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ABSTRACT

This final report details the work completed for Tasks 1 to 6 under
contract with the Texas Water Development Board. The primary objective of
the study is a review and extension of the work reported in Texas Department
of Water Resources Report LP-106 (Lavaca-Tres Palacios Estuary: A study of
the influence of freshwater inflows), including comments on the questions
raised through testimony in hearing. Based on Martin (1987) and the TDWR
Estuarine Mathematical Programming Model, a modified methodology was
developed for determining the optimal freshwater inflows into bays and
estuaries for the purpose of balancing freshwater demands with the harvest of
various types of estuarine resources (e.g., finfish and shrimp). There are
several new features in this methodology. (a) The stochastic element of the
problem, i.e. the uncertainty associated with the regression equations for
salinity and harvest, is considered by expressing constraints in a chance-
constrained formulation. (b) The nonlinearly formulated mathematical
optimization problem is solved using a generalized reduced gradient
technique. (c¢) The model can be extended to multiobjective analysis to
examine the trade-offs between conflicting objectives, e.g. for maximizing the
fishery harvest and minimizing the freshwater inflow needs.

The methodology is applied to the Lavaca-Tres Palacios Estuary, i.e.
Matagorda Bay, in Texas. The results of the numerical application indicate (as
expected) that the minimum freshwater inflow requirement increases as the
required reliability of chance-constraints increases, and allows a quantitative
determination of this inflow given a desired level of certainty. The
uncertainty in the regression equations limits the maximum achievable
reliability.
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SECTION 1

INTRCDUCTION

In Texas, as in many areas of the U.S,, such as Florida and California,
the freshwater discharge of rivers has become a limited commodity. The
need for freshwater inflow to maintain the productivity of downstream
estuaries must compete with the demands of upstream users, viz. municipal
and industrial uses, and agriculture. It is necessary to know the freshwater
inflow requirements for an estuary, for a desired level of productivity, in
order to accommodate the estuary's need in water management. This has
been a major concern of the Texas Water Development Board through its
Bays and Estuaries Program. The desirable approach to water resources
management is to optimize flow into the estuary (by minimizing the total
volume of flow, or by maximizing the diversions and storage within limits of
water rights and capacity, or both) while preserving an acceptable habitat in
specific regions of the estuary to accommodate the requirements of key
organisms.

Salinity has been long established as an index to ecological habitat in an
estuary because it measures the relative proportion of fresh water to sea
water. Even for those organisms which are euryhaline, i.e. whose physiology
can accommodate wide excursions of salt concentration, salinity still provides
a useful habitat index because of other "information” contained in the
freshwater ratio, such as nutrient supply, sediment and detritus, or stenoha-
line components of the food web. The salinity limits for a specific organism
can be based upon the statistical association between the presence of that
organism in the estuary (as reflected in catch data or harvest data) and
salinity, or upon the physiological dependence upon salinity as revealed in
laboratory studies. A central element in this optimization problem is the
mathematical relation between salinity in the estuary and flow, S = F(Q).
" Usually the relation is based upon statistical association, i.e., a regression form
established from field data.



In the estuaries of Texas, a direct measure of organism abundance is
available in the data, Hy, on commercial fishery landings taken from the
estuary. This "harvest" data can be employed as an index to populations of
key organism k and analyzed statistically to establish its dependence on
freshwater inflow, Hy = f(Q). While this might appear superior to the indirect
salinity-index approach, the causal connection between flow and harvest may
be obscured by unmeasureable parameters such as effort, selectivity and skill,
and may be corrupted by poor reporting or the difference between locality of
landing (i.e., port} and locality of catch, to say nothing of other environmental
variables unrelated to inflow. This regression therefore tends to be noisy and
statistically uncertain. On the other hand, it is directly pertinent to the
management problem, and when the data are available, should be
incorporated into the optimization problem, either as an objective function
or as a constraint. '

There may be other requirements placed upon freshwater inflow to the
estuary. Some of these may express practical limits, e.g. the freshwater inflow
cannot exceed the historical range (even though the global optimum solution
may lie outside the range of historical data, as in a water-starved system).
Others may correspond to specific hydrological controls identified as of sepa-
rate biological significance. A minimum low flow requirement would be
such a constraint. Another requirement derives from the importance of
marshes to the estuarine ecology for which regular inundation is considered
important. The periodic inundation of deltaic marshes serves to maintain
shallow protected habitats for postlarval and juvenile stages of several
important estuarine species, provides a suitable fluid medium for nutritional
exchange processes, and acts as a transport mechanism to move detrital
materials from the deltaic marsh into the open estuary (Texas Department of
Water Resources, 1980; Valiela and Teal, 1974; Valiela et al., 1975; Van Roalte
et al., 1976). This would impose a large lower limit on freshwater inflow for
months (or seasons) at critical life stages of key organisms.

The Texas Department of Water Resources (1980) has made particularly
- extensive application of this approach in establishing freshwater inflow
requirements, as a part of its Bays and Estuaries Program. This work is an
extensive incorporation of water requirement for estuaries within a larger



water resources management context. Martin (1987) presented the
Department of Water Resources (TDWR) linear programming (LP) model for
determining the monthly freshwater inflow needs for estuaries. This model
was based upon relating freshwater inflows to key indicators, such as salinity
and fishery harvest, through linearized regression equations embedded as
constraints in the LP model. The model was used to estimate freshwater
inflow needs for seven major estuaries in Texas, the Sabine-Neches, Trinity
San Jacinto, Lavaca-Tres Palacios, Guadalupe, Mission-Aransas, Nueces, and
Laguna Madre estuarine systems.

Application of the Martin (1987) linear programming model involved
several simplifications that may constitute weaknesses or limitations,
including: |

(1)  The nonlinear aspects of the problem were suppressed by linearization
of all constraints.

(2)  The full multiobjective nature of the problem, e.g., minimization of
inflow and maximization of harvest, was not addressed.

(3)  Regression equations with considerable statistical uncertainty were
used as deterministic constraints in the linear programming model.

Some of these have incurred criticisms of the TWDB approach, which
are reviewed in Section 2. In order to overcome problems (1) and (3), the
investigators have developed a method for using chance-constraints in a
nonlinear programming model to explicitly account for the uncertainty in the
salinity regression equation. The optimization problem is reformulated as a
nonlinear chance-constrained problem. The nonlinear programming code
GRG2 by Lasdon and Waren (1986) is used to solve the optimization problem.



SECTION 2

CRITIQUE OF PAST TWDB WORK

2.1  INTRODUCTION

The constraints on fishery harvests and salinity in the analysis of LP-
106 are derived from statistical analyses of the dependency of these
parameters upon monthly inflow. It is these statistical analyses which have
engendered the bulk of past criticism, particularly in the testimonies
presented in association with the Lake Texana hearings of 1984 (Certificate of-
Adjudication No. 16-2095). The purpose of this section is to summarize past
criticisms of LP-106 and to proffer comments on these, as well as an
independent critique of the methodology.

The basic statistical method employed in LP-106 is multivariate linear
regression. (Nonlinear relations were explored by first transforming the data
with the inverse of the postulated nonlinear dependence, then subjecting the
transformed data base to linear techniques.) Multivariate regression (MVR)
has become widely employed in the last 20 years because of the increase of
computational power by which large data bases can be manipulated and the
availability of several "canned" programs for implementing the multivariate
technique. The latter has been especially manifested by the appearance of
textbooks whose use presumes the availability of a MVR package {e.g., Harris,
1975). The now-routine capability for automatically producing MVR's has led
to a suppression of the subtlety of the procedure, a situation which has
stimulated the development of a plethora of "diagnostics” whereby one can
test whether the MVR represents what one presumes it is supposed to
represent, e.g., Belsey et al. (1980) and Cook and Weisberg (1982).

Generally, the criticisms of the statistical methods of LP-106 fall into
two broad categories: (1) whether the statistical uncertainty of the results
have been properly interpreted and correctly reflected in their application,



and (2) whether a bona fide relation exists and has been properly “captured”
by the statistical model. These are considered separately in the following
sections.

22  UNCERTAINTY

The implementation of multivariate regression analysis is not an
automatic procedure, but in fact entails a number of judgments. Some of
these judgments are "hardwired" such as the prespecification of a desired
significance level (versus, say, the direct calculation of a prob value), whereas
some are more subtle and ad hoc, e.g., the decision to retain or exclude an
independent variable because of a partial, perhaps linear, relation with other
independent variables. One of the great weaknesses of the presentation in LP-
106 (not necessarily the methodology) is the incomplete disclosure of this
judgmental process. A cross-correlation array of the five inflow variables,
and the step-wise results in the partial regression analyses would be very
helpful in allowing an independent reviewer to determine whether he agrees
with the judgments of LP-106. For4examp1e, Whiteside (1984) found it
necessary to reconstruct the step-wise partial regressions, from which she
criticized the retention of variables of apparent low significance. (Although
she arrived at the same regression equation, e.g. Table 8-6 in LP-106, the t
values calculated from the standard errors given would suggest P < 5% for
each variate, in contrast to her comment that Q; and Q; have higher prob
values, Whiteside, 1984, page 18. Without access to both sets of calculations,
this discrepancy cannot be clarified.)

A related matter of judgment is the question of retention of variables
that may exhibit associations among themselves. Whiteside (1984) is critical
of the use of both winter inflow (Q1) and spring inflow (Q2) when the two
exhibit a degree of collinearity, as measured (apparently) by a linear
correlation coefficient of 0.645 (Whiteside, 1984, p. 9). She observes that this
results in substantial alteration of the regression coefficient of Q2 when Qg is
included as an additional independent variable (Whiteside, 1984, pp. 17-18).
While it is true that collinearity among indépendent variables can be a source
of corruption of a multivariate analysis, it is also true that ignoring a variate
with such an association with other independent variates can produce
unacceptable bias in the regression. The key question is not whether the
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independent variates have a degree of association, but whether there is good
reason for including both variates in the analysis (and the related concern of
what exactly the source of the association is), i.e., whether the variates are
physically independent. Colinearity per se is not a sufficient diagnostic for
this judgment.

A simple example may clarify this point. Suppose we want to
determine crop yield as a function of sunlight and rainfall. There are good
physical reasons for expecting a dependency upon each of these variates. Yet,
the two would not be statistically independent either. Rather, there would be
a negative correlation between sunlight and rainfall, because the occurrence
of the latter is associated with cloudy conditions. The value of multivariate
regression in this case is its ability to sort out separate dependencies upon
each variate, so we can examine the influence of sunlight with rainfall held
constant, and vice versa. To exclude either sunlight or rainfall as an
independent variate simply on the basis of their collinearity would weaken
the applicability of the regression and probably yield a biased relationship .
depending upon the sampling of sunny/cloudy events in the measurements.

As a contrasting example, suppose we attempt to explain crop yields by
regressing on the two variates precipitation and irrigation. As in the example
above, the independent variables, now precipitation and irrigation, will be
negatively correlated. In this case, however, this collinearity can yield a
distorted measure of the standard error of the estimate of the regression
versus that attainable with either of the independent variates alone.
(Suppose the bias in the data due to the other variates not considered, e.g.,
sunlight and fertilization, obscures the dependency upon precipitation, so
that there is no apparent correlation. The SEE will be correspondingly large
and the significance of the regression low. When irrigation is included, the
downward excursion in precipitation is compensated by the upward
excursion In irrigation, and vice versa, so that the SEE of the bivariate regres-
sion is much smaller.)

- These two examples illustrate that the decision of inclusion or
exclusion of variates should not be based simply on their manifested
collinearity, but upon the physical relationships of the variates and the
conceptual model underlying their relationships.




While not pertinent to LP-106 or the criticisms of Whiteside, this
homely example can be pursued to display still another trap of variable
selection in multivariate analysis. Suppose the first crop yield model above is
expanded to include one more variate, viz. sunshine, rainfall, and maximum
height of plants in a test plot. Again, we have a case of collinearity of the
independent variates. In this instance the last variate exhibits basically the
same dependency upon the combination of the first two, as the dependent
variable, crop yield, on the first two alone. However, in this case, upon
applying a stepwise partial correlation analysis, the newly added variable of
maximum plant height will be found to explain most of the variance in the
dependent variable of crop yield, so that the additional explained variance
resulting from the inclusion of sunlight and rainfall is negligible. Would this
then imply that crop yield has no dependency upon sunlight and rainfall?

In addition to significance, one must also be concerned with the |
degrees of freedom in the data upon which the regression is based. This is the
essence of the criticism of Whiteside (1984, p. 14) that the number of data
points used in the fishery harvest analyses of LP-106 are toc few given the
number of variates. The analysis of LP-106 utilizes 15 values of annual
harvest and potentially 5 independent variates of seasonal flow (although the
important regressions, such as total shellfish, end up including only 2 or 3
independent variates). Thus there are about 3 data points per variate, in
contrast to the rule-of-thumb cited by Whiteside that there should be 10 or
more data points per variate. Certainly, the fewer the number of data points
the less confidence one has in the regression. At the same time, if there is a
sound reason for including each of the independent variates, then these
variates should not be excluded simply to improve the degrees of freedom.
(In fact, as the homely examples above show, to do so may actually erode the
value of the regression.) Again, this is a statistical judgment call, and there is
no methodological error per se in the approach of LP-106. There is, however,
inadequate attention given to the consequences of working with a small data
set.

A related concern is the effect of the 1973 "outlier" (Whiteside, 1984, p.
15). Whiteside comments, "...the shrimp harvest equations shown in LP-106
are largely the product of the fact that a year of good harvest coincided with
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the largest seasonal inflow of record. Without this one observation, high
spring inflows and good shrimp harvest have no significant relationship.”
The implication is that the resulting regression is, therefore, unreliable.
Technically, the 1973 data point is not an outlier but is a high-leverage point
which exerts a great deal of "influence” on the regression equation. The
problem is that 87% of the data are for flows less than 600 maf, so that we
have a good measure of the mean harvest for this range of flow and of the
scatter about this mean. The 1973 data point gives us the greatest information
about the dependence of shellfish harvest on Q;, because it represents nearly
three times this rate of inflow, but because it is the only measurement we
have in this range, our ability to judge its precision is poor. This does not
mean that the data point should be deleted or that the resulting regression is
"unreliable”. It does mean that the effective degrees of freedom upon which
the regression is based are considerably less than the 15 data points would
suggest. The failure of LP-106 is in not disclosing the uncertainty attending
this regression, or (for that matter) the uncertainty in the uncertainty.

A similar criticism can be made with respect to the salinity statistics.
Further, because salinity is bounded below by a value of 0 ppt and above by an
effective limit on the order of 35 ppt, the data have to be heteroscedastic. No
indications of confidence bounds are given in LP-106; the report is definitely
deficient in this respect. Yet the 95% confidence limits presented by
Whiteside (1984, p. 23) overestimate the uncertainty by failing to account for
the heteroscedasticity of the data.

Finally, in the ultimate application of the regression relations, namely
as constraints on the optimization problem of minimizing the total
freshwater inflow as described in Martin (1987) and in LP-106, the salinity and
harvest regressions prove to be the chief constraints (as we might expect). Yet
there is no quantification of the uncertainty of this regression or of the
sensitivity of the optimal solution to this uncertainty, i.e. how the optimal
solution would be affected by alternate regression equations which lie within
the same confidence limits as those employed. As will be described below,
there are substantial differences in the Alternative I, II and III results
produced by fairly modest alterations in inflow. In fact, it would appear that
there would be far more variability in the inflow satisfying the optimization




problem associated with variability about the regression line than there is
among the results for Alternatives I, II and III. This would imply that the
noise in the data prohibits a statistically reliable discrimination between the
three alternatives.

2.3  APPROPRIATENESS OF REGRESSION

There are several questions attaching to the appropriateness of
formulation of the regression problem. These are, however, largely matters
of subjective judgment that should be addressed in LP-106 by suitable
motivation for the strategy elected or by comparison with results utilizing
other strategies. A key philosophical issue is whether the model formulated
represents a true cause-and-effect relationship. The method of LP-106 has
been criticized by several workers, the criticism ranging from Whiteside (1984,
pp- 7, 9, 20-21), who asserts the absence of the cause-and-effect relation, to
Ward (1984, pp. 73-79, 95-102) who simply questions its existence. A related
question is whether such a cause-and-effect relationship is indeed needed for
the purposes of LP-106: perhaps a well-defined association would be
sufficient. '

Clearly the answer to this criticism depends upon the intended use of
the regressions. If the long-term purpose is to manipulate inflows so as to
achieve a desired result, or to use inflows as a basic variable for future
predictions of fishery harvest, then a bona fide causal relationship should
underlie selection of variables. The plausibility of the spring freshet
producing an influx of nutrients seems to be belied by the large negative
dependencies found for oysters (which also were found in the analyses for
other estuarine systems); could this be because larger inflows are correlated
with poor boating conditions and reduced harvests? Similarly, what other
variables influence harvest which are not considered in the analyses, e.g.,
economics, fishing effort, technology? It is not even clear that harvest is a
direct measure of the abundance of the species. It is also possibly symptomatic
of limited mobility.

The approach of seasonally categorizing streamflow is laudable because
it is based upon a plausible conceptual model. It would appear, however, that
more exploratory research needs to be invested in the precise definition of



streamflow variables. For example, with the fishery harvest relations, it may
very well be that it is the magnitude of the spring freshet that is controlling,
independent of whether that freshet occurs within the Qy, Q or Q3 seasons,
and by categorizing the flow into these three seasons, a more fundamental
relationship may have been obscured. Similarly, the attempt to incorporate
time response of salinity to freshwater inflow by regressing on two variates,
one the 30-day mean preceding the date of the salinity sample and the other
the streamflow N days prior to the sample, where N is the normal (i.e.
longterm mean) time of travel to the salinity sampling station, requires better
definition. For example, time of travel is a strong function of streamflow, in
the case of Lavaca Bay ranging from less than a day to many weeks. Further,
if one accepts the value of 7 days used in LP-106, then 25% of the data in the
30-day antecedent mean should have no causal connection to the measured
salinity.

Many of the criticisms of the LP-106 methodology lodged above and in
the above cited testimony devolve to matters of judgment and not necessarily
of procedure. There are additional nonstatistical tests which can indicate the
validity of the LP-106 application. Table 2.1 summarizes the LP-106 results for
the three alternatives, showing the resultant annual total inflow and the
corresponding predicted shellfish harvest. (All other figure and table
references that follow are to LP-106.) We should expect the regressions and
the optimization routines to be capable of recovering at least the means of the
variables. In the case of Alternative I, the salinity constraint turns out to be
practically the median historic salinity (as tabulated in Table 9-2), see Figures
9-2 and 9-3. Yet, the Alternative I results indicate that this median salinity
can be achieved with only 75% of the annual mean inflow, with a fairly
uniform reduction in the individual monthly flows. Further, this substantial
reduction in inflow produces only slightly reduced harvests, on the order of
5% for shellfish (Table 1) and virtually no change for finfish, see Figure 9-7.
While the explanation for this counterintuitive result may reside in such
technical details as different periods of record, median versus mean salinities,
and a small slope of the harvest regression versus Q, nonetheless for such a
- substantial reduction in inflow, one would expect larger responses.
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Table 2.1 Summary of LP-106 Results

Total Shellfish

Inflow Harvest

(maf) (103 1bs)
1962-1976 Mean 2.900 3034
Alternative I 2.097 2894
Alternative II 2.808 2928
Alternative III 2.811 3701

The difference between Alternative I and Alternative II results is just
as counterintuitive, the latter requiring fully one-third more flow than
Alternative I to achieve a 1.2% increase in harvest. Also, the most significant
change in the species distribution of this harvest is to reduce white shrimp by
16% relative to historic means, with a compensating increase in brown
shrimp. Considering that brown shrimp are usually taken offshore (in
contrast to whites), one could seriously question the realism of this shift, and
a fortiori whether it is really worth the additional 0.800 maf. A comparison of
Alternative III to Alternative II shows that for a (negligible) 0.3% additional
increase in inflow, a whopping 26% increase in shrimp harvest results (again
entailing a further decrease in whites with a very large increase in browns).

Clearly, as these comparisons show, there are some very peculiar
sensitivities of both salinity and harvest to changes in inflow. These results
are so counterintuitive that considerably more justification is necessary to
establish their validity, and this justification may well extend beyond a more
careful documentation of the statistics and a quantification of confidence
bounds.
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SECTION 3

ESTUARINE MATHEMATICAL PROGRAMMING MODEL

3.1 INTRODUCTION

The freshwater inflow needs for the bays and estuaries of Texas have
been proposed by the Texas Water Development Board utilizing mathe-
matical programming techniques for optimization. Specifically, annual
inflow (as measured by the sum of monthly inflow values} was minimized
subject to constraints on annual fisheries harvests (grouped by various
species) and on the range of monthly average salinity. The methodology is
described in Martin (1987) and in TDWR report LP-106 (TDWR, 1980). A key
element in this optimization problem is the mathematical relation between
salinity in the estuary and flow, S = F(Q).

The Texas Water Development Board has made extensive application
of regression analysis to establish the regression equations of freshwater
inflow requirements related to salinity, and also to the harvest of various
species of sea animals, as a part of its Bays and Estuaries Program. Figure 3.1
(a) shows an example of average monthly salinity-inflow relationship. The
average salinity in i-th month, sj;, is related to the average monthly gaged
inflow from j-th river, Qjj by the equation

p
5;=Bp(Q) ' expts)

where Bg and By are regression coefficients, and exp(t se) is a random
component, in which t is a standard normal deviate with zero mean and unit
variance, and se 1s the standard error of estimate of In(sij) on In(Qjj) (TDWR,
1980). The random component is included to account for the spread of the
field data points about the regression curve. In the current estuarine model
(Martin, 1987, TDWR, 1980), those salinity-inflow regression relationships,
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Salinity, In(s ,)

Salinity, In(s .)

Freshwater Inflow, In(Q )

(a) Regression Equation of Average Monthly Salinity
versus Average Monthly Gaged Inflow

t distribution

confidence
band

Freshwater Inflow, In(Q ;)
(b) Samplingr Distribution Around the Regression Curve

Figure 3.1 Regression Relationship Between Average Monthly
Inflow and Average Monthly Salinity
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which are subject to error, are incorporated as the deterministic constraints,
and the nonlinear problem has been linearized in approximation. Such
weaknesses or limitations of application of the above linear programming
model are listed in Section 1.

A new methodology is developed to overcome the these weaknesses by
constructing chance-constraints in a nonlinear programming model, which is
proposed to explicitly account for the uncertainty in the salinity and harvest
regression equations and to explore the trade-offs among the various
objectives.

3.2  MODEL USING DETERMINISTIC SALINITY AND HARVEST
CONSTRAINTS

The mathematical programming model can have the objective of
minimizing the sum of freshwater inflows, Qjj, for month i and river j,

Min 2} 21: Q 1)

subject to the following constraints:

(1)  The nonlinear relationship of estuary salinity and freshwater inflow.
S5 = ¥ (Qij) 2)

(2)  Upper (s) and lower (s) bounds on the monthly average salinity at a
specified location in the estuary, for each river j.

5. <8, € §.. (3)

3) Lower limits on the i-th monthly inflows for the j-th river, QI;j, to
express seasonal biological requirements, e.g. of the estuarine marsh
inundation.

Q= QL @
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(4)  The sum of monthly flows must be less than or equal to the upper
limit of the total annual inflow, QTj, from each river j.

2 Qii < QTi , (5)

(5)  Upper and lower limits on mean monthly flows in seasons for each
river j,

(6)

&
A
Q
E
A
A
3

1 . . .
where QSjm EN— Z Qij ; Mm is the set of months in season m and Np, is
m jeMp

the number of months in season m.

(6) The nonlinear regression relationship between the harvest of
organism k and the seasonal inflow in river j.

H =y, (QSjm) . 7
(7)  Lower limits on annual fish harvest, H, by species k.

H 2 H (8)

(8) Upper and lower limits on monthly inflows (ai]-and Q;) from each
river.

Qi < Qii < Qij (9)

3.3 ALTERNATIVE MANAGEMENT MODEL STRATEGIES

Four alternative formulations of the optimization model can be
applied to achieve different management objectives, as summarized below.
Other management objectives are possible, and can be similarly formulated
within the general framework of (1) - (9).
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Alternative I The basic formulation of the problem for estuarine man-
agement is to minimize the total annual freshwater inflow subject to salinity
level control, which will accomplish the requirements of nutrient transport,
habitat maintenance, and marsh inundation requirement. The correspond-
ing mathematical model can be formulated as

Minz Z Qij (10)
i

subject to constraints (2), (3), (4) and (9).

Alternative ]I Maintenance of the fishery harvest. The objective is to
minimize the total annual freshwater inflow while satisfying minimum
seasonal flow needs to maintain the annual commercial harvest of key
species at desired levels, and meeting viability limits for salinity. The
constraints for Alternative II are equations (2), (3), (4), (6), (7), (8) and (9).

Alternative III Enhancement of the fishery harvest, i.e., to maximize
the total annual commercial harvest of a selected organism k while meeting
viability limits for salinity, satisfying minimum seasonal flow needs, and
limiting an annual combined inflow no greater than its historical mean
value. The objective is to

Max QST ﬁH (11)
K

subject to equations‘ (2), (3), (4), (5), (6) and (9), where QST is the transpose of

vector of the seasonal freshwater inflow,QS, and EHK is the vector of esti-

mated coefficients of the harvest regression equation for species k.

Alternative IV Minimize the total annual freshwater inflow subject to
the salinity restriction. This is similar to Alternative I except the minimum
seasonal flow (marsh inundation) requirement, constraint (4), is removed.

16



3.4 CHANCE-CONSTRAINT FORMULATION

The regression equations in the optimization model for salinity and
harvest are subject to uncertainty due to the variance in the basic data. This
uncertainty arises because for the population of observations associated with
the sampling process, there is a probability distribution of salinity and of
commercial harvest for each level of freshwater inflow. Figure 3.1 (b) shows
an example of this sampling distribution for the salinity-inflow regression
equations. The basic application of chance-constraints in stochastic
programming is to account for the uncertainty of the regression due to
random variation in the regression variables by formulating the corres-
ponding constraints into probabilistic form and then transforming them into
their deterministic equivalents. (Charnes and Cooper, 1959, 1962, 1963;
Charnes and Sterdy, 1966; Jagannathan, 1974; Miller and Wagner, 1965;
Sengupta, 1972). In the environmental and water resources area, there are a
number of papers on water quality models and reservoir design and
operation models using chance constraints (Fujiwara et al., 1986; Houck, 1979;
Ellis, 1987, Ellis et al., 1985, 1986; Lohani and Thanh, 1978, 1979; Burn and
McBean, 1985; Loucks and Dorfman, 1975).

The concept of chance-constraints is illustrated schematically in Figure
3.2. In the problem formulation, these stochastic constraints are transformed
into probabilistic statements so that each chance-constraint states the
probability that the constraint will be satisfied with a specified reliability level.
The salinity constraint (3) and harvest constraint (8) can be rewritten as
chance-constraints
P ls;<s;s Ei].} 2p; (12)

and
P, 2 H}2p (13)

where the salinity sjj and the harvest Hx are random variables due to the

uncertainty induced by regression equations (2) and (7); p;; and py are the
desired or required reliabilities.
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It is desired to transform the chance-constraints (12) and (13) to their
equivalent deterministic forms in order to implement the optimization
algorithm. The salinity regression expression can be written (using the -
regressions of the Texas Department of Water Resources, 1980)

S..

ln(si].) = [ln(Qij)JT - B (14)
j

The harvest regression equations are either multiple linear models or trans-
formed linear models after logarithmic transformation of Hk and QSjm
depending upon the species of fish. The commercial fish harvest can be
written in a linear or nonlinear form depending upon the species (again,
using the regressions of the Texas Department of Water Resources, 1980)

— T .
Hy = @) - By (15)

or

T
inH) = [In(@s)] - B, (16)

The chance-constraints (12) and (13) can then be expressed respectively as

T -

Pr {In (éii) < [ln(Qij)] . ﬁsij < ln (sij)} 2 py (17)

and .

T
| Pr {(QS)i . sij > gk} 2 p, (18)
or
T .
Pr {[ln(QS)].] By 2 1n@k)} 2 p, (19)
Kj

By standardizing, the salinity chance-constraint (17} can be rewritten in an
implicit function form as
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nGyp - [tnQy] - B
F )
t,n-v A

S..

1
B 1:‘t,n-v A 2 Pij (20)

where A = Gslj\/[ln(Qij)]T {[11'1((;2[)“_)]T[1n(Q,;,ii)]}'1 [ln(Qij)] + 1

Ft,n-v is the cumulative probability of a student t distribution for the t-th

In(s,) - [ln(Qii)]T . B

quantle and n-v degrees of freedom; n is the number of observed data and v is
the number of parameters in the regression equation model; [In(Qj)] is a
transposed vector with each element being the logarithm of the monthly
freshwater inflow and ln(QDij) is a matrix of the logarithmic transformed

observed monthly freshwater inflow data used for the regression analysis; st

is a vector of coefficients in the salinity regression equation, and Os; is the

estimated standard deviation associated with the salinity regression equation.

The deterministic form of equations (18) and (19) are, respectively,

1
A T T
- v,1-p, * G \/(Qsj) [(QSD]-) . (QSDJ.)] (QS].) +1

. |
+ (QS) ﬁHk; <H, @n

and
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v, 1-p, Ssij\/ [ln(QS].)]T {[ln(QSD].)]T [m(er)j)]}-1 [In@s)] + 1

+1n(@s)"- By < H, (22)
kj w

here t is the quantle of t - random variable with n-v degrees of freedom

n-v,1-pp

and the probability of 1-pk, SHk is the estimated standard error associated with

the harvest regression equations, QSDj is a matrix of the observed data of
seasonal freshwater inflow used for the harvest regression equations, and
In{QSDj) is a matrix in which each element is logarithmic transformed of the
corresponding one in QSD;:.

The chance-constrained model for various alternatives is obtained by
using the associated objective along with constraints (20), (21) and/or (22), -
replacing the respective regression relationships. Derivation of the deter-
ministic equivalent of chance-constraints based on regression equations is
shown in Appendix A.

3.5 MULTI-OBJECTIVE PROBLEM

An optimization model is called a multiobjective problem because of
the existence of two or more conflicting objectives, such as minimizing the
annual freshwater inflow while maximizing the annual harvest. These
cannot be optimized simultaneously since, in general, the higher annual fish
harvest requires a higher freshwater inflow into the estuarine environment.
Furthermore, different fish species usually have different salinity preference
levels, and different inflow patterns. Therefore, the optimal freshwater
inflow corresponding to the optimal annual fish harvest will vary with the
fish species. Different objective functions that could be considered are the
following:
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(D) Minimize the annual total freshwater inflow.
2 2.9 | 2
1 )

(2) Maximize the expected fish harvest for individual species (one
objective for each species)

Maximize Z E (ij) = Z QTBki for species k, river j  (24)
j j

(3) Maximize the expected fish harvest for an individual species and
minimize its estimated standard deviation

Maximize EQTﬁki - J Var (QTBkj) (25)
j

(4) Maximize the probability that the expected annual harvest for an
individual species will satisfy the harvest requirement.

Maximize Pr {QTBkj >H (26)

kj}

where ij is the harvest required for species k at river j.

An example of a multiobjective formulation would be to use both
objective (23) to minimize total annual freshwater inflow and objective (24)
to maximize expected fish harvest for individual species.

The specific setup and coding of a multiobjective model was beyond
the scope of the present study, other than to indicate how such a problem
should be formulated and how it is related to the other extensions of the
programming procedure, viz. chance-constraints and nonlinearity. The
general approaches for solving multiobjective problems that should be con-
sidered for implementation in an estuarine management problem include:
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(a) & - Constraint Method - Select one of the objective functions to be
optimized and put the rest of the objective functions into constraints.

(b) Weighting Method - Combine the objective functions into a single-
objective programming format by assigning a weight for each objective.

(c) Goal programming - Minimize the sum of deviations of objectives
from the goals.

(d) ~ Utility theory - Maximize satisfaction using the individual's preference
structure (utility function)..

Either (c) or (d) can be used if the decision-maker wants to build his
preferences into a formulation of the mathematical model.
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SECTION 4

APPLICATION TO MATAGORDA BAY SYSTEM

4.1 INTRODUCTION

The nonlinear, chance-constrained models formulated in the previous
section were applied to the Lavaca-Tres Palacios estuary in Texas, i.e.
Matagorda Bay and its secondary (e.g. Lavaca Bay), and tertiary (e.g. Cox Bay)
systems, shown in Figure 4.1. The major freshwater inflow sources are the
Colorado River, which principally affects the eastern segment of Matagorda
Bay, and the Lavaca River, which principally influences Lavaca Bay.

The regression equations of salinity and fishery harvest and the
monthly mean salinity bounds are specified for selected locations. For the
Matagorda Bay system, these two types of upper and lower limits on monthly
salinity determine a salinity range as shown in Table 4.1. The first type is
based on the bounds for viable metabolic and reproductive activity, and the
second salinity upper bound selected is the lesser of the historical median
monthly salinity level or the first type salinity upper bound, i.e. viability
limits (TDWR, 1980).

Five species of fish are considered in this application, as listed in Table
4.2. The regression equations employed for salinity and fish harvest are given
in Tables 4.3 and 4.4, respectively. Alternatives I, II and IV with various
conditions were treated in this application, summarized in Table 4.2.

4.2  SOLUTION PROCEDURE

In general, the nonlinear chance-constrained models described above
- have both linear and nonlinear constraints requiring a nonlinear
programming algorithm. One of the solution algorithms used in this study is
a generalized reduced gradient technique, GRG2, by Lasdon and Waren (1986).
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Table 4.1 Salinity Bounds (ppt) of Upper Lavaca Bay and Eastern Arm of Matagoda Bay

Lavaca Bay
(Lavaca River)

Matagoda Bay

(Colorrado River)

Typel Type 2 Type 1 Type 2
Month Lower Upper Lower Upper | Lower  Upper | Lower  Upper
Bounds Bounds Bounds Bounds | Bounds Bounds | Bounds Bounds

January 10 20 10 13 10 30 10 19
February 10 20 10 12 10 30 10 19
March 10 20 10 12 10 25 10 19
April 5 15 5 13 5 20 5 20
May 1 15 1 10 5 20 5 19
June 1 15 1 9 5 20 5 19
July 10 20 10 11 10 25 10 21
August 10 20 10 17 10 25 10 24
September 5 15 5 13 5 20 3 20
October 5 15 5 13 5 20 5 20
November 10 20 10 13 10 30 10 19
December 10 20 10 14 10 30 10 19




Table 42 Summary of Various Conditions Considered in Applications
of Models for Alternatives I, I, and IV

Cases -
Items Considered Description
, Lavaca River for Lavaca Bay
Rivers
Colorado River | for Matagoda Bay
Salinity Type 1 using viability limits
Bounds Type 2 using historic values (Table 4.1)
Regression a with chance-constrained
Equations b without chance-constrained
LP used for comparison
Models
NLP
Salinity 12 Equation one equation for each month
Equations 1 Equation one equation for all months
70,000 ac-ft for each month of
Casel April and May, and 60,000 ac-ft
Marsh for September
Inundation —
Needs 70,000 ac-ft for period April
Case 2 through June and 60,000 ac-ft
for October-January
1 all shell fish
2 spotted sea trout
Fish 3
Species red drum
4 all penaeid shimps
5 blue crab




Table 4.3 Regression Relationships Between Salinity and Freshwater Inflow*

(Texas Department of Water Resources, 1980)

Lavaca River

“Colorado River

Month Bo B1 ¢ . Bo B1 G
January 200.14 -0.464 0.462 84.67 -0.205 0.112
February 249.76 -0.498 0.572 87.94 -0.207 0.095
March 151.76 -0.450 0.439 98.37 -0.231 0.123
April 157.37 -0.412 0.436 132.14 -0.254 0.125
May 150.41 -0.416 0.673 129.98 -0.248 0.193
June 108.70 -0.397 0.631 98.03 -0.220 0.197
July 280.58 -0.583 0.362 214.47 -0.342 0.138
August 159.42 -0435 0.501 397.34 -0.419 0.433
September 159.42 -0.418 - 0.443 122.27 -0.232 0.338
October 157.44 -0.437 0.476 77.06 -0.184 0.213
November 206.21 -0.487 0.582 89.03 -0.215 0.062
December 413.74 -0.597 0.476 111.52 -0.245 0.062

*The salinity equation has the general form of § =f QB ! where S is the monthly

salinity in ppt, Q is the monthly freshwater inflow in cfs, By and B are coefficients

and 8 is the standard error.
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Table 4.4 Regression Equations of Fish Harvest and Freshwater Inflow Relations
(Texas Department of Water Resources, 1980)

Inflow used in

Index k for Fish Species Equations Ok regression equations
1: All shellfish Hjy = 31079 - 11.3Q5; + 7.7Q5) - 24.2Q5; 482.8 a*
2 : Spotted seatrout In(Hy) = 6.8264 - 1.2473 In(QS)) + 1.1526 In(QSy)
- 0.40371 In(QS4) 0.2901 b**
3 : Red drum In(H3) = 4.3204 + 0.6937 In(QS57) - 0.8718 In(QS3) 0.2900 b
4 : All penaeid shrimp | In(Hg) =1735.8 - 3.7 QS; + 2.7QS2 - 1.0QSs 412.0 crn
5 : Blue crab 259.5 c

In(Hs) = 208.3 + 2.7Q53 + 0.4QS4 + 0.5QSs5

where Hy is the commerical harvest of species k in thousands of pounds,

QS is the mean monthly freshwater inflow during the season (acre/ft):

QS1 = January - March
QS; = April - June

QS4 = September - October
QS5 = November - December

QS3 = July - August

and O is the standard error..

*  using freshwater inflow at the Lavaca Delta
** using freshwater inflow at the Colorado Delta
*** using combined freshwater inflows from all contributing rivers and coastal drainage basins



GRG2 uses first partial derivatives of each function with respect to each
variable. These are automatically computed by finite-difference approxi-
mations using either forward or central differences. The GRG2 program
operates in two phases. Phase I optimization minimizes the sum of
constraint violations to determine a feasible solution. Phase II optimization
starts with a feasible solution, either from the Phase I or with a user-supplied,
initial feasible solution. An efficient algorithm that searches for an initial
solution is designed into the program to lessen the computational effort.

Alternative IV has a simple structure in which the average monthly
salinity constraints for each river are independent of each other because each
constraint has only one decision variable, the average monthly freshwater
inflow. Hence, the problem can be completely decomposed into 12 x ] inde-

pendent subproblems, where | is the total number of rivers considered, with_

each having only one decision variable. The Alternative IV subproblems can
then be solved directly without the GRG2 technique. Since the freshwater
inflow is inversely related to the salinity and the objective is to minimize the
total annual inflows, the optimal solution to the subproblem is therefore the
value of inflow associated with the upper salinity bound. If the uncertainty
in the regression equation is not considered, the solution to the subproblem
will be obtained by simply comparing the lower bound of inflow with the
inflow corresponding to the upper bound of salinity viability as shown in

Figure 4.2a. The overall optimal solution is then the sum of the inflow for

each subproblem.

Figure 4.2b shows the solution procedure for this subproblem for the
case of using chance-constraints, in which the procedure is essentially a
nonlinear one-dimensional search starting with the lower bound of inflow.
The optimal solution is reached when an inflow is found for which the
associated probability of salinity is equal to the desired probability.

Computer programs were written for each alternative. Program ALT14
was written for Alternatives I and IV. In ALT14 monthly inundation vol-
ume for marsh inundation requirement is used for Alternative I, therefore
the problem can also be completely decomposed and solved without GRG2
techniques. Program ALT1 was written for Alternative I for the case that
seasonal inundation volumes for marsh inundation requirement is used.
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ALT2 was developed for Alternative [I. In ALT1 and ALT2, GRG2 was used
as part of the systems through the GRG2 subroutine interface, GRGSUB, in
which all input and output data are communicated to and from GRG2
through the argument list of its subroutine interface. All of the programs
were run on a VAX 11/780. On the average, ALT14 requires approximately 2
CPU seconds, and ALT1 and ALT2 need about 28 to 36 CPU seconds for each

run.

Because the original observed inflow data records for both Lavaca river
and Colorado river, on which the salinity and harvest regression equations
were developed, are no longer available, reasonable monthly and seasonal
historical freshwater inflows are generated using several random number
generation techniques with appropriate adjustments. Figure 4.3 is a flowchart
showing the major steps of the computational scheme for Alternative IIL

4.3 RESULTS AND DISCUSSIONS

The results discussed in this section are part of the results of

appiications of the models for Alternatives I, II, and IV to the Lavaca-Tres
Palacios Estuary in Texas. The objective is to search for the minimum
freshwater inflow needs from the Lavaca River and the Colorado River for
various conditions which are listed in Table 4.2

In order to test the sensitivity of the model to the nonlinear algorithm,
the cases were also run with the regression equations used in the deter-
ministic way, as in LP-106. The result of the minimum Colorado inflow
requirement for Alternative I obtained from the nonlinear model is plotted
in Figure 4.4 to show a comparison with the resuit from the linear
programming model developed by TDWR (Martin, 1987). It is clear that if
chance constraints are not considered both nonlinear and linear
programming models offer very close results.

Figures 4.5 and 4.6 are examples of optimal monthly. freshwater inflow
from the Colorado River and the Lavaca River for the Alternative IV prob-
lem. The desired or required reliabilities in the salinity chance-constraint, pj
in equation (20), is predetermined by users, which may vary for different
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months i and rivers j. For the purpose of simplicity, for each river, all twelve
monthly salinity chance-constraints use the same desired reliability. Hence,
pij is replaced by pj. In general, the reliabilities of salinity chance-constraints
increase as the inflow needs increase. As shown in the figures, there exists a
maximum reachable reliability in the feasible inflow range considered. The
value of the maximum achievable reliability of salinity constraints depends
on the variance of the data about the regression line and the salinity limits.
Once the reliability reaches its maximum achievable value, additional water
releases from rivers into bays will result in a decrease in the probability of the
salinity constraints being satisfied. The results of field observations and
previous modeling studies suggest that the Lavaca delta marsh is most
important of the peripheral marshes to the Matagorda Bay (Texas Department
of Water Resources, 1980), therefore the marsh inundation requirement was
imposed on Lavaca River flow in Alternative I. Since the Colorado is
unaffected by this, the resulting freshwater inflow needs for the Colorado
River in Alternatives I and IV are the same.

For Alternative IV, the lowest maximum achievable reliability is about
0.68 for Matagorda Bay and 0.43 for Lavaca Bay. This conclusion is true for
Alternatives I, I and IV for most of the cases considered in Table 4.2. As
more constraints are added into the models for other alternatives, the
achievable reliability of salinity constraints for both bay regions may be
significantly lower than their maximum values. This demonstrates that the
information about the achievable reliabilities for the salinity constraints is so
important that it should not be simply ignored. The achievable salinity
reliability reflects some "confidence level” for the solution of optimal
inflows. The low value of the maximum achievable reliability for Lavaca Bay
is the result of the high standard error of the estimate, i.e. the low coefficient
of determination (r2), in the Lavaca salinity regression equations, in
combination with the narrow salinity limits.

Figures 4.7 and 4.8 are examples of results for Alternatives I and IV for
the optimal annual freshwater inflow. The maximum achievable reliability
for salinity constraints for the Lavaca River is as low as 0.12 when Type-2
salinity bounds are used. The region of Type-2 salinity bounds is so narrow,
for instance for the Lavaca River in July, the lower and upper bounds of
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salinity are 10 and 11 ppt, respectively, that the program will be terminated
without feasible solutions when the desired reliability is greater than 0.10.
Type-1 salinity bounds are wider, being based on the estimate of the limits of
long-term viable species activity; however, the maximum achievable desired
reliability of salinity chance-constraint is also very low about 0.43.

As expected, the optimal freshwater inflow increases as the desired
reliability, pj increases. Although the maximum achievable reliability for
salinity constraints for the Lavaca Bay is low, the achieved salinity reliability
will increase from 0.10 to 0.43 for a 33% increase in freshwater inflow (46.85
thousand acre-foot). For the Colorado River, the same increase in achieved
salinity reliability requires a much higher freshwater inflow.

Because the marsh inundation requirement needs more water during
the time period of April through June, and October through January for the
Lavaca Bay (case 2), the Alternative I yields higher inflows from the Lavaca
River into Lavaca Bay, compared to Alternative IV. Such a difference in
optimal freshwater inflows for Alternatives I and IV becomes smaller when
the desired reliability increases. If the salinity bounds were relaxed further,
when the desired probability increased to a certain value, the marsh inun-
dation constraints would be inactive. Therefore, the optimal inflows for
Alternatives I and IV would be the same.

Figure 4.9 shows an example of results from Alternative II, in which
the required reliability of salinity constraints is fixed while the required
harvest reliability varies for each computer run. For a given reliability of
salinity constraints, the minimum annual freshwater inflow increases almost
linearly with the required reliability of harvest constraint. We note that the
optimal annual inflow is much higher than that of Alternative I, due to the
further restriction of harvest constraints. As before, the optimal annual
freshwater inflow increases as the required reliability of harvest chance-
constraint increases. Because both salinity and harvest constraints are
involved in Alternative II, the relationship between the freshwater inflow
and the required reliability of chance-constraints is more complicated than in
Alternative I.
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4.4 CONCLUSIONS

From the application of the models for Alternatives I, II, and IV to the
Lavaca-Tres Palacios Estuary in Texas, the conclusions may be summarized:

(1) The developed nonlinear chance-constrained estuarine models
compute not only the minimum required freshwater inflows but also the
achievable reliabilities for salinity and harvest constraints. The latter plays an
important role in estuarine management, since it is a synthesized term
reflecting the combined effect of uncertainty in regression equations, range of
salinity bounds, and possibly other types of constraints.

(2) The optimal annual freshwater inflow increases as the required
reliabilities of salinity and/or harvest chance-constraints are increased. This
has important implications for freshwater allocation to meet estuary needs.

(3) The regression equations of salinity can not explicitly represent
the factors in the complicated hydrodynamic transport processes affecting
salinity such as tides, winds and spatial variations in salinity. These processes
contribute to the high variance about the regression, hence the large
uncertainty in the dependence of salinity on inflow and the low achievable
reliability. Some better approaches other than the use of salinity regression
equations in this estuarine modeling problem are worthy of exploring.

(4) The model developed in this study can in principle be extended to
consider the muitiobjective nature of the problem.
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APPENDIX A

DERIVATION OF DETERMINISTIC EQUIVALENT OF
CHANCE-CONSTRAINTS BASED ON REGRESSION EQUATIONS

In order to transform the chance-constraints (12) and (13) into their
deterministic equivalent forms, first consider a general multiple linear
regression model,

Y=XIB+¢ (A.1)

where Y is the dependent variable; X is a v x 1 column vector of independent
variables, {1, x1, x2, .., xv-1}T; Bis a v x 1 column vector of regression
parameters, {Bg, B1, B2, .., Bv-1)T; € is the model error with E(e) = 0, and Var(e)

= g2. Because € is a random variable, the true value of Y and the coefficients
of regression equation, B, are never known. Replacing the Y, B and € by their

estimators, the regression model becomes,

Y=XB+¢ (A.2)

For a given set of independent variables, xj, the corresponding dependent
variable Y can be estimated as,

with the associated mean
E(qolﬁo) =X

and variance

Var (Yolxo) =c? [xf XTX)xo+1]
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where X is an n x v matrix of observed data used in developing the regression
equations. Replacing the unknown population variance by its estimator, the
predicted variance becomes

Var (Yolxo) =[x XTX)lxg+1]
Consider a chance-constraint

P {YSYyl2p (A.4)

by standardizing,

~ -~ TA
Y, - E(Yqlxp) Y - x,8

P, 2
¥ Var (Yl x,)

}=2p

~2 R
'\/c {;E (XTX)150+ 1}
which can be rearranged

Tf\
Y - Koﬁ
P (T, ¢

< } < I-p (A.5)
\/,\2 T, T 1
¢ (xo X X) x5+ 1)

Knowing the reliability p, the standard student distribution deviate can be
easily computed. Hence the deterministic equivalent of the chance constraint
is

X-zgﬁ

v, 1-p

Az -
'\/o {53 (XTX)]50+ 1)

or

—~

-~ T T, .1 T
tra, 1p 0'4/{50 X" X) xq+1} + x,8

IA
=<

(A.6)

with n-v degree of freedom, and probability of 1-p.

Consider the case that the constraint is bounded on both sides:
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then
—_— TA Td\
Y - xoB Y - x,8
FT,I‘l-V[A T . T 0_] ]_FT,I'I-V[A T .. 1T 0.1 ]Zp
o (xg O X)) xg+1) o/ (xg (X" X) " xg+1)
| (A.7)

However, the explicit expression of the deterministic equivalent of this type
of chance-constraint can not be derived. The deterministic equivalents of the
commercial harvest constraints can be obtained by substitution of the

corresponding variables and parameters into equation (A.6). The salinity
constraints can be written in the form of equation (A.7). The fact that this
salinity constraint has only an implicit form must be considered when

selecting programming algorithm.
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6b

Appendix B: Data Input Structure for ALT14
(Alternatives I and/or IV)

(Lavaca -Tres Palacios Estuary Management Model)

CARD COLUMN FORMAT VARIABLE VALUE DESCRIPTION

1 1-80 5X,19A4  TTITLE Problem specification - 1 card.
2 1-10 110 IALT Selection of Alternatives:
1 for Alternative I
4 for Alternative IV
11-20 110 ISOLN The salinity constraints expressed by regression

equations can be formed as chance-constraint
or used in deterministic way:

in chance-constraints

2 using as deterministic constraints.

-

21-30 10 ISUB Type of salinity constraint bounds
for Type 1 salinity bounds to be used
2 for Type 2 salinity bounds to be used.

-t

3 1-80 F10.0 EPS Convergence criterion of inflow in searching
for the maximum reachable reliability of
salinity constraints to be satisfied.

4 110 F10.0 RELIS Monthly salinity reliability requirement for
Lavaca river, up to 12 values on 2 cards.

5 1-10 F10.0 RELIS Monthly salinity reliability requirement for

Colorado river, up to 12 values on 2 cards.
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INTRODUCTION

This volume contains time series data plots obtained on experimental stations during
intensive process oriented samplings. Suitable shipboard space was not available during
the initial phase of NIPS-I in San Antonio Bay so the temporal resolution was relatively
poor. Later samplings at station locations A and C improved to hourly samples for as
long as 24 hours, however sites B and D were still sampled by small boat so darkness an
d inclement weather prevented some collections. Better ship availability reduced these
problems during NIPS-II in Nueces/Corpus Christi Bays. Additional details of sampling
and analysis methods are given in Volume 1 of this report and tabular listings are contained
in Part IIL

The other parts of this final report are:

Part I - Results and Discussion

Parts II - Hydrography, Nutrient and Chlorophyll data Tables



STA DATE - TIME LAT LLON TEMP
m local N W °C

NO3 NO2 NH4 PO4 SIO4 Chla
pmole/1 pmole/1 pmole/1 pmole/1 pmole/1 ug/i1

Secchi Trans Depth
cm percent m

SAL
ppt

Phaeo
ug/!

SIGMA-t
density

Oxygen
ppm

Note: Salinity was measured with several often simultaneous techniques. Each type is

listed separately in the data tables under the following classifications.

Sal-C This is an in sifu measurement of conductivity from the model 4000

Hydrolab which is corrected to 25°C. The conductivity was then

converted to salinity using the practical salinity scale.

Sal-CTD This is an in situ measurement of conductivity from the Seabird model

Seacat which is a new high precision instrument (0.003 ppt). Salinity is

then calculated as a function of depth (pressure) and temperature.

Sal-R This is salinity as determined by a hand refractometer.

Sal-B This is salinity as determined from bottle samples that were collected

in the field and returned to the lab and analyzed for conductivity ratio

by the AGE Minisal salinometer. The best accuracy is about 0.0005 ppt.
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