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Executive Summary

Reservoir evaporation is a critical component of water budgeting and operations but is
often overlooked or simplified due to the difficulty in obtaining consistent, accurate estimates.
Historically, reservoir evaporation estimation throughout Texas has relied on pan evaporation
methods that are known to have large bias and uncertainty (Friedrich et al., 2018). Recent
advancements in hydrometeorological modeling and cloud-based data processing allow for real-
time production of high-resolution evaporation estimates capable of informing water
management decision making in near-real time. This project developed a daily reservoir
evaporation database which can be freely accessed and visualized by water managers and
stakeholders in Texas. More specifically, reservoir evaporation estimates were produced from
1980 to present for 188 major water supply reservoirs using the Daily Lake Evaporation Model
developed by Zhao and Gao (2019). This database contains historical and near real-time high
quality data records of evaporation rates and volumes for major water supply reservoirs
throughout Texas. Evaporation estimates incorporate meteorological forcing data and reservoir
storage information to provide the best available estimates of reservoir evaporation. In addition
to site specific estimates, hypothetical pond evaporation estimates were developed for six
different sized pond scenarios using a 4-kilometer resolution climate grid for the entire State of
Texas. Reservoir evaporation estimates are accessible directly through interactive web
visualization tools as well as an application programming interface. Automated software routines
run daily to provide near real-time estimates for up-to-date decision making and support.
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Introduction

Reservoir evaporation is a critical component of water budgeting and operations but is
often overlooked or simplified due to the difficulty in obtaining consistent and accurate
estimates. Historically, reservoir evaporation estimation throughout Texas has relied on pan
evaporation methods that are known to have large bias and uncertainty (Friedrich et al., 2018).
Recent advancements in lake evaporation modeling (Zhao and Gao, 2019; Zhao et al., 2022),
operational high spatio-temporal meteorological forcings (Abatzoglou, 2013; De Pondeca et al.,
2011) and cloud-based data processing (Gorelick, 2017) allow for real-time production of both
reservoir specific and high-resolution gridded evaporation estimates capable of informing water
management decision making in near-real time.

The primary objective of this project is to develop a daily reservoir evaporation database
which can be freely accessed and visualized by water managers and stakeholders in Texas. This
database contains historical and near real-time, high quality data records of evaporation rates and
volumes for major water supply reservoirs throughout Texas. Evaporation estimates incorporate
metrological forcing data and reservoir depth information to provide best available estimates of
reservoir evaporation. In addition to reservoir specific estimates, a gridded product was
developed to provide evaporation estimates for six different pond size scenarios throughout the
entire State of Texas.

This technical report highlights key data processing and evaporation modeling tasks
accomplished throughout the study and details the development and functionality of web and
API visualization and analysis tools. Evaporation modeling was performed for a total of 188
major water supply reservoirs throughout Texas (Figure 1). Additional details about the Texas
A&M University (TAMU) Daily Lake Evaporation Model (DLEM) and Texas evaporation
dataset can be found in the complementary scientific manuscript “Developing a Daily Lake
Evaporation Model and Generating a Long-term Daily Reservoir Evaporation Dataset in Texas’
(Zhao et al., 2023, In-review). Additional documentation covering the evaporation database and
Application Programming Interface (API) can be found here: https://twdb.dri.edu/ .
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Figure 1: Map of 188 major water supply reservoirs throughout Texas included in the
evaporation modeling effort.

Daily Lake Evaporation Model

Reservoir evaporation estimates produced by this project are based on a daily version of
Texas A&M Lake Evaporation Model (DLEM) developed by Zhao and Gao (2019). DLEM
utilizes a Penman combination equation along with reservoir fetch and heat storage effects
represented. DLEM requires input solar radiation, wind speed and direction, air temperature,
vapor pressure deficit, and reservoir area and depth data. Meteorological forcing data is adjusted
to over water conditions using wind functions developed by McJannet (2012).

Reservoir heat storage within DLEM is simulated using an equilibrium temperature
approach where water column temperature at the current timestep is calculated from water
temperature at the current timestep, equilibrium temperature, and a lag time. The equilibrium
temperature is defined as the water temperature at which there is no heat exchange between air
and water. The lag time is a function of reservoir depth. Inclusion of heat storage adjustments
improves evaporation estimates in large, deep-water bodies where a significant amount of
radiative energy in the spring goes towards warming the water body rather than fueling
evaporation. Conversely, in the fall when the water body is warm and air temperatures are cool,
heat storage can increase evaporation rates. Daily evaporation rate estimates are combined with
reservoir surface area information to estimate volumetric losses.



As part of the Texas-wide modeling effort, additional work was performed to validate
and test DLEM performance. DLEM evaporations estimates were compared with eddy
covariance-based data from locations both within and outside of Texas including Lake Mead,
Lake Mohave, Lake Powell, and Lake Limestone (Figure 2). Results demonstrate the capability
of DLEM to capture daily variation and magnitude in evaporation rates from multiple locations
and reservoir sizes. Additional details about DLEM validation and performance can be found in
Zhao et al., 2023 (In-review).
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Figure 2: Timeseries (left) and scatterplot (right) comparison of the DLEM estimates and EC
observations for Lake Mead from 1 March 2010 to 30 April 2015, Lake Mohave from 1
June 2013 to 20 April 2015, Lake Powell from 8 November 2018 to 15 December 2021,
and Lake Limestone from 18 November 2019 to 16 May 2020. The scatter plot 1 to 1
reference line is shown in red. Figure modified from Zhao et al., 2023 (In-review).



Input Data

Reservoir Depth, Area, Volumes

Reservoir area, depth, and storage volume information for major reservoirs, with existing
hydrographic and volumetric surveys, was provided by the Texas Water Development Board.
Post-processing workflows were used to reconstruct historical timeseries of depth and area using
area-elevation-volume curves and interpolation. A detailed description of the QAQC and
processing procedure can be found in the supporting manuscript (Zhao et al., 2023; under
review). Real-time reservoir depth information is utilized where available. Locations without
real-time depth information utilize static depths based on full pool estimates. Evaporation
estimates are produced from 1980 to present or for the post-construction period for reservoirs
that were built after 1980. Daily real-time updates incorporate automated data retrieval from the
Water Data for Texas data portal.

Pond Area, Depth Relationships

Six different pond size scenarios were selected for evaporation modeling based on typical
area, depth relationships for ponds throughout Texas (Table 1). Scenarios represent a wide range
of storage conditions including relatively small, shallow ponds as well as larger, deeper systems.
Evaporation estimates produced by the pond analysis include daily, monthly, and annual totals
from 1980-2022. Data produced by this analysis can be leveraged for historical review and future
planning initiatives.

There are two approaches to retrieve evaporation estimates for a specific pond scenario.
If the size and depth of the pond of interest are similar to one of the provided scenarios, estimates
of that scenario can be used directly as the pond evaporation estimates. However, if the pond size
or depth is significantly different from all scenarios, multiple scenarios estimates can be
combined using the inverse distance weighted (IDW) interpolation method to calculate the best
estimate. Sensitivity tests show the root mean square error is less than 0.01 inch/day applying the
IDW method.

Table 1: Table summary of pond evaporation scenarios modeled for all climate grid cells
throughout Texas.

Depth
Scenario (ft) Area (acres) | Volume (acre-ft)
1 5 5 25
2 10 5 50
3 5 25 125
4 10 25 250
5 10 100 1000
6 20 100 2000



https://www.waterdatafortexas.org/reservoirs/statewide

Climate Data

Gridded Climate Dataset Evaluation

Multiple gridded climate products exist capable of providing the necessary DLEM
forcing data, however, the capability of these datasets to accurately represent overwater
conditions is uncertain. For this analysis we evaluated the accuracy of four gridded climate
products: real-time mesoscale analysis (RTMA; DePondeca et al., 2011), gridMET (Abatzoglou,
2013), NLDAS (Xia et al., 2012), and TerraClimate (Abatzoglou et al., 2018). Product accuracy
was assessed by comparing climate model estimates to station-based weather data collected
within close proximity to reservoirs in Texas. A total of 13 TexMesonet station datasets were
used during the weather product evaluation. Variables of interest include wind speed, air
temperature (minimum and maximum), vapor pressure, solar radiation, and reference
evapotranspiration. This evaluation includes raw weather variables such as temperature and
windspeed as well as computed values such as reference evapotranspiration that relies on a
combination of multiple inputs. Data comparisons were made for three time periods including
the growing season (April-October), summer (July-August, JJA), and annual aggregations.
Summary results from the station comparison are shown in Table 2. Results for the individual
stations comparisons are included in the Supplemental Tables section.



Table 2: Summary table of average bias statistics for station, gridded climate comparisons
between alfalfa reference ET (ETr), vapor pressure, wind speed, solar radiation, and air

temperature.
ETr Vapor Pressure Wind Speed, 2m
gs summer | annual gs summer | annual gs summer | annual
mean 1.00 0.98 1.02 1.00 0.98 1.02 0.88 0.88 0.88
RTMA min 0.90 0.86 0.93 0.90 0.86 0.93 0.48 0.47 0.50
max 1.07 1.06 1.09 1.07 1.06 1.09 1.10 1.11 1.11
stddev 0.05 0.05 0.05 0.12 0.12 0.12 0.19 0.20 0.18
mean 0.86 0.86 0.86 0.86 0.86 0.86 0.68 0.67 0.70
gridMET min 0.74 0.72 0.69 0.74 0.72 0.69 0.26 0.25 0.28
max 0.94 0.94 0.95 0.94 0.94 0.95 0.88 0.89 0.92
stddev 0.06 0.06 0.07 0.13 0.13 0.13 0.20 0.20 0.19
mean 0.80 0.78 0.83 0.80 0.78 0.83 0.68 0.67 0.70
NLDAS min 0.67 0.65 0.66 0.67 0.65 0.66 0.26 0.25 0.28
max 0.89 0.86 0.92 0.89 0.86 0.92 0.88 0.88 0.92
stddev 0.06 0.07 0.07 0.13 0.14 0.13 0.20 0.20 0.19
mean 0.73 0.71 0.73 0.74 0.73 0.74 0.80 0.80 0.79
. min 0.05 0.05 0.05 0.12 0.12 0.12 0.34 0.32 0.36
TerraClimate
max 1.07 1.06 1.09 1.07 1.06 1.09 1.09 1.09 1.07
stddev 0.12 0.12 0.13 0.12 0.12 0.12 0.31 0.31 0.32
Solar Radiation Minimum Air Temperature* | Maximum Air Temperature*
gs summer | annual gs summer | annual gs summer [ annual
mean 0.93 0.93 0.94 -0.06 -0.15 0.00 1.26 1.16 1.26
RTMA min 0.89 0.89 0.90 -0.90 -0.87 -0.99 0.35 0.20 0.43
max 1.00 0.99 1.04 0.65 0.48 0.78 3.04 3.32 2.95
stddev 0.03 0.03 0.04 0.48 0.42 0.57 0.82 0.91 0.71
mean 0.93 0.93 0.94 1.12 0.71 1.42 0.51 0.33 0.68
gridMET min 0.89 0.89 0.89 0.40 -0.13 0.79 0.10 -0.05 0.21
max 1.00 0.99 1.05 1.96 1.47 2.28 1.21 1.02 1.32
stddev 0.03 0.03 0.04 0.42 0.46 0.43 0.31 0.31 0.32
mean 0.93 0.93 0.94 -0.57 -0.97 -0.48 -0.78 -1.11 -0.26
NLDAS min 0.89 0.89 0.89 -1.61 -1.95 -1.62 -1.97 -2.83 -1.22
max 1.00 0.99 1.04 1.12 0.78 1.16 0.53 0.90 0.82
stddev 0.03 0.03 0.04 0.77 0.75 0.80 0.76 1.05 0.63
mean 1.00 0.99 1.01 0.97 0.75 1.18 0.17 -0.02 0.35
. min 0.96 0.96 0.97 0.23 -0.04 0.26 -0.77 -1.06 -0.51
TerraClimate
max 1.08 1.08 1.13 1.78 1.48 2.13 1.49 1.52 1.60
stddev 0.04 0.03 0.05 0.50 0.54 0.54 0.75 0.87 0.69

*Temperature bias values are expressed as an absolute bias (station-gridded product). All others
are expressed as a ratio (station/gridded product).

Compared to other climate products, the RTMA dataset consistently better captured
weather conditions at the 13 comparison stations. Importantly, RTMA showed the best estimate
capability for reference ET which utilizes a similar approach to the Penman equation utilized by
the DLEM model. Notably, RTMA outperformed all other models for vapor pressure estimates
due to its incorporation of buoy-based datasets and a land/water mask. TerraClimate
outperformed the other models when estimating solar radiation but performed poorly when
estimating both vapor pressure and reference ET. RTMA does not currently provide estimates of
incoming solar radiation, so NLDAS solar radiation was utilized in the RTMA collection (it
should be noted the gridMET solar is based on NLDAS as well). Differences between the



gridMET and RTMA solar radiation occur during the resampling process from the original 12-
km resolution NLDAS product to 4 km and 2.5 km resolution grid cells for gridMET and
RTMA, respectively. Based on its holistic performance and ability to capture near reservoir
vapor pressure and reference ET, RTMA was selected as the key forcing datasets for DLEM
application in Texas.

Real-time Mesoscale Analysis

Daily near surface weather conditions were extracted from the RTMA dataset stored
within Google’s Earth Engine Data Catalog. RTMA provides hourly estimates of near surface
windspeed and direction, temperature, specific humidity, and pressure at 2.5 km resolution (De
Pondeca et., al. 2011). Hourly data were aggregated to daily timesteps prior to extraction. Daily
RTMA data aggregation start and end at 6 UTC to represent central standard time midnight to
midnight day. Data extraction workflows utilized the RTMA water mask combined with
reservoir maximum areal extent information to extract meteorological data most representative
of average over water conditions for each reservoir (Figure 3). Cell selection for smaller
reservoirs with no water masked values was based on minimum cell elevation for all cells
intersecting the reservoir’s maximum extent.

Figure 3: Examplé‘ ﬁgue of RTMA water mask (hown in red) and base map reservoir extent for
Lake Limestone in Texas.

Pre-2016 Climate Data

The Google Earth Engine RTMA dataset begins in 2011, however, data coverage prior to
2016 includes numerous gaps and missing values. To extend the evaporation estimate record
back to 1980 we incorporated information from the gridMET climate dataset (Abatzoglou,
2013). All evaporation estimates from 2016 forward use RTMA directly, however, estimates
prior to 2016 utilize a hybrid meteorological dataset based on direct comparisons of RTMA with
gridMET. gridMET provides near surface meteorological estimates at 4km resolution from
1979—present, however, gridMET does not incorporate buoy-based station data or conditioning

for overwater conditions and can overestimate aridity in irrigated and, or wet environments
(Huntington, 2011; Abatzoglou, 2013).


https://developers.google.com/earth-engine/datasets/catalog/NOAA_NWS_RTMA#bands

Bias correction factors were developed by comparing average monthly conditions from
RTMA with gridMET for each 4km gridMET grid cell. Prior to comparison RTMA was
resampled to the 4 km gridMET grid using a mean reducer. Monthly ratios of RTMA to
gridMET were developed based on 2016-2021 data for windspeed, specific humidity, and solar
radiation. Temperature correction factors were developed by subtracting gridMET monthly
average minimum and maximum temperature from RTMA. Bias correction factors were then
applied to each individual forcing variable on a monthly basis prior to model input. Similar bias
correction workflows have been utilized to estimate reference evapotranspiration from gridMET
based on comparisons between agricultural weather stations and gridMET (Melton et al., 2021,
Volk et al., 2021).

Evaporation Modeling Results

Modeling efforts produced daily estimates of reservoir evaporation for 188 major water
supply reservoirs throughout the state from 1980—present. Evaporation estimates highlight spatial
and temporal patterns related to climate and storage conditions. Evaporation averaged 58.5
inches/year across all sites and years. The highest average evaporation rates were observed at
Casa Blanca Lake averaging 73.7 inches/year, while the lowest rates were observed at Lake
Palestine, averaging 49.7 inches/year (Figure 4). Lake Palestine showed the highest interannual
variability with a standard deviation of 6.4 inches/year (n=43, 1980-2022). Lake Balmorhea
showed the lowest interannual variability with a standard deviation of 1.8 inches/year. The
highest single year evaporation rate occurred at Casa Blanca Lake in 2011 (81.5 inches/year).
More detailed discussion and analysis of reservoir evaporation estimates can be found in the
supporting manuscript (Zhao et al., 2023, In-review).
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Figure 4: Boxplot summary of average annual evaporation estimates for all reservoirs. Each
point represents the average evaporation rate for a single reservoir from 1980-2022
(n=188). Blue dots show the density of values at each rate within the dataset.



Gridded pond evaporation estimates produced for the entire State of Texas follow distinct
climatic patterns related to atmospheric evaporative demand (Figure 5). More arid regions
throughout southern and western Texas experience increased pond evaporation rates relative to
the more temperate, humid areas of central and eastern Texas. Smaller, shallow pond simulations
show increased evaporation rates relative to larger, deeper systems (Figure 5).

Surface Area: 100 acres, Depth: 20 ft Surface Area: 25 acres, Depth: 5 ft

Annual Evaporation Rate (in/year)

50 75 100
Figure 5: Map of gridded pond evaporation estimates throughout Texas for two different
scenarios. Left) 100 acres, 20 ft deep; Right) 25 acres, 5 ft deep.

Reservoir Evaporation Database and Application Programming Interface

To provide wide-scale data access, DRI set up a virtual machine server that hosts the
geodatabase, a postgreSQL database with a Postgis extension, as well as the geodatabase
fastAPI, a python web framework.
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Figure 6: Conceptual diagram of reservoir evaporation software system hosted on virtual servers
at DRI

Reservoir evaporation for 188 major water supply reservoirs throughout Texas is
produced using a workflow surrounding the TAMU DLEM model. Each day, cron jobs running
python scripts retrieve the latest available RTMA forcing data from Earth Engine along with
reservoir storage information from the Water Data for Texas web portal needed to run the
TAMU DLEM model. RTMA forcing data is provided with a 2-day lag time allowing for
evaporation estimation three days prior to today’s date. Forcing data is processed and combined
with the previous day’s DLEM estimate of water temperature for input to the DLEM model. In
addition to DELM model output DRI produces Net Evaporation, Evaporation Volume and Net
Evaporation Volume. All data including both forcing and model output is then ingested into a
PostgreSQL database for storage and API access. The reservoir evaporation codebase including
database population code, the API framework and the web application is housed within a private
GitHub repository for easy management and consistent tracking of historical changes. The data
can be accessed via the geodatabase API (https://twdb.dri.edu/). DRI has set up a Swagger Ul for
easy access via a web browser. Data can also be accessed directly from the command line via
curl or programmatically. Additional information regarding API set-up and use can be found in
the API Quick Start Guide appendix.

Web Interface

In support of data access and visualization, web-based user interfaces were developed for
both the reservoir evaporation and pond evaporation products. These web portals utilize
Google’s Earth Engine Apps (eeApp) framework to support map-based data visualization and
time series access. Google’s Earth Engine App provides a simple, low-cost option for
visualization and delivery of dynamic spatial data via a web-based user interface.

10


https://twdb.dri.edu/
https://www.earthengine.app/

Reservoir Evaporation Web Application

After DLEM application and database ingestion, data is also converted to Earth Engine
image format and uploaded to Earth Engine storage buckets for web-based display. Reservoir
image collections include both daily and monthly evaporation totals along with the input forcing
data and reservoir depth and area information. This image collection can then be automatically
queried through the eeApp interface for customized data visualization and downloading. All map
and time series visualizations are generated in real-time allowing for flexible plotting (Figure 7).
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Figure 7: Screenshot of Texas reservoir evaporation web application located at:
apps.earthengine.app/view/twdb-reservoir-evaporation
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Pond Evaporation Web Application

In addition to reservoir specific estimates, gridded estimates of pond evaporation for six
different pond scenarios were produced using the Earth Engine processing platform. Direct use
of Earth Engine’s data collections and parallel processing environment allows for streamline
production of evaporation estimates through all of Texas. DRI translated the TAMU DLEM
codebase to python-based Earth Engine code syntax for direct application in the Earth Engine
framework. Estimates produced by the original TAMU DLEM code and Earth Engine version
produced identical output.

Both spatial and time series estimates are accessible via a web-based user interface (UI)
(Figure 8). The web interface supports automated charting for quick visualization as well as
download options for follow-up analyses and post processing. Spatial maps capture general
climate patterns throughout Texas, showing higher evaporation rates in the west and
southwestern areas of the state. Lower evaporative demand areas in the east and northeast show
reduced pond evaporation rates.
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Figure 8: Screenshot of Texas gridded pond evaporation web application located at: https://dri-
apps.earthengine.app/view/twdb-raster-lake-evaporation

Summary

This project developed automated workflows to produce reservoir evaporation estimates
for the State of Texas using the TAMU DLEM. Estimates rely on gridded climate data from
RTMA and real-time storage information (depth, area, capacity) from the Water Data for Texas
data portal. Reservoir specific estimates from 1980—present were produced for 188 major water
supply reservoirs throughout Texas. Real-time updates (~3-day latency) are provided daily to
support operational decision making and water resource planning. In addition to reservoir
specific estimates, a gridded product was developed to provide estimates throughout the entire
state for six different pond scenarios.

Data produced by this project will be used to inform water resources planning and
conservation initiatives throughout Texas. Importantly, this product provides a consistent dataset
for local, state, and federal agencies to share and utilize. Next steps will focus on continued data
production as well as data application and integration within existing planning and management

processes.
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API Quick Start Guide

The Texas Reservoir Evaporation API provides access to evaporation data for water reservoirs
located across the state of Texas.

Project Summary:

Reservoir evaporation is a critical component of water budgeting and operations but is
often overlooked or simplified due to the difficulty in obtaining consistent, accurate estimates.
Historically, reservoir evaporation estimation throughout Texas has relied on pan evaporation
methods that are known to have large bias and uncertainty (Friedrich et al., 2018). Recent
advancements in hydrometeorological modeling and cloud-based data processing allow for real-
time production of high-resolution evaporation estimates capable of informing water
management decision making in near-real time. This project developed a daily reservoir
evaporation database which can be freely accessed and visualized by water managers and
stakeholders in Texas. This database contains historical and near real-time high quality data
records of evaporation rates and volumes for major reservoirs throughout Texas. Evaporation
estimates incorporate meteorological forcing data and reservoir storage information to provide
best available estimates of reservoir evaporation.

Relevant Links
e TX A&M Lake Evaporation Model:
https://www.sciencedirect.com/science/article/abs/pii/S0034425719301063
e Web-based Visualization Tool:
https://dri-apps.earthengine.app/view/twdb-reservoir-evaporation
e Python API example:
https://drive.google.com/drive/folders/1 CpKPuRI31s94hYiyJEJipce9cSU_ McQ4?usp=sh

aring

How to use the API

1. Go to https://twdb.dri.edu/
2. Request API key
1. Click on “/auth/request_key”
Click on “Try it out”
Fill out the Form
Click on “Execute”
You API key should arrive via email within the next 24 hours.

el

A-1


https://www.sciencedirect.com/science/article/abs/pii/S0034425719301063
https://dri-apps.earthengine.app/view/twdb-reservoir-evaporation
https://drive.google.com/drive/folders/1CpKPuRl31s94hYiyJEJipce9cSU_McQ4?usp=sharing
https://drive.google.com/drive/folders/1CpKPuRl31s94hYiyJEJipce9cSU_McQ4?usp=sharing
https://twdb.dri.edu/

auth ~

/auth/request_key RequestKey ~

Request and API key

parameters:
name: Full Name (First Last)
email: Valid email adress
Justification: Please provide a brief explanation why you would like an AP| key issued and how you will use it

returns: You should receive an email within 24 hours

Try It out

Parameters

Name Description

name

string

Your Name
(query)

email

string

your-valid-email@email.com

(query)

justification

string

[ Why are you requesting an AP| key? J

(query)

Figure A-1: Screenshot of swagger page API authorization request end point.

3. Authorize with your API key
1. Click on “Authorize”
2. Enter your API Key in the “Value” field.
3. Click on “Authorize”
4. “Close” the window

s twdb.dri.edu a M 7 = 0

king Travel Inc. /... Buckets () ClimateEngine-v2.... =3 TX - opene..odat.. €) Manageaccess @ https:/j00f74bads.. [Hl Download Now|.. @ BeiFacebook anm... B3 Other B

Texas Reservoir Evaporation AP ® %=

fopenapi json
This API provides access to evaporation data for water reservoirs located across the state of Texas.
Please "Authorize" (top right) with your API key to get started using this page.

Project Summary:

Reservoir evaporation is a critical component of water budgeting and operations but is often overlooked or simplified due to the difficulty in obtaining consi accurate esti H reservoir evaporation estimation
throughout Texas has relied on pan evaporation methods that are known to have large bias and uncertainty (Friedrich et al., 2018). Recent advancements in hydrometeorological modeling and cloud-based data processing allow
for real-time production of high-resolution evaporation estimates capable of informing water management decision making in near-real time.

This project developed a daily reservoir evaporation database which can be freely and by water and stakeholders in Texas. This database contains historical and near real-time, high quality data
records of evaporation rates and volumes for major reservoirs throughout Texas. Evaporation estimates incorporate metrological forcing data and reservoir storage information to provide best available estimates of reservoir
evaporation

TX A&M Lake Evaporation Model: https:/ww i i ience/arti ii/S0034425719301063
Web-based Visualization Tool: https://dri-apps. earthengine. appiview/twdb-reservoir-evaporation
Python example: https //drive.google.com/drive/folders/1CpKPuRI31594hYiyJEJipce9cSU_McQ4?usp=sharing

Collaboratively developed by: Texas Water Development Board, U.S. Army Corps of Engineers, Texas A&M University, and Desert Research Institute

Apache 2.0

Figure A-2: Screen shot of swagger page API authorization key link.



4. Start using the API
1. Use the “help” section to obtain information on parameters to use with requests.
2. Use the timeseries section to obtain data.

auth ~

/auth/request_key Request Key ~

>

m /info/list_ RES_NAMES List Reservoirs v 8 @
PSRN /info/convert _wusLr_tps Listhwsilds e
IEEAN /insoriist aatasets ListDatasets v @
m /info/list_variables UstVariables v B
m /info/list_dates ListPor v B
metadata ~

m /metadata/reservoirs Metadata By Reservoirs v ﬂ

timeseries N

S50 /timeseries/daily/reservoirs/ Timeseries Dat [Get time series for one or more reservoirs, datasets and variables over date range | @

GET /timeseries/daily/reservoirs/date Timeseries Reservoirs Date | Get time series for ALL reservoirs for one or more and variables and o | v B

GET /timeseries/daily/point/pond_evaporation/daterange Timeseries Point Ponds Daterange l Get pond evaporation time series at a point over date range ] v e

/timeseries/daily/polygon/pond_evaporation/daterange Timeseries Polygon Ponds Daterange | Get pond evaporation “m:er‘“ for all pixels in a polygon over v B
ate range

Figure A-3: Screenshot of swagger page API end point options.
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Supplemental Tables

Table S1: Summary table of TexMesonet weather station included in gridded climate comparison analysis.

STATION ID Elevation (ft)|Elevation (m)| Latitude | Longitude |Record Start|Record End
Miller_Creek 1335 406.9 33.414 -99.401 9/3/2003 | 2/23/2022
Cedar_Hill_SP 520 158.5 32.609 -96.993 | 12/17/2003 | 2/23/2022
Cedar 3052 930.2 35.690 -101.568 | 4/18/2002 | 2/23/2022
Falcon_Lake 219 66.8 26.555 -99.136 11/15/2002 | 4/7/2022

Coleman 1509 459.9 31.515 -99.651 4/8/2003 | 2/28/2022
Paint_Creek 1854 565.1 31.906 -100.582 | 12/11/2006 | 2/28/2022
Possum_Kingdom 925 281.9 32.867 -98.562 2/6/2003 | 2/23/2022
Athens 470 143.3 32.221 -95.766 7/12/2002 | 2/23/2022
Doc_Curb_Pump_Station 732 223.1 30.992 -97.545 9/27/2018 | 2/28/2022
Corsicana_Pump_Station 430 131.1 31.957 -96.687 12/1/2019 | 2/28/2022
Aquilla_Water_Supply_District 532 162.2 31.921 -97.179 | 8/21/2019 | 2/28/2022
Lake_Murvaul_Panola 198 60.4 32.027 -94.414 4/27/2020 | 2/23/2022
Lake_Striker_Rusk 328 100.0 31.934 -94.975 | 12/17/2019 | 2/28/2022




Table S2: Summary table of bias ratios and adjustment factors (temperature) between Terra Climate and 13 TexMesonet weather
station datasets in Texas. Comparison statistics show relative bias for alfalfa reference ET (ETr), vapor pressure (Ea), wind
speed at 2 meters (u2), minimum temperature (Tmin), maximum temperature (Tmax) and incoming solar radiation (Srad).

Terra Climate ETr Ea u2 Tmin Tmax Srad

Apr-Oct JA Annual | Apr-Oct JA Annual | Apr-Oct JA Annual | Apr-Oct JA Annual | Apr-Oct JA Annual | Apr-Oct JA Annual
Station ID Average | Average | Average | Average | Average | Average | Average | Average | Average | Average | Average | Average | Average | Average | Average | Average | Average | Average
Miller_Creek 1.370 1.335 1.413 1.029 1.012 1.034 0.915 0.944 0.909 1.206 1.041 1.231 0.194 -0.136 0.311 0.975 0.972 0.984
Cedar_Hill_SP 1.238 1.220 1.279 1.000 0.974 1.020 0.777 0.788 0.772 0.767 0.577 1.121 0.926 0.889 0.900 0.969 0.966 0.975
Cedar 1.380 1.351 1.462 1.032 1.028 1.024 0.793 0.815 0.797 1.545 1.472 1.648 1.492 1.519 1.565 0.986 0.983 0.995
Falcon_Lake 1.378 1.406 1.410 1.048 1.003 1.064 0.956 1.030 0.926 0.744 0.585 1.038 1.337 1.161 1.598 1.036 1.027 1.027
Coleman 1.344 1.304 1.402 1.019 0.995 1.032 0.928 0.910 0.928 1.670 1.462 2.006 0.339 0.312 0.512 0.966 0.961 0.977
Paint_Creek 1.252 1.217 1.317 1.022 0.994 1.031 0.717 0.701 0.742 1.036 0.724 1.461 0.624 0.491 0.828 0.990 0.992 0.995
Possum_Kingdom 1.320 1.292 1.361 1.009 0.978 1.019 0.810 0.815 0.795 1.783 1.478 2.133 0.600 0.589 0.545 0.965 0.961 0.974
Athens 1.187 1.174 1.213 1.035 1.021 1.053 0.851 0.888 0.826 1.419 1.397 1.556 -0.209 -0.395 -0.088 0.978 0.975 0.984
Doc_Curb_Pump_Station 1.258 1.266 1.279 1.022 0.988 1.046 1.015 1.057 0.964 0.393 0.158 0.650 -0.389 -0.725 -0.146 0.962 0.981 0.973
Corsicana_Pump_Station 1.130 1.099 1.154 1.020 1.008 1.048 0.731 0.701 0.732 0.375 0.165 0.700 -0.687 -1.065 -0.243 0.979 0.984 0.989
Aquilla_Water_Supply_Districf 1.272 1.253 1.293 1.065 1.041 1.094 1.094 1.087 1.074 0.557 0.193 0.729 -0.541 -1.065 -0.271 1.000 1.017 1.011
Lake_Murvaul_Panola 1.085 1.046 1.135 0.577 0.566 0.588 0.344 0.323 0.360 0.892 0.570 0.848 -0.770 -0.855 -0.508 1.083 1.078 1.130
Lake_Striker_Rusk 0.986 0.955 0.985 1.080 1.072 1.101 0.412 0.365 0.458 0.234 -0.038 0.258 -0.671 -0.979 -0.473 1.047 1.017 1.102




Table S3: Summary table of bias ratios and adjustment factors (temperature) between NLDAS and 13 TexMesonet weather station
datasets in Texas. Comparison statistics show relative bias for alfalfa reference ET (ETr), vapor pressure (Ea), wind speed at 2
meters (u2), minimum temperature (Tmin), maximum temperature (Tmax) and incoming solar radiation (Srad).

NLDAS ETr Ea u2 Tmin Tmax Srad

Apr-Oct JA Annual | Apr-Oct JA Annual | Apr-Oct JA Annual | Apr-Oct JA Annual | Apr-Oct JA Annual | Apr-Oct JA Annual
Station ID Average | Average | Average | Average | Average | Average | Average | Average | Average | Average | Average | Average | Average | Average | Average | Average | Average | Average
Miller_Creek 0.839 0.837 0.865 1.074 1.102 1.049 0.858 0.877 0.866 -1.611 -1.950 -1.623 -0.773 -1.292 -0.140 0.932 0.934 0.938
Cedar_Hill_SP 0.774 0.753 0.823 1.050 1.076 1.025 0.642 0.633 0.670 0.538 -0.093 0.859 -0.668 -1.119 0.063 0.910 0.919 0.917
Cedar 0.889 0.865 0.918 1.099 1.127 1.075 0.877 0.878 0.879 -1.423 -1.840 -1.382 0.211 -0.284 0.820 0.959 0.955 0.969
Falcon_Lake 0.811 0.830 0.834 1.062 1.054 1.055 0.722 0.708 0.778 -0.825 -0.726 -1.005 0.531 0.898 0.527 0.891 0.908 0.889
Coleman 0.866 0.852 0.892 1.009 1.025 0.995 0.856 0.852 0.862 -0.979 -1.317 -0.795 -0.636 -0.907 -0.137 0.923 0.922 0.934
Paint_Creek 0.855 0.847 0.890 1.030 1.042 1.014 0.763 0.760 0.791 -1.198 -1.311 -1.152 -0.049 -0.259 0.531 0.946 0.947 0.952
Possum_Kingdom 0.820 0.808 0.853 1.037 1.058 1.016 0.714 0.717 0.720 -0.108 -0.618 0.081 -0.546 -0.950 0.026 0.916 0.928 0.926
Athens 0.763 0.749 0.789 1.059 1.083 1.034 0.654 0.662 0.666 1.125 0.776 1.155 -1.118 -1.438 -0.674 0.891 0.887 0.899
Doc_Curb_Pump_Station 0.772 0.743 0.812 0.990 1.027 0.965 0.749 0.744 0.751 -1.081 -1.541 -0.857 -1.891 -2.519 -1.117 0.891 0.900 0.896
Corsicana_Pump_Station 0.694 0.650 0.730 1.009 1.048 0.986 0.536 0.496 0.570 -0.890 -1.399 -0.673 -1.946 -2.831 -1.037 0.912 0.920 0.914
Aquilla_Water_Supply_Districi 0.798 0.761 0.841 1.053 1.094 1.031 0.884 0.853 0.917 -0.896 -1.605 -0.677 -1.968 -2.763 -1.215 0.942 0.958 0.944
Lake_Murvaul_Panola 0.822 0.837 0.814 0.555 0.554 0.560 0.258 0.252 0.278 0.012 -0.402 -0.015 -0.462 -0.233 -0.414 1.002 0.988 1.044
Lake_Striker_Rusk 0.675 0.663 0.664 1.033 1.049 1.015 0.291 0.268 0.334 -0.103 -0.554 -0.163 -0.770 -0.772 -0.610 0.948 0.905 0.995




Table S4: Summary table of bias ratios and adjustment factors (temperature) between RTMA and 13 TexMesonet weather station
datasets in Texas. Comparison statistics show relative bias for alfalfa reference ET (ETr), vapor pressure (Ea), wind speed at 2
meters (u2), minimum temperature (Tmin), maximum temperature (Tmax) and incoming solar radiation (Srad).

RTMA ETr Ea u2 Tmin Tmax Srad

Apr-Oct JA Annual | Apr-Oct JA Annual | Apr-Oct JA Annual | Apr-Oct JA Annual | Apr-Oct JA Annual | Apr-Oct JA Annual
Station ID Average | Average | Average | Average | Average | Average | Average | Average | Average | Average | Average | Average | Average | Average | Average | Average | Average | Average
Miller_Creek 0.976 0.964 0.991 1.045 1.050 1.041 0.956 0.962 0.957 0.310 0.302 0.356 0.911 0.811 0.947 0.929 0.928 0.935
Cedar_Hill_SP 0.920 0.910 0.926 0.985 0.991 0.981 0.661 0.667 0.657 -0.162 -0.129 -0.117 1.876 1.845 1.739 0.919 0.920 0.924
Cedar 1.065 1.062 1.055 0.946 0.957 0.935 0.826 0.851 0.807 -0.242 0.008 -0.516 3.044 3.316 2.494 0.958 0.952 0.968
Falcon_Lake 0.968 0.968 0.995 0.983 0.985 0.982 0.750 0.759 0.765 -0.885 -0.651 -0.969 2.816 2.677 2.954 0.904 0.929 0.903
Coleman 1.066 1.035 1.091 0.986 0.993 0.984 1.102 1.109 1.101 0.573 0.266 0.778 0.938 0.630 1.030 0.926 0.923 0.935
Paint_Creek 1.051 1.032 1.071 0.985 0.987 0.984 1.030 1.023 1.037 0.475 0.354 0.532 1.197 0.913 1.303 0.947 0.952 0.948
Possum_Kingdom 1.039 1.019 1.060 1.011 1.016 1.006 1.060 1.056 1.050 0.227 0.068 0.402 1.251 1.121 1.241 0.924 0.932 0.928
Athens 0.977 0.960 0.992 1.006 1.001 1.007 1.006 1.029 0.975 0.651 0.478 0.772 0.801 0.588 0.975 0.897 0.887 0.900
Doc_Curb_Pump_Station 1.049 1.034 1.064 0.930 0.933 0.928 0.980 1.002 0.951 -0.904 -0.868 -0.985 1.369 1.471 1.243 0.891 0.901 0.897
Corsicana_Pump_Station 0.961 0.939 0.987 0.968 0.970 0.963 0.859 0.835 0.859 -0.156 -0.381 -0.003 0.466 0.245 0.672 0.912 0.920 0.914
Aquilla_Water_Supply_Districy 1.012 0.993 1.051 1.020 1.021 1.014 1.087 1.074 1.109 0.068 -0.220 0.265 0.346 0.200 0.435 0.942 0.958 0.944
Lake_Murvaul_Panola 0.995 0.950 1.035 0.547 0.544 0.556 0.481 0.473 0.503 -0.415 -0.595 -0.367 0.751 0.845 0.709 1.002 0.988 1.042
Lake_Striker_Rusk 0.903 0.864 0.934 0.995 0.997 0.988 0.637 0.596 0.712 -0.266 -0.526 -0.112 0.570 0.382 0.622 0.948 0.905 0.994




Table S5: Summary table of bias ratios and adjustment factors (temperature) between gridMET and 13 TexMesonet weather station
datasets in Texas. Comparison statistics show relative bias for alfalfa reference ET (ETr), vapor pressure (Ea), wind speed at 2
meters (u2), minimum temperature (Tmin), maximum temperature (Tmax) and incoming solar radiation (Srad).

GridMET ETr Ea u2 Tmin Tmax Srad

Apr-Oct JA Annual | Apr-Oct JA Annual | Apr-Oct JA Annual | Apr-Oct JA Annual | Apr-Oct JA Annual | Apr-Oct JA Annual
Station ID Average | Average | Average | Average | Average | Average | Average | Average | Average | Average | Average | Average | Average | Average | Average | Average | Average | Average
Miller_Creek 0.933 0.941 0.941 1.041 1.025 1.046 0.874 0.892 0.883 1.175 0.919 1.276 0.372 0.093 0.565 0.932 0.935 0.939
Cedar_Hill_SP 0.814 0.817 0.822 1.060 1.043 1.080 0.635 0.627 0.663 1.211 0.765 1.638 0.433 0.275 0.715 0.911 0.921 0.917
Cedar 0.940 0.933 0.951 1.144 1.140 1.137 0.877 0.878 0.879 1.569 1.453 1.666 1.215 1.021 1.319 0.959 0.955 0.969
Falcon_Lake 0.850 0.841 0.872 1.030 1.026 1.052 0.715 0.705 0.764 0.833 0.655 1.086 0.576 0.354 0.845 0.890 0.906 0.889
Coleman 0.929 0.917 0.945 1.030 1.015 1.045 0.863 0.856 0.869 1.405 0.824 1.899 0.473 0.211 0.877 0.922 0.922 0.934
Paint_Creek 0.909 0.900 0.927 1.039 1.015 1.052 0.749 0.744 0.776 1.501 1.027 1.886 0.982 0.662 1.221 0.943 0.945 0.949
Possum_Kingdom 0.868 0.874 0.876 1.075 1.058 1.079 0.713 0.716 0.718 1.958 1.472 2.283 0.759 0.669 0.814 0.916 0.927 0.926
Athens 0.836 0.835 0.835 1.029 1.024 1.041 0.659 0.668 0.670 1.349 1.048 1.613 0.157 -0.022 0.341 0.889 0.885 0.897
Doc_Curb_Pump_Station 0.854 0.852 0.846 1.043 1.035 1.064 0.743 0.739 0.746 0.778 0.353 1.118 0.303 0.080 0.417 0.891 0.901 0.898
Corsicana_Pump_Station 0.795 0.770 0.776 1.044 1.041 1.069 0.536 0.496 0.572 0.711 0.214 1.018 0.339 0.109 0.556 0.912 0.920 0.914
Aquilla_Water_Supply_Districy 0.902 0.884 0.891 1.094 1.087 1.118 0.884 0.853 0.920 0.869 0.337 1.220 0.098 -0.054 0.206 0.942 0.958 0.947
Lake_Murvaul_Panola 0.842 0.849 0.793 0.579 0.566 0.605 0.259 0.253 0.283 0.404 -0.134 0.791 0.248 0.328 0.306 1.003 0.988 1.045
Lake_Striker_Rusk 0.737 0.724 0.693 1.062 1.052 1.085 0.292 0.268 0.340 0.784 0.292 0.970 0.677 0.600 0.636 0.948 0.904 0.998




	Executive Summary
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Daily Lake Evaporation Model
	Input Data
	Reservoir Depth, Area, Volumes
	Pond Area, Depth Relationships
	Climate Data
	Gridded Climate Dataset Evaluation
	Real-time Mesoscale Analysis
	Pre-2016 Climate Data


	Evaporation Modeling Results
	Reservoir Evaporation Database and Application Programming Interface
	Web Interface
	Reservoir Evaporation Web Application
	Pond Evaporation Web Application

	Summary
	References
	API Quick Start Guide
	Supplemental Tables

