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Executive Summary

The first Forecast-informed Reservoir Operations (FIRO) pilot project in Texas (referred to
hereafter as “FIRO Pilot”) was launched in 2022. It is led by Hydrometeorology Research Group
at the University of Texas at Arlington (UTA). The domain of the pilot is situated in Central
Texas within the Brazos River Basin, encompassing the lower portion of the Little River System
(LRS) that houses a system of multiuse reservoirs operated by the U.S. Army Corps of Engineers
(USACE).

The first phase of the Texas FIRO Pilot was supported by a grant from the US Bureau of
Reclamation (USBR)’s WaterSmart Program. In 2023, TWDB provided a supplemental grant to
the project team with the following objectives:

Updating the configurations of the Hydrologic Ensemble Forecast Service (HEFS) and
reservoir model from National Weather Service (NWS) West Gulf River Forecast Center
(WGRFC) to be consistent with the latter’s real-time river operations and more accurately
represent reservoir operations.

Expanding the hindcast and validation efforts to inform WGRFC on potential
improvements to the configurations to yield more skillful forecasts.

Providing forecast data and support to TWDB’s Lake Conroe initiative.

The project comprises the following five tasks:

1.

2.

3.

4.

5.

Review and revise the hindcast configuration of WGRFC HEFS for the Little River
System.

Produce hindcasts for extended lead times using the revised versions of WGRFC HEFS
and perform validation.

Perform validation on Climate Forecast System-version 2 (CFSv2) and Global Ensemble
Forecast System-version 12 (GEFSv12) subseasonal precipitation forecasts.

Deliver postprocessed ensemble precipitation and streamflow forecasts upstream Lake
Conroe.

Report findings to stakeholders through regular meetings.

Key outcomes from the project are summarized as follows

1.

Developed of four updated HEFS stand-alone configurations for the Little River
System to produce three suites of hindcasts at 3-hour intervals. These configurations
incorporate updated basin boundaries and Sacramento Soil Moisture Accounting
(SAC-SMA) parameter values from the most recent round of calibration completed in
2022 These configurations differ in the forcing input:
a. Configuration 1: with resampled climatology as the sole source of precipitation
forcing.
b. Configuration 2: with GEFSv12 medium-range precipitation forecasts for day
1-14 and resampled climatology for day 15-270.
c. Configuration 3: with GEFSv12 subseasonal to seasonal (S2S) precipitation
forecasts for day 1-35 and resampled climatology for day 36-270.



d

. Configuration 4: with CFSv2 precipitation forecasts for day 15-270.

2. Generation of validation statistics for forecast points collocated with USGS gauging
stations, and at inflow points to four reservoirs. Notable findings include the following:

a.

As judged by summary statistics, ensemble streamflow hindcasts driven by
GEFSv12 medium-range forecasts are more skillful than those driven by
resampled climatology for lead time out to day 20. When aggregated onto
weekly scales, they are more skillful than climatology for lead times of 1-3
months. The streamflow hindcasts tend to be skillful at longer lead times than
precipitation forecasts due to the dampening effects of runoff process.

There is a north-south gradient in the skills of ensemble streamflow forecasts:
the skills tend to be higher for forecast points in the north and decline
southward. Potential sources of this gradient include larger drainage area and
slower runoff response in the northern parts of LRS, and flashier response and
prevalence of convection with low predictability in the southern parts.
Forecast skills are dependent on flow magnitude. Most of the skills reside in
forecasting moderate and moderate-high flows, whereas for low flows the
former consistently underperforms resampled climatology-driven hindcasts.
High flows during major floods are systematically under-forecasted. The under-
forecast can be attributed to a) under-forecasts in precipitation amounts, and b)
issues in the water balance model in reproducing the runoff volume.

The issue of under-forecast tends to be more severe when the newer set of
SAC-SMA parameter values were ingested.

Ensemble streamflow forecasts driven by GEFSv12 S2S forecasts and resample
climatology exhibit higher skills than those driven solely by resampled
climatology for major flooding events.

Ensemble streamflow forecasts driven by using CFSv2 are not as skillful as
those driven by resampled climatology across lead time, likely due to a lack of
skills in CFSv2 precipitation forecasts and inadequacy of the postprocessing
technique to calibrate these forecasts.

3. Development of HEFS ensemble precipitation and flow forecasts for the San Jacinto
River Basin upstream Lake Conroe for June-September of 2005 2006, 2017, and 2018.

This

task was solely to provide the forecasts to the TWDB, and no further analysis was

undertaken.

On the basis of the findings, the project team makes the following recommendations to both the
NWS and the TWDB to improve HEFS to facilitate the use of its ensemble streamflow forecasts:

1. Improve forecast skills for anomalously large precipitation events in the medium range

(days 1
@)

— 12), possibly through.

introducing alternative, advanced postprocessing algorithms to HEFS to alleviate
the negative bias and under-spread in raw precipitation forecasts. Candidate
algorithms include Conditional Bias Penalizing Regression, Censored-Shifted
Gamma Distribution and a later machine-learning variant, and alternatives to
Schaake Shuffle.



o exploring alternative precipitation forecasts as input to HEFS, such as European
Center High-resolution forecasts and operational convection-allowing model
forecasts.

2. Improve the calibration of NWS hydrologic and routing models to better capture the
magnitude of inflow during flood events.

o Recalibrate SAC-SMA for forecast points in the pilot domain by including
specific metrics for large events.

o Quality control reservoir inflow estimates from USACE.

o Determine optimal precipitation products for calibration and verification,
including an assessment of the value of the raw Analysis of Record for
Calibration (AORC) and the bias-corrected AORC, which was developed by
UTA.

3. Investigate alternative forecast products as forcing to HEFS beyond the medium range.
These include subseasonal forecasts from GEFS, and North American Multimodel
Ensemble.

4. Partner with reservoir operators to add and refine metrics for forecast evaluation and
improvements to facilitate consistent use of forecasts in operational decisions. It is
recommended that the project team partner with reservoir operators to identify scenarios
where the impacts from potential failures of forecasts can be gauged and accounted for.
The National FIRO Program now uses Critical Success Index and Dry Forecast Failure
ratio as metrics in its screening of reservoirs, and their inclusion in future analysis is
recommended.
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1. Background

In 2019, UT Arlington (UTA) collaborated with the Texas Water Development Board (TWDB)

and the National Integrated Drought Information System (NIDIS) to convene the first Texas-
Oklahoma Forecast Informed Reservoir Operation (FIRO) Workshop. The report of the
workshop called for establishing FIRO pilot sites in the state of Texas, whereby existing and

emerging National Weather Service (NWS) forecast products can be tested in a quasi-operational

setting to allow for the identification and adoption of mature, robust products in reservoir
operation (TWDB, 2020). In 2020, a multi-agency consortium was formed to facilitate the
introduction of FIRO practice in the state of Texas, comprising the UTA, US Army Corps of

Engineers — Fort Worth District (USACE-SWF), NWS, and the TWDB. In 2021, USACE-SWF
helped identify a potential pilot site in central Texas in the Little River System, a tributary to the

Brazos River (Fig 1-1).
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Figure 1-1: The central Texas FIRO Pilot on the Little River System, where four USACE multiuse

reservoirs are situated, namely Lake Georgetown, Granger Lake, Stillhouse Hollow Lake, and Belton Lake.

The FIRO Pilot site is home to four USACE multiuse reservoirs: Lake Georgetown, Granger

Lake, Stillhouse Hollow Lake and Belton Lake (Table 1-1). Among these, Lake Georgetown has
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the smallest storage capacity while serving an area with a rapidly expanding population, making
it particularly vulnerable to supply shortfall. To improve water supply reliability, the BRA has
constructed a pipeline as part of the Williamson County Regional Raw Water Line. The first
phase of the project connects Stillhouse Hollow Lake to Lake Georgetown, and its operation

commenced in 2006.

Table 1-1: USACE Multipurpose Reservoirs in Texas FIRO Pilot

Reservoirs NWS ID Surface Area Conservation Capacity Upstream Area
(acres) (acre-ft) (square miles)
Lake Georgetown GGLT2 1.297 38,005 246
Granger Lake GRNT2 4,064 51,822 709
Stillhouse Hollow STIT2 6,429 229,796 1318
Lake
Belton Lake BLNT2 12,385 432,631 3560

Three USGS gauging stations are located upstream of Stillhouse Hollow Lake and Belton Lake
where stage height and discharge data are available (Table 1-2).

Table 1-2: USGS gauging stations in the FIRO Pilot with flow data.

Location USGS ID NWS ID Upstream Area Downstream
(square miles) Reservoir
Leon River at Gatesville 08100500 GAST2 2,342 Belton Lake
Cowhouse Creek at Pidcoke 08101000 PICT2 455 Belton Lake
Lampasas River nr Kempner 08103800 KEMT2 818 Stillhouse Hollow Lake

The focus of the beginning phases of the FIRO pilot has been on creating and evaluating the
skills of ensemble streamflow forecasts from the NWS Hydrologic Ensemble Forecast Service
(HEFS; Demargne, 2014), and on identifying potential opportunities of using these forecasts to
guide reservoir operations. HEFS was developed between 2003 and 2010 as a major
enhancement to the Ensemble Streamflow Prediction (ESP; Curtis and Schaake, 1979; Day,
1985). ESP has been operational at various River Forecast Centers since the 1970s; it relies
solely on historical traces of precipitation (and in certain locations, temperature) as forcing to
produce ensemble streamflow forecasts, HEFS has the ability to ingest forecasts from numerical
weather Prediction (NWP) models and offers new capabilities such as postprocessing of
ensemble streamflow forecasts. As shown in Fig. 1-2, the current architecture of HEFS
comprises the following modules:
e Meteorological Ensemble Forcing Processor (MEFP; Wu et al, 2010): postprocessing raw
NWP forecasts to produce ensemble traces of forcing variables including precipitation
and temperature for each forecast point.
e Hydrologic/reservoir models: producing streamflow forecasts using forcing variables.
These include Sacramento Soil Moisture Accounting (SAC-SMA; Burnash 1973), a
routing model, reservoir modules, and a snow ablation model (SNOW-17; Anderson

1976)
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e Ensemble Postprocessor (EnsPost; Regonda and Seo, 2008): postprocessing ensemble
streamflow forecasts by blending with observations.

e Ensemble Verification System (EVS): computing verification statistics on ensemble
forecasts

HEFS basic workflow

. © Ensemble
- = forcing Post-processor
- = Heik (EnsPost)
- = verification | ¥ .Carra:-_:lbias :
« Quantify uncertainty
.» Use recentabs.

Meteorological
Ensemble Forecast .
Processor (MEFF) Bias-corrected
+ Handle bias/spread e":fmm:tluw
= Merge in time : re::a i

« Downscale (basin)

Climatology
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Vl‘ Keatizesa] Dcmaeic and Amospbein Adminiiration’s 3 E&g
T National Weather Service _;%

Figure 1-2 Workflow of Hydrologic Ensemble Forecast Service (HEFS). Source: NWS.

The NWS Office of Water Prediction (OWP), which oversees the development of HEFS, has been
gradually rolling out the system for different River Forecast Centers (RFCs). At NWS WGRFC,
the adoption of HEFS goes back to 2015 with assistance from the research team of Prof. Dong-
Jun Seo (Kim et al., 2014), who led the development of HEFS at OWP.

The NWS OWP produced baseline HEFS hindcasts and validation for 2000-2019, a period for
which the Global Ensemble Forecast System — version 12 (GEFSv12, please include citation)
reforecast is available. However, the HEFS configuration used in producing the hindcasts was
based on a slightly older version of the operational forecast system configuration used at the
WGREFC that had not integrated more recent changes made at the center, which include updated
topology, switching from 6-h to 3-h time step, and integration of updated parameter values from
the recent calibration completed in 2022. Therefore, it was necessary to review and update the
configuration to be consistent with the current operational settings. In addition, the baseline
validation only covers forecast points with USGS observations and excludes those at reservoir
inlets. The hindcast configuration of the baseline validation package is summarized in Table 1-3.
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Table 1-3: HEFS configuration for OWP baseline validation

Forcing Initialization Time Number of Lead time Locations
Frequency Step ensemble validated validated
members
GEFSv12 precipitation Daily 6-h 41 Day 1-30 GAST?2,
forecasts (day 1-15) PICT2,
Resampled Climatology KEMT2
(day 16-270)

2. Project Overview

The present project aims to lay the groundwork for future FIRO investigations at the Texas FIRO
Pilot. The specific objectives include:

1.

Updating the configurations of Hydrologic Ensemble Forecast Service (HEFS) and
reservoir model from NWS WGRFC to be consistent with the latter’s real-time river
operations and more accurately represent reservoir operations.

Expanding the hindcast and validation efforts to inform WGRFC on potential
improvements to the configurations to yield more skillful forecasts.

Providing forecast data and support to TWDB’s Lake Conroe initiative.

The project comprises the following five tasks:

1.

Review and revise the hindcast configuration of WGRFC HEFS for the Little River
System (LRS).

Produce hindcasts for extended lead times using the revised versions of WGRFC HEFS
and perform validation.

Perform validation on Climate Forecast System-version 2 (CFSv2; Saha et al., 2014) and
Global Ensemble Forecast System-version 12 (GEFSv12) subseasonal to seasonal (S2S)
precipitation forecasts.

Deliver postprocessed ensemble precipitation and streamflow forecasts for HEFS forecast
points upstream of Lake Conroe.

Report findings to stakeholders through regular meetings.

3. Changes to hindcast configuration for LRS

We compared the model configuration in the baseline validation package against the current
WGRFC modeling system and identified two major differences, namely: 1) the operational
model now produces forecasts at 3-h rather than 6-h intervals; and 2) the baseline configuration
uses values of SAC-SMA parameters prior to the recent calibration concluded in 2022. To
maintain consistency with WGRFC operational model, we created three HEFS stand-alone
configurations that produce forecasts at 3-h intervals, and incorporated SAC-SMA parameter
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values from the latest round of calibration for the LRS completed in 2022 (Lynker Tech, 2022).
The main differences among the configurations are the forcing data. The first configuration,
labelled as “GEFS-Climatology”, mimics the baseline validation that uses GEFSv12 medium-
range QPF for the lead time of Day 1-14, and resampled climatology beyond that range. The
second configuration, GEFS-S2S uses GEFSv12 subseasonal forecasts that are issued weekly
(rather than daily as in GEFS medium-range forecasts). The third configuration, GEFS-CFSv2,
uses CFSv2 seasonal forecasts in lieu of resampled climatology.

Table 3-1: Hindcast configurations created for the current project

Configuration Day 1-14 Day 15-270 Frequency of Lead Time Range

Identifier Initialization

Climatology Resampled Resampled climatology Daily Day 1-270
climatology

GEFS-Climatology | GEFSv12 medium- | Resampled climatology Daily/Weekly Day 1-90/
range Day 1-270

GEFS-S2S GEFSv12 GEFSv12 subseasonal to | Weekly Day 1-60
subseasonal day 35 and resampled

climatology onward

GEFS-CFSv2 GEFSv12 CFSv2 Monthly Day 1-270

subseasonal

Among these configurations, GEFS-S2S is created to determine the potential skills in GEFS
subseasonal forecasts that can be leveraged to benefit forecasts of streamflow anomalies at the
S2S range, i.e., week 3—5). GEFS-CFSv2 is created to identify skills in CFSv2 forecasts relative
to baseline, resampled climatology for impactful events, e.g., droughts and flooding, at the
extended range (beyond 14 days).

4. Evaluation of HEFS hindcasts from new configurations

Hindcasts produced using each configuration listed in Table 3-1 underwent evaluation. The
evaluation covers not only precipitation and streamflow, but also reservoir inflow to and pool
level at each of the four reservoirs. In addition, the evaluation covers both medium and extended
ranges as shown in Table 3-1. Metrics of the evaluation include Continuous Ranked Probability
Score (CRPSS) and its Skill Score (CRPSS), Brier Score (BS) and Brier Skill Score (BSS),
Reliability diagram, Receiver Operating Characteristic (ROC), and bias. Definitions of these
metrics are provided below.

CRPS (F,x) = ] (F(y) = I(y — x))* dy

Where F(y) is the cumulative density function (CDF) of predictive distribution; y is the threshold
value for the forecast variable x; and I(y-x) is the Heaviside function that takes 1 once y exceeds
x and 0 otherwise.

CRPSS is the complement of the ratio of the CRPS for the ensemble forecast being evaluated,
CRPSforecast> and the climatological distribution CRPS jimq¢-
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CRPSforecast

CRP Sclimat
Brier Score (BS) is defined as the mean difference between forecast probability and occurrence
of an event, namely,

CRPSS =1-

N
1
BS (F,2) =5 ) (FO) = I(y = )Y

Brier Skill Score is defined to gauge the skills of an ensemble forecast suite relative to a
reference forecast suite, e.g., climatology, i.e.:

BSS =1 — BScontrol

BSreference

Where BS ontror 18 and BSy¢ference are Brier Score for the control and reference forecast suites.
A reliability diagram is a plot of frequency of observations above a given threshold within a
subsample, for which the forecast probability exceeding (or below) the threshold equals a
prescribed value. It characterizes under or overconfidence in the forecast.

Receiver Operating Characteristic (ROC) is a plot of true positive rate (TPR) against false alarm
rate (FAR) for a prescribed threshold. It characterizes discrimination skills of forecasts.
Originally developed for deterministic forecasts, it can be adapted to ensemble forecasts by
averaging the TPR and FAR for each ensemble member. Just like BSS, a ROC score can be
defined for a control forecast suite against a reference forecast:

R OCcontrol

ROC score =1 —
ROCreference

The streamflow forecasts at forecast points collocated with USGS stations are verified using
USGS flow records, whereas those at reservoir inlets are verified using reservoir inflow series
constructed by the USACE-SWF with a water balance approach. In this approach, the water
level is assumed uniform across the entire reservoir at each instant.
Ah
Q(®) = AW  + Qo(®)

Where Q; is the incremental inflow volume (including direct rainfall on reservoir); Q, is the loss
term that comprises reservoir release, evaporative loss, and withdrawal; A is the reservoir area; h
is the reservoir water level and t is time.

In the following subsections, we will first present the outcomes of evaluations for each HEFS
configuration.
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4.1. GEFS-Climatology:

The HEFS hindcasts produced using GEFS-Climatology configuration were evaluated for the
entire 20-year period from 2000 to 2019. We first summarize the performance of HEFS forecasts
using metrics including CRPSS, BSS, reliability diagrams, ROC scores, and percentage biases.
Then we compare the performance of streamflow simulations by NWS hydrologic model using
the previous and updated SAC-SMA parameter values. Finally, we present a case study to
illustrate the skills of ensemble forecasts for an impactful flood event and highlight areas for
improvements.

Overall Forecast Skills

The CRPSS is first computed for ensemble streamflow forecasts produced using the GEFS-
Climatology at the seven forecast points described in Section 3. The results for the three USGS
sites, namely GAST2, PICT2, and KEMT?2 are shown in Figures 4-1 — 4-4 for 1-9-month lead.

GAST2.Streamflow
(reference: resampled climatology)

—8— All data

CRPSS

1 2 3 4 5 6 7 8 9
Forecast lead time (months)

Figure 4-1: CRPSS for HEFS ensemble streamflow forecasts produced using the GEFS-Climatology at Leon
River at Gatesville (GAST?2).
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Figure 4-2: As Figure 4-1, except at PICT2.
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Figure 4-3: As Fig. 4-1, except at KEMT2.
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Figure 4-4: CRPSS for HEFS ensemble inflow forecasts produced using the GEFS-Climatology to Belton
Lake (BLNT2), and verified against USACE daily reconstructed inflow.
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Figure 4-5: As Fig. 4-4, except for inflow to Stillhouse Hollow (STIT2) and verified against USACE daily
reconstructed inflow.
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Figure 4-6: As Fig. 4-4, except for inflow to Lake Georgetown (GGLT2), and verified against USACE daily
reconstructed inflow.
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Figure 4-7: As Fig. 4-4, except for inflow to Lake Granger (GNGT?2), and verified against USACE daily
reconstructed inflow.
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These results show that the ensemble streamflow forecasts are generally more skillful than
climatology for the lead time range of 1-3 months. Among the three forecast points, HEFS
forecasts are the most skillful at GAST2 (to month 3), followed by PICT2 (month 2) and
KEMT2 (month 1). Note that GAST2 features the largest upstream drainage area (2342 mi?),
which implies longer travel time that extends the predictive skills in precipitation forecasts. By
comparison, PICT2 and KEMT?2 are associated with smaller drainages, and KEMT is known for
its flashness in response that limited the time horizon of skillful streamflow forecasts.

The results at the four reservoir inlets largely mirror those at the upstream forecast points, except
that it is noted that the CRPSS values for inflows at GGLT2 (Georgetown) and GNGT2
(Granger) are systematically lower than those at BLNT2 (Belton) and STIT2 (Stillhouse
Hollow). At GNGT2, CPRSS value even at 1-month lead is beneath zero, indicating a lack of
skills relative to resampled climatology. The contrasts can be attributed to the following factors:
1) both Georgetown and Granger feature smaller upstream drainage areas, and a flashier
response to rainfall, than Belton and Stillhouse Hollow, and 2) release from Georgetown is a
major source of inflow to Granger, and forecast skills of the release are hampered by
inaccuracies in water balance components, including withdrawal, evaporation, and inflow, as
prescribed to or represented by the reservoir module used in HEFS.

The BSS values computed at 10, 90 and 99% quantiles of monthly flows at the seven forecast
points are shown in Figs. 4-8 — 4. 14.

GAST2.Streamflow
(reference: resampled climatology)
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Figure 4-8: BSS of HEFS ensemble streamflow forecasts versus lead time at GAST2. The skill score is
computed using streamflow forecasts and observations averaged onto monthly intervals at 10, 90 and 99%
quantile thresholds derived from observations.
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Figure 4-9: As Fig 4-8, except at PICT2.
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Figure 4-10: As Fig 4-8, except at KEMT?2.
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Figure 4-11: As Fig 4-8, except for inflow to Lake Belton (BLNT) and verified against USACE daily

reconstructed inflow.
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Figure 4-12: As Fig 4-8, except for inflow to Stillhouse Hollow Lake (STIT2) and verified against USACE
daily reconstructed inflow.
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Figure 4-13: As Fig 4-8, except for inflow to Lake Georgetown (GGLT2) and verified against USACE daily
reconstructed inflow.
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Figure 4-14: As Fig. 4-8, except for inflow to Lake Granger (GNGT2) and verified against USACE daily
reconstructed inflow.
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Key observations from the BSS plots at the three upstream forecast points include:

e Skills are positive for moderate/high flow thresholds at 1-month lead at GAST2, the
forecast point with the largest drainage area.

e Skills are positive for moderate flow threshold at 1-month lead at PICT2 and KEMT?2,
though only marginally so at the latter. There is no skill at the highest threshold (99%
quantile) at the two sites.

e There is no skill at the low flow threshold (10% quantile) at all three sites.

The observations at the four reservoir inlets again resemble those at the upstream forecast points.
Among the four sites, BSS values at the moderate (90%) and top (99%) thresholds are barely
above zero at Georgetown and Granger even at the 1-month lead, echoing the plots of CRPSS
where the skills appear much lower at the two sites. At all four sites, the HEFS forecasts exhibit
lower skills than climatology in forecasting low flows (10% quantile).
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Figure 4-15: ROC of HEFS forecasts with GEFS-Climatology computed at three thresholds, i.e., 10, 90 and
99% quantiles, at GAST?2.
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Figure 4-16: As Fig. 4-15, except at PICT2.
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Figure 4-17: As Fig. 4-15, except at KEMT2.
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Figure 4-18: As Fig. 4-15, except for inflow to Lake Belton and verified against USACE reconstructed inflow.
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Figure 4-19: As Fig. 4-15, except for inflow to Stillhouse Hollow Lake (STIT2).
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Figure 4-20: As Fig. 4-15, except for inflow to Lake Georgetown (GGLT?2).
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Figure 4-21: As Fig. 4-15, except for inflow to Granger Lake (GNGT?2).
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ROC scores provide a complementary perspective on the discrimination skills of forecasts, and
the ROC scores for monthly flows computed at each forecast points are shown in Figs. 4-15 — 4-
21.

Notable observations at the three upstream points are summarized below:

e There are discernible discrimination skills for moderate high flow thresholds at lead times
well beyond the first month. At GAST2, the lead time with positive ROC scores extend
to 9 months, whereas at PICT2 and KEMT?2, it extends to 6 and 5 months, respectively.

¢ Discrimination skills for the high flow threshold (99% quantile) are generally lower. For
GAST?2, these skills extend to 3-month lead time, whereas for the smaller watersheds the
skills are confined to shorter lead times (1 month).

The ROC scores of ensemble inflow forecasts vary widely among the four reservoirs. For Lake
Belton (BLNT2), ROC scores for moderate and high flow thresholds are consistently above zero
to 8 or 9-month lead. At the low flow threshold, the scores are positive for the first two months.
By contrast, for Stillhouse Hollow Lake, ROC scores for the high flow thresholds are positive till
2-month lead, whereas for the moderate and low flow thresholds the scores stay positive at much
longer time horizons (3 months and 9 months, respectively). For Lake Georgetown, the scores
for all thresholds stay positive through the entire forecast horizon (1-9 months), whereas at
Granger, the scores exhibit similar declining patterns as seen at Stillhouse Hollow. The variable
magnitude and lead-time dependence of ROC scores contrasts sharply with that of BSS,
suggesting mixed skills of ensemble streamflow forecasts in capturing lower to moderate/high
flows.

It should be noted that, unlike the streamflow at the upstream forecast points, the verification of
reservoir inflow was subject to several constraints. First, at the time the evaluation was
performed, the NWS hydrologic model, namely the Sacramento Soil Moisture Accounting
(SAC-SMA) had not been calibrated for the ungauged portions of the drainage upstream of each
reservoir, and this may limit the skills of inflow forecasts. Second, there are considerable
uncertainties in the inflow estimates that serve as the verification reference. As indicated earlier,
these estimates were constructed using the water balance method that relies on several
assumptions, including the uniform water level (level-pool) assumption that may not be valid
during flood events or under windy conditions.

The skills of HEFS postprocessed precipitation and streamflow forecasts are further illustrated
through a set of statistics computed at daily increments. These are shown in Figs. 4-22 — 4-24.
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Figure 4-22: BSS of HEFS ensemble precipitation forecasts versus lead time at GAST2 at the 50, 90 and 99%
quantile thresholds. The skill score is computed using forecasts and observations averaged onto daily
intervals against resampled climatology.
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Figure 4-23: As Fig. 4-22, except at PICT2.
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KEMT?2.precip
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Figure 4-24: As Fig. 4-22, except at KEMT2.

The BSS values of daily ensemble precipitation forecasts are largely similar at the three
locations. The following observations are evident:
e Forecast skills decline towards higher precipitation thresholds.
e Ensemble precipitation forecast for the lower (50%) and moderate (90%) quantile
thresholds are more skillful than climatology till about day 12 (hour 288).
¢ Ensemble precipitation forecast for the highest (90%) quantile thresholds are more
skillful than climatology till about day 6 (hour 144).

As shown in Figs. 4-25 to 4-27, the ROC scores of daily ensemble precipitation forecasts suggest
that the forecasts are skillful to around day 13 irrespective of thresholds and at all locations. In
addition, the scores are practically indistinguishable at the moderate and higher thresholds.
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Figure 4-25: ROC score of HEFS ensemble precipitation forecasts versus lead time at GAST2 at the 50, 90
and 99% quantile thresholds. The skill score is computed using forecasts and observations averaged onto

daily intervals against resampled climatology.
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Figure 4-26: As Fig. 4-25, except at PICT2.
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Figure 4-27: As Fig. 4-25, except at KEMT2-.

The verification statistics of daily ensemble streamflow forecasts at the three USGS stations,
including BSS and ROC scores, are shown in Figs 4-28 — 4-33. Note that these scores are
computed using similar streamflow forecasts forced by resampled climatology. Notable
observations include:

Except for KEMT2, BSS of ensemble streamflow forecasts tends to be the highest at the
moderate threshold (90%), and lower at the top and the bottom thresholds (i.e., 90%9 and
50%).
Across lead times, BSS tends to be higher on days 3-8, rather than on day 1.
At the top threshold (90%), BSS stays above zero until days 12—13, pointing to
skillfulness of GEFS forecasts relative to climatology within this range. Among the three
sites, BSS declines at a slower pace at GAST2, which features the largest drainage area.
At the bottom threshold (50%), BSS remains positive till day 30 without a conspicuous
declining trend with lead time, though its values tend to be low.
The ROC scores tend to be the highest at the top threshold (90%), and the lowest at the
bottom threshold (50%).
The lead time-dependent ROC scores differ widely across the three thresholds and among
the three sites.
o Atall three thresholds, ROC scores exhibit an upward trend at shorter lead times.
At the moderate and bottom thresholds (50% and 0.90, respectively), the ROC
scores increase with lead times from day 1 to day 7 or 10. For the middle
threshold (90%0), ROC scores decline onward at longer lead times, whereas the

33



trend for the bottom threshold is not clear. At the top threshold (90%), the ROC
scores increase until days 4-5 and decline onward.

o The skills in forecasting exceedance of bottom/middle thresholds, at least for the
shorter lead times (< day 10), tend to be higher at GAST2, which is associated
with the largest drainage, and the lower at PICT2 and KEMT2 which feature
smaller catchment arecas. At KEMT2, the ROC scores for the middle threshold
are negative till day 5 (Fig. 4-33).
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Figure 4-28: BSS of HEFS ensemble daily streamflow forecasts versus lead time at GAST2. The skill score is
computed at 10, 90 and 99% quantile thresholds using ensemble streamflow forecasts forced by GEFS-
climatology (control) and resampled climatology (reference).
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Figure 4-29: As Fig. 4-28, except at PICT2.
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Figure 4-30: As Fig. 4-28, except at KEMT2.
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Figure 4-31: ROC score of HEFS ensemble daily streamflow forecasts versus lead time at GAST2. The skill
score is computed at 10, 90 and 99% quantile thresholds using ensemble streamflow forecasts forced by
GEFS-climatology (control) and resampled climatology (reference).
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Figure 4-32: As Fig. 4-31, except at PICT2.
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Figure 4-33: As Fig. 4-32, except at KEMT2.

Case Study: June 2007 Flood Episode

We illustrate the performance of HEFS ensemble precipitation and streamflow forecasts during
the flood episode in June of 2007, which exemplifies impactful, convection-driven flood events
in Texas. In the spring of 2007, a sequence of rainfall episodes produced several high flow pulses
to the reservoirs in the FIRO Pilot. In Lake Georgetown, the water encroached into the flood
pool by late March. In late June, a major convective outbreak produced heavy rainfall in and near
the FIRO Pilot (Fig. 4-34). The rainfall was particularly intense upstream of Lake Georgetown,
with a large bullseye just to the southwest of the watershed. The resulting inflow caused the
reservoir level to abruptly rise more than 30 ft in a few days. The lake level crested in early July,
reaching the highest the reservoir witnessed over the past 25 years (2000-2024; Fig. 4-35).
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Figure 4-34: Cumulative precipitation from AORC product for the 24 hours ending on 28 June 2007.

Lake Georgetown Water Level (Mar-Aug 2007)

il

Water Level (feet)

—— Daily Water Level
~ -~ Water conservation (791 ft) |

~~~ Spillway crest (834 ft)

Figure 4-35: Time series of water level in Lake Georgetown from March to September 2007.




The raw precipitation forecasts from the five ensemble members of GEFSv12 reforecast data set,
including one control run and four perturbed runs, are shown in Fig. 4-36. The control run
forecast produces a heavy rainfall center in northern Texas that is 200 miles away from the
location of observed bullseye. The rainfall distribution from perturbed runs varies widely among
members: Only the second member (P2) indicates a rainfall center in central Texas, but the
location is shifted to the east.

GEFS - P1 GEFS - P2

Figure 4-36: Precipitation forecasts from the ensemble members of GEFSv12 reforecast data set issued at 0z
on 24 June and valid on 0z on 28 June 2007. The members include one control member (left panel), and four
perturbed members (designated as P1 — P4 on the right panel).

Fig. 4-37 compares HEFS ensemble precipitation forecasts issued at 0z on 24 June 2007 against
observations for the drainage upstream of Georgetown. The forecasts, comprising 40 ensemble
members, were produced for the lead time range of 1-30 days using the MEFP of HEFS (Fig. 1-
2). Serving as the reference is the Analysis of Record for Calibration (AORC) product from
NWS. It is evident that the ensemble forecasts suffer a severe, negative bias throughout the
event. At the peak of the rainfall, the observed mean areal precipitation was nearly 120mm/h,
whereas the mean of ensemble mean is less than 15mm/h, and the 95% quantile is below 45
mm/h. This under-forecast is in part a result of the displacement errors in the precipitation
forecasts shown in Fig. 4-36 and is likely amplified by the postprocessing algorithm in MEFP
that tends to reduce the magnitude of forecast precipitation amounts.

Fig. 4-38 compares HEFS ensemble forecasts of reservoir inflows issued at 0z 24 June 2007
against reconstructed inflow by USACE. The under-forecast of inflow is even more pronounced
than that of precipitation, with the 95% quantile of the forecast hardly exceeding 1000 cfs, less
than 10% of the peak based on reconstructed inflow (> 18000 cfs). This under-forecast is
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attributable to a combination of the under-forecast of the rainfall maxima and errors in the
hydrologic model simulations.
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Figure 4-37: HEFS ensemble precipitation forecasts issued at 0z 24 June, 2007 for the area draining to Lake
Georgetown. The forecasts were part of GEFS-Climatology suite for which postprocessed GEFSv12
reforecasts serve as forcing for days 1-14 and resampled climatology serves as forcing for day 15 and beyond.
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Figure 4-38: HEFS ensemble forecasts of inflow to Lake Georgetown issued at 0z on June 24, 2007. The
forecasts were driven by precipitation forecast from GEFS-Climatology suite as described earlier.

Impacts of Updating SAC-SMA Parameter Values

In order to determine the impacts from updating the SAC-SMA parameter values from the 2022
calibration, we evaluate streamflow simulations performed using the two suites of parameters,
namely those from the calibration completed in 2008 and 2022 (henceforth referred to as Calib-
2008, and Calib-2022, respectively).

Fig. 4-39 shows summary statistics computed at each site for each suite of streamflow simulation
averaged on daily time steps over the period of 2000-2019, including Percent Bias, correlation,
Nash-Sutcliffe Efficiency (NSE), and Kling-Gupta Efficiency (KGE). NSE takes the following
form:

_ Z?:l(Qo (t) - Qm(t))z

N = s (0.0 - 0.2

Where Q, and Q,, are observed and modeled discharge, respectively, and Q, is the mean of
observed discharge. The metric is a measure of error in the prediction versus variability
(dispersion) in the observed series.

KGE is a composite measure of forecast accuracy that fuses correlation of prediction and
observation, variability in prediction versus that in observation and bias. It is defined as follows:
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KGE =1— ((r = 1)?+ (@ — 1> + (B~ D)2

Where r is the Pearson’s correlation; «a is the ratio of variance of simulated and observed series;
and f is bias.

Notable observations are summarized below.

At a majority of the sites, streamflow simulations exhibit negative biases. Between the
two sets of simulations, the bias tends to be worse for Calib-2022.

The correlation from the two sets of simulations appears comparable. At a few sites
(PICT2, BLNT?2), correlation for the Calib-2022 suite is higher.

At GAST2, the simulations from Calib-2008 are close to bias-neural, whereas those from
Calib-2022 exhibit a slightly positive bias.

At KEMT?2 and PICT2, Calib-2022 clearly underperforms Calib-2008 for producing
more severely negative biases.

The performance of two sets of simulations varies as judged by Nash-Sutcliffe
Efficiency. With Cailb-2022, a sizable improvement is seen at PICT2, whereas
degradation is observed at KEMT?2.
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Figure 4-39: Summary statistics of streamflow simulations at each of the three
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To further determin the impacts from the 2022 calibration, we plot the simulated hydrographs
from Calib-2008 and Calib-2022 versus observations at the three USGS stations for the four flow
episodes that feature the highest peaks. The results are shown in Figs. 4-39 — 4-42.

At GAST2, the two sets of simulations are rather similar in each of the four events (Fig. 4-40).
Among these events, simulated hydrographs from both Calib-2008 and Calib-2020 severely
underrepresent the magntiude of flood peak for the first three (May 1990, December, 1992, and
June 2007), and the simulations using the earlier parameter values (Calib-2008) perform slightly
better by featuring high peak values. For the October 2018 event, both simulated hydrographs
closely reproduce the observed one, with that from Calib-2022 performining better in terms of
peak mangitude and timing.

At PICT?2, the differences between the two sets of simulations are pronounced for the four
flooding events (Fig. 4-41). Between Calib-2008 and Calib-2022, the simulations from the latter
consistently underperform by producing much smaller peak discharge for each event. Those
from Calib-2008 fare better, though still tend to biased low for three out of four events.

At KEMT?2, the differences between the two sets of simulations are also quite pronounced for the
four flooding events (Fig. 4-42). As in the case of PICT2, simulations from Calib-2008 feature
much higher peak discharge than those from Calib-2022 across all four events, whereas latter are
biased low consistently. Note that for the first two events, which occurred in December 1991 and
March 1998, simulated peaks from Calib-2008 overshoot and are positively biased.
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Hydrographs for Major Flood Events
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Figure 4-40: Simulated and observed hydrographs for four events with the largest peak flow over 1990-2019
at GAST2, which occurred in: 1) May 1990; 2) December, 1991; 3) June 2007, and 4) October 2018.
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Hydrographs for Major Flood Events
Pidcoke - Cowhouse Creek (PICT2)
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Figure 4-41: Simulated and observed hydrographs for four events with the largest peak flow over 1990-2019
at PICT2, which occurred in: 1) December 1991; 2) March 1998; 3) June 2007, and 4) January 2010.
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Hydrographs for Major Flood Events
Kempner - Lampasas River (KEMT2)
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Figure 4-42: Simulated and observed hydrographs for four events with the largest peak flow over 1990-2019
at KEMT2, which occurred in: 1) December 1991; 2) February 1992; 3) March 1998, and 4) June 2007.
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4.2. GEFS-S28S:

The GEFSv12 S28 forecasts are ingested into HEFS to produce extended-range streamflow
forecasts that undergo evaluations. To simplify matters, we will focus on BSS and ROC scores
for precipitation and streamflow forecasts at the three forecast points collocated with USGS
stations, namely GAST2, PICT2 and KEMT2.

The BSS and ROC scores for HEFS ensemble precipitation forecasts are shown in Figures 4-43
— 4-48. Notable observations are summarized below.

e Atall three sites, BSS declines with lead time and threshold. At the middle and top
thresholds, the skill remains slightly positive until weeks 3—4, but it is evident that most
of the skill is contained in the week 1 forecasts.

e ROC scores indicate that the discrimination skills of HEFS precipitation forecast are the
highest at the top threshold (90%9), and lowest at the bottom threshold (50%). The scores
of the former threshold are mostly positive across the lead time range (through week 8).

e At the middle (90%) and bottom (50%) thresholds, ROC scores diminish beyond week 2.
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Figure 4-43: BSS of HEFS ensemble precipitation forecasts against lead time at GAST2. The skill score is
computed at 50, 90 and 99% quantile thresholds on postprocessed GEFSv12 S2S forecasts aggregated onto
weekly intervals, with the climatological probabilities serving as the reference.
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Figure 4-44: As Fig. 4-38, except at PICT2.
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Figure 4-45: As Fig. 4-38, except for KEMT?2.
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Figure 4-46: ROC scores of HEFS ensemble precipitation forecasts against lead time at GAST2. The skill
score is computed at 50, 90 and 99% quantile thresholds on postprocessed GEFSv12 S2S forecasts aggregated
onto weekly intervals, with the climatological probabilities serving as the reference.
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Figure 4-47: As Fig. 4-41, except at PICT2.
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Figure 4-48: As Fig. 4-41, except at KEMT?2.

The BSS and ROC scores for HEFS ensemble streamflow forecasts are shown in Figures 4-49 —
4-54. Notable observations are summarized below.

e Asjudged by BSS, the skills of ensemble streamflow forecasts vary greatly among the
three sites and thresholds.

o At the middle threshold (90%), the forecasts are consistently skillful at all three
sites out to week 8, though the skills tend to decline with lead time.

o At the top threshold (90%), the skills are broadly lower at each site than those at
the middle threshold. The BSS tends to decline with lead time at GAST2 and
KEMT, but no clear trend is observed at PICT2.

o At the bottom threshold (10%), The BSS is flat at GAST2, suggesting no skills
relative to climatology. At two other sites, BSS exhibits a rising trend with lead
time.

e ROC scores at the three sites vary widely.

o At GAST2 and PICT2, it appears that that the discrimination skills of HEFS
precipitation forecast are the highest at the top threshold (90%9), and lowest at the
bottom threshold (10%), whereas at KEMT2, ROC scores at the top threshold are
broadly lower than those at the middle threshold.

o The dependence of ROC scores on lead time varies among sites and thresholds.
At the lowest threshold (10%), the ROC scores do not exhibit a clear downward
trend.

o At the highest threshold (90%), the ROC scores tend to be lower at PICT2 and
KEMT2, both associated with small drainage areas.
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Figure 4-49: BSS of HEFS ensemble streamflow forecasts against lead time at GAST2. The skill score is
computed at 10, 90 and 99% quantile thresholds on streamflow forecasts forced by postprocessed GEFSv12
S28S precipitation forecasts, with the ensemble streamflow forecasts driven by resampled precipitation serving
as the reference. Note the streamflow forecasts are aggregated onto weekly intervals.
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Figure 4-50: As Fig. 4-49 but at PICT2.
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Figure 4-51: As Fig. 4-49 but at KEMT2.
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Figure 4-52: ROC score of weekly streamflow above thresholds of 10, 90 and 99% quantiles at GAST2.
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Figure 4-53: As Fig. 4-52, except at PICT2.
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Figure 4-54: As Fig. 4-52, except at KEMT2.

53




We perform limited comparisons between the streamflow forecasts produced by GEFS-S2S vs.
GEFS-Climatology to determine potential gains in forecast skills by replacing resampled
climatology with S2S precipitation forecasts beyond day 14. Figs. 4-55 — 4-60 show the BSS
and ROC scores computed for streamflow forecasts forced by GEFS-S2S with those driven by
GEFS-Climatology as reference over a lead time range of 1-4 weeks. Key observations are
summarized as follows:

e The results are rather mixed. At GAST2, the streamflow forecasts from GEFS-S2S
appear more skillful in terms of BSS at the top threshold throughout the lead time range,
but at the two lower thresholds the BSS is close to zero, suggesting marginal skills in
comparison to the reference forecast.

e At PICT2 and KEMT2, BSS at the top threshold is consistently negative, whereas it
remains close to zero at the other two thresholds. There appears to be a tendency for the
BSS to rise with lead time, suggesting positive impacts from ingesting the GEFS S2S
precipitation forecasts.

e Interms of ROC scores, there is no clear indication that the streamflow forecasts from
GEFS-S2S outperforms the reference.
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Figure 4-55: BSS of HEFS ensemble streamflow forecasts against lead time at GAST2. The skill score is
computed at 10, 90 and 99% quantile thresholds on streamflow forecasts forced by postprocessed GEFSv12
S2S precipitation forecasts, with the ensemble streamflow forecasts driven by GEFS-Climatology serving as
the reference. Note the streamflow forecasts are aggregated onto weekly intervals.
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Figure 4-56: As Fig. 4-55, except at PICT2.
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Figure 4-57: As Fig. 4-55, except at KEMT?2.
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Figure 4-58: ROC score computed on HEFS ensemble streamflow forecasts against lead time at GAST2. The
score is computed at 10, 90 and 99% quantile thresholds on streamflow forecasts forced by postprocessed
GEFSv12 S28 precipitation forecasts, with the ensemble streamflow forecasts driven by GEFS-Climatology
serving as the reference. Note the streamflow forecasts are aggregated onto weekly intervals.
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Figure 4-59: As Fig. 4-58, except at PICT2.
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Figure 4-60: AS Fig. 4-58, except at KEMT?2.
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4.3. GEFS-CFSv2:

The verification of HEFS ensemble precipitation and streamflow forecasts again focuses on the
three forecast points collocated with USGS stations, and only the BSS and ROC scores are
shown here. In this case, the reference forecasts in computing the skill scores are HEFS
precipitation and streamflow forecasts from GEFS-Climatology. The skill scores help determine
the potential benefits of replacing the resampled climatology with CFSv2 forecasts for day 14 —
270.

The BSS and ROC scores thus computed are shown in Figs. 4-61 — 4.66. Key observations
include the following:

e Skills in the CFSv2 precipitation forecasts are marginal against resampled climatology as
judged by both BSS and ROC scores, irrespective of thresholds.

e At the lowest threshold (10%), there appears to be a tendency for BSS to be positive
within the 1-5 months range, suggesting skills in forecasting dry spells. The skills are
more pronounced at the forecast points in the south, particularly at KEMT?2.

e Asjudged by ROC scores, the discrimination skills of GEFS-CFSv2 precipitation
forecasts are broadly lower than those of GEFS-Climatology, suggesting that CFSv2
precipitation forecasts feature no skills relative to resampled climatology.
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Figure 4-61: BSS of HEFS ensemble precipitation forecasts from GEFS-CFSv2against lead time at GAST2.
The skill score is computed at 10, 90 and 99% quantile thresholds on postprocessed precipitation forecasts
aggregated onto monthly intervals, with the climatological probabilities serving as the reference.
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Figure 4-62: As Fig. 4-61, except at PICT2.
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Figure 4-63: As Fig. 4-61, except at KEMT2.
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Figure 4-64: ROC scores of HEFS ensemble precipitation forecasts from GEFS-CFSv2against lead time at
GAST2. The skill score is computed at 50, 90 and 99% quantile thresholds on postprocessed precipitation
forecasts aggregated onto monthly intervals, with the climatological probabilities serving as the reference.
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Figure 4-65: As Fig. 4-64, except at PICT2.
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Figure 4-66: As Fig. 4-64, except at KEMT?2.

The BSS and ROC scores for ensemble streamflow forecasts are shown in Figs. 4-56 - 4-61, and
notable observations are summarized below.

In terms of BSS, it appears that the streamflow forecasts from GEFS-CFSv2are broadly
less skillful than those from GEFS-Climatology. An exception is PICT2, where for the
bottom threshold (10%), BSS is positive at 1- and 2-month leads.

ROC scores vary widely among thresholds and sites. At the southern-most site, KEMT2,
ROC scores at the middle and bottom thresholds are consistently positive to month 9.

At GAST2, ROC scores for the highest threshold are positive at 1- and 2-month leads,
suggesting some discrimination skills at this range. At the middle threshold, the scores
tend to increase with lead time, and stay above zero to 9-month lead, whereas those at the
lowest threshold the scores are close to zero.

At PICT2, ROC scores at the top and middle thresholds are positive at 1- and 2-month
leads. At longer leads (6-9 months), the scores for the middle threshold are positive. By
contrast, the scores are consistently positive at the lowest threshold.
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Figure 4-67: BSS of HEFS ensemble streamflow forecasts against lead time at GAST2. The skill score is
computed at 10, 90 and 99% quantile thresholds on streamflow forecasts forced by GEFS-CFSv2
precipitation forecasts, with the ensemble streamflow forecasts forced by GEFS-Climatology serving as the
reference. Note the streamflow forecasts are aggregated onto monthly intervals.
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Figure 4-68: As Fig. 4-67, except at PICT2.
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Figure 4-69: As Fig. 4-67, except at KEMT?2.
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Figure 4-70: ROC scores of HEFS ensemble streamflow forecasts against lead time at GAST2. The scores are
computed at 10, 90 and 99% quantile thresholds on streamflow forecasts forced by GEFS-CFSv2
precipitation forecasts, with the ensemble streamflow forecasts forced by GEFS-Climatology serving as the
reference. Note the streamflow forecasts are aggregated onto monthly intervals.
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Figure 4-71: As Fig. 4-70, except at PICT2.
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Figure 4-72: As Fig. 4-70, except at KEMT2.
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4.4. HEFS ensemble streamflow forecasts to Lake Conroe:

As shown in Fig 4-62, Lake Conroe is situated along the West Fork of San Jacinto River to the
north of Houston. It is a major water supply reservoir for the city of Houston. There are two
NWS forecast points in the region: a) West Fork of San Jacinto River near Huntsville (SJHT2),
and b) West Fork of San Jacinto River under Lake Conroe (LCTT2).
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Figure 4-73: Map of West Fork of San Jacinto River and forecast/observation points near Lake Conroe. Two
forecast points are located in the region, namely West Fork of San Jacinto River near Huntsville (SJHT2),
and below Lake Conroe (LCTT2). SJHT is collocated with USGS station 08067548 and LCTT?2 is collocated
with USGS station 08067650.

To assist with the TWDB’s pilot initiative at Lake Conroe, the UTA team collaborated with
WGREFC to produce HEFS ensemble streamflow forecasts at the two forecast points over the
following periods:

e 1 June — 30 September 2005

e 1 June — 30 September 2008

e 1—10October 2011

e 1 -5 October 2016

e 1 June — 30 September 2017

e 1 June — 30 September 2019

We examine the skills of HEFS ensemble streamflow forecasts for Hurricane Harvey in August
2017. Figures 4-63 and 4-64 compare the ensemble forecasts issued at 12z on 26 and 27 August
for STHT?2 against observed daily mean discharge from USGS. It is evident that the forecasts
issued two days ahead of the peak were unable to foresee the magnitude of the event, with 90%
quantile of the peak less than a third the actual observed. The forecasts issued one day later are
much higher, but the 90% quantile remains consistently below the observed.
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Figure 4-74: HEFS ensemble streamflow forecasts issued at 12z on 26 August 2017 and observed flow series
from USGS.
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Figure 4-75: As Fig. 4-74, except for forecasts issued at 12z on 27 August 2017.
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5. Summary and Recommendations

This project was launched as a part of the Texas FIRO initiative to determine skills in the HEFS
ensemble forecasts at forecast points within the Texas FIRO Pilot, and more broadly to facilitate
the application of the forecasts in reservoir operations in the state of Texas. Though NWS OWP
performed baseline evaluation of HEFS forecasts, the earlier evaluation relied on an older
version of the WGRFC model configuration, did not incorporate updated parameter values from
the recent calibration done in 2022, and focused exclusively on skills at forecast points upstream
of reservoirs for lead time of day 1-30. The current project addresses these limitations by
expanding the scope of evaluation to determine skills of precipitation and streamflow forecasts at
the extended range (> 30 days), and at reservoir inlets. In addition, the current project
investigates the impacts from switching to the latest calibrated parameter set on streamflow
simulations, and experimented with integrating alternative, S2S and seasonal forecasts as
alternatives to resampled climatology at the extended range. Major findings from the project are
summarized below.

Overall, Skills of HEFS Ensemble Precipitation and Streamflow Forecasts

Four HEFS configurations were created to determine the skills from different combinations of
NWP forecast and climatology as forcing. These include Climatology, GEFS-Climatology,
GEFS-S28S, and GEFS-CFSv2. Among these, Climatology mimics the legacy ESP by using
resampled climatology alone as the forcing to drive the hydrologic model throughout the lead
time range of HEFS (day 1-270) and serves as a key reference for gauging the skills in forecasts
from alternative configurations. GEFS-Climatology is the operational default at WGRFC,
whereas GEFS-S2S and GEFS-CFSv2 are experimental configurations.

Generally speaking, the analysis indicates that ensemble streamflow forecasts forced by the
NWP precipitation forecasts are more skillful than those driven by resampled climatology in the
medium range (days 1-12). When forecast variables are aggregated on monthly intervals, the
skills extend to the S2S range (days 15-60). Among the three forecast configurations, namely,
GEFS-Climatology, GEFS-S2S, and GEFS-CFSv2, the streamflow forecasts from the first two
configurations are broadly comparable. There are signs that GEFS-S2S streamflow forecasts tend
to be slightly more skillful at longer lead times, possibly pointing to the merit of employing
GEFS S2S forecast, though the differences in forecast skills remain small. The analysis also
suggests that forecasts from GEFS-CFSv2 are somewhat less skillful than GEFS-Climatology,
consistent with observations by WGRFC that direct ingest of CFSv2 forecasts has either no, or at
best marginal, impact on the skills of streamflow forecasts.

The lead time range at which the forecasts does vary among sites and metrics. In general, the
HEFS streamflow forecasts tend to be more skillful at forecast points in the northern portion of
the pilot domain, and those associated with larger drainage areas (e.g., GAST2, PICT2, BLNT2,
STIT2), and less so at those in the southeast whose drainage areas are smaller (KEMT2, GGLT2,
and GNGT?2). At GAST2 and PICT2, for example, CRPSS of monthly flow forecasts are
positive for the first two months, whereas at GGLT2 and GNGT2, CRPSS is barely
positive/negative at 1-month lead. Further analysis of BSS and ROC scores yielded mixed
results, with the former pointing to forecast skills at moderate/high flow thresholds (90 and 99%
quantiles) in the first month, and the latter showing skills at longer lead times and across all
thresholds for a majority of sites.
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Note that though the use of NWP precipitation forecasts in the medium range help improve the
skills of streamflow forecasts, the improvements tend to be limited to the first month. It is
unsurprising that streamflow forecasts exhibit skills at lead times longer than those for
precipitation, as watershed runoff response tends to dampen variability in precipitation and
extend the time window of its impact. However, this does not explain the north-south gradient in
the predictive skills. A detailed attribution analysis was not performed here, but it is likely that
both hydroclimate and the size of drainage give rise to the gradient. Specifically, the contribution
of less predictable, convective storms to the precipitation in the region may largely determine the
overall predictive skills, and there is a possibility that these occurred more often in the southern
portion of the pilot domain during the period of analysis (2000-2019).

Another notable observation is that the streamflow forecasts tend to be the most skillful for
moderate events (>90% climatological quantile), and to a lesser for large events (>99%
climatological quantile). Whereas for low flow (> 10% climatological quantile), the ensemble
streamflow forecasts are broadly unskillful. This magnitude-dependent performance for
streamflow forecasts is in direct contrast to that for precipitation forecasts, where skills for
heavy/light precipitation tend to be lowest/highest. This inverse relationship is an indication of
difficulties for the operational hydrologic model to reproduce both high and low flows.

Predictive Skills for Extreme Inflow Events

Two case studies were conducted illustrate the ability of HEFS to predict extreme inflow events
that are particularly concerning to reservoir operators. The first is the June 2007 flood event that
featured a sequence of convective storms that produced heavy rainfall in central and northern
Texas, among which the storm in June 27 produced a heavy rainfall bullseye just to the
southwest of the drainage to Lake Georgetown, resulting in near record water level in the
reservoir by early July. Considering that heavy rainfall episodes tend to be rarer by late June over
central Texas according to climatology (Nielson-Gammon et al, 2005), the occurrence of this
event marks an aberration and challenges the potential of leveraging flood storage for
summertime water supply in the region. The second event is Hurricane Harvey in late August
2017 that produced record inflow to Lake Conroe, a water supply reservoir to the north of
Houston. While Lake Conroe does not provide a flood pool, accurate prediction of inflow and
release for events such as Harvey would be key to emergency response for communities
downstream of the reservoir.

Our analysis shows that the HEFS ensemble precipitation forecasts for both events were severely
biased. For the June 2007 event, the 3-day forecasted precipitation amount upstream of
Georgetown was less than one fifth of the observation, and the ensemble spread was too thin to
contain the outcome. A primary contributor to the negative bias is the location error in the
forecasted heavy rainfall center — the rainfall maximum in the GEFSv12 forecast was displaced
to the north by 200 miles. This was further compounded by a negative bias in the forecasted
magnitude of the peak rainfall rate. In addition, we suspect that the postprocessing mechanism in
HEFS, the MEFP, played a role as it relies on a regression approach that tends to reduce the
magnitude of ensemble mean (Kim and Seo, 2025).
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It is also worth noting that, for this event, the ensemble forecasts of inflow to Georgetown
exhibit even more severe negative bias, underscoring deficiencies in the operational hydrologic
modeling system. Specifically, it appears that the SAC-SMA model that performs the water
balance calculation was incapable of producing adequate runoff for this event. This raises the
question on the adequacy of model calibration for high flow events.

For Hurricane Harvey, the 3-day forecast of inflow to Lake Conroe also featured severe negative
bias and under-dispersed (with overly narrow ensemble spread). The 2-day forecast was much
more skillful, though the magnitude remained low. Though precipitation forecasts were not
evaluated, it is likely that much of the under-forecast in inflow was a result of under-forecast in
precipitation.

Impacts of hydrologic model calibration

A comparison of streamflow simulations was performed using parameter values obtained from
two earlier calibration projects completed in 2008 and 2022, with a focus on the performance of
model simulations over major flood events. The results point to mixed impacts from the latest
calibration effort in 2022. While some gains were seen in summary statistics such as correlation,
the recent calibration appears to have introduced a consistent negative bias in the simulated peak
discharge for major flood events. While for a few cases, using parameter values from the 2022
calibration resulted in overprediction of peak discharges, for a majority of events analyzed it led
to overly depressed peaks and therefore degraded the accuracy of simulations.

These results suggest that the negative bias in SAC-SMA simulations is a systematic issue and
not limited to the two events examined in the project, and that inadequate model calibration
likely contributed to under-forecast of other major flood events. Though the calibration effort in
2022 was meant to improve the accuracy of SAC-SMA simulations, it nonetheless degraded the
performance of the model for major events, possibly due to a lack of inclusion of metrics that
measure the model errors for such events.

Recommendations:
On the basis of the findings, the UTA FIRO Pilot team makes the following recommendations.

Recommendation I: Improve forecast skills for anomalously large precipitation events in the
medium range. This can be achieved through the following actions;

e Introduce alternative, advanced postprocessing algorithms to HEFS to alleviate the
negative bias and under-spread in raw precipitation forecasts. UTA has developed an
enhanced postprocessing scheme for the MEFP, namely the Conditional Bias Penalizing
Regression (CBPR; Kim and Seo, 2025). CBPR uses an alternative method for
estimating the parameters for the Mixed Meta-Gaussian Distribution (MMGD) that forms
the basis for computing the predictive distribution of precipitation from pairs of
observations and forecasts. In addition, the NOAA Physical Science Lab (PSL) proposed
the Censored-Shifted Gamma Distribution (CSGD; Scheuerer and Hamill, 2015), which
offers simpler, more robust mechanisms for establishing predictive distribution of
precipitation. Recently, the UTA project team formulated an enhanced version of CSGD
that uses Artificial Neural Network for training (ANN-CSGD; Ghazvinian et al., 2021,
2022) and demonstrated its prowess for producing reliable probabilistic forecasts of
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heavy-to-extreme rainfall with limited training data. The UTA team is also working with
PSL to develop a gridded version of MEFP that implements the CSGD, a gridded version
of the MMGD (Zhang et al., 2017), and an enhanced version of Schaake Shuffle (Wu et
al., 2017). Integrating the output from this gridded MEFP will help determine its efficacy
in remedying spatial displacement-related forecast biases.

e Explore alternative precipitation forecasts as input to HEFS. The European Center for
Medium-range Weather Forecasts (ECMWF) now produces high-resolution ensemble
forecasts (9-km) out to day 15, which have been shown to perform favorably against the
GFS for many variables. The NWS has been producing high-resolution forecasts for the
US with the High-Resolution Rapid Refresh (HRRR) system, HRRR produces 3-km
forecasts out to 48 h using a convection permitting model and proves more capable in
resolving precipitation induced by convection. Note that the ECMWF maintains a
reforecast archive that can be leveraged for training the postprocessing systems. HRRR
does not have a reforecast archive, but a real-time archive is available from 2014.

Recommendation II: Improve the calibration of NWS hydrologic and routing models to better
capture the magnitude of inflow during flood events.

e Recalibrate SAC-SMA for forecast points in the pilot domain to address the negative bias
evident in the SAC-SMA simulations for major flooding events. Metrics such as mean
volumetric biases for annual flood episodes may be used in addition to those employed in
earlier calibration efforts, such as bias, correlation, NSE and KGE for long-term
simulations. If warranted, the routing model may also undergo calibration.

¢ Quality control reservoir inflow estimates. The reservoir inflow estimates were produced
through mass balance calculations that can be error-prone due to a variety of factors such
as water surface gradient with reservoir during passage of flood waves, inaccuracy in
estimates of release, withdrawal and evaporation, and wind-induced waves. A more
rigorous comparison between rainfall time series and the inflow estimates will help
isolate periods when the estimates would be of sufficient quality to serve as reference for
model calibration and forecast verification.

e Determine optimal precipitation products for calibration and verification. In this project
we use the NWS AORC precipitation product as the ground truth for verification, though
NWS used the WGRFC Mean Areal Precipitation (MAP) product in estimating the
MEFP parameters. The project team has found that the AORC product in the years prior
to the release of the Stage-IV product has suffered bias and large errors due to issues in
the North American Land Data Assimilation System — II (NLDAS-II; Xia et al., 2012)
that serves as the source. The team has since developed a bias-corrected AORC product
following the approach of Zhang et al., (2010) that underwent limited evaluation and was
shown to outperform the raw AORC dataset (Zhang et al., 2025). It is recommended that
the WGRFC MAP, AORC and the bias-corrected AORC undergo additional assessment
to determine the optimal product for SAC-SMA calibration, MEFP parameter estimation,
and forecast verification.

Recommendation II1: Investigate alternative forecast products as forcing to HEFS beyond the
medium range.

As noted earlier, neither GEFS S2S forecasts (out to day 35) nor the CFSv2 forecasts produced
appreciable gains in forecast skills when ingested into HEFS through the MEFP. However, it
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remains possible that signals in these forecasts have not been fully exploited due to a lack of
spatial preciseness in the extended range forecasts by NWP and General Circulation Models.
Approaches such as forecast analogs, use of large, multi-model ensemble, and weather
generators may help further improve forecast skills for impactful events at the S2S range.
Several forecast improvement efforts are already underway at FIRO partnering organizations to
explore these techniques and the outcomes, including a UTA initiative aimed to develop analog
ensemble forecasts for the S2S range and an effort by the PSL to examine forecast-guided
resampling of ensemble traces for weeks 3-5.

Recommendation IV: Partner with reservoir operators to add and refine metrics for forecast
evaluation and improvements to facilitate consistent use of forecasts in operation decisions.

One of the key objectives of FIRO Pilot is to collaborate with reservoir operators to improve
forecast skills and delivery, with the ultimate aim of making the forecasts a regular ingredient in
reservoir operations. The metrics employed in foregoing evaluations have seen frequent use by
forecasters. Yet, reservoir operators’ exposure to them has been limited to date, and their specific
ability to reflect risks associated with decisions has yet to be demonstrated. It will be helpful to
work closely with reservoir operators to identify scenarios where the impacts from potential
failures of forecasts can be gauged and accounted for.

For example, the 99% climatological quantiles of daily, weekly, and monthly precipitation or
flow were used as the thresholds of rare events in computing BSS and ROC scores. Both quantile
threshold and the accumulation window may be fine-tuned to reflect the risk and risk tolerance
of reservoir operators. The National FIRO Program now uses Critical Success Index and Dry
Forecast Failure ratio as metrics in its screening of reservoirs. The metrics, though intended for
deterministic forecasts, help prepare reservoir operators prepare for potential high flow events
that pose risks to dam safety and downstream communities, and their inclusion in future analysis
will be recommended.
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Zhengtao Cui set up the CHPS system on UTA servers and assisted with troubleshooting and
hindcast experiments.
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