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1 Executive Summary 

The Texas Water Development Board (TWDB) produces estimates of freshwater inflow to major 
bays and estuaries along the Texas coast at both monthly and daily increments.  A central 
element of the system for producing such estimates is Texas Rainfall-Runoff (TxRR) model, a 
simple, parsimonious hydrologic model that calculates runoff on a continuous basis for ungauged 
bay watersheds.  TxRR currently ingests gauge-interpolated precipitation data, and it implements 
a simple water balance scheme that lumps evapotranspiration and percolation-related losses.  The 
structural simplicity of TxRR, on one hand, makes the model computationally efficient, and yet, 
it may on the other hand hinder the model’s ability in representing inter-event and inter-annual 
variations in runoff.   

To address the potential limitations of the existing TxRR-based inflow estimation system, the 
TWDB contracted University of Texas at Arlington (UTA) to undertake an effort to augment this 
system by introducing new products and modeling systems, and to assess the potential impacts of 
the augmentation on the inflow estimates for Matagorda Bay, an estuary system situated in the 
central Texas coast.  The assessment focuses on five gauged watersheds and eleven ungauged 
bay watersheds that drain to Matagorda Bay.  There are four specific tasks in this project. The 
major results for each of the tasks are summarized below.  

Task 1: The UTA team introduced the National Weather Service (NWS) Multisensor 
Precipitation Estimates (MPE) product as a potential replacement for the current gauge-
interpolated data as the input to TxRR.  The project team created a suite of tools for ingesting the 
MPE data to produce mean areal precipitation series for TxRR, and shared these tools and 
documentations with TWDB.  The team also compared the MPE and gauge-based precipitation 
products, and performed parallel, experimental TxRR simulations using the MPE and existing 
gauge-based data set as input forcing for 11 ungauged watersheds that drain to Matagorda Bay.  
Notable observations are summarized as follows:  

1. MPE features broadly higher precipitation amounts across the ungauged watersheds. The 
differences are appreciably wider over the eastern portion of the bay.   

2. Using MPE as the input to TxRR yields larger runoff volumes across all bay watersheds, 
and the contrasts in simulated runoff are more pronounced than those in precipitation. 
This magnification of contrasts is likely because the increases in precipitation amounts 
are distributed primarily during time windows with wetter surface conditions and higher 
runoff efficiency.    

3. TxRR runoff simulations driven by MPE show higher incidence of large daily runoff 
volumes. 

It remains unresolved whether the contrasting runoff volumes from MPE and gauge-based TxRR 
simulations indeed point underrepresentation of runoff in the latter simulations, or are simply 
artifacts of distorted parameter values due to the use of gauge data in model calibration. 
Additional validation is needed to determine the need of model re-calibration before routine use 
of MPE data for TxRR simulations.  
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Task 2: In this task, the UTA team introduced three widely known hydrologic models as 
potential complements to TxRR. These are the HEC-HMS by the US Army Corps of Engineers, 
the Hydrology-Laboratory Research Distributed Hydrologic Model (HL-RDHM) maintained by 
the NWS and University of Texas at Arlington, and the National Water Model (NWM) that is 
running operationally at the NWS.  Among these models, HEC-HMS and TxRR are lumped 
models, whereas HL-RDHM and NWM are considered distributed models1.  These four models 
form the skeleton of the Multi-model inflow prediction system (MMIPS). 

The team compared the performance of the four models for the period of 2003-2017 for five 
gauged watersheds, with each model driven by the forcings from the North American Land Data 
Assimilation System-2 (NLDAS-2), which include, but are not limited to precipitation, 
temperature, wind speed, and net radiation2.  HEC-HMS and HL-RDHM were calibrated for 
2004-2012.  Key observations include: 

1) TxRR performs favorably for the largest watershed (Lavaca River at Edna) over the 
period of 2004-2012, whereas for 2013-2017 HEC-HMS consistently outperforms other 
models.   

2) Large biases are observed in the simulations of TxRR and NWM for both periods.  

3) Performance of different models in capturing seasonal and interannual variations is 
mixed.  NWM performs slightly better in capturing the interannual variations, and TxRR 
has major issues in reproducing the seasonal variation of flow for Navidad River above 
Hallettsville.  

4) Three alternative models, namely HEC-HMS, HL-RDHM, and NWM, tend to inflate the 
baseflow for Lavaca River at Edna.   

5) Performance of models varies widely across major historical storm events. All models 
tend to overproduce runoff for the 2011 drought.  

Task 3: The team performed a detailed assessment of the biases in NWM simulations over 
gauged coastal watersheds. The biases of NWM simulations are rather large and highly variable 
across the five gauged watersheds. For the two largest watersheds, i.e., Lavaca River at Edna, 
and Navidad River above Hallettsville, NWM simulations exhibit pronounced positive biases. 
The project team developed a table of multi-basin averaged monthly bias factors based on the 
simulations for 2003-2017 that can be used for mitigating the biases.    

Task 4: The team configured a prototype of MMIPS for the 11 bay watersheds, and produced an 
ensemble of simulated inflow series using this for 2003-2017 with NLDAS-2 forcings.  The 
ensemble members include the series based on simulations of HEC-HMS and HL-RDHM 

 
 
1 Lumped models commonly use basins, subbasins, or hydrologic response units as the basic 
units, whereas distributed models rely on regular or irregularly shaped cells as the units. 
Distributed models often use topography-based flow direction to identify and connect upstream 
and downstream units.   
2 TxRR and HL-RDHM only uses precipitation as input. 
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configured for the bay watersheds, streamflow retrieved for bay inlets from NWM v1.2 
reanalysis that underwent bias correction, and TxRR simulations.  The team compared the flow 
simulations from the four models, and the results point to a dichotomy between the lumped 
(TxRR and HEC-HMS) and distributed models (NWM and HL-RDHM), with the latter 
producing smaller volumes for a majority of smaller bay watersheds.  This contrast is rooted in 
the differing representations of drainage areas by the two groups of models.  The lumped models 
compute runoff using for the entirety of each TWDB watershed, whereas the distributed models 
route only the runoff generated over a subset of grid pixels within each watershed that are 
hydrologically connected to bay inlets.  The analysis underscores potential limitations in both set 
of models in representing flow paths over the low gradient zone.  There is a distinct possibility 
that lumped models inflate the runoff because of their inclusion of areas that are not 
hydrologically connected to the bay.  On the other hand, distributed models may underrepresent 
inflow due to the errors in the topography-based flow paths on which these models were built, as 
well as due to the exclusion of contributions from small, ephemeral streams.     

On the basis of the findings, this report offers a set of specific recommendations for further 
improving the MMIPS, and transitioning to the new paradigm of ensemble freshwater inflow 
estimation and prediction.   The report further offers perspectives on the potential of using 
MMIPS to address the challenges related to flood forecasting, mitigation and planning that are 
confronting the state of Texas.  It also outlines the resources needed in order for the TWDB to 
adopt the current MMIPS prototype and to extend its coverage to other bays and estuaries along 
the Texas coast.    
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2 Introduction 

Freshwater inflow to bays and estuaries is arguably one of the most critical variables that 
maintains the function of coastal ecosystems (Russell et al., 2006; Kim and Montagna; 2009).  
Inadequate freshwater inflow has been demonstrated to be a major cause for the diminishing 
freshwater wetlands and aggravated saltwater intrusion, which in turn threaten the habitats of a 
variety of species residing in the bays and estuaries.  By contrast, excessive inflow during 
extreme flooding events can serve as a barrier that inhibits the influx of oxygen and thereby 
induces hypoxia beneath (Rabalias et al., 1998).   

In the state of Texas, modeling and monitoring freshwater inflow has been an important mission 
of the Texas Water Development Board (TWDB).  At present, the TWDB produces both 
monthly and daily estimates of freshwater inflow to major bays and estuaries along the Texas 
coast.  As many of the coastal streams are ungauged, the TWDB’s estimation mechanism relies 
on a combination of observed discharge at upstream gauging stations and model simulations of 
runoff in the ungauged watersheds.  The resulting discharge then undergoes adjustments to 
account for water use and withdrawal, and the finalized inflow estimates thus produced are then 
disseminated to stakeholders through a web portal.  The TWDB also applies the inflow estimates 
as boundary conditions for the TWDB’s 2-D estuary model (TxBLEND) that is run on a daily 
basis to create maps of salinity distribution in the bays and estuaries (Schoenbaechler et al. 
2011).  

To date, the agency has been relying on the Texas Rainfall-Runoff (TxRR) model, a simple, 
lumped, continuous rainfall-runoff model developed within the TWDB, to perform rainfall-
runoff calculations for the ungauged basins.  A schematic of the TxRR model is shown in Fig. 2-
1.   

 

Figure 2-1 Schematic of Texas Rainfall-Runoff (TxRR) model. Source: the TWDB. 
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The TxRR uses the Soil Conservation Service (SCS) method for calculating initial abstraction 
and direct runoff, and combines this with prescribed, seasonally-varying baseflow to determine 
total runoff to the stream. As in the SCS method, the initial abstraction and direct runoff are 
computed using a storage factor, which is determined by the averaged curve number of a 
watershed.  In order to account for the change in storage related to loss of soil water between 
storms, TxRR implements a simple, 1-layer water accounting scheme that allows soil water to 
percolate to deeper layers underneath (Fig. 2-1).   

In this scheme, the maximum soil moisture (SMMAX) is divided into soil retention (S), which 
represents the soil moisture deficit, and actual soil moisture (SM).  Soil retention (S) determines 
the initial abstraction and runoff via the SCS equation 

𝑄 =
(ିூೌ)మ

(ିூೌ)ାௌ
             (2-1) 

Where P is the precipitation, and Ia is the initial abstraction. TxRR deviates slightly from SCS by 
relating Ia to soil retention S through a tunable abstraction parameter “abst”.  

SM controls the rate of percolation (depletion). In TxRR, the depletion is modeled via a simple 
exponentially decaying function.  

𝑆𝑀(𝑡ଶ) = 𝑆𝑀(𝑡ଵ)𝑒ି(௧మି௧భ)   (2-2) 

where am is the depletion constant for month m.  

The soil moisture accounting scheme further allows replenishment of SM by rainfall excess F: 

𝑆𝑀(𝑡ଶ) = 𝑆𝑀(𝑡ଵ) + 𝐹(𝑡ଶ)    (2-3) 

 Where F is defined as the difference between rainfall, initial abstraction Ia and runoff Q: 

𝐹 = 𝑃 − 𝐼 − 𝑄     (2-4) 

TxRR combines the direct runoff Q with baseflow to generate the total streamflow, where 
baseflow under dry conditions is assumed to follow an exponential decay function. 

𝑄(𝑡ଶ) = 𝑄(𝑡ଵ)𝐾௧మି௧భ     (2-5) 

where K is a decay constant.  During a precipitation event, the baseflow is elevated by an 
increment that is related to either the amount of precipitation or infiltration.   

For daily simulation, TxRR employs the SCS dimensionless unit hydrograph to route the direct 
runoff Q. The parameter lag time in the unit hydrograph model Tl is estimated from drainage area 
A via an empirical relationship: 

𝑇 = 𝛽𝐴.      (2-6) 
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where coefficient 𝛽 is treated as a calibration parameter.  

TxRR’s major strength lies in its structural simplicity and parsimony in parameterization. The 
model only incorporates four parameters that need to be adjusted during calibration, namely 
maximum storage SMMAX, soil moisture depletion constant am., baseflow recession constant K, 
and the coefficient 𝛽 that relates lag time with drainage area.  This parsimony facilitates model 
calibration.  Yet, in the meantime, the oversimplified structure most likely distorts the physical 
processes of runoff generation, and this distortion would manifest as errors in model simulations 
for events and for basins where the runoff mechanisms differ from the cases included in the 
calibration.  The primary mechanistic limitations of TxRR include 

1. A lack of an explicit way of modeling evapotranspiration (ET), and the resulting inability to 
account for the impacts of varying meteorological conditions on ET-related loss; 

2. A lack of a routing mechanism that would factor in changes in the shape of the discharge 
hydrograph along channels; 

3. The somewhat arbitrary way of calculating baseflow with no regard to the fact that baseflow 
is often governed by shallow subsurface flow, which may not respond instantaneously to 
rainfall input; 

4. The relatively simplistic depiction of hillslope process without any differentiation of surface 
and interflow which typically differ in response time; 

5. The inability of the model structure to represent spatial distribution of rainfall 

While some of these limitations can be mitigated through changes in the model structure, such 
changes are costly to implement and test.  Alternatively, one could employ contemporary, widely 
used hydrologic models with more sophisticated runoff mechanisms in place as potential 
complementary modeling systems.  For example, the recently operational National Water Model 
(NWM) at the National Weather Service (NWS) incorporates representations of a wide range of 
physical processes; being a distributed model, it is able to account for spatial rainfall variability 
and impacts of land surface and channel features on discharge.  Nevertheless, as past efforts, and 
in particular the Distributed Model Intercomparison Projects (DMIP; Reed et al. 2004; Smith et 
al. 2012) illustrate, spatially distributed, process-based models are not immune to under or 
misrepresentation of runoff processes, and their performance can be compromised by the 
uncertainties in parameterization and associated difficulty in calibration.  The outcome of DMIP 
also points to the potential of enhancing model prediction by harnessing the complementary 
strengths of different models through a model ensemble approach (Georgakakos et al. 2004). 

Aside from the aforementioned structural limitations, TxRR currently employs interpolated 
gauge observations whose accuracy is constrained by the density of gauge networks.  In a 
previously published TWDB report (Schoenbaechler et al., 2011), it is shown that some of the 
sharp drop-offs in salinity in Matagorda Bay were not captured by the TxBLEND Model, and 
one of the potential causes is inaccuracy in precipitation input along the coast that led to 
underestimation of inflow volume by TxRR (Schoenbaechler et al. 2011).   

Building on the lessons accumulated through research performed within the NWS Hydrology 
Laboratory (now the National Water Center) over the past few decades, the UTA team undertook 
an effort to augment the TWDB’s freshwater inflow estimation process.  The effort comprises 
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two major thrusts. The first focuses on developing tools for integrating gauge-radar blended 
precipitation products produced by NWS as future forcing inputs to TxRR (Task 1).  The second 
entails creating a prototype multi-model simulation system capable of producing ensemble 
inflow simulations by leveraging the complementary strengths of contemporary hydrologic 
models (Tasks 2, 3, and 4).  At present the system consists of TxRR and three additional models, 
namely NWM, HEC-HMS, and Hydrology Lab – Research Distributed Hydrologic Model (HL-
RDHM; NWS, 2008; Zhang et al.  2011a, 2017).  Included in the second thrust is the effort to 
postprocess the streamflow analysis of NWM to mitigate the biases in the latter’s analysis (Task 
3).  Implementation and testing of the new modeling systems and forcings are done for a cluster 
of watersheds that drain to Lavaca-Colorado Estuary System, a major estuary system along the 
southeast portion of the Texas coast. 

This report details steps involved in the execution of each task, methods of implementation and 
evaluation, and outcomes of validation and comparisons; it also offers a set of recommended 
actions to be undertaken to address limitations in the multi-model framework.  The remainder of 
the report will be divided into five sections accordingly.  Section 2 introduces the study settings 
and common rainfall and streamflow data sets. Section 3 describes the creation of the mean areal 
precipitation from Multi-sensor Precipitation Estimates (MPE) and summarizes the comparisons 
of the precipitation series based on gauge and MPE, and resulting TxRR inflow simulations 
driven by the two data sets.  Sections 4 reviews the National Water Model and its streamflow 
products, presents the implementations of HL-RDHM and HEC-HMS, and summarizes the 
results from the streamflow calibration-validation experiments.  Section 5 summarizes the tasks 
and findings, outlines further actions for improving the MMIPS, and discusses steps and 
resources needed to operationalize MMIPS and to expand its coverage to the remaining bays and 
estuaries along the Texas coast.    
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3 Study Setting 

Situated along the central portion of the Texas coast, the Lavaca-Colorado Estuary System is a 
cluster of bays and estuaries (Schoenbaechler et al. 2011), the largest among which is Matagorda 
Bay.  Freshwater flows into Matagorda Bay mainly through Lavaca River over the north, Colorado 
River over the northeast, and a number of smaller streams (Fig. 3-1).  

 

 

 

 

 

 

 

 

 

 

 

The TWDB identified eleven major streams with inlets to Matagorda Bay.  Table 3-1 summarizes 
the ungauged watersheds associated with each inlet.   

Table 3-1.  Ungauged watersheds with inlets to Matagorda Bay 

Ungauged 
Watershed 

Inflow Point Drainage Area 
[mi2] 

Upstream USGS Gauges 

17070 Powderhorn Ck 162  
17060 Chocolate Bayou 151 08164800 
17010 Garcitas Ck 37  
17030 Garcitas Ck 273 08164600 
17050 Garcitas Ck 50  
16008 Lavaca River 88 08164000, 08164525 
15060 Cox Creek 63  
15050 Carancahua Ck 384  
15040 Turtle Ck 107  
15030 Tres Palacios Ck 94 08162600 
15010 Oyster Bayou 149  

Figure 3-1 Streams contributing to inflows to Lavaca-Colorado Estuary System, which 
includes Matagorda Bay. Source: Schoenbaechler et al. (2011). 
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Note that we exclude the Colorado River in the modeling effort and instead focus on the 
Matagorda watershed, because of the interest the US Army Corps of Engineers (USACE) 
Galveston District had in setting up a HEC-HMS model for this region.  The locations and 
extents of both gauged and ungauged watersheds that contribute to Matagorda Bay are shown in 
Fig. 3-2, where the gauging stations used in validation are highlighted in red.   

 

Figure 3-2 Gauged and ungauged watersheds that drain to Matagorda Bay.  The locations of USGS 
gauging stations and identifiers are marked in red.  The outlet for Lake Texana is 
highlighted in black.  
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Evaluation of model performance involves streamflow records for five gauged catchments.  
Information about each catchment, including size, US Geological Survey (USGS) station 
identifier for the outlet, and NWS code can be found in Table 3-2.  For all catchments real-time 
(15-minute) USGS flow observations are available since 1991. Daily observations went back 
further and the length of record varies among sites (Table 3-2).  Three additional USGS stations 
provide gauge height readings in the region, namely, 08163500 (Lavaca River at Hallettsville), 
08164370 (Navidad River at Morales) and 08164525 (Lake Texana near Edna; marked in black 
in Fig. 3-2). The data from the former two are limited in duration and therefore are not used in 
this project.  The third station only provides gauge height and we instead use the archived daily 
outflow estimates from the Lavaca-Navidad River Authority.    

 

Table 3-2.  USGS Stations in Lavaca River Basin with long-term streamflow records 

USGS ID Station Name 
NWS SHEF ID* Drainage Area 

[mi2] 
Availability of 
daily flow  

08164300 Navidad River above Hallettsville HTST2 332 1938-present 

08164000 Lavaca River near Edna EDNT2 817 1961-present 

08162600 Tres Palacios River near Midfield MTPT2 156 1970-present 

08164600 Garcitas Creek near Inez NGCT2 107 1970-present 

08164800 Placedo Creek near Placedo PLPT2 71 1970-present 

*SHEF stands for Standard Hydrologic Exchange Format used by National Weather Service 

 

In this project, we acquired the USGS National Hydrography Dataset – Plus (NHD-Plus), 
including the digital elevation model (DEM), flow direction, and stream links. The DEM and 
flow direction data served as the basis in establishing the modeling systems, and stream segment 
identifier was used for retrieving the NWM v1.2 reanalysis1. We also obtained the boundaries of 
ungauged watersheds from the TWDB in Shapefile format.  For model implementation and 
assessments, we acquired two precipitation data sets, i.e., the NWS MPE product produced by 
West Gulf River Forecast Center (WGRFC), and the North America Land Data Assimilation 
System (NLDAS) forcings created by NWS National Centers for Environmental Prediction, 
which include meteorological variables such as precipitation, radiation, temperature, etc.  The 
latter data set was used because the reanalysis of NWM, a member of the multi-model system, 
was based on the NLDAS forcings.  Both data sets use radar and gauge observations, and the 
primary difference is that NLDAS is created by disaggregating the daily gauge totals using radar-
based estimates, whereas the MPE data set blends radar and gauge data.  Additional details about 
the data sets will be provided in later sections. 

  

 
 
1 Reanalysis refers to simulations performed using a frozen version of the model for a designated 
historical window. 
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4 Enhancing Precipitation Estimates for TxRR 
The primary motivation of Task 1 is to adopt high resolution (hourly and 4-km), extensively 
validated, and widely used MPE product as a replacement for the current daily gauge-
interpolated product.  It is anticipated that this transition will help improve the accuracy of 
precipitation estimates over the bay watersheds and thus the inflow estimates.  In addition, the 
adoption of the MPE data will enhance interoperability with NWS, the USACE, and state river 
authorities which all have adopted the MPE product for operational hydrologic prediction.  The 
section documents and discusses the differences between MPE and gauge-based precipitation 
products, and those between TxRR simulations driven by the two products. 
 
In this report, we use the term MPE to loosely refer to the operational products created at the 
NWS River Forecast Centers (RFCs) on an hourly basis by blending radar-only precipitation 
data with rain gauge reports.  These include the early radar-gauge blended product created using 
the legacy Stage III algorithm which was first introduced in the 1990s and in use until 2003, and 
the subsequent products generated using the Multisensor Precipitation Estimator suite (Seo 
1998a,b; Seo et al. 1999; Seo and Breidenbach 2002; Kitzmiller et al. 2013; Seo et al. 2013).  
The MPE products until 2014 were created based on radar-only Digital Precipitation Array 
(DPA) produced through the Next Generation Weather Radar (NEXRAD) Precipitation 
Processing System (PPS; Fulton et al. 1998; Kitzmiller et al. 2011).  Since circa 2014, most 
RFCs have switched from the DPA product to the radar-only products of the Multi-radar multi-
sensor (MRMS) system maintained by the National Severe Storm Laboratory. The MRMS and 
its predecessor Q2 algorithm package were described in Zhang et al. (2011), Kitzmiller et al. 
(2011), and later by Zhang et al. (2016); it featured a number of enhancements to the NEXRAD 
PPS such as automatic bright-band detection, selection of reflectivity-rain rate (Z-R) relation, 
and correction for the vertical profile of reflectivity.  A few RFCs, including the West Gulf River 
Forecast Center (WGRFC), also incorporate limited satellite-based precipitation estimates in 
creating the MPE, primarily to fill gaps in radar and gauge coverages along the US-Mexico 
border (Zhang et al., 2013; He et al. 2018).  
 
Zhang et al. (2011a) offered a detailed overview of the process through which MPE products are 
created at RFCs.  In a series of studies (e.g., Zhang et al. 2011a; 2017), the MPE data, at least 
those from the mid-2000, were shown to be advantageous to gauge-interpolated product for their 
ability to capture the spatially variation of precipitation systems while avoiding large biases as a 
result of gauge-based bias correction. These studies also underscored issues in the quality of 
early MPE data, one of which is the presence of a truncation error in the NEXRAD PPS that 
artificially reduces precipitation accumulations in both radar-only and multisensor products 
(Fulton et al. 2004; Zhang et al. 2011a).  The quality of MPE products has steadily improved 
after the correction of the error in 2003 (Zhang et al. 2011a).  At present, most NWS RFCs, 
including WGRFC, are using MPE as the forcing to its streamflow prediction system.  In the 
state of Texas; MPE is also the standard forcing input for modeling systems maintained by 
organizations including the USACE and Lower Colorado River Authority. 
 
In this project, we acquired the MPE product from the WGRFC over the period of 1998-2017. 
The data set is in the Hydrologic Rainfall Analysis Project (HRAP) coordinate system (Greene 
and Hudlow 1983; Reed 1999), with its grid mesh roughly 4km in size over the mid-latitude. The 
gridded MPE data are converted to hourly time series of Mean Areal Precipitation-MPE 
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(henceforth referred to as MAP-X) using watershed masks derived from the watershed 
boundaries provided by the TWDB.  The detailed steps and software packages involved in 
creating the MAP-X series are outlined in Appendix A.  
 
Two sets of runoff simulations1 are conducted using TxRR.  The first, or baseline, was driven by 
the MAP series supplied by the TWDB, which were created by interpolating the daily 
accumulations reported by stations in the Global Historical Climate Network (GHCN).  This 
MAP series is henceforth referred to as the MAP-G series.  The second simulation was done 
using a hybrid rainfall series that combines the MAP-G series for 1940-1997 and the MAP-X 
series for 1998-2017.  The practice guarantees that the model is properly warmed up and that the 
two runs share identical initial conditions. The two sets of simulations over the latter period 
(1998-2017) are compared to assess the impacts of replacing the MAP-G by MAP-X.   
 
The comparisons on a mean annual basis are shown in Table 4-1 and Fig. 4-1.  MPE-based MAP 
is on average higher than the corresponding gauge products across the watersheds, with the 
highest percentage difference (relative to MAP-G) of 17% for WS15040 (Turtle Creek).  
Correspondingly, the TxRR simulated runoff driven by MAP-X are systematically higher than 
those based on the gauge product.  It is also worth noting that the differences in runoff estimates 
tend to be much wider than that in the precipitation forcing.  Take WS15010 (Oyster Bayou) for 
example: MAP-X is only 9% higher than MAP-G, but the TxRR simulation driven by the former 
is 26% higher.  This amplified contrast can be possibly explained by nonlinearity in runoff 
response as modeled by TxRR – it is possible that the additional precipitation takes place 
disproportionately over time periods when soil moisture is at or near capacity, and therefore the 
additional rainfall introduced by the MPE efficiently turns into runoff.   

Table 4-1 Mean areal precipitation based on gauge data and MPE and simulated runoff 

Watershed 
ID/Group 

Precipitation 
 

TxRR Runoff  
MAP-G  
[in/year] 

MAP-X 
[in/year] 

  % Diff MAP-G 
[103af/year] 

MAP-X 
[103af/year] 

%Diff 

15010 East 43 47 9 119 150 26 
15030 East 45 49 8 76 100 32 
15040 East 41 47 15 84 108 29 
15050 East 42 45 5 246 313 28 
15060 West 41 42 2 40 42 3 
16008 West 42 43 1 65 72 10 
17010 West 41 43 4 23 28 21 
17030 West 42 43 5 136 179 32 
17050 West 41 42 2 28 32 13 
17060 West 41 43 3 103 116 12 
17070 West 41 42 3 113 122 8 

 
 
1 Throughout this paper, we use “runoff” to describe runoff generated locally in each watershed, 
and “inflow” to describe the aggregate of local runoff and upstream flow that passes through a 
bay watershed.  These two terms are equivalent for watersheds without upstream contributions.  
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Another noteworthy feature in Fig. 4-1 is that the differences in rainfall estimates are more 
pronounced for a group of watersheds over the east (15010, 15030, 15040, and 15050) where 
annual precipitation is higher.  Hence, we designate these four watersheds over the east as Group 
East, and the remainder watersheds as Group West.  For each group, the quantiles for MAP and 

Figure 4-1 Differences between a) mean annual MAPs based on gauge (MAP-G) and MPE data 
(MAP-X), and b) simulated inflows using respective data sets for each ungauged 
watershed that drains to Matagorda Bay. The watersheds are sorted roughly from the 
west to east. Note that the differences in MAPs tend to be larger toward the east where 
annual precipitation is higher. 
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TxRR-based inflow series are computed by lumping the series for all watersheds in respective 
group, and the results for the gauge and MPE-based series are compared in Fig. 4-2.   

 

 

 

For Group West, the quantiles of MAP-X are higher in the range of 4-6 inches, whereas the peak 
rainfall amounts (highest quantiles) are in fact lower than those based off the MAP-G (Fig. 4-2a).  
Correspondingly, higher quantiles for daily inflows based on MAP-X are in fact lower (Fig. 4-
2c), despite that the simulated inflow rate is on average higher when MAP-X is used as the 
forcing.  By contrast, for Group East, quantiles for MAP-X and associated inflow are 
systematically higher across the entire range of values (Figs. 4-2b and d), and particularly so at 
the peak of inflow rates (Fig. 4-2d).  Evidently, for the western portion of the bay watershed, 
MPE features overall higher daily amounts but lower incidence of anomalously large amounts (> 

Figure 4-2 Quantile-quantile plots of daily MAP and corresponding daily TxRR simulated runoff coastal 
watersheds located over the west and east portion of the bay. The list of watersheds for each 
group can be found in Table 4-1. 
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8 in); whereas, over the east, MPE-based amounts are consistently higher across the spectrum of 
precipitation amounts.  These differences in the MAP data sets tend to be amplified in the TxRR 
model simulations.  

 
Fig. 4-3 illustrates the overall impacts of replacing the gauge-based by MPE-based precipitation 
inputs on the temporal distribution and interannual variation of runoff.  From Fig. 4-3a, it is clear 
that the daily inflow driven by MAP-X exhibits a slightly heavier tail, with a larger fraction of 
daily inflow exceeding 104af.  This contrast is reminiscent of the quantile difference in 
precipitation and streamflow for the Group East as illustrated in Figs. 4-2b and d, respectively.  
As precipitation is relatively higher over the east part of the region, the differences in terms of 
precipitation and runoff over this region tend to dominate those for the averaged total runoff 
across the 11 watersheds.    
 

 

Figure 4-3 Comparisons of TxRR simulated total inflow to Matagorda Bay driven by gauge (MAP-G) 
and MPE (MAP-X) rainfall products: a) temporal distribution of inflow (percentage 
duration of flow in a specific category, say between 102 and 103 af/day); and b) time series of 
mean annual inflow. 
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As Fig. 4-3b shows, the contrast between the two sets of inflow simulation varies over the 20-
year window, but there is no clear trend.  It appears that the streamflow based on MAP-X is 
mostly higher, and sometimes significantly so, in the earlier and later portions of the time 
window (1998-2003 and 2012-2017, respectively).  For example, in 2015, driving TxRR using 
MAP-X results in 4.88x106af of runoff, nearly 50% higher than 3.27x106af when MAP-G is 
used. For the rest of the years, however, the two sets of results are comparable.  The difference 
over the earlier period (1998-2003) is interesting, as it is known that the early MPE data was 
often biased low due to the presence of a truncation error in the NEXRAD PPS.  Zhang et al. 
(2011a) showed that this bias indeed affects the inflow simulations over a cluster of Mid-Atlantic 
basins.  Such a feature, however, is absent in the present results.  The precise causes of these 
differences over the earlier years are difficult to pinpoint without a close scrutiny of the GHCN 
gauge reports used in creating the two data sets, but several plausible explanations exist. These 
include i) a sparse gauge network that failed to resolve rainfall intensity over major historical 
storm events; and ii) quality issues in the earlier MPE data which introduces positive biases and 
offsets the impacts of the truncation error.  Investigating the contributions from each factor is an 
effort well beyond the scope of the present study and is left for future efforts.    

The overall higher amounts from the MPE over the later period (i.e., 2012-2017) are consistent 
with the observations from earlier investigations (Zhang et al. 2011a; 2016).  Interpolated gauge 
products are often unable to fully depict heavy rainfall cells that fall between gauges, and 
therefore tend to exhibit severe negative bias at larger precipitation amounts.  This phenomenon, 
commonly referred to as the Type II conditional bias, was closely examined by Seo (2013), 
among other authors.  Weather radar relies on volume scans for precipitation detection and 
estimation, and its ability to resolve spatial variation of rainfall intensity makes its product less 
susceptible to Type-II bias arising from spatial representation errors.   

It is interesting to note that the gauge, rather than MPE product in fact features higher rainfall 
maximums over the western portion of the bay (Fig. 4-3a), whereas the opposite is true for the 
watersheds over the east.  One possible cause of this east-west contrast is the presence of two 
NEXRAD units, namely the Houston-Galveston unit (HGX) and the Corpus Christi unit (CRP), 
with overlapping coverage of the region (Fig. 4-4). The software package that WGRFC uses to 
produce MPE relies on beam height and range (distance to radar installation) are the primary 
variables to determine the radar unit whose product will be employed when overlapping 
coverages from multiple units are present.  It is likely that the observations from HGX/CRP were 
the predominant source of input in MPE creation over eastern/western portion of the bay.  If so, 
any differences between the two units in terms of radar calibration, beam height, and reflectivity-
rain rate relation could have contributed to the east-west contrast.  Though biases in radar 
products are mitigated through bias correction, the effectiveness of bias correction depends on 
the quantity and quality of gauge reports.  A close differentiation of various contributing factors 
is needed in future analysis.  

For practical purposes, we would consider it prudent to use MPE data from 2003 onward as the 
forcing to the TxRR model, as the data has demonstrable accuracy across the nation and over 
Texas (Zhang et al. 2011a; He et al. 2018).  Zhang et al. (2011a), for example, noted that the bias 
of the MPE data was much improved after 2003 as a result of correction of the truncation error, 
the expanded gauge database, and the introduction of more robust bias correction schemes.  For 
the earlier Stage III and MPE data, it is recommended that a more comprehensive assessment be 
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conducted to determine their bias characteristics and possible mitigation measures.  In case the 
effect of truncation error is pronounced, the retrospective correction scheme described in Zhang 
et al (2011a) can be employed.  This scheme entails adjusting the MPE data so that its monthly 
totals match those from monthly gauge products (e.g., the PRISM product by Oregon State 
University; https://prism.oregonstate.edu/).  Note that the efficacy of this scheme is again 
predicated on a presence of a sufficiently dense gauge network.  Therefore, a detailed 
comparison of PRISM, Stage III, and the gauge data set on which the TWDB MAP-G was based 
is warranted to ascertain the applicability of this measure.    

 

Figure 4-4  Locations of NEXRAD units in central and south Texas. The shaded rectangle highlights the 
region where Matagorda Bay is situated. Note it is under the overlapping coverage of both 
CRP and HGX radar units. 

 
 
The magnification of the bias through TxRR simulation is a feature that requires further analysis.  
The rather large increase in the historical runoff volumes produced through the TxRR may NOT 
necessarily be an indication of underestimation of runoff by the TxRR using the default, gauge-
interpolated precipitation, because the model was calibrated using this very product and the bias 
may have been compensated by adjustments of parameter values.  A potentially useful way of 
determining the biases in the two sets of inflow simulation is through validation of the 
streamflow simulations over upstream, gauged locations.  This is beyond the scope of the present 
project but is recommended prior to the transition from the gauge product to MPE. 
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5 The Multi-model Inflow Prediction System (MMIPS) 
 
The structure of the multi-model inflow prediction system (MMIPS) is illustrated in Fig. 5-1. 
The system is initially set up to comprise four models, three running internally at the TWDB, 
namely the TxRR, HEC-HMS, HL-RDHM, and one running externally (i.e., NWM).  The 
system will ingest a common set of forcing variables, including precipitation, temperature, wind 
speed, radiation, for the three models to produce daily and monthly inflow simulations. It will 
also include a module that retrieves and adjusts the real-time analysis of NWM produced at 
NWS for specific segments along Matagorda Bay.  This section focuses on the features and 
implementations of alternative models, namely HEC-HMS, HL-RDHM and NWM, comparisons 
of model performance, and demonstration of the ensemble inflow estimates produced by MMIPS 
over bay inlets.  The section is structured as follows: Section 5.1 offers an overview of structure 
and implementation of models; Section 5.2 describes the performance assessments and 
comparisons; and Section 5.3 presents example outputs from the system and discusses the 
differences among member model simulations.    
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.1 Structure and implementation of member models 

The features and implementation of each model are summarized in Table 5-1.  The default TxRR 
model has been described in Section 1 and will not be elaborated here.  Note that among the four 
models, both TxRR and HEC-HMS are ‘lumped’ in the sense that each uses watersheds or sub-
watersheds as the basic units. For these models, areal means of forcing variables, in particular 
precipitation, are used.  HL-RDHM and NWM, on the other hand, are grid-based, or “distributed” 
models.   

Figure 5-1 Schematic of the multi-model inflow prediction system. 
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Table 5-1 Member models in the multi-model inflow prediction system 

Model TxRR NWM HL-RDHM HEC-HMS 

Model Unit Basin Grid (1-km) Grid (4-km) Sub-basin 

Evapotranspiration Depletion 
Evaporation (soil/vegetation) + 
plant transpiration 

Static monthly PET 
with adj. factors 

Penman-
Monteith 

Runoff generation 
Surface+ 
baseflow 

Surface, exfiltration interflow, 
baseflow 

Surface runoff, 
interflow, baseflow 

Surface runoff + 
baseflow 

Overland routing N/A 2-D diffusive wave 2-D kinematic wave N/A 

Channel routing 
Linear 
reservoir 

Muskingum-Cunge Kinematic wave Muskingum 

 

All models except NWM will be implemented at the TWDB and run locally.  For NWM, the 
plan is to ingest its real-time streamflow analysis distributed at NWS.  Since NWM real-time 
analysis is available only for a limited time window, we instead use the NWM version 1.2 
reanalysis (https://registry.opendata.aws/nwm-archive/) for validation and demonstration.  This 
reanalysis was generated using a frozen NWM model configuration (v1.2) and forcings of the 
North American Land Data Assimilation System-Phase 2 (NLDAS-2; Xia et al. 2012), which 
features numerous enhancements from NLDAS-1 (Cosgrove et al. 2003).  The NLDAS-2 
product is available hourly on a 1/8 degree grid mesh in the geographic coordinate system from a 
ftp portal (ftp://ldas.ncep.noaa.gov/nldas2/).  Its precipitation product is created by first 
interpolating daily gauge observations and then disaggregating the results using the Stage II 
national mosaic radar precipitation product 1, whereas its other variables are derived from either 
surface observations, or the North American Regional Reanalysis (Mesinger et al. 2006), or a 
combination of both.  NLDAS-2 precipitation data can be considered as a proxy of the MPE, 
though its accuracy is widely seen as being inferior to MPE owing to its method of creation, data 
feed, and spatial resolution.  

In order to gauge the performance of member models, a split-sample calibration-validation 
experiment is set up with 2004-2012 as the calibration window and 2013-2017 as the validation 
window.  The year of 2003 is used for model spin-up.  Note that only HEC-HMS and HL-
RDHM undergo calibration, whereas TxRR simulations and NWM reanalysis are validated 
alongside the results of the former two models.   In order to maintain consistency in forcing input 
among the models, we chose to use the NLDAS-2 forcing data, which was used in creating the 
NWM reanalysis, as the input to TxRR, HEC-HMS, and HL-RDHM. Note that TxRR and the 
HL-RDHM implementation only require the precipitation products from NLDAS-2.   Details 
concerning the physics and implementation of HEC-HMS, HL-RDHM and NWM are provided 
below. 

 
 
1 Stage II data is a national mosaic of hourly rainfall products from NEXRAD units in the US 
created using an older version of PPS.   
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5.1.1 HEC-HMS 

The Hydrologic Engineering Center-Hydrologic Modeling System (HEC–HMS), developed by 
the Hydrologic Engineering Center of USACE, is a hydrological modeling system widely used in 
engineering practice (Scharffenberg et al. 2010).  Typically, an HEC-HMS model 
implementation consists of two components, namely the basin model and the meteorological 
model (Agrawal 2005).  The basin model contains the specifications of the watershed 
configuration, water balance model, and channel routing method, whereas the meteorological 
model specifies precipitation and the method of calculating ET demand. The schematic of the 
HEC-HMS model for the Lavaca River and bay watersheds is shown in Fig. 5-1.  In this model, 
the subbasins are specified in such a way that each USGS station or bay inlet is situated at the 
outlet of a subbasin (Fig. 5-2).  Each subbasin serves as the basic unit on which runoff is 
calculated from mean areal precipitation. In order to perform continuous simulation, we 
implement the Soil Moisture Accounting (SMA) model as the loss scheme, and enable ET 
calculation using the Penman-Monteith method. Table 5-2 provides a comprehensive list of 
model components and the methods of choice, and a step-by-step guide on model set up and 
calibration is offered in Appendix B. 
 

 
 
 

Figure 5-2 Schematic of HEC-HMS model for gauged and ungauged 
watersheds that drain to Matagorda Bay. 
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Table 5-2 Components of HEC-HMS Model for Watersheds draining to Lavaca-Colorado Estuary 

Component Surface Canopy Loss Transform Baseflow Channel Routing ET 

Method  
Simple 
Surface 

Simple 
Canopy 

SMA SCS UH Linear 
Reservoir 

Muskingum Penman-
Monteith 

 
 
The SMA is one of the few “loss modules” in HEC-HMS that permit continuous simulations, 
and it has been used in various contexts around the world (De Silva et al. 2014; Singh and Jain, 
2015).  A brief overview of the HEC-HMS SMA is provided here whereas readers are referred to 
Bennett and Peters (2000) for a more comprehensive description of various components of the 
model.  In brief, the HEC-HMS SMA can be considered as a simplified version of the 
Sacramento Soil Moisture Accounting Model (SAC-SMA) being used in the HL-RDHM and the 
lumped prediction system running at NWS RFCs.  As shown in Fig. 5-3, the model features an 
upper zone where soil water is further divided into free and tension storages, and two 
groundwater layers beneath that contribute baseflow. Water is allowed to percolate from the 
upper zone to the shallow groundwater layer, and from the latter to the deep groundwater layer.  
The ET calculation first produces the ET demand, whereas the actual ET depends on both the ET 
demand, the availability of water remaining on canopy and surface, and the water in the upper 
zone tension storage once the surface storages are depleted. The streamflow in HEC-HMS is 
calculated by combining the surface runoff generated over impervious surface or over pervious 
surface of watersheds where upper zone is saturated, and baseflow from the groundwater layers. 
The runoff generated from an upstream subbasin is routed downstream using the Muskingum 
scheme.    Table 5-3 offers a comprehensive list of model parameters and methods of estimation.   
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Figure 5-3 Schematic of HEC-HMS surface and loss models. Note the Soil Moisture Accounting is 
chosen as the loss model for this implementation.  
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Table 5-3 HEC-HMS Model Parameters and Method of Estimation 

Types Initial Estimate Source of Initial Estimate 

Canopy  Simple Canopy 

Initial Storage (%) 0.00 Assuming dry canopy 

Maximum Storage(in) 0.05 From land cover  

Surface  Simple Surface 

Initial Storage (%) 0.00 Assuming dry surface 

Maximum Storage (in) 0.3 From soil survey (SSURGO) 

Routing Method  Muskingum 

Muskingum K (h) 12 Via NRCS velocity method 

Muskingum X 0.25 Used the average value of X (0-0.5) 

Transformed method  Clark Unit Hydrograph 

Time of Concentration (h) 6.5 From Manning’s equation 

Storage Coefficient (h) 11.5 Based on observed hydrographs 

Baseflow Method  Linear Reservoir 

GW1 initial (cfs) 6.5 HEC-HMS default  

GW2 initial (cfs) 6.5 HEC-HMS default  

Loss  Method of estimation 

Initial Soil Storage (%) 0.00 Assuming dry initial condition 

Initial Groundwater 1 Storage 
(%) 

0.00 Assuming dry initial condition 

Initial Groundwater 2 Storage 
(%) 

0.00 Assuming dry initial condition 

% Impervious 0.5 From soil and land cover map 

Max. Infiltration Rate (in/hr) 2 From soil texture 

Soil Storage (in) 6 From soil texture 

Tension Zone Storage (in) 4.8 80% of Soil storage 

Soil Percolation Rate (in/hr) 1.5 From soil texture 

GW 1 Storage (in) 5.4 
Computed storage depth of a groundwater layer 
and put as a constant 

GW 1 Percolation Rate (in/hr) 0.8 From observed hydrographs 

GW 1 Coefficient hr) 14 Default 

GW 2 Storage (in) 10 
Computed storage depth of a groundwater layer 
and put as a constant 

GW 2 Percolation Rate (in/hr) 0.0005 Default 

GW 2 Coefficient (hr) 2500 Default 

GW 1 Baseflow Coefficient (hr) 15 From observed hydrographs 

GW 1 Baseflow Reservoirs 1 Guess-estimate 

GW 2 Baseflow Coefficient (hr) 20 From observed hydrographs 

GW 2 Baseflow Reservoirs 1 Guess-estimate 
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5.1.2 HL-RDHM 

The HL-RDHM was developed in the early 2000s in the NWS Office of Hydrologic 
Development, now the Office of Water Prediction (OWP).  The modeling system is grid-based, 
and it subsumes most modules that have been in operation at the River Forecast Centers, 
including the SAC-SMA model (Burnash et al. 1973), Antecedent Precipitation Index (API) 
model,  unit hydrograph, and SNOW-17; it also incorporates new algorithms such as the 
kinematic wave routing, and upgrades to the SAC-SMA, including the SAC-HT (heat transfer), 
and SAC-HTET (heat transfer and evapotranspiration).  Koren et al. (2003) offers a rather 
comprehensive overview of an earlier version of the model.  HL-RDHM featured in both phases 
of the DMIP experiments (Reed et al. 2004 and Smith et al. 2012), where it was found to 
outperform most of contemporary distributed hydrologic models over clusters of catchments in 
central and western US.  HL-RDHM has seen applications in the realm of flood and flash flood 
predictions (Reed et al. 2007; Cosgrove et al. 2012; Zhang et al. 2016).  

In this project, we implemented HL-RDHM for the entire Lavaca River Basin and the bay 
watersheds on a full HRAP grid mesh (~ 4km in resolution).  The implementation combines the 
gridded SAC-SMA as the water balance module with the kinematic routing scheme.  The 
schematic of the SAC-SMA is illustrated in Fig. 5-4.  Similar to the HEC-HMS SMA, the model 
divides the soil strata into an upper and a lower zone, with each zone further partitioned into 
tension and free water storages.  Major differences from the HEC-HMS SMA include the 
following: 1) free water storage from the upper zone, rather than the groundwater zone, 
contributes to the interflow; and 2) the lower zone consists of both tension and free water 
storages. The SAC-SMA model requires seventeen parameters that are summarized in Table 5-4. 
Out of these seventeen parameters, eleven can be estimated from a combination of soil texture 
and land cover data through the so-called a priori estimation scheme. 

 

 

 

 

 

 

 

 

 

 

 Figure 5-4 Schematic of SAC-SMA model.  
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The NWS maintains several versions of the a priori parameter grids.  The one chosen for this 
project is the one based on the NRCS Soil Survey Geographic Database (SSURGO) and the 
National Land Cover Database 2006 (NLCD-2006; https://www.mrlc.gov/data/legends/national-
land-cover-database-2006-nlcd2006-legend). The method of parameter estimation was originally 
developed by Koren et al., (2000), and was further refined by Zhang et al. (2011b).  Zhang et al. 
(2012) compared HL-RDHM simulations using this parameter set versus those one based an 
earlier gridded parameter set derived from the State Soil Geographic Database, wherein the 
authors illustrated the superior performance of the former in soil moisture simulations.  

Table 5-4 SAC-SMA parameters and range of values 

Parameter 
Abbreviation  

Parameter Name and unit Range 
  Default 

UZTWM Upper Zone Tension Water Capacity (mm) 10-300 A priori 

UZFWM Upper Zone Free Water Capacity (mm) 5-150 A priori 

UZK Interflow depletion rate (day-1)   0.1-0.75  A priori 

ZPERC Ratio of maximum/minimum percolation rate  5-350 A priori 

REXP Shape parameter for percolation curve 1-5 A priori 

LZTWM Lower zone tension water capacity (mm) 10-500 A priori 

LZFSM Lower zone supplemental free water capacity (mm) 5-400 A priori 

LSFPM Lower zone primary free water capacity (mm) 10-1000 A priori 

LZSK 
Depletion rate of lower zone supplemental water storage 
(day-1)   

0.01-0.35 
A priori 

LZPK 
Depletion rate of lower zone primary water storage (day-

1)   
0.0001-0.05 

A priori 

PFREE Percolation fraction to lower zone free water 0-0.8 A priori 

PCTIM Percentage connected impervious surface 0-100 0.001 

ADIMP Additional impervious surface NA 0.0 

RIVA Riparian vegetated area NA 0.04 

SIDE Deep recharge to channel baseflow NA 0.0 

RSERV Lower zone free water not transferable to tension water  NA 0.2 

EFC Effective forest cover NA 0.0 
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For each of the six parameters without a priori grids available, namely PCTIM, ADIMP, RIVA, 
RSERV, and EFA, a constant default value is assigned to the entire domain (see Table 5-4).   

The conceptual framework of the channel routing model of HL-RDHM is illustrated in Fig. 5-4.  
The model assumes that each HL-RDHM pixel contains a channel segment and a collection of 
hillslope elements whose number depends on drainage density (see upper-right panel of Fig. 5-
5).  Each pixel drains to one of its eight neighboring pixels, and the direction of flow is 
encapsulated in the connectivity data set, which is derived from flow links generated using finer 
resolution digital elevation models (DEMs) using the algorithm outlined in Reed (2003).  Over 
each pixel, the fast, or surface runoff components, are routed through conceptual hillslopes using 
1-dimensional kinematic wave equation. The routed hillslope flow along with the slow 
components, namely the interflow and baseflow, enter the channel segment in the form of lateral 
inflow.  The flow via the channel is routed towards the downstream pixel also using the 
kinematic wave equation.   

 

 

 

 

 

Figure 5-5 Schematic of HL-RDHM routing model.  Upper-left: an example of channel links from 
NHD-Plus; upper-right: a schematic of hillslope model within each model pixel; lower-
left: a schematic of lateral flow from hillslope to the channel; and lower-left: routing of 
channel flow across model pixels 

DocuSign Envelope ID: 66C1E1E3-680E-4156-8DB2-57564AB58B15



34 
 

With the assumption of shallow and spatially uniform overland flow depth with each hillslope 
unit, the continuity and momentum equations for the overland flow take the following forms: 

డ

డ௧
+ 𝐿

డ

డ௫
= 𝑅௦                                         (5-1) 

𝑞 =
ଶௌ

భ/మ


ℎହ/ଷ                                                                   (5-2)                         

where h denotes the average depth of overland flow, q the discharge per unit width; Lh the hill 
slope length, Rs the fast runoff; Sh the average slope; nh hillslope roughness, D the drainage 

density. D is related to hillslope length: D=
ଵ

ଶ
.  The parameters nh, D, Sh are typically estimated 

using DEM and hydrographic data.  

The kinematic wave equations for the channel flow are quite similar to those of the open channel 
flow, except that the hydraulic geometry of the open channel A replaces the average depth h. 
These equations are given as follows:    

డ

డ௧
+

డொ

డ௫
= ൫𝑞 + 𝑅൯




                                                 (5-3) 

𝑄 = 𝑞𝐴                                                              (5-4)                         

where A is the channel cross-section area; Q is the discharge, Rg the slow lateral flow; fc the area 
of the pixel; and Lc the channel length within a pixel. q0 and qm are the coefficients that relate 
discharge to the cross-section area.  These two coefficients can be estimated from observed 
discharge and cross-sectional areas for specific cross-sections where such data are available.  
USGS conducts such in situ measurements on a periodic basis for most of the active stations, and 
the data archive can be found from the online portal for each station. For example, the flow 
measurements for EDNT2 (Lavaca River at Edna) can be found at 
https://waterdata.usgs.gov/tx/nwis/measurements/?site_no=08164000&agency_cd=USGS).    

A comprehensive description of the method of setting routing model and assigning a priori 
parameters can be found in the RDHM manual (NWS, 2008).  The basic steps are summarized 
here, whereas additional processing steps and software packages involved are documented in 
Appendix C, and in the RDHM manual.   

1. Calculating the cell-to-cell connectivity from the NHD-Plus data set 
(https://nhdplus.com/NHDPlus/NHDPlusV2_data.php) using the algorithm outlined in 
Reed (2003). Adjust the pixel area in the connectivity file based on the watershed 
drainage area provided by USGS.  

2. Obtaining overland routing parameters, including nh, D, Sh from a national a priori 
routing parameter database.   
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3. Collecting in situ measurements, including cross-section area, discharge, and flow 
velocity, from USGS, and estimating the channel routing parameters for each of the 
station via the rating curve method (see additional details in Appendix C).  

4. Populating the grid with spatially varying channel routing parameters. Note that qm 
estimated at a station is assigned to upstream pixels without modification, whereas qo 
needs to be adjusted before being assigned to any upstream pixel to account for changes 
in the cross-section area along a channel. The adjustment is done using a simple 
geomorphological relation between cross-section area A and the size of upstream 
contributing area (Koren et al., 2004).  For nested basins, this process starts at the station 
over the downstream end of the watershed, and then moves to upstream stations where qm 
and qo are re-estimated from in situ data. The latter estimates will be used to overwrite 
the earlier values assigned to the upstream pixels based on measurements at the 
downstream station. This process continues until measurement data from all stations are 
incorporated.  

In HL-RDHM, ET consists of water evaporating from land surface and transpired by vegetation, 
the latter of which is extracted from upper zone tension water storage, and under stressed 
conditions from the lower zone storages as well.   Actual ET depends on ET demand and water 
availability, and the former is determined using prescribed climatological monthly ET and 
adjustment factors that are invariant among years.   

The a priori SAC-SMA and routing model parameters are refined first using HL-RDHM 
automatic calibration tool and then by manual adjustments.  The automatic calibration tool of 
HL-RDHM implements the sequential line search (SLS) algorithm described in Kuzmin et al. 
(2008).  The SLS seeks to minimize the following multi-scale objective function:  

𝐽 = ට∑ ቀ
ఙభ

ఙೖ
ቁ

ଶ
∑ ൫𝑞,, − 𝑞௦,,(𝑋)൯

ଶ
ୀଵ


ୀଵ                                                                     (4-5) 

 
Where 𝑞,, and 𝑞௦,, are average observed and simulated flow over time interval i and scale k, 
respectively;  𝜎ଵ and 𝜎 the standard deviation of observed flow at the base time scale (typically 
1-h) and time scale k, respectively, and 𝑚  is the number of ordinates at scale k; X is a particular 
combination of model parameters. 

The modeling domain for HL-RDHM is shown in Fig. 5-6, where the five USGS stations of 
interest (Table 3-2) and the bay inlets are marked.  The latter were identified by overlaying the 
flow connectivity grid on top of the streams and water bodies data from NHD-Plus - the inlet 
pixels are those situated at the terminal ends of the connectivity and roughly correspond to the 
streams listed in Table 3-1.   The HL-RDHM model thus configured underwent both automatic 
and manual calibration. For simplicity and to ensure that water balance on a monthly scale is 
accurately captured, we only choose two scales, namely 240h and 720h, in performing the 
automatic calibration.  The parameters that were adjusted include UZTWM, UZFWM, and UZK.  
These parameters are further adjusted based on visual inspection of observed and simulated 
hydrographs to minimize their differences.  The calibrated parameter values can be found in the 
simulations (see Appendix C).  
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Figure 5-6 HL-RDHM modeling domain with USGS gauging stations and bay inlets. 

 

5.1.3 NWM 

The NWM is based on the WRF-Hydro system developed in the National Center for 
Atmospheric Research (Gochis et al. 2013; 2018) and has been transitioned to real-time 
operation at NWS since 2015 (Cosgrove et al., 2016).  The NWM runs on a 1-km grid mesh and 
produces forecasts and analyses of streamflow, soil moisture and snowpack for the entire 
Conterminous US and Alaska.  The NWM forecasts serves as a supplementary prediction system 
that complements the stage and discharge forecasts being produced at RFCs.  Fig. 5-7 illustrates 
the various model components and a schematic of the process in producing forecast products. 
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Similar to RDHM, the major components include a gridded water balance module, a terrain 
routing module, and channel and reservoir routing modules.  

 

Figure 5-7 Components of NWM and data flow diagram.  Note the diagram applies to NWM 2.1 that is 
the current operational version. Source: NWS OWP. 

At present, the NWM uses the Noah-MP land surface model (Yang et al. 2011; Niu et al. 2011) 
for water balance calculations; a 2-D diffusive wave routing module for terrain routing; and the 
Muskingum method for channel routing (though five other options are available). The Noah-MP 
is an extension of the Noah model that is one of the models used in the NLDAS. Unlike SAC-
SMA which simplifies soil strata into two buckets, Noah-MP offers explicit representations of 
soil layers down to 2-m depth and energy/water exchange among the layers. While HL-RDHM 
uses climatological ET demand, Noah-MP computes evaporation by performing radiative 
balance calculations for both canopy and soil. Additional notable features of the NWM include 
the follows: 

 using 2-D, quasi-steady state Boussinesq model to simulate subsurface saturated flow 
across grid cells; 

 considering runoff generated through infiltration excess, and allowing conversion from 
subsurface water to surface runoff through exfiltration; 
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 employing nested grids to model hillslope processes, i.e., computing water balance and 
hillslope routing on 250-m cells embedded in each 1-km pixel, and performing channel 
routing using connectivity built on the 1-km mesh; 

 computing discharge for all stream reaches in the NHD-Plus database (see illustration in 
Fig. 5-8); 

 using a simple nudging technique to adjust streamflow according to USGS streamflow 
observations (only available for real-time analysis/forecast); 

 generating reservoir outflow using the level pool routing scheme; 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note that NWM’s use of stream reaches in the NHD-Plus database and the ability to perform 
reservoir routing also mark a step forward from HL-RDHM which only generates streamflow on 
a pixel basis and does not model flow through reservoirs.  However, model calibration has been a 
challenge for NWM, and even at present only limited calibration was done for the operational 
version of NWM.   

As an operational system, NWM is configured to run over different cycles, including analysis, 
short-range forecast, medium-range forecast, and long-range forecast (Fig. 5-9).  The most 
relevant to the freshwater inflow estimation is the NWM real-time analysis, which is driven 
primarily by analysis forcings and therefore is less susceptible to errors in numerical weather 
forecasts. The analysis is produced on an hourly basis based on the analysis forcing data set. The 

Figure 5-8 NWM prediction of streamflow along streams in the NHD-plus database. 
Source: NCAR. 

DocuSign Envelope ID: 66C1E1E3-680E-4156-8DB2-57564AB58B15



39 
 

precipitation in this data set is created by blending the MRMS precipitation analysis and the 
analysis from the High-resolution Rapid Refresh model.  Forcing variables excluding 
precipitation are interpolated from the HRRR analysis grids.  The NWM real-time analysis and 
forecast products over the most recent 2-day window are available to the public through the 
National Center for Environmental Prediction (NCEP) ftp server.  

 

 

 

As indicated in the beginning of the section, NWM real-time analysis is only available over a 
short window (NWM only became operational since 2015), and is not suitable for a 
comprehensive assessment.  Therefore, we chose to use NWM 1.2 reanalysis instead in this 
project.  The NWM 1.2 reanalysis was created by running the version 1.2 of NWM over the 25-
year window extending from 1993 to 2017, and the forcing variables were derived from the 
NLDAS-2.  The reanalysis data is hosted on Amazon Web Service (AWS) and a description of 
the data set can be found at https://registry.opendata.aws/nwm-archive/.  

In short, to retrieve the streamflow for a basin outlet or bay inlet, we first visually determine the 
feature ID of the stream segment in the closest proximity to the station in question.  We then use 
these feature IDs as reference to extract the streamflow from the channel routing data 
(CHARTOUT files) to create time series of streamflow for each station.  Fig. 5-10 illustrates the 
inlet locations superimposed on the NHD-Plus stream links which served as the basis for 

Figure 5-9 NWM prediction of streamflow along streams in the NHD-plus 
database. Source: NCAR 
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extracting the streamflow from NWM. The processing steps and software packages involved can 
be found in Appendix D. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 

Figure 5-10 NWM inlets to Matagorda Bay. The inlets were determined from the 
NHD-plus database. Source: NCAR. 
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5.2 Model Performance Assessment 

The three models, namely the TxRR, HEC-HMS and HL-RDHM were run using the NLDAS-2 
forcing data to be consistent with that used in generating the NWM reanalysis. It is worth noting 
that the NLDAS-2 precipitation data since 2003 was created by temporally disaggregating 24-h 
gauge reports, mostly from NWS Cooperative Observer (COOP) network, using the NCEP Stage 
II hourly radar-only precipitation mosaic.  As such, NLDAS-2 and MPE precipitation products 
examined in Section 2 share similar, though not identical ingredients.  Past studies, such as Nan 
et al. (2010) illustrated that the two data sets are indeed closely correlated, though MPE is 
considered to be an overall superior product as it benefits from a number of algorithmic 
enhancements and manual quality controls.  In this project, we picked the 2003-2017 as the 
period for performing our assessment to avoid potential complications associated with the 
change in the way the precipitation data set was created that took place around 2003.  Therefore, 
we expect the relative performance of models driven by the NLDAS-2 forcings to mimic, in a 
qualitative fashion, that driven by the MPE data.  As the latter will eventually serve as the source 
of precipitation input to the MMIPS, the results of the comparisons will help anticipate the 
accuracy of inflow products derived using each model.        

The calibration-validation strategy consists of the following elements. The first year, i.e., 2003, 
is used as the warm-up window to reduce the influence of initial conditions. HEC-HMS and HL-
RDHM are each calibrated using streamflow observations over 2004-2013, and the model 
simulations using the calibrated parameters are generated for 2014-2017.  TxRR simulations are 
performed using the default parameter values obtained from the TWDB, which are derived from 
earlier calibration efforts, and no further calibration is performed.  The simulations are assessed 
using conventional metrics including percentage bias (PB), Pearson’s correlation (R), and root 
mean squared error (RMSE). These metrics are defined as follows: 

𝑃𝐵 =
∑ (ொ,ିொೞ,)

సభ

∑ ொ,

సభ

× 100           (5-6) 
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మ
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           (5-8) 

Where Qo,i and Qs,i are observed and simulated streamflow, respectively; and n is the number of 
records in the time series.  In addition to these metrics, we also employ the Kendall rank 
correlation coefficient (Kendall, 1938) to characterize the similarity between simulated and 
observed flow on a seasonal basis to avoid disproportionate impacts of larger values on linear 
correlation coefficients. The performance of member models is first examined using the three 
metrics computed for each model for the calibration and validation periods individually.  Note 
that the latter two metrics, R and RMSE, are computed for both monthly and daily scales.  Then, 
the ability of each model in reproducing the seasonal cycle and interannual variation of 
streamflow is contrasted.  Last, the model simulated daily series are compared for four selected 
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historical high flow events to gain a concrete understanding of differential model dynamics for 
such events.  

5.2.1 Overview of model performance  

Fig. 5-11 shows the comparisons of annual mean simulated and observed streamflow over the 
calibration (2004-2012) and validation periods (2013-2017) for the five gauged watersheds listed 
in Table 3-2.  Among the watersheds, EDNT2 (Lavaca River) is associated with the largest 
overall observed volume, followed by MTPT2 (Tre Palacios River) and HTST2 (Navidad River), 
whereas the flow volume is much smaller for NGCT2 (Garcitas Creek) and PLPT2 (Placedo 
Creek).  When comparing the simulated flow from the four models, it is evident that the relative 
magnitude is consistent between the two periods, yet varies widely among the watersheds. 
Taking EDNT2 for example, NWM produces the largest volume, followed by TxRR, HL-
RDHM, and HEC-HMS. But for MTPT2 and HTST2, TxRR produces the largest flow volume.  

 

 

Figure 5-11 Comparisons of annual mean flow produced by the four member models for the five USGS 
stations. Shaded rectangles mark observed flow.    
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Figure 5-12 Comparisons of percentage bias between simulated flow by the four member models and 
observed flow at five upstream USGS stations (marked using SHEF ID). Shown are the 
results computed at monthly scale, and for a) calibration and validation (b) periods. 

Fig. 5-12 compares the PB of simulated flow for the member models for the two periods.  It 
appears that the relative performance of models in terms of bias varies across watersheds without 
a single best performer.  In general, PB is more pronounced for the validation period.  Additional 
notable observations include the following: 
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The PB of simulations based on the baseline model TxRR varies widely. For the calibration 
period, it is close to neutral for three watersheds, namely MTPT2, EDNT2, and PLPT2, and in 
the meantime it is quite large for the other two watersheds (HTST2 and NGCT2), exceeding 60% 
for HTST2. The PB of TxRR simulations is more pronounced for the validation period, though 
the distribution of bias across watersheds is broadly similar to that for the calibration period.   

HEC-HMS and HL-RDHM outperform TxRR and NWM in terms of overall consistency in bias 
for the calibration period.  For EDNT2, the largest watershed, HL-RDHM simulations exhibit the 
best (nearly neutral) PB for the calibration period, and second-best PB for the validation period 
(with HEC-HMS simulations being the best).  The PB of NWM reanalysis is mixed for both 
periods.  For MTPT2, the PB is negative for both periods, whereas it is conspicuously positive 
for EDNT2 and HTST2, and particularly so for the validation period.    

The comparisons of correlation and RMSE are shown in Figs. 5-13, and 5-14, respectively.  For 
the calibration period, both monthly and daily flow based on TxRR exhibit the highest 
correlation for three out of five watersheds, including EDNT2. The performance of the other 
models is mixed over this period.  Daily flow from HL-RDHM appears to underperform other 
models.  For the validation period, HEC-HMS slightly outperforms other models for three out of 
five watersheds at the monthly scale, whereas it outperforms all other models. TxRR performs 
reasonably well for most of the watersheds.  NWM underperforms over EDNT2, with its both 
monthly and daily flow exhibiting much lower correlation than the corresponding results from 
the other three models. HL-RDHM tends to perform relatively poorly for some of the basins at a 
daily scale, though it produces reasonable correlation at the monthly scale.    

 

Figure 5-13 Comparisons of correlation between simulated flow by the four member models and 
observed flow at five upstream USGS stations (marked using SHEF ID). Shown are the 
results computed at monthly and daily scales, and for the calibration and validation periods. 
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Figure 5-14  Comparisons of RMSE between simulated flow by the four member models and observed 
flow at five upstream USGS stations (marked using SHEF ID). Shown are the results 
computed at monthly and daily scales, and for the calibration and validation periods. 

When comparing Figs 5-13 and 5-14, it is evident that the relative magnitude of RMSE broadly 
echoes that of correlation in the following sense: a) TxRR slightly outperforming other models 
for the calibration period, and b) HEC-HMS is an overall the best performer for the validation 
period, and its outperformance is uniform across watersheds for the validation period.  Note that 
over the validation period, NWM performs rather poorly for the three most important watersheds 
(MTPT2, EDNT2 and HTST2) due to a combination of relatively large bias and low correlation 
of the simulated flow (Figs. 5-13 and 5-14).  Tables 5-5 and 5-6 summarize the RMSEs for 
monthly and daily simulated flow for calibration n and validation periods, respectively, where 
the best performer for each watershed is highlighted in green.   
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Table 5-5 RMSE of monthly and daily simulations – Calibration Period, with best performers 
highlighted in green   

Station 
Monthly RMSE (cfs) Daily RMSE (cfs) 

TxRR HEC-HMS NWM HL-RDHM TxRR HEC-HMS NWM HL-RDHM 

MTPT2 88 111 144 116 296 295 379 307

EDNT2 291 406 367 371 842 898 1060 903

HTST2 183 133 114 115 458 350 370 418

NGCT2 60 65 58 74 182 158 177 190

PLPT2 63 54 57 59 159 135 169 156

 

Table 5-6 RMSE of monthly and daily Simulations – Validation Period; best performers highlighted in 
green 

Station 
Monthly RMSE (cfs) Daily RMSE (cfs) 

TxRR HEC-HMS NWM HL-RDHM TxRR HEC-HMS NWM HL-RDHM 

MTPT2 112 71 100 112 358 209 298 286

EDNT2 435 424 607 527 1473 1393 1905 1634

HTST2 226 258 289 242 888 750 1001 1053

NGCT2 63 60 56 67 225 178 205 200

PLPT2 64 71 62 82 225 206 211 247

 

At the monthly scale, the performance of member models is mixed as judged by RMSE, whereas 
at the daily scale, HEC-HMS emerges as perhaps the best performer among the models.  TxRR 
performs well for the three larger watersheds, and particularly so for EDNT2, the largest 
watershed.  NWM and HL-RDHM perform comparably for the validation period, with HL-
RDHM outperforming NWM for the EDNT2 but underperforming NWM for the two smaller 
watersheds (NGCT2 and PLPT2).  Note that the relative performance of member models is 
determined as much by the effort of calibration as by the realism of model physics or 
appropriateness of initial parameterization.  Among these models, TxRR was calibrated in the 
1990s, and this may explain its reasonably good performance for the earlier period and large bias 
for the later one.  NWM was not calibrated specifically for the region, but it nevertheless 
performs relatively well for some of the smaller basins.  By contrast, HEC-HMS underwent quite 
extensive automatic and manual calibration focusing on optimizing daily flow, and therefore it is 
unsurprising that it performs well at a daily scale.  The calibration for HL-RDHM entailed 
searching in a limited parameter space and this may have constrained the accuracy of the 
simulation for both periods.   
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5.2.2 Season Cycle and Interannual Variation  

A key potential advantage of models such as HEC-HMS and NWM lies in their use of energy-
based ET schemes, which account for the impacts of temporal variation in forcings on ET 
demand.  In order to determine whether the incorporation of such schemes indeed yields 
improvement to the water balance calculation, we compare the seasonal as well as interannual 
streamflow volumes produced by the member models. Fig. 5-15 shows the comparison of mean 
monthly flow for each watershed, and Table 5-7 summarizes the proximity of simulated monthly 
to observed values via Kendall rank correlation coefficient tau.        

Among these watersheds, the seasonal distribution of streamflow varies (Fig. 5-15). When 
focusing on the calibration period, the observed streamflow exhibits summertime peak over three 
watersheds near the bay, i.e., MTPT2, NGCT2, and PLPT2, whereas the peak is attained in the 
winter over the upstream watershed HSHT2.  For the largest watershed EDNT2, the streamflow 
apparently exhibits multiple peaks, including a primary one in the early summer and a lesser one 
in the winter, most likely a result of combining flows from upstream and downstream basins with 
differing seasonal patterns.  The seasonal distribution for the validation period differs 
considerably from that for the earlier period.  Interestingly, the monthly flows for all five 
watersheds exhibit a conspicuous peak in August, which reflects the disproportionate influence 
of Hurricane Harvey that took place in August 2017.    

Among the models, there does not appear to be a clear split between TxRR and the rest three 
models with more sophisticated water balance and ET schemes (Table 5-7). In fact, TxRR 
performs reasonably well for two of the three larger watersheds (MTPT2 and EDNT2) over both 
the calibration and validation periods. For MTPT2, it nearly perfectly reproduces the observed 
monthly flow for the calibration, and it also performs remarkably well for the validation period 
with Kendall’s tau=0.91. However, for HSHT2, the northmost watershed, TxRR grossly 
overestimates the flow during spring and early summer (Fig. 5-15).  This overestimation is also 
seen for EDNT2, albeit with lesser severity.  Note that all the other three models produce 
reasonable monthly flow for HSHT2 over the calibration period.  It is also worth noting that the 
alternative models all perform quite well for the three watersheds over the south (MTPT2, 
NGCT2 and PLPT2) for the calibration period (Fig. 5-15; Table 5-7).  Again, the best 
performing model is highlighted in green.  NWM produces the highest rank correlation for the 
latter two watersheds.  Broadly speaking, the performance of models does not translate to the 
validation period (Fig. 5-16; Table 5-7), and the relative performance among models is not 
sufficiently consistent to draw any meaningful conclusions about the role of water balance 
schemes.  For example, NWM features arguably the most complex water balance scheme and it 
does appear to outperform TxRR in terms of reproducing the seasonality of flow for some of the 
watersheds for the calibration period. NWM, moreover, has the clear downside of exaggerating 
the springtime flow for EDNT2, which raises questions about the physicality of its water balance 
and ET calculation in the Lavaca River drainage.  
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Table 5-7 Kendall Rank Correlation for simulated mean monthly flow; best performers highlighted in 
green 

Station 
Calibration Validation 

TxRR HEC-HMS NWM HL-RDHM TxRR HEC-HMS NWM HL-RDHM 

MTPT2 0.70 0.64 0.61 0.67 0.91 0.70 0.73 0.45

EDNT2 0.61 0.61 0.52 0.52 0.64 0.67 0.64 0.52

HTST2 0.52            0.52 0.61 0.55 0.79 0.58 0.76 0.76

NGCT2 0.61 0.52 0.85 0.73          0.64 0.67 0.73 0.73

PLPT2 0.76 0.48 0.82 0.48 0.67 0.70 0.61 0.45
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Figure 5-15 Mean monthly observed flow and simulated flow from four member models for each gauged 
watershed over the calibration period. 
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Figure 5-16 Mean monthly observed flow and simulated flow from four member models for each gauged 
watershed over the validation period. 
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The Pearson’s correlation for simulated annual mean flow from each model is shown in Table 5-
8.  It appears that all models are able to accurately depict the interannual variation for both 
periods, and the differences among models are quite minor.  For the calibration period, NWM 
performs consistently well across the basins, though the correlation is only marginally higher 
than TxRR. For the validation period, however, NWM’s performance trails behind TxRR and the 
other two models. HEC-HMS, the other model that features a physically-based ET scheme, in 
fact underperforms TxRR for a majority of basins for the calibration and its performance is 
mixed for the validation period. For both periods, HL-RDHM, despite its reliance on 
climatological ET demands, performs reasonably well for all watersheds except PLPT2: its 
correlation values are only slightly below those for NWM for the calibration period, and are 
comparable to NWM and TxRR for the validation period.  It is worth pointing out that the ET 
process as represented by HEC-HMS, NWM and HL-RDHM depends not only on ET demand 
but also on its interaction with soil water storage.  It is possible that the underperformance of 
HEC-HMS has to do with its relatively simplistic uptake scheme which only withdraws water 
from the upper zone to the canopy. By contrast, the SAC-SMA in HL-RDHM allows water to be 
withdrawn from both upper and lower zone storages.  These explanations, however, are difficult 
to corroborate at present without detailed data on soil moisture and percolation.   

Table 5-8 Pearson’s Correlation for simulated annual flow; best performers highlighted in green 

Station 
Calibration Validation 

TxRR HEC-HMS NWM HL-RDHM TxRR HEC-HMS NWM HL-RDHM 

MTPT2 0.98 0.98 0.98 0.96 0.98 0.96 0.99 0.98

EDNT2 0.98 0.92 0.99 0.97 0.96 0.96 0.90 0.93

HTST2 0.95            0.91 0.96 0.96 0.91 0.85 0.87 0.91

NGCT2 0.99 0.94 0.99 0.97          0.93 0.93 0.96 0.98

PLPT2 0.92 0.91 0.94 0.87 0.91 0.97 0.95 0.89

 
 

As the validation period encompasses only 5 years, the validation statistics may be distorted by a 
few large events. The outperformance of NWM over the earlier period may in fact be a result of 
enhanced representation of runoff processes and water balance, given that the model did not 
undergo systematic calibration as did HEC-HMS and HL-RDHM.  

5.2.3 Model Behaviors during historical high-flow and low-flow events  

To further illuminate differences among the models in reproducing streamflow, we closely 
examine the flow series from the four models over six episodes.  These include four historical 
storm events which produced high flows over either the upstream and downstream parts of the 
Lavaca River Basin, and two neighboring episodes during the 2011 drought.  Note that four of the 
episodes occurred prior to 2013 fall within the calibration period, whereas two episodes were in 
the validation period.  These events are summarized in Table 5-9: 
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Table 5-9 Events for model comparisons 

Type Event Storm Type Reference 

High Flow Nov 2004 Frontal System https://www.weather.gov/crp/20041121_Flood 

Apr 2009 Thunderstorm https://www.weather.gov/hgx/severe_events_april 

Apr 2014 Thunderstorm N/A 

Aug 2017 Hurricane Harvey https://www.weather.gov/hgx/hurricaneharvey 

Low Flow Aug-Sep 2011 N/A 
https://senate.texas.gov/cmtes/82/c510/0110BI-

JohnNielsen-Gammon.pdf Sep-Oct 2011 NA 

 

Note that the Nov 2004 and Aug 2017 storms were both large enough to produce flooding across 
the Lavaca River Basin, whereas the Apr 2009 and Apr 2014 storms were severe thunderstorms 
with limited spatial coverage.  Both latter events produced flooding over the upstream portion of 
the watershed and the impacts over the lower reaches were limited.  Our comparison will focus on 
model response at the northmost subbasin HTHS2 (Navidad River above Hallettsville), and the 
southmost subbasin PLPT2 (Placedo Creek near Placedo) that is situated close to the bay.  

The results for the Nov. 2004 event are shown in Fig. 5-17.  For this event, all models are able to 
reasonably resolve the magnitude of flood peaks for the HTST2. Among these models, the 
simulation from HEC-HMS presents the closest match to the observation.  TxRR, HL-RDHM and 
NWM all over-simulate the event peak, and the over-simulation is the most severe for NWM.  By 
contrast, for PLPT2, all models perform relatively poorly: TxRR and NWM produce peaks much 
higher than the observed, whereas HEC-HMS and HL-RDHM both under-simulate.  Among the 
models, NWM produces a peak that is nearly four times that observed.  This over-simulation by 
NWM is consistent with the positive bias it exhibits on an overall basis and for the spring (Figs. 
5-11 and 5-15, respectively).  It is also interesting to note that NWM and TxRR both under-
simulate the initial small peak on Nov 18 while exaggerate the major peak.    
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Figure 5-17 Comparisons of simulated flow from member models and observed for the Nov. 2004 
storm event. 
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The hydrographs for the Apr 2009 event are shown in Fig. 5-18. For HTST2, all models except for 
HL-RDHM perform rather well, and HEC-HMS and NWM almost perfectly reproduced the flood 
peaks. TxRR and HL-RDHM both under-simulate the peak, with the peak by the latter model only 
about 1/3 of the observed. For PLPT2, the storm failed to produce any significant streamflow, 
mostly because the area is outside of the storm coverage.  All models tend to over-simulate the 
streamflow, with the severe bias exhibited by the results of NWM and TxRR. Relatively speaking, 
the flow simulations from HEC-HMS and HL-RDHM are closer to observations than those from 
the other two models.   

 

                    

 

 

Figure 5-18 Comparisons of simulated flow from member models and observed for 
the Apr. 2009 storm event. 
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Fig. 5-19 shows the hydrograph comparisons for the Apr. 2014 event.  Similar to the Apr. 2009 
event, this event also featured heavy rainfall over the north.  For HTST2, the models were all able 
to reproduce the peak with reasonable accuracy. Among the models, HEC-HMS produces the 
lowest peak that is nearly 3000cfs below the observation, whereas HL-RDHM conspicuously over-
simulates.  The peaks based on TxRR and NWM simulations are comparable and quite close to 
the observed.  For PLPT2, the peak discharge occurred at a later date (around April 24) with much 
subdued magnitude (~700cfs).  Interestingly, all models severely under-simulate this peak. HEC-
HMS, for example, almost entirely misses the event, while hydrographs from other models show 
small bumps that are poorly correlated with the observations.  

 

Figure 5-19 Comparisons of simulated flow from member models and observed for the Apr. 2014 storm 
event. 
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The last high flow event of interest is Hurricane Harvey that took place between Aug 25-28 and 
produced flooding in the coastal bend and along southeastern Texas.  Fig. 5-20 shows the 
hydrographs at the two outlets.  Perhaps the most striking feature is the under-simulation of the 
flood peak by all models at both locations. This under-simulation is overall more severe for 
HTST2, where all simulated peaks are about 1/3 below the observed one. Among the models, 
TxRR and HEC-HMS fare slightly better, whereas hydrographs from NWM and HL-RDHM 
appear to be two days behind the observed. For HTST2, the under-simulation is not as severe for 
all models except for HL-RDHM, which produces a peak less than 1/8 of the observed. The delay 
in response is again evident for TxRR and HL-RDHM, and to a lesser extent for HEC-HMS.  

 

 

 

 

Figure 5-20 Comparisons of simulated flow from member models and observed for 
Hurricane Harvey in Aug-Sep 2017. 
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The under-simulation can be attributed to a variety of factors, such as inaccuracy of NLDAS-2 
precipitation data and inadequate representation of land surface processes. As noted earlier, 
NLDAS-2 precipitation data set relies on the radar and gauge reports, and for extreme events 
such as Harvey, there were concerns that in situ reports were compromised by the errors induced 
by wind (Nespor and Sevruk 1999) and by the mechanic limitations, or even failures of tipping 
bucket gauges (Habib et al. 2008; Duchon et al. 2010).  At present, only the gauges in the 
Advanced Surface Observation System (ASOS) USGS networks are shielded, and the vast 
majority of USGS records that enter the data stream for NLDAS-2 and MPE are not.  The current 
version of NLDAS does not incorporate any mechanism for bias-correcting reports of 
precipitation gauges arising from the wind effects (Xia, 2007), though the developer has studied 
the wind-related bias and acknowledged its importance (Xia, 2006).   Other issues complicating 
rainfall observations include transmission failures, and the lack of COOP manual observations 
during the event because of flooding. The lags exhibited by NWM and HL-RDHM flow 
simulations for HTST2 may be reflective of underestimation of rainfall by the gauge network 
over parts of the watershed.  The reason that no such conspicuous lag is seen in HEC-HMS and 
TxRR simulations is likely a result of the lumped nature of the latter two models that to an extent 
masks the observational issue.  To elaborate, the lumped models consider precipitation to be 
uniformly distributed over each watershed.  When spatial averaging of precipitation is performed 
as required by these models, it is possible that such an operation spreads rainfall to parts of a 
watershed that are in fact in dry conditions and would not produce any runoff if precise, albeit 
biased, rainfall information is used. And this allows runoff to be artificially generated over the 
earlier periods.  Another potentially complicating factor concerns the fidelity of the flow data 
over the event – the stage was most likely beyond the range where empirically estimated stage-
discharge relationship can be reliably applied, and this could have induced large errors in the 
flow rate estimates.      

The hydrographs for the two neighboring time windows during the drought of 2011 are shown in 
Figs. 5-21 and 5-22.  For the first time window (mid-August through late September; Fig. 5-21), 
streamflow at both HTST2 and PLPT2 stays close to zero, underscoring the prevailing dry 
conditions across the region. All models over-simulate the streamflow at both stations, though 
the severity of over-simulation varies.  At HTST2, HL-RDHM and HEC-HMS each produce a 
minor peak (< 20 cfs) at around August 24, whereas no corresponding response is observed. 
NWM and TxRR simulations stay flat, yet their magnitude is persistently higher than the 
observation.  Between the two models, NWM’s over-simulation of the low flow is particularly 
noticeable.  At PLPT2, NWM, HEC-HMS both produce spurious responses that are visually 
conspicuous, whereas TxRR and HL-RDHM simulations are close to the reality (near zero).  

For the later time window (Fig. 5-22), streamflow at both stations remains consistently close to 
zero.  All models produce considerable runoff over October 8-15, clearly in response to rainfall 
pulses around the time. Among the models, TxRR simulation exhibits the most severe biases at 
the two stations.  At HTST2, the peak from TxRR simulation is close to 700cfs.  This behavior 
of TxRR contrasts sharply with its rather reliable performance over the earlier period.  The other 
three models do not perform as consistently between the sites. NWM simulation, for example, 
reasonably tracks the observed series for HTST2, but its bias is quite pronounced for PLPT2.  To 
summarize, it appears that the member models, including TxRR, have considerable difficulties in 
capturing the water balance during the severe drought.  For NWM, the small yet persistent 
inflation of inflow is concerning, as it possibly underscores issues in the representation of 
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groundwater table.  TxRR correctly suppresses runoff response for minor rainfall input over the 
summer, but it produces grossly exaggerated response in the fall.  Table 5-10 summarizes the 
cumulative flow for the entire 2011 over the two sites.  For HTST2, TxRR exhibits the most 
severe positive volumetric bias, whereas HEC-HMS performs the best.  By contrast, for PLPT2, 
TxRR performs the best whereas HEC-HMS and HL-RDHM perform the worst.  

Table 5-10: Cumulative flow (in af) for the year of 2011 at HTST2 and PLPT2  

Watershed Observed TxRR HEC-HMS NWM HL-RDHM 
HTST2 4748 30523 3405 24517 24624 
PLPT2 2827 5246 9276 8135 9388 

Evidently, the spurious response of TxRR in the fall is a major factor underlying its large, 
positive overall bias for the year.  But it is rather interesting to note that its performance, and the 
performance of HEC-HMS among the models contrasts sharply for the two watersheds.  Again, 
the streamflow simulations alone are not adequate for offering definitive diagnosis about 
mechanistic deficiencies of each model during droughts as severe as the 2011 episode.  It is 
hoped that, in future studies, root zone soil moisture and groundwater table data be incorporated 
to help reconstruct the dynamics in the vadose and groundwater zones, which will perhaps offer 
clues to the lack of response of the watersheds during the summer-fall, and help identify model 
representation issues that give rise to the large, divergent biases exhibited by different models.   
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Figure 5-21 Comparisons of simulated flow from member models and observation for during the 
drought of 2011 (Part I).   
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Figure 5-22 Comparisons of simulated flow from member models and observation for during the 
drought of 2011 (Part II).    

To summarize, the case studies illustrate that the behaviors of models across the four events vary 
widely among events, and there is not a single model that consistently outperform the rest. Some 
of the model bias and error characteristics as illustrated earlier are reflected to an extent in the 
event-wise comparisons.  Among the models, the baseline model TxRR performs rather well for 
HTST2, the northern watershed, but it has a tendency to over-simulate for the smaller basin 
PLPT2, and this can be possibly explained by both a lack of calibration, and possible bias in the 
NLDAS-2 rainfall series that stems from inadequacy in the rain gauge network.  NWM, which 
did not undergo extensive calibration, exhibits similar issues in resolving the response over the 
two watersheds, though its performance is reasonable for HTST2 for all events examined. The 
models that were calibrated, i.e., HEC-HMS and HL-RDHM, do manage to avoid the egregious 
over-simulation as seen in the results of TxRR and NWM for three of the events. Yet, the effects 
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of calibration are uneven – for Hurricane Harvey, the simulations from the two models depart 
substantially from the observation and they are not in any material fashion superior to those of 
NWM and TxRR.   On the other hand, all models exhibit issues in reproducing low flow during 
the 2011 drought, including the two models that were calibrated for this period (i.e., HEC-HMS 
and HL-RDHM).  Mechanisms behind the spurious runoff produced by each model are not yet 
clear; a close examination of model states is needed to diagnose the behaviors and identify 
remedies.        

5.3 MMIPS and experimental ensemble inflow simulations  

In this section we describe the preliminary configurations of member models of MMPIS for the 
ungauged, bay watersheds, and present examples of ensemble inflow simulations using MMIPS 
for 2003-2017.  Among the models, the default, operational version of TxRR is set up for HEC-
HMS and HL-RDHM are implemented for each ungauged bay watershed with parameter values 
borrowed from an upstream basin.  To maintain consistency with the current practice of the 
TWDB, all models except NWM ingest observed inflow at upstream USGS stations to replace 
the model simulated flow.  The USGS stations that are connected to each of the bay watershed 
can be found in Table 3-1.    

As NWM is run at NWS and is not amenable to calibration, we develop a simple postprocessing 
scheme per Task 3 to mitigate the biases in the NWM flow analysis.  In this scheme, both 
simulated and observed mean monthly flows are calculated for each of the five upstream outlets 
using NWM reanalysis data over the entire period (2003-2017).  Then a bias factor is calculated 
for each month over each watershed by taking the ratio of the observed to the simulated monthly 
flow volume. The monthly bias factors are then averaged across the watersheds, and the resulting 
mean bias factors are summarized in Table 5-11.  

Table 5-11 Monthly mean bias factors applied to NWM simulations for the bay watersheds  

Month 1 2 3 4 5 6 7 8 9 10 11 12 
Bias 0.70 0.79 0.92 1.00 1.19 1.33 1.50 1.90 1.53 1.12 0.81 0.57 

These mean monthly bias factors are then applied to the flow simulation of NWM for each bay 
watershed with the assumption that the bias characteristics of NWM over these locations broadly 
resemble those over the upstream watershed.  In the remainder of this section, only the bias-
corrected NWM inflow estimates will be shown and compared against other inflow products.  
For HEC-HMS and HL-RDHM, the parameter values estimated over upstream watersheds 
through calibration are transferred downstream. Table 5-12 describes the pairs of donor and 
recipient watersheds, i.e., the catchments from which the parameter values were derived and 
those receiving the parameter values, respectively.   

As HL-RDHM and NWM are grid-based models, the specific locations of inlets need to be 
identified for each model in order to retrieve the inflow estimates. To this end, we manually 
locate the stream segments in the NHD-Plus database that intersect with the bay.  Fig. 5-23 
shows such bay inlet locations across the eleven bay watersheds. The NWM streamflow analysis 
for each segment can be looked up from the reanalysis database using the identifier of each 
segment as the key. 
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Figure 5-23 Map of bay inlets identified from NHD-Plus used in NWM (yellow) and HL-RDHM (red). 
Superimposed in purple are segment identifier from NHD-Plus.  

Table 5-12 Bay watersheds and upstream donor watersheds from which parameters are derived  

Recipient Bay Watershed Upstream Donor Watershed 

TWDB ID Outlet SHEF ID TWDB ID 

15010 MTPT2 15020 
15030 MTPT2 15020 
15040 MTPT2 15020 
15050 EDNT2 16005 
15060 EDNT2 16005 
16008 EDNT2 16005 
17010 EDNT2 16005 
17030 NGCT2 17020 
17050 PLPT2 17040 
17060 PLPT2 17040 
17070 PLPT2 17040 
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For HL-RDHM, we create outlet points for a subset of the inlets that are situated in independent 
(non-overlapping and unconnected) model pixels and have realistic upstream contributing areas.  
As the HL-RDHM implementation uses a relatively coarse grid mesh (~4-km), there are cases 
where more than one inlet is present in a pixel.  In such cases, only the one with the largest 
contributing area is retained.  In addition, the inlets associated with invalid upstream contributing 
areas are eliminated to avoid the incorporation of erroneous runoff quantities.  This identification 
process results in 13 inlet locations for the HL-RDHM and 22 for NWM (Table 5-13).   

 

Table 5-13  Bay inlets identified from NHD-Plus Database and availability of flow data in NWM and 
HL-RDHM 

Bay Watershed ID 
Inlet Segment  
(NHD-Plus) 

NWM data 
availability 

HL-RDHM 
Designator 

Lon (degree) Lat (degree) 

15010 9356536 X MTGA4 -96.1548 28.75596 

15010 9356694 X MTGA12 -96.1824 28.71432 

15010 9356800 X - -96.2059 28.68041 

15010 9356904 - - -96.2291 28.64531 

15010 9356944 - - -96.2294 28.60338 

15010 9356966 - MTGA9 -96.2271 28.59445 

15030 9356664 X MTGA4 -96.1491 28.76946 

15040 9356794 X MTGA11 -96.2621 28.70107 

15040 9356104 X  -96.285 28.6937 

15050 9356818 X MTGA5 -96.3746 28.64222 

15050 9356776 X MTGA8 -96.4728 28.60582 

15050 9356754 X MTGA13 -96.3425 28.65221 

15060 9356750 X MTGA7 -96.5218 28.66397 

16008 7843187 X MTGA1 -96.5757 28.70121 

17010 9352959 X MTGA14 -96.6132 28.72655 

17030 9350061 X MTGA3 -96.663 28.73266 

17030 9349999 X MTGA14 -96.6377 28.72076 

17030 9350003 X MTGA3 -96.6737 28.72969 

17050 9350011 X MTGA2 -96.6674 28.70649 

17060 9350047 X MTGA6 -96.6602 28.56984 

17060 9349563 X - -96.6521 28.59982 

17060 9349533 X - -96.644 28.65692 

17060 9350017 X - -96.6711 28.68262 

17060 9350169 - - -96.5787 28.58371 

17070 9350101 X MTGA10 -96.4943 28.50519 

17070 9352003 X - -96.4187 28.46444 
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For each bay watershed, we compute both a local runoff series, which is the inflow generated by 
runoff solely over the watershed domain, and an aggregate inflow series, which is the sum of 
local runoff and contribution from upstream drainage if the latter exists (as the case for 17030, 
17060, 16008, and 15030; see Table 3-1).  For each model, the aggregate inflow series for all 
bay inlets are further summed up to yield the total inflow series.  Table 5-14 summarizes the 
multi-year mean inflow volumes produced by each model over 2003-2017.  

Table 5-14 Mean annual total inflow to Matagorda Bay computed by each model 

Model TxRR HEC-HMS NWM HL-RDHM 
Inflow (af/yr) 1,802,902 1,846,745 1,528,159 1,443,280 

Among the models, HEC-HMS produces the largest inflow volume, followed by TxRR, whereas 
the volumes from NWM and HL-RDHM are much lower (15% and 20% relative to that by 
TxRR, respectively).  Fig. 5-24 shows the time series of simulated total annual inflow to the bay 
by the four models over the period of 2003-2017.   For most of the years, the two distributed 
models, namely NWM and HL-RDHM, produce appreciably less inflow than the lumped models 
(TxRR and HEC-HMS).  Between NWM and HL-RDHM, NWM produces larger inflow 
volumes for a majority of years (ten out of fifteen).  Curiously, for a few recent years (2011-
2016), NWM-based inflow volumes are comparable and slightly larger than those from TxRR 
and HEC-HMS, whereas the results of HL-RDHM are much lower for the same period. Only 
over some of the earlier years (e.g., 2003-2005) does HL-RDHM produce larger volumes than 
NWM.  This is possibly linked to the positive bias that NWM simulations exhibit at Lavaca 
River near Edna – as NWM does not ingest USGS flow observations, this bias is retained in the 
inflow series.     

 

Figure 5-24 Time series of annual freshwater inflow calculated from the four models that comprise the 
MMIPS, namely i)TxRR, ii) HEC-HMS; iii) NWM and iv) HL-RDHM.   
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The simulated inflows by member model are further compared for each watershed. Fig. 5-25 
shows the comparisons of mean annual aggregate inflow and local runoff across watersheds. It is 
clear in Fig. 5-25a that the contrasts between the results of lumped (TxRR and HEC-HMS) and 
distributed models (NWM and HL-RDHM) as shown in Table 5-14 are not uniformly seen 
across watersheds (Fig. 5-25b).  For 16008 (Lavaca River), the drainage with the largest 
aggregate inflow volume, NWM in fact produces the largest inflow volumes.  This is consistent 
with the earlier observation of over-simulation by NWM at Lavaca River at Edna.  A closer look 
at the local runoff reveals that NWM and HL-RDHM both produce larger volumes of runoff than 
the lumped models do (Fig. 5-25b).  However, the opposite is true for a majority of smaller 
watersheds (eight out of ten), where the two distributed models produce overall smaller volumes. 
The under-production of inflow is particularly evident for two watersheds over the east, namely 
15010 (Oyster Bayou) and 15040 (Turtle Creek), for which inflow volumes from NWM and HL-
RDHM are miniscule in comparison to those by TxRR and HL-RDHM.  Apparently, on a 
cumulative basis, the differences over these smaller watersheds more than offset those for 16008 
(the Lavaca River). 
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Figure 5-25 Mean annual inflow into the bay (a) and local runoff (b) for each watershed as estimated 
from four member models. Watershed IDs highlighted by red rectangles are those 
incorporating inflow from upstream USGS stations. 
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Figure 5-26 Annual aggregate inflow into Matagorda Bay for each watershed as estimated from four 
member models. 
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The year-to-year variation of the aggregate inflow volumes for each watershed is characterized 
in Fig. 5-26.  A noticeable feature is that broad similarity is observed among the series produced 
by TxRR, HEC-HMS and HL-RDHM for three out of the four watersheds with upstream inflow, 
namely 17030 (Garcitas Creek), 16008 (Lavaca River), and 15030 (Tres Palacios Creek).  This 
similarity can be attributed to a combination of the similarity in local runoff volume and the 
dilution of the differences by ingesting upstream inflow. The exception is 17060 (Chocolate 
Bayou), where the local runoff produced by member models diverges and the upstream inflow is 
quite small in magnitude.  Another interesting feature is that for watershed 16008 (Lavaca 
River), NWM-based annual inflow series is comparable to, or lower than those from other three 
models until 2010, and starts to clearly surpass the latter from 2011 until 2016.  Therefore, the 
larger overall inflow volume from NWM as seen in Fig. 5-25a mostly reflects the difference in 
model results over the later period.  

To summarize, there are two prominent features that emerge from the comparisons, namely 1) 
both distributed models produce smaller total inflow volumes than the lumped models do on a 
multi-watershed mean basis, and 2) between the two distributed models, NWM tends to produce 
larger volumes than HL-RDHM.  These features are rather unsurprising. The split between 
distributed and lumped models has much to do with the differing spatial extents of drainage as 
represented by the two groups of models: the lumped models consider the entirety of each bay 
watershed as the contributing area to the bay, whereas the distributed models only incorporate 
runoff generated over parts of each bay watershed that are hydrologically connected to the bay 
according to digital terrain data.  Neither of the two approaches, however, is perfect.  Due to the 
flatness of coastal terrain, the boundaries of bay watersheds as defined by the TWDB are subject 
to errors, and there is a distinct possibility that the inflow is inflated by the lumped models 
because of the overrepresentation of drainage areas. The distributed models, on the other hand, 
are potentially advantageous for their explicit reliance on the hydrologic connectivity which 
allows for a more precise definition of upstream contributing areas.  This potential advantage, 
however, may be offset by errors in the connectivity which can be considerable in low gradient 
coastal zones.  Between NWM and HL-RDHM, the larger flow volumes produced by NWM are 
mostly likely related to the fact that it uses a finer grid mesh and features more bay inlets than 
HL-RDHM does.  At present, it is difficult to appraise the relative accuracy of inflow series 
supplied by each model directly without in situ streamflow records.  

We close this section by examining the empirical distribution of total inflow into the bay derived 
from the simulation of each member model.  Fig. 5-27 shows the flow duration curves, i.e., the 
empirical distribution of total daily aggregate inflow. As in Fig. 2-5a, the ith point in the figure 
represents the percentage of time the daily volume falls between qi-1 and qi.  Among the models, 
TxRR stands out by featuring conspicuously larger percentage of days with low daily volumes 
(i.e., between 1 and 102 af), whereas all three alternative models produce larger percentage of 
days with volumes over the middle-low ranges (102 to 103 af).  The percentage of days with 
volumes in the range of 103 to 104 af is comparable among models, with the value for HL-
RDHM slightly lower those from other models.  Interestingly, despite the fact that NWM and 
HL-RDHM both produce relatively small volumes of total inflow on average, the “baseflow” in 
the simulated inflow by these models is slightly higher than that produced by TxRR. A possible 
explanation is that TxRR simulation tends to recede deeper after most runoff events. Fig. 5-28 
demonstrates this for an event that occurred in late October and November of 2004, where 
deeper recession curves are evident in TxRR’s simulation.  
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Figure 5-27 Flow duration curves based on simulated daily inflow by each model. Each point represents 
the percentage of time that total daily aggregate inflow volume by a given model is within a 
category marked by the corresponding abscissa and its preceding one.    

 
 
 
 
 

Figure 5-28 Inflow time series for the event of Oct-Nov 2004. Note that TxRR flow recedes to a 
lower level after each peak. 
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It is unclear as to which distribution is a close approximation of the reality.  Yet, comparisons of 
flow duration curves over an upstream gauging station (Lavaca River at Edna) reveal a similar 
feature - the three alternative models tend to produce inflated baseflow, whereas TxRR-based 
results are in closer agreement with observations (Fig. 5-29).  This suggests that the simulations 
from the alternative models over low-to-medium flow categories may not be as reliable.  Note 
that all four member models represent baseflow using exponential functions with an empirically 
determined decay parameter.  Therefore, the differences in the baseflow volume most likely 
reflect differences in calibration approach rather than those in model physics, though there 
remains a possibility that the storage or capacity of the lower zone or groundwater reservoirs are 
exaggerated in the three alternative models.  As baseflow levels have clear implications for the 
health of coastal ecosystem, additional calibration efforts are warranted to minimize possible 
distortions of inflow under average conditions as well as during drier times.  

 
 
 
 

 

Figure 5-29 Flow duration curves for observed and simulated discharge series at EDNT2 (Lavaca River 
at Edna). 
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6 Summary, Conclusions and Recommendations 

This report describes the project by the UTA team to improve and augment the TWDB’s 
capabilities of estimating and predicting the freshwater inflow to Matagorda Bay. The project 
consists of two primary components.  The first one entails developing and implementing tools 
necessary to ingest the MPE products from NWS, and evaluating its potential impacts on the 
inflow estimates produced by the TxRR model.  The second one focuses on establishing a multi-
model inflow prediction system, referred to as MMIPS, that incorporates models extensively 
tested and deployed by partnering agencies, namely the HEC-HMS (USACE), NWM (NWS), 
and HL-RDHM (NWS). The latter component further comprises elements including model 
implementation and validation, limited postprocessing (for NWM), and demonstration and 
comparison over inlets to Matagorda Bay.  The anticipated benefits of these tasks are multifold.  
First, the project is expected to help the TWDB improve inflow estimates through the infusion of 
up-to-date, widely used precipitation products, and by exploiting the complementary strengths of 
various modeling paradigms.  It further lays the ground for the state to migrate from the current, 
single-trace inflow estimates towards future, ensemble-based inflow estimates that would 
provide information on the uncertainties in such estimates. Second, all three alternative models 
can produce hourly flow and do serve the purpose of flood prediction in various capacities.  And 
the adoption of these models will enable the system to be used for predicting and assessing 
fluvial flooding over coastal basins, many of which are currently not covered by NWS river 
forecast operations.  In a long run, building this prediction capability will help the TWDB to 
fulfill its new role in overseeing flood preparedness across the state.  Third, deployment of these 
products and systems will improve agency’s interoperability with federal partners including 
NWS and USACE.  On only hand, the TWDB’s modeling effort will benefit from infusing 
knowledge and expertise with respect to hydrologic modeling available at these agencies.  On the 
other hand, the TWDB could use MMIPS products to help the federal agencies in achieving their 
missions and goals.   For example, USACE’s HEC-HMS system is commonly configured to run 
in an event-wise mode which requires the specifications of loss factors. The soil moisture 
conditions produced by the HEC-HMS component of the MMIPS can be used to estimate and 
supply the loss factors in real time.  As another example, MMIPS flow estimates, in particular 
the hourly estimates from the distributed models, can serve as upstream boundary conditions for 
hydraulic models set up for creating inundation maps for designated past events, and perhaps 
even in near real-time during major storm events.   

The first project component yielded tools for processing the gridded MPE and creating MAP 
series that can be directly ingested into TxRR.  The MPE product is widely used by federal 
agencies including USACE and NWS, and by river authorities. The product is known for its 
resolution and quality, as it is created by integrating radar, gauge and limited satellite products, 
and therefore benefits from the combination of complementary strengths of these products (Seo 
et al. 2010; Zhang et al. 2011a). This has been confirmed in past studies such as that by Villarini 
et al. (2011).  The comparison of the MAP series derived based on the MPE and the default 
gauge data set, as well between the TxRR simulations driven by the two data sets, reveals 
substantial, consistent differences.  The MPE-based precipitation on a multi-year average basis is 
uniformly higher across the eleven watersheds that drain to Matagorda Bay.  Interestingly, the 
differences between the two sets of precipitation data are more pronounced over the east half of 
the watersheds, reaching 15% in one of the watersheds. A proximate reason for this east-west 

DocuSign Envelope ID: 66C1E1E3-680E-4156-8DB2-57564AB58B15



74 
 

contrast is the difference in bias behaviors of two radar units that cover the eastern and western 
portions of the bay.  The differences in TxRR-based inflow volumes mirror the differences in the 
precipitation data sets used in driving the TxRR simulations, but their magnitude is broadly 
higher, with MPE-driven runoff volumes exceeding that by gauge product by more than 20% for 
a majority of bay watersheds.  Further analysis indicates that the gauge-MPE contrast is the most 
acute at the tail end of the rainfall spectrum, with MPE showing a frequent occurrence of large 
daily accumulation.  The possible sharp increases in larger precipitation amounts in the MPE 
data set help explain the magnification of the difference in TxRR simulated flow driven by gauge 
and MPE, as efficiency of runoff production per models has a tendency to increase with rainfall 
intensity.   Taken together, these observations suggest that the transition from gauge-based to 
MPE-based inflow simulation will have rather major impacts on the estimated inflow volumes to 
Matagorda Bay.   

An important, and heretofore unanswered question is whether replacing the gauge product with 
MPE will lead to distortion of inflow by TxRR if the model does not undergo another round of 
calibration.  Since the model was calibrated using the gauge-based product, the calibrated 
parameter values mostly likely have absorbed some of the biases in the precipitation data set.  As 
pointed out earlier, examining the biases in TxRR streamflow simulations over upstream, gauged 
watersheds will help infer the biases over ungauged locations.  Should large biases appear over 
the upstream basins, there will be a need to remedy the bias through either model calibration or 
postprocessing.         

Note that the scope of the project is limited to the development of tools and comparison of 
products, whereas the actual quality of the MPE product, and its variation geographically within 
the region and over time, warrant future investigations. Validation of MPE, as well as 
interpolated gauge products, against independent gauge data will also be needed to appraise the 
relative strengths of the products over different portions of the bay and for different time 
windows, and it will further inform about the necessity of implementing and applying 
postprocessing schemes to correct biases in earlier MPE products as recommended by Zhang et 
al. (2011a).  In addition, we also suggest that the inflow series produced with MPE data as the 
forcing be tested through TxBLEND model simulations to examine the impacts on salinity.  This 
would help determine whether the rainfall errors indeed contributed to the striking discrepancies 
between observed and model-simulated salinity noted by Schoenbaechler et al. (2011).  It is also 
worth pointing out that the MPE data set only became available since the late 1990s.  The NWS 
OWP has attempted to address the earlier data gaps through infusion of radar archive from a 
commercial source (e.g., NowRAD; Zhang et al., 2017), satellite, and Manualized Digitized 
Radar data (Baeck and Smith, 1995).  The office recently released a new archival forcing dataset, 
namely the Analysis of Record for Calibration (AORC; Kitzmiller et al. 2018) for the purpose of 
hydrologic calibration in NWS line offices, and this data set extends the record back through 
1979 (note for the last two decades it is based primarily on MPE).  The earlier AORC data, 
through its use of radar reflectivity index, has shown superior skill in resolving light rainfall 
relative to the NLDAS product.  It will be useful to integrate the AORC data to re-compute the 
historical inflow for the bays and estuaries for the pre-NEXRAD era.  

The MMIPS as established in this project currently relies on four member models, out of which 
three will be implemented and run internally (namely TxRR, HL-RDHM, and HEC-HMS), 
whereas one (NWM) will be run externally at NWS and its data will be ingested. The project has 
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produced implementations of HL-RDHM and HEC-HMS for the region along with model 
parameters that were calibrated to match observed flow records over five upstream USGS 
stations for 2003-2017. In order to anticipate the accuracy of the inflow estimates, the team 
conducted a set of validation experiments wherein results of the four models were compared 
against observations over the five stations.  In these experiments, all four models were driven by 
an identical set of forcing input (i.e., NLDAS-2).  Among the models, HL-RDHM and HEC-
HMS underwent calibration as indicated earlier, and their results were contrasted with the series 
generated by running the operational version of TxRR without calibration for the entire period, 
and the NWM v1.2 reanalysis data acquired from an archive.  The comparisons point to mixed 
results across watersheds, time scales (monthly and daily), and between the calibration and 
validation periods (2004-2012, and 2013-2017, respectively).  For the calibration period, as 
judged by RMSE, TxRR and NWM are the best performers on the monthly scale, whereas on the 
daily scale HEC-HMS outperforms others for four out of five watersheds.  For EDNT2 (Lavaca 
River at Edna), the station with the largest upstream drainage area and highest flow rates, TxRR 
remains the best performer at both time scales.  By contrast, for the validation period, TxRR’s 
performance trails behind HEC-HMS and NWM on the monthly scale, and HEC-HMS emerges 
as the best performer for all stations on the daily scale.  Additional findings of note include: i) 
TxRR simulations in general are positively biased, and this bias is quite appreciable at EDNT2 
and HTST2 (Navidad River) over both periods; ii) NWM appears to perform well for some of 
the smaller watersheds, but its bias is quite large and highly variable across watersheds; and iii) 
HL-RDHM simulations exhibit lower correlation than the results from other models, and this 
translates into higher RMSE values.    

It was postulated that the sophisticated land surface and ET schemes implemented in alternative 
models would allow them to outperform TxRR in representing seasonal cycle and interannual 
variations.  The results, however, are not sufficiently clear to confirm or reject this hypothesis.  
For HTST2 (Navidad River), TxRR simulations exaggerate the minor springtime peak that is 
most likely related to heavy rainfall brought by frontal and convective systems over this time 
window.  Three alternative models produce more realistic seasonal cycle for this watershed over 
the calibration period, but for validation period they tend to underrepresent the peak in August 
that is a result of the Hurricane Harvey.  For other watersheds, the performance is mixed, and 
TxRR in some cases outperforms other models (e.g., over MTPT2).  Among the models, it 
appears that NWM, which features the most complex land surface scheme, performs the best in 
capturing interannual variation of runoff.  Yet, it is premature to establish a causative link 
between the model complexity and accuracy in the portrayal of interannual variation based on 
this performance alone: HEC-HMS also implements a dynamic ET module and yet its annual 
simulations are less correlated to observations than TxRR’s.  A comparison over an extended 
period of time is needed among the models to verify the persistence of the differences and their 
statistical significance.  

The team also performed a set of comparison over four historical high flow events and the 
drought episode of 2011.  The high flow events include the episode during Hurricane Harvey 
where flow over several stations was the highest in recent history. The relative performance of 
models again varies widely across the events. The most notable features include the follows: 1) 
there appears to be a tendency for TxRR to underestimate the flow peak over these events, while 
the bias behaviors of other models are less consistent;  2) for Hurricane Harvey, all models 
underrepresent the peak and flow volumes; 3) simulated flows tend exhibit large departures from 
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observations during events where the spatial extents of heavy rainfall are limited; and this likely 
reflects issues in the NLDAS-2 precipitation product; and 4) all models overrepresent flows 
during the 2011 drought with varying degrees.  Interestingly, small, but persistent baseflow is 
observed in NWM simulations during prolonged dry periods in 2011, possibly underscoring 
issues with mass conservation. TxRR produces relatively realistic baseflow among the models 
over this period, though it grossly overrepresent flow in response to a rainfall episode in the fall.           

To establish MMIPS and prepare for its operational use over Matagorda Bay, the team set up two 
member models (HL-RDHM and HEC-HMS) for each of the eleven bay watersheds, and 
developed tools for extracting and process inflow from NWM v1.2 reanalysis. The subtasks 
involved include setting up the flow connectivity over the watersheds, configuring the models to 
ingest observed streamflow (or reservoir release), transferring model parameters derived through 
calibration at upstream watersheds for HL-RDHM and HEC-HMS, and implementing a simple 
bias correction scheme for NWM outputs developed using simulation/observation pairs over the 
five gauged upstream watersheds.   

As the bay watersheds are ungauged, it was not possible to validate the inflow simulations, and 
instead a cross-model comparison was performed.  The results of the comparison point to a 
dichotomy between the lumped (TxRR and HEC-HMS) and distributed models (NWM and HL-
RDHM), with the former producing overall larger inflow volumes into the bay. A closer scrutiny 
of model results over each watershed reveals that the under-production of inflow by the latter 
models occurs in a majority of smaller watersheds and are attributable to the differences in the 
representation of areas that drain to the bay. The distributed models were implemented using 
hydrologic connectivity based on topography data, and inlets were visually identified from the 
NHD-Plus data set and whose contributing areas often constitute only a part of each watershed as 
defined in the TWDB database.  Unsurprisingly, this relatively small drainage areas translate into 
smaller runoff volumes.  It is not yet clear which sets of estimates are closer to reality: visual 
inspection suggests that there is a distinct possibility the contributing areas are inflated in the 
TWDB watershed definitions.  On the other hand, it is also possible that the distributed models’ 
use of more precise, topography-based definitions of hydrologic connectivity leads to 
overlooking of areas that do contribute inflow to the bay, as flow directions may not be 
accurately defined due to the low topographic gradients over the region.  In addition, some of the 
ephemeral, less well-defined drainage pathways are left out in the current NWM and HL-RDHM 
implementations (Table 5-13).  Furthermore, there are also possible temporary reductions in the 
inflow volumes during high-flow events due to storages by coastal wetlands (Langevin et al. 
2005; Rasmussen 2008), which are widely present along Matagorda Bay 
(http://www.beg.utexas.edu/research/programs/coastal/wetlands/matagorda-bay).  The 
cumulative effects of overlooking small reaches, flow pathways and wetland storages on the 
inflow volumes need to be further scrutinized.  Another notable finding from the comparison of 
the inflow series by member models is that the three alternative models produce higher median 
flow than that based on TxRR.  Further analysis at a USGS station along the upstream portion of 
Lavaca River suggests that the three alternative models may have inflated the baseflow across a 
substantial portion of the region, and additional calibration effort is warranted to fine tune the 
baseflow release component of these models.  

The establishment of the MMIPS will mark a major shift from the current single-model, single-
trace inflow product generation towards a multi-model ensemble-based paradigm akin to that 
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being practiced by the NLDAS of NWS.  NLDAS relies on four land surface models to generate 
land surface conditions and disseminate these to the public, and users may choose a subset or the 
entirety of the products for decision support purposes. A key advantage of this multi-model 
paradigm is that the ensemble helps inform the users about the possible range of outcomes, and 
the users will have the ability to factor in the risk associated with certain decisions.  As the 
inflow estimates from MMIPS have not been validated, we suggest that, for simplicity, the traces 
produced by all member models be considered as equally probable representations of the actual 
inflow for the time being.    

While the analyses carried in the project underscore a number of promising aspects of alternative 
models, these at the same time point to limitations of the model implementations and system 
configurations that require further enhancements.  Some of the next steps that we recommend of 
undertaking in future efforts are summarized below:  

 

1) further improving the historical precipitation data sets; for example, the AORC dataset 
from NWS (1979-2018) can be incorporated and evaluated along with gauge data 
predating the NEXRAD era; it can then be used to retrospectively generate inflow to the 
bay through TxRR simulations; 

 

2) assessing the biases in TxRR flow simulations based on gauge and MPE products over 
upstream gauged catchments, and devise strategies for mitigating the biases in MPE-
driven inflow simulations should the magnitude of biases be deemed sufficiently severe. 
Possible mitigation strategies include a postprocessing scheme akin to that developed for 
NWM, and re-calibration of model specifically using the MPE, or the AORC product; 

    

3) refining the configuration and parameterization of member models including HL-RDHM 
and HEC-HMS.  HL-RDHM in many respects is comparable to NWM and it offers the 
flexibility of setting up and calibration. A few immediate augmentations will include 
replacing the full HRAP mesh with ¼ HRAP grid mesh to resolve smaller streams 
currently not represented by the former, and identify additional bay inlets to be included 
in the inflow calculation;  

 

4) introducing flow duration curves as a target for calibration of HEC-HMS and HL-
RDHM, or introducing a statistical bias correction scheme to improve the representation 
of baseflow. This will help address the artificial inflation of inflow by these models 
during average conditions;   

 

5) evaluating a newer NWM reanalysis based on NWM v2.0 that recently became available; 
the accuracy of this newer data set likely more closely reflects that of the real-time 
analysis generated using NWM v2.1.  As NWM real-time flow analysis features 
corrections at gauged locations through a nudging approach, its accuracy could be 
somewhat higher than the corresponding retrospective analysis. Therefore, it will also be 
helpful archiving and evaluating NWM real-time flow analysis on an on-going basis; the 
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outcomes of the evaluation will serve as the basis for an enhanced bias correction 
scheme; 

 

6) performing TxBLEND simulations based on each inflow trace of MMIPS, and using the 
salinity profile thus created to corroborate, and appraise the inflow series.  Ideally, the 
most accurate inflow series is the one that leads to the most realistic salinity series. The 
results will help determine additional measures needed to improve each member model; 

 

7) developing a postprocessor of the MMIPS that would translate the ensemble traces into 
probabilistic inflow estimates in a way that resembles the postprocessing of ensemble 
weather and streamflow forecast (Demargne et al. 2014); NWS now routines produce 
flow forecast with exceedance probability (Fig. 6-1), and methods such as Bayesian 
model averaging (Raftery et al. 1997) could be readily used for this purpose. The 
probabilistic inflow would help users appraise the uncertainties in the inflow estimates 
and plan for actions accordingly; 

 

8) re-evaluating the spatial extents of bay watersheds by combining NHD-Plus dataset, 
aerial photos and high-resolution digital elevation model; and introducing remotely 
sensed surface water, from, say Landsat imageries for events such as Harvey to assess 
and corroborate the flow paths used in HL-RDHM, HEC-HMS, and NWM.  If warranted, 
the connectivity grids for the models can be adjusted prior to the operational use of these 
models.     

 
9) incorporating ancillary data, such as soil moisture and groundwater table observations, to 

closely examine the model states across wet and dry conditions, and appraise their 
physical realism.  In particular, the tendency of all member models to produce spurious 
runoff response during extreme drought of 2011 needs to analyzed to help determine 
calibration or postprocessing strategies that would prevent similar artifacts from 
appearing in future drought events;     

 

DocuSign Envelope ID: 66C1E1E3-680E-4156-8DB2-57564AB58B15



79 
 

 

Figure 6-1 Example of ensemble stage prediction generated by WGRFC. Source: NWS 

In addition to these enhancements, we also recommend that concerted monitoring efforts be 
undertaken across the Texas coast to gather inflow data for corroborating model outputs.  
Collecting streamflow over small, tidally influenced coastal streams is challenging, but even 
limited, ad hoc data will go a long way in identifying model deficiencies and determining the 
directions of improvement.  We also suggest that, once the MMIPS is set up and passes initial 
internal evaluations at the TWDB, follow-on efforts to be undertaken to extend the coverage of 
MMIPS to other bays and estuaries along the Texas coast.  As a starter, the East Matagorda Bay 
receives freshwater inflow only from neighboring small streams after the diversion of Lower 
Colorado River, and present estimates from TxRR have been deemed uncertain.  It will be 
beneficial to implement MMIPS for all bay watersheds that drain to the Lavaca-Colorado 
Estuary System.    

The UTA project team estimates that adopting the MMIPS for Matagorda Bay will require the 
TWDB half a year assuming one full time employee being committed to this task.  The specific 
steps associated with adoption include 

1. setting up models, parameter data sets, and forcings on TWDB computing platforms; 

2. setting up real-time ingest of MPE precipitation data, and NWM real-time forcings 
(https://www.nco.ncep.noaa.gov/pmb/products/nwm/); 
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3. configuring TxRR, HL-RDHM and HEC-HMS for continuous simulation and to ingest 
MPE precipitation data on an hourly increment; 

4. configuring HEC-HMS to ingest the NWM forcing data sets needed for ET calculations, 
which include temperature, relatively humidity, wind speed, and net radiation;  

5. setting up automatic ingest of NWM streamflow analysis and programs for performing 
postprocessing  

Extending the coverage of MMIPS to the entirety of Lavaca-Colorado estuary system will 
require approximate 1.0 years to complete.   Implementing a full version of MMIPS for the rest 
of Texas bays and estuaries will require up to five years.  A potential way of expediting the 
process is to implement a simplified version of MMIPS that only relies on TxRR simulations and 
NWM real-time analysis, while gradually introducing other models over time.      
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9 Appendices 
 

A. Processing MPE data and creating mean areal precipitation time series 

The MPE data being created at WGRFC are on the HRAP grid mesh. The hourly precipitation 
total data for each hour is stored in the so-called “xmrg” file format. The naming convention for 
the xmrg file is as follows: 
 
xmrgMMDDYYYYHHz 
 
Where MM: 2-digit month, DD: 2-digit day, YYYY: 4-digit year, and HH: 2-digit hour. The last 
character ‘z’ indicates that the date-time is in Zulu time (UTC).  For example, xmrg0313200008z 
stores the rainfall accumulation ending on March 13, 2000 08z.  The project team has delivered 
two archives to the TWDB.   
 
The archive MPE data for 1998-2017 are included in the archive xmrg-wgrfc.tgz, whereas the 
scripts for processing the MPE data can be found in MPE-MAP.tgz 
 

Archive name Content 
xmrg-wgrfc.tgz MPE data from WGRFC for 1998-2017 
MPE-MAP.tgz Scripts for computing mean areal precipitation from raw xmrg files; 

list of xmrg files and basin boundaries for Matagorda Bay 
watersheds 
Examples of MAP series used in the project 

xmrg-util.tgz Utilities for decoding and manipulating xmrg files 

 
These tools are best used in a unix/linux environment.  The UTA project team performs most of 
the analysis on a Dell Workstation with 32GB memory and 15TB storage space.  It is 
recommended that a Linux workstation with at least 16GB memory and 8TB storage be set up.  
 
Below is a table summarizing the hardware, operating systems and software settings 
recommended for using the tools. Note all the compilers and utilities listed here can be obtained 
for free.  
                                                        

Hardware requirement Workstation with >16GB memory and >8TB storage  
Operating systems Linux with Kernel 4.x and above 
Compilers Gnu C, C++ and gfortran; or Intel C, C++ and 

Fortran compilers 
Utilities Gnu tar; shell; Gnu Make 

Python3, R 
Libraries C++ Boost, libz, libm 

 
To use the tools, the following steps will be involved.  
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1. Preparations 
Save the three archives in a directory on the workstation, say /data/xmrg-works 

 
Uncompress the xmrg-util.tgz by issuing the following command: 
[#####@#### TWDB-deliverables]$ tar zxvf xmrg-util.tgz 
 
The files are now dumped to the directory “xmrg-util”. Use ‘ls’ to list the files under the 
directory:  
 
[#####@#### TWDB-deliverables]$ ls xmrg-util 
compMAP_64x/  XMRG_LIB_64x/  xmrgtoasc/ 
 
The first directory “compMAP_64x” contains the codes for computing MAP-X from the xmrg 
files.  The directory “xmrgtoasc” contains the codes for dumping the content of a xmrg file into 
ArcGIS ascii grid format.  In order to compile these, one needs to step the XMRG libraries under 
“XMRG_LIB_64x”. The commands are shown below. 
 
[#####@#### TWDB-deliverables]$ cd xmrg-util/XMRG_LIB_64x/ 
[#####@#### XMRG_LIB_64x]$ls  
com_header.h*    fill_miss2d.o*  HRAP.o*        write_grid2.f*  XMRG.o* 
endian.c*        GNUmakefile*    linux.h*       write_grid2.o*  xmrgutil.a* 
endian.o*        GNUmakefile,v*  make.log*      XMRG.cc* 
filesystem.hpp*  HRAP.cc*        models.h*      XMRG.cc.bak* 
fill_miss2d.c*   HRAP.h*         projection.h*  XMRG.h* 
 
Among these files, GNUmakefile is the makefile for compiling the codes. Before compiling, 
making sure: 1) gnu make is installed; and b) boost libraries are installed.  Now issue the 
following command: 
 
[#####@#### TWDB-deliverables]$ make clean  
[#####@#### XMRG_LIB_64x]$ make 
 
This will create “xmrgutil.a”. Once this is done, one may proceed to compile the executables. 
Let’s first set up the xmrgtoasc utility:  
 
[#####@#### TWDB-deliverables]$ cd ../xmrgtoasc 
[#####@#### TWDB-deliverables]$ rm xmrgtoasc.x 
[#####@#### TWDB-deliverables]$ make clean; make 
 
If successful, this will create an executable “xmrgtoasc.x” in the current directory.  Add the 
current path to your default path so that it can be invoked regardless of directory you are in. 
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Now, switch to directory compMAP_64x, and compile the executable for computing the basin 
average precipitation.  
 
[#####@#### TWDB-deliverables]$ cd ../compMAP_64x 
[#####@#### TWDB-deliverables]$ make clean; make  
 
If successful, this will create an executable “compMAP_64x.x”. Also add the current directory to 
your default path.  
 
2. Now, proceed to use xmrgtoasc.x to view the xmrg files.  
 
The xmrg files are in the archive xmrg-WGRFC.tgz.  To untar, use the following command: 
 
[#####@#### MPE]$ tar zxf xmrg-WGRFC.tgz 
 
This will extract all the xmrg files under media/home2/WGRFC/data/ 
 
[#####@#### MPE]$ cd media/home2/WGRFC/data/2000 
 
Type the following command after the prompt to create the ascii formatted grid:   
 
[#####@#### MPE]$ xmrgtoasc.x  xmrg0313200008z.gz -o xmrg0313200008z.asc 
 
Then one can use any editor to view the asc file: 
 
ncols 425 
nrows 390 
xllcorner 290.000000 
yllcorner 10.000000 
cellsize 1.000000 
NODATA_value -1.000000 
0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
0.000000 0.00 
0000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
0.000000 
 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
0.000000 0.0 
00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 
0.00000 
0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00 
 
The header contains the dimension and the location of the grid in the HRAP coordinate system.  
 
3. Compute MAP series from a list of xmrg files. 
 
[#####@#### TWDB]$ tar zxf MPE-MAPX.tgz 
[#####@#### TWDB]$ cd MAPX/delivery/Scripts 
[#####@#### Scripts]$ ls 
compMAP_64x.x*  convert.coord.hh.R*  Matagorda_Grid.zip*  xmrg.wg.lst* 
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comp.mapx.log*  Matagorda.asc*       ws-coords/           xmrg.wg.sub.lst* 
comp.mapx.sh*   Matagorda_Grid/      ws.matagorda.lst* 
 
The script “comp.mapx.sh” is for producing the MAP series for Matagorda Bay watersheds.   
 To run it requires, one needs to create a list of xmrg file, and a list of files with basin masks. An 
example of xmrg list is given in  “xmrg.wg.lst”.  This is what is in the file: 
[#####@#### Scripts]$ more xmrg.wg.lst 
 
/media/home2/WGRFC/data/1998/xmrg0101199800z.gz 
/media/home2/WGRFC/data/1998/xmrg0101199801z.gz 
/media/home2/WGRFC/data/1998/xmrg0101199802z.gz 
/media/home2/WGRFC/data/1998/xmrg0101199803z.gz 
/media/home2/WGRFC/data/1998/xmrg0101199804z.gz 
/media/home2/WGRFC/data/1998/xmrg0101199805z.gz 
/media/home2/WGRFC/data/1998/xmrg0101199806z.gz 
/media/home2/WGRFC/data/1998/xmrg0101199807z.gz 
/media/home2/WGRFC/data/1998/xmrg0101199808z.gz 
/media/home2/WGRFC/data/1998/xmrg0101199809z.gz 
/media/home2/WGRFC/data/1998/xmrg0101199810z.gz 
/media/home2/WGRFC/data/1998/xmrg0101199811z.gz 
 
 
For real-time operation, this list needs to be constantly updated.  If the model is configured to run 
daily, the list may contain the names for the most recent 24 xmrg files.  
 
The file “ws.matagorda.lst” contains the files that store the basin masks.  
 
ws-coords/14010 
ws-coords/15010 
ws-coords/15015 
ws-coords/15020 
ws-coords/15025 
ws-coords/15030 
ws-coords/15040 
ws-coords/15050 
ws-coords/15055 
ws-coords/15060 
ws-coords/16001 
ws-coords/16005 
ws-coords/16007 
ws-coords/16008 
ws-coords/16014 
ws-coords/17010 
ws-coords/17020 
ws-coords/17030 
ws-coords/17040 
ws-coords/17050 
ws-coords/17060 
ws-coords/17065 
ws-coords/17070 
ws-coords/17075 
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Each line represents one file. For convenience, all the files are stored under ws-coords. Here is 
an example of the basin mask: 
 
> more ws-coords/15015 
631 138 
632 138 
629 137 
630 137 
631 137 
632 137 
628 136 
629 136 
630 136 
631 136 
627 135 
628 135 
629 135 
630 135 
627 134 
628 134 
 
There are two columns, for x and y-coordinates for each pixel in the basin (in HRAP coordinate 
system).  Masks for all the basins that drain to Matagorda-Lavaca system are included here. 
Before running the script, one needs to make sure compMAP_64x.x is in the current directory 
(the one sitting in the same directory needs to be removed).  
 
[#####@#### Scripts]$ rm compMAP_64x.x 
 
Then run the script, simply type 
 
>comp.mapx.sh 
 
The output time series for each of the watersheds can be found under MAPX/delivery/TS. Here 
is one example: 
 
> head  ../TS/15040.mapx01 
$MAPX FROM FILES:../TS 
NEXRAD        MAP  L    MM   1    15040 
 1  2001 12   2007  1   F8.3 
15040    19980101 00   0.000 
15040    19980101 01   0.000 
15040    19980101 02   0.000 
15040    19980101 03   0.000 
15040    19980101 04   0.000 
15040    19980101 05   0.000 
15040    19980101 06   0.000 
 
The time series in the data card format, with a 3-line header and a table consisting of  
“WS-ID  YYYYMMDD HH  Precip”, which represent watershed ID, date, time (in Zulu time),  
and precipitation amount is in mm. 
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Note that the mask for each basin was derived from the polygon basin boundary stored in the 
shapefile supplied by the TWDB using the R script named “convert.coord.hh.R” (also under 
MAPX/delivery/Scripts).  In case the basin boundaries are updated, one may convert the polygon 
to update the “Matagorda.asc” that serves as the basis for the R script.  Running the R script will 
create a new set of masks.  
 
4. Conversion of the hourly MAPX time series into daily accumulations needed for TxRR 

input. This is accomplished in a python script “PCP_Input_TxRR_From_MAPX.py” under 
MAPX/delivery/Scripts. The script performs the following tasks: 

 
1) translating the time labels of the hourly series from zulu time to local (Central time). We 

used central daylight saving time as the target time zone for convenience but this could 
be changed in the future; 

2) aggregating the resulting time series onto daily scale, and merging the results into one 
comma delimited file;  

 
The script can be run by typing the following commands: 
 
[#####@#### Scripts]$ python3 PCP_Input_TxRR_From_MAPX.py 
 
An example output is included in the deliverable named “date_ws_avg_precip.csv” (under 
MAPX/delivery/Scripts). This file contains daily precipitation time series for all basins.  

 
>more date_ws_avg_precip.csv 
,date,16007,16014,16001,16005,15020,15050,17030,15030,17020,16008,14010,15060,15040,17010,15 
010,17040,17050,15025,15055,17060,17065,15015,17075,17070 
1/1/1998,1/1/1998,0.003897638,0.001181102,0.001141732,0.001614173,0,0,0.000984252,0,0.001614 
173,0,0,0,0,0.004527559,0,0.001062992,0.002322835,0,0,0.002952756,0,0,0,0.000314961 
1/2/1998,1/2/1998,0.026574803,0.026181102,0.000551181,0.008307087,0,0.000748031,0.019606299, 
0.001456693,0.013031496,0.040629921,0.026653543,0.001889764,0.001968504,0.011653543,0.009763 
78,0.048503937,0.024291339,0.010551181,0,0.027244094,0.013503937,0.027322835,0.012480315,0.0 
17165354 
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B.  HEC-HMS model configuration and parameter estimation 

   
The files needed for setting up and running HEC-HMS can be found in HEC-HMS.zip  
 

Archive name Content 
HEC-HMS.zip HEC-HMS configuration files, maps, forcings, and example results 

 
The HEC-HMS set up was developed for version 4.3 on Microsoft Windows 7 platform.  
In order to run HEC-HMS in real time.  It is recommended that a Linux workstation with at least 
32GB memory and 10TB storage be set up.  
 
Below is a table summarizing the hardware, operating systems and software settings 
recommended for using the tools.  
                                                        

Hardware Requirements Workstation with >32GB memory and >10TB storage  
Operating systems Windows 7, 8, 10 
Compilers N/A 
Utilities xmrgtodss, HEC-DSS (optional) 

ArcGIS, Python3 
Libraries N/A 

 
 
This appendix details the model configuration, preparation of forcing inputs, and parameter 
estimation.  
 

Model Configuration: 

The main component is basin model that was set up based on the shapefile provided by the 
TWDB, at this stage we excluded the watershed delineation procedure in GIS because we 
already have the sub-watersheds. We get the area, latitude, and longitude from the given 
shapefile using the GIS tool. We used simple canopy as Canopy method, simple surface as 
Surface Method, SMA as loss method, Clark Unit Hydrograph as Transformed Method and 
Linear Reservoir as Base Flow Method. All the parameters of the methods are estimated using 
soil, land use information and USGS observed flow. 

Moreover, the control specifications include a starting date and time, ending date and time, and a 
time interval. All the input and output time-series and other paired-value data are stored in 
HEC’s Data Storage System (DSS). The default outputs include peak flow and total volume for 
each hydrologic element in the basin model. Table 9-1 shows that selected methods for this 
study. 

Basin Average Precipitation: We downloaded the hourly CONUS NLDAS_FORA0125_H: 
NLDAS Primary Forcing Data L4 Hourly 0.125 x 0.125-degree V002 data from Earth data 
system of NASA (https://disc.gsfc.nasa.gov/datasets/NLDAS_FORA0125_H_002/summary). As 
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our model is a lumped model, we converted the gridded precipitation to basin average 
precipitation using zonal statistic tool available in ArcGIS. After making the basin average 
rainfall, we wrote a python script to make time series rainfall from each of the hourly csv file for 
15 years, the total number of files processed was more than 131K, so processing this large 
number of files altogether needs big memory of the computer system and takes long time. A 
schematic of the module is shown in the following Fig 9-1 where we loop through each NetCDF 
files and passing the basin boundary to compute the basin average values and saves as csv files 
in the designated directory. 

 

Figure 9-1 Schematic of the process of creating mean areal precipitation for HEC-HMS. 

Table 9-1  HEC-HMS components and models of choice. 

Component Model 

Surface  Simple Surface 

Canopy  Simple Canopy 

Loss  SMA 

Transform  SCS Unit Hydrograph 

Baseflow  Linear Reservoir 

Routing  Muskingum 

 
The surface, canopy, loss, and baseflow methods for the SMA-based model utilize a total of 17 
parameters; eight parameters namely canopy storage, surface storage, infiltration rate, percent 
impervious, soil percolation rate, soil storage, tension zone storage, groundwater layer 1 
percolation rate have been estimated from soil (Fig. 9-2) and land use (Fig. 9-3) data, four 
parameters have been estimated from streamflow recession analysis (groundwater layers 1 and 2 
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storage depth and coefficient), and five parameters have been calibrated (groundwater layer 2 
percolation rate, groundwater layers 1 and 2 baseflow coefficient and baseflow reservoir count). 
It is necessary to mention that the groundwater layer 1 represents interflow, and groundwater 
layer 2 represents groundwater flow. 

 

Figure 9-2 Soil(left) and land cover (right) of watersheds draining to Matagorda Bay. 

The soil map has been downloaded from soil SSURGO website using ArcGIS SSURGO 
downloader. 
(https://www.arcgis.com/apps/View/index.html?appid=cdc49bd63ea54dd2977f3f2853e07fff). 
Then classified the soil data using ArcGIS tool, based on the soil group as shown in the Fig. 9-1. 
In this study, the USGS (https://www.usgs.gov/core-science-systems/science-analytics-and-
synthesis/gap/science/land-cover-data-download?qt-science_center_objects=0#qt-
science_center_objects)  land use information of Texas for the year 2011 has been used because 
of study period which is from 2003 to 2017, that’s why we omitted the land use data for 2006 
and 2016.  The steps followed for estimating the model parameters are adopted from tutorial 
provided on Dr. Venkatesh Merwade's research page and available at the following address: 
https://web.ics.purdue.edu/~vmerwade/education/geohms.pdf and the model set-up was adopted 
from ‘Advanced Hydrology’ course material at UTA. 

1) Parameters estimated from Land Cover: The maximum canopy storage and percent 
impervious grids are both estimated from land use data (Fig. 9-3). The values provided in Table 
9-3 (Bennett 1998), canopy interception values are estimated. Since Matagorda watershed is 
basically a rural watershed and it is considered covered by general vegetation, we estimated the 
canopy interception as 0.05 inch or 1.27 for our initial model setup. It is observed from the Fig. 
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B-3 that the watershed is mostly covered by ‘Agricultural Land’ and some part is covered by 
‘Forest’. 

 

 

 

 

Table 9-2  Canopy interception values in the HEC-HMS surface model. 

Type of Vegetation 
Canopy Interception 

In. mm 
General Vegetation 0.05 1.270 

Grasses and Deciduous Trees 0.08 2.032 
Trees and Coniferous Trees 0.1 2.540 

 
 
2) Parameters estimated from SSURGO Data: Six SMA parameters are estimated from the 
SSURGO database, maximum surface storage, maximum infiltration rate, maximum soil 
percolation rate, soil storage, tension zone storage, and groundwater layer 1 maximum 
percolation rate. Surface storage values are estimated for each sub-basin from Table 9-3, that 
shows the default values of surface depression storage. It is also discernible from Fig-1 that the 
watershed is dominated by soil group D which are clay loam, silty clay loam, sandy clay, silty 
clay, or clay. This Hydrologic Soil Group (HSG) has the highest runoff potential. They have very 
low infiltration rates when thoroughly wetted and consist chiefly of clay soils with a high 
swelling potential, soils with a permanent high water table, soils with a claypan or clay layer at 
or near the surface and shallow soils over nearly impervious material. In this study, we 
considered ‘Flat, Furrow Land, with moderate to gentle slope, however we assumed that the 
surface is dry initially and maximum storage is 0.2 in.  

Table 9-3 Values of surface depression storage from Fleming (2002). 

Description Slope (%) 
Surface Storage 

In. mm 

Paved Impervious Areas NA 0.125-0.25 3.18-6.35 

Flat, Furrowed Land 0-5 2.00 50.8 

Moderate to Gentle Slopes 5-30 0.25-0.50 6.35-12.70 

Steep, Smooth Slopes >30 0.04 1.02 

3) Parameters estimated from USGS Streamflow Data: First we plotted the daily streamflow 
data for 3 to 4 storms occurring during different months of the year considering the storms are 
fairly isolated; we chose the storms such that streamflow hydrograph returns to normal for a couple 
days before runoff from the next storm is visible. we know that streams convey stored water from 
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three different sources such as stream channels, surface soil known as interflow, and groundwater 
as baseflow. We break up a streamflow hydrograph into its various components and calculate the 
variables necessary for soil moisture accounting in HEC-HMS. We downloaded the available 
streamflow data from USGS website and create a hydrograph of the streamflow data on a semi-
logarithmic plot as shown in the following Fig. 9-3 for USGS station 08164000. 

 

Figure 9-3 Example hydrograph for recession analysis. 

The tail-end of the receding limb represents the time when groundwater is the only source 
contributing to streamflow, when both surface runoff and interflow stop. There should be an 
inflection point visible in this area of the graph to help you identify the correct portion of the 
hydrograph. The Fig-B5 shows the procedure of groundwater separation from hydrograph, 
projecting a line backwards from the tail-end of the receding limb to the time of peak flow, 
maintaining the slope of that tail-end portion and connecting  the line to the point at which the 
hydrograph begins to rise as a result of runoff .This line represents the groundwater contribution 
to streamflow, or GW2. 

100

1000

10000

1/7/2003 1/12/2003 1/17/2003 1/22/2003

Fl
ow

 (
cf

s)

Date

USGS at 08164000

Receding

Streamflow 

DocuSign Envelope ID: 66C1E1E3-680E-4156-8DB2-57564AB58B15



97 
 

 

Figure 9-4 Schematic for separating groundwater contribution to streamflow. 

After that subtracted the groundwater from the streamflow, we get the interflow and this interflow 
represents GW1.  We know that the equation of a recession curve of a hydrograph is expressed by 
the following equation 1: 

q1= q0Kr = q0*exp(-αt)   

Where 𝑞0 is the initial streamflow, 𝑞1 is the streamflow at a later time t, 𝐾𝑟 is a recession constant 
less than 1, and 𝛼=−ln𝐾𝑟. The time stop for streamflow regression analysis is assumed to be 1 day. 
Using the area of shallowest slope of the streamflow hydrograph and Equation B1, we calculated 
the Groundwater 2 𝛼-value for each step. we get the final 𝛼-values after averaging all and 
calculated the Groundwater 2 Recession Coefficient using Equation B2, as shown below:  

𝑅𝑒𝑐𝑒𝑠𝑠𝑖𝑜𝑛 𝐶𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡=1/𝛼  

Using the same section of the streamflow hydrograph and Equation B3, calculated the 
Groundwater 2 Storage depth for each step and get the final Groundwater B2 after averaging them. 

Storage Depth. 𝑆𝑡 = 𝑞𝑡/A𝛼  

Where 𝑆𝑡 is the storage in the basin at time, t and A is the area of the watershed. we repeated the 
same calculations using the Runoff and Interflow graph to determine the Groundwater 1 Recession 
Coefficient and Groundwater 1 Storage Depth.  

Table 9-4 shows a brief description of how we estimated the model parameters for this 
study. 

4) Maximum Infiltration Rate. The maximum infiltration rate or infiltration capacity is the 
fastest rate at which precipitation can seep from the ground surface into the soil profile and it is 
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greatest when the soil is saturated, however, it decreases significantly as the water content of the 
soil decreases. Since the maximum hydraulic conductivity is the saturated hydraulic conductivity, 
the maximum infiltration rate of each map unit is taken as the weighted average of the saturated 
hydraulic conductivity for the topmost horizon of each component this is shown in the following 
Table 9-4. This is achieved using the component percent and the saturated hydraulic conductivity 
of the first horizon (Fleming 2002) 

Table 9-4  Example I of a multi-component soil unit and saturate hydraulic conductivity values. 

Cokey: 4560 
Component %: 40 

Layer 1 saturated hydraulic 
conductivity (μm/s): 6.25 

Cokey: 5428 
Component %: 26 
Layer 1 saturated 

hydraulic conductivity 
(μm/s): 22.20 

Cokey: 2856 
Component %: 41 
Layer 1 saturated 

hydraulic conductivity 
(μm/s): 85.38 

Sample Calculation: 

Max. Infiltration Rate = (40*6.25/100)+(26*22.20/100)+(41*85.38/100) = 43.28 μm/s 

5) Maximum Percolation Rate. Percolation is the process by which water is transferred 
through the soil profile and groundwater layers and limited by the lowest hydraulic conductivity 
(Zaslavsky and Rogowski 1969). As described in Bennett (1998) and Fleming (2002), the average 
saturated hydraulic conductivity of all horizons in a component is used to calculate the maximum 
percolation rate. The maximum percolation rate is taken as the weighted average of the horizon-
average saturated hydraulic conductivity for all components in a map unit and is used for both the 
soil profile and groundwater layer 1 percolation rates, a sample calculation is shown as per the 
information provided in Table 9-5. 

Table 9-5 Example II of a multi-component soil unit and saturated hydraulic conductivity values. 

Cokey: 4560 
Component %: 40 

Average saturated hydraulic 
conductivity (μm/s): 5.78 

Cokey: 5428 
Component %: 26 
Average saturated 

hydraulic conductivity 
(μm/s): 10.15 

Cokey: 2856 
Component %: 41 
Average saturated 

hydraulic conductivity 
(μm/s): 32.92 

Sample Calculation: 

Max. Percolation Rate = (40*5.78/100)+(26*10.15/100)+(41*32.92/100) = 18.45 μm/s 

6) Maximum Soil Profile Storage. The maximum soil storage is the storage depth 
available in voids and soil pores when the soil is dry that can be drained by gravity 
or evaporation (HEC 2000). The soil profile storage is calculated by multiplying the 
component percent, average porosity, and the depth from the soil surface to the deepest 
horizon together for each component and then summing these values to reach a total for 
each map unit as provided in Table 9-6.  
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Table 9-6 Example of a multi-component soil unit with properties for computing maximum storage 

Cokey: 4560 
Component %: 40 
Porosity (%): 30 
Depth from soil 

surface (cm): 195 

Cokey: 5428 
Component %: 26 
Porosity (%): 32 
Depth from soil 

surface (cm): 130 

Cokey: 2856 
Component %: 41 
Porosity (%): 47 
Depth from soil 

surface (cm): 200 

 

Sample Calculation: 

Max. Storage =( 40

100
*

30

100
*195) + ( 

ଶ

ଵ
∗

ଷଶ

ଵ
∗ 130) + ( 

ସଵ

ଵ
∗

ସ

ଵ
∗ 200) = 72.756 cm 

7) Maximum Tension Zone Storage. The soil moisture tension is defined as the tension with 
which the water is held in the soil matrix, usually the soil moisture tension refers to 15 atmospheric 
pressure and the maximum tension zone storage is the storage depth available in the form of water 
attached to soil particles and this water can only be removed via evaporation, suction, or contact 
with a dry, porous material (HEC 2000). However, Field capacity is the amount of water left in 
the soil after the gravitational water has been removed. The tension zone storage is calculated by 
multiplying the component percent, average field capacity, and the depth from the soil surface to 
the deepest horizon together for each component and then summing these values to reach a total 
for each map unit as provided in Table 9-7. We know that in the SMA model, the soil profile is 
divided by the tension zone and the upper zone. However, SMA does not require a value for the 
upper zone directly; rather it calculates the storage depth of the upper zone as the maximum soil 
profile storage minus the maximum tension zone storage (HEC 2000). 

Table 9-7 Example of a multi-component soil unit with properties for computing maximum tension storage. 

Cokey: 4560 
Component %: 40 

Field capacity (%): 26 
Depth from soil 

surface (cm): 195 

Cokey: 5428 
Component %: 26 

Field capacity (%): 12 
Depth from soil 

surface (cm): 130 

Cokey: 2856 
Component %: 41 

Field capacity (%): 40 
Depth from soil 

surface (cm): 200 

Sample Calculation: 

Max. Tension Storage =( 40

100
*

26

100
*195) + ( 

ଶ

ଵ
∗

ଵଶ

ଵ
∗ 130) + ( 

ସଵ

ଵ
∗

ସ

ଵ
∗ 200)   

= 57.00 cm 

All the calculation above is done for gridded model and later converted to basin average values in 
order use it in our lump model. 

8) Parameters of SCS Unit Hydrograph:  
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Time of Concentration (Tc): We adopted the SCS method for watershed lag that was developed 
by Mockus in 1961 for estimating the time of concentration and storage coefficient. The following 
equation B-4 and B-5 represent the lag time, 

L= 
l0.8(S+1)0.7

1900Y0.5    

Applying L = 0.6Tc, that yields 

Tc= 
l0.8(S+1)0.7

1140Y0.5    
Where: 
L = lag time, h 
Tc = Time of concentration, h 
l = flow length, ft 
Y = Average watershed land slope, % 
S = maximum potential retention, in 

S = 
ଵ

ே
− 10 

CN = Curve Number 

Flow length: In the watershed lag method of computing time of concentration, flow length is 
defined as the longest path along which water flows from the watershed divide to the outlet. We 
measured the Flow length using GIS techniques. Mockus (USDA 1973) developed an empirical 
relationship between flow length and drainage area using data from Agricultural Research Service 
(ARS) watersheds.  

l= 209A0.6 

where, 
l= flow length,ft 
A = Drainage area in acres 

Sample Calculation: We calculated the land slope using DEM data in GIS and calculated Tc 
and S as follows: 

For TWDB ID 15010: 

A = 148.91 mile2 = 95301.83 acres 

l = 209A0.6 = 209*95301.830.6  = 203052 feet 

S = 
ଵ

ଽଷ
− 10 = 0.7526 in 

Tc= 
l0.8(S+1)0.7

1140Y0.5    =  
2030520.8(0.7526+1)0.7

1140(1.5)0.5   = 18.69 hrs 

Storage Coefficient: We calculated the storage coefficient according to Sabol (1988) because 
we already have all the values for this equation it is presented in equation B-6. 

R = 
Tc

1.46‐0.0867(
L2

A
)
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R = 
ଵ଼.ଽ

ଵ.ସି.଼(
మబయబఱమమ

వఱయబభ.ఴయ∗రయఱలబ
)
 = 31.203 hrs 

The following Table 9-8 presents the time of concentration and storage coefficient of all the sub-
watersheds within Matagorda Bay watershed 

 

 

 

 

Table 9-8  Features of each bay watershed and SMA parameter values 

TWDB 
ID 

Area 
(mile2) 

Area 
(Ac) 

Flow Path 
,l (ft) 

Aver_slope, 
Y(%) 

CN 
Storage, 

S(In) 
Tc(hr) 

Storage 
Coefficent, 

R(hr) 

15010 148.91 95301.83 203052 1.5 93 0.752 18.69 31.206 

15020 156.06 99879.78 208849 2 87 1.542 21.48 36.36 

15030 93.94 60122.05 154016 1.5 87 1.546 19.46 28.85 

15040 107.34 68695.87 166842 1 88 1.405 24.42 37.36 

15050 384.40 246016.20 358694 1 87 1.481 46.04 109.86 

15060 63.38 40564.57 121628 0.5 88 1.413 26.88 36.62 

16001 107.15 68572.91 166662 4 85 1.726 13.32 20.37 

16005 709.31 453960.44 518033 4.6 77 3.064 40.69 143.57 

16007 331.14 211932.09 327993 4 84 1.968 24.29 54.03 

16008 88.49 56633.37 148590 0.5 89 1.218 29.74 43.48 

16014 1070.50 685121.91 663143 3.5 78 2.896 55.18 302.45 

17010 36.60 23423.45 87486 0.5 89 1.289 19.90 24.58 

17020 107.29 68664.76 166796 2 80 2.492 22.41 34.29 

17030 273.37 174956.67 292351 2 84 1.836 30.35 62.23 

17040 71.14 45531.96 130358 0.5 86 1.593 29.88 41.66 

17050 49.73 31828.48 105156 0.5 87 1.516 24.64 32.06 

17060 151.49 96955.96 205159 1 87 1.434 29.06 48.76 

17070 162.32 103883.04 213832 0.5 90 1.073 37.95 64.99 

9. Routing Parameters: In this study we adopted the Muskingum as hydrologic routing method  

which is a flood routing method that uses a simple conservation of mass approach to route flow 

through the stream reach and it assumes that the water surface is not level. The Muskingum K is 
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essentially the travel time through the reach that is estimated from the knowledge of the cross-

section properties and flow properties. The Muskingum X is the weighting between inflow and 

outflow influence. 

We estimated the travel time using the Manning’s equation as shown in equation B-7, 

V= 
1.49R

2
3S

1
2

n
  

Where, 

V = Average flow velocity in fps that is usually determined for the bankfull elevation. 

n = Manning’s roughness  

S = Average Channel Slope (%) 

R = Hydraulic Radius of the channel in feet, 

R = A/P, where A is Area in square feet and P is Wetted Parameter in feet 

Travel time, K = l/V, l is the Flow length of the channel in feet 

Sample Calculation: We assumed the channel as trapezoidal section as shown in Fig 9-5 and 

calculated width and depth from the DEM data using ArcGIS, a sample calculation is given below: 

 

Figure 9-5 An example of trapezoidal channel cross-section used in HEC-HMS routing calculation. 

We know from continuity equation, 

Q = AV, where Q is the flow rate in cfs, A is Area and V is mean velocity, using the bankfull 
discharge for a storm event we calculated the hydraulic radius, R and used that R in the later 
calculation to determine V. 
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Assume, Q = 10000 cfs, A = (b+zh)h = (1000+2*20)20 = 20800 ft2 

 n = 0.025, S = 0.0005 

V = Q/A = 10000/(20800) = 0.48 fps 

R = (V*n /1.49*S0.5)3/2 = (0.48*0.025/1.49*0.00050.5)1.5 = 0.216 ft 

Using this R we calculated the velocity from equation B-7 and calculated K as follows: 

V= 
1.49R

2
3S

1
2

n
=  

ଵ.ସଽ(.ଶଵ)
మ
య(.ସ)

భ
మ

.ଷ
  = 0.3577 ft/s 

K = l/V = 20300 / 0.3577 = 56740 seconds = 15 hrs  

And we assumed X values as the average of min and max of the range of X value which is 0.25a 
and later fixed in the calibration experiment.  

Estimation of ET Parameters: 

In this study we used Penman-Monteith method for the calculation of Evapotranspiration and the 
inputs for this method are Temperature, Wind Speed at 2-m height, Relative Humidity and 
Sunshine hours. Moreover, this method needs coordinate of Meridian that passes over the study 
area. We calculated the basin average temperature, wind speed, relative humidity and sunshine 
hour using GIS, we made an automatic model using model builder in GIS to create a time series 
of the basin average data needed for ET module. We used zonal statistics tools available in ArcGIS 
10.6 version to calculate basin average inputs from NLDAS gridded data as shown in the Fig. 9-
6.  
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Figure 9-6 Schematic of Model Builder tool in ArcGIS for computing basin average forcings from 
NLDAS gridded forcing data set 

After calculating the basin average, we used python code to make time series inputs for the ET 
Module. After taking inputs for all module, we specified the time window for our model as shown 
in Fig-B8, then we started calibration-validation experiment 
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Figure 9-7  Control specification for HEC-HMS model. 

Model calibration: Parameter adjustment for watershed 17040 (Outlet 08164800) 

After calculating all the parameters, the monthly pan evapotranspiration data is added to 
meteorological models; precipitation and streamflow data from 2004-2012 are added to the time 
series data. The calibration session begins with running the model and examining the baseflow 
output. Initial values of the calibration-determined parameters, GW2 percolation rate, GW1 and 
GW2 baseflow coefficient and baseflow reservoir count, are set. For each calibration the canopy 
method, surface method has been fixed. However, the time of concentrations and storage 
coefficient has been changed a little bit. Mostly the loss parameters such as % impervious, 
maximum infiltration, soil storage and tension storage have been adjusted to match the observed 
discharge. These parameters have been found to be the most sensitive for the model calibration. 
After satisfactory model calibration, the validation process begins. Precipitation and streamflow 
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data from 2012 are added to the time series data. And validation experiments are performed. The 
final calibration model parameters are presented in the following Table 9-9. 

Table 9-9  SMA parameter values obtained from model calibration 

Model Parameters 
Subbasin-

15020 
Subbasin-

16005 
Subbasin-

16007 
Subbasin-

17020 
Subbasin-

17040 

Time of Concentration (hr) 5 25 7.92 7.5 6.5 

Storage Coefficient (hr) 50 40 25 17 11.5 

Max. Canopy Storage (in) 0.02 0.02 0.02 0.02 0.02 

Max. Surface Storage (in) 0.2 0.2 0.1 0.2 0.2 

% Impervious 0.5 6 1 1 0.5 

Max. Infiltration Rate (in/hr) 0.149 0.5 1.5 2.3 2 

Soil Storage (in) 5 5 5.4 5.35 6 

Tension Zone Storage (in) 4.85 4.8 4.5 4.35 3 

Soil Percolation Rate (in/hr) 0.05 0.3 1.33 0.3 1.5 

GW 1 Storage (in) 1.5 0.1 1 6.2 5.4 

GW 1 Percolation Rate (in/hr) 0.347 0.2 0.1 0.254 0.8 

GW 1 Coefficient (hr) 25 5 15.1 35 14 

GW 2 Storage (in) 1.5 5 20 3.9 10 

GW 2 Percolation Rate (in/hr) 0.00001 0.00005 0.00001 0.0005 0.0005 

GW 2 Coefficient (hr) 1000 1500 1000 1500 2500 

GW 1 Baseflow Coefficient (hr) 20 8 12 12 15 

GW 1 Baseflow Reservoirs 1 1 1 1 1 

GW 2 Baseflow Coefficient (hr) 200 20 200 200 20 

GW 2 Baseflow Reservoirs 1 1 1 1 1 
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C. HL-RDHM model configuration and parameter estimation 

 
The archives required for setting up and running HL-RDHM are summarized below.  
 

Archive name Content 
RDHM-codes.tgz HL-RDHM source code and documentation 
RDHM-data.tgz HL-RDHM configuration files for  

Examples of HL-RDHM output  

 
 
These tools are best used in a unix/linux environment.  The UTA project team performs HL-
RDHM simulations on a Dell Workstation with 32GB memory and 15TB storage space.  In order 
to run HL-RDHM in real time.  It is recommended that a Linux workstation with at least 32GB 
memory and 8TB storage be set up to run the model for Matagorda Bay.   
 
Below is a table summarizing the hardware, operating systems and software settings 
recommended for using the tools. Note all the compiles and utilities listed here can be obtained 
for free.  
                                                        

Hardware Requirements Workstation with >32GB memory and >8TB storage  
Operating systems Linux with Kernel 4.x and above 
Compilers Gnu C, C++ and gfortran; or Intel C, C++ and Fortran 

compilers 
Utilities Gnu tar; shell; Gnu Make 

Python3, R 
Libraries C++ Boost, libz, libm 

 
 
The HL-RDHM source codes are delivered in the RDHM-codes folder. To decompress the archive, 
issue the following command in a linux/unix shell.  
 
[#####@#### TWDB-deliverables]$ cd RDHM-codes/ 
[#####@#### RDHM-codes]$ tar zxf hl-rdhm-release-3.5.12.1.tgz 
[#####@#### RDHM]$ cd hl-rdhm-release-3.5.12.1/ 
[#####@#### RDHM]$ ./configure 
 
This will generate makefiles that allow you to compile the code 
[#####@#### RDHM]$ ./make 
 
Compiling the code would yield executable “rdhm” under “driver” subfolder, and this executable 
can be moved to a location (say /usr/local/bin) where it can be easily accessed by all users. 
 
Now decompress the RDHM-data.tgz. 
 
[#####@#### TWDB-deliverables]$ tar zxf RDHM-data.tgz 
[#####@#### TWDB-deliverables]$ cd RDHM-data 
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Under the folder RDHM-data, there are several folders where input decks, parameters and outputs 
are stored.  
 
input-cards/: input files for running HL-RDHM 
RDHM-domain-wide-routing-params/: routing parameters for all watersheds in the study domain  
SAC-priori-ssurgo/: A priori SAC-SMA parameter grids 
USGS-15min-observations/: 15-min USGS flow and state observations downloaded from USGS 
USGS-hourly-card/: hourly USGS observations in data card format, converted from raw USGS 
rdb format 
rdhm-runs/: outputs. 
 
The input file for generating inflow across bay watersheds is rdhm_all_inlets.card under input-
cards/.  You may view this input deck using any editor 
 
[#####@#### RDHM-data]$ cd input-cards/ 
[#####@#### input-cards]$ more rdhm_all_inlets.card 
 
##RDHM input deck using upstream flow replacement 
 
#simulaion time period 
time-period = 20030101T00  20171231T23 
 
#simulation time step in the format of HH:MM:SS.XXXX 
time-step = 1 
 
#the connectivity file 
connectivity = /media/data1/TWDB-deliverables/RDHM-data/input-cards/cellarea_connectivity_12d.con 
 
 
#HRAP grid/cell/pixel size 
pixel-size-hrap = 1.0 
 
#output path 
 
#output-path = /media/data1/TWDB-deliverables/RDHM-data/rdhm-runs/upstream-flow-replacement/MTGA1 
output-path = /media/data1/TWDB-deliverables/RDHM-data/rdhm-runs/upstream-flow-replacement/MTGA2 
 
 
upstream-flow-replacement = EDNT2=/media/data1/TWDB-deliverables/RDHM-data/USGS- 
hourly-card/08164000.obs 
upstream-flow-replacement = LTXT2=/media/data1/TWDB-deliverables/RDHM-data/USGS- 
hourly-card/08164525.obs 
upstream-flow-replacement       = PLPT2=/media/data1/TWDB-deliverables/RDHM-data 
/USGS-hourly-card/08164800.obs 
upstream-flow-replacement = NGCT2=/media/data1/TWDB-deliverables/RDHM-data/USGS- 
hourly-card/08164600.obs 
upstream-flow-replacement = MTPT2=/media/data1/TWDB-deliverables/RDHM-data/USGS- 
hourly-card/08162600.obs 
 
The descriptions for each of the variable can be found in the HL-RDHM manual (NWS, 2008).  
Note the upstream replacement is done at the five USGS gauging station locations  
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To run the model: first confirm that rdhm executable is on your path: 
 
[#####@#### input-cards]$ which rdhm 
/usr/local/bin/rdhm 
 
If confirmed (as shown above), type the following after the prompt: 
 
[#####@#### input-cards]$ rdhm rdhm_all_inlets.card 
 
The output hydrographs can be found under “RDHM-data/rdhm-runs/hourly-simulated”.  These 
hourly data can be aggregated to daily accumulations through a script “RDHM-data/R-
scripts/output_process.R”. 
 
To view the HL-RDHM output, first enter the directory “RDHM-data/rdhm-runs/hourly-
simulated”.   
 
[#####@#### input-cards]$ cd RDHM-data/rdhm-runs/hourly-simulated; ls 
 
08162600/  08164525/  MTGA1/   MTGA2/  MTGA5/  MTGA8/ 
08164000/  08164600/  MTGA10/  MTGA3/  MTGA6/  MTGA9/ 
08164300/  08164800/  MTGA11/  MTGA4/  MTGA7/ 
 
The simulations for a specific outlet (or bay inlet) are stored underneath the directory named after 
the USGS ID or the “MG”ID. For example, the simulations for Lavaca River at Edna can be found 
under 08164000/   
 
[#####@#### input-cards]$ cd 08164000/ 
[#####@#### input-cards]$ ls  
 
asin.info0*   EDNT2_discharge_outlet.ts* EDNT2_xmrg_local.ts basin_info_after_loop0 
 
The second and third files contain the discharge series and the basin averaged precipitation series.  
To view the content of the discharge series: 
 
[#####@#### input-cards]$ more EDNT2_discharge_outlet.ts 
 
$ RDHM OUTPUT AT 2020-Feb-15 20:04:28 
$ Basin Area is 2130.32KM^2 
$ Total Num of Pixels is 148 
$ Pixel Size is 1 HRAP 
$ Simulation Time Step is 01:00:00 
$ NORMALIZE = 0 
$ Par/St Name     Initial Value      Scaling Factor       grid(Y - from deck; N  
- from grid) 
$ sac_UZTWM              45.85               -0.8           Y 
$ sac_UZFWM              19.49               -0.6           Y 
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$ sac_UZK                0.591               -1.2           Y 
$ sac_PCTIM               0.01               0.01           Y 
$ sac_ADIMP                0.1               0.1            Y 
$ sac_RIVA                0.04               0.04           Y 
$ sac_ZPERC              135.4               -0.8           Y 
$ sac_REXP               2.235               -1             N 
$ sac_LZTWM              287.2               -0.8           Y 
$ sac_LZFSM              44.39               -1             N 
$ sac_LZFPM              124.4               -1             N 
$ sac_LZSK              0.1876               -1             N 
$ sac_LZPK             0.03129               -1             N 
$ sac_PFREE             0.2838               -1             N 
$ sac_SIDE                 0.1               0.1            Y 
$ sac_RSERV              33.76               0.2            Y 
$ sac_EFC                    0               0              Y 
$ pe_JAN                 1.477               -1             N 
$ pe_FEB                 1.969               -1             N 
$ pe_MAR                 2.801               -1             N 
$ pe_APR                  3.91               -1             N 
$ pe_MAY                 4.938               -1             N 
$ pe_JUN                 5.611               -1             N 
$ pe_JUL                 5.744               -1             N 
$ pe_AUG                 5.295               -1             N 
$ pe_SEP                 4.398               -1             N 
$ pe_OCT                 3.287               -1             N 
$ pe_NOV                 2.262               -1             N 
$ pe_DEC                   1.6               -1             N 
$ peadj_JAN             0.5997               -1             N 
$ peadj_FEB             0.7135               -1             N 
 
The header contains the information about the watershed, and basin-averaged parameter values 
used in the simulation. The discharge data look like the follows: 
 
RDHM OUTPUTS  SQIN L3/T CMS  1    EDNT2           
01  2003 12   2017  1   F13.4    
EDNT2     010103   1       1.3770 
EDNT2     010103   2       1.6785 
EDNT2     010103   3       1.9350 
EDNT2     010103   4       2.1610 
EDNT2     010103   5       2.3969 
EDNT2     010103   6       2.6818 
EDNT2     010103   7       3.0419 
EDNT2     010103   8       3.4889 
EDNT2     010103   9       4.0233 
EDNT2     010103  10       4.6395 
EDNT2     010103  11       5.3308 
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EDNT2     010103  12       6.0918 
 
where the second, third and fourth columns contain the date (DDMMYY), hour (1-24; 24 being 
0z for the next day), and discharge  in cms.  
 
 
This remainder of this appendix offers a brief description of steps for establishing the connectivity 
and parameterization for the model.  Note that the detailed steps can be found in an accompanying 
document and the HL-RDHM manual.  
 
Deriving connectivity grid and hillslope slope parameter 𝑆 
To perform hillslope routing in HL-RDHM it is necessary to derive accurate information about 
flow direction and the hillslope routing parameter, hillslope slope 𝑆 at coarse resolution (e.g. full 
HRAP) based on DEM data of the study area of interest at fine resolution (e.g. 30 m).  Flow 
direction data is used to derive cell-to-cell connectivity file.  The connectivity for the delivered 
HL-RDHM implementation is  
 
In the current study, we followed the procedure described by Seo et al. (2015) (shared as a 
supplement under RDHM-DATA).  This routine is a customized version of NWS-OHD (Reed 
2003) module to run for each of 18 CONUS sub-regions based on NHD-Plus Version2 data set 
(https://nhdplus.com/NHDPlus/index.php) shown in Fig. D-1. To derive cell-to-cell connectivity 
and hillslope slope parameter 𝑆the following inputs to the module are required 1) The elevation 
data file NHDPlusV21_TX_12_12d_NEDSnapshot_01.7z and  2) The flow direction and 
accumulation data file NHDPlusV21_TX_12_12d_FdrFac_01.7z both at ~30m resolution and 
downloadable at https://nhdplus.com/NHDPlus/NHDPlusV2_12.php. Required softwares to run 
the codes/scripts include 1) Windows 64-bit 2) Cygwin (http://www.cygwin.com/install.html) 3) 
ArcGIS license for spatial analyst extension and 4) Linux for running the scripts. The codes/shell 
scripts and derived cell-to-cell connectivity and hillslope slope files for the entire (12d) region are 
provided by the UTA. 
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Figure 9-8  NHD-Plus V2 Processing Units (Source: https://nhdplus.com/NHDPlus/) 

 
Adjusting the connectivity file 
To convert rainfall-runoff depths to streamflow, HL-RDHM estimates the sum of overall areas of 
upstream cells based on the connectivity file. However, this area may differ from the actual 
upstream area of a USGS gauging station where verifying streamflow observations are available. 
The differences can be attributed to the coarse resolution of HRAP coordinate system leading to 
miscalculation in basin boundaries. To overcome this problem, we use a module named “cellarea”. 
The “cellarea” is run with the help of a control file which specifies the basin name and the USGS 
area in sq. km and outputs a new connectivity file with adjusted cell areas. See the HL-RDHM 
user manual (NWS 2008) for further details. 
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Deriving and generating customized hillslope routing parameters  
To derive discharge per unit area of hillslope 𝑞ு in eq. 4-2, HL-RDHM requires input grid 
parameters: stream channel density (𝐷) and hillslope roughness coefficient (𝑛). In this work the 
default values 𝐷 = 2.5 𝑘𝑚ିଵ and 𝑛=0.15 were considered. To generate routing parameters for 
upstream cells of a given forecast point or USGS gauging station, we use a utility named “genpar”. 
The “genpar” utility is run for each basin of interest and generates the specified parameters for its 
upstream determined by the connectivity file (NWS 2008). 
 
Deriving and generating customized channel routing parameters  
To derive channel routing parameters, we rely on rating curve method (rutpix9 in HL-RDHM) in 
which the channel discharge for each cell 𝑄, is a power function of wetted cross section area 𝐴 as 
follows: 𝑄 = 𝑞𝐴 (eq. 4-4) where 𝑞 is discharge per unit channel cross section area and 𝑞 
denotes the exponent in the formula. Channel routing parameters 𝑞, 𝑞 are estimated using power 
law regression analysis based on observed USGS gaging stations measurements and extrapolated 
to the upstream cells using the “genpar” utility. Whereas 𝑞 is kept constant, 𝑞 is adjusted for 
each upstream cell to reflect changes in cross-section area along a channel. (see, Koren et al. 2004; 
NWS 2008). For ungauged basins, and for the forecast points located along the major rivers where 
the USGS gauging station existed, we used the parameters estimated for the immediate upstream 
USGS gauging station. For ungauged points located elsewhere (not along the major rivers) the 
routing parameters calculated for the nearest USGS gauge were used. 
  
HL-RDHM model calibration 
To calibrate HL-RDHM against verifying USGS observations we adopted both automatic and 
manual calibration methods. In both techniques, a multiplication factor to previously determined 
a priori SAC-SMA parameter(s) was applied to minimize the simulation error. The automatic 
calibration is based on stepwise line search technique and a multi-scale objective function to 
optimize multiplication factors (SLS, see Kuzmin et al. 2008 for further details) in multiple time 
steps. To perform automatic calibration, USGS 1-hourly streamflow timeseries are downloaded 
and processed to be ingestible by the HL-RDHM input deck. In this work we used 240h and 720h 
time scale and adjusted the three SAC parameters UZTWM, UZFWM and UZK. These parameters 
were further calibrated manually, in particular for large basins where automatic calibration yielded 
unreliable simulated hydrographs. For ungauged forecast points, calibrated SAC parameters of 
upstream USGS gauging station or the nearest calibrated parameters were adopted if the forecasts 
point was not located along the major river. 
 
Replacing simulated flow by USGS observations  
In order for HL-RDHM to mimic TxRR operation, the simulated flow at upstream USGS station 
locations is replaced by the observations to reduce errors associated with the former.  To perform 
flow replacement analysis, USGS 1-hourly streamflow timeseries are downloaded and converted 
into the NWS Datacard format.  Here is an example of the latter format:  
 
ORMS OUTPUTS  QIN  L3/T CMS  1    LTXT2 
 1  2003 12   2017  1   F13.2 
LTXT2     010103   1        43.84 
LTXT2     010103   2        43.84 
LTXT2     010103   3        43.84 
LTXT2     010103   4        43.84 
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LTXT2     010103   5        43.84 
LTXT2     010103   6        43.84 
LTXT2     010103   7        94.10 
LTXT2     010103   8        94.10 
LTXT2     010103   9        94.10 
LTXT2     010103  10        94.10 
 
Note the flow rate is converted to cubic meters per second (CMS) to be consistent with HL-RDHM 
setup.   
  
The flow replacement is done in the input deck in the following manner:  
 
upstream-flow-replacement = EDNT2=/media/data1/TWDB-deliverables/RDHM-data/USGS- 
hourly-card/08164000.obs 
upstream-flow-replacement = LTXT2=/media/data1/TWDB-deliverables/RDHM-data/USGS- 
hourly-card/08164525.obs 
… 
 
where “EDNT2” and “LTXT2” are the SHEF code for outlets where the replacement is done, and 
the “.obs” files are the USGS observations that are used to replace the simulations at these oulets.  
For USGS station 08164525 (Lk Texana nr Edna, TX), only daily release data were available, and 
this daily data is disaggregated to hourly increments by assuming that release is constant for each 
day (defined in zulu time).  The script for converting the USGS rdb formatted streamflow to HL-
RDHM compatible format is RDHM-data/R-scripts/rdb2card.revised.R, and the script for 
performing the temporal disaggregation is RDHM-data/R-scripts/texana.release.process.R.   
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D. Retrieving and processing NWM streamflow reanalysis 

 
The archive with information on setting up and retrieving NWM streamflow reanalysis is 
provided in NWM.tgz.  
 

Archive name Content 
NWM.tgz Files for extracting streamflow for selected segments from NWM 

reanalysis (or real-time analysis); example outputs; and bias table 

 
Below is a table summarizing the hardware, operating systems and software settings 
recommended for using the tools. Note one can also set up and run the python and R scripts in a 
Windows environment.  But since the project team uses Linux only, only the procedures tested in 
a Linux platform are described here.   
                                                        

Hardware requirement Workstation with >16GB memory and >8TB storage  
Operating systems Linux with Kernel 4.x and above 
Compilers Gnu C, C++ and gfortran; or Intel C, C++ and Fortran 

compilers 
Utilities Gnu tar; shell; Gnu Make, Amazon Web Service (aws) 

Python3, R 
Libraries Netcdf, 

 
For this project we download the NWM 1.2 reanalysis hosted at amazon cloud server, though it 
should be noted the real-time analysis should be downloaded from a different site 
(ftp://ftp.ncep.noaa.gov/pub/data/nccf/com/nwm/prod).  The tools developed for decoding the 
channel routing data from reanalysis can be applied to the real-time analysis without 
modification.    
 
First, un-archive the archive NWM.tgz through the following command: 
 
[#####@#### TWDB-deliverables]$ tar zxvf NWM.tgz 
 
This will create directory “NWM”. Now enter this directory 
 
[#####@#### TWDB-deliverables]$ cd NWM 
[#####@#### NWM]$ ls 
201701011400.CHRTOUT_DOMAIN1.comp  NWM-08164300_Full.csv* 
Bias_Corrected-plots.docx*         NWM-08164600_Full.csv* 
BiasCorrection-NWM.xlsx*           NWM-08164800_Full.csv* 
extr.ncdf.R*                       NWM_7843187_TWDB_16008.csv* 
Flowlines_Matagorda.csv*           NWM_Bias_Corrected-Inflow.xlsx* 
Inflow_NWM_Map.jpg*                RDHM_Inflows_Time_zone_corrected.csv* 
NWM-08162600_Full.csv*             Tables/ 
NWM-08164000_Full.csv* 
 
 
Among these files, “201701011400.CHRTOUT_DOMAIN1.comp” is the example channel 
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routing data.   “Flowlines_Matagorda.csv” contains the segment IDs for all stream segments for 
Matagorda Bay watersheds.  “extr.ncdf.R” is a R script that extracts the streamflow analysis for 
only the segments present in Flowlines_Matagorda.csv. 
 
The method through which channel routing data are downloaded is briefly described here.  
In order to download the reanalysis data, one needs to first install aws. In a Linux shell, type 
 
[#####@#### NWM]$ which aws 
/usr/bin/aws 
 
If aws is not installed, please refer to https://docs.aws.amazon.com/cli/latest/userguide/install-
cliv2-linux.html on how to install aws utilities.  
 
Once aws is installed, one should first read the documentation about NWM reanalysis at  
https://docs.opendata.aws/nwm-archive/readme.html before downloading the data. NWM 
produces four types of output files, namely RTOUT (surface routing), LAKEOUT (reservoir 
routing), CHRTOUT (channel routing), and LDASOUT (land surface variables). Among these 
files,  streamflow data (discharge) is stored in channel  “CHRTOUT”.  An example 
“201701011400.CHRTOUT_DOMAIN1.comp” is included in the deliverable (under NWM).  
This file contains the model outputs for Jan. 11, 1400z on 2017.  The naming convention of the 
file format is identical for the reanalysis and real-time analysis. Downloading can be done 
through command line. Here is an example for downloading all CHRTOUT for the year of 2007: 
 
aws s3 sync s3://nwm-archive/2007 ../2007 --no-sign-request --endpoint-url https://griffin-
objstore.opensciencedatacloud.org  
--no-verify-ssl --exclude "*" --include "2007*CHRTOUT*" 
 
Or, if you know the specific date/time of interest, you may use the following command: 
 
[#####@#### NWM]$ aws s3 cp s3://nwm-
archive/2007/201701011400.CHRTOUT_DOMAIN1.comp  --no-sign-request ./  
 
A script can be developed to loop through the years of interest. The CHRTOUT files are in 
netcdf format, and each stores information including the streamflow (variable “streamflow”) at 
each stream segment in the CONUS referenced by “feature_id” (ID of the segment), the lateral 
inflow through surface and subsurface contributions, and other variables.  You may check the 
content of the files using the ncdump utility, which is part of Netcdf package.  Let us look at one 
example.  
 
To extract the streamflow for only those segments that drain Matagorda Bay, the team used 
ArcGIS to subset the NHD-Plus flowlines and saved in to “Flowlines_Matagorda.csv”.  Here is a 
segment of this file: 
 
COMID,AvgAnnualQ 
3763772,0 
3763992,0 
3764008,0 
3765368,0 
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3765372,0     
 
The first column stores the ID of the reach, and its heading “COMID” corresponds directly to the 
“feature_id” in the CHRTOUT file.   
 
Now, let us view the script “extr.ncdf.R” that will be used  to extract the streamflow from each 
CHRTOUT files into ascii table. 
 
[#####@#### NWM]$ more archive/2007/201701011400.CHRTOUT_DOMAIN1.comp  --no-
sign-request ./  
 
#----------------------------------------------- 
#R script for readhing netcdf format 
#dishcarge/inflow reanalysis for each NHD+ reach  
#Author: Yu Zhang (yu.zhang@uta.edu) 
#----------------------------------------------- 
 
library(ncdf4) 
file.cmid<-"Flowlines_Matagorda.csv" 
data.cmid<-read.csv(file.cmid) 
 
dir.out<-"Tables" 
 
file.lst<-"201701011400.CHRTOUT_DOMAIN1.comp" 
 
… 
 
 
This script relies on "Flowlines_Matagorda.csv" to subset the segments for Matagorda Bay, and 
it processes only one file, i.e., “201701011400.CHRTOUT_DOMAIN1.comp” in the current 
directory. If needed, the “file.lst” variable can be expanded to include a list of files to be 
processed.  
 
To run this script, make sure that ncdf4 library is installed in R. Once it is installed, issue the 
following command:  
 
[#####@#### NWM]$ R -f extr.ncdf.R 
 
 An example output “201701011400.csv” can be found under NWM/Tables:  
 
[#####@#### NWM]$ more Tables/201701011400.csv 
 
 
"","COMID","q.st","q.lat","q.ter" 
"1",3765378,0,0,0 
"2",3765402,0,0,0 
"3",3766376,227.349994918332,0,0 
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"4",7840417,0,0,0 
"5",7840419,0,0,0 
"6",7840421,0,0,0 
"7",7840423,0,0,0 
"8",7840425,0,0,0 
 
The second column is the streamflow (with heading of “q.st”).  The output files for each hour 
can be combined to yield flow time series for all links of interest.  In this project, streamflow was 
retrieved for the links with IDs listed in Table 4-11 with available reanalysis data (3nd column).  
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