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EXECUTIVE SUMMARY 
Drought is a pressing environmental issue that is of great importance to the State 

of Texas.  The main objectives of this study were to 1) examine the current drought 

monitoring and drought prediction tools that are available, 2) evaluate the existing 

drought monitoring and prediction tools to determine which are the most appropriate for 

monitoring moisture conditions at the local level in the state of Texas, 3) develop 

operational definitions of meteorological and hydrological/water supply droughts so that 

the onset of duration of droughts events can be clearly identified, 4) develop guidelines 

for the reporting of moisture (drought) conditions at the local level in the state of Texas, 

and 5) make recommendations on how this information can be most effectively 

implemented by the end user.   

A thorough review of the literature was conducted to identify existing drought 

monitoring tools (Task 1- Section 2).  The most promising tools for monitoring 

meteorological and hydrological/water supply drought were evaluated using both a 

qualitative and quantitative approach (Task 2- Section 3).  We recommend using the 

Standardized Precipitation Index (SPI), Percent Normal, and Deciles to monitor 

meteorological drought in Texas because these three indices are relatively easy to 

calculate and they are transparent and easy to understand.  Soil moisture models, such as 

the Decision Support System for Agrotechnology Transfer (DSSAT), were also found to 

provide useful information that can augment the precipitation-based indices.  Although 

these models require more input data, unlike the precipitation-based indices, they can 

simulate all aspects of the soil water budget including infiltration, runoff, 

evapotranspiration.  Other indices such as the Palmer Drought Severity Index (PDSI), 
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Moisture Anomaly Index (Z-index), and Vegetation Condition Index (VCI) performed 

poorly.   

We recommend using the Standardized Streamflow Index (SSFI), Reservoir 

Deficit Index (RDI), and 6-month, 9-month, and 12-month SPI to monitor 

hydrological/water supply drought in Texas.  SSFI and RDI were specifically developed 

for this study and both demonstrate great promise for monitoring hydrological/water 

supply drought.  SSFI is a standardized measure of streamflow that is similar in 

formulation to the SPI.  RDI measures reservoir levels and utilizes the WRAP model to 

avoid the problems associated with changes in water usage over time.  The analysis 

determined that the most appropriate timescale for monitoring hydrological/water supply 

drought varies by basin.  Although the Palmer Hydrological Drought Index (PHDI) and 

Surface Water Supply Index (SWSI) have been commonly used, they have little utility in 

Texas. 

Operational drought definitions were developed by fitting an appropriate 

distribution function to a drought index (Task 3- Section 4).  Five drought thresholds 

(ranging from abnormally dry to exceptional drought) were defined based on the 

percentiles used by the United States Drought Monitor.  Using an objective approach for 

determining drought definitions ensures that droughts are accurately and correctly 

identified at the local level.  It is inappropriate to use a single set of drought definitions 

for an entire state (especially a state the size of Texas).   

Overall, no single index can represent all aspects of meteorological or 

hydrological/water supply drought so it is best to use a multi-index approach for 

operational drought monitoring.  Drought information should be collected and stored in 
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Texas at the finest spatial resolution practicable.  The information should then be 

aggregated to appropriate physical and jurisdictional domains.  For example, 

meteorological drought conditions should be reported at the county level and 

hydrological/water supply drought conditions should be reported using watershed 

boundaries.  The Texas Drought Preparedness Council should establish a system for 

issuing drought watches and drought warnings based on current conditions and climate 

forecasts.  Such warnings should be conveyed to the appropriate county judges and water 

supply agencies. 

This study demonstrates that there is a serious need for developing a Texas 

Drought Monitoring System that utilizes the most appropriate meteorological and 

hydrological/water supply drought indices to provide decision makers with valuable data, 

at the local level, to facilitate the adoption of appropriate adaptation, mitigation, and 

avoidance strategies.  We encourage the Texas Drought Preparedness Council in 

cooperation with the State of Texas to utilize the recommendations contained in this 

report as the basis for developing a Texas Drought Monitoring System.  
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1. INTRODUCTION 

1.1 Background 
Drought is a naturally recurring climatic phenomenon that has a significant 

impact on both the environment and society (Stahle et al., 1998; Stahle et al., 2000; 

deMenocal, 2001).  Although it has numerous definitions, drought originates from a 

deficiency of precipitation over an extended period of time, usually a season or more.  

Since drought is a temporary departure from normal (or expected) climate conditions, it 

can occur in any climate zone.  Drought differs from aridity since aridity is restricted to 

low rainfall regions and is a permanent feature of climate.   

There are two main types of drought definitions: conceptual and operational. 

Conceptual definitions are formulated in general terms and they are used to help people 

understand the concept of drought. Operational definitions are very specific and they are 

used to identify the beginning, end, and degree of severity of a drought (National Drought 

Mitigation Center, http://www.drought.unl.edu). Wilhite and Glantz (1985) identified 

more than 150 conceptual definitions of drought and classified these definitions into four 

categories: meteorological, agricultural, hydrological and socio-economic drought.  

Meteorological drought refers to a period of time where there is a significant negative 

departure from normal precipitation.  Agricultural drought is a period of moisture 

deficiency that is sufficient to have a lasting adverse impact on plant growth or crop 

yield.  Hydrological drought refers to an extended period of time (on the order of months 

or years) of below normal precipitation that results in deficiencies in streamflow, 

groundwater, and lake and reservoir levels (Keyantash and Dracup, 2002).  Similarly, the 

American Meteorological Society defines hydrological drought as “Prolonged period of 

below-normal precipitation, causing deficiencies in water supply, as measured by below-

 7

http://www.drought.unl.edu/


normal streamflow, lake and reservoir levels, groundwater levels, and depleted soil 

moisture content”.  In this study we will refer to this type of drought as 

hydrological/water supply drought since below-normal streamflow, groundwater, and 

lake and reservoir levels will have a negative impact on water supply.  Operational 

definitions for meteorological and hydrological/water supply drought in Texas are 

discussed in section 4. 

According to the Federal Emergency Management Agency (FEMA), the average 

annual cost of droughts in the United States is 6 to 8 billion dollars.  Lott and Ross (2006) 

documented 11 billion-dollar heat waves/droughts between 1980 and 2005 that caused a 

total of 145 billion dollars in damages (all damages standardized and reported in 2002 

dollars).  This includes the widespread drought of 2002 that influenced portions of 30 

states and caused an estimated 10 billion dollars in damages (Lott and Ross, 2006).  The 

drought during the summer of 1998 drought caused approximately 7 to 10 billion dollars 

in damages, the majority of these losses were in Texas.  The most severe drought in 

recent memory occurred in 1988.  It affected much of the central and eastern U.S. and it 

is estimated to have caused 61 billion dollars in damages/losses, most of which occurred 

in the agricultural sector (Lott and Ross, 2006). 

While the effects of droughts are well documented, a uniform method for 

monitoring drought conditions and quantifying the severity of drought does not exist. 

Drought is a complex phenomenon that is difficult to accurately describe because its 

definition is both spatially variant and context dependent.  As a result, there are a large 

number of tools that have been developed to monitor moisture conditions.  The most 

common tool for monitoring drought conditions is a drought index.  A drought index can 
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be used to quantify the moisture condition of a region and thereby to detect the onset and 

measure the severity of drought events.  A drought index can also be used to quantify the 

spatial extent of a drought event, thereby allowing a comparison of moisture supply 

conditions between regions (Alley, 1984).   

Drought indices can be useful tools for providing information to decision-makers 

in business, government and to public stakeholders.  For example, drought indices can be 

used to provide an early drought warning system (Lohani and Loganathan, 1997; Lohani 

et al., 1998), to calculate the probability of drought termination (Karl et al., 1987), to 

determine drought assistance (Wilhite et al., 1986), to assess forest fire hazard and dust 

storm frequency (Cohen et al., 1992), to predict crop yield (Kumar and Panu, 1997), to 

examine the spatial and temporal characteristics of drought, the severity of drought, and 

to make comparisons between different regions (Alley, 1984, 1985; Soule, 1992; Kumar 

and Panu, 1997; Dai et al., 1998; Nkemdirim and Weber, 1999).  

A large number of drought indices exist, each having a variety of data input 

requirements and each providing a somewhat different measure of drought (Heim, 2002).  

Some of the indices that are used include the Palmer Drought Severity Index (PDSI) and 

the Moisture Anomaly Index (Z-index) (Palmer, 1965), the Standardized Precipitation 

Index (SPI) (McKee et al., 1993), the Surface Water Supply Index (SWSI) (Shafer and 

Dezman, 1982), Percent Normal, Deciles (Gibbs and Maher, 1967), and the Normalized 

Difference Vegetation Index-based Vegetation Condition Index (Kogan, 1995).  Given 

the range in derivations and the different responses of these drought indices, not all are 

suitable for measuring meteorological or hydrological/water supply drought. 

Unfortunately, many drought indices have limited utility for state agencies, stakeholders, 
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and decision makers because they are often difficult to interpret (e.g., the method used to 

calculate the indices and their meaning is often unclear to non-scientists), difficult to 

calculate, and they do not provide location-specific drought information (e.g., they are 

spatially coarse). 

The most advanced (‘state-of-the-art’) national drought monitoring product 

currently available is the United States Drought Monitor (hereafter Drought Monitor) 

which was introduced in 1999 (Svoboba et al., 2002).  The Drought Monitor provides a 

subjective measure of drought conditions since it is based on a consensus of opinions and 

a blend of different drought and soil moisture indices.  It is also a highly generalized 

product, spatially (since it is based on climate division data), temporally (since it is only 

updated on a weekly basis), and in its focus (since it attempts to account for all types of 

drought: meteorological, agricultural, and hydrological).  Other drought monitoring 

products are also produced by the Climate Prediction Center (CPC) and the National 

Climatic Data Center (NCDC), and the National Drought Mitigation Center (NDMC).  

The majority of these monitoring products are updated on a weekly or monthly basis and 

they provide drought information at the climate division level.  The size of each of these 

climate divisions is quite variable.  For example, Texas is composed of 10 climate 

divisions that range in size from 7,870 to 100,880 km2 and each contains between 3 and 

44 counties.  Climate division data is not appropriate for providing local-level drought 

information given that moisture (drought) conditions exhibit a great degree of spatial 

variability (e.g., they are spatially hetereogeneous).  Most of this spatial variability is due 

to precipitation, which can vary greatly over short distances, especially during the 

growing season, as a result of convective activity.  Therefore, most of the drought 
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monitoring products that are currently available are too coarse, both spatially and 

temporally, for local-level monitoring and decision-support applications.     

1.2 Scope of Work 
The purpose of this research is to develop tools for monitoring meteorological and 

hydrological/water supply drought at the local level in the state of Texas.  Specifically, 

the main objectives of this research are to 1) examine the current drought monitoring and 

drought prediction tools that are available, 2) evaluate the existing drought monitoring 

and prediction tools to determine which are the most appropriate for monitoring moisture 

conditions at the local level in the state of Texas, 3) develop operational definitions of 

meteorological and hydrological/water supply droughts so that the onset and duration of 

droughts events can be clearly identified, 4) develop guidelines for the reporting of 

moisture (drought) conditions at the local level, and 5) make recommendations on how 

this information can be most effectively implemented by the end user. 

Task 1 provides a summary of the drought monitoring tools that are commonly 

being used within the United States.  This section of the report is divided into five parts.  

The first section provides a list of the drought monitoring products that are currently 

available in the United States.  The second section describes nine meteorological drought 

indices, including their purpose, data requirements, and how they are calculated.  The 

third section describes four indices that are commonly used for monitoring 

hydrological/water supply droughts.  In addition four new drought indices in the context 

of hydrological/water supply droughts are also proposed.  This is followed by a 

discussion of a number of hybrid drought monitoring tools.  Finally, the drought 

prediction tools that are currently available are introduced, although it is not currently 
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possible to forecast drought in Texas with a useful level of accuracy in most 

circumstances.   

Task 2 involved selecting the most appropriate indices for monitoring 

meteorological and hydrological/water supply drought at the local level.  The evaluation 

was carried out in three stages.  The first stage was to review the literature and identify 

the strengths and weaknesses of the meteorological and hydrological/water supply 

drought indices considered in this study.  As implied by Tasks 2 and 3, drought is not a 

single phenomenon with a single index for measuring its severity.  The review of drought 

monitoring tools revealed a broad array of indices that varied greatly in regards to their 

complexity and utility for monitoring moisture conditions at the local level.  In the 

second stage the indices were evaluated using a modified version of the criteria 

developed by Keyantash and Dracup (2002).  This qualitative evaluation is based on six 

criteria, namely robustness, tractability, transparency, sophistication, extendibility, and 

dimensionality.  Finally, all of the indices were calculated for a variety of representative 

locations within Texas and compared using goodness-of-fit measures.  The most 

appropriate indices for monitoring meteorological and hydrological/water supply drought 

were selected based on the results of the three stage evaluation process.  Preference was 

given to those tools that are simple to calculate, easy to understand, and have gained 

scientific or community acceptance.  It was demonstrated that each type of drought 

(meteorological, hydrological/water supply) requires its own set of drought indices to 

effectively monitor it.   

Task 3 involved developing appropriate operational definitions (or thresholds) for 

meteorological and hydrological/water supply drought.  Thirty-three State Drought Plans 
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were reviewed to identify the operational drought definitions that are currently being used 

within Texas and across the United States.  In most cases a single definition is used for 

the entire state and often these definitions are not based on drought impacts.  Therefore a 

new method for developing appropriate drought thresholds for monitoring meteorological 

and hydrological/water supply drought at the local level in the state of Texas was 

introduced.  The benefits of this method were illustrated using data from a number of 

representative stations from across Texas.   

Task 4 involved developing guidelines for reporting moisture conditions at the 

local level.  This section opens with a discussion of why drought conditions should be 

monitored and reported at the local level.  This is followed by a discussion of various 

strategies that are being used for reporting drought information at the local level in other 

states.  The third section investigates what spatial scale is most appropriate for 

monitoring drought at the local level and the fourth section details specific 

recommendations for developing a high-resolution drought information system.  It is 

recommended that, to the extent possible and appropriate, drought and dryness indices 

should be computed at the resolution of the observations (e.g., station, pixel, grid cell).  

For reporting, planning, and response purposes, the dryness information should then be 

aggregated to the appropriate scale, such as county, watershed or water district, in order 

to provide the end users with information that is both precise and simple.   

The final section of this report summarizes our recommendations for 

implementation.  Recommendations are presented for each of the specific tasks and the 

report closes with some concluding remarks. 
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2.0 TASK 1: REVIEW OF EXISTING DROUGHT MONITORING AND 
DROUGHT PREDICTION TOOLS 

2.1 Introduction  
The objective of Task 1 is to examine the tools that are available for monitoring 

and predicting meteorological and hydrological/water supply droughts.  Particular 

attention will be paid to those that are currently being used operationally within the 

United States (Table 1).  This section will be divided into four parts.  First the indices that 

are commonly used to measure meteorological drought will be reviewed.  This will be 

followed by a review of four indices that are commonly used to measure 

hydrological/water supply droughts.  In addition four new drought indices in the context 

of hydrological/water supply droughts are also proposed.  The third section will discuss 

hybrid drought monitoring tools.  These are indices/tools that are not specific to a single 

type of drought (e.g., meteorological or hydrological), they try to monitor multiple types 

of drought.  Finally, there will be a brief discussion of the drought prediction tools that 

are currently available.  The characteristics of the more common drought indices, such as 

the Palmer Drought Severity Index (PDSI), have been extensively analyzed and discussed 

elsewhere; in this study we will refer to but not duplicate that work.  This information 

will be used to identify those tools that will most likely be appropriate for monitoring 

meteorological and hydrological/water supply droughts at the local level in the state of 

Texas.  Task 2 will include a more detailed analysis of the strengths and weaknesses of 

the indices as part of the drought index evaluation.   



Table 1.  Selected drought monitoring products that are currently available in the United States (superscript numbers indicate that an 
example of this drought monitoring product is provided in Appendix A) 

 

Source URL Indices/Data Available Update Frequency 
Spatial 

Coverage 
Spatial 

Resolution 
Climate Prediction 
Center http://www.cpc.ncep.noaa.gov/ PDSI1, PDSI Percentile weekly US Climate Division 
       Crop Moisture Index2 weekly US Climate Division

  Soil Moisture Anomaly3 
daily, monthly, 12 
month US, global ½ degree 

  Evaporation Anomaly4 
daily, monthly, 12 
month US, global ½ degree 

  Runoff Anomaly5 
daily, monthly, 12 
month US, global ½ degree 

  Precipitation Anomaly6 
daily, monthly, 12 
month US, global ½ degree 

     

Experimental Drought 
Indicator Blends (Short7 
& Long8) weekly US Climate Division

    Topsoil Moisture9 
weekly, 5 and 10 
year means US State

Source URL Indices/Data Available Update Frequency 
Spatial 

Coverage 
Spatial 

Resolution 
National Climatic 
Data Center http://www.ncdc.noaa.gov/climate/research/monitoring.html PDI, PHDI10, Z-index11 weekly, monthly US Climate Division 

     
Standardized Precipitation 
Index (1–24 months)12 monthly US Climate Division

      Precipitation Ranks13 monthly US
State, Climate 
Division 

  

Percent of Long-term 
Precipitation (6, 12, 24, 
36, 48, & 60 months)14 monthly US, Mexico Climate Division 

     

Percent of Pasture and 
Range Land in Poor 
Condition15 monthly US State
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 http://www.ncdc.noaa.gov/oa/climate/research/cie/cmsi.html
Corn (Soybean) Moisture 
Stress Index16 annual   US Climate Division

 
http://www.ncdc.noaa.gov/oa/climate/research/snow/snow.ht
ml Snow Monitoring17 

1–7 day snowfall, 
monthly 

National or 
State 

Individual 
stations 

Source URL Indices/Data Available Update Frequency 
Spatial 

Coverage 
Spatial 

Resolution 

Spatial Climate 
Analysis Service http://www.ocs.orst.edu/prism/ Precipitation Anomaly18 

monthly, monthly 
climatology (1971–
2000) US 

2.5 arc-minute (~ 
4 km) 

Source URL Indices/Data Available Update Frequency 
Spatial 

Coverage 
Spatial 

Resolution 
Texas Water 
Development 
Board 

PDSI, PDSI Probability, 
Crop Moisture Index, 
Standardized Precipitation 
Index monthly   Texas Climate Division 

 
http://www.tceq.state.tx.us/permitting/water_supply/pdw/trot/
location.html  

Community Water 
Systems19 monthly Texas 

Individual 
communities 

 
http://www.twdb.state.tx.us/publications/reports/waterconditi
ons/conservationstorage/conservation_storage.htm  Reservoir Storage20   monthly Texas

Individual 
reservoirs 

Source URL Indices/Data Available Update Frequency 
Spatial 

Coverage 
Spatial 

Resolution 
Texas Forest 
Service http://www.tamu.edu/ticc/rgmap.jpg  Relative Greenness21    weekly Texas 4 km

 http://webgis.tamu.edu/kbdi-map.aspx  
Keetch-Byram Drought 
Index22 daily   Texas 4 km

Source URL Indices/Data Available Update Frequency 
Spatial 

Coverage 
Spatial 

Resolution 
NOAA Drought 
Information Center http://www.drought.noaa.gov/

U.S. National Drought 
Overview monthly   US Climate Division

 http://www.orbit.nesdis.noaa.gov/smcd/emb/vci/index.html
Vegetation Health Index23 
& Fire Risk Index weekly, annual US, Global 1.1 km 

 

 
 
http://lwf.ncdc.noaa.gov/oa/climate/research/drought/drought.
html  Drought Calculator N/A   US Climate Division
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Source URL Indices/Data Available Update Frequency 
Spatial 

Coverage 
Spatial 

Resolution 
US Geological 
Survey http://waterdata.usgs.gov/tx/nwis/rt  Streamflow Condition24 

daily, 7-day, 
monthly US, State 

Individual 
stream gauges 

 http://waterdata.usgs.gov/nwis/current/?type=gw  Groundwater Condition daily US 
Individual 
gauges 

 
http://www.cpc.ncep.noaa.gov/products/predictions/experime
ntal/edb/usdm-streamflows-overlay.gif  

7-day Streamflow 
percentiles and Drought 
Monitor Overlay25 weekly  US

Individual 
stream gauges 

Source URL Indices/Data Available Update Frequency 
Spatial 

Coverage 
Spatial 

Resolution 
Southeast Regional 
Climatic Center http://www.sercc.com/climateinfo/drought.html Percent Field Capacity26   weekly

Southeast 
US Climate Division

Source URL Indices/Data Available Update Frequency 
Spatial 

Coverage 
Spatial 

Resolution 
National Drought 
Mitigation Center http://www.drought.unl.edu/monitor/spi-dailygridded.html  

Gridded Standardized 
Precipitation Index27 daily    US ½ degree

 http://droughtreporter.unl.edu/  Drought Impact Reporter daily US County 

 http://www.drought.unl.edu/dm/index.html  Drought Monitor28    weekly
US, North 
America Climate Division

 http://drought.unl.edu/monitor/raindry/precipitationdays.html  

Number of Rain days, 
Number of Dry Days, 
Number of days since last 
rain29  weekly US ½ degree 

Source URL Indices/Data Available Update Frequency 
Spatial 

Coverage 
Spatial 

Resolution 

Joint Agricultural 
Weather Facility http://www.usda.gov/oce/waob/jawf/wwcb.html  

Weekly Weather and 
Crop Bulletin (1971–
present) weekly   US, global N/A

Source 
 

URL Indices/Data Available Update Frequency 
Spatial 

Coverage 
Spatial 

Resolution 

University of 
Washington 
Surface Water 
Monitor 

 
 
 
http://www.hydro.washington.edu/forecast/monitor/index.sht
ml  Soil Moisture Percentile30    daily US ½ degree
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http://waterdata.usgs.gov/tx/nwis/rt
http://waterdata.usgs.gov/nwis/current/?type=gw
http://www.cpc.ncep.noaa.gov/products/predictions/experimental/edb/usdm-streamflows-overlay.gif
http://www.cpc.ncep.noaa.gov/products/predictions/experimental/edb/usdm-streamflows-overlay.gif
http://www.sercc.com/climateinfo/drought.html
http://www.drought.unl.edu/monitor/spi-dailygridded.html
http://droughtreporter.unl.edu/
http://www.drought.unl.edu/dm/index.html
http://drought.unl.edu/monitor/raindry/precipitationdays.html
http://www.usda.gov/oce/waob/jawf/wwcb.html
http://www.hydro.washington.edu/forecast/monitor/index.shtml
http://www.hydro.washington.edu/forecast/monitor/index.shtml
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Source URL Indices/Data Available Update Frequency 
Spatial 

Coverage 
Spatial 

Resolution 
Wildfire 
Assessment System  http://www.fs.fed.us/land/wfas/  

Keetch-Byram Drought 
Index31 daily  US

Interpolated 
from station data 

 

 

http://www.fs.fed.us/land/wfas/


2.2 Review of Meteorological Drought Indices 
This section reviews the drought indices that are most commonly used for 

measuring meteorological drought.  Meteorological drought is usually defined as a 

shortage of precipitation (or moisture supply) over some period of time (weekly, 

monthly, seasonal, or annual time scales).  Definitions of meteorological drought, 

therefore, are location specific since the expected (normal) precipitation is a function of 

the climate.  Some definitions of meteorological drought focus on the amount of time 

since the last significant precipitation (e.g., number of consecutive dry days), while others 

focus on the magnitude of the precipitation departure from normal.  There are numerous 

meteorological drought indices.  This section will describe some of the more common 

ones, including the Palmer Drought Severity Index (PDSI) and Moisture Anomaly Index 

(Z), Standardized Precipitation Index (SPI), Effective Drought Index (EDI), Vegetation 

Condition Index (VCI), Percent Normal, and Deciles.   

This section also describes three different methods for modeling soil moisture.  

Soil moisture in the upper layers of the soil (top 5 or 10 cm) can also be used as a 

measure of meteorological drought since it accounts for the influence of all components 

of the hydrological cycle (infiltration, runoff, evaporation), not just precipitation 

(Ogelsby and Erickson, 1989; Quiring and Papakyriakou, 2003).  Field measurement of 

soil moisture is time-consuming and expensive, and in some cases, it is impossible to 

measure at a regional scale.  Therefore it is difficult to use observed soil moisture for 

drought monitoring activities (except in places where there is a relatively dense mesonet 

(e.g., Oklahoma).  Therefore, most drought monitoring applications that utilize soil 

moisture information rely on modeled soil moisture.  Many different soil moisture 
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models have been developed and these models have different complexities and require 

different data inputs.  In this study three different models of varying complexity are 

investigated, namely the Variable Infiltration Capacity (VIC) (Liang et al., 1994), 

Decision Support System for Agrotechnology Transfer (DSSAT) (Ritchie and Otter, 

1985) and Climatic Water Budget (CWB) (Thornthwaite, 1948; Thornthwaite and 

Mather, 1955). 

2.2.1 Palmer Drought Severity Index (PDSI) and Moisture Anomaly Index (Z) 
The PDSI and the Z-index were both developed by Palmer (1965) and have been 

widely used in the scientific literature (Alley, 1984; Karl et al., 1987).  The PDSI and Z-

index are derived using a soil moisture/water balance algorithm that requires a time series 

of daily air temperature and precipitation data, and information on the available water 

content (AWC) of the soil.  Soil moisture storage is handled by dividing the soil into two 

layers.  The top layer has a field capacity of 25 mm, moisture is not transferred to the 

second layer until the top layer is saturated, and runoff does not occur until both soil 

layers are saturated.  Potential evapotranspiration (PE) is calculated using the 

Thornthwaite (1948) method and water is extracted from the soil by evapotranspiration 

when PE > P (where P is the precipitation for the month).  Evapotranspiration loss from 

the surface layer of the soil (Ls) always is assumed to take place at the potential rate.  It is 

also assumed that the evapotranspiration loss from the underlying layer of the soil (Lu) 

depends on the initial moisture conditions in this layer, PE, and the combined available 

water content in both layers.   

The Z-index is a measure of the monthly moisture anomaly and it reflects the 

departure of moisture conditions in a particular month from normal (or climatically 

 20



appropriate) moisture conditions (Heim, 2002).  The first step in calculating the monthly 

moisture status (Z-index) is to determine the expected evapotranspiration, runoff, soil 

moisture loss and recharge rates based on at least a 30-year time series.  A water balance 

equation is subsequently applied to derive the expected or normal precipitation.  The 

monthly departure from normal moisture, d, is determined by comparing the expected 

precipitation to the actual precipitation.  The Z-index, Zi, then is the product of d and a 

weighting factor K for the month i, 

iii KdZ =          (1) 

where Ki is a weighting factor that is initially determined using an empirically derived 

coefficient, K', and then adjusted by a regional correction factor that is used to account 

for the variation between locations.  Monthly values of Ki are calculated using 
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where D is obtained during the calibration period by determining the mean of the 

absolute values of d for each month of the year.  In (2), a revised regional correction 

factor of 14.2, established by Akinremi et al. (1996), has been substituted for Palmer's 

original value of 17.67 (Palmer, 1965).  Akinremi et al. (1996) found Palmer’s original 

values artificially inflated the drought index values when applied to the Canadian prairie.  

The PDSI, indicated by Xi, is a combination of Zi, for the current month, and the 

PDSI value for the previous month, 
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While both the Z-index and the PDSI are derived using the same data, their 

monthly values are quite different.  The Z-index is not affected by moisture conditions in 
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the previous month, so Z-index values can vary dramatically from month to month.  On 

the other hand, the PDSI varies more slowly because antecedent conditions account for 

two-thirds of its value.  Although the PDSI was designed to measure meteorological 

drought (Table 2), it may be more appropriate as a measure of hydrological drought 

(Strommen and Motha, 1987; Akinremi et al., 1996a) and, according to Karl (1986), the 

Z-index may be a better measure of meteorological or agricultural drought.  It should be 

noted that although both the Z-index and PDSI are strongly weighted by both 

precipitation and temperature anomalies (Hu and Willson 2000), most other 

meteorological indices (e.g., SPI, EDI, percent normal, deciles) are calculated using only 

precipitation.  Alley (1984), Karl (1986), and Guttman (1998) have completed detailed 

evaluations of the limitations of the PDSI and Z-index, their work, along with the work of 

other researchers, has been summarized by Heim (2002).  

Table 2. PDSI classification (Palmer, 1965) 
 

PDSI Value Category 
> 4.0 Extremely Wet 

3.0 to 3.99 Very Wet 
2.0 to 2.99 Moderately Wet 
1.0 to 1.99 Slightly Wet 
0.5 to 0.99 Incipient Wet Spell 

0.49 to -0.49 Near Normal 
-0.5 to -0.99 Incipient Dry Spell 
-1.0 to -1.99 Mild Drought 
-2.0 to -2.99 Moderate Drought 
-3.0 to -3.99 Severe Drought 

< -4.0 Extreme Drought 

2.2.2 Standardized Precipitation Index (SPI) 
The SPI was developed by McKee et al. (1993, 1995) to provide a moisture 

supply index that performed better than the PDSI.  The SPI is based on statistical 

probability and was designed to be a spatially invariant indicator of drought (e.g., SPI is 
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supposed to be spatially and temporally comparable).  It is produced by standardizing the 

probability of observed precipitation for any duration.  For example, durations of weeks 

or months can be used to apply this index for agricultural or meteorological purposes, and 

longer durations of years can be used to apply this index to water supply and water 

management purposes (Guttman, 1999).  The SPI can be calculated for any location that 

has a long-term precipitation record.  The precipitation record is fit with a probability 

density function and subsequently transformed using an inverse normal (Gaussian) 

function (Guttman, 1999).  This insures that the mean SPI value for any given location 

(and duration) is zero and the variance is one.  Positive values of the SPI indicate greater 

than median precipitation, while negative values indicate less than median precipitation 

(Table 3).  An SPI value of less than -1 indicates that a drought event is taking place and 

drought intensity can be calculated by summing the SPI values for all months within a 

drought event (McKee et al., 1993, 1995).   

There are at least two different probability distributions (e.g., Pearson Type III or 

Gamma) that are used to calculate the SPI.  This is important to note because using a 

different probability distribution will produce different SPI values, even with the same 

input data.  Guttman (1999) experimented with different probability distributions and 

concluded that the Pearson Type III distribution provides the best model for calculating 

the SPI.  However, this remains a matter for debate since other studies have identified 

different probability distributions as being the most appropriate for evaluating monthly 

precipitation probabilities (Legates, 1991; Husak et al., in press).  For example, the 

National Drought Mitigation Center (NDMC, drought.unl.edu) uses the 2-parameter 

gamma PDF to fit the frequency distribution of precipitation and calculate the SPI (Wu et 
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al., 2007).  The 2-parameter gamma model has also been implemented in the SPI 

software distributed by the National Agricultural Decision Support System (NADSS, 

nadss.unl.edu).  The calculation of all SPI values for this study will be carried out using 

Guttman's (1999) algorithm.   

The Standardized Precipitation Index (SPI) is widely used in North America and 

around the world for research and operational applications because it standardizes 

precipitation for a specific location and time period of interest (Hayes et al., 1999; Wu et 

al., 2001; Wu et al., 2005; Wu et al., 2007).  The standardization also provides a means 

for determining the rarity of the drought event (and the probability of receiving enough 

precipitation to end the drought) (Table 3).  The SPI also provides the user with a great 

deal of flexibility since it can be calculated for any period of interest (e.g., weeks, 

months, seasons, years).  

Table 3. SPI classification (McKee et al., 1993) 
 

SPI Value Category Probability 
> 2.0 Extremely Wet 2.3% 

1.5 to 1.99 Very Wet 4.4% 
1.0 to 1.49 Moderately Wet 9.2% 

-0.99 to 0.99 Near Normal 68.2% 
-1.0 to -1.49 Moderately Dry 9.2% 
-1.5 to -1.99 Very Dry 4.4% 

< -2.0 Extremely Dry 2.3% 

2.2.3 Effective Drought Index (EDI) 
The EDI was designed to overcome the limitations that other drought indices have 

in identifying the start and end of a drought and calculating drought duration (Byun and 

Wilhite, 1999).  The EDI is calculated on a daily time step and is a function of the 

precipitation needed to return to normal conditions (PRN) (Morid et al., 2006):  
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where j is the actual duration (in days) and ST(PRN) is the standard deviation of each 
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where DEP is the deviation of effective precipitation (EP) for each day from the mean of 

that day’s EP (MEP) 

 DEP = EP – EMP .              (6) 

The effective precipitation (EP) for any day is a function of precipitation for the current 

day and precipitation from previous days, but with lower weights.  The duration of the 

preceding period, over which the EP sum is calculated, can vary but for simplicity 

assume it is 365 days.  Once the duration is set the daily effective precipitation (EPi) is 

calculated as follows 
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]/)[(                                                                                             (7)    

where i is the duration over which the sum is calculated and Pm is the precipitation m – 1 

days before the current day.  For example, if i equals 3 then daily EP is 

(P1+(P1+P2)/2+(P1+P2+P3)/3).  More details on calculating the EDI are available from 

Byun and Wilhite (1999).  

The EDI normally varies from –2.5 to 2.5 and EDI values are standardized so 

drought severity at different locations can be compared (Table 4).  Drought (or dry) 

duration may now be defined similarly to the SPI, as a period where the index is 

consistently negative.  
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Table 4. EDI classification (Morid et al. 2006) 
 

EDI Value Category 
> 2.5 Extremely Wet 

1.5 to 2.49 Severely Wet 
0.7 to 1.49 Moderately Wet 

-0.69 to 0.69 Near Normal 
-0.7 to -1.49 Moderate Drought 
-1.5 to -2.49 Severe Drought 

< -2.5 Extreme Drought 

2.2.4 Vegetation Condition Index (VCI) 
Drought/vegetation indices derived from satellite data have been used for drought 

studies since the beginning of the 1980s (Kogan, 1995).  The use of satellites for drought 

monitoring provides several key advantages over other methods.  Most drought indices 

rely on in situ data and therefore the spatial resolution of these indices depends on the 

density of the data collection network.  It is often difficult to calculate station-based 

drought indices in a timely fashion because the required data is usually not available in 

real-time.  Satellites, on the other hand, can provide near real-time data over large areas at 

a relatively high spatial resolution.  For example, the NOAA series of Polar-orbiting 

Operational Environmental Satellites (POES) (known as the Advanced Tiros-N (ATN) 

series) cover an approximately 3000 km swath and have a relatively high spatial 

resolution (1.1 to 16 km2 depending on the product).  In addition, satellite-based 

drought/vegetation indices are calculated based on the health of the vegetation, rather 

than using meteorological (e.g., precipitation) and environmental variables (e.g., soil 

moisture).  This means that satellite-based drought/vegetation indices may able to detect 

droughts earlier and more accurately than other methods (Kogan, 2001).  Satellites have 

proven to be a useful means for detecting drought onset and measuring the intensity, 

duration, and impact of drought in regions around the world (Gutman, 1990; Nicholson 
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and Farrar, 1994; Kogan, 1995; Unganai and Kogan, 1998; Seiler et al., 2000; Anyamba 

et al., 2001; Wang et al., 2001; Ji and Peters, 2003). 

The ATN series of satellites carries the Advanced Very High Resolution 

Radiometer (AVHRR).  The AVHRR is a five channel passive scanning radiometer that 

is sensitive to light in the visible (channel 1 = 0.58-0.68 µm), near-infrared (channel 2 = 

0.75-1.0 µm), mid-infrared (channel 3A = 1.58-1.64 µm, channel 3B = 3.55-3.93 µm), 

and thermal infrared (channel 4 = 10.3-11.3 µm, channel 5 = 11.5-12.5 µm) regions of the 

spectrum.  The normalized difference vegetation index (NDVI) is a measure of the 

‘greenness’, or vigour of vegetation.  It is derived based on the known radiometric 

properties of plants, using channel 1 (visible (red)) and channel 2 (near-infrared radiation 

(NIR)) from AVHRR 
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CHCH
CHCH

NDVI
+

−
=               (8) 

because when sunlight strikes a plant most of the red wavelengths in the visible portion 

of the spectrum (0.4-0.7 µm) are absorbed by chlorophyll in the leaves, while the cell 

structure of leaves reflects the majority of NIR (0.7-1.1 µm) (Weier and Herring, 2000).  

Healthy plants absorb much of the red light and reflect most NIR.  In general, if there is 

more reflected radiation in the NIR wavelengths than in the visible wavelengths, the 

vegetation is likely to be healthy (dense).  If there is very little difference between the 

amount of reflected radiation in the visible and infrared wavelengths, the vegetation is 

probably unhealthy (sparse) (Weier and Herring, 2000).  NDVI values range from 0 to 1, 

with 0 indicating no green leaves and 1 indicating the highest possible density of 

vegetation.  Areas of barren rock, sand, and snow produce NDVI values of  <0.1, while 
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shrub and grassland typically produces NDVI values of 0.2 to 0.3, and temperate and 

tropical rainforests produce values in the 0.6 to 0.8 range (Weier and Herring, 2000).  

Daily NDVI images are routinely composited over seven days by saving those 

values that have the largest difference between radiance for the NIR and visible 

wavelengths during that period for each pixel (Kogan, 1995).  This is done to minimize 

the effect of cloud contamination.  Noise in the calibrated NDVI can also be caused by 

other sources such as changes in atmospheric composition and transparency, variations in 

the sun/target/sensor geometry, and satellite drift (Kogan, 1995).  It is impossible to make 

physically-based corrections for all error sources, but temporal fluctuations in the weekly 

NDVI time-series can be removed by smoothing the time series using a compound 

median filter (Kogan, 1995).  According to Kogan (1995), this method eliminates outliers 

while emphasizing the annual growth cycle and weather-related NDVI fluctuations.   

Comparing the NDVI time series for a number of years at the same location 

provides information about the relative health of the vegetation in a given year.  

Interannual variations in the magnitude and evolution of the NDVI for a particular 

location are mainly governed by meteorological variables such as precipitation, 

temperature, and relative humidity.  It can be inferred that low productivity (lack of 

‘greenness’ or vigour) is caused, in part, by poor weather conditions, and that high 

productivity is due, in part, to favourable weather conditions.  It should be noted that the 

interpretation of NDVI values is spatially dependent.  This is because more productive 

ecosystems have different radiometric properties than less productive ones (due to 

differences in climate, soil, and topography). 
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  Kogan (1990, 1995) developed the Vegetation Condition Index (VCI) to control 

for local differences in ecosystem productivity.  The VCI is a pixel-wise normalization of 

NDVI that is useful for making relative assessments (e.g., pixel-specific) of changes in 

the NDVI signal by filtering out the contribution of local geographic resources to the 

spatial variability of NDVI.  The VCI is computed as 
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where NDVIi is the smoothed weekly NDVI, and NDVImax and NDVImin are the absolute 

maximum and minimum NDVI, respectively, calculated for each pixel and week from the 

multi-year NDVI climatology (several years of data are necessary to accurately establish 

the maximum and minimum NDVI values for each location).  Individual years can then 

be compared and assessed against the ‘normal’ conditions.  The VCI smoothes out non-

uniformity in the AVHRR data and it indicates how weather conditions have influenced 

the relative vigour of the vegetation with respect to the ecologically-defined limits.   

2.2.5 Variable Infiltration Capacity (VIC) (Soil Moisture Model) 
The Variable Infiltration Capacity (VIC) model was first developed as a single-

layer land surface model by Wood et al. (1992) and was later expanded to a two-layer 

model by Liang et al. (1994).  VIC is a semi-distributed hydrological model that is 

capable of representing subgrid-scale variations in vegetation, available water holding 

capacity, and infiltration capacity (Liang et al., 1994; Liang et al., 1996a; Liang et al., 

1996b).  The influence of variations in soil properties, topography, and vegetation within 

each grid cell are accounted for statistically by using a spatially varying infiltration 

capacity.  VIC utilizes a soil-vegetation-atmosphere transfer scheme that accounts for the 

influence of vegetation and soil moisture on land-atmosphere moisture and energy fluxes 
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and these fluxes are balanced over each grid cell (Andreadis et al., 2005).  The model has 

been utilized in basin-scale hydrological and soil moisture modeling (Abdulla et al., 

1996; Nijssen et al., 1997; Wood et al., 1997; Cherkauer and Lettenmaier, 1999), 

continental-scale simulations associated with the North American Land Data 

Assimilation System (NLDAS) (Maurer et al., 2002; Robock et al., 2003), and global-

scale applications (Nijssen et al., 2001).  A thorough evaluation of VIC was undertaken 

as part of NLDAS and the results indicated that soil moisture is generally well simulated 

by the VIC model (Robock et al., 2003). 

The VIC model was forced using station-based measurements of daily maximum 

and minimum temperatures and precipitation.  Daily 10 m wind speeds from 

NCEP/NCAR reanalysis were also used.  Additional meteorological and radiative 

forcings such as vapor pressure, shortwave radiation, and net longwave radiation were 

derived using established relationships with maximum and minimum temperatures, daily 

temperature range, and precipitation.  Soil characteristics were extracted from the Natural 

Resource Conservation Service’s State Soil Geographic Database (STATSGO).  Land 

cover and vegetation parameters were derived using the global vegetation classification 

developed by Hansen et al. (2000).  Soil moisture was simulated by VIC in three layers.  

The first soil layer was 10 cm deep, the depth of the second soil layer varied from 30 to 

50 cm, and the depth of the third soil layer varied from 40 to 60 cm. 

2.2.6 Decision Support System for Agrotechnology Transfer (DSSAT) (Soil Moisture 
Model) 
 The DSSAT soil water module was originally developed by Ritchie and Otter 

(1985) for use with the CERES-Wheat model and was subsequently modified and 

incorporated into all DSSAT crop models (Jones and Ritchie, 1991; Jones, 1993; Ritchie, 
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1998).  The one-dimensional DSSAT soil water module computes daily changes in soil 

moisture ( ) based on infiltration from rainfall (or irrigation), vertical drainage, 

unsaturated flow, soil evaporation and root water uptake using 

S∆

 DRETIPS −−−−+=∆                       (10) 

where P is precipitation, I is irrigation, T is plant transpiration, E is soil evaporation, R is 

root absorption, and D is drainage.  The soil water content of an individual soil layer also 

increases/decreases through flow (either unsaturated flow or vertical drainage) to/from an 

adjacent layer. 

The DSSAT soil water model requires knowledge of soil water content for the 

lower limit of plant water availability (e.g., the lowest volumetric water content after 

plants stop extracting water, which corresponds closely to the permanent wilting point), 

for the drainage upper limit (e.g., the highest field-measured water content of a soil after 

thorough wetting and draining, closely related to field capacity), and for field saturation 

(e.g., the volumetric water content of a soil when all pores of the soil is filled with water) 

to calculate processes such as root uptake, drainage, and soil evaporation. These 

parameters are necessary for all soil layers due to the heterogeneity of the subsurface.  

The layer depths for each layer are also needed.  In general, the layer depths are 

approximately 20 cm for the top layers and approximately 30 cm for lower layers with a 

total of between 7 to10 layers.  To promote appropriate comparison, it is also often useful 

to divide the soil profile based on measured data depths.  Several of the soil inputs are not 

required for every layer; these include the soil surface albedo, the limit of first stage soil 

evaporation, the runoff curve number and the drainage coefficients.  These variables will 

be used to calculate the various components of the water balance in equation (10) 
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(Ritchie, 1998).  The daily runoff is computed in the DSSAT model using a modified 

USDA-Soil Conservation Service curve number method (Williams et al., 1984).  The 

method applies a SCS curve number that is used to partition the daily precipitation into 

runoff and infiltration based on the wetting or drying condition of the surface soil.  Thus, 

DSSAT ignores rainfall intensity since the SCS procedure does not include time.  When 

irrigation is applied, the amount of water applied is added to the amount of rainfall before 

calculating the partition of runoff and infiltration.  

Drainage can only occur when the current volumetric water content is greater than 

the drained upper limit of volumetric soil water in the layer.  The model uses a ‘tipping 

bucket’ approach to estimate the soil water drainage.  A downward flux for each layer is 

first calculated based on infiltration.  Then the amount of water that the layer can hold is 

calculated as the difference between the current volumetric water content and saturation.  

If the calculated downward flux is less than or equal to what the layer can hold, the soil 

water content of the layer is calculated and compared with the drained upper limit of soil 

water content to decide whether drainage will occur.  The amount of drainage is 

calculated using the drainage coefficient, layer depth, the current volumetric water 

content, and the drainage upper limit of soil water content.  Upward unsaturated flow is 

approximated using a normalized soil water diffusion equation operating on a daily time-

step (Ritchie, 1998).    

 Evaporation from the soil surface, root water uptake, and plant transpiration are 

based on methods developed by Ritchie (1972).  Four options for calculating potential 

evapotranspiration (PE) are included in the DSSAT soil water model.  The default option 

is the Priestley-Taylor method (Priestley and Taylor, 1972).  The Priestley-Taylor method 
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is a simplified form of the Penman method (Penman, 1948) and it requires only daily 

values of net solar radiation and daytime air temperature.  The Priestley-Taylor method 

(1972) can be defined as  
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where PEs is the surface-dependent potential evaporation (mm d-1), ct is a conversion 

constant (0.01157 W m d MJ-1 mm-1), Lv is the latent heat of vaporization (2448.0 MJ 

Mg-1), Rn is the net radiation (W m-2), γ is the psychrometer constant (0.067 kPa K-1), ρw 

is the density of water (1 Mg m-3), and ∆ is the slope of the saturation vapor pressure 

versus air temperature curve (kPa K-1).  Daytime air temperature is approximated from 

daily maximum and minimum air temperatures and daily net solar radiation is computed 

by adjusting total solar radiation to account for the combined albedo of the soil and plant 

canopy.  The model determines soil albedo using the specified soil color.  Plant canopy 

albedo is a function of the leaf area index (LAI) of the crop (a parameter calculated by 

the model).  The slope of the saturation vapor pressure versus air temperature curve, ∆,  is 

calculated using 
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More details on how the Priestley-Taylor method was implemented in the DSSAT soil 

moisture model can be found in Ritchie (1972) and Jones and Ritchie (1991).  

 Once PE has been calculated, it is partitioned into potential soil evaporation and 

potential plant transpiration based on the fraction of solar energy reaching the soil surface 

and the LAI (Jones et al., 2003).  Calculation of actual soil evaporation is based on a two-
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stage process: free soil evaporation and soil-limiting evaporation stages.  The actual soil 

evaporation is the minimum of the potential soil evaporation and soil-limiting 

evaporation on a daily basis.  The actual plant transpiration is considered to be the 

minimum of the potential plant transpiration and potential root water uptake.  The 

potential root water uptake is estimated by calculating a maximum water flow to roots in 

each layer and summing these values. 

2.2.7 Climatic Water Budget (CWB) (Soil Moisture Model) 
A modified version of the CWB can also be used to simulate soil moisture.  The 

CWB is a one dimensional model that calculates the daily or monthly change in soil 

moisture storage due to evaporation, precipitation, infiltration, and runoff assuming that 

the subsurface is a single soil layer (Thornthwaite, 1948; Thornthwaite and Mather, 1955; 

Mather, 1979).  Soil moisture storage will increase whenever precipitation exceeds 

climate demand for water.  When the climate demand (e.g., PET) is greater than 

precipitation, then soil moisture storage will be depleted.  By comparing precipitation and 

potential evapotranspiration, it is possible to estimate the soil moisture change for a 

specific period of time.  The CWB model is calculated using precipitation, temperature 

and soils data.  The available water capacity data (AWC) of the soil (the difference 

between field capacity (FC) and permanent wilting point (PWP)) is a key component in 

calculating soil moisture since it represents the maximum water that could be held in the 

soil by capillary forces after runoff, percolation and evapotranspiration have occurred.   

Potential evapotranspiration (PE) is calculated using the Thornthwaite method which 

accounts for the influence of temperature, and the number of hours of daylight 

(Thornthwaite, 1948).  If potential evapotranspiration exceeds precipitation a soil 
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moisture loss function developed by Willmott et al. (1985) is applied to calculate the 

current soil moisture.  When calculated soil moisture is greater than FC, surplus water (S) 

is calculated as the difference of soil moisture and FC.  This model assumes that half of 

the surplus for a give time step is converted to runoff (streamflow) and the other half is 

held over to the next time step where it is added to the surplus for that period of time.  

2.2.8 Percent Normal 
Percent normal is a simple method for comparing observed precipitation to 

normal precipitation for a particular location and time period.  Observed precipitation is 

divided by normal (mean) precipitation (usually based on 30 years of data) and the result 

is expressed as a percentage.  It can be calculated for any time scale of interest (e.g., day, 

week, month, season, year).  

2.2.9 Deciles 
 Deciles are used to give an element a ranking by arranging the data in order from 

lowest to highest and then splitting into ten equal groups (or deciles).  For example, with 

40 precipitation observations, the first decile would contain the four lowest precipitation 

totals, that is, the lowest 10%.  Reporting decile values of observed precipitation for 

drought monitoring was first suggested by Gibbs and Maher (1967).  Deciles are simple 

to calculate, but they require a relatively long record of precipitation. 

2.3 Review of Hydrological/Water Supply Drought Indices 
Hydrological droughts are associated with the impact of prolonged precipitation 

deficiencies on water supply from surface or subsurface sources such as rivers, reservoirs 

and groundwater (Keyantash and Dracup, 2002).  Similarly, the American 

Meteorological Society defines hydrological drought as “Prolonged period of below-
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normal precipitation, causing deficiencies in water supply, as measured by below-normal 

streamflow, lake and reservoir levels, groundwater levels, and depleted soil moisture 

content”.  In this study we will refer to this type of drought as hydrological/water supply 

drought since below-normal streamflow, groundwater, and lake and reservoir levels will 

have a negative impact on water supply.  The drought indices reviewed in this section can 

be used to represent hydrological/water supply droughts.   

There is an inherent time-lag between meteorological drought and 

hydrological/water supply drought because it takes longer for the precipitation deficiency 

to be reflected in streamflow and reservoir levels.  This is especially important in places 

where groundwater is a major contributor to the streamflow and reservoirs.  After a 

hydrological drought becomes established, even if the precipitation level returns to 

normal, it takes time for the hydrological drought to end.  The time-lag will be small in 

areas with high precipitation and small reservoirs such as Trinity River basin, because 

storm flows usually fill up the reservoirs to pre-drought levels.  The time-lag will be large 

in areas of low precipitation and where spring discharge (from snowmelt) accounts for a 

significant amount of the total annual flow (e.g., Colorado River basin). 

Drought indices such as Surface Water Supply Index (SWSI) (Shafer and 

Dezman, 1982) and Palmer Hydrological Drought Index (PHDI) (Karl, 1986) are 

commonly used by various states to monitor hydrological/water supply drought.  In 

addition, the TWDB also uses Percent of Reservoir Conservation Storage Capacity and 

Streamflow Percent Exceedance as indicators of hydrological/water supply drought.  

Four new indices for monitoring hydrological/water supply drought were developed as a 

part of this study.  They are the Standardized Streamflow Index (SSFI), Streamflow 
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Deficit Index (SDI), Standardized Reservoir Index (SRI), and the Reservoir Deficit Index 

(RDI).  These four indices are based directly on the reservoir and streamflow data that is 

already being used by the TWDB, but these indices use a different standardizing 

procedure.   

2.3.1 Palmer Hydrological Drought Index (PHDI) 
The Palmer Drought Severity Index (PDSI) (Palmer, 1965) is a meteorological 

drought index used to classify wet and dry spells.  The PDSI is a retrospective index 

because its values are back calculated and adjusted after the establishment of a dry or wet 

spell.  Hence, the current value of the index might change if a drought becomes 

established 2 or 3 months from now.  However, when computed in near real-time the 

PDSI is more appropriately termed the Palmer Hydrological Drought Index (PHDI) 

(Karl, 1986) because it does not take into account future dry or wet weather that impacts 

the meteorological drought.  PDSI and PHDI values are identical during an established 

spell and only differ during the onset and ending of a spell.  According to Heim (2002), 

the PDSI considers a drought ended when the moisture conditions begin to recover 

continuously to erase the water deficit, however, PHDI considers a drought ended only 

when the water deficit actually vanishes.  Therefore, the PHDI is a slow-varying version 

of the PDSI.  The lagged response to variations in precipitation makes the PHDI a 

suitable index for monitoring hydrological/water supply droughts (Keyantash and 

Dracup, 2002).  The PHDI is calculated using the same code and input data as the PDSI 

(described in Section 2.2.1). 
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2.3.2 Surface Water Supply Index (SWSI) 
The SWSI is a hydrological drought index that was developed to replace the PDSI 

in areas where local precipitation is not the sole (or primary) source of streamflow 

(Shafer and Dezman, 1982).  SWSI was designed for mountainous locations with 

significant snowfall because of the delayed contribution of snowmelt runoff to surface 

water supplies.  The SWSI is calculated based on the monthly non-exceedance 

probability which is determined using available historical records of reservoir storage, 

streamflow, precipitation, and snowpack.  Using a basin-calibrated SWSI algorithm, 

weights are assigned to each hydrological component based on its typical contribution to 

the water supply (Garen, 1992).  Then SWSI is calculated as a sum of the products of the 

probability of each the hydrological components and their respective weights: 

12
]50)[( −+++

= snowprecstrmresv dPcPbPaP
SWSI          (13) 

where a, b, c, and d are the weighting coefficients representing approximate contribution 

of each component to surface water supplies and P represents the non-exceedance 

probability (%) based on historical records for reservoir storage (resv), streamflow (strm), 

snowpack (snow), and precipitation (prec).  Because it is dependent on the season, the 

SWSI is calculated using only reservoir storage, snowpack, and precipitation during the 

winter (December through May).  During the rest of the year (June to November) 

streamflow replaces snowpack in the SWSI equation.  Calculations are performed on a 

monthly time step.  Monthly data are collected and summed for all locations where 

reservoir storage, streamflow, precipitation, and snowpack are measured in the basin.  

Each component is normalized using the historical data.  The probability of non-

exceedance (e.g., the probability that subsequent values of that component will not 
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exceed the current value) is determined for each component using frequency analysis.  

Converting all of the components to a non-exceedance probability allows their values to 

be compared to each other.  The SWSI, similar to PDSI, has an arbitrary scale that is 

centered on zero and ranges from –4.2 to +4.2. 

SWSI is a particularly good measure of surface water supply conditions in the 

Western United States because it accounts for the major hydrological variables that 

contribute to surface water supply there.  Keyantash and Dracup (2002) compared SWSI 

and PHDI for the Willamette Valley and North Central Oregon climate divisions and 

found that they are similar (correlation coefficients of 0.70 and 0.78, respectively) even 

though they take a different approach for determining water shortages.  The similarity of 

the two indices suggests that precipitation is the most important factor in both SWSI and 

PHDI.  SWSI is routinely calculated by Natural Resources Conservation Service (NRCS) 

for Colorado, Idaho, Montana, New Mexico, Oregon, Utah, and Wyoming because 

snowpack makes a significant contribution to surface water supplies in these states.  

However, it is not routinely calculated for states such as Texas where snowpack is not a 

major contributor to surface water supply.   

2.3.3 Percent of Reservoir Storage Capacity 
Percent of Reservoir Storage Capacity is a straightforward measure of 

hydrological/water supply drought.  It is calculated by dividing the current volume of 

water in the reservoir by the volume at conservation pool elevation.  The TWDB defines 

conservation storage as the volume of water stored in the reservoir between the 

conservation pool elevation and the lowest intake in the reservoir.  This water is available 

for municipal water supply, power, and irrigation.  Table 5 shows the thresholds currently 
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used by the Texas Drought Preparedness Council (TDPC) for assigning drought severity 

based on reservoir level and streamflow. 

Table 5.  Water availability assessment values currently used by Texas Drought 
Preparedness Council (TDPC, 2005) 

 

99-100 

2.3.4 Streamflow Percent Exceedance 
TWDB currently computes Streamflow Percent Exceedance by comparing the 30-

day mean flow to historical streamflow records.  Currently there are 29 streamflow 

stations used to calculate this index.   

2.3.5 Standardized Streamflow Index (SSFI) 
McKee et al. (1993) developed a standardizing procedure for evaluating 

precipitation departures (e.g., SPI) using a PDF.  A similar approach was used to develop 

the Standardized Streamflow Index (SSFI).  Rather than computing SSFI on a monthly 

time step, it is computed on a daily time step using rolling cumulative flows for a variety 

of time scales.  The computation of SSFI consists of following steps: 

1. Compute rolling cumulative stream flow for 10, 30, 90, 180, 360, 720, and 1440 

day time scales for the 30-year based period of record (1971–2000). 
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2. Convert the cumulative stream flow rate into flow depth by dividing the flow rate 

by the contributing drainage area. 

3. For each time scale, for each day of the year, based on the 30-year record, fit a 

Box-Cox transformation to convert the data into normal distribution (365 Box-

Cox transformations).  A Box-Cox transformation was used because the data 

failed to fit any particular distribution.  Even after applying the Box-Cox 

transformation there were still days for which the data did not fit the normal 

distribution.  However, for the sake of consistency we assumed that the 

transformed data fit the normal distribution. 

4. Compute the mean and standard deviation of the transformed data. 

5. Use the Box-Cox transformation coefficient to transfer the current cumulative 

stream flow measurement (X). 

6. Using the mean and standard deviation from historical records, compute the Z 

values in a standard normal distribution (i.e., Z = (X – Mean)/Standard 

Deviation), which is SSFI. 

SSFI is very similar to the percent exceedance of streamflow currently used by 

TWDB.  The percent exceedance of 30-day mean flow would be equivalent to the 

SSFI30 calculated using 30-day cumulative stream flow.   

2.3.6 Streamflow Deficit Index (SDI) 
Another standardizing approach, the Streamflow Deficit Index (SDI), was 

developed to overcome the problem of fitting a statistical distribution to the cumulative 

streamflow data as described previously in SSFI.  The SDI is calculated by scaling 
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cumulative streamflow values using the median, maximum, and minimum cumulative 

values: 
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where i is the years, j is the day of the year (1 to 365), SDIi,j is the Streamflow Deficit 

Index (%), SWi,j is the cumulative streamflow for period of interest (mm), MSWj is the 

long-term median cumulative streamflow for period of interest (mm), max.SWj is the 

long-term maximum cumulative streamflow for period of interest (mm), and min.SWj is 

the long-term minimum cumulative streamflow for period of interest (mm).  These 

equations were used for scaling because they create an index that has a lower bound of -

100 and an upper bound of +100. 

2.3.7 Standardized Reservoir Index (SRI) 
As discussed in relation to the SWSI, reservoir levels are strongly influenced by 

human decisions such as the magnitude, duration and frequency of releases.  The amount 

of water that is annually released or pumped from a reservoir may have increased over 

time due to increases in population or water demand around the reservoir.  Hence, using 

historical reservoir levels to compute non-exceedance probability may lead to errors in 

the calculation of the drought index.   Further, for some reservoirs there may not be 

adequate length of measurement record to compute non-exceedance probability.  The 

Water Rights Analysis Package (WRAP), available within the Water Availability 

Modeling (WAM) system, was used to avoid this problem.  “WRAP simulates 

management of water resources of river basins or multiple-basin region, under a priority-
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based water allocation system, such as Texas Water Rights system” (Wurbs, 2001).  

Based on historical weather data and naturalized streamflow data, WRAP estimates the 

availability of water in streams and reservoir based on existing water rights.  WRAP 

operates on a monthly time step. 

The Texas Commission on Environmental Quality (TCEQ) developed WAM for 

predicting the amount of water that would be available in a river or stream under a 

specified set of existing water rights conditions and for determining the availability of 

water for new water rights.  TCEQ has developed input files with existing withdrawals, 

inter-basin transfers and other complex water allocation systems that are in used in Texas 

River Basins.  These input files were used to simulate the reservoir levels for a 57-year 

period (1941–1996) using the existing water rights conditions.  This long-term simulated 

reservoir level data was used rather than the observed reservoir level data to calculate the 

Standardized Reservoir Index (SRI).  The SRI was calculated using the following steps: 

1. Use WRAP to simulate historical reservoir water levels on a monthly time scale. 

2. Use the current daily reservoir water level data to calculate the percent of non-

exceedance (cumulative probability) based on the simulated reservoir level data 

for that month.  The cumulative probability based on empirical distribution 

approach was used because it was difficult to fit a statistical distribution for the 

data, even after Box-Cox transformation. 

3. Use the cumulative probability to calculate the Z value for the current reservoir 

level (based on the standard normal distribution). 

4. This Z value is the Standardized Reservoir Index (SRI). 
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2.3.8 Reservoir Deficit Index (RDI) 
The Reservoir Deficit Index (RDI) was developed to overcome the problem of 

fitting a statistical distribution to the SRI.  The RDI is calculated as a ratio of the 

difference of the current reservoir level and the median reservoir level: 

Mwl
MwlwlRDI 100*)( −

=       (16) 

where wl is current reservoir water level and Mwl is the long-term monthly median water 

level from WRAP simulation.  The RDI is calculated (and interpreted) in a similar 

manner to Percent Normal. 

2.4 Hybrid Drought Monitoring Tools 

2.4.1 Experimental Blends of Drought Indicators 
In addition to the drought indices that are described above, new drought 

monitoring products have been developed that blend a number of these drought indices.  

The CPC developed two drought blends that objectively combine a number of commonly 

used drought indices, a short-term blend and a long-term blend1.  The short-term blend is 

designed to represent moisture conditions on time scales ranging from days to a few 

months.  It is calculated using Palmer’s Z-index, 1-month precipitation, 3-month 

precipitation, Palmer’s Drought Severity Index, and the CPC Soil Moisture model (Table 

6).  According to the CPC, the short-term blend should be relevant for non-irrigated 

agriculture, topsoil soil moisture, wildfire danger, rangeland and pasture conditions, and 

unregulated streams.  The short-term blend is best described as a measure of agricultural 

and/or meteorological drought.  The long-term blend is designed to represent moisture 

conditions on time scales ranging from several months to several years.  There are two 

                                                           
1 Short-term and long-term drought blends are available at: 
http://www.cpc.ncep.noaa.gov/products/predictions/experimental/edb/droughtblend-access-page.html
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different methods for calculating the long-term blend, but both utilize the Palmer 

Hydrological Drought Index, 12-month precipitation, 24-month precipitation, 60-month 

precipitation, and the CPC Soil Moisture model (Tables 7 and 8).  According to the CPC, 

the long-term blend should be related to reservoir storage, irrigated agriculture, 

groundwater levels, and well water depth.  Therefore the long-term blend can be 

described as a measure of hydrological/water supply drought.  However, the CPC notes 

“the relationship between indicators and impacts varies, sometimes markedly, with 

location and season.  This is particularly true of water supplies, which are additionally 

dependent on the source (or sources) tapped, management practices, and legal mandates” 

(CPC, 2006).  Both of these blends, although they are labelled as “experimental”, have 

been routinely produced on a weekly basis since 2003.  They are calculated and reported 

at the climate division level.  In order to calculate the short-term and long-term drought 

blends all of the indices (Tables 6, 7, and 8) are converted into percentiles using the 

1932–2000 data.  Then a weighted average percentile is calculated and is fit against the 

historical percentiles for all prior months to assign the blended percentile for each climate 

division. 

Table 6. Short-term drought blend 
 

Index Weight 
Palmer’s Z-index 35% 

3-Month Precipitation 25% 
1-Month Precipitation 20% 

CPC Soil Moisture Model 13% 
Palmer (Modified) Drought Index 7% 
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Table 7. Long-term drought blend (Eastern U.S.) 
 

Index Weight 
Palmer Hydrological Drought Index 25% 

24-Month Precipitation 20% 
12-Month Precipitation 20% 
6-Month Precipitation 15% 
60-Month Precipitation 10% 

CPC Soil Moisture Model 10% 
 
Table 8. Long-term drought blend (Western U.S.) 
 

Index Weight 
Palmer Hydrological Drought Index 30% 

60-Month Average Z-index 30% 
60-Month Precipitation 10% 
24-Month Precipitation 10% 
12-Month Precipitation 10% 

CPC Soil Moisture Model 10% 

2.4.2 Drought Monitor 
The most advanced (‘state-of-the-art’) national drought monitoring product 

currently available is the United States Drought Monitor (hereafter Drought Monitor) 

which was introduced in 1999 (Svoboba et al., 2002).  The Drought Monitor provides a 

subjective measure of drought conditions since it is based on numerous drought and soil 

moisture indices and the consensus of opinions from a variety of experts.  The main 

contributors to the Drought Monitor are scientists from the Joint Agricultural Weather 

Facility, National Weather Service, National Climatic Data Center, National Drought 

Mitigation Center, Regional Climate Centers, State Climate Offices, U.S. Geological 

Survey, and a variety of university researchers.  Since no single drought index works well 

under all circumstances (and for all types of drought), the Drought Monitor is constructed 

using data from a large number of disparate sources.   This includes many of the drought 

indices described above (including the short-term and long-term drought blends) as well 

as crop reports, local input, outlooks, and news stories about drought impacts.  The 
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Drought Monitor is a highly generalized product, spatially (since it is intended to 

represent drought on the climate division scale), temporally (since it is only updated on a 

weekly basis), and in its focus (since it attempts to account for all types of drought: 

meteorological, agricultural, and hydrological).  It is designed to serve the needs of 

decision-makers at the federal, state, and local levels.  The Drought Monitor classifies 

drought into four categories based on severity (Table 9).  The Drought Monitor also 

indicates whether drought impacts are primarily affecting agriculture (A) or 

streamflow/water supply/hydrology (H). 

Table 9. Drought Monitor Classification 
 

Category Description Percentile 
D0 Abnormally dry 21-30% 
D1 Moderate drought 11-20% 
D2 Severe drought 6-10% 
D3 Extreme drought 3-5% 
D4 Exceptional drought <2% 

 

2.5 Drought Prediction Tools 
A variety of statistical and dynamical models are used to produce monthly-to-

seasonal forecasts.  These forecasts often rely upon known associations between 

teleconnections such as the phase of El Niño/Southern Oscillation (ENSO) and climatic 

conditions in various regions around the world.  These long-range forecasts can be 

relatively accurate during strong ENSO events, but most seasonal forecasting skill lies in 

the tropics and subtropics, and forecasts are less skillful at higher latitudes in the 

Northern Hemisphere.  Nonetheless, operational seasonal forecasts are produced by a 

number of centers, including the Hadley Center, Climate Prediction Center, European 

Center for Medium-Range Weather Forecasts (ECMWF), and International Research 

Institute for Climate Prediction (IRI) (Table 10).  However, many of their products are 
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still considered experimental because their forecasts lack demonstrated skill, particularly 

in terms of forecasting growing-season precipitation in the mid-latitudes.  While these 

seasonal-forecast models are continually improved, much work remains before they can 

be considered generally useful for forecasting droughts. 
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Table 10.  Selected climate and drought forecasting products that are currently available in the United States (superscript numbers 
indicate that an example of this product is provided in Appendix B) 

 
Source URL Product Description 

Climate Prediction Center (CPC) http://www.cpc.ncep.noaa.gov/products/forecasting/  
6-10 day temperature and precipitation 
forecasts 

  
8-14 day temperature and precipitation 
forecasts 

  
Monthly temperature and precipitation 
forecasts 

  
Seasonal temperature and precipitation 
outlooks (up to 1 year in advance)1 

 http://www.cpc.ncep.noaa.gov/soilmst/forecasts.shtml  Soil moisture forecasts 

 
http://www.cpc.ncep.noaa.gov/products/expert_assess
ment/seasonal_drought.html  Seasonal drought outlook2 

Source URL Indices/Data Available 

Center for Ocean-Land-Atmosphere Studies 
(COLA) http://wxmaps.org/pix/soil1.html  

Short-term climate outlooks for 
temperature, precipitation, and soil 
moisture3 (0-7 days and 7-14 days)  

International Research Institute for Climate 
Prediction (IRI) http://iri.columbia.edu/climate/forecast/net_asmt/  

Seasonal climate forecasts of temperature 
and precipitation (up to 2 seasons in 
advance)4 

 

http://www.cpc.ncep.noaa.gov/products/forecasting/
http://www.cpc.ncep.noaa.gov/soilmst/forecasts.shtml
http://www.cpc.ncep.noaa.gov/products/expert_assessment/seasonal_drought.html
http://www.cpc.ncep.noaa.gov/products/expert_assessment/seasonal_drought.html
http://wxmaps.org/pix/soil1.html
http://iri.columbia.edu/climate/forecast/net_asmt/


3.0 TASK 2: EVALUATION OF THE EXISTING DROUGHT MONITORING AND 
PREDICTION TOOLS TO DETERMINE WHICH ARE THE MOST 
APPROPRIATE FOR MONITORING MOISTURE CONDITIONS AT THE LOCAL 
LEVEL IN THE STATE OF TEXAS 
 

3.1 Introduction 
This objective of this task is to analyze the drought indices that were introduced in 

Task 1 and a number of new indices that were specifically developed during this project to 

determine which are most appropriate for monitoring meteorological and hydrological/water 

supply droughts at the local level in the state of Texas.  These two types of drought are 

considered separately since each has a unique time scale and is associated with different 

impacts.  Since the objective of this study is to make practical suggestions for developing a 

state-wide drought monitoring system at the local level the analysis was preformed using 

pragmatic (e.g., data availability, complexity) as well as scientific criteria.  The selection of 

the most appropriate meteorological and hydrological/water supply drought indices was 

carried out in three stages.  The first stage was to review the literature and compile a list of 

the known strengths and weaknesses of each of the drought indices.  Then the indices were 

evaluated qualitatively using a modified version of the criteria developed by Keyantash and 

Dracup (2002).  Finally, all of the indices were calculated for a variety of representative 

locations within Texas and compared using goodness-of-fit measures.  The most appropriate 

indices for monitoring meteorological and hydrological/water supply drought were selected 

based on the results of the three-stage evaluation process.   

All of the meteorological drought indices (including those derived from station data, 

satellite data, and soil moisture models) were calculated at a number of scales over Texas 

ranging from individual stations and grid cells (resolution of 4 km2) to the county, watershed, 

and climate division levels.  The spatial resolution that was used was determined by data 
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availability and the type of drought index.  All of the hydrological/water supply indices were 

evaluated using data from six watersheds from across Texas: Red River, Upper Trinity, 

Lower Trinity, Colorado, Guadalupe, and San Antonio.  These watersheds were chosen 

because they encompass a wide range of climate, vegetation, soil, and hydrologic conditions 

that are representative of Texas and because good drought verification data was available 

within them. 

3.2 Review of Drought Index Strengths and Weaknesses 
 The first step in determining which meteorological and hydrological/water supply 

drought indices are the most appropriate for monitoring drought conditions at the local level 

was to review the scientific literature and compile a list of the strengths and weaknesses of 

each index.  In this section the data requirements of each drought index will also be described 

since the purpose of this study is to identify drought indices that can be calculated 

operationally.  Therefore the “best” drought indices are those that can be calculated using 

readily available data.  Only those indices that are critiqued in the literature have been 

included in this section. 

3.2.1 PDSI, PHDI, Z-index 
The PDSI, PHDI, and Z-index are all calculated using the algorithm that was 

developed by Palmer (1965) and therefore these indices will be discussed together.  For 

simplicity, all of the discussion will use the term PDSI to refer to all three of these indices.   

The PDSI is calculated using temperature and precipitation data.  The daily 

temperature and precipitation data are aggregated to weeks or months, depending on the 

time-scale of interest.  The PDSI also needs information on the available water holding 

capacity of the soil.  These data can be extracted from the NRCS STATSGO soil database.  
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Since the PDSI uses the Thornthwaite (1948) method for estimating PET, the latitude of the 

location also needs to be provided. 

The PDSI was the first comprehensive drought index developed in the U.S. and it is 

widely used for drought monitoring and within state drought plans (Heim, 2002).  Despite its 

widespread use, the PDSI has many limitations.  One of the limitations of the PDSI is that 

PET is estimated using Thornthwaite’s method (which only considers monthly temperatures 

to estimate PET) (Narasimhan and Srinivasan, 2005).  More realistic estimates of PET can be 

generated by using a physically-based method such as the FAO Penman-Montieth equation 

(Allen et al., 1998).  However, it should be noted that a recent study (Mavromatis, 

unpublished) determined that calculating the PDSI with a more physically-based method of 

calculating ET did not improve the correlation between the PDSI and soil moisture at the 

study sites in Greece. 

Another limitation of the PDSI is that it uses a two layer soil model with just a single 

parameter for the available water holding capacity of the soil.  This may be reasonable when 

calculating the PDSI for a single location (e.g., station), but it is inappropriate for calculating 

the PDSI for regions, such as climate divisions within which the soil is highly spatially 

heterogeneous (Narasimhan and Srinivasan, 2005).  In Texas climate divisions range in size 

from from 7,870 to 100,880 km2 and so each encompasses a wide range of soil types.  There 

is no way to represent the horizontal and vertical heteorogeneity of soil properties in the 

PDSI water balance.  It is important to use an appropriate value for the available water 

holding capacity of the soil because it has been demonstrated that the PDSI is sensitive to 

changes in this parameter (Karl, 1983). 
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The PDSI also assumes that runoff only occurs when the two soil layers are both 

completely saturated.  In reality runoff varies due to differences in slope, soil type, land use, 

land cover, and land management practices (Narasimhan and Srinivasan, 2005).  None of 

these factors are accounted for in the PDSI.  Alley (1984) noted that there are also problems 

with how runoff is generated because the model does not account for the distribution (or 

intensity) of precipitation within the week or month.  The PDSI also does not account for the 

seasonal changes in vegetation growth and root development and it is not designed to deal 

with a snowpack or frozen soil (Alley, 1984; Karl, 1986; Karl et al., 1987). 

PDSI is highly dependent on the weighting factor used to make it comparable 

between different regions (and months) (Heim, 2002).  Palmer (1965) calculated the regional 

correction factor (K) based on data from only nine locations in seven states (Wells et al., 

2004).  Akinremi et al. (1996) found Palmer’s original value of 17.67 artificially inflated the 

drought index values when applied to the Canadian prairie and used a revised regional 

correction factor of 14.2.  Palmer (1965) calculated the duration factors 0.897 and 1/3 based 

on data from western Kansas and central Iowa and they affect the sensitivity of the index to 

precipitation events (Wells et al., 2004).  An improvement proposed by Wells et al. (2004) is 

meant to correct the lack of spatial comparability by dynamically calculating the regional 

correction factor (K) and the duration factors using historical climate data from each location.  

This revised PDSI is called the self-calibration PDSI (SC-PDSI).  The original formulation of 

the PDSI is known to be spatially and temporally variant and therefore it cannot be compared 

across the U.S. or between months (Alley, 1984; Guttman et al., 1992; Guttman, 1998; Heim, 

2002).  This means that severe and extreme droughts as defined by the PDSI occur more 

often in some parts of the country than others (Wells et al., 2004).  The SC-PDSI is supposed 
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to correct these problems by dynamically calculating all of the empirical constants (e.g., 

regional correction factor).  However, the length of the calibration period (historical record) 

will have an influence on the stability of the estimated parameters.  Longer calibration 

periods tend to provide more consistent PDSI values (Karl, 1986).  For comparison purposes, 

the same calibration period should be used for all locations. 

Interpreting the PDSI can also be a challenge since it is a function of both 

temperature and precipitation data (Hu and Willson 2000).  It has been demonstrated that the 

PDSI responds in a non-linear fashion to changes in precipitation (Hu and Willson 2000).  

Although the PDSI is often defined as a meteorological drought index the PDSI responds 

rather slowly to changes in moisture conditions.  According to Guttman (1998), the PDSI has 

a ‘memory’ (its spectrum conforms to that of an autoregressive process) and it is highly 

correlated with the 12-month SPI (Heim, 2002).  This means that both the PDSI and PHDI 

are more appropriate for measuring hydrological/water supply droughts.  The Z-index can be 

used for measuring agricultural and meteorological drought since it only accounts for the 

moisture conditions during the current week or month (Quiring and Papakyriakou, 2003).   

The drought classification that was proposed by Palmer (1965) (Table 2) was 

arbitrarily determined, so those thresholds are not appropriate for making water management 

decisions or triggering drought response programs or declarations of drought emergency 

unless they have been confirmed by an independent local assessment (Alley, 1984).  It has 

also been demonstrated that the calculation procedure for transitioning between wet and dry 

spells tends to produce an asymmetrical and bimodal distribution of PDSI values (Alley, 

1984; Heim, 2002).  Therefore, the PDSI is not normally distributed and can not be 

interpreted in the same way as other indices, such as the SPI.  
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In addition, it is difficult to interpret or visualize the PHDI in terms of actual deficit in 

observed streamflow or reservoir level because the index only quantifies soil moisture 

balance and does not look specifically at streamflow which is most often the major source of 

water supply to reservoirs.   

3.2.2. SPI  
The SPI is a popular drought index because of its simplicity and versatility.  To 

calculate the SPI one only needs weekly or monthly precipitation data (depending on the time 

scale on the intended application).  The SPI can be calculated for any time period of interest.  

It is commonly calculated using 1-month, 3-month, 6-month, 9-month, 12-month, and 24-

month intervals.  These time-scales are appropriate for monitoring different types of drought 

and correspond to different drought impacts.  Unlike the PDSI, the SPI is spatially invariant 

(Guttman, 1998; Heim, 2002; Wu et al., 2007) and so values of the SPI can readily be 

compared across time and space.  Although the SPI can be calculated in all climatic regions 

(Heim, 2002), it is important to note that arid regions, those that experience many months 

with zero precipitation, may be problematic for the SPI depending on which PDF is used to 

normalize precipitation (Wu et al., 2007).  The SPI is also easier to understand and interpret 

than the PDSI since its value is only based on precipitation and since it is reported in 

standard deviations away from the mean. 

However, there are some limitations associated with the SPI.  Like the PDSI, it is 

computationally complex (it cannot be calculated by hand or with a spreadsheet) and it 

requires specialized code.  The SPI also requires a long (and complete) precipitation record.  

It has been demonstrated that the SPI is strongly influenced by record length (Wu et al., 

2005).  Therefore when comparing stations to each other, it is best if they have the same 
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length of precipitation record.  The minimum precipitation record for calculating the SPI is 

30 years, but it is recommended to use 50+ years of data (and the extreme values of the SPI 

may only be accurate when even longer precipitation records are used (80+ years)) (Wu et 

al., 2005). 

The SPI is also influenced by normalization procedure (e.g., PDF selection) that is 

used.  The National Drought Mitigation Center (NDMC), Western Regional Climate Center 

(WRCC), and National Agricultural Decision Support System (NADSS) all use the two-

parameter gamma PDF to calculate SPI.  However, there is little consensus about what 

normalization procedure is best.  Guttman (1999) analyzed six different PDFs (including: the 

two-parameter gamma; the two-parameter gamma, for which the parameters are estimated by 

the maximum likelihood method; the three-parameter Pearson Type III; the three-parameter 

generalized extreme value; the four-parameter kappa; and the five-parameter Wakeby) and 

determined that the Pearson Type III was the most appropriate PDF for calculating SPI.  

Using a different PDF will generate different SPI values. 

Although it has not been reported in the literature, it can also be demonstrated that the 

SPI will be strongly influenced by the presence of missing data (and the 

interpolation/replacement of missing data).  This analysis demonstrates that decisions that are 

made about how missing data is handled will have a direct impact on the magnitude of 

precipitation-based drought indices such as the SPI.   

The SPI requires accurate precipitation data.  Although collecting accurate 

precipitation data is important for all of the precipitation-based drought indices, it is 

particularly important for the SPI because it is extremely sensitive to precipitation events in 

both tails of the distribution.  Because precipitation is highly spatially heterogeneous and the 
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density of precipitation gages in Texas is relatively low, this means that individual gages may 

miss some heavy (convective) precipitation events.  It also means that care should be taken 

when aggregating precipitation records to determine mean county (or climate division) 

precipitation.  Averaging precipitation over space (and time) will tend to smooth the data and 

distort the true distribution of precipitation.  This has implications for how precipitation data 

should be handled and aggregated prior to calculating the SPI. 

3.2.3 EDI 
The EDI is calculated using daily precipitation data and it was designed for detecting 

the onset and termination of drought events.  The EDI was also designed to use a time 

dependent weighting function that places more emphasis on recent precipitation surpluses or 

deficits and less emphasis on conditions a number of months in the past (Byun and Wilhite, 

1999).   

One of the major weaknesses of the EDI is that it is relatively unknown so its ability 

to accurately monitor drought conditions remains largely untested (Morid et al., 2006).  In 

addition, the methodology for calculating the EDI is not straightforward.  Even though both 

the SPI and EDI only use precipitation data, the EDI is almost uncorrelated with the SPI.  

Therefore, the EDI cannot be easily interpreted.  The EDI is also difficult to use because code 

for calculating it is not readily available.  Those interested in calculating the EDI must write 

their own code.  Another major disadvantage to using the EDI is that it lacks the nice 

statistical properties of some of the other precipitation-based indices (SPI, deciles, etc.).  For 

example, Morid et al. (2006) demonstrated that the EDI is not normally distributed. 
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3.2.4 VCI 
The VCI is calculated using AVHRR-based NDVI data.  One of the main advantages 

of the VCI is that, because it is a satellite-based drought product, it can provide near real-time 

data over the globe at a relatively high spatial resolution.  The spatial resolution of the VCI 

greatly exceeds that of all of the other drought indices that have been evaluated.  In addition, 

the VCI uses a completely independent methodology for monitoring drought, while all of the 

other meteorological indices rely, to some extent, on station-based meteorological data.  

Although the station-based indices may provide accurate point estimates of drought 

conditions, they cannot provide the same spatial resolution as the VCI because of the 

relatively sparse station network (particularly if when considering only those meteorological 

stations that have at least 30+ years of continuous data).  There have also been a number of 

studies that have evaluated the ability of the VCI to monitor drought in a variety of regions 

around the world (Gutman, 1990; Nicholson and Farrar, 1994; Kogan, 1995; Unganai and 

Kogan, 1998; Seiler et al., 2000; Anyamba et al., 2001; Wang et al., 2001; Ji and Peters, 

2003). 

One of the main limitations of the VCI is that it requires specialized software to 

calculate.  In addition, because the VCI is calculated using the entire time series of AVHRR 

data, calculating the VCI involves managing relatively large data volumes. 

The VCI is most useful during the growing season because it is a measure of 

vegetation vigor, when the vegetation is dormant (or there is snow cover) the VCI cannot be 

used to measure moisture stress or drought.  Interpretation of the VCI may be more 

complicated than other drought indices because the satellite is providing an indirect measure 

of moisture (drought) conditions.  Anything that stresses the vegetation including insects, 

disease, and lack of nutrients will result in decreases in plant growth and therefore lower VCI 
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values.  Also, areas that have significant irrigation may not respond to precipitation 

deficiencies.   

In addition, there are some challenges to using satellite data for monitoring drought 

because there have been changes in satellites and sensor and sensor degradation can bias the 

AVHRR data.  There is also contamination of the vegetation response signal by clouds.  The 

compositing procedure is meant to reduce the influence of clouds, but in some locations and 

seasons cloud contamination may still be an issue.  In addition there are numerous other 

sources of atmospheric attenuation and the atmospheric correction, smoothing, and 

compositing procedures will not account remove all of these influences. 

The VCI is most appropriate for monitoring meteorological and agricultural drought.  

It has not been demonstrated that the VCI can be used to monitor hydrological/water supply 

droughts.  The VCI is not suitable for comparing current drought conditions with historical 

droughts because AVHRR data is only available since 1981.  It is also difficult to compare 

droughts that occur in different locations because the response of VCI is ecosystem 

dependent.  Thus, VCI only provides a relative measure of drought conditions and because 

different locations may have experienced different drought severity since 1981. 

3.2.5 Soil Moisture Models (VIC, DSSAT, CWB) 
The strengths and weaknesses of the three soil moisture models will be considered 

together since it is unlikely that there would be a need for using more than one soil moisture 

model for monitoring drought.  The data requirements for VIC, DSSAT, and CWB have been 

already described in sections 2.2.5, 2.2.6, and 2.2.7, respectively.   This section describes the 

general strengths and weaknesses of using soil moisture models, and section 3.4.1 shows the 
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results of a model evaluation that was performed to determine which of these three soil 

moisture models are most appropriate for simulating soil moisture in Texas. 

One of the main advantages of using soil moisture models for monitoring drought are 

that they integrate the effects of temperature, precipitation, solar radiation, wind speed, and 

other meteorological variables.  The influence of these variables is accounted for either 

explicitly or implicitly, depending on the model, so soil moisture should be more directly 

linked to impacts (reservoir storage, groundwater recharge, streamflow, agriculture, etc.) than 

indices that are only based on precipitation. 

Soil moisture models provide a variety of parameters that can be analyzed.  For users 

interested in meteorological drought, the soil moisture anomalies in the upper 5 or 10 cm of 

the soil are highly correlated with other measures of meteorological drought.  Users who are 

interested in hydrological/water supply drought can analyze the soil moisture in the lower 

layers of the soil since these will be strongly related to base flow, groundwater recharge, and 

reservoir levels.  Root zone soil moisture is highly correlated with yield and agricultural 

drought.  Another advantage of soil moisture models is that they provide high resolution 

(both spatially and temporally) drought monitoring data since they calculate soil moisture at 

a daily time-step and for a specific location.  

There are also some drawbacks to using soil moisture for drought monitoring 

applications.  Since observed soil moisture data is not commonly available, soil moisture 

must be estimated with a model.  Although these models can successfully simulate soil 

moisture they may require extensive calibration and validation.  Soil moisture models also 

require more input data than precipitation-based indices and they are more complicated to 

calculate and run than many of the other drought indices that are considered in this study.  

 60



Soil moisture models are particularly sensitive to the soil parameters that are used.  Since it is 

not practical to collect field data for every location in Texas for which soil moisture will be 

simulated, it is necessary to use existing soil databases to extract the required soil variables.  

These databases tend to have a relatively coarse spatial resolution so they may not be 

appropriate for simulating soil conditions for a specific location.  It should also be noted that 

soil parameters and precipitation are both highly spatially heterogeneous.  In addition, other 

factors such as the distribution of vegetation, plant rooting depths, slope, and cracks in the 

soil can have a significant influence on the spatial and temporal distribution of soil moisture.  

Therefore soil moisture is known to vary greatly over short distances (for example within a 

single agricultural field).  Therefore, it is important to note that there are some fundamental 

scale issues that need to be addressed when using soil moisture models to monitor drought at 

the local and regional level. 

The three models that were considered in this study also have there own specific 

strengths and weaknesses and they all differ in regards to how they attempt to calculate soil 

moisture.  In regards to modeling soil moisture, DSSAT can divide the soil into up to 10 

layers, VIC divides the soil into 3 unequal layers, and CWB only uses a single layer to 

simulate soil moisture.  Therefore, VIC and DSSAT are designed to more accurately account 

for heterogeneity within the soil profile.  Both VIC and DSSAT are also more sophisticated 

in their treatment of ET.  VIC calculates ET from three separate components, the evaporation 

from the soil, evaporation water intercepted by the plant, and transpiration from the plant 

leaves.  DSSAT first calculates potential evapotranspiration (PET) and then partitions it into 

potential evaporation and potential transpiration based on the leaf area index.  CWB uses the 

Thornthwaite method to estimate PET (where PET is a function of the mean temperature and 
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the number of hours of daylight).  Therefore, CWB is not sensitive to vegetation types and it 

excludes root water extraction in the subsurface.  Both VIC and DSSAT models include root 

water extraction and root water uptake changes with time.  

3.2.6 Percent Normal and Deciles 
Due to the similarity of Percent Normal and Deciles, and the lack of published 

literature that critiques these two methods, they will be treated together.  Both of these simple 

indices only require precipitation data.  Percent Normal and Deciles are both easy to 

calculate (e.g., they do not require any specialized software) and interpret.  Both indices 

provide an accurate, statistical measurement of precipitation, and both can be calculated for 

any period of interest.  Deciles also provide an estimate of how rare a particular precipitation 

event is in relation to the historical record. 

The main limitations of these two indices are that, like the SPI, they require long data 

records.  For percent normal, the previous three complete decades are normally used, but 

some applications use the period of record.  For deciles, more than three decades are 

desirable, the longer the better.  Percent Normal is based on the statistical concept of 

“normal” (mean) which may not have much meaning in regards to drought impacts.  The idea 

of normal is not always well understood by the general public since it does not necessarily 

correspond with what we expect the weather to be.  Percent Normal also does not account for 

precipitation variability (standard deviation) since it is only based on the first moment.  It is 

also inappropriate to compare Percent Normal between locations, since 30% of normal in 

west Texas will refer to a much different precipitation deficit than 30% of normal in east 

Texas and may be associated with very different impacts. 
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3.2.7 SWSI 
SWSI is calculated using monthly precipitation (both snow and rain), streamflow, and 

reservoir storage levels.  SWSI is particularly useful in the western U.S. where snowpack 

makes a major contribution to streamflow (Garen, 1993).  One of the major advantages of 

using the SWSI to monitor hydrological/water supply drought is that it incorporates 

snowpack, reservoir storage, and precipitation at high elevations (Shafer and Dezman, 1982; 

Garen, 1993).  Rather than using model estimates of hydrological variables as in PHDI, 

SWSI explicitly looks at measured hydrological variables in the calculation of the index.  

Hence the interpretation of SWSI is easier than PHDI.  SWSI is also useful because it is 

designed to represent the water supply conditions unique to each basin.  However this is also 

one of the drawbacks of the index because the SWSI must be calibrated for each basin and 

the factor weights vary from state to state and month to month (Doesken and Garen, 1991; 

Doesken et al., 1991).  Therefore the SWSI for each basin has different statistical properties 

and the meaning of SWSI is spatially and temporally variant (Doesken and Garen, 1991; 

Doesken et al., 1991).  

Another limitation of the SWSI is that it was designed for mountainous basins that are 

dependent on snow melt so it is not appropriate for the eastern or southern U.S..  The 

weighting factors also need to be recalculated anytime there is a change in station locations, 

the number of stations being used to calculate the average basin conditions, or water 

management strategies.  There is also a lack of consensus over the definition of surface water 

supply and this influences how the index is calculated (Doesken and Garen, 1991; Doesken 

et al., 1991).  The index is also heavily reliant on good historical records of reservoir levels 

and stream flow in addition to precipitation.  Although a good historical record of 

precipitation are available for many regions, it is difficult to find stations with continuous 

 63



records of reservoir levels and virgin stream flow measurements that are unaffected by 

upstream reservoirs or diversions.  Reservoir levels are also severely affected by human 

decisions in terms of magnitude, duration and frequency of releases or pumping for public 

water supply.  The amount of water released or pumped would have continually increased 

since reservoir construction due to the population/community growth in and around the 

reservoir.  Hence, using historical reservoir levels to compute non-exceedance probability 

could lead to errors in the calculation of relative drought severity. 

3.2.8 Percent of Reservoir Storage Capacity 
Percent of reservoir storage capacity is a relatively simple measure of 

hydrological/water supply drought that is very easy to compute and interpret since it is a 

simple ratio of volumes.  Another advantage of this index is that it is dimensionless and so it 

can be compared across regions. 

One of the weaknesses of this index is that it is a simple measure of reservoir volume 

during a particular time step and not a measure of drought.  From the value it would be 

difficult to say if we are in drought because reservoir storage naturally varies throughout the 

year as a function of normal changes in supply and demand.  For example, a value of 60% 

can have totally different meaning in summer versus winter.  Therefore, a better measure of 

drought would place the current value into historical perspective based on the time of year. 

3.2.9 Streamflow Percent Exceedance 
Streamflow Percent Exceedance is simple to interpret and more robust than other 

measures of the hydrological/water supply drought (e.g., PHDI) because it is based on a 

statistical measure of an important hydrologic variable.  Also, because this index is 

dimensionless, the current value can be compared across regions and the current values can 
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be viewed in terms of historical perspective as opposed to the percent of reservoir 

conservation storage capacity. 

One of the main weaknesses of the Streamflow Percent Exceedance is that 

measurements are usually only available for major tributaries where the flows are strongly 

affected by large reservoirs upstream.  Such stations should not be used since they are not 

necessarily representative of climate conditions.  Unfortunately, there are only a limited 

number of stations that are unaffected by upstream reservoirs and have long records for 

statistical analysis.  Also, many Texas rivers, especially in west Texas, can be dry during 

many seasons, making it impossible to calculate the percent exceedance during those periods. 

3.2.10 SSFI 
One of the main advantages of the SSFI is that is can be calculated for a wide range 

of time scales and it can be updated on a daily rather than monthly basis.  Therefore it can be 

used to monitor short, medium, or long-term hydrological/water supply drought in near-real 

time.  The index is a standardized measure of streamflow based on a statistical measure and 

so it is more robust that just using streamflow departures.  Interpretation of SSFI is 

straightforward, negative values indicate below normal streamflow and positive values 

indicate above normal streamflow.  For example, a value of -1.0 indicates that, based on 

standard normal distribution, the current streamflow is only greater than 15.87% of the 

streamflow from historical records.  Since the index is standardized, it can be compared 

across space and time.  The statistical parameters can also be interpolated across a region, 

enabling the use of short term record available from recently installed stream gages in the 

calculation of the index. 
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One of the main weaknesses of the SSFI is that it is very difficult to fit a statistical 

distribution to the raw cumulative streamflow data, hence the data has to be transformed 

using procedures such as Box-Cox transformations.  Even after being transformed, especially 

during low-flow periods and for short-accumulation time scales, the data did not fit a normal 

distribution.  This could potentially introduce errors in the calculation of the index.  Also it is 

difficult to find gage records that are appropriate for calculating the SSFI since there are a 

limited number of long streamflow records for gages unaffected by upstream reservoirs. 

3.2.11 SDI 
Although the SDI is very similar to the Streamflow Percent Exceedance currently 

used by TWDB, it is a more flexible drought index because rather than using only 30-day 

mean value on a monthly basis, a wide range of time scales can be used (for short, medium, 

and long-term drought) and the index can be updated on a daily basis .  The interpretation of 

the SDI is relatively straightforward.  Large positive (negative) values indicate above normal 

(below normal) streamflow conditions.   The statistical parameters (e.g., median, minimum 

and maximum) are measured as the cumulative discharge per unit area, so they can be 

interpolated across Texas.  This provides the opportunity to calculate the SDI at locations 

that only have a short record. 

A weakness of the SDI is it is calculated using a linear scale that is based on the 

median, maximum, and minimum values.  However, the actual drought response could be 

highly non-linear.  Another weakness of the SDI is that although a value of 0, 100 or -100 is 

easy to interpret, the intermediate values are not easy to interpret.  For example, an SDI of -

50% would mean that the numerator is 50% of the denominator, it does not mean that the 

measured cumulative value is 50% higher than the minimum value or 50% less than the 
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median value.  Like the SSFI it is also requires long streamflow records for gages unaffected 

by upstream reservoirs. 

3.2.12 SRI 
Using WRAP instead of historical reservoir level data avoids the problems associated 

with changes in water usage over time.  This procedure also provides a framework to monitor 

drought for new reservoirs or reservoirs with short reservoir level records.  SRI is a 

statistically-based index that has a straightforward interpretation with negative values 

indicating dry conditions and positive values indicating wet conditions.  For example, a value 

of -1.0 would mean that the current reservoir level is only greater than 15.87% of the 

monthly simulated reservoir levels based on standard normal distribution.  Another 

advantage of the SRI is that since it is a standardized index, it can be compared across space 

and time. 

A weakness of the SRI is that it is very difficult to fit a statistical distribution that fits 

the simulated reservoir data.  Hence percent non-exceedance was calculated by comparing 

measured data directly with simulated historical records without fitting any distribution.  

Therefore, the values of SRI are limited by the amount of historical data available from 

simulation.  For most river basins there are only 57 years of monthly simulated reservoir 

level data, therefore the lowest (highest) SRI would correspond to a cumulative probability of 

1/57 (56/57) or 0.0175 (0.9825) which corresponds to -2.1 (2.1) in the standard normal 

distribution. 

3.2.13 RDI 
Like the SRI, the RDI is based on using WRAP and so it avoids the problems 

associated with changes in water usage over time.  This procedure also provides a framework 
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to monitor drought for new reservoirs or reservoirs with short reservoir level records.  RDI is 

a statistically-based index that has a straightforward interpretation with negative values 

indicating dry conditions and positive values indicating wet conditions.  For example, a value 

of 0 would indicate that the current water level is in the same level as that of the long-term 

median and values less (greater) than zero of indicate that the current reservoir level below 

(above) the median level for that month. 

3.3 Qualitative Drought Index Evaluation 
The second step in determining which drought indices meteorological and 

hydrological/water supply indices are the most appropriate for monitoring drought conditions 

at the local level was to evaluate all of the candidate drought indices using a modified version 

of the criteria developed by Keyantash and Dracup (2002).  This methodology was originally 

developed to select the most appropriate agricultural, meteorological, and hydrological 

drought indices for monitoring drought in Oregon.  A revised version of their evaluation 

criteria have been adopted in this study to select the most appropriate meteorological and 

hydrological/water supply indices for monitoring drought at the local level in Texas.  To 

judge the overall utility of each of the candidate drought indices six criteria were identified 

based on the ideal characteristics of a drought index (Keyantash and Dracup, 2002; 

Narasimhan and Srinivasan, 2005).  These six criteria are robustness, tractability, 

transparency, sophistication, extendability, and dimensionality.  Each of the candidate 

drought indices were evaluated using these six criteria and were assigned values ranging 

from 1 (lowest) to 5 (highest).  The rankings for each drought index were tabulated using a 

weighting system (Table 11). 

Robustness (30%) 
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Robustness refers to the ability of an index to measure drought over a wide range of 

climatic conditions (Keyantash and Dracup, 2002).  It also refers to the ability of the index to 

be spatially and temporally comparable (Narasimhan and Srinivasan, 2005).  That is, can a 

particular index calculated in one part of Texas be directly compared with an index 

calculated in another part of Texas (do the index values mean the same thing at different 

locations).  A robust drought index is also one that whose values are independent of the 

seasonal cycle (can index values from summer months be directly compared to index values 

from winter months).  A robust drought index should be correlated with (and sensitive to) 

drought impacts and it should be able to discriminate amongst drought impacts.  Obviously, 

robustness is a very important criterion for a drought index, but tractability is given nearly 

equal importance in the weighting scheme because a robust index may not be the most 

appropriate to use if it can not be calculated using readily available data. 

Tractability (25%) 

Tractability is the term chosen to represent the practical aspects of calculating drought 

indices (Keyantash and Dracup, 2002).  Since the purpose of this study is to develop a 

strategy for monitoring drought at the local level in Texas, it is extremely important that the 

recommended indices be ones that are easy to calculate at the local level using readily 

available data.  There are three main questions that need to be answered to determine whether 

a given drought index is tractable.  Is the drought index easy to calculate?  Is the data 

required to calculate the drought index readily available?  Is the drought index useful at the 

local level in Texas?  Affirmative answers to these three questions indicate that an index is 

tractable. 

Transparency (15%) 
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Transparency is used to evaluate whether an index is clear, rational, and easy to 

understand (Keyantash and Dracup, 2002).  A good drought index is one that is readily 

understandable to decision-makers and the user-community.  Transparency and tractability 

are the two most important criteria because the purpose of performing this analysis is to 

identify drought indices that can be used for operational drought monitoring in Texas.  

Therefore, the chosen indices need to be both scientifically defensible and useful (and 

therefore understandable) to the public.  Transparency represents the general utility of a 

drought index (Keyantash and Dracup, 2002). 

Sophistication (10%) 

Although sophistication is somewhat counter to transparency, it is nonetheless an 

important characteristic of a good drought index (Keyantash and Dracup, 2002).  A 

sophisticated drought index is one that has conceptual (scientific) merit.  Therefore, even if a 

drought index is not easy to understand, it may be valuable if it accurately represents some 

important physical aspect of drought.  Of course, one of the drawbacks with sophisticated 

approaches to measuring drought is that they typically require more data (and higher quality 

data) and this means that they are not only less transparent, but also less tractable.  Since the 

purpose of this evaluation is to identify indices that can be used in an operational context for 

monitoring drought at the local level in the Texas, the weighting system will give more credit 

to an index that is easy to use and easy to understand, than to an index that is sophisticated, 

but difficult to calculate. 

Extendability (10%) 

Extendability refers to whether an index can be extended back in time.  For example, 

an index that only uses precipitation data can be used to measure drought all the way back to 
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the start of the instrumental record (100+ years), while an index that utilizes satellite or radar 

data is limited to the last few decades (Keyantash and Dracup, 2002).  An index that is 

extendable is of value because it can be used to place current (and future) droughts into 

historical context.  This is of particular importance to decision makers who have designed 

drought response plans based on past droughts.  Extendability is not as important as the other 

criteria and therefore it has a lower weight. 

Dimensionality (10%) 

Dimensionality refers to the connection between the drought index and the physical 

world (Keyantash and Dracup, 2002).  It is ideal if a drought index has a unit that has 

physical meaning (e.g., mm of soil water, percent of normal precipitation), rather than a 

strictly dimensionless unit.  There should be a clear connection between the drought index 

and the physical world.  It is also desirable if a drought index uses simple units. 

Table 11. Drought index evaluation criteria and their relative importance 
 

Criterion Relative 
Importance 

Robustness 30% 
Tractability 25% 

Transparency 15% 
Sophistication 10% 
Extendability 10% 

Dimensionality 10% 
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3.3.1 Meteorological Drought Indices 
The results of the qualitative evaluation of meteorological indices indicates that SPI, 

Percent Normal, and Deciles were the most highly ranked (Table 12).  The results of this 

study are supported by the work of Keyantash and Dracup (2002) who determined that SPI 

and Deciles were the two indices most appropriate for monitoring meteorological drought in 

Oregon.  SPI was also one of the drought indices most appropriate for monitoring 

meteorological drought in Iran (Morid et al., 2006).   

SPI, Percent Normal, and Deciles are relatively easy to calculate because they only 

use precipitation data.  Therefore these indices can be readily calculated for all stations in the 

Texas that have a long record of precipitation.  As previously mentioned, one of the main 

limitations of the SPI is that it requires a relatively long (and continous) precipitation record 

to be accurate (50+ years of data is ideal) (Wu et al., 2005).  Percent normal and deciles also 

require long precipitation records, but they can be calculated with 30+ years of precipitation 

data.  These three indices are also transparent and easy to understand.  All of these indices 

are reported in units that can easily be converted into precipitation values and they can all be 

extended back in time (based on the availability of precipitation data).  This allows current 

droughts to be placed in proper historical context.  All of these indices are flexible and can be 

calculated for any period of interest (week, month, season, year).  The main drawback of 

these indices is that they only consider precipitation (atmospheric moisture supply) and not 

evapotranspiration (atmospheric moisture demand).   

After the SPI, percent normal, and deciles, the VIC and DSSAT soil moisture models 

received the next highest ranking.  VIC and DSSAT are two different models that are used 

for simulating soil moisture.  One of the advantages of using this approach is that it provides 
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a more sophisticated (and potentially realistic) simulations of soil water budget including 

infiltration, runoff, evapotranspiration.  However, they require more input data (at a 

minimum daily temperature and precipitation and soils data) which may limit their utility in 

certain locations.  Another advantage of using these soil moisture models is that they 

reported conditions using a unit that has physical meaning (e.g., mm of soil water or fraction 

of field capacity).  Although these models are relatively complex, they can still be calculated 

at the local level in Texas.  They provide very different information than the rainfall indices. 

Even though the PDSI and Z-index are commonly used for drought monitoring, they 

were not highly ranked using this method of qualitative evaluation.  This is because these 

indices are complicated to calculate, require more detailed information than the precipitation 

indices, and report drought conditions using a dimension-less index.  In addition, it has been 

demonstrated that the PDSI, as originally formulated by Palmer (1965) is spatially variant.  

Therefore it is not appropriate to compare PDSI values from different locations (particularly 

in a large state like Texas that encompasses a broad range of climate regions). 

 
Table 12. Meteorological drought index evaluation criteria and their relative importance 
 

Index Robustness Tractability Transparency Sophistication Extendability Dimensionality Weighted 
Total 

PDSI 2 3 1 4 4 1 2.4 
Z index 2 3 1 4 4 1 2.4 

SPI 5 4 4 4 5 4 4.4 
EDI 1 4 1 3 5 1 2.4 
VCI 2 1 1 4 1 1 1.6 

CWB 3 3 4 4 3 5 3.5 
DSSAT 4 3 4 5 3 5 3.9 

VIC 4 3 4 5 3 5 3.9 
Percent 
Normal 4 5 5 2 5 5 4.4 

Deciles 4 5 5 2 5 4 4.3 
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3.3.2 Hydrological/Water Supply Drought Indices 
The results of the qualitative evaluation of hydrological/water supply indices indicate 

that SPI, SSFI, and RDI were the most highly ranked (Table 13).  Although the SPI is 

traditionaly considered a measure of meteorological drought, it can be used to indicate 

hydrological/water supply drought if the SPI is calculated for timescales that are more 

representative (e.g, 3-months, 6-months, 9-months, or longer).  The SSFI is a new index that 

was developed specifically for this study.  The SSFI is a standardized measure of streamflow.  

Like the SPI, the SSFI is simple to calculate because it only utilizes streamflow data.  The 

RDI is also a new index that was specifically developed for this study to measure reservoir 

levels.  The main advantage of the RDI is that it utilizes the WRAP model so it avoids the 

problems associated with changes in water usage over time.  The RDI only requires reservoir 

data to be calculated and like thte SSFI it can be updated on a daily basis.  Unlike the SWSI 

and PHDI, these three indices are transparent and easy to understand.  SPI, SSFI, and RDI 

are all reported in units that can be directly related to precipitation, streamflow, and reservoir 

levels, resepectively.  They can all be used to place current droughts in proper historical 

context.  All of these indices are flexible and can be calculated for any period of interest 

(week, month, season, year).  This is important because, as will be shown in the quantitative 

evaluation, the most appropriate timescale for monitoring hydrological/water supply drought 

varies by basin.   

The qualitative analysis also showed that Percent of Reservoir Storage Capacity and 

Percent Streamflow Exceedance are useful for monitoring hydrological/water supply 

drought.  Like the SSFI and RDI, both of these measures are simple to calculate and use 

readily available data.  However, one of the major drawbacks of Percent of Reservoir Storage 

Capacity is that reservoir storage naturally varies throughout the year as a function of normal 
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changes in supply and demand.  For example, a value of 60% can have totally different 

meaning in summer versus winter.  This accounted for in RDI but not in Percent of Reservoir 

Storage Capacity.  RDI was also ranked higher because it is more sophisticated since it uses 

the WRAP model to avoid the problems associated with changes in water usage over time. 

One of the main advantages of the SSFI over the Percent Streamflow Exceedance is that it 

can be calculated for a wide range of time scales and it can be updated on a daily rather than 

monthly basis.  Therefore it can be used to monitor short, medium, or long-term 

hydrological/water supply drought in near-real time.   

Even though the PHDI and SWSI are commonly used for monitoring 

hydrological/water supply, they were not highly ranked using this method of qualitative 

evaluation.  This is because these indices are complicated to calculate, require more detailed 

information, and report drought conditions using a dimension-less index.  In addition, the 

PHDI is not highly correlated with streamflow (or streamflow indices).  SWSI is more 

appropriate for mountanous basins and basins in which snowpack significantly affects that 

timing of magnitude of streamflow.  SWSI also cannot be compared spatially or temporally. 
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Table 13. Hydrological/water supply drought index evaluation criteria and their relative 
importance 
 

Index Robustness Tractability Transparency Sophistication Extendability Dimensionality Weighted 
Total 

PHDI 2 2 1 4 4 1 2.2 
SWSI 2 2 2 4 2 1 2.1 
SPI 5 4 4 4 5 3 4.3 

Percent of 
Reservoir 
Storage 

Capacity 

3 4 5 2 3 4 3.6 

Streamflow 
Percent 

Exceedance 
4 4 4 3 3 4 3.8 

SSFI 5 4 4 4 3 4 4.2 
SDI 3 2 2 4 3 2 2.6 
SRI 3 2 2 4 3 2 2.6 
RDI 5 4 4 4 3 4 4.2 

 

3.3.3 Recommendations Based on the Qualitative Drought Index Evaluation 
Based on the results of the qualitative drought index evaluation, the best indices for 

monitoring meteorological drought at the local level in Texas are SPI, Percent Normal, and 

Deciles.  These indices are easy to calculate because they only use precipitation data and they 

are transparent and easy to understand.  All of these indices are reported in units that can 

easily be converted into precipitation values and they can all be extended back in time (based 

on the availability of precipitation data).  This allows current droughts to be placed in proper 

historical context.most highly ranked. 

The results of the qualitative evaluation of indices indicate that SPI, SSFI, and RDI 

are the most appropriate for monitoring hydrological/water supply drought at the local level 

in Texas. These indices are simple to calculate and they are transparent and easy to 

understand.  SPI, SSFI, and RDI are all reported in units that can be directly related to 

precipitation, streamflow, and reservoir levels, resepectively and they can be used to place 
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current droughts in proper historical context.  All of these indices are flexible and can be 

calculated for any period of interest (week, month, season, year). 

3.4 Quantitative Drought Index Evaluation 
 This section provides the results of the quantitative drought index evaluations.  The 

first section describes the soil moisture model comparison.  The second section describes the 

evaluation of the meteorological drought indices and the final section describes the 

evaluation of the hydrological/water supply indices.  

3.4.1 Soil Moisture Models 
Three different soil moisture models were evaluated to determine the most 

appropriate model for simulating soil moisture in Texas.  VIC is a hydrology model that can 

handle complex vegetation interactions with the soil column and atmosphere.  DSSAT is a 

crop model that was designed to accurately simulate the influence of water stress (soil 

moisture deficiencies) on crop production.  CWB is a simple water balance model that 

calculates changes in soil moisture based on changes in supply (precipitation) and demand 

(ET, drainage, and surface runoff) and it has been shown to accurately simulate stream flow 

at regional scales (Hawkins and Ellis, 2006, unpublished).  The ability of these three models 

to accurately simulate soil moisture was evaluated using observed soil moisture data from the 

Soil Climate Analysis Network (SCAN) site in Bushland, TX (Figure 1).  The Bushland site 

is a native, undisturbed rangeland that is dominated by blue grama and buffalograss2 (Figure 

2).   

Hourly soil moisture data is collected at the SCAN site and these data were converted 

to mean daily (for comparison to VIC and DSSAT) or mean monthly (for comparison to 

                                                           
2detailed information is available at: http://www.wcc.nrcs.usda.gov/scan/site.pl?sitenum=2006&state=tx
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CWB) values.  Volumetric soil moisture data is collected at 5 cm (2 in.), 10 cm (4 in.), 20 cm 

(8 in.), 50 cm (20 in.), and 100 cm (40 in.).  These point measurements of volumetric soil 

moisture were combined to make them comparable with the layers used in the soil moisture 

models.  Since the CWB is a one-layer model, an average soil moisture value was calculated 

using all five of the SCAN measurements. DSSAT was run using a seven layer soil profile 

that is comparable to the measured SCAN data (Table 14).  VIC was run using a three layer 

soil profile and the observed data from a number of depths were averaged before comparison 

with the model (Table 15).  The soil moisture models were run using meteorological data 

extracted from the closest COOP site (Figure 1).  

Figure 1 Location of the Bushland, TX (red triangle) SCAN site and the closest COOP 
weather stations (black circles). 
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Figure 2 Photograph of the Bushland, TX SCAN site (NRCS, 2006). 

 

Table 14.  Relationship between soil moisture measurements and DSSAT soil layers 
 

Measured Soil 
Moisture DSSAT 

5 cm 0-5 cm 
10 cm 5-15 cm 
20 cm 15-30 cm 
100 cm 90-120 cm 

 

Table 15.  Relationship between soil moisture measurements and VIC soil layers 
 

Measured Soil 
Moisture VIC 

5 + 10 cm 0-10 cm 
20 + 40 cm 10-50 cm 

100 cm 50-150 cm 
 

The degree of fit between the observed and modeled soil moisture was evaluated 

using the root mean square error (RMSE), mean absolute error (MAE), Pearson’s correlation 

coefficient (r), and the coefficient of efficiency (E) (Legates and McCabe, 1999).  The 
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coefficient of efficiency (E) represents the difference in magnitude between modeled and 

observed soil moisture.  It ranges from -∞ to 1.0, with higher values indicating better 

agreement.  For the CWB model, the goodness-of-fit statistics are based on eleven years of 

monthly soil moisture data (1995–2005).  The goodness-of-fit statistics for VIC and DSSAT 

are based on daily soil moisture data from 2004 and 2005 data.  

Results 

DSSAT provides the most accurate simulation of soil moisture at all depths.  DSSAT 

has the highest correlation coefficient and coefficient of efficiency in all soil layers (Table 

16).  DSSAT performs best in the upper 30 cm of the soil.  Although the correlation 

coefficient is higher in the lowest layer soil layer, the coefficient of efficiency, RMSE, and 

MAE are worse.  This indicates that DSSAT is able to correctly simulate the wetting and 

drying of the soil, but is not able to correctly simulate the actual volume of soil moisture in 

the deepest soil layers.  These findings agree with other studies that have demonstrated that 

DSSAT accurately simulates soil moisture in the upper soil layers (Quiring, 2004; Popova 

and Kercheva, 2005). 

Table 16.  Summary of model performance for the CWB (n=132), DSSAT (n=365) and VIC 
(n=365) soil moisture at Bushland, TX in 2005 

 

CWB DSSAT VIC Model Performance 
Statistics  0-5 cm 5-15 cm 15-30 cm 90-120 cm 0-10 cm 10-50 cm 50-150 cm

RMSE (cm cm-1) 0.12 0.08 0.04 0.04 0.09 0.15 0.05 0.08 
MAE (cm cm-1) 0.10 0.06 0.04 0.04 0.09 0.12 0.04 0.08 
Correlation (r)  0.49 0.75 0.92 0.94 0.97 0.59 0.78 0.94 
Coefficient of 
Efficiency (E) 

-0.81 0.54 0.76 0.43 -2.90 -1.04 0.10 -2.50 

In the top layer of the soil, DSSAT starts out too dry and it takes about 70 days to 

achieve good agreement between the observed and simulated soil moisture data (Figure 3).  
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DSSAT also ends the year much wetter than the observed data.  This accounts for the 

relatively large RMSE (0.08 cm cm-1) in this layer and the lower coefficient of efficiency 

(0.54).  The model appears to be very sensitive to the precipitation and even small 

precipitation events cause dramatic spikes in soil moisture (precipitation data not shown).  

The observed soil moisture shows a much more muted response to small precipitation events.  

The difference between the model and observed soil moisture is likely due to the inability of 

the model to accurately parameterize infiltration.  It is likely that most of the water from 

small precipitation events will evaporate before it has a chance to infiltrate the soil.   

Figure 3  Daily soil moisture (cm/cm) in Bushland, TX (2005): measured (5 cm) vs. DSSAT 
(0-5 cm). 
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Soil moisture is most accurately simulated by DSSAT in the second and third soil 

layers (Figures 4 and 5).  These layers have the lowest errors and highest degree of 

agreement between the observed and modeled data.  Soil moisture is not well simulated in 
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the lowest soil layer (Figure 6).  The model systematically underpredicts the amount of soil 

moisture.  It may be possible to remove this systematic bias by tuning the soil parameters in 

the model since no tuning was done for this model evaluation.  Some of the error is also due 

to the scale mismatch (comparing a point measurement to a layer that is 30 cm thick).  

Figure 4 Daily soil moisture (cm/cm) in Bushland, TX (2005): measured (10 cm) vs. DSSAT 
(10-15 cm). 
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Figure 5 Daily soil moisture (cm/cm) in Bushland, TX (2005): measured (20 cm) vs. DSSAT 
(15-30 cm). 
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Figure 6  Daily soil moisture (cm/cm) in Bushland, TX (2005): measured (100 cm) vs. 
DSSAT (90-120 cm). 
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VIC did a reasonable of simulating the patterns of soil wetting and drying.  This is 

demonstrated by the correlation coefficients (which ranged from 0.59 (top layer) to 0.94 

(lowest layer)).  However, VIC was not able to provide accurate estimates of the amount of 

soil water in each layer.  VIC had high RMSE values (which ranged from 0.05 to 0.15 cm 

cm-1) and the low coefficient of efficiency values (which ranged from 0.10 to -2.50) for all 

three layers.  Soil moisture variation and the amount of soil water were accurately simulated 

in the top layer of the soil at the beginning of 2005 (Figure 7).  However after a couple of 

months the observed soil moisture began to significantly deviate from the VIC-simulated soil 

moisture.  The reasons for these deviations are not clear, but VIC soil moisture was much 

wetter than the observed soil moisture for the remainder of 2005.  VIC did a better job of 

simulating soil moisture in the second layer of the soil (Figure 8), but there were still some 

large differences between the observed and simulated soil moisture at certain times of the 

year.  The third layer of the VIC model accurately captured the trend in soil moisture over the 

year, but it systematically underestimated the amount of soil water (Figure 9).  VIC was also 

evaluated using observed soil moisture data from 2004 and the simulation yielded nearly 

identical results to 2005 (results not shown). 
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Figure 7 Daily soil moisture (cm/cm) in Bushland, TX (2005): measured (mean of 5 & 10 
cm) vs. VIC (0-10 cm). 
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Figure 8 Daily soil moisture (cm/cm) in Bushland, TX (2005): measured (mean of 20 & 40 
cm) vs. VIC (10-50 cm). 
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Figure 9 Daily soil moisture (cm/cm) in Bushland, TX (2005): measured (100 cm) vs. VIC 
(50-150 cm). 
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Soil moisture was poorly simulated by CWB.  The CWB model is a simple one-layer 

soil model that simulates soil moisture and the water balance monthly on a monthly basis.  

Although the annual cycle of soil moisture can be predicted in most cases by the CWB model 

(Figure 10), the CWB had a higher RMSE and lower correlation coefficient than the other 

two models.  It is evident from Figure 10 that CWB is unable to capture the full range of soil 

moisture values since it underestimates the soil moisture content during the wettest months.  

Changing the field capacity (upper limit of soil moisture) might allow the model to more 

closely replicate actual soil moisture conditions.  Because of the poor performance of the 

CWB model, it was also tested at another SCAN site (Prairie View, TX).  Although the 

model performed slightly better at Prairie View, it still was not as accurate as DSSAT or 

VIC.  This suggests that CWB is too simplistic to accurately simulate soil moisture.  
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Figure 10  Monthly soil moisture (cm/cm) in Bushland, TX (1995–2005): measured 
(averaged over all depths) vs. CWB. 
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The results from all three models are shown in Figure 11.  The scatter plot shows that 

the DSSAT is the most appropriate model for simulating soil moisture in Texas.  The DSSAT 

model was able to simulate soil moisture with a relatively high degree of accuracy 

(particularly in Layer 2).  The VIC model also was relatively accurate in layer 2, but has 

significant systematic biases in layer 1 and layer 3.  CWB is too simplistic and was not able 

to accurately simulate soil moisture at this location. 
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Figure 11 Scatter plot of observed versus modeled soil moisture for the CWB (1995–2005), 
DSSAT (2005) and VIC (2005). The black line represents the perfect prediction line. 
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3.4.2 Meteorological Drought Indices 
Seven different meteorological drought indices (PDSI, Z, SPI, Percent Normal, 

Deciles, EDI, and VCI) were evaluated at stations located in six Texas watersheds (Figure 

12).  These meteorological drought indices (all except the VCI) were calculated and 

compared using data from six stations from the Historical Climate Network (HCN).  These 

are stations that have long and relatively complete records (~100+ years).  One station was 

selected from each of the watersheds evaluated in section 3.4.3 (e.g., Red River, Upper 

Trinity, Lower Trinity, Colorado, Guadalupe, and San Antonio).  A number of these indices 

(PDSI, Z, SPI, Percent Normal, and Deciles) are commonly used for monitoring 

meteorological drought across the U.S. and, in some cases, around the world.  The EDI is a 
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relatively new drought index that has not been extensively tested or evaluated and the VCI is 

a satellite-based drought index used for monitoring vegetation health.  Evaluation of the VCI 

was carried out by aggregating the VCI data at the county level and on a monthly time step.  

A correlation matrix was used to compare all of the drought indices.  A high correlation 

between two indices was interpreted to mean that those two indices behave similarly.     

Evaluation of VCI 

The VCI was compared against a selection of meteorological drought indices, 

specifically: PDSI, Z, SPI (1-, 2-, 3-, 6-, 9-, 12-, and 24-month), Percent Normal, and 

Deciles.  Each of these indices were calculated on a monthly time step using monthly 

temperature and precipitation from PRISM (http://www.ocs.oregonstate.edu/prism/).  These 

data, which are available at 4 km resolution, were aggregated to counties for comparison with 

the VCI.  The Available Water Content (AWC) was obtained from the website maintained by 

the National Resources Conservation Service (NRCS) in a raster format.  Using this, AWC 

values were computed for each county of Texas.  The latitude of each Texas county was 

calculated by determining the centroid of each county’s polygon.  These data were used to 

calculate each of the meteorological drought indices from 1895–2005.  However the 

comparison with the VCI was only done using data from 1982–1999 do to the availability of 

the satellite data.    

The VCI is calculated using NDVI data.  The data used in this analysis was the 10-

day NDVI composites that were provided at 8-km spatial resolution.  These data were 

obtained from the Goddard Earth Sciences, Distributed Active Archive Center (GES-DAAC) 

(http://daac.gsfc.nasa.gov/).  After determining the maximum and minimum values of the 

NDVI for each 10-day composite, the VCI was calculated for the period of study (1982–
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1999).  These 10-day VCI values were averaged spatially (e.g., to the county level) and 

temporally (e.g., to create monthly values) for comparison to the meteorological drought 

indices.  Because the VCI measures vegetation health (or vigor), it is most appropriate for 

detecting growing-season drought.  Therefore, the comparison with the meteorological 

drought indices was based on the months of March to August (selecting other months to 

represent the growing-season has a relatively minor impact on the results of the analysis 

(results not shown)).  The VCI was evaluated against each of the traditional meteorological 

drought indices for each county in Texas using the coefficient of determination (R2).  The 

overall performance of the VCI against each of the traditional meteorological drought indices 

was computed by taking the average R2 of all the counties. 

Results 

The coefficient of determination (R2) describes the fraction of the total variation in 

the observed data that is explained by the model.  It ranges from 0 to 1 with higher values 

indicating that a greater amount of the variance is “explained” by the predictor(s).  However, 

the coefficient of determination (R2) has a number of limitations that have been summarized 

by Legates and McCabe (1999) (e.g., assumption of a linear relationship between the 

variables, extreme sensitivity to outliers).  Ideally these drought indices should be evaluated 

using data on meteorological drought impacts.  Since such a dataset is not available for 

Texas, this method of evaluation was used instead.  The results of this evaluation will not 

necessarily show which meteorological drought index is the most appropriate, but it will 

show which drought indices are highly correlated with the VCI.  If the information provided 

by the VCI is already provided by another drought index, then it may be considered as 

having limited utility.  However, if the VCI has a relatively low correlation with the other 
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meteorological drought indices, then this might suggest that it is providing a unique 

perspective for characterizing drought.   

The mean relationship (for all 254 counties) between the VCI and meteorological 

drought indices are summarized in Table 17.  Overall, none of the meteorological drought 

indices is strongly correlated with the VCI.  The 6-month SPI (R2 = 0.287) has the highest 

correlation, followed by the PDSI (R2 = 0.256), and the 9-month SPI (R2  = 0.255).  The Z-

index, Percent Normal, and Deciles model show almost no correlation with the VCI.  

However, there is significant spatial variability in these relationships.  This is not illustrated 

by looking at the mean coefficient of determination. 

Table 17 Mean relationship between VCI and meteorological drought indices (n = 254) 
Drought Index R2 

Z-index 0.110 
PDSI 0.256 
1-month SPI 0.042 
2-month SPI 0.150 
3-month SPI 0.202 
6-month SPI 0.287 
9-month SPI 0.255 
12-month SPI 0.200 
24-month SPI 0.124 
Percent Normal 0.033 
Deciles 0.048 

 
Figure 12 shows that there is a great deal of spatial variability in the relationship 

between the VCI and the 6-month SPI.  Generally, the counties in north-western and south-

western Texas have much higher correlations than counties in eastern Texas or counties 

along the Gulf Coast.  For example, Brazoria, Montgomery, and Harding counties (south-east 

Texas) have coefficients of determination near zero, while Maverick, Borden, and McMullen 

(west-central, south-west Texas) have coefficients of determination that exceed 0.6.  This 

means that in the counties with the highest coefficients of determination, the 6-month SPI 
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“explains” more than 60% of the variance in the VCI.  A similar spatial pattern in the 

variability of the coefficient of determination is also shown for the VCI and PDSI (Figure 

36).  Figure 13 shows a stronger and more east to west gradient in the coefficient of 

determination.  Brazoria County has the lowest R2 and Upton, Reeves and Pecos (western 

Texas) have the highest R2.  Figure 14 also has a similar spatial pattern to Figure 36, with 

Harding County (south-east Texas) having the lowest R2 while Upton, Reagan and Pecos 

counties (western Texas) have the highest R2.  This spatial pattern is evident for all of the 

meteorological drought indices that were evaluated, even those that had a mean coefficient of 

determination near zero (such as the Z-index) (Figure 15).  Although the overall magnitude 

of the coefficient of determination is lower, there are still a number of counties in western 

and south-western Texas where the coefficient of determination exceeds 0.2.  This suggests 

that there are some spatially-varying factors that control the strength of the relationship 

between the VCI and the meteorological drought indices.  An investigation of these factors is 

beyond the scope of this study, but it is likely that they include things like climate (mean 

annual precipitation), soil type, vegetation type, land-use/land-cover, groundwater levels, soil 

fertility, soil salinity, and other factors that influence the vegetation resilience to drought and 

overall vegetation health.  
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Figure 12 Spatial variation of the Coefficient of Determination (VCI and 6-month SPI) over 
Texas 
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Figure 13 Spatial variation of the Coefficient of Determination (VCI and PDSI) over Texas 
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Figure 14 Spatial variation of the Coefficient of Determination (VCI and 9-month SPI) over 
Texas 
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Figure 15 Spatial variation of the Coefficient of Determination (VCI and Z-index) over 
Texas 

 

Conclusions 

Overall the VCI is most strongly correlated with the 6-month SPI, PDSI, and 9-month 

SPI.  This is somewhat surprising given that the VCI measures vegetation health.  Studies 

that have examined agricultural drought have found that drought indices with a short time 

scale (a month or less) are usually most highly correlated with crop growth (Quiring and 

Papakyriakou, 2003).  Therefore, it is surprising that the 1-month SPI, Z-index, and Percent 

Normal are not more highly correlated with the VCI.  PDSI is heavily influenced by 

antecedent moisture conditions and has been shown to have a memory of at least 9 months.  

Therefore it is not surprising that the PDSI and 6- and 9-month SPI are all highly correlated 

with the VCI since they are highly correlated with each other.  This indicates that, at least 

over Texas, the VCI shows the strongest response to prolonged precipitation deficiencies and 
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it appears to be less sensitive to short-term precipitation deficiencies.  This finding does not 

agree with what has been reported in the literature and therefore merits further study (Kogan, 

1995, 1997; Kogan and Unganai, 1998; Kogan, 2001; Kogan, 2002).  This might be due to 

the type of vegetation that is present.  These spatial variations in vegetation, in turn, might 

account for the spatial patterns that are evident across Texas.  Generally one would expect 

that vegetation that has deeper roots would be less susceptible to drought since it has greater 

access to soil moisture.  This deeper rooting system helps to buffer the vegetation from short-

term stress.  Alternatively, it may be that the spatial pattern is due to climatic factors, since it 

appears to partly resemble the east-west precipitation gradient.  

It is clear from this analysis that the VCI measures drought in a way that is quite 

different from traditional meteorological drought indices.  This is both an advantage and a 

disadvantage.  One of the major benefits of the VCI is that is provides continuous spatial 

coverage and it attempts to directly measure vegetation health.  The disadvantage of this 

approach is that it appears to provide very different information than the traditional 

meteorological drought indices.  The VCI should be employed with caution until it can be 

more fully evaluated (e.g., the reasons for the spatial and temporal variability in its 

relationship with other drought indices can be explained) and its relationship to drought 

impacts is better understood. 

Evaluation of Meteorological Drought Indices 

San Antonio Basin 

The drought index comparison for the San Antonio Basin was carried out using data 

from 1904–2001 (station 410902).  The correlation matrix for this station (Table 18) shows 

that the 1-month SPI (SPI1) is highly correlated with both Percent Normal (PN) and Deciles.  
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Together with the 2-month SPI (SPI2), these indices can collectively be referred to as short-

term precipitation indices.  It is also clear that the 3- and 6-month SPI (SPI3, SPI6) is highly 

correlated with Effective Drought Index (EDI).  These indices collectively characterize 

precipitation on medium timescales.  It should also be noted that the EDI has moderate 

correlations with many of the other SPI timescales and with the PDSI, PHDI, and Percent 

Normal.  It appears that EDI is an integrative index that combines features of many of the 

other drought indices.  The drought indices were also analyzed using Principal Component 

Analysis to identify the main modes of variability in the data.  It is evident from the results 

that many of these indices are providing the same type of information (Tables 19 and 20).  

Only three significant PCs were extracted.  The first PC explains nearly 60% of the variance 

in the drought index data.  PC1 can be described as a general precipitation component since 

most of the drought indices load highly on this component.  The EDI has the largest loading 

on PC1, this is not surprising given that, as previously mentioned, EDI appears to integrate 

features of many of the other drought indices.  PC2 accounts for approximately 16% of the 

variance and it loads highly on a number of the short-term precipitation indices (e.g., 1-

month SPI and deciles).  PC3 only accounts for 10% of the variance and it loads highly on 

the Z-index.  The PDSI and PHDI are also related to this component.  Therefore, PC3 can be 

described as the Palmer component.  The three Palmer indices are the only ones that include 

temperature in their calculation and they are all based on a simple water balance so it is not 

surprising that they are highly correlated and respond it a different fashion than the indices 

that are only based on precipitation.   
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Table 18 Correlation matrix for meteorological indices in the San Antonio Basin 
Correlation Matrix

1.000 .640 .513 .169 .170 .138 .172 .155 .153 .150 .136 .130 .072
.640 1.000 .879 .737 .489 .433 .473 .569 .628 .677 .663 .622 .439
.513 .879 1.000 .838 .469 .408 .444 .582 .666 .783 .801 .781 .605
.169 .737 .838 1.000 .670 .579 .624 .758 .834 .883 .848 .785 .543
.170 .489 .469 .670 1.000 .843 .909 .704 .595 .442 .366 .317 .209
.138 .433 .408 .579 .843 1.000 .922 .689 .568 .407 .335 .275 .188
.172 .473 .444 .624 .909 .922 1.000 .742 .608 .442 .359 .297 .191
.155 .569 .582 .758 .704 .689 .742 1.000 .840 .625 .512 .436 .287
.153 .628 .666 .834 .595 .568 .608 .840 1.000 .755 .626 .544 .363
.150 .677 .783 .883 .442 .407 .442 .625 .755 1.000 .858 .760 .519
.136 .663 .801 .848 .366 .335 .359 .512 .626 .858 1.000 .905 .634
.130 .622 .781 .785 .317 .275 .297 .436 .544 .760 .905 1.000 .737
.072 .439 .605 .543 .209 .188 .191 .287 .363 .519 .634 .737 1.000

zindex
pdsi
phdi
EDI
PN
decile
SPI1
SPI2
SPI3
SPI6
SPI9
SPI12
SPI24

Correlation
zindex pdsi phdi EDI PN decile SPI1 SPI2 SPI3 SPI6 SPI9 SPI12 SPI24

 

Table 19 Results of the unrotated Principal Components Analysis (San Antonio Basin) 
Total Variance Explained

7.741 59.545 59.545 7.741 59.545 59.545
2.099 16.145 75.690 2.099 16.145 75.690
1.294 9.958 85.648 1.294 9.958 85.648

.655 5.038 90.686

.371 2.856 93.541

.176 1.358 94.899

.169 1.296 96.195

.130 1.002 97.197

.121 .927 98.125

.085 .657 98.782

.066 .510 99.292

.057 .437 99.729

.035 .271 100.000

Component
1
2
3
4
5
6
7
8
9
10
11
12
13

Total % of Variance Cumulative % Total % of Variance Cumulative %
Initial Eigenvalues Extraction Sums of Squared Loadings

Extraction Method: Principal Component Analysis.
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Table 20 PCA component matrix (San Antonio Basin) 
 

Component Matrixa

.315 -.079 .922

.823 -.159 .456

.885 -.297 .253

.957 -.061 -.137

.722 .584 -.014

.680 .629 -.041

.720 .633 -.017

.809 .350 -.084

.845 .127 -.112

.862 -.246 -.151

.834 -.412 -.178

.783 -.487 -.184

.586 -.481 -.208

zindex
pdsi
phdi
EDI
PN
decile
SPI1
SPI2
SPI3
SPI6
SPI9
SPI12
SPI24

1 2 3
Component

Extraction Method: Principal Component Analysis.
3 components extracted.a. 

 
 

Upper Trinity Basin 

Evaluation of the meteorological drought indices for the Upper Trinity Basin was 

carried out using data from 1902–2001 (station 412019).  The results are similar to those in 

the San Antonio Basin.  The correlation matrix for this station (Table 21) shows that the 1-

month SPI (SPI1) is highly correlated with both Percent Normal (PN) and Deciles.  The 3- 

and 6-month SPI (SPI3, SPI6) are highly correlated with Effective Drought Index (EDI).  

The drought indices were also analyzed using Principal Component Analysis to identify the 

main modes of variability in the data.  It is evident from the results that many of these indices 

are providing the same type of information (Tables 22 and 23).  Only three significant PCs 

were extracted.  The first PC explains nearly 55% of the variance in the drought indices.  

Similar to the San Antonio basin, PC1 can be described as a general precipitation component 

since most of the drought indices load highly on it.  The EDI has the largest loading on PC1 
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(0.954).  PC2 accounts for approximately 17% of the variance and it loads highly on a 

number of the long-term precipitation indices (e.g., 9-, 12-, and 24-month SPI).  The PDSI 

also has positive loadings, while a number of the short-term precipitation indices (e.g., 

Percent Normal, Deciles, 1-month SPI) have negative loadings.  This suggests that PC2 is 

characterizing the long-term precipitation variability.  PC3 only accounts for 12% of the 

variance and it loads highly on the Z-index (and the other Palmer indices).  Therefore, PC3 

can again be described as the Palmer component.   

Table 21 Correlation matrix for meteorological indices in the Upper Trinity Basin 
Correlation Matrix

1.000 .644 .522 .109 .109 .099 .095 .099 .068 .089 .121 .093 .098
.644 1.000 .908 .496 .293 .282 .282 .361 .393 .462 .511 .494 .427
.522 .908 1.000 .599 .347 .339 .336 .432 .483 .554 .603 .600 .540
.109 .496 .599 1.000 .664 .611 .651 .788 .850 .888 .835 .768 .548
.109 .293 .347 .664 1.000 .872 .936 .706 .582 .413 .336 .305 .226
.099 .282 .339 .611 .872 1.000 .920 .684 .564 .393 .327 .297 .225
.095 .282 .336 .651 .936 .920 1.000 .728 .597 .414 .338 .310 .226
.099 .361 .432 .788 .706 .684 .728 1.000 .836 .596 .475 .433 .321
.068 .393 .483 .850 .582 .564 .597 .836 1.000 .731 .582 .526 .384
.089 .462 .554 .888 .413 .393 .414 .596 .731 1.000 .836 .730 .533
.121 .511 .603 .835 .336 .327 .338 .475 .582 .836 1.000 .888 .645
.093 .494 .600 .768 .305 .297 .310 .433 .526 .730 .888 1.000 .744
.098 .427 .540 .548 .226 .225 .226 .321 .384 .533 .645 .744 1.000

zindex
pdsi
phdi
EDI
PN
decile
SPI1
SPI2
SPI3
SPI6
SPI9
SPI12
SPI24

Correlation
zindex pdsi phdi EDI PN decile SPI1 SPI2 SPI3 SPI6 SPI9 SPI12 SPI24

 
 
Table 22 Results of the unrotated Principal Components Analysis (Upper Trinity Basin) 

Total Variance Explained

7.144 54.957 54.957 7.144 54.957 54.957
2.213 17.025 71.982 2.213 17.025 71.982
1.553 11.948 83.930 1.553 11.948 83.930

.672 5.170 89.100

.402 3.090 92.190

.334 2.570 94.760

.192 1.477 96.237

.135 1.038 97.275

.124 .957 98.232

.078 .598 98.829

.074 .567 99.397

.052 .401 99.798

.026 .202 100.000

Component
1
2
3
4
5
6
7
8
9
10
11
12
13

Total % of Variance Cumulative % Total % of Variance Cumulative %
Initial Eigenvalues Extraction Sums of Squared Loadings

Extraction Method: Principal Component Analysis.
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Table 23 PCA component matrix (Upper Trinity Basin) 

Component Matrixa

.254 .359 .791

.648 .461 .523

.736 .439 .374

.954 -.027 -.196

.723 -.577 .185

.703 -.578 .188

.728 -.601 .175

.806 -.356 -.002

.828 -.176 -.137

.831 .182 -.299

.808 .359 -.312

.772 .398 -.326

.622 .413 -.248

zindex
pdsi
phdi
EDI
PN
decile
SPI1
SPI2
SPI3
SPI6
SPI9
SPI12
SPI24

1 2 3
Component

Extraction Method: Principal Component Analysis.
3 components extracted.a. 

 
Red River Basin 

Evaluation of the meteorological drought indices for the Red River Basin was carried 

out using data from 1902–2001 (station 412121).  The correlation matrix for this station 

(Table 24) is similar to those of the other two basins.  The drought indices were also analyzed 

using Principal Component Analysis to identify the main modes of variability in the data.  It 

is evident from the results that many of these indices are providing the same type of 

information (Tables 25 and 26).  Once again three significant PCs were extracted.  The first 

PC explains nearly 55% of the variance in the drought indices.  Similar to the other basins, 

EDI has the largest loading on PC1 (0.946) and it can be described as describing the general 

precipitation.  PC2 accounts for approximately 17% of the variance and, like the San Antonio 

basin, it loads highly on a number of the short-term precipitation indices.  PC3 only accounts 

for 10% of the variance and it loads highly on the Z-index (and the other Palmer indices).   

 
 

 102



Table 24 Correlation matrix for meteorological indices in the Red River Basin 
Correlation Matrix

1.000 .664 .539 .226 .128 .109 .132 .165 .166 .200 .219 .179 .103
.664 1.000 .894 .627 .315 .258 .314 .413 .465 .552 .590 .564 .436
.539 .894 1.000 .714 .338 .274 .330 .439 .509 .649 .725 .729 .602
.226 .627 .714 1.000 .614 .501 .615 .734 .795 .849 .830 .778 .520
.128 .315 .338 .614 1.000 .773 .940 .684 .569 .380 .333 .305 .176
.109 .258 .274 .501 .773 1.000 .830 .579 .480 .324 .285 .245 .140
.132 .314 .330 .615 .940 .830 1.000 .710 .588 .396 .345 .305 .183
.165 .413 .439 .734 .684 .579 .710 1.000 .821 .556 .480 .428 .265
.166 .465 .509 .795 .569 .480 .588 .821 1.000 .690 .582 .523 .330
.200 .552 .649 .849 .380 .324 .396 .556 .690 1.000 .808 .726 .475
.219 .590 .725 .830 .333 .285 .345 .480 .582 .808 1.000 .876 .588
.179 .564 .729 .778 .305 .245 .305 .428 .523 .726 .876 1.000 .691
.103 .436 .602 .520 .176 .140 .183 .265 .330 .475 .588 .691 1.000

zindex
pdsi
phdi
EDI
PN
decile
SPI1
SPI2
SPI3
SPI6
SPI9
SPI12
SPI24

Correlation
zindex pdsi phdi EDI PN decile SPI1 SPI2 SPI3 SPI6 SPI9 SPI12 SPI24

 
 
Table 25 Results of the unrotated Principal Components Analysis (Red River Basin) 

Total Variance Explained 
 

Initial Eigenvalues Extraction Sums of Squared Loadings 
Component Total % of Variance Cumulative % Total % of Variance Cumulative % 
1 7.115 54.732 54.732 7.115 54.732 54.732
2 2.255 17.344 72.076 2.255 17.344 72.076
3 1.301 10.004 82.080 1.301 10.004 82.080
4 .715 5.498 87.578     
5 .442 3.403 90.981     
6 .264 2.030 93.012     
7 .247 1.901 94.913     
8 .217 1.666 96.579     
9 .145 1.115 97.694     
10 .103 .790 98.484     
11 .078 .602 99.086     
12 .069 .530 99.616     
13 .050 .384 100.000     

Extraction Method: Principal Component Analysis. 
 

  

 103



Table 26 PCA component matrix (Red River Basin) 

Component Matrixa

.359 -.291 .820

.733 -.369 .471

.812 -.418 .248

.946 -.012 -.152

.682 .629 .100

.596 .625 .113

.695 .648 .097

.774 .383 -.028

.808 .197 -.120

.825 -.193 -.228

.829 -.334 -.244

.794 -.384 -.286

.584 -.413 -.283

zindex
pdsi
phdi
EDI
PN
decile
SPI1
SPI2
SPI3
SPI6
SPI9
SPI12
SPI24

1 2 3
Component

Extraction Method: Principal Component Analysis.
3 components extracted.a. 

 
Lower Trinity Basin 

Evaluation of the meteorological drought indices for the Lower Trinity Basin was 

carried out using data from 1906–2001 (station 415196).  The correlation matrix for this 

station (Table 27) is similar to the other basins.  The drought indices were also analyzed 

using Principal Component Analysis (Tables 28 and 29).  Once again three significant PCs 

were extracted.  The first PC explains nearly 52% of the variance in the drought indices.  

Similar to the other basins, EDI has the largest loading on PC1 (0.957) and it can be 

described as describing the general precipitation.  PC2 accounts for approximately 17% of 

the variance and, like the San Antonio basin, it loads highly on the Z-index (and the other 

Palmer indices) and it loads negatively on the short-term precipitation indices.  PC3 accounts 

for 14% of the variance and it is difficult to interpret since it has moderate positive/negative 

loadings on most of the drought indices.  This is the only basin and PC that is not easy to 

interpret. 
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Table 27 Correlation matrix for meteorological indices in the Lower Trinity Basin 
Correlation Matrix

1.000 .637 .514 .074 .081 .062 .069 .070 .069 .064 .054 .037 .061
.637 1.000 .884 .275 .174 .168 .174 .221 .252 .281 .255 .227 .199
.514 .884 1.000 .389 .215 .199 .213 .278 .315 .386 .385 .362 .328
.074 .275 .389 1.000 .685 .618 .636 .772 .839 .877 .844 .783 .567
.081 .174 .215 .685 1.000 .882 .921 .682 .594 .426 .369 .322 .228
.062 .168 .199 .618 .882 1.000 .944 .668 .576 .412 .353 .307 .213
.069 .174 .213 .636 .921 .944 1.000 .698 .596 .425 .363 .316 .218
.070 .221 .278 .772 .682 .668 .698 1.000 .825 .599 .504 .448 .297
.069 .252 .315 .839 .594 .576 .596 .825 1.000 .727 .610 .550 .369
.064 .281 .386 .877 .426 .412 .425 .599 .727 1.000 .844 .758 .532
.054 .255 .385 .844 .369 .353 .363 .504 .610 .844 1.000 .898 .655
.037 .227 .362 .783 .322 .307 .316 .448 .550 .758 .898 1.000 .758
.061 .199 .328 .567 .228 .213 .218 .297 .369 .532 .655 .758 1.000

zindex
pdsi
phdi
EDI
PN
decile
SPI1
SPI2
SPI3
SPI6
SPI9
SPI12
SPI24

Correlation
zindex pdsi phdi EDI PN decile SPI1 SPI2 SPI3 SPI6 SPI9 SPI12 SPI24

 

Table 28 Results of the unrotated Principal Components Analysis (Lower Trinity Basin) 
Total Variance Explained

6.704 51.571 51.571 6.704 51.571 51.571
2.198 16.906 68.477 2.198 16.906 68.477
1.870 14.385 82.862 1.870 14.385 82.862

.677 5.207 88.069

.473 3.642 91.711

.370 2.846 94.557

.181 1.393 95.950

.140 1.073 97.023

.136 1.049 98.072

.094 .721 98.792

.077 .596 99.388

.054 .415 99.803

.026 .197 100.000

Component
1
2
3
4
5
6
7
8
9
10
11
12
13

Total % of Variance Cumulative % Total % of Variance Cumulative %
Initial Eigenvalues Extraction Sums of Squared Loadings

Extraction Method: Principal Component Analysis.
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Table 29 PCA component matrix (Lower Trinity Basin) 

Component Matrixa

.180 .610 .532

.410 .716 .475

.507 .692 .332

.957 -.046 -.164

.750 -.426 .376

.730 -.445 .391

.749 -.446 .398

.812 -.253 .145

.843 -.132 -.012

.838 .116 -.313

.812 .194 -.442

.767 .221 -.499

.596 .270 -.456

zindex
pdsi
phdi
EDI
PN
decile
SPI1
SPI2
SPI3
SPI6
SPI9
SPI12
SPI24

1 2 3
Component

Extraction Method: Principal Component Analysis.
3 components extracted.a. 

 

Colorado Basin 

The meteorological drought indices were evaluated for the Colorado Basin using data 

from 1902–2001 (station 415272).  The correlation matrix for this station (Table 30) is 

similar to the other basins.  The drought indices were also analyzed using Principal 

Component Analysis (Tables 31 and 32).  There were only two significant PCs extracted.  

The first PC explains nearly 66% of the variance in the drought indices.  Similar to the other 

basins, EDI has the largest loading on PC1 (0.957) and it can be described as describing the 

general precipitation.  PC2 accounts for approximately 18% of the variance and, it has 

positive loadings on the short-term precipitation indices and negative loadings on the long-

term precipitation indices. 
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Table 30 Correlation matrix for meteorological indices in the Colorado Basin 
Correlation Matrix

1.000 .650 .518 .773 .722 .911 .870 .712 .637 .517 .448 .374 .256
.650 1.000 .889 .481 .852 .531 .533 .654 .717 .795 .790 .755 .592
.518 .889 1.000 .351 .838 .406 .396 .545 .641 .812 .872 .861 .697
.773 .481 .351 1.000 .586 .832 .908 .652 .545 .419 .351 .286 .219
.722 .852 .838 .586 1.000 .680 .654 .785 .845 .894 .856 .772 .555
.911 .531 .406 .832 .680 1.000 .930 .693 .599 .458 .381 .317 .236
.870 .533 .396 .908 .654 .930 1.000 .726 .614 .477 .393 .324 .247
.712 .654 .545 .652 .785 .693 .726 1.000 .840 .651 .541 .456 .335
.637 .717 .641 .545 .845 .599 .614 .840 1.000 .767 .645 .547 .398
.517 .795 .812 .419 .894 .458 .477 .651 .767 1.000 .872 .768 .551
.448 .790 .872 .351 .856 .381 .393 .541 .645 .872 1.000 .908 .663
.374 .755 .861 .286 .772 .317 .324 .456 .547 .768 .908 1.000 .754
.256 .592 .697 .219 .555 .236 .247 .335 .398 .551 .663 .754 1.000

zindex
pdsi
phdi
decile
EDI
PN
SPI1
SPI2
SPI3
SPI6
SPI9
SPI12
SPI24

Correlation
zindex pdsi phdi decile EDI PN SPI1 SPI2 SPI3 SPI6 SPI9 SPI12 SPI24

 
 
Table 31 Results of the unrotated Principal Components Analysis (Colorado Basin) 

Total Variance Explained

8.524 65.567 65.567 8.524 65.567 65.567
2.331 17.929 83.495 2.331 17.929 83.495

.667 5.130 88.626

.392 3.019 91.645

.303 2.332 93.977

.203 1.562 95.539

.163 1.253 96.792

.121 .929 97.721

.079 .604 98.326

.070 .539 98.865

.060 .460 99.325

.058 .446 99.771

.030 .229 100.000

Component
1
2
3
4
5
6
7
8
9
10
11
12
13

Total % of Variance Cumulative % Total % of Variance Cumulative %
Initial Eigenvalues Extraction Sums of Squared Loadings

Extraction Method: Principal Component Analysis.
 

 
 

 107



Table 32 PCA component matrix (Colorado Basin) 

Component Matrixa

.796 .481

.887 -.204

.848 -.417

.695 .578

.964 -.082

.753 .579

.761 .588

.822 .262

.846 .062

.866 -.283

.839 -.443

.778 -.521

.612 -.492

zindex
pdsi
phdi
decile
EDI
PN
SPI1
SPI2
SPI3
SPI6
SPI9
SPI12
SPI24

1 2
Component

Extraction Method: Principal Component Analysis.
2 components extracted.a. 

 
Guadalupe Basin 

The meteorological drought indices were also evaluated for the Guadalupe Basin 

using data from 1903–2001 (station 415429).  The correlation matrix for this station (Table 

33) is similar to the other basins.  The drought indices were also analyzed using Principal 

Component Analysis (Tables 34 and 35).  There were three significant PCs extracted.  The 

first PC explains nearly 48% of the variance in the drought indices.  Similar to the other 

basins, EDI has the largest loading on PC1 (0.961) and it can be described as describing the 

general precipitation.  PC2 accounts for approximately 18% of the variance and, a number of 

other basins, it loads highly on the Z-index (and the other Palmer indices).  PC3 accounts for 

15% of the variance and it has negative loadings on the short-term precipitation indices and 

positive loadings on the long-term precipitation indices.  This suggests that PC3 represents 

variance in the long-term precipitation indices. 
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Table 33 Correlation matrix for meteorological indices in the Guadalupe Basin 
Correlation Matrix

1.000 .655 .521 -.026 .025 .034 .028 .020 -.013 -.043 -.044 -.042 -.066
.655 1.000 .883 .100 .114 .094 .106 .124 .107 .070 .059 .052 -.034
.521 .883 1.000 .238 .177 .158 .173 .224 .229 .212 .184 .164 .052

-.026 .100 .238 1.000 .652 .582 .623 .763 .835 .891 .848 .776 .490
.025 .114 .177 .652 1.000 .854 .921 .672 .567 .416 .330 .285 .163
.034 .094 .158 .582 .854 1.000 .923 .658 .546 .395 .311 .265 .145
.028 .106 .173 .623 .921 .923 1.000 .702 .585 .424 .332 .282 .155
.020 .124 .224 .763 .672 .658 .702 1.000 .820 .600 .475 .415 .231

-.013 .107 .229 .835 .567 .546 .585 .820 1.000 .730 .596 .522 .303
-.043 .070 .212 .891 .416 .395 .424 .600 .730 1.000 .852 .748 .457
-.044 .059 .184 .848 .330 .311 .332 .475 .596 .852 1.000 .893 .572
-.042 .052 .164 .776 .285 .265 .282 .415 .522 .748 .893 1.000 .683
-.066 -.034 .052 .490 .163 .145 .155 .231 .303 .457 .572 .683 1.000

zindex
pdsi
phdi
EDI
PN
decile
SPI1
SPI2
SPI3
SPI6
SPI9
SPI12
SPI24

Correlation
zindex pdsi phdi EDI PN decile SPI1 SPI2 SPI3 SPI6 SPI9 SPI12 SPI24

 
 
Table 34 Results of the unrotated Principal Components Analysis (Guadalupe Basin) 

Total Variance Explained

6.263 48.174 48.174 6.263 48.174 48.174
2.378 18.296 66.470 2.378 18.296 66.470
1.989 15.301 81.770 1.989 15.301 81.770

.724 5.569 87.340

.482 3.707 91.046

.427 3.284 94.330

.188 1.447 95.777

.155 1.189 96.966

.141 1.083 98.048

.092 .705 98.754

.076 .581 99.335

.059 .455 99.790

.027 .210 100.000

Component
1
2
3
4
5
6
7
8
9
10
11
12
13

Total % of Variance Cumulative % Total % of Variance Cumulative %
Initial Eigenvalues Extraction Sums of Squared Loadings

Extraction Method: Principal Component Analysis.
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Table 35 PCA component matrix (Guadalupe Basin) 

Component Matrixa

.036 .775 .232

.180 .890 .304

.311 .801 .326

.961 -.116 .114

.754 .146 -.530

.727 .147 -.556

.764 .150 -.559

.825 .068 -.250

.848 -.022 -.051

.841 -.179 .293

.792 -.245 .451

.739 -.267 .504

.497 -.308 .461

zindex
pdsi
phdi
EDI
PN
decile
SPI1
SPI2
SPI3
SPI6
SPI9
SPI12
SPI24

1 2 3
Component

Extraction Method: Principal Component Analysis.
3 components extracted.a. 

 

3.4.3 Hydrological/Water Supply Drought Indices 
Nine different indices of hydrological/water supply drought indices were evaluated in 

six Texas watersheds.  Three of these indices (SPI, PDSI, and PHDI) are frequently used to 

monitor hydrological/water supply drought across the U.S. and, in some cases, around the 

world.  Two of the indices, Percent of Reservoir Conservation Storage Capacity and 

Streamflow Percent Exceedance, are currently used by the TWDB.  Four of these indices, 

Standardized Streamflow Index (SSFI), Streamflow Deficit Index (SDI), Standardized 

Reservoir Index (SRI), and Reservoir Deficit Index (RDI), are new indices that were 

specifically developed for this study.  The streamflow indices are evaluated first and this is 

followed by the evaluation of the reservoir indices. 

Evaluation of Streamflow-based Indices 

The two new streamflow-based drought indices proposed in this study (Standardized 

Streamflow Index (SSFI) and Streamflow Deficit Index (SDI)) were evaluated against a 
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number of existing drought indices (PDSI, PHDI, and SPI).  Although not explicitly 

hydrological drought indices, PDSI and SPI were used in the assessment because a major 

drought event will first affect precipitation and then, with some time lag, it will subsequently 

affect streamflow.  SPI calculated at 1-, 2-, 3-, 6-, 9-, 12- and 24-month time scales were 

used for comparison with SSFI and SDI.  SSFI and SDI were calculated at 30-, 60-, 90-, 180-

, 360- and 720-day time scales using a daily rather than monthly time step.  Hence, only the 

SSFI and SDI calculated during the last day of the month was used for comparison with the 

PHDI and SPI.  A correlation matrix was used to compare all of the drought indices.  A high 

correlation between two indices was interpreted to mean that those two indices behave 

similarly.  In addition, graphical plots were used to visually compare the behavior of all of 

the indices during the 1990s drought.  All of the indices were evaluated in six representative 

basins in Texas.  The stream gages and the weather stations used for computing the indices 

are shown in Figure 16. 
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Figure 16 Stream gages, reservoirs and weather stations used for calculating the 
hydrological/water supply drought indices. 

 
Upper Trinity Basin 

The correlation matrix for Upper Trinity (Table 36) shows that both PDSI and PHDI 

are poorly correlated with SPI, although PHDI has a slightly better correlation.  Among the 

all SPI time scales, SPI-9 has the highest correlation (0.447) with PHDI indicating a 9-month 

time scale inherent in PHDI.  SSFI and SDI have a stronger correlation with the SPI than 

with PDSI or PHDI.  SSFI and SDI are direct measures of hydrological conditions since they 

are derived from streamflow.  Therefore, the poor correlation between the SSFI and PHDI 

demonstrates that PDSI has limited value for monitoring hydrological/water supply drought, 

but the SPI may have some value.  There appears to be lag in correlation between SSFI/SDI 

and the SPI.  For example, SSFI90 and SDI90 have a stronger correlation with the 6-month 
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SPI than they do with the 3-month SPI.  This demonstrates that hydrological/water supply 

drought on the 3-month time scale is a function of precipitation over the last 6 months.  As 

expected, SSFI and SDI are highly correlated with each other, because both are calculated 

from the same streamflow data, but with a different standardizing procedure.   

Figure 17 shows that the Palmer indices and the SPI were able to capture the 1996–

2000 drought.  However, a short-term drought (6 months) during the summer of 1998 that 

was measured by the SPI was not captured by the Palmer indices.  Figure 18 shows that SSFI 

captured all the major drought events, including the short-term droughts during autumn 1998 

(the same drought event indicated by SPI during summer 1998).  This suggests that the SPI 

could be used as a leading indicator of upcoming hydrologic drought events.  Although SSFI 

and SDI seem to have the same temporal pattern (Figures 18 and 19), SDI seems to reach 

extreme dryness values much more frequently than the SSFI.  This could be due to the linear 

scaling that is used to calculate the SDI.  Although it is difficult to fit a statistical distribution 

to cumulative streamflow, SSFI seems to provide a more realistic indication of the drought 

magnitude than the SDI.  Hence, SSFI is a better indicator of hydrological/water supply 

drought than SDI.  
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Table 36 Correlation matrix for hydrological/water supply indices in the Upper Trinity Basin 
 

pdsi phdi SPI-1 SPI-2 SPI-3 SPI-6 SPI-9 SPI-12 SPI-24 SSFI30 SSFI60 SSFI90 SSFI180 SSFI270 SSFI360 SSFI720 SDI30 SDI60 SDI90 SDI180 SDI270 SDI360 SDI720
pdsi 1.000
phdi 0.842 1.000
SPI-1 0.205 0.300 1.000
SPI-2 0.228 0.357 0.757 1.000
SPI-3 0.216 0.370 0.615 0.857 1.000
SPI-6 0.203 0.407 0.339 0.529 0.678 1.000
SPI-9 0.235 0.447 0.269 0.393 0.491 0.774 1.000
SPI-12 0.182 0.411 0.266 0.382 0.472 0.638 0.825 1.000
SPI-24 0.158 0.372 0.172 0.268 0.330 0.443 0.523 0.634 1.000
SSFI30 0.163 0.294 0.389 0.494 0.465 0.445 0.391 0.350 0.173 1.000
SSFI60 0.137 0.265 0.298 0.472 0.508 0.500 0.444 0.391 0.192 0.853 1.000
SSFI90 0.119 0.232 0.216 0.384 0.488 0.528 0.485 0.430 0.208 0.766 0.894 1.000
SSFI180 0.119 0.166 0.035 0.111 0.188 0.434 0.509 0.467 0.198 0.533 0.652 0.770 1.000
SSFI270 0.127 0.180 0.057 0.090 0.119 0.250 0.443 0.490 0.262 0.431 0.516 0.597 0.833 1.000
SSFI360 0.120 0.178 0.078 0.142 0.175 0.250 0.361 0.490 0.377 0.361 0.435 0.512 0.705 0.871 1.000
SSFI720 0.135 0.187 0.092 0.148 0.170 0.211 0.263 0.299 0.368 0.252 0.286 0.313 0.429 0.523 0.604 1.000
SDI30 0.137 0.255 0.381 0.464 0.432 0.406 0.357 0.317 0.144 0.941 0.790 0.708 0.474 0.374 0.320 0.207 1.000
SDI60 0.129 0.253 0.330 0.483 0.493 0.479 0.428 0.360 0.189 0.808 0.945 0.834 0.606 0.483 0.400 0.212 0.793 1.000
SDI90 0.113 0.219 0.235 0.404 0.487 0.492 0.460 0.389 0.195 0.716 0.842 0.943 0.726 0.567 0.483 0.261 0.689 0.851 1.000
SDI180 0.120 0.186 0.047 0.127 0.203 0.441 0.517 0.458 0.208 0.502 0.620 0.737 0.956 0.808 0.685 0.395 0.448 0.596 0.736 1.000
SDI270 0.129 0.198 0.057 0.086 0.121 0.274 0.466 0.506 0.283 0.428 0.513 0.596 0.824 0.971 0.860 0.516 0.374 0.487 0.579 0.832 1.000
SDI360 0.126 0.192 0.082 0.135 0.160 0.240 0.363 0.486 0.392 0.364 0.438 0.510 0.702 0.861 0.975 0.597 0.325 0.408 0.495 0.697 0.873 1.000
SDI720 0.162 0.230 0.074 0.119 0.140 0.207 0.292 0.367 0.444 0.278 0.314 0.342 0.466 0.595 0.717 0.830 0.237 0.269 0.313 0.453 0.594 0.722 1.000  

 



Figure 17  Comparison of PHDI, PDSI, and 3-, 6-, and 9-month SPI for the Upper Trinity 
basin (1991–2001). 
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Figure 18 Comparison of SSFI with PDSI and PHDI for the Upper Trinity basin (1991–
2001). 
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Figure 19 Comparison of SDI with PDSI and PHDI for the Upper Trinity basin (1991–
2001). 
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Lower Trinity Basin 

The correlation matrix for Lower Trinity (Table 37) shows that both PDSI and PHDI 

are poorly correlated with SPI, much lower than the correlations observed in Upper Trinity.  

However, SPI has a much stronger correlation with SSFI and SDI than in Upper Trinity.  

Further, there does not seem to be the same time-lag in correlation between SSFI and SPI 

that was observed in Upper Trinity.  The reason could be that Lower Trinity basin is located 

in a wetter region than the Upper Trinity and so streamflow responds more synchronously 

with rainfall.   

Analysis of Figures 20, 21 and 22 demonstrates that the minor drought event of 1996 

and the major multi-year drought of 2000–2001 (as represented by SPI) are captured well by 

SSFI.  The amount of time that it took for the streamflow to recover after these drought 

events indicates that SSFI is satisfactorily capturing the duration of the drought.  As observed 
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previously in Upper Trinity, SDI seems to reach extreme values much more frequently than 

SSFI (Figure 22). 
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Table 37 Correlation matrix for hydrological/water supply indices in the Lower Trinity Basin 
 

pdsi phdi SPI-1 SPI-2 SPI-3 SPI-6 SPI-9 SPI-12 SPI-24 SSFI30 SSFI60 SSFI90 SSFI180 SSFI270 SSFI360 SSFI720 SDI30 SDI60 SDI90 SDI180 SDI270 SDI360 SDI720
pdsi 1.000
phdi 0.785 1.000
SPI-1 0.077 0.121 1.000
SPI-2 0.089 0.163 0.748 1.000
SPI-3 0.087 0.162 0.619 0.842 1.000
SPI-6 0.051 0.158 0.382 0.541 0.690 1.000
SPI-9 -0.030 0.086 0.321 0.432 0.528 0.788 1.000
SPI-12 -0.049 0.062 0.278 0.388 0.486 0.662 0.845 1.000
SPI-24 0.004 0.124 0.209 0.245 0.305 0.422 0.508 0.618 1.000
SSFI30 0.072 0.119 0.550 0.625 0.610 0.539 0.488 0.482 0.387 1.000
SSFI60 0.071 0.133 0.397 0.606 0.650 0.608 0.542 0.527 0.413 0.884 1.000
SSFI90 0.054 0.131 0.337 0.502 0.645 0.667 0.579 0.555 0.438 0.797 0.925 1.000
SSFI180 0.013 0.091 0.205 0.321 0.434 0.703 0.675 0.614 0.493 0.630 0.735 0.825 1.000
SSFI270 -0.052 0.019 0.141 0.216 0.304 0.535 0.707 0.687 0.565 0.539 0.618 0.683 0.865 1.000
SSFI360 -0.077 -0.018 0.106 0.155 0.227 0.407 0.572 0.697 0.612 0.506 0.570 0.618 0.758 0.912 1.000
SSFI720 -0.089 -0.064 -0.007 -0.015 0.013 0.093 0.155 0.249 0.664 0.255 0.288 0.325 0.431 0.558 0.690 1.000
SDI30 0.074 0.125 0.561 0.616 0.606 0.541 0.489 0.478 0.378 0.970 0.865 0.778 0.621 0.529 0.496 0.241 1.000
SDI60 0.057 0.134 0.389 0.586 0.623 0.600 0.533 0.516 0.394 0.856 0.977 0.908 0.731 0.614 0.566 0.282 0.853 1.000
SDI90 0.043 0.131 0.328 0.482 0.627 0.661 0.567 0.547 0.429 0.779 0.907 0.987 0.821 0.676 0.614 0.328 0.768 0.909 1.000
SDI180 0.012 0.095 0.204 0.314 0.422 0.694 0.659 0.597 0.497 0.620 0.729 0.819 0.994 0.855 0.750 0.440 0.610 0.724 0.816 1.000
SDI270 -0.054 0.020 0.142 0.219 0.303 0.531 0.704 0.681 0.570 0.534 0.613 0.678 0.860 0.994 0.908 0.566 0.522 0.609 0.671 0.852 1.000
SDI360 -0.072 -0.013 0.100 0.146 0.217 0.397 0.565 0.690 0.605 0.500 0.562 0.613 0.753 0.908 0.993 0.688 0.491 0.564 0.611 0.744 0.905 1.000
SDI720 -0.082 -0.062 -0.001 -0.002 0.023 0.092 0.153 0.250 0.663 0.253 0.286 0.321 0.424 0.549 0.682 0.991 0.234 0.277 0.323 0.435 0.557 0.678 1.000  

 



Figure 20 Comparison of PHDI, PDSI, and 3-, 6-, and 9-month SPI for the Lower Trinity 
basin (1991–2001). 
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Figure 21 Comparison of SSFI with PDSI and PHDI for the Lower Trinity basin (1991–
2001). 
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Figure 22 Comparison of SDI with PDSI and PHDI for the Lower Trinity basin (1991–
2001). 
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Colorado Basin 

The correlation matrix for Colorado Basin (Table 38) shows that both PDSI and 

PHDI are highly correlated with SPI.  This basin has the highest correlation between the 

Palmer indices and SPI of the six basins studied in this project.  However, the correlation 

between SPI and SSFI is among the lowest observed among the basins.  The reason could be 

that groundwater may be contributing water to the streamflow and hence streamflow (SSFI) 

is not correlated well with rainfall (SPI).  The Colorado basin is known to have many active 

springs that discharge continuously to the streams.   

As observed in Table 38, the time series plot of PDSI and PHDI during the 1990’s 

(Figure 23) also shows a good match of the indices with SPI.  The moderate meteorological 

drought events indicated by SPI in 1996, 2000 and summer 2001 seem to have had a much 

stronger influence on the streamflow (Figure 24) with SSFI showing a drought of higher 
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magnitude and duration than the SPI.  This could be due to the time-lag between 

meteorological and hydrological drought in addition to the effect of temperature.  As 

observed in other basins, the SDI (Figure 25) reach extreme dryness values much more 

frequently than the SSFI. 
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Table 38 Correlation matrix for hydrological/water supply indices in the Colorado Basin 
 

pdsi phdi SPI-1 SPI-2 SPI-3 SPI-6 SPI-9 SPI-12 SPI-24 SSFI30 SSFI60 SSFI90 SSFI180 SSFI270 SSFI360 SSFI720 SDI30 SDI60 SDI90 SDI180 SDI270 SDI360 SDI720
pdsi 1.000
phdi 0.858 1.000
SPI-1 0.530 0.326 1.000
SPI-2 0.653 0.474 0.694 1.000
SPI-3 0.696 0.565 0.576 0.820 1.000
SPI-6 0.745 0.744 0.372 0.556 0.695 1.000
SPI-9 0.712 0.824 0.290 0.435 0.534 0.808 1.000
SPI-12 0.669 0.820 0.243 0.364 0.457 0.686 0.855 1.000
SPI-24 0.452 0.584 0.195 0.242 0.271 0.353 0.427 0.550 1.000
SSFI30 0.197 0.209 0.252 0.329 0.371 0.395 0.329 0.304 0.347 1.000
SSFI60 0.185 0.197 0.202 0.314 0.369 0.395 0.310 0.280 0.327 0.884 1.000
SSFI90 0.158 0.182 0.163 0.251 0.343 0.397 0.318 0.268 0.299 0.784 0.911 1.000
SSFI180 0.169 0.207 0.129 0.216 0.289 0.416 0.368 0.291 0.291 0.629 0.726 0.798 1.000
SSFI270 0.166 0.226 0.133 0.206 0.266 0.393 0.426 0.353 0.283 0.547 0.609 0.670 0.864 1.000
SSFI360 0.184 0.246 0.150 0.217 0.282 0.399 0.444 0.424 0.300 0.532 0.568 0.617 0.774 0.907 1.000
SSFI720 0.115 0.206 0.101 0.140 0.173 0.252 0.305 0.360 0.495 0.450 0.461 0.480 0.566 0.644 0.730 1.000
SDI30 0.222 0.223 0.276 0.347 0.362 0.359 0.317 0.297 0.337 0.815 0.710 0.615 0.508 0.453 0.427 0.344 1.000
SDI60 0.151 0.196 0.201 0.318 0.372 0.366 0.299 0.267 0.309 0.789 0.909 0.806 0.647 0.559 0.517 0.420 0.673 1.000
SDI90 0.149 0.186 0.168 0.263 0.353 0.373 0.311 0.262 0.284 0.723 0.836 0.924 0.733 0.622 0.577 0.445 0.604 0.799 1.000
SDI180 0.172 0.210 0.125 0.210 0.278 0.414 0.361 0.281 0.274 0.603 0.695 0.764 0.962 0.824 0.734 0.540 0.494 0.637 0.733 1.000
SDI270 0.148 0.211 0.105 0.183 0.233 0.361 0.409 0.340 0.273 0.524 0.578 0.633 0.830 0.966 0.863 0.621 0.436 0.533 0.597 0.824 1.000
SDI360 0.154 0.219 0.120 0.177 0.232 0.352 0.407 0.403 0.292 0.517 0.538 0.579 0.730 0.861 0.965 0.719 0.421 0.499 0.554 0.714 0.866 1.000
SDI720 0.115 0.205 0.092 0.128 0.161 0.237 0.293 0.341 0.489 0.436 0.447 0.467 0.548 0.620 0.700 0.985 0.333 0.407 0.432 0.528 0.607 0.700 1.000

 



Figure 23 Comparison of PHDI, PDSI, and 3-, 6-, and 9-month SPI for the Colorado basin 
(1991–2001). 
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Figure 24 Comparison of SSFI with PDSI and PHDI for the Colorado basin (1991–2001). 
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The correlation matrix for Guadalupe basin (Table 39) illustrates that both PDSI and 

PHDI are poorly correlated with SPI.  However, as in other basins, the SSFI were correlated 

better with SPI.  Although the correlation matrix shows a slight time-lag between SPI and 

SSFI, the streamflow seems to respond synchronously to rainfall.  While SPI indicates severe 

drought during 1996 and 2000 (Figure 26), the SSFI only indicates a moderate drought 

during both of these periods (Figure 27).  This suggests a complex interplay between 

temperature (evapotranspiration), soil moisture and runoff that may have moderated the 

effect that the rainfall deficit had on streamflow.  As observed in other basins, the SDI 

(Figure 28) reaches extreme dryness values much more frequently than the SSFI. 

 

 

Guadalupe Basin 

 
Figure 25 Comparison of SDI with PDSI and PHDI for the Colorado basin (1991–2001). 
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Table 39 Correlation matrix for hydrological/water supply indices in the Guadalupe Basin 
 

pdsi phdi SPI-1 SPI-2 SPI-3 SPI-6 SPI-9 SPI-12 SPI-24 SSFI30 SSFI60 SSFI90 SSFI180 SSFI270 SSFI360 SSFI720 SDI30 SDI60 SDI90 SDI180 SDI270 SDI360 SDI720
pdsi 1.000
phdi 0.888 1.000
SPI-1 0.128 0.225 1.000
SPI-2 0.129 0.262 0.718 1.000
SPI-3 0.092 0.250 0.592 0.830 1.000
SPI-6 0.056 0.210 0.421 0.585 0.724 1.000
SPI-9 0.097 0.206 0.329 0.469 0.585 0.844 1.000
SPI-12 0.110 0.203 0.306 0.427 0.527 0.742 0.887 1.000
SPI-24 0.087 0.194 0.167 0.247 0.318 0.474 0.566 0.674 1.000
SSFI30 -0.005 0.127 0.378 0.506 0.550 0.594 0.565 0.521 0.321 1.000
SSFI60 -0.017 0.108 0.297 0.460 0.536 0.602 0.575 0.526 0.314 0.950 1.000
SSFI90 -0.024 0.094 0.244 0.382 0.492 0.599 0.585 0.536 0.313 0.908 0.966 1.000
SSFI180 -0.036 0.055 0.167 0.256 0.336 0.539 0.585 0.558 0.320 0.790 0.847 0.898 1.000
SSFI270 -0.032 0.040 0.141 0.216 0.277 0.429 0.555 0.571 0.366 0.700 0.745 0.792 0.926 1.000
SSFI360 -0.017 0.048 0.109 0.173 0.234 0.365 0.470 0.556 0.427 0.615 0.656 0.704 0.837 0.944 1.000
SSFI720 -0.077 0.013 0.032 0.063 0.097 0.189 0.252 0.320 0.504 0.396 0.415 0.440 0.538 0.638 0.734 1.000
SDI30 0.003 0.120 0.395 0.515 0.543 0.592 0.567 0.539 0.335 0.942 0.888 0.854 0.741 0.654 0.576 0.377 1.000
SDI60 -0.021 0.095 0.303 0.467 0.540 0.600 0.586 0.559 0.334 0.918 0.969 0.935 0.829 0.733 0.652 0.417 0.906 1.000
SDI90 -0.030 0.085 0.245 0.387 0.498 0.589 0.583 0.551 0.322 0.878 0.937 0.973 0.879 0.777 0.698 0.440 0.852 0.950 1.000
SDI180 -0.042 0.056 0.175 0.264 0.347 0.545 0.584 0.558 0.327 0.775 0.825 0.875 0.977 0.907 0.825 0.535 0.730 0.815 0.874 1.000
SDI270 -0.026 0.051 0.147 0.216 0.280 0.437 0.561 0.573 0.375 0.688 0.729 0.775 0.906 0.984 0.929 0.634 0.638 0.712 0.757 0.904 1.000
SDI360 -0.013 0.053 0.116 0.182 0.243 0.375 0.477 0.567 0.438 0.608 0.649 0.694 0.821 0.932 0.990 0.732 0.566 0.642 0.686 0.811 0.932 1.000
SDI720 -0.079 0.011 0.039 0.069 0.100 0.187 0.244 0.315 0.511 0.385 0.402 0.425 0.522 0.624 0.724 0.995 0.365 0.404 0.426 0.526 0.627 0.727 1.000  

 



Figure 26 Comparison of PHDI, PDSI, and 3-, 6-, and 9-month SPI for the Guadalupe basin 
(1991–2001). 
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Figure 27 Comparison of SSFI with PDSI and PHDI for the Guadalupe basin (1991–2001). 
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As observed in the Colorado Basin, the correlation matrix for San Antonio Basin 

(Table 40) shows that both PDSI and PHDI are highly correlated with SPI.  Unlike other 

basins, the Palmer indices were also strongly correlated with SSFI and SDI.  Further, the SPI 

is also strongly correlated with SSFI and SDI.  Overall, the correlations among all the indices 

were quite strong for this basin.  As observed in Lower Trinity and Colorado Basins, the 

drought events of the 1996 and 2000–2001 (Figure 29) seem to have had a much stronger 

influence on the streamflow (as shown by the SSFI) (Figure 30) than on precipitation (as 

shown by the SPI).  This could be due to the time-lag between meteorological and 

hydrological drought in addition to the influence of temperature.  As observed in other 

basins, the SDI (Figure 31) reached extremely dry values much more frequently than the 

SSFI.

 

San Antonio Basin 

Figure 28 Comparison of SDI with PDSI and PHDI for the Guadalupe basin (1991–2001). 
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pdsi phdi SPI-1 SPI-2 SPI-3 SPI-6 SPI-9 SPI-12 SPI-24 SSFI30 SSFI60 SSFI90 SSFI180 SSFI270 SSFI360 SSFI720 SDI30 SDI60 SDI90 SDI180 SDI270 SDI360 SDI720
pdsi 1.000
phdi 0.887 1.000
SPI-1 0.479 0.435 1.000
SPI-2 0.582 0.569 0.749 1.000
SPI-3 0.649 0.661 0.626 0.849 1.000
SPI-6 0.699 0.783 0.458 0.634 0.755 1.000
SPI-9 0.678 0.793 0.362 0.502 0.607 0.849 1.000
SPI-12 0.609 0.765 0.294 0.421 0.526 0.746 0.897 1.000
SPI-24 0.377 0.535 0.166 0.242 0.302 0.425 0.522 0.640 1.000
SSFI30 0.460 0.542 0.569 0.605 0.593 0.562 0.564 0.541 0.451 1.000
SSFI60 0.504 0.606 0.386 0.616 0.653 0.614 0.619 0.608 0.507 0.848 1.000
SSFI90 0.507 0.629 0.322 0.504 0.653 0.648 0.654 0.665 0.555 0.773 0.914 1.000
SSFI180 0.435 0.600 0.166 0.298 0.411 0.659 0.697 0.729 0.670 0.627 0.732 0.828 1.000
SSFI270 0.363 0.544 0.109 0.195 0.278 0.481 0.655 0.716 0.743 0.544 0.630 0.709 0.893 1.000
SSFI360 0.277 0.465 0.071 0.146 0.225 0.376 0.519 0.670 0.782 0.488 0.564 0.636 0.800 0.923 1.000
SSFI720 0.021 0.178 -0.043 -0.020 0.010 0.061 0.121 0.216 0.681 0.269 0.319 0.372 0.517 0.638 0.737 1.000
SDI30 0.397 0.490 0.558 0.583 0.577 0.555 0.561 0.538 0.446 0.929 0.767 0.703 0.576 0.504 0.452 0.256 1.000
SDI60 0.490 0.586 0.375 0.595 0.628 0.615 0.619 0.607 0.508 0.790 0.961 0.868 0.710 0.608 0.541 0.313 0.737 1.000
SDI90 0.504 0.619 0.301 0.487 0.626 0.647 0.653 0.667 0.559 0.740 0.887 0.965 0.810 0.692 0.619 0.367 0.685 0.893 1.000
SDI180 0.412 0.578 0.147 0.279 0.394 0.631 0.681 0.721 0.657 0.611 0.716 0.812 0.984 0.881 0.791 0.509 0.558 0.694 0.802 1.000
SDI270 0.350 0.531 0.106 0.186 0.267 0.469 0.641 0.709 0.738 0.533 0.614 0.693 0.881 0.989 0.913 0.624 0.490 0.589 0.671 0.881 1.000
SDI360 0.279 0.460 0.078 0.152 0.230 0.377 0.517 0.666 0.784 0.478 0.554 0.628 0.791 0.917 0.994 0.729 0.439 0.532 0.613 0.784 0.914 1.000
SDI720 0.015 0.164 -0.050 -0.032 -0.005 0.047 0.109 0.207 0.677 0.257 0.306 0.359 0.508 0.629 0.725 0.991 0.243 0.296 0.345 0.500 0.617 0.715 1.000  
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Table 40 Correlation matrix for hydrological/water supply indices in the San Antonio Basin 

 



Figure 29 Comparison of PHDI, PDSI, and 3-, 6-, and 9-month SPI for the San Antonio 
basin (1991–2001). 
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Figure 30 Comparison of SSFI with PDSI and PHDI for the San Antonio basin (1991–2001). 
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Figure 31 Comparison of SDI with PDSI and PHDI for the San Antonio basin (1991–2001) 
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Evaluation of Reservoir-based Indices 

The two new reservoir-based indices that were developed for this study, namely the 

Standardized Reservoir Index (SRI) and the Reservoir Deficit Index (RDI), were evaluated 

against the Percent of Reservoir Conservation Storage Capacity at seven different reservoirs 

from across Texas.  The water level data for most of the reservoirs were only available 

starting in October 2000 from the USGS.  For some of the reservoirs only the water level 

elevation (ft) was reported as opposed to storage volume (ac-ft) and so the elevation-area-

capacity curve available from the TWDB was used to convert the elevation reading into 

volume measurement.   

Bridgeport Reservoir, Trinity Basin 

Bridgeport reservoir is one of the major water supply reservoirs in the Trinity River 

basin.  SRI and RDI for Bridgeport Reservoir (Figure 32) show that it closely follows the 

water level data.  This is because the long-term monthly median storage level obtained from 

 130



WRAP simulations does not vary too much between months.  The information is, 

nevertheless, useful because it gives an estimate of percentage below the long-term normal 

reservoir storage level for each month.  Figure 32b shows that except for a short time period 

during winter 2001, the reservoir was experiencing a dry spell until autumn 2004.  The SRI 

plot (Figure 32a) shows more of a jig-saw pattern as compared to the smooth plot of RDI.  

This is because a continuous probability distribution was not fitted to the long-term data; 

rather the current storage volume is assigned a rank in comparison to long-term simulated 

storage volumes, which was then converted to cumulative probability and subsequently used 

to obtain the standard normal value for SRI.   
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Figure 32 a) Standardized Reservoir Index (SRI) b) Reservoir Deficit Index (RDI) for 
Bridgeport Reservoir, Trinity basin (2000–2005) 

Bridgeport Reservoir, Trinity Basin
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Bridgeport Reservoir, Trinity River Basin
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Cedar Creek Reservoir, Trinity Basin 

Figure 33b shows the RDI for the past five years for the Cedar Creek reservoir.  This 

reservoir has been 10 to 20% below normal continuously during this period.  In contrast to 

Bridgeport, the RDI plot does not exactly follow the water level because, based on WRAP 

simulations, the monthly long-term median reservoir levels for each month were quite 

different from each other.  The SRI plot (Figure 33a) shows much more variation than the 

RDI and also display a jagged pattern for the same reasons described previously. 
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Figure 33 a) Standardized Reservoir Index (SRI) b) Reservoir Deficit Index (RDI) for Cedar 
Creek Reservoir, Trinity basin (2000–2005) 

Cedar Creek Reservoir, Trinity Basin
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Cedar Creek Reservoir, Trinity Basin
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Richland-Chambers Reservoir, Trinity Basin 

The RDI plot for Richland-Chambers reservoir (Figure 34b) shows that the reservoir 

level has been close to normal during most of the past six years.  The water level was also 

never below 80% of the conservation storage capacity.  However, the SRI plot (Figure 34a) 

shows more drastic variation, as compared to RDI, for the same reasons described 

previously. 
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Figure 34 a) Standardized Reservoir Index (SRI) b) Reservoir Deficit Index (RDI) for 
Richland-Chambers Reservoir, Trinity basin (2000–2005) 

Richland-Chambers, Trinity River Basin
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Richland-Chambers Reservoir, Trinity Basin
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O.C. Fisher Reservoir, Colorado Basin: 

The RDI plot for O.C. Fisher Reservoir (Figure 35b) shows that the reservoir has 

been under severe drought since 2000, and the water level has still not recovered.  The water 

level has been 10% below conservation storage capacity consistently for the past six years.  

The RDI also shows that the reservoir has been below 80% of normal water level.  The SRI 

plot (Figure 35a) shows almost a constant value, this is because the current water level is less 

than the water level simulated by WRAP model using weather and hydrology data from 1940 

to 1996. 
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Figure 35 a) Standardized Reservoir Index (SRI) b) Reservoir Deficit Index (RDI) for O.C. 
Fisher Reservoir, Colorado basin (2000–2005) 
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Twin Buttes Reservoir, Colorado Basin 

The RDI plot for Twin Buttes reservoir shows that, similar to the O.C. Fisher 

Reservoir, this reservoir has been affected by a severe drought since 2000 (Figure 36b).  The 

water level was also about 10% of conservation storage capacity for the past six years.  The 

jagged response of SRI (Figure 36a) is due to the lack of proper probability distribution fit to 

the long-term water level data. 
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Figure 36 a) Standardized Reservoir Index (SRI) b) Reservoir Deficit Index (RDI) for Twin 
Buttes Reservoir, Colorado basin (2000–2005) 
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Canyon Lake, Guadalupe Basin 

The RDI plot for Canyon Lake (Figure 37b) shows that the reservoir has been 

maintaining a normal water level since 2000.  A closer examination of the WRAP simulation 

results and the current water level data show that either the reservoir water is not being used 

heavily or it is being recharged constantly by streamflow.  The reservoir consistently 

maintained a water level of over 90% of conservation storage capacity.  The jagged response 

of SRI (Figure 37a) is due to the lack of proper probability distribution fit to the long-term 

water level data. 
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Figure 37 a) Standardized Reservoir Index (SRI) b) Reservoir Deficit Index (RDI) for 
Canyon Lake Reservoir, Guadalupe basin (2000–2005) 

Canyon Creek, Gudalupe Basin
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Medina Lake, San Antonio Basin 

The RDI plot for Medina lake (Figure 38b) shows that this is the only reservoir to not 

to have even a single day below long-term normal water levels.  Notice that although the 

water level dipped to 40% of conservation storage capacity during October 2000, that water 

level was still above the normal water level (indicated by positive values of RDI) expected 

for that time of the year based on WRAP simulations.  Using “percentage of conservation 

storage capacity” as the only measure of drought would have classified this as a drought, 

even though reservoir usage was close to normal.  After October 2000, the reservoir has 

consistently had more water, either due to changes in water usage from the reservoir or 

increased inflows to the reservoir.  The jagged response of SRI (Figure 38a) is due to the lack 

of proper probability distribution fit to the long-term water level data. 
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Figure 38 a) Standardized Reservoir Index (SRI) b) Reservoir Deficit Index (RDI) for 
Medina Lake Reservoir, San Antonio basin (2000–2005) 
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3.4.4 Recommendations Based on the Quantitative Drought Index Evaluation 
It is apparent that many of the meteorological drought indices that were evaluated 

provide similar (overlapping) information.  Most of the meteorological drought indices that 

were evaluated are highly correlated with each other and these correlations are relatively 

spatially invariant.  Therefore, it would be useful to select one short-term index, one medium 

term index and one long term index for monitoring meteorological drought.  If these 

selections are made based on the qualitative drought index evaluation described in section 

3.3.1, either Percent Normal, Deciles, or 1-month SPI should be selected for measuring short-

term meteorological drought in Texas.  The 6-month SPI is the most appropriate index for 

measuring medium-term drought, and 12-month SPI is the best index for measuring long-

term drought.  Although the Palmer indices provide some different information than the 

precipitation-based indices, their calculation and interpretation is problematic.  Therefore, the 

Palmer indices are not recommended for operational drought monitoring in Texas.  The EDI 

is also not recommended for monitoring meteorological drought because it is not clear on 

which timescale (e.g., 1 month, 6 months, or 12 months) it is providing information.  In 

addition, the EDI is difficult to calculate and interpret. 

Developing indices to measure (and monitor) hydrological/water supply conditions is 

a challenging task because of the complex interaction of weather, land cover, topography, 

and geology.  Assessing hydrological/water supply drought is further complicated by human 

activities (and their impact on water supply and demand) and the multitude of competing 

demands for water.  In this study a number widely used hydrological/water supply indices 

(e.g., PHDI, PDSI, and SPI) were evaluated in Texas.  Four new drought indices based on 
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measured cumulative streamflow at set time intervals (SSFI and SDI) and measured reservoir 

levels (SRI and RDI) were also developed and evaluated.  

Based on the qualitative and quantitative analyses that were conducted, SSFI, RDI, 

and the 3-month, 6-month, and 9-month SPI are the most appropriate indices for monitoring 

hydrological/water supply drought in Texas.  On the other hand, PHDI and SWSI are not 

recommended for monitoring hydrological/water supply drought in Texas.  The newly 

developed Standardized Stream Flow Index (SSFI) seems to be a versatile index for 

monitoring hydrological/water supply drought.  Comparison of the SPI and SSFI generally 

showed good agreement during major drought events, although the SSFI tends to record 

droughts of a higher magnitude and longer duration than the SPI.  This is due to the natural 

time-lag between meteorological and hydrological drought.  Since SSFI is calculated using a 

similar scale and it is based on the same assumptions as the SPI, the trigger levels currently 

used for SPI could also be used for monitoring hydrological/water supply drought.  The other 

new streamflow-related index that was developed, the SDI, is not that useful since it 

frequently reaches extreme values. 

In terms of water supply, the SRI is not recommended for monitoring water supply 

drought because of the problems with finding a PDF that fits the long-term water level data. 

The Reservoir Deficit Index (RDI) is the best index for monitoring water supply drought 

because it is calculated using a simple and robust method.  Since the RDI is based on the 

simulated long-term monthly reservoir water levels from the WRAP model, it controls for 

changes in reservoir operation or water demand over time.  This procedure also provides a 

framework to monitor drought for new reservoirs or reservoirs with short reservoir level 

records.  The RDI can be used to complement the Percentage of Conservation Storage 
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Capacity currently used by TWDB.  More detailed analysis would be needed at several other 

major reservoirs to determine what trigger levels should be used for droughts.  However, as a 

starting point, RDI values of -30, -40, -60, -80 and -90 (consistent with the trigger levels 

currently used by TWDB (Table 5)) could be used to classify drought severity.   
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4.0 TASK 3: DEVELOPING OPERATIONAL DEFINITIONS FOR 
METEOROLOGICAL AND HYDROLOGICAL/WATER SUPPLY DROUGHTS 

4.1 Introduction 
This objective of this task is to develop a methodology for determining the 

appropriate operational definitions (or thresholds) for meteorological and hydrological/water 

supply drought.  Approximately thirty-three State Drought Plans were reviewed to identify 

the operational drought definitions that are currently being across the United States.  In most 

cases a single definition is used for the entire state and often these definitions have been 

developed using subjective criteria.  Therefore a new method for developing appropriate 

drought thresholds for monitoring meteorological and hydrological/water supply drought at 

the local level in the state of Texas is introduced.  The benefits of this method are illustrated 

using data from a number of representative stations from across Texas.   

4.2 Description of Existing Operational Drought Definitions 
Since there is no federal policy to address local water deficiencies (drought) within 

the United States, many individual states have developed their own methods for monitoring 

and responding to drought.  There are currently 39 states that have some type of drought plan 

and two additional states (California and Florida) have delegated drought planning activities 

to local authorities (Figure 39).  According to the National Drought Mitigation Center 

(NDMC), there are only nine states that still lack a drought plan (Alabama, Alaska, Arkansas, 

Louisiana, Michigan, Mississippi, Tennessee, Vermont, and Wisconsin).  

 148



Figure 39 Status of state drought planning activities as of October 2006 (NDMC, 2007) 

 

All of the state drought plans that were available in a digital format (33 in total) were 

reviewed to determine how each state established operational definitions of drought (drought 

thresholds).  The drought plans were reviewed to identify which drought indices are most 

commonly used for monitoring drought and to determine what drought definitions 

(thresholds) are used for triggering state response.  Given the wide range of detail provided in 

the state drought plans, it was not always possible to determine what drought indices and 

drought definitions are used in each state.   

The most commonly used drought indices are shown in Figure 40.  It is clear that 

most states are primarily interested in monitoring meteorological and hydrological/water 

supply drought since the most commonly used drought monitoring indices/tools are reservoir 

levels, PDSI, precipitation, and streamflow.  There appears to be fairly good agreement in 
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regards to what data are most important for drought monitoring since these indices were 

specifically mentioned in the majority of the state drought plans that were reviewed.  Some 

state drought plans also utilized indicators of agricultural drought such as soil moisture 

levels, Crop Moisture Index (CMI), and a variety of vegetation/crop indicators.   

Figure 40 Indices most commonly used for monitoring drought in state drought plans (based 
on 33 state drought plans) 

 

There is less information in the state drought plans about the particular drought 

definitions (drought thresholds) that are being used to trigger drought response.  Specific 

drought thresholds were listed in only 13 of the 33 state drought plans that were reviewed.  

The number of states decreases further when considering a specific drought index such as the 

PDSI or SPI.  Drought definitions based on the PDSI are reported in Table 40.  It should be 

noted that the drought categories listed in Table 40 may not correspond with the drought 

categories that are used in all of the state drought plans.  Most states (24 out of 33) use three 
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to five categories for classifying drought severity.  This table was compiled by first 

comparing the drought definitions (thresholds) used for the most extreme drought category 

(labeled drought disaster in Table 40).  Then the second most severe drought thresholds were 

compared, followed by the third, etc.  So even though the states listed in Table 40 have a 

different number of categories they can be compared (at least for the most extreme drought 

categories).  Generally, there is a good deal of agreement between in regards to the drought 

definitions that are used.  This is somewhat surprising given that these states are located in 

very different climatic regions (Table 40 includes states from the northeastern, central, 

southern, and Gulf Coast regions of the U.S.).  If the PDSI were a spatially invariant 

indicator of drought (e.g., if it could be interpreted the same way in all locations), this would 

not be a serious problem.  However, since the PDSI is known to be a spatially variant 

indicator of drought and since the probability of getting a particular PDSI value is a function 

of the climate, this means that it is impossible for these drought definitions to be appropriate 

for all (or perhaps any) of the states listed.  It appears that these definitions have been taken, 

almost without modification, from the thresholds defined by Palmer (1965) (Table 41).  

According to Palmer’s classification, a PDSI of < -4.0 is used to indicate the most extreme 

category of drought.  This threshold is also what is being used by the majority of states listed 

in Table 40.  It is worthwhile noting once again (as mentioned in section 3.2.1) that the 

thresholds were arbitrarily (subjectively) developed by Palmer and are not necessarily well-

correlated with drought impacts (Alley, 1984).  There is no scientific basis for using Palmer’s 

thresholds to trigger different levels of drought response. 
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Table 40 Drought definitions based on the PDSI as described in selected state drought plans 
 

Category AL CT CO IN MA NM* OH TX** UT VT 
1) disaster  
(most severe) 

< -4 < -4 < -4 < -4 < -4 < -4 < -4 < -5 Governor’s 
decision 

< -3.0 

2) emergency 
 

-3 
to 

-3.99 

< -4 -3 
to 

-3.99 

-3 
to 

-3.99 

< -4 < -3 -2 
to 
-4 

-4 
to 

-4.9 

< -2 -2 
to 
-3 

3) warning 
 

-2 
to 

-2.99 

-3 
to 

-3.99 

-2 
to 

-2.99 

-2 
to 

-2.99 

-3 
to 

-3.99 

-2 
to 

-2.99 

-1 
to 
-2 

-3 
to 

-3.9 

-1 
to 
-2 

. 

4) watch 
 

-0.9 
to      

-1.9 

-2 
to 

-2.99 

-0.9 
to 

-1.9 

. -2 
to 

-2.99 

-1 
to 

-1.99 

. -2 
to 

-2.9 

0 
to 
-1 

. 

5) advisory 
 (least severe) 

. . . . -1 
to 

-1.99 

>-0.9 . -1 
to 

-1.9 

. . 

* New Mexico = these are the thresholds for the 1-month PDSI, other thresholds have also been established 
** Texas = these thresholds are only mean to be instructive, unlike other state drought where the thresholds 
automatically trigger particular actions 

 

Table 41 PDSI drought classification (Palmer, 1965) 
 

PDSI Value Category 
< -4.0 Extreme Drought 

-3.0 to -3.99 Severe Drought 
-2.0 to -2.99 Moderate Drought 
-1.0 to -1.99 Mild Drought 
-0.5 to -0.99 Incipient Dry Spell 

 

Drought definitions based on the SPI are reported in Table 42.  Although there are 

only 4 states listed in Table 42, it is apparent that there are similarities in the drought 

thresholds that are used.  The drought thresholds that are being used are similar to those 

proposed by McKee et al. (1993) (Table 43).  Although this is less problematic than for the 

PDSI, since the SPI is a standardized drought index that is more spatially invariant 

(consistent) than the PDSI, it can still create problems for some climates.  For example, arid 

regions that experience many months with zero precipitation, may be have difficultly 

standardizing the SPI depending on which PDF is used to normalize precipitation (Wu et al., 

2007).  SPI is also influenced by the length of the precipitation record and by the PDF that is 
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being used to standardize the precipitation.  Therefore, even though SPI thresholds are based 

on event probability and therefore have some scientific (and practical) merit, they also should 

be selected with care to make sure that they are appropriate for classifying drought in the 

region of interest. 

Table 42 Drought definitions based on the SPI as described in selected state drought plans 
 

Category CO HI NM* TX** 
1) disaster  
(most severe) < -1.99 < -2.0 < -1.7 < -2 

2) emergency 
 < -1.0 -1.5 to -1.99 < -1.25 < -2 

3) warning 
 -0.6 to -1.0 -1 to -1.49 < -0.5 -1.5 to -1.99 

4) watch 
 > -0.6 . < -0.25 -1 to -1.49 

5) advisory 
 (least severe) . . > -0.25 0 to -0.99 

* New Mexico = the thresholds differ depending on the time period of interest 
** Texas = these thresholds are only mean to be instructive, unlike other state drought where the thresholds 
automatically trigger particular actions 
 
Table 43 SPI classification (McKee et al., 1993) 
 

SPI Value Category Probability 
< -2.0 Extremely Dry 2.3% 

-1.5 to -1.99 Very Dry 4.4% 
-1.0 to -1.49 Moderately Dry 9.2% 
-0.99 to 0.99 Near Normal 68.2% 

 

As far as we could tell, none of the state drought plans that were reviewed utilized an 

objective methodology for selecting operational drought definitions for each drought index.  

It appears that, at least for the PDSI and SPI, most states have either adopted the thresholds 

described in the literature or used other subjective means to establish drought thresholds. 
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4.3 Description of an Objective Method for Determining Operational Drought 
Definitions  
   Developing an appropriate method for determining operational drought definitions is 

extremely difficult since drought, unlike other natural hazards, has no definitive onset/end, is 

slow to evolve, and is regionally relative (Goodrich and Ellis, 2006).  However, the science 

behind defining and monitoring drought is at the center of the communication between 

stakeholders and policymakers.  Failure to adequately define and monitor drought can have a 

significant negative impact, particularly if it fails to trigger a response (e.g., limiting water 

use) when one is sorely needed, or if it triggers a response when one is not required.  There is 

very little discussion in the scientific literature regarding how drought indices should be used 

from an application standpoint to monitor drought and to trigger drought response (Goodrich 

and Ellis, 2006).  Because drought indices will be used by policymakers with little 

understanding of the mechanisms and flaws of each index, a certain level of standardization 

must be applied in order to limit the misleading or confusing message they may communicate 

to novice stakeholders.  Goodrich and Ellis (2006) proposed an objective methodology for 

developing operation drought definitions for any drought index.  They recommend fitting a 

parametric statistical distribution model, also referred to as a probability density function 

(PDF), to the drought index data and then using pre-selected percentiles to determine the 

drought thresholds.  Goodrich and Ellis (2006) used the five percentile categories from the 

Drought Monitor to classify drought (Table 44).   
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Table 44 Drought Monitor Classification 
 

Category Description Percentile 
D0 Abnormally dry 21-30% 
D1 Moderate drought 11-20% 
D2 Severe drought 6-10% 
D3 Extreme drought 3-5% 
D4 Exceptional drought <2% 

 

Fitting a PDF to the drought index data provides a method for estimating the relative 

frequency (rarity) of an event of a given magnitude based on the observed data (Husak et al., 

in press).  There are many PDFs that have been fit to precipitation/drought data since 

precipitation is not normally distributed, having a lower bound (Wu et al., 2007).  This 

produces a distribution that is positively skewed.  There are a variety of distributions that 

have been recommended for fitting precipitation (drought) data, including gamma, 

lognormal, Pearson Type III, and Box-Cox (Legates, 1991; Guttman, 1999; Wu et al., 2007; 

Husak et al., in press).  The gamma distribution is frequently used to represent precipitation 

because it can represent a variety of distribution shapes using only two parameters, the shape 

and the scale (Husak et al., in press).  One of the advantages of using the gamma distribution 

to represent precipitation is that it is bounded on the left by zero.  This is important since 

negative precipitation is impossible.  The gamma distribution is also positively skewed, so 

this matches precipitation.  Finally, it is a very flexible distribution that can represent a 

variety of distribution shapes ranging from exponential decay (when shape ~ 1) to nearly 

normal forms (when shape ~ 20) (Husak et al., in press).   

Once a distribution is selected and the parameters are estimated, the ability of the 

distribution to approximate precipitation (drought) can be tested by comparing the fitted 

distribution (e.g., gamma) with the empirical distribution using the Kolmogorov-Smirnov 

(KS) goodness-of-fit test.  When the values being tested are the same as the values that were 
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used to determine the distribution parameters, the test is known as the KS Lilliefors test 

(Husak et al., in press).  This test compares the cumulative distribution functions of the 

theoretical distribution (e.g., gamma), with the observed values and returns the maximum 

difference between the two cumulative distributions.  If the maximum difference is large, 

then it means that the theoretical distribution is not adequately representing the observed 

precipitation (drought) at this location.  The acceptable value for the KS statistic varies 

depending on the sample size and the rejection level chosen. 

4.4 An Example of Determining Operational Drought Definitions for Percent Normal, 
SPI, and PDSI for Selected Stations in Texas 

The methodology described in section 4.3 was used to determine drought thresholds 

for the SPI, PDSI, and Percent Normal at a number of representative stations in Texas.  

These thresholds were then mapped to illustrate the spatial variability in drought thresholds.  

All three of these drought indices were calculated for six stations from the Historical Climate 

Network (HCN).  All of these stations have long (> 80 years of data) and relatively complete 

precipitation records (> 95% complete).  Most of these stations began reporting data in the 

late 1890s and are continuing through the present.   

Percent Normal 

 Percent Normal data for six stations in Texas were fit using the normal, gamma, 

lognormal, and exponential distributions (Figure 41).  The KS Lilliefors test was applied to 

test how well these distributions fit the Percent Normal data (Table 45).  Based on the results 

from these six stations, it appears that the exponential distribution fits the data best.  The 

fitted exponential distribution was used to calculate the drought thresholds for the five 

drought classes used by the US Drought Monitor (Table 46).  The drought thresholds are 

relatively consistent across all six stations and therefore were not mapped.  This is somewhat 
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surprising given that Texas is a large state and that it has a strong east-west precipitation 

gradient.  Based on the objective drought thresholds, moderate drought (D1) is associated 

with ~22% of normal precipitation, extreme drought (D3) is associated with ~5% of normal 

precipitation, and exceptional drought (D4) occurs when precipitation is less than ~2% of 

normal.  Of course these thresholds are only appropriate when dealing with 1 month 

precipitation totals and they would change if a different accumulating time period was used. 

Table 45 KS statistic for Percent Normal after being fit using normal, gamma, lognormal, 
and exponential PDFs 

 
Station Gamma Normal Lognormal Exponential 
410902 0.06 0.11 0.27 0.02 
412019 0.12 0.04 0.30 0.05 
412121 0.03 0.14 0.26 0.02 
415196 0.13 0.06 0.30 0.05 
415272 0.05 0.11 0.27 0.03 
415429 0.10 0.07 0.28 0.03 
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Figure 41 Cumulative probability distribution for Percent Normal (station 410902) showing 
the empirical distribution (EDF) and normal, gamma, lognormal, and exponential 
distributions that were fit to the data 

 

Table 46 Drought thresholds for Percent Normal calculated using the exponential 
distribution 

 
Station D0 D1 D2 D3 D4 
410902 35.34 22.12 10.44 5.10 2.02 
412019 35.76 22.38 10.58 5.16 2.04 
412121 35.36 22.12 10.46 5.10 2.02 
415196 35.94 22.50 10.62 5.18 2.04 
415272 36.02 22.54 10.64 5.18 2.04 
415429 35.50 22.20 10.50 5.12 2.02 

 

PDSI 

 PDSI data for these six stations were fit using the normal, gamma, lognormal, and 

exponential distributions (Figure 42).  The KS Lilliefors test was applied to test how well 

these distributions fit the PDSI data (Table 47).  Based on the results from these six stations, 
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it appears that the normal distribution fits the PDSI data reasonably well.  Therefore, the 

fitted normal distribution was used to determine the drought thresholds for the five US 

Drought Monitor drought classes (Table 48). It is evident that the drought thresholds are not 

consistent across these stations.  The thresholds for abnormally dry conditions (D0) vary 

from -1.30 to -1.7, the thresholds for moderate drought (D1) vary from -1.9 to -2.5, the 

thresholds for severe drought (D2) vary from -2.9 to -3.5, the thresholds for extreme drought 

vary from -3.7 to -4.3, and the thresholds for extreme drought vary from -4.5 to -5.1 (Figures 

43, 44, 45, 46, and 47).  In contrast, the threshold for moderate drought according to Palmer’s 

scheme (and the criteria used in most state drought plans) is -2.  This would suggest that if 

Palmer’s criteria were utilized in Texas, moderate droughts would be slightly over-reported.  

The objective threshold for severe droughts varies from -2.9 to -3.5, this is also quite 

different (at some locations) that the criteria for severe droughts proposed by Palmer (e.g., -

3).  For all drought levels there is significant variation in PDSI thresholds in Texas.  This 

suggests that using a single drought threshold for the state is inappropriate. It appears that the 

highest drought thresholds (the least negative) are found at the wettest stations (climatically).  

This underscores the fact that the PDSI is not a spatially invariant method for measuring 

drought conditions.  
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Table 47 KS statistic for PDSI after being fit using normal, gamma, lognormal, and 
exponential PDFs 

 
Station Gamma Normal Lognormal Exponential 
410902 0.13 0.06 0.52 0.45 
412019 0.12 0.05 0.44 0.39 
412121 0.09 0.05 0.44 0.39 
415196 0.11 0.04 0.48 0.41 
415272 0.14 0.04 0.47 0.42 
415429 0.13 0.03 0.45 0.39 

 

Figure 42 Cumulative probability distribution for PDSI (station 410902) showing the 
empirical distribution (EDF) and normal, gamma, lognormal, and exponential distributions 
that were fit to the data 
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Table 48 Drought thresholds for PDSI calculated using the normal distribution 

 
Station D0 D1 D2 D3 D4 
410902 -1.30 -1.90 -2.90 -3.70 -4.50 
412019 -1.30 -2.10 -3.10 -4.10 -4.90 
412121 -1.70 -2.50 -3.50 -4.30 -5.10 
415196 -1.30 -2.10 -2.90 -3.70 -4.70 
415272 -1.30 -2.10 -3.10 -3.90 -4.70 
415429 -1.30 -2.10 -3.10 -3.90 -4.70 

 
Figure 43 Thresholds for abnormally dry conditions (30th percentile) based on PDSI 
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Figure 44 Thresholds for moderate drought (20th percentile) based on PDSI 
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Figure 45 Thresholds for severe drought (10th percentile) based on PDSI 
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Figure 46 Thresholds for extreme drought (5th percentile) based on PDSI 
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Figure 47 Thresholds for exceptional drought (2nd percentile) based on PDSI 

 

SPI 

SPI data for the six stations were also fit using the normal, gamma, lognormal, and 

exponential distributions (Figure 48).  The KS Lilliefors test was applied to test how well 

these distributions fit the SPI data (Table 49).  Based on the results from these six stations, it 

appears that the normal distribution fits the SPI data extremely well.  This is not surprising 

given that the SPI is normalized as part of the calculation procedure. The fitted normal 

distribution was used to determine the drought thresholds for the five US Drought Monitor 

drought classes (Table 50). It is evident that there are some small variations in drought 

thresholds across these stations.  The SPI drought thresholds are relatively consistent for 

moderate drought (they range from -0.75 to -0.80) (Figure 49).  However, according to 

 165



McKee, and some of the state drought plans, the threshold for moderate drought is -1.0.  For 

severe drought, the SPI thresholds vary between -1.15 (driest station) to -1.25 (wettest 

station) (Figure 50).  Again, these thresholds are somewhat lower than those defined in the 

literature (-1.5).  There is also some more variation in the thresholds for extreme drought 

(from -1.50 (driest station) to -1.60 (wettest station)) and again all of these thresholds 

(particularly at the driest station) are much less than those used in the literature (< -2.0) 

(Figure 51).  Finally, there is the largest degree of difference between the stations for 

exceptional drought (from -1.85 (driest station) to -2.00 (wettest station)) (Figure 52).  It is 

evident that, even though the SPI is a standardized index (and one that is normally 

distributed), the drought thresholds are not consistent across Texas, particularly for the 

extreme and exceptional drought.  This suggests that no matter what drought index is used, it 

is necessary to develop appropriate thresholds using local data.  Using a single drought 

threshold for the state is inappropriate.  

 
Table 49 KS statistic for 1-month SPI after being fit using normal, gamma, lognormal, and 
exponential PDFs 

 
Station Gamma Normal Lognormal Exponential 
410902 0.103 0.017 0.582 0.450 
412019 0.100 0.018 0.583 0.445 
412121 0.077 0.030 0.648 0.475 
415196 0.131 0.024 0.564 0.447 
415272 0.086 0.021 0.611 0.454 
415429 0.128 0.021 0.572 0.449 
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Figure 48 Cumulative probability distribution for 1-month SPI (station 410902) showing the 
empirical distribution (EDF) and normal, gamma, lognormal, and exponential distributions 
that were fit to the data 

 
 
Table 50 Drought thresholds for 1-month SPI calculated using the normal distribution 

 
Station D0 D1 D2 D3 D4 
410902 -0.50 -0.80 -1.25 -1.60 -2.00 
412019 -0.50 -0.80 -1.20 -1.55 -1.95 
412121 -0.45 -0.75 -1.15 -1.50 -1.85 
415196 -0.50 -0.85 -1.25 -1.60 -2.00 
415272 -0.45 -0.75 -1.20 -1.55 -1.90 
415429 -0.50 -0.80 -1.25 -1.60 -2.00 
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Figure 49 Thresholds for moderate drought (20th percentile) based on SPI 
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Figure 50 Thresholds for severe drought (10th percentile) based on SPI 
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Figure 51 Thresholds for extreme drought (5th percentile) based on SPI 
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Figure 52 Thresholds for exceptional drought (2nd percentile) based on SPI 
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5.0 TASK 4: GUIDELINES FOR REPORTING MOISTURE (DROUGHT) 
CONDITIONS AT THE LOCAL LEVEL 

5.1 Reasons for Local Reporting of Drought 
Currently, drought events in Texas are reported as average conditions or a range of 

conditions within the ten NOAA climate divisions within Texas.  Reporting of information 

on that spatial scale is compatible with most information on drought generated by NOAA, 

which developed the climate divisions specifically for the purpose of monitoring seasonal 

and inter-annual fluctuations in weather and climate conditions such as drought.   

Variations of drought conditions within a climate division, though, can be 

considerable.  The Texas climate divisions are among the largest in the United States, 

averaging 26,191 square miles in size (Figure 53).  During summer 2006, the most severe 

drought was experienced in north-eastern Texas, which lies within the East Texas climate 

division.  At the same time, the southern portion of the same climate division was 

experiencing abundant rainfall and was not in a drought situation at all.  The nationally-

developed indices depicted only weak to moderate drought for the East Texas climate 

division, an assessment that was not accurate for most sections of the climate division. 

The US Drought Monitor, a multi-agency product that is effectively the official 

depiction of drought status in the United States, is designed to show variations on the climate 

division scale and larger.  In Texas, allowance is made for the unusual size of the climate 

divisions by an attempt to show smaller-scale variations in drought conditions.  Nonetheless, 

other federal agencies, such as the US Department of Agriculture, require county-level 

specificity of drought conditions.  In their 2006 aid program, the USDA simply offered aid to 

those counties that happened to lie within the US Drought Monitor depiction of extreme 

drought, whether or not those counties actually experienced such conditions themselves, and 
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ignored those counties that suffered through extreme drought but that were isolated and not 

part of the US Drought Monitor depiction. 

Figure 53 Climate divisions in the United States. 

 

Specificity finer than the climate-division scale is even more important at the state 

and local level.  For the State of Texas to know which areas are suffering from the effects of 

drought rather than, say, poor water planning, it is necessary to know drought conditions 

within a specific water supply, river basin, or agricultural area.  This information is needed 

for current and future drought conditions as well as past drought conditions, so that planners 

and other stakeholders can know how current situations compare to past extreme events and 

whether past extreme events were comparable in severity across broad areas.   

Most drought actions are taken at the local level.  Individual counties issue burn bans 

based on local drought index values.  Water supplies implement water restrictions on the 

basis of water use within the district or water supply at the water source location(s).  Farmers 

plant and harvest based on weather conditions specific to their location.  For optimal use to 
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be made of drought information, the information must be provided at the spatial scale of 

relevance to the decision-makers. 

In the past, such an approach was not entirely practical.  The primary source of 

drought data was NOAA’s Cooperative Observer Program (COOP) network, consisting of 

about 8,000 stations across the United States.  Any individual COOP observing station is not 

likely to representative of regional conditions, so the data from the several stations within a 

climate division were averaged together.  This approach worked well in much of the country, 

but even so, places with larger-than-normal climate divisions such as Texas could have had 

climatic conditions reported at a finer regional scale.   

Nowadays, tools such as radar and satellite allow drought information to be generated 

at a much finer local level.  Technological challenges exist in combining data from different 

observing systems or relating observations from new systems to historical events, but it is 

clear that considerably more local-scale information is being lost now than in the past. 

For these reasons, it is appropriate to reconsider the climate division as the standard 

spatial reporting unit for moisture and drought information. 

5.2 Reporting of Drought Information 
In Texas, the primary unit for reporting drought information is the climate division.  

The Texas Water Information Network web site, operated by the Texas Water Development 

Board, provides climate-division drought index data and other information gathered from 

national sources (Figure 54).  The same web site also posts other locally-generated water 

information, such as reservoir storage, both in raw form and aggregated to the climate 

division scale (Figure 55).   
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One possible approach would be to retain the climate division framework, but utilize 

Texas-specific, smaller climate divisions.  Rainfall and other drought information would still 

be computed by straight averages of observations within climate divisions, but the divisions 

themselves would be smaller and better represent local conditions. 

Figure 54 Palmer Drought Severity Index values for climate divisions in Texas, as depicted 
by the Texas Water Development Board.  Web site: 
http://www.txwin.net/Monitoring/Meteorological/Drought/pdsi.htm 
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Figure 55  Reservoir storage values for climate divisions in Texas, as computed by the Texas 
Water Development Board.  Web site: 
http://www.txwin.net/Monitoring/Meteorological/Drought/reservoir_storage.htm 

 

New Jersey has implemented one such modification of climate divisions.  Their 

drought reporting regions are subdivisions of the existing climate divisions.  Various drought 

indicators, both meteorological and hydrological, are computed and reported on a 

subdivision-wide basis (Figure 56).   
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Figure 56 A portion of New Jersey’s drought information web site, reporting information by 
climate sub-division.  Web site: http://www.njdrought.org/status.html 

 

Colorado, whose climate divisions are on average even larger than those of Texas, 

has taken a different approach.  They have developed a completely new set of finer-scale 

climate divisions.  Ignoring the original climate divisions completely, they analyzed station 

data to determine which nearby stations tended to have similar temperature and precipitation 
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anomalies from year to year.  They ended up with 25 climate divisions, on a much finer scale 

than their original climate divisions.  The new, smaller climate divisions are now the primary 

means for reporting drought indices in Colorado (Figure 57). 

Figure 57 Locally-defined climate divisions in Colorado.  Web site: 
http://ccc.atmos.colostate.edu/palmerindex.php 

 

The approach taken by New Jersey has the advantage of allowing the revised data to 

be easily aggregated upward into the original climate divisions for comparison with other 

nationally-developed indices.  Colorado’s approach is more suited to a state such as Colorado 

in which there are rapid variations in climatic conditions caused by the local topography.  

The topographically-induced climatic variations in Texas are much smaller than those in 

Colorado, except in parts of West Texas, so there would be no need to abandon the existing 

climate division boundaries when creating subdivisions.   
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Subdivisions such as these, though, suffer from an important deficiency: they would 

not correspond to any particular user needs.  No planning, water supply, or emergency relief 

decisions are presently made on a subdivision scale, so providing drought information for 

subdivisions would not be as useful as the selection of other finer-scale geographical 

divisions with more direct relevance to water decisions. 

There are numerous other jurisdictional or political divisions within the State of 

Texas.  Some such divisions, such as regional water planning districts and agricultural 

districts, are potentially more useful than simple climate district subdivisions.  However, 

such divisions are generally application-specific and would not be especially useful for 

drought planners not specifically tied to that particular application. 

The only small-scale political subdivision of relevance to a wide range of policy and 

decision makers in Texas is the county.  Elsewhere in the United States, the county is being 

used as the basic geographical information for water usage.  The NWS’s Mid-Atlantic River 

Forecast Center reports county-wide values of accumulated precipitation and percentage of 

normal on a variety of time scales, both spatially (Figure 58) and in individual climate status 

reports (Figure 59).  Pennsylvania uses this data to generate time series graphs that show the 

relevant precipitation deficiencies and the extent to which such precipitation deficiencies are 

unusual (Figure 60).   
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Figure 58 Precipitation reported on a county basis by the Mid-Atlantic River Forecast 
Center.  Web site: http://www.erh.noaa.gov/er/marfc/Maps/precip.html 
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Figure 59 Recent precipitation history analysis on a county basis by the Mid-Atlantic River 
Forecast Center.  Web site: http://www.erh.noaa.gov/marfc/Maps/barcharts/Allegany.MD.html 
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Figure 60 Time series analysis of precipitation record by county, by the United States 
Geological Survey in Pennsylvania.  Web site: http://pa.water.usgs.gov/monitor/all_precip2.php
 

 

A different approach to the reporting of moisture and drought information is to create 

analyses and products that are essentially spatially continuous.  This can be done from 

discrete, individual station-based observations through a process known as objective analysis. 

Some objective analysis techniques, such as Kriging, are constrained to agree exactly with 

observations at the observation locations.  Other objective analysis techniques effectively use 
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a weighted average of several observations throughout the analysis domain, thereby 

conveying the reliability benefits of regional station aggregation while allowing that 

aggregation to continuously change by location. 

Georgia (Figure 61) performs spatial analysis of precipitation using conventional 

observations.  The analysis is constrained to agree exactly with observations, and the 

observation locations are apparent in the figure.  Because many portions of the state are 

sparsely observed, the rainfall pattern produced by the analysis is significantly influenced by 

the analysis scheme. 
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Figure 61 Georgia performs spatial analyses of precipitation over various time windows.  
Web site: http://www.georgiadrought.org/ 

 

Colorado also performs spatial analysis of precipitation, but here the analysis is not 

constrained to match observations so the analysis is smoother and more representative.  

Going beyond this, Colorado converts the continuous precipitation analysis into a continuous 

analysis of a precipitation-based drought index, the SPI, for a range of time intervals.  Even 
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more valuable is the regular calculation of likely future values of SPI, under the 

contingencies of low, middling, and high values of precipitation (Figure 62).  The resulting 

plots show these SPI values with a continuous spatial distribution, just like the precipitation 

analyses from which they originated (Figure 63). 

Figure 62 An example of Colorado’s spatially-continuous projected value of SPI.  Web site: 
http://ccc.atmos.colostate.edu/spi/current/spi_24mon_12_0.2.gif 
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Figure 63 Colorado’s SPI monitoring web site, using spatially continuous precipitation 
analyses.  Web site: http://ccc.atmos.colostate.edu/standardizedprecipitation.php 
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With its statewide mesonet, Oklahoma can produce fairly detailed observation-based 

continuous analyses of precipitation.  Oklahoma has at least one mesonet rain gauge per 

county, but rather than assume that an individual gauge observation represents conditions 

across an entire county, an objective analysis is performed to produce a continuous rainfall 

field.  Simple derived products are available as well, such as percent of normal precipitation 

(Figure 64). 

Figure 64 Analysis of percent of normal precipitation in Oklahoma.  Web site: 
http://climate.ocs.ou.edu/data/public/mesonet/maps/daily/drought/wtrpct.png 

 

Similar products are produced by the Texas State Climatologist for the Texas Drought 

Preparedness Council.  Daily precipitation analyses are obtained from the Climate Prediction 

Center and remapped to depict Texas conditions.  Derived products are also available, such 

as a smoothed percent of normal map that weights recent rainfall more heavily (Figure 65). 
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Figure 65 Analysis of smoothed percent of normal precipitation in Texas and surrounding 
states, produced by the Texas State Climatologist. 

 

While all of these precipitation analyses are created from rain gauge data, the advent 

of the WSR-88D radar network makes precipitation analyses at finer scales possible.  Radars 

detect aspects of precipitation related to precipitation intensity, and the resulting precipitation 

estimates are reported on a 4 km grid across the United States.  The amount of detail 

available is far superior to that of most existing rain gauge networks.   

The radar estimates are subject to large biases that are storm-dependent or caused by 

imperfect coverage of radar scans, so they are not usable directly as indicators of moisture or 

drought.  To compensate for this shortcoming, the NWS applies a “bias correction” by 

comparing radar precipitation estimates to actual precipitation measurements.  The resulting 
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data is plotted and displayed on NWS web sites in the form of accumulated precipitation over 

a variety of durations and precipitation percentages of normal (Figure 66). 

Figure 66 Radar-estimated precipitation web site at the NWS-Southern Region, showing 60-
day percentage of normal precipitation for Texas and surrounding states.  Web site: 
http://www.srh.noaa.gov/rfcshare/precip_analysis_new.php 
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Texas A&M’s Spatial Sciences Laboratory (SSL) retrieves these precipitation 

estimates and provides a separate plotting and archival system.  SSL also applies its own bias 

correction in an attempt to improve the agreement between radar estimates and gauge 

observations (Figure 67). 

Figure 67 Radar-estimated precipitation (gauge-corrected) from the Texas A&M Spatial 
Sciences Laboratory.  Web site: http://webgis.tamu.edu/nexrad.aspx 

 

With the high-resolution precipitation estimates, it is possible to compute drought 

indices at high resolution as well.  Thus far, only firefighting agencies have made significant 

use of such high-resolution information at the state level.  Both Texas and Florida produce 

KBDI maps at the 4 km resolution provided by the radar-based precipitation estimates.  The 

SSL generated the KBDI maps at full resolution (Figure 68), and also aggregates the KBDI 
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information to the county scale (Figure 69), while Florida provides a zooming functionality 

for county-scale interpretation (Figure 70). 

Figure 68 Keetch-Byram Drought Index, computed at 4 km resolution from gauge-corrected 
radar-based rainfall estimates, supplied by the Texas Forest Service and generated by the 
Texas A&M Spatial Sciences Laboratory.  Web site: http://webgis.tamu.edu/kbdi.aspx 
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Figure 69 As in the previous figure, but aggregated to the county scale. 
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Figure 70 Keetch-Byram Drought Index, computed at 4 km resolution for Florida, here 
shown as a web-available zoom.  Web site: http://flame.fl-dof.com/fire_weather/KBDI/4km_main.html 

 

One final approach that deserves mention is that of Wyoming.  Rather than develop a 

suite of products at a particular spatial scale, Wyoming simply utilizes all available 

information, at all available spatial scales.  Their resource web site (Figure 71) is an excellent 

compendium of local, regional and national drought monitoring products. 
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Figure 71 Wyoming drought web site, listing internal and external resources at a variety of 
spatial scales.  Web site: http://www.wrds.uwyo.edu/wrds/wsc/wy_drought_2001/wy_drought.html 
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5.3 Drought Designation and Assessment 
The issue of the appropriate scale at which to assess drought severity is closely linked 

to the scales at which drought information is available.  Drought severity cannot be assessed 

at the county scale if reliable drought information is only available at the climate division 

scale.  Taking advantage of the wealth of drought assessment tools available at the climate 

division scale, many states only assess drought severity at that scale.  One such state is 

Oklahoma (Figure 72), despite the availability of a high-resolution observing network and 

various high-resolution drought index products. 
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Figure 72 Oklahoma drought monitoring resources, available on the climate division scale.  
Web site: http://climate.ocs.ou.edu/drought/water_year.php 
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Other states use different regional aggregations by which to assess drought severity.  

New Jersey, as mentioned above, utilizes subdivisions of climate divisions for drought 

severity assessment.  Utah, recognizing that the most important drought impacts in that state 

are felt on a river basin scale, reports drought severity by river basin (Figure 73). 
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Figure 73 Utah drought assessment is performed on a river basin scale.  Web site: 
http://www.water.utah.gov/DroughtConditions/BasinDroughtReports/default.asp 

 

Only a few states assess drought status on a county-by-county basis.  Two such states 

are Montana (Figure 74) and Wyoming (Figure 75).  Both of these states have unusually 
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large counties, counties that are as large as the climate divisions of other, smaller states.  The 

third state is Missouri (Figure 76).  Missouri’s counties are similar in size to those of Texas, 

so the comparison is apt.  However, Missouri does not appear to do a county-by-county 

assessment.  Rather, it appears from the smoothness of the drought severity designations that 

Missouri uses a continuous, large scale drought assessment tool such as the US Drought 

Monitor and simply reports the drought status on a county-by-county basis. 

Figure 74 Montana drought assessment is performed on a county scale.  Web site:  
http://nris.mt.gov/drought/status/Dec06/drtstatusbg.jpg 
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Figure 75 Wyoming drought assessment also is performed on a county scale.  Web site:  
http://www.wrds.uwyo.edu/images/wrds/wsc/countystatus/countystatus.jpg 
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Figure 76 Missouri drought assessment is reported on a county scale.  Web site:  
http://www.dnr.mo.gov/env/wrc/drought/MODroughtCond.htm 

 

An alternative to using climate or political divisions for assessing drought status 

would be the generation of a spatially-continuous map of overall drought severity.  Such an 

approach is followed in New Mexico (Figure 77).  There, available tools are used to attempt 

to assess the true spatial distribution of drought severity.  Judging from the details present on 
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the map, an attempt is made to resolve drought status on a scale finer than New Mexico 

counties and probably comparable to Texas-sized counties. 

Figure 77 New Mexico generates a continuous drought status map, effectively assessing 
drought status at each location in the state.  Web site:  
http://www.nmdrought.state.nm.us/nmdmap.gif 

 

With a range of possible scales for drought assessment in current use across the 

United States, and all of them to a greater or lesser extent supported by coarse and fine 
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resolution drought monitoring information, it is important to consider the situation from the 

point of view of the potential or likely users of drought assessment information.   

5.4 Creating a Fine-Scale Drought Information System 
With a range of possible scales for drought assessment in current use across the 

United States, and all of them to a greater or lesser extent supported by coarse and fine 

resolution drought monitoring information, it is important to consider the situation from the 

point of view of the potential or likely users of drought assessment information.   

For many applications, the county is the logical unit.  Counties across Texas are 

nearly uniform in size, and the county is the standard unit of local government.  Most disaster 

declarations are made on a county basis.  Meteorological information is generally available 

on a county scale, but no smaller, except for radar-estimated precipitation.  The county is 

probably the most appropriate scale on which to make subjective assessments of drought 

severity. 

However, there are other jurisdictional units for which moisture and drought 

information are critical.  For example, all individual water suppliers require information over 

the geographical area for which they supply water, to understand past, current, and future 

water demand.  In addition, for surface water supplies and aquifer recharge, the water 

suppliers require information over the drainage that supplies their reservoir or the recharge 

area for their aquifer, to understand past, current, and future water supply.  Finally, if other 

water suppliers make use of the same water supply and possess priority of water rights, the 

water supplier will require information about drought conditions in all other locations for 

which water from their source is used.  For such users of drought information, any single 
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geographical unit for drought information reporting will provide suboptimal or possibly 

useless information. 

Recent years have seen the widespread adoption of GIS technologies and the 

availability of continuous or fine-scale meteorological and hydrological information.  

Consequently, it is no longer necessary to choose among several less-than-satisfactory 

options.  Instead, we propose the following: 

Drought information should be collected and processed as a continuous 

georeferenced data set with as fine a spatial resolution as observing technologies allow.  The 

information should then be aggregated to appropriate physical and jurisdictional domains.  

On a statewide basis, standard aggregational units should include counties as well as river 

drainages relevant to surface water storage.  In addition, the georeferenced information 

should be available for individual planners and users for user-specific extraction and 

aggregation. 

Raw moisture and drought information already exists on a continuous or high-

resolution georeferenced basis.  As noted in Section 6.2, precipitation information is 

available in both quasi-continuous objective analysis form (from rain gauges) and high-

resolution (4 km) rainfall estimates (from NWS radars).  Other meteorological fields utilized 

by some drought indices are or can be analyzed in a spatially quasi-continuous manner as 

well.  Some useful satellite products (such as normalized difference vegetation index, a 

measure of vegetation greenness) are also produced at a similar high spatial resolution. 

In general, the raingauge objective analyses are bias-free, but the radar estimates 

provide considerably more spatial resolution.  In some circumstances, the raingauge data may 

be best, in others, the radar-derived rainfall estimates.  With the present state of rainfall 
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estimation technology, it is probably best to retain both sources of data as complementary 

versions of the spatial distribution of rainfall. 

Conversion of the raw information to drought indices will require considerable care.  

Some drought indices were designed for larger spatial units, such as a climate division, and 

would require adjustment before being applied to a finer scale.  Other common drought 

indices assess drought severity with respect to the historical record, and no historical record 

exists at such fine resolution.  For the latter problem, the historical probability distributions 

may be estimated from known probability distributions at the individual station or climate 

division scale. 

Similarly, the aggregation of a climate index value is in general not the same as the 

climate index value computed from the aggregation of input data.  For example, every single 

point within a given county may be experiencing moderate drought, but the fact that such 

drought is so widespread within the county may mean that for the county as a whole the 

drought is severe.  Consequently, drought indices must be recomputed separately for each 

aggregation.  Indices that are essentially linear, such as the KBDI, can be aggregated by 

simple averaging. 

Some drought information, such as reservoir and streamflow levels, is inherently 

spatially discontinuous.  This information may be available graphically at its georeferenced 

location, and naturally aggregated by drainage or river basin.  In general, hydrological/water 

supply drought indices should also be reported on a drainage or river basin scale, as they are 

not continuous quantities and political boundaries (such as counties) have little relevance in 

this context. 
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In practice, the way this system might work is as follows: A web and GIS server 

serves as a central data and information source for users throughout the State.  On this server, 

the necessary historical drought calculations have been performed for all geographical and 

jurisdictional boundaries likely to be of interest.  Users can request raw data at full resolution 

or aggregated data and products for any requested region.  An ideal system would also 

include options for time series analysis and cross-index comparisons for individual regions, 

as well as projections of future drought index values based upon high, medium, low, and 

historical worst case scenarios, with probabilities of each given by downscaled Climate 

Prediction Center medium and long range forecasts.  This would allow water suppliers to 

more accurately project usage and implement water conservation strategies before the 

situations become critical. 

5.5 Recommendations for Reporting Drought at the Local Level in Texas 
Based on the results of this study, we make the following recommendations for 

monitoring and reporting drought at the local level in Texas: 

1. All drought indices should compare current conditions to historic droughts.  This 

should be done using percentiles estimated from probability distributions using the historical 

record (for meteorological drought) or model simulations using the historical record (for 

hydrological and water supply drought). 

2. Drought information should be collected and stored in Texas at the finest spatial 

resolution practicable.  At present, a spatial scale comparable to county scale is possible with 

the existing rain gauge network, and a 4 km scale is possible with experimental radar-based 

precipitation estimates.  County-scale analyses should be used immediately, and radar-based 

analyses should be utilized in parallel on an experimental basis.   
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3. Meteorological drought should be identified using the Standardized Precipitation 

Index (SPI), Percent Normal, and Deciles.  Initially, the conventional SPI should be used, but 

an experimental set of SPI products should also be developed that does not have a sudden 

onset time and weights recent precipitation more heavily than earlier precipitation. 

4. The SPI values should be calculated at station locations (not using climate division 

or radar-derived precipitation data).  The SPI values should then be aggregated to single-

county values.  The precipitation probability distributions for each station, needed for the SPI 

calculations, should be estimated using a spatially-coherent technique such as L-moments.  

Statistical tests should be performed to ensure that radar-estimated point values of 

precipitation have similar probability distributions as rain gauge values; if not, the 

appropriate probability distributions should be estimated. 

5. Hydrological/water supply drought should be monitored using the Standarized 

Streamflow Index (SSFI), Reservoir Deficit Index (RDI), and SPI.  The SPI is a useful index 

for monitoring both meteorological and hydrological drought, but for hydrological drought 

the longer time scales (6 to 9+ months) are most important, while for meteorological drought 

the shorter time scales (< 6 months) are most important.  The SSFI should be calculated and 

supported at the watershed scale, while the RDI should be reported for individual reservoirs 

which can then be aggregated using the water supply district boundaries. 

6. Meteorological and hydrological drought should be reported by the Texas Drought 

Preparedness Council using a rating system consistent with the US Drought Monitor (Table 

44) that ranges from D0 (abnormally dry) to D4 (exceptional drought).  The focus for these 

drought severity estimates should be the 1-month and 3-month SPI (meteorological drought 

as relevant to crops), 6-month and 9-month SPI (meteorological drought as relevant to 

 207



streamflow), 12-month and 24-month SPI (long-term drought), RDI (hydrological/water 

supply drought as measured by reservoirs), and SSFI (hydrological/water supply drought as 

measured by streamflow). 

7. Projections of future drought conditions (assuming 20th percentile, 50th percentile, 

and 80th percentile rainfall) for the next 1 to 3 months should be made on the basis of 

historical climatology.   

8. The Texas Drought Preparedness Council should develop guidelines for reporting 

the likelihood of future drought across the state using a consistent synthesis of indices and 

forecasts.  For example, a drought watch might be declared if a county has a 20% chance of 

D2 or worse drought on any of the indices listed in (6), a drought alert might be declared if a 

county is already in D2 or has a 50% chance of developing D2, a drought warning might be 

declared if a county is already in D3 or has a 50% chance of developing D3, and a drought 

emergency might be declared if a county is already in D4 or has a 50% chance of developing 

D4.  These levels of warning might be rescinded if a county has an 80% chance of leaving 

the corresponding drought level.  Such warning messages should be conveyed to the 

appropriate county judges and water supply agencies. 

9. The primary drought status product should be a color-coded map of Texas with the 

appropriate drought warning levels by county and more detailed drought information should 

be readily available on a web site for in-depth analysis of the situation. 
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6.0 TASK 5: RECOMMENDATIONS FOR IMPLEMENTATION 
The final section of this report provides the TWDB with a series of recommendations 

that are based on our findings.  These recommendations specifically relate to what we see as 

the logical next step for the TWDB and the State of Texas; developing a Texas Drought 

Monitoring System that provides the TWDB, Texas Drought Preparedness Council, and 

other decision-makers and stakeholders with a means of monitoring drought at a relatively 

high spatial and temporal resolution (near-real time).  The Texas Drought Monitoring System 

will provide better information and will facilitate better decision making.  Overall it is clear 

that drought information should be collected and processed as a continuous georeferenced 

data set with as fine a spatial resolution as observing technologies allow.  The information 

should then be aggregated to appropriate physical and jurisdictional domains.  On a statewide 

basis, standard aggregational units should include counties, river basins, and water supply 

districts.  In addition, the georeferenced information should be available to individuals and 

organizations for user-specific extraction and aggregation. 

6.1 Recommendations from Tasks 1 and 2 
 The purpose of Tasks 1 and 2 were to review and evaluate existing drought indices to 

determine which indices are the most appropriate for monitoring meteorological and 

hydrological/water supply drought at the local level in the state of Texas. 

Meteorological Drought 

Based on the qualitative and quantitative analyses that were conducted the SPI, 

Percent Normal, and Deciles were the most highly ranked.  All three of these indices are 

relatively easy to calculate because they only require precipitation data.  These three indices 

are also transparent and easy to understand.  All of these indices are reported in units that can 

easily be converted into precipitation values and they can all be extended back in time (based 
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on the availability of precipitation data).  This allows current droughts to be placed in proper 

historical context.  All of these indices are flexible and can be calculated for any period of 

interest (week, month, season, year).  The main drawback of these indices is that they only 

consider precipitation and they require a relatively long precipitation record to be accurately 

calculated.   

Soil moisture in the upper layers of the soil (top 5 or 10 cm) can also used as a 

measure of meteorological drought since it accounts for the influence of all components of 

the hydrological cycle (infiltration, runoff, evaporation) not just precipitation.  Field 

measurement of soil moisture is time-consuming and expensive, and in some cases, it is 

impossible to measure at a regional scale.  Therefore, most drought monitoring applications 

that utilize soil moisture information rely on modeled soil moisture.  VIC and DSSAT are 

two different models that were used for simulating soil moisture.  It was determined that both 

of these models provided reasonable simulations soil moisture in Texas, although the 

performance of DSSAT was slightly superior to that of VIC.  One of the advantages of using 

this approach is that it provides a more sophisticated (and potentially realistic) simulations of 

soil water budget including infiltration, runoff, evapotranspiration.  However, these models 

require more input data (at a minimum daily temperature and precipitation and soils data) 

which may limit their utility in certain locations.  Although these models are relatively 

complex, they can still be calculated at the local level in Texas and they provide information 

that can augment what is provided by the precipitation-based indices. 

Even though the PDSI and Z-index are commonly used for drought monitoring, they 

were not highly ranked by the qualitative evaluation.  This is because these indices are 

complicated to calculate, require more detailed information than the precipitation indices, 
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and report drought conditions using a dimension-less index.  In addition, it has been 

demonstrated that the PDSI, as originally formulated by Palmer (1965), is spatially variant.  

Therefore it is not appropriate to compare PDSI values from different locations (particularly 

in a large state like Texas that encompasses a broad range of climate regions).  The PDSI is 

not recommended for drought monitoring in Texas. 

The satellite-based VCI was also evaluated against other meteorological indices.  

However, the results of the qualitative and quantitative evaluations suggest that, despite its 

advantages, the VCI may not be an appropraite index for monitoring meteorological drought 

in Texas because the utility of the VCI is limited to the growing-season and it is not clear 

how the VCI is related to meteorological drought impacts.  The VCI is not recommended for 

drought monitoring in Texas. 

No single index can represent all aspects of meteorological drought so it is best to use 

a multi-index approach for operational drought monitoring. 

Hydrological/Water Supply Drought 

Based on the qualitative and quantitative analyses that were conducted, the SSFI, 

RDI, and the SPI are the most appropriate indices for monitoring hydrological/water supply 

drought in Texas.  It is recommended that the SSFI, RDI, and SPI be used for monitoring 

hydrological/water supply drought in Texas.  On the other hand, PHDI and SWSI are of 

limited use for monitoring hydrological/water supply drought in Texas.  The SSFI and RDI 

are both newly indices that demonstrate great promise for monitoring hydrological/water 

supply drought.  The SSFI is a standardized measure of streamflow.  Like the SPI, the SSFI 

is simple to calculate because it only utilizes streamflow data.  The RDI was specifically 

developed for this study to measure reservoir levels and it utilizes the WRAP model so it 

 211



avoids the problems associated with changes in water usage over time.  All of these indices 

can be used to place current droughts in proper historical context and they can all be 

calculated for any period of interest (week, month, season, year).  This flexibility is important 

because the most appropriate timescale for monitoring hydrological/water supply drought 

varies by basin.   

No single index can represent all aspects of hydrological/water supply drought so it is 

best to use a multi-index approach for operational drought monitoring. 

6.2 Recommendations from Task 3 
The purpose of Task 3 was to identify the most appropriate method for determining 

drought definitions (thresholds).  A review of state drought plans revealed that many states 

have adopted drought thresholds listed in the scientific literature without considering whether 

they are appropriate for their climate or whether the drought indices upon which they are 

spatially invariant.  It is more appropriate to use an objective location-specific method for 

defining drought thresholds at the local level.  Applying this method involves the following 

steps: 

1. Utilize a relatively long (station-based) record to calculate the drought index of 

interest (e.g., SPI) 

2. Apply an appropriate PDF to the drought index data; since some drought indices 

are not normally distributed it may not be appropriate to use a Gaussian (normal) 

distribution for all indices 

3. Utilize the PDF to determine appropriate drought thresholds based on the 

percentiles used by the US Drought Monitor (moderate drought (11-20 percentile), 
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severe drought (6-10 percentile), extreme drought (3-5 percentile), exceptional 

drought (<2 percentile)). 

This methodology should be applied to all drought indices, including those that are 

supposed to be spatially invariant (e.g., SPI).  These definitions can be determined at the 

local (e.g., county) level by fitting a PDF to all of the available stations that have a long 

record and then interpolating the parameters of the PDF to determine what the thresholds 

should be in data sparse regions.   

Using an objective approach for determining drought definitions ensures that 

droughts are accurately and correctly identified at the local level.  It is inappropriate to use a 

single set of drought definitions for an entire state (especially a state the size of Texas).  

Ideally these objective drought thresholds should be validated using local drought impacts 

data. 

6.3 Recommendations from Task 4 
The purpose of Task 4 was to propose guidelines for reporting moisture (drought) 

conditions at the local level.  These guidelines should be used to develop a Texas Drought 

Monitoring System that will provide the TWDB, TDPC, and other decision-makers and 

stakeholders with a means of monitoring drought at a relatively high spatial and temporal 

resolution (near-real time).  The Texas Drought Monitoring System should be developed in 

accordance with the following recommendations:  

1. All drought indices should compare current conditions to historic droughts.  This 

should be done using percentiles estimated from probability distributions using the 

historical record (for meteorological drought) or model simulations using the 

historical record (for hydrological and water supply drought). 
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2. Drought information should be collected and stored in Texas at the finest spatial 

resolution practicable.  At present, a spatial scale comparable to county scale is 

possible with the existing rain gauge network, and a 4 km scale is possible with 

experimental radar-based precipitation estimates.  County-scale analyses should be 

used immediately, and radar-based analyses should be utilized in parallel on an 

experimental basis.   

3. Meteorological drought should be identified using the Standardized Precipitation 

Index (SPI), Percent Normal, and Deciles.  Initially, the conventional SPI should be 

used, but an experimental set of SPI products should also be developed that does not 

have a sudden onset time and weights recent precipitation more heavily than earlier 

precipitation. 

4. The SPI values should be calculated at station locations (not using climate division 

or radar-derived precipitation data).  The SPI values should then be aggregated to 

single-county values.  The precipitation probability distributions for each station, 

needed for the SPI calculations, should be estimated using a spatially-coherent 

technique such as L-moments.  Statistical tests should be performed to ensure that 

radar-estimated point values of precipitation have similar probability distributions as 

rain gauge values; if not, the appropriate probability distributions should be 

estimated. 

5. Hydrological/water supply drought should be monitored using the Standarized 

Streamflow Index (SSFI), Reservoir Deficit Index (RDI), and SPI.  The SPI is a 

useful index for monitoring both meteorological and hydrological drought, but for 

hydrological drought the longer time scales (6 to 9+ months) are most important, 
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while for meteorological drought the shorter time scales (< 6 months) are most 

important.  The SSFI should be calculated and supported at the watershed scale, while 

the RDI should be reported for individual reservoirs which can then be aggregated 

using the water supply district boundaries. 

6. Meteorological and hydrological drought should be reported by the Texas Drought 

Preparedness Council using a rating system consistent with the US Drought Monitor 

(Table 44) that ranges from D0 (abnormally dry) to D4 (exceptional drought).  The 

focus for these drought severity estimates should be the 1-month and 3-month SPI 

(meteorological drought as relevant to crops), 6-month and 9-month SPI 

(meteorological drought as relevant to streamflow), 12-month and 24-month SPI 

(long-term drought), RDI (hydrological/water supply drought as measured by 

reservoirs), and SSFI (hydrological/water supply drought as measured by streamflow) 

(Table 51). 

7. Projections of future drought conditions (assuming 20th percentile, 50th percentile, 

and 80th percentile rainfall) for the next 1 to 3 months should be made on the basis of 

historical climatology.   

8. The Texas Drought Preparedness Council should develop guidelines for reporting 

the likelihood of future drought across the state using a consistent synthesis of indices 

and forecasts.  For example, a drought watch might be declared if a county has a 20% 

chance of D2 or worse drought on any of the indices listed in (6), a drought alert 

might be declared if a county is already in D2 or has a 50% chance of developing D2, 

a drought warning might be declared if a county is already in D3 or has a 50% chance 

of developing D3, and a drought emergency might be declared if a county is already 
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in D4 or has a 50% chance of developing D4.  These levels of warning might be 

rescinded if a county has an 80% chance of leaving the corresponding drought level.  

Such warning messages should be conveyed to the appropriate county judges and 

water supply agencies. 

9. The primary drought status product should be a color-coded map of Texas with the 

appropriate drought warning levels by county and more detailed drought information 

should be readily available on a web site for in-depth analysis of the situation. 

 
Table 51 Summary of recommendations for monitoring meteorological and 
hydrological/water supply drought.   

Type of Drought Recommended 
Indices Data Required Reporting Unit 

Meteorological 

1-month SPI 
3-month SPI 

Percent Normal 
Deciles 

Station-based 
precipitation (from 
stations with a long, 
complete record) 

County 

Hydrological/ 
Water Supply 

6-month SPI 
9-month SPI 
12-month SPI 

SSFI 
RDI 

Precipitation 
Precipitation 
Precipitation 
Streamflow 
Reservoir levels & 
WARP 

County and watershed 
County and watershed 
County and watershed 
Watershed 
Watershed and water 
supply district 

 

6.4 Concluding Remarks 
Most of the drought monitoring tools that are currently being used in Texas are too 

coarse, both spatially and temporally, for local-level monitoring and decision-support 

applications.  In addition, it has been demonstrated that many of the tools that are currently 

being used for monitoring meteorological and hydrological/water supply drought are not the 

most appropriate.  It has also been shown that using a single set of (subjective) drought 

thresholds is inappropriate for triggering responsive action at the local level.  Therefore, this 

study demonstrates that there is a serious need for developing a Texas Drought Monitoring 
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System that utilizes the most appropriate meteorological and hydrological/water supply 

drought indices to provide decision makers with valuable data, at the local level, to facilitate 

the adoption of appropriate adaptation, mitigation, and avoidance strategies.  Drought is a 

pressing environmental issue that is of great importance to the State of Texas (damages from 

the most recent drought in Texas were estimated to exceed 2 billion dollars).  We encourage 

the Texas Drought Preparedness Council in cooperation with the State of Texas to utilize the 

recommendations contained in this report as the basis for developing a Texas Drought 

Monitoring System.   
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Appendix A

Selected Examples of Drought 
Monitoring Products (see Table 1)



http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/regional_monitoring/palmer.gif

A1



http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/regional_monitoring/cmi.gif

A2



http://www.cpc.ncep.noaa.gov/soilmst/na_wa.htm

A3



http://www.cpc.ncep.noaa.gov/soilmst/na_ea.htm

A4



http://www.cpc.ncep.noaa.gov/soilmst/na_ra.htm

A5



http://www.cpc.ncep.noaa.gov/soilmst/na_pa.htm

A6



http://www.cpc.ncep.noaa.gov/products/predictions/experimental/edb/sbfinal.gif

A7



http://www.cpc.ncep.noaa.gov/products/predictions/experimental/edb/lbfinal.gif

A8



http://www.cpc.ncep.noaa.gov/products/monitoring_and_data/soilmmap.gif

A9



http://www.ncdc.noaa.gov/oa/climate/research/prelim/drought/phdiimage.html

A10



http://www.ncdc.noaa.gov/oa/climate/research/prelim/drought/zimage.html

A11



http://www.ncdc.noaa.gov/img/climate/research/prelim/drought/spi01_pg.gif

A12



http://www.ncdc.noaa.gov/img/climate/research/2005/oct/05-10Statewideprank_pg.gif

A13



http://www.ncdc.noaa.gov/img/climate/research/2005/oct/hprcc-pcp-pct-041101-051031.12m.png

A14



http://www.ncdc.noaa.gov/img/climate/research/2005/oct/pasrng-pvp-anom-30oct05-b.png

A15



http://www.ncdc.noaa.gov/img/climate/research/cie/cmsi.html

A16



http://www.ncdc.noaa.gov/img/climate/snow/snow.html

A17



http://www.ocs.oregonstate.edu/prism/index.phtml

A18



http://www.tceq.state.tx.us/permitting/water_supply/pdw/trot/location.html

A19



http://www.texaswaterinfo.net/Monitoring/Meteorological/Drought/reservoir_storage.htm

A20



http://www.tamu.edu/ticc/rgmap.jpg

A21



http://webgis.tamu.edu/tfs/kbdi_daily/kbdi4km.png

A22



http://www.orbit.nesdis.noaa.gov/smcd/emb/vci/VH/index.html

A23



A24

http://waterdata.usgs.gov/tx/nwis/rt



http://www.cpc.ncep.noaa.gov/products/predictions/experimental/edb/usdm-streamflows-overlay.gif

A25



A26

http://www.sercc.com/climateinfo/field_capacity/field_current.png



A27

http://drought.unl.edu/monitor/spi-dailygridded.html



A28



A29

http://drought.unl.edu/monitor/raindry/precipitationdays.html



http://www.hydro.washington.edu/forecast/monitor/index.shtml

A30



http://www.fs.fed.us/land/wfas/kbdi.gif

A31



Appendix B

Selected Examples of Climate and 
Drought Forecasting Products 

(see Table 10)



http://www.cpc.ncep.noaa.gov/products/predictions/long_range/lead02/off_index.html

B1



http://www.cpc.ncep.noaa.gov/products/expert_assessment/seasonal_drought.html

B2



B3

http://wxmaps.org/pix/soil1.html



http://iri.columbia.edu/climate/forecast/net_asmt/

B4



APPENDIX C 
 

“Drought Monitoring Index for Texas” 
Contract No. 2005483028 

Draft Report Review Comments 
 
TWDB comments on draft final report are shown in black. 
Responses to TWDB comments are shown in blue. 
 
Executive Summary, Please provide a more robust executive summary to describe the  
recommendations you have reached in the study. The format of the report by task will be  
confusing unless the format is described and summarized in the executive summary.  
Done. 
 
Please provide drought definitions for the types of drought you are discussing.  
Conceptual drought definitions were added to section 1.1. 
 
Good summary information on the drought indices presented, including qualitative and  
quantitative evaluation of the indices.  
 
Task 1.  
 
The research focused on United States based methods; the scope clearly states that the  
study will incorporate methods used elsewhere in the world. The cumulative sum control  
chart (CUSUM) method as outlined in the scope of work is not included or discussed.  
We completed a thorough search of the peer-reviewed literature, including many 
international journals, to identify all potentially relevant drought monitoring tools.  To the 
best of our knowledge this report includes all the drought monitoring tools that are 
commonly used and highly regarded (both in the United States and around the world).   
 
The cumulative sum control chart (CUSUM) is a statistical procedure that is used to 
detect a change point in a time series.  It is not a method for monitoring or detecting 
drought.  CUSUM requires that the data be independent and identically distributed and 
since monthly drought data are serially autocorrelated they violate this assumption.  
CUSUM was found to not be an appropriate operational drought monitoring tool. 
 
In addition, page 39 table 5 lists the TWDB in the Table title. It should be the Texas  
Drought Preparedness Council only; they are the owners of this assessment.  
This has been corrected. 
 
Task 2.  
 
This task is to evaluate existing tools that are most appropriate for Texas at the local  
level. Please provide a final statement for this task that recommends those indices most  
appropriate for Texas.  
A summary of our recommendations was added (section 3.4.4). 



 
Tables 12 and 13 (page 70) discuss the results, but never conclude which one is best for  
Texas at the local level.  
A summary of our recommendations based on the qualitative evaluation was added 
(section 3.3.3). 
 
Task 3.  
 
Need definite definitions for drought. There is no clear definition of terms such as  
meteorological drought, threshold, hydrological drought, and water supply drought. Also,  
make clear the difference in the hydrological drought and water supply drought unless the  
authors are equating the two terms. Please clarify this issue.  
Conceptual drought definitions were added to section 1.1 and the hydrological/water 
supply drought issue was discussed. 
 
Part of this task is to develop operational definitions of meteorological, hydrological, and  
water supply drought. Please provide a clear summary for this task or and a list of  
thresholds to be met to indicate dry periods or drought conditions.  
Operational drought definitions for Percent Normal, PDSI, and SPI are reported in 
section 4.4.  These drought definitions are for specific stations and can not be applied to 
the whole state.  Operational drought definitions for RDI are reported in section 3.4.4. 
 
The drought evaluation tools on pages 66-70 are excellent.  
 
Task 4.  
 
Provide guidelines for taking action based on current drought conditions and future  
conditions.  
This was not part of Task 4 as originally proposed in our Statement of Qualifications.  
This study provides recommendations on how drought monitoring and reporting should 
be carried out in Texas.  It does not attempt to define appropriate drought responses since 
the PIs feel that these are largely matters of policy and politics.  However, section 5.5 
does discuss how future drought conditions should be predicted. These probabilistic 
predictions of future drought conditions will provide the Texas Drought Preparedness 
Council, politicians, and policy makers with useful information to assist them in deciding 
how they should respond to a drought.   
 
This report provides good summary information on many drought indices, qualitative and  
quantitative evaluation of those indices, and good recommendations on future endeavors.  
However, an unambiguous recommendation on which indices (either existing or new),  
methods, and procedures to use should be included to aid the Texas Drought  
Preparedness Council.  
Recommendations for how the TDPC should monitor and report drought conditions were 
added to Task 4 (section 5.5). 
 
Task 5.  



 
Provide specific recommendations on the reporting units for drought information,  
perhaps a table listing what type of index and the recommended reporting unit would  
clarify this issue.  
Summary table was added to section 6.3. 
 
General comments. 
 
PHDI index is listed as a stream evaluation tool. However, the Palmer index  
methodology is composed of three indices to look at meteorological drought and not  
hydrologic drought.  
 
The PDSI is a retrospective index because its values are back calculated and adjusted 
after the establishment of a dry or wet spell.  Hence, the current value of the index might 
change if a drought becomes established 2 or 3 months from now.  However, when 
computed in near real-time the PDSI is more appropriately termed the Palmer 
Hydrological Drought Index (PHDI) (Karl, 1986) because it does not take into account 
future dry or wet weather that impacts the meteorological drought.  PDSI and PHDI 
values are identical during an established spell and only differ during the onset and 
ending of a spell.  According to Heim (2002), the PDSI considers a drought ended when 
the moisture conditions begin to recover continuously to erase the water deficit, however, 
PHDI considers a drought ended only when the water deficit actually vanishes.  
Therefore, the PHDI is a slow-varying version of the PDSI.  Although the PDSI and 
PHDI are often defined as a meteorological drought indices they respond slowly to 
changes in moisture conditions.  According to Guttman (1998), the PDSI has a ‘memory’ 
(its spectrum conforms to that of an autoregressive process) and it is highly correlated 
with the 12-month SPI (Heim, 2002).  Because of this long memory, the PDSI and PHDI 
are often out of phase with contemporary precipitation anomalies.  This means that both 
the PDSI and PHDI are more appropriate for measuring hydrological/water supply 
droughts.  The Z-index (the third Palmer index) can be used for measuring agricultural 
and meteorological drought since it only accounts for the moisture conditions during the 
current month (Quiring and Papakyriakou, 2003). 
 
Comparing methodologies is good, but there is no baseline variable presented to measure  
deviation of the indices from each other (page 90) or the “true” condition.  
 
We agree.  Ideally all of the drought indices should have been evaluated using data on 
drought impacts.  Since such data do not exist for Texas, we employed a qualitative and 
quantitative evaluation methodology instead. The National Drought Mitigation Center 
(NDMC) has recently begun collecting and archiving drought impacts data 
(http://droughtreporter.unl.edu/).  According to NDMC, they “developed the Drought 
Impact Reporter in response to the need for a national drought impact database for the 
United States. Drought impacts are inherently hard to quantify, therefore there has not 
been a comprehensive and consistent methodology for quantifying drought impacts and 
economic losses in the United States. The Drought Impact Reporter is intended to be the 
initial step in creating a comprehensive database. The principal goal of the Drought 

http://droughtreporter.unl.edu/


Impact Reporter is to collect, quantify, and map reported drought impacts for the United 
States and provide access to the reports through interactive search tools. The need for the 
Drought Impact Reporter and its comprehensive database becomes clear when one 
considers that drought is a normal part of the climate for virtually all portions of the 
United States. In addition, all evidence suggests that the impacts of drought are 
increasing in magnitude and complexity. A risk management approach to drought 
management, which strongly emphasizes improved monitoring and preparedness, 
requires more timely information on the severity and spatial extent of drought and its 
associated impacts. Improved information on drought impacts will help policy and 
decision makers identify what types of impacts are occurring and where. In addition, the 
Drought Impact Reporter will aid them in understanding the magnitude of the impacts by 
providing access to reported drought impacts. More precise estimates of drought impacts 
will aid the government in instituting programs before drought occurs, as opposed to 
incurring high expenditures on post-drought relief.”  This information is important for 
validating and improving drought monitoring and drought mitigation strategies, therefore 
it is recommend that the TWDB and TDPC should begin to actively collect and archive 
impacts data (either using the existing “Drought Impact Reporter” developed by the 
NDMC or using a separate database to be developed and maintained by the TWDB).  It is 
further recommended that the TWDB work with other state and federal agencies to 
collect drought impact data for Texas from a variety of sectors (water resources, 
environment, socioeconomic, agriculture, fire, etc.). 
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