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OBJECTIVE 

To solve the three-dimensional, continuity equation for the vertical velocity given prior solutions 
for the horizontal velocities and subject to the kinematic boundary conditions at the free surface 
and the bottom of the water column. 

GOVERNING EQUATIONS AND BOUNDARY CONDITIONS 

The relevant governing equation is the three-dimensional continuity equation: 

(1) 

where u, v, w define the velocity components in the coordinate directions x. y. z. The subscript 
"z" has been added to the horizontal derivatives to emphasize that these derivatives are computed 
in a level coordinate system. We desire to solve this equation for w subject to the free-surface 
and bottom kinematic boundary conditions: 

at z= ( (2) 

at Z =-h (3) 

where us, Vs, Ws are the velocity components at the free surface (z=~) and Ub, Vb, Wb are the 
velocity components at the bottom (z=-h) assuming a slip condition is applied at the base of the 
water column. 

ADClRC utilizes a generalized stretched vertical coordinate system in which the vertical 
dimension is transformed from z, ranging from -h to ~, to 0", ranging from b to a, where b and a 
are arbitrary constants. (Most models assume b=-l. a=O. ADCIRC assumes b=-l. a=l. Herein 
we carry a and b explicitly for the sake of generality.) Using the chain rule we can relate 
derivatives in the level (z) coordinate reference frame to derivatives in the stretched (0") 
coordinate reference frame: 

__ ---Z'"1\ ___ --- 0= • 

• -------z=-h ------ o=b 

Figure 1. Schematic of level and stretched coordinates 
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RESULTS 

Idealized Inlet problem - horizontal velocity and elevation solutions provided by QUODDY 

Figure 3. Idealized inlet grid 

Figure 4. Idealized inlet bathymetry 



du a-b du 
-=----
dz H da 

and 
dv a-b dv 
------
dZ H da 

where the total water column depth, H=h+~, has been introduced in Eq. (6). 

Using Eqs. (2) - (6), the 3D continuity equation in stretched vertical coordinates is: 

d( + d (uH) + d (vH) + (a _ b ) Ow = 0 
dt dx. dy. da 

while the kinematic free surface and bottom boundary conditions simplify to: 

w = 0 at a = a 

w = 0 at a = b 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

Eqs. (7) - (9) introduce a stretched-coordinate, vertical velocity, 00, that is related to the true 
vertical velocity by: 

As discussed by Muccino et al. (1997), the solution of Eq. (1) for w with the boundary conditions 
in Eqs. (2), (3) is an over detennined problem, since a first order differential equation admits 
only one boundary condition constraint on the solution. It is clear that the same problem exists 
with the solution of Eq. (7) for 00 using the boundary conditions in Eqs. (8), (9). Previous 
modelers have dealt with this problem either by ignoring one of the boundary conditions (e.g., 
solving Eq. (1) and satisfying only the bottom boundary condition) or by taking a vertical 
derivative of the 3D continuity, thereby creating a second order differential equation that allows 
the introduction of both surface and bottom boundary conditions (Lynch and Werner, 1987, 
1991). Differentiating over the vertical yields: 

-=-- --+-d\v d [dU dV) 
d/ dz dx, dy, 

(11) 
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a2
w = 1 a (a( + a(uH) + a(VH)) 

all 2 (a - b ) all at ax. ay. (12) 

for Eqs. (1) and (7), respectively. Muccino et a!., (1997) suggest two additional method for 
computing W from Eqs. (1) - (3): a least squares approach and an adjoint approach. Both 
methods solve the over determined problem in a "best fit" sense with the least squares method 
operating on the discrete equations and the adjoint method operating on the continuous 
equations. In test problems, Muccino et a!. (1997) found that the least squares and the adjoint 
approaches yielded essentially identical numerical solutions for wand that this solution was 
preferable to that obtained by ignoring one boundary condition or computing w using the second 
order version of the continuity equation. 

It is insightful to briefly review the form of the solution that is obtained using the adjoint method: 

(13) 

where L weights the relative contribution of the boundary conditions vs the interior solution in 
determining the "best fit". Eq. (13) indicates that the vertical velocity obtained using the adjoint 
method, Wadj, is constructed as the sum of the solution to Eq. (1) satisfying the bottom boundary 
condition, w}, and a correction that is proportional to the misfit between WI at the free surface 
and the free surface boundary condition, W j • Furthermore, Eq. (13) indicates that the correction 
term varies linearly over the depth. In the limit of L =0, (which places all of the weight on the 
boundary conditions and eliminates any influence of the interior solution), Eq. (13) reduces to: 

for L=O (14) 

In this case the adjoint correction is a linear function of depth that is zero at the bottom and equal 
to the surface boundary condition misfit at the free surface. Consequently, the adjoint solution 
exactly satisfies both the bottom and surface boundary conditions. In the limit of L~oo, (which 
places all of the weight on the interior solution), Eq. (13) reduces to: 

for L~oo (15) 

In this case the adjoint correction approaches a constant over the depth that is equal to the 
average value of the boundary condition misfit at the free surface. Clearly, intermediate values 
of L generate a correction that falls between these limits. 

Note, an adjoint correction is easily derived for the stretched-coordinate vertical velocity: 
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(16) 

This correction has the same basic behavior as described above. 

NUMERICAL IMPLEMENTATION 

The previous section provides several possible approaches for use in determining wand (J) in 
ADCIRe. Testing of various of these options is described below. In each case a vertical 
sequence of three nodes indicated by superscripts i-I, i, i+1 is assumed. Superscripts - and + 
indicate quantities evaluated over the intervals {i-I, i} and Ii, i+1), respectively, (e.g., Az+=Zi+!

Zi). Since ADCIRe utilizes stretched coordinates, Az = Hl1cr/(a-b). 

1+1 

+ 

1-1 

Figure 2. notation used in vertical discretization 

(i) Second Derivative approach using Eqs. (11), (2), (3). 
Using centered, finite differences, Eq. (11) can be discretized as: 

(17) 

and 

(18) 
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yielding 

(19) 

The left hand side of Eq. (19) is efficiently solved using a standard tri-diagonal matrix solver, 
however, it is not entirely clear how to evaluate the right hand side of Eq. (19). It appears that 
the QUODDY and FUNDY models simplify the right hand side by canceling the inner terms, 
yielding: 

(20) 

Both Eqs. (19) and (20) require the evaluation of level coordinate horizontal derivatives of 
horizontal velocity. These are converted to horizontal derivatives in stretched coordinates using 
Eqs. (4) and (5), thereby requiring the additional evaluation of vertical derivatives of the 
horizontal velocity. These vertical derivatives are computed as a simple difference over the 
intervals {i-I, i} or {i, i+ I} for evaluation of the terms in [r or [t, respectively. For example, 

[ (~JJ =( ::. r -[( ,:~~b ) :;, +( ':~~' ) ~J( ;: J 
[(~JJ =( ~J -[( :=: ):;, +( :=: )::J(;: J 
[(au)iJ (au)i [((/-b)ae- (oi-a)ah](aU)-ax, = ax. - a-b ax, + a-b ih z az 

[( 
au )i_1J- (au)i-l [( Oi.} -b) ae- (Oi-} -a) ah ]( au)-
ax, = ax. - a-b axz + a-b ax, az 

(21) 

(22) 

(23) 

(24) 

Notice that if Eq. (19) is discretized, the inner terms cancel only if ( ~: T = ( ~: T· Thus, the 

fully discretized version of Eqs. (19) and (20) are different. 
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Given a solution for w,· is obtained directly from Eq. (10). The top and bottom rows of the 
matrix problem generated from Eq. (19) are modified to insert the free surface and bottom 
boundary conditions into the problem. 

(ii) Second Derivative approach using Eqs. (12), (8), (9). 
This approach is similar to approach (i) except that Eq. (12) is used to produce a solution for· 
and w then is computed from Eq. (10). This approach is attractive since Eq. (12) is written in 
terms of horizontal derivatives in the stretched coordinate system, thereby minimizing the 
additional computations required to convert horizontal derivatives back to level coordinates. 
However, initial experience with this approach was highly unsatisfactory, presumably because 
the vertical derivative applied to the terms on the right hand side of Eq. (12) eliminates the time 
derivative term found there (at least in the initial implementation). This clearly removes an 
important physical effect from· . It is likely that this problem can be corrected by carefully 
computing this combined derivative. This could be looked into further. 

(iii) First Derivative approach using Eqs. (l), (2), (3), with or without the adjoint correction. 
Eq. (1) is discretized as: 

(25) 

(26) 

yielding 

(27) 

Eq. (26) is solved explicitly for w, using the bottom boundary condition to initiate the 
calculation. The right hand side of Eq. (26) requires evaluation of level coordinate horizontal 
derivatives of horizontal velocity. These are converted to horizontal derivatives in stretched 
coordinates using Eqs. (4), (5), thereby requiring the additional evaluation of vertical derivatives 
of the horizontal velocity. These vertical derivatives are computed as a simple difference over 
the interval {i-I, i}. Given a solution for W,· is obtained directly from Eq. (10). If desired the 
adjoint correction, Eq. (13), can be applied once w has been computed from Eq. (27). 

(iv) First Derivative approach using Eqs. (7), (8), (9), with or without the adjoint correction. 
This approach is similar to approach (iii) except that Eq. (7) is used to produce a solution for· 
and w then is computed from Eq. (10). This approach is attractive since Eq. (7) is written in 
terms of horizontal derivatives in the stretched coordinate system, thereby minimizing the 
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additional computations required to convert horizontal derivatives back to level coordinates. If 
desired the adjoint correction, Eq. (16), can be applied once' has been computed. 

HORIZONTAL DISCRETIZATION 

ADCIRC utilizes two different integration rules in implementing the FE method in the horizontal 
dimension. (In some cases the integration my be further approximated using lumping.) The 
GWCE equation uses an exact integration, i.e., 

(28) 

while the momentum equations use an approximate integration 

(29) 

In these expressions the integration has been applied over each element· n (n = 1 .. . NEj) 

containing node i, An is the area of element n and Ai is the total area of all elements containing 
node i. 

If· represents a horizontal derivative (and is therefore constant over an element) and 

f qJjdQ. = An, Eqs. (28) and (29) simplify to: 
n, 3 

(30) 

(31) 

Physically, the difference between the integrations in Eqs. (30) and (31) is that the exact 
integration computes the integrated horizontal derivative at node i as the sum of the horizontal 
derivatives in all elements surrounding node i weighted by the particular element's area. The 
approximate integration computes the integrated horizontal derivative at node i as an unweighted 
sum of the horizontal derivatives in the elements surrounding node i multiplied by the total area 
of all elements surrounding node i. The two methods are equal for a uniform grid. 
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• 2nd derivative options either based on Eq. (19) or Eq. (20) gave seemingly good, smooth and 
comparable results. 

• 1st derivative option gave most reasonable results when the adjoint correction was applied 
with L=O. In this case the result matched the 2nd derivative option based on Eq. (19) to 5 - 6 
decimal places. 

• Solutions for w are identical to 4 - 5 decimal places (single precision calculations) whether w 
is solved directly or via· . 

Vancouver Island problem - horizontal velocity solutions provided by FUNDY 

• Results quite sensitive to horizontal integration rule! 
• If horizontal derivatives are computed using the exact integration rule, solutions for ware 

identical to 4 - 5 decimal places (single precision calculations) whether w is solved directly 
or via· . 

• 2nd derivative option based on Eq. (19) again matches 1 st derivative method with L=O. 
• 2nd derivative option based on Eq. (20) gives significantly different results, generalIy stronger 

upwelIing, than other methods as shown by Julia earlier. This did not show up in idealized 
inlet problem because of very smalI bathymetric and surface elevation gradients. 

• If exact horizontal integration is used, the methodological choices seem to colIapse to a 
choice between the adjoint method (with L=O or not) and the 2nd derivative method based on 
Eq. (20). 
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Quarter Annular Tidal Problem - horizontal velocity and elevation solutions from analytical 
solution 

825 

Bathymetric Profile 

40 eo 80 100 
radiol distonce (ft>1000) 

Figure 5. Finite element grid used for the quarter-annular tidal problem 

• Outer boundary forced with M2 tide. 
• 2nd derivative option based on Eq. (19) again matches lSI derivative method with L=O. 
• lSI derivative method with L=O gives consistently better results than 2nd derivative option 

using Eq. (20) (QUODDYIFUNDY solution) 
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Figure 6. Horizontal and vertical velocities at nodes 200, 418 and 825 at 
the beginning of the tidal cycle 
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DISCUSSION 
It appears that out of the multiple methods for computing w, as long as the exact integration is 
used for the horizontal derivative terms (i) it makes no difference whether one computes w or w 
first, and (ii) the 2nd derivative scheme based on Eq. (19) is equivalent to the 1 sl derivative adjoint 
scheme with 1.=0. The first of these findings should be the case and is encouraging to verify. 
The second finding also seems reasonable, since a 2nd derivative equation should admit an 
additional term that is linear in depth into the solution beyond that which satisfies the 1 sl 

derivative equation. Since the solution of the 2nd derivative equation is forced to satisfy both the 
surface and bottom boundary conditions, this should be equivalent to adding a linear correction 
to the 1 sl derivative equation that is zero at the bottom and causes the solution to exactly satisfy 
the surface boundary condition. A comparison of the discrete equations further confirms this. If 
Eq. (27) is subtracted from the equivalent equation for the interval {i, i+l}, the result becomes: 

_-Wi -+- +-= W
i
+

1 
'( 1 1) wi-! 

Llz + Llz + Llz - Llz -

1[[ )i+1 [ )i]+ [[ )i [ )i_I]-) 1 dU dV dU dV dU dV dU dV 
-'2 dX,+dY, + dX, + dY, - dX,+dY, + dX,+(}Y, 

(32) 

This is identical to the discrete equations for the 2nd derivative approach obtained in Eq. (19). 
Thus a linear combination of 1 sl derivative equations is equivalent to the 2nd derivatives, 
suggesting the solution using either approach will be identical, provided both boundary 
conditions are enforced. 

Therefore, the primary issues appears to be whether to use an adjoint 1 sl derivative or 2nd 

derivative (Eq. 19) solution or a 2nd derivative (Eq. 20) approach. Based on comparisons to the 
analytical solution for w in the quarter annular tidal problem, the adjoint, lSI derivative approach 
seems preferable. 

Vertical velocity calculation is very sensitive to both horizontal discretization and vertical 
discretization. 
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