A COUPLED CONTINUOUS/DISCONTINUOUS GALERKIN
METHOD FOR THE SHALLOW WATER EQUATIONS
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Abstract. We consider the approximation of the depth-averaged two dimensional shallow water
equations by coupling a discontinuous Galerkin method for continuity with a continuous Galerkin
method for momentum. The formulation is described in detail and numerical results on several test
cases are presented. The discontinuous Galerkin method is locally conservative, flux-continuous on
each element edge, and is suitable for both smooth and highly advective flows.
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1. Introduction. In this paper, we consider novel finite element methods for the
numerical solution of the two-dimensional, depth-averaged shallow water equations
(SWE).

Simulation of flow in shallow waters can be used, for example, to model environ-
mental effects of dredging and commercial activities on fisheries and coastal wildlife,
remediation of contaminated bays and estuaries for the purposes of improving water
quality, modeling the effects of storm surges due to tropical storms and hurricanes,
and studying freshwater-saltwater interactions.

The SWE model flow in domains whose characteristic wave length in the hori-
zontal is much larger than the water depth [36]. The SWE consist of a first order
hyperbolic continuity equation for the water elevation, coupled to momentum equa-
tions for the horizontal depth-averaged velocities. This system is referred to as the
primitive form of the shallow water equations. These equations are often solved on
domains with fairly irregular coastal boundaries. Furthermore, to avoid spurious
boundary effects, it is often desirable to extend the domain away from the shore into
deeper waters [39, 5].

Various finite element approaches have been developed for solving the SWE on
such complex domains over the past two decades; see, for example, [32, 27, 26, 35, 42].
Much of this effort has been directed at deriving a finite element method which is sta-
ble and nonoscillatory under highly varying flow regimes, including advection dom-
inant flows. As noted in [32], a straightforward use of equal order approximating
spaces for elevation and velocity in the primitive SWE can lead to spurious spatial os-
cillations. Approaches based on mixed interpolation spaces [27] have met with limited
success. A more widespread approach has been to replace the first order hyperbolic
elevation equation with a second order hyperbolic “wave continuity equation,” first
proposed in [32]. This approach has served as the basis for numerous finite element
studies, see for example, [28, 25, 24, 22, 23, 31, 37, 38, 39, 6, 5, 29, 40], and was
analyzed in [8, 9].

The finite element methods mentioned above are based on continuous approxi-
mating spaces. The wave continuity formulation sacrifices the primitive continuity
equation, thus the primitive form is no longer satisfied in a discrete sense. In recent

*

*Center for Subsurface Modeling - C0200; Texas Institute for Computational and Applied Math-
ematics; The University of Texas at Austin; Austin, TX 78712. This research was supported by NSF
grant DMS-0107247.

TDept. of Civil Engineering, University of Notre Dame, Notre Dame, IN.

1



years, finite element methods based on discretizing the primitive form of the SWE
using discontinuous approximating spaces have been studied [2, 10, 1]. This discon-
tinuous Galerkin (DG) approach has several appealing features; in particular, the
ability to incorporate upwinding and stability post-processing (slope-limiting) into
the solution to model highly advective flows, the ability to use different polynomial
orders of approximation in different parts of the domain, and the ability to easily
use nonconforming meshes (e.g., with hanging nodes). Moreover, the DG method is
“locally conservative” and “flux-continuous,” that is, the continuity equation relating
the change in water elevation to water flux is satisfied in a weak sense element by ele-
ment, and the numerical flux over each inter-element edge or face is continuous. These
properties are useful when coupling the SWE to a transport equation for modeling,
for example, contaminant migration [19]. DG methods have proven adept at modeling
hyperbolic equations [16, 15, 14, 12, 18, 4], advection-diffusion [3, 17, 11, 20] and pure
diffusion equations [41, 7, 33, 34]. See also [13] for a more thorough discussion on the
history of DG methods. The disadvantage of DG methods over standard Galerkin
methods is their cost: typically they require more degrees of freedom on a fixed mesh
than their continuous counterparts.

In this paper, we present an approach for the SWE based on combining a DG
method for continuity with a standard continuous Galerkin method for momentum.
This approach allows us to model the hyperbolic continuity equation using the DG
method, which is well-suited for this type of equation, while still using a continuous
method for momentum. Therefore, we reduce the overall degrees of freedom versus
using a complete DG method as in [1]. Stability and convergence results for this new
methodology have recently been derived in [21]. Here we will focus on the numerical
implementation of the method and its validation on some test problems.

We have implemented this approach into the Advanced Circulation Model (AD-
CIRC) [31], which uses the generalized wave continuity equation (GWCE) [28] for
computing elevation. ADCIRC discretizes both the GWCE and the momentum equa-
tion using continuous, piecewise linear approximating functions defined on triangular
elements. The GWCE finite element formulation does not produce a locally conser-
vative, flux-continuous solution to the continuity equation. Moreover, the GWCE has
no particular mechanism for handling highly advective flows. The GWCE does work
quite well for smooth tidal flows, however, even those with so-called “2Axz” waves. In
our implementation, we have essentially replaced the GWCE formulation with a DG
method.

The paper is organized as follows. In the following section, we describe the math-
ematical model and the numerical approximation. Section three then contains nu-
merical results on several two-dimensional test problems.

2. Problem definition. Vertical integration of the Navier-Stokes equations
along with the assumptions of a hydrostatic pressure and a vertically uniform hori-
zontal velocity profile results in the Shallow Water Equations (SWE) of the following
form:

¢ _

a‘*—V'(uH)—O, (1)
Ou
§+U-Vu+7'bf(u)u+fck><u+gV.§:F. (2)

(1) represents the conservation of mass and is also referred to as the primitive con-
tinuity equation; (2) represents the conservation of momentum in non-conservative
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FIG. 1. An edge 7; with normal vector n;; v~ and vt are the values of v to the left and right
of the edge, as determined by the normal n;.

form. In the above equations, £ represents the deflection of the air-liquid interface
from the mean sea level, H = hy + £ represents the total fluid depth, and h; is the
bathymetric depth, u = (u,v) is the depth averaged horizontal velocity field, f. is the
Coriolis parameter resulting from the earth’s rotation, k is the local vertical vector, g
is the gravitational acceleration, 745 is the bottom friction coefficient. Here we have
neglected second order derivative terms in the momentum equation due to turbulent
viscosity. In addition to the above described phenomena, often we need to include
the effects of surface wind stress, variable atmospheric pressure and tidal potentials
which are expressed through the body force F [36].

These equations are solved over a spatial domain Q in JR? and for time ¢ > 0.
Let 02 denote the boundary of 2, where n is the fixed unit outward normal to 2.
Specified elevation and velocity and/or specified fluxes are assumed on 9f). Initial
elevations and velocities £° and u® at ¢+ = 0 must also be given.

Let {7n}r>0 denote a triangulation of Q such that no triangle €. crosses 0€.
We assume each element (2. has a element diameter h., with h being the maximal
element diameter. Let P*(Q.) denote the space of complete polynomials of degree
k > 0, defined on ..

For any function v € H'(Q.), for each element (., we denote its trace on interior
edges v; by v*, with

v (x) = sl_igl_ v(x + sn;), vt(x) = sl—igl—i- v(x + sn;),
where x € «; and n; denotes a fixed unit vector normal to +;, see Figure 1.

We will use the L?(R) inner product notation (-,-)g for domains R € IR?, and
the notation (u,v)g to denote integration over one-dimensional surfaces.

Multiply equation (1) by an arbitrary, test function v € H(f2,) and integrate by
parts over each element 2, to obtain

(G€,v)0, — (WH,Vv)o, + (Hu-n.,v)s0, =0, (3)

where n. denotes the outward unit normal to the edge 0f2..
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Multiply equation (2) by a test function w € (H'(2))? and integrate over Q to
obtain,
ou
(a+u-Vu+be(u)u+fckxu+gV§,w)Q = (F,w)q. 4)
We approximate ¢ in the polynomial space Vi, = {v : v|a, € P¥(Qe)}, and we
approximate each component of u in the subspace W}, of H'(f2), where W}, consists
of continuous, piecewise linear polynomials. Denote these approximations by &, and
up. We also will utilize a continuous approximation 7€, € Wj, to £, defined below.
In continuous time, the scheme is outlined as follows:
e First, initial approximations &,(-,0) € V,, and up(-,0) € (W})? are computed
from the initial data £° and u®. This can be done by interpolation or L?
projection.
e For t > 0, &, is computed by

(Bekn,v)a. — (un (& + hs), Vv)a, + (A(un; &, &) - ne,v)o0, =0, v € Vi
(5)
The numerical flux A(up;§&, , §,J{) -n, ~ Hu - n.. We will discuss this term
in detail below.
e ¢, is then projected into the continuous space Wy by finding 7€, € W
satisfying

(mén,w)a = (€n,w)a, w € Wh. (6)

In our implementation, mass lumping is used to approximate the integral on
the left side of (6). Furthermore, on elevation specified boundary nodes, we
set &, to be equal to the specified elevation.
e Finally uy is computed from (4) by
8uh
(W + uy - Vuy, + be(uh)uh
+ fok xup + gV, w)g = (F,w)q, w e (W) (7

Note that (5) is conservative in the following sense: letting v = 1 on 2, and zero
elsewhere, we find

/ Opépdr + A(uh;§;,§;{) -n.ds =0. (8)
Q. 9.
Thus, the change in elevation is balanced by the numerical flux A - n, through the
boundary of the element. As we will see below, this flux is uniquely defined (i.e.,
continuous) on each edge in the mesh. Thus, the DG scheme is both “locally conser-
vative” and “flux continuous.”
We now describe in more detail the implementation of the scheme above.
Implementation of (5). Though (5) is valid for any polynomial degree k > 0, we
have implemented polynomials of order £k = 0 and k = 1. For k = 1, we write

fthe = £h,e + 6z£h,e($ - xe) + 5y§h,e(y - ye)a (9)

where (z.,y.) is the barycenter of Q.. Thus, there are three degrees of freedom for
&, per element, and the basis functions for P1((Q,) are

{1, — ze,y — ye }-
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For k = 0, the  and y slope terms are omitted.

The time discretization of (5) is explicit. Given a time step At > 0 and initial
approximations (&x(-,t™), un(-,t")) = (&, uy), we integrate (5) forward in time using
the explicit Euler method if £ = 0, and using a second order Runge-Kutta method if
k = 1. The second order Runge-Kutta method consists of computing two successive
explicit Euler approximations, 5,7:’1 and 52’2, keeping u} fixed, and setting

= e ) (10)

At each Euler step, a rudimentary slope limiter is applied to the slope terms 0, ¢
and 6,&p . to minimize any overshoot or undershoot. In particular, we compute the
values £,  and 6,4[ at the midpoint of each interior edge ;. If, for example, £, does
not lie between the constant values ¢, , and 57;8 on either side, the slope terms in 7

are set to zero, similarly for &;.

The numerical flux A(up;&;, , &) is evaluated using the Roe flux outlined in
[10, 30]. This flux is an upwind flux which has been used in many fluid applications
with shocks and sharp gradients. In [10], we showed how to apply this flux when
using a finite volume method (a DG method with k¥ = 0) for both continuity and
momentum. Here we only need to apply it to the continuity equation. Thus, we are
only interested in the first component of this flux, which on edge +;, is defined as
follows:

n; = (nf,n?) = normal vector to v;,

Hi:é-}:-::“‘hh
qi:uhHi7
[[H]] =H+_H_7

[a] = ([¢°]; [¢"]) =a* —a",

a=+/g(H™ +Ht)/2,

k= +H+/H-,

PN B q"
(HO)1+&) (HY)Q+1/k)’

Un = G-,

A1 = min(u, — @,0),
A2 = min(u, + a,0),
_ (@ +un)[H] = [q] - n
o] = = y
2a
(6 — un)[H] + [¢°In] — [¢"]n}
24 ’

A(“h%@}fft) N =q° N+ Aog + Aos.

Qg =

Note that, on any element, the outward normal n, is either n; or —n;, thus A - n;
is either A - n, or —A - n,. Furthermore, if & = 0, the midpoint rule is used to
approximate the integral

(A ‘Mg, ’w)agE .

That is, u, §, and §,J{ are evaluated at the midpoint of the edge in computing A -n;.
If kK =1, two point Gaussian quadrature is used. The integration of the other terms
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in (5) is exact, assuming that h; is given as a continuou, piecewise linear interpolant
of bathymetry data.

On elevation specified boundaries, the boundary condition is enforced through
the flux A - n, by setting f;; equal to the specified elevation. On land boundaries,
A - n; is set to zero. On other boundaries, without any prior knowledge of &, we
simply set & =&,

Wetting and drying is implemented in (5) on each edge ~y; (unless this edge has
already been designated a land edge). In particular, an edge is determined to be
“wet” if Ht + H~ > 0 and “dry” otherwise. For dry edges, we set A -n; = 0. For a
wet edge, one of the elements on either side could be dry. If, for example, HT < 0,
then we modify the computation of A -n; by omitting the calculation of &, redefining
u = uy, and proceeding with the calculations given above.

Implementation of (7). The implementation of the continuous Galerkin method
(7) follows what has traditionally been done in ADCIRC [31]. In particular, mass
lumping is employed in the first term, and explicit time stepping is used, except that
m&y, is evaluated at the new time level 711,

3. Numerical results. In this section, we present numerical results for three
domains: a quarter annular harbor, a section of the Mississippi River in southern
Louisiana, and a constricted channel. The first test case is a standard test problem.
The second test case involves significant wetting and drying, and the third test case
tests the ability of the scheme to handle sharp gradients. We will compare the algo-
rithm described above, implemented in a code which we refer to as the DG-ADCIRC
code, to the standard GWCE implemention of ADCIRC, which we refer to as GWCE-
ADCIRC. In all of the cases below, we have taken k = 1 in the DG scheme, though
very similar results were obtained for £ = 0. In each case, the units for elevation are
in feet, and velocities are in feet/second.

3.1. Quarter Annular Harbor. The domain in this case is a quarter of an
annulus. The finite element mesh of the domain is given in Figure 2, and consists of
2000 elements and 1066 nodes. The outer circular boundary is an open sea boundary,
with elevation specified. The other three boundaries are land boundaries. The speci-
fied elevation is given by & = .1 cos(ta) ft, where a = .000140518917083, ramped up
over a period of two days. The bathymetry for this test case is given in Figure 3.

The simulation was run for a total of 10 days, with a time step of 86.4 seconds.
The elevation solution generated using the DG-ADCIRC code at ten days is given in
Figure 4. Here we are plotting the projected solution 7&,. For comparison purposes,
we have plotted the GWCE-ADCIRC solution in Figure 5. This solution is also
a continuous, piecewise linear function. Very good agreement is seen between the
two solutions. We have also compared the two components of velocity in Figures
6-7 and Figures 8-9. Here we see some differences in the solutions. Qualitatively
the solutions are very similar; however, the GWCE-ADCIRC solutions are somewhat
smoother than the DG-ADCIRC solutions. This may be dependent on our particular
interpolation procedure (6), and the fact that velocities are dependent on gV¢. Thus,
small differences in £ can lead to larger relative differences in the velocity response.

We have also compared the DG-ADCIRC and GWCE-ADCIRC solutions at sev-
eral “recording stations” located throughout the domain, over the time history of the
simulation. Four stations in the computational domain were chosen, located at the
points (235171,24663.4) ft, (448615,151000) ft, (253065,232818) ft, and (49846.2,413298)
ft. The first point is in the bottom part of the domain near the land boundary. The
second point is near the open sea boundary. The third point is in the middle of the
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domain, and the fourth point is in the upper left part of the domain, also near the
land boundary. The elevation solutions vs. time at all four locations is given in Figure
10. Excellent agreement is seen between the two solutions at all locations, in fact,
they are indistinguishable. In Figures 11 and 12, we compare the z and y components
of velocities at the four locations. Overall the two solutions agree quite well, except
at the fourth node. Here we observe differences in the x component. At this location,
however, the £ component of velocity is relatively small compared to the magnitude
of velocity at this point. The largest differences in velocity are about .014 ft/sec at
this point, or about 2% relative to the magnitude of velocity at this point. Part of
this difference could be due to the different ways land boundaries are incorporated in
the GWCE and DG formulations.
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3.2. Mississippi River. The next test case involves a section of the Mississippi
River near the Gulf Coast of Louisiana. The domain with initial water height is
plotted in Figure 13. We zoom in on part of the domain in Figure 14. Portions of
the domain are dry at the beginning of the simulation, as indicated by the negative
bathymetries. As the simulation proceeds, a significant amount of wetting occurs
throughout the domain. The finite element mesh consists of 35281 elements and
19616 nodes. For this test case, we simulated 2 days. A time step of .2 seconds was
used in the GWCE-ADCIRC simulation. For stability purposes, a smaller time step of
.1 seconds was used in the DG-ADCIRC simulation. An elevation boundary condition
of 3.5 ft is specified at the northwest (upstream) entrance to the river section, and
elevation of .61 ft is specified at the southeast (downstream) river boundary. This
boundary condition is ramped up over a period of 1 day. All other boundaries are
assumed to be land boundaries.

For this case, we compare elevation and velocity solutions at three recording
stations, located at (—3.473 % 107, 3.387 % 105) ft, (—3.466 * 107,3.342 % 10%) ft and
(—3.463 %107, 3.335 x 10%) ft. These locations are at the upper left part of the domain
(upstream) and about halfway and two-thirds downstream, respectively. First, we
show the elevation solutions at the three locations, in Figure 15. Good agreement is
seen between these solutions. Next, we compare the velocity solutions at the three
locations, in Figure 16. Here we are comparing the solutions for the component of
velocity with the larger magnitude at each location. Again, overall good agreement
is seen between the two solutions. The DG-ADCIRC velocity solution exhibits some
small fluctuations with time at the first station, which is near the inflow boundary.

3.3. Flow in a constricted channel. Our final test case involves flow in a
constricted channel due to a step change in elevation. Initially we assume the water
is stationary. Then at ¢ > 0, we raise the elevation at the left boundary to .1 feet.
This induces flow from left to right, down the constricted channel. The purpose of
this example is to test the DG-ADCIRC code’s ability to handle a sudden change in
elevation. The domain with the finite element mesh is shown in Figure 17. The mesh
contains 3155 elements and 1670 nodes. Land boundaries are assumed on the top,
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Fic. 15. Comparison of elevation solutions at days 0-2 for Mississippi River case.

ADCIRC solution is solid line, DG-ADCIRC solution is dashed line.

18000

GWCE-

bottom and right boundaries. A constant bathymetry of 1 ft is assumed. A time step
of .02 seconds was used.

In Figure 18, we compare the GWCE-ADCIRC and DG-ADCIRC elevation so-
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lutions at ¢ = 400 seconds. The GWCE solution in this case is quite oscillatory,
exhibiting a significant amount of rippling downstream of the front. The DG solution
exhibits a more stable, sharp profile. Solutions at ¢ = 600 and ¢t = 800 seconds are
shown in Figures 19 and 20. Similar results are seen in these figures. Finally, in Figure
21, we compare the elevation and z velocity solutions at the point (-1.26,20.34) ft vs.
time for the two methods. The DG solution is clearly superior for this case.



 velocy
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Fic. 16. Comparison of velocity solutions at days 0-2. GWCE-ADCIRC solution is solid line,
DG-ADCIRC solution is dashed line for Mississippi River case.

3.4. Summary of results. In summary, for the cases tested so far with fairly
smooth solutions, we have observed very similar results between the DG-ADCIRC
and GWCE-ADCIRC codes. In some cases, the velocity solutions differ, but these
differences are relatively small. As the solution gradients become steeper, the DG-
ADCIRC code does not seem to exhibit the same oscillations as the GWCE-ADCIRC
code does. As the DG method has built-in upwinding and shock-capturing capabili-
ties, this is not surprising. Moreover, the DG solution has the added feature of being
locally conservative and flux-continuous.

In terms of computational cost, the DG method on the same finite element mesh
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F1G. 17. Constricted channel with finite element mesh.

involves more degrees of freedom per solution step than the GWCE formulation.
However, the GWCE involves solving a system of equations at every step. While
these systems can be solved very efficiently using a preconditioned conjugate gradi-
ent method, generally 3-10 conjugate gradient iterations are required per time step,
depending on the problem size. In some cases, the DG method requires a smaller
time step than the GWCE method in order for the solution to remain stable, gener-
ally about half the size. But, for the cases considered so far, the wall-clock timings

between the two methods are quite comparable.

4. Conclusions. In this paper, we have presented a numerical approach for the
SWE based on combining a DG finite element method for the primitive continuity
equation and a continuous Galerkin finite element method for the momentum equa-
tion. The DG formulation is locally conservative and flux continuous. Preliminary
numerical results indicate the new methodology is competitive with existing method-
ologies for smooth flow and wetting and drying problems, and produces superior

results in cases with steep elevation gradients.
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