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(Cover Picture: Map of annual average gridded pond evaporation estimates for the State of Texas 
produced using Daily Lake Evaporation Model. Color ramp scales from blue to red showing 
areas of low to high evaporation rates.)
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Executive Summary 
Reservoir evaporation is a critical component of water budgeting and operations but is 

often overlooked or simplified due to the difficulty in obtaining consistent, accurate estimates. 
Historically, reservoir evaporation estimation throughout Texas has relied on pan evaporation 
methods that are known to have large bias and uncertainty (Friedrich et al., 2018). Recent 
advancements in hydrometeorological modeling and cloud-based data processing allow for real-
time production of high-resolution evaporation estimates capable of informing water 
management decision making in near-real time. This project developed a daily reservoir 
evaporation database which can be freely accessed and visualized by water managers and 
stakeholders in Texas. More specifically, reservoir evaporation estimates were produced from 
1980 to present for 188 major water supply reservoirs using the Daily Lake Evaporation Model 
developed by Zhao and Gao (2019). This database contains historical and near real-time high 
quality data records of evaporation rates and volumes for major water supply reservoirs 
throughout Texas. Evaporation estimates incorporate meteorological forcing data and reservoir 
storage information to provide the best available estimates of reservoir evaporation. In addition 
to site specific estimates, hypothetical pond evaporation estimates were developed for six 
different sized pond scenarios using a 4-kilometer resolution climate grid for the entire State of 
Texas. Reservoir evaporation estimates are accessible directly through interactive web 
visualization tools as well as an application programming interface. Automated software routines 
run daily to provide near real-time estimates for up-to-date decision making and support. 
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Introduction 
Reservoir evaporation is a critical component of water budgeting and operations but is 

often overlooked or simplified due to the difficulty in obtaining consistent and accurate 
estimates. Historically, reservoir evaporation estimation throughout Texas has relied on pan 
evaporation methods that are known to have large bias and uncertainty (Friedrich et al., 2018). 
Recent advancements in lake evaporation modeling (Zhao and Gao, 2019; Zhao et al., 2022), 
operational high spatio-temporal meteorological forcings (Abatzoglou, 2013; De Pondeca et al., 
2011) and cloud-based data processing (Gorelick, 2017) allow for real-time production of both 
reservoir specific and high-resolution gridded evaporation estimates capable of informing water 
management decision making in near-real time. 

The primary objective of this project is to develop a daily reservoir evaporation database 
which can be freely accessed and visualized by water managers and stakeholders in Texas. This 
database contains historical and near real-time, high quality data records of evaporation rates and 
volumes for major water supply reservoirs throughout Texas. Evaporation estimates incorporate 
metrological forcing data and reservoir depth information to provide best available estimates of 
reservoir evaporation. In addition to reservoir specific estimates, a gridded product was 
developed to provide evaporation estimates for six different pond size scenarios throughout the 
entire State of Texas.  

This technical report highlights key data processing and evaporation modeling tasks 
accomplished throughout the study and details the development and functionality of web and 
API visualization and analysis tools. Evaporation modeling was performed for a total of 188 
major water supply reservoirs throughout Texas (Figure 1). Additional details about the Texas 
A&M University (TAMU) Daily Lake Evaporation Model (DLEM) and Texas evaporation 
dataset can be found in the complementary scientific manuscript “Developing a Daily Lake 
Evaporation Model and Generating a Long-term Daily Reservoir Evaporation Dataset in Texas” 
(Zhao et al., 2023, In-review). Additional documentation covering the evaporation database and 
Application Programming Interface (API) can be found here: https://twdb.dri.edu/ . 

https://twdb.dri.edu/
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Figure 1: Map of 188 major water supply reservoirs throughout Texas included in the 

evaporation modeling effort.  

Daily Lake Evaporation Model 
Reservoir evaporation estimates produced by this project are based on a daily version of 

Texas A&M Lake Evaporation Model (DLEM) developed by Zhao and Gao (2019). DLEM 
utilizes a Penman combination equation along with reservoir fetch and heat storage effects 
represented. DLEM requires input solar radiation, wind speed and direction, air temperature, 
vapor pressure deficit, and reservoir area and depth data. Meteorological forcing data is adjusted 
to over water conditions using wind functions developed by McJannet (2012). 

Reservoir heat storage within DLEM is simulated using an equilibrium temperature 
approach where water column temperature at the current timestep is calculated from water 
temperature at the current timestep, equilibrium temperature, and a lag time. The equilibrium 
temperature is defined as the water temperature at which there is no heat exchange between air 
and water. The lag time is a function of reservoir depth. Inclusion of heat storage adjustments 
improves evaporation estimates in large, deep-water bodies where a significant amount of 
radiative energy in the spring goes towards warming the water body rather than fueling 
evaporation. Conversely, in the fall when the water body is warm and air temperatures are cool, 
heat storage can increase evaporation rates. Daily evaporation rate estimates are combined with 
reservoir surface area information to estimate volumetric losses.  



3 
 

 As part of the Texas-wide modeling effort, additional work was performed to validate 
and test DLEM performance. DLEM evaporations estimates were compared with eddy 
covariance-based data from locations both within and outside of Texas including Lake Mead, 
Lake Mohave, Lake Powell, and Lake Limestone (Figure 2). Results demonstrate the capability 
of DLEM to capture daily variation and magnitude in evaporation rates from multiple locations 
and reservoir sizes. Additional details about DLEM validation and performance can be found in 
Zhao et al., 2023 (In-review). 

 
Figure 2: Timeseries (left) and scatterplot (right) comparison of the DLEM estimates and EC 

observations for Lake Mead from 1 March 2010 to 30 April 2015, Lake Mohave from 1 
June 2013 to 20 April 2015, Lake Powell from 8 November 2018 to 15 December 2021, 
and Lake Limestone from 18 November 2019 to 16 May 2020. The scatter plot 1 to 1 
reference line is shown in red. Figure modified from Zhao et al., 2023 (In-review).  
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Input Data 
Reservoir Depth, Area, Volumes 

Reservoir area, depth, and storage volume information for major reservoirs, with existing 
hydrographic and volumetric surveys, was provided by the Texas Water Development Board. 
Post-processing workflows were used to reconstruct historical timeseries of depth and area using 
area-elevation-volume curves and interpolation. A detailed description of the QAQC and 
processing procedure can be found in the supporting manuscript (Zhao et al., 2023; under 
review). Real-time reservoir depth information is utilized where available. Locations without 
real-time depth information utilize static depths based on full pool estimates. Evaporation 
estimates are produced from 1980 to present or for the post-construction period for reservoirs 
that were built after 1980. Daily real-time updates incorporate automated data retrieval from the 
Water Data for Texas data portal. 

 
Pond Area, Depth Relationships 

Six different pond size scenarios were selected for evaporation modeling based on typical 
area, depth relationships for ponds throughout Texas (Table 1). Scenarios represent a wide range 
of storage conditions including relatively small, shallow ponds as well as larger, deeper systems. 
Evaporation estimates produced by the pond analysis include daily, monthly, and annual totals 
from 1980-2022. Data produced by this analysis can be leveraged for historical review and future 
planning initiatives.  

There are two approaches to retrieve evaporation estimates for a specific pond scenario. 
If the size and depth of the pond of interest are similar to one of the provided scenarios, estimates 
of that scenario can be used directly as the pond evaporation estimates. However, if the pond size 
or depth is significantly different from all scenarios, multiple scenarios estimates can be 
combined using the inverse distance weighted (IDW) interpolation method to calculate the best 
estimate. Sensitivity tests show the root mean square error is less than 0.01 inch/day applying the 
IDW method. 

 
Table 1: Table summary of pond evaporation scenarios modeled for all climate grid cells 

throughout Texas. 

Scenario 
Depth 

(ft) Area (acres) Volume (acre-ft) 
1 5 5 25 
2 10 5 50 
3 5 25 125 
4 10 25 250 
5 10 100 1000 
6 20 100 2000 

 
  

https://www.waterdatafortexas.org/reservoirs/statewide
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Climate Data  
 
Gridded Climate Dataset Evaluation 

Multiple gridded climate products exist capable of providing the necessary DLEM 
forcing data, however, the capability of these datasets to accurately represent overwater 
conditions is uncertain. For this analysis we evaluated the accuracy of four gridded climate 
products: real-time mesoscale analysis (RTMA; DePondeca et al., 2011), gridMET (Abatzoglou, 
2013), NLDAS (Xia et al., 2012), and TerraClimate (Abatzoglou et al., 2018). Product accuracy 
was assessed by comparing climate model estimates to station-based weather data collected 
within close proximity to reservoirs in Texas. A total of 13 TexMesonet station datasets were 
used during the weather product evaluation. Variables of interest include wind speed, air 
temperature (minimum and maximum), vapor pressure, solar radiation, and reference 
evapotranspiration. This evaluation includes raw weather variables such as temperature and 
windspeed as well as computed values such as reference evapotranspiration that relies on a 
combination of multiple inputs. Data comparisons were made for three time periods including 
the growing season (April-October), summer (July-August, JJA), and annual aggregations. 
Summary results from the station comparison are shown in Table 2. Results for the individual 
stations comparisons are included in the Supplemental Tables section.  
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Table 2: Summary table of average bias statistics for station, gridded climate comparisons 
between alfalfa reference ET (ETr), vapor pressure, wind speed, solar radiation, and air 
temperature. 

 
*Temperature bias values are expressed as an absolute bias (station-gridded product). All others 
are expressed as a ratio (station/gridded product).  
 
 Compared to other climate products, the RTMA dataset consistently better captured 
weather conditions at the 13 comparison stations. Importantly, RTMA showed the best estimate 
capability for reference ET which utilizes a similar approach to the Penman equation utilized by 
the DLEM model. Notably, RTMA outperformed all other models for vapor pressure estimates 
due to its incorporation of buoy-based datasets and a land/water mask. TerraClimate 
outperformed the other models when estimating solar radiation but performed poorly when 
estimating both vapor pressure and reference ET. RTMA does not currently provide estimates of 
incoming solar radiation, so NLDAS solar radiation was utilized in the RTMA collection (it 
should be noted the gridMET solar is based on NLDAS as well). Differences between the 

gs summer annual gs summer annual gs summer annual
mean 1.00 0.98 1.02 1.00 0.98 1.02 0.88 0.88 0.88
min 0.90 0.86 0.93 0.90 0.86 0.93 0.48 0.47 0.50
max 1.07 1.06 1.09 1.07 1.06 1.09 1.10 1.11 1.11

stddev 0.05 0.05 0.05 0.12 0.12 0.12 0.19 0.20 0.18
mean 0.86 0.86 0.86 0.86 0.86 0.86 0.68 0.67 0.70
min 0.74 0.72 0.69 0.74 0.72 0.69 0.26 0.25 0.28
max 0.94 0.94 0.95 0.94 0.94 0.95 0.88 0.89 0.92

stddev 0.06 0.06 0.07 0.13 0.13 0.13 0.20 0.20 0.19
mean 0.80 0.78 0.83 0.80 0.78 0.83 0.68 0.67 0.70
min 0.67 0.65 0.66 0.67 0.65 0.66 0.26 0.25 0.28
max 0.89 0.86 0.92 0.89 0.86 0.92 0.88 0.88 0.92

stddev 0.06 0.07 0.07 0.13 0.14 0.13 0.20 0.20 0.19
mean 0.73 0.71 0.73 0.74 0.73 0.74 0.80 0.80 0.79
min 0.05 0.05 0.05 0.12 0.12 0.12 0.34 0.32 0.36
max 1.07 1.06 1.09 1.07 1.06 1.09 1.09 1.09 1.07

stddev 0.12 0.12 0.13 0.12 0.12 0.12 0.31 0.31 0.32

gs summer annual gs summer annual gs summer annual
mean 0.93 0.93 0.94 -0.06 -0.15 0.00 1.26 1.16 1.26
min 0.89 0.89 0.90 -0.90 -0.87 -0.99 0.35 0.20 0.43
max 1.00 0.99 1.04 0.65 0.48 0.78 3.04 3.32 2.95
stddev 0.03 0.03 0.04 0.48 0.42 0.57 0.82 0.91 0.71
mean 0.93 0.93 0.94 1.12 0.71 1.42 0.51 0.33 0.68
min 0.89 0.89 0.89 0.40 -0.13 0.79 0.10 -0.05 0.21
max 1.00 0.99 1.05 1.96 1.47 2.28 1.21 1.02 1.32
stddev 0.03 0.03 0.04 0.42 0.46 0.43 0.31 0.31 0.32
mean 0.93 0.93 0.94 -0.57 -0.97 -0.48 -0.78 -1.11 -0.26
min 0.89 0.89 0.89 -1.61 -1.95 -1.62 -1.97 -2.83 -1.22
max 1.00 0.99 1.04 1.12 0.78 1.16 0.53 0.90 0.82
stddev 0.03 0.03 0.04 0.77 0.75 0.80 0.76 1.05 0.63
mean 1.00 0.99 1.01 0.97 0.75 1.18 0.17 -0.02 0.35
min 0.96 0.96 0.97 0.23 -0.04 0.26 -0.77 -1.06 -0.51
max 1.08 1.08 1.13 1.78 1.48 2.13 1.49 1.52 1.60
stddev 0.04 0.03 0.05 0.50 0.54 0.54 0.75 0.87 0.69

NLDAS

TerraClimate

Solar Radiation

RTMA

gridMET

NLDAS

TerraClimate

RTMA

gridMET

ETr Vapor Pressure Wind Speed, 2m

Minimum Air Temperature* Maximum Air Temperature*
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gridMET and RTMA solar radiation occur during the resampling process from the original 12-
km resolution NLDAS product to 4 km and 2.5 km resolution grid cells for gridMET and 
RTMA, respectively. Based on its holistic performance and ability to capture near reservoir 
vapor pressure and reference ET, RTMA was selected as the key forcing datasets for DLEM 
application in Texas. 
 
Real-time Mesoscale Analysis 

Daily near surface weather conditions were extracted from the RTMA dataset stored 
within Google’s Earth Engine Data Catalog. RTMA provides hourly estimates of near surface 
windspeed and direction, temperature, specific humidity, and pressure at 2.5 km resolution (De 
Pondeca et., al. 2011). Hourly data were aggregated to daily timesteps prior to extraction. Daily 
RTMA data aggregation start and end at 6 UTC to represent central standard time midnight to 
midnight day.  Data extraction workflows utilized the RTMA water mask combined with 
reservoir maximum areal extent information to extract meteorological data most representative 
of average over water conditions for each reservoir (Figure 3). Cell selection for smaller 
reservoirs with no water masked values was based on minimum cell elevation for all cells 
intersecting the reservoir’s maximum extent. 

 

 
Figure 3: Example figure of RTMA water mask (shown in red) and base map reservoir extent for 

Lake Limestone in Texas.  
 
Pre-2016 Climate Data 

The Google Earth Engine RTMA dataset begins in 2011, however, data coverage prior to 
2016 includes numerous gaps and missing values. To extend the evaporation estimate record 
back to 1980 we incorporated information from the gridMET climate dataset (Abatzoglou, 
2013). All evaporation estimates from 2016 forward use RTMA directly, however, estimates 
prior to 2016 utilize a hybrid meteorological dataset based on direct comparisons of RTMA with 
gridMET. gridMET provides near surface meteorological estimates at 4km resolution from 
1979‒present, however, gridMET does not incorporate buoy-based station data or conditioning 
for overwater conditions and can overestimate aridity in irrigated and, or wet environments 
(Huntington, 2011; Abatzoglou, 2013). 

https://developers.google.com/earth-engine/datasets/catalog/NOAA_NWS_RTMA#bands
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Bias correction factors were developed by comparing average monthly conditions from 
RTMA with gridMET for each 4km gridMET grid cell. Prior to comparison RTMA was 
resampled to the 4 km gridMET grid using a mean reducer. Monthly ratios of RTMA to 
gridMET were developed based on 2016-2021 data for windspeed, specific humidity, and solar 
radiation. Temperature correction factors were developed by subtracting gridMET monthly 
average minimum and maximum temperature from RTMA. Bias correction factors were then 
applied to each individual forcing variable on a monthly basis prior to model input. Similar bias 
correction workflows have been utilized to estimate reference evapotranspiration from gridMET 
based on comparisons between agricultural weather stations and gridMET (Melton et al., 2021, 
Volk et al., 2021). 

Evaporation Modeling Results 
 Modeling efforts produced daily estimates of reservoir evaporation for 188 major water 
supply reservoirs throughout the state from 1980‒present. Evaporation estimates highlight spatial 
and temporal patterns related to climate and storage conditions. Evaporation averaged 58.5 
inches/year across all sites and years. The highest average evaporation rates were observed at 
Casa Blanca Lake averaging 73.7 inches/year, while the lowest rates were observed at Lake 
Palestine, averaging 49.7 inches/year (Figure 4). Lake Palestine showed the highest interannual 
variability with a standard deviation of 6.4 inches/year (n=43, 1980‒2022). Lake Balmorhea 
showed the lowest interannual variability with a standard deviation of 1.8 inches/year. The 
highest single year evaporation rate occurred at Casa Blanca Lake in 2011 (81.5 inches/year). 
More detailed discussion and analysis of reservoir evaporation estimates can be found in the 
supporting manuscript (Zhao et al., 2023, In-review).  
 

 
 
Figure 4: Boxplot summary of average annual evaporation estimates for all reservoirs. Each 

point represents the average evaporation rate for a single reservoir from 1980‒2022 
(n=188). Blue dots show the density of values at each rate within the dataset. 
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Gridded pond evaporation estimates produced for the entire State of Texas follow distinct 
climatic patterns related to atmospheric evaporative demand (Figure 5). More arid regions 
throughout southern and western Texas experience increased pond evaporation rates relative to 
the more temperate, humid areas of central and eastern Texas. Smaller, shallow pond simulations 
show increased evaporation rates relative to larger, deeper systems (Figure 5). 

 

  
Figure 5: Map of gridded pond evaporation estimates throughout Texas for two different 

scenarios. Left) 100 acres, 20 ft deep; Right) 25 acres, 5 ft deep.  

Reservoir Evaporation Database and Application Programming Interface 
To provide wide-scale data access, DRI set up a virtual machine server that hosts the 

geodatabase, a postgreSQL database with a Postgis extension, as well as the geodatabase 
fastAPI, a python web framework. 



10 
 

 
Figure 6: Conceptual diagram of reservoir evaporation software system hosted on virtual servers 

at DRI.  
 
Reservoir evaporation for 188 major water supply reservoirs throughout Texas is 

produced using a workflow surrounding the TAMU DLEM model. Each day, cron jobs running 
python scripts retrieve the latest available RTMA forcing data from Earth Engine along with 
reservoir storage information from the Water Data for Texas web portal needed to run the 
TAMU DLEM model. RTMA forcing data is provided with a 2-day lag time allowing for 
evaporation estimation three days prior to today’s date. Forcing data is processed and combined 
with the previous day’s DLEM estimate of water temperature for input to the DLEM model. In 
addition to DELM model output DRI produces Net Evaporation, Evaporation Volume and Net 
Evaporation Volume. All data including both forcing and model output is then ingested into a 
PostgreSQL database for storage and API access. The reservoir evaporation codebase including 
database population code, the API framework and the web application is housed within a private 
GitHub repository for easy management and consistent tracking of historical changes. The data 
can be accessed via the geodatabase API (https://twdb.dri.edu/). DRI has set up a Swagger UI for 
easy access via a web browser. Data can also be accessed directly from the command line via 
curl or programmatically. Additional information regarding API set-up and use can be found in 
the API Quick Start Guide appendix. 
 

Web Interface 
 In support of data access and visualization, web-based user interfaces were developed for 
both the reservoir evaporation and pond evaporation products. These web portals utilize 
Google’s Earth Engine Apps (eeApp) framework to support map-based data visualization and 
time series access. Google’s Earth Engine App provides a simple, low-cost option for 
visualization and delivery of dynamic spatial data via a web-based user interface.  

https://twdb.dri.edu/
https://www.earthengine.app/
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Reservoir Evaporation Web Application 

After DLEM application and database ingestion, data is also converted to Earth Engine 
image format and uploaded to Earth Engine storage buckets for web-based display. Reservoir 
image collections include both daily and monthly evaporation totals along with the input forcing 
data and reservoir depth and area information. This image collection can then be automatically 
queried through the eeApp interface for customized data visualization and downloading. All map 
and time series visualizations are generated in real-time allowing for flexible plotting (Figure 7). 

 

 
Figure 7: Screenshot of Texas reservoir evaporation web application located at: https://dri-

apps.earthengine.app/view/twdb-reservoir-evaporation   
 
Pond Evaporation Web Application 

In addition to reservoir specific estimates, gridded estimates of pond evaporation for six 
different pond scenarios were produced using the Earth Engine processing platform. Direct use 
of Earth Engine’s data collections and parallel processing environment allows for streamline 
production of evaporation estimates through all of Texas. DRI translated the TAMU DLEM 
codebase to python-based Earth Engine code syntax for direct application in the Earth Engine 
framework. Estimates produced by the original TAMU DLEM code and Earth Engine version 
produced identical output.  

Both spatial and time series estimates are accessible via a web-based user interface (UI) 
(Figure 8). The web interface supports automated charting for quick visualization as well as 
download options for follow-up analyses and post processing. Spatial maps capture general 
climate patterns throughout Texas, showing higher evaporation rates in the west and 
southwestern areas of the state. Lower evaporative demand areas in the east and northeast show 
reduced pond evaporation rates. 
 

https://dri-apps.earthengine.app/view/twdb-reservoir-evaporation
https://dri-apps.earthengine.app/view/twdb-reservoir-evaporation
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Figure 8: Screenshot of Texas gridded pond evaporation web application located at: https://dri-

apps.earthengine.app/view/twdb-raster-lake-evaporation  
 

Summary 
 This project developed automated workflows to produce reservoir evaporation estimates 
for the State of Texas using the TAMU DLEM. Estimates rely on gridded climate data from 
RTMA and real-time storage information (depth, area, capacity) from the Water Data for Texas 
data portal. Reservoir specific estimates from 1980‒present were produced for 188 major water 
supply reservoirs throughout Texas. Real-time updates (~3-day latency) are provided daily to 
support operational decision making and water resource planning. In addition to reservoir 
specific estimates, a gridded product was developed to provide estimates throughout the entire 
state for six different pond scenarios.  

Data produced by this project will be used to inform water resources planning and 
conservation initiatives throughout Texas. Importantly, this product provides a consistent dataset 
for local, state, and federal agencies to share and utilize. Next steps will focus on continued data 
production as well as data application and integration within existing planning and management 
processes.   

https://dri-apps.earthengine.app/view/twdb-raster-lake-evaporation
https://dri-apps.earthengine.app/view/twdb-raster-lake-evaporation
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API Quick Start Guide 
 
The Texas Reservoir Evaporation API provides access to evaporation data for water reservoirs 
located across the state of Texas. 
 
Project Summary: 

Reservoir evaporation is a critical component of water budgeting and operations but is 
often overlooked or simplified due to the difficulty in obtaining consistent, accurate estimates. 
Historically, reservoir evaporation estimation throughout Texas has relied on pan evaporation 
methods that are known to have large bias and uncertainty (Friedrich et al., 2018). Recent 
advancements in hydrometeorological modeling and cloud-based data processing allow for real-
time production of high-resolution evaporation estimates capable of informing water 
management decision making in near-real time.  This project developed a daily reservoir 
evaporation database which can be freely accessed and visualized by water managers and 
stakeholders in Texas. This database contains historical and near real-time high quality data 
records of evaporation rates and volumes for major reservoirs throughout Texas. Evaporation 
estimates incorporate meteorological forcing data and reservoir storage information to provide 
best available estimates of reservoir evaporation. 
 
Relevant Links 

• TX A&M Lake Evaporation Model: 
https://www.sciencedirect.com/science/article/abs/pii/S0034425719301063  

• Web-based Visualization Tool: 
 https://dri-apps.earthengine.app/view/twdb-reservoir-evaporation  

• Python API example: 
https://drive.google.com/drive/folders/1CpKPuRl31s94hYiyJEJipce9cSU_McQ4?usp=sh
aring 

 

How to use the API  

1. Go to https://twdb.dri.edu/  
2. Request API key  

1. Click on “/auth/request_key” 
2. Click on “Try it out” 
3. Fill out the Form 
4. Click on “Execute” 
5. You API key should arrive via email within the next 24 hours. 

https://www.sciencedirect.com/science/article/abs/pii/S0034425719301063
https://dri-apps.earthengine.app/view/twdb-reservoir-evaporation
https://drive.google.com/drive/folders/1CpKPuRl31s94hYiyJEJipce9cSU_McQ4?usp=sharing
https://drive.google.com/drive/folders/1CpKPuRl31s94hYiyJEJipce9cSU_McQ4?usp=sharing
https://twdb.dri.edu/
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Figure A-1: Screenshot of swagger page API authorization request end point.  

 
3. Authorize with your API key 

1. Click on “Authorize” 
2. Enter your API Key in the “Value” field. 
3. Click on “Authorize” 
4. “Close” the window 

 

 
Figure A-2: Screen shot of swagger page API authorization key link. 
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4. Start using the API 
1. Use the “help” section to obtain information on parameters to use with requests. 
2. Use the timeseries section to obtain data. 

 

 
 
Figure A-3: Screenshot of swagger page API end point options.
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Supplemental Tables 
 
Table S1: Summary table of TexMesonet weather station included in gridded climate comparison analysis. 
 

 
 
 
  

STATION ID Elevation (ft) Elevation (m) Latitude Longitude Record Start Record End
Miller_Creek 1335 406.9 33.414 -99.401 9/3/2003 2/23/2022
Cedar_Hill_SP 520 158.5 32.609 -96.993 12/17/2003 2/23/2022
Cedar 3052 930.2 35.690 -101.568 4/18/2002 2/23/2022
Falcon_Lake 219 66.8 26.555 -99.136 11/15/2002 4/7/2022
Coleman 1509 459.9 31.515 -99.651 4/8/2003 2/28/2022
Paint_Creek 1854 565.1 31.906 -100.582 12/11/2006 2/28/2022
Possum_Kingdom 925 281.9 32.867 -98.562 2/6/2003 2/23/2022
Athens 470 143.3 32.221 -95.766 7/12/2002 2/23/2022
Doc_Curb_Pump_Station 732 223.1 30.992 -97.545 9/27/2018 2/28/2022
Corsicana_Pump_Station 430 131.1 31.957 -96.687 12/1/2019 2/28/2022
Aquilla_Water_Supply_District 532 162.2 31.921 -97.179 8/21/2019 2/28/2022
Lake_Murvaul_Panola 198 60.4 32.027 -94.414 4/27/2020 2/23/2022
Lake_Striker_Rusk 328 100.0 31.934 -94.975 12/17/2019 2/28/2022
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Table S2: Summary table of bias ratios and adjustment factors (temperature) between Terra Climate and 13 TexMesonet weather 
station datasets in Texas. Comparison statistics show relative bias for alfalfa reference ET (ETr), vapor pressure (Ea), wind 
speed at 2 meters (u2), minimum temperature (Tmin), maximum temperature (Tmax) and incoming solar radiation (Srad). 

 

 
 
  

Terra Climate

Station ID
Apr-Oct 
Average

JJA 
Average

Annual 
Average

Apr-Oct 
Average

JJA 
Average

Annual 
Average

Apr-Oct 
Average

JJA 
Average

Annual 
Average

Apr-Oct 
Average

JJA 
Average

Annual 
Average

Apr-Oct 
Average

JJA 
Average

Annual 
Average

Apr-Oct 
Average

JJA 
Average

Annual 
Average

Miller_Creek 1.370 1.335 1.413 1.029 1.012 1.034 0.915 0.944 0.909 1.206 1.041 1.231 0.194 -0.136 0.311 0.975 0.972 0.984
Cedar_Hill_SP 1.238 1.220 1.279 1.000 0.974 1.020 0.777 0.788 0.772 0.767 0.577 1.121 0.926 0.889 0.900 0.969 0.966 0.975
Cedar 1.380 1.351 1.462 1.032 1.028 1.024 0.793 0.815 0.797 1.545 1.472 1.648 1.492 1.519 1.565 0.986 0.983 0.995
Falcon_Lake 1.378 1.406 1.410 1.048 1.003 1.064 0.956 1.030 0.926 0.744 0.585 1.038 1.337 1.161 1.598 1.036 1.027 1.027
Coleman 1.344 1.304 1.402 1.019 0.995 1.032 0.928 0.910 0.928 1.670 1.462 2.006 0.339 0.312 0.512 0.966 0.961 0.977
Paint_Creek 1.252 1.217 1.317 1.022 0.994 1.031 0.717 0.701 0.742 1.036 0.724 1.461 0.624 0.491 0.828 0.990 0.992 0.995
Possum_Kingdom 1.320 1.292 1.361 1.009 0.978 1.019 0.810 0.815 0.795 1.783 1.478 2.133 0.600 0.589 0.545 0.965 0.961 0.974
Athens 1.187 1.174 1.213 1.035 1.021 1.053 0.851 0.888 0.826 1.419 1.397 1.556 -0.209 -0.395 -0.088 0.978 0.975 0.984
Doc_Curb_Pump_Station 1.258 1.266 1.279 1.022 0.988 1.046 1.015 1.057 0.964 0.393 0.158 0.650 -0.389 -0.725 -0.146 0.962 0.981 0.973
Corsicana_Pump_Station 1.130 1.099 1.154 1.020 1.008 1.048 0.731 0.701 0.732 0.375 0.165 0.700 -0.687 -1.065 -0.243 0.979 0.984 0.989
Aquilla_Water_Supply_District 1.272 1.253 1.293 1.065 1.041 1.094 1.094 1.087 1.074 0.557 0.193 0.729 -0.541 -1.065 -0.271 1.000 1.017 1.011
Lake_Murvaul_Panola 1.085 1.046 1.135 0.577 0.566 0.588 0.344 0.323 0.360 0.892 0.570 0.848 -0.770 -0.855 -0.508 1.083 1.078 1.130
Lake_Striker_Rusk 0.986 0.955 0.985 1.080 1.072 1.101 0.412 0.365 0.458 0.234 -0.038 0.258 -0.671 -0.979 -0.473 1.047 1.017 1.102

ETr Ea u2 Tmin Tmax Srad
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Table S3: Summary table of bias ratios and adjustment factors (temperature) between NLDAS and 13 TexMesonet weather station 
datasets in Texas. Comparison statistics show relative bias for alfalfa reference ET (ETr), vapor pressure (Ea), wind speed at 2 
meters (u2), minimum temperature (Tmin), maximum temperature (Tmax) and incoming solar radiation (Srad).  

 

 
 
 
  

NLDAS

Station ID
Apr-Oct 
Average

JJA 
Average

Annual 
Average

Apr-Oct 
Average

JJA 
Average

Annual 
Average

Apr-Oct 
Average

JJA 
Average

Annual 
Average

Apr-Oct 
Average

JJA 
Average

Annual 
Average

Apr-Oct 
Average

JJA 
Average

Annual 
Average

Apr-Oct 
Average

JJA 
Average

Annual 
Average

Miller_Creek 0.839 0.837 0.865 1.074 1.102 1.049 0.858 0.877 0.866 -1.611 -1.950 -1.623 -0.773 -1.292 -0.140 0.932 0.934 0.938
Cedar_Hill_SP 0.774 0.753 0.823 1.050 1.076 1.025 0.642 0.633 0.670 0.538 -0.093 0.859 -0.668 -1.119 0.063 0.910 0.919 0.917
Cedar 0.889 0.865 0.918 1.099 1.127 1.075 0.877 0.878 0.879 -1.423 -1.840 -1.382 0.211 -0.284 0.820 0.959 0.955 0.969
Falcon_Lake 0.811 0.830 0.834 1.062 1.054 1.055 0.722 0.708 0.778 -0.825 -0.726 -1.005 0.531 0.898 0.527 0.891 0.908 0.889
Coleman 0.866 0.852 0.892 1.009 1.025 0.995 0.856 0.852 0.862 -0.979 -1.317 -0.795 -0.636 -0.907 -0.137 0.923 0.922 0.934
Paint_Creek 0.855 0.847 0.890 1.030 1.042 1.014 0.763 0.760 0.791 -1.198 -1.311 -1.152 -0.049 -0.259 0.531 0.946 0.947 0.952
Possum_Kingdom 0.820 0.808 0.853 1.037 1.058 1.016 0.714 0.717 0.720 -0.108 -0.618 0.081 -0.546 -0.950 0.026 0.916 0.928 0.926
Athens 0.763 0.749 0.789 1.059 1.083 1.034 0.654 0.662 0.666 1.125 0.776 1.155 -1.118 -1.438 -0.674 0.891 0.887 0.899
Doc_Curb_Pump_Station 0.772 0.743 0.812 0.990 1.027 0.965 0.749 0.744 0.751 -1.081 -1.541 -0.857 -1.891 -2.519 -1.117 0.891 0.900 0.896
Corsicana_Pump_Station 0.694 0.650 0.730 1.009 1.048 0.986 0.536 0.496 0.570 -0.890 -1.399 -0.673 -1.946 -2.831 -1.037 0.912 0.920 0.914
Aquilla_Water_Supply_District 0.798 0.761 0.841 1.053 1.094 1.031 0.884 0.853 0.917 -0.896 -1.605 -0.677 -1.968 -2.763 -1.215 0.942 0.958 0.944
Lake_Murvaul_Panola 0.822 0.837 0.814 0.555 0.554 0.560 0.258 0.252 0.278 0.012 -0.402 -0.015 -0.462 -0.233 -0.414 1.002 0.988 1.044
Lake_Striker_Rusk 0.675 0.663 0.664 1.033 1.049 1.015 0.291 0.268 0.334 -0.103 -0.554 -0.163 -0.770 -0.772 -0.610 0.948 0.905 0.995

SradETr Ea u2 Tmin Tmax
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Table S4: Summary table of bias ratios and adjustment factors (temperature) between RTMA and 13 TexMesonet weather station 
datasets in Texas. Comparison statistics show relative bias for alfalfa reference ET (ETr), vapor pressure (Ea), wind speed at 2 
meters (u2), minimum temperature (Tmin), maximum temperature (Tmax) and incoming solar radiation (Srad).  

 

 
 
  

RTMA

Station ID
Apr-Oct 
Average

JJA 
Average

Annual 
Average

Apr-Oct 
Average

JJA 
Average

Annual 
Average

Apr-Oct 
Average

JJA 
Average

Annual 
Average

Apr-Oct 
Average

JJA 
Average

Annual 
Average

Apr-Oct 
Average

JJA 
Average

Annual 
Average

Apr-Oct 
Average

JJA 
Average

Annual 
Average

Miller_Creek 0.976 0.964 0.991 1.045 1.050 1.041 0.956 0.962 0.957 0.310 0.302 0.356 0.911 0.811 0.947 0.929 0.928 0.935
Cedar_Hill_SP 0.920 0.910 0.926 0.985 0.991 0.981 0.661 0.667 0.657 -0.162 -0.129 -0.117 1.876 1.845 1.739 0.919 0.920 0.924
Cedar 1.065 1.062 1.055 0.946 0.957 0.935 0.826 0.851 0.807 -0.242 0.008 -0.516 3.044 3.316 2.494 0.958 0.952 0.968
Falcon_Lake 0.968 0.968 0.995 0.983 0.985 0.982 0.750 0.759 0.765 -0.885 -0.651 -0.969 2.816 2.677 2.954 0.904 0.929 0.903
Coleman 1.066 1.035 1.091 0.986 0.993 0.984 1.102 1.109 1.101 0.573 0.266 0.778 0.938 0.630 1.030 0.926 0.923 0.935
Paint_Creek 1.051 1.032 1.071 0.985 0.987 0.984 1.030 1.023 1.037 0.475 0.354 0.532 1.197 0.913 1.303 0.947 0.952 0.948
Possum_Kingdom 1.039 1.019 1.060 1.011 1.016 1.006 1.060 1.056 1.050 0.227 0.068 0.402 1.251 1.121 1.241 0.924 0.932 0.928
Athens 0.977 0.960 0.992 1.006 1.001 1.007 1.006 1.029 0.975 0.651 0.478 0.772 0.801 0.588 0.975 0.897 0.887 0.900
Doc_Curb_Pump_Station 1.049 1.034 1.064 0.930 0.933 0.928 0.980 1.002 0.951 -0.904 -0.868 -0.985 1.369 1.471 1.243 0.891 0.901 0.897
Corsicana_Pump_Station 0.961 0.939 0.987 0.968 0.970 0.963 0.859 0.835 0.859 -0.156 -0.381 -0.003 0.466 0.245 0.672 0.912 0.920 0.914
Aquilla_Water_Supply_District 1.012 0.993 1.051 1.020 1.021 1.014 1.087 1.074 1.109 0.068 -0.220 0.265 0.346 0.200 0.435 0.942 0.958 0.944
Lake_Murvaul_Panola 0.995 0.950 1.035 0.547 0.544 0.556 0.481 0.473 0.503 -0.415 -0.595 -0.367 0.751 0.845 0.709 1.002 0.988 1.042
Lake_Striker_Rusk 0.903 0.864 0.934 0.995 0.997 0.988 0.637 0.596 0.712 -0.266 -0.526 -0.112 0.570 0.382 0.622 0.948 0.905 0.994

ETr Ea u2 Tmin Tmax Srad
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Table S5: Summary table of bias ratios and adjustment factors (temperature) between gridMET and 13 TexMesonet weather station 
datasets in Texas. Comparison statistics show relative bias for alfalfa reference ET (ETr), vapor pressure (Ea), wind speed at 2 
meters (u2), minimum temperature (Tmin), maximum temperature (Tmax) and incoming solar radiation (Srad).  

 

 
 

GridMET

Station ID
Apr-Oct 
Average

JJA 
Average

Annual 
Average

Apr-Oct 
Average

JJA 
Average

Annual 
Average

Apr-Oct 
Average

JJA 
Average

Annual 
Average

Apr-Oct 
Average

JJA 
Average

Annual 
Average

Apr-Oct 
Average

JJA 
Average

Annual 
Average

Apr-Oct 
Average

JJA 
Average

Annual 
Average

Miller_Creek 0.933 0.941 0.941 1.041 1.025 1.046 0.874 0.892 0.883 1.175 0.919 1.276 0.372 0.093 0.565 0.932 0.935 0.939
Cedar_Hill_SP 0.814 0.817 0.822 1.060 1.043 1.080 0.635 0.627 0.663 1.211 0.765 1.638 0.433 0.275 0.715 0.911 0.921 0.917
Cedar 0.940 0.933 0.951 1.144 1.140 1.137 0.877 0.878 0.879 1.569 1.453 1.666 1.215 1.021 1.319 0.959 0.955 0.969
Falcon_Lake 0.850 0.841 0.872 1.030 1.026 1.052 0.715 0.705 0.764 0.833 0.655 1.086 0.576 0.354 0.845 0.890 0.906 0.889
Coleman 0.929 0.917 0.945 1.030 1.015 1.045 0.863 0.856 0.869 1.405 0.824 1.899 0.473 0.211 0.877 0.922 0.922 0.934
Paint_Creek 0.909 0.900 0.927 1.039 1.015 1.052 0.749 0.744 0.776 1.501 1.027 1.886 0.982 0.662 1.221 0.943 0.945 0.949
Possum_Kingdom 0.868 0.874 0.876 1.075 1.058 1.079 0.713 0.716 0.718 1.958 1.472 2.283 0.759 0.669 0.814 0.916 0.927 0.926
Athens 0.836 0.835 0.835 1.029 1.024 1.041 0.659 0.668 0.670 1.349 1.048 1.613 0.157 -0.022 0.341 0.889 0.885 0.897
Doc_Curb_Pump_Station 0.854 0.852 0.846 1.043 1.035 1.064 0.743 0.739 0.746 0.778 0.353 1.118 0.303 0.080 0.417 0.891 0.901 0.898
Corsicana_Pump_Station 0.795 0.770 0.776 1.044 1.041 1.069 0.536 0.496 0.572 0.711 0.214 1.018 0.339 0.109 0.556 0.912 0.920 0.914
Aquilla_Water_Supply_District 0.902 0.884 0.891 1.094 1.087 1.118 0.884 0.853 0.920 0.869 0.337 1.220 0.098 -0.054 0.206 0.942 0.958 0.947
Lake_Murvaul_Panola 0.842 0.849 0.793 0.579 0.566 0.605 0.259 0.253 0.283 0.404 -0.134 0.791 0.248 0.328 0.306 1.003 0.988 1.045
Lake_Striker_Rusk 0.737 0.724 0.693 1.062 1.052 1.085 0.292 0.268 0.340 0.784 0.292 0.970 0.677 0.600 0.636 0.948 0.904 0.998

SradETr Ea u2 Tmin Tmax
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