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ABSTRACT

Comparison of Finite Difference and Finite Element Hydrodynamic
Models Applied to the Laguna Madre Estuary, Texas. (December 1996)
Karl Edward McAuthur, B.S., The University of Texas at Austin
Chair of Advisory Committee: Dr, Ralph A. Wurbs

The U.S. Geological Survey Surface Water Flow and Transport Modet in Two-Dimensions
(SWIFT2D) model was applied o the northern half of the Laguna Madre Estuary. SWIFT2D is a two-
dimensionai hydrodynamic and transport model for weil-mixed estuaries, coastal embayments, harbors,
lakes, rivers, and inland waterways. The model numerically solves finite difference forms of the
vertically integrated equations of mass and momentum conservation in conjunction with transport
equations for heat, salt, and constituent fluxes. The finite difference scheme in SWIFT2D is based on a
spatial discretization of the water body as a grid of equal sized, square cells. The r;mdel includes the
effects of wetting and drying, wind, inflows and return flows, flow barriers, and hydraulic structures.

The results of the SWIFT2D model were compared to results from an application of the
TxBLEND model by Texas Water Development Board to the same part of the estuary. TxBLEND isa
two-dimensional hydrodynamic model based on the finite element method. The model employs
triangular elements with linear basis functions and solves the generalized wave continuity formulation
of the shallow water equations. TxBLEND is an expanded version of the BLENTD model to additional
features that include the coupling of the density and momentum equatons, the inclusion of evaporation
and direct precipitation, and the additicn tributary inflows. The TxBLEND model simulations discussed
in this study were performed by personnel at the TWDB.

The two models were calibrated to a June 1991 data set from a TWDB intensive inflow survey
of the Laguna Madre. Velocity and water quality data were available for the three days of the survey.
Tide data for a much longer period were available from TCOON network stations. Results of the two
models were compared at seven tide stations, eight velocity statdons, and eleven flow cross sections.
Simulated water surface elevations, velocities, and circulation patterns were comparable between
models. The models were also compared on the basis of the ease of application and the computational
efficiencies of the two models. The resuits indicate that, in the case of the Laguna Madre Estuary,
TxBLEND is the more efficient of the two models.
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I INTRODUCTION

BACKGROUND

The need for freshwater inflows to maintain the ecological stability of bays and estuaries has
provided the impetus for 2 wide range of smdies along the Texas Coast. Texas Senate Bill 137 passed
in 1975 mandated comprehensive studies of freshwater inflows to Texas bays and estuaries (Texas
Department of Water Resources 1983). These studies led to a series of reports on the influence of
fresh water inflows on the seven major bay and eswmary systems along the Texas coast. Similar
legislation passed in 1985 mandated an update of the earlier swdies. In an effort to help predict the
impact of various schedules of freshwater inflows, the Texas Water Development Board began a series
of investigations and hydrodynamic modeling studies of Texas bays and esmaries (Longiey 1994).

The Laguna Madre estuary is one of only three oceanic, hypersaline, lagoonal areas in the
world. The system is composed primarily of shallow tidal flats that extend from Corpus Chrisd to
Brownsville. The estuary is divided into two parts by a wide land bridge south of Baffin Bay. The Gulf
Intracoastal Waterway (GIWW) is the only connection between the upper and lower portions of the
estuary. The Laguna Madre estuary supports a significant portion of the commercial fishing indusory
in Texas (Laguna Madre, 1983) and is central to the economy of a large section of the Texas coast.
Construction of the GTWW in the late forties significantly changed the patterns of flow in the Estuary.
The GIWW created a continuous conduit for flow that extended the entire length of the estuary. The
dredging required to maintain the channel has resulted in a chain of spoil islands that are
intermittently spaced along the length of the estuary parallei to the GIWW. The spoil islands have
also had an influence on circulation parterns in the estuary. The Location of the Laguna Madre is
shown in Fig. 1. | _

The unique nature of the Laguna Madre Eswary presents a number of problems that make the
system difficult to model. The presence of large tidal flats requires a hydrodynamic model that is able
to simulate the flooding and drying of model computational cells. The unusual characteristcs of the
estuary system prompted the Texas Water Development Board (TWDB) w evaluate alternadves (0 the
TxBLEND two-dimensional, finits element model which they have applied to several systems along
the.Texas Guif Coast.

The journal model is the ASCE Journal of Hydraulic Engineering.




EXPLANATION
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FIG. 1. Location Map of the Laguna Madre Estuary



The U. §. Geological Survey (USGS), under contract with the TWDB, has tested the applicability of
the USGS Surface-Water, Integrated, Flow and Transport hydrodynamic model (SWIFT2D) to the
Laguna Madre System. The SWIFT2D model is a two-dimensional, vertically integrated, finite
difference model with the capability to simulate both flow and constituent transport. The results of the
SWIFT2D modeling effort are compared to the available results from the modeling efforts of the
TWDB.

The TxBLEND model has not yet been applied to the lower portion of the Laguna Madre
south of the land cut. This study will focus on the ability of the models to simulate the upper portion
of the Laguna Madre north of the land cut. The SWIFT2D model, calibrated for hydrodynamics,
allows for a comparison of the ability of the two models to handle a number of important forcing
functions. The effects of wind on the behavior of the model are especially interesting in the case of the
Laguna Madre Estuary. The model will alsc allow an evaluation of the effects of wetting and drying
on the extensive tidal flats in the estuary, _

One of the major goals of the study is to consider the ability of the simple, regular, square
grid finite difference representation of the estuary required for SWIFT2D to match the more
geometrically accurate linear triangular finite element representation required for the TxBLEND
model. The requirement in SWIFT2D for regular grid cell sizes is somewhat of a liability in the case
of the Laguna Madre. The large area and the unusual flow characteristics of the estuary requires a
fairly smatl ceil size. The Gulf Intercoastal Water Way (GTWW), which for most of its length has a
width of approximately 38 meters (125 feet) and a project depth of 3.7 meters (12 feet), ransmits a
large part of the flow in the estuary. In order to accurately represent the true bathymetry of the
channel, a cell size on the order of the width of the GIWW would be required. Such a grid size would
require approximately 3.15 million cells in order to represent upper portion of the Laguna Madre
Estuary. The triangular finite element representation used by TxBLEND allows for variation of cell
sizes. The cells can be very small in the vicinity of the GIWW or other important featres, while cells
in the wide, shallow flats can be significantly larger. However, elements which are too large can cause
numerical instabilities in the TxBLEND model as discussed by Solis (1991). The limitations on cell
size and computer power necessitated separation of the Laguna Madre into two parts for the SWIFT2D
modeling.

ESTUARY MODELING

The primary concems in estuary modeling are the simulation of flow parterns and salinity
distributions. Both of these factors are of vital concern to the health and productivity of bay and




estuary systems. The effects of fresh water inflows to bays and estaries has been studied extensively
in the state of Texas. State law mandates that the necessary fresh water inflows to such systems be
insured. Hydrodynamic simulation models are often used to determine the relationship between fresh
water inflows, circulation patterns, and salinity. Results from hydrodynamic simulations are used in
conjunction with planning level optimization models to operate systems of reservoirs upstream of the
estuaries Lo insure the heaith of the estary.

There exists a wide range of estuary hydrodynamic models in the literature. Both finite
difference and finite element models have been used extensively, and the models have increased in
complexity as computer resources have improved. Finite difference soluticn schemes were more
successful in early hydrodynamic models, however, the inroduction of the wave continuity equation
formulation has led to the creation of many robust finite element schemes (Westerink, 1991). Both
finite difference and finite element techniques have been used in a wide variety of two and three-
dimensional hydrodynamic models. The advent of more powerful computer resources has spurred the
growth in the number of three-dimensicnal models,

RESEARCH OBJECTIVES

The primary goal of the sudy is to evaluate the SWIFT2D model as an alternative to the
TxBLEND model used by the Texas Water Development Board. Consideration will be given to the
ease of application of the model as well as the quality and usefulness of the model results. The specific
objectives of the swudy are:

1. Calibrate and verify the SWIFT2D model for the upper and lower Laguna Madre Estuary with data
from the Texas Water Development Board, 'f‘exas Coastal Ocean Observation Network, National
Oceanic and Atmospheric Administration, and any other available data sources;

2. Compare the quality of the model result and the efficiency of the model application with that of the
TWDB’s TxBLEND finite ¢element model. Results are compared through evaluations of root
mean squared errors between simulated and observed values and through visual inspection of plots
of simulated and observed values.

The results of the study will be discussed in the thesis and also will be delivered to the TWDB.



I LITERATURE REVIEW

THE LAGUNA MADRE ESTUARY

The Laguna Madre Esmary system presents special problems in any effort to apply a
hydrodynamic model. The estuary is one of only three oceanic, lagoonal, hypersaline areas in the
world. Most of the Laguna Madre is composed of shallow flats, which extend the length of the estuary
from Corpus Christi to Port Isabel. The upper and lower Laguna Madre is separated by a wide sand
flat below Port Mansfield, Texas. The total surface area of the estuary at mean water level is
approximately 1658 square kilometers (640 square miles), while the area at mean low water the
surface area is approximately 1137 square kilometers (439 square miles). As the difference in surface
area between mean water level and mean low water indicates, there are large areas of shallow tidal
flats that tend to flood dry pericdically. The Guif Intracoastal Waterway (GTWW), which runs the
entire length of the estuary at an average project depth of approximately 12 feet, is the only connection
between the two halves of the Laguna Madre. The Laguna Madre has only five connections with the
ocean and adjacent waters. At the north end, the estuary opens onto Cofpus Christi Bay at the Humble
Channel, Gulf Intracoastal Waterway, and Packery Channel. The southern haif of the estuary opens
onto the Gulf of Mexico at the Port Mansfield and Port Isabel ship channels. A limited amount of
freshwater inflow to the estary enters primarily from Baffin Bay in the upper Laguna and the Arroyo
Colorado in the lower Laguna. Circulation in the eswary is primarily wind driven, and the tidal range
is generaily on the order of half a foot or less (Texas Department of Water Resources 1983). Ina
report mandated by Senate Bill 137 passed in 1975, the Texas Department of Water resources (1983)
discusses in detail the characteristics of the Laguna Madre Estuary. The discussion ranges from the
hydrolegy, circulation, and salinity to the nutrient processes and productivity of the estuary. The
report on freshwater inflows 1o Texas bays and Estuaries edited by Longley (1994) was the result of
similar legislation passed in 1985.

Kjerfve (1987) presents a summary of the characteristics of the Laguna Madre that is drawn
from a number of sources. The Laguna Madre is the southemmost of the estuaries along the Texas
coast. The regional climate of the coastal zone of south Texas is listed as tropical semiarid and is
anomalous enough to be considered a “problem climate.” The average precipitation rate in the region
approximately equals the rate of evaporation. Additionally, there is liule freshwater inflow into the
northern Laguna Madre. Inflows from Baffin Bay average approximately one cubic meter per second
and may cease altogether during periods of little precipitation (Kjerfve 1987). Direct precipitaton
accounts for an average of 65% of the freshwater inflow to the Laguna Madre (Texas Department of




Water Resources 1983). Kjerfve also discusses the hypersaline nature of the esmary. Before
completion of the GIWW, the northern half of the estuary was thought 1o be in good condition when
the salinity fell within the range of 40 to 60 parts per thousand (ppt). The salinity was observed to
approach 100 ppt during periods of unusually low rainfall. Construction of the GTWW improved the
exchange of water between Cofpus Christi Bay and the upper Laguna Madre, however the estary
remains hypersaline. The salinity is highest at locations beyond the reach of tidal and low-frequency
exchanges. The mean salinity at the northern end of the estuary was 31.5 ppt. The salinity increased
southward at a rate of approximately 0.18 ppt/km (Kjerfve 1987).

A recent article by Cartwright (1996) discusses the economic and ecological impact of the
Gulf Intracoastal Waterway on the Laguna Madre Estuary. The article focuses primarily on the impact
of maintenance dredging of the GTWW an the health and stability of the esmary, Studies have
concluded that the maintenance dredging is destroying the sea grass beds in the estuary. Sea grass
forms the base on which life in the Laguna Madre i3 dependent. The reduction in sea grass has led to
serious reductions in the productivity of the esmary. Cartwright (1996) states that while the
connection of the upper and lower Laguna Madre as a result of the GTWW land cut increased
circulation and productivity in the estuary, significant detrimental effects aiso were created. Barge
traffic along the GIWW causes substantial erosion of sea grass habitat in the flats adjacent to the
channel. The spoil islands created as a resuit of the maintenance dredging have had a significant
effect on circulation patterns in the esmary, The islands range in size from 20,000 square meters to
over 200,000 square meters. Cartwright (1996) also discussed the possibility of a 420 km extension of
the GTWW into Mexico. The extension of the channel would dramatically increase the traffic through
the Laguna Madre portion of the GIWW,

Numerous additionai works discuss items such as estuary productivity, ecology, and other
characteristics. While informative, these works have little bearing on the simulation of hydrodynamics
in the estuary and are not included in this report.

GENERAL HYDRODYNAMIC MODELING

A wide variety of hydrodynamic models are discussed in the literature. Both two and three-
dimensional models have been used extensively in applications to bay and estuary systems. Efficient
finite difference and finite element codes are available from a number of sources. The development of
these models has generally kept pace with the rapid pace of improvements in computer systems.
Hydrodynamic modeling seems to have a higher priority in Europe, Asia, and Canada (Westerink and
Gray 1991). Although U.S. contributions in the area of hydrodynamic modeling are a small fraction




of the world total, the present discussion will be limited primarily to contributions made by U.S. model
developers.

Model Developments

Finite difference base spatial discretizations were the most successful schemes in the early
development of hydrodynamic models due to the use of staggered spatial grids (Westerink and Gray
1991). Early finite element schemes were burdened by severe spurious modes that required the heavy-
handed addition of nonphysical dissipation. The introduction of the wave continuity equation by
Lynch and Gray (1979) led to more robust finite element schemes. Numerical schemes based on
coordinate transformations also were under development in the late 1970’s. These schemes led to
finite difference codes with increased grid flexibility and boundary fitting characteristics. As a result,
the features of finite difference and finite element based solutions to the shallow water equations have
become much more similar (Westerink and Gray 1991).

Significant progress has been made in the development of robust hydrodynamic models,
however, a wide range of shortcomings remain o be addressed. Several issues related to depth
averaged flow computations need to be addressed. These include time stepping limitations, long term
stability, conservation of integral invarients, resolution of sharp fronts, supercritical flows, wetting and
drying of land boundaries, convective term treatment, and lateral momentum transport (Westerink and
Gray 1991). The size of depth integrated flow problems and the abilities of hydrodynamic models
have increased along with available computer capacities.

Two-dimensional Finite difference Models

Most of the finite difference models in current use apply spatially staggered discretization.
The SIMSYS2D, which is the previous version of SWIFT2D is based on the staggered grid
Alternating Direction Implici¢ (ADI) solution. An alternative Turkel-Zwas scheme that actempts to
overcome the severity of the Cburant time step limitation is discussed by Navon and deVilliers (1987).
The method discretizes the Coriolis term on a coarser mesh with a fourth order approximation.
Casulli and Cheng (1990) studied the stability and accuracy of Eulerian-Lagrangian methods which
appear to iake advantage of larger ime steps.

Efforts to improve the ability of finite difference models to accurately represent irregular
geometry have led to the use of coordinate transformation schemes and irregular grid sizes.
Extensions of these efforts (o probiems of flooding in tidal flats have led to models with meshes that
deform to fit the shape of the changing physical domain. The traditional approach has been to apply
fixed spatial grids and specify small threshold depths over the area subject to inundation and drying.
Austria and Aldama (1990) solve the one dimensional shallow water equations using a coordinate



transformation which maps a deforming physical domain with maving boundaries into a fixed
computational domain,

Two-dimensional Finite element Models

' Finite element schemes have become more common than finite difference schemes for the
solution of the shallow water equations, however, some of the same ideas are being examined in both.
Time discretization schemes similar to those used in finite difference models have been used in finite
¢lement schemes to take advantage of the ability of the method to perform long term simulatons.
Frequency domain based schemes have also been used for tidal circuiation or other periodic events,
The frequency domain scheme has the advantuge of efficiency for long term simulations, no stability
constraints on the time step, and the ability o study nonlinear tidal consdtuent interactions in a
controlled manner (Westerink and Gray 1991 .

Flooding angd drying effects also hav - been addressed in finite element models. Akanbi and
Katopodes (1988) solved the primitive shallo - water equations through the implementation of a
scheme which employs moving and deformin - {inite element mesh. The deforming mesh exactly
follows the land water interface. Siden and L. nch (1988) use the wave continuity form of the shallow
water equations with moving boundaries. The nethod also exactly follows the interface and uses a
tme stepping scheme with elastic mapping of terior nodes.

The TABS system developed by the U 3. Army Corps of Engineers Waserways Experiment
Station hydraulic group has been used in a nur: ser of applications. The TABS system is comprised of
the Geometry File Generation program (GFGE N), RMA2, RMA4, and SED2D. The GFGEN software
provides an extensive system for the developm nt of the finite element meshs required by the system.
Jones and Richards (1992) discuss an early ve .ion of the GFGEN software, which in an earlier from
was called FastTABS. RMA2 is a one/two-di: :ensional, vertically-averaged, fully-implicit finite
element model. The model can use both one :: 1d two-dimensional elements. The two-dimensional
elements may be either mangular or trapezoid:| and the side can be curved to fit boundary conditions.
RMAA4 is a one/two-dimensional depth averag.4 constituent transport finite element model, and '
SED2D is a two-dimensional, vertically averag-:d, sediment transport finite eiement model.

Three-dimensional Models

Most fuily three-dimensional models have used the finite difference approach. Three-
dimensional models are distinguished by the inclusion of property variation in the vertical. The
vertical length scale is typically much smaller than the horizontal scale, therefore, algorithms must be
developed which are not restricted in the time siep by the small vertical scale (Westerink and Gray
1991). The o- coordinate system is commonly used to simplify the calculations in the vertical.



Problems of poor accuracy have been observed with the - coordinate sysiem used over areas with
steep topography.

The Chesapeake Bay is on of the largest estuaries in the world and has been the subject of a
number of investigations. Sheng et al. (1990) discuss aspects of curvilinear grids and vertical o-
coordinate transformations in the application of the CH3D modet to the Chesapeake Bay. The CH3D
model is a three-dimensional hydrodynamic model which makes use of a boundary fitted coordinate
system and a turbulence closure model.

Grenier et al. (1993) discuss an application of the Advanced Three-dimensional Circulation
Model for Shelves, Coasts, and Estuaries (ADCIRC) in both two-dimensional and three-dimensional
forms to the Bight of Abaco. The ADCIRC model employs the generalized wave continuity equation
to the solve for the surface elevations and then uses a terrain-following 6- coordinate system in the
vertical. A complete discussion of the model is presented by Luettich et al. (1992).

PREVIOUS STUDIES IN THE LAGUNA MADRE

A limited number of hydrodynamic modeling studies of the Laguna Madre have been made
since the 1983 study of the estary by the Texas Department of Water Resources. Most of the models
to date have focused on small parts of the estuary, especially in the vicinity of the JFK Causeway at the
northern end of the estuary. The causeway has a significant effect on circulation in the estuary and
has received considerable attention. Efforts are currently underway to execute models for the entire
Laguna Madre Estuary systems. A comprehensive modet of the entire estuary would provide valuable
information for planning purposes. ‘

The first effort to model the system was initiated as a result of the mandate from Texas Senate
Bill 137. The set of models used in the study are described by Masch (1971). Separate models were
used for the hydrodynamics and the conservative transport of salinity. Both models operated on a
rectangular grid of square cells. The hydrodynamic model was a vertically integrated, explicit scheme,
finite difference model. The ransport model employed an alternating direction implicit (ADI)
solution of the convective-dispersion equation. The computational grid for the Laguna Madre was
created, however, a satisfactory calibration was never obtained. |

Additional modeling studies of the Laguna Madre have recently been performed by the
Conrad Blucher Insttute for Surveying and Science. The Blucher Instiute has used a two-
dimensional, explicit finite difference hydrodynamic model (M2D) for two studies in the area. The
M2D model uses a spatially-centered, finite difference scheme. The model operates on a rectilinear,
irregularly-spaced finite difference grid. Militello and Kraus (1994) describe an application of the
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M2D model to predict cwrrent and sediment movement in the Lower Laguna Madre as a result of U.S.
Army Corps of Engineer dredging projects along the GTWW. Brown et al. (1995) describe an
application of the M2D mode! to evaluate the effects of changes to the John F. Kennedy Causeway on
circulation in the upper Laguna Madre. The M2D model grid for the JFK Causeway application
consisted of approximately 13,000 cells with grid cell dimensions ranging from 40 to 592 meters. The
second application of the M2D model was similar 10 TWDB efforts to model changes to the John F.
Kennedy Causeway with the TXxBLEND model. Neither Blucher Institute study attempted o apply the
M2D model 10 the entire Laguna Madre Estuary.

TxBLEND AND SWIFT2D

The TWDB has undertaken hydrodynamic modeling studies in all seven of the major bay and
estuary systems along the Texas Coast (Sabine-Neches, Trinity-San Jacinto, Lavaca-Colorado,
Guadalupe, Mission-Aransas, Nueces, and Laguna Madre Estuaries) The TxBLEND model has been
used in all of the TWDB modeling efforts to date. TXxBLEND is an expanded version of the BLEND
model developed by Dr. William G. Gray of Notre Dame University. The original BLEND model is a
depth-averaged, two-dimensional finite element model and employs linear triangular elements (Lynch
and Gray 1979). The BLEND model was modified with the addition of input routines for tides, river
inflows, winds, evaporation, and concentration (Longley 1994), The TWDB has deveioped finite
clement grids for use with the TXBLEND model for each of the seven major Texas estuaries.

Limited applications of the model have been performed for the northern most end of the
Laguna Madre in the area near the John F. Kennedy Causeway. These modeling efforts whichv are
discussed in reports by Duke (1990), Solis (1991), and Matsumoto (1991), raised questions about the
ability of the current version of the TXBLEND model to accurately reproduce the hydrodynamics of the
Laguna Madre. |

In an attempt to reduce numerical instabilities and conservation of mass problems, the TWDB
is currendy refining the TxBLEND model and experimenting with a variation of the model called the
Finite clement Texas Method (FETEX). The FETEX model auempts 10 combine the flexibility of
discretization of finite element methods with the more simple mathematics of finite difference
methods. Early applications of the model were not as successful as expected (Matsumoto 1992).

The SWIFT2D hydrodynamic model was selected by the USGS and TWDB for evaluation as
an alternative to the TxXBLEND model. SWIFT2D is a two-dimensional, depth averaged
hydrodynamic/transport model for simulation of vertically well-mixed estuaries, coastat seas, harbors,
lakes, rivers, and inland waterways. The SWIFT2D model numerically solves finite difference forms
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of the verticaily integrated equations of mass and momentum conservation in conjunction with
transport equations for heat, salt, and constituent fluxes (Regan and Schaffranek 1993). The
theoretical basis of the model is discussed in a report by the Rand Corporation (Leendertse 1987).

| The SWIFT2D model has been used in a number of applications around the United States.
Schaffranek (1986) discusses an application of the model for a simulation of the upper Potomac
Estuary in Maryland. The study was performed as part of an intensive interdisciplinary investigation
of the tidal Potomac River and Estuary, The model was successfully used to investigate the
hydrodynamics and certain aspects of transport. Lee et al. (1994) discusses the simulation of the
effects of highway embankments on the circulation of the Port Royal Sound Estuary. The Port Royal
Sound application is similar to the John F. Kennedy Causeway modeling studies performed by the
TWDB and the Blucher Institute. A data collection program and application of the SWIFT2D model
to the Pamlico River Estuary, North Carolina, are discussed in Bales (1590) and Giese and Bales
(1992). The SWIFT2D modet has proven to be an effective tool in each of these applications.
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T DESCRIPTION OF MODELS

Estuary hydrodynamic modets solve the shallow water forms of the equations of conservation
of mass transport and momenmm conservation. Finite difference and finite element representations of
the equations are the most commonly used solution schemes. Two-dimensional models are based on
the assumptions of well-mixed conditions in the vertical dimension, smail depths in comparison o the
horizontal dimensions, and hydrostatic pressure. The Laguna Madre Eswary is primarily shallow with
depths of a meter or less over much of the estuary. While the eswary has significant salinity gradients
from north to south, the properties in the verticai are generally consistent. Two-dimensional modeis,
therefore, are appropriate to represent the hydrodynamics. Both SWIFT2D and TxBLEND consider
vertically averaged velocities and constituent concentrations. The twe models provide an excellent
contrast between the abilities and applicability of fixed-grid finite difference and a linear, trianguiar-

mesh finite eiement solution schemes.

SWIFT2D

Capabilities

The basic purpose of the Surface-Water, Integrated Flow and Transport Two-Dimensionai
Model is the two-dimensional simulation of hydrodynamic, ransport, and water quality in well-mixed
water bodies. The model was created to model time-dependent, variable-density, fluid flows in bodies
of water whose depths, though varying, are small compared with their horizontal dimensions
(Leendertse 1987). The original version of the SWIFT2D model was developed in the late 1960's and
early 1970’s for an application in Jamaica Bay on the New York coast. Work on the SIMSYS2D
modeling system which evolved from the original Jamaica Bay application was sponsored by the
USGS and the Netherlands Rijkswaterstaat. The original documentation was pubtished in a set of
reports written by the RAND corporaticn for the USGS (Leenertse 1987). The program has been
modified and updated several imes since completion of the original code. The version of SWIFT2D
used in this study was last updated in June, 1995. The SWIFT2D documentation is at present
unpublished, however, information about the model and documentation may be obtained from the
USGS. The point of contact for SWIFT2D is U.S. Geological Survey, Hydroiogic Analysis Software
Suppbn Team, R.Steven Regan, 437 National Center, Reston, VA 22092, (electronic mail:
h2osofu@usgs.gov). The model has been used by USGS personnel in a number of applications
throughout the United States. )
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- SWIFT2D is a robust model based on the alternating direction, implicit (ADI) solution of the
two-dimensional equations of conservation, momentum, and mass transport. The model can be
applied 1o a wide range of well mixed, shallow, surface water problems. Possible applications include
estuaries, coastal embayments, harbors, lakes, rivers and inland waterways. The program can be used
to investigate tidal influences, residual circulation, wind effects, and the fate of discharged substances
in water bodies. It can be used to anhlyze flow through bridge openings, over highway embankments,
around causeways and through culverts, at highway crossings of riverine flood plains, and estuarine
wetlands, Circulation in lake and enclosed embayments under the influence of wind, storm surges in
coastal areas, bays, and estuaries, and harbor oscillations also can be investigated with the program
(Regan and Schaffranek 1993).

The finite difference grid for the model can be defined to simulate non-rectangular
geographical areas and areas bounded by any combination of closed (land) and open (water)
boundaries. Both ime-varying data (water levels, velocities, or transport rates) and Fourier functions
{phase and amplitude) can be specified as driving conditions at open boundaries. The ability 10
simulate sources of discharge such as rivers and outfalls allows the model to account for fresh water
inflows which are an issue of concern for the health and stability of estyaries. SWIFT2D can be
structured to simuiate isiands, dams and movable barriers or sluices. The ability of the model to
simulate wetting and dewatering of tidai flats is especially important in estuaries such as the Laguna
Madre which are comprised of vast expanses of fertile tidal flats which support extensive growths of
sea grass.

SWIFT2D also has fairly extensive water quality simulation capabilities. The convection-
diffusion form of the mass-balance transport equation is incorporated in the model. The equation
includes terms which account for the generation, decay, and interaction of constituents. SWIFT2D
water-quality computations can handle up to seven constituents simuitaneously. The modular
structure of the model source code makes the inclusion of more detailed constituent interaction
algorithms fairly simple. SWIPTZD includes an equation of state for salt balance to account for
pressure-gradient effects in the momentum equation . The presence of the pressure gradient term in
the momentum equation provides a direct coupling of hydrodynamic and transport computations. The
present version of the model also simulates temperature, however, the simulated temperature is not
currently included in the computation of salinity density gradients. Future modifications may coupie
the temperature and salinity calculations.

The SWIFT2D source code is highly modular and coded entirely in standard, transportable
FORTRAN 77, which makes the program compatible with a variety of mainframe, workstation, and
microcomputer systems. The principal parts of the SWIFT2D modeling system are the main
SWIFT2D program and an input data processor (SWIFTIDP). A number of associated programs are
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available which aid in the application of the model. The Time Dependent Data System (TDDS) and
the netCDF software system can be used to provide extensive data storage, manipulation, and display
functions for time series data. The TDDS is a system of data-management programs devetoped by the
USGS for handling sequences of ime-dependent data. The TDDS has several routines written
especiaily for the output of data in the proper format for use with SWIFT2D. Unidata’'s network
Common Data Form (netCDF) is similar in function to the TDDS and provides an efficient set of
software for scientific data storage, retrieval, and manipulation (Jenter and Signell 1992). Two
programs calied RDMAP and RDHIST provide for graphic output of resuits from SWIFT2D. RDMAP
has the capability to creaie vector and contour plots for each computational grid cell in a model.
RDHIST provides time-series plots of water levels, velocides, flows, and constituent ransport. A
separate program called GRIDEDIT provides an interactive, graphical capability o create, edit, verify,
and view two-dimensional arrays of input data or output results.

Theory
The SWIFT2D model is based on the full set of dynamic, vertically-averaged, two-
dimensional, flow and transport equations. The equations are derived from the full, Eulerian, three-
dimensional representation of flow (conservaton and momentum) by ignoring vertical accelerations
and by replacing the horizontal velocity components with their respective vertically averaged
components. The model is applicable for computation of time-dependent, variable-density flow in
vertically well-mixed bodies with depths that are small in comparison with their horizontal dimensions
The partial-differentiai equations used in the model o express the conservation of mass,
momentum, and constiruents in the x and y directions (Leendertse 1987) are
Conservation of Mass
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a(m‘J)+ o(HUP) , O(HVP) 3(HD,oP/ax) o(HD, 3P/ )

> Ew > EY - > —HS =0 .. 4)
where:
D, D, = diffusion coefficients of dissolved substances,
f= Coriolis parameter,
g = acceleration due to gravity,
A = distance from the bottom to a horizontal reference piane,
H = temporal depth (h+0),
k = horizontal exchange coefficient,
§ = vector of sources of fluid with dissclved substances,
U = vertically averaged velocity compenent in x direction,
V = vertically averaged velocity component in y direction,
R = expression for the bottom friction,
W = wind speed,
€ = water-surface elevation relative to horizontai reference plane,
& = wind stress coefficient, and
¢ = angle between wind direction and the positive y direction.
In these equations, ¢ represents time and x and y are the coordinate axes in the horizontal plane. The
first equation (1) represents the conservation of mass, (2) and (3) express momentum conservation in
the x and y coordinate directions, respectively, and (4) expresses the mass balance of dissolved
constituents,

The variables I/ and V in the conservation and momentum equations represent the vertically

averaged velocity in the x and y coordinate directions and are defined as

= ij‘udz ................................. (5
H-h
V= —}-j‘vdz ................................................. {6)
H

where dz is the increment in the vertical by which the x and v point velocities are integrated over the
temporal depth H. The constituent concentration is expressed in a similar fashion as:

where p; is the concentration of the i-th constiment.
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- The Coriolis term represents the acceleration induced by the rotation of the earth. The
Conolis term can be significant in wide water bodies. The Coriolis effect is a function of the angie of
latimde of the water body and is expressed as

where  is the angular velocity of the earth and ¢ is the geographical latitude of the water body. The
Coriolis effect causes a clockwise acceleration in the northern hemisphere and a counter-clockwise
acceleration in the southern hemisphere.

SWIFT2D has two options for the treatment of the bottom stress term represented by R in (1)
and (2). The first option is the conventional quadratic-stress representation common in steady-state
hydraulics expressed as

g 3 2\1/2
R= L A i T OO OSSO
=5 ( } st ©)
The Chézy coefficient, C, is computed dynamically in the model as
A
C o HY ettt evrsmssseesessesssesssessesssesssesssessssssossseesessessssssessesessemmeeseeessmseseeeeeeed (10)
n

where n is the Manning roughness coefficient and | is a factor equal t0 1 for SI units and 1.486 when
U.S. Customary units are used. A spatially variable Chézy coefficient field, which changes during a
simulation doe to changes in water levels, is computed from a constant field of specified Manning's a
values. Horizontal density gradients due to salinity in a water body force the Chézy values to be
dependent on the direction of flow in addition to the depth. SWIFT2D treats the Chézy value as a
linear function of the salinity gradient as

A

C=2H"1+a, (& ax)”’(f:/ax))
" (w*+v?)

where s is salinity in ppt and ¢, is the salinity correction coefficient. The deasity equation increases
the effects of bottom friction during the flood tide cycle and decreases bottom stress during the ebb tide
cycle. The increase and decrease of bottom stress influences mean water levels in certain regions of
the model and has an effect on the generation of overtides.

The second expression for R is a wrbulence-closure form. In this form the bottom stress is
not computed directly from the velocity components. The subgrid-scale energy intensity level, ¢, is
computed by a transport equation and then the bottom stress coefficient is evaluated according to

e I O 12)
e
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where-a; is a turbulence closure parameter. Energy is computed as a constituent and gansported by
(4) with both generation and decay components, and the local bottom stress coefficient is updated
according to (12).

Wind has a strong effect on wide, shallow estuaries such as the Laguna Madre. The wind
stress coefficient, &, is a measure of the drag exerted on the water surface by wind. The dimensionless

coefficient is expressed as

where C, is the water-surface drag coefficient, p, is the air density, and p, is the water density.
Experiments have shown that the value of the water surface drag coefficient depends on the height,
steepness, and celerity of wind generated surface waves. Representative values for the wind stress
coefficient range from 1.5x10" for light winds to 2.6x10" for swong winds.

Theoretically, the horizontal momentum diffusion is small when the water in the system is
well mixed and a small viscosity coefficient is required for the computation. When the estuary is not
well mixed, however, a much larger effective momentmum exchange is present. The viscosity term is
introduced to account for several physical phenomena. The value of the viscosity coefficient is
dependent on the grid size used in the model. Grids with high resolution adequately describe the
velocity field in time and space. Part of these motions cannot be represented with a much larger grid
size and momentum transfers are incorporated in the viscosity term (Leendertse 1987). Horizontal
momentum diffusion can optionally be treated as a function of the vorticity gradient normal to the
direction of flow. Horizontal momentum diffusion is generally small in well mixed water bodies,
however, when the water body is not well mixed, a much larger effective momentum exchange is
present (Leendertse 1987). The horizontal momentum exchange coefficient, £ in (2) and (3), is

computed as

k=ky+ k'la,w|(As)2 L4440 AR AR ARt (14)

where &, is a spatially variable coefficient, &’ is a constant coefficient over the computational field, As
is the grid cell size, and w is the vorticity [=(aU/dy)-(V/ox)].

The pressure terms in (2) and (3) represent forcing due to salinity-dependent density
gradients. These terms become important in water bodies in which a significant horizontal density
gradient exists. An equation of state is solved for every point in the computational grid at every ime
step to define the relationship between salinity and water density. The distribution of salinity is
detenﬁined by (4). The equation of state is expressed in a form of the Turmlirz equation in which

pressure and volume are related by empirical constants as




18

p= S/ [(17795 +1125T - 0.0745T2) —(38+001T)s+ S'] ........................ (15)

where §” = 0.5890+38T-0.375T2+3s, in which T is temperature in degrees Celsius and s is salinity in
g/kg. Spatial variations in temperature are not computed in the model, therefore, a constant

temperature is used for the entire water body.

Hydrodynamic Computation Features

The governing partial differential equations for the conservation of mass and momentum are
solved by an alternating-direction, implicit (ADI) method on a space staggered grid (Leendertse 1987).
The ADI method is unconditionally stable and does not create artificial {(numerical) viscosity,
Although the implicit nature of the ADI method relieves the numerical stability constraint on the time
step, the time step in practice is often limited by accuracy requirements. Serious errors have been
found for farge time steps. Stelling et al. (1986) determined that the inaccuracy is a fundamental
property of the numerical integration scheme. The so-called ADI effect is discussed further in the
section of this report which deals with the Laguna Madre application sensitivity analysis. The space-
staggered grid representation (Fig. 2) defines the water depth (h) with respect to a horizontal datum at
the center of each grid cell, water surface elevations (§) referenced to the horizontal datum at the four
comers of the cell, and irelocity components (4,v) along the sides of the cell.
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FIG 2. Location of Variables on the Model Grid
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The model grid is tnitially established by delineation of the study area as a rectangle that minimizes
the permanent dry area. The rectangle may be rotated from north to minimize the land area. The
computational scheme essentially uses four grids, one each for depth, water surface elevation, velocity
in the x direction, and velocity in the y direction. The computations proceed in increments of one half
of the specified time step. Water levels and concenmrations are computed each half time step, while the
velocity components are computed at alternate half time steps. Therefore the computed U and V
velocities are never coincident in time.

The numerical integration for velocity in the advecton term of the momentum equations (2
and 3) and water level in the continuity equation (1) are performed with two different operations.
Each operation has options for the time level at which the approximation of certain terms are made
and also of the spatial representation of certain terms (Leendertse 1987). The time level indicates
whether the variabie is at the prior, present, or subsequent time step. In one operation the new velocity
and water level components are computed at time step +.5 in the x direcon. In the second
operation, the components at time step t+1 are computed from informaton available at time step +.5
and ¢ in the y direction. Table 1 summarizes the various corrections performed on computed values for
the seven integration options.

TABLE 1. Description of the Integration Correction Schemes Available in SWIFT2D

Velocity in the Advection term Water level in the continuity equation
[ntegration | Every Other Time | Every Other Time | Every Other Time | Every Other Time
Option Step Step ‘ Step Step
0 Previous Previous Previous Previous
1 Predicted Predicted Previous Previous
2 Average . Average Previous Previous
3 Previous Predicted Previous Previous
4 Predicted Predicted Predicted Predicted
5 Avenage Average Predicted Predicted
6 Previous Predicted Previous Predicted

When velocities are significant, option 0 becomes unstable due to negative viscosiry introduced by the
advection terms. Option 5 approaches second-order accuracy after a few iterations as the advection
terms become centered in ime. Option 5 is considered the most accurate (Leenderts 1987) and was
used in the simulations for this study. The model provides three options for the approximation of the



advectian terms in the momentum equation. The Arakawa option conserves vorticity and squared
vorticity , but is more time consuming. The Leendertse option is a standard central difference
approximation and is less time consuming. The third option completely eliminates the advection
component. |

l The mode! performs calculations on a subset of the full rectangular grid calied the
computational grid. The purpose of the computational grid is to reduce the number of grid cells
involved in the calculations. The computaticnal grid can be defined to exclude large areas of dry land
which could include both cells on the shore above the maximum water level and islands. The
computational grid need not be rectangular provided the internal angles between line segments are
90°, 135°, 225°, or 270°; there are at least two grid spaces between a reversal of direction; and
computational grid polygons are separated by at least one grid space. The default computational grid
which encompasses the entire rectangular grid is shown in Fig. 3.
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SWIFT2D supports boundary conditions for tides, velocites, and mass transport. These boundary
condition gnd cells must be located on the outermost cells of the computational grid.

The forcing functions that drive SWIFT2D include water levels, velocities, and transport rates
at open boundaries, along with wind, discharges, and salinity. Open boundary daia can be input in the
form of time-varying data or Fourier components of ampiitude and phase. Time-varying water level,
velocity, or zansport data at open boundaries are specified for each end of the opening. Values along
the opening are interpolated between the two endpoints. Time-varying wind data can be input as a
single vaiue for the entire grid or as a coarse grid with wind data interpolated from two or more wind
stations. Data for discharge sources which represent sieam inflows, return flows, or withdrawals can
be input at the edges of the computational gnid.

The flooding and drying of shallow areas is simulated through the inclusion or exclusion of
water-surface-elevation points from the computatcn as local water levels rise and fall. The simulation
of these areas present a number of computational problems which have been accounted for in the
model. The major problem is the discrete namre of the changes. When an area is taken out of the
computation the sudden changes generates a small wave. The wave can cause flooding or drying of
adjacent areas, which in turn generates more waves. This chain reaction can cause stability problems
in large simulations with large tidal flats. Two measures are implemented in the model to deal with
the stability problem. First, the assessment of shailow areas that are flooding or drying are made at
periodic intervais larger than the computational time step. The disturbances have time to dissipate
between the assessments. The second measure sets the Chézy coefficient of shallow-depth points to a
small value specified when the depth falls below a small, designated value. The depth and Chézy
coefficient are specified in the input file.

SWIFT2D alsc supports options for the simulation of sluices or barriers to flow, dam or
permanently dry points, and particle movement. The barrier option allows for the simuiation of
structures such as weirs, gates,-sil]s or bridges. The particles in the particle movement routines are
assumed %o represent some guantity of substance that moves with the water but does not influence the
water movement. The particles movement routines could be used to simulate the movement of an oil
spill in the estary. Neither of these options were invoked in the SWIFT2D model of the upper
Laguna Madre, however, the barrier options shouid be used for more detailed analyses such as flow

pauerns near the JFK Causeway.




TxBLEND

The TxBLEND, like SWIFT2D, is a two-dimensional, vertically integrated, hydrodynamic
model capabie of simulating flow, salinity, and constituent transport. TxBLEND, however, is based
on a finite element solution of the shallow water, Saint-Venant equations. The TxBLEND model is
the result of successive evaluations of and improvements to the Fast Linear Element Explicit in Time
(FLEET) triangular finite element models for tidal circulation developed by Dr. William G. Gray at
the University of Notre Dame (Matsumoto 1993). The original FLEET model, described in the user’s
manual by Gray (1987), provides several options for the solution of the shallow water equations of
continuity and conservation of mass. The FLEET solution scheme is based on an explicit finite
element solution of the governing equations. BLEND was the next step in the evolution of the model.
The BLEND model contains the compiete FLEET model with the addition of two-important feamres;
an implicit solution scheme capability and salinity modeting capability. The BLEND model was
further modified by the TWDB to create the current TXBLEND hydrodynamic modet. Several
additions which were deemed important to the modeling of estuaries along the Texas Guif Coast were
added to the model. These features include the inroduction of the density term, direct precipitation,

evaporation, and source or sink terms incorporated into the governing equations.

The FLEET Model

The original fleet model was as much a research and learning tools as a model to be used for
the simulation of real world scenarios. The model was developed in the mid-1980's bj the
Department of Civil Engineering at the University of Notre Dame under a grant from the National
Science Foundation. The purpose of the code was to provide a simple tool for the investigation of the
physical and numerical aspects of the modeling of two-dimensional areal circulation in surface water
bodies due to tidal and atmospheric forcing (Gray 1987). Output from the model includes the time-
varying, verticaily-averaged stage and horizontal velocity components of the flow in the modeled water
body.

FLEET was a generalization of an older modet (WAVETL) which first introduced the wave
equation formuiation of the continuity and momentum equations to finite element modeting of shallow
water bodies. The distinguishing feature of the wave equation model is that the primitive equaticns
(1) and (2) are operated upon before the finite element discretization is applied, such that second
derivative of depth with respect to space appear in the continuity equation. The driving force in the
development of the wave equation model was the presence of spurious short wavelength spatial

oscillations which were a common source of numerical difficulty in earlier finite element models. The
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wave equations have been shown to both damp and propagate this short wavelength noise, while
maintgining high accuracy for the predominant waves, More complete descriptions of the theoretical
basis for application of the wave formulations of the governing equatons can be found in Lynch and
Gray (1979).

The FLEET modei package is actually a set of models which use various forms of the
governing shailow water equations. The mode! allows the user to select between several different
forms and ime weightings of the equations. FLEET is dependent on the same shallow water
assumptions as SWIFT2D, however the model does not account for density variations in the flow. The
options for the governing equations in the model are as follows:

Conservation of Mass
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where:
1= time,
[/ = vertically averaged velocity in the x direction,
V = vertically averaged velocity in the y direction,
H = total depth of water,
h = depth below a horizontal reference datum,
g = graviry,
f = Coriolis parameter,
T = bottom friction,
Ax = atmospheric forcing in the x direction,
Ay = atmospheric forcing in the y direction.
Eqﬁﬁons (17, (19a), and (19b), which comprise option 2 for both the mass and conservation
equations, are the primitive forms similar to the governing equations in SWIFT2D. The primary




difference is the lack of density and momentum diffusion terms in the FLEET equations. Equations
(16), (18), and (21) are wave equation formulations of the shallow water equations.

The FLEET model uses the finite element technique for the solution of the shallow water
equations. The study region must be divided into small, discrete riangular elements as shown in Fig.
5. Each element must have three nodes at which the water surface elevation and velocity selutions are

computed. Uniform sizes and orientations of the elements are not required.
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FIG. 4. Example of a Regular, Square Finite Difference Grid
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FIG.l 5. Example of a Linear, Triangular Finite Element Mesh
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The finite element mesh offers several advantages over traditional finite difference grids such as the
one shown in Fig. 4. Triangular elements provide a much better fit along the boundaries of the water
bodies. In addition, the ability to use varied cell sizes allows the user to more accurately represent
important features with small triangies, while larger triangles can be used in less important areas.
This feature provides greater computational efficiency in areas were large triangles are appropriate,
The triangular elements used to describe the mesh should resembie equilateral triangles as closely as
possible. Severely distorted elements may adversely effect the numerical computations of the model.

The FLEET model requires essentially the same input data as SWIFT2D. The latwde must
be given for computation of the Coriolis acceleration. The bathymetry and geometry of the basin must
be defined and a set of roughness coefficients must be supplied. The roughness coefficient may be in
the form of Manning’s n, Chézy C, or a time invariant roughness. Boundary, initial, and driving
conditions must be supplied. The primary differences between the required inputs for SWIFT2D and
the FLEET model result from the description of the finite element mesh. The FLEET model requires
an incidence list which defines the nodes contained in each wianguiar element. The incidence list
establishes the connections between elements which are required for the definition of the equation
solution matrixes.

The FLEET model applies an explicit method to the solution of the finite element
representations of mass and momentum conservation. All terms in the wave equation, except the time
derivatives, are evaluated from the information at a each time step. The explicit nature of the solution
scheme severely limits the time step that can be used in a simulation. The time step is subject to two
upper limits:

1. The time step should never exceed five percent of the period of motion (tidal period).
2. The Courant-Friedrich-Lewy stability condition on the wave celerity which is evaluated based

on the dimensionless Courant number C

where Az is the time step, AS is the maximum distance between nodes in an element, and 4 is
the depth, must not exceed a certain value.
The maximum allowable value of the Courant number depends on the geometry of the finite element
mesh and the nature of the features represented. The upper limit on the time step for the conditions in
the FLEET model is
0.6AS

AT < Jg—h ...............................................................................................................................

The time step must theoretically be less than the value of this parameter at any point on the grid.
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The BLEND Model

The FLEET model was primarily a research tool and a first siep toward more sophisticated
finite element models for the simulation of two-dimensional hydrodynamics. The BLEND expanded
on the original FLEET model with the addition of two important features, The BLEND model
incorporated an implicit scheme for the solution of the wave equations of continnity and momentum,
and included salinity modeling routines.

The strict limits on the time step in the FLEET model were overcome by the addition of
implicit scheme capability in BLEND. BLEND included three new parameters o control the behavior
of the implicit scheme, The first parameter determines which form of the implicit scheme to use in the
model. A value of 0.0 for the parameter executes the basic explicit scheme. For values between 0.0
and 0.5 the Courant number stability consmraint still governs the time step. The Crank-Nicolson
scheme is used with a value of 0.5, and a value between 0.5 and 1.0 invokes the explicit scheme. The
other two lerms pertain to an experimental implicit scheme which uses the Taylor series expansion.
The TWDB does not currently use the Taylor series option (Matsumoto 1993). The theoretical details
of the implicit scheme are discussed by Gray and Kinnmark (1984). The second major improvement
over FLEET was the inciusion of a salinity model. The subroutine which performs the salinity
modeling has both a conservative and non-conservative option, and can easily be modified in order to
simulate constituents other than salinity. The forms of the convective-diffusion equations
incorporated in the model were
Conservative Form
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Non-Conservative Form
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where C is the concentration, and Dxx, Dxy, Dyx, Dyy are the dispersion coefficients (Matsumoto
1993).
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The presence of the salinity model required the addition of an input section for dispersion coefficients
and initial concentrations. The salinity model in BLEND was an important addition, however, it was

not joined to the governing equations through a density term in the momentum equation.

The TxBLEND Model
The TWDB adopted the BLEND and earlier FLEET as the basic model for use in the
simulation of the bays and estuaries along the Texas Gulf Coast. The code was significantly modified

by personnel at the TWDB to include several additional options important o the simulation of Texas
bays and estuaries. Considerable density gradients exist in Texas estuaries, These density gradients
can have a significant effect on the circulation patterns in the estuary. The BLEND salinity model was
coupled with the governing equations of flow through the addition of a density term in the momentum
equation. A second important features added to the model was a pair of terms to account for
evaporation and direct precipitadon. Evaporation is especially important in shallow estuaries, such as
the Laguna Madre, where evaporation can significantly increase the salinity in the estuary. The
gvaporation and direct precipitation terms enter directly into the continuity equation in the form
oH | J(HU) . I(HV) _
or ox oy

where r the direct precipitation and ¢ is evaporation. This is a simple modification of equation (17) in

the FLEET mode! and equation (1) in the SWIFT2D model. The precipitation and evaporation terms
are similarly added to the wave continuity as t(r-¢) which replaces the zero on the right-hand side of
equation (18). The third feamre was the addition of a source term in the convective-diffusion
equation. The source term is directly related to evaporation in the case of salinity. The ability to
include inflows or discharges from streams, return flows, and other sources also was added to the
model. A final addition to the model was the “bigG™ parameter, which helps the model maintain flow
continuity.

A primary concern with the TxBLEND model has been a persistent question about the
accuracy of the mass balance or flow continuity. The continuity problem was encountered in the work
by Duke (1990) described in Chapter II and the further discussed in reports by Matsumoto {1991) and
Solis (1991). The continuity question is an important one and has been extensively evaluated by the
TWDB. The size of mesh cells has a significant impact on the ability of the model to maintain
continuity. Cells that are too large can cause inaccuracies. The TxBLEND users guide (Matsumoto
1993) describes four test cases which check the maintenance of continuity in the model.

The bigG parameter was added to aid in the mass balance problems of the model. The
parameter adds G times the primitive continuity equation to the wave continuity equation to produce a
generalized wave continuity equation. G is a numerical parameter, not necessarily related to the
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bottom friction. The larger the value for G, the more the continuity relationship is enforced, however,
the numerical difficulty will correspondingly increase. The model has been observed to create flow
when very small value for G are used (Matusumoto 1993). The values for G used in the TxBLEND
model are generated by a semi-logarithmic equation, The vaiue for G at the smallest and largest
depths are input and the semi-logarithmic equation is used to estimate G for the depths in between.
Kinnmark (1984) explaines the nature of the G parameter in the formulation of the generalized wave
equatons.

The TxBLEND model used for estuaries along the Texas coast incorporates the criginal
FLEET modei and the subsequent improvements described above, TxBLEND uses the wave
continuity equation (16), which correspoads to option 1 for the continuity equation in the FLEET
modet and the primitive form of the momentum equations (20a and 20b), which corresponds to option
3 for the momentum equation in the FLEET model. Early continuity problems have largely been
overcome with the introduction of the bigG parameter and careful definition of the finite element
mesh.
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IV PROCEDURE

The generation and manipulation of data sets, creation of bathymetry data, and calibration
and verification of a hydmdyna:hic mode! require an extensive amount of time and computer
resources, Calibration and verification data sets must be measured in the field. Ideally, two separate
data sets would be collected to allow for extensive calibration and verification of the simulation model.
The sheer size of the Laguna Madre Estuary makes such data collections extremely expensive and
difficuit. The TWDB performs only three days of intensive data collections on a single estuary or bay
in a year. The best available data set for the Laguna Madre Esmary contained only three days worth of
velocity data which was considered insufficient to serve as both a calibration and verification data set.
The TWDB plans a new data collection effort on the Laguna Madre in 1997. The model could be
verified with this new data set. A second option would be o obtain the old data set used in the early
applications of the TXBLEND model by Duke (1990). The bathymetry data available at the time of
this study consisted of digitized data from National Ocean Service (NOS) nautical charts and a set of
bathymetry data from hydrographic survey completed for the U.S. Army Corps of Engineers in 1995.
The TxBLEND model results included in this study were based on bathymetry data from the nautical
charts, therefore, the nautical chart data also was used in the SWIFT2D model to insure comparable

results.

DATA

The primary data set available for calibration of the model was a set of data from a TWDB
intensive inflow study performed for the entire Laguna Madre Estuary in June, 1991. The TWDB
performs a three day intensive §mcy of the inflows, currents, and watery quality for one estuary or
bay system each year. Measurements are taken at approximately hourly intervals, 24 hours per day.
The 1991 survey of the Laguna Madre covered the days of June 10 through June 13. The data set
included measurements of velocities and water quality at 22 points throughout the estuary (10 in the
upper Laguna Madre), and additional water quality data from 6 datasondes (3 In the upper portion).
The water quality data are comprised of temperature, pH, dissolved oxygen, conductivity, and salinity,
Rating surveys for the study were conducted in November, 1990 and April, May, 1991. The ratings
serve 10 relate measured velocities to discharges at the inflow and outflow points. Table 2 contains a
list of all data sites in the upper Laguna Madre which were used for this study. The locations of the

data sites are shown in Fig. 6.
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TABLE 2. Data Observation Stations Used in the Study of the Upper Laguna Madre Estuary

Station Name Type of Data (I];:an o Pt
Corpus Christi NAS water level / wind 27.7050 97.2800
Packery Channel , water level 27.6333 97.2217
Pita Island water level 27.6050 97.3000
South Bird Island water level / wind 27.4850 §7.3183
Riviera Beach waler level 27.2767 97.7083
Yarborough Pass water level 27.1667 97.4333
El Toro Island water level / wind 26.9417 97.4567
Humble Channel velocity / water quality 27.6575 97.2611
GIWW JFK Causeway velocity / water quality 27.6344 97.2397
GIWW, Marker 199 velocity / water quality 27.3267 97.3958
North of Baffin Bay velocily / water quality 27.3283 © 97.3989
Mouth of Baiffin Bay - velocity / water quality 27.2761 97.4200
South of Baffin Bay (East) velocity / water quality 272514 97.4139%
South of Baffin Bay (Mid) velocity / water quality 27.2517 97.4158
South of Baffin Bay {West) velocity / water quality 27.2517 "97.4183
South of Baffin Bay (FrWest) velocity / water quality 27.2519 97.4214
North Landcut velocity / water quality 27.0694 97.4444
JFK Causeway data sonde 27.6344 97.2394
Riviera Beach data sonde 27.2825 97.6394
Baffin Bay data sonde 21.2778 97.4208

Tide data were available for 12 stations in the Texas Coastal Ocean Observation Network
(TCOON). Seven of the tide stations were located inside or at the tidal boundaries of the upper
Laguna Madre. The TCOON network is an extensive network of tide and wind gages located along
the Texas coast. The network of water-level gages was established in cooperation with the Texas
General Land Office, Texas Water Development Board, Lamar University-Beaumont, and the National
Oceanic and Atmospheric Administration and is operated by the Conrad Blucher Institute for
Surveying and Science (CBI) (Jeffress 1995). Tide and wind data for the month of June 1991 were
obtained from personnel at the Conrad Blucher Institute network. ‘

One of the initial problems in the application and evaluation of a hydrodynamic model is the
accuracy of tidal datums. As of this study, The tide stations in the TCOON network were not tied
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Logeth;ar_‘to a consistent datum. Each gage has a set of benchmarks which are used to check the
elevation of the tide gage, however, these benchmarks are not tied between gages. In order to atlow
comparisons between the water levels at the tide stations a consistent reference level was required.
The mean water level was assumed constant between the various stations in the upper Laguna Madre
and used as the reference level for calculations in the model. The mean water level at each station
were calculated as the mean water level over the period of record.

Wind is a primary driving force in the Laguna Madre Estuary. Wind data were available
from TCOON for the South Bird Isiand and El Toro sites. Additionai wind data at the Corpus Christi
Naval Air Station (NAS) were obtained from the National Weather Service (NWS). The South Bird
Island wind sensor was installed in March 1991 and the El Toro Island sensor was installed in
November 1990. The data obtained for the Corpus Christt NAS station covered the period from 1970
to 1995. Data from the rwo TCOON stations had significant gaps during the month of June 1991,
The NAS data were more complete than the data from the TCOON stations and provided a beter
picture of the prevailing wind patterns in the Laguna Madre area. An analysis of the NAS dama
showed that the prevailing winds during the spring and summer period, which corresponds to the time
of the SWIFT2D simulations, blow from the south and south-east. The results of the analysis of the
NAS wind data are shown in Figs, 7 and 8.
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FIG. 8. Distribution of Wind Speeds Observed at the Corpus Christi NAS Wind Station

The wind speed is typically in the 2 to 8 meter per second range. The characteristics of the wind data
during June 1991 were similar to the historical distributions. The wind was form the scuth and south-
east 74 percent of the month, while wind speeds were between 6 and 10 meters per second for 70
percent of the month. The strong south and south easterly winds had a strong influence on the
SWIFT2D simulation of the Laguna Madre.

BATHYMETRY GENERATION

One of the most important phases of any hydrodynamic modeling stdy is the development of
an accurate representation of the bathymetry of the body of water under study, Regardless of the type
of mesh scheme used in computations by the model, the dcpths at the mesh cells must be accurate.
The square-grid representation.is easier to generate than the more complicated networks of triangles or
quadrilaterais used in finite element models, however the square grid is just as dependent on accurate
depth information. The ARC/INFO Geographic Information System (GIS) was chosen to develop the
model grid used for the SWIFT2D runs. The triangulated irregular network (TIN) and GRID data
structures in the GIS were used for the surface modeling. A similar application of a GIS system to a
SWIFT2D project is discussed by Bales and Douglas (1991).

The initial step in the application of the SWIFT2D model to the Laguna Madre Estary was
the development of a set of bathymetry data that would accurately reflect the characteristics of the
system. An initial search for bathymetry data already in digital format was largely unsuccessful. The
most readily available source of hydrographic survey data is a set of CD-ROM's which contain
bathymetric sounding information for U.S. Coastal Waters collected by the National Ocean Survey
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(NOS) and distributed by the National Geophysical Data Center (NGDC) which is part of the National
Oceanci and Atmospheric Administration (NOAA). A set of data for the Laguna Madre area obtained
from the NOS CD-ROM’s contained information for Baffin Bay, Corpus Christi Bay, and the coastal
waters on the Guif side of Padre [sland. There were no data points present for the main body of the
Laguna Madre. In 1994, the Corps of Engineers contracted with John Chance and Associates
Consulting Engineers to perform a hydrographic survey to update the data in the Laguna Madre
Esmary. The survey was motivated by concems about the impacts of dredging and sediment transport
problems related o the GTWW. The survey was finished in the summer of 1995, however the data
were not available for the present study undl April, 1996. Due to time constraints on project funding
and the desire to make the results compatible with the TWDB TxBLEND model, bathymetry data were
digitized from a set of nautical charts.

NOAA nautical charts pravided the most current source of bathymetry dara available, The
four nautical charts shown in Table 3 cover the entire Laguna Madre study area. Table 3 also includes
the dates the nauticalcharts were published. The underlynig hydrographic data are older than the
maps themselves. Nautical Charts 11308 and 11306 which cover the upper Lagyna Madre Estuary
from Corpus Christi to the land cut are the pertinent charts for the simularions performed for the
current study. The Iow& Laguna Madre was also simulated, but not included in this discussion. At
the date of this report the TWDB has not simulated the lower Laguna Madre, therefcre a comparison
could not be made with the TxBLEND model for the lower half of the estuary.

TABLE 3. Nautical Charts Used in the Development of Bathymetry Data for the
Laguna Madre Estuary

NOAA Date of Title of NOAA Nantical Chart
Chant Publication
Number
11314 April, 1994 Texas Intracoastal Waterway, Carlos Bay to Redfish Bay including
Copano Bay
11308 October, 1994 | Texas, Intracoastal Waterway, Redfish Bay to Middle Ground,
including Baffin Bay
11306 August, 1992 | Texas, Intracoastal Waterway, Laguna Madre, Middle Ground to
Chubby island
11303 March, 1994 Texas, Inracoastal Waterway, Laguna Madre, Chubby Island 10
: Stover Point, including the Ammoyo Colorado
11302 July, 1994 Texas, [nracoastal Waterway, Laguna Madre, Stover Point to Port
Brownsville, including Brazos Santiago Pass
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The depth information from these charts was digitized into GIS coverages. The digitized nautical
charts provided a fairly extensive set of data, but did not provide as much detail as is typically found in
the complete digital databases for other estuary systems along the Texas and U.S. coast. The depth
data were especially sparse along the shallow eastern side of the estuary near Padre [sland. In
additon, the maps did not provide current depths for the GIWW and other channels located
throughout the estuary. The GIWW is responsible for much of the circulation in the estuary, therefore
a reasonably accurate representation is essential to the application of a hydrodynamic medel to the
estuary. Despite the shortcomings mentioned, the nautical charts provided the most complete data set
avaiiable at the time of the study. The nautical charts were used as the basis for the earlier studies by
Duke (1990), Matsumoto (1991}, Militello (1994), and Brown (1995), and for the SWIFT2D and
TxBLEND simularions in this study.

The bathymetry data from a hydrographic survey of the Laguna Madre completed in 1995
was obtained from personnel at the U.S. Army Corps of Engineers Waterways Experiment Station in
April, 1996. The new data (approximately 30,000 data points) provides much more complete depth
information for the Laguna Madre. The TxBLEND model does not yet incorporate the new
bathymetry data, therefore, the model comparisons for this report are based on bathymertry data
generated from the Nautical charts, The new data will be processed and incorporated in the GIS
database and used for future simulations of the estuary.

The procedures for creation of the model grid are similar for both the nautical chart data set
and the 1995 hydrographic survey data set. The GIS was used to create and store coverages (data
layers) for depths, land boundaries, navigation channels, and measurement station locations. U.S.
Geological Survey 1:100000 scale digital line graphs (DLG) were used to define the land boundary.
The land boundary was spot checked at several locations Lo insure agreement with the boundaries
shown on the nautical charts. The use of preexisting DLGs instead of hand digitized boundaries from
the Nautical Charts saved substantial time in the creation of the GIS data set. The 1:100,000 scale
DLGs are readily available on CD-ROM and over the Intemnet.

The coverages were used to create a Triangulated Irregular Network (TIN) representation of
the bathymetry of the Laguna Madre. The TIN data structure provides a powerful tool for
representation of a surface with a network of triangles for which the elevation is known or interpolated
at each node. A TIN is a set of adjacent, non-overlapping triangles computed from irregularly space
points with x, y coordinates and z values, The triangulation method for creation of TIN’s in A
ARC/INFO satisfies the Delaunay criterion. Delaunay trianguiation is a proximal method that
satisfies the requirement that a circle drawn through the three nodes of a triangle will contain no other

point, Delaunay triangulation insures that
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l.- triangles are as equi-angular as possible, which reduces potential numerical precision
problems,
2. any point on the surface is as close as possible o a node,
3. the riangulation is independent of the order in which the points are processed.
Two interpolation schemes may be used to create the TIN data structure: linear interpolation and
breakline, bivariate quintc. Both methods honor the z values present in the input data set. In linear
interpolation, the surface value to be imerpolatéd is calculated based solely on the z values for the
nodes of the triangle which contains the point. Quintic interpolation empioys an algorithm which uses
a bivariate fifth-degree polynomial in x and y. Quintic interpolarion creates a smoother surface than
linear interpolation (Environmental System Research Instinite, Inc. 1991b).
GRID is a raster- or cell-based geoprocessing toolbox that is ideal for projects which require
the representation of continuous surfaces as regularly spaced, discrete units. GRID is based on a
hierarchical tile-biock structure. The grid is first divided into uniform square units called tiles. Each
tle is subdivided into blocks which in turn are comprised of individual square cetls. This hierarchical
structure allows GRID to quickly access data from anywhere in the grid, regardless of the size of the
area (Environmental System Research Institute, nc. 1991a). The square cell representation provides
direct compatibility with the regular, square grid used in SWIFT2D.

In the case of the nautical chart data set, the coverages needed to create the TIN were the
digitized depths, the land boundary outline, and a set of points in shallow areas input by hand. The
TIN was then converted-to a lattice, which is equivalent to the raster data structure used in GRID. The
input point distance tolerances in TIN creation algorithms were too large to allow an accurate
representation of the channels in the TIN, therefore, separate grids were created for the island and
channel coverages. The resuiting set of three grids was merged to create the final grid which
incorporated all of the available input data. The lattice and grid data structures allowed for easy
manipulation of the cell size and area of the resuitant merged grid. The generated grids were exported
to ASCII text files and then chécked and edited with separate software packages. The GRIDEDIT
software package which comes bundled with SWIFT2D and the Surfer for Windows software package
were used to perform the final edits of the grids. The current version of the ARC/INFO Grid routines
does not allow for manipulation of single grid ceils.

GRID CELL SIZE SELECTION

The primary difficuity in the application of SWIFT2D to the Laguna Madre Estuary was the
restriction of the model grid to uniform, square grid cells. The areal extent of the estuary makes the
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use of-a Jarge grid size desirabie, however, much of the flow in the estuary is conducted by the GTWW
which has an average width of 100 to 150 feet. In order to provide adeguate resolution for the
channels a fairty small grid size was required. The use of small grid cells to represent the channels
limits the entire grid to a small cell size. As a result, computation times are greatly increased. The
200 meter grid size used in this study was a compromise between the need to adequately represent the
channels in the Laguna Madre without increasing computational times to intolerable levels. The
depths of cells representing channels were adjusted to maintain the proper flow conveyance and cross
sectional area of the channels. A cell size of 200 meters still substantiaily distorts the cross sections of
the channel, however, it was sufficiently small to allow the channels o remain distinguishable from
the natural portions of the estuary.

Initial runs of the model were performed with a 400 meter grid cells. These runs showed that
a cell size of 400 meters does not allow for accurate representation of important features in the estuary.
The 400 meter cells exaggerated the effect of island on circulation patterns in the estuary. Many of the
spoil islands present in the Laguna Madre are much narrower than 400 meters. These spoil islands
accounted for an unacceptable fraction of ¢stuary cross sections when included in the model gﬁd. The
spoil islands are a major issue of concern in the estary and, therefore, should be modeled as
accurately as possible in the model. The second major concern with the 400 meter cell size was the
representation of the GIWW and other navigation channels. In order to maintain reasonable
approximatons of channel cross sectional areas, the cell depths had to be reduced to an extent that
they were no longer distinguishable from adjacent grid cells. This problem is, unfortunately, still
evident with the 200 meter grid in the area south of Baffin Bay. Figs. 9 and 10 show shaded
representations of the 400 and 200 meter grids respectively. Darker areas represent deeper grid cells.
The GIWW can be easily seen as a dark line running the length of the estuary from north to south.
Spoil islands show up as light colored areas primaﬁly adjacent to the GIWW. These light colored
cells which represent islands and the shoreline and the dark cells which represent the GIWW are
significantly larger on the 400 fnetcr grid.
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FIG. 9. Upper Laguna Madre 400 Meter Grid (148x213 cells)
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FIG 10. Upper Laguna Madre 200 Meter Grid {296x426 cells)
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- A second problem caused by the resolution of the grid was the stair-stepping effect seen in the
cells representing the channel. This effect is illustrated in Fig. 11.

[] Typical depth
grid cell

. Channel
grid cell

B Dry 1and
grid cell

FIG. 11. Typical SWIFT2D Grid Section Which Shows the Stair-step Effect in
the Representation of Channels with a Regular, Square Grid

The stair-stepping effect distorts the flow pattem to some degree, however this effect is probably much
less serious than the effect of the distortions of channel cross sections. SWIFT2D simulatons with the
square grid produced reasonable flows at all of the flow cross sections (matching those used in the
TxBLEND model) evaluated in the study.

The reduction in grid cell size from 400 meters to 200 meters dramatically increased the
number of computations required for the simulation. The computational grid for the original 400
meter cell size would have contained approximately 3,700 active computational cells while the 200
meter computational grid contained approximately 15,000 active computational cells, The increase in
complexity and the resulting increase in run times, although significant, were deemed necessary o
properly represent the actual conditions in the estuary, The dramatic increase in the number of cells
required to simulate small features with reasonable accuracy illustrates the major disadvantage of a

model grid with a constant cell size.
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SIMULATION

The upper portion of the Laguna Madre Estuary from Corpus Christi to the land cut south of
Baffin Bay was chosen for simulations and comparison with the TXBLEND model. The original goal
of the modeling study had been to simulate the entire estuary from Corpus Christi to Brownsville.
Ideally the model would also include the Corpus Christi Bay system so that the driving tides in the
Gulf of Mexico would completely define the input for the model. Simulation of only a section of the
estuary required driving tides internal to the system. A complete model of the entire system would
require less input data than the partial medels and would therefore be more desirable for long range
planning efforts. The choice to split the estuary into separate sections for the modeling effort was
necessitated by the need for manageable simulation times and data sets. A model grid or mesh
comprised of the entire system would aiso aid in the data needs for simulation of salinity, Salinity for
the entire system would also be defined completely by the ambient salinity in the Gulf of Mexico
which would be essentially constant compared to the salinity at points internal to the system. Salinity
simulations of separate portions of the system would require long-term measurement of saliniry at
internai points in the estuary. '

Simulation effonts for this study centered on the accurate reproduction of flows and water
levels in the estuary. The northemn haif of the estuary selected required two sets of driving tide
conditions. The Corpus Christi NAS tide gage at the north end of the model grid and the El Toro tide
gage at the southern end provided the data required for the model. A section across the southern end
of Corpus Christi Bay adjacent to the Naval Air station formed the northern boundary of the model
grid. The Corpus Christi NAS tide data were inptit as a constant elevation across this section.
SWIFT2D requires a water surface elevation at either end of the tidal boundary section. The option
for the same elevation at both énds of the cross section was selected for both the NAS boundary and
the Land Cut boundary. This assumption should be fairly accurate for the narrow GIWW channel
which forms the tidal input at the lower section, however the assumption is not as good for the much
wider section across from the Naval Air Station.

The Laguna Madre Estuary receives the smailest amount of fresh water inflows of any estuary
in Texas. There are no significant perennial streams and no gaged sweams which flow into the upper
Laguna Madre. Since the present simulation was performed during the dry summer months, no fresh
water inflows were included in the model. A more detailed model would require estimates of fresh
water inflows to the system and would also account for power plant withdrawals near Pita Island (need
more details - see TWDB reports) at the upper end of the northemn estuary.
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- The data from the Corpus Christi NAS site was the only wind data used for the SWIFT2D
simulation runs. The model supports the use of more than one wind station through the use of a wind
wnput grid, however, the single wind input was judged to be sufficient for several reasons., The wind
data sets for the South Bird Island and El Toro sites contained missing data and were not considered
as reliabie as the NAS data for the June, 1991, calibration period. In addition, the hydrodynamic study
performed by Brown (1995) determined that the winds at the NAS and at South Bird [sland were
similar, and only used the NAS data.

CALIBRATION

The calibration of the SWIFT2D model of the Laguna Madre proceeded in two phases, The
first phase of the calibration required significant hand editing of the model grid in order to adjust
channet cross-sectional areas to maich those in used in the TxBLEND model, and to insure that flow
was maintained through ail narrow passes between land boundaries and islands. The second phase of
calibration involved the adjustment of model parameters to provide the best possible fit to measured
data. The model was considered calibrated when changes in parameter values no longer provided
substantial improvements in the root mean squared errors between simulated and observed values.
Visual inspection of plots of simulated and observed values also aided in the calibration of the model.
The SWIFT2D model proved to be very robust to changes in most of the model parameters.
Adjustment of the model grid and wind stress coefficient produced the largest effect on the model
calibration.

Grid Adjustments

The first phase of the calibration required adjustments (o some of the depth points in the
computational grid. The grid dell resolution improvement of the 200 meter grids over the 400 meter
grid was not sufficient to completely eliminate the need for additional processing of the grid output by
ARC/INFO. The GRIDEDIT program was used to perform the final edits of the grid. Corrections
also were made to bring the grid into closer agreement with the finite element mesh for TxBLEND.

The areas in the most need of editing were narrow passes, areas near islands, and areas along
the boundary of the estary. Early model runs failed to reproduce measured velocities at the Humble
Channet and GIWW at JFK causeway. Conditions at these two points control a majority of the flow
into and out of the upper Laguna Madre and are, therefore, vital to the simulation of the estuary. The
cells which represented navigation channels and adjacent areas in the vicinity of the JFK Causeway
were modified 10 more closely match actual measured cross sections at the two points. Data from the




TxBLEND finite element mesh also were used to guide the adjusunent of the bathymetry grid. Model
runs with the modified grid produced more reasonable flows and velocities at the Humble Channel and
GIWW at JFK Causeway control points.

Parameter Adjustments
SWIFT2D contains several parameters which can be adjusted to calibrate the model to

measured data. [mportant calibration parameters for simulation of circulation and water levels
include:

1. wind stress coefficient,

2. Manning's n (constant or spatially varied),

3. vorticity-related viscosity factor (£ in the ninth term in momentum equations (2) and (3),

4. shallow depth parameters for wetting and drying of cells.
Other parameters such as the time step, advection option, and integration method aiso have an
influence on the resuits of the simulation. The inital values for the Laguna Madre model parameters
were medified from example input files for the SWIFT2D application on the upper Potomac Estary
discussed by Schaffraneck (1986).

The wind saess and Manning's n were found 1o have the greatest effect on the calibration.

Early model runs were performed with a constant » throughout the computatonal grid. The GIWW
was expected to provide the majority of the circulation in the estuary, however, the flows and velocity
vectors from these early runs did not show a dramatic effect due to the GTWW. In order to more
accurately represent the difference in bottom stress berween shall areas with dense growths of sea grass
and deeper bays or channels, The n value distribution was changed from a constant value to a set of
spatially varying values. The spatial variation of the n value was based on the distribution of
roughness coefficients used in the TxBLEND model. The GITWW was assigned an n value of 0.025
while secondary channels werc. assigned an » valye of 0.031. Other cells near the channel or in the
deeper portions of the grid were assigned values of 0.035. The remainder of the grid was assigned a
value of 0.040. The areas assigned a value of 0,040 were primarily shallow tidai flats, which generally
support extensive growths of sea grass. SWIFT2D assigns a separate, high roughness coefficient to
cells that drop below a specified depth. The intention is to use a small Chezy value for these shailow
depths so that when the water becomes shallow the friction increases considerably, and thus the
cufrents decrease,

Variation of the wind stress coefficient poduced the most dramatic effect on the simulated

results.
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Wind stress values ranging from 0,0001 o 0.0026 were tested in an attempt © match the simulated
and observed water levels at the internal tide stations. The water levels at the Packery Channel, Pita
Island, and South Bird Island dde stations are driven primarily by the tide in Corpus Christ Bay
which in tum is driven by the tide in the Guif of Mexico, The tdes are progressively more damnped as
the tide signal passes south through the narr-w passes in the JFK Causeway and the GTWW. The tide
signal is almost completely damped when it -2aches the South Bird Island gage. The Riviera Beach
and Yarborough Pass tide gages receive esse:tally no diurnal tide signal. As a result, wind is the
primary driving force in the portion of the es: 1ary south of Bird Island.

The remaining calibration paramete: . had only limited effects on the SWIFT2D simulation
results. These parameters are discussed furth :r in the section which describes the model sensitivity
analysis.

VERIFICATION

The small data set available for the { :guna Madre limited the possibilities for verification of
the modei. The three days of velocity data pre ent in the data set were not considered adequate for
separation into separate calibration and verifi. tion data sets. Calibration runs of the model
considered the dates from June 1, to June 14, )91, After calibration, the simulations were extended
to include the remainder of the month of June The agreement between modeled and observed water
levels for the second half of June was equival: it to the results of the first half of the month, Due to the
lirnited data available, the verification proces: vas considered complete with the rns for the month of
June.

Several options could be explored fo: -erification of the model in future studies. Acoustic
velocity meters were installed at the Humbie « :annel and GIWW openings in the JFK Causeway in
1994. The meters were installed as part of the TCOON network of data collection platforms (Brown,
1995). The acoustic velocity meter data were ot publiciy available at the time of this study. The
second option would involve verification of the model with a second set of intensive inflow survey
data. The TWDB currently plans to perform a:: intensive inflow survey for the Laguna Madre in
1997. A third option would require a iong-terr simulation over several months to a year. Sucha
simulation would provide adequate data for a check of the mass balance of inflows and cutflows in the
Laguna Madre.




V RESULTS OF SWIFT2D SIMULATIONS

RESULTS

The calibrated SWIFT2D model of the upper Laguna Madre produced results in good
agreement with observed values. The quality of results was evaluated based on the calculated root
mean squared errors (RMSE) between simulated and observed values and by visual inspection of plots
of the simulated and observed time series. The RMSE was calculated as the average of the squared
difference between each simulated and observed data point. Visual inspection of the time series
provided a means to check for consistently low or high simulated values and for similarities in the
phase and amplitude of the simulated and observed time series. The calibrated model provided a small
RMSE and reproduced the phase and amplitude of the measured time series as faithfully as possible.
Additional parameter adjustments may have provided a slightly better fit to observed data, however,
the length of time required for SWIFT2D simulations limited the number of runs that could be
afforded. Run times for a fifteen day simulation with the calibrated model averaged around 2.3 hours.

Simulated and observed time series were compared at locations throughout the upper Laguna
Madre Estuary. The simulated water levels at the five internal tide stations and velocities at eight
locations throughout the estuary were compared to the observed values at these locations. Fig. 12
shows the seven tide stations (five internal and two driving tides), while Fig. 13 shows the velocity
stations, Simulated flows were output at eleven cross sections, the locations of which are shown in
Fig. 14. Model parameters were adjusted as discussed in the section on calibration until the simulated
time series matched the observed time series as closely as possible. The calibrated model employed a
spatially varied Manning's n which ranged from 0.025 for channels t 0.040 for shallow tidal flats; a
wind stress coefficient of 0.0015; minimal viscosity, and a 360 second (6 minute) time step. The
results for water levels and velbcities are discussed in the following sections. Comparisons of results
from simulations with varied parameters are discussed in the section that describes the sensitivity
analysis.
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FIG. 12. Locatioas of Tide Stations at Which Simuiated and Observed Water Levels Were
Compared
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FIG. 14. Locations of Cross Sections at Which Simulated Flows Were Compared
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Water Levels

The simulations showed a dramatic contrast between the factors which drive the variations in
water levels at northern stations closest to the JFK Causeway and the tide stations toward the south
and in Baffin Bay. The simulated water levels at the northern tide station (Packery Channel, Pita
Island, and South Bird Island) appear to be primarily influenced by the driving tidal signal at the
Corpus Christi Naval Air Station. This influence can be seen to dissipate as the signal passes south
through the estuary. The tidal cycle is significantly damped by the time it reaches the South Bird
Island tide station, The water levels at the Yarborough Pass and Riviera Beach tide stations, which are
the most distant from the JFK Causeway, seem to be primarily influenced by wind. The tide stations
near the Causeway are affected to a much smailer degree by the wind.

The water level variations at the Yarborough pass and Riviera Beach tide stations exhibit
significantly more noise than the northern tide stations. The time series of water levels at the stations
near the JFK Causeway exhibit the smooth, daily oscillations expected at points influenced by a strong
diurnal tidal cycle. The water level fluctuations at the Yarborough Pass station and especially at the
Riviera Beach station seem to be strongly influenced by wind. The Riviera Beach station is located in
the western most arm of Baffin Bay. As a result the station is as far removed from the influence of
Gulf of Mexico tides as possible in the Laguna Madre system. The strong summer winds which blow
primarily from the south and southeast appear 10 cause substantal flow into Baffin Bay and a
corresponding wind driven set-up of water levels on the northwestern portions of the Bay. The strong
convective winds caused by the summer heat probably provide the primary driving force for the daily
oscillation of water levels at stations were the amplitude of the tudal signal is damped.

The simulated and observed water levels at the seven tide stations are shown in Figs. 15
through 21. The water levels at the Corpus Christi NAS and El Toro tide stations are the driving
tides. The simulated water levels for these two tide stations are immediately adjacent to the tidal
boundaries and, therefore, are almost identical to the observed tides. The tidal damping is faithfully
reproduced by the SWIFT2D simulations. The larger amplitude in the simulated tidal cycle at Packcryi
Channel is probably due to the definition of the model grid. The water levels shown in Figs. 15

through 21 are referenced to mean water level at each station.
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FIG. 17. Calibrated Water Levels at the Pita Island Tide Station
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FIG. 18. Calibrated Water Levels at the South Bird island Tide Station
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FIG. 21. Calibrated Water Levels at the El Toro island Tide Station

The RMSE’s between simulated and observed water levels are shown in Table 4. The Corpus
Christi NAS and El Toro Island tide stations provided the driving tides in the siniulations, therefore,
the errors between simulated and observed tides at these locations should be very smail.

TABLE 4. Root Mean Squared Errors between Simulated and Observed Water Levels

Water Level Station RMSE (meters)
Corpus Christi NAS 0.001
Packery Channel 0.043
Pita Island 0.036
South Bird Island 0.059
Yarborough Pass 0.067
Riviera Beach ‘ 0.124
El Toro Island 0.006
Average 0.048

The largest error was observed at the Riviera Beach tide station. This station is the most distant from
the influence of the tidal signal at the northern end of the estary. The amplitde of the simuiated
water levels is not as large as that of the observed water levels. The RMSE generally increases with
distarice from the JFK Causeway. This would seem (o indicate that the model handles the effects of
tidal signals better than the effects of wind. Additional variation of the wind stress coefficient and the
use of spatially distributed wind input (multiple wind sites) might improve the results.



Velocity
The simulated velocities also matched the observed time series reasonably well, although the

results were not as good as those for water levels. Table 5 shows the RMSE’s between the simulated
and observed velocities.

TABLE 5. Root Mean Squared Errors between Simulated and Observed Velocities

RMSE
Velocity Station (meters per second)
Humble Channel 0.13
GIWW at the JFK Causeway 0.16
GIWW at Marker 199 0.19
North of Baffin Bay 0.10
Mouth of Baffin Bay 0.08
South of Baffin Bay-Middle 0.11
South of Baffin Bay-West 0.08
North Land Cut 7 0.12
Average 0.12

The largest errors occurred at the Humble Channel, GTWW at the JFK Causeway, and GTWW at
Marker 199 stations. These stations are located in the major channels in the estuary. The large errors
are probably a result of the representation of the channel geometry in the model. The channels are
represented by a single, 200 meter wide grid cell within the model, however, the actual channel widths
range from approximately 40 meters for the majority of the GTWW to approximately 120 meters near
the JFK Cayseway. The RMSE of 0.19 meters per second is approximately half of the amplitude of
the velocity at the GTWW at Marker 199 Station.

Comparisons of observed and simulated velocity time series at the eight measurement points
indicated in Fig. 14 are shown in Figs. 22 through 29. Positive velocities in the plots indicate flow
toward the north. Localized velocities are much more dependent on the realistic representation of the
actual geometry of the water body. The primary factor which influenced the quality of the simulated
velocities was the approximation required for the generation of the model grid. The openings at the
Humble Channel and the GIWW at the JFK Causeway provide the conduits for a majority of the
circulation in the estuary. The simulated velocities in these two channels agree fairly well with the
observed velocities, especially in regard to the period of the velocity variations.
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FIG. 26. Calibrated Velocity at the Mouth of Baffin Bay Station

1.0 — e T r r T v r T . v
fa r ——eme SWIFT2D
g I ]
8 [ — ODserved ]
@ os| 3
c 3 1
[¥9] - -
a- -
a I !

-y, -~
s 9 s e
E - TN ]
z ]
Z .os5f .
> - 1 1 1

— R 1 L . . L . N
! 3400 0800 1600 2400 Q800 1600 2400 0800 1600 2400 0800 1600
' 10 11 12 13
June 1991
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FIG. 28. Calibrated Velocity at the South of Baffin Bay-Wast Station
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FIG. 29. Calibrated Velocity at the North Land Cut Station

The simulated velocities are generaily smaller than expected, primarily due to the finite difference grid
representation of the channels. The actual widths of the channels are approximately 95 and 125
meters for the GTWW at JFK Causeway and the Humble Channel, respectively. These widths are
smaller than the width of a single grid ceil, however, the SWIFT2D requires passes between no flow
barriers to be at least two cells wide. The corresponding reduction in the amount of restriction on the
flow tended to decrease the simulated velocities. The depth of the grid cells was reduced 10
compensate for the increased width of the passes. The resulting wider and shallower channels tended
to reduce the simulated velocities. A similar problem probably caused the disparity between simulated
and observed velocities at the GTWW at Marker 199 station. The SWIFT2D represeniation of the
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GIWW is both wider and more shatlow than the actual channel. The result is a substantial reduction
in velocity. The observed velocities at the southern end of the estuary, in conmast, are small and
appear to be largely dependent on wind,

The SWIFT2D simulated velocities match as closely as can be expected when the grid
resolution and wind driven nature of the circulation are considered. The use of additional wind data
from a station located in the southern part of the upper Laguna Madre might improve the
representation of velocities, however, the actual observed velocities are so small that the potential gain

in accuracy may be offset by the increased data requirements.

Flow

Simulated flows were output for the qleven cross sections shown in Fig. 14, These cross
sections represent the primary connections with the driving tides at the Corpus Christi NAS and El
Toro Island stations, major conduits of flow, and representative sections across the width of the
estuary. Actual flows were not measured during the time period simulated by the SWIFT2D and
TxBLEND models, therefore a discussion of flow is reserved for the section on the sensitivity analysis
and Chapter V which compares the results from the two models. Comparisons between simulated

flows are made in these sections.

SENSITIVITY ANALYSIS

SWIFT2D provides a number of calibration parameters which can be adjusted to yield the
best possible fit to measured data. A simple sensitivity analysis was performed to evaluate the effects
of variations in the different parameters on model results. The set of five parameters shown in Table 6
were adjusted to illustrate the qffect of each parameter on the model.




TABLE 6. SWIFT2D Model Parameters Varied for the Sensitivity Analysis.
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Parameter Low Value Calibrated Value High Valye Other

Time Step (seconds) 180 360 720

Wind Stress 0.0001 0.0015 0.0026

Viscosity (m/s) 0 1 10

Advection Option Arakawa Leenderise No Advection

Manning’s a 25% reduction 0.025-0.040 25% increase 0.030
(Distributed) (Distributed) (Distributed) (Constant)

The wind stress coefficient and the Manning’s n value were observed o have the largest effect on

model results. Selection of the time step also has a significant effect on the model results. The other

parameters had much smaller effects on the calibration.

Time Step

The length of the time step can contribute significantly to inaccuracies in the computations of

the model. Despite the unconditional stability of the ADI method, serious errors can arise when large

time steps are used. Substantial errors have been observed in the simulation of both waler levels and
velocities at large time steps. Stelling et al. (1986) describe this so-called ADI effect as a fundamental
property of numerical integration by a splitting method, despite the splitting technique applied and
despite the irregularity of the model boundaries.
The Courant number, which serves as an upper limit on the time step for explicit models, is

defined by

1

Cf =t{gH

o] )

n

where Cfis the Courant number, g is the acceleration of gravity, H is the cell depth, and Ax and Ay are
the dimension of the cell in the x and y directions respectively. In the case of SWIFT2D Ax equals Ay
and (26) reduces 10

2t(2gH
cr < 21(2eH)

As
where As is the length of a side of the square grid cells. If Ax equals Ay then the Courant limitation

1/2

implies a restriction on the time step of the form



Significant numerical errors may occur at time steps much larger than this limiting value. Analytical
estimates of the ADI effect are difficult to make, since quantitatively the effect depends on the shape of
the geometry or bathymetry combined with the spatial grid size.

An essential feature of an ADI method for the approximation of shallow water equations is
that for one time step the finite difference equations are solved alternatively implicit in the x direction
and implicit in the y direction in two consecutive computational steps. Due to this, a tidal signal
cannot be transferred more than once through an angle of 90° in one complete ADI time step. Hence,
in one time step a signal cannot travel more than once through two bends in e.g., a zigzagging
channel, halfway around an island or tidal flat, or arcund a peninsula shaped projection of the
coastline. For accurate representation of hydraulics, however, this may be required (Stelling et al.
1986). The larger the Courant number, the larger the analytical area of influence of a grid feature on
surrounding grid cells. Since the tidal signal can not pass more than once throngh an angle of 90° in a
time step, the actual area of influence will be smaller than the analytical area of influence implied by a
large Courant number.

The SWIFT2D grid for the upper Laguna Madre incorporates all of the feamres described by
Stelling et al. (1986), which lead the ADI effect. The GIWW is a zigzagging narrow channel which
runs the length of the estuary and provides much of the circulation. The spoil islands created by the
maintenance dredging of the GIWW are also prevalent in the estuary. In addition, there exist large
areas of tidal flats and several peninsulas in the model grid. The effects of these features is readily
apparent in plots which compare water levels and velocities simulated at large time steps to observed
values. The SWIFT2D calibrated mode! of the upper Laguna Madre was run with time steps of 180,
360, and 720 seconds. Table 7 lists the time steps with the associated Courant numbers, The courant
numbers were calculated with both the average and maximum depths, and the average depth of the
GIWW in the mode! grid.



TABLE 7. Courant Numbers Associated with the Time Steps Used in SWIFT2D for the

Sensitivity Analysis
Courant Numbers
Time Step in Average Grid Maximum Grid Average Depth of
Seconds (Minutes) Cell Depth Cell Depth Cells in the GTWW
180 (3) 8.1 17.8 13.6
360 (6) 16.2 35.7 272
720 (12) 323 7.3 54.3

As expected, the three minute me step yielded the most accurate simulation of water levels and

velocites.
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RMSE's and Plots of water levels at the Pita Island tide station and RMSE’s and velocities at

the GIWW at the JFK Causeway velocity station show a clear deterioration in the simulated time series
as the time step increases. Tables 8 and 9 show the RMSE's between observed and simulated water

levels and velocities.

TABLE 8. Root Mean Squared Errors between Simulated and Observed Water Levels for
Simulations with Different Time Steps

RMSE (meters)
360 seconds 180 seconds 720 seconds

Water Level Station (Calibrated)

Corpus Christi NAS 0.001 0.001 0.00t
Packery Channel 0.043 0.042 0.045
Pita Island 0.036 0.036 0.038
South Bird Island 0.059 0.058 0.062
Yarborough Pass 0.067 0.066 0.069
Riviera Beach 0.124 0.124 0.126
El Taro Island 0.006 0.006 0.005
Average 0.048 0.048 0.049
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TABLE 9. Root Mean Squared Errors between Slmulated and Observed Velocities for
Simulations with Different Time Steps

RMSE (meters per second)
360 seconds | 180seconds | 720 seconds

Water Level Stadon (Calibrated)

Humble Channel 0.13 0.13 0.12
GIWW at the JFK Causeway 0.16 0.16 0.19
GIWW at Marker 199 0.19 0.17 0.21
North of Baffin Bay 0.10 0.10 0.10
Mouth of Baffin Bay 0.08 0.08 0.09
South of Baffin Bay-Middle 0.1 0.11 0.1
South of Baffin Bay-West 0.08 0.07 0.07
North Land Cut 0.12 0.12 0.13
Average 0.12 0.12 0.13

An evaluation of the RMSE's showed that the errors increased with increasing length of the time step
at almost every station. The largest increases in the RMSE occurred at stations located in the GTWW.
The largest increase in the error between simulated and observed velocities occurred at the GTWW at
Marker 199 station which is the southern most velocity station in the GTWW still affected by the tidal
signal.

The ADI effect is much more evident in plots of the simulated and observed times series.
Figs. 30 through 35 show the effect of the time stap on the simulation of water levels, velocities, and
flows. There are no measured data available during the time of the simulations at the cross sections
used in the model comparisons. Results with thé 720 second time step show a clear lag in phase for
both water levels and flows. This lag is a direct result of the ADI effect described by Steiling et al.
(1986). The results at the two stations are dependent on flows through stair-stepped reaches of
channeis. The large time step does not allow accurate propagation of flow through multiple bends in
the channel. The 180 second time step produced the most accurate results, however, the 360 second
time step was selected for the simulation runs discussed in this report. The 360 second time step
offered much shorter simulation times with minimal losses in accuracy. Run times for a 15 day
simulation with a three minute time step were on the order of 4.25 hours while run times for the 6 and

12 minute time steps were 2.3 and 1.3 hours, respectively.
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Wind Stress

The value of the wind stress coefficient had the greatest influence on model results of any of
the parameters evaluated. Figs. 36 through 41 show the effects of the wind stress coefficient on water
levels at the Pita Island and Riviera Beach tide stations, velocities for the GTWW at the JFK Causeway
and South of Baffin Bay-Middle current stations, and the GTWW at the JFK Causeway and Baffin Bay
flow cross sections, respectively. Wind stress coefficients of 0.0001, 0.0015 and 0.0026 were used for
the sensitivity analysis. The calibrated model used the wind stress of 0.0015. The wind exerts a
noticeably greater influence over station in the southern end of the upper Laguna Madre. The RMSE’s

between simulated and observed water levels and velocities are shown in Tables 10 and 11,
respectively.

TABLE 10. Root Mean Squared Errors between Simulated and Observed Water Levels for
Simulations with Different Wind Stress Coefficients

RMSE (meters)

0.0015 0.0001 0.0026
Water Level Stadon (Calibrated)
Corpus Chrisu NAS 0.001 0.001 0.002
Packery Channel 0.043 0.036 0.063
Pita Island 0.036 0.032 0.044
South Bird Island 0.059 0.055 0.063
Yarborough Pass 0.067 0.091 0.054
Riviera Beach -~ 0.124 0.124 0.135
El Toro Island 0.006 0.006 0.007
Average 0.048 0.049 0.053

Wind appears to cause very little change in the water levels at the Pita Island station, which is
strongly associated with the tidal signal from the Gulf of Mexico via Corpus Christi Bay, Larger wind
stress coefficients actually increased the error at the three northern most internal stations. The error
with a wind stress coefficient of 0.015 was improved by 2.4 centimeters at Yarborough Pass. The
second increase of wind stress to 0.0026 only reduced the error at the Yarborough Pass station. The
daily vaﬁaﬁons in water level at the Riviera Beach station appear to be almost entirely due to the
effects of wind. The model resuits for the Riviera Beach station with negligible wind stress, shown as
a dashed line on Fig. 37, produced a water level time series with smocoth, long period oscillations.



These long period oscillations seem Lo correspond to the length of the lunar tidal cycle. A simulation
run which spans several months 10 a year would be required © more conclusively evaiuate this
observation. The calibrated model with a wind stress coefficient of 0.0015 produced the smallest
RMSE of the three options evaluated.

Velocities and flows were similarly affected by changes in the wind stress coefficient. The
prevailing southerly and south easterly winds generally caused an increase in flow and velocity toward
the north. Simulated velocities were improved by the larger wind stress coefficients. A value of
0.0015 produced an average improvement of 0.02 meters per second, while a value of 0.0026 yielded
an average improvement of 0.03 meters per second. The improvement in velocities with the 0.0026
wind stress coefficient was cutweighed by the decrease in accuracy of the water levels. The greatest
effect of wind can be observed in Fig. 41, which shows the flow at the Baffin Bay cross section. The
wind stress coefficient caused dramatic fluctuations in the flow which were not present in the results

with a negligible wind stress.

TABLE 11. Root Mean Squared Errors between Simulated and Observed Velocities for
Simulations with Different Wind Stress Coefficients

RMSE (meters per second)
) 0.0015 0.0001 0.0026

Water Level Station (Calibrated)

Humble Channel 0.13 0.18 0.11
GIWW at the JFK Causeway 0.16 0.20 0.14
GIWW at Marker 199 0.19 0.22 0.18
North of Baffin Bay 0.10 0.09 0.10
Mouth of Baffin Bay 0.08 0.09 0.09
South of Baffin Bay-Middle 0.11 0.12 0.12
South of Baffin Bay-West 0.08 0.10 0.07
North Land Cut 0.12 0.15 0.11
Average : 0.12 0.14 0.1
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Simulations with the 25 percent reduction in roughness and the constant value of 0.030

produced an increase in the magnitude of flow and velocity in both the positive and negative

directions. The variations caused by changes in the roughness coefficient were on the same order of

magnitude as those resulting from use of the 720 second time step. Variation of the n values had the
greatest impact at the Humble Channel, GIWW at the JFK Causeway, and GTWW at Marker 199
stations. Velocities were improved slightly at these stations. Reduction of the roughness in the tidal

flats and non-channel areas evidently caused the improvement. The use of a constant » value of 0.030
essentially increased the channel roughness and decreased the roughness in the tidal flats and other

arcas.

TABLE 13. Root Mean Squared Errors between Simulated and Observed Velocities for

Simulations with Different Manning’s Roughness Coefficients

RMSE (meters per second)
Varied -25% +25% Constant

0.025-0.040
Water Level Station (Calibrated)
Humble Channel 0.13 0.11 0.15 0.10
GIWW at the JFK Causeway 0.16 0.14 0.17 0.13
GIWW at Marker 199 0.19 0.17 0.20 0.17
North of Baffin Bay 0.10 0.09 0.10 0.09
Mouth of Baffin Bay 0.08 0.09 0.08 0.08
South of Baffin Bay-Middle 0.11 0.10 0.11 0.11
South of Baffin Bay-West 0.08 0.07 0.08 0.08
North Land Cut 0.12 0.11 0.13 0.11
Average 0.12 0.11 0.13 0.11




69

Manning’s n

The values of the Manning's roughness coefficient in each of the model grid cells also exerts
a strong influence on model simulations. Results for simulations with a range of n values are shown in
Figs. 42 through 47 for the same observation stations discussed in the time step and wind stress
sections. Tables 12 and 13 show the RMSE between simulated and observed water levels and
velocities, respectively. Four scenarios were simulated in order to observe the influence of roughness
on the computations. The calibrated model incorporated a spatially varied roughness which ranged
from 0.025 in the GTWW to 0.040 on shallow tidal flats. The distribution of n values was similar to
that used in the TxBLEND model. Scenarios two and three increased and decreased the spatially
varied roughness at all points by 25% respectively. The fourth scenario employed a constant value of
0.030 in all computational grid cells.

The results of the sensitivity analysis appear to indicate that additional modifications of the
roughness could improve the simuiation. The use of a constant roughness produced the lowest average
RMSE and improves the error at each water level station except for Packery Channel. The effects of
the 25 percent reduction in the spatially varied roughness produced similar results. The greatest
improvement was observed at the Yarborough Pass tide station,

TABLE 12. Root Mean Squared Errors between Simulated and Observed Water Levels for
Simulations with Different Manning’s Roughness Coefficients

RMSE (meters)
Varied -25% +25% Constant

0.025-0.040
Water Level Staton (Calibrated)
Corpus Christi NAS 0.001 0.001 0.001 0.001
Packery Channel 0.043 0.048 0.040 0.048
Pita Island 0.036 0.038 0.036 0.035
South Bird Island 0.059 0.052 0.065 0.053
Yarborough Pass 0.067 0.060 0.072 0.055
Riviera Beach 0.124 0.120 0.128 0.118
El Toro Island 0.006 0.005 0.006 0.005
Average 0.048 0.046 0.050 0.045
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Viscosity and Advection Option
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Adjustments to the viscosity and advection option parameters had limited effects on the
simulations. Variation of the vorticity related viscosity coefficient, k' in (14) produced no discernible

change in the model simulation. A value of 1 meter was used for &' in the sensitivity runs.

Variaton

of the spatially distributed viscosity coefficient, & in (14), had a more noticeable effect. A viscosity
coefficient larger than the maximum value of 10 m?/s used in the sensitivity analysis, however, would
have been required to significantly affect the simulations. A viscosity coefficient of 10 m%/s generally
tended to reduce the magnitudes of flows and velocides in both the positive and negative directions, as

would be expected from a more viscous fluid. Lee et al. (1994) used 1.9 m%/s and 3.0 meters for k; and

k', respectively. The effects of the viscosity coefficient on velocity and flow are shown in Figs. 48 and

49,
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The selection of the three different advection options had a negligible effect on the
simulations. At all observation stations the resuits for the Arakawa and Leendertse options were
essendally identical. The simulation run without the advection term in the momentum equation
produced slight differences in flow at the North Land Cut station shown in Fig. 50.
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FIG. 50. Differences in Flow Due to the Advection Option, LM at North Land Cut

Wetting and Drying .

SWIFTZD accounts for flooding and drying on tidal flats by considering grid points to be dry
at depths less than a‘ given marginal depth. When the water level at a cross section between two grid
points becomes half the value of the marginal depth, the two points are taken out of the computation.
The time interval w check for flooding and drying is specified in the SWIFT2D input file. The
calibrated model used a marginal depth of 0.2 meter and a time interval to check for flooding and
drying of 30 minutes. A summary of the total number of times that cells flooded and dried and the
total area that actuaily flooded and dried during a 15 day simulation is shown in Table 14. The
number of times that cells flooded and dried in the simulation is not necessarily equal since cells that
dried at some point in the simulation may not have flooded again before the end of the simulation. The
grid was checked for flooding and drying every thirty minutes of simulated time.
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TABLE 14. Summary of the Wetting and Drying of Grid Cells during the 15 Day

Sensitivity Analysis Simulations

Number of Times | Number of Times | Maximum Dry | Dry Areaasa
Parameter Changed for | Cells Dry in the | Cells Flood in the Area in the Percentage of
the Sensitivity Runs Simulation Simulation | Simulation (km?) | Total Area (%)
Calibrated 8075 7923 22.6 3.9
Time Step (Low) 8328 8179 22.6 39
Time Step (High) 6063 5924 236 4.1
Wind Stress (Low) 1537 1460 16.8 2.9
Wind Stress (High) 18701 18257 41.8 7.2
Manning’s n (Low) 10017 9792 26.0 4.5
Manning’s n (High) 9062 8874 25.4 44
Manning’s n (Constant) 7368 7230 20.5 15
Viscosity (Low) 8071 7920 22.7 39
Viscosity (High) 8119 7967 216 3.7
Arakawa Advection 8066 7913 230 .40
No Advection 8172 8009 232 4.0
0.4 m Marginal Depth 10020 10010 339 5.9

The viscosity coefficient and the advection option had very little effect on the number of cells
that were inveolved in flooding and drying. The 180 second (Low) and 360 second (Calibrated) time
steps produced aimost the same amount of wetting and drying in the simulations, which indicates that

the use of 360 second time step instead of a slightly more accurate smaller time step was justified. The
720 second (High) time step produced significantly smaller amounts of flooding and drying, The wind
stress coefficient had the greatest effect on cell wetting and drying. The use of a negligible wind stress

reduced the amount of wetting and drying by approximately 80%. A wind stress coefficient of 0.0026

produced approximately a 230% increase in the amount of wetting and drying. The effects of wind

stress on wetting and drying were much larger than the effects of changes in the roughness coefficient.
The two-fold decrease in the marginal depth used to test for wetting and drying did not increase
wetting and drying as much as the use of a high wind stress coefficient. The majority of the shallow
grid celis are located at the south end and along the eastern side of the upper Laguna Madre. The
predominant south and south easterly winds tend to dry the cells along the southern and eastem udal

margins.
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V1 COMPARISON WITH TXBLEND RESULTS

TxBLEND MODEL APPLICATION

The TxBLEND model used for comparison with SWIFT2D incorporated the entire Corpus
Christi Bay and Upper Laguna Madre systems, The uitimate goal of the TWDB is to integrate the
Corpus Christi Bay system and the Upper and Lower portions of the Laguna Madre Estuary into a
single model. This combination will allow the model to be driven entirely by tides and water quality
(salinity) measured in the Gulf of Mexico. As a result, less data will be required for planning level
simulations. Although the external driving conditions were different in the two models, the
representations of the upper portion of the Laguna Madre were similar.

Final calibration of the Tx BLEND model for the Laguna Madre Estuary, Corpus Christi Bay,
and Copano Bay sysiem was not complete at the date of this study. The simulation results discussed in
this study are based on the partially calibrated TxBLEND model as of May, 1996. The TWDB had not
fully investigated the effects of the wind stress coefficient on the simulation. However, the calibration
was sufficiently complete to allow a reasonable comparison between the TxBLEND and SWIFT2D
madels, The TxBLEND model resuits used in the following comparisons covered the period from
May 15, 1991 through the end of the intensive inflow survey on June 14, 1991, The TWDB modei
incorporaied salinity, however, the calibration of salinity was considered to be at an early stage and
was not evaluated in this report. Salinity was not simulated in the application of the SWIFT2D model.
A value of 0.3 inches per day of evaporation was included in the simulation. Hourly wind daia at the
Corpus Christd NAS was used as the driving wind.

TxBLEND provides several parameters which aid in the definition of the initial conditions of
water levels, concentrations, and inflows. The initial water levels were set to zero (mean water level)
at the start of the simulation. One parameter used in the model provides a six hour warm-up
operation. The warm-up period allows for a smooth transition from zero water levels to the actual
conditions in the estuary at the start of the simulation period. This options serves t¢ reduce the
possibility of numerical instabilities at start-up and eliminates the need to specify a starting water
surface elevation at each mesh node. A similar option for a six hour build-up of inflows was
implemented in the model. The six hour period ailows river inflows to start at zero and increase o the
actual value at the start of the simulation. Seven inflow points were included in the TxBLEND model.
Only one, San Fernando Creek, flows directly into the upper Laguna Madre (Baffin Bay). The San
Fernado Creek inflow was small during the time period of the simulation and its absence in the
SWIFT2ZD model did not appear to affect the results. A third parameter, which allows repetition of the




T

first day of simulation, was not invoked. The start date of the simulation was approximately 28 days
prior to the period of observed velocities. This time was considered sufficient 10 smooth out any
residual effects of the initial conditions. The initial water surface elevation for the SWIFT2D model
was set to the average water surface elevation observed at each of the tide stations in the estuary. The
water surfaces elevations were fairly consistent at each station, therefore, the SWIFT2D model quickly
reached equilibrium with the actual conditions. The initial velocities in both models were set to zero
at start-up. The warm-up times allowed the veiocities to approximate the actal velocities well before

the imes when observed velocities were reach.d.

COMPARISON OF MODELS

The compiete TXBLEND model mes.. used for the comparisons was comprised of 8,187
linear, triangular elements. The porticn of the model which included the same area as the SWIFT2D
mode! was comprised of approximately 3,562 lements. The overall sizes and shapes of the
computational SWIFT2D grid and TxBLEND nesh were similar, Both representations of the
bathymetry were derived from the NOAA naut :ai charts. Comparisons of the SWIFT2D finite
difference grid and the TxBLEND finite eleme tmesh is shown in Table 15.

TABLE 15. Geometric Characteristics of t! : SWIFT2D Fipite Difference Grid and the
TxBLEND Finite Element Mesh

TxBLEND TxBLEND
. SWIFT2D | Upper Laguna Complete
Characteristic 7 Grid Madre Mesh Mesh
Number of compusational cells‘ ~15,000 3,562 8,187
Minimum celi depth (m) 0.10 0.55 0.46
Maximum cell depth (m) 5.0 10.8 17.9
Average cell depth (m) 1.03 1.58 2.81
Area weighted, average cell depth (m) 1.03 1.18 3.90
Minimum cell area (m?) 40,000 1,634 1,634
Maximum cell area (m) 40,000 1,395,481 1,758,784
Average cell area (m?) 40,000 140,401 222,712
Total area (km?) 5774 511.4 1,823
Total volume below mean water level (m*) | 5.92x10° 5.87x10* 7.11x10°
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The gross parameters of total area, total volume, and average depth are similar between the SWIFT2D
grid and the portion of the TxBLEND mesh which covers the upper Laguna Madre. The area at mean
water level was 13% greater in the SWIFT2D grid, while the volume at mean water level was 1%
greater in the SWIFT2D grid. The difference in the size of the two computational areas is primarily
due to the inclusion in the SWIFT2D grid of the feature called “the Hole™ at the southern end of the
estuary. The smaller difference between the volumes can be explained by the average depths in the
two representations of the bathymetry, The area weighted cell depth weights the average depth in each
cell by the corresponding area of that cell. The total of these weighted depths was divided by the total
area to produce an estimate of the average depths in the two meshes, The TxBLEND mesh was, on
average, 15% deeper than the SWIFT2D grid. The disparity in depth is due primarily to the
estimation of depths along the shallow, eastern side of the estuary. The nautical charts provided very
little data in this area. The estimated depths ~cre greater in the TxBLEND mesh, which produced a
greater average depth in the finite element mesh. The portions of the meshes which conduct most of
the circulation in the estuary were reasonably ‘imilar, Figs. 51 and 52 show the complete TXBLEND
mesh and an enlarged area of the mesh in the - «cinity of the JFK Causeway respectively.

The advantage of variable cell sizes i: readily apparent from a comparison of the number of
computational cells required for each model. 7 ie TXBLEND model is able to simulate the entire
upper Laguna Madre, Corpus Christi Bay, and “opano Bay system with 55% fewer cells than were
required to simulate the upper Laguna Madre «:one with SWIFT2D. The continuity questions
discussed in Chapter III place an upper limit on the size of triangular elements, however, the finite
element mesh is still able to provide a substantal reduction in the number of cells required to represent
the estuary. Note the high resolution in the vicinity of the GIWW and other channels and the larger
element sizes in the wide areas with shallow cr uniform depths.

The computational advantage of the TxBLEND madel is also manifested in the model run
times. A one month simulaﬁoﬁ with the TxBLEND model took approximately 2.5 hours with a 300
second time step (5 minutes). A corresponding one month simulation with the 200 meter grid
SWIFT2D model took approximately 4.6 hours with a 360 second (6 minute) time siep. The
TxBLEND model was run on a Sun SPARCstation 20 while the SWIFT2D model was run on a Data
General AViiON 8500 dual cpu server. The difference in hardware platforms could not account for

the significant difference between the run times.
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FIG. 51. TxBLEND Finite Element Mesh for the Upper Laguna Madre Estuary, Corpus Christi
Bay, and Copano Bay System
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FIG. 52. Close-up of the TXBLEND Mesh in the Vicinity of the JFK Canseway
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- .The large portion of time involved in the development of both models is taken up by the
creation of the bathymetry data. The use of a GIS system in the development of the SWIFT2D model
facilitated rapid creation of model grids, however, the grids required further editing outside of the GIS.
In addition, the learning curve for inexperienced GIS users is steep. An experienced GIS user with
data already in digital format could produce a model grid in a matter of days. The final editing of the
grid outside of the GIS may take several days or weeks. The TxBLEND mesh was developed with the
aid of a mesh generation program, however, a majority of the mesh development required hand
editing. Abridged examples of the SWIFT2D and TxBLEND input files are inciuded in Appendix B.

COMPARISON OF RESULTS

Despite significant differences between the two modets, the results were in good agreement.
The SWIFT2D and TxBLEND simulations were evaluated at each of the water level, velocity, and
flow stations described in regard to the SWIFT2D results and sensitivity analysis. The water level,
velocity, and flow stations are shown in Figs. 12, 13 and 14 respectively. The differences in the tidal
driving conditions were a major concern, however, the TRBLEND simulated water levels at the Corpus
Christi NAS gage closely matched the observed values, which were used as the driving tides in the
SWIFT2D model. Therefore, comparisons between tide and velocity stations internal to the upper
Laguna Madre were considered valid. The model results were compared with both time series plots of
water levels, velocites, and flows and a set of velocity vector plots. The vector plots allowed for a

comparison of the overall circulation patterns in the estuary.

Water Levels

Water levels simulated by the two models were in good agreement, especially for the stations
nearest the NAS driving tide. The largest discrepancies were probably due to the slightly different
representations of the bathymetry in the models. The differences observed in simulated water levels
were rarely greater than 0.1 meters and more often were within 0.05 meters. The average RMSE
between simulated and observed water levels was 4.8 centimeters for the SWIFT2D model and 5.4
centimeters for the TxBLEND model. The results were considered good given the fact that different
techniques were used to generate the bathymetry data for the models. Comparisons of water level at

the seven tide station locations are shown in Figs. 53 through 59.
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FIG. 53. Comparison of Water Levels at the Corpus Christi Naval Air Station Tide Station
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FIG. 56. Comparison of Water Levels at the South Bird Isiand Tide Station
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FIG. 57. Comparison of Water Levels at the Yarborough Pass Tide Station
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FIG. 58. Comparison of Water Leveis at the Riviera Beach Tide Station
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FIG. 59. Comparison of Water Levels at the El Toro Island Tide Station

Table 16 shows the RMSE'’s between simulated and observed water levels for both the
SWIFT2D and TxBLEND simulations. Water levels at the Yarborough Pass and Riviera Beach
stadions did not match as well as the water levels at the northern tide stations. The differences seem to
arise from the simulated wind effects in the models. The influence of wind appears to be smailer in
the TxBLEND model. The RMSE’s from the TxBLEND results were larger at the South Bird Island,
Yarborough Pass and Riviera Beach stations, while the TxBLEND errors were smaller for the Packery
Channel and Pita Island Stations. Additional adjustments of the wind stress factor in the TxBLEND
model will probably improve the simulation of the lower three internal station. The effects of wind on
the simulations are discussed further in the sections which describe the velocity and flow comparisons.

TABLE 16. Root Mean Squared Errors between SWIFT2D and TxBLEND Simulated Water
Levels and Observed Water Levels

RMSE (meters)
Water Level Station SWIFT2D TxBLEND
Corpus Christi NAS 0.001 0.039
Packery Channel 0.043 0.032
Pita Island 0.036 0.029
South Bird Island 0.059 0.068
Yarborough Pass 0.067 0.081
Riviera Beach 0.124 0.128
El Toro [sland 0.006 0.004
Average 0.048 0.054
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Velocity

The velocities simulated by SWIFT2D also were comparable to those from the TxBLEND
simulations, however, a consistent phase shift was observed in the uming of velocities at stations
distant from the NAS driving tide. Figs. 60 through 67 show comparisons of simulated velocities at
the eight locations shown in Fig. 13. The simulated velocities at the Humble Channel and GIWW at
the JFK Causeway stations matched well in regard to both phase and amplitude. These stations are
located near the NAS driving tide and are not significantly affected by wind. The phase of the
SWIFT2D simulated velocities show a noticeable lag in comparison to TxBLEND velocities at stations
south of the GIWW at Marker 199 station. The phase shift is consistent at around six hours. This
shift is even more noticeable in comparisons of simulated flows discussed in the following section of
this report. Velocities at these southern locations are strongly dependent on the influence of wind.
The observed phase shift was discovered to be the result of a simple problem in the input of wind data
in the two models. The ude data used in the simulation was referenced 0 Greenwich Mean Time
(GMT) while the wind data received from the National Climatic Data Center (NCDC) was referenced
to Local Standard Time (I.ST). LST for the Laguna Madre study area can be obtained by subtracting
six hours from the GMT. All tidal and wind inputs in the SWIFT2D model were adjusted to GMT.
The TxBLEND model used GMT for the tide data, however, LST was evidently used for the wind
data. The resulting six hour difference corresponds directly to the observed phase shift observed in the
velocites and flows.

Velocitdes simulated by the two models were very similar. Tabie 17 show the RMSE’s
between simulated and observed velocities for the SWIFT2D and TxBLEND models. The average
difference between simulated and observed velocities was 0.12 for SWIFT2D and 0.13 for TxBLEND.

TABLE 17. Root Mean Squared Errors between SWIFT2D and TxBLEND Simulated
Velocities and Observed Velocities

RMSE (meters per second)
Water Level Station SWIFT2D TxBLEND
Humble Channel 0.13 0.14
GIWW at the JFK Causeway 0.16 0.15
GIWW at Marker 199 0.19 0.19
North of Baffin Bay 0.10 0.09
Mouth of Baffin Bay 0.08 0.09
South of Baffin Bay-Middle 0.11 0.14
South of Baffin Bay-West 0.08 0.10
North Land Cut 0.12 0.13
Average 0.12 0.13
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FIG. 67. Comparison of Velocity at the North Land Cut Station

Flow
Simulated flows were compared at the eight cross sections shown in Fig 14. There were no

measured flow data available for these cross sections during the time period of the simulations,
therefore, the comparisons are based solely on a comparison of the flows simulated by the SWIFT2D
and TxBLEND models. Figs. 68 through 78 show the SWIFT2D and TxBLEND simulated flows at

the eight cross sections.
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FIG. 70. Comparison ot Flow at the Packery Channel Cross Section
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The magnitudes of the SWIFT2D simulated flows are generally smaller than the corresponding

TxBLEND flows. The discrepancy is probably attributable to the differences in the bathymetry of the
two models. On average, the TXBLEND mesh is deeper, which would tend to produce larger flows.
The RMSE's between the SWIFT2D and TxBLEND simulated flows are shown in Table 18. The
largest differences were observed at the Yarborough Pass and North Land Cut cross sections. One

contributing factor to the flow differences at the southern end of the upper Laguna Madre may have

been the inclusion of the feature called “the Hole in the SWIFT2D model grid. The Hole, which is a

shallow arm of the estuary with depths of less than two feet, was not included in the TxBLEND mesh.
The Hole extends into the sand flats south of Yarborough Pass.

TABLE 18. Root Mean Squared Errors between SWIFT2D and TxBLEND Simulated Flows

Water Level Station RMSE
(cubic meters per second)
GIWW at Corpus Christd 624
Corpus Christi NAS 322
GIWW at the JFK Causeway 61.8
Humble Channel 38.6
Packery Channel 13.6
Pita Island 94.8
South Bird [sland 100.4
Green Hill 104.8
Baffin Bay 177.2
Yarborough Pass 168.6
North Land Cut 58.5
Average 83.0

The six hour phase lag caused by the problems with the wind data in the models is even more

apparent in the simulated flows than in the velocities. Once again, the effect is more noticeable at the

southern cross sections which are strongly influenced by wind. Flows at the northern cross sections
were dominated by the tidal signal and did not exhibit the phase lag.



Circulation Patterns
Velocity vector plots were used 1o evaluate the overall circulation patterns simulated by the

SWIFT2D and TxBLEND models. Plots of velocity vectors simulated by the two models at periods of
high tide, slack tide, and low tide are shown in Figs. 79 through 87. The high, low, and slack tide
conditions are referenced to the tide at the Bob Hall Pier tide station (Gulf of Mexico tide). The
corresponding high, low, and slack tides near the JFK Causeway are lagged two 10 three hours due to
the travel time of the tide signal across Corpus Christi Bay. High tide occurred around 09:00 on June
.10, while slack tide occurred around 18:00 on June 10, and low tide occurred around 00:00 on June
11, Figs. 81, 84, and 87 show the velocity vectors on an enlarged view of the SWIFT2D grid near the
JFK Causeway area. The largest velocities were observed in the GIWW and in other, smaller channels
near the JFK Causeway. Visual inspection of the velocity patterns simulated by the two models
showed no major differences in the northern part of the estuary near the JFK Causeway. Flow into
Baffin Bay in Figs. 82, 83, 85, and 86, however, appears to be lagged by six hours in the SWIFT2D
model. This corresponds to the six hour lag discussed in conjunction with the simulated velocities and
flows. A full set of velocity vector plots at three hour time intervals from 06:00 on June 10, to 12:00
on June 11, can be found in Appendix C.
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FIG. 79. TxBLEND Simulated Velocity Vectors, June 10, 09:00
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FIG. 80. SWIFT2D Simulated Velocity Vectors, June 10, 09:00
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FIG. 83. SWIFT2D Simulated Velocity Vectors, June 10, 18:00
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FIG. 85. TxBLEND Simulated Velocity Vectors, June 11, 00:00
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VII SUMMARY AND CONCLUSIONS

SUMMARY

The U.S. Geological Survey Surface Water Flow and Transport Mode! in Two-Dimensions
(SWIFT2D) model was applied to the northern half of the Laguna Madre Estuary. SWIFT2D is a two-
dimensional hydrodynamic and transport model for well-mixed estuaries, coastal embayments,
harbors, lakes, rivers, and inland waterways. The model numerically solves finite difference forms of
the vertically integrated equations of mass and momentum conservation in conjunction with transport
equations for heat, salt, and constituent fluxes. The finite difference scheme in SWIFT2D is based on
a spatial discretization of the water body as a grid of equal sized, square cells. The model includes the
effects of wetting and drying, wind, inflows and return flows, flow barriers, and hydraulic strucnures,

The results of the SWIFT2D model were compared to results from an application of the
TxBLEND model by Texas Water Development Board to the same part of the estuary. TAXBLEND is a
two-dimensional hydrodynamic modet based on the finite element method. The model employs
triangular elements with linear basis functions and solves the generalized wave continuity formulation
of the shallow water equations. TxBLEND is an expanded version of the BLEND model to which the
TWDB has added a number of important features. These features include the coupling of the density
and momentum equations, the inclusion of evaporation and direct precipitation, and the addition
mibutary inflows, The TxBLEND model simulations discussed in this study were performed by
personnet at the TWDB.

The SWIFT2D finite difference grid was developed using the raster based capabilities of a
Geographic [nformation System (GIS). The bathymetry data used in both the SWIFT2D model and
the TxBLEND model was derived from the set of National Ocean Service nautical charts which cover
the Laguna Madre area. The bathymetry data was digitized into the GIS and used te create the
SWIFT2D grid. A newer and more extensive set of hydrographic survey data became available during
the study, however, the new data was not used in order to maintain consistency between the two
models. The SWIFT2D computational grid contained approximately 15,000 cells, while the
TxBLEND finite element mesh was comprised of 8,187 triangular elements. The TxBLEND mesh
included the Corpus Christi and Copano Bay systems in addition to the upper Laguna Madre.

The two models were calibrated 1o a June 1991 data set from a TWDB intensive inflow survey
of the Laguna Madre. Velocity and water quality data were available for the three days of the survey.
Tide data for a much longer period were available from TCOON network stations. Results of the two

models were compared at seven tide stations, eight velocity stations, and eleven flow cross sections.
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The simulated results were generally in good agreement with observed data and between models.
Calculations of RMSE’s and time series plots were used to determine the quality of the model
calibration.

CONCLUSIONS

The SWIFT2D and TxBLEND models offer substantially different approaches to the problem
of hydrodynamic modeling in shallow estuaries. The contrasting characteristics of the models led to a
several conclusions.

1. Despite the major differences in solution schemes applied by the two models, both do an
adequate job of reproducing the observed water level, velocity, and flow patterns in the Laguna Madre
Estuary. The errors between simulated and observed water levels were very similar at the tide stations
in the northern portion of the upper Laguna Madre. SWIFT2D provided smaller érrors between
simulated and observed water levels at the stations south of Bird [sland. These stations appeared to be
swongly affected by the presence of wind. SWIFT2D more accurately simuiated the large daily
variations in water level cansed by wind, however, subsequent adjustments of the wind siress
parameter in the TxBLEND model may improve results. The simulated velocities followed the same
pattern observed in the water levels. Both models produced equivalent results at the velocity stations
nearest the Corpus Christi NAS driving tide. Velocities at the southern stations were small and,
therefore, difficult to compare. The largest discrepancies between the two models were observed in the
simulated flows. The magnitude of flows simulated by SWIFT2D were consistently smaller than those
simulated by TXxBLEND. The differences were probably the result of the representation of the
bathymetry in the two models. The coarse grid size used in the SWIFT2D model did not atlow an
accurate representation of the true shape of channels.

2. Wind was observed to have a dominant effect on conditions in much of the upper Laguna
Madre. High frequency (diumnal or shorter) oscillations in water level in the southern portion of the
upper Laguna Madre are almost completely due to wind. Comparisons between SWIFT2D model runs
with iarge and negligible wind stress coefficients illustrated the influence of wind on the circulation
patterns. Variations in water levels at the Yarborough Pass and Riviera Beach tide stations simulated
without the presence of wind were driven by low frequency oscillations, which couid possibly represent
the lunar tidal cycle. Water levels at the stations nearest the JFK Causeway were more dependent of
the daily tidal cycle in the Guif of Mexico. Simulated velocities at stations south to the GIWW at
Marker 199 station were essentiaily zero. The single wind station used in the simulation appears to be
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sufficient for atmospheric driving, however, the use of additional sites with the wind input grid option
in SWIFT2D might produce even more accurate results.

3. The unusual characteristics of the Laguna Madre stretched the capabilities of the
SWIFT2D model. The limitation of a fixed cell size forced the use of an excessive number of
computational cells in order to accurately simulate the GTWW. A grid size on the order of 50 meters
would be required to more accurately represent the channels. Such a grid size would force
unacceptable simulation times. The ability to vary the clement size in the TXBLEND mesh allows for
a more efficient representation of actual bathymetry. Small elements were used in the vicinity of the
GIWW and other channels, while larger elements were used o represent areas with constant depths.
The TWDB was able to simulate the entire Corpus Christi Bay and upper Laguna Madre Estuary
system with fewer elements than were required for simulation of the upper Laguna Madre alone with
SWIFT2D. The possibility of adding routines to SWIFT2D to allow variable cell sizes should be
explored if the model is to be used for other systems with areas on the order of that of the Laguna
Madre. Currently, the model is applicable to smailer systems or systems where small features such as
the GTWW are not dominant.

4. The TxBLEND model provided several computational advantages over the SWIFT2D
model. The flexibility of the finite element mesh resulted in a much smaller number of computational
cells than the finite difference mesh. A simulation of the entire upper Laguna Madre, Corpus Christi
Bay, and Copano Bay system for a period of one month takes approximately 2.5 hours (5 minute time
step) on a Sun SPARCstation 20. A SWIFT2D simulation (200 meter grid size) for a period of one
month on the upper Laguna Madre alone takes approximately 4.6 hours (6 minute time step) on a PG
AViiON 8500 dual cpu server. The difference in platforms does not account for the for the longer run
times with SWIFT2D. _

5. The ADI effect was observed 1o reduce the accuracy of the SWIFT2ZD simulatons at large
time step. The stair step nature‘of the finite difference grid representation of channels appears to cause
much of the error associated with the ADI effect. The large number of spoil islands in the Laguna
Madre could also have contributed to the errors.

6. The SWIFT2D resuits could potentially be improved with additional adjustment of the
roughness coefficient. The roughness coefficient, in addition to the time step and wind stress, exerted
the greatest influence of any of the model parameters on the simulated resuits.

7. The influence of wetting and drying was not extensively investigated in the current sudy,
however, a simple comparison of the number of cells which flooded and dried indicated potentialky
significant effects. A large number of cells along the southern and eastern tidal margins were subject
1o wetting and drying. The influence of wind was found to have the largest impact on the number of

cells subject to flooding and drying during the simulation.
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RECOMMENDATIONS FOR FUTURE STUDY

1. Evaporation and direct precipitation are important considerations, especially in the
Laguna Madre Estuary. The Laguna Madre is subject to large evaporation rates, which are the
primary cause of the hypersaline nature of the estuary. In contrast to evaporation, direct precipitation
accounts for more than half of the freshwater inflow to the estuary. These source and sink terms are
included in the TXBLEND model. The addition of these terms to the SWIFT2D model would be fairly
simple and probably should be done if the model is to be used for salinity modeling of the Laguna
Madre. The addition of evaporation and precipitation terms would improve the ability of the
SWIFT2D model for any future applications to estuaries in warm climates with small freshwater
inflows.

2. Data from the hydrographic survey of the Laguna Madre completed in 1995 offers an
order of magnitude increase in the number of depths points. The coverage of the new data exiends to
the shallow eastern side of the estuary where information is almost non-existent on the nautical charts.
The use of the newer data would eliminate many of the assumptions and much of the manual editing
which can lead to substantial differences between grids and meshes developed by different parties.
Comparisons should be made between the models with bathymetry defined by the nautical charts and
by the newer hydrographic survey. The ability of both models to accurately simulate observed
conditions should improve with the addition of the new data.
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APPENDIX A

SENSITIVITY ANALYSIS
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EFFECT OF CHANGES IN THE TIME STEP ON SWIFT2D SIMULATION RESULTS
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FIG. A-4: Ditferences in Water Laveis Due to the Time Step, Yarborough Pass
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FIG. A-8: Ditierences In Velocity Due to the Time Step, GIWW Marker 199
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FIG. A-10: Difterences in Velocity Due to the Time Step, Mouth ot Baftin Bay
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FIG. A-15: Ditfersnces In Flow Due to the Time Step, Corpua Chrigti NAS

« T M M T T T

fa “"»-J'J/ \ 5

FLOW N CUpC METERS PER SECOND

n i - L 1
'%00 D80 1400 2400 OBOD 1400 2400 0800  18DC 2400 0800 1800 2400 0RO 1600
il n 12 13 4
June 1047

FIG. A-16: Ditferences in Fiow Due to the Yime Step, Packery Channel
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FIG. A-1T: Differences in Fliow Due lo the Tima Stap, Humble Chan-nel
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FIG. A-18: Differences in Flow Due to the Time Step, GIWW al JFK Causeway
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FIG. A-21: Ditfersnces In Flow Due to the Time Step, LM at Green Hill
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FIG. A-22: Ditferences In Flow Due to the Time Step, Baftin Bay
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FiG. A-23: Differences in Flow Dus to the Time Step, LM at Yarborough Pass
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FIG. A-30: Ditierence in Velacity Due 10 the Wind Stress, Humble Channel
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FIG. A-31: Ditierences in Velacity Dus 10 the Wind Stress, GIWW at JFK Causeway
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FIG. A-32: Differences In Velocity Dus to the Wind Stress, GIWW Marker 199
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FiG. A-33: Ditference in Velocity Due to the Wind Stress, North of Baffin Bay
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FIG. A-34: Ditterences in Velocity Due 1o the Wind Stress, Mouth of Baitin Bay
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FIG. A-40: Ditferences In Flow Due 1o the Wind Stress, Packery Channel
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FIG. A-41: Differences In Flow Dua to the Wind Siress, Humble Channel
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FIG. A-43: Ditferences In Flow Due to the Wing Stress, LM at Pita laland
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FIG. A-47: Difierences in Flow Due (o the Wind Stress, LM at Yarborough Pass
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FIG. A-55: Differences In Velocity Dus to Manning’s n, GIWW at JFK Caiiseway
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FIG. A-56: Differences In Veiocity Due 10 Manning's n, GIWW Marker 199
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FIG. A-57: Difterence in Yelocity Due to Manning’s n, North of Batfin Bay
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FIG. A-58: Ditferences In Veiocity Due to Manning's n, Mouth of Batfin Bay
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FIG. A62: Ditferences In Flow Due to Manning’s n, GIWW at Corpus Christi
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FIG. A-63: Ditterences in Fiow Due 10 Manning's n, Corpus Christi NAS
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FIG. A-64: Differences in Flow Due to Manning’s n, Packery Channai
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FIG. A-65: Differances in Figw Due to Manning's n, Humble Channei
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FIG. A-66: Ditterences In Flow Due o Manning's n, GIWW at JFK Causeway
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FIG. A-67: Differsnces in Flow Due toc Manning's n, LM at Pita island
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FiG. A-68: Ditterences in Fiow Due to Manning's n, LM at South Bird tsland
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FIG. A-69: Ditferences In Fiow Due to Manning's n, LM at Green Hill
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FiG. A-70: Difterencas in Fiow Due to Manning's n, Baftin Bay
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FIG. A-71: Differences in Flow Due ta Manning's n, LM at Yarborqugh Pass
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FIG. A-72: Differences in Flow Dua (0 Manaing’s n, LM at North Land Cut

0el



131

EFFECT OF CHANGES IN VISCOSITY ON SWIFT2D SIMULATION RESULTS
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EFFECT OF CHANGES IN THE ADVECTION OPTION ON SWIFT2D SIMULATION
RESULTS
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FIG. A-118: Ditterences in Flow Due to the Advection Optlon, Baifin Bay
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EXAMPLE INPUT FILE FOR SWIFT2D (FILEIDP)
Lines that begin with an * are comment lines added for clarity.

CGUX CMPUTR
SWIFT2D MCODEL RUN BY XARL MCARTHUR HEAD
U.S. GEOLCGICAL SURVEY, AUSTIN, TX HEAD
END HEAD ENDHEAD
2RINT LSEPA=]1, LHDIV=0,LINP=60,NC0=133, LPICH=0, NOPLU=0, MCKQUT=000048000 PRINT
JPPER LAGUNA MADRE SWIFT2D DATA FILE NOTE
2C00M GRID : RUNS FOR WATER LEVEL CALIBRATION NOTE
SIMULATICN RUN ul200c: 2 TIDES, 1 WIND NOTE
END NOTE ENDNOTE
UL2gQQcC REC 1
UPPER LAGUNA MADRE : 200M GRID REC 2
LAGUNA MADRE 01 JUN ‘91 REC 3

*

* Time control, input, and output parametaers

3 60 g 0 15840 12960 60 60 REC 4
99999 99993 99999 60 24 30 99993 0 180 12960 15840 Q REC 35
0 0 a 1 ol S 1 1 a 1 1 0 REC &
7 7 7 7 7 7 REC 7
7 7 7 7 7 7 7 REC 8
a 0 Q o Q 0 0 0 0 REC 9
Q Q 0 o} 0 o 55 REC 10

12966 13266 13566 13866 14166 14466 14766 15066 L5366 135666 15966 16266 REC 11
16566 16866 17166 17466 17766 18066 18366 18666 18966 19266 19566 13866 REC 12

REC 13
~ Grid parameters and numerical constants

REC 14
296 426 e - 7 e g Q 2 9 2 Q J REC 15
0 0 0 Q 0 ] 0 Q Q 0 REC 16
2.3 0.c 0.0 0 Q 0 Q Q Q 0 REC 17
27.333 0.3 200 0.304 1 0.2 1.0 1.0 0.5 1.0 35.0 0 REC 18
.81 0.0015 €.00119 1.011 0.5144 14.2 1000.0 0.%7 0.0023 REC 19
FR80 355PRO 1.0 1.0 REC 20
32 1 0.¢ 15 30 10.0 M/s 0.75 3 REC 21
0.0 2.9 1.5 .9 0.0 1.0 0.75 0.75 REC 22
1.0 2.0 2.0 2.0 2.0 0.00 0.00 0.5 8.5 REC 23
1 1 2 1.5 50.0 -0.40 -0.40 0.25 1.0 0.¢ 1 1 REC 24
99999 39999 REC 25
25.3 1.c0000 0.698 REC 26

* Description of tide, velocity, and flow stations and cross sections
1 230 421 CORPUS CHRISTI NAS REC 1
2 255 381 PACKERY CHANNEL ‘ REC 1
3 221 366 PITA ISLAND REC 1
4 210 3C0 sSCUTH BIRD ISLAND REC 1
5 156 123 YARBOROUGH REC 1
6 19 179 RIVIERA BEACH REC 1
7 151 75 EL TCRO ISLAND REC 1
1 237 354 HUMBLE CHANNEL REC 2
2 248 183 GIWW JFK CAUSEWAY REC 2
3 174 214 GIWW MARKER199 REC 2
4 170 214 N OF BAFFIN BAY REC 2
5 162 184 M OF BAFFIN BAY REC 2
6 165 171 S OF BAFFIN BAY E REC 2
7 164 170 S OF BAFFIN BAY M REC 2
8 163 170 S OF BAFFIN BAY W REC 2
3 181 170 S OF BAFFIN BAY FRW REC 2
10 151 69 NORTH LANCCUT REC 2
1 156 170 208 BAFFIN BAY REC 5
2. 252 382 386 PACKERY CHANNEL REC 35
1 412 251 256 GIWWLM/CC REC 6
2 413 230 248 NAS REC 6
3 383 247 249 GIWW/JFK REC &
4 394 236 238 HUMBLE CHANNEL REC 6
§ 358 215 24% LM-PITA ISLAND REC §



* Initial wind speed
160

O D -3 O

11

T 291
225
124

73

185
168
145
149

220 LM-BIRD

153 LM-LAND CUT

ISLAND
195 LM-GREEN HILL
180 LM-YARBOROUGH

and directicn

* Descripticons of tidal boundaries

1 6225422277422 1
2 8150 69152 69 1
1 . 0.335
2 0.3318
0.35 J.10 0.29
1.0 2.0 5.
-0.5 -0.2 -0.1
2 Q
216.4 422.0
#* Land boundary cutlines
146.2 1.2
999999999,
s} 0 ¢ Q 0 Q Q
. ** DBathymetry data »~
-10 =1@ 3 a 0 Q 0
=11 -11 -10 =% o} Q o
-11 -11 -11 -11 -1¢ -10 0
-11 -11 -11 -11 -11 -10 -1l@
-i¢ -10 -11 -11 -11 -11 -11
-1¢ -10 =10 -11 -11 =11 -11
-i0 -10 ~10 =-10 =-11 =11 =-11
-19 =10 -10 =10 =11 =11 =11
3 3 3 -i0 -10 -10 -i0
2 2 2 3 3 2 -10
2 2 2 4 3 3 3
3 3 3 3 3 3 3
15 15 15 15 15 15 15
3 3 3 3 3 3 3
2 2 2 2 2 2 2
2 2 2 2 2 2 2
2 2 2 2 2 2 2
2 2 2 2 2 2 2
2 2 2 2 2 2 2
2 2 2 2 2 2 =10
2 2 2 2 2 2 2
2 2 2 2 2 2 2
2 2 2 2 2 2 3
2 2 2 2 2 3 .3
2 2 2 2 3 3 3
2 3 3 3 3 3 3
3 3 3 3 3 3 3
3 3 3 3 3 3 3
4 4 4 3 3 3 3
30 30 4 4 4q 3 3
-i0 30 30 230 4q 4 4
-10 =10 3 30 30 30 30
3 3 3 -10 ~-10 -10 30
2 3 3 3 3 -10 -i0
2 2 2 3 3 3 3
-11 -10 -10 2 3 3 3
-11 -11 -11 -10 -10 2 3
-1l -11 -11 -1l =11 -10 -10
-11 -11 =-i1 -11 -11 -11 -11
-11 -11 =11 -i1 -11 -11 =11
-11 -11 -i1 -11 -11 -11 -11
-11 -11 =11 =11 -11 -11 -11
-11 -11 =11 =il -11 -11 -11
-11 -11 ~11 -11 =-11 -11 =-l11
-11 -11 -11 -11 -11 =11 -l1l1

Q.5
10.
-0.05

x

[ T I I T |
e e
o PHRHOOOOO

ey

o

[}
= L
MNMWWWOORLEWWWNWWWWNOONMNN WWWWLWW

[ S |
e el

-11
-11
-11

w W
Wod 00w W Wl WL W W

LD S T T |
AL
el el "

-11
-1

1

70.0 CORPUS CHRISTI NAS
70.0 EL TCRO ISLAND

.a

50Q.
0.Q01

OO oo

15

]
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w o
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DO GO

15
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3

2

3

B

[ e B

-11 -1t -11 =11 -11 =11 -11 =11 =11 -11
-1 -11 -11 -11 =-11 =11 =11 -11 -11 -10
-11 -11 -11 -11 -10 -11 =-11 =-i1 =10 ]

-11 -11 -11 -11 -11 =11 ~11 -11

-1t -11 -il =11 -11 -11 -11 -11 -iQ0 -10
-19 =11 =11 -11 -11 -11 =11 =11 =11 =10
-11 -11 -11 -11 -11 -ii1 ~-11 -11 =10 =10
-10 -10 -10 -11 -11 -11 -11 -11 -11 -il
-10 -10 -10 -10¢ -10 -11 -11 -11 -11 =11
-1¢ -10 -10 ~10 =10 -10 -10 -1Q =-11 =11
-10 -10¢ -10 -10 =13 ~-10 ~10 -1Q =-10 =11
-10 -10 -i0 -10 -10 -10 -10 =10 -10 -10
-10 -1¢ -i0 -10 -iQ0 -10 =10 -10 -10Q =10
-10 -10 -10 -10 -10 -10 -10 -1Q =10 =10

o] ¢ -0 -10 ~-19Q -10 -10 =10 =10 -10

g 0 0 9 ~10 -10 -10 =10 -10 =-10

*x Bathymetry data **

9 g 0 0 0 ¢ 0 0 0 0
.a0s
0.00
. 340
147 3 3 0.02s8 0.025 0.025
== Spatially distributed Manning's n
274 415 421 0.040 0.0490 0.040
0.0
235 393 1.0 1.0
237 3g2 1.0 1.0
211 306 1.0 1.0
60 175 1.0 1.0
19 123 1.0 1.0
156 123 1.0 1.0
146 10 1.0 1.0
249 3g1 1.0 1.0
228 422 1.0 1.0
225 422

** Computational grid enclosure

225 422 i

w

11 06 0.338 0.317 0.289

NN W ® o

-10
-11
-11
-11
-11
-10
-10
-10
-10
-10

0.0

0.0

HUMBLE CHANNEL

R W WS

-11
-11
-11
-11
-10
-10
-10
-10
-10

25

40

oW W oS

-0
-11
-11
-11
=11
-1l
=11
~1c
-10
-10
-10

0.0

0.0

NN W..a

-10
-11
-11
-11
-11
~11
-11
~11
-10
=10
-10
-10

25

40

4

-10
-11
=11
-11
-11
-11
-11
-11i
-11
-11
-10
-10
-10

0.0

0.9

PACKERY CHANNEL
SQUTH BIRD ISLAND
BAFFIN BAY
RIVIERA BEACH
YARBOROUGH PASS
NORTH LAND CUT
GIWW AT JFK CAUSEWAY
CORPUS CHRISTI NAS

0.259

*r Corpus Christl NAS hourly tide data **

1301800 & 0.262 0.280 0.289
21 06 0.328 0.344 0.347

=+ El Toro Island hourly tide data ~

2301800 & 0.125 c.109 0.121

1 0 16

*r Corpus Christi NAS wind speed daca

3Q2300 14
1 e 140

0.295
0.350

w

0.133

e

== . Corpus Christi NAS wind direction data

302300 150

L2

0.237

0.295
0.353

0.130

0.210

0.295
0.344

0.124

4

-10
-11
-11
=11
-11
-1l
~11
-11
-11
=11
-10
=10
=10

25

40

REC

REC
REC
REC

28
30

31
32

3o

BLANK
3LANK
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EXAMPLE INPUT FILE FOR TXBLEND

north end channel inflows,

NV NVEL NTRT NOPT NCON NMOM

1750

22
22

4913

ol
DELT
30a0.
LMPC

1.0
LMPTR
01.0

30TH ;
Corpus Christi/Laguna Madre;
Model: Tx3LEND:Sl.
NN NE NH NLIN
4913 8187 29 1
TSTRT TIME
000.3 0744.0
CCR TWGT
29.6 0.5
TWGTT LMPTL
1.0 1.0
INCIDENCE LISTS
1 1 21
2 2 1
8188 4910 4912
8187 4910 49313

NODAL LOCATION

4911

1 685672.8 3115812.0
2 687424.3 3115090.8

4912 624965.6 3017874.2

1412
1346
1414
4871

145
268

1372

4913 624306.2 3017444.2
SET DEPTH NODES
14%7 1470 1443
1378 1379 1380
1314 1347 1381
4869 4857 4870
SPECIFIED NORMAL
21 62 104
341 305 267
1298 1299 1336
1350 1318 1283

ANCWN VELOCITIES

DIRECTION ANGLE

21 1 62
62 21 104
124é 1245 1210
1210 1246 1175

SPECIAL EDGES

BATHYMETRIES
1 2.40
2 6.00
4812 2.02
4513 2.02

INITIAL HEIGHTS

1245

3.z28

1413
1311
1444
4872

18s
269

1409
1246

1 ¢
ITMAX
07992

LMPM
1.0
DISX
Q.0

3.28

1377
1312 1275

4861 4845

226
231

268
232

1441

1469

1 3
NFRST
007560
BCLUMP
1.0
DIsY
9.9

1276

4846

266
191

1415

1/5/96: no inflow but open;4/17/96
Corpus.geon.5; June 1991 FieldStudy

ITW INEW NTRN NHC

1271

304
148

1383

Q 1
NCUT
00138

THETA
1.0
DISXY
goo0Q.o

1313

34¢
192

2

3s
NCARD
C1
ALPHA
0.5

147
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HAEIGHTS AT T-0T

VELOCITIES

T-2T VELOCITIES

NORMAIL. VELCCITY

MANNINGS N VALUE 1
1 0.3287
2 0.0287

.

4912 0.0401

4913 0.34401
L
CONCENTRATIONS
1 3.00
2 5.00
4912 23.81
4913 23.81

FIXED QUALITY
1497 1470
1443 1412 1413 1377 1378 1379 1380 1346 1311 1312
1275 1276 1277 1313 1314 1347 1381 1414 1444

340 341
483 484
3831 38351
3708 3709
4308 4903
319 543
354 355
L
DISPERSION CQEFS

1 203.

2 203.

4912 3000,

4913 3000.

ANISOTROPIC DISP

XXXX: end ¢f BLEND input data

AXAWNTERNRNR Y

TWDB input parameters

1,0.2, 1idens: 1 to calculate the density terms

1, imix : 1 to call subr POLUTE '

l, ilwarm! zerc means no warmup

3, lrepeat: number of repetition days at the simulation start

2.001,2,0.50, 0.55,0.6,0.67, 0.5, pictim,itpics,wt2: Plcard iteration parameters
1, iwantp: (0 to supress intermediate printouts for u,v,h,c

3600., printime: TWDB printout interval (for outflwl file), in seconds

3600.,3, flwtime,iflwunit:print interval in sec(for cutflw2); 1 in cfs;2 in 1000
6., buildtime: initial river inflocw build-up time, in hours

J, irestrt: 1 to restart

720, iwrite: write interval in heurs for restart data; 0 ne write

0, ievap: 0 to use costant meteo data; 1 to use daily data

0.3, evap0: constant evapcratlion rate in inches per day

1.0, evpfac: evaporation affect adjustment factor

3, iwind: 0 for constant wind; 1 for 3-hourly wind; 2 for daily wind;3:hourly
2,150, wnd0 and wndd0O: constant wind vel (mph) and directicn

0.8, 1.0, wndfac: wind stress adjustment facter

. 3, iwave: 1 to read tide data;2 to use sine wave starting 0 elev;3 at middle

p
2, ntidls: oaumber of tidal lccaticns
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, ~1.3,24,0, tidal amplitude and periodthours); 0,0 to read input tidal data
» 1.5,24,0, tidal amplitude and periodihours); 0,0 to read input tidal data
umg: 0 not to calculate residual flows

strtag,endaqg: for residual flow calgulation
N

.,3000, scQgo,

2,3,3 to stop difcon section

censtant DISPERSION

. idisprsn: 0 for constant dispersion coeff;l for variable(i.e. use DIFCON)
. 3,3, to stop ildisp section

.. convfac:convective term adjuster
7,1000., idiff,cdiff

2,.95,.95, lalph,prent,prent?

2.2,0.5, 0.3, nalnfac

21gG section

230.,2.01,, Hi,G1l

-10.,0.03,,, H2,G2

Manning's N

1,0,0, to stop manN section

EXRERA AR N

Nueces River .

3. number of months in the record
3,15,1991, starting date of simulation
£,16,1991, ending date cof simulation

7, number of inflow locations

3, l: variable inflows, 0: constant inflows
3831,3851, 100.,, Nueces

3708,3709,10., Oso Crk

ER SIS}

4813,484,10., Aransas Rvr
340, 341,10., Mission Rvr
354, 3558,10., Copano Crk
319,543,10., Salt/Cavasso Crk

$9G8,4%09,12,, Sanfernando Crk(BaffinBay)
**Tide Data~*~
3obHall tides (actid.BobH2; 0% adjustment); data start 0th hour
32, number cf days in the tide record
2, number >f tidal locaticns
21, numper of nodes in the 1st location {(Gulf at Corpus)
3, number of nodes in the 2nd location (South end of CCBNEP)
., tidal location number (Guif at Corpus)
15 -0.48 -0.82 -0.61 0.25 1.21 1.80 1.83 1.85 1.53 1.06 1.00 (.43
16 -0.34 -0.93 -0.9%3 -0.34 0.50 1.81 1.%4 2.03 1.85 1.57 1.52 1.09
17 0.48 -0.25 -G.36 -0.72 -0.56 1.67 0.%9 1.7% 1.71 1.52 1.46 1.08
18 0.81 -0.06 -0.49 -0.49 -0.11 0.62 1.89 1.69 2.00 .70 1.73 1.83
19 0.%8 1.03 0.00 -0.06 0.13 0.66 1.52 1.91 2.01 1.82 1.62 1.49
20 1.37 1.41 0.84 0.50 0.44 0.81 1.34 1.81 2.08 1.84 1.76 1.57
21 1,50 1.53 1.33 1.06 0.%0 o0.81 1.18 1.48 1.65 1.47 1.21 1.09
22 1,03 1.25 1.35 1.30 1.22 1,08 1.26 1.54 1.6 1.45 1,11 0.92
23 0.%0 1.23 1.49 1.%8 1.79 2,21 2.01 1,95 2.12 1.9%0 1.55 1l.27
24 1.24 1.29 1.83 2.32 2.10 2.10 1.88 1,71 1.87 1.44 1.12 0.72
25 0.47 0.55 1.08 1.72 1.94 1.85 1.81 1.40 1.55 1.51 1.04 0.8
26 0.21 0.24 0.74 1.37 1.83 1.98 1.85 1.60 1.49 1.25 0.90 Q.41
27 -0.15 -0.24 Q.09 0.74 1.32 1.51 1.55 1.30 1.22 1.13 0.74 Q.29
28 -0.12 -0.26 -0.06 0.73 1.27 1.77 1.76 1.64 1.41 1.24 1.00 0,42
29 -0.04 -0,33 -0.25 0.39 1.02 1.6 1.89 1.54 1.41 1.27 1.15 Q.63
-0.04 =-0,32 -0.24 0.08 0.90 1.58 1,72 1.56 1.46 1.21 1.14 40.8§7
31 0.24 -0.18 -0.23 -0.04 0.48 1.16 1.54 1.5 1.45 1.19 1.01 o0.68
1 0.21 -0.18 -0.47 -0.15 Q.46 0.85 1.31 1.41 1.46 1.27 1.21 0.95
2 0.87 0.22 -0.08 -0.02 0.32 0.81 1.46 1.23 1.24 1.02 0.9%9% 0.80
3 0.82 0.35 0.00 -0.20 0,14 0,76 1.11 1.42 1.35 1.21 1.05 90.94
4 0.59 9.44 0.06 0.29 0.49 0.65 0.88 1.0% 1.07 0.84 0.47 0.54
5 0.44 0.27 0.02 0.07 -0.09% 0.29 0.36 0,71 0.80 OC.46 0.17 0.24
& 0.34 0,30 0,41 0.37 0.43 0.28 0.29 0.73 0.44 0.33 -0.20 -9.19
7 -0.01 0.16 0.44 0.44 0,79 0.08 0.%0 0.861 40.51 0.53 0.12 -0.19
8 0.14 ©0.56 0.98 1.93 1.31 1.5 1.44 1.47 1.69 1.37 0.98 0.383
9 0.80 1.22 1.91 2.31 2.60 2.28 2.06 1.51 1.83 1.48 0.95 0.30
10 0.08 0,55 1.31 1.%8 2.53 2.0 2.22 2.01 1.87 1.31 0.88 0.03
11 -0.27 -0.34 0.34 1,28 2.00 1.%6 2.17 1.71 1.64 1.14 Q.81 20.07
12 -0.42 -0.76 =-0.10 0.68 1.55 2.00 2.10 1.74 1.52 1.3C 0.99 0.30
13 -0.61 -1.00 -0.76 0©.03 1.18 1.60 1.95 1.64 1.55 1.20 0.%9% 0.52
14 -0.39 -0.76 -0.91 -0.20 0.7Y 1.38 1.84 1.76 1.65 1.46 1.21 (.34
15 0.21 -0.66 -0.98 -0.72 0.18 0.86 1.48 1.46 1.47 1.0% 1l.1é 1.1iQ

ARG OO OB LWMWLU W WL U o
w
[=]




2, :1dél‘loca:ion aumber

5 13 0.32
5 16 0.92
5 17 0.
518 0.88
319 0.80
S 20 0©.82
321 0.92
522 1.31
3 23 Q.98
5 24 1.08
5 25 1.24
5 26 1.24
5 27 1.22
5 28 1.13
6 15 0.91

"»vFlow Exchanger»=*

0.38

0.91

0.948
0.9%4
0.87
0.82
2.77
0.81
0.89
0.98
1.02
1.11
1.22
l.24
1.19
1.10

0.90

(South
0.98
0.94
0.84
0.80
0.76
0.84
0.92
1.00
1.02
1.11
1.21
1.22
1.16
1.09

g.88

CCBNEP flow exchange locations

3s,

02, NuecesRiver,

3851 3831
02, NuecesR2
3751 3728
02, NuecesR3
3504 3503
22, NuecesR4
3339 3338
04,CCchnUTMSI
973 955
34,CCchnB&R
996 995

2
3
4
]
335

6
370

04,CCchnlngleside

1449 1418

1417

02,CCchnTurnBasin

2490 2438

08,NuecesCauseway
23861,2362,2363,2364,2365,2366,2430,2486,2487, 2488

03,PtMustang
1437 1438

1408

03,PelicanIsland

1452 1482
02, lcwwlngCut
1420 1421
03, LydiaAnn
790 789
02,AransPas
9890 879
03,Morrisl
968 967
02,Morris2
915 914
02,CCBayou
7640 759

1483

788

343

02, icwwCoveHarbor

630 608

04, CopanoBrdge

74 33

a2, AyresDugout

615 591

02, Icww/Refugl

547 548
02, Icww/BludworthIsl
330 331
02, Cedarlugout
393 394
03,0scBridge
2337 2338

04, icwwiM/CC
2469 2416

)

2284

2417

911

969

3
1416

8

9

1

11

1

18
1

36
2

2

2
2

2
2356

22

end)
0.96
0.92
0.58
.17
.78

0.81

actid.ElToro2
0.34 0.92
0.%4 0.94
0.98 1.03
0.77 0.80
0.76 0.72
g.82 0.80
0.95 0.93
1.02 1.02
1.04 1.04
1.13 1.14
1.20 1.21
1.19 1.1s6
1.17 1.18
1.07 1.05
0.85 0.85

0.92
0.93
0.78
0.77
0.72
Q.84
0.33
1.00
1.05
1.15
1.25
1.17

1.97

0.84

number of passes or cross-sections{at most 48)
(wacth for I2,1X,AS8;

HOOO0OO0OOOo o
~3
'

0.85

0.96
0.9%0
0.89
0.74
0.79
0.8S
.99
Q.99
1.c8
1.20
1.29
1.19
1.12
1.06

.

HiHHRRHOODOO OO

nodes on section at most 15)

Q.97
.93
.93
0.82
q.86
d.89
0.39
1.01
1.08
1.20
1.25
1.22
1.14
1.06
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04, NAS
2285 2344 2408
04, icwwIFK
3209 3173 3174
03, HumbleChannel
3191 3192 3193
32,PackeryChannel
2986 2933
19, LM~-Pitalslanrd

2468

3133

29

30

151

3781 3758 3736 3737 3738 3721 3702 3703 3704 368§
L0,LM-BirdIsl 3

4076 4065 4066 4067 4068 4083 4096 4097 4119 4111
10, LM-GreenHill 33

4334 4335 4336 4349 4350 4264 4365 4377 4378 4390
0B,Baffin

4602 4583 4566 4550 4535 4521 4506 4492
08, LM=Yarborough 33

4770 4771 4791 4792 4812 4794 4776 4798
33, LM-LandCut 3

4869 4837 4870

***Check Nodes***~
40, number of check nodes(at most 40)

a1, 3831, Nueces River inflow point

02, 2363, Nueces Causeway-2 (spoil), 3231, mid Nueces River
03, 3271, Nueces River Mouth

04, 3333,  upper Nueces Bay

05, 2841, mid Nueces Bay

06, 2486, Nueces Causeway at the Channel

37, 3691, B.Davis PwrPlnt, €, 2831, Nueces Power
08, 2490, CCchn near COE (or Turning Basin)
09, 16353, mid Corpus at RangeTower (Datasonde sjite)
10, 1418, <CCchanel near Ingleside

11, 97Q0, CCchannel near B&R

12, 335, CCchannel near UTMSI

13, 1311, Tidal Beundary

14, 789, Lydia Ann Channel

15, 2416, icwwLM/CC

16, 3174, 1icww/JFXK

17, 2344, NAS

18, 3192, Humble Channel

19, 2338, Osoc Bridge

20, 535, AransasBay

21, 33, CopanoBridge

22, 3752, Pita Islandg, 378, DBayside

23, 4096, BirdIsland

24, 2986, PackeryChannel (tide)

25, 4857, SouthEnd

26, 4447, LM=RockyPL =B (icww)

27, 4444, LM-RockyPt

28, 3726, icwwLM/Pitalsl

29, 4621, So of BaffinBay-A

30, 4639, So of BaffinBay-Cl(lcww)

31, 4771, YarboroughPass(tide)

32, 485, RockPort(tide)

33, 858, Aransas{shrimp} Channel

34, 914, Morris and Cummings Cut

35, 944, Redfish Cut

36, 4567, BaffinBay(mouth)

37, 972, PortAransaa(tide)

38, 3136, WhitePoint{tide, Nueces Bay)

39, 4852, Riviera Beach, 39,2544, Flourbluff-l
40, 1280, Gulf beach for BobHall

EE2 X2 XS RE S

Variable Boundary concentrations

0, IBCONC:

0 not to invecke this option

rrrang of inpucttvtrtwt
385, ndaycn

1, aconls
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APPENDIX C

VELOCITY VECTOR PLOTS FOR JUNE 10, 1991 06:00 TO JUNE 11, 1991 12:00



6.30E+02 HOURS S FPS: =

FIG. B-1. TXBLEND Simuiated Velocity Vectors, June 10, 06:00
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290 BY 401

=

13320 GR!D SIZ

VELCCITY AT TIME

290

420
20

00

FIG. B-2, SWIFT2D Simulated Velocity Vectors, June 10, 06
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5 FPS:

6.33E+02 HOURS

00

FIG. B-3. TxBLEND Simulated Velocity Vectors, June 10, 09
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VELCCITY AT TIME 13300 GRID S1ZZ 290 BY 401

420

203 —75(Q

FIG. B-4. SWIFT2D Simulated Velocity Vectors, June 10, 09:00
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6.36E+02 HOURS S FPS: >

FIG. B-5. TxBLEND Simuiated Velocity Vectors, June 10, 12:00
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VELCCITY AT TIME 13680 GRID S!ZZ 290 BY 401

420

20 % 730

FIG. B-6. SWIFT2D Simulated Velocity Vectors, June 10, 12:00




6.39E+02 HOURS 5 FPS: o

FIG. B-7. TxBLEND Simulated Velocity Vectors, June 10, 15:00
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VELCCITY AT TiME 1386C GRID SIZZ 290 BY 401

160

420

20

FIG. B-8. SWIFT2D Simulated Velocity Vectors, June 10, 15:00

290
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6.42E+02 HOURS S FPS: >

FIG. B-9. TxBLEND Simulated Velocity Vectors, June 10, 18:00



162

CVELCCITY AT TIME 14040 GRID SiZS 290 BY 401

420

20

1 290

FIG. B-10. SWIFT2D Simulated Velocity Vectors, June 10, 18:00
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- ‘_’t‘a‘\_.;_’ Y
LT _‘”UQ“LH t:

S FPS: _____;:=>

6.45E+Q2 HOURS

FIG. B-11. TXBLEND Simulated Velocity Vectors, June 10, 21:00
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280 BY 401

-
Lo

VELCCiTY AT TIME 14220 GRID SIZ

290

420
20

ty Vectors, June 10, 21

oci

FIG. B-12. SWIFT2D Simulated Vel
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6.48E+02 HOURS 5 FPS:

FIG. B-13. TxBLEND Simulated Velocity Vectors, June 11, 00:00
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VELCCITY AT TIME 14400 GRID SIZZ 290 BY 401

420

20 ; ; 730

FIG. B-14. SWIFT2D Simulated Velocity Vectors, June 11, 00:00
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§.51E+02 HOURS S FPS:

FIG. B-15. TxBLEND Simulated Velocity Vectors, June 11, §3:08
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VELCCITY AT TIME 14580 GRID SIZ% 280 BY 401

420

20 T 730

FIG. B-16. SWIFT2D Simulated Velocity Vectors, June 11, 03:00



6.S4E+02 HOURS 5 FRS: >

FIG. B-17. TXBLEND Simulated Velocity Vectors, June 11, 06:00
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170

VELOCITY AT TIME 14760 GRID SIZE 230 8Y 401
420

20 % 750

FIG. B-18. SWIFT2D Simulated Velocity Vectors, June 11, 06:00
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6.57E+02 HOURS S FPS: — e

FIG. B-19. TxBLEND Simulated Velocity Vectors, June 11, 09:00



172

290 BY 401

—_
-
e

14340 GRID SIZ

VELCCITY AT TIME

290

420

201

00

[l
.

ty Vectors, June 11, 09

FIG. B-20. SWIFT2D Simulated Vel




6.60E+02 HOURS 5 FPS: =

FIG. B-21. TxBLEND Simulated Velocity Vectors, June 11, 12:00
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VELCCITY AT TIME 15120 GRID SIZE 290 BY 401

420

20 - 330

FIG. B-22. SWIFT2D Simulated Velocity Vectors, June 11, 12:00
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OVERVIEW

The lower Laguna Madre Estuary from the south end of the Land Cut to South
Bay was simulated with the SWIFT2D model. The lower half of the Laguna Madre has
two openings to the Gulf of Mexico. Port Mansfield Channel and the Brazos-Santiago
Pass at Port Isabel. The lower Laguna is connected to the upper Laguna Madre by the
Gulf Inracoastal Waterway (GIWW) through the Land Cut. The most significant source
of fresh-water inflow into the estuary is the Arroyo Colorado, which flows into the estuary
between Port Mansfield and Port Isabel.

The SWIFT2D simulations of the estuary were performed for the month of June,
1991, which corresponded to the June 10 through June 14, 1991 intensive inflow survey
performed by the Texas Water Development Board (TWDB). Simulations were
performed for water levels, velocities, and circulation patterns (hydrodynamics only).
Salinity was not considered in the simulations. Inflows from the Arroyo Colorado were
also not considered. Three tide signals were used to drive the model at the South Land
Cut, Port Mansfield Channel, and Brazos-Santiago Pass. The driving tides at the South
Land Cut were provided by the tide station at El Toro Island. Tide records were available
at Port Mansfield and Port Isabel, however, these stations were internal to the model.

In order to provide an external (Gulf Qf Mexico) driving tide, the tide signal from
the Bob Hall Pier tide stations was used. The Bob Hall tidal signal was applied on the
Gulf side of Padre Island at the Port Mansfield Channe! and Brazos-Santiago Pass. The
Bob Hall Pier tide station is located just south of Corpus Christi on the Gulf side of Padre
Island. The Bob Hall tide was compared to the tidal signal at the Port Mansfield and Port
Isabel stations to determine whether a phase shift would be required. The three tide
signals were determined to be in phase, therefore, the unaltered Bob Hall tide was used to
drive the model at both locations.

The simulation results were compared to observed data at four tide stations and
twelve velocity stations. These stations are shown in Figures 1 and 2 respectively.

Results for flow were also output at the ten cross sections shown in Figure 3.
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Observed tide data for the period of simulation was obtained from the Texas
Coastal and Ocean Observation Network (TCOON) through the Conrad Blucher Institute.
Observed velocities were obtained from the TWDB intensive inflow survey. The tidal

datums were referenced to the mean tide level observed at each station.

BATHYMETRY AND GEOMETRY

Two sources were used to generate the bathymetry for the SWIFT2D model grid.
The first set of data was derived from the three, 1:40,000 scale NOAA/NOS nautical
charts which cover the lower Laguna Madre. The three maps are titled as follows: 1.
Texas Intracoastal Waterway, Laguna Madre: Middle Ground to Chubby Island; 2. Texas
intracoastal Waterway, Laguna Madre: Chubby Island to Stover Point Including the
Arroyo Colorado; 3. Texas Intracoastal Waterway, Laguna Madre: Stover Point to
Brownsville Including the Brazos Santiago Pass. The second set of data consisted of the
recent hydrographic survey data for the Laguna Madre obtained from the U.S. Army
Corps of Engineers, Waterways Experiment Station. USGS 1:100,000 scale digital line
graphs were used to form the boundary of the estuary.

The ARC/INFO geographic information system was used to process the
bathymetry data and create the required information for the SWIFT2D model grids.
Separate grids were created for the nautical chart data and the hydrographic survey data.
The nautical chart grid was derived from 1080 points digitized from the charts, while the
hydrographic survey grid was derived from 28,059 points. The hydrographic survey data
obviously provides a more extensive set of points for the definition of bathymetry. Both
grids were rotated 13 degrees clockwise to reduce the extent of the grid required to define
the study area. The resulting grids were 125 cells wide by 505 cells tall. The grid size

used was 200 meters. The specifics of the two grids are compare in Table 1.
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Table 1. Geometric Characteristics of the Nautical Chart and

Hydrographic Survey Grids

Nautical | Hydrographic
Characteristic Chart Grid | Survey Grid
Number of cells with depth below MWL 26729 19439
Minimum cell depth (m) 0.1 0.1
Maximum cell depth (m) 14.5 14.3
Average cell depth (m) 1.35 1.65
Total area of cells with depth below MWL (km®) 1,069 771.6
Total volume below mean water level (m) 1.44x10° 1.28x10°

The nautical chart grid has a larger area of shallow depth along the east side of the estuary
than the hydrographic survey grid. These areas are slightly above mean water level

(MWL) in the hydrographic survey grid.

SIMULATION RESULTS

The SWIFT2D model was calibrated to the data measured during the 1991
intensive inflow survey performed by the TWDB. Several problems remain in the final
model. The primary areas of difficulty are in the vicinity of the channels between the
Laguna Madre and the Gulf of Mexico. Instabilities in the model solution were observed
in the vicinity of the Port Mansfield Jetties in the sensitivity analysis. The model also was
unable to accurately simulate the magnitude of the tidal signal at the Port Isabel and South
Bay tide stations. A majority of the inflow from the Brazos-Santiago Pass appears flow
northward into the estuary instead of into the Laguna Madre Channel and South Bay Pass.
The calibration for the lower Laguna Madre could be improved with additional work on

the finite element grid and calibration parameters.




The roughly calibrated SWIFT2D model produced fairly good matches between
simulated and observed water levels at the Rincon del San Jose and Port Mansfield
stations. Results at the Port Isabel and South Bay stations were not as good. Simulated
water levels at these sites matched in phase, however, were smaller in amplitude. The fit
could probably be improved by adjustments to the model grids.

Additional simulations were performed to test the robustess of the model. The
Manning’s n values for the calibrated model were 0.025 in channels, 0.075 in the vicinity
of the old Queen Isabel Causeway, and 0.035 elsewhere. A sensitivity simulaton was
performed with a constant n value of 0.030. Sensitivity runs were also performed for
wind stress coefficients of 0.0001 and 0.0026 in addition to the calibration value of
0.0015. The calibrated model used a time step of 6 minutes. A time step of 12 minutes
was used in a sensitivity run. The larger time step created instabilities in the vicinity of the
Port Mansfield jetties in the hydrographic survey model. Complete results of the
simulations are shown in the section at the end of this report. Tables 2 and 3 show the
root mean square errors between simulated and observed values for both models.

Figures 6 and 7 show the extent of grid cells that dried at some point in the
simulation. The hydrog_raphic survey grid produced a substantially larger number of dry
cells. The difference was a result of the shallower bathymetry anng the east side of the
estuary in the hydrographic survey grid.



ot

Table 2. Root Mean Squared Errors (meters) between Simulated and QObserved Water Levels

Calibrated Constant n-value No Wind Stress High Wind Stress 12 Minute Time Step
Water Level Stations NC HS NC HS NC HS NC HS NC HS
Rincon Del San Jose 0.260 0.255 0.264 0.256 0.242 0.241 0.279 0.269 0.262 0.257
Port Mansfield 0.098 0.098 0.099 0.099 0.104 0.102 0.106 0.120 0.098 0.214
Port Isabel 0.146 0.142 0.144 0.135 0.129 0.133 0.158 0.148 0.144 0.138
South Bay 0.116 0.107 0.118 0.177 0.113 0.107 0.121 0.111 0.137 0.127

Table 3. Root Mean Squared Errors (square meters) between Simulated and Observed Water Levels

Calibrated Constant n-value No Wind Stress High Wind Stress 12 Min, Time Step
Velocity Stations NC HS NC HS NC HS NC HS NC HS
South Land Cut 0.226 0.251 0.244 0.261 0.204 0.244 0.248 0.259 0.212 0.244
Port Mansfield Jetties 0.698 0.731 0.772 0.768 0.691 0.685 0.692 0.725 0.783 0.809
Mouth of Arroyo Colorado 0.096 0.105 0.096 0.107 0.098 0.102 0.094 0.107 0.096 0.102
GIWW North of Arroyo Colorado 0.151 0.137 0.153 0.137 0.162 0.154 0.144 0.132 0.147 0.135
O1d Causeway (Eastern) 0.208 0.198 0.208 0.194 0.192 0191 | 0222 0.204 0.257 0.233
Old Causeway ( Mid East) 0.175 0.143 0.191 0.156 0.161 0.134 0.186 0.149 0.231 0.198
Old Causeway (Mid West) 0.315 0.327 0.294 0.342 0.315 0.326 0.317 0.329 0.361 0417
Old Canseway (Far West) 0.202 0.172 0.183 0.182 0.202 0.172 0.203 0.174 0.217 0.234
Port Isabel Channel 0.193 0.190 0.191 0.193 0.190 0.185 0.196 0.194 0.273 0.246
Brownsville Ship Channel 0.259 0.249 0.252 0.247 0.252 0.247 0.263 0.251 0.281 0.264
South Bay Pass 0.289 0.261 0.288 0.261 0.283 0.255 0.291 0.249 0.293 0.262




Figure 6. Location of Grid Cells Which Dried During the
Simulation (Nautical Chart Grid).
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Figure 7. Location of Grid Cells Which Dried During the
Simulation (Hydrographic Survey Data Grid).
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SWIFT2D SIMULATIONS

Calibrated Simulation

Manning’sn = 0.025 in navigation channels
=0.075 in the vicinity of the old Queen Isabel Causeway
= 0.035 elswhere

Wind Stress = 0.0015

Time Step = 6 minutes
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Velocity Vector Plots for the Calibrated Model
with the Hydrographic Survey Data
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Manning’s n
Wind Stress

Time Step

SWIFT2D SIMULATIONS

Manning’s n Variation Simulation

= ().030 throughout the model

= 0.0015

= 6 minutes
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Manning’s n

Wind Stress

Time Step

SWIFT2D SIMULATIONS

Wind Stress Variation 1 Simulation

= (.025 in navigation channels

= (0.075 in the vicinity of the old Queen Isabel Causeway
=0.035 elswhere

= 0.0001

= 6 minutes
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INDEX This file

For all coverages with elevation data the item SPOT represents

the elevation (depth) in meters, while the item HOLD represents

the elevation (depth) in feet. All coverages are in UTM coordinates
with NAD27.

USGS 1:100,000 scale digital line graphs (DLG)
The DLG's were used to develop the boundaries of the mode grids.

baffin b.hys.e00.2 Baffin Bay DLG
brownsville.hys.e(0.2 Brownsville DLG

cchristi.hys.e00.2 Corpus Christi DLG
harlingen.hys.e00.Z2 Harlingen DLG

p_mansfld.hys.e00.2Z Port Mansfield DLG

laguna_hys.e00.2 Combination of DLG's which cover the

Laguna Madre

USGS 1:250,000 scale Digital Elevation Model (DEM)
The DEM’s could be used to add elevation points on land.

demread Simple shell script to format DEM data for
use in ARC/INFO.

dugdem. txt Description of demread

brownsville-w.Z Brownsville DEM

corpus_christi-w.Z Corpus Christi DEM

port_isabel-w.Z Port Isabel DEM

Coverages derived from the NOAA/NOS Nautical Charts.

laguna_c.e00.2 Channels

laguna_con.e00.Z Contour lines

laguna_d.e00.2 Depth peoints

laguna_sd.e(0.2 Supplemental depth points adde by hand

Coverages, grids, amls, etc. used to derive the model grids for
the lower Laguna Madre. The grid used in the model was rotated
13 degree in order to reduce the size of the grid needed to
represent the estuary. All coverages needed to create the grids
are listed below,.

r1ll95gzrd.aml AML used to generate the rotated 200 meter
grid from the hydrographic survey data (HSD)

rllcgrd.aml AML used to generate the rotated 200 meter
grid from the nautical chart data (NCD}

1195grd.aml AML used to generate an unrotated grid
from the HSD

llcgrd.aml AML used to generate an unrotated grid
from the NCD

1120095 _grd.e00.2 Unrotated 200 meter grid from HSD

11200c_grd.e00.2 Unrotated 200 meter grid from NCD

1195sup d.e00.2 HSD supplemental depth coverage

llaguna c.e00.2 NCD channel coverage

llaguna_d.e00.2 NCD depth coverage

llaguna i1.e00.2 NCD island coverage

llaguna:sd.eOQ.Z NCD supplemental depth coverage

11m95 d.e00.2 HSD depth coverage

11m95 land.e00.2 HSD land boundary outline

1ltin clip.e00.% Clip coverage used to create tins

llaguHa_land.eOO.z NCD land boundary outline
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Miscellaneous Coverages

Im95xy.e00.2
stations.e00.2

£tx85.e00.2

Coverages, grids, amls,
the upper Laguna Madre.
are listed below,

ulgrid.aml

ul20C_g.e00.2
uldC0_g.e00.2
ulaguna_c2.e00.2Z
ulaguna_d.e00.2
ulaguna_ i2.e00.2
ulaguna_sd.e00.2
ulland.e00.2
uloutnc.e(0.2
ultin.e00.7
ultin_clip.e00.2

Coverage of the HSD

Coverage with locations of tide, wind,
velocity, water quality, etc. stations
Coverage of the mesh points in the TXBLEND
model

etc., used to derive the model grids for
All coverages needed to create the grids

AML used to create the 200 meter grid (NCD)
for the upper Laguna Madre

200 meter grid (NCD)

400 meter grid (NCD)

Channel coverage

Depth point coverage

Island coverage

Supplemental depth points

Cutline coverage

Outline coverage

TIN of the upper Laguna Madre

Clip coverage used to create the TIN

Upper Laguna Madre TIN based on HSD

ulm95tin.aml
ulm95_d.e00.2
ulm%5_tin.e00.2

AML used to create the TIN
HSD depth point coverage
TIN created from HSD
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OVERVIEW

The lower Laguna Madre Estuary from the south end of the Land Cut to South
Bay was simulated with the SWIFT2D model. The lower half of the Laguna Madre has
two openings to the Gulf of Mexico. Port Mansfield Channel and the Brazos-Santiago
Pass at Port Isabel. The lower Laguna is connected to the upper Laguna Madre by the
Gulf Intracoastal Waterway (GIWW) through the Land Cut. The most significant source
of fresh-water inflow into the estuary is the Arroyo Colorado, which flows into the estuary
between Port Mansfield and Port Isabel.

The SWIFT2D simulations of the estuary were performed for the month of June,
1991, which corresponded to the June 10 through June 14, 1991 intensive inflow survey
performed by the Texas Water Development Board (TWDB). Simulations were
performed for water levels, velocites, and circulation patterns (hydrodynamics only).
Salinity was not considered in the simulations. Inflows from the Arroyo Colorado were
also not considered. Three tide signals were used to drive the model at the South Land
Cut, Port Mansfield Channel, and Brazos-Santiago Pass. The driving tides at the South
Land Cut were provided by the tide station at El Toro Island. Tide records were available
at Port Mansfield and Port Isabel, however, these stations were internal to the model.

In order to provide an external (Gulf of Mexico) driving tide, the tide signal from
the Bob Hall Pier tide stations was used. The Bob Hall tidal signal was applied on the
Gulf side of Padre Island at the Port Mansfield Channel and Brazos-Santiago Pass. The
Bob Hall Pier tide station is located just south of Corpus Christ on the Gulf side of Padre
Island. The Bob Hall tide was compared to the tidal signal at the Port Mansfield and Port
Isabel stations to determine whether a phase shift would be required. The three tide
signals were determined to be in phase, therefore, the unaltered Bob Hall tide was used to
drive the model at both locations. _

The simulation results were compared to observed data at four tide stations and
twelve velocity stations. These stations are shown in Figures 1 and 2 respectively.

Results for flow were also output at the ten cross sections shown in Figure 3.
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Observed tide data for the period of simulation was obtained from the Texas
Coastal and Ocean Observation Network (TCOON) throu gh the Conrad Blucher Insttute.
Observed velocities were obtained from the TWDB intensive inflow survey. The tdal

datums were referenced to the mean tide level observed at each station.

BATHYMETRY AND GEOMETRY

Two sources were used to generate the bathymerry for the SWIFT2D model grid.
The first set of data was derived from the three, 1:40,000 scale NOAA/NOS nautical
charts which cover the lower Laguna Madre. The three maps are titled as follows: 1.
Texas Intracoastal Waterway, Laguna Madre: Middle Ground to Chubby Island; 2. Texas
intracoasta.l Waterway, Laguna Madre: Chubby Island to Stover Point Including the
Arroyo Colorado; 3. Texas Intracoastal Waterway, Laguna Madre: Stover Point to
Brownsville Including the Brazos Santiago Pass. The second set of data consisted of the
recent hydrographic survey data for the Laguna Madre obtained from the U.S. Army
Corps of Engineers, Waterways Experiment Station. USGS 1:100,000 scale digital line
graphs were used to form the boundary of the estuary.

The ARC/INFO geographic information system was used to process the
bathymetry data and create the required information for the SWIFT2D model grids.
Separate grids were created for the nautical chart data and the hydrographic survey data.
The nautical chart grid was derived from 1080 points digitized from the charts, while the
hydrographic survey grid was derived from 28,059 points. The hydrographic survey data
obviously provides a more extensive set of points for the definition of bathymetry. Both
grids were rotated 13 degrees clockwise to reduce the extent of the grid required to define
the study area. The resulting grids were 125 cells wide by 505 cells tall. The grid size

used was 200 meters. The specifics of the two grids are compare in Table 1.
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Table 1. Geometric Characteristics of the Nautical Chart and

Hydrographic Survey Grids

Nautical | Hydrographic
Characteristic Chart Grid | Survey Grid
Number of cells with depth below MWL 26729 19439
Minimum cell depth (m) 0.1 0.1
Maximum cell depth (m) 14.5 14.3
Average cell depth (m) 1.35 1.65
Total area of cells with depth below MWL (km®) 1,069 777.6
Total volume below mean water level (m’) 1.44x10° 1.28x10°

The nautical chart grid has a larger area of shallow depth along the east side of the estuary
than the hydrographic survey grid. These areas are slightly above mean water level

(MWL) in the hydrographic survey grid.

SIMULATION RESULTS

The SWIFT2D model was calibrated to the data measured during the 1991
intensive inflow survey performed by the TWDB. Several problems remain in the final
model. The primary areas of difficulty are in the vicinity of the channels between the
Laguna Madre and the Gulf of Mexico. Instabilities in the model solution were observed
in the vicinity of the Port Mansfield Jetties in the sensitivity analysis. The model also was
unable to accurately simulate the magnitude of the tidal signai at the Port Isabel and South
Bay tide stations. A majority of the inflow from the Brazos-Santiago Pass appears flow

northward into the estuary instead of into the Laguna Madre Channel and South Bay Pass.

The calibration for the lower Laguna Madre could be improved with additional work on

the finite element grid and calibraton parameters.




The roughly calibrated SWIFT2D model produced fairly good matches between
simulated and observed water levels at the Rincon del San Jose and Port Mansfield
stations. Results at the Port Isabel and South Bay stations were not as good. Simulated
water levels at these sites maiched in phase, however, were smaller in amplitude. The fit
could probably be improved by adjustments to the model grids.

Additional simulations were performed to test the robustness of the model. The
Manning’s n values for the calibrated model were 0.025 in channels, 0.075 in the vicinity
of the old Queen Isabel Causeway, and 0.035 elsewhere. A sensitivity simulation was
performed with a constant n value of 0.030. Sensitivity runs were also performed for
wind stress coefficients of 0.0001 and 0.0026 in addition to the calibration value of
0.0015. The calibrated model used a time step of 6 minutes. A time step of 12 minutes
was used in a sensitivity run. The larger time step created instabilities in the vicinity of the
Port Mansfield jerties in the hydrographic survey model. Complete results of the
simulations are shown in the section at the end of this report. Tables 2 and 3 show the
root mean square errors between simulated and observed values for both models.

Figures 6 and 7 show the extent of grid cells that dried at some point in the
simulation. The hydrogaphic survey grid produced a substantially larger number of dry
cells. The difference was a resuit of the shallower bathymetry along the east side of the
estuary in the hydrographic survey grid.
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Table 2. Root Mean Squared Errors (meters) between Simulated and Observed Water Levels

Calibrated Constant n-value No Wind Stress High Wind Siress 12 Minute Time Step
Water Level Stations NC HS NC HS NC HS NC HS NC HS
Rincon Del San Jose 0.260 0.255 0.264 0.256 0.242 0.241 0.279 0.269 0.262 0.257
Port Mansfield 0.098 0.098 0.099 0.099 0.104 0.102 0.106 0.120 0.098 0.214
Port Isabel 0.146 0.142 0.144 0.135 0.129 0.133 0.158 0.148 0.144 0.138
South Bay 0.116 0.107 0.118 0.177 0.113 0.107 0.121 0.111 0.137 0.127

Table 3. Root Mean Squared Errors (square meters) between Simulated and Observed Water Levels

Calibrated Constant n-value No Wind Stress High Wind Stress 12 Min. Time Step
Velocity Stations NC HS NC HS NC ‘HS NC HS NC HS
South Land Cut 0.226 0.251 0.244 0.261 0.204 0.244 0.248 0.259 0.212 0.244
Port Mansfield Jetties 0.698 0.731 0.772 0.768 0.691 0.685 0.692 0.725 0.783 0.809
Mouth of Armoyo Colorado 0.096 0.105 0.096 0.107 0.098 0.102 0.094 0.107 0.096 0.102
GIWW North of Arroyo Colerado 0.151 0.137 0.153 0.137 0.162 0.154 0.144 0.132 0.147 0.135
Old Causeway (Eastern) 0.208 0.198 0.208 0.194 0.192 0191 | 0222 0.204 0.257 0.233
Old Causeway ( Mid East) 0.175 0.143 0.191 0.156 0.161 0.134 0.186 0.149 0.231 0.198
Old Causeway (Mid West) 0.315 0.327 0.294 0.342 0.315 0.326 0.317 0.329 0361 0.417
Old Causeway (Far West) 0.202 0.172 0.183 0.182 0.202 0.172 0.203 0.174 0217 0.234
Port Isabel Channel 0.193 0.19%0 0.191 0.193 0.190 0.185 0.196 0.194 0.273 0.246
Brownsville Ship Channel 10.259 0.249 0.252 0.247 0.252 0.247 0.263 0.251 0.281 0.264
South Bay Pass 0.289 0.261 0.288 0.261 0.283 0.255 0.291 0.249 0.293 0.262




Figure 6. Location of Grid Cells Which Dried During the
Simulation (Nautical Chart Grid).
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Figure 7. Location of Grid Cells Which Dried During the
Simulation (Hydrographic Survey Data Grid).
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Manning’s n

Wind Stress

Time Step

SWIFT2D SIMULATIONS

Calibrated Simulation

= 0.025 in navigation channels

= (0.075 in the vicinity of the old Queen Isabel Causeway
=(0.035 elswhere

=0.0015

= 6 minutes
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Velocity Vector Plots for the Calibrated Model
with the Hydrographic Survey Data
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Velocity Vector Plots for the Calibrated Model
with the Nautical Chart Data
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Wind Stress

Time Step

SWIFT2D SIMULATIONS

Wind Stress Variation 2 Simulation

=0.025 in navigation channels

= 0.075 in the vicinity of the old Queen Isabel Causeway
=0.035 elswhere

= 0.0026

= 6 minutes
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FIG. 3. Port Isabel Tide Station
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FIG. 2. Port Mansfield Tide Station
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FIG. 11. South Bay Pass
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APPENDIX B

LIST OF FILES FOR DELIVERY
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INDEX This

h

ile

For all coverages with elevation data the item SPOT represents

the elevaticn (depth) in meters, while the item HOLD represents

the elevation (depth) in feet. All coverages are in UTM coordinates
with NAD27.

USGS 1:100,000 scale digital line graphs (DLG)
The DLG’s were used to develop the boundaries of the mode grids.

baffin b.hys.e00.2 Baffin Bay DLG

brownsville hys.e00.2 Brownsville DLG

cchristi.hys.e00.2 Corpus Christi DLG
harlingen.hys.e(0.2 Harlingen DLG

p_mansfld.hys.e00.2 Port Mansfield DLG

laguna_hys.e00.2 Combination of DLG’s which cover the

Laguna Madre

USGS 1:250,000 scale Digital Elevaticn Model (DEM)
The DEM’s could be used to add elevation pceints on land,

demread Simple shell script to format DEM data for
use in ARC/INFO,.

dugdem. txt Description of demread

brownsville-w.2 Breownsville DEM

corpus_christi-w.2 Corpus Christi DEM

port_isabel-w.Z Port Isabel DEM

Coverages derived from the NOAA/NCS Nautical Charts.

laguna_c.e00.2 Channels

laguna _con.e00.2 Contour lines

laguna_d.e00.2 Depth points

laguna_sd.e00.2 Supplemental depth points adde by hHand

Coverages, grids, amls, etc. used to derive the medel grids for
the lower Laguna Madre. The grid used in the model was rotated
13 degree in order to reduce the size of the grid needed to
represent the estuary. All coverages needed to create the grids
are listed below,.

rli9sgrd.aml BML used to generate the rotated 200 meter
grid from the hydrographic survey data (HSD)

rllcgrd.aml BML used to generate the rotated 200 meter
grid from the nautical chart data (NCD)

1195grd.aml AML used to generate an unrotated grid
from the HSD

llcgrd.aml AML used to generate an unrotated grid
from the NCD

1120095_grd.e00.2 Unrcotated 200 meter grid from HSD

11200c_grd.e00.2 Unrotated 200 meter grid from NCD

1195sup d.e00.2 HSD supplemental depth coverage

llaguna:c.eOO.Z NCD channel coverage

llaguna_d.e00.32 NCD depth coverage

llaguna i.e00.2Z NCD island coverage

llaguna—sd.eoo.z NCD supplemental depth coverage

11m95 d.e00.2 HSD depth coverage

11m95 land.eC0.2 HSD land boundary outline

lltin_blip.eOO.Z Clip coverage used to create tins

llaguﬁa_land.eOO.Z NCD land boundary outline
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Miscelilanecus Coverages

1lm95xy.e00.2
stations.eQ0.2-

tx95.e00.2

Coverages, grids, amls,
the upper Laguna Madre.
are listed below.

ulgrid.aml

ul200_g.e00.2Z
ul400_g.e00.2
ulaguna_c2.e00.2
ulaguna _d.e00.2
ulaguna_i2,e00.2
ulaguna_sd,e00.2
ulland.e00.2
uloutnc.e00.2
ultin.e00.2
ultin_clip.e09.2

Coverage of the HSD

Coverage with locaticons of tide, wind,
velocity, water guality, etc. stations
Coverage of the mesh points in the TXBLEND
model

etc. used to derive the model grids for
All coverages needed to create the grids

AML used to create the 200 meter grid (NCD)
for the upper Laguna Madre

200 meter grid (NCD)

400 meter grid (NCD)

Channel coverage

Depth point coverage

Island coverage

Supplemental depth points

Qutline coverage

Qutline coverage

TIN of the upper Laguna Madre

Clip coverage used to create the TIN

Upper Laguna Madre TIN based on HSD

ulm95tin.aml
ulm95_d.e00.2
ulm95 tin.e00.2

AML used to create the TIN
HSD depth point coverage
TIN created from HSD
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