

UPPER LEON RIVER MUNICIPAL WATER DISTRICT REGIONAL WASTEWATER STUDY WATER QUALITY MONITORING PROGRAM VOLUME II

GREGORY J. LEWIS

58261G/STERE

D910011 JN040404 JONES AND NEUSE, INC.

Engineering and Environmental Consultants

• Jones and Neuse, Inc.

TABLE OF CONTENTS UPPER LEON RIVER MUNICIPAL WATER DISTRICT REGIONAL WASTEWATER STUDY

VOLUME I SUMMARY REPORT

VOLUME II WATER QUALITY MONITORING PROGRAM

VOLUME III NON-POINT SOURCE (NPS) CONTROLS EVALUATION

VOLUME IV POINT SOURCE POLLUTION CONTROL EVALUATION

VOLUME V WATER CONSERVATION AND DROUGHT CONTINGENCY

PLAN

JONES & NEUSE

			<u>PAGE</u>
1.0	EX	ECUTIVE SUMMARY	1
2.0	INI	TRODUCTION	2-1
	2.1	Purpose	2-1
	2.2	Scope of Study	2-3
	2.3	Participants	2-4
3.0	WA	TER QUALITY ASSESSMENT FROM EXISTING DATA	3-1
	3.1	Sources of Data	3-1
		3.1.1 Upper Leon River Municipal Water District	3-1
		3.1.2 U.S. Geological Survey	3-1
		3.1.3 Texas Water Commission	3-1
		3.1.4 Texas Water Development Board	3-1
		3.1.5 USDA Soil Conservation Service	3-5
		3.1.6 U.S. Army Corps of Engineers	3-5
	3.2	Background Watershed Information	3-5
		3.2.1 Physical Water Quality Influences	3-6
		3.2.2 Construction and Operation of Lake Proctor	3-6
		3.2.3 Watershed Development and Historical Land Uses	3-8
	3.3	Water Quality Criteria and Uses	3-8
		3.3.1 Segment 1222 - Lake Proctor	3-9
		3.3.2 Adjoining Segments	3-9
		3.3.3 Undesignated Tributaries	3-12
	3.4	Wastewater Discharger Data	3-12
		3.4.1 Discharger Locations	3-13
		3.4.2 Pretreatment Status	3-13
	3.5	Water Usage and Commitments	3-13
	3.6	Statistical Analyses of Available Water Quality Data	313-13

(CONTINUED)

	<u>PAGE</u>
3.6.1 Descriptive Statistics	3-15
3.6.2 Spatial Variations	3-15
3.6.3 Indications of Trophic State	3-27
3.6.4 Water Quality Indices	3-39
3.6.5 Nutrient Limitations	3-39
Indications for Monitoring Design	3-39
ITORING NETWORK DESIGN	4-1
Initial Year(s) Monitoring Program	4-1
4.1.1 Sample Locations	4-1
4.1.2 Sample Frequency and Type	4-3
4.1.3 Field Measurements	4-3
4.1.4 Laboratory Analyses	4-3
4.1.5 Tributary Stream Gages	4-8
Permanent Monitoring Program	4-8
4.2.1 Sample Locations	4-8
4.2.2 Sample Frequency and Type	4-8
4.2.3 Field Measurements	4-9
4.2.4 Laboratory Analyses	4-9
4.2.5 Tributary Stream Gag	4-9
Intensive Surveys	4-9
4.3.1 Sample Locations	4-9
4.3.2 Field Measurements	4-10
4.3.3 Morphologic and Hydraulic Characterization	4-10
4.3.4 Laboratory Analyses	4-11
4.3.5 Tributary and Individual Survey Features	4-11
	3.6.2 Spatial Variations 3.6.3 Indications of Trophic State 3.6.4 Water Quality Indices 3.6.5 Nutrient Limitations Indications for Monitoring Design ITORING NETWORK DESIGN Initial Year(s) Monitoring Program 4.1.1 Sample Locations 4.1.2 Sample Frequency and Type 4.1.3 Field Measurements 4.1.4 Laboratory Analyses 4.1.5 Tributary Stream Gages Permanent Monitoring Program 4.2.1 Sample Locations 4.2.2 Sample Frequency and Type 4.2.3 Field Measurements 4.2.4 Laboratory Analyses 4.2.5 Tributary Stream Gag Intensive Surveys 4.3.1 Sample Locations 4.3.2 Field Measurements 4.3.3 Morphologic and Hydraulic Characterization 4.3.4 Laboratory Analyses

(CONTINUED)

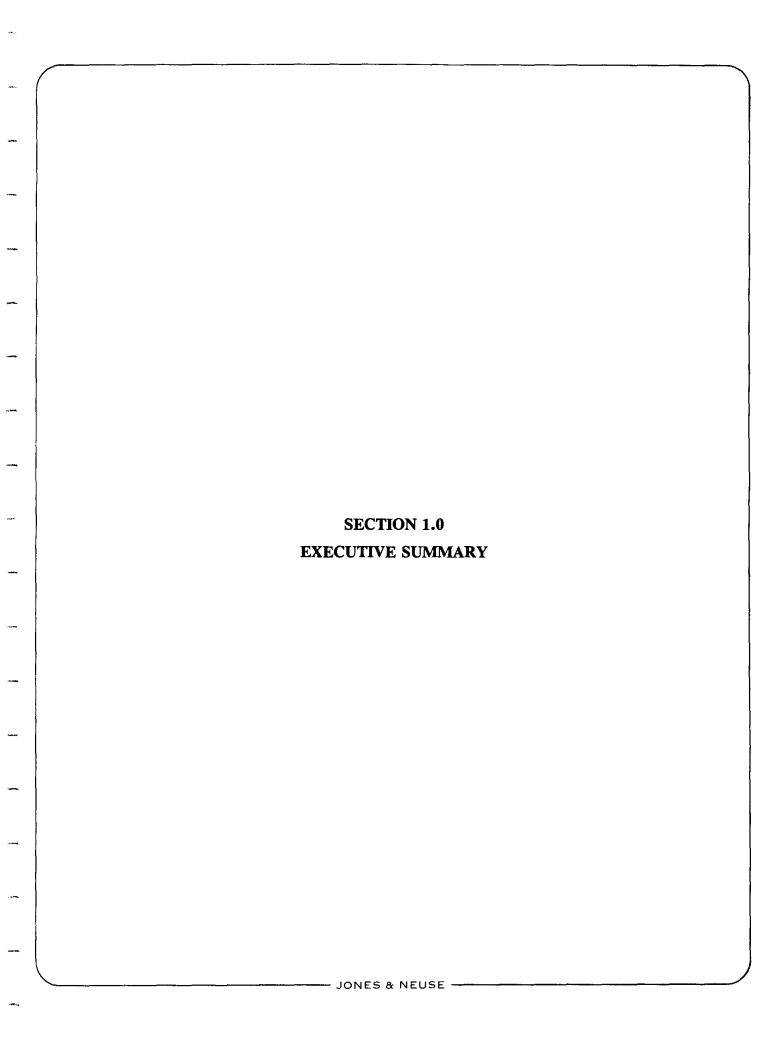
			PAGE
		4.3.5.1 Rush/Copperas Creek	4-11
		4.3.5.2 Sabana River	4-15
		4.3.5.3 Leon River Above Lake Proctor	4-17
		4.3.5.4 Leon River Below Lake Proctor	4-17
	4.4	Bathymetry Survey	4-20
		4.4.1 Methodology	4-20
		4.4.2 Locations of Transects	4-23
		4.4.3 Development of Bathymetric Map	4-23
		4.4.4 Use in Model Application	4-23
	4.5	Non-Point Source Sampling	4-24
		4.5.1 Representative Single Land Use Watersheds	4-24
		4.5.2 Sample Parameters	4-24
		4.5.3 Recording Stream Gages and Hydrographs	4-25
		4.5.4 Non-Point Source Assessment Report	4-25
5.0	OPE	RATING PROCEDURES AND QUALITY ASSURANCE	5-1
	5.1	Project Organization	5-1
	5.2	Quality Objectives	5-1
	5.3	Sample Procedures	5-3
	5.4	Sample Custody Procedures	5-5
	5.5	Equipment Calibration Procedures	5-5
	5.6	Analytical Procedures	5-6
	5.7	Data Reduction, Validation, and Reporting	5-6
	5.8	Performance and Systems Audits	5-6
	5.9	Preventative Maintenance	5-8
	5.10	Data Assessment Procedures	5-8
		JONES & NEUSE	

(CONTINUED)

		<u>PAGE</u>
6.0	WATER QUALITY DATABASE MANAGEMENT	6-1
0.0	•	6-1
	6.1 Computing Requirements	·
	6.2 Software Requirements	6-1
	6.3 Database Structure	6-2
7.0	IMPLEMENTATION SCHEDULE	7-1
	7.1 Time Schedule	7-1
	7.2 Staff Training	7-1
	7.3 Model Development and Usage	7-1
8.0	CONCLUSIONS AND RECOMMENDATIONS	8-1
LIST	OF TABLES	
1	Texas Water Commission Water Quality Criteria Lake Proctor - Segment	3-10
2	Texas Water Commission Water Quality Adjoining Segments 1221, 1223, 1224	3-11
3	Wastewater Treatment Plans - Lake Proctor Watershe	d 3-14
4	Water Commitments from Lake Proctor	3-16
5	Summary Statistics - Dissolved Oxygen TWC Lake Proctor Stations	3-17
6	Summary Statistics - Conductivity TWC Lake Proctor Stations	3-18
7	Summary Statistics - Chlorophyll- <u>a</u> TWC Lake Proctor Stations	3-19

JONES & NEUSE —

(CONTINUED)


		PAGE
8	Summary Statistics - Total Phosphorous TWC Lake Proctor Stations	3-20
9	Lake Proctor Sampling Stations	4-4
10	Field Parameter Table	4-5
11	Laboratory Parameter Table	4-6
12	Copperas/Rush Creek Intensive Survey Sample Locations	4-13
13	Sabana River Intensive Survey Sample Locations	4-14
14	Leon River Above Lake Proctor Intensive Survey Sample Locations	4-19
15	Leon River Below Lake Proctor Intensive Survey Sample Locations	4-22
16	Sample Containers	5-4
17	Quality Control Procedures	5-7
LIST	OF FIGURES	
1	Basin Location Map	2-2
2	ULMWD - Lake Proctor USGS Monitoring Stations	3-2
3	ULMWD-TWC SMN Stations	3-4
4	Dissolved Oxygen Normal Probability Plot	3-21
5	Conductivity Normal Probability Plot	3-22

— JONES & NEUSE -

(CONTINUED)

		<u>PAGE</u>
24	Leon River Below Lake Proctor Intensive Survey Sampling Stations	4-21
25	Project Organization	5-2
26	Monitoring Schedule	95
27	Example Water Quality Database Structure	6-3
LIST	OF APPENDICES	
A	USGS LAKE PROCTOR DATA	
В	TWC LAKE PROCTOR DATA	
C	ANALYSIS OF VARIANCE DATA	
D	ADDITIONAL TREND PLOTS	
E	TREND ERROR ANALYSIS	

JONES & NEUSE -

1.0 EXECUTIVE SUMMARY

The following report documents the completion of the first three tasks of the Upper Leon River Municipal Water District (ULRMWD) Regional Wastewater Facilities Plan for the Lake Proctor Watershed. The study includes an initial assessment of water quality from existing data sources, a coordinated water quality monitoring program for Lake Proctor and its tributaries, a survey plan for development of water quality model calibration data, recommendations on data management, and a quality assurance/control plan for the monitoring program. the purpose of this plan is to support efforts of ULRMWD in controlling and enhancing water quality in the Lake Proctor Watershed.

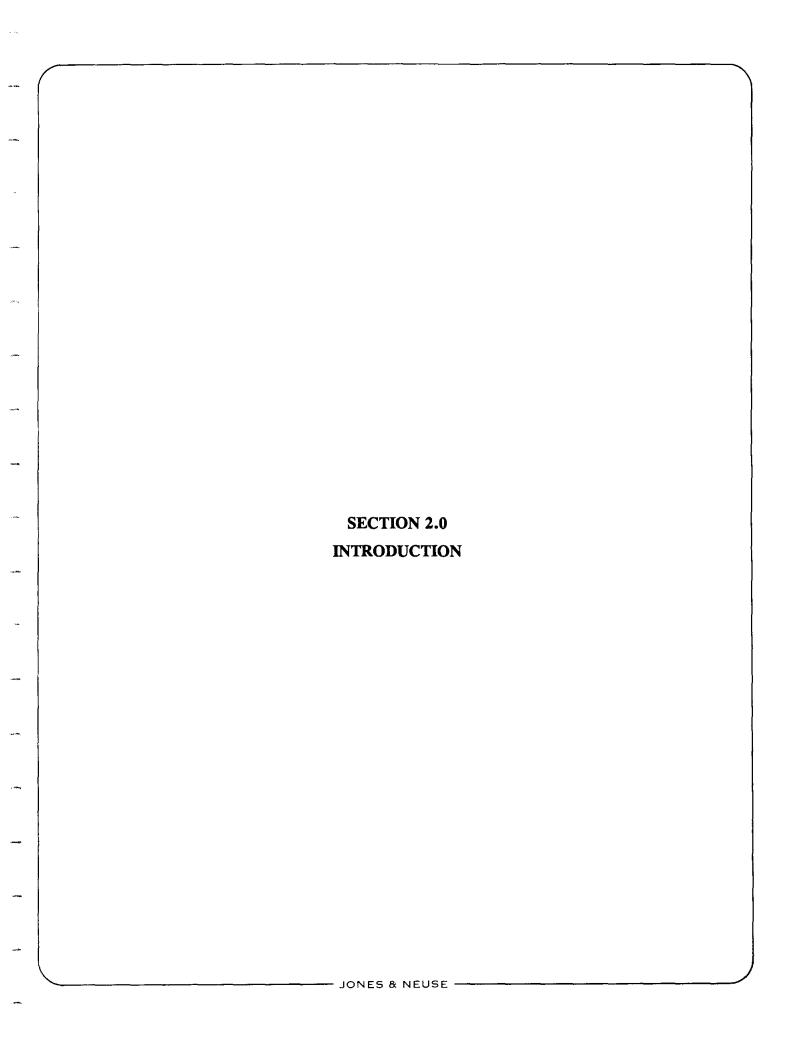
As expected, the available data on Lake Proctor water quality are not strictly adequate to base any firm conclusions on water quality trends. Several problems were encountered in the evaluation of the data. The available data has several limitations resulting from an ad hoc approach to monitoring over the period of record. The limitations reduce the value of the data for use with most common exploratory statistical methods. These problems include missing values, sampling frequencies that change over the period of record, multiple observations within one sampling period, uncertainty in the location of the samples, uncertainty in the measurement procedures, and a relatively small sample size for many important parameters. The above characteristics result in the violation of many population assumptions required to properly apply parametric statistical procedures. In addition, several assumptions of non-parametric statistics are violated by the data.

In addition to the past monitoring practices, the data itself exhibits several limitations for trend and seasonal analyses. The seasonal component does not appear to be consistent over the monitoring period. Several outliers and unexplained results for the parameters of concern were noted.

The initial assessment of the historical water quality data for Lake Proctor included descriptive statistics, tests for normality of data, trend analysis, and analysis of variance. Because of the short monitoring period, the U.S. Geological Survey (USGS) data was not used in the analysis. For the Texas Water Commission (TWC) data, the indicator parameters with the most promising

number of distribution of values included dissolved oxygen, conductivity, chlorophyll-a, phaeophytin, secchi depth, and total phosphorous. The descriptive statistics and test for normality indicate that the data for chlorophyll-a and total phosphorous, two of the most important trophic state indicators, departed significantly from normality. The trend analysis resulted in several inconsistent trends. For example, the total phosphorous was forecast to increase, yet the chlorophyll-a was forecast to decrease. When examining the forecast summaries, significant values for mean squared error, mean absolute error, and mean percentage error indicate that the trends are inconclusive. The analysis of variance showed no significant difference between sample locations at a confidence level of 95 percent for most parameters. Significant difference was shown between the arm stations for secchi depth values and total dissolved solids. The arm stations were found to have a more shallow secchi depth (lower transparency) and a correspondingly higher dissolved solids level than the main body station. This conclusion is consistent with the settling properties of the lake body and with the anticipated higher levels of phytoplankton expected in nutrient enriched coves and arms of the lake. However, these conclusions were not supported by the other indicator parameters in the data set.

The proposed water quality monitoring program includes the compilation of data for model calibration and for interpretation of trends in water quality as the watershed develops. Three major divisions in the monitoring program are proposed for the watershed; long-term lake sampling, short-term intensive surveys, and special non-point source studies.


Major tributaries feeding into Lake Proctor will be sampled through diurnal intensive surveys. In addition, an intensive survey of the Leon River below Lake Proctor is proposed. The surveys will provide sufficient information to calibrate simple steady state water quality models. The models will be used to simulate the dissolved oxygen response of the tributaries and Leon River to variations in the watershed development, discharger location, and effluent limitations.

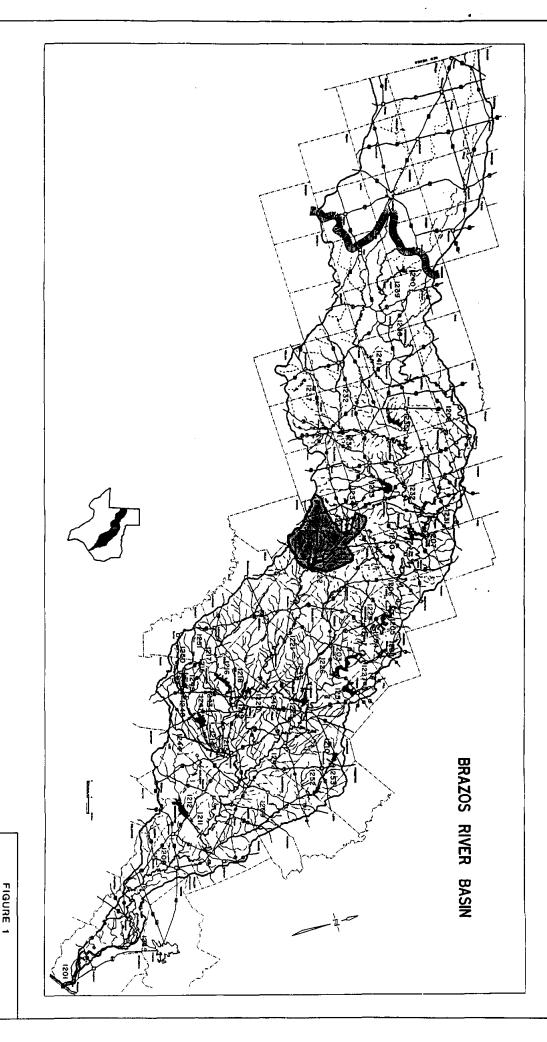
In addition to the intensive surveys, monthly sampling of Lake Proctor stations and immediate tributary inflows is proposed. This data will be used to calibrate a dynamic model of the lake to simulate dissolved oxygen responses in the lake to variations in watershed development, discharger location, and effluent limitations. The model will also be used to simulate changes in trophic state brought about by nutrient addition from point source dischargers and non-point

source pollution. The final monitoring program is the long term reconnaissance of Lake Proctor through consistent periodic sampling of key locations in the lake body and at major tributaries.

Additional studies related to the monitoring program include a non-point source survey and a lake bathymetry survey. The non-point source monitoring will be addressed in a separate report including preliminary analysis of non-point sources based on land use distribution. Bathymetric mapping of the Lake Proctor body is required in order to develop a hydraulic model. The hydraulic model will be required for use in dissolved oxygen and eutrophication modeling. Existing data from the U.S. Army Corps of Engineers (USACOE) sedimentation survey will be used if possible.

The quality assurance and control (QA/QC) program of the ULRMWD monitoring plan includes specific guidance on sample collection, sample preservation, sample transportation, sample storage, and sample analyses. The QA/QC program also addresses training and certification for ULRMWD personnel to perform the sampling and analyses in the plan. Information management and creation of a database for all future data compilation is addressed in the monitoring program.

2.0 INTRODUCTION


The ULRMWD has the responsibility for providing drinking water to more than 15,000 residents in four counties of north central Texas. Members in the District include Comanche, Hamilton, DeLeon, Dublin, Gorman, and incorporated areas and communities in Comanche, Eastland, Erath, and Hamilton counties. The sole source of water for the number cities in the ULRMWD is Lake Proctor. The lake was constructed in 1963 by the USACOE. The Brazos River Authority (BRA) maintains Water Rights Permit No. 2107 authorizing storage of water in the lake. The ULRMWD has contracted with BRA for diversion of Lake Proctor water for municipal purposes. Water quality is managed by the ULRMWD as the designated planning agency for the four county area encompassing the majority of the watershed. The location of the watershed in relation to the TWC segmentation of the Brazos River Basin is shown in Figure 1.

Existing data on water quality in Lake Proctor is inadequate for use in predictive models or other planning exercises. Quarterly samples are taken by the TWC and a three year monitoring program was carried out for baseline data by the USGS. Although limited monitoring of water quality in the lake is performed by ULRMWD at the raw water intake structures to its water treatment plant, no other coordinated monitoring has been performed on the lake.

2.1 Purpose

In order to provide wastewater treatment services to its members and to insure that appropriate measures will be identified for water resource protection, ULRMWD has undertaken a regional wastewater facilities plan for the Lake Proctor Watershed. A major component of the facilities plan will be the determination of wastewater effluent restrictions to be placed on a regional facility. In order to ascertain the suitability of the water bodies in the watershed for effluent discharge and to determine effluent limitations for a regional facility, a water quality management plan is proposed to augment the facilities plan. The water quality management plan will incorporate the results of the proposed monitoring program outlined in this report.

JONES & NEUSE

BASIN LOCATION MAP

JONES AND NEUSE, INC.

Consultants

The purpose of this study is to evaluate the current water quality situation in Lake Proctor and develop a plan for long term monitoring of the lake and its tributaries. The goal of the monitoring program is to provide enough data for future use in water quality modeling of the lake and major tributaries. An additional goal is to provide data for use in trend analysis, planning for regional wastewater treatment, non-point source pollution control, and water supply protection.

2.2 Scope of Study

In accordance with the scope of work submitted to the ULRMWD, the following tasks are to be included in the initial phase of the water quality monitoring program:

- ♦ Compilation of historical water quality data, discharger data, and watershed data for Lake Proctor and its tributaries.
- ♦ Selection of monitoring parameters and sampling stations based on watershed characteristics, shoreline development, location of point source discharges, and location of raw water intakes.
- ♦ Selection of appropriate water quality criteria, statistics, and indices to assess monitoring data.
- ♦ Planning for field equipment, laboratory equipment, laboratory services, and personnel requirements for the monitoring program.
- ♦ Preparation of a summary report detailing the analysis and monitoring program.

The second phase of the monitoring program is to include the following activities:

♦ Development of a database management system for water quality data and selection of appropriate software for ULRMWD.

Assistance during the initial sampling events and periodic quality control review of the data obtained in the program.

In order to expedite the inception of the monitoring program, a preliminary assessment of non-point source pollution included in the initial phase scope will be documented in a later report. This will allow the refinement of non-point source monitoring strategies after the receipt of additional aerial a photography of the watershed.

2.3 Participants

Funding for the monitoring program development is shared by the ULRMWD and the Texas Water Development Board (TWDB) through the Research and Planning Fund for Regional Water Supply and Wastewater Planning. Additional funding for the laboratory and field equipment to be used in the monitoring program was provided by the TWDB through a 75 percent grant for evaluations of the suitability of water for irrigation, rural domestic, livestock, and agricultural uses.

In addition to the funding authorities, several other agencies potentially impacted by Lake Proctor water quality have expressed interest in a coordinated monitoring effort. Coordination with the following entities will be made as appropriate during the monitoring program:

Brazos River Authority
U.S. Geological Survey
Texas Water Commission
U.S. Army Corps of Engineers
Tarleton State University

Although the role o each agency has not been determined at this time, the logistics of the sampling stations and frequency will be coordinated to avoid duplication of efforts among the agency data collection activities.

In addition to these agencies, the following regional planning authorities and planning agencies, cities, and counties affected by the proposed plan were notified of the project:

Councils of Government

North Central Texas Council of Governments
West Central Texas Council of Governments
Central Texas Council of Governments

County Governments of:

Comanche County

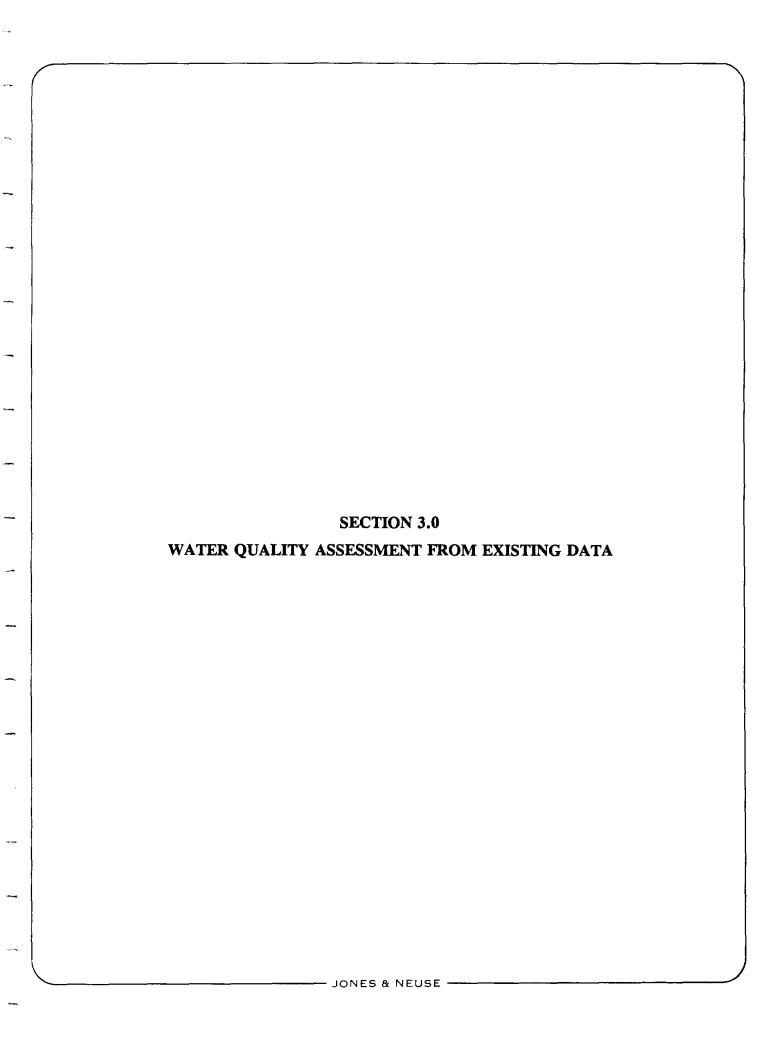
Eastland County

Erath County

Hamilton County

City Governments of:

City of Comanche City of Eastland


City of DeLeon City of Gorman

City of Gustine City of Ranger

City of Carbon City of Rising Star

City of Cisco

This portion of the Regional Wastewater Study, the Water Quality Monitoring Program was performed by Jones and Neuse, Inc., (JN) an environmental and engineering consulting firm, under contract with the ULRMWD.

3.0 WATER QUALITY ASSESSMENT FROM EXISTING DATA

3.1 Sources of Data

In order to compile existing water quality data on the watershed, several agencies routinely involved in such data collection were contacted. In most cases, little data was available on the lake. in the cases where some data was generated, the frequency of samples, sample location, or the parameters chosen for analyses made the data of little use in model calibration or water quality projections. The following agencies were contacted in compiling water quality and background data.

3.1.1 Upper Leon River Municipal Water District

The ULRMWD has not performed any ambient water quality monitoring of Lake Proctor to date. They maintain a water treatment facility on Lake Proctor which is required to analyze raw water lake samples for turbidity, alkalinity, and pH on a monthly basis. The water treatment plant also test for turbidity, alkalinity, coliform, chlorine residual, and pH in water produced form the plant and discharged to the distribution system. Finished water is also monitored annually for a wide range of water quality parameters including those with Texas Department of Health (TDH) standards. This data is not particularly useful in the lake monitoring program because it is taken after chemical treatment and is therefore not representative of ambient water quality.

3.1.2 U.S. Geological Survey

The USGS performed a quarterly water quality sampling program of seven (7) stations located in Lake Proctor. USGS stations in Lake Proctor are shown on Figure 2. The sampling program was performed from 1980 to 1983 in order to provide a baseline of data on the lake. Samples were taken at up to five (5) depth intervals for a variety of field and laboratory water quality parameters. No water quality samples have been taken by the USGS since the conclusion of the program in 1983. Reports from these three years of data collection were obtained from the USGS for use in this study. Appendix A includes summaries of this data.

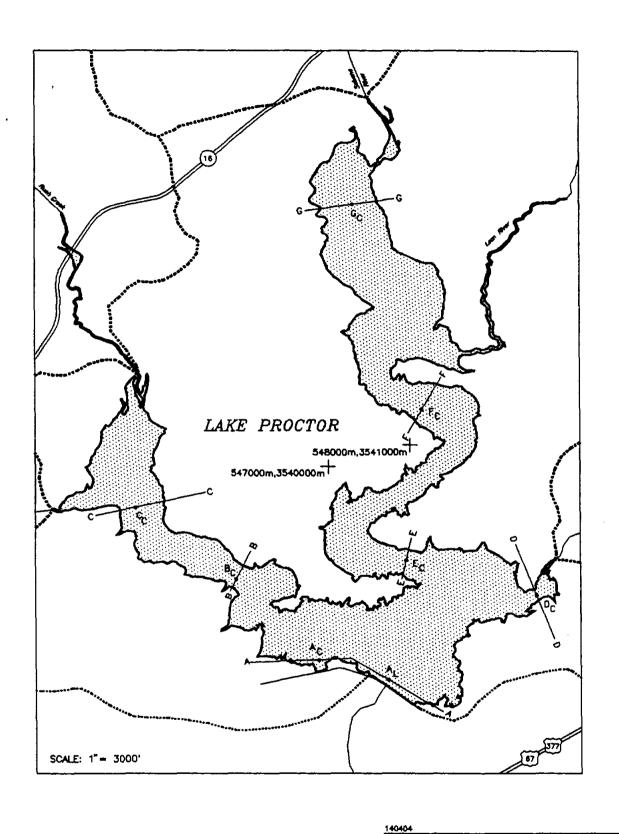
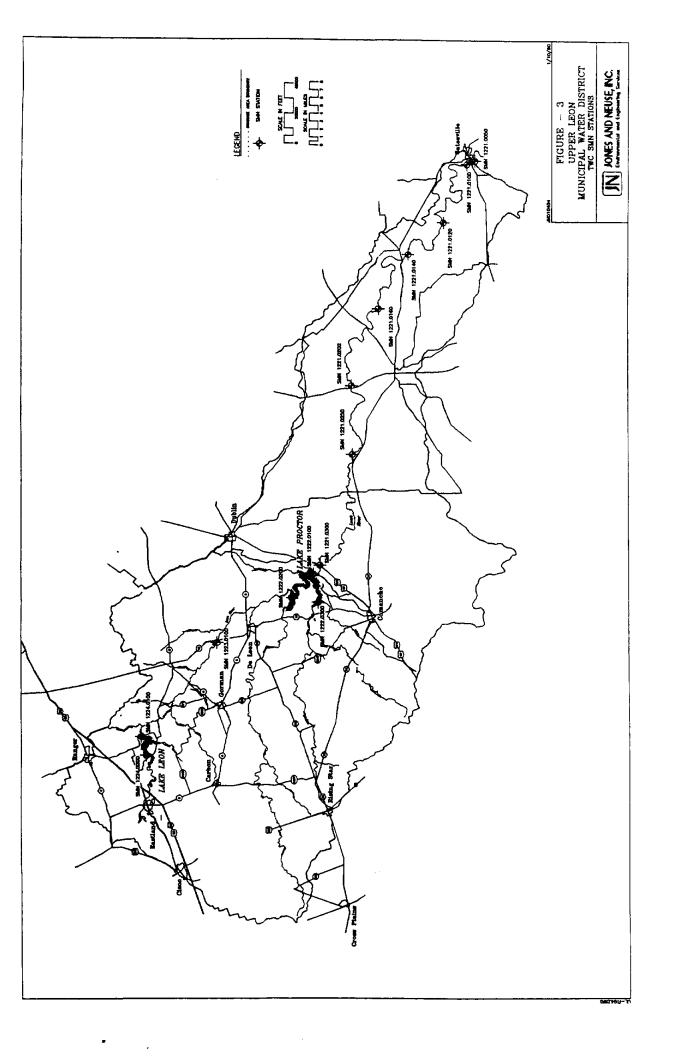


FIGURE - 2
UPPER LEON MUNICIPAL
WATER DISTRICT
LAKE PROCTOR USGS MONITORING STATIONS

12/31/90

In addition to the short term water quality sampling, the USGS also publishes data from a recording level gage on Lake Proctor. The USACOE provides the data to the USGS in order to determine reservoir contents. The gage is located in the intake structure to the Lake Proctor spillway.


3.1.3 Texas Water Commission

The TWC maintains three main monitoring stations on Lake Proctor. the monitoring stations are operated out of the TWC District 3 - Waco office. The period of record from these samples extends from November 1973 to the present. Sample frequency at these stations has varied over the years. Initially, monthly samples were taken for a limited number of field and laboratory parameters. After a few years, quarterly samples were continued at the same locations. Finally, the TWC resorted to semi-annual sampling in order to continue the data collection. Recently, quarterly sampling has been resumed as the interest and resources required for sampling Lake Proctor have increased. The majority of the events included samples taken at five or ten foot depth increments.

In addition to the lake samples, the TWC also mains a Statewide Monitoring Network Station (SMN) on the Leon River above Lake Proctor, two in the Leon Reservoir above Lake Proctor, and several on the leon River below Lake Proctor. The locations of the SMN stations of interest are shown on Figure 3. Data obtained from the SMN database for these stations are included in Appendix B. The station on the Leon River above Lake Proctor is important in determining mainstem impacts to the reservoir. The stations below Lake Proctor are important because a regional facility in the watershed may discharge into this segment more readily than to the reservoirs above it. Therefore, any predictive modeling performed to determine appropriate effluent limitations for such a plant must include a calibration of the Leon River below Lake Proctor.

3.1.4 Texas Water Development Board

The TWDB was contacted concerning potential population growth in the watershed which could affect water quality in Lake Proctor. The Board develops countywide and larger city estimates

for population increases. The model used to generate these estimates is a cohort survival program based on age groups determined form census data and economic parameters developed through commerce data. this data is more useful for the facility planning portion of the regional study, but it is also needed to determine water quality sample density as a function of population density.

3.1.5 USDA Soil Conservation Service

The SCS was contacted primarily concerning information on agricultural watersheds and non-point source pollution. The involvement of the SCS in water quality monitoring is limited to data developed on soil loss and erosion potential. The majority of this data is contained in published soil survey. Soil surveys were obtained for Comanche, Eastland, and Erath Counties. A current survey was not available for Hamilton County; however, a general soil map for the county was obtained.

3.1.6 U.S. Army Corps of Engineers

The USACOE is responsible for river basin and lake management in relation to flood control. In this responsibility, the USACOE has the task of determining the change in capacity of the lake due to sedimentation. The most recent sedimentation re-survey of Lake Proctor was performed in May 1986. This survey was reviewed in relation to additional data needs on bathymetry for model calibration. Relative siltation rates also provided information on sedimentation potentially from non-point sources. The bathymetric data from the sediment resurvey will potentially be valuable for segmentation of a hydrodynamic model of Lake Proctor for use in making water quality predictions. The re-survey report was obtained, but the raw bathymetric data will be necessary in model development.

3.2 Background Watershed Information

Background watershed information pertinent to water quality in lake proctor include the physical characteristics of the watershed, construction and operation of the lake, and the urbanization and land uses prevalent in the watershed. These influences were briefly researched using sources

including those above. A more detailed evaluation of watershed influences will be performed upon receipt of the complete aerial photographs of the watershed for the non-point source determination.

3.2.1 Physical Water Quality Influences

Physical and hydrological influences on water quality include geographic and atmospheric influences, bottom substrate and watershed geologic influences, lake shape and circulation influences, and instream flow and water level influences. The upper reaches of the Leon River Watershed are in the Osage Plains section of the Central Lowland physiographic province of Texas. The watershed area in the lower reaches above Proctor Dam is in the West Gulf Coastal Plains physiographic province. Substrate geology in the headwaters of the lake is composed of carboniferous rocks of the Pennsylvania Period including the Strawn, Canyon, and Cisco Groups of formations. The Leon river channel is characterized by steep slopes, rocky substrate, and a channel capacity which is relatively small for the extent of the watershed. Total gradient of the Leon stream bed is approximately 970 feet to Lake Proctor at an average slope of 3.25 feet per mile. Tributaries to the Leon River also have typical steep gradients and rocky substrates.

Atmospheric influences include the effects of precipitation, evaporation, wind direction and speed, and incident radiation on the lake water balance and heat budget. The mean maximum July temperature at the nearest National Weather Service Station is 95°F with a record maximum of 108°F. The mean minimum January temperature was 32°F with a record minimum of 9°F. Watershed minimum temperature was recorded at Gatesville at -6°F and watershed maximum was recorded at Eastland at 115°F. The average annual precipitation on the lake surface is 28.45 inches with a seasonal minimum of 1.44 inches in August and a seasonal maximum of 4.45 inches in May. Heavy precipitation during 1989-1990 has resulted in abnormal lake level and releases in recent periods. Pan evaporation has averaged 90.63 inches per year in the watershed. A pan coefficient of 0.69 for the area results in an estimated 62.53 inches per year lake surface evaporation. prevailing wind direction is from the south during the spring, summer, and fall months and from the north during winter months. Annual average wind speed is approximately 10.8 miles per hour in the watershed. The temperature distribution within the lake is important to determine the degree and stability of vertical stratification of the lake. The

temperature stratification has a significant impact on aquatic life as it also indicates dissolved oxygen, nutrient, and biological differences between the hypoliminion and epilimnion.

The morphological influences on lake water quality include surface area, volume, inflow and outflow, mean depth, length, length of shoreline, depth-area relationships, depth-volume relationships, and bathymetry. Mean depth is often used as a gauge of primary productivity with shallower lakes seen as more productive due to effective light penetration and relative volume of the photic zone for algae production. Lake currents due to wind stress, inflow, and outflow also determine the mixing and distribution of nutrients and sediment in the lake. This information is also necessary to determine transport terms in water quality modeling of the lake. Indirectly, prevailing lake currents can be ascertained by bathymetry and conservative tracer calibration in modeling.

3.2.2 Construction and Operation of Lake Proctor

Lake Proctor is formed from impoundment of the Leon River by a rolled earth fill dam with concrete spillway in a right abutment ridge. The spillway is an ogee type crest with a length of 440 feet. The outlets from the dam consist of two 36 inch diameter gate controlled conduits. Control of releases from Lake Proctor give some flexibility in water quality management through seasonal timing of releases. Gate controlled releases from the hypoliminion may also be used to control downstream water quality and vertical stratification in the lake itself. In addition, the dilution/flushing action of release regulation can be used to reduce the concentration of limiting nutrients or phytoplankton biomass.

Another operational activity which influences lake water quality is artificial aeration/circulation. Artificial aeration/circulation devices were noted on TWC monitoring reports during several periods. These devices may have been installed for hypolimnetic aeration to improve anaerobic conditions below the thermocline or for aeration induced mixing to improve lake circulation and reduce algal blooms. No information was obtained as to the purpose of the aerators in the TWC monitoring reports.

3.2.3 Watershed Development and Historical Land Uses

The watershed of Lake Proctor is primarily agricultural and rural in nature. The primary historical land use in the watershed is rangeland. The predominant secondary land uses are for pastureland and cropland. A relatively small proportion of the watershed is used in urban land use, farmsteads, roads, and other development.

Development in Comanche County began in 1851 with the settlement of the Indian Creek Community east of Comanche and continued with settlement of Troy (Gustine) in 1854. Eastland County developed along with similar land uses as Comanche with the exception of a temporary rapid increase in population during the 1920's as a result of the oil boom and related petroleum exploration and development. Erath County also developed along rangeland and cropland uses with little urbanization other than minor population centers such as Stephenville.

The majority of agribusiness done in the watershed is dairying and beef cattle. Also sheep, poultry, and mohair goats are sources of income in the watershed. The main crops of the watershed are grain sorghum, peanuts, cotton, and small grains. In Erath County, orchards, truck crops, and nursery crops are of importance. Improved pasture land, mainly Coastal bermuda grass and weeping love grass continues to increase in the watershed. These grasses have been planted on many idle fields and area brushlands.

3.3 Water Quality Criteria and Uses

Current water quality criteria have been set through analyses of existing data from the TWC statewide monitoring network stations and the existing uses of the major water bodies. The specific criteria are documented in the Texas Water Quality Standards. The majority of the watershed is composed of undesignated tributaries which are regulated by the general criteria in the standards and site specific reviews of stream uses made during TWC regulatory actions. The waterbodies with unique criteria include Lake Proctor, Lake Leon, Leon River below Lake Leon, and Leon River below Lake Proctor.

3.3.1 Segment 1222 - Lake Proctor

Lake Proctor is designated as segment 1222 in the Texas Water Quality Standards. The designated uses of the lake include public water supply, contact recreation, and high quality aquatic life uses. Water quality criteria for this segment are identified in Table 1. Attainment of these criteria is documents in the TWC 305(b) Water Quality Inventory. The 1990 edition of this document indicates that attainment was made over the last three years of monitoring data for all monitoring parameters except for dissolved oxygen and fecal coliforms. Four excursions of the dissolved oxygen criteria were observed with a mean value of 2.6 mg/L. One excursion of the fecal coliform criteria was observed with a value of 224 organisms/100mL. No significant water quality problems were known to exist in the segment, and no potential problems were identified.

3.3.2 Adjoining Segments

Adjoining segments in the vicinity of Lake Proctor include Segment 1221 - Leon River below Lake Proctor, Segment 1223 - Leon River below Lake Leon, and Segment 1224 - Lake Leon. The water quality criteria for these segments is included in Table 2. The recent attainment of the criteria from the Water Quality Inventory indicates that no significant water quality problems are known to exist in Segments 1223 or 1224. However, insufficient data were available to examine the standards compliance for Segment 1223.

Segment 1221 was noted for five violations of the dissolved oxygen criteria. Suspected sources for these violations are algal photosynthesis and respiration. Occasional high nitrogen and periodic high phosphorous levels in this segment contribute to the algal production and wide fluctuations of dissolved oxygen level over the diurnal period. The fecal coliform criteria, total dissolved solids, chloride and sulfate criteria are also occasionally violated.

The period on this segment indicates that existing point or non-point sources of pollution have had an impact upon water quality. This historical data gives a preliminary indication that this segment may not support an additional treatment plant discharge without advanced treatment. However, this conclusion is dependent upon the proposed site location and assimilative capacity

TABLE 1 TEXAS WATER COMMISSION WATER QUALITY CRITERIA LAKE PROCTOR - SEGMENT 1222

Variable	Criteria		
Dissolved Oxygen	Minimum of 5.0 mg/L		
pH Range	6.5 S.U. to 9.0 S.U.		
Total Dissolved Solids	Annual average not to exceed 500 mg/L		
Fecal Coliform	Thirty-day geometric mean not to exceed 200 #/100 ml		
Chloride	Annual average not to exceed 200 mg/L		
Sulfate	Annual average not to exceed 75 mg/L		
Temperature	Maximum not to exceed 93°F		

- JONES & NEUSE -

TABLE 2
TEXAS WATER COMMISSION WATER QUALITY
ADJOINING SEGMENTS 1221, 1223, 1224

	Leon River Below Proctor 1221	Leon River Below Leon Reservoir 1223	Leon Lake 1224
Dissolved Oxygen (min)	5.0 mg/L	5.0 mg/L	5.0 mg/L
pH Range	6.5 - 9.0	6.5 - 9.0	6.5 - 9.0
Total Dissolved Solids (max)	500 mg/L	1240 mg/L	500 mg/L
Fecal Coliform (max)	200/100 ml	200/100 ml	200/100 ml
Chloride (max)	150 mg/L	480 mg/L	150 mg/L
Sulfate (max)	75 mg/L	130 mg/L	75 mg/L
Temperature (max)	90°F	93°F	93°F

– JONES & NEUSE —

of the Leon River below the discharge point. This information will be developed through the models proposed as an end result of the monitoring program.

3.3.3 <u>Undesignated Tributaries</u>

Major undesignated tributaries in the Lake Proctor Watershed include the Copperas Creek/Rush Creek system, the Sabana River, and Armstrong Creek. All of these tributaries were found to be flowing during a reconnaissance visit to the watershed and are presumed to be perennial. Many of the major tributary flow are supplemented by discharges from relatively small municipal wastewater treatment plans. The proposed revisions to the Texas Water Quality Standards raised the presumptive aquatic life use of perennial unclassified waters from limited to intermediate uses.

Other smaller tributaries draining directly to the lake include Sowells and Duncan Creeks. In addition, many secondary tributaries form the bulk of the lake drainage area. no major springs or seeps are found on the secondary tributaries and each drainage area is relatively small. Therefore, most of the secondary tributaries are intermittent in flow regime. The unclassified waters which are intermittent in flow regime are presumed to have limited aquatic life uses.

Assessment of site specific unclassified stream uses is currently practiced during regulatory actions of the TWC. These actions include wastewater discharge permit renewals, amendments, or applications, water rights permit actions, and enforcement actions taken over unauthorized discharges. The actions taken by the TWC to date have not resulted in the development of any site specific uses or criteria for the unclassified tributaries in the Lake Proctor Watershed.

3.4 Wastewater Discharger Data

The wastewater discharges in the Lake Proctor Watershed were compiled from the TWC permit database for the subject counties. Locations of the treatment plants and discharge points were obtained from the permit files at the TWC. Many of the municipal plants in the watershed maintain no-discharge permits authorizing irrigation disposal of the treated wastewater on

designated land application areas. These areas are a potential non-point source of pollution if proper tailwater control and application rates are not maintained.

3.4.1 <u>Discharger Locations</u>

A summary of the permitted wastewater treatment plants and discharge locations in the watershed is provided as Table 3. Dischargers in the ULRMWD jurisdiction but not in the Lake Proctor Watershed are also included. The current permitted effluent limits are also shown. discharge locations are also shown on the individual survey maps provided in subsequent sections.

3.4.2 Pretreatment Status

The participation of each of the municipalities in the EPA pretreatment program indicates the degree of control maintained over indirect industrial discharges in the watershed. The pretreatment program is designed to provide a permitting program for sewer system users which discharge industrial type wastewaters incompatible with domestic sewage treatment plants. in this manner, the problems of interference or pass-through of industrial wastewaters can be minimized through controlled pretreatment plants. As the present time, none of the cities in the watershed are known to operate an EPA approved pretreatment program. Many maintain sewer used ordinances which restrict industrial discharges, but the enforcement of these ordinances is uncertain. However, the lack of significant industrial activity in the watershed indicates the degradation of lake water quality. As the watershed develops, the more industrial activity is relocated, the need for pretreatment programs will increase.

3.5 Water Usage and Commitments

The primary water uses for divisions out of Lake Proctor are for domestic water supply and irrigation. Domestic water treatment plants using such diversions are located in Proctor and Hamilton. The ULRMWD owns and operates both plants and the distribution and storage system; however, the City of Hamilton is contracted for debt retirement for the Hamilton Water Treatment Plant. In addition to these plants, several irrigation authorities and individuals have

TABLE 3
WASTEWATER TREATMENT PLANTS - LAKE PROCTOR WATERSHED

				30-Day Average Effluent Limits		
Treatment Plant	TWC Permit No.	Segment	Receiving Stream	Flow MGD	BOD mg/L	TSS mg/L
City of Comanche	10719-01	1221	Inidan Cr. L. Leon R.	0.73	20	20
City of Dublin	10405-01	1221	Mid Leon R. L. Leon R.	0.25	30	90
City of Gustine	10841-01	1221	S. Leon R. L. Leon R.	0.082	20	20
City of Hamilton	10492-01	1221	Pecan Cr. L. Leon R.	0.25	20	20
City of Gorman	10091-01	1222	UT Shinoak Br. Sabana R.	0.12	30	90
ULRMWD	11764-01	1222	ND	0.06	100	NA
City of Rising Star	10072-01	1222	Copperas Cr.	0.14	20	20
City of DeLeon	10078-01	1223	UT U. Leon R.	0.166	30	90
City of Eastland	10637-01	1224	South Fork Leon R. Leon Res.	0.40	20	20
City of Hico	10188-01	1226	N. Bosque R.	0.20	20	20
City of Stephenville	10290-01	1226	N. Bosque R.	1.85	20	20
City of Ranger	11557-01	1230	L. Palo Pinto	0.43	20	20
City of Cisco	10424-01	1233	UT Sandy Cr. Hubard Cr. Res.	0.44	30	90

— JONES & NEUSE -

commitments from the Brazos River Authority for a portion of the authorized diversions and releases from the lake. A summary of the water commitments is provided as Table 4.

3.6 Statistical Analyses of Available Water Quality Data

3.6.1 Descriptive Statistics

Descriptive statistics include parametric and non-parametric measurements of central tendency, variation, and extreme conditions. These statistics may be used to make inferences of the population from a limited number of samples. Inferences may also include tests for distribution shape and degree of normality of the data. The calculation of descriptive statistics can also be used to determine the appropriate sample size needed to make additional inferences about the population and perform various hypothesis tests.

From the three TWC stations on Lake Proctor, the main parameters of interest with enough data to calculate statistics included dissolved oxygen, conductivity, chlorophyll-a, and total phosphorous, Tables 5 through 8 summarize the descriptive statistics. The descriptive statistics were calculated for the period of record data for the surface samples at each SMN station. The designations; #1, #2, and #3, refer to TWC SMN stations 1222.001, 1222.002, and 0111,003 respectively. From the standardized skewness and kurtosis, it appears that the distributions for chlorophyll-a and total phosphorous are significantly non-normal in shape. To verify this conclusion, the data was plotted on normal probability axes. These plots are provided as Figures 4 through 9. The data plotted on these axes shows relatively normal distribution for all of the parameters except for chlorophyll-a and total phosphorous. Therefore, parametric statistics performed on these parameters should be used with caution.

3.6.2 Spatial Variations

The adequacy of the data to detect spatial variations can be determined in several ways. tests of spatial adequacy include direct parametric tests of differences between two means, analysis of variance, graphical methods, and indirect regression and correlation analyses (Whitlatch 1989).

TABLE 4
WATER COMMITMENTS FROM LAKE PROCTOR

Commitment	Primary Usage	Allocation (acre-ft/year)
ULRMWD	Domestic	4,835
Lake Proctor Irrigation Authority	Irrigation	6,800
North Leon Rive Irrigation Authority	Irrigation	4,926
Sears Brothers	Irrigation	230
Brad Hammonds	Irrigation	45
Jess Hansen Estate	Irrigation	100
Dwight G. Land	Irrigation	30
Terry Mathis	Irrigation	35
Elton McDonald	Irrigation	160
Norman W. Sides	Irrigation	30
Sherman L. Sides	Irrigation	70
Taylor Farms	Irrigation	40
Local Reserve	NA	10
		17,311 acre-ft/year

--- JONES & NEUSE -

TABLE 5
SUMMARY STATISTICS - DISSOLVED OXYGEN
TWC LAKE PROCTOR STATIONS

Variable	DO #1	DO #2	DO #3
Sample size	44	38	32
Average	8.77159	9.39737	9.53125
Median	9	9.25	9
Mode	9	7.6	9
Geometric mean	8.42847	9.10825	9.26875
Variance	5.55923	5.49432	5.21512
Standard deviation	2.3578	2.344	2.28366
Standard error	0.355452	0.380246	0.403699
Minimum	3.9	5.7	5.9
Maximum	13.7	14	14.6
Range	9.8	8.3	8.7
Lower quartile	7	7.5	7.6
Upper quartile	10.9	12	11.75
Interquartile range	3.9	4.5	4.15
Skewness	-0.148541	0.135214	0.344383
Standardized skewness	-0.40225	0.340282	0.795318
Kurtosis	-0.625682	-1.3068	-0.816152
Standardized kurtosis	-0.847178	-1.64436	-0.942411

--- JONES & NEUSE -

TABLE 6 SUMMARY STATISTICS - CONDUCTIVITY TWC LAKE PROCTOR STATIONS

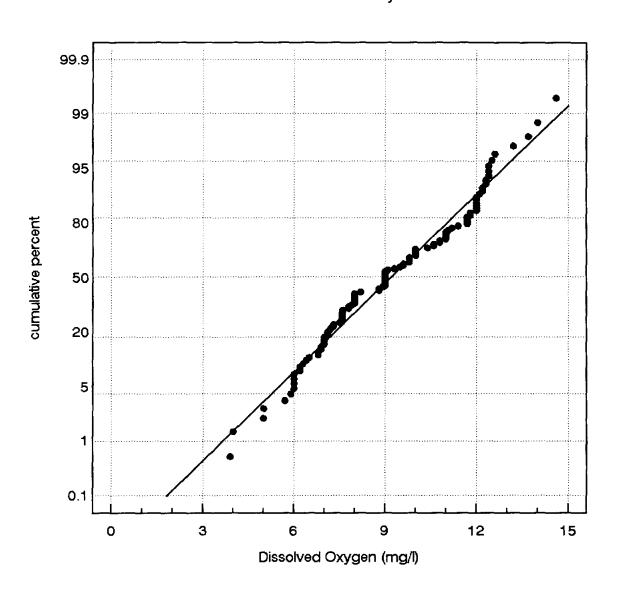
Variable	Cond #1	Cond #2	Cond #3
Sample size	44	38	32
Average	708.455	705.711	741.5
Median	710	704.5	745
Mode	730	800	800
Geometric mean	686.179	674.77	715.663
Variance	31785.7	36521.3	35651.4
Standard deviation	178.285	191.106	188.816
Standard error	26.8775	31.0014	33.3782
Minimum	387	190	327
Maximum	1100	1100	1100
Range	713	910	773
Lower quartile	599	600	640
Upper quartile	785	830	830
Interquartile range	186	230	190
Skewness	0.305812	-0.333696	-0.116357
Standardized skewness	0.828143	-0.839784	-0.268716
Kurtosis	-0.218048	0.363234	-0.0382817
Standardized kurtosis	-0.295238	0.45706	-0.0442039

JONES & NEUSE -

TABLE 7
SUMMARY STATISTICS - CHLOROPHYLL-a
TWC LAKE PROCTOR STATIONS

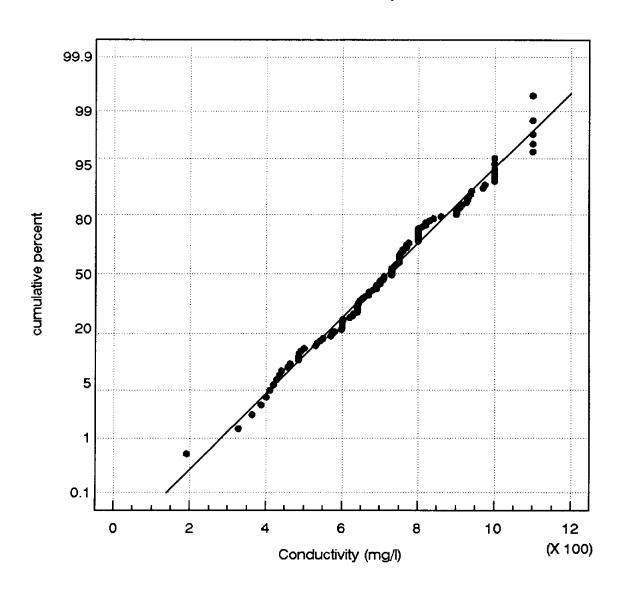
Variable	Chl a #1	Chl a #2	Chl a #3
Sample size	37	33	27
Average	26.7919	28.8303	29.7333
Median	25	23.5	28
Mode	28	11	41
Geometric mean	21.7931	22.048	25.3223
Variance	327.142	353.006	247.219
Standard deviation	18.0871	18.7885	15.7232
Standard error	2.9735	3.27065	3.02593
Minimum	4	0.8	7
Maximum	78	73.2	71.4
Range	74	72.4	71.4
Lower quartile	13.2	13	20
Upper quartile	32.7	38.1	41
Interquartile range	19.5	25.1	21
Skewness	1.38448	0.795006	0.61129
Standardized skewness	3.42806	1.86446	1.29674
Kurtosis	1.7604	-0.17763	0.38741
Standardized kurtosis	2.18579	-0.20829	0.41091

– JONES & NEUSE –

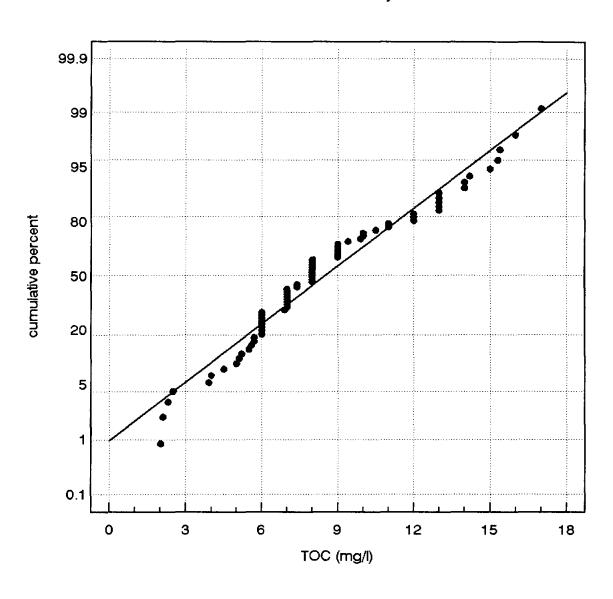

TABLE 8
SUMMARY STATISTICS - TOTAL PHOSPHOROUS
TWC LAKE PROCTOR STATIONS

Variable	T Phos #1	T Phos #2	T Phos #3
Sample size	33	26	23
Average	0.175758	0.231154	0.233043
Median	0.12	0.18	0.15
Mode	0.09	0.12	0.14
Geometric mean	0.13671	0.202053	0.200094
Variance	0.0344439	0.0151626	0.022104
Standard deviation	0.185591	0.123137	0.148674
Standard error	0.0323072	0.0241491	0.0310007
Minimum	0.06	0.08	0.09
Maximum	1.1	0.49	0.73
Range	1.04	0.41	0.64
Lower quartile	0.09	0.12	0.14
Upper quartile	0.21	0.32	0.28
Interquartile range	0.12	0.2	0.14
Skewness	4.12706	0.739697	1.94694
Standardized skewness	9.67881	1.5398	3.8119
Kurtosis	20.0267	-0.782762	4.72454
Standardized kurtosis	23.4834	-0.814724	4.62507

– JONES & NEUSE –

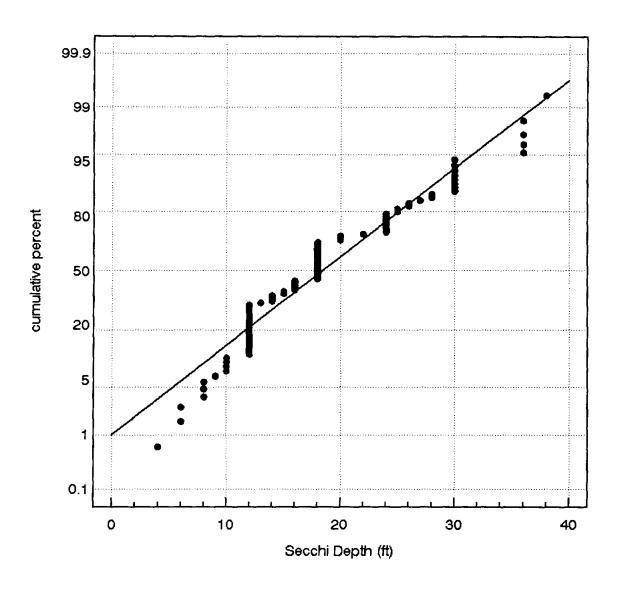

FIGURE 4 DISSOLVED OXYGEN NORMAL PROBABILITY PLOT

Normal Probability Plot

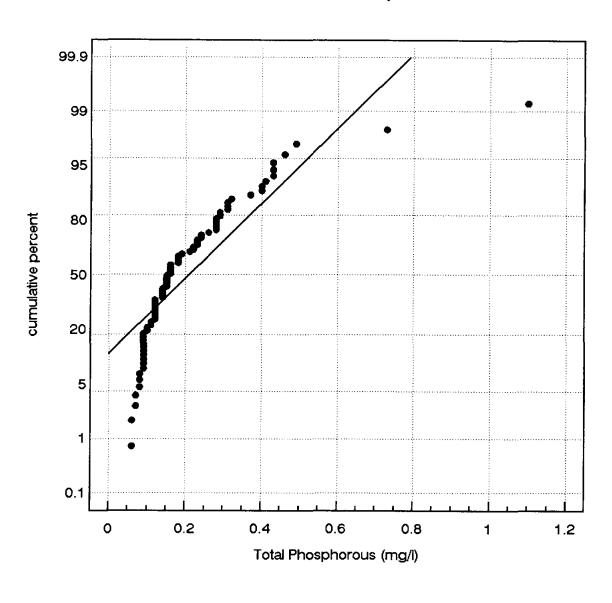

FIGURE 5 CONDUCTIVITY NORMAL PROBABILITY PLOT

Normal Probability Plot

FIGURE 6 TOTAL ORGANIC CARBON NORMAL PROBABILITY PLOT

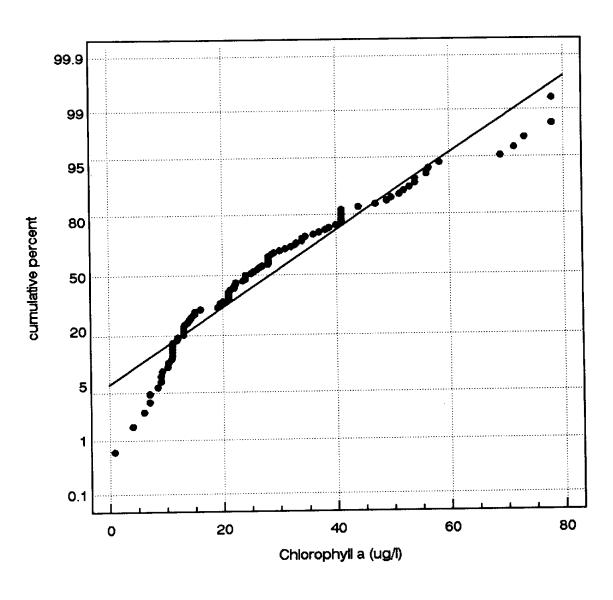

Normal Probability Plot

- JONES & NEUSE -


FIGURE 7 SECCHI DEPTH NORMAL PROBABILITY PLOT

Normal Probability Plot

FIGURE 8 TOTAL PHOSPHOROUS NORMAL PROBABILITY PLOT

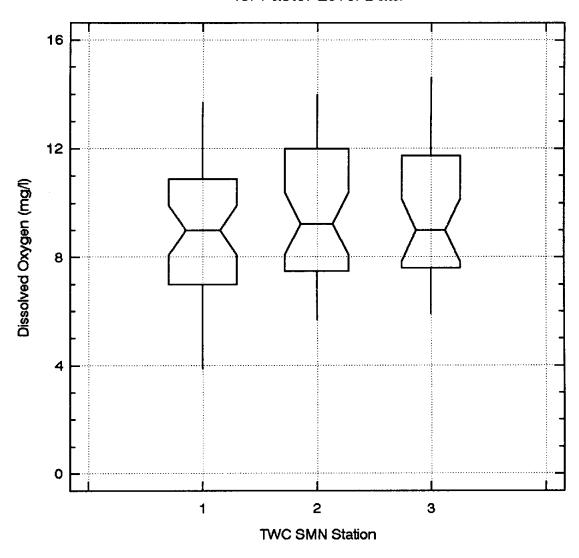

Normal Probability Plot

– JONES & NEUSE -

FIGURE 9 CHLOROPHYLL-a NORMAL PROBABILITY PLOT

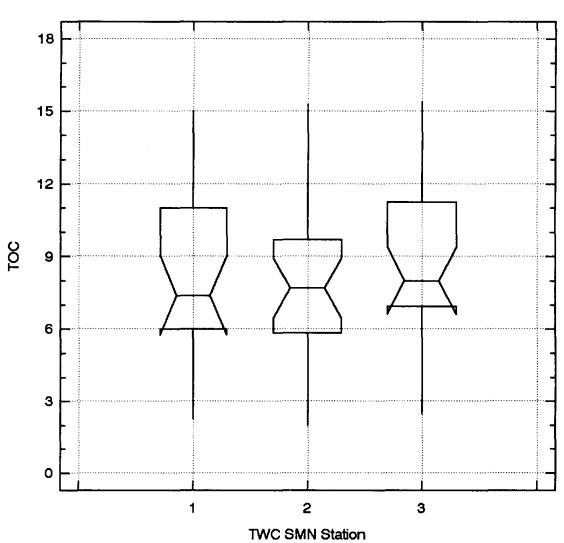
Normal Probability Plot

A graphic description of the data commonly used in water quality analyses is the box and whisker plot. In these plots, the range of data is represented by vertical lines ("whiskers"), the 95 percent confidence interval is represented by the box. A horizontal line through the box represents the median and the relative area on each side of the box represents the degree of skewness in the data. Box and whisker plots for several parameters are provided in Figures 10 through 15 for the surface samples (except secchi depth) taken at three SMN stations in Lake Proctor. From these plots, little difference in median or confidence intervals was noted for most parameters. However, the plots for total dissolved solids (non-filterable residue) and secchi depth transparency did show some variation between stations. Total dissolved solids was shown to be slightly lower in the main body of the lake and transparency was shown as higher in the main body station.


The difference in water quality between lake stations was also analyzed using a one way analysis of variance. In this analysis, the groups compared were the SMN stations in Lake Proctor and the means compared were the parameters of interest from the database. The result of this analysis confirmed the low level of difference between sampling stations for almost all of the parameters containing sufficient data. However, a significant difference was found for secchi depth data and non-filterable residue. Summaries of the analyses of variance data is provided in Appendix C.

3.6.3 Indications of Trophic State

Individual indicators of trophic state include phosphorous concentration, chlorophyll-a concentration, turbidity, secchi depth transparency, primary productivity, and nitrogen series concentrations. in order to determine the rate of eutrophication in the lake, trend analyses are commonly used to determine the increase or decrease in these parameters over time. Trends were calculated for all of the parameters of interest with sufficient data. Plots of the trend analyses for chlorophyll-a, total phosphorous, dissolved oxygen, and secchi depth are included as Figures 16 through 19 for SMN Station 1222.001. Additional trend plots are provided in Appendix D. As shown in these plots, a wide scatter of data is present, and any calculated trend is suspect. In addition, the trends in water quality parameters appear inconsistent to the expected progression of eutrophication. Total phosphorous is increasing over time and the


FIGURE 10 DISSOLVED OXYGEN BOX AND WHISKER PLOT

Notched Box and Whisker Plots for Factor Level Data

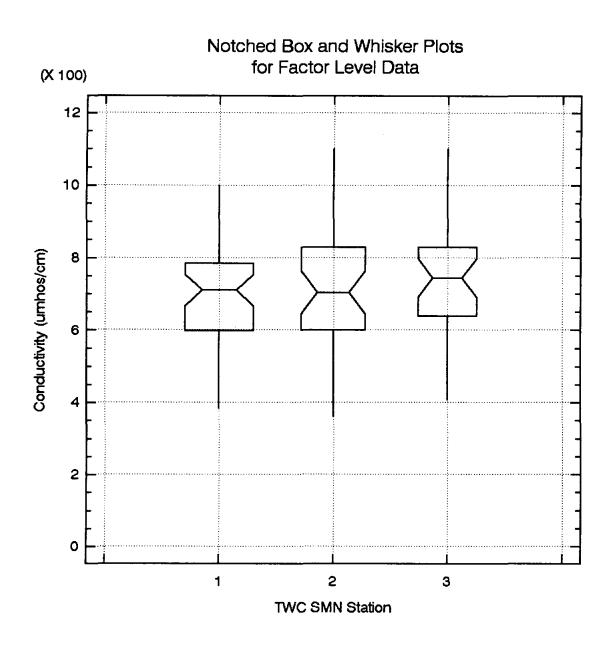


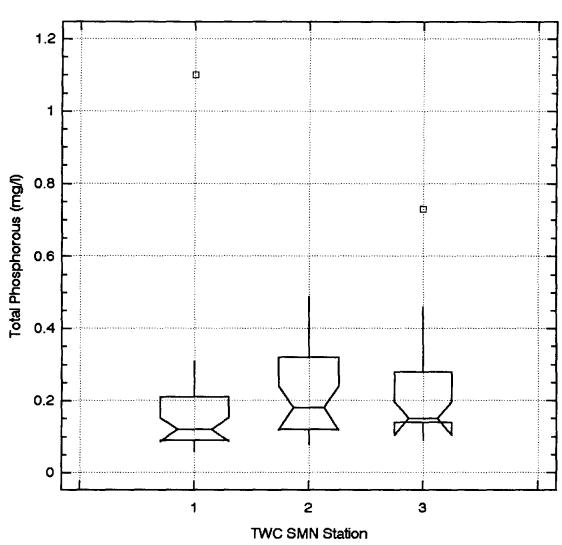
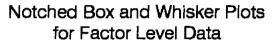
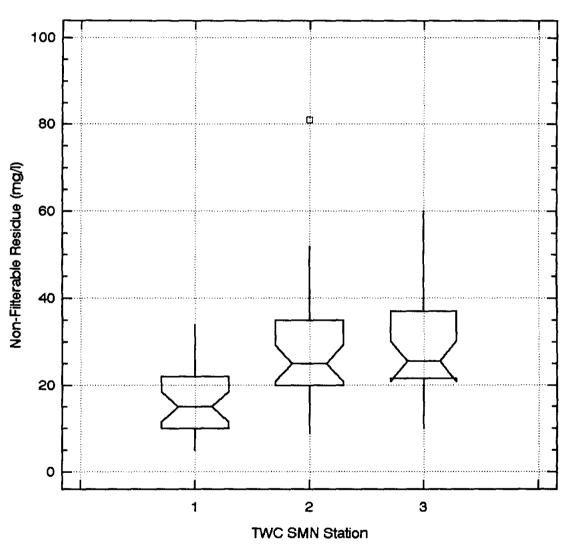
FIGURE 11 TOTAL ORGANIC CARBON BOX AND WHISKER PLOT

Notched Box and Whisker Plots for Factor Level Data

FIGURE 12 CONDUCTIVITY BOX AND WHISKER PLOT

FIGURE 13 TOTAL PHOSPHOROUS BOX AND WHISKER PLOT

Notched Box and Whisker Plots for Factor Level Data

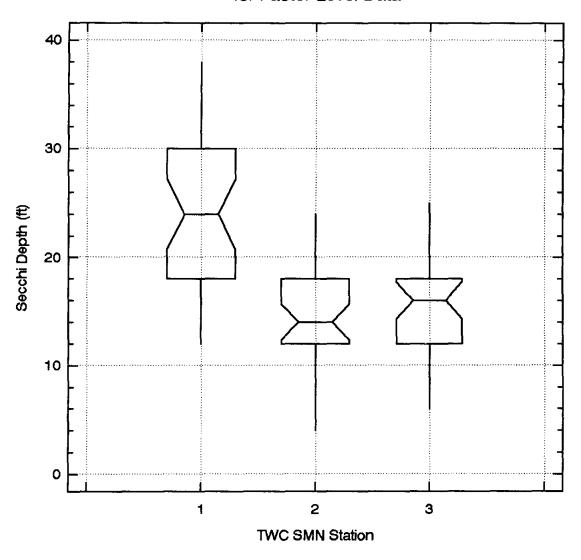

FIGURE 14
TOTAL DISSOLVED SOLIDS BOX AND WHISKER PLOT

FIGURE 15 SECCHI DEPTH BOX AND WHISKER PLOT

Notched Box and Whisker Plots for Factor Level Data

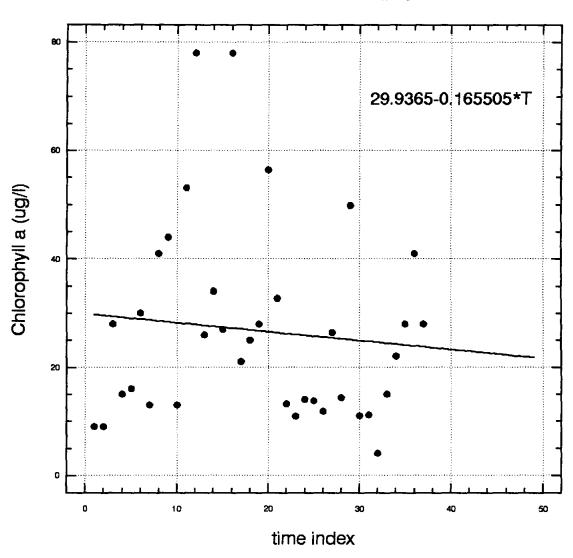

- JONES & NEUSE -

FIGURE 16 CHLOROPHYLL-a TREND ANALYSIS

Trend Analysis

Chiorophyll a

TWC SMN Station 1222.001


JONES & NEUSE

FIGURE 17 DISSOLVED OXYGEN TREND ANALYSIS

Trend Analysis

Dissolved Oxygen

TWC SMN Station 1222.001

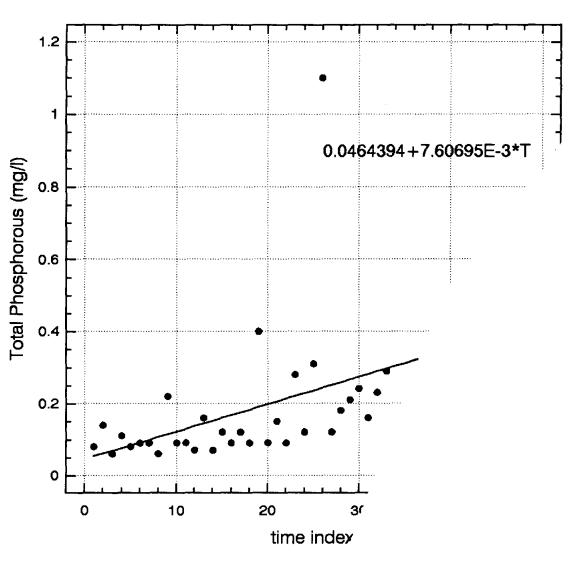

JONES & NEUSE

FIGURE 18 TOTAL PHOSPHOROUS TREND ANALYSIS

Trend Analysis

Total Phosphorous

TWC SMN Station 1222.001

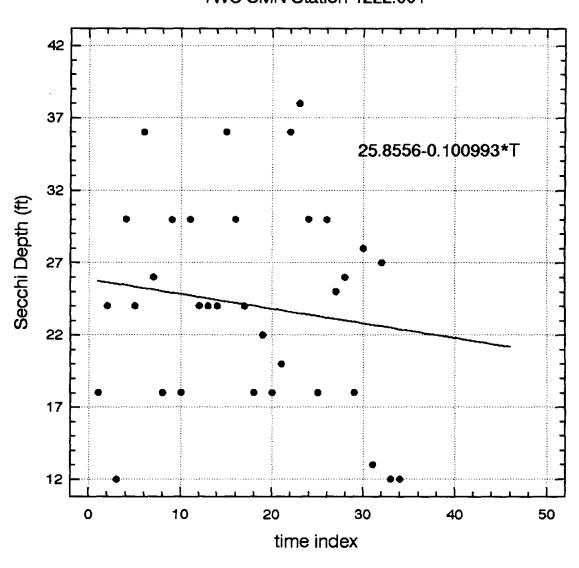

- JONES & NEUSE -

FIGURE 19 SECCHI DEPTH TREND ANALYSIS

Trend Analysis

Secchi Depth

TWC SMN Station 1222.001

JONES & NEUSE

transparency is decreasing indicating more phytoplankton growth, but the chlorophyll-a is decreasing indicating reduction in phytoplankton biomass.

Also included in the trend analysis was a calculation of mean squared error, mean absolute error, mean percentage error, and mean absolute percentage error. The results of these calculations are included in Appendix E. As shown in the summary tables, the error of the trend line in predicting past data is extremely large relative to the mean of the data for all of the parameters of interest. For this reason, the trends are inconclusive.

3.6.4 Water Quality Indices

The calculation of a water quality index is a common method of summarizing the results of monitoring into a single statistic. In this manner, the relative health of a water body can be compared when data from individual parameters may not be descriptive enough. Water quality indices can be divided into biological indices and physical/chemical indices. Biological indices refer to such statistics as species diversity, species richness, and habitat quality index. These are calculated based on an objective rating system combined with species counts and subjective habitat observations. Such species counts are currently unavailable for Lake Proctor and are not anticipated as part of the monitoring program.

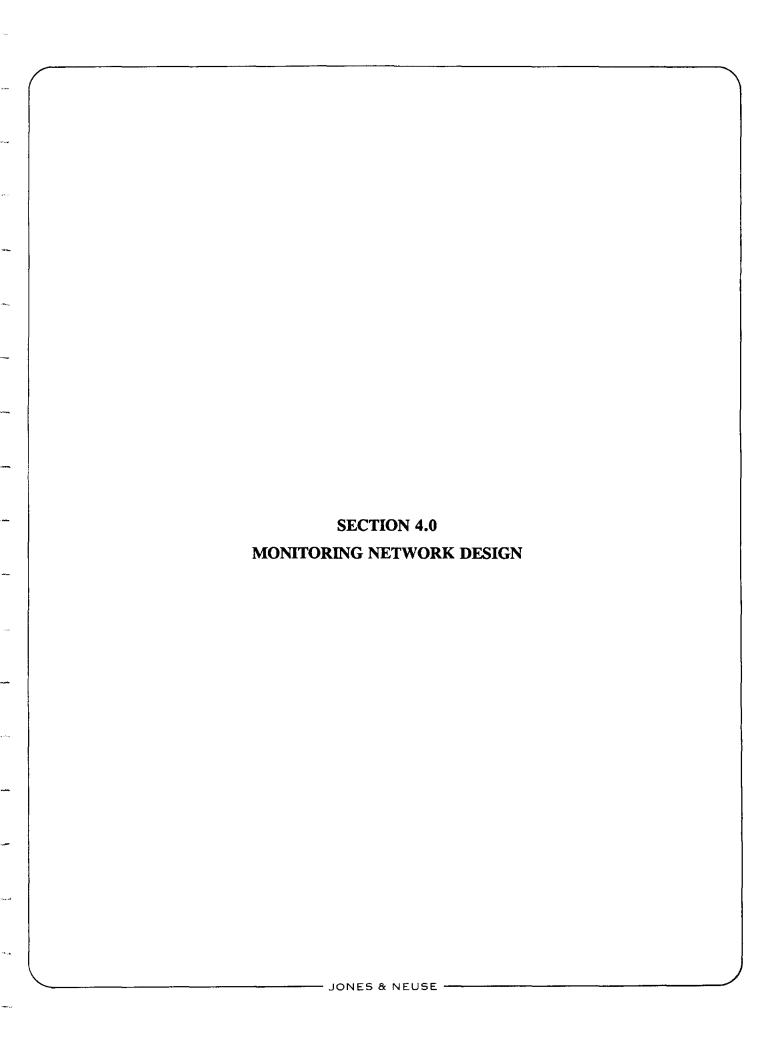
Physical/chemical indices include a number of statistics designed to combine individual indicators of trophic state or another characteristic and the variability of the parameter measurement. Several indices of trophic state combine one or several of the individual indicators described above and categorize the water body based on historical ratings of lakes can be compared with other lakes and compared in time with previous lake conditions. The most common index used in assessing water quality is the Carlson Trophic State Index (TSI) (Reckhow 1984) which relates chlorophyll-a, total phosphorous, and secchi depth transparency to a sliding scale of trophic state based on empirical data from a number of northern temperate lakes.

From the period of record mean values associated with the lake stations, chlorophyll-a values would result in a TSI of approximately 65. Total phosphorous levels would indicate a TSI value

of approximately 80. The secchi depth summary statistics were not used because of the inconsistencies in the index for southern lakes which commonly contain a higher level of inorganic suspended material. This index value would indicate that Lake Proctor is eutrophic to hypereutrophic compared with northern temperate lakes. This value should be compared with other Texas reservoirs. The trend in TSI over time was not calculated due to the change in sampling frequency which made seasonal corrections impossible.

3.6.5 Nutrient Limitations

Nitrogen and phosphorous are the two most common nutrients controlling algal proliferation and subsequent water quality degradation. The limiting nutrient is the one found in shortest supply relative to algal requirements for growth and reproduction. Nutrient limitations can be determined through spikes in the primary productivity tests, estimations from Michaelis-Menton kinetics, or simple comparisons of the nitrogen to phosphorous ratios to algae stochiometric ratios. Because the nitrogen series data was very limited on most Lake Proctor stations, a lakewide limitation could not be determined. In addition, very little orthophosphate or available phosphorous data was found in the database. This data should be obtained in the planned monitoring program.


3.7 Indications for Monitoring Design

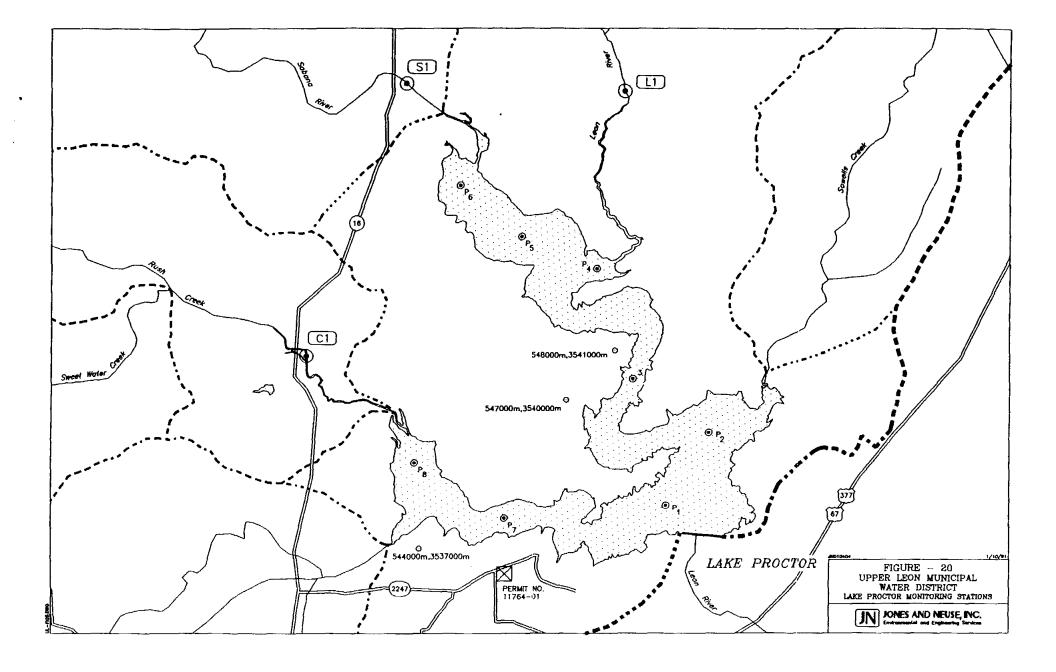
The statistical analyses performed above indicate that both the number of sampling locations and the frequency of sampling should be increased. The descriptive statistics indicate that the sample size is inadequate to base reliable yearly determinations of mean and extreme values and variance for many variables. In addition, the sample size and inconsistent frequency was shown to be inadequate for determination of long term trends for most parameters.

The proposed short term lake sampling should also include a refinement of sample locations to account for cove impacts and coverage of the entire lake body. The use of three lake sample locations such as the TWC SMN stations is insufficient for evaluation of wasteload allocations. The USGS data is more refined, but the number of sample locations is still too limited for a model segmentation scheme.

JONES & NEUSE -

From the statistical analyses it is evident that parameters of interest are not consistently used across all sample locations. Parameters used to determine trophic status such as turbidity, secchi depth, phosphorous concentrations, chlorophyll-a, or primary productivity have either not been measured or were measured inconsistently across the sampling locations and period of record. The proposed monitoring program should determine which parameter set to sue for meeting the objectives discussed in Section 2.0 and consistently measure these parameters as appropriate.

4.0 MONITORING NETWORK DESIGN


The design of a relatively large monitoring effort requires integrating the information goals of the field and laboratory analyses with the logistics of the study period and ULRMWD resources. The monitoring program includes both fixed station long term sampling locations in Lake Proctor and short term intensive survey stations located in tributaries to the Lake. The choice of monitoring stations should include adequate spatial coverage for wasteload allocation and model development at a reasonable expenditure of field and laboratory resources. Although the proposed monitoring network is ambitious in terms of stream surveys, these are necessary to localize water quality impacts which may affect the long term use of the lake as a drinking water resource. These surveys with the accompanied calibrated models will also give ULRMWD a technical basis for evaluation of new discharge permits in the watershed which may impact lake proctor water quality.

4.1 Initial Year(s) Monitoring Program

The initial year sampling proposed for Lake Proctor is designed to detect both spatial and temporal trends in water quality. The sample locations, frequency and type were selected to provide enough detail to calibrate a model simulating dissolved oxygen and eutrophication impacts in the lake. The initial year monitoring program may be more intensive than necessary for a long term reconnaissance program. Therefore, after the initial year of sample data is assessed, the number of locations for long term sampling may be modified. If sufficient resources are available at the end of the first year of sampling, the monthly sampling should continue at least one more year to provide a verification data set to the Lake Proctor model as well as a calibration data set.

4.1.1 Sample Locations

Sample locations can be divided into main body samples, cove samples, tributary samples, and lake arm samples. The proposed sample locations are shown on Figure 20. Field temperatures will be taken at depths to locate the thermocline if appropriate. Field data will be obtained at each five foot interval. Afterwards, a hypolimnion and epiliminion composite sample will be

taken for laboratory analyses. Sample locations are also described in Table 9. Locations of sample points in the lake will be approximated on the first sampling trip through bank curve land marks visible on Figure 20. During the first trip, exact locations will be specified by landmarks easily discernible from the sampling boat. Records of the landmarks will be retained in the sample logs. The subsequent sampling trips will return to these landmarks to ensure that representative and comparable samples are taken.

4.1.2 Sample Frequency and Type

Monthly sampling trips are scheduled for at least the initial year of the monitoring program. Light bottle/dark bottle tests of phytoplankton productivity are to be performed quarterly due to the time consuming nature of the test. Samples will be taken at four separate times during one diurnal cycle. These times should be spread across a period of time from just before daybreak to early evening if possible.

4.1.3 Field Measurements

Field measurements will include temperature, pH, conductivity, depth, and dissolved oxygen concentration. An additional field set up for primary productivity will be required. With the exception of primary productivity, all parameters will be measured using the Hydrolab Surveyor II water quality meter. Calibration procedures for the Hydrolab are provided with the instrument. Primary productivity will be measured quarterly using a suspended BOD bottle cage and portable dissolved oxygen meter or the Winkler DO methodology. Field parameters and required accuracy parameters are provided in Table 10.

4.1.4 Laboratory Analyses

A defined parameter list for laboratory analyses is provided as Table 11. This list includes the measurement parameter, both EPA and Standard Method references, reporting units, recommended method description, anticipated lower detection limit, and maximum holding time. The parameters were chosen based on the requirements of each data need defined in Section 2.0. Conventional pollutants and water quality indicators were chosen due to the lack of significant

TABLE 9

LAKE PROCTOR SAMPLING STATIONS

Sampling Station	Description of Location						
Mainstream Stations							
P1	Main Body Station Near Spillway						
P2	Lower Leon River Arm Opposite to Sowells Creek Cove						
Р3	Upper Leon River Arm Between Sowells Creek and Leon River Coves						
P4 Leon River Cove							
P5	Sabana River Arm Between Leon River and Sabana River Coves						
Р6	Sabana River Cove						
P7	Rush Creek Arm Between Main Body and Rush Creek Cove						
Trubutary Stations							
C1	Rush Creek at SH 16 1.2 Miles South of Downing						
S1	Sabana River at SH 16 near Ebenezer Comm.						
L1	Leon River at Unnamed Road 1 Mile West of FM 1496						

TABLE 10
FIELD PARAMETER TABLE

Variable	Units	Resolution	Accuracy	Method	Reference
Dissolved Oxygen	mg/L	0.01 mg/L	±2%	Membrane Covered Polarographic Cell	Hydolab Spec.
Temperature	°C	0.1°C	±0.2°C	Metalic Composite Thermister	Hydolab Spec.
рН	S.U.	0.01 S.U.	±0.2 S.U.	Voltametric Sensor	Hydolab Spec.
Conductivity	mS/cm	1 mS/cm	±1% range	6-Electrode Amperiometric Cell	Hydolab Spec.
Depth	m	0.1m	±0.45m	Barometric Pressure Transducer (Strain Gauge	Hydolab Spec.
Transparency	m	0.25m	Var	Secchi Depth	NA

— JONES & NEUSE —

TABLE 11
LABORATORY PARAMETER TABLE

No.	Measurement Parameter	40 CFR 136 EPA Ref.	WPCF/AWWA ⁽⁹⁾ Std. Meth.	Units	Method	Lower Detection Limit	Holding Time
1	Biochemical Oxygen Demand	(1) 405.1	507	mg/L	Oxygen Electrode Dissolved O ₂ Uptake	0.1 mg/L	48 hours
2	Soluble BOD	(1) 405.1	507	mg/L	Oxygen Electrode Dissolved O ₂ Uptake	0.1 mg/L	48 hours
3	Chemical Oxygen Demand	(1) 410.12	508A	mg/L	Reflux Method Titrimetric	5 mg/L	28 days
4	Total Suspended Solids	(1) 160.2	209C	mg/L	103°-105°C Gravimetric	0.5 mg/L	7 days
5	Total Phosphorous	(1) 365.2	424C(III) 424D	mg/L	Persulfate Digestion Vandomolybdophosphoric Acid-Spectrophotometric	10 ug/L	28 days
6	Soluble Phosphorous	(1) 365.23	424C(III) 4240F	mg/L	Persulfate Digestion Vandomolybdophosphoric Acid-Spectrophotometric	10 ug/L	28 days
7	Total Ortho-phosphate	(1) 365.23	424F	mg/L	Ascorbic Acid Spectropholometric	10 ug/L	48 hours
8	Soluble Ortho-phosphate	(1) 365.2	424F	mg/L	Ascorbic Acid Spectropholometric	10 ug/L	48 hours
9	Ammonia Nitrogen	(1) 350.2	417D	mg/L	Titrimetric Distillation	20 ug/L	28 days
10	Nitrate Nitrogen	(1) 352.1	NA	mg/L	Spectropholometric	20 ug/L	28 days
11	Nitrite Nitrogen	(1) 354.1	419	mg/L	Spectropholometric	20 ug/L	48 hours
12	Total Kjeldahl Nitrogen	(1) 351.3	417B	mg/L	Distillation-Titrimetric	5 mg/L	28 days
13	Bicarbonate Alkalinity	(1) 310.1	403	mg/L	Titrimetric	5 mg/L	14 days

4

JONES & NEUS

TABLE 11 LABORATORY PARAMETER TABLE - CONTINUED

No.	Measurement Parameter	40 CFR 136 EPA Ref.	WPCF/AWWA ^{ct} Std. Meth.	Units	Method	Lower Detection Limit	Holding Time
14	Carbonate Alkalinity	(1) 310.1	403	mg/L	Titrimetric	5 mg/L	14 days
15	Chlorphyll-a	NA	10026	ug/L	Spectropholometric	0.5 ug/L	48 hours
16	Fecal Coliform	(2) p 132	909C	#/100 ml	Membrane Filter Multiple Tube MPN	NA	24 hours
17	Total Coliform	(2) p 114	909A	#/100 ml	Membrane Filter Multiple Tube MPN	NA	24 hours
18	Plankton Primary Productivity	NA	1002I	gc/m²day	Light Bottle/Dark Bottle	NA	24 hours
19	Trubidity		214A	NTU	Nephelometric	1.NTU	48 hours

- (1) "Methods for Chemical Analysis of Water and Wastes"
 U.S. Environmental Protection Agency
 Office of Research and Development
 Environmental Monitoring and Support Laboratory
 Cincinnati, Ohio. 1979
- "Microbial Methods for Monitoring the Environment, Water and Wastes"
 U.S. Environmental Protection Agency
 EPA-600/8-78-017
 Office of Research and Development
 Environmental Monitoring and Support Laboratory
- (3) "Standard Methods for the Examination of Water and Wastewater" 16th Edition, APHA, AQQA, WPCF, Washington, D.C. 1985

industrial contributions to the watershed. Agricultural pesticides and herbicides may be added after completion of a non-point source analysis to be included in a separate report.

4.1.5 Tributary Stream Gages

Inflow measurements at the major tributaries are essential to the proper calibration of the lake model. The inflows are not currently recorded at any specific USGS gaging station. it is recommended that flow measurements be made on the Leon River, Sabana Creek, Rush Creek, and Armstrong Creek during each monthly sampling survey. Specific locations recommended for tributary flow measurements are listed in Table 9. The flows are to be measured by cross section velocity measurements using a March-McBirney flowmeter. Flow should also be measured at the release from Lake Proctor during the sampling period.

4.2 Permanent Monitoring Program

4.2.1 Sample Locations

Sample locations for the permanent monitoring of Lake Proctor should be the same as the initial year. As specified above, the sample stations for subsequent samplings of the lake body will be located through landmarks chosen during the initial sampling trip. The general locations of the stations are shown on Figure 20. The descriptions of the stations are provided in Table 9.

4.2.2 Sample Frequency and Type

The variability in lake monitoring data usually indicates that monthly monitoring be continued as long as possible. After the initial year of monitoring data is analyzed, a decision should be made as to the long-term sample frequencies in the lake. If necessary due to available resources, the frequency should be reduced to quarterly sampling of the lake body. Sample types should be composited as before during each individual sampling trip.

4.2.3 Field Measurements

Long term field measurements should include pH, conductivity, temperature, dissolved oxygen concentration, and depth. These measurements should be made a five foot intervals in order to determine the location of the thermocline in the water column.

4.2.4 Laboratory Analyses

Laboratory analyses for the long term monitoring program should continue as with the short term monitoring program. Laboratory parameters are provided in Table 11.

4.2.5 Tributary Stream Gages

Inflows from major tributaries should continue to be measured during each monitoring trip. The first free flowing station on Armstrong Creek, Sabana River, Rush Creek, and Leon River should be measured.

4.3 Intensive Surveys

In order to protect the downstream water quality in Lake Proctor, modeling of watershed impacts is proposed in the Wastewater Management Plan. In order to model watershed tributaries, calibration data should be obtained in the form of short term duration intensive water quality surveys. Surveys are proposed for Rush/Copperas Creeks, Armstrong Creek, Sabana River, Leon River above Lake Proctor, and Leon River below Lake Proctor. The last survey is proposed to document the water quality in the stream segment proposed for any discharge from an anticipated regional facility serving the Lake Proctor area. The following sections outline features of the surveys and the specific sampling locations recommended for each.

4.3.1 Sample Locations

Sample locations for intensive surveys of tributaries are located to characterize the impact of wastewater dischargers and provide calibration data for a steady state model of the system.

Figures are provided in the subsequent section which shown the locations anticipated to be sampled. It is possible that no discernible flows will occur at several of the upper stations during the survey. The absence of flow is probable if true low flow conditions are present during the survey period. In this situation, the first free flowing station listed in the survey station location tables should be used as the headwater station.

Additional sample locations should be located at wastewater discharges into the stream. Knowledge of current wasteload impacts to the stream will allow the calibrated model to respond to further impacts in a manner closest to the actual stream response.

4.3.2 Field Measurements

Field measurements should include pH, temperature, depth, conductivity, and dissolved oxygen concentration. These parameters are to be measured at five foot increments at points in the stream greater than five foot depth to bottom. It is not anticipated that any of the stations on the tributaries will require depth sampling. Primary productivity and secchi depth measurements are not recommended on the tributary intensive surveys. With this exception, the tributary monitoring should be comparable to the field measurements taken during the lake monitoring trips. Diurnal measurements are recommended to determine daily variations and to calculate a time weighted average of field parameters.

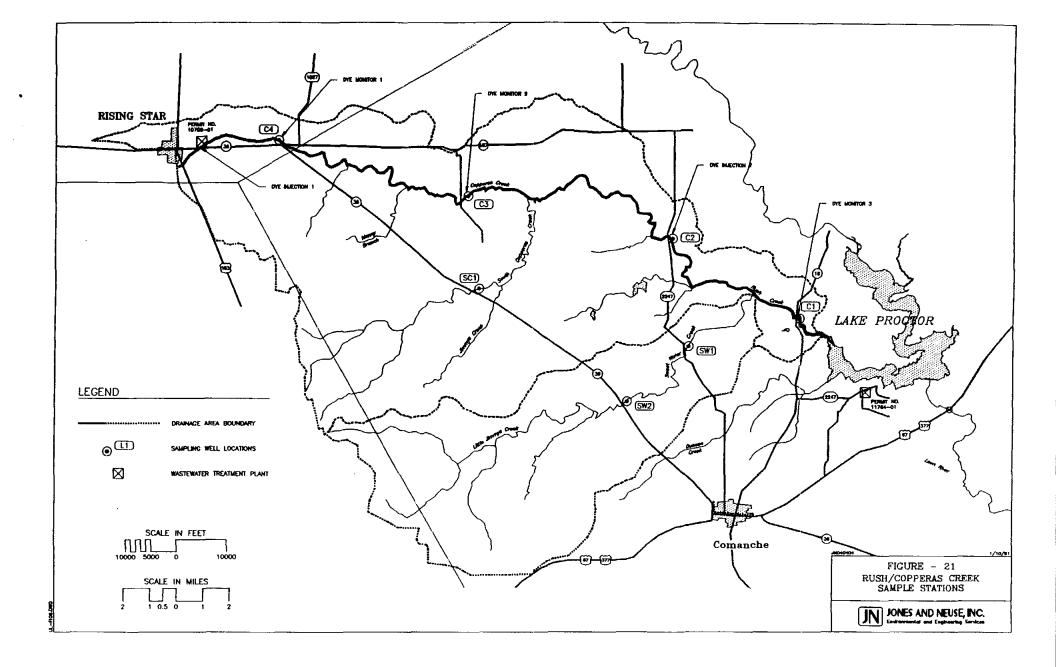
4.3.3 Morphologic and Hydraulic Characterization

A morphologic characterization refers to the measurements made of the streamed structure and shape. Average reach cross sections and substrate conditions are a component of stream morphology. Hydraulic characterization includes flow measurements and time of travel studies. The goal of these characterizations is to develop a predictive equation relating flow, depth, and velocity for use in the dissolved oxygen models of the stream. Figures provided in a subsequent section show proposed dye injection and monitoring points to be used for time of travel studies. Typically, the fluorescent dye is placed in the stream in a batch release and monitored downstream through an automatic sequential sampler and fluorometer. it is not anticipated that

ULRMWD will purchase an automated sampler or fluorometer, but the equipment can be rented on a short term basis for use on the intensive surveys.

It is proposed that cross section data be obtained at each station. This data includes a description of the substrate composition (gravel, rock, silt, mud) and measurement of depth and width characteristics above and below each station. If possible, width should be measured at three transects above and below the station location. The transects can be spaced over a half mile distance above and below the station. If the cross section is highly variable, five transects should be used over a distance of one mile above and below the station. These recommendations are consistent with TWC protocols for site investigations, and may be modified for use in the monitoring plan.

4.3.4 Laboratory Analyses


The standard parameters list for laboratory analyses presented in Table 11 should be used for the tributary intensive surveys. Samples should be manually composited from four diurnal grab samples. Grab samples should be used for fecal coliform and total coliform to protect the integrity of the coliform bacteria.

4.3.5 Tributary and Individual Survey Features

The following sections describe individual tributary characteristics and the particular sampling stations required for the separate intensive surveys.

4.3.5.1 Rush/Copperas Creek

Rush/Copperas Creek system is a relatively lengthy intermittent stream system feeding into a cover in the southwestern arm of Lake Proctor. The creek originates as Copperas Creek with headwaters in the Rising Star area in southern Eastland County. The creek flows approximately 28 miles to the southeast before converging with Rush Creek. Rush Creek flows an additional four miles to the normal pool elevation of Lake Proctor. Major secondary tributaries of Rush and Copperas Creek include Sweetwater Creek, Martins Creek, and South Copperas Creek. The

TABLE 12 COPPERAS/RUSH CREEK INTENSIVE SURVEY SAMPLE LOCATIONS

Sampling Station	Description of Location
Mainstem/Stations	
C1	Rush Creek at SH 16 1.2 Miles South of Downing
C2	Copperas Creek at FM 2247 2.2 Miles North of Soda Springs Comm.
C3	Copperas Creek at FM 1477 1.0 Miles South Sipe Springs Comm.
C4	Copperas Creek at FM 587 4.0 Miles East of Rising Star
C5	Copperas Creek at SH 36 in Rising Star
Tributary Stations	
SW1	Sweetwater Creek at FM 2247 Near Sweetwater Comm.
SW2	Sweetwater Creek at SH 36 4.0 Miles East of Sidney Comm.
SC1	South Fork Copperas Creek at SH 36 near Stag Creek Comm.
Discharger Stations	
1	City of Rising Star

TABLE 13 SABANA RIVER INTENSIVE SURVEY SAMPLE LOCATIONS

Sampling Station	Description of Location
Mainstem Stations	
S1	Sabana River at SH 16 Near Ebenezer Comm.
S2	Sabana River at FM 2318 Near Pounds Comm.
\$3	Sabana River at FM 587 3.2 Miles East of DeLeon
S4	Sabana River at FM 679 2.9 Miles South of Gorman
S5	Sabana River at FM 1027 5.0 Miles Southwest of Carbon
S 6	Sabana River at SH 206 Near Sabana Comm.
Tributary Stations	
TC1	Turkey Creek at FM 2318 near Pounds Comm.
EM1	Elm Creek at FM 1027 2.0 Miles North of Okra Comm.
HS1	Hunting Shirt Creek at Unnamed Road near Center Point Comm.
Discharger Stations	
1	City of Gorman Wastewater Treatment Plant

total drainage area of the system is approximately 284 square miles (181,760 acres). The nature of the drainage area is predominantly rural with minor population centers in Rising Star and Downing. The single wastewater discharger in the watershed is the City of Rising Star (TWC Permit No. 10072-01). The discharge of treated wastewater at the headwaters provides the majority of the base-flow in the tributary. Other smaller communities are presently served by on-site or community septic tanks systems.

Figure 21 shows the proposed sampling locations on the Rush/Copperas Creek system. Descriptions of the sampling locations are provided in Table 12. Potential dye injection and monitoring stations are also provided on Figure 21. These stations should be verified as to velocity and cross section prior to actual dye injection to ensure that the dye monitoring station will be able to detect the peak passage during the survey period.

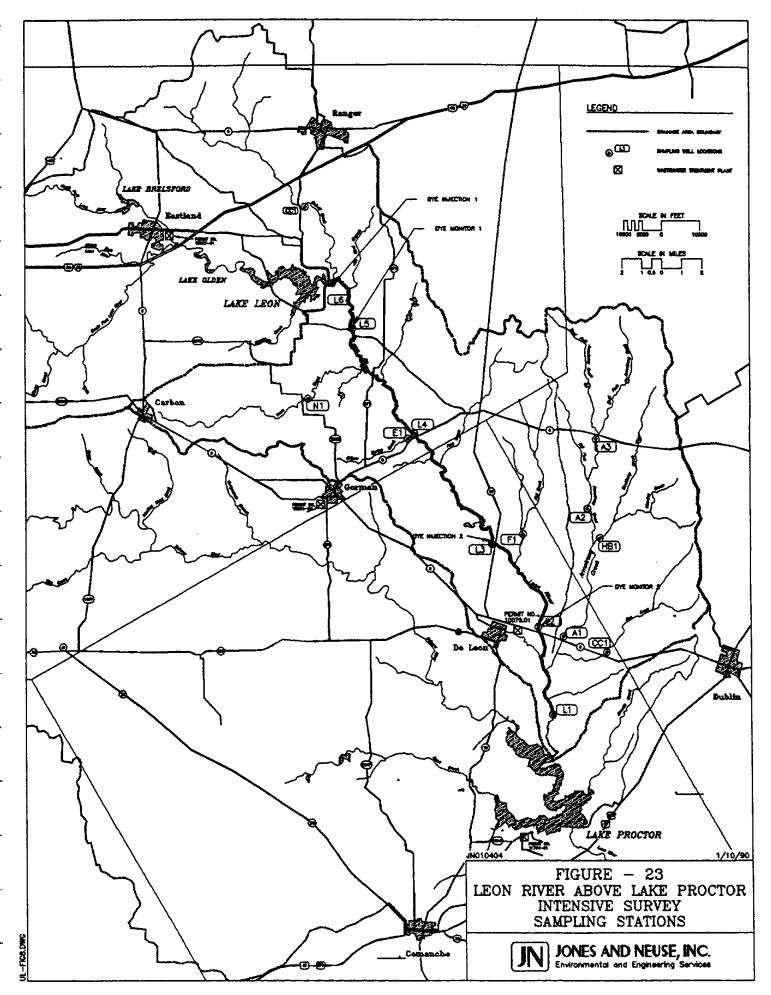
4.3.5.2 Sabana River

To the northwest of Rush/Copperas Creek, the Sabana River flows into a relatively large cove in the Leon River arm of Lake Proctor. The river originates as an intermittent stream with headwaters to the northeast of the City of Cross Plains in Callahan County. The creek flows approximately 49 miles to the southeast before converging at the normal pool elevation of Lake Proctor. Major secondary tributaries of the Sabana River include Elm Creek, Shinoak Branch, Yellow Branch, Turkey Creek, Long Branch, Greer Creek, Hunting Shirt Creek, and Currycomb Branch. The total drainage area of the system is approximately 299 square miles (191,360 acres). The nature of the drainage area is predominantly agricultural and rural with minor population centers in Carbon and Gorman (partially in the watershed). The only wastewater discharge made into the watershed is from the City of Gorman Wastewater Treatment Plant (TWC Permit No. 10091-01). The discharge of treated wastewater provides the majority of the base-flow in the lower portion of the tributary. Other smaller communities in the watershed are presently served by on-site or community septic tank systems.

Figure 22 shows the proposed sampling locations on the Sabana River. Descriptions of the locations are provided in Table 13.

4.3.5.3 Leon River Above Lake Proctor

To the east of the Sabana River, the Leon River flows into a cove approximately equidistant from the Sabana River confluence and the main body of the lake. The river originates as the confluence of the north, mid, and south forks of the Leon River near the City of Eastland in Eastland County. The upper reaches of the river are impounded by Leon Lake. The middle reaches of the river are impounded by Lake Proctor and the lower portion is contained in Belton Lake. The entire watershed is a roughly rectangular area about 135 miles long and 30 miles wide having a drainage area of 3,583 square miles (2,293,120 acres).


The proposed monitoring plan will only address the portion of the Leon River above Lake Proctor to the release from Leon Lake. Monitoring provisions in the Leon Lake Watershed are outside of the present scope. The Leon River flows approximately 32 miles from Leon Lake in Eastland County to the normal pool elevation of Lake Proctor in Comanche County.

Major secondary tributaries of the Leon River above Lake Proctor include Colony Creek, Nash Creek, Hog Creek, Armstrong Creek, and Walker Creek. The total drainage area of the Leon River between Leon Lake and Lake Proctor is approximately 224 square miles (143,360 acres). The nature of the drainage area is predominantly agricultural and rural with major populations centers in DeLeon and Gorman (partially in the watershed). The only wastewater treatment plant operating int he watershed is the City of DeLeon (TWC Permit No. 10078-01) which disposes of effluent through slow-rate irrigation. Other smaller communities in the watershed are presently served by on-site or community septic tanks systems.

Figure 23 shows the proposed sampling locations on the Leon River above Lake Proctor. Descriptions of the locations are provided in Table 14.

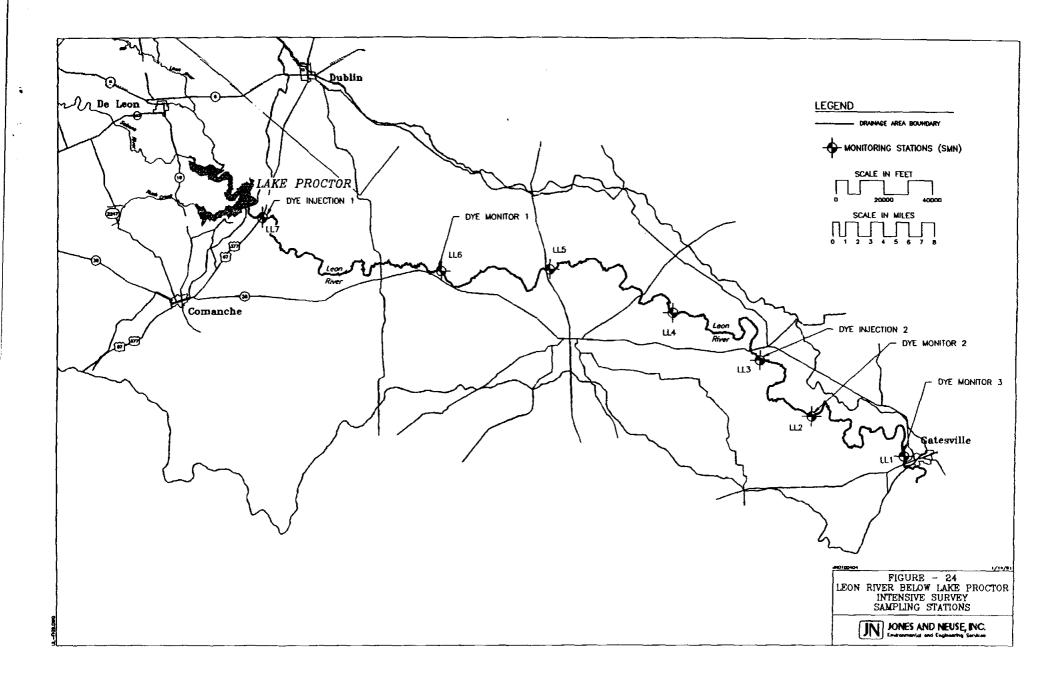
4.3.5.4 Leon River Below Lake Proctor

Below Lake Proctor, the Leon River flows approximately 136 miles through Comanche, Hamilton, and Coryell counties before entering the normal pool elevation of Belton Lake. The proposed monitoring plan will only address the portions of the river from below Leon Lake to

TABLE 14 LEON RIVER ABOVE LAKE PROCTOR INTENSIVE SURVEY SAMPLE LOCATIONS

Sampling Station	Description of Location
Mainstem Stations	
L1	Leon River at Unnamed Road 1 Mile West of FM 1496
L2	Leon River at SH 6 1.5 Mile East of DeLeon
L3	Leon River at SH 16 4.0 Mile North of DeLeon
L4	Leon River at FM 8 4.4 Mile Northeast of Gorman
L5	Leon River at FM 2214 0.5 Mile South of Alameda
L6	Leon River at FM 2461 Below Lake Leon
Tributary Stations	
N1	Nash Creek at FM 2563 0.5 mi S of Kokomo Comm.
E1	Ellison Spring Creek at FM 8
F1	Flat Creek at Unnamed Road 4.5 Mile North of DeLeon
CC1	Colony Creek at FM 2461 2.5 Mile South of Ranger
A1	Armstrong Creek at SH 6 2.0 Mile East of DeLeon
A2	Armstrong Creek at Unnamed Road 2.5 Mile North of FM 2156
A3	Armstrong Creek at FM 8 Near E and W Fork Confluence
HB1	Hackberry Creek at Unnamed Road 1.0 Mile North of FM 2156
CO1	Cow Creek at SH 6 5.6 Mile West of Dublin
Discharger Stations	
1	City of DeLeon Wastewater Treatment Plant

above Gatesville. Monitoring and modeling studies have already addressed the portion of the river below Gatesville as part of the BRA Water Quality Management Plan for Belton and Stillhouse Hollow Lakes. Major secondary tributaries of the Leon River below Lake Proctor include Indian Creek, Halmsely Creek, South Leon River, Resley Creek, Mesquite Creek, Pecan Creek, Colony Creek, Nash Creek Hog Creek, Armstrong Creek, and Walker Creek. The total drainage area of the Leon River above Gatesville below Lake Proctor is 450 square miles (288,000 acres). The nature of the drainage area is predominantly agricultural and rural with major populations centers in Hamilton and Gustine. Several wastewater dischargers are operating in the Leon River Watershed between Lake Proctor and Gatesville. Dischargers within the jurisdiction of the ULRMWD include Comanche (Permit No. 10719-01), Dublin (Permit No. 10405-01), Gustine (Permit No. 10841-01), and Hamilton (Permit No. 10492-01). Other smaller communities in the watershed are presently served by on-site or community septic tank systems.


Figure 24 shows the proposed sampling locations on the Leon River below Lake Proctor. Descriptions of the locations are provided in Table 15.

4.4 Bathymetry Survey

In order to determine a proper segmentation scheme for modeling the lake, additional data may be needed relating to the subsurface structure and volume of the lake. Therefore, an outline for a bathymetric survey of the lake is included below for reference. The necessity of the survey will depend upon the resolution and availability of raw data from the USACOE sedimentation survey of 1986 (USACOE 1987).

4.4.1 Methodology

Bathymetric mapping involves simultaneous distance measurements in three directions. The process involves both data collection and reduction to yield two and three dimensional maps of the lake body. The most time consuming step is the collection of data from the survey. For a reservoir the size of Lake Proctor, several thousand data points are required for reasonable resolution. The most economical method to collect this data is to perform the survey by boat equipped with a survey grade fathometer for depth measurements and a radar navigation system

TABLE 15 LEON RIVER BELOW LAKE PROCTOR INTENSIVE SURVEY SAMPLE LOCATIONS

Sampling Station	Description of Location
Mainstem Stations	
LL1	Leon River at abandoned bridge 0.2 miles downstream of US 84 in Gatesville
LL2	Leon River 0.2 Km Upstream CR 174
LL3	Leon River at Road 1.6 Km Downstream SH 36
LL4	Leon River 0.4 Km Downstream of Alexander Cr
LL5	Leon River at US 281 North of Hamilton
LL6	Leon River Northeast of Lamkin
LL7	Leon River at US 67-377 Northeast of Hasse
Tributary Stations	
None	None
Discharger Stations	·
1	City of Comanche Wastewater Treatment Plant
2	City of Dublin Wastewater Treatment Plant
3	City of Gustine Wastewater Treatment Plant
4	City of Hamilton Wastewater Treatment Plant

to provide x/y (east/west, north/south) location data. The 1986 sedimentation survey performed by the corps of engineers made use of such a system. The data can be collected by an on-board computer system for later analyses. During the survey, careful records of the lake surface elevation must be maintained to allow the depth data, taken relative to the water surface, to be converted to a consistent altitude datum. In addition, horizontal control of the water surface locations must be maintained to superimpose the surveyed lake shape onto the contours.

4.4.2 Locations of Transects

Transects for the survey are dependent upon the resolution needed from the bathymetric map. For use in model segmentation, the resolution does not need to be as well defined as for other purposes. The location of degradation and sedimentation ranges in the USACOE resurvey of the lake in 1986 (USACOE 1987) should be sufficient for model segmentation. However, if the lake coves are to be modeled in any detail, more resolution in these areas should be obtained.

4.4.3 Development of Bathymetric Map

The location and depth data should be compiled and gridded into a Cartesian coordinate system. The gridding methodology proposed utilizes a minimum curvature algorithm to construct a regular grid of depths in the x/y plane from the non-uniformly spaced data points. From the data grid, lines of equal depth may be drawn resulting in two dimensional contour maps of the lake bottom. Three dimensional profiles may be generated by expanding a two dimensional mesh of constant x and y lines into three dimensions resulting in a three dimensional surface. The software required for such data transformations is readily available for the personal computer and can also be used to integrate the volumes for calculation of segmentation parameters in model development.

4.4.4 Use in Model Application

The WASP model allows a great deal of flexibility in programming hydraulic and transport routines. Because vertical segmentation is anticipated in the Proctor Lake model, reservoir bottom morphometry is necessary in applications of any of the options for transport modeling.

The bathymetry will be used in determining segment volumes for hydrodynamic calibration. Vertical and horizontal dispersion (bulk exchange rates) will be specified as outlined in "Methods for Applying WASP to Texas Reservoirs for Wasteload Allocation and Eutophicats Potential Analysis" (Cleveland 1988). This methodology is currently applied by TWC in wasteload evaluations and will be used for Lake Proctor for consistency.

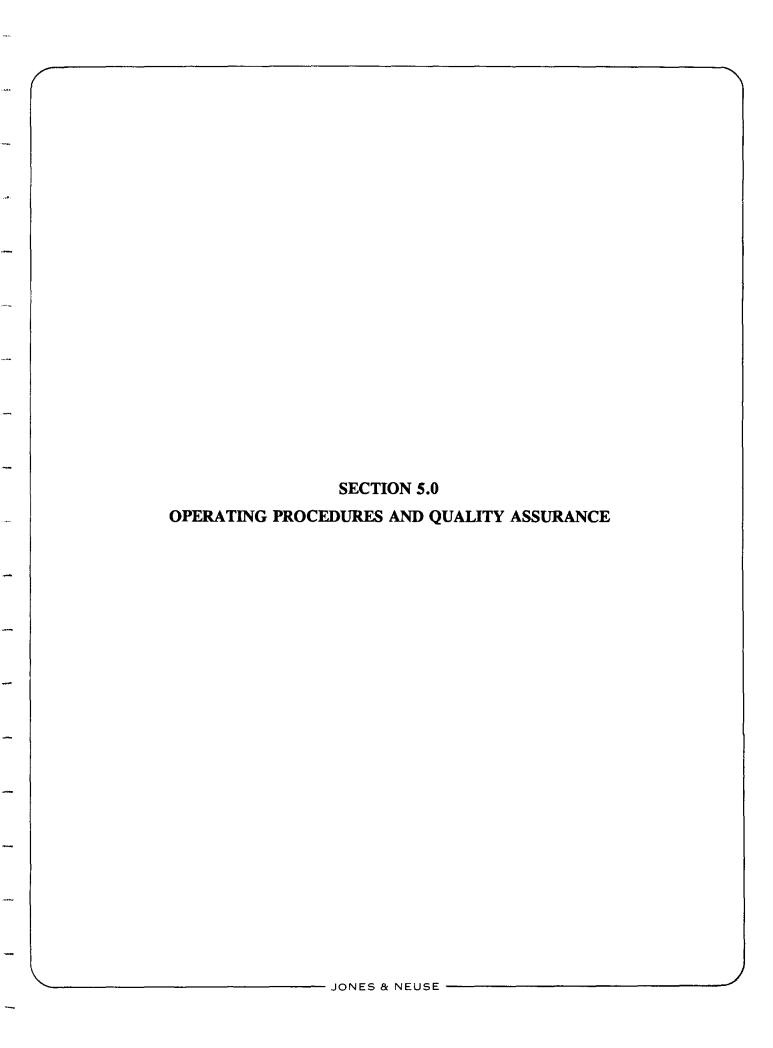
4.5 Non-Point Source Sampling

A detailed plan for non-point source sampling is to be included in the preliminary non-point analyses once sufficient aerial photography of the watershed is obtained. The following sections include a brief discussion of the proposed sampling scheme.

4.5.1 Representative Single Land Use Watersheds

From aerial photography combined with on-site reconnaissance visits, several small watersheds will be selected which are representative of single land use types. Proposed land use categories include agricultural cropland, agricultural rangeland, rural undeveloped, urban commercial, and urban residential. Once several candidate watersheds are chosen, contacts with landowners can be made to obtain permission for sampling activities.

4.5.2 Sample Parameters


In order to characterize the stormwater discharge, samples will be taken from a hydraulic control point during runoff events. It is proposed that the watershed be sampled through a dedicated composite sampler to obtain an event composite sample. In addition, first thirty-minute grade samples should be obtained if possible. The laboratory analyses for these samples should be the same as those proposed in Table 11 for the lake monitoring program. However, chlorophyll-a samples are not required, and total coliform and fecal coliform analyses should be performed on grab samples only.

4.5.3 Recording Stream Gages and Hydrographs

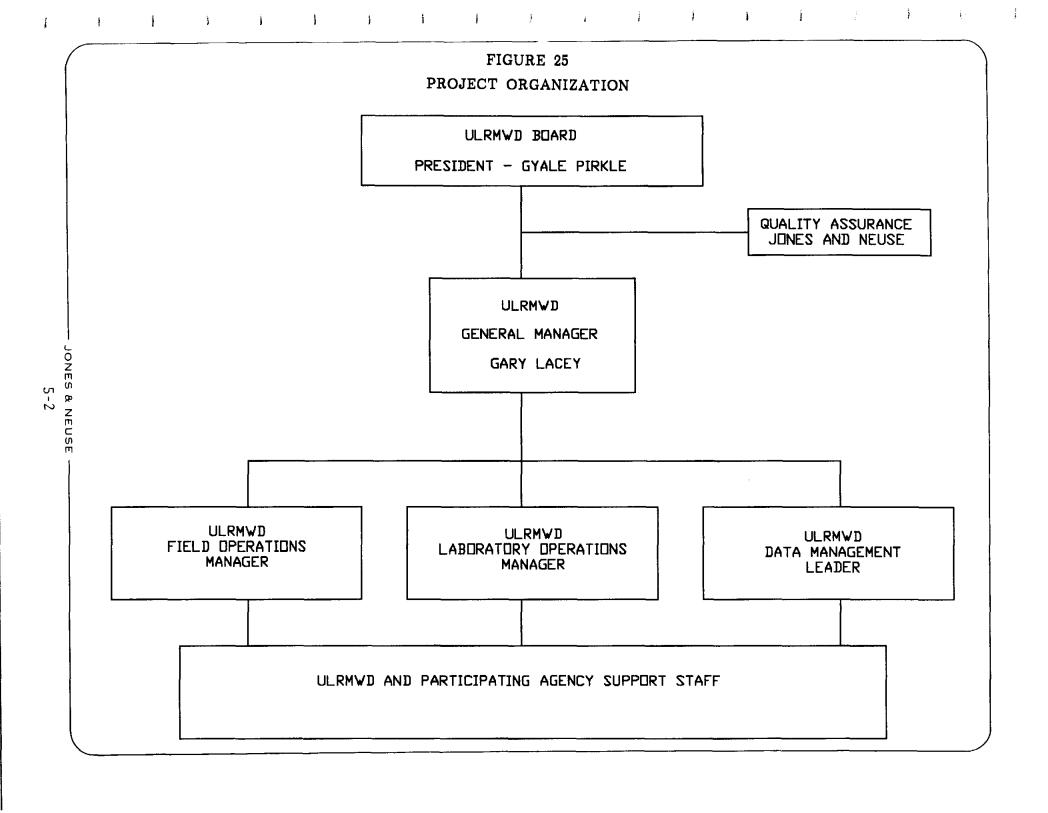
In addition to the water quality samples taken during the stormwater sampling, continuous flow measurements should be recorded during runoff events. This can be accomplished through installation of a fiberglass flume at a hydraulic control point in the watershed. A recording level meter can be positioned in the flume to measure depth of flow for conversion of volumetric flowrate. If the response of the meter is accurate enough, the records will comprise a hydrograph of stormwater runoff from the watershed.

4.5.4 Non-Point source Assessment Report

The preliminary non-point source assessment report will attempt to estimate the present nutrient loadings from non-point source discharges and spatially locate the areas to receive attention in non-point sampling efforts. The need for non-point source controls will also be addressed.

5.0 OPERATING PROCEDURES AND QUALITY ASSURANCE

The following sections address the specific operation of the monitoring system. In addition, information on quality control and quality assurance procedures is included.


5.1 Project Organization

The management of the monitoring program will be the responsibility of ULRMWD with Jones and Neuse, Inc. (JN) providing training and support as required. Coordination of sampling efforts with the other agencies listed in Section 2.0 will be maintained to reduce manpower requirements if possible.

The specific responsibilities of ULRMWD personnel related to the monitoring program can be divided into field, laboratory, and data management tasks. It is recommended that each group of tasks be managed by one individual and coordinated with the ULRMWD project manager. The field manager should be responsible for sampling operations, field measurements, sampling quality control, and sample scheduling within the time frame of the monitoring program. The laboratory manager should be responsible for the coordination of sample storage, laboratory analysis, laboratory data reports, and laboratory quality control. The data management manager should be responsible for the processing of reports, generation of statistics, data quality review, and data reports disseminated to participating agencies. The project manager will oversee these activities and be responsible for personnel availability and overall project coordination. A schematic showing the proposed project organization is provided as Figure 25.

5.2 Quality Objectives

Quality assurance begins with definition of quality objectives selected for the monitoring program and planning of the monitoring to meet these objectives. In determining the requirements of the data consideration should be given to accuracy, precision, representativeness, comparability, and completeness.

The QA objectives for accuracy and precision are typically reported as laboratory control limits for data acceptance. Accuracy and precision for conventional pollutants are commonly measured by percent recovery and relative percent difference. Commonly accepted control limits for conventional pollutants include a 85% to 115% recovery range for spiked samples and a less than 25 percent relative percent difference between duplicates.

Representativeness is a measure of how closely the measured results reflect the actual concentrations or distribution of the chemical compounds in a sample. Representativeness is an objective that cannot be directly quantified but is essential in obtaining useable data. The sample type and frequency have been selected to ensure the relationship of the sample to the water body characteristics is preserved. The sampling, preservation, transportation, and storage protocols are also designed to preserve representativeness. In the lake sampling program, depth composites in the epilimnion and hypolimnion were chosen to represent the natural stratification of lake water quality parameters. Similarly, field measurements are to be taken over the diurnal cycle in order to represent the temporal variations in these parameters. Diurnal composite samples are taken in all situations possible to account for diurnal variations in chemical parameters as well.

Data comparability refers to consistency in analyses and reporting to ensure that the resulting data are comparable between sampling surveys and sample locations. The generation of comparable data is essential to use in statistical comparisons and calibration of models. In addition, the unit and method comparability are needed in providing data to other agencies. The reference to standard analytical methods commonly accepted in water quality monitoring is provided to ensure data comparability. These methods are well documented in Standard Methods (AWWA 1986) and EPA guidance documents (EPA 1979).

5.3 Sampling Procedures

Water samples will be taken using clean, unused sample containers suitable for the analyses to be performed. Table 16 shows the recommended sample containers and preservation techniques for each sampling trip. All records required for documentation of field collection should be

TABLE 16 SAMPLE CONTAINERS

Container	Volume	Material	Preservation	Measurement Parameters
1	1L	Polyethylene	4°C H₂SO₄ pH<2	Total Phosphorous Oritho Phosphate TKN NO ₃ -N NH ₃ -N COD
2	1L	Polyethylene	4°C	Bicarbonate Alkalinity Carbonate Alkalinity Total Alkalinity BOD ₅ BOD ₂₀ TSS Turbidity
3	1L	Amber Glass	4°C	Chlorophyll-a
4	100 ml	Whirl-Pak Bag	4°C	Fecal Coliform
5	100 ml	Whirl-Pak Bag	4°C	Total Coliform

-- JONES & NEUSE --

completed by the field team and reviewed by the field manager. Samples will be logged in the field and each container will be marked with the following information.

Project identification (intensive survey or routine)
Unique location by station designator
Unique location by short description
Sampling method (grab/composite/depth)
Sampling date
Sampling time
Person obtaining the sample
Method of sample preservation

5.4 Sample Custody Procedures

Because the laboratory will be operated by ULRMWD personnel, a limited chain of custody program will be followed. A summary sheet of the samples provided to the lab will be kept which includes the information on the sample tags and the analyses to be made on the sample. In addition, the chain of custody forms will be signed by the field personnel transferring the samples to the laboratory and the laboratory personnel responsible for check-in and initial storage of the samples. At the laboratory, the technician will check the sample tags against the sample bottles and note any discrepancies. The technician should also note the condition of the sample containers, correctness of preservation, and the integrity of the samples. The technician is also responsible for logging in the samples on a computer database for analyses tracking. Information in the database will include the sample tag data and any notations on sample condition. This database will be referred to in a further section.

5.5 Equipment Calibration Procedures

Equipment calibration procedures specified by the individual standard analytical method should be followed at the frequency specified in the method reference. Additional calibration procedures for field equipment should be performed prior to each sampling trip. These procedures are specified in the equipment manuals provided at purchase. Calibration procedures specified in equipment manuals for laboratory instruments should be followed in addition to those required for each analytical method.

5.6 Analytical Procedures

Laboratory analysis references are included in Table 11. These procedures are standard methods commonly used for measurements taken in water matrix at the detection limits required for this monitoring program. Laboratory quality assurance procedures specified by the TWC will be used to determine the performance of laboratory equipment and personnel. These procedures are specified in Table 17 including the frequency of blank, standard, and spike analyses for each group of measurement parameters.

5.7 Data Reduction, Validation, and Reporting

Data reduction will include the production of a standard laboratory report using the appropriate units of measure specified in Table 11. Blank corrections will be applied in all cases. All laboratory calculations will be checked independently by the laboratory manager or other designated staff member. Data validation will also be performed at the time of the calculation check. Validation will determine whether the data is to be accepted or repetition of analyses or sampling is required. The validation will include checks for approved analytical procedures, properly operating and calibrated instrumentation, and precision and accuracy comparable to similar analytical programs. The validation will also include statistical tests of outliers if necessary and identification of questionable analytical values. Laboratory reports will include the data, associated method blanks, background, spikes, standards, and minimum detectable levels.

5.8 Performance and Systems Audits

Review of the laboratory quality control data will be performed by ULRMWD and at least one outside quality auditor. The responsibility for the outside audit is suggested to be JN personnel. The system audit includes review of personnel, facilities and equipment, custody procedures,

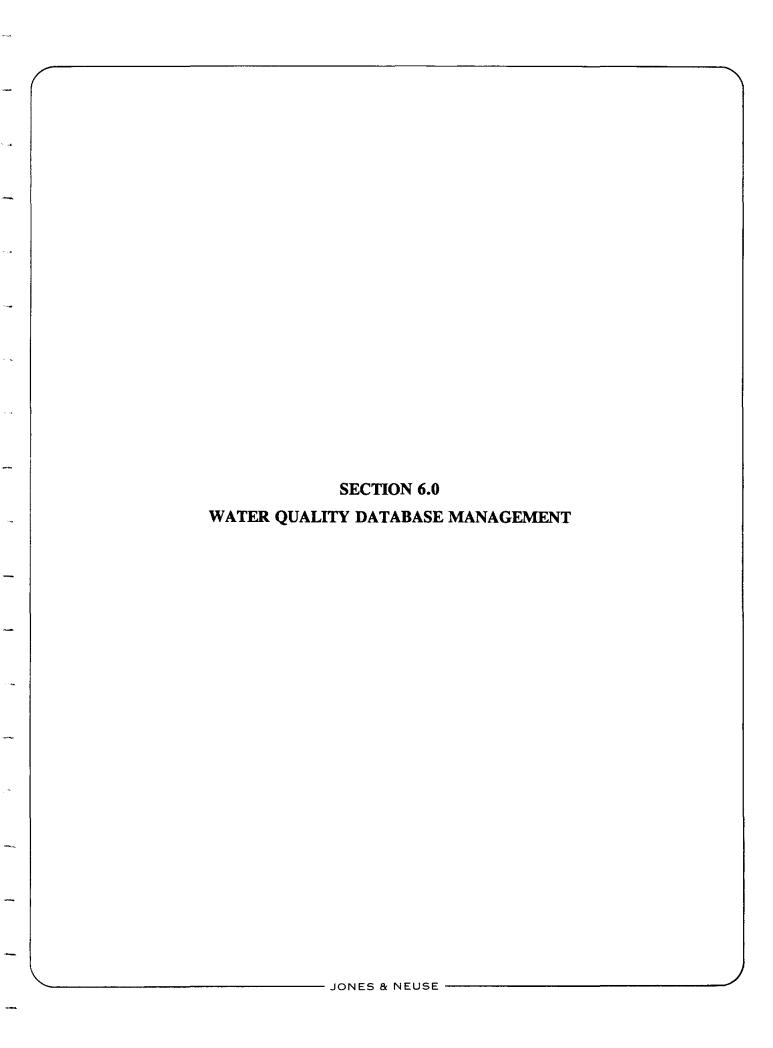
TABLE 17 QUALITY CONTROL PROCEDURES

Variable	Daily Quality Control Requirements								
BOD ₅ , BOD ₂₀	Blank and standard on 10% basis								
TSS	Blank and duplicate on 10% basis (at least one duplicate)								
Alkalinity	Standard and duplicate on 10% basis (at least one duplicate)								
Ph	Calibration with 2 standards								
Conductivity	Calibration with 1 KCl standard								
Titrimetric Analyses, COD	Two standards, duplicates and spikes on a 10% basis (at least one duplicate and spike)								
Colorimetric and Specific Ion Probe Analyses NO ₃ -N, NH ₃ -N, NO ₂ -N, P, O-P	One standard, duplicates, and spikes on 10% basis (at least one duplicate and spike)								

instrument calibration and maintenance, standards preparation and verification, analytical procedures, data handling, and documentation control.

Performance audits include the comparison of quality control at the ULRMWD laboratory with similar laboratories. This audit can be performed by splitting samples and standards from the ULRMWD with an outside contract laboratory for verification. The same outside agent responsible for system audits should also review any performance audits performed by the lab.

5.9 Preventative Maintenance


Maintenance procedures include such activities as lubrication, source cleaning, detector cleaning, probe fluid replacement, probe membrane replacement, and other routine cleaning of instruments. These procedures and their frequency are addressed in individual manufacturers' instrument manuals. Precision and accuracy data should be compared with control limits to determine when instrument performance begins to degrade. Immediate maintenance should be performed when such data indicates degradation of peak resolution, shift in calibration curves, decreased sensitivity, or failure to meet the quality control standards.

5.10 Data Assessment Procedures

After each laboratory analyses calculations for precision (relative percent difference), accuracy (recovery of spikes), and completeness (percentage of validated data) should be made. these values should be summarized along with the analytical data. This will allow the quality control personnel to analyze changes in data quality over time. Suspect data should be clearly identified in records and in the database.

Data assessment procedures include the calculation of diurnal means for field data and grab sample analytical data. The means should be recorded in the database as a calculated parameter. In addition, cumulative descriptive statistics should be calculated after each additional data set is obtained. The statistics should also include graphical representations of data as appropriate for presentation. When sufficient data is accumulated, trends analyses and indices can be calculated. In addition, the distribution of the data and suitability for parametric or non-

parametric statistics can be dete and modeling effort for Lake P.	ermined. At the end of the first year of analyses, the calibration Proctor can be completed.

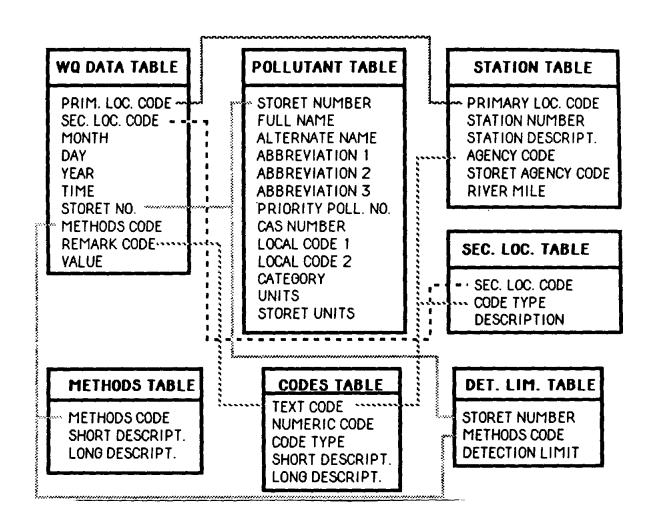
6.0 WATER QUALITY DATABASE MANAGEMENT

In order to compile the field and analytical data, manage reports to participants in the program, and analyze the data, a database management system is proposed for ULRMWD. The components of the system include computing requirements, software requirements, and the actual structure of the database.

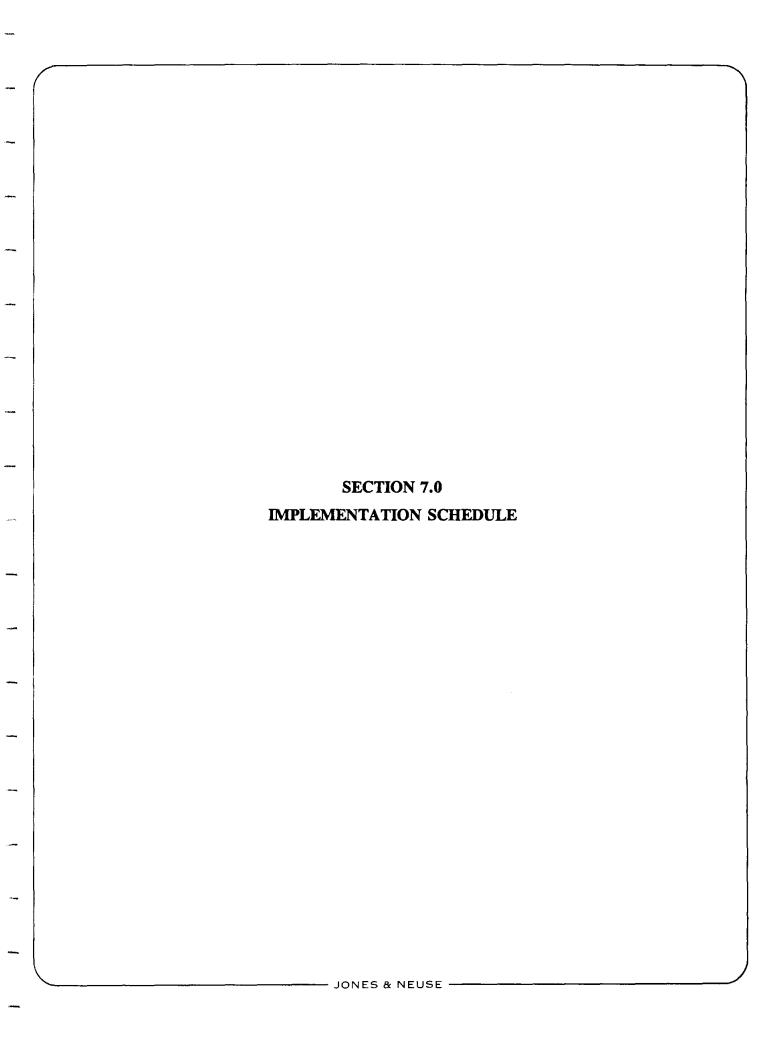
6.1 Computing Requirements

For the size of the database to be generated by ULRMWD, a personal computer is sufficient for data compilation, database management, and statistical computations. Unless the raw bathymetric data from the USACOE sedimentation survey proves to be too large, the personal computer can perform most modeling tasks as well. It is recommended that the ULRMWD have available at least one 386 based personal computer with sufficient hard disk space for storage of the data handling system.

6.2 Software Requirements


The software requirements include features such as portability, ability to work with large amounts of data, and ease of use for ULRMWD personnel. The software should include a relational database for data manipulation and storage. DBase 4 or Paradox 3.5 are two of the most common in usage today. These programs can be manipulated to generate a variety of reports and can interface with several statistical packages. Statistics can be performed using a multipurpose package such as StatGraphics or SPSSPC or a program developed specifically for the manipulation of water quality data such as WQSTATII (Loftis 1989). This program is rather primitive in data handling, but provides a variety of parametric and non-parametric statistics used most often in water quality analyses. Summary statistics, median analyses, trench analyses, and excursion analyses can be performed using this program. In addition, an expert system program for statistic selection is also included in the program.

6.3 Database Structure


Database structures for water quality compilations can be either value-oriented or sample-oriented in nature. Sample-oriented databases contain a record corresponding to each discrete sample. In such a structure, the sample may be analyzed for one or several parameters which are stored in a separate value table. This structure is more appropriate for a utility which tracks water quality by unique sample number or performs several tests on each sample.

A value-oriented structure includes a value table containing the location code and parameter code which direct the database to a location and parameter table which contains details about the value. This structure results in significant redundancy if several parameters are measured as the location and parameter table must be included with each. This approach is more useful when only a few parameters are used, unique sample numbers are not used, or when historical data is being stored with no unique sample number. For the reasons cited above, a sample-oriented database structure is recommended for the ULRMWD monitoring program. Depending upon the database program selected, the different fields and tables can be set up to allow flexibility in data analyses and report preparation. Figure 27 shows an example of a completed sample-oriented database structure for water quality data taken in the Lower Mississippi River (Grayman 1986).

FIGURE 27 EXAMPLE WATER QUALITY DATABASE STRUCTURE

– JONES & NEUSE –

7.0 IMPLEMENTATION SCHEDULE

7.1 Time Schedule

The timing of a large scale water quality study is critical in order to generate enough useful data in a set time period. The lake monitoring should begin with a reconnaissance survey to locate sampling locations and to provide training for ULRMWD personnel who will conduct the monitoring. After this preliminary survey, the monthly sampling can begin immediately. The bathymetric survey can also be performed during any period. The short term intensive surveys should be performed during periods of relatively low flow with little antecedent rainfall for at least one week prior to the survey. Naturally, the scheduling of such surveys must be flexible enough to account for weather conditions. Sufficient time should be available between intensive surveys to allow the laboratory to process samples without violating holding times. Other than this restriction, the surveys may be completed during one summer period. The non-point source sampling studies should be performed after aerial photographs are available and after completion of the preliminary assessment. A graphic time schedule proposed for the project is included as Figure 26.

7.2 Staff Training

ULRMWD staff training scheduling is dependent upon the other seasonal demands on their time. The training for field personnel should include classroom instruction on the equipment and goals of the monitoring trips and field usage of the equipment including quality control procedures during a reconnaissance survey of the lake.

7.3 Model Development and Usage

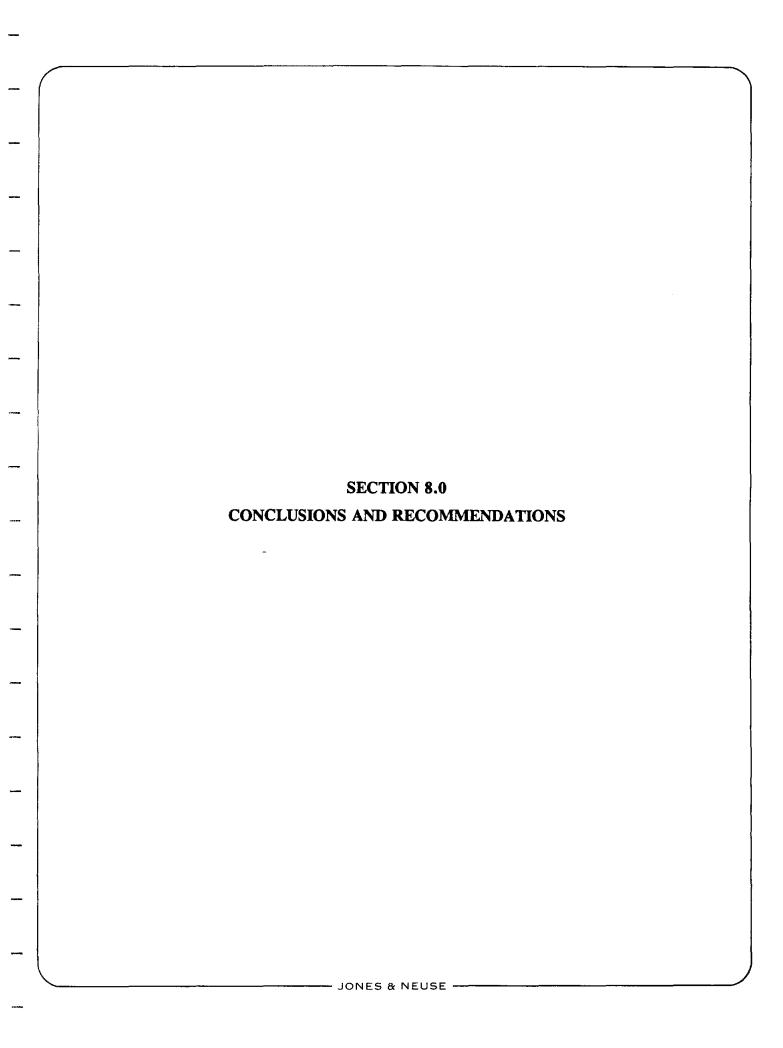

Model development for Lake Proctor can begin as the data is compiled and continued to completion after the first year of monthly sampling is available. The model segmentation must naturally wait until the bathymetric survey data is available and the water quality calibration must wait on the compilation of data over at least one entire seasonal cycle. Usage of the model in making estimations of water quality impacts for various scenarios of watershed development

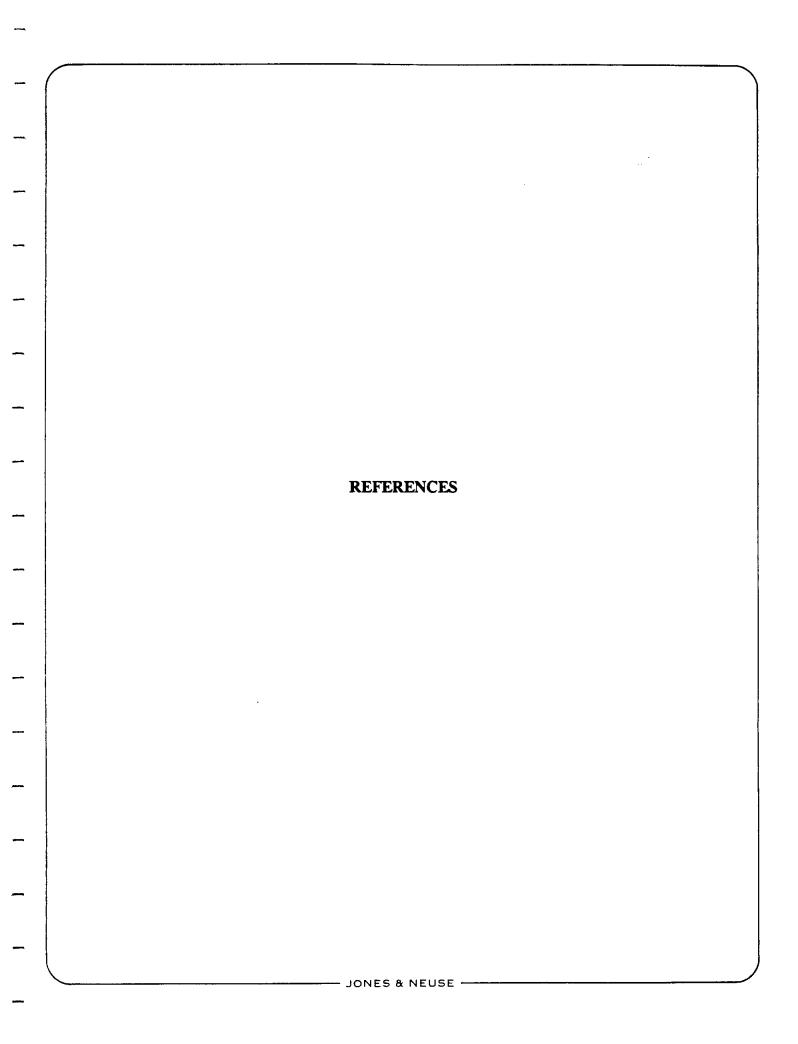
FIGURE 26 MONITORING SCHEDULE

	Jan 91	Feb 91	Mar 191	91 987	Mau 91	Jun 91	챙	91	Sep '91	9ct 91	Nov 91	Dec •91	Jan 92	F\$2	Mar 92	Apr 192	May 92	Jun
Monitoring Plan Revieu	1	<u> </u>	-1 4-4-4-4			1 1 7 7 7			1111	1 7 7 7 7		1 7 7 7 7			1111	T T T	1177	1777
Staff Training	! '	H																
Monthly Proctor Lake Sampling			1-1	H	Н	Н	Н	Н	Н	H	Н	Н	H					
Copperas Creek Survey	1						\vdash											
Upper Leon R. Survey																		
Lower Leon R. Survey	1							-	÷									
Sabana River Survey	1		1	l			ļ	!	l			1						
Initial Non-Point Source Report	}	H	. 															
Non-Point Source Monitoring						-												
Progress Reports				····-		<i>.</i>	⊢			• • • • • • • • • • • • • • • • • • • •			\cdots					
QA/QC Audits				H			H			11			\vdash					
Model Development	1			l	1				F		.			l	1		⊣	1
Final Report	1		1		1			1									—	

must also wait on development of non-point source loading estimations. After this data is compiled, scenarios for point source and non-point source impacts to the lake can be modeled.

Model development for the steady state tributary models can begin after the calibration data is compiled. The hydraulic and kinetic coefficients can be chosen to approximate model response to analytical data. Scenarios for population and wastewater discharge growth over time must be generated during the wastewater facilities planning project for use in the models. Once this data is generated, the water quality impacts of each development scenario can be projected and the appropriate discharge limits can be selected.

8.0 CONCLUSIONS AND RECOMMENDATIONS


The following conclusions and recommendations are made concerning the analysis of existing data on Lake Proctor and the planning for the monitoring system.

Conclusions:

- ♦ ULRMWD has a need for a coordinated monitoring effort in the Lake Proctor Watershed to support planning activities for wastewater treatment for its members.
- The existing water quality data on Lake Proctor is currently insufficient for most planning purposes.
- ♦ The goals of monitoring Lake Proctor and the surrounding watershed include drinking water source protection, wasteload allocation, trophic state and eutrophication evaluation, non-point source assessment, and aquatic habitat protection.

Recommendations:

- ♦ The monitoring plan should encompass all of the goals stated above within the resources of the ULRMWD and participating agencies.
- ♦ The monitoring plan should include fixed station periodic testing of the lake body as well as intensive surveys of tributaries and prospective receiving streams from any proposed regional facility. In addition, the plan should include compilation of physical data sufficient to model the lake responses to development and short term monitoring of single land use watersheds for non-point source assessment.
- ♦ The monitoring plan outlined in this report is recommended for implementation and a schedule for each major activity is proposed.

REFERENCES

Ward, Robert C., J.C. Loftis, and G.B. McBride <u>Design of Water Quality Monitoring Systems</u>. Van Nostrand Reinhold, New York, NY, 1990.

Loftis, Jim C., R.D. Phillips, R.C. Ward, and C.H. Taylor, "WQSTAT II: A Water Quality Statistics Package," <u>Ground Water</u>. Volume 27, Number 6, November-December 1989.

Brazos River Authority, <u>Summary Report on Lakes Belton and Stillhouse Hollow - Water Quality and Facility Planning</u>, Roming and Porter, Alan Plummber and Associates, Inc., and Klotz and Associates, Inc. (Preliminary Draft). Waco, TX, December 1989.

Brazos River Authority, Water Quality and Regional Facility Planning Study, Lake Stillhouse Hollow and Lake Belton - Task II - Water Quality Evaluation, Alan Plummer and Associates, Inc. (Preliminary Draft). Fort Worth, TX, March 1989.

U.S. Army Corps of Engineers, Report on Sedimentation Resurvey - Lake Proctor, Leon River, Texas. U.S. Army Corps of Engineers - Forth Worth District. Fort Worth, TX, October 1987.

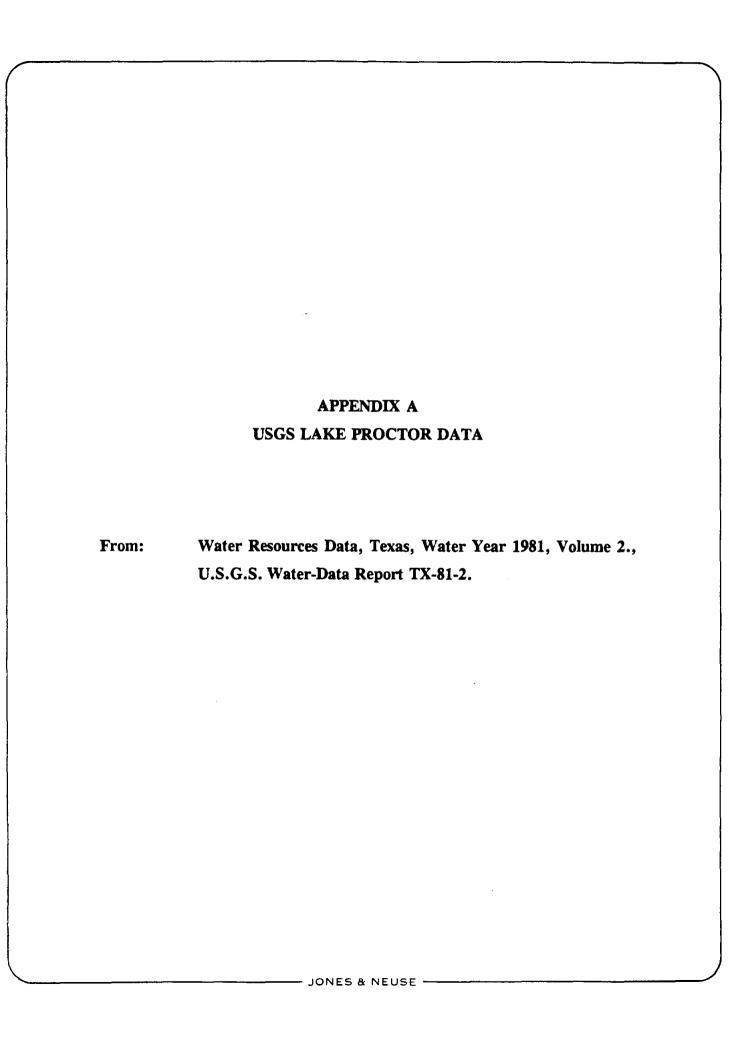
Cleveland, Karen D., Methods for Applying WASP to Texas Reservoirs for Waste Load Allocation and Eutrophication Potential Analyses LP-88-08. Texas Water Commission, Austin, TX, October 1988.

U.S. Environmental Protection Agency, <u>Technical Support Manual</u>: <u>Waterbody Surveys and Assessments for Conducting Use Attainability Analyses - Volume III: Lake Systems</u>. Office of Water Regulations and Standards, Criteria and Standards Division. Washington, D.C., November 1984.

Texas Water Commission, <u>The State of Texas Water Quality Inventory</u>. 10th ed. LP-90-06. Texas Water Commission, Austin, Texas, June 1990.

Grayman, Walter M., R.T. Kilgore, R.M. Males, and R.M. Clark, <u>Surface Water Screening</u>
- A Case Study for Water Utility Management, AWWA Research Foundation, Denver, CO,
July 1986.

Parker, Frank L., E.L. Thackstone, and W. Smith, "Surface Water Quality Enhancement Through Source Protection as Shown By Water Quality Indices" in <u>Drinking Water Enhancement Through Source Protection</u>, Robert B. Pojasek, ed. Ann Arbor Science, Ann Arbor, MI, 1977.


Kuhner Jochen R. de Lucia, M. Shapiro, "Assessment of Existing Methodologies for Evaluation and Control of Watershed Land Use in Drinking Water Supply Systems" in <u>Drinking Water Enhancement Through Source Protection</u>, Robert B. Pojasek, ed. Ann Arbor Science, Ann Arbor, MI, 1977.

Whitlatch, Earl E., "Spatial Adequacy of NASQAN Water Quality Data in Ohio River Basin," Journal of Environmental Engineering. Vol. 115, No. 1, February 1989.

Reckhow, Kenneth H. and Steven C. Dhapra, <u>Engineering Approaches for Lake Management Vol. 1. Data Analysis and Empeircal Modeling</u>. Butterworth Publishers, Boston, Massachusetts, 1983.

Environmental Protection Agency, <u>Methods for Chemical Analysis of Water and Wastes</u>. EPA Environmental Monitoring and Support Laboratory. Cincinnati, Ohio, 1979.

AWWA, APHA, WPCF, Standard Methods for the Examination of Water and Wastewater, 16th Edition, AWWA Washington, D.C., 1986.

MULTIPLE STATION ANALYSES

LOCAL IDENT- I- FIER	STATION NUMB	ER DATE	TIME	SAM- PLING DEPTH (FEET) (00003)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	TRANS- PAR- ENCY (SECCHI DISK) (M) (00078)
PROCTOR LAKE SITE AC	315814098291201	01-20-81	1030	1.00	808	8.10	7.5	0.82
		01-20-81	1031					
		01-20-81	1031	1.40				
		01-20-81	1035	10.0	808	8.10	7.5	
		01-20 -8 1	1040	20.0	808	8.10	7.5	
		01-20-81	1045	25.0	808	8.10	7.5	
		05-04-81	1512	1.00	823	8.00	23.5	0.50
		05-04-81	1513					
		05-04-81	1513	0.80				
		05-04-81	1514	10.0	823	7.80	23.0	
		05-04-81	1516	20.0	823	7.70	23.0	
		05-04-81	1520	26.0	835	7.50	23.0	
		08-03-81	1840	1.00	778	7.80	28.5	0.60
		08-03-81	1841					
		08-03-81	1841	1.00				
		08-03-81	1842	10.0	78 0	7.40	28.0	
		08-03-81	1844	20.0	780	7.20	28.0	
		08-03-81	1845	25.0	782	7.10	28.0	
PROCTOR LAKE SITE AL	315823098282801	01-20-81	1110	1.00	807	8.10	8.0	
THOUSEN EME SITE ME	•	01-20-81	1120	10.0	807	8.00	8.0	
		01-20-81	1125	19.0	807	8.00	7.5	
		05-04-81	1540	1.00	828	8.10	23.5	
		05-04-81	1542	10.0	828	7.90	23.0	
		05~04-81	1544	20.0	838	7.40	22.5	
		05~04-81	1546	25 .0	838	7.40	22.5	
		08-03-81	1825	1.00	775	8.00	28.0	
		08-03-81	1827	10.0	776	7.90	28.5	
		08-03-81	1829	20.0	778	7.50	28.0	
		08-03-81	1830	25.0	780	7.10	28.0	
DDOCTOD LAVE SITE BC	315832098302301	01-20-81	0915	1.00	822	8.20	7.0	
PROCTOR LAKE SITE BC	313832098302301	01-20-81	0917	13.0	822	8.20	7.0	
		05-04-81	1715	1.00	818	8.40	25.0	
		05-04-81	1717	13.0	828	7.60	23.0	
		08-03-81	1905	1.00	794	8.20	29.0	
		08-03-81	1910	12.0	794	7.20	28.5	
PROCEEDS 1 445 CITE 50	015007000014004	01 20 01	DOSE	1 00	B24	8.20	6.5	0.46
PROCTOR LAKE SITE CC	315837098314201	01-20-81	0935	1.00 5.00	824	8.20	6.0	
		01-20-81 05-04-81	0940	1.00	824 818	8.20	24.5	0.20
			1730	1.00	818 829	8.10	28.0	0.10
		08-03-81 08-03-81	1915 1920	5.00	829 826	8.10	28.0	Q. 10
		00-03-01	1040	5.00	040	0.10	20.0	

LOCAL IDENT- I- FIER	OXVGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3 (00902)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM AD- SORP- TION RATIO	SODIUM PERCENT (00932)
PROCTOR LAKE SITE AC	10.1	87	200	92	48	20	76	2	44
	·								
(203)	10.2								
1 2 1	10.2	88 87							
	10.1	87	200	95	49	20	75	2	43
	6.1	74	210	97	48	21	78	2	44
	\	 							
528°	5.4	65							
	4.4	53							
	√ 2.1	25	210	92	50	21	79	2	44
	5.8	76	190	90	43	20	77	3	45
	1							- -	
3 48	3.7	49							
	2.7	3 6							
	1.7	22	190	90	43	20	76	2	45
PROCTOR LAKE SITE AL	(11.8	103							
1,2031	< 11.8	103							
()		101							
4 − f ym syll + Ørs	∫ 6.6 5.4	80 65							
12/1/c	(1.8	21							~-
	1.8	21						~-	
	(6.7	88							
\$ 2.8	,) 6.1	80							
ଞ ୍ଞ୍ଞ	¹ ∮3.8	50							
	1.6	21							
PROCTOR LAKE SITE BC	<9.8	84							~~
([25]	හ	83							
× [4]		105							
	4.4	53				***			
,	₹7.6	101							
3(s)	₹7.6 31 { 2.6	34							
PROCTOR LAKE SITE CC	(12 1	103							
1/20/	12.0	100							
$> c\lambda$	9.1	100 114				~-			
~ · · · ·	,7.6	100							
≒ (3	12.1 12.0 数 - 9.1 7.6 汚い 7.0	92							

			ī				
j	1	1	}	}	1	1	MULTIPLE STATION ANALYSES

}	}	1	1	1,	IULTiple S	TATION IAN	ALvaca	j	1	1	j	1)	İ	ı
	LOC IDEN I- FIE	T-		POTAS- SIUM, DIS- SOLVED (MG/L AS K) (D0935)	ALKA- LINITY WAT WH TOT FET FIELD MG/L AS CACO3 (00410)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA. DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	NITRO- GEN, ORGANIC TOTAL (MG/L AS N) (00605)				
PROCT	OR LAKE SI	TE AC		8.9	110	56	150	0.30	1.2	426					
				8.4	110	56	150		1,2	426					
				9.5	110	60	160	0.30	0.80	444	0.93				
										450					
				9.4 9.8	120	59 53	160 160	0.30	1.2	452 425	1,2				
				9.0				0.50							
															
				10	100	52	150		2.1	413					
PROCT	OR LAKE SI	TE AL													
					 .										
PROCT	OR LAKE SI	TE BC													
PROCT	OR LAKE SI	TE CC													
											1.5				

MULTIPLE STATION ANALTOES	MULTIFEL	STATION	ANALTOES	
---------------------------	----------	---------	----------	--

1	1	}	1 1 1	1 1 _N	1067 area 8	STA'I LUIT AN	ALTOEO	}	1	4	1	1	}	1	i
			LOCAL IDENT- I- FIER	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN.AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	PHOS- PHOROUS TOTAL (MG/L AS P) (00665)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE. DIS- SOLVED (UG/L AS MN) (01056)				
			PROCTOR LAKE SITE AC		1.5	0.020	0.060	89	K12	10	2				
					1.3	0.030	0.060			30	0				
					1.5	0.030	0.060			20	6				
				0.170 	1.1	0.050	0.190	58	41	10 	 8				
			•												
				0.410	1.6 1.9	0.060 0.00	0.260 0.060	K13	290	10 11	210 5				
					2.8	0.00	0.070			50	30				
					2.1 2.7	0.00 0.00	0.070 0.100			0 12	70 180				
						0.00	000			'-	700				
			PROCTOR LAKE SITE AL												
				nder of											
										**					
			PROCTOR LAKE SITE BC												
					**			* -							
			PROCTOR LAKE SITE CC	 0.080	1.4 1.6 1.6	0.030 0.030 0.040	0.060 0.060 0.210	 	 	20 30 20	0 10 0				
					2.7 2.8	0.00 0.00	0.140 0.150			30 40	0 10				

LOCAL IDENT- I- FIER	STATION NUMBE	ER DATE	TIME	SAM- PLING DEPTH (FEET) (00003)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)	TRANS- PAR- ENCY (SECCHI DISK) (M) (00078)
PROCTOR LAKE SITE DC	315943098273101	01-20-81	1125	1.00	813	8.20	7.5	0.79
		01-20-81	1130	6.00	813	8.20	7.0	
		05-04-81	1555	1.00	828	8.40	24.5	0.60
		05~04-81	1600	9.00	832	8.10	22.5	
		08-03-81	1715	1.00	768	8.20	29.5	
		08-03-81	1718	9.00	772	8.20	29.5	
PROCTOR LAKE SITE EC	315924098285501	01-20-81	1140	1.00	814	8.10	7.5	0.67
PROCTOR LAKE SITE EC	313924098283301	01-20-81	1145	10.0	814	8.10	7.5	
		01-20-81	1150	17.0	814	8.10	7.5	
		05-04-81	1615	1.00	828	8.30	24.5	0.40
		05-04-81	1617	10.0	832	7.90	23.0	
		05-04-81	1619	16.0	832	7.70	23.0	
		08-03-81	1525	1.00	771	8.30	29.0	0.50
		08-03-81	1527	10.0	772	8.20	29.0	
		08-03-81	1530	17.0	777	7.20	28.5	
PROCTOR LAKE SITE FC	320040098293501	01-20-81	1200	1.00	855	8.20	6.5	0.49
, .		01-20-81	1201				-~	
		01-20-81	1201	0.80				
		01-20-81	1205	6.00	855	8.20	6.5	
		05-04-81	1640	1.00	862	8.00	24.5	0.20
		05-04-81	1641					
		05-04-81	1641	0.40				
		05-04-81	1642	6.00	864	7.90	24.0	
		08-03-81	1755	1.00	777	8.10	29.0	0.30
		08-03-81	1756					~-
		08-03-81	1756	0.50				
		08-03-81	1757	7.00	777	8.10	29.0	

LOCAL IDENT- I- FIER	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3 (00902)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)	SODIUM AD- SORP- TION RATIO (00931)
ROCTOR LAKE SITE DC	12.4	107						
	11.8	101			+-			
	8.6	108						
	6.6	79						
	7.5	101						+-
	6.6	89						
ROCTOR LAKE SITE EC	11.6	100	200	95	49	20	76	2
	10.8	93						
	10.5	91	210	97	50	20	76	2
	7.8	98	210	99	49	21	79	2
	5.6	67						
	4.5	54	200	94	47	21	79	2
	8.0	107	180	84	40	20	80	3
	7.3	97						
	1.5	20	180	87	41	20	76	3
ROCTOR LAKE SITE FC	12.1	103	230	97	56	21	79	2
NOCTOR EARL STILL TO	12.1		230					
	12.2	103	220	100	55	21	80	2
	7.4	92	220	110	53	21	82	2
	6.8	84	220	110	55	21	83	2
	7.2	96 	180	81 	41	19	81	3
			100		4.	10	01	
	6.9	92	180	81	41	19	81	3

			ALKA-				SOLIDS,	
		POTAS-	LINITY		CHLO-	SILICA.	SUM OF	NITRO-
LOCAL		SIUM.	WAT WH	SULFATE	RIDE.	DIS-	CONSTI-	GEN.
IDENT-		DIS-	TOT FET	DIS-	DIS-	SOLVED	TUENTS.	ORGANIC
I-		SOLVED	FIELD	SOLVED	SOLVED	(MG/L	DIS-	TOTAL
FIER	SODIUM	(MG/L	MG/L AS	(MG/L	(MG/L	AS	SOLVED	(MG/L
FIER	PERCENT	AS K)	CACO3	AS SO4)	AS CL)	SIO2)	(MG/L)	AS N)
		(00935)	(00410)	(00945)	(00940)	(00955)	(70301)	
	(00932)	(00935)	(00410)	(00945)	(00940)	(00800)	(70301)	(00605)
PROCTOR LAKE SITE DC								
								1.2
								1.0
	~-							
	**							
DDOCTOR LAKE STIE ES	42		110	58	150	1.2	420	
PROCTOR LAKE SITE EC	43	8.8	110		150	1.2	429 	
	40							
	43	8.8	110	58	150	1.2	430	
	44	9.6	110	61	160	0.80	446	1.5
	44	9.5	110	60	160	0.90	443	1.3
	47	9.8	98	53	160	1.7	423	
	46	10	98	53	160	2,1	421	
PROCTOR LAKE SITE FC	42	8.3	130	6 2	160	1.5	466	
	43	8.4	120	62	160	1.5	460	
	44	9.5	110	63	180	1.2	476	1.2
	43	9.6	110	64	180	1.3	480	1.3
	48	8.2	100	51	160	2.0	422	
	48	10	100	54	160	2.0	427	

LOCAL IDENT- I- FIER	NITRO- GEN, AMMONIA TOTAL (MG/L AS N) (00610)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	PHOS- PHOROUS TOTAL (MG/L AS P) (00665)	COLI- FORM, FECAL. D.7 UM-MF (COLS./ 100 ML) (31625)	STREP- TOCOCCI FECAL. KF AGAR (COLS. PER 100 ML) (31673)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE. DIS- SOLVED (UG/L AS MN) (01056)
PROCTOR LAKE SITE DC		1.7	0.030	0.060			20	10
		1.6	0.030	0.060			30	10
	0.150	1.4	0.050	0.210			10	20
	0.090	1.1	0.040	0.180			20	10
		1.9	0.00	0.060			110	20
		1.9	0.00	0.070			60	10
PROCTOR LAKE SITE EC		1.6	0.020	0.060	<1	к1	<10	1
PROCTOR EARL SITE ES		1.7	0.020	0.070			10	0
		1.5	0.020	0.060			< 10	2
	0.080	1.6	0.050	0.190	44	K16	<10	1
	0.210	1.5	0.060	0.220			40	20
		1.7	0.00	0.060	K6	110	13	2
		2.2	0.00	0.070			20	0
		1.9	0.00	0.080			24	14
PROCTOR LAKE SITE FC		1.7	0.020	0.070	<1	<1	<10	1
PROCION EARL SITE (C								
		1.5	0.020	0.070			<10	4
	0.210	1.4	0.060	0.220	56	K15	20	2
								~-
	0.220	1.5	0.060	0.210			20	7
		2.8	0.00	0.110	K68	1600	17	2
		1.9	0.00	0.110			19	14

LOCAL IDENT-				SAM-	SPE- CIFIC CON-	PH	TEMPER-	TRANS- PAR- ENCY	OXYGEN,
1-				PLING	DUCT-	(STAND-	ATURE	(SECCHI	DIS-
FIER	STATION NUMBER	DATE	TIME	DEPTH	ANCE	ARD	WATER	DISK)	SOLVED
				(FEET)	(US/CM)	UNITS) (00400)	(DEG C)	(M) (00078)	(MG/L) (00300)
				(00003)	(00095)	(00400)	(00010)	(00078)	(00300)
DODGEDD LAVE CITE AC	315814098291201	01-22-80	1145	1.00	803	8.30	9.5	0.90	10.4
PROCTOR LAKE SITE AC	313814098291201	01-22-80	1146	1.00					
		01-22-80	1146	1.40					
		01-22-80	1147	10.0	803	8.30	9.5		10.4
		01-22-80	1149	20.0	803	8.30	9.5		10.4
		0. 22 00	1775	20.0	500	0.00			
		01-22-80	1151	28.0	803	8.30	9.5		10.3
		05-04-80	0935	1.00	840	7.60	21.0	0.70	8.8
		05-04-80	0936						
	•	05-04-80	0936	1,20					
		05-04-80	0937	10.0	840	7.60	20.5		8.6
		05-04-80	0939	15.0	850	6.70	19.0		2.5
		05~04-80	0941	20.0	850	6.60	18.5		1.7
		05-04-80	0943	29.0	856	6.50	18.0	D 64	1.2 12.1
		08-25-80	1700	1.00	709	8.40	30.5	0.64	
		08-25-80	1701						
		08-25-80	1701	1.10					
		08-25-80	1702	5.00	720	8.00	29.0		9.6
		08-25-80	1704	10.0	740	7.10	28.0		2.1
		08-25-80	1706	15.0	740	7.00	28.0		0.9
		08-25-80	1708	20.0	740	7.00	27.5		0.1
		00 25 50				.,,,.			
		08-25-80	1710	28.0	743	7.00	27.5	=	0.4
	0150000000000000	01-22-80	1210	1.00	803	8.30	9.5		10.2
PROCTOR LAKE SITE AL	315823098282801	01-22-80 01-22-80	1212	10.0	803	8.30	9.5		10.2
		01-22-80	1214	20.0	803	8.30	9.5		10.2
		01-22-80	1216	28.0	803	8.30	9.5		10.1
		05-04-80	1000	1.00	840	7.60	21.0		8.9
		05 04 00	1000	1.00	0-10	. , 00	2		
		05-04-80	1002	10.0	840	7.60	20.5		8.6
		05-04-80	1004	20.0	850	6.60	18.5		2.3
		05-04-80	1006	26.0	850	6.60	18.5		1.5
		08-25-80	1730	1.00	709	8.20	30.5		10.1
		08-25-80	1732	10.0	720	7.60	28.0		5.2
					705	7 20	27.5		4.2
		08-25-80	1734	15.0	735	7.30	27.5 27.5		1.4
		08-25-80	1736	24.0	740	7.10	27.5		1.4
PROCTOR LAKE SITE BC	315832098302301	01-22-80	1100	1.00	813	8.20	10.0		9.9
		01-22-80	1102	10.0	813	8.20	10.0		9.8
		01-22-80	1104	15.0	813	8.20	10.0		9.8
		05-04-80	0905	1.00	850	7.50	21.0		8.4
		05-04-80	0907	10.0	850	7.50	21.0		8.2
		05-04-80	0909	13.0	860	6.60	19.5		2.5
		08-25-80	1620	1.00	716	8.20	32.0		9.7
		08-25-80	1622	10.0	735	7.40	29.5		4.7
		08-25-80	1624	14.0	740	6.90	29.0		1.4

1 1 1 1 1 1 MULTIFEE STATION ANALYSES ! 1 1 1 1 1 1

LOCAL IDENT~ I- FIER	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS. SUM OF CONSTI- TUENTS. DIS- SOLVED (MG/L) (70301)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	PHOS- PHOROUS TOTAL (MG/L AS P) (00665)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (01056)
PROCTOR LAKE SITE AC	55	140	0.30		426				<10	
		. <u>-</u> -							60	
	57	140		2.2	425	0.54	0.040	0.020	<10	5
	62	160	0.40		459		0.010		<10	
		·								
							0.010		10	0
		·								
							0.010		70	40
	61	160		1.9	469		0.010		140	350
	49	150	0.40		399		0.00	0.050	<10	3
		·								
							0.00	0.060	20 	10
							0.00	0.070	10	90
	47	140		2.9	407	1.7	0.00	0.090	440	690
PROCTOR LAKE SITE AL		- 								
							~-			
PROCTOR LAKE SITE BC										
PROCTOR LAKE SITE BC										
										

LOCAL IDENT- I-				SAM- PLING	SPE- CIFIC CON- DUCT-	PH (STAND-	TEMPER-	TRANS- PAR- ENCY (SECCHI	OXYGEN, DIS-
FIER	STATION NUMBER	R DATE	TIME	DEPTH	ANCE	ARD	WATER	DISK)	SOLVED
, , , , , , , , , , , , , , , , , , , ,				(FEET)	(US/CM)	UNITS)	(DEG C)	(M)	(MG/L)
				(00003)	(00095)	(00400)	(00010)	(00078)	(00300)
PROCTOR LAKE SITE CC	315837098314201	01-22-80	1120	1.00	800	8.30	9.0	0.20	10.3
		01-22-80	1122	4.00	800	8.30	9.0		10.2
		05-04-80	0915	1.00	875	7.40	21.5	0.20	7.4
		05-04-80	0917	4.00 1.00	875 750	7.40 8.20	21.0 32.5	0.27	7.2 9.3
		08-25-80	1634	1.00	750	6.20	32.5	0.27	3.5
		08-25-80	1636	5.00	750	7.70	30.5		6.1
PROCTOR LAKE SITE DC	315943098273101	01-22-80	1230	1.00	803	8.30	9.5	0.60	10.3
THOUSEN EARL DIVE DO	0 (100 x010001 x 0 x 10 x	01-22-80	1232	9.00	803	8.30	9.5		10.3
		05-04-80	1015	1.00	850	7.50	20.5	0.70	8.3
		05-04-80	1017	7.00	850	7.40	20.0		7.3
		08-25-80	1750	1.00	724	8.30	31.0	0.73	9.8
		08-25-80	1752	9.00	740	7.70	29.0		6.6
PROCTOR LAKE SITE EC	315924098285501	01-22-80	1251	1.00	812	8.40	10.0	0.50	10.1
PROCTOR LANE STILL EC	313324030203301	01-22-80	1253	10.0	812	8.40	10.0		10.1
		01-22-80	1255	14.0	812	8.40	10.0		10.0
		05-04-80	1025	1.00	850	7.50	21.0		8.7
		05-04-80	1027	10.0	850	7.40	20.5		7.7
		05-04-80	1029	15.0	850	6.90	19.0		4.6
		05-04-80	1031	21.0	850	6.60	18.5	0.61	1.9
		08-25-80	1808	1.00	724 724	8.30 8.30	31.5 31.0	0.61	10.4 10.2
		08-25-80 08-25-80	1810 1812	5.00 10.0	744	7.10	28.5		1.7
		08-25-80	1814	18.0	748	7.00	27.5		0.3
		04 85 85	1040		0.27	B 20	10.0	0.40	10.0
PROCTOR LAKE SITE FC	320040098293501	01-22-80	1340	1.00	827	8.30	10.0	0.40	10.0
		01-22-80 01-22-80	1341 1341	0.60					
		01-22-80	1342	8.00	827	8.30	10.0		9.9
		05-04-80	1055	1.00	860	7.40	21.5	0.30	8.2
		05-04-80	1056						
		05-04-80	1056	0.60					
		05-04-80	1057	7.00	860	6.90	20.5		5.7
		08-25-80	1839						
		08-25-80	1839	0.60					
		08-25-80	1840	1.00	741	8.20	30.5	0.34	8.7
		08-25-80	1842	5.00	741	8.10	30.5		7.9
		08-25-80	1844	8.00	784	7.20	29.5		3.4

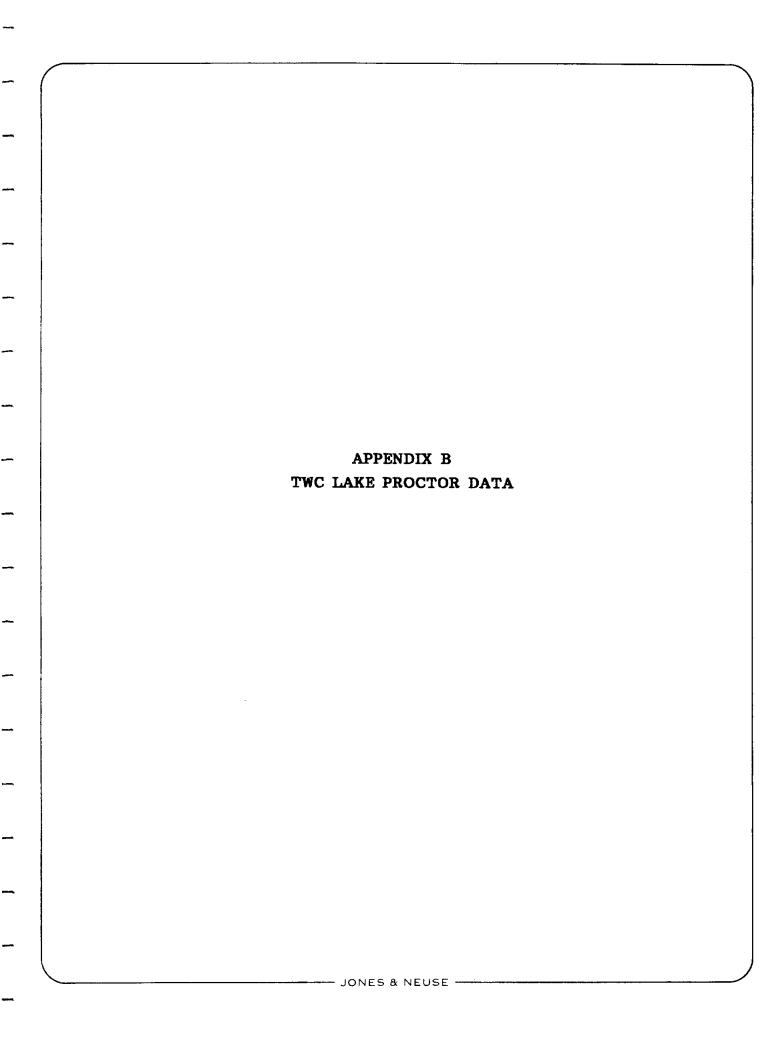
LOCAL IDENT- I- FIER	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3 (00902)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)		SODIUM PERCENT (00932)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY WAT WH TOT FET FIELD MG/L AS CACO3 (00410)
PROCTOR LAKE SITE CC	9:	3 -								
	9:			-						
	80									
	8:									
	129	-		_						
	8:	2 -		. <u>-</u>				~-		
PROCTOR LAKE SITE DC	. 94			. <u>-</u>	. _ .					
	94									
	94 8:									
	134									
	, 0-	•								
	88	3		. -						
PROCTOR LAKE SITE EC	9:				19	72	2	42	8.9	120
	93									
	9:				19 22	71 80	2 2	41 42	9.2 9.7	120 120
	100 88								9.7	120
		•								
	5	ļ —·		· -						
	2				21	82	2	43	9.6	130
	14:	-			19	73	2	4 5	9.4	98
	140									
	22	? -		· -						
	4	198	74	48	18	70	2	42	9.7	120
PROCTOR LAKE SITE FC	92	2 210) B1	53	19	80	2	44	8.8	130
				-		-				
	9:				17 21	78 82	2 2	44 44	8.8 9.7	130 110
	9:	220	, ,,,	33	21	02	2		3.7	170
				-						
						· - -				
	65				20	79	2	43	9.7	110
				_	-					
	1 1 6 1 0 7	_		44	18	74	2	4 5	9.7	98
	46			44	19	77	3	45	10	98
	•									

LOCAL IDENT- I- FIER	STATION NUMBER	DATE	TIME	SAM- PLING DEPTH (FEET) (00003)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)
PROCTOR LAKE SITE AC	315814098291201	01-19-82	1330	1.00	655	8.10	6.0
THOUSE THE CITY OF		01-19-82	1331				
		01-19-82	1331	1.20			
		01-19-82	1332	10.0	655	8.10	5.5
		01-19-82	1334	20.0	656	8.00	5.5
		01-19-82	1336	33.0	657	7.90	6.0
		05-04-82	1116	1.00	718	8.10	20.5
		05-04-82	1117				
·		05-04-82	1117	1,50			
		05-04-82	1118	10.0	718	8.10	20.0
		05-04-82	1120	15.0	720	8.00	19.5
		05-04-82	1122	20.0	720	7.90	19.5
		05-04-82	1124	25.0	725	7.30	18.5
		05-04-82	1126	33.0	729	7.20	18.0
		07-30-82	1135	1,00	535	8.10	30.5
		07-30-82	1136				
		07-30-82	1136	1.40			
		07-30-82	1137	10.0	536	7.50	30.0
		07-30-82	1139	15.0	536	7.20	29.0
		07-30-82	1141	20.0	536	7.00	28.0
		07-30-82	1143	30.0	540	7.10	27.0
PROCTOR LAKE SITE AL	315823098282801	01-19-82	1350	1.00	655	8.10	7.5
PROCTOR LAKE SITE AL	313823098202001	01-19-82	1352	10.0	6 55	8.10	5.5
		01-19-82	1354	20.0	655	8.10	5.5
		01-19-82	1356	28.0	655	8.00	5.5
		05-04-82	1140	1.00	714	8.20	20.5
		05-04-82	1142	10.0	714	8.10	20.0
		05-04-82	1144	20.0	720	7. 6 0	19.0
		05-04-82	1146	31.0	726	7.30	18.5
		07-30-82	1155	1.00	535	8.10	30.0
		07-30-82	1157	10.0	544	7.20	29.5
		07-30-B2	1159	20.0	544	7.10	28.0
		07-30-82	1201	29.0	557	7.20	26.5
		64 46 77	4500		000	0 10	~ ~
PROCTOR LAKE SITE BC	315832098302301	01-19-82	1300	1.00	666	8.10	6.5
		01-19-82	1302	10.0	666	8.20	5.5 6.5
		01-19-82	1304	20.0	676 717	8.00	6.5
		05-04-82 05-04-82	1030 1032	1.00 10.0	717 717	8.10 8.00	21.5 21.0
					721		19.5
		05-04-82	1034	15.0	721 724	7.70 7.40	19.0
		05-04-82	1036	19.0		8.00	30.0
		07-30-82	1110	1.00	558 558	7.80	30.0
		07-30-82	1112	10,0 15.0	558 558	7.20	29.0
		07-30-82	1114	15.0	228	7.20	29.0

}	1	1	1	1	1	1	MULTI-LL IS	STAT A	NALY JES	1	1	}	ì	1	ì	j	1
				LOC IDEN I- FIE	NT- -	TRANS- PAR- ENCY (SECCHI DISK) (M) (00078)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3 (00902)	CALCIUM DIS- SOLVED (MG/L AS CA) (00915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)				
			PROCT	OR LAKE SI	ITE AC	0.70	12.4	102	190	67 	50	15	54				
							12.9 11.5	106 94									
						0.90	12.5 8.8	103 101	180 210	64 83	4 9 57	15 17	53 59				
											J/ 	''	J J				
					•												
							8.7	99									
							8.2	92									
							7.1 2.9	80 32									
							0.8	9	220	80	60	17	60				
						0.80	7.1	97	160	50	44	12	43				
							3.0	 51									
							3.8 0.3	4									
							0.3	4									
							0.3	4	160	35	46	12	42				
			PROCT	OR LAKE SI	ITE AL		12.3	106									
							11.9	98									
							12.4	102									
							12.4 9.2	102 106									
							8.6	98									
							4.8	53									
							1.8 6.6	20 89									
							1.1	15									
							0.3	4									
							0.3	4									
			DDDCT	OR LAKE SI	ITE BC		12.6	106									
			PRUCI	OK EMME 31	LIE DC		12.8	101									
							10.9	92									
							9.0	105									
							8.7	101									
							6.2	70									
							3.5 6.8	39 9 2									
							6.0	92 81					~-				
							1,1	15									

			11														
1	1	1	1	1	1	1) MULTIPLE	STATLUN	NALYSES	. 1	1	3	j)	}	3	1

LOCAL IDENT- I- FIER	SODIUM AD- SORP- TION RATIO (00931)	SODIUM PERCENT (00932)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY WAT WH TOT FET FIELD MG/L AS CACO3 (00410)	SULFATE DIS- SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	FLUO- RIDE, DIS- SOLVED (MG/L AS F) (00950)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)
PROCTOR LAKE SITE AC	2	37	8.5	120	44	110	0.30	2,9
	2	37	8.7	120	44	110		3.0
	2	37	8.0	130	53	130	0.30	2.8
•								
	2	36	7.9	140	54	130		4.9
	2	36	7.9	110	29	84	0.30	3.4
					~-			
	1	34	7.5	130	25	84		6.6
PROCTOR LAKE SITE AL								
								
PROCTOR LAKE SITE BC								
								
						~ ~		


1	1	1	1 1	1 1 _M	10LLZ S	TA I . UN AN	ALYSES	١	1	1	1	1	1	1	i
			LOCAL IDENT- I- FIER	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	PHOS- PHOROUS TOTAL (MG/L AS P) (00665)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	STREP- TOCOCCI FECAL, KF AGAR (COLS. PER 100 ML) (31673)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (D1056)				
			PROCTOR LAKE SITE AC	357 	1.4	0.300	0.020	K16	27	<10 	<1 				
					1.5	0.300	0.020			40	10				
				355	1.6	0.310	0.030			<10	1				
				405 	1.0	<0.100	0.030	<1 	K2	6 0	23 				
			•												
					1.4	<0.100	0.040			20	30 				
				418	1.4	<0.100	0.060			<9	610				
				290	1.3	<0.100	0.050	<1	кз	· <3	7				
					1.2	<0.100	0.060			30	230				
				304	2.2	<0.100	0.280			1500	1300				
			PROCTOR LAKE SITE AL							••					
				~ -											
			PROCTOR LAKE SITE BC												
									***	~=					
				~-											
									~~						

LOCAL IDENT- I- FIER	STATION NUMBER	DATE	TIME	SAM~ PLING DEPTH (FEET) (00003)	SPE- CIFIC CON- DUCT- ANCE (US/CM) (00095)	PH (STAND- ARD UNITS) (00400)	TEMPER- ATURE WATER (DEG C) (00010)
PROCTOR LAKE SITE BC	315832098302301	07-30-82	1115	17.0	558	6.90	28.0
PROCTOR LAKE SITE CC	315837098314201	01-19-82 01-19-82 05-04-82 05-04-82 07-30-82	1310 1312 1046 1048 1120	1.00 8.00 1.00 10.0 1.00	670 670 746 746 577	7.90 7.80 8.00 8.00 8.10	6.5 5.5 22.5 22.5 30.5
PROCTOR LAKE SITE DC	315943098273101	01-19-82 01-19-82 05-04-82 05-04-82 07-30-82	1404 1406 1210 1212 1210	1.00 11.0 1.00 12.0 1.00	650 655 711 721 542	8.20 8.10 8.20 7.90 7.90	6.5 6.0 22.0 21.0 29.5
PROCTOR LAKE SITE EC	315924098285501	01-19-82 01-19-82 01-19-82 05-04-82 05-04-82	1415 1417 1419 1230 1232	1.00 10.0 23.0 1.00	661 673 673 727 727	8.20 8.10 8.10 8.20 8.10	6.5 5.5 5.5 22.0 21.0
		05-04-82 07-30-82 07-30-82 07-30-82 07-30-82	1234 1220 1222 1224 1226	23.0 1.00 10.0 15.0 21.0	743 509 515 519 534	7.30 8.00 7.80 7.20 7.10	19.0 30.5 29.5 29.5 27.5
PROCTOR LAKE SITE FC	320040098293501	01-19-82 01-19-82 01-19-82 01-19-82 05-04-82 05-04-82 05-04-82 05-04-82 07-30-82 07-30-82	1445 1446 1446 1447 1306 1307 1307 1308 1245 1246	1.00 1.10 12.0 1.00 0.90 12.0 1.00	708 734 799 815 506	8.10 8.00 8.10 7.60 8.00	7.0 5.5 22.5 22.0 31.0
		07-30-82 07-30-82 07-30-82	1246 1247 1249	5.00 12.0	509 515	7.50 7.20	30.0 29.5

LOCAL 1DENT- I- FIER	TRANS- PAR- ENCY (SECCHI DISK) (M) (00078)	OXYGEN, DIS- SOLVED (MG/L) (00300)	OXYGEN, DIS- SOLVED (PER- CENT SATUR- ATION) (00301)	HARD- NESS TOTAL (MG/L AS CACO3) (00900)	HARD- NESS NONCARB WH WAT TOT FLD MG/L AS CACO3 (00902)	CALCIUM DIS- SOLVED (MG/L AS CA) (D0915)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) (00925)	SODIUM, DIS- SOLVED (MG/L AS NA) (00930)
PROCTOR LAKE SITE BC		0.3	4					
PROCTOR LAKE SITE CC	0.80 0.40 0.50	11.8 12.7 7.4 7.3 7.4	99 104 88 87 101		 		 	
PROCTOR LAKE SITE DC	0.80 0.80 0.80	12.6 11.0 10.0 7.4 5.4	106 91 118 86 73		 	 		
PROCTOR LAKE SITE EC	0.70 0.70 0.90	11.4 11.0 12.3 9.5 9.3 1.4 6.4 5.5 0.4 0.3	96 90 101 112 108 16 88 74 5	190 190 210 220 160 160	67 67 90 80 45 40	50 56 56 60 44 46	15 15 17 17 11 11	55 55 58 61 41 41
PROCTOR LAKE SITE FC	0.60	12.9 12.4 8.6 5.0 6.9 3.4 0.4	109 102 102 59 96 46 5	200 210 230 230 150 160	72 77 98 92 44 36	56 58 63 63 45	15 15 17 18 10 10	57 60 68 69 38

LOCAL IDENT- I- FIER	SODIUM AD- SORP- TION RATIO (00931)	SODIUM PERCENT (00932)	POTAS- SIUM, DIS- SOLVED (MG/L AS K) (00935)	ALKA- LINITY WAT WH TOT FET FIELD MG/L AS CACO3 (00410)	SULFATE DIS+ SOLVED (MG/L AS SO4) (00945)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) (00940)	SILICA, DIS- SOLVED (MG/L AS SIO2) (00955)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L) (70301)
PROCTOR LAKE SITE BC								
PROCTOR LAKE SITE CC	 		 			 	 	
	·							
PROCTOR LAKE SITE DC	 	 		 	 	 	 	
PROCTOR LAKE SITE EC	2 2 2 2 1	38 38 36 37 35 34	8.6 8.3 8.1 7.4 7.8 7.6	120 120 120 140 110 120	44 44 54 54 25 24	110 120 130 130 77 81	3.0 3.1 2.6 4.8 4.0	358 367 398 419 276 293
PROCTOR LAKE SITE FC	2 2 2 2 1	37 38 38 38 38 34	8.3 8.5 8.0 8.1 7.8	130 130 130 130	43 47 57 	130 130 150 150 76	3.2 3.3 2.8 3.2 4.8	390 400 444 452 271
	 1	 34	 7.7	 120	 23	 76	 5.6	 280

1	1)	1 1	J	1	}	I _{MUL1}	. LL STATE	JANAL . S	L3)	}	J	1]	1	1	1	ı
					LOCAL IDENT- I- FIER		NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) (00625)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N) (00630)	PHOS- PHOROUS TOTAL (MG/L AS P) (00665)	COLI- FORM, FECAL, 0.7 UM-MF (COLS./ 100 ML) (31625)	STREP- TOCOCCI FECAL. KF AGAR (COLS. PER 100 ML) (31673)	IRON, DIS- SOLVED (UG/L AS FE) (01046)	MANGA- NESE, DIS- SOLVED (UG/L AS MN) (D1056)					
				PROCTOR	LAKE SITE BO													
				PROCTOR	LAKE SITE CC		1.3 1.3 1.3 1.3 1.3	0.290 0.290 <0.100 <0.100 <0.100	0.020 0.020 0.080 0.070 0.050		 	30 20 <10 10 20	<10 10 <10 <10 <10					
				PROCTOR	LAKE SITE DO		1.1 1.3 1.3 1.5	0.320 0.330 <0.100 <0.100 <0.100	0.020 0.030 0.040 0.060 0.040	 	 	60 20 <10 20 10	<10 <10 <10 10 20					
							1,1	<0.100	0.040			<10	70					
				PROCTOR	LAKE SITE EC		1.4 1.3 1.5 1.1	0.280 0.260 0.250 <0.100 <0.100	0.020 0.030 0.020 0.020 0.040	K3 K14	K8 K6 	<10 50 <10 <9 <10	<1 <10 <1 4 20					
							1.9 1.1 1.2 	<0.100 <0.100 <0.100 <0.100	0.180 0.060 0.030 0.220	K14	K13	<9 <3 <10 1600	390 4 60 1400					
				PROCTOR	LAKE SITE FO		1.1 ~- 1.3 2.4	0.140 0.100 <0.100	0.020 0.030 0.100	<1 K6	K6 K1	<10 <10 <9	2 10 <3					
							1.7	<0.100 <0.100	0.080 0.090	 K14	 K21	 9 5	 5 33 					
							 1.7	 <0.100	 0.120	 	 	 25	 750					

PASG, A DW0300*SMN-INDX-TAB.
W:120133 file is already assigned.

•ASG.A DW0300*SMN-PAR-TREE. W:120133 file is already assigned.

PUSE 8.,DW0300+SMN-PAR-TREE.
I:002333 USE complete.

eUSE 9.,DW0300*SMN-INDX-TAB.
I:002333 USE complete.

•XQT TWDB*DCSTAUDT.DW0322

1222.0100

* * * TEXAS WATER COMMISSION * * * STATEWIDE MONITORING NETWORK -- SAMPLING DATA INVENTORY PERIOD OF REPORT: 01/01/68 TO 12/31/90 BRAZOS RIVER BASIN

DISTRICT 03

SEGMENT - LAKE PROCTOR COUNTY - COMANCHE STATION LOCATION USGS GAGE NO RIVER MILE CTATION NO

LATITUDE / LONGITUDE

STATION NO. 1222.0100		TATION LOCA PROCTOR NE		м											LAT 31	ITUDE / LC 58 07 09	NGITUDE 08 29 09	
SAMPLE DATE	TIME	DEPTH SOU (FT) AGE	RCE S	YSTEM CODE	PARAMETER M	EASU	REMENTS:	V	ALUE/ /CODE									-
08/21/73	0945	1.0 TEX	AS SI	MN	SKIES C	LEAR												
					29.4 00010		85.0 00011		690. 00094		0. 0009 5		8.0 00300	8.50 00400		7.8 00403	98. 00410	
					<3 00620		.40 00626		. 08 00650		.026 00665		340. 31501	1. 31616	<	4.0 32211	345. 70294	
09/05/73	1120	1.0 TEX	AS S	MN	25.0 00010		77.0 00011		90.0 00070		750. 00094		10.0 00300	8.60 00400		104. 00410	< .3 00620	
					.80 00626		. 14 00650		.046 00665		90. 31501	<	4. 31616	9.0 32211		375. 70294		
09/25/73	1115	7.0 TEX	AS SI	MN	10.0 00070		760. 00094		790. 00095		7.0 00300		8.30 00400	7.9 00403		19. 00530	9. 00535	
					< .1 00610	<	. 03 00620	<	. 15 00650	<	.03		. 049 00665	. 010 00671		143. 00940	42. 00945	
					4500. 31501	<	10. 31616		13.0 32211		380. 70294							
10/08/73	1010	1.0 TEX	AS SI	MN	23.9 00010		75.0 00011		15.0 00070		730. 00094		795. 00095	4.0 00300		7.80 00400	7 . 8 00403	
					15. 00530		7. 00535	<	. 1 00610	<	.03 00620		. 06 00650	00660 00660		.020 00665	. 010 0067 1	
					143. 00940		50. 00945		8000. 31501	<	10. 31616		9.0 32211	365. 70294				
10/29/73	1400	1.0 TEX	AS SI	MN	21.4 00010		70.5 00011		.0 00070		18. 00077		600. 00094	700. 00095		8.0 00300	8.20 00400	
					8.0 00403		10. 00530		2. 00535	<	. 1 00610	<	.03 00620	. 11 00650		. 03 00660	. 036 00665	
					.010 00671		123. 00940		40. 00945		28.0 32211		300. 70294					
11/06/73	0920	1.0 TEX	AS SI	MN	17.2 00010		63.0 00011		10.0 00070		24. 00077		530. 00094	588. 00095		11.0 00300	6.50 00400	
					8.2 00403		16. 00530		10. 00535	<	00610	<	.03 00620	. 08 00650	<	.03 00660	.026 00665	

SYMBOL (*) DENOTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

SEGMENT - LAKE PROCTOR

* * * TEXAS WATER COMMISSION * * * STATEWIDE MONITORING NETWORK -- SAMPLING DATA INVENTORY PERIOD OF REPORT: 01/01/68 TO 12/31/90 BRAZOS RIVER BASIN DISTRICT 03

STATION NO. 1222.0100	LAKE PROCTOR NEAR DAM				NO RIVER MILE								TUDE / Lo 8 07 09	ONGITUDE 38 29 09			
SAMPLE DATE	TIME		SOURCE AGENCY		PARAMETER I	MEASU	REMENTS:	٧	ALUE/ /CODE								
11/06/73	0920	1.0	TEXAS	SMN	.010 00671		125. 00940		39. 00945		7900. 31501	<	10. 31616	15.0 32211		265. 70294	
11/28/73	1000	1.0	TEXAS	SMN	16.1 00010		61.0 00011		5.0 00070		620. 00094		716. 00095	9.0 00300		8.40 00400	8.2 00403
					12. 00530		2. 00535	<	. 1 00610		.06 00620		.09 00650	< .03 00660		. 029 00665	.010 00671
					122. 00940		37. 00945		15000. 31501		36. 31616		16.0 32211	310. 70294			
12/07/73	1345	1.0	TEXAS	SMN	13.3 00010		56.0 00011		15.0 00070		12. 00077		690. 00094	6.0 00300		8.30 00400	345. 70294
01/16/74	0945	1.0	TEXAS	SMN	5.6 00010		42.0 00011		.0 00070		30. 0007 7		700. 00094	10.0 00300		8.50 00400	350. 70294
01/16/74	0945	10.0	TEXAS	SMN	6.0 00010		42.8 00011		700. 00094		12.0 00300		8.50 00400	350. 70294			
01/16/74	0945	20.0	TEXAS	SMN	6.0 00010		42.8 00011		700. 00094		12.2 00300		8.50 00400	350. 70294			
02/13/74	0830	1.0	TEXAS	SMN	8.9 00010		48.0 00011		20.0 00070		24. 00077		575. 00094	764. 00095		11.0 00300	8.20 00400
					8. 1 00403	<	10. 00530	<	10. 00535	<	. 1 00610	<	. 03 00620	.09 00650	<	.03	.029 00665
					.010 00671		128. 00940		41. 00945		390. 31501	<	10. 31616	30.0 32211		288. 70294	
02/13/74	0830	10.0	TEXAS	SMN	8.9 00010		48.0 00011		10.8 00300		8.50 00400						
02/13/74	0830	20.0	TEXAS	SMN	8.9 00010		48.0 00011		600. 00094		10.8 00300		8.60 00400	300. 70294			
05/08/74	1120	1.0	TEXAS	SMN	22.5 00010		72.5 00011		5.0 00070		36. 00077		820. 00094	845. 00095		9.0	8.50 00400
					8.5 00403	<	10. 00530	<	10. 00535	<	00610	<	.3 00620	.06 00650	<	.03	.020 00665

1222.0100

* * * TEXAS WATER COMMISSION * * * STATEWIDE MONITORING NETWORK -- SAMPLING DATA INVENTORY PERIOD OF REPORT: 01/01/68 TO 12/31/90

}

LAKE PROCTOR

SEGMENT -

BRAZOS RIVER BASIN DISTRICT 03

COMANCHE USGS GAGE NO COUNTY -RIVER MILE STATION LOCATION LATITUDE / LONGITUDE STATION NO. 1222,0100 LAKE PROCTOR NEAR DAM 31 58 07 098 29 09 DEPTH SOURCE SYSTEM PARAMETER MEASUREMENTS: VALUE/ SAMPLE (FT) AGENCY CODE ------/CODE TIME DATE 1120 1.0 TEXAS SMN .010 8.0 138. 250. 51. 2000. 05/08/74 < 10. 6.0 00671 00940 00680 00941 00945 31501 31616 32211 410. 70294 05/08/74 1120 10.0 TEXAS SMN 22.0 71.6 820. 9.0 8.50 410. 00010 00011 00094 00300 00400 70294 05/08/74 1120 20.0 TEXAS SMN 22.5 72.5 820. 8.0 8.30 410. 00010 00011 00300 00094 00400 70294 26.0 78.8 06/12/74 1105 1.0 TEXAS SMN 26. 770. 7.8 8.30 170. 385. 00010 00011 00077 00094 00300 00400 00941 70294 26.0 78.8 770. 06/12/74 1105 10.0 TEXAS SMN 7.9 8.30 385. 00010 00011 00094 00300 00400 70294 20.0 TEXAS SMN 25.6 78.0 770. 06/12/74 1105 4 5 7.80 385. 00010 00011 00094 00300 00400 70294 06/12/74 1105 30.0 TEXAS SMN 25.0 77.0 750. 1.8 7.60 375. 00010 00011 00094 00300 00400 70294 25.0 77.0 15.0 08/08/74 1030 1.0 TEXAS SMN 18. 800. 870. 5.0 7.80 00010 00011 00070 00077 00094 00095 00300 00400 8.0 25. 13. .03 . 22 .03 .072 00403 00530 00535 00610 00620 00650 00660 00665 .010 12.0 160. 400. 150. 51. 13.0 00671 00680 00940 00941 00945 31616 70294 32211 08/08/74 1030 10.0 TEXAS SMN 25.0 77.0 200. 4.9 4.40 100. 00010 00011 00094 00300 00400 70294 25.5 77.9 600. 5.10 08/08/74 1030 20.0 TEXAS SMN 5.0 300. 00010 00011 00094 00300 00400 70294 11/12/74 1105 1.0 TEXAS SMN 14.5 58.1 .0 30. 800. 712. 9.8 8.20 00010 00011 00070 00077 00094 00095 00300 00400 8.3 11. . 03 .09 . 04 .03 00530 00403 00535 00610 00620 00650 00660 00665

SYMBOL (*) DENOTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

LATITUDE / LONGITUDE

* * * TEXAS WATER COMMISSION * * * STATEWIDE MONITORING NETWORK -- SAMPLING DATA INVENTORY
PERIOD OF REPORT: 01/01/68 TO 12/31/90 1222.0100 BRAZOS RIVER BASIN

SEGMENT - LAKE PROCTOR COUNTY - COMANCHE USGS GAGE NO RIVER MILE STATION NO. STATION LOCATION

DW0322

1222.0100			R NEAR								31 58 07 098	3 29 09
SAMPLE DATE	TIME		SOURCE AGENCY		PARAMETER N	MEASUREMENTS:	VALUE/ /CODE					
11/12/74	1105	1.0	TEXAS	SMN	.01	8.0 00680	123. 00940	125. 00941	44. 00945	14. 31616	41.0 32211	400. 70294
11/12/74	1105	10.0	TEXAS	SMN	14.5 00010	58.1 00011	800. 00094	9.5 00300	8.10 00400	400. 70294		
11/12/74	1105	20.0	TEXAS	SMN	14.5 00010	58.1 00011	900. 00094	9.3 00300	8 ₋ 10 00400	450. 70294		
11/12/74	1105	30.0	TEXAS	SMN	14.5 00010	58.1 00011	100. 00094	9.2 00300	8.00 00400	50. 70294		
11/12/74	1105	38.0	TEXAS	SMN	14.5 00010	58.1 00011	1000. 00094	8.9 00300	7.90 00400	500. 70294		
02/11/75	1530	1.0	TEXAS	SMN	9.0 00010	48.2 00011	10.0 00070	18. 00077	755. 00094	780. 00095	9.6 00300	9.00 00400
					8.2 00403	15. 00530	9. 00535	< .1 00610	. 03 00620	. 09 00650	< .03 00660	.029 00665
					.010 00671	6.0 00680	119. 00940	48. 00945	6. 31616	44.0 32211	378. 70294	
02/11/75	1530	10.0	TEXAS	SMN	9.0 00010	48.2 00011	760. 00094	10.4 00300	8.80 00400	380. 70294		
02/11/75	1530	20.0	TEXAS	SMN	9.0 00010	48.2 00011	760. 00094	11.4 00300	8.70 00400	380. 70294		
05/21/75	0800	1.0	TEXAS	SMN	22.5 00010	72.5 00011	30. 00077	1000. 00094	960. 00095	6.3 00300	7.80 00400	8.2 00403
					< 10. 00530	< 10. 00535	< .1 00610	< .02 00620	. 07 00650	< .03 00660	. 023 00665	.010 00671
					5.0 00680	164. 00940	57. 00945	8. 31616	13.0 32211	500. 70294		
05/21/75	0800	10.0	TEXAS	SMN	22.5 00010	72.5 00011	1000. 00094	6.2 00300	7.80 00400	500. 70294		
05/21/75	0800	20.0	TEXAS	SMN	22.5 00010	72.5 00011	1000. 00094	6.0 00300	7.80 00400	500. 70294		
05/21/75	0800	25.0	TEXAS	SMN	22.5 00010	72.5 00011	1000. 00094	5.0 00300	7.70 00400	500. 70294		

DISTRICT 03

DW0322 1222.0100

* * * T E X A S W A T E R C O M M I S S I O N * * * STATEWIDE MONITORING NETWORK -- SAMPLING DATA INVENTORY PERIOD OF REPORT: 01/01/68 TO 12/31/90 BRAZOS RIVER BASIN DISTRICT 03

SEGMENT - LAKE PROCTOR
COUNTY - COMANCHE USGS GAGE NO RIVER MILE

STATION NO. 1222.0100	LAKE PROCTOR NEAR DAM				USGS GAGE N	Ю			KIVEK MILE			LATI1 31 58	TUDE / LO 3 07 09	NGITUDE 8 29 09	
SAMPLE DATE	TIME	DEPTH (FT)	SOURCE AGENCY	SYSTEM CODE	PARAMETER ME	ASUREMENTS:	VALUE/ /COI								
08/27/75	0925	1.0	TEXAS	SMN	27.0 00010	80.6 00011	000°		1000. 00094	978. 00095		7.2 00300		7.90 00400	8.3 00403
					21. 00530	20. 00535	< 006		< .02 00620	. 16 00650	<	.03		. 052 00665	.010 00671
					6.0 00680	182. 00940	6: 009		4. 31616	53.0 32211		500. 70294			
08/27/75	0925	10.0	TEXAS	SMN	27.0 00010	80.6 00011	1000		6.9 00300	7.90 00400		500. 70294			
08/27/75	0925	20.0	TEXAS	SMN	27.0 00010	80.6 00011	1000		6.8 00300	7.90 00400		500. 70294			
08/27/75	0925	30.0	TEXAS	SMN	27.0 00010	80.6 00011	1000 0009		6.3 00300	7.90 00400		500. 70294			
11/04/75	1350	1.0	TEXAS	SMN	19.0 00010	66.2 00011	000		940. 00094	1015. 00095		9.3 00300		6.20 00400	8.5 00403
					22. 00530	8. 00535	< 006		< .02 00620	.07 00650	<	.03		.023 00665	.010 00671
					15.0 00680	196. 00940	009		16. 31616	78.0 32211		470. 70294			
11/04/75	1355	10.0	TEXAS	SMN	19.0 00010	66.2 00011	946 0009		9.2 00300	6.40 00400		470. 70294			
11/04/75	1355	20.0	TEXAS	SMN	19.0 00010	66.2 00011	956 0009		8.8 00300	6.50 00400		475. 70294			
11/04/75	1355	30.0	TEXAS	SMN	19.0 00010	66.2 00011	946 0009		9.0	6.50 00400		470. 70294			
02/19/76	0830	1.0	TEXAS	SMN	11.5 00010	52.7 00011	10 000		24. 00077	730. 00094		1120. 00095		11.0 00300	8.30 00400
					8.0 00403	15. 00530	005	5. 35	. 200 00610	< .02 00620		. 12 00650	<	.03	. 039 00665
					.010 00671	11.0 00680	209 009		60. 00945	2. 31616		26.0 32211		365. 70294	
02/19/76	0830	10.0	TEXAS	SMN	11.5 00010	52.7 00011	750 0009		12.0 00300	8.30 00400		375. 70294			

DW0322 1222.0100

* * * T E X A S W A T E R C O M M I S S I O N * * * STATEWIDE MONITORING NETWORK -- SAMPLING DATA INVENTORY PERIOD OF REPORT: 01/01/68 TO 12/31/90 BRAZOS RIVER BASIN DISTRICT 03

STATION NO. 1222.0100						US	GS GAGE I	NO		RIVER MILE LATITUDE / LONGITUDE 31 58 07 098 29 09								
SAMPLE DATE	TIME		SOURCE AGENCY		PARAM	METER N	MEASU	REMENTS:	V	ALUE/ /CODE								
02/19/76	0830	20.0	TEXAS	SMN		11.5 00010		52.7 00011		750. 00094		12.0 00300		8.30 00400	375. 70294			
05/11/76	1600	1.0	TEXAS	SMN		23.5 00010		74.2 00011		36. 00077		1100. 00094		1148. 00095	12.0 00300	7.70 00400		8.2 00403
					<	10. 00530	<	10. 00535	<	, 1 00610	<	. 02 00620		.09 00650	< .03 00660	.030 00665		.010 00671
						7.0 00680		204. 00940		74. 00945		2. 31616	<	4.0 32211	550. 70294			
05/11/76	1600	10.0	TEXAS	SMN		20.5 00010		68.9 00011		1100. 00094		8.0 00300		6.50 00400	550. 70294			
05/11/76	1600	20.0	TEXAS	SMN		20.0 00010		68.0 00011		1100. 00094		6.0 00300		7.50 00400	550. 70294			
Q5/11/76	1600	30.0	TEXAS	SMN		19.5 00010		67.1 00011		1100. 00094		5.0 00300		7.50 00400	550. 70294			
08/31/76	1500	1.0	TEXAS	SMN		28.5 00010		83.3 00011		30. 00077		970. 00094		1026. 00095	10.6 00300	7.20 00400		8.5 00403
					< .	10. 00530	<	10. 00535	<	. 1 00610	<	.02 00620		. 12 00650	00660	. 040 00665	<	.01 00671
						13.0 00680		203. 00940		63. 00945		64. 31616		34.0 32211	485. 70294			
08/31/76	1500	10.0	TEXAS	SMN		27.0 00010		80.6 00011		980. 00094		6.2 00300		8.40 00400	490. 70294			
08/31/76	1500	20.0	TEXAS	SMN		26.0 00010		78.8 00011		980. 00094		4.5 00300		8.00 00400	490. 70294			
08/31/76	1500	30.0	TEXAS	SMN		26.0 00010		78.8 00011		980. 00094		4.1 00300		8.00 00400	490. 70294			
08/17/77	0735	1.0	TEXAS	SMN		27.5 00010		81.5 00011		24. 00077		730. 00094		760. 00095	6.2 00300	8.00 00400		8.3 00403
						94. 00410	<	10. 00530	<	10. 00535	<	. 1 00610	<	.02 00620	. 09 00650	. 03 00660		. 030 00665

1222.0100

SEGMENT -

LAKE PROCTOR

* * * T E X A S W A T E R C O M M I S S I O N * * *
STATEWIDE MONITORING NETWORK -- SAMPLING DATA INVENTORY
PERIOD OF REPORT: 01/01/68 TO 12/31/90
BRAZOS RIVER BASIN

DISTRICT 03

USGS GAGE NO COUNTY -COMANCHE RIVER MILE STATION NO. STATION LOCATION LATITUDE / LONGITUDE 31 58 07 098 29 09 1222.0100 LAKE PROCTOR NEAR DAM VALUE/ DEPTH SOURCE SYSTEM PARAMETER MEASUREMENTS: SAMPLE /CODE ------DATE TIME (FT) AGENCY CODE -----9.0 08/17/77 0735 1.0 TEXAS SMN < .01 130. 41. 72. 27.0 365. 00671 00680 00940 00945 31616 32211 32218 70294 420. 70300 28. 82. 730. 6.0 8.0 365. 08/17/77 0740 10.0 TEXAS SMN 00010 00011 00094 00300 00400 70294 0740 20.0 TEXAS SMN 28. 82. 730. 5.7 8.0 365. 08/17/77 00010 00011 00094 00300 00400 70294 WATER MUDDY GREEN COLOR 11/08/78 1110 1.0 TEXAS SMN 61. 30. 915. 1015. 16. 8.8 8.1 8.3 00094 00010 00011 00070 00095 00300 00400 00403 92. 41. 24. .02 . 02 . 40 .03 . 13 00410 00530 00535 00610 00620 00650 00660 00665 197. 78.0 .01 13. 74. 50. 10.0 458. 00671 00680 00940 00945 31616 32211 32218 70294 OVERCAST, WINDY, COOL 02/27/79 1200 1.0 TEXAS SMN 8.0 46.4 18. 1100. 1026. 9.8 7.8 8.3 00010 00011 00077 00094 00095 00300 00400 00403 110. 19. 13. . 38 .01 . 09 . 03 . 03 00530 00620 00410 00610 00535 00650 00660 00665 .01 11. 191. 68. 176. 21.0 5.0 550. 00671 00680 00940 00945 31616 32218 32211 70294 7.0 44.6 1000. 9.95 8.3 500. 02/27/79 1200 5.0 TEXAS SMN 00010 00011 00094 00300 00400 70294 7.0 44.6 1000. 9.95 8.3 500. 02/27/79 1200 10.0 TEXAS SMN 00010 00011 00094 00400 70294 00300 7.0 44.6 1000. 10.0 8.3 500. 02/27/79 1200 11.0 TEXAS SMN 00400 00010 00011 00094 00300 70294 CLEAR, SUNSHINE, WATER ROUGHOW 05/23/79 1240 1.0 TEXAS SMN

SYMBOL (*) DENOTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

DW0322 1222.0100

* * * T E X A S W A T E R C O M M I S S I O N * * * STATEWIDE MONITORING NETWORK -- SAMPLING DATA INVENTORY PERIOD OF REPORT: 01/01/68 TO 12/31/90 BRAZOS RIVER BASIN DISTRICT 03

STATION NO. 1222.0100		Y - ATION I	LAKE PI COMANCI LOCATION R NEAR I	N HE		USGS GAGE	RIVER MILE LATITUDE / LONGI 31 58 07 098 2						
SAMPLE DATE	TIME		SOURCE AGENCY		PARAMETER	MEASUREMENTS:	VALUE/ /CODE				. 		
05/23/79	1240	1.0	TEXAS	SMN	22. 00010		22. 00077	760. 00094	768. 00095			8.5 00400	8.7 00403
					98. 00410		6. 00535	.04 00610	< .02 00620		<	.03 00660	. 05 00665
					< .01 00671		125. 00940	53. 00945	40. 31616			7.0 32218	380. 70294
05/23/79	1240	5.0	TEXAS	SMN	22. 00010		760. 00094	9.5 00300	8.4 00400				
05/23/79	1240	10.0	TEXAS	SMN	22. 00010		760. 00094	9.3	8.4 00400				
05/23/79	1240	15.0	TEXAS	SMN	22. 00010		760. 00094	9.4 00300	8.4 00400				
05/23/79	1240	20.0	TEXAS	SMN	22. 00010	72. 00011	760. 00094	9.1 00300	8.4 00400				
05/23/79	1240	22.0	TEXAS	SMN	21.5 00010		760. 00094	9.1 00300	8.4 00400				
08/29/79	1240	1.0	TEXAS	SMN	CLEAR,	SUNSHINE, AE	RATOR GOING	NEAR DAM BI					
					27.5 00010		18. 00077	710. 00094	790. 00095			8 . 1 00400	8.4 00403
					110. 00410	< 10. 00530	< 10. 00535	. 02 00610	< .02 00620		<	.03	. 03 00665
					< .01 00671	7. 00680	133. 00940	48. 00945	< 4. 31616		<	2.0 32218	355. 70294
08/29/79	1240	5.0	TEXAS	SMN	27. 00010	81. 00011	710. 00094	6.7 00300	8.0 00400				
08/29/79	1240	10.0	TEXAS	SMN	26.5 00010	79.7 00011	720. 00094	5.9 00300	7.9 00400				
08/29/79	1240	15.0	TEXAS	SMN	26.5 00010	79.7 00011	710. 00094	5.9 00300	7.9 00400				
08/29/79	1240	20.0	TEXAS	SMN	26.5 00010	79.7 00011	720. 00094	4.9 00300	7.7 00400				

SEGMENT -

LAKE PROCTOR

* * * TEXAS WATER COMMISSION * * *
STATEWIDE MONITORING NETWORK -- SAMPLING DATA INVENTORY
PERIOD OF REPORT: 01/01/68 TO 12/31/90
BRAZOS RIVER BASIN
DISTRICT 03

1

PAGE 00009

COUNTY -COMANCHE USGS GAGE NO RIVER MILE STATION NO. STATION LOCATION LATITUDE / LONGITUDE 1222.0100 LAKE PROCTOR NEAR DAM 31 58 07 098 29 09 DEPTH SOURCE SYSTEM PARAMETER MEASUREMENTS: VALUE/ SAMPLE TIME (FT) AGENCY CODE -----DATE WARM, SUNNY, WINDY 09/21/81 1640 1.0 TEXAS SMN 24.0 75.2 20. 932. 733. 7.1 8.4 7.5 00010 00011 00077 00094 00095 00300 00400 00403 71. 22. .07 .02 . 28 .06 .09 00620 00410 00530 00535 00610 00650 00660 00665 .02 14.2 560. 99. 20. 56.4 8.2 466. 00671 00680 00940 00945 31616 32211 32218 70294 5.0 TEXAS SMN 23.7 74.7 933. 6.6 8.2 467 09/21/81 1640 00010 00011 00094 00300 00400 70294 23.4 933. 09/21/81 1640 10.0 TEXAS SMN 74.1 5.9 8.1 467. 00010 00011 00094 00300 00400 70294 7.9 23.3 73.9 933. 5.4 09/21/81 1640 15.0 TEXAS SMN 467. 00010 00011 00300 70294 00094 00400 12/09/81 0915 1.0 TEXAS SMN 13.2 55.8 36. 736. 572. 11.2 8.0 8.3 00010 00011 00077 00094 00095 00300 00400 00403 93. .02 . 13 . 12 .06 .04 00535 00410 00530 00610 00620 00650 00660 00665 5.7 55. 32.7 < . 02 98. 140. 2.6 368. 00671 00680 00940 00945 31616 32211 32218 70294 0915 13.3 55.9 740. 11.4 8.1 370. 12/09/81 5.0 TEXAS SMN 00011 00094 00010 00300 00400 70294 13.3 55.9 741. 371. 12/09/81 0915 10.0 TEXAS SMN 11.3 8.1 00010 00011 00094 00300 00400 70294 372. 13.2 55.8 743. 10.9 8.1 12/09/81 0915 15.0 TEXAS SMN 00010 00011 00094 00300 00400 70294 13.0 55.4 749. 7.6 7.8 375. 12/09/81 0915 20.0 TEXAS SMN 00400 00010 00011 00094 00300 70294 13.0 55.4 752. 6.8 7.6 376. 12/09/81 0915 25.0 TEXAS SMN 00010 00011 00094 00300 00400 70294 768. 657. 03/18/82 0825 1.0 TEXAS SMN 16. 61. 38. 11.8 8.0 7.8 00010 00077 00094 00095 00300 00011 00400 00403

* * * T E X A S W A T E R C O M M I S S I O N * * * STATEWIDE MONITORING NETWORK -- SAMPLING DATA INVENTORY PERIOD OF REPORT: 01/01/68 TO 12/31/90 BRAZOS RIVER BASIN DISTRICT 03

STATION NO. 1222.0100		Y - ATION I	LAKE PI COMANCI LOCATION R NEAR N	HE N		USGS GAGE (NO	RIVER MILE LATITUDE / LONGITUDE 31 58 07 098 29 09								
SAMPLE Date	TIME		SOURCE AGENCY		PARAMETER	MEASUREMENTS:	VALUE/ /CODE							·		
03/18/82	0825	1.0	TEXAS	SMN	· 111. 00410		6. 00535	.09 00610		. 295 00620		. 06 650	<	.06 00660	<	. 02 00665
					< .02 00671		110. 00940	44.6 00945	<	10. 31616		3.2 211		4.1 32218		384. 70294
03/18/82	0825	5.0	TEXAS	SMN	15.9 00010		767. 00094	11.0 00300		8.2 00400		84. 294				
03/18/82	0825	10.0	TEXAS	SMN	15.4 00010		767. 00094	10.3 00300		8.3 00400		84. 294				
03/18/82	0825	15.0	TEXAS	SMN	15.2 00010		766. 00094	10.0 00300		8.3 00400		33. 294				
03/18/82	0825	20.0	TEXAS	SMN	15.0 00010		766. 00094	9.4 00300		8.3 00400		33. 294				
06/10/82	0830	1.0	TEXAS	SMN	26.2 00010		30. 00077	671. 00094		649. 00095	00:	9.0 300		8.4 00400		7.7 00403
					121. 00410		3. 00535	. 07 006 10	<	.02 00620		. 31 550	<	.06 00660		. 10 00665
					< .02 00671		110. 00940	41.8 00945	<	10. 31616	10 32:).9 211		5.8 32218		336. 70294
06/10/82	0830	5.0	TEXAS	SMN	26.2 00010		672. 00094	7.4 00300		8.4 00400	30 702	36 . 294				
06/10/82	0830	10.0	TEXAS	SMN	26.1 00010		673. 00094	7.1 00300		8.3 00400	30 702	37. 294				
06/10/82	0830	15.0	TEXAS	SMN	25.9 00010		674. 00094	6.6 00300		8.3 00400	30 702	37. 294				
06/10/82	0830	20.0	TEXAS	SMN	25.6 00010		676. 00094	5.3 00300		8.2 00400	33 702	38. 294				
06/10/82	0830	25.0	TEXAS	SMN	25.4 00010		677. 00094	4.9 00300		8.1 00400	101045 004			888.42 00668		6.96 01003
					165.8 01008		29. 01043	36. 01052		1440. 01053	010	60. 68		2. 01078		62. 01093

1222,0100

02/20/85

08/15/85

1216

1742

30.0 TEXAS SMN

1.0 TEXAS SMN

* * * T E X A S W A T E R C O M M I S S I O N * * * STATEWIDE MONITORING NETWORK -- SAMPLING DATA INVENTORY PERIOD OF REPORT: 01/01/68 TO 12/31/90

03

PERIOD OF REPORT: 01/01/68 TO 12/31/90 BRAZOS RIVER BASIN

DISTRICT

SEGMENT -LAKE PROCTOR COUNTY -COMANCHE USGS GAGE NO RIVER MILE STATION LOCATION LATITUDE / LONGITUDE STATION NO. 1222.0100 LAKE PROCTOR NEAR DAM 31 58 07 098 29 09 DEPTH SOURCE SYSTEM PARAMETER MEASUREMENTS: SAMPLE VALUE/ (FT) AGENCY CODE ------/CODE DATE TIME 2. 302.9 . 5 06/10/82 0830 25.0 TEXAS SMN < < . 2 . 3 . 90 . 3 . 8 39333 01148 39351 39363 39368 39373 39383 39393 54. 5.26 < . 6 < < 240. < 1.1 < 3.75 . 7 39403 39413 39423 39481 39519 39541 39571 39601 • . 3 339. .02 39783 70294 71921 LAKE LEVEL HIGHER THAN NORMAL NUMEROUS AQUATIC BIRDS OBSERVED, VERY WINDY CONDITIONS 1.0 TEXAS SMN 02/20/85 1216 7.2 45.0 18. 387. 400. 12.4 8.2 6.9 00010 00011 00077 00094 00095 00300 00400 00403 93. 14. 3. < . 02 < .02 1.10 .06 . 36 00410 00530 00535 00610 00620 00650 00660 00665 14.0 .02 2.3 45. 21. 10. 4.6 194. 00671 00680 00940 00945 31616 32211 32218 70294 02/20/85 1216 5.0 TEXAS SMN 7.0 44.6 392. 12.3 8.2 196. 00010 00011 00094 00300 00400 70294 44.1 392. 02/20/85 1216 10.0 TEXAS SMN 6.7 12.2 8.1 196. 00010 00011 00094 00300 00400 70294 02/20/85 1216 15.0 TEXAS SMN 6.5 43.7 394. 11.5 8.1 197. 00010 00011 00094 00300 00400 70294 43.3 395. 7.9 02/20/85 1216 20.0 TEXAS SMN 6.3 11.1 198. 00010 00011 00094 00300 00400 70294 43.3 02/20/85 1216 25.0 TEXAS SMN 6.3 398. 10.5 7.8 199. 00010 00011 00094 00300 00400 70294

399.

30.

2.

00077

00535

00094

10.2

00300

463.

. 17

<

00094

00610

7.8

00400

543.

.02

00095

00620

200.

6.4

. 12

00300

00650

70294

SYMBOL (*) DENOTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

6.3

WATER MURKY

00010

29.0

00010

120.

00410

43.3

84.2

7.

00011

00530

00011

, 481 (132)

8.1

.06

00400

00660

7.9

. 04

00403

00665

DW0322 1222.0100

* * * T E X A S W A T E R C O M M I S S I O N * * * STATEWIDE MONITORING NETWORK -- SAMPLING DATA INVENTORY PERIOD OF REPORT: 01/01/68 TO 12/31/90 BRAZOS RIVER BASIN DISTRICT 03

STATION NO. 1222.0100		Y - ATION L	LAKE PE COMANCE OCATION NEAR E	HE N		USGS GAGE N	NO		RIVER MILE		ATITUDE / LC	NGITUDE 8 29 09
SAMPLE Date	TIME		SOURCE AGENCY		PARAMETER M	EASUREMENTS:	VALUE/ /CODE					
08/15/85	1742	1.0	TEXAS	SMN		3.9 00680	85. 00940	27. 00945	13.7 32211	10.8 32218	232. 70294	
08/15/85	1742	5.0	TEXAS	SMN	28.6 00010	83.5 00011	550. 00094	4.2 00300	7.7 00400	275. 70294		
08/15/85	1742	10.0	TEXAS	SMN	28.5 00010	83.3 00011	566. 00094	3.3 00300	7.6 00400	283. 70294		
08/15/85	1742	15.0	TEXAS	SMN	28.3 00010	82.9 00011	572. 00094	2.9 00300	7.6 00400	286. 70294		
08/15/85	1742	20.0	TEXAS	SMN	28.2 00010	82.8 00011	577. 00094	. 6 00300	7.4 00400	289. 70294		
08/15/85	1742	25.0	TEXAS	SMN	27.8 00010	82.0 00011	589. 00094	. 3	7.3 00400	295. 70294		
01/30/86	1200	1.0	TEXAS	SMN	10.4 00010	25. 00077	601. 00094	599. 00095	11.7 00300	8.4 00400	8.2 00403	114. 00410
					13. 00530	1. 00535	< .02 00610	< .02 00620	1.1 00625	.04 00665	.01 00671	8.5 00680
					. 102. 00940	38. 00945	10. 31616	11.8 32211	11.9 32218			
01/30/86	1200	5.0	TEXAS	SMN	9.9 00010	621. 00094	12.5 00300	8 . 4 00400				
01/30/86	1200	10.0	TEXAS	SMN	9.8 00010	625 . 00094	12.7 00300	8.4 00400				
01/30/86	1200	15.0	TEXAS	SMN	9.7 00010	625. 00094	12.8 00300	8.4 00400				
01/30/86	1200	20.0	TEXAS	SMN	9.7 00010	625. 00094	603. 00095	12.8 00300	8.4 00400	8.2 00403	117. 00410	15. 00530
					2. 00535	< .02 00610	< .02 00620	1.1 00625	. 05 00665	< .01 00671	8.0 00680	103. 00940
					35. 00945	14.7 32211	6.0 32218					
01/30/86	1200	25.0	TEXAS	SMN	9.7 00010	626. 00094	12.0 00300	8.4 00400				

* * * T E X A S W A T E R C O M M I S S I O N * * * STATEWIDE MONITORING NETWORK -- SAMPLING DATA INVENTORY PERIOD OF REPORT: O1/O1/68 TO 12/31/90 BRAZOS RIVER BASIN DISTRICT O3

PAGE 00013

1222.0100

STATION NO. 1222.0100		Y - ATION	LAKE P COMANC LOCATION R NEAR	HE N		USGS GAGE I	10				RIV	ER MILE		TUDE / LOI 58 07 098	NGITUDE 3 29 09
SAMPLE DATE	TIME		SOURCE AGENCY		PARAMETER M	MEASUREMENTS:	٧	ALUE/ /CODE						 	
08/25/86	1500	1.0	TEXAS	SMN	ACRATO	RUNNING NEAF	R DA	М							
					27.7 00010	26. 00077		427. 00094		363. 00095		3.9 00300	7. 0040	7.75 00403	100. 00410
					7 00530	2. 00535		.025 00610	<	.01 00620		. 7 00625	4 1 0094	10. 00945	10.3 32211
					8.7 32218										
08/25/86	1505	20.0	TEXAS	SMN	27.1 00010	429. 00094		414. 00095		0. 00300		7.5 00400	7.8 0040	108. 00410	29. 00530
					6. 00535	. 082 00610	<	.01 00620		40. 00940		12. 00945			
08/25/86	1510	5.0	TEXAS	SMN	27.6 00010	427. 00094		3.5 00300		7.7 00400					
08/25/86	1510	10.0	TEXAS	SMN	27.5 00010	427. 00094		2.5 00300		7.7 00400					
08/25/86	1510	15.0	TEXAS	SMN	27.3 00010	428. 00094		1.6 00300		7.7 00400					
08/25/86	1510	20.0	TEXAS	SMN	27.2 00010	429. 00094		. 4 00300		7.6 00400					
08/25/86	1510	21.0	TEXAS	SMN	27.1 00010	429. 00094		00300		7.5 00400					
03/04/87	1230	1.0	TEXAS	SMN	13.4 00010	18. 00077		534. 00094		538. 00095		13.7 00300	8.9 0040	8.6 00403	129. 00410
					15. 00530	14. 00535	<	. 02 006 10	<	.02 00620		1.1 00625	. 0: 0066!	.01 00671	8.0 00680
					67. 00940	38. 00945	<	5. 31616		26.4 32211	<	. 2 32218			
03/04/87	1230	5.0	TEXAS	SMN	11.8 00010	536. 00094		14.6 00300		8.6 00400					
03/04/87	1230	10.0	TEXAS	SMN	10.7 00010	544. 00094		12.2 00300		8.5 00400					

* * * T E X A S W A T E R C O M M I S S I O N * * * STATEWIDE MONITORING NETWORK -- SAMPLING DATA INVENTORY PERIOD OF REPORT: 01/01/68 TO 12/31/90 BRAZOS RIVER BASIN DISTRICT 03

PAGE 00014

STATION NO. 1222.0100	LAKE PROCTOR NEAR DAM			HE N		USG	S GAGE I	NO				RIVER MILE				TUDE / LON 8 07 098	IGITUDE 29 09
SAMPLE Date	TIME		SOURCE AGENCY		PARAMETER M	EASUR	REMENTS:	V	ALUE/ /CODE				 				
03/04/87	1230	15.0	TEXAS	SMN	. 10.3 00010		580. 00094		10.7 00300		8.5 00400						
03/04/87	1230	20.0	TEXAS	SMN	10.2 00010		607. 00094		9.6 00300		8.4 00400						
03/04/87	1230	25.0	TEXAS	SMN	10.2 00010		615. 00094		9.4 00300		8.3 00400						
03/04/87	1230	30.0	TEXAS	SMN	10.1 00010		615. 00094		9.2 00300		8.3 00400						
03/04/87	1230	33.0	TEXAS	SMN	10.1 00010		625. 00094		571. 00095		9.2 00300	8.3 00400		8.4 00403		129. 00410	32. 00530
					18. 00535	<	.02 00610	<	. 02 00620		1.2 00625	. 08 00665	<	.01 00671		8.5 00680	74. 00940
					46. 00945		37.3 32211		1.9 32218								
08/25/87	1940	1.0	TEXAS	SMN	AERATOR	ON A	T DAM SO	OME I	FISH ACT	VITY	1						
					29.5 00010		28. 00077		598. 00094		577. 00095	6.9 00300		8.2 00400		6.9 00403	135. 00410
					5. 00530		2. 00535	<	.02 00610	<	.02 00620	1.2 00625		. 05 00665	<	.01 00671	8.9 00680
					79. 00940		32. 00945		14.3 32211	<	.2 32218						
08/25/87	1940	5.0	TEXAS	SMN	28.6 00010		577. 00094		3.1 00300		8.0 00400						
08/25/87	1940	10.0	TEXAS	SMN	28.0 00010		585. 00094		. 2 00300		7.8 00400						
08/25/87	1940	15.0	TEXAS	SMN	27.5 00010		591. 00094		2.4 00300		7.7 00400						
08/25/87	1940	20.0	TEXAS	SMN	26.3 00010		580. 00094		00300		7.6 00400						
08/25/87	1940	21.0	TEXAS	SMN	562. 00095		7.2 00403		143. 00410		23. 00530	11. 00535		1.08 00610	<	. 02 00620	2.2 00625

1222.0100

* * * T E X A S W A T E R C D M M I S S I D N * * * STATEWIDE MONITORING NETWORK -- SAMPLING DATA INVENTORY PERIOD OF REPORT: 01/01/68 TO 12/31/90 BRAZOS RIVER BASIN

DISTRICT 03

SEGMENT - LAKE PROCTOR COUNTY - COMANCHE USGS GAGE NO RIVER MILE LATITUDE / LONGITUDE STATION NO. STATION LOCATION LAKE PROCTOR NEAR DAM 31 58 07 098 29 09 1222.0100 DEPTH SOURCE SYSTEM PARAMETER MEASUREMENTS: VALUE/ SAMPLE (FT) AGENCY CODE ------/CODE DATE 21.0 TEXAS SMN . 38 . 15 9.0 66. 20. 6.3 08/25/87 1940 1.6 00665 00671 00680 00940 00945 32211 32218 25.0 575. 7.6 08/25/87 1940 23.0 TEXAS SMN 00010 00094 00300 00400 WATER MURKY ONE FISHERMAN NEARBY 02/09/88 1315 1.0 TEXAS SMN 6.9 13. 670. 11.7 7.5 150. 28. 00010 00077 00094 00300 00400 00410 00530 00535 . 05 .02 . 16 . 6 .02 7.0 101. 41. 00610 00620 00625 00665 00671 00680 00940 00945 95. 49.8 6.9 31616 32211 32218 02/09/88 6.8 7.5 1315 5.0 TEXAS SMN 677. 11.3 00010 00094 00300 00400 6.8 7.6 02/09/88 1315 10.0 TEXAS SMN 677. 11.2 00010 00094 00300 00400 6.7 7.6 02/09/88 1315 15.0 TEXAS SMN 677. 11.1 00094 00300 00400 00010 6.7 678. 11.1 7.6 02/09/88 1315 20.0 TEXAS SMN 00010 00094 00300 00400 6.7 678. 10.8 7.6 1315 25.0 TEXAS SMN 02/09/88 00010 00094 00300 00400 6.7 679. 10.7 7.6 1315 28.0 TEXAS SMN 02/09/88 00400 00010 00094 00300 1320 02/09/88 27.0 TEXAS SMN . 7 00625 144. 30. 3. .02 7.0 02/09/88 1320 28.0 TEXAS SMN . 16 .06 .03 00535 00410 00530 00610 00620 00665 00671 00680 43. 40.9 7.9 100. 00940 00945 32211 32218 30.6 27. 491. 10.8 8.7 107. 08/10/88 1450 1.0 TEXAS SMN 10. 7. 00010 00077 00094 00300 00400 00410 00530 00535

SYMBOL (*) DENOTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

1222.0100

* * * T E X A S W A T E R C O M M I S S I O N * * * * STATEWIDE MONITORING NETWORK -- SAMPLING DATA INVENTORY PERIOD OF REPORT: 01/01/68 TO 12/31/90 BRAZOS RIVER BASIN

DISTRICT

PAGE 00016

SEGMENT -LAKE PROCTOR COUNTY -COMANCHE USGS GAGE NO RIVER MILE STATION NO. STATION LOCATION LATITUDE / LONGITUDE 1222.0100 LAKE PROCTOR NEAR DAM 31 58 07 098 29 09 VALUE/ SAMPLE DEPTH SOURCE SYSTEM PARAMETER MEASUREMENTS: DATE (FT) AGENCY CODE ------/CODE TIME 1.0 TEXAS SMN 8. 08/10/88 1450 .02 .01 . 05 .01 72. 24. 00610 00620 00625 00665 00671 00680 00940 00945 3. 11. 11. 31616 32211 32218 7.4 08/10/88 1450 26.0 TEXAS SMN 25.5 514. . 5 129. 79. 15. .88 00300 00010 00094 00400 00410 00530 00535 00610 .01 1.7 . 29 .03 9. 65. 30. 28. 00625 00620 00665 00671 00680 00940 00945 32211 21. 32218 1423 08/07/89 1.0 TEXAS SMN AERATOR NEARBY. RAINING. WATER FLOWING THRU DAM 27.0 .51 419. 6.8 8.2 110. 16. 7. 00010 00078 00094 00300 00400 00410 00530 00535 .03 .04 .01 .063 .053 6. 38. 30. 00615 00620 00610 00680 00665 00671 00940 00945 10. 11.1 11.1 1. 31616 32211 32218 72053 08/07/89 1423 5.0 TEXAS SMN 27.0 420. 6.0 00010 00094 00300 5.6 08/07/89 1423 10.0 TEXAS SMN 26.9 420. 00010 00094 00300 08/07/89 1423 15.0 TEXAS SMN 26.8 420. 5.0 00010 00094 00300 08/07/89 1423 20.0 TEXAS SMN 26.6 420. 4.8 00010 00094 00300 08/07/89 26.6 420. 1423 24.0 TEXAS SMN 3.2 00010 00094 00300 08/07/89 1428 24.0 TEXAS SMN 26.6 420. 3.2 7.3 112. 25. . 20 00010 00094 00300 00400 00410 00530 00535 00610 . 05 .01 . 65 .088 .075 37. 6. 29. 00615 00625 00620 00665 00680 00671 00940 00945

* * * TEXAS WATER COMMISSION * * *
STATEWIDE MONITORING NETWORK -- SAMPLING DATA INVENTORY DW0322 PERIOD OF REPORT: 01/01/68 TO 12/31/90 BRAZOS RIVER BASIN 1222.0100 DISTRICT 03 SEGMENT -LAKE PROCTOR COUNTY -COMANCHE USGS GAGE NO RIVER MILE STATION NO. STATION LOCATION LATITUDE / LONGITUDE 1222.0100 LAKE PROCTOR NEAR DAM 31 58 07 098 29 09 DEPTH SOURCE SYSTEM PARAMETER MEASUREMENTS: VALUE/ SAMPLE DATE TIME (FT) AGENCY CODE -----/CODE -----

72053

PAGE 00017

08/07/89

1428

24.0 TEXAS SMN

* * * T E X A S W A T E R C D M M I S S I D N * * * STATEWIDE MONITORING NETWORK -- SAMPLING DATA INVENTORY PERIOD OF REPORT: 01/01/68 TO 12/31/90 BRAZOS RIVER BASIN DISTRICT 03

STATION NO. 1222.0100	STATION LOCATION	USGS GAGE NO		RIVER MILE LATITUDE / LONGITUDE 31 58 07 098 29 09
PARAMETER	DESCRIPTION:	P/	ARAMETER	DESCRIPTION:
00010	DESCRIPTION: TEMPERATURE, WATER (DEGREES CENTIGRADE TURBIDITY, (JACKSON CANDLE UNITS) TRANSPARENCY, SECCHI DISC (METERS) SPECIFIC CONDUCTANCE (UMHOS/CM ₱ 25C) PH (STANDARD UNITS) ALKALINITY, TOTAL (MG/L AS CACO3) RESIDUE, TOTAL NONFILTRABLE (MG/L) NITROGEN, AMMONIA, TOTAL (MG/L AS N) NITRATE NITROGEN, TOTAL (MG/L AS N) NITROGEN,ORG, KJEL,BOT, DEPOS. (MG/KG-PHOSPHATE, ORTHO (MG/L AS PO4))	00011	TEMPERATURE, WATER (DEGREES FAHRENHEIT)
00070	TURBIDITY, (JACKSON CANDLE UNITS)	(00077	TRANSPARENCY, SECCHÍ DISC (INCHES)
00078	TRANSPARENCY, SECCHI DISC (METERS)	(00094	SPECIFIC CONDUCTANCE, FIELD (UMHOS/CM @ 25C)
00095	SPECIFIC CONDUCTANCE (UMHOS/CM @ 25C)	(00300	OXYGEN, DISSOLVED (MG/L)
00400	PH (STANDARD UNITS)		00403	PH (STANDARD UNITS) LAB
00410	ALKALINITY, TOTAL (MG/L AS CACO3)	(00496	LOSS ON IGNITION, BOTTOM DEPOSITS (MG/KG)
00530	RESIDUE, TOTAL NONFILTRABLE (MG/L)	(00535	RESIDUE, VOLATILE NONFILTRABLE (MG/L)
00610	NITROGEN, AMMONIA, TOTAL (MG/L AS N)	(00615	NITRITE NITROGEN, TOTAL (MG/L AS N)
00620	NITRATE NITROGEN, TOTAL (MG/L AS N)	(00625	NITROGEN, KJELDAHL, TOTAL, (MG/L AS N)
00626	NITROGEN, ORG. KJEL., BOT. DEPOS. (MG/KG	N DRY WGT (00650	PHOSPHATE, TOTAL (MG/L AS PO4)
	PHOSPHATE, ORTHO (MG/L AS PO4)		00665	PHOSPHORUS, TOTAL, WET METHOD (MG/L AS P)
00668	PHOSPHATE, ORTHO (MG/L AS PO4) PHOSPHORUS, TOTAL, BOTTOM DEPOSIT (MG/KG CARBON, TOTAL ORGANIC (MG/L AS C) CHLORIDE, DISSOLVED IN WATER MG/L	G DRY WGT) (00671	PHOSPHORUS, DISSOLVED ORTHOPHOSPHATE (MG/L AS P)
00680	CARBON, TOTAL ORGANIC (MG/L AS C)	(00940	CHLORIDE (MG/L AS CL)
00941	CHLORIDE, DISSOLVED IN WATER MG/L		00945	SULFATE (MG/L AS SO4)
01003	ARSENIC IN BOTTOM DEPOSITS (MG/KG AS AS	S DRY WGT) (01008	BARIUM IN BOTTOM DEPOSITS (MG/KG AS BA DRY WGT)
01028	CADMIUM, TOTAL IN BOTTOM DEPOSITS (MG/KC		01043	COPPER IN BOTTOM DEPOSITS (MG/KG AS CU DRY WGT)
01052	LEAD IN BOTTOM DEPOSITS (MG/KG AS PB DE		01053	MANGANESE IN BOTTOM DEPOSITS (MG/KG AS MN DRY WG
01068	NICKEL, TOTAL IN BOTTOM DEPOSITS (MG/K		01078	SILVER IN BOTTOM DEPOSITS (MG/KG AS AG DRY WGT)
01093	ZINC IN BOTTOM DEPOSITS (MG/KG AS ZN DE		01148	SELENIUM IN BOTTOM DEPOSITS (MG/KG AS SE DRY WT)
31501	COLIFORM, TOT, MEMBRANE FILTER, IMMED. M-E		31616	FECAL COLIFORM, MEMBR FILTER, M-FC BROTH, #/100ML
32211	CHLOROPHYLL-A UG/L SPECTROPHOTOMETRIC		32218	PHEOPHYTIN-A UG/L SPECTROPHOTOMETRIC ACID. METH.
39333	ALDRIN IN BOTTOM DEPOS. (UG/KILOGRAM DI		39351	CHLORDANE IN BOT. DEPOS. (UG/KILOGRAM DRY SOLIDS
39363	DDD IN BOTTOM DEPOS. (UG/KILOGRAM DRY		39368	DDE IN BOTTOM DEPOS. (UG/KILOGRAM DRY SOLIDS)
39373	DDT IN BOTTOM DEPOS. (UG/KILOGRAM DRY S		39383	DIELDRIN IN BOTTOM DEPOS. (UG/KILOGRAM DRY SOL.)
39393	ENDRIN IN BOTTOM DEPOS. (UG/KILOGRAM DE		39403	TOXAPHENE IN BOTTOM DEPOS. (UG/KILOGRAM DRY SOL.
39413	HEPTACHLOR IN BOT. DEP. (UG/KILOGRAM DE		39423	HEPTACHLOR EPOXIDE IN BOT. DEP. (UG/KG DRY SOL.)
39481	METHOXYCHLOR IN BOTTOM DEPOSITS (UG/KG		39519	PCBS IN BOTTOM DEPOSITS (UG/KG DRY SOLIDS)
39541	PARATHION IN BOT. DEPOS. (UG/KILOGRAM (39571	DIAZINON IN BOT. DEPOS. (UG/KILOGRAM DRY SOLIDS)
39601	METHYL PARATHION IN BOT. DEPOS. (UG/KG [39783	LINDANE IN BOTTOM DEPOSITS (UG/KG DRY SOLIDS)
70294	POPPOP		70300	RESIDUE, TOTAL FILTRABLE (DRIED AT 180C), MG/L
71921	MERCURY, TOT. IN BOT. DEPOS. (MG/KG AS H	IG DRY WGI /	72053	DAYS SINCE PRECIPITATION EVENT (DAYS)

* * * T E X A S W A T E R C O M M I S S I O N * * * STATEWIDE MONITORING NETWORK -- SAMPLING DATA INVENTORY PERIOD OF REPORT: 01/01/68 TO 12/31/90 BRAZOS RIVER BASIN DISTRICT 03

SEGMENT - LAKE PROCTOR
COUNTY - COMANCHE USGS GAGE NO RIVER MILE

STATION NO. 1222.0200		TATION	COMANC LOCATIO R LEON	N	ANA RIVER ARM	USGS GAGE 1	NO				ΚI	AEK WILE			LATI 32 O	TUDE / L	ONGI1 98 30	
SAMPLE DATE	TIME		SOURCE AGENCY		PARAMETER ME	EASUREMENTS:	V.	ALUE/ /CODE										
08/21/73	1000	1.0	TEXAS	SMN	29.4 00010	85.0 00011		600. 00094		7.0 00300		8.30 00400		7.5 00403		90. 00410	<	. 3 00620
					.50 00626	. 18 00650		. 059 00665		2400. 31501		1. 31616		4.0 32211		300. 70294		
09/05/73	UNSP	1.0	TEXAS	SMN	26.1 00010	79.0 00011		130.0 00070		710. 00094		5.0 00300		8.60 00400		100. 00410	<	. 3 00620
,					1.20 00626	. 21 00650		. 069 00665		840. 31501	<	4. 31616		15.0 32211		355. 70294		
09/26/73	1135	1.0	TEXAS	SMN	26.7 00010	80.0 00011		30.0 00070		750. 00094		752. 00095		8.0 00300		8 . 10 00400		7.9 00403
					41. 00530	12. 00535	<	. 1 00610		.06 00620		. 24 00650	<	.03		.078 00665		.010 00671
					138. 00940	44. 00945		1900. 31501	<	10. 31616		22.0 32211		375. 70294				
10/08/73	1030	1.0	TEXAS	SMN	23.9 00010	75.0 00011		20.0 00070		690. 00094		744. 00095		7.0 00300		8.30 00400		8.1 00403
					23. 00530	8. 00535	<	. 1 00610	<	.03 00620		. 16 00650	<	.03		. 052 00665		.010 00671
					138. 00940	46. 00945		400. 31501	<	10. 31616		28.0 32211		345. 70294				
10/29/73	1415	1.0	TEXAS	SMN	3926.6 00010	71. 00011		27.0 00070		12. 00077		500. 00094		596. 00095		9.0 00300		8.70 00400
					8.1 00403	41. 00530		1. 00535	<	. 1 00610	<	. 03 00620		. 23 00650		.03 00660		.075 00665
					.010 00671	97. 00940		36. 00945		41.0 32211		250. 70294						
11/06/73	0955	1.0	TEXAS	SMN	16.1 00010	61.0 00011		25.0 00070		12. 00077		440. 00094		580. 00095		11.0 00300		6.50 00400
					8.3 00403	34. 00530		12. 00535	<	. 1 00610	<	. 03 00620		. 29 00650	<	.03		.095 00665
					. 010 00671	91. 00940		35. 00945		5300. 31501	<	10. 31616		28.0 32211		220. 70294		

SEGMENT - LAKE PROCTOR

1222.0200

* * * TEXAS WATER COMMISSION * * * STATEWIDE MONITORING NETWORK -- SAMPLING DATA INVENTORY PERIOD OF REPORT: 01/01/68 TO 12/31/90 BRAZOS RIVER BASIN DISTRICT 03

STATION NO. STATION LOCATION 1222.0200 LAKE PROCTOR LEON AND SAMPLE DEPTH SOURCE SYS					ANA RIVER AR	USGS GAGE I	NO				RI	VER MILE				TUDE / LO	NGITUDE 98 30 18
SAMPLE Date	TIME	DEPTH (FT)	SOURCE AGENCY	SYSTEM CODE	PARAMETER M	EASUREMENTS:		JE/ JCODE									
11/28/73	1030	1.0	TEXAS	SMN	. 16.7 00010	62.0 00011	C	5.0 00070		24. 00077		580. 00094		656. 00095		6.0 00300	8.40 00400
					8.4 00403	21. 00530	C	7. 00535	<	. 1 00610	<	.03 00620		. 12 00650		. 03 00660	.039 00665
					.010 00671	105. 00940	C	44. 00945		4700. 31501	<	10. 31616		21.0 32211		290. 70294	
12/07/73	1430	1.0	TEXAS	SMN	12.8 00010	55.0 00011		10.0 00070		14. 00077		640. 00094		8.0 00300		8 . 50 00400	320. 70294
01/16/74	1010	1.0	TEXAS	SMN	6.7 00010	44.0 00011	C	20.0 00070		16. 00077		800. 00094		12.0 00300		8.70 00400	400. 70294
02/13/74	0915	1.0	TEXAS	SMN	9.4 00010	49.0 00011		10.0 00070		20. 00077		570. 00094		790. 00095		12.0 00300	8.60 00400
					8.1 00403	12. 00530	c	7. 00535	<	. 1 00610	<	.03 00620		. 12 00650	<	.03 00660	. 039 00665
					.010 00671	124. 00940	c	42. 00945		280. 31501	<	10. 31616		24.0 32211		285. 70294	
05/08/74	1155	1.0	TEXAS	SMN	23.0 00010	73.4 00011	c	18. 00077		860. 00094		895. 00095		12.0 00300		8.50 00400	8.3 00403
					15. 00530	7. 00535	< c	. 1 00610	<	. 03 00620		. 19 00650	<	. 03		.062 00665	. 010 00671
					9.0 00680	155. 00940		250. 00941		54. 00945		130. 31501	<	10. 31616		22.0 32211	430. 70294
06/12/74	1055	1.0	TEXAS	SMN	26.4 00010	79.5 00011	o	12. 00077		770. 00094		7.3 00300		8.30 00400		170. 00941	385. 70294
08/08/74	UNSP	1.0	TEXAS	SMN	25.0 00010	77.0 00011		80.0 0070		12. 00077		900. 00094		930. 00095		6.8 00300	5.50 00400
					8.2 00403	70. 00530	O	21. 00535	<	. 1 00610	<	.03 00620		.41 00650	<	.03	. 134 00665
					. 075 0067 1	17.0 00680		165. XX940		250. 00941		53. 00945		6. 31616	<	4.0 32211	450. 70294

PAGE 00021

DW0322 1222.0200 * * * T E X A S W A T E R C O M M I S S I O N * * *
STATEWIDE MONITORING NETWORK -- SAMPLING DATA INVENTORY
PERIOD OF REPORT: 01/01/68 TO 12/31/90
BRAZOS RIVER BASIN
DISTRICT 03

SEGMENT - LAKE PROCTOR
COUNTY - COMANCHE USGS GAGE NO RIVER MILE

STATION NO. STATION LOCATION

1222.0200 LAKE PROCTOR LEON AND SABANA RIVER ARM

1220.0200 LAKE PROCTOR LEON AND SABANA RIVER ARM

1220.0200 LAKE PROCTOR LEON AND SABANA RIVER ARM

				0.0.445750 45.	CUREMENTS									
SAMPLE DATE	TIME	(FT) AGENCY		PARAMETER MEA	SUREMENTS:	VALUE/ /CODE								
11/12/74	1130	1.0 TEXAS	SMN	13.0 00010	55.4 00011	70.0 00070		8. 00077		800. 00094	549. 00095		8.2 00300	7.80 00400
				8.0 00403	31. 00530	6. 00535	<	.01 00610	<	. 03 00620	. 23 00650		. 13 00660	. 08 00665
				. 04 00671	7.0 00680	87. 00940		95. 00941		29. 00945	24. 31616		24.0 32211	400. 70294
02/11/75	1545	1.0 TEXAS	SMN	8.0 00010	46.4 00011	5.0 00070		18. 00077		910. 00094	978. 00095		9.8 00300	9.20 00400
				8.3 00403	21. 00530	6. 00535	<	. 1 00610	<	. 02 00620	. 16 00650	<	.03	. 052 00665
				.010 00671	2.0 00680	173. 00940		60. 00945		26. 31616	49.0 32211		455. 70294	
05/21/75	0830	1.0 TEXAS	SMN	23.5 00010	74.3 00011	10.0 00070		18. 00077		1100. 00094	1050. 00095		6.9 00300	7.90 00400
				8.2 00403	30. 00530	7. 00535	<	. 1 00610	<	.02 00620	. 11 00650	<	.03 00660	. 036 00665
				.010 00671	6.0 00680	194. 00940		63. 00945		4. 31616	11.0 32211		550. 70294	
08/27/75	0945	1.0 TEXAS	SMN	27.0 00010	80.6 00011	20.0 00070		12. 00077		1000. 00094	966. 00095		7.6 00300	7.90 00400
				8.7 00403	45. 00530	26. 00535	<	. 1 00610	<	.02 00620	. 32 00650	<	.03 00660	. 105 00665
				.010 00671	16.0 00680	187. 00940		63. 00945	<	2. 31616	56.0 32211		500. 70294	
11/04/75	1415	1.0 TEXAS	SMN	19.0 00010	66.2 00011	20.0 00070		18. 00077		900. 00094	1015. 00095		9.5 00300	8.50 00400
				8.6 00403	42. 00530	8. 00535	<	. 1 00610	<	.02 00620	. 12 00650	<	.03 00660	. 039 00665
				.010 00671	14.0 00680	196. 00940		64. 00945	<	2. 31616	36.0 32211		450. 70294	

PAGE 00022

* * * T E X A S W A T E R C O M M I S S I O N * * * STATEWIDE MONITORING NETWORK -- SAMPLING DATA INVENTORY PERIOD OF REPORT: 01/01/68 TO 12/31/90 BRAZOS RIVER BASIN DISTRICT 03

SEGMENT -LAKE PROCTOR COUNTY -COMANCHE USGS GAGE NO RIVER MILE LATITUDE / LONGITUDE STATION LOCATION STATION NO. 1222.0200 LAKE PROCTOR LEON AND SABANA RIVER ARM 32 01 21 098 30 18 DEPTH SOURCE SYSTEM PARAMETER MEASUREMENTS: SAMPLE VALUE/ TIME (FT) AGENCY CODE -----/CODE DATE 1.0 TEXAS SMN 57.2 190. 1190. 10.0 7.9 02/19/76 0910 14.0 15. 8.50 00010 00011 00077 00094 00095 00300 00400 00403 14. . 300 .02 . 26 . 04 . 085 .013 00530 00535 00610 00620 00650 00660 00665 00671 221. 19.0 4.0 68. 95. 00680 00940 00945 31616 32211 70294 77.0 800. 795. 05/11/76 25.0 36. 14.0 9.00 8.3 1620 1.0 TEXAS SMN 00011 00010 00077 00094 00095 00300 00400 00403 10. 10. . 200 .02 . 18 .03 .060 .010 00530 00535 00610 00620 00650 00660 00665 00671 6.0 147. 51. 13.0 400. 00680 00940 00945 31616 32211 70294 28.0 82.4 20.0 930. 978. 08/31/76 1515 1.0 TEXAS SMN 12. 12.3 9.40 00010 00011 00070 00077 00094 00095 00300 00400 8.6 26. .01 . 100 16. . 02 00403 00650 00530 00535 00610 00620 00660 00665 9.0 197. .01 63. Я 54.0 465. 00671 00680 00940 00945 31616 32211 70294 1.0 TEXAS SMN 29. 84 12. 750. 780. 6.0 8.0 08/17/77 0800 8.1 00010 00011 00077 00094 00095 00300 00400 00403 80. 38. 17. .02 . 18 .03 .06 - 1 00410 00530 00535 00610 00620 00650 00660 00665 .01 8. 145. 43. 72. 52.0 11.0 375. 00671 00680 00940 00945 31616 32211 32218 70294 458. 70300 02/27/79 1345 1.0 TEXAS SMN OVERCAST, WINDY, COOL 10. 50. 6. 1000. 1026. 8.8 8.7 11.7 00010 00011 00077 00094 00095 00300 00400 00403

SYMBOL (*) DENOTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

90.

00410

81.

00530

26.

00535

.04

00610

. 12

00620

.43

00650

.03

00660

. 14

00665

DW0322

1222.0200

* * * T E X A S W A T E R C O M M I S S I O N * * * STATEWIDE MONITORING NETWORK -- SAMPLING DATA INVENTORY PERIOD OF REPORT: 01/01/68 TO 12/31/90 BRAZOS RIVER BASIN DISTRICT 03

STATION NO. 1222.0200		Y - ATION	LAKE P COMANC LOCATIO R LEON	HE	ANA R			GS GAGE (NO				RI	VER MILE				TUDE / L 1 21 0		
SAMPLE DATE	TIME		SOURCE AGENCY		PARAI	METER M	MEASU	REMENTS:	V	ALUE/ /CODE										
02/27/79	1345	1.0	TEXAS	SMN	<	.01 00671		13. 00680		167. 00940		108. 00945		144. 31616		69.0 32211		10.0 32218		500. 70294
05/23/79	1400	1.0	TEXAS	SMN	1	PARTLY	CLOU	OY, SUNSI	HINE	, WINDY										
						22.5 00010		72.5 00011		4. 00077		640. 00094		640. 00095		7.6 00300		8.1 00400		8.4 00403
						100. 00410		43. 00530		9. 00535		. 05 006 10	<	.02 00620		. 37 00650		.03		. 12 00665
						.01 00671		8. 00680		94. 00940		41. 00945		40. 31616		32.0 32211		7.0 32218		320. 70294
05/23/79	1400	5.0	TEXAS	SMN		22.5 00010		72.5 00011		640. 00094		8 . 1 00300		8.0 00400		320. 70294				
05/23/79	1400	10.0	TEXAS	SMN		22.5 00010		72.5 00011		640. 00094		9.5 00300		8.0 00400		320. 70294				
05/23/79	1400	11.0	TEXAS	SMN		22.5 00010		72.5 00011		650. 00094		7.5 00300		7.9 00400		325. 70294				
08/29/79	1410	1.0	TEXAS	SMN	;	SUNNY,	CLEAR	₹												
						28.5 00010		83.3 00011		10. 00077		700. 00094		790. 00095		7.6 00300		8.3 00400	•	8.5 00403
						108. 00410		22. 00530		7. 00535	<	. 02 006 10	<	. 02 00620		. 12 00650	<	. 03 00660		.04 00665
					<	.01 00671		7. 00680		133. 00940		49. 00945		12. 31616		31.0 32211		3.0 32218		350. 70294
08/29/79	1410	5.0	TEXAS	SMN		28. 00010		82. 00011		700. 00094		7.5 00300		8.3 00400		350. 70294				
08/29/79	1410	10.0	TEXAS	SMN		28. 00010		82. 00011		710. 00094		7.5 00300		8.2 00400		355. 70294				
08/29/79	1410	12.0	TEXAS	SMN		28. 00010		82. 00011		710. 00094		6.2 00300		8.0 00400	<	. 5 39333	<	10. 39351	<	8.0 39363
					<	6.5 39368	<	8.0 39373	<	2.0 39383	<	3.0 39393	<	50. 39403	<	. 5 394 13	<	1.0 39423	<	10. 39481

PAGE 00024

* * * TEXAS WATER COMMISSION * * * STATEWIDE MONITORING NETWORK -- SAMPLING DATA INVENTORY PERIOD OF REPORT: 01/01/68 TO 12/31/90 BRAZOS RIVER BASIN DISTRICT 03

SEGMENT -LAKE PROCTOR COUNTY -USGS GAGE NO RIVER MILE COMANCHE STATION NO. STATION LOCATION LATITUDE / LONGITUDE 1222.0200 LAKE PROCTOR LEON AND SABANA RIVER ARM 32 01 21 098 30 18 **DEPTH SOURCE SYSTEM PARAMETER MEASUREMENTS:** VALUE/ SAMPLE /CODE DATE TIME (FT) AGENCY CODE 5.0 3.0 3.0 355. 08/29/79 1410 12.0 TEXAS SMN 20. 1.0 39571 70294 39519 39541 39601 39783 SMN HOT, SUNNY, WINDY 09/21/81 1710 1.0 TEXAS 25.2 77.4 12. 937. 719. 12.6 9.2 8.1 00010 00011 00077 00094 00095 00300 00400 00403 88. 52. 13. . 03 .02 . 49 . 06 . 16 00535 00610 00620 00410 00530 00650 00660 00665 .02 15.3 142. 109. 10. 73.2 10.9 469. 00671 00680 00940 00945 32211 31616 32218 70294 75.7 947. 9.6 474. 5.0 TEXAS SMN 24.3 8.9 09/21/81 1710 00094 00300 00010 00011 00400 70294 12/09/81 0940 1.0 TEXAS SMN 13.7 56.7 30. 745. 572. 12.4 8.2 8.3 00010 00011 00077 00094 00095 00300 00400 00403 110. 12. 7. .03 .02 . 15 .06 . 05 00410 00530 00535 00610 00620 00650 00660 00665 103. 49. 22.3 373. .02 4.5 < 10. . 2 00671 00680 00940 00945 31616 32211 32218 70294 747. 12.4 8.3 374. 12/09/81 5.0 TEXAS SMN 13.5 56.3 0940 00300 00010 00011 00094 00400 70294 822. 9.5 7.9 12.7 54.9 411. 12/09/81 0940 10.0 TEXAS SMN 00300 00010 00011 00094 00400 70294 13.0 TEXAS SMN 12.5 54.5 823. 7.7 7.7 412. 12/09/81 0940 00010 00094 00300 00400 70294 00011 19.1 30. 830. 720.8 03/18/82 0850 1.0 TEXAS SMN 66.4 11.0 7.9 7.9 00077 00094 00010 00095 00300 00400 00011 00403 9. 6. . 15 .01 .06 .06 .02 111. < 00410 00530 00535 00610 00620 00650 00660 00665 . 02 5.7 126. 46.6 10. 415. 15.8 . 8 00671 00940 00945 31616 32211 70294 00680 32218 03/18/82 5.0 TEXAS SMN 19.1 66.4 832. 10.3 8.1 416. 0850 00094 00300 00400 70294 00010 00011

SYMBOL (*) DENOTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

DW0322

1222.0200

1222.0200

* * * T E X A S W A T E R C O M M I S S I O N * * *
STATEWIDE MONITORING NETWORK -- SAMPLING DATA INVENTORY PERIOD OF REPORT: 01/01/68 TO 12/31/90 BRAZOS RIVER BASIN

DISTRICT 03

SEGMENT - LAKE PROCTOR COUNTY - COMANCHE USGS GAGE NO RIVER MILE STATION LOCATION LATITUDE / LONGITUDE STATION NO.

STATION NO. 1222.0200		PROCTOR			ANA RIVER AF	RM										32 O	TUDE / LI 1 21 O	ONG I 98 3	
SAMPLE DATE	TIME		SOURCE AGENCY		PARAMETER N	MEASU	REMENTS:	V.	ALUE/ /CODE										
03/18/82	0850	10.0	TEXAS	SMN	19.0 00010		66.2 00011		833. 00094		10.0 00300		8.1 00400		417. 70294				
03/18/82	0850	13.0	TEXAS	SMN	18.1 00010		64.6 00011		837. 00094		6.6 00300		7.9 00400		419. 70294				
06/10/82	0915	1.0	TEXAS	SMN	27.2 00010		81.0 00011		20. 00077		628. 00094		660. 00095		9.0 00300		8.4 00400		7.9 00403
					121. 00410		25. 00530		10. 00535	<	. 02 006 10	<	. 02 00620		. 40 00650	<	. 06 00660		. 13 00665
					< .02 00671		9.4 00680		106. 00940		30. 00945	<	10. 31616		14.6 32211	<	. 2 32218		314. 70294
06/10/82	0915	5.0	TEXAS	SMN	26.9 00010		80.4 00011		631. 00094		8.2 00300		8.5 00400		316. 70294				
06/10/82	0915	10.0	TEXAS	SMN	26.6 00010		79.9 00011		635. 00094		6.9 00300		8.4 00400		318. 70294				
06/10/82	0915	12.0	TEXAS	SMN	26.5 00010		79.7 00011		635. 00094		4.8 00300		8.2 00400		93851. 00496		921.6 00668		1.74 01003
					150.3 01008		2. 01028		161. 01043		52. 01052		660. 01053		61. 01068	<	1. 01078		170. 01093
					< 2. 01148	<	. 2 39333	<	1.95 39351	<	.5 39363	<	. 3 39368	<	. 90 39373	<	. 3 39383	<	. 8 39393
					< 54. 39403	<	.6 39413	<	. 4 39423	<	5.26 39481	<	240. 39519	<	1.1 39541	<	3.75 39571	<	.7 39601
					< .3 39783		318. 70294		.03 71921										
02/20/85	1239	1.0	TEXAS	SMN	WATER V	ERY	MURKYY												
					9.7 00010		49.5 00011		12. 00077		485. 00094		479. 00095		12.2 00300		8.2 00400		8.0 00403
					110. 00410		23. 00530		3. 00535		.03 00610	<	.02 00620		. 43 00650	<	.06 00660		. 14 00665
					< .02 00671		2.1 00680		65. 00940		18. 00945		20. 31616		10.3 32211		5.1 32218		243. 70294

SYMBOL (*) DENOTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

* * * T E X A S W A T E R C O M M I S S I O N * * * STATEWIDE MONITORING NETWORK -- SAMPLING DATA INVENTORY PERIOD OF REPORT: 01/01/68 TO 12/31/90 BRAZOS RIVER BASIN DISTRICT 03

PAGE 00026

STATION NO. 1222.0200		Y - ATION L		HE N	SANA RIVER ARM	USGS GAGE N	10				RIVER MILE		ATITUDE / LON 2 01 21 098	GITUDE 30 18
SAMPLE DATE	TIME			SYSTEM CODE	PARAMETER MEA	SUREMENTS:	V	ALUE/ /CODE						
02/20/85	1239	5.0	TEXAS	SMN	9.6 00010	49.3 00011		459. 00094		12.0 00300	8.2 00400	230. 70294		
02/20/85	1239	10.0	TEXAS	SMN	9.6 00010	49.3 00011		487. 00094		12.0 00300	8.2 00400	244. 70294		
02/20/85	1239	14.0	TEXAS	SMN	9.6 00010	49.3 00011		491. 00094		12.0 00300	8.2 00400	246. 70294		
08/14/85	1802	1.0	TEXAS	SMN	WATER VER	Y MURKY AMH	ING	S OBSER	∕ ED					
					30.2 00010	86.4 00011		14. 00077		363. 00094	578. 00095	8.8 00300	8.4 00400	8.2 00403
					163. 00410	23. 00530		5. 00535		. 13 00610	< .02 00620	. 24 00650	. 12 00660	. 08 00665
					. 04 0067 1	5.2 00680		95. 00940		31. 00945	19.4 32211	14.0 32218	182. 70294	
08/14/85	1802	5.0	TEXAS	SMN	30.4 00010	86.7 00011		409. 00094		8.4 00300	8.3 00400	205. 70294		
08/14/85	1802	10.0	TEXAS	SMN	29.1 00010	84.4 00011		442. 00094		4.2 00300	7.8 00400	221. 70294		
01/30/86	1225	1.0	TEXAS	SMN	10.5 00010	16. 00077		641. 00094		604. 00095	11.4 00300	8.4 00400	8.3 00403	123. 00410
					27. 00530	4. 00535	<	.02 00610	<	.02 00620	1.2 00625	. 09 00665	. 08 00671	8.7 00680
					101. 00940	37. 00945		5. 31616		8.4 32211	3.2 32218			
01/30/86	1225	5.0	TEXAS	SMN	10.2 00010	641. 00094		11.1 00300		8.4 00400				
01/30/86	1225	7.0	TEXAS	SMN	10.0 00010	641. 00094		10.6 00300		8.3 00400				
08/25/86	1532	1.0	TEXAS	SMN	28.0 00010	12. 00077		485. 00094		424. 00095	7.1 00300	8.0 00400	6.88 00403	126. 00410
	•				20. 00530	4. 00535		.012 00610		. 490 00620	51. 00940	16. 00945	23.5 32211	10.9 32218

1222.0200

* * * T E X A S W A T E R C O M M I S S I O N * * * STATEWIDE MONITORING NETWORK -- SAMPLING DATA INVENTORY PERIOD OF REPORT: 01/01/68 TO 12/31/90

BRAZOS RIVER BASIN DISTRICT 03

SEGMENT -LAKE PROCTOR COUNTY -COMANCHE USGS GAGE NO RIVER MILE STATION NO. STATION LOCATION LATITUDE / LONGITUDE LAKE PROCTOR LEON AND SABANA RIVER ARM 1222.0200 32 01 21 098 30 18 SAMPLE DEPTH SOURCE SYSTEM PARAMETER MEASUREMENTS: VALUE/ /CODE ------DATE TIME (FT) AGENCY CODE ------8.1 08/25/86 1532 5.0 TEXAS SMN 27.7 485. 6.5 00010 00094 00300 00400 27.5 488. 5.2 8.0 08/25/86 1532 10.0 TEXAS SMN 00010 00094 00300 00400 03/04/87 1305 1.0 TEXAS SMN ABUNDANT NUMBER OF SEA GULLS AND CORMORANTS 14.0 10. 645. 648. 12.2 8.3 7.9 100. 00010 00077 00094 00095 00300 00400 00403 00410 .02 26. 17. .03 < 1.4 . 13 .01 9.5 00530 00535 00610 00620 00625 00665 00671 00680 97. 36. 225. 38.1 . 2 00940 00945 31616 32211 32218 03/04/87 1305 5.0 TEXAS SMN 11.5 817. 10.5 8.3 00010 00094 00300 00400 10.7 870. 9.1 8.3 03/04/87 1305 10.0 TEXAS SMN 00010 00094 00300 00400 03/04/87 1305 11.0 TEXAS SMN .06 .02 1.4 .02 7.5 00610 00620 00625 00630 00680 1305 12.0 TEXAS SMN 10.4 880. 7.5 8.2 03/04/87 00010 00094 00300 00400 08/25/87 1.0 TEXAS SMN LAKE MURKY 1900 30.3 8. 643. 567. 6.2 8.1 B. 1 140. 00010 00077 00094 00095 00300 00400 00403 00410 35. 5. .02 < .02 . 11 .01 10.0 92. 00530 00535 00610 00620 00665 00671 00680 00940 33. 28.5 5.6 00945 32211 32218 08/25/87 1900 5.0 TEXAS SMN 30.3 621. 6.0 8.1 00300 00010 00094 00400 08/25/87 1900 9.0 TEXAS SMN 30.2 647. 5.8 8.1 00010 00094 00300 00400

SYMBOL (*) DENOTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

1222.0200

* * * T E X A S W A T E R C O M M I S S I O N * * * STATEWIDE MONITORING NETWORK -- SAMPLING DATA INVENTORY PERIOD OF REPORT: 01/01/68 TO 12/31/90

BRAZOS RIVER BASIN DISTRICT 03

SEGMENT -LAKE PROCTOR COUNTY -COMANCHE USGS GAGE NO RIVER MILE LATITUDE / LONGITUDE STATION LOCATION STATION NO. 1222.0200 LAKE PROCTOR LEON AND SABANA RIVER ARM 32 01 21 098 30 18 SAMPLE DEPTH SOURCE SYSTEM PARAMETER MEASUREMENTS: VALUE/ /CODE -------(FT) AGENCY CODE ------DATE TIME . CLOUDY COOL LARGE NUMBER OF WATERFOWL 02/09/88 1,0 TEXAS SMN 1215 7.8 7.1 709. 12.1 29. 12. 153. 6. 00010 00077 00094 00300 00400 00410 00530 00535 .02 .02 .08 .02 7.4 111. 44. 23. 00671 00680 00610 00620 00665 00940 00945 31616 58.3 21.0 32211 32218 02/09/88 1215 5.0 TEXAS SMN 6.8 717. 12.3 7.8 00010 00094 00300 00400 6.3 734. 11.5 7.7 02/09/88 1215 8.0 TEXAS SMN 00010 00094 00300 00400 32.2 486. 10.6 1.0 TEXAS SMN 16. 8.6 106. 08/10/88 1415 19. 10. 00077 00010 00094 00300 00400 00410 00530 00535 .02 .01 .09 .01 72. 29. 3. 00610 00620 00665 00671 00680 00940 31616 00945 41. 2. < 32211 32218 08/07/89 1340 1.0 TEXAS SMN RAINING. 26.8 . 32 400. 5.7 8.3 108. 25. 5. 00010 00078 00094 00300 00400 00410 00530 00535 .04 .06 .01 . 129 . 116 6. 35. 27. 00610 00615 00620 00665 00671 00680 00940 00945 78. 12.0 9.7 72053 31616 32211 32218 5.5 08/07/89 26.8 403. 1340 5.0 TEXAS SMN 00010 00094 00300 26.8 400. 5.2 08/07/89 1340 10.0 TEXAS SMN 00010 00094 00300 15.0 TEXAS SMN 26.5 379. 08/07/89 1340 1.4 00010 00094 00300

SYMBOL (*) DENOTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

* * * T E X A S W A T E R C O M M I S S I O N * * *
STATEWIDE MONITORING NETWORK -- SAMPLING DATA INVENTORY
PERIOD OF REPORT: 01/01/68 TO 12/31/90
BRAZOS RIVER BASIN

DISTRICT

PAGE 00029

1222.0200

SEGMENT - LAKE PROCTOR USGS GAGE NO RIVER MILE COUNTY - COMANCHE STATION NO. STATION LOCATION LATITUDE / LONGITUDE 1222.0200 LAKE PROCTOR LEON AND SABANA RIVER ARM 32 01 21 098 30 18 DEPTH SOURCE SYSTEM PARAMETER MEASUREMENTS: VALUE/ SAMPLE /CODE ------(FT) AGENCY CODE -----DATE 379. 7.8 08/07/89 1345 15.0 TEXAS SMN 26.5 1.4 102. 58. 8. . 16 00094 00300 00400 00410 00530 00535 00010 00610 . 182 . 168 37. 27. . 04 .01 1.33 6. 00940 00615 00620 00625 00665 00671 00680 00945 72053

* * * T E X A S W A T E R C O M M I S S I O N * * * STATEWIDE MONITORING NETWORK -- SAMPLING DATA INVENTORY PERIOD OF REPORT: 01/01/68 TO 12/31/90 BRAZOS RIVER BASIN DISTRICT 03

```
SEGMENT -
                        LAKE PROCTOR
            COUNTY -
                        COMANCHE
                                                    USGS GAGE NO
                                                                                         RIVER MILE
                                                                                                               LATITUDE / LONGITUDE
STATION NO.
               STATION LOCATION
 1222.0200 LAKE PROCTOR LEON AND SABANA RIVER ARM
                                                                                                               32 01 21 098 30 18
PARAMETER
            DESCRIPTION: -----
                                                                ----- PARAMETER
                                                                                     DESCRIPTION:
            TEMPERATURE, WATER (DEGREES CENTIGRADE)
                                                                          00011 --
                                                                                     TEMPERATURE, WATER (DEGREES FAHRENHEIT)
 00010 --
            TURBIDITY, (JACKSON CANDLE UNITS)
                                                                          00077
                                                                                      TRANSPARENCY, SECCHI DISC (INCHES)
 00070 --
            TRANSPARENCY, SECCHI DISC (METERS)
                                                                          00094 --
                                                                                      SPECIFIC CONDUCTANCE, FIELD (UMHOS/CM @ 25C)
 00078 --
                                                                                     OXYGEN, DISSOLVED (MG/L)
 00095 --
            SPECIFIC CONDUCTANCE (UMHOS/CM € 25C)
                                                                          00300
 00400
            PH (STANDARD UNITS)
                                                                          00403
                                                                                      PH (STANDARD UNITS) LAB
 00410
            ALKALINITY, TOTAL (MG/L AS CACO3)
                                                                          00496
                                                                                      LOSS ON IGNITION, BOTTOM DEPOSITS (MG/KG)
            RESIDUE, TOTAL NONFILTRABLE (MG/L)
 00530
                                                                          00535
                                                                                      RESIDUE, VOLATILE NONFILTRABLE (MG/L)
            NITROGEN, AMMONIA, TOTAL (MG/L AS N)
NITRATE NITROGEN, TOTAL (MG/L AS N)
                                                                          00615
                                                                                     NITRITE NITROGEN, TOTAL (MG/L AS N)
 00610
                                                                                     NITROGEN, KJELDAHL, TOTAL, (MG/L AS N)
                                                                          00625
 00620
            NITROGEN, ORG. KJEL., BOT. DEPOS. (MG/KG-N DRY WGT
                                                                          00630
                                                                                     NITRITE PLUS NITRATE, TOTAL 1 DET. (MG/L AS N)
 00626
                                                                                     PHOSPHATE, ORTHO (MG/L AS PO4)
            PHOSPHATE, TOTAL (MG/L AS PO4)
                                                                          00660
 00650
            PHOSPHORUS, TOTAL, WET METHOD (MG/L AS P)
                                                                          00668
                                                                                     PHOSPHORUS, TOTAL, BOTTOM DEPOSIT (MG/KG DRY WGT)
 00665
                                                                                     CARBON, TOTAL ORGANIC (MG/L AS C)
 00671
            PHOSPHORUS, DISSOLVED ORTHOPHOSPHATE (MG/L AS P)
                                                                          00680
            CHLORIDE (MG/L AS CL)
 00940
                                                                          00941
                                                                                     CHLORIDE, DISSOLVED IN WATER MG/L
 00945
            SULFATE (MG/L AS SO4)
                                                                          01003
                                                                                     ARSENIC IN BOTTOM DEPOSITS (MG/KG AS AS DRY WGT)
 01008
            BARIUM IN BOTTOM DEPOSITS (MG/KG AS BA DRY WGT)
                                                                          01028
                                                                                     CADMIUM. TOTAL IN BOTTOM DEPOSITS (MG/KG.DRY WGT)
            COPPER IN BOTTOM DEPOSITS (MG/KG AS CU DRY WGT)
                                                                          01052
                                                                                     LEAD IN BOTTOM DEPOSITS (MG/KG AS PB DRY WGT)
 01043
 01053
            MANGANESE IN BOTTOM DEPOSITS (MG/KG AS MN DRY WG
                                                                          01068
                                                                                     NICKEL, TOTAL IN BOTTOM DEPOSITS (MG/KG.DRY WGT)
            SILVER IN BOTTOM DEPOSITS (MG/KG AS AG DRY WGT)
                                                                          01093
 01078
                                                                                     ZINC IN BOTTOM DEPOSITS (MG/KG AS ZN DRY WGT)
            SELENIUM IN BOTTOM DEPOSITS (MG/KG AS SE DRY WT)
                                                                          31501
                                                                                     COLIFORM, TOT, MEMBRANE FILTER, IMMED. M-ENDO,
 01148
            FECAL COLIFORM, MEMBR FILTER, M-FC BROTH, #/100ML
                                                                          32211
                                                                                     CHLOROPHYLL-A UG/L SPECTROPHOTOMETRIC ACID. METH
 31616
            PHEOPHYTIN-A UG/L SPECTROPHOTOMETRIC ACID. METH.
                                                                          39333
 32218
                                                                                     ALDRIN IN BOTTOM DEPOS. (UG/KILOGRAM DRY SOLIDS)
            CHLORDANE IN BOT. DEPOS. (UG/KILOGRAM DRY SOLIDS
                                                                          39363
                                                                                     DDD IN BOTTOM DEPOS. (UG/KILOGRAM DRY SOLIDS)
 39351
            DDE IN BOTTOM DEPOS. (UG/KILOGRAM DRY SOLIDS)
                                                                          39373
 39368
                                                                                     DDT IN BOTTOM DEPOS. (UG/KILOGRAM DRY SOLIDS)
            DIELDRIN IN BOTTOM DEPOS. (UG/KILOGRAM DRY SOL.)
                                                                          39393
                                                                                     ENDRIN IN BOTTOM DEPOS. (UG/KILOGRAM DRY SOLIDS)
 39383
 39403
            TOXAPHENE IN BOTTOM DEPOS. (UG/KILOGRAM DRY SOL.
                                                                          39413
                                                                                     HEPTACHLOR IN BOT. DEP. (UG/KILOGRAM DRY SOLIDS)
 39423
           HEPTACHLOR EPOXIDE IN BOT. DEP. (UG/KG DRY SOL.)
                                                                          39481
                                                                                     METHOXYCHLOR IN BOTTOM DEPOSITS (UG/KG DRY SOL.)
            PCBS IN BOTTOM DEPOSITS (UG/KG DRY SOLIDS)
                                                                          39541
 39519
                                                                                     PARATHION IN BOT. DEPOS. (UG/KILOGRAM DRY SOLIDS
 39571
           DIAZINON IN BOT. DEPOS. (UG/KILOGRAM DRY SOLIDS)
                                                                          39601
                                                                                     METHYL PARATHION IN BOT. DEPOS. (UG/KG DRY SOLIDS
           LINDANE IN BOTTOM DEPOSITS (UG/KG DRY SOLIDS)
                                                                          70294
                                                                                 - -
 39783
                                                                                     000000
            RESIDUE, TOTAL FILTRABLE (DRIED AT 180C), MG/L
                                                                          71921
                                                                                     MERCURY, TOT. IN BOT. DEPOS. (MG/KG AS HG DRY WGT
 70300
 72053
           DAYS SINCE PRECIPITATION EVENT (DAYS)
```

1222.0300

* * T E X A S W A T E R C O M M I S S I O N * * * STATEWIDE MONITORING NETWORK -- SAMPLING DATA INVENTORY PERIOD OF REPORT: 01/01/68 TO 12/31/90

BRAZOS RIVER BASIN DISTRICT 03

SEGMENT -LAKE PROCTOR COUNTY -COMANCHE USGS GAGE NO RIVER MILE STATION NO. STATION LOCATION LATITUDE / LONGITUDE 1222.0300 LAKE PROCTOR COPPERAS CREEK ARM 31 58 51 098 32 12 DEPTH SOURCE SYSTEM PARAMETER MEASUREMENTS: VALUE/ SAMPLE TIME (FT) AGENCY CODE -----/CODE DATE 08/21/73 0930 1.0 TEXAS SMN SKIES CLEAR 85.0 650. 7.5 7.6 29.4 8.10 98. < . 3 00010 00011 00094 00300 00400 00403 00410 00620 . 50 250. .09 .029 0. 6.0 325. 00626 00650 00665 31501 31616 32211 70294 SKIES CLEAR 1.0 TEXAS SMN 09/05/73 1045 25.0 77.0 40.0 760. 8.0 8.70 104. < . 3 00010 00011 00070 00094 00300 00400 00620 00410 . 90 . 16 .052 180. Я 13.0 380. 00626 00650 00665 31501 31616 32211 70294 27.2 10.0 750. 09/25/73 1100 1.0 TEXAS SMN 81.0 800. 7.0 8.50 8.0 00010 00011 00070 00094 00095 00300 00400 00403 25. 10. . 200 . 03 .010 . 18 .03 .059 00530 00535 00610 00620 00650 00660 00665 00671 145. 210. < 10. 375. 45. 11.0 00940 00945 31501 31616 32211 70294 24.4 600. 10/08/73 0945 1.0 TEXAS SMN 76.0 5.0 790. 8.0 8.40 8.1 00010 00070 00094 00011 00095 00300 00400 00403 11. 8. < < .03 .08 < .03 .026 .010 . 1 00530 00535 00610 00620 00650 00660 00665 00671 145. 48. 3700. 10. 21.0 300. 00940 00945 31501 31616 32211 70294 10/29/73 1.0 TEXAS SMN 21.1 70.0 15.0 18. 670. 704. 8.20 1345 10.0 00070 00077 00010 00011 00094 00095 00300 00400 8.1 .052 23. .03 . 16 . 03 00403 00530 00535 00610 00620 00650 00660 00665 .010 123. 43. 37.0 335. 00671 00940 00945 32211 70294 1.0 TEXAS SMN 15.0 59.0 15.0 14 550. 672. 10.0 6.80 11/06/73 0900

00070

00077

00094

00095

00300

00400

00011

SYMBOL (*) DENOTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

00010

PAGE 00032

DW0322 1222.0300

SEGMENT -

LAKE PROCTOR

* * * T E X A S W A T E R C O M M I S S I O N * * * STATEWIDE MONITORING NETWORK -- SAMPLING DATA INVENTORY PERIOD OF REPORT: 01/01/68 TO 12/31/90 BRAZOS RIVER BASIN DISTRICT 03

USGS GAGE NO RIVER MILE COMANCHE COUNTY -LATITUDE / LONGITUDE STATION LOCATION STATION NO. LAKE PROCTOR COPPERAS CREEK ARM 31 58 51 1222.0300 098 32 12 DEPTH SOURCE SYSTEM PARAMETER MEASUREMENTS: VALUE/ SAMPLE (FT) AGENCY CODE -----/CODE TIME DATE 7. 20. . 1 .03 11/06/73 0900 1.0 TEXAS SMN 8.3 . 14 .03 .046 00403 00530 00535 00610 00620 00650 00660 00665 39. .010 125. 5500. 10. 20.0 275. 00671 00940 00945 31501 31616 32211 70294 16.1 61.0 5.0 18. 640. 728. 9.0 8.50 11/28/73 0940 1.0 TEXAS SMN 00010 00011 00070 00077 00094 00095 00300 00400 8.3 10. .03 .029 . 09 .03 00650 00403 00530 00535 00610 00620 00660 00665 .010 124. 43. 7800. 10. 21.0 320. 00671 00940 00945 31501 32211 70294 31616 9.0 1.0 TEXAS SMN 13.3 56.0 5.0 28. 680. 8.50 340. 12/07/73 1330 00077 00010 00011 00070 00094 00300 00400 70294 01/16/74 0930 1.0 TEXAS SMN 6.1 43.0 18. 700. 7.0 8.70 350. 00010 00011 00077 00094 00300 00400 70294 10.0 50.0 25.0 18. 640. 850. 02/13/74 0930 1.0 TEXAS SMN 12.0 8.50 00010 00011 00070 00077 00094 00095 00300 00400 9. .03 8.2 19. . 12 .03 .039 00403 00530 00535 00610 00620 00650 00660 00665 137. 50. .010 430. 10. 21.0 320. 31501 00671 00940 00945 31616 32211 70294 22.4 72.4 1.0 TEXAS SMN 20.0 18. 820. 855. 9.0 8.40 05/08/74 1100 00010 00011 00070 00077 00094 00095 00300 00400 8.3 24. 6. .03 .03 .046 . 14 00535 00610 00403 00530 00620 00650 00660 00665 .010 9.0 170. 51. 141. 260. 10. 15.0 00671 00940 00941 00680 00945 31501 31616 32211 410. 70294 27.0 80.6 1.0 TEXAS SMN 12. 810. 7.6 8.30 80. 405. 06/12/74 1125 00010 00077 00094 00300 00941 00011 00400 70294

* * * T E X A S W A T E R C O M M I S S I O N * * * STATEWIDE MONITORING NETWORK -- SAMPLING DATA INVENTORY PERIOD OF REPORT: 01/01/68 TO 12/31/90 BRAZOS RIVER BASIN

DISTRICT

1

PAGE 00033

1222.0300

SEGMENT -LAKE PROCTOR COMANCHE USGS GAGE NO RIVER MILE COUNTY -STATION LOCATION LATITUDE / LONGITUDE STATION NO. 1222.0300 LAKE PROCTOR COPPERAS CREEK ARM 31 58 51 098 32 12 VALUE/ SAMPLE DEPTH SOURCE SYSTEM PARAMETER MEASUREMENTS: (FT) AGENCY CODE -----DATE TIME 70.0 08/08/74 UNSP 1.0 TEXAS SMN 25.5 77.9 12. 800. 850. 8.9 7.70 00010 00011 00070 00077 00094 00095 00300 00400 8.3 57. 16. .03 . 29 < .03 . 095 . 1 00403 00530 00535 00610 00620 00650 00660 00665 14.0 158. 200. .010 53. 10. 400. 4.0 00940 00671 00680 00941 00945 31616 32211 70294 1.0 TEXAS SMN 14.0 57.2 20.0 900. 692. 8.20 11/12/74 1145 24. 9.6 00010 00011 00070 00077 00094 00095 00300 00400 8.4 14. 6. .03 . 10 .03 .03 00403 00530 00535 00610 00620 00650 00660 00665 .01 8.0 114. 120. 45. 12. 29.0 450. 00671 00680 00940 00941 00945 31616 32211 70294 02/11/75 48.2 1610 1.0 TEXAS SMN 9.0 5.0 18. 840. 905. 9.0 8.40 00010 00011 00070 00077 00094 00095 00300 00400 8.2 29. 8. . 02 . 10 .03 .033 1 00403 00530 00535 00610 00620 00650 00660 00665 .010 6.0 138. 65. 48. 34.0 420. 00671 00680 00940 00945 31616 32211 70294 23.5 74.3 30.0 05/21/75 0915 1.0 TEXAS SMN 18. 1000. 996. 8.0 8.10 00011 00010 00070 00077 00094 00095 00300 00400 8.5 40. 8. .02 . 14 . 03 .046 00403 00530 00535 00610 00620 00650 00660 00665 .010 7.0 167. 67. 28.0 20. 500. 00680 00940 31616 00671 00945 32211 70294 27.0 80.6 20.0 12. 1000. 972. 7.6 08/27/75 0905 1.0 TEXAS SMN 7.90 00077 00010 00011 00070 00094 00095 00300 00400 8.6 52. 28. .02 . 22 .03 .072 00403 00530 00535 00610 00620 00650 00660 00665

183.

00940

65.

00945

12.

31616

41.0

32211

500.

70294

SYMBOL (*) DENOTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

.010

00671

13.0

00680

PAGE 00034

* * * T E X A S W A T E R C O M M I S S I O N * * *
STATEWIDE MONITORING NETWORK -- SAMPLING DATA INVENTORY
PERIOD OF REPORT: 01/01/68 TO 12/31/90
BRAZOS RIVER BASIN

DISTRICT 03

DW0322 1222.0300

STATION NO. 1222.0300		Y - ATION !	LAKE PI COMANCI OCATION COPPEN	4E	EK ARM	USGS GAGE	NO			RI	VER MILE		LATI 31 5	TUDE / LON B 51 098	GITUDE 32 12
SAMPLE DATE	TIME		SOURCE AGENCY		PARAMETER I	MEASUREMENTS:	VALUE/ /CODE								
11/04/75	1445	1.0	TEXAS	SMN	19.0 00010		30.0 00070		12. 00077		800. 00094	1057. 00095		9.1 00300	8.30 00400
					8.7 00403	20. 00530	8. 00 5 35	<	. 1 00610	<	. 02 00620	. 14 00650	<	.03 00660	. 046 00665
					.010 00671	13.0 00680	208. 00940		66. 00945		18. 31616	47.0 32211		400. 70294	
02/19/76	0930	1.0	TEXAS	\$ M N	12.0 00010	53.6 00011	20.0 00070		14. 00077		740. 00094	1141. 00095		10.4 00300	8.40 00400
					7.9 00403	21. 00530	8. 00535		. 100 00610	<	. 02 00620	. 23 00650	<	.03	. 075 00665
					.010 00671	10.0 00680	210. 00940		64. 00945		14. 31616	11.0 32211		370. 70294	
05/11/76	1710	1.0	TEXAS	SMN	26.5 00010	79.8 00011	10.0 00070		24. 00077		1100. 00094	1099. 00095		11.8 00300	9.20 00400
					8.4 00403	< 10. 00530	< 10. 00535	<	. 1 00610	<	. 02 00620	. 15 00650	<	.03	.050 00665
					.010 00671	7.0 00680	197. 00940		74. 00945		12. 31616	7.0 32211		550. 70294	
08/31/76	1540	1.0	TEXAS	SMN	28.5 00010	83.3 00011	10.0 00070		18. 00077		975. 00094	1008. 00095		12.0 00300	9.40 00400
					8.7 00403	26. 00530	12. 00535	<	. 1 00610	<	.02 00620	. 28 00650		. 03 00660	. 090 00665
					< .01 00671	12.0 00680	189. 00940		61. 00945		112. 31616	54.0 32211		488. 70294	
08/17/77	0820	1.0	TEXAS	SMN	28.5 00010	83.3 00011	12. 00077		750. 00094		768. 00095	7.3 00300		8.20 00400	8.3 00403
					80. 00410	42. 00530	22. 00535	<	. 1 00610	<	.02 00620	. 31 00650		. 03 00660	. 100 00665
					< .01 00671	8.0 00680	136. 00940		44. 00945		2. 31616	40.0 32211		10.0 32218	375. 70294
	•				432. 70300										

1222.0300

* * * TEXAS WATER COMMISSION * * * STATEWIDE MONITORING NETWORK -- SAMPLING DATA INVENTORY PERIOD OF REPORT: 01/01/68 TO 12/31/90 BRAZOS RIVER BASIN DISTRICT

03

PAGE 00035

SEGMENT -LAKE PROCTOR COUNTY -COMANCHE USGS GAGE NO RIVER MILE STATION LOCATION LATITUDE / LONGITUDE STATION NO. 1222.0300 LAKE PROCTOR COPPERAS CREEK ARM 31 58 51 098 32 12 VALUE/ DEPTH SOURCE SYSTEM PARAMETER MEASUREMENTS: SAMPLE /CODE ------DATE TIME (FT) AGENCY CODE -----1.0 TEXAS SMN 02/27/79 1235 OVERCAST, WINDY, COOL 10. 50. 8. 1100. 1056. 11.7 8.6 8.6 00010 00011 00077 00094 00095 00300 00400 00403 115. 60. 16. . 17 .04 . 28 .03 .09 00610 00410 00530 00535 00620 00650 00660 00665 .01 12. 190. 74. 20. 41.0 8.0 550. 00671 00680 00940 00945 31616 32211 32218 70294 05/23/79 1305 1.0 TEXAS SMN CLEAR, WARM, SUNSHINE 22.5 72.5 800. 815. 7.6 8.1 8.5 00077 00010 00011 00094 00095 00300 00400 00403 108. 34. 6. < .02 < .02 . 28 .09 < .03 00410 00530 00535 00610 00620 00650 00660 00665 .01 130. 53. 116. 24.0 2.0 400. 00671 00680 00940 00945 31616 32211 32218 70294 72.5 800. 400. 05/23/79 1305 5.0 TEXAS SMN 22.5 9.8 8.1 00011 00094 00010 00300 00400 70294 05/23/79 1305 9.0 TEXAS SMN 22. 72. 810. 7.7 8.1 405. 00010 00011 00094 00300 00400 70294 CLEAR, SUNSHINE SH 08/29/79 1310 1.0 TEXAS SMN 28.5 83.3 730. 805. 7.6 8.3 8.6 6. 00010 00011 00077 00094 00095 00300 00400 00403 33. 114. 8. .02 .02 .05 . 15 .03 00410 00530 00535 00610 00620 00650 00660 00665 .01 8. 132. 52. 4. 33.0 < 2.0 365. 00671 00680 00940 00945 31616 32211 32218 70294 83.3 08/29/79 1310 5.0 TEXAS SMN 28.5 730. 7.8 8.3 365. 00010 00011 00094 00300 70294 00400 28. 82. 730. 7.0 8.2 365. 08/29/79 1310 7.0 TEXAS SMN 00010 00011 00094 00300 00400 70294 09/21/81 1630 1.0 TEXAS SMN HOT, SUNNY

* * * TEXAS WATER COMMISSION * * * PAGE 00036

* * * TEXAS WATER COMMISSION * * *
STATEWIDE MONITORING NETWORK -- SAMPLING DATA INVENTORY
PERIOD OF REPORT: 01/01/68 TO 12/31/90
BRAZOS RIVER BASIN
DISTRICT 03

STATION NO. 1222.0300		Y - ATION I	LAKE PI COMANCI LOCATION R COPPE	HE	EK AI		USGS GAGE N	0		RI	VER MILE			TUDE / LON 8 51 098	
SAMPLE Date	TIME		SOURCE AGENCY		PAR	AMETER N	MEASUREMENTS:	VALUE/ /CODE							
09/21/81	1630	1.0	TEXAS	SMN		24.9 00010	76.8 00011	12. 00077	927. 00094		726. 00095	10.8 00300		9.0 00400	8.2 00403
						79. 004 10	47. 00530	12. 00535	. 12 00610	<	.02 00620	. 43 00650	<	.06 00660	. 14 00665
					<	.02 00671	15.4 00680	140. 00940	101.5 00945	<	10. 31616	71.4 32211		4.2 32218	464. 70294
09/21/81	1630	5.0	TEXAS	SMN		24.4 00010	75.9 00011	933. 00094	10.3 00300		8.8 00400	467. 70294			
12/09/81	0900	1.0	TEXAS	SMN		13.3 00010	55.9 00011	25. 00077	752. 00094		585. 00095	13.2 00300		8.5 00400	8.5 00403
						108. 00410	14. 00530	8. 00535	. 09 006 10	<	.02 00620	. 15 00650	<	.06 00660	. 05 00665
					<	. 02 0067 1	5.6 00680	101. 00940	53. 00945	<	10. 31616	51.2 32211	<	. 2 32218	376. 70294
12/09/81	0900	5.0	TEXAS	SMN		13.2 00010	55.8 00011	753. 00094	13.3 00300		8.5 00400	377. 70294			
12/09/81	0900	10.0	TEXAS	SMN		13.0 00010	55.4 00011	769. 00094	8.4 00300		8 . 1 00400	385. 70294			
03/18/82	0810	1.0	TEXAS	SMN		19.3 00010	66.7 00011	18. 00077	775. 00094		651. 00095	12.4 00300		7.9 00400	7.5 00403
						126. 00410	22. 00530	8. 00535	. 15 006 10	<	.01 00620	. 46 00650	<	. 06 00660	. 15 00665
					<	.02 00671	6.9 00680	112. 00940	50.5 00945	<	10. 31616	22.2 32211		5.7 32218	388. 70294
03/18/82	0810	5.0	TEXAS	SMN		19.3 00010	66.7 00011	780. 00094	10.9 00300		8.1 00400	390. 70294			
03/18/82	0810	9.0	TEXAS	SMN		17.7 00010	63.9 00011	780. 00094	9.3 00300		8.1 00400	390. 70294			
06/10/82	0820	1.0	TEXAS	SMN		26.9 00010	80.4 00011	15. 00077	659. 00094		677. 00095	7.8 00300		8.1 00400	7.8 00403

SYMBOL (*) DENOTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

DW0322

1222.0300

4

1222.0300

SEGMENT -

LAKE PROCTOR

* * T E X A S W A T E R C O M M I S S I O N * * * *
STATEWIDE MONITORING NETWORK -- SAMPLING DATA INVENTORY
PERIOD OF REPORT: 01/01/68 TO 12/31/90
BRAZOS RIVER BASIN

DISTRICT 03

USGS GAGE NO COMANCHE RIVER MILE COUNTY -STATION LOCATION LATITUDE / LONGITUDE STATION NO. LAKE PROCTOR COPPERAS CREEK ARM 1222.0300 31 58 51 098 32 12 VALUE/ SAMPLE DEPTH SOURCE SYSTEM PARAMETER MEASUREMENTS: DATE TIME (FT) AGENCY CODE ------/CODE 24. 1.0 TEXAS SMN 129. 5. .02 .02 . 28 .03 06/10/82 0820 < .09 00530 00535 00610 00620 00410 00650 00660 00665 .01 10.5 102. 44.6 10. 19.5 2.9 330. 00671 00680 00940 00945 31616 32211 32218 70294 80.4 661. 06/10/82 0820 5.0 TEXAS SMN 26.9 7.7 8.1 331. 00010 00011 00094 00300 00400 70294 06/10/82 0820 10.0 TEXAS 26.8 80.2 667. 5.5 8.1 334. 00010 00011 00094 00300 00400 70294 02/20/85 1150 1.0 TEXAS SMN WATER VERY MURKYSH 10.2 50.4 16. 410. 425. 12.5 8.4 8.3 00010 00011 00077 00094 00095 00300 00400 00403 5. 104. 22. < . 02 < .02 .73 .09 . 24 00620 00410 00530 00535 00610 00650 00660 00665 24. .03 2.5 48. 27. 25.4 7.7 205. 00671 00680 00940 00945 32211 31616 32218 70294 10.1 02/20/85 1150 5.0 TEXAS SMN 50.2 412. 12.4 8.5 206. 00010 00011 00094 00300 00400 70294 02/20/85 1150 10.0 TEXAS SMN 10.0 50.0 413. 12.5 207. 8.4 00010 00011 00094 00300 00400 70294 WATER GREEN 08/14/85 1730 1.0 TEXAS SMN 30.2 86.4 18. 327. 563. 7.9 8.7 7.8 00010 00011 00077 00094 00095 00300 00400 00403 117 22. . 16 < 6. .02 . 15 .09 . 05 00535 00410 00530 00610 00620 00650 00660 00665 .03 5.1 83. 28. 41.0 < . 2 164. 00671 00680 00940 00945 32211 32218 70294 1730 5.0 TEXAS SMN 29.9 85.8 280. 7.2 08/14/85 8.4 140 00010 00011 00094 00300 00400 70294 08/14/85 1730 8.0 TEXAS SMN 28.9 84.0 557. 279. 8.0 00010 00011 00094 00300 00400 70294

SYMBOL (*) DENOTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

03/04/87

1200

1.0 TEXAS SMN

* * * T E X A S W A T E R C O M M I S S I O N * * * STATEWIDE MONITORING NETWORK -- SAMPLING DATA INVENTORY PERIOD OF REPORT: 01/01/68 TO 12/31/90 BRAZOS RIVER BASIN DISTRICT 03

PAGE 00038

STATION NO. 1222.0300	SEGME COUNT ST LAKE	Y - ATION	LAKE P COMANC LOCATIO R COPPE	HE	EK ARM	ι	JSGS GAGE	NO				R	IVER MILE				TUDE / L 8 51 0		TUDE 2 12
SAMPLE Date	TIME		SOURCE AGENCY		PARAMETER	MEAS	SUREMENTS:	٧	ALUE/ /CODE			;				 		 	
01/30/86	1125	1.0	TEXAS	SMN	. 10.		16. 00077		631. 00094		604. 00095		00300		8.0 00400		8.3 00403		121. 00410
					27 0053		4. 00535		. 05 006 10	<	. 02 00620		1.4 00625		. 07 00665		.06 00671		9.6 00680
					104 0094		38. 00945		7. 31616		7.0 32211		.8 32218						
01/30/86	1125	5.0	TEXAS	SMN	10. 0001		635. 00094		10.9 00300		8.3 00400								
01/30/86	1125	6.0	TEXAS	SMN	10. 0001		638. 00094		10.5 00300		8.3 00400								
08/25/86	1430	1.0	TEXAS	SMN	28. 0001		10. 00077		457. 00094		404 . 00095		5.9 00300		8.0 00400		7.67 00403		132. 00410
					24 0053		6. 00535		.012 00610		. 168 00620		46. 00940		16. 00945		9.2 32211		14.0 32218
08/25/86	1430	5.0	TEXAS	SMN	28. 0001		457. 00094		5.6 00300		8.0 00400								
08/25/86	1430	8.0	TEXAS	SMN	27. 0001		461. 00094		5.6 00300		7.9 00400		31100. 00496		430. 00557		1000. 00626		270. 00668
					3. 0100		93. 01008	<	01028		10. 01029		9.5 01043		7.6 01052		270. 01053		9.9 01068
					< 0.107		28. 01093	<	.5 01148	<	5.0 39061	<	3.0 39064	<	3.0 39067	<	3.0 39073	<	1.0 39076
					< 3. 3930		3.0 39306	<	3.0 39311	<	3.0 39316	<	1.5 39321	<	1.5 39328	<	1 0 39333	<	3.0 39351
••					< 3. 3936		1.5 39368	<	3.0 39373	<	2.0 39383	<	3.0 39393	<	50. 39403	<	. 5 39413	<	1.0 39423
					< 10 3948		20. 39519	<	5.0 39531	<	3.0 39541	<	5.0 39571	<	3.0 39601	<	1.0 39701	<	50. 39731
	•				< 10 3974		10. 39761	<	1.0 39783		.03 71921								

SYMBOL (*) DENOTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

ABUNDANT NUMBER OF SEA GULLS

1222.0300

* * * T E X A S W A T E R C D M M I S S I D N * * *
STATEWIDE MONITORING NETWORK -- SAMPLING DATA INVENTORY
PERIOD OF REPORT: 01/01/68 TO 12/31/90
BRAZOS RIVER BASIN

DISTRICT 03

SEGMENT - LAKE PROCTOR COMANCHE USGS GAGE NO RIVER MILE COUNTY -STATION NO. STATION LOCATION LATITUDE / LONGITUDE 1222.0300 LAKE PROCTOR COPPERAS CREEK ARM 31 58 51 098 32 12 DEPTH SOURCE SYSTEM PARAMETER MEASUREMENTS: VALUE/ SAMPLE (FT) AGENCY CODE ------/CODE DATE TIME 1.0 TEXAS SMN 602. 616. 14.6 8.4 8.4 130. 03/04/87 1200 14.2 12. 00077 00094 00095 00010 00300 00400 00403 00410 25. 1.2 31. .02 .02 .08 .01 9.1 00625 00530 00535 00610 00620 00665 00671 00680 72. 48. 98. 38.8 00940 00945 31616 32211 32218 605. 8.4 1200 5.0 TEXAS SMN 11.7 11.8 03/04/87 00094 00400 00010 00300 11.3 606. 8.3 8.4 03/04/87 1200 10.0 TEXAS SMN 00010 00094 00300 00400 11.0 TEXAS SMN .08 .04 1.3 10.0 03/04/87 1200 .06 00610 00620 00625 00630 00680 7.0 10.9 605. 8.2 03/04/87 1200 14.0 TEXAS SMN 00094 00300 00400 00010 08/25/87 2005 1.0 TEXAS SMN LAKE MURKY 29.9 10. 655. 616. 6.0 7.9 147. 8.1 00077 00094 00095 00300 00400 00403 00010 00410 7. 45. .02 .02 . 11 .01 9.9 90. 00530 00535 00610 00620 00665 00671 00680 00940 38. 21.3 3.3 00945 32211 32218 29.9 649. 5.7 7 9 08/25/87 2005 5.0 TEXAS SMN 00010 00094 00300 00400 7.8 08/25/87 2005 9.0 TEXAS SMN 29.7 656. 00094 00300 00400 00010 7.0 730. 12.3 7.6 156. 25. 02/09/88 1235 1.0 TEXAS SMN 12. 2. 00010 00077 00094 00300 00535 00400 00410 00530 .03 .06 .02 7.0 109. 52. 30. . 16 00610 00620 00665 00671 00680 00940 00945 31616 34.6 5.0

SYMBOL (*) DENOTES MEASUREMENT LESS THAN 'L' STANDARD OR GREATER THAN 'H' STANDARD.

32211

32218

SEGMENT - LAKE PROCTOR

* * * T E X A S W A T E R C D M M I S S I D N * * * STATEWIDE MONITORING NETWORK -- SAMPLING DATA INVENTORY PERIOD OF REPORT: 01/01/68 TO 12/31/90 BRAZOS RIVER BASIN DISTRICT 03

PAGE 00040

STATION 1222.0	N NO.	COUNT ST LAKE	Y - ATION I	COMANC LOCATIO R COPPE	HE	EK AR	М	L	JSGS	GAGE	NO				RI	VER MILE				TUDE / L 58 51 O		TUDE 2 12
SAMPL DATE		TIME		SOURCE AGENCY	SYSTEM CODE	PARA	METER	MEAS	SURE	MENTS:	٧	ALUE/ /CODE										
02/09/	/88	1235	5.0	TEXAS	SMN	•	6.7 00010		(750. 00094		11.7 00300		7.6 00400								
02/09/	/88	1235	9.0	TEXAS	SMN		6.7 00010		(783. 00094		11.1 00300		7.6 00400								
08/10/	/88	1515	1.0	TEXAS	SMN		32.2 00010		(16. 00077		543. 00094		9.8 00300		8.5 00400		118. 00410		84500. 00496		22. 00530
							10. 00535		(760. 00557	<	. 02 006 10	<	.01 00620		2320. 00626		.08 00665		435. 00668	<	.01 00671
							. 8 00680		(78. 00940		34. 00945		6.1 01003		198. 01008	<	.5 01028		23. 01029		18. 01043
							16. 01052		(472. 01053		16. 01068	<	.5 01078		55. 01093		1.3 01148	<	3. 31616		47. 32211
						<	2. 32218			5.0 39061	<	3.0 39064	<	3.0 39067	<	3.0 39073	<	1.0 39076	<	3.0 39301	<	3.0 39306
						<	3.0 39311			3.0 39 3 16	<	1.5 39321	<	1.5 39328	<	1.0 39333	<	6.0 39351	<	6.0 39363	<	3.0 39368
						<	6.0 39373			2.0 39383	<	3.0 39393	<	50. 39403	<	. 5 39413	<	1.0 39423	<	10. 39481	<	20. 39519
						<	5.0 39 5 31			3.0 39541	<	5.0 39571	<	3.0 39601	<	1.0 39701	<	50. 39731	<	10. 39741	<	10. 39761
						<	1.0 39783		7	.035 71921												
08/07/	′8 9	1400	1.0	TEXAS	SMN		27.4 00010		C	.36 00078		435. 00094		6.5 00300		8.2 00400		116. 00410		. 27. 00530		4. 00535
							. 05 006 10		c	.04 00615		.04 00620		.070 00665		.066 00671		6. 00680		38. 00940		30. 00945
							8. 31616		3	10.2 32211		10.0 32218	<	1. 72053								
08/07/	/89	1400	5.0	TEXAS	SMN		27.5 00010		c	436. 00094		6.3 00300										
08/07/	89	1400	10.0	TEXAS	SMN		27.5 00010			437. XXXX		6.1 00300										

1222.0300

* * * TEXAS WATER COMMISSION * * *
STATEWIDE MONITORING NETWORK -- SAMPLING DATA INVENTORY
PERIOD OF REPORT: 01/01/68 TO 12/31/90
BRAZOS RIVER BASIN
DISTRICT 03

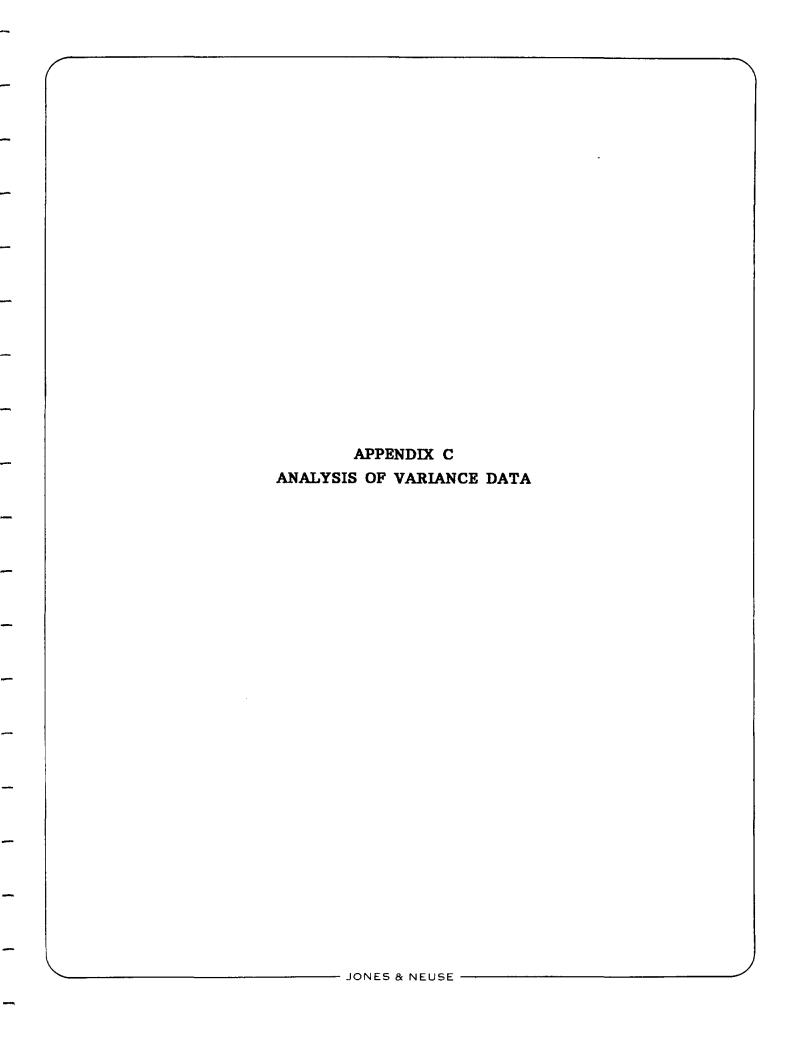
STATION NO. 1222.0300		Y -	LAKE PI COMANCI LOCATION R COPPEN	4E	EK ARM	US	GS GAGE NO)		RIVER MILE			GITUDE 32 12
SAMPLE DATE	TIME		SOURCE AGENCY	SYSTEM CODE	PARAMETER M	EASU	REMENTS:	VALUE/ /CODE					
08/07/89	1400	14.0	TEXAS	SMN	27.4 00010		436. 00094	6.0 00300					
08/07/89	1405	14.0	TEXAS	SMN	27.4 00010		436. 00094	6.0 00300	7.9 00400	116. 00410	27. 00530	6. 00535	.04 00610
					. 04	<	.01 00620	. 75 00625	.072 00665	.068 00671	7. 00680	40. 00940	29. 00945

* * * T E X A S W A T E R C O M M I S S I O N * * * STATEWIDE MONITORING NETWORK -- SAMPLING DATA INVENTORY PERIOD OF REPORT: 01/01/68 TO 12/31/90 BRAZOS RIVER BASIN DISTRICT 03

STATION NO. 1222.0300	SEGMENT - LAKE PROCTOR COUNTY - COMANCHE U STATION LOCATION LAKE PROCTOR COPPERAS CREEK ARM			RIVER MILE LATITUDE / LONGITUDE 31 58 51 098 32 12
PARAMETER	DESCRIPTION: TEMPERATURE, WATER (DEGREES CENTIGRADE) TURBIDITY, (JACKSON CANDLE UNITS) TRANSPARENCY, SECCHI DISC (METERS) SPECIFIC CONDUCTANCE (UMHOS/CM © 25C) PH (STANDARD UNITS) ALKALINITY, TOTAL (MG/L AS CACO3) RESIDUE, TOTAL NONFILTRABLE (MG/L) OIL & GREASE (FREON EXTRGRAV METH), BOT NITRITE NITROGEN, TOTAL (MG/L AS N) NITRITE PLUS NITRATE, TOTAL 1 DET. (MG/L PHOSPHATE, ORTHO (MG/L AS PO4) PHOSPHORUS, TOTAL, BOTTOM DEPOSIT (MG/KG) CARBON, TOTAL ORGANIC (MG/L AS C) CHLORIDE, DISSOLVED IN WATER MG/L ARSENIC IN BOTTOM DEPOSITS (MG/KG, S)		PARAMETER	DESCRIPTION:
00010	TEMPERATURE, WATER (DEGREES CENTIGRADE)		00011	TEMPERATURE, WATER (DEGREES FAHRENHEIT)
00070	TURBIDITY, (JACKSON CANDLE UNITS)		00077	TRANSPARENCY, SECCHI DISC (INCHES)
00078 00095	CONCIETO COMPLICIANCE (HMUCS/CM & SEC)		00094 00300	SPECIFIC CONDUCTANCE, FIELD (UMHOS/CM @ 25C) OXYGEN. DISSOLVED (MG/L)
00095 00400	DL (CTANDADD HAITTS)		00403	PH (STANDARD UNITS) LAB
00400	ALKALINITY TOTAL (MG/L AS CACOS)		00405	LOSS ON IGNITION, BOTTOM DEPOSITS (MG/KG)
00530	PESIDUE TOTAL NONELLIBARIE (MG/L)		00535	RESIDUE, VOLATILE NONFILTRABLE (MG/L)
00557	OIL & GREASE (FREON EXTR GRAV METH). BOT	. DEPOS.	00610	NITROGEN, AMMONIA, TOTAL (MG/L AS N)
00615	NITRITE NITROGEN. TOTAL (MG/L AS N)		00620	NITRATE NITROGEN, TOTAL (MG/L AS N)
00625	NITROGEN, KJELDAHL, TOTAL, (MG/L AS N)		00626	NITROGEN, ORG. KUEL., BOT. DEPOS. (MG/KG-N DRY WGT
00630	NITRITE PLUS NITRATE, TOTAL 1 DET. (MG/L	AS N)	00650	PHOSPHATE, TOTAL (MG/L AS PO4)
00660	PHOSPHATE, ORTHO (MG/L AS PO4)		00665	PHOSPHORUS, TOTAL, WET METHOD (MG/L AS P)
00668	PHOSPHORUS, TOTAL, BOTTOM DEPOSIT (MG/KG	DRY WGT)	00671	PHOSPHORUS, DISSOLVED ORTHOPHOSPHATE (MG/L AS P)
00680	CARBON, TOTAL ORGANIC (MG/L AS C)		00940	CHLORIDE (MG/L AS CL)
00941	CHLORIDE, DISSOLVED IN WATER MG/L		00945	SULFATE (MG/L AS SO4)
01003	ARSENIC IN BOTTOM DEPOSITS (MG/KG AS AS	DRY WGT)	01008	BARIUM IN BOTTOM DEPOSITS (MG/KG AS BA DRY WGT)
				CHROMIUM, TOTAL IN BOTTOM DEPOSITS (MG/KG, DRY WGT
01043	COPPER IN BOTTOM DEPOSITS (MG/KG AS CU DI		01052	LEAD IN BOTTOM DEPOSITS (MG/KG AS PB DRY WGT)
01053	MANGANESE IN BOTTOM DEPOSITS (MG/KG AS MI		01068	NICKEL, TOTAL IN BOTTOM DEPOSITS (MG/KG,DRY WGT)
01078	SILVER IN BOTTOM DEPOSITS (MG/KG AS AG DI		01093	ZINC IN BOTTOM DEPOSITS (MG/KG AS ZN DRY WGT)
01148 31616	SELENIUM IN BOTTOM DEPOSITS (MG/KG AS SE FECAL COLIFORM, MEMBR FILTER, M-FC BROTH,		31501 32211	COLIFORM, TOT, MEMBRANE FILTER, IMMED. M-ENDO,
32218	PHEOPHYTIN-A UG/L SPECTROPHOTOMETRIC ACI		39061	CHLOROPHYLL-A UG/L SPECTROPHOTOMETRIC ACID. METH PENTACHLOROPHENOL IN BOT. DEPOS. UG/KG DRY SOL.
39064	CHLORDANE CIS ISOMER BOTTOM DEPOSITS(UG/		39067	CHLORDANE TRANS ISOMER BOTTOM DEPOSITS UG/KG DRY
39073	CHLORDANE NONACHLOR, TRANS ISO BOT. DEPOS		39076	BHC ALPHA ISOMER, BOTTOM DEPOS UG/KG DRY SOLIDS
39301	P,P' DDT IN BOTTOM DEPOSITS (UG/KG DRY S		39306	O,P' DDT IN BOTTOM DEPOSITS (UG/KG DRY SOLIDS)
39311	P.P DDD IN BOTTOM DEPOSITS (UG/KG DRY SO		39316	O,P DDD IN BOTTOM DEPOSITS (UG/KG DRY SOLIDS)
39321	P.P DDE IN BOTTOM DEPOSITS (UG/KG DRY SO		39328	O,P' DDE IN BOTTOM DEPOSITS (UG/KG DRY SOLIDS)
39333	ALDRIN IN BOTTOM DEPOS. (UG/KILOGRAM DRY		39351	CHLORDANE IN BOT. DEPOS. (UG/KILOGRAM DRY SOLIDS
39363 - <i>-</i>	DDD IN BOTTOM DEPOS. (UG/KILOGRAM DRY SO	LIDS)	39368	DDE IN BOTTOM DEPOS. (UG/KILOGRAM DRY SOLIDS)
39373	DDT IN BOTTOM DEPOS. (UG/KILOGRAM DRY SO	LIDS)	39383	DIELDRIN IN BOTTOM DEPOS. (UG/KILOGRAM DRY SOL.)
39393	ENDRIN IN BOTTOM DEPOS. (UG/KILOGRAM DRY	SOLIDS)	39403	TOXAPHENE IN BOTTOM DEPOS. (UG/KILOGRAM DRY SOL.
39413	HEPTACHLOR IN BOT. DEP. (UG/KILOGRAM DRY		39423	HEPTACHLOR EPOXIDE IN BOT. DEP. (UG/KG DRY SOL.)
39481	METHOXYCHLOR IN BOTTOM DEPOSITS (UG/KG DI		39519	PCBS IN BOTTOM DEPOSITS (UG/KG DRY SOLIDS)
39531	MALATHION IN BOT. DEPOS. (UG/KILOGRAM DR		39541	PARATHION IN BOT. DEPOS. (UG/KILOGRAM DRY SOLIDS
39571	DIAZINON IN BOT. DEPOS. (UG/KILOGRAM DRY		39601	METHYL PARATHION IN BOT. DEPOS. (UG/KG DRY SOLIDS
39701	HEXACHLOROBENZENE IN BOT DEPOS. UG/KG DRY		39731	2,4-D IN BOTTOM DEPOSITS (UG/KG DRY SOLIDS)
39741 39783	2,4,5-T IN BOTTOM DEPOSITS (UG/KG DRY SOIL		39761 70294	SILVEX IN BOTTOM DEPOSITS (UG/KG DRY SOLIDS)
39783 70300	LINDANE IN BOTTOM DEPOSITS (UG/KG DRY SOI RESIDUE, TOTAL FILTRABLE (DRIED AT 180C),		71921	MERCURY, TOT. IN BOT. DEPOS. (MG/KG AS HG DRY WGT
72053	DAYS SINCE PRECIPITATION EVENT (DAYS)		11921	MERCORI, TOT. IN DUT. DEPUS. (MG/KG AS MG DKY WG)

PAGE 00043

DW0322 1223.0100


* * * TEXAS WATER COMMISSION * * * STATEWIDE MONITORING NETWORK -- SAMPLING DATA INVENTORY PERIOD OF REPORT: 01/01/68 TO 12/31/90 BRAZOS RIVER BASIN DISTRICT 03

08099100

RIVER MILE

SEGMENT - LEON RIVER BELOW LEON RESERVOIR
COUNTY - COMANCHE USGS GAGE NO

STATION NO. 1223.0100		ATION	LOCATION AT SH 10	N	OF DE	E LEON	03	dy dade		0003	,,,,,		N.	VER MILE		ATITUDE / LON 2 10 25 098	GITUDE 31 58
SAMPLE DATE	TIME	DEPTH (FT)	SOURCE AGENCY	SYSTEM CODE	PARAM	METER M	IEASU	REMENTS:		VALUE/ /CODE							
08/21/73	1105	UNSP	TEXAS	SMN		. 0 00061											
09/05/73	UNSP	UNSP	TEXAS	SMN		.0											
09/25/73	UNSP	UNSP	TEXAS	SMN		.0 00061											
10/29/73	1600	1.0	TEXAS	SMN		20.0 00010		68.0 00011		.0 00070		900. 00094		1092. 00095	9.0 00300	8.50 00400	8.0 00403
					<	10. 00530	<	10. 00535	<	00610	<	.03 00620		. 10 00650	. 06 00660	. 033 00665	. 020 0067 1
						173. 00940		55. 00945		6.0 32211		450. 70294					
11/06/73	1050	1.0	TEXAS	SMN		12.8 00010		55.0 00011		. 0 00070		840. 00094		1113. 00095	11.0 00300	6.50 00400	8.2 00403
					<	10. 00530	<	10. 00535	<	00610	<	.03 00620		. 11 00650	. 09 00660	. 036 00665	. 029 0067 1
						173. 00940		51. 00945		3200. 31501		290. 31616	<	4.0 32211	420. 70294		
11/28/73	1130	1.0	TEXAS	SMN		11.1 00010		52.0 00011		.0 00070		12500. 00094		1548. 00095	8.0 00300	8.30 00400	8.2 00403
					<	10. 00530	<	10. 00535	<	. 1 00610	<	.3 00620		. 08 00650	. 05 00660	.026 00665	.016 00671
						273. 00940		62. 00945		1200. 31501		220. 31616	<	4.0 32211	6250. 70294		
12/07/73	1130	1.0	TEXAS	SMN	F	LOW DE	TERM	INED FROM	M U	SGS GAUGE							
•						11.1 00010		52.0 00011		1.8 00061		.0 00070		1400. 00094	6.0 00300	8'. 50 00400	700. 70294
01/16/74	1145	1.0	TEXAS	SMN	F	LOW DE	TERM	INED FROM	W U	SGS GAUGE							
						7.2 00010		45.0 00011		1.5 00061		.0 00070		1200. 00094	11.0 00300	7.70 00400	600. 70294

_Data: DO

Level codes: SMN Station

-Labels:

Range test: Conf. Int. Confidence level: 95

Analysis of variance

Source of variation	Sum of Squares	d.f.	Mean square	F-ratio	Sig. level
Between groups -Within groups	13.06209 604.00548	2 111	6.5310452 5.4414908	1.200	.3050
Total (corrected)	617.06757	113			

⁰ missing value(s) have been excluded.

Table of means for DO by SMN Station

Level	Count	Average	Stnd. Error (internal)	Stnd. Error (pooled s)	95 Percent intervals	Confidence for mean
- ¹ ₂	44	8.7715909 9.3973684	.3554521	.3516678	8.0745818 8.6473481	9.468600 10.147389
Total	32 114	9.5312500 	.4036986	.4123671 	8.7139344 8.7603966	10.348566

Tests for Homogeneity of Variances

Cochran's C test: 0.341714 P = 1
Bartlett's test: 1.00035 P = 0.9808

Hartley's test: 1.06598

Multiple range analysis for DO by SMN Station

Method Level	: 95 Percent Count		Intervals Homogeneous	Groups	
- 1	44	8.7715909	*		
2	38	9.3973684	*		
3	32	9.5312500	*		

Data: Conductivity

Level codes: SMN Station

-Labels:

Range test: Conf. Int. Confidence level: 95

Analysis of variance

Source of variation	Sum of Squares	d.f.	Mean square	F-ratio	Sig. level
Between groups -Within groups	27260.4 3823268.7	2 111	13630.203 34443.862	.396	.6741
Total (corrected)	3850529.1	113			

⁰ missing value(s) have been excluded.

Table of means for Conductivity by SMN Station

_ Level	Count	Average	Stnd. Error (internal)	Stnd. Error (pooled s)	95 Percent intervals	Confidence for mean
- ¹ ₂	44	708.45455	26.877540	27.978832	653.00022	763.90887
2 3	38 32	705.71053 741.50000	31.001420 33.378239	30.106767 32.808089	646.03861 676.47404	765.38244 806.52596
-Total	114	716.81579	17.382150	17.382150	682.36419	751.26739

Tests for Homogeneity of Variances

_Cochran's C test: 0.351307 P = 1

Bartlett's test: 1.00197 P = 0.897749

Hartley's test: 1.14899

Multiple range analysis for Conductivity by SMN Station

	Method: Level	95 Percent Count		Intervals Homogeneous	Groups
	2	38	705.71053	*	
	1	44	708.45455	*	
	3	32	741.50000	*	

Data: Total Phosphorous

Level codes: SMN Station

_Labels:

Range test: Conf. Int. Confidence level: 95

Analysis of variance

					
-Source of variation	Sum of Squares	d.f.	Mean square	F-ratio	Sig. level
Between groups Within groups	.0625111 1.9675584	2 79	.0312556 .0249058	1.255	.2907
Total (corrected)	2.0300695	81			

To missing value(s) have been excluded.

Table of means for Total Phosphorous by SMN Station

_ Level	Count	Average	Stnd. Error (internal)	Stnd. Error (pooled s)	95 Percent (intervals	
1	33	.1757576	.0323072	.0274722	.1210632	.2304519
- ₂	26	.2311538	.0241491	.0309502	.1695351	.2927726
3	23	.2330435	.0310007	.0329069	.1675293	.2985577
-Total	82	.2093902	.0174278	.0174278	.1746932	.2440873

Tests for Homogeneity of Variances

Cochran's C test: 0.480319 P = 0.0870427 Bartlett's test: 1.06072 P = 0.101395

Hartley's test: 2.27164

Multiple range analysis for Total Phosphorous by SMN Station

Method: Level	95 Percent Count	Confidence Average	Intervals Homogeneous	Groups
 - 1	33	.1757576	*	
2	26	.2311538	*	
3	23	.2330435	*	

Data: TOC

Level codes: SMN Station

_Labels:

Range test: Conf. Int. Confidence level: 95

Analysis of variance

-Source of variation	Sum of Squares	d.f.	Mean square	F-ratio	Sig. level
Between groups _Within groups	4.64843 874.27748	2 68	2.324217 12.857022	.181	.8350
Total (corrected)	878.92592	70			

⁻¹ missing value(s) have been excluded.

Table of means for TOC by SMN Station

Level	Count	Average	Stnd. Error (internal)	Stnd. Error (pooled s)	95 Percent intervals	Confidence for mean
1	23	8.3043478	.7106051	.7476637	6.8120708	9.796625
- 2	24	8.3583333	.8423982	.7319216	6.8974762	9.819191
3	24	8.8708333	.6413437	.7319216	7.4099762	10.331691
_Total	71	8.5140845	.4255406	.4255406	7.6647394	9.363430

Tests for Homogeneity of Variances

Cochran's C test: 0.442174 P = 0.277747 Partlett's test: 1.02754 P = 0.404223

lartley's test: 1.72525

Multiple range analysis for TOC by SMN Station

•	Tethod:	95 Percent Count	Confidence Average	Intervals Homogeneous	Groups
	-1	23	8.3043478	*	
	2	24	8.3583333	*	
	3	24	8.8708333	*	

_Data: Secchi Depth

Level codes: SMN Station

-Labels:

Range test: Conf. Int. Confidence level: 95

Analysis of variance

Source of variation	Sum of Squares	d.f.	Mean square	F-ratio	Sig. level
Between groupsWithin groups	1661.6593 3998.4733	2 95	830.82967 42.08919	19.740	.0000
Total (corrected)	5660.1327	97			

⁰ missing value(s) have been excluded.

Table of means for Secchi Depth by SMN Station

Level	Count	Average	Stnd. Error (internal)	Stnd. Error (pooled s)	95 Percent intervals	Confidence for mean	
- 1 2 3	34 33 31	24.088235 15.424242 15.451613	1.2319048 1.1910575 .9261305	1.1126174 1.1293494 1.1652107	21.878915 13.181697 13.137858	26.297556 17.666788 17.765368	
-Total	98	18.438776	.6553484	.6553484	17.137452	19.740099	

Tests for Homogeneity of Variances

Cochran's C test: 0.412779 P = 0.372979
Bartlett's test: 1.03919 P = 0.165196

Hartley's test: 1.94056

Multiple range analysis for Secchi Depth by SMN Station

Met Lev	95 Percent Count		Intervals Homogeneous	s Groups
2	33	15.424242	*	
3	31	15.451613	*	
1	34	24.088235	*	
	 			

Data: Non-Filterable Residue

Level codes: SMN Station

~abels:

Range test: Conf. Int. Confidence level: 95

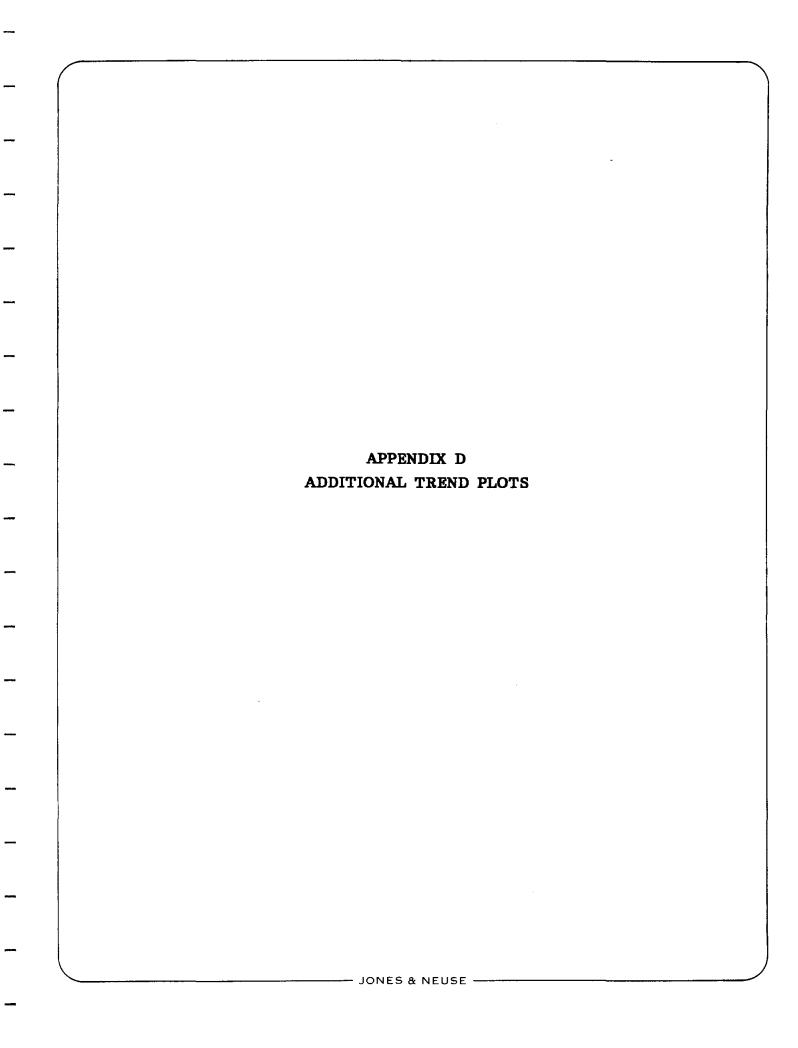
Analysis of variance

ource of variation	Sum of Squares	d.f.	Mean square	F-ratio	Sig. level
Between groups Tithin groups	2588.560 15569.058	2 86	1294.2801 181.0356	7.149	.0013
Total (corrected)	18157.618	88			

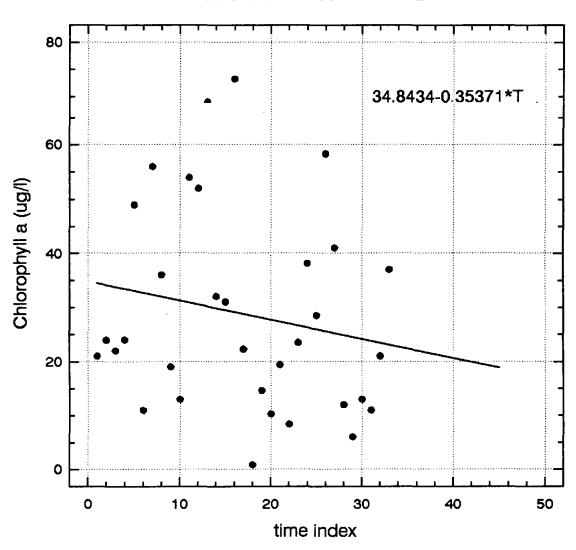
missing value(s) have been excluded.

Table of means for Non-Filterable Residue by SMN Station

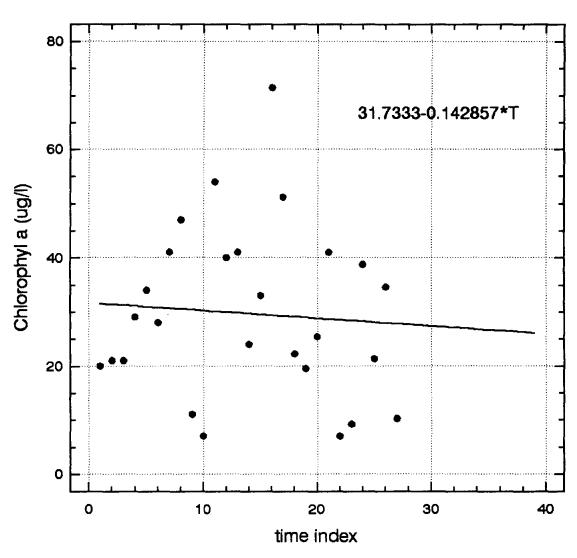
			Stnd. Error	Stnd. Error	95 Percent Confidence		
evel	Count	Average	(internal)	(pooled s)		for mean	
_1	30	17.866667	1.8832189	2.4565257	12.982157	22.751176	
2	31	28.870968	2.9174086	2.4165795	24.065887	33.676049	
3	28	29.678571	2.4581436	2.5427457	24.622624	34.734519	
¬otal	89	25.415730	1.4262214	1.4262214	22.579859	28.251602	

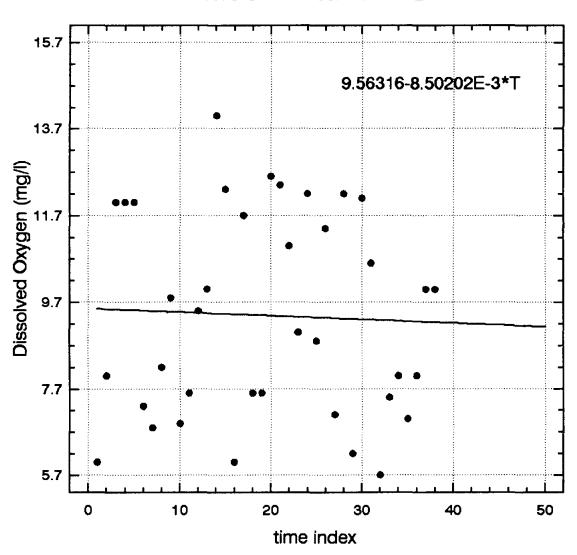

'ests for Homogeneity of Variances

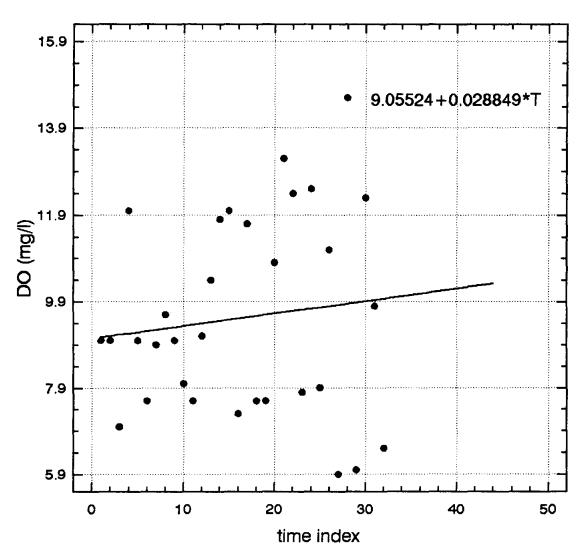
Cochran's C test: 0.489123 P = 0.0550531 Fartlett's test: 1.07152 P = 0.0536593

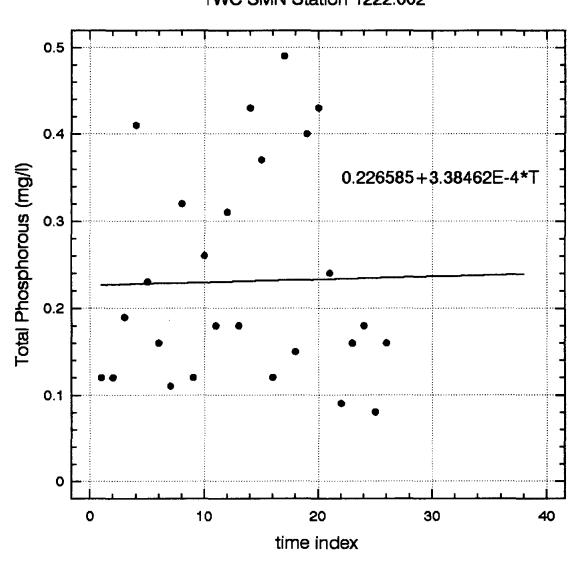

.lartley's test: 2.4799

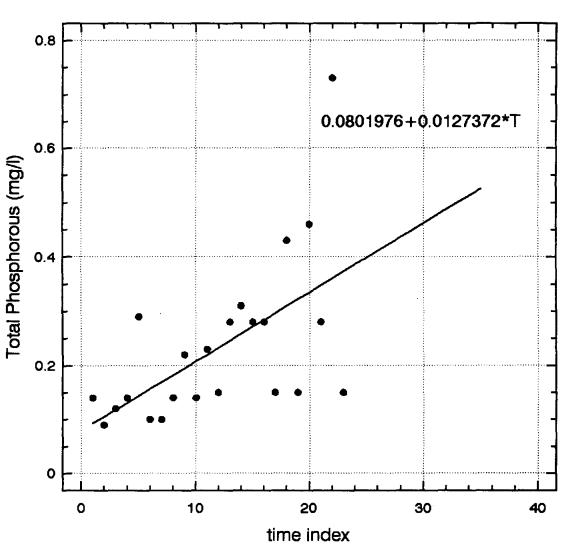
Multiple range analysis for Non-Filterable Residue by SMN Station

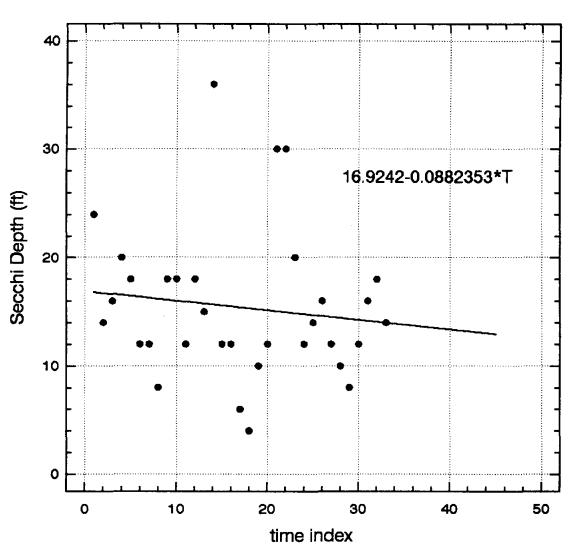

lethod:	95 Percent Count	Confidence Average	Intervals Homogeneous Groups	
1	30	17.866667	*	
2	31	28.870968	*	
_ 3	28	29.678571	*	

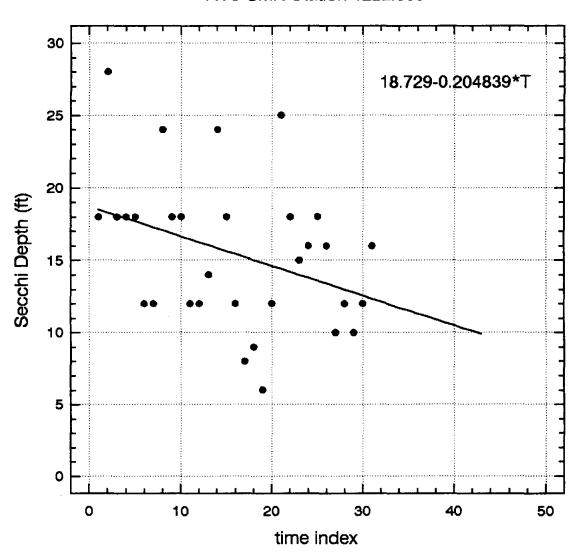

Chlorophyll a

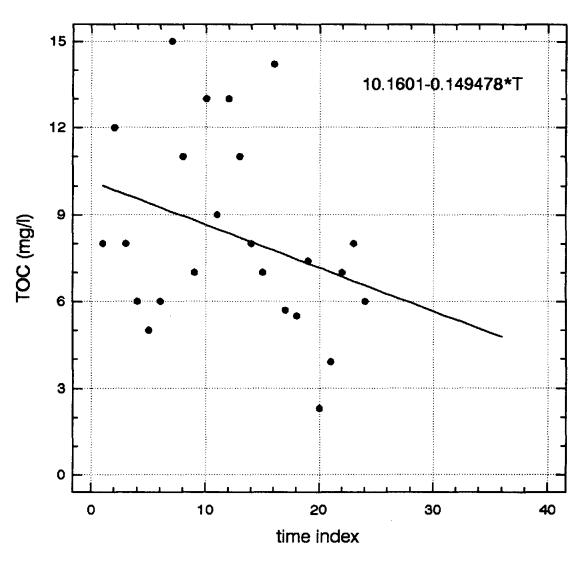

Chlorophyl a

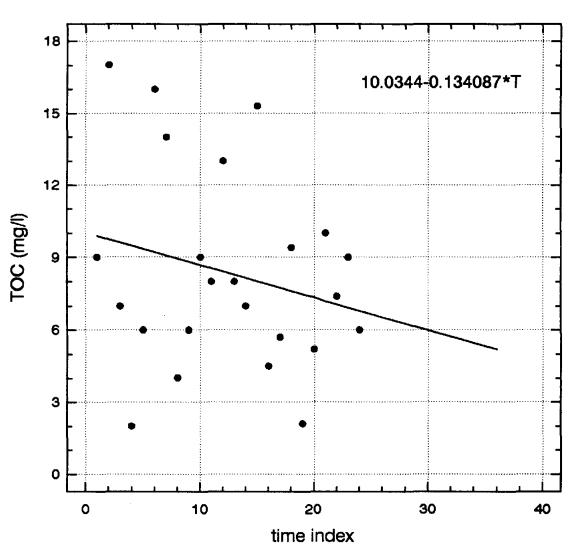

Dissolved Oxygen


Dissolved Oxygen

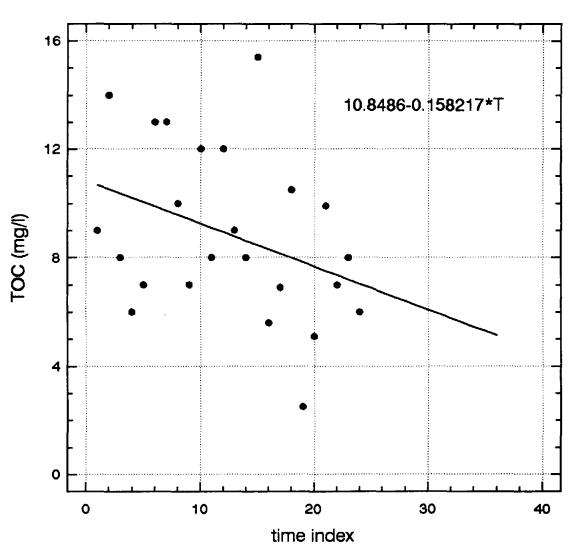

Total Phosphorous
TWC SMN Station 1222.002


Total Phosphorous

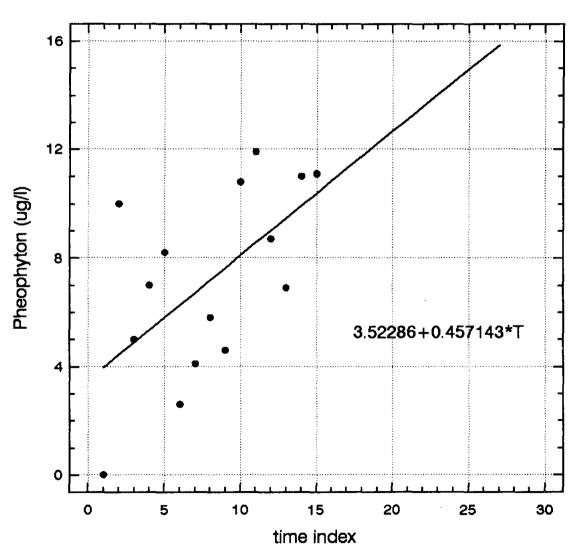

Secchi Depth

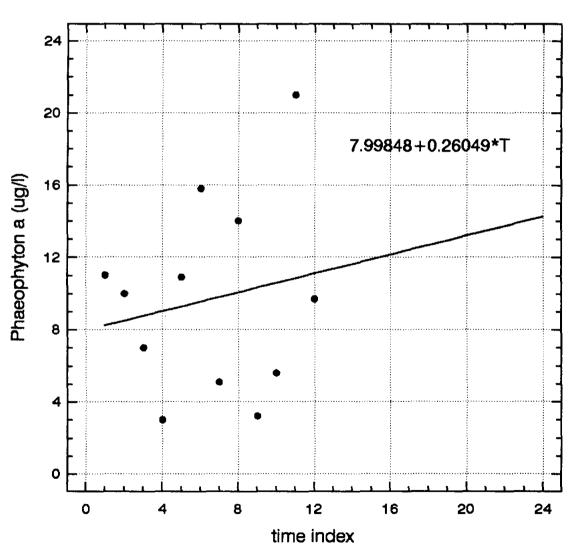


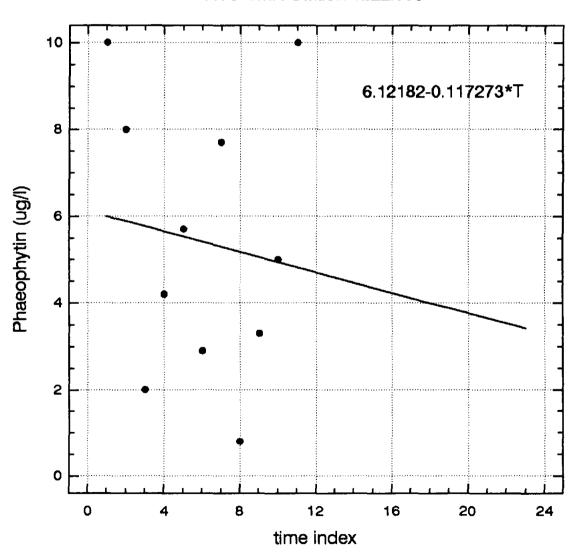
Secchi Depth

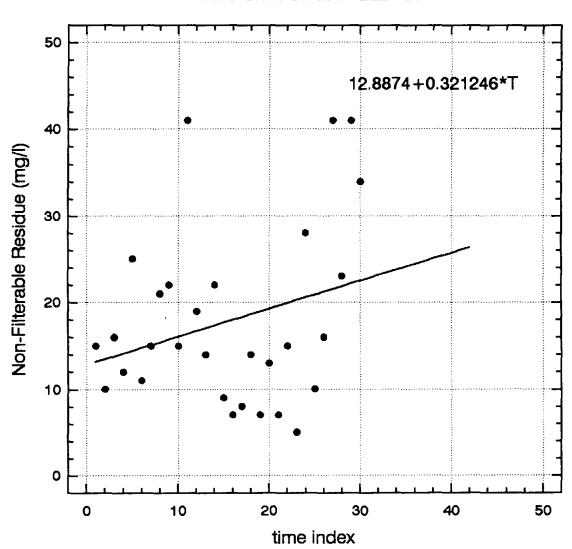


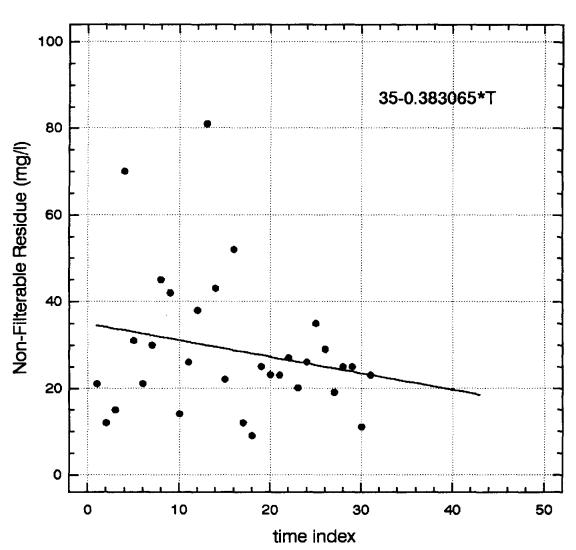
TOC

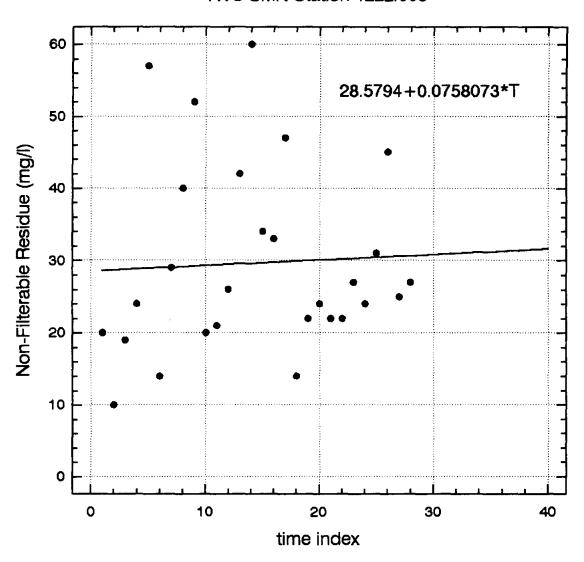


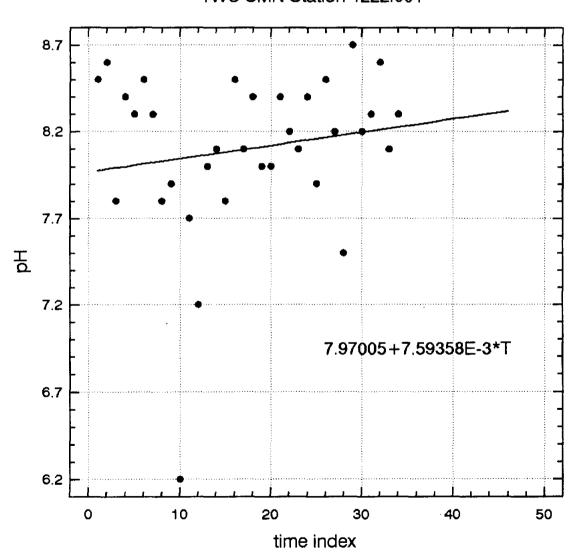

Total Organic Carbon

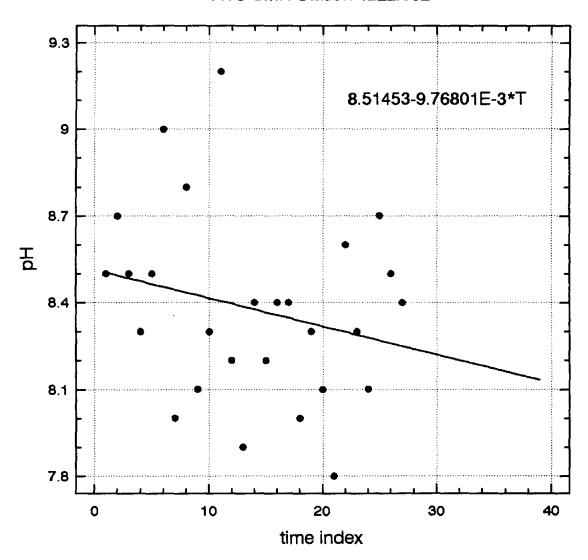

Phaeophyton

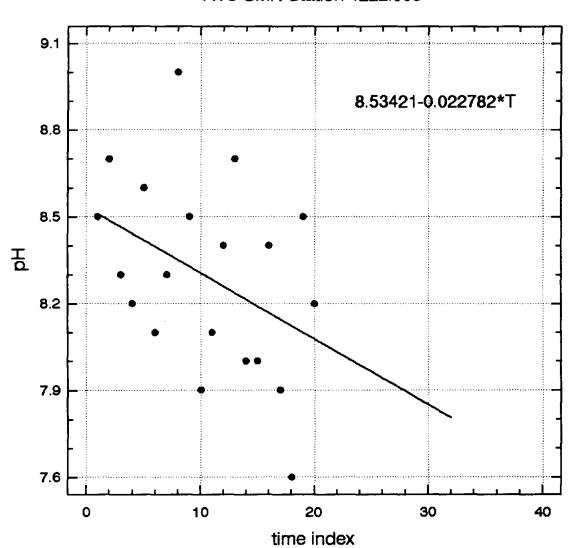

Pheophyton

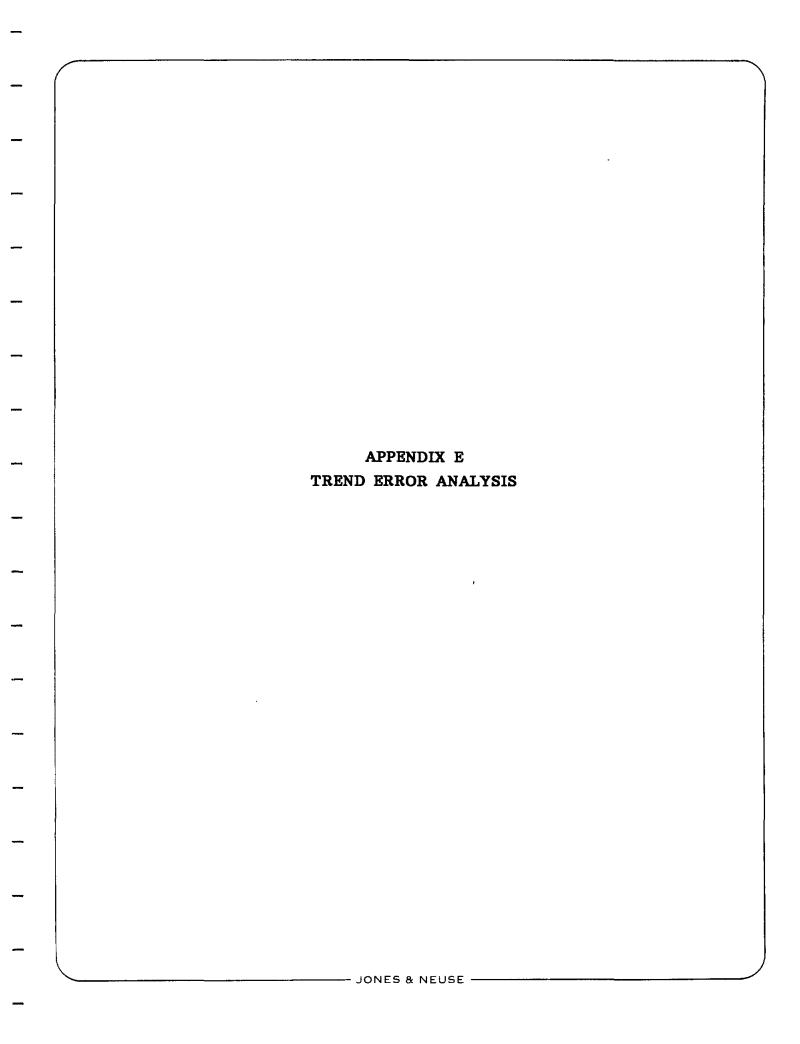

Phaeophytin


Non-Filterable Residue
TWC SMN Station 1222.001




Non-Filterable Residue




Non-Filterable Residue
TWC SMN Station 1222.003

	: DO - 1222.001 cast summary		M.E.	M.S.E.	M.A.E.		cent: 100 M.P.E.
8.55+	+9.84848E-3*T		0.00000	5.41725	1.95606	26.3264	-8.97906
****	Period 45	Period 46		Period Period 47 48		Period 49	
	8.99318	9.00303		9.01288	9.02273		9.03258
مسوي	Period 50	Period 51		Period 52	Period 53		Period 54
	9.04242	9.05227		9.06212	9.07	197	9.08182
	Period 55	Period 56					
	9.09167	9.10152					

Data: DO - 1222.002 <u>F</u> orecast summary		M.E.	M.S.E.	M.A.E.		cent: 100 M.P.E.
		0.00000	5.34104	2.06512	23.6828	-6.52129
Period 39	Period 40		Period 41	Per	riod 42	Period 43
9.23158	9.22308		9.21457	9.20607		9.19757
_						
Period 44	Period 45		Period 46	Per	riod 47	Period 48
9.18907	9.18057		9.17206	9.16	356	9.15506
Period 49	Period 50					
9.14656	9.13806					

<pre>Data: DO - 1222.003 orecast summary</pre>			M.E.	M.S.E.	M.A.E.	Per M.A.P.E.	M.P.E.
9.055	24+0.028849*T		0.00000	4.98120	1.85628 20.791		-5.77222
·	Period 33	Period 34		Period 35	Period 36		Period 37
_	10.0073	10.0361		10.0650	10.0938		10.1227
ganin a	Period 38	Period 39		Period 40	Period 41		Period 42
	10.1515	10.1804		10.2092	10.2	380	10.2669
	Period 43	Period 44					
	10.2957	10.3246					

cent: 100 M.P.E.	Per M.A.P.E.	M.A.E.	M.S.E.	M.E.	a - 1222.001	ta: Chlorophyll recast summary	
-145.364	173.759	15.1981	330.965	0.00000		.8434-0.35371*T	34.
Period 38	Period 37		Period 36		Period 35	Period 34	
21.4024	21.7561		22.1098	;	22.4635	22.8172	_
Period 43	Period 42		Period 41		Period 40	Period 39	
19.6338	876	19.9	20.3413)	20.6950	21.0487	
					Period 45	Period 44	_
				•	18.9264	19.2801	

	Chlorophyll a st summary	- 1222.002	M.E.	M.S.E.	M.A.E.		Cent: 100 M.P.E.
29.936	5-0.165505*T		0.00000	315.178	13.4543	76.6736	-51.6215
	Period 38	Period 39				Period 42	
	23.6473	23.4818		23.3163	23.1	508	22.9853
	Period 43	Period 44		Period 45	Period 46		Period 47
	22.8198	22.6543		22.4888	22.3	233	22.1578
-	Period 48	Period 49					

_Data	: Chlorophyll a -	1222.003				Percent: 100		
ore	cast summary		M.E.	M.S.E.	M.A.E.	M.A.P.E.	M.P.E.	
31.7	333-0.142857*T		0.00000	236.825	12.6815	69.5527	-43.4200	
	Period 28	Period 29		Period 30	Per	riod 31	Period 32	
	27.7333	27.5905		27.4476	27.3	3048	27.1619	
-	Period 33	Period 34		Period 35	Per	riod 36	Period 37	
	27.0190	26.8762		26.7333	26.5	905	26.4476	
-	Period 38	Period 39						

_Data Fore	: Phaeophytin - cast summary	1222.001	М.Е.	M.S.E.	M.A.E.		cent: 100 M.P.E.
7.99	848+0.26049*T		0.00000	25.7755	4.35216	68.0614	-39.7066
_	Period 13	Period 14		Period 15	Per	iod 16	Period 17
-	11.3848	11.6453		11.9058	12.1	663	12.4268
	Period 18	Period 19		Period 20	Per	iod 21	Period 22
	12.6873	12.9478		13.2083	13.4	688	13.7293
	Period 23	Period 24					

Data: Phaeophytin - 1222.002 Forecast summary	M.E. M.S.E.	M.A.E. M.A.F	Percent: 100 P.E. M.P.E.
3.52286+0.457143*T	0.00000 7.57131	2.34133	
_		_	
Period Period 17		Period 19	Period 20
10.8371 11.2943	3 11.7514	12.2086	12.6657
			
Period Period Period 21		Period 24	Period 25
13.1229 13.5800	14.0371	14.4943	14.9514
Period Period 27			
15.4086 15.8657	7		

	Phaeophytin - st summary	1222.003	м.е.	M.S.E.	M.A.E.		cent: 100 M.P.E.
6.12182	2-0.117273*T		0.00000	8.90214	2.52562	96.7737	-68.9360
-	Period 12	Period 13		Period Period 14 15		Period 16	
_	4.71455	4.59727		4.48000	4.36273		4.24545
	Period 17	Period 18		Period 19	Per	Period 20	
-	4.12818	4.01091		3.89364	3.77	636	3.65909
_	Period 22	Period 23					
	3.54182	3.42455					

	Non-Filterable ast summary	Residue - 12	222.002 M.E.	M.S.E.	M.A.E.	Per M.A.P.E.	cent: 100 M.P.E.
12.88	74+0.321246*T		0.00000	95.1176	7.72626	59.6397	-34.7605
_	Period 31	Period 32		Period 33	Per	iod 34	Period 35
	22.8460	23.1672		23.4885	23.8	097	24.1310
againth.	Period 36	Period 37		Period 38	Per	iod 39	Period 40
	24.4522	24.7735		25.0947	25.4	159	25.7372
-	Period 41	Period 42					

Andrew .	: Non Filterable cast summary	Residue - 12	22.003 M.E.	M.S.E.	M.A.E.		cent: 100 M.P.E.
28.5	794+0.0758073*T		0.00000	162.772	10.2848	40.3132	-19.4032
	Period 29	Period 30		Period 31	Per	iod 32	Period 33
	30.7778	30.8536	· -	30.9294	31.0	052	31.0810
	Period 34	Period 35		Period 36	Per	iod 37	Period 38
	31.1568	31.2326		31.3084	31.3	842	31.4600
_	Period	Period					

Data: Total Phosphorous - 1222.001 Per orecast summary M.E. M.S.E. M.A.E. M.A.P.E.								
0.226585+3.38462E-4	*T	0.00000	0.01457	0.10373	56.1595	-30.2417		
- Period 27	Period 28		Period 29	Per	iod 30	Period 31		
0.23572	0.23606	(0.23640	0.23	674	0.23708		
- Period 32	Period 33		Period 34	Period 35		Period 36		
0.23742	0.23775	(0.23809	0.23	843	0.23877		
- Period 37	Period 38							
- 0.23911	0.23945							

Data: Total Phosphorous orecast summary	s - 1222.00		M.S.E.	M.A.E.		m.P.E.
0.0464394+7.60695E-3*T		0.00000	0.02815	0.08812	52.0266	-30.8071
Period 34	Period 35		Period 36	Per	iod 37	Period 38
0.30508	0.31268		0.32029	0.32	790	0.33550
- Period 39	Period 40		Period 41	Per	iod 42	Period 43
_ 0.34311	0.35072		0.35832	0.36	593	0.37354
- Period 44	Period 45					
- 0.38115	0.38875					

(Married Control of Co	TOC - 1222.001					Per	cent: 100
orec	cast summary		M.E.	M.S.E.	M.A.E.	M.A.P.E.	M.P.E.
10.03	344-0.134087*T		0.00000	15.4601	3.16597	57.4842	-34.1652
	Period 25	Period 26		Period 27	Period 28		Period 29
	6.68225	6.54816		6.41407	6.27999		6.14590
-	Period 30	Period 31		Period 32	Period 33		Period 34
_	6.01181	5.87772		5.74364	5.60	955	5.47546
	Period 35	Period 36					
	5.34138	5.20729					

Data: TOC - 1222.002					Per	cent: 100
Forecast summary		M.E.	M.S.E.	M.A.E.	M.A.P.E.	M.P.E.
10.1601-0.149478*T		0.00000	9.57929	2.51782	37.4440	-17.4926
- Period 25	Period 26		Period 27	Per	iod 28	Period 29
- 6.42319	6.27371		6.12423	5.97	475	5.82528
- Period 30	Period 31		Period 32	Per	riod 33	Period 34
5.67580	5.52632		5.37684	5.22	736	5.07788
- Period 35	Period 36					

l ita: TOC - 1222.003						rcent: 10
Forecast summary		M.E.	M.S.E.	M.A.E.	M.A.P.E.	M.P.E.
).8486-0.158217*T		0.00000	8.26091	2.40211	33.4881	-14.2377
~						
Period 25	Period 26		Period 27	Period 28 		Period 29
6.89312	6.73490		6.57668	6.41846		6.26025
-						
Period 30	Period 31		Period 32	Period 33		Period 34
6.10203	5.94381		5.78559	5.62	738	5.46916
Period 35	Period 36					
5.31094	5.15272					

Data: Secchi Depth - 1222.001 orecast summary	M.E.	M.S.E.	M.A.E.	Per M.A.P.E.	cent: 100 M.P.E.
25.8556-0.100993*T	0.00000		5.79081		-10.2389
- Period Period 35 36		Period 37	Per	iod 38	Period 39
22.3209 22.2199)	22.1189	22.0	179	21.9169
- Period Period 41		Period 42	Per	iod 43	Period 44
21.8159 21.7149)	21.6139	21.5	129	21.4119
Period Period 45					
- 21.3109 21.2099	-)				

rita: Secchi Depth - 1222.002	M.E. M.S.E.		M.A.E.	cent: 100 M.P.E.	
; >recast summary	m.c.	M.S.E.	M.A.E.	M.A.P.E.	M.F.E.
16.9242-0.0882353*T	0.00000	44.6899	4.87965	40.0121	-21.1119
- Period Peri	Lod 35	Period 36	Per.	iod 37	Period 38
— 13.9242 13.83	360	13.7478	13.6	595	13.5713
- Period Peri 39	lod 40	Period 41	Per	iod 42	Period 43
13.4831 13.39	948	13.3066	13.2	184	13.1301
Period Peri	iod 45				
13.0419 12.95	537				

Data: Secchi Depth - 1	1222.002	M.E.	M.S.E.	M.A.E.		cent: 100 M.P.E.
16.9242-0.0882353*T		0.00000	44.6899	4.87965	40.0121	-21.1119
_ Period 34	Period 35		Period 36	Per	iod 37	Period 38
13.9242	13.8360	**************************************	13.7478	13.6595		13.5713
_ Period 39	Period 40		Period 41	Period 42		Period 43
_ 13.4831	13.3948		13.3066	13.2	184	13.1301
- Period 44	Period 45					
_ 13.0419	12.9537					