Douglas and Russell de­
veloped the Modified Method of Characteristics [20] based on combining a 
characteristic method for equation (3) with a Galerkin finite element method 
for (4). 

In [16, i 7, 18]' Dawson examined Upwind-Mixed methods to explicitly 
approximate the advective terms using an upwind method and implicitly ap­
proximate diffusive terms using a mixed finite element method. Recently, 
Dawson and Aizinger [19] extended this analysis by applying the Discontinu­
ous Galerkin method developed by Cockburn and Shu [11] and the Enhanced 
Mixed finite element method developed by Arbogast et al [1] to the transport 
equation. They analyzed the standard transport equation utilizing higher or­
der approximating spaces, a positive semi-definite diffusion coefficient, and 
physically realistic boundary conditions. 

Recently, Arbogast and Wheeler developed the Characteristic Mixed method 
in [2], based on combining a characteristic method for equation (3) with a 
mixed method for equation (4). Additionally, Cockburn and Shu have de­
veloped the local Discontinuous Galerkin method which approximates the 
advection and the diffusion equation by different Discontinuous Galerkin pro­
cedures [13]. 
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2.4 Model Advection Problem 

In this report we focus on analysis and approximation of the advection equa­
tion specifically; to this end, we define the model advection problem. Con­
sider the following hyperbolic conservation law: 

Ut + V'. f(u) 
u(x,O) 

u(x, t) 

° ann x (0, TJ, 
uo(x) ann x {O} 
'Y an (0, T) x an_ 

(5) 

where n is a polygonal bounded domain in 1R? with Lipschitz boundary 
and I E Loo((O, T] x an). Let n denote the unit outward normal to an = 
an_ u an+, where an_ denotes the inflow boundary and an+ denotes the 
outflow boundary. 

3 Runge-Kutta Discontinuous Galerkin Ad­
vection Approach 

The Runge-Kutta Discontinous Galerkin method is a highly parallelizable 
method of formal high-order accuracy and efficiency for advection equations. 
It is discontinuous in both time and in space, and is applicable to rectangular 
and triangular structured and unstructured grids. This method is formally 
(k+ l)th order accurate for piecewise polynomials of degree k utilized to define 
the finite element space, and is entropy-satisfying total variation bounded 
(TVB), hence converges to the correct weak solution. 

3.1 Formulation 

To formulate the method we follow [11] and first discretize (5) in space via the 
Discontinuous Galerkin finite element method. The resulting equation can be 
put in ODE form as 1iUh = L h( Uh, 'Yh) and discretized in time using the TVD 
Runge-Kutta integration introduced in [12]. Finally, a local projection AIIh 
is applied to the intermediate values of the Runge-Kutta time discretization 
in order to enforce stability. 

We define some notation to be used in this section. Let:F = {Th} be 
a family of regular triangulations K discretizing n. That is, there exists a 
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constant 0" > ° such that 

hK 
- ;::: 0", '<I K E Th, '<ITh E F, 
PK 

where hK is the diameter of K, and PK is the diameter of the largest ball 
included in K. 

Let lei denote the length of edge e and IKI denote the area of triangle K. 
Let {tn }:{=1 be a partition of (0, T] where tltn = tn+! - tn, n = 0, ... ,N - 1. 
We define uJ;, as the value obtained from the interior of the element K and 
u~ as the value obtained from the exterior of the element K: 

uJ;, lim ..... o- u(x + Slle,K) 

+ { 1'h(X, t) if x EOn, 
u h = lim ..... o+ u(x + Slle,K) otherwise 

(6) 

where lle,K denotes the outward unit normal to the edge e E oK. 
Define the finite dimensional space 

Vh = V; = {v E £00(0.) : v IKE pk(K), '<IK E Th} (7) 

where pk(K) denotes the space of polynomials in K of degree at most k. 
Denote by oVh the space of functions of £00(00.) which are traces offunctions 
of Vh(0.). 

Multiplying by test functions v and integrating by parts, we obtain the 
following weak formulation of (5): find u E Hl(K) such that '<Iv E Hl(K), 

!!:.- r u(x, t) vex) dx- r f(u(x, t))·V'v(x) dx+ L 1 f(u(x, t))'lle,K vex) df = 0, 
dt JK JK eE8K e 

(8) 
We replace the integrals by appropriate quadrature rules. The quadrature 

rule for the interior of the element should be exact for polynomials of degree 
2k and the edge rule should be exact for polynomials of degree 2k + 1 for k 
the degree of the approximation space pk. Theorem 3.1 justifies the use of 
these quadrature rules to preserve the O(k + l)th accuracy of the method: 

L 

iK f(u(x, t))· V'v(x) dx ~ LWI f(U(XK,I, t)) . V'V(XK,I) IKI. (9) 
1=1 

L 1 f( u(x, t)) . lle,K vex) df ~ L WI f(U(Xe,b t)) . lle,K V(Xe,l) lei, (10) 
e 1=1 
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We replace the flux function f(u(x, t)) 'ne,K by the numerical flux function 
he,K(X,t) = he,K(Uh(X-,t),Uh(X+,t)), where he,K is any two-point Lipschitz 
flux which is monotone in the scalar case and is an exact or approximate 
Riemann solver in the system case. It is consistent with f( u) . ne,K, 

he,K(U, u) = f(u) . ne,K, (11) 

and conservative, 

(12) 

The semi discrete weak formulation of (5) is: find Uh E lIh such that for 
Vh E lIh, 

After inverting the mass matrix analytically, these equations can be rewritten 
in ODE form as -itUh = Lh( Uh, 'Yh), where 'Yh is the L2 projection of 'Y into 
allh : 

d 
Lh : Ih x alh -+ lIh, dt(Uh(t),Vh) = (Lh(Uh,'Yh),Vh), VVh E lIh, t E (O,T], 

(14) 
for Ih = {w: n -+ IR: wlK E CO(K), '11K E Th}, and alh = {w: an -+ IR: 
wl e E CO(e), 'lie E aTh}, where (.,.) is the L2(O) inner product. 

We discretize in time this system with a method that is at least (k+ l)th 
order accurate to preserve the order of convergence of the finite element 
method. To do so, we use the TVD Runge-Kutta time discretization intro­
duced in [34, 35]. To enhance the stability of the method and eliminate 
possible spurious oscillations in the approximate solution, a local slope lim­
iting operator Al1h is introduced in the time-marching algorithm as follows. 
Let Ph denote the L 2-projection into the space lIh : 

• Set u~ = A(uo); 

• For n = 0, ... , N - 1 compute uh+1 as follows: 

- Set u~O) = u~; 
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For i = 1, ... , m + 1 compute the intermediate values: 

U~) = AIIh (~ai'IU~) + {3i,IMn Lh(U~), {hW + dIMn))) ; 
1=0 

Set u~+l = u~m+l) 
where m = order of approximation. The slope-limiting operator AIIh IS 

constructed in such a way that the following properties are satisfied: 

• Local conservation of mass: for every element K of triangulation Th, 

• Limiting: on each element K, the gradient of AIIh is no larger than that 
of Uh. 

We discuss a maximum principle that this operator satisfies in section 3.3. 

Remark: In the case of piecewise constants, the Discontinous Galerkin 
method reduces to a finite volume, monotone scheme in the scalar case. 
Thus, the discretization by this method can be considered as a high-order 
accurate extension of finite volume, monotone schemes. 

3.2 Error Estimates 

The operator Lh is a discrete approximation of - V' . f (u), one that defines 
the construction of a higher-order approximate solution. In the methods we 
examine, the quality of the approximation to the solution of the hyperbolic 
conservation law differs only in this construction. For polynomials of degree 
k, we expect a formal accuracy of O(k + 1) for the Discontinuous Galerkin 
method. This order of accuracy is dependent upon the error in the con­
structed approximation L h • Thus, we demonstrate the estimate of the error 
in the constructed terms as developed by Cockburn and Shu in [11]. This 
estimate also justifies our use of the above quadrature rules. Our objective 
is to give sufficient conditions on the quadrature scheme which ensure that 
the effect of numerical integration does not decrease the formal convergence 
order of the method. 

In the estimate we will utilize the following tools: 
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Lemma 3.1 Let En (c/» = In c/> - I:f=l WI c/>(xd Inl, and suppose that En (c/» = 
0, VC/> E pr(n). Then:J a constant C such that V'l/J E pS(n), 

lEn (g'l/J) I ::; ClnW+l-sl'l/JILoo(n)lglwr +1-"OO(n), 

where h = diam(n). 

Proof: A consequence of the Bramble-Hilbert Lemma [8]. 

(15) 

Lemma 3.2 Let p" denote the L2 projection into the space pk(K) where 
(P"g - g, v) = 0 for g, v E \f. A ssuming the triangulation Th is regular, 

(16) 

Proof: A well known approximation theory result [8]. 

Lemma 3.3 For Wh E Vh(K), 

IWhlioo(K) ::; C 1~llwhli2(K)' (17) 

where C depends on the dimension ofVh(K) which is assumed to be uniformly 
bounded from above. 

Proof: A consequence of equivalence of norms in finite dimensional spaces [8]. 

We now present the estimate of the quality of the approximation, Lh 
defined in (14). 

Theorem 3.1 Let f(u) E wk+2,oo(n), and set 'Y = trace(u). Assume that 
the family of triangulations F = {Th} is regular. That is, that there exists a 
constant (7 > 0 such that 

hK - 2:: (7, VK E Th, VTh E F, 
PK 

where hK is the diameter of K, and PK is the diameter of the largest ball 
included in K. Then, if pk(K) C V(K), VK E Th: 

II Lh(u,'Y) + V'. f(u) IILOO(n)::; Chk+1 If(u)lwk+2,oo. 
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Proof: We follow [11]: 

IILh(Uh, ')'h) + V'. f(u)lIv"'(K) (18) 

:::; IIV" f(u) - ~h(V'· f(u))IILOO(K) + IILh(u,')') + Ph (V' . f(u))IILOO(K) 

We bound the first term of the right-hand side via (16) 

• k 1 IIV" f(u) - Ph(V'· f(u))IILOO(K) :::; Ch + IV" f(u)IW(K)k+l.00 

and proceed to estimate the second term. By (17) we have 

IILh(u,l') + A(V'· f(u))llioo(K) (19) 
1 . 2 

:::; CIKIIILh(u,')') + Ph(V'· f(u)))IIL2(K) 

1 r . 
= C lKI J)Lh(u, ')') + Ph(V'· f(u))llvhl dx 

where Vh = (Lh(u,,),) + Ph(V'· f(u)). To estimate this term we use the 
definition of the L2-projection and of Lh, to obtain, since Vh E pk(K), 

1 r . 
C IKI J)Lh(u, ')') + Ph(V'· f(u))) Vh dx (20) 

- CI~IL(Lh(U,')') + V'·f(U))Vh dx 

- C I~I iK Lh(u, ')') Vh dx 

-C I~I iK f(u) . V'Vh df + C I~I e"'[;K1 f(u) . ne,K Vh df 

1 1 
C-

I 
I EK(f(u)· V'Vh) + C-

1KI 
L Ee(f(u)· ne,K Vh) 

K eE8K 

where 

L 

EK(g) - ~ 9 - LWlg(Xl,K)IKI, (21) 
K 1=1 

L 
Ee(g) 1 9 - L WI g(Xl,e) Ie\. (22) 

e 1=1 
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We have f(u) E W k+2,oo(O) and \1Vh E pk-l. By hypothesis, integration 
over the interior of the triangle is exact for polynomials of degree 2k, so (16) 
implies 

C I~I jEK(f(u) . \1Vh) I < Chk+2If(u)lwH2.00(K) I\1VhILOO(K) 

< Chk+2If(u)lwHl.OO(K) IVhILOO(K)' 

Similarly, integration over the edges is exact for polynomials of degree 2k + 1, 
and we also have 

C 1~IIEe(f(U) . ne,K vh)1 < C I~I hk+2if(u) . ne,Klwk+2.oo(e) IVhILOO(K) 

< Chk+Ilf(u)lwH2'OO(K) IVhILOO(K) 

by regularity of the triangulation. Since Vh = L h( u, 'Y) + Fh(\1· f( u)), we thus 
have 

IILh(u,'Y) + A(\1· f(u))llloo(K) (23) 
1 A 2 

::; CIKfIILh(u,'Y) + Ph(\1· f(u)))IIL2(K) 

::; Chk+llf( u) IWH2.OO(K) ILh( u, 'Y) + \1 . f( u) ILOO(K)' 

3.3 Maximum principle 

It remains a current research topic to develop high resolution methods of 
hyperbolic conservation laws; that is, high-order schemes that converge in a 
non-oscillatory manner to the correct weak solution. Obtaining sharp, non­
oscillating solutions is a function of the local slope limiting operator Allh , 

while convergence to the unique physically valid weak solution is enforced 
by the entropy-satisfying numerical flux function h(Uh(X, t)). However, to 
initially obtain convergence of the approximation to any weak solution of 
the conservation law, the method must satisfy several properties pertaining 
to hyperbolic conservation laws [30]. We define the following concepts to 
demonstrate that the Runge-Kutta Discontinuous Galerkin method satisfies 
these conditions for convergence. 
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DEFINITION (Total Variation and Total Variation Stable) 
The total variation of a numel'ical approximation in two dimensions is 

TV(Uh) = limsuPHo ~ i: i: IUh(X + E, y) - Uh(X, y)1 dxdy 

+ limsUPHo~ i: i: IUh(X, y + f) - Uh(X, y)1 dx dy 

A numerical method is total variation stable (TV-stable) if for tn :::; T, 
we have uh E K where K = {u : IluIIL1(L,) < 00, TV(u) :::; C < 00, and 
supp(u) C Af, for M a compact set in JR2

} 

LemmIi 3.4 Suppose a numerical method is in conservation form with a 
Lipschitz-continuous numerical flux, consistent with some scalar conservation 
law. If the method is TV-stable, then the method is convergent. 

Remark: This convergence is in the sense that for approximation Uh, 
dist( Uh, W) -+ 0 as Ot -+ 0 where W = {w : w(x, t) is a weak solution to the 
conservation law} . 

Provided the total variation of the approximation over all time is uni­
formly bouI,lded by the total variation of the initial data, TV-stability and 
hence convergence is ensured. This is the definition of a total variation dimin­
ishing (TVD) method. We would like to obtain convergence of a high-order 
accurate method. However, in two dimensions there is a strong incompat­
ibility between TVD-compactness and high order accuracy; Goodman and 
Leveque prove in [24J that any TVD scheme is at most first order accurate. 

In [33J, Shu introduced a modification called Total Variation Bounded­
ness (TVB) in which the variation is allowed to increase by O(Ot) each time 
step while maintaining total variation stability. However, to prove the TVB 
property in two dimensions is a rather difficult task even for the simplest 
monotone scheme if arbitrary triangulations are considered. We instead rely 
on corrected limiters and ensure a maximum-value principle of the approxi­
mation for high order-accurate methods induced by the local slope limiting 
operator AIIh [9]: 

Theorem 3.2 For the hyperbolic conservation law (5), the Runge-Kutta Dis­
continuous Galerkin method, with numerical flux function hand TVD Runge-
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K utta time discretization, satisfies a maximum principle under the Courant­
Friedrichs-Levy condition: 

..i!.maxlah(u) I < 1 
Jx au - 2k + 1 

for k = 1,2 (second and third order schemes). 

4 Adaptive Flux Stencil Advection Approach 

We now describe the finite volume method developed by Durlofsky, Engquist, 
and Osher in [22, 21]. The Triangle Based Adaptive Stencil method is an 
efficient, formally second order scheme which is applicable to an unstruc­
tured triangular grid. It achieves greater than first-order accuracy through 
the use of a local adaptive flux interpolation procedure which results in com­
putational efficiency. The method is total variation bounded; an extension 
developed by Liu [31] strictly satisfies the maximum principle. 

4.1 Formulation 

To formulate the method we present the general finite volume approach fol­
lowed by the limiting procedure. We define the average of u over triangle K 
to be 

where for Xcentroid the centroid of triangle K we have lu - u(Xcentroidl I 
O(IKI) = O(lhI2). 

Integrating (5) over triangle K yields 

:t iK udx = - i/\1· f(u))dx (24) 

Applying the divergence theorem to the right-hand side of (24) yields 

a 
-u= 
at I~I (L f(u) . llel,K dr 

+ 1 f(u)· lle2,K dr 
e2 

+ 1 f(u)· lle3,K dr) 
e3 
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where el U e2 U e3 = oK. We will discretize in space first by approximating 

We replace the flux function f(u(x, t))·ne;,K by the numerical flux function 
hei,K(X, t) = hei,K(U;;, ut), where he;,K is any two-point Lipschitz continuous 
monotone flux defined on edge ei of triangle K. We integrate over each 
line segment via the midpoint rule which is exact for linear functions. Our 
approximation becomes 

1~I(hel'K(U-'U+) lell 
+ he2 ,K(U-, u+) le21 
+ he3 ,K(U-, u+) le31). 

Remark: By the divergence theorem, the following holds: 

(26) 

To obtain higher order accuracy, we preprocess the initial data so that 
for each triangle K, a linear interpolating function IIhu is constructed over 
adjacent triangles so that 

The semi discrete formulation of (5) is: find Uh such that 

I~I (he"K(IIhu-, IIhu+) lell 
+ he2 ,K(IIhu-, IIhu+) le21 
+ he3 ,K(IIhu-, IIhu+) le31). 

(27) 

Let us define the right-hand side of this equation as Rh(uh, 'Yh) to write in 
ODE form as ftUh = Rh( Uh, 'Yh). 

We now describe the construction of the high-order interpolation approx­
imation which incorporates the limiting procedure as well. For each triangle 
IKI, there exist three candidates IIhui depending on the nearest neighbor 
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elements. Provided triangle K is not on a boundary, we generate IThUl from 
the three data points: 

(Xcentroid, Uh), 

(xcentraid, Uh), 

(Xcentroid, Uh), 

on triangle K 

on triangle Ke\ 

on triangle Ke2 

where we define Ke\ to be the triangle adjacent to K on side el. Thus, 
we utilize the data value at the centroid of the corresponding triangle to 
construct the unique linear functional passing through these three points. We 
obtain IThU2 and IThU3 similarly utilizing K e2 , Ke3 and /(e3' /(e\ respectively. 
If the triangle /( is on a boundary, we utilize the value (x, 'Uh) on edge ei. 

At this point, three possible interpolants exist and a limited version of 
IThUi must be selected from these. To accomplish this, we first compute the 
magnitude of the gradient of each interpolant I \7ITh Ui I and select the ITh Ui for 
which this gradient is maximized, subject to the restriction that no overshoot 
or undershoot occurs at any of the three triangle boundaries. Given IThu, we 
integrate (27) in time utilizing the same Runge-Kutta procedure as described 
above for the Discontinuous Galerkin method. 

Instead, we may choose to incorporate a modification to the selection of 
the interpolant as described in [31]. This Modified Adaptive Flux method is 
slightly more compressive than the original, yet strictly achieves the maxi­
mum principle in all cases. 

4.2 Error Estimate 

The operator Rh is a discrete approximation of -\7 . f(u), one that defines 
the construction of a linear approximate solution. By the midpoint formula 
for integrals, this approximation is weakly second-order accurate insofar as 
the formal truncation error is within O(h2) at the midpoint of each edge. 

4.3 Maximum principle 

As described above, we will rely on a monotone numerical flux function and 
satisfaction of a maximum principle in order to justify convergence of our 
method to the correct entropy-satisfying solution to the hyperbolic conser­
vation law. Assuming we incorporate the limiting modification [31], we will 
satisfy the following maximum principle: 
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Theorem 4.1 For the hyperbolic conservation law (5), the Triangle Based 
Adaptive Stencils method, with a monotone flux function and TVD Runge­
Kutta time discretization, satisfies a maximum principle under the Coumnt­
Friedrichs- Levy condition: 

8h(u) 1 
8ta(supl~1) :::; 3' 

where a = sup({K}/IKI), which is evaluated over all triangles K E 11. {K} 
and IKI denote the perimeter and area of triangle K, respectively. 

Proof: See [31]. 

5 Numerical Results 

We present results for the convergence of the two methods as well as solution 
contours to demonstrate accuracy. In particular, we show some numerical 
results for a convergence test problem and for the rotating cone problem. To 
compare the two methods described, we restrict the Discontinuous Galerkin 
method to the case of piecewise linears where k = 1. 

In our numerical tests, we utilize the Godunov flux function. Given in­
terior and exterior states u- and -u+, the Riemann solution is determined 
by 

We consider the following linear test problem 

ifu-:::; u+, 
else. 

Ut - V' . (au) = ° on (0,1) x (0,1) x (0, T], 

where a = (1, l)t with initial and boundary conditions chosen so that 

u(x, y, t) = sin(21l'(x - t))· sin(21l'(Y - t)). 

(28) 

(29) 

The errors Ilu - uhllL2 and rates of convergence at T = .05 are given in Table 
1. Table 2 exhibits the Ilu - uhliL' errors. Note that the rates of convergence 
are cumulative least-squares. 
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TABLE 1: L2 errors and convergence rates for linear test problem. 

Discontinuous Modified 
Galerkin Adaptive Flux Adaptive Flux 

elements L< error rate L2 error rate 1" error rate 
32 1.5ge-01 7.41e-3 8.44e-3 
128 4.58e-02 3.0ge-3 3.6ge-3 
512 1.28e-02 1.82 1.12e-3 1.36 1.5ge-3 1.20 
2048 6.13e-03 1.59 3.30e-4 1.40 5.90e-4 1.27 
8192 2.02e-03 1.55 8.72e-5 1.60 2.72e-4 1.26 

TABLE 2: Ll errors and convergence rates for--linear test problem. 

Discontinuous 
Galerkin Adaptive Flux 

elements Ll error rate Ll error rate 
32 1.27e-1 1.30e-2 
128 3.40e-2 4.12e-3 
512 l.l1e-2 1.76 1. 2ge-3 1.67 
2048 2.91e-3 1.82 3.7ge-4 1.70 
8192 7.58e-4 1.86 1.10e-4 1.72 

We also consider the rotating cone problem which is of the same form as 
(29) but incorporates variable coefficients: 

a = [(y - 0.5), (0.5 - xW. 

The initial condition is a cone of maximum height 1 and radius 0.15, centered 
at (0.75, 0.5). The exact solution is counterclockwise rotation of the initial 
condition about (0.5, 0.5). The solution after a quarter revolution and after 
a half revolution is shown in Figure 1 for the Discontinuous Galerkin method 
with 2048 elements. The solution for the Adaptive Flux Stencil method with 
2048 elements is shown in Figure 2. Figure 3 depicts 3-dimensional mesh 
plots of the methods at one-half revolution. The maximum value of u after 
one-half revolution for each method is given in Table 3. 
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6 Conclusions 

In this report we have considered the Runge-Kutta Discontinuous Galerkin 
method and for the Adaptive Flux Stencil method for hyperbolic conservation 
laws. We have implemented these methods on two-dimensional triangular 
structured domains and now analyze our results. 

Numerical results for the linear test problem reveal similar rates of con­
vergence for both methods and a correspondingly lower absolute error for 
the Adaptive Flux Stencil scheme. The cumulative least-squares conver­
gence rate approaches 1.55 in the L2 norm and 1.86 in the U norm for the 
Discontinuous Galerkin method. The corresponding rates of convergence for 
the Adaptive Flux method approach 1.60 in the £2 norm and 1.72 in the U 
norm. The Modified Adaptive Flux Stencil method is slightly more compres­
sive than the unmodified version in order to strictly enforce the maximum 
principle. This is reflected in the slightly lower convergence rate of approxi­
mately 1.25 in the L2 norm for this method. 

For the rotating cone problem, the methods demonstrate high order ac­
curacy without the addition of spurious oscillations or overly diffusive solu­
tions. After one-half revolution, the Discontinuous Galerkin method better 
preserved the height of the cone (.836) than did the Adaptive Flux method 
(.795), although both gave good results. A typical first-order approximation 
to this problem can diffuse the height of the cone to only .48, reduced from 
1 in the initial condition. 

Both methods are straightforward to implement numerically and give 
good results insofar as they approach the optimal rate of convergence and 
accurately resolve a solution profile with sharp gradients. The computational 
efficiency of one method over another is not significantly distinguishable. 
The extremely local computational domain render the methods suitable for 
efficient parallel implementation. 

The flexibility of the Discontinuous Galerkin method in its ability to 
construct higher than first order approximations makes it more conducive 
to higher-order investigations and adaptive finite element problems. The 
corresponding extension of the Adaptive Flux method to greater than first 
order approximations would be prohibitive, primarily due to the number of 
degrees of freedom needed to uniquely define the quadratic interpolant in 
two dimensions. 

Both methods can easily handle complicated geometries as they are appli­
cable to unstructured triangular meshes; the Discontinuous Galerkin method 
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is applicable to rectangular elements as well. The main advantage of these 
methods over others is their high parallelizability and higher order accuracy, 
rendering them suitable for advection-dominated flow computations. 
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