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Executive Summary 
We assessed the percent cover and species composition of the emergent vascular vegetation in 
the Rincon Bayou Delta (hereafter referred to as the Rincon Delta) to establish a baseline of 
information for long-term assessment of this unique ecosystem. This work was initiated in part, 
to evaluate the combined effects of higher salinities from reduced water inflows and sediment 
delivery to the Delta, relative sea level rise, and increased erosion from wave action on the 
Rincon Delta.  Digital imagery acquired on 15 November 2016 was used to map the current 
extent of marsh vegetation.  The classified imagery was compared to a nearly identical 
acquisition made on 1 November 2005.  Geostatistical analyses using GIS software allowed a 
change analysis of landscape and vegetation over the 11-yr period.  In addition, we were able to 
make preliminary assessments of the rate of marsh loss on the shoreline of Nueces Bay, which 
receives constant battering by winds and waves that propagate across Nueces Bay, particularly in 
spring and summer when southeasterly winds predominate.  Our results reveal that the vegetative 
composition of the Rincon Delta does not appear to have undergone any major system-wide 
changes over the past decade, despite the inclusion of major drought periods.  However, erosion 
of the Rincon Delta shoreline has continued and perhaps increased, with obvious losses of 
shoreline and marsh habitat.  Some major highlights of our study: 
 

1. Our classification results are the most accurate to date, as reflected by a Kappa Index of 
0.70 and overall accuracy of nearly 76%, based on rigorous ground-based collection of 
data for determination of accuracy assessment (311 sample points) and training data (586 
sample polygons) for software imaging calibration. 

2. We observed distinct zonation of plant communities in the lower Rincon Delta.  The 
edges of the tidal creeks are dominated by Borrichia frutescens, which transition into 
relatively pure mixed zones of two salt tolerant succulents, Salicornia virginica and Batis 
maritima.  At increasing distance from the tidal creeks and at still higher elevations, the 
plant community becomes dominated by Spartina spartinae. 

3. The most dominant vegetative assemblages are B. maritima and S. virginica (18%), 
Spartina spartinae (12%), and Borrichia frutescens (8%).  Water constitutes nearly a 
third (30%) of the Rincon Delta.  These percentages are very similar to that obtained by 
Rasser (2009) based on the 1 November 2005 imagery. 

4. Preliminary estimates show that the erosion of the Rincon Delta shoreline is 
approximately 4.5 m yr-1.  A previous estimate based on an earlier study (Rasser and 
Dunton 2007) was 2.5 m yr-1.  A comparison of 2005 and 2016 imagery illustrates very 
discernable breaching events of the marsh delta. 

5. The increased resolution of the vegetative classification based on intensive ground 
truthing provides an extremely valuable database for quantifying future changes in 
vegetation extent and species composition over the Rincon Delta in response to regional 
climatic change and erosional loss.  The detailed documentation of the classification 
effort and methodology presented here provides a valuable template for future 
classifications that we recommend on a decadal frequency. 
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Introduction 
Background 
The Nueces River Delta (27º 53' N, 97º 32' W) is a tidal marsh system near the City of Corpus 
Christi, in south Texas (Fig. 1).  The Rincon Delta is a component of the larger Nueces Estuary 
which includes four Bays: Corpus Christi, Nueces, Oso and Redfish (Fig. 1).  This system 
consists of about 5,700 hectares of vegetated wetlands, mudflats, tidal creeks and shallow ponds.  
The Nueces Bay can be classified as a drowned river valley estuary (Pritchard 1967).  However, 
it also shares characteristics of a barrier estuary (Roy 1984, U.S. Bureau of Reclamation 2000) 
because of the extensive bar-built bays parallel to the estuary.  The climate is semi-arid with a 
mean precipitation of about 75 cm yr-1.  Average tidal amplitude is low with a mean of only 15 
cm (Ward 1985).  However, occasional irregular tropical storms and hurricanes can provide both 
large amounts of precipitation and tidal storm surges of several feet (Armstrong 1987). 
The Rincon Delta vegetation can be classified as a dry coast type (Adam 1990).  Similar dry 
coast marshes include those of southern California, which share related species, such as the 
Chenopods (genus Salicornia).  In contrast, the Rincon Delta is floristically different from the 
Atlantic Coast marshes, which are often dominated by the grass Spartina alterniflora.  Despite 
some similarities in flora, there are significant differences in the physical characteristics of the 
Nueces Estuary as compared to California estuaries.  Many of the estuaries in California were 
created by tectonic related events such as cracks that formed along fault lines, or when large 
areas of land sank below sea-level, such as San Francisco Bay.  In addition, California has lost 
most of its wetlands due to human activity.  For example, in the San Dieguito Lagoon in San 
Diego County, 85% of the wetlands were lost between 1928 and 1994 (Kent and Mast 2005). 
The Nueces Delta has been significantly modified by humans to provide water to the growing 
population of Corpus Christi by the construction of two large reservoirs within the Nueces Basin: 
the Choke Canyon Dam on the Frio River in 1982 and the Wesley Seale Dam in 1958 (U.S. 
Bureau of Reclamation 2000).  Significant research has been conducted since the 1980’s 
examining how reduced freshwater inflow has impacted the Rincon Delta.  Early work evaluated 
the freshwater needs of the estuary in order to develop a water management plan (Henley and 
Rauschuber 1981).  Since then, significant efforts have been conducted to increase freshwater 
inflow to the Rincon Delta.  Perhaps the most significant effort was the Rincon Bayou 
Demonstration project which constructed an overflow channel (Fig. 2) that lowered the 
minimum flooding threshold for the upper portion of the Nueces Delta (U.S. Bureau of 
Reclamation 2000). 
Ecological and monitoring studies in the Rincon Delta has largely been funded by a variety of 
local, state, and federal agencies over the past three decades.  A major focus of the past research 
effort (exclusive of the vegetation mapping effort funded by the Texas Water Development 
Board based on 2016 imagery) has been the response of plant communities to climatic conditions 
(Dunton et al. 2001, Forbes and Dunton 2006) and altered freshwater inflow (Alexander and 
Dunton 2002, 2006).  These studies provide evidence that both competition and abiotic factors 
are important in determining community composition.  For example, during drought, the cover of 
Salicornia virginica increased whereas the cover of Borrichia frutescens decreased (Forbes and 
Dunton 2006).  Understanding the causes of zonation is important because differences in 
vegetation patterns can influence important natural processes.  For example, an increase in 
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abundance of shallow-rooted S. virginica in favor of the clonal shrub B. frutescens may reduce 
the ability of a marsh to provide shoreline stabilization functions for the coastal community. 
 

 

Figure 1.  Location of the Rincon Delta with respect to surrounding bay systems in the Nueces Estuary. 
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Figure 2.  Key features of the lower Rincon Delta system. 

 
Project Justification 
The Texas Water Development Board (TWDB) executed contracts state-wide to implement 
adaptive management plans that were developed through the Texas Senate Bill 3 environmental 
flows process.  The University of Texas Marine Science Institute (UTMSI) proposed to examine 
changes in marsh vegetation in the Rincon Delta over an 11-year period in response to the 
Rincon Bayou Pipeline freshwater inflows and rapid erosion of the Rincon Delta (Fig. 1).  The 
last acquisition of high resolution, true-color and color infrared imagery (CIR) of the Rincon 
Delta marsh occurred on November 1, 2005.  Support from the Coastal Bend Bays and Estuaries 
Program allowed acquisition of high-resolution imagery (pixel resolution of one foot) in mid-
November 2016 for comparison to the 2005 imagery to ensure an accurate change analysis.  
Freely available moderate resolution imagery (50 cm resolution from TNRIS, MODIS, 
LANDSAT, etc.) does not provide sufficient resolution to accurately calculate change or to 
perform precise orthorectification consistent with the 2005 imagery. 
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Application of Aerial Imagery for Vegetation Mapping 
In recent years the use of new digital sensors has proven to be an excellent alternative to film-
based aerial photography and satellite sensors.  Standard aerial photography is often acquired to 
map salt marshes because high spatial resolution is useful in determining typical salt marsh 
zonation.  Digital sensors deployed on airplanes have increased in popularity in recent years. 
These sensors offer several advantages over traditional aerial photography, including a 
completely digital workflow, improved geometric accuracy and superior radiometric resolution.  
There is also greater flexibility in the timing of image acquisition than that of standard aerial 
photography. 

Standard aerial imagery can be digitized to create a digital product but the resulting spectral 
resolution is poor and does not contain discrete spectral bands (Provost et al. 2005). As a result, 
coastal vegetation mapping utilizing standard aerial photography is most often conducted using 
onscreen digitizing (for example, see Higinbotham et al. 2004).  Multi-spectral digital camera 
sensors such as the Leica ADS-40 and Z/I DMC (Digital Mapping Camera) offer discrete 
spectral bands. The digital numbers (DNs) in these images are useful in automated classification 
methods.  In addition, these sensors have high spatial resolution capabilities of up to 0.15 m 
ground sampling distance, thus offering the ability to examine smaller scale vegetation 
characteristics such as texture (Chen et al. 2006, Wulder et al. 2004).  QuickBird satellite 
imagery offers a coarser spatial resolution (2.4 m) but similar spectral resolution has been 
successfully utilized for mapping estuarine wetland plants (Laba et al. 2008). 

One method for increasing accuracy of processing remotely sensed imagery is by integrating 
ancillary data into the original imagery (Wulder et al. 2004).  In fact, Lefskey et al. (2002) 
showed that the integration of other high resolution remotely sensed data such as light detection 
and ranging (LiDAR) into the original imagery provided a promising avenue for future research. 
Ehlers et al. (2006) integrated digital surface models and digital mapping camera data to map 
riparian vegetation in Germany. 

According to Wulder et al. (2004), vegetation indices such as the Normalized Difference 
Vegetation Index (Tucker 1979), Enhanced Vegetation Index (Huete et al. 2002), Soil Adjusted 
Vegetation Index (Huete 1988) and Modified Soil Adjusted Vegetation Index (Qi et al. 1994) 
may also be integrated into image processing.  All of these indices rely on the relationship 
between the red and near-infrared bands of the electromagnetic spectrum, and takes into account 
that plants absorb light in the photosynthetically active range of approximately 0.45 to 0.67µm, 
and reflect light in the near infrared portion of the spectrum, from 0.7 to 1.3 µm (Lillesand and 
Kiefer 2004).  Selecting a vegetation index for image processing purposes needs to be done 
carefully because some indices are more effective than others under certain environmental 
conditions. For example, the normalized difference vegetation index can become saturated when 
leaf area is very high (Chen et al. 2001).  We chose to use a version of the modified soil 
vegetation index (from Qi et al. 1994) for this analysis because it has been shown to be relatively 
robust under conditions of low vegetative cover that is typical of the Nueces River delta, and has 
been proven effective in salt marshes (Eastwood et al. 1997). 

The two primary challenges associated with mapping vegetation in the Rincon Delta are (1) 
vegetation occurs in discrete patches that can vary greatly in size; and (2) the patches of 
vegetation are often small (sometimes only a few square meters in size).  These challenges 
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require the use of remotely sensed data that has a high spatial resolution (Silvestri 2003) to 
distinguish between vegetation types. The use of digital color infrared photography has increased 
in environmental monitoring applications in estuarine systems. Some recent applications include 
estimation of chlorophyll on exposed mudflats (Murphy et al. 2004), and mapping seagrasses 
(Lathrop et al. 2006) and aquatic macrophytes (Valta-Hulkkonen et al. 2009). 

Salt marshes occur in distinct zones that are the product of physical gradients in stress and 
competition (Pennings and Bertness 2001). Tidal creeks are important components of coastal salt 
marshes and determine how much water flow reaches different portions of the landscape 
(Chapman 1940). The distribution and characteristics of vegetation along tidal creeks also reflect 
the influences of abiotic and biotic conditions such as salinity and competition. For example, 
tidal channels influenced the distribution and composition of salt marsh plants in a San Francisco 
Bay Salt Marsh (Sanderson et al. 2000).  However, there is a dearth of studies that have 
examined the relationship between vegetation and tidal creeks in any salt marsh in the Gulf of 
Mexico. 

The major objective of this study was to characterize the extent and distribution of the major 
plant assemblages in the Rincon Delta.  To accomplish this objective, we used a combination of 
remote sensing and geospatial analysis.  This project quantified the loss of deltaic marsh over 
time in response to increases in open water areas.  It has been well documented that the outer 
edges of the Rincon Delta are eroding rapidly, at a rate of about 2.5 m yr-1 (Rasser and Dunton, 
2007). These data provide information that contribute to a broader understanding of the potential 
roles of decreased freshwater inflows, sediment loading, subsidence, and erosion.  The image 
acquisition occurred in November 2016, nearly exactly eleven years after the last acquisition and 
the subsequent vegetation classification completed by Rasser (2009). 

The classification method employs color infrared imagery from a digital mapping camera (Z/I 
Intergraph DMC).  We used ancillary data such as texture measures, vegetation indices and a 
high-resolution digital elevation model to increase the information content of the imagery.  We 
also repeated extensive ground surveys to provide both image training data and to assess the 
accuracy of the mapping methods.  

 

Methods 

Ground Data Sampling 
As with most salt marsh communities, access and travel throughout the study site is impeded by 
low bridges, tidal flats, a complex tidal creek network, and very shallow water.  In 2005 and 
2016, we used a random clustered sampling approach to select ground control points (McCoy, 
2005).  Thirty-two random points were distributed throughout the study area and within 200 
meters of each of these, 16 random points were generated, producing 512 sampling locations.  
We added another 130 stations for the current study for a total of 642 stations.  At each sample 
point, we visually assessed vegetative cover with a 0.25 m2 quadrat.  In addition, digital 
photographs and field notes were taken to document ground conditions in the vicinity of each 
point. In addition, our research group continued to re-occupy transects that were used in the 
Bureau of Reclamation (BoR) Demonstration Project.  We have voluntarily monitored several 
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transect sites (254, 270, 271, 450, 451, 463) since their establishment in 1999 and thereafter. 
Results from three sites are reported by Stachelek et al. (2013).  

Image Acquisition 
We contracted Quantum Spatial, Inc., to acquire the 2016 imagery following the procedures 
utilized in 2005.  The completed data set consists of CIR ortho-corrected digital aerial imagery 
taken with a large format Z/I Digital Mapping Camera (DMC) delivered in 12-bit uncompressed 
GeoTIFF format consisting of 62 individual ortho images taken at a pixel resolution of 
approximately one foot (0.3 meters) ground sample distance in UTM Zone 14 North. Quantum 
Spatial also provided 16-bit images derived from the 12-bit versions for use with software that 
cannot handle 12-bit imagery.  Four flight lines provided stereoscopic (60% forward overlap, 
30% sidelap) coverage of the salt marsh project site at a flight attitude of 10,000 feet-above mean 
terrain.  Airborne GPS and Inertial Measurement Unit (IMU) data were collected during the 
aerial mission for the orthorectification process.  The multi-spectral imagery frames were post 
processed to produce panchromatic, true color (R, G, B), and false CIR images. 
Orthorectification to remove radial and relief displacement were performed using camera 
calibration, Airborne GPS/IMU and a floating point 1-meter DEM derived from LiDAR taken in 
2007 (provided by James Gibeaut and Anthony Reisinger at the HRI, TAMU-CC).  A nearest 
neighbor resampling algorithm was employed during the rectification process to create the CIR 
ortho images that had a resolution of one-foot ground sample distance.  CIR ortho images were 
delivered in TIFF format with associated TFW header files based on UTM Zone 14 North 
(meters) Coordinate System (NAD 1983 datum).  No radiometric balancing was applied, no 
mosaicking of individual image frames was performed and no post rectification editing (using 
Photoshop) to manipulate any pixels for aesthetic purposes was conducted in order to preserve 
the spectral signatures of the original CIR images. 
 
A classification of the imagery was conducted using an analysis of the newly acquired data and 
other ancillary data following the sequence described below: 
 

1. Creating the Mosaic 

Images of the study area were combined to create a single mosaic.  The resulting image was 
clipped using a shape file of the study area. 

2. Use of Ancillary Data 

An accepted way of increasing the accuracy of processing remotely sensed imagery is 
through the integration of ancillary data (Wulder et al., 2004).  We used a modified soil 
vegetation index (MSAVI, Qi et al., 1994), a measure of vegetation texture (Rasser, 2009), 
distance from water, and LiDAR data as ancillary layers in the mosaicked imagery. 

3. Classification  

Classification was conducted using the four-band digital image, along with ancillary data.  
The classification was used to build several vegetation classes based on ground-truth data 
and photo interpretation. 
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The 2016 Study Area 
PIs Dunton, Whiteaker and Rasser worked together to identify the target area for mosaicking and 
analysis.  Starting with the 2005 area, they added two new sampling areas in the northeast (1 
cluster) and southern (2 clusters) zones. Using the acquired imagery, a 1-meter DEM, and 
publicly available contextual layers such as land cover1, soils2, and the ecological mapping 
system of Texas3, areas that were clearly uplands and not pertinent to this study were excluded.  
The resulting area as shown by the thick outline forms the boundary of subsequent analyses 
performed for this project (Fig. 3). 

Creating the Mosaic 

We initially planned to perform the analysis in ArcGIS for Desktop 10.5 and ERDAS IMAGINE 
2016, the programs and versions for which we had licenses at The University of Texas at Austin. 
However, IMAGINE lacked more advanced classification algorithms then ArcGIS (such as 
Support Vector Machine and Random Forest), and its mosaic seamlines were inferior to those 
produced by ArcGIS in testing. Consequently, we decided to perform the analysis purely in 
ArcGIS. 
 
We created a mosaic of the analysis area with the objectives of minimizing color corrections 
between images.  Assuming that atmospheric conditions are more likely to be consistent within a 
given flight line than across flight lines, we selected images from flight lines 2 and 3, leaving out 
flight lines 1 and 4, which cover the northern and southern boundary of the area.  Although there 
is enough overlap amongst the images to skip every other image without leaving gaps, we 
included all images within the desired tile range for a given flight line in order to minimize 
brightness differences across images.  Brightness appears to increase in all images from east to 
west, which results in poor histogram matching between the western portion of one image and 
the eastern portion of another.  By using all images and prioritizing the eastern portion of each 
image, we removed the western edge from the matching, which improved the overall mosaic 
without any color corrections applied.  The final set of images used includes images O2_09 (i.e., 
flight-line 02, image 09) to O2_17 and O3_06 to O3_17.  We used the 12-bit version of the 
images provided by Quantum Spatial rather than the derived 16-bit versions that they provided 
since ArcGIS handles 12-bit images without issue.  
 

                                                           
1 U.S. Geological Survey (2014). NLCD 2011 Land Cover (2011 Edition, amended 2014) - National Geospatial 
Data Asset (NGDA) Land Use Land Cover. Downloaded from https://tnris.org/data-catalog/entry/national-land-
cover-database-2011/ (accessed 2017-04-20). 
2 USDA Natural Resources Conservation Service (2011). Soil Survey. Downloaded from https://tnris.org/data-
catalog/entry/soils/ (accessed 2017-04-20). 
3 TPWD Missouri Resource Assessment Partnership (MoRAP) and Texas Natural Resource Information System 
(TNRIS) (2009). Western Gulf Coastal Plain; Ecological Mapping Systems of Texas: 398 Mapped Types. 
Downloaded from https://tnris.org/data-catalog/entry/tpwd-texas-ecological-systems-data/ (accessed 2017-04-20). 
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Figure 3.  Project study area (pink boundary) containing stations visited (yellow dots), with imagery 
dataset as a backdrop. 

To prepare the images and create the mosaic in ArcGIS for Desktop: 
1. Set 0 as NoData for all bands using the Set Raster Properties tool. 
2. Build pyramids and calculate statistics for each raster using the Build Pyramids and 

Statistics tool. 
3. Create the mosaic in a geodatabase by right-clicking a geodatabase in the Catalog 

window and clicking New > Mosaic Dataset, and then setting these properties. 
a. Coordinate System: NAD_1983_UTM_Zone_14N 
b. Product Definition: None 
c. Number of Bands: 4 
d. Pixel Type: 16_BIT_UNSIGNED 

4. Right-click the mosaic dataset and click Add Rasters to add images from the workspace 
(i.e., folder) containing the image files, using all defaults. 

5. Right-click the mosaic dataset and click Enhance > Generate Seamlines.  The software 
determines the optimal seamlines defining which image is displayed where adjacent 
images overlap. 
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6. Right-click the mosaic dataset and click Enhance > Calculate Statistics. This computes 
statistics for the whole mosaic, enabling symbology adjustments. 

7. Right-click the mosaic dataset and click Optimize > Build Overviews. These enables 
faster display at small map scales. 

8. Add the mosaic to ArcMap to verify that images were added and seamlines were 
generated.  

9. Right-click the Image layer with the mosaic in the ArcMap Table of Contents and click 
Export Data. Set 0 as the NoData value, set TIFF as the format with no compression 
and click Save. Saving as a TIFF merges all images into a single image and enables the 
mosaic to be viewed in other geospatial software if this dataset were to be used in future 
work. 

10. Use the Clip geoprocessing tool to clip the exported mosaic to the study area, saving the 
result as ImageMosaic.tiff. 

Color Balancing 
Color matching across seamlines, the borders between the portions of adjacent images actually 
used in the mosaic, was generally very good in the raw mosaic without any color corrections 
(Figure 4).  We evaluated color matching options in both ArcGIS and IMAGINE, and found no 
result exhibited substantially improved blending across seamlines, and so no color balancing was 
applied to the mosaic. 

 

Figure 4.  Matching across seamlines (blue lines in the figure) is generally very good in the raw mosaic. 
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Field Work 
Visits to the marsh provide valuable geotagged photographs and percent cover evaluations. This 
information was used as training data and accuracy assessment data, where training data is used 
to train the image classifier and accuracy assessment data is used to evaluate accuracy of the 
resulting classification. The following abbreviations were used for ground cover categories in 
training and accuracy assessment data: 

• BF Borrichia frutescens 
• BM Batis maritima 
• DS Distichlis spicata 
• LC Lycium carolinianum 
• LN Limonium nashii 
• ML Monanthochloe littoralis 
• SA Spartina alterniflora 
• SB Salicornia bigelovii 
• SL Suaeda linearis 
• SS Spartina spartinae 
• SV Salicornia virginica 
• O Other 

 

Accuracy Assessment 

We targeted accuracy assessment points based on the approach used by Rasser (2009).  Not all 
points could be visited due to difficulty in accessing some sites, and some points were excluded 
from accuracy assessment because they either fell outside of the study area (which was defined 
after some of the earlier field visits) or because their locational accuracy seemed questionable 
when plotted on the imagery.  The preliminary accuracy assessment point set included 642 
points, of which 311 were used in the final accuracy assessment. 

For each assessment location, the following procedure was followed: 

1. Using the Trimble GPS, visit the precise point using the waypoints from the 2005 GPS 
Data.   

2. Collect percent cover data. 

3. Take photos in all four cardinal directions (N-E-S-W) and one photo of the quadrant 
itself.  We used a camera that provided a bearing or displayed a bearing in the photo (e.g., 
colored duct tape on quadrat). 

4. Photograph field notes so that they are also georeferenced. 

Note that the data did not include significant cover of DS, LN, LC, SB, SA, and SL, making 
accuracy assessment difficult or impossible for these species.  Therefore, these categories are 
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combined into Other for the purpose of accuracy assessment.  A dominant category is assigned to 
each point if that category comprises more than 50% of the cover for that location. 

Training Data 
We collected over 1,200 random photos made with the Garmin GPS camera and selected 
examples of pure stands of the major marsh plant species, deep water, and bare substrate types. 
Representative photos were added to the training data set.  We divided non-vegetated substrate 
into wet, damp, and dry blue green algal cover categories to test for spectral differences (Fig. 5, 
6).  

  

Figure 5.  The bivalve middens with hundreds of white shells on a blue green algal substrate appeared 
spectrally the same as the dry blue green areas without the shells.  This result was 
unexpected but instructed us to combine these categories. 

 

Figure 6.  It is apparent that the substrate subcategories (dry, wet, damp, with shells) assigned from 
the photographs were not useful.  Blue green algae population appearances can change very 
quickly with water input which creates a spectral color shift. 
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All marsh substrates are composed of mud with varying fractions of sand and blue green algae.  
The blue green algae appear across the color spectrum from almost black (thick and wet) to 
white (dry, salty) and all shades in between.  It can also change appearance quickly with the 
addition of water from overflow or rain which makes ground-truthing post acquisition unreliable.  
Therefore, we combined these subcategories into one non-vascular plant vegetated substrate. 

Ground truth surveys began on 14 November 2016 and were completed 14 March 2017 (Table 
1).  Over 70% of the random locations were visited over a six-week period in January and 
February 2017. This winter period is marked by considerably cooler temperatures that essentially 
preserve the foliage at its late autumn peak condition, since the plants are in a physiologically 
dormant state. All photos were made with a Garmin GPS camera (Model 645C) and 
georeferenced with an associated latitude and longitude.  The high-resolution photographs can be 
displayed at their exact location in any mapping application.  We believe that these photographs 
greatly enhanced our ability to check the classifications made from the aerial images.  

Table 1.  Ground truthing observations at 311 random locations for accuracy assessment occurred 
over a 3-month period, from 14 November 2016 to 14 March 2017. 

  Random Point Type  

# Field Days 

 

Random 
Points for 
Accuracy 
Assessment  

 

Water 

 

Unvegetated Vegetated 
(includes ALL 
species in final 
classification) 

Other 
Remaining 
Vegetation 

12 311 106 56 99 50 

 

In addition to visiting 311 random locations to calculate metrics for accuracy assessment, we 
also occupied specific locations that were dominated by specific cover types to “train” the 
software to recognize those specific signatures as specific vegetation or substrate types. The 586 
non-random points were derived from several sources: 

1. Geotagged photos from visits to the marsh from which dominant cover types were 
subsequently identified 

2. Guidance from Kim Jackson, an expert on the marsh area, in a two-day session of 
evaluating imagery onscreen in locations where Ms. Jackson had confident knowledge on 
ground cover types. These included, for example, identification of forested areas or 
railroad tracks, or areas that are perennially covered with water. 

3. Transects from another study conducted by Ms. Jackson with a field visit in December 
2016, just one month after the imagery was flown. These transects provided 199 points 
around six sites for which percent cover data was recorded.  

4. Amongst accuracy assessment points with questionable locations, some were relocated 
based on photos and imagery when the correct location was clear. However, because we 
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modified the point, we chose not to use it for accuracy assessment but rather for training 
data. 

Using these resources, Dr. Whiteaker drew polygons over the imagery, thereby defining pixel 
locations to be used as training samples for the classification (Fig. 7).  These polygons are 
created interactively using the Image Classification toolbar in ArcMap. The final training 
shapefile was saved as TrainingSamples.shp. The samples included the following categories and 
numerical codes: 

• BF - 2 
• BM - 4 
• BM_SV (combined class) - 4001 
• SS - 10 
• SV - 12 
• forest - 21 
• rrtrack (railroad track) - 23 
• sand - 24 
• bare - 8000 
• other (other vegetation) - 9999 
• water – 51 
•  

 

Figure 7.  Example training sample polygon for the forest category. 

Categories such as forest and sand are retained to facilitate comparison with Rasser (2009), even 
though they are not explicitly represented in the accuracy assessment categories.  Since accuracy 
for these categories cannot be assessed systematically, caution should be used when evaluating a 
classified raster based on the full set of training sample categories. 

 

DocuSign Envelope ID: F0F48EC4-892C-44C9-8D4D-45AEF4D5FB74



Texas Water Development Board Report Contract #1600011971 

15 
 

Use of Ancillary Data 
Rasser (2009) appended the following bands to the imagery in order to provide additional 
information for the classifier to utilize: 

• Elevation 
• MSAVI (Modified Soil-Adjusted Vegetation Index) 
• Texture (standard deviation of MSAVI) 

For this project, we included those bands plus a band representing distance from tidal creeks and 
other significant water bodies.  Some classification algorithms work best when the various 
analysis bands have roughly the same range of pixel values. Therefore, the general procedure is 
to align all bands to the same grid, resample to the same cell size, convert to the same numerical 
type (e.g., integer), and scale values to match the range of pixels in the imagery. For example, if 
imagery values ranged from 0 to 100, and elevation values ranged from 0 to 25, one could 
multiply elevation values by four to scale them to 0 to 100. 

Elevation 
This project utilizes a floating point 1-meter DEM derived from LiDAR taken in 2007 (provided 
by James Gibeaut and Anthony Reisinger at the HRI, TAMU-CC).  To make the DEM usable for 
image classification, several issues were addressed: 

• The DEM has gaps, presumably where the presence of water limited LiDAR efficacy. 
• The DEM does not cover the entire extent of the study area. 
• The DEM has a one-meter cell size, whereas the imagery has a 0.3-meter cell size. 
• The DEM has a different value range than the imagery. 

The gaps and lack of study area coverage are addressed by assigning values to the DEM where it 
presently has NoData.  A technique called Nibble is applied to achieve this.  Nibble replaces 
designated cells with values from the nearest neighbor.  Since the DEM has very large gaps, 
nibble works better than the other commonly used gap filling method of computing a focal mean. 
With focal mean, the large gaps require a large search radius, which captures pixels far away, 
which results in water areas being overly elevated due to the influence of nearby uplands. 

Once gaps are filled, the DEM is then resampled to use the same cell size as the imagery data 
and to align it to the imagery grid. The bilinear resampling technique is used since a DEM 
represents continuous data.  While this does result in some smoothing of the data, the motivation 
for using a DEM is to help the classifier broadly distinguish uplands from lowland areas, and the 
magnitude of local smoothing of the data should not significantly impact identification of 
uplands.  Note that the DEM is in the same coordinate system as the imagery, so the DEM does 
not need to be re-projected. 

The DEM was processed in ArcGIS for Desktop using geoprocessing tools.  The ArcGIS Nibble 
tool takes as inputs a raster dataset to be nibbled and a mask raster. The input raster must be of 
integer type, and NoData cells within it are not processed. The mask raster must also be of 
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integer type. Wherever NoData cells occur in the mask raster, the corresponding cells in the 
input raster will be replaced with the values of the nearest neighbor. 

To process the DEM: 

1. Convert the DEM to an integer raster. 
a. Run the Times tool to multiply the DEM by 10,000.  The preserves some portion of 

the DEM values to the right of the decimal point. 
b. Convert the result to integer by running the Int tool. This truncates values beyond the 

decimal point, but the accuracy loss is negligible. 
2. Fill NoData values with a value of -99999. 

a. Run the IsNull tool on the integer DEM to produce a grid with a value of 1 where the 
input is NoData and 0 otherwise. 

b. Run the Con tool, using the result of the previous step as the conditional raster, -
99999 as the value if the conditional raster is 1, and the integer DEM for when the 
conditional raster is 0. 

3. Run the Nibble tool to replace -99999 with the nearest neighbor from the integer DEM.  
a. Use the result from the previous step as the input raster. 
b. Use the original integer DEM as the mask raster. 
c. Uncheck "Use NoData values if they are the nearest neighbor". 

4. Run the Resample tool on the DEM to match the grid used for the imagery.  
a. Use the nibbled DEM as the input raster. 
b. Use a cell size of 0.3. 
c. Use the bilinear resampling technique since a DEM represents continuous data. We 

use bilinear instead of cubic convolution to reduce the impact of smoothing on the 
data. 

d. In the Environments window, set the imagery mosaic raster as the snap raster. 
5. Run the Clip tool to clip the result of the previous step to the study area. 
6. The clipped DEM ranges in value from -41200 to 215604 (it's the relative rather than 

absolute difference between values that is important at this point), whereas the highest 
value in the imagery is 3839 in band 4.  To rescale the DEM, add 41200 using the Plus 
tool and then run the Divide tool to divide the resulting values by 67. The highest value 
in the result is 3832 and the lowest is zero. 

7. Export the result as Elevation.tif if a standalone copy is desired (Figure 8). 
8. Use the Composite Bands tool to append the elevation band to the imagery mosaic. 
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Modified Soil Adjusted Vegetation Index (MSAVI) 
The Modified Soil Adjusted Vegetation Index (MSAVI; Qi et al. 1994, Fig. 9) is derived from 
Red and Near-Infrared imagery bands.  MSAVI was calculated in ArcGIS using the predefined 
Band Arithmetic function.   

The MSAVI raster was rescaled using the Times tool to multiply values by 2000, then converted 
to integer using the Int tool before adding it to the composite raster using the Composite Bands 
tool. 

 

Figure 8.  DEM areas (a) with gaps shown in black, and (b) with gaps filled. 
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Figure 9.  The data layer created in Modified Soil-Adjusted Vegetation Index, MSAVI. 

Texture 
Texture is derived from MSAVI via a 3-by-3 moving window from which MSAVI standard 
deviation is calculated using the Raster Function Properties in ArcGIS. 

The resulting raster was rescaled using the Times tool to multiply values by 10000, then 
converted to integer using the Int tool before adding it to the composite raster using the 
Composite Bands tool (Fig. 10). 

 

 

 

 

 

 

 

 

 

Figure 10.  Example of texture in an area along the bay. 
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Distance from Water 
Using the composite raster which includes imagery, elevation, MSAVI, and texture bands, a 
random forest classification was run with an earlier version of training samples to produce a 
classified raster that included water as a category. (That version of training sample data included 
SA and AG samples created with guidance from Jackson, which were later removed from the 
final analysis. The delineated water areas were deemed sufficient to use for estimating distance 
from water without repeating the analysis with the final training dataset.)  The procedure for 
performing the classification is described in more detail later in this document. 

With a raster including water pixels in hand, the procedure to compute distance from water is: 

1. Use the Set Null tool to set non-water pixels (Classvalue <> 51) to NoData. 
2. Use the Region Group tool to identify contiguous regions of water. 
3. Use Raster to Polygon to convert the region raster to vector features. 
4. Select tidal creeks and bodies of water that are known to be perennially inundated (local 

knowledge from Kim Jackson). 
5. Use Polygon to Raster to convert the selected polygons back to raster. The original 

imagery was used as the snap raster and to provide the extent, while the study area 
boundary provided a mask, so that the result conforms to the raster used for classification. 

6. Use the Euclidean Distance tool on the result of the previous step to compute distance 
from water. 

7. Use Times to multiply the result by 2 in order to rescale the raster so that values are 
comparable to those from the imagery.  

8. Use Int to convert the result to integer. 
9. Use Composite Bands to add the result to the existing composite raster containing all 

other bands to be used for image classification (Fig. 11). 
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Figure 11.  The distance to water GIS layer. 

Classification 
Several ArcGIS classification tools were tested along with several combinations of ground cover 
categories. In general, we found that Random Trees (the ArcGIS name for Random Forest) 
performed the best, and that combining classes that are hard to distinguish in the imagery such as 
BM and SV improved results. Some classes in the training data such as rrtrack (railroad track) 
were easy to distinguish and so were retained in the classification; however, since rrtrack does 
not exist as an accuracy assessment category, it is merged into bare before accuracy is assessed. 

The procedure to produce a classified raster is: 
1. Run the Train Random Trees Classifier tool with these inputs: 

a. Input Raster - CompositeRaster 
b. Input Training Sample File - TrainingSamples.shp 
c. Output Classifier Definition File - RT.ecd 
d. Max Number of Trees - 128 
e. Max Tree Depth – 70 

 
2. Run the Classify Raster tool using the composite raster and the classifier definition file 

as inputs. The resulting raster includes all classes in the training data, some of which 
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were used in Rasser (2009) but are not in the current accuracy assessment set of 
categories. 

 
3. Run the Reclassify tool to reclassify class values as follows: 

a. 4 (BM) and 12 (SV) to 4001 (BM_SV) 
b. 21 (forest) to 9999 (other) 
c. 23 (rrtrack) and 24 (sand) to 8000 (bare) 
d. Retain the remaining classes as their original class value (Fig. 12). 

 

Figure 12.  Final classes in the reclassified result. 

Assessing Results 
1. Import accuracy assessment points into GIS. 
2. Remap the assessment categories into the following categories which reflect what the we 

think can be reasonably interpreted from the input data: 
a. BF remains BF 
b. BM and SV to BM_SV 
c. DS, LC, LN, ML, SA, SB, and SL to other 
d. SS remains SS 
e. O remains Other 
f. Water remains Water 
g. Bare remains Bare 

3. Add Long Integer fields named Classified and GrndTruth to the point features. These 
fields are used by ArcGIS when assessing results. 
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4. Assign -1 to the Classified field and assigned the class number associated with each class 
from the Training Sample Manager to the GrndTruth field, e.g., a value of 2 for BF points 
and 51 for water points. 

5. Run the Update Accuracy Assessment Points tool, using CLASSIFIED as the target 
field. This assigns the class number from the raster to the Classified field in a new feature 
class. 

6. Run the Compute Confusion Matrix tool using the updated assessment points from the 
previous step (Table 2). 

The key for the confusion matrix class values is: 

• 2 = BF 
• 10 = SS 
• 4001 = BM_SV 
• 51 = Water 
• 8000 = Bare 
• 9999 = Other 

Table 2.  The Confusion Matrix for the 2016 classification analysis.  n/a = not applicable 

ClassValue C_2 C_10 C_51 C_4001 C_8000 C_9999 Total U_Accuracy Kappa 

C_2 10 1 0 4 0 5 20 0.5 n/a 

C_10 2 26 0 0 0 3 31 0.83871 n/a 

C_51 1 0 95 0 0 1 97 0.979381 n/a 

C_4001 0 0 4 42 11 13 70 0.6 n/a 

C_8000 1 0 6 3 39 4 53 0.735849 n/a 

C_9999 1 4 1 4 6 24 40 0.6 n/a 

Total 15 31 106 53 56 50 311 0 n/a 

P_Accuracy 0.666667 0.83871 0.896226 0.792453 0.696429 0.48 0 0.758842 n/a 

Kappa n/a n/a n/a n/a n/a n/a n/a n/a 0.695098 
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Figure 13.  The Image Classification Flowchart. Note the incorporation of Ancillary Data layers as 
described above. 

 

Change Analysis, 2005-2016 

GIS data layers were created to compare the results of the 2005 and 2016 vegetation patterns.  
Study areas from 2005 and 2016 were intersected, and this common study area was used to clip 
2005 and 2016 classified results.  We used this process to examine changes in losses and gains in 
vegetation (overall and by assemblages).  The image acquisition on 1 November 2005 and 15 
November 2016 occurred during periods of very similar water elevation levels based on tidal 
records, precipitation events, and analysis of the acquired imagery. The image acquisition in the 
morning of both days occurring during periods of slack low water (-0.25 to 0 feet above MSL) 
following an ebb tide and preceding a flood tide 
(https://tidesandcurrents.noaa.gov/map/index.html?id=8775237). There were also no major 
precipitation events that preceded the acquisition on either date that would have produced 
flooding events in the Delta. For the 30-day period preceding acquisition in 2005, rain 
accumulation was 3.15 inches spread almost equally among three events, compared to 2016, 
which had a total rainfall of 1.06 inches that mostly fell in one rain event 
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(https://www.climate.gov/maps-data/dataset/daily-temperature-and-precipitation-reports-data-
tables). Finally, analysis of the imagery revealed no overbanking during the period of 
acquisition, nor any evidence of extremely low water levels based on the appearance of water 
filled tidal creeks that appeared identical in appearance between 2005 and 2016 imagery. Dates 
in November were carefully selected based on overall climatic and tidal stability. The acquisition 
was supplemented by the monitoring of vegetation changes along three transects established in 
1999 and 2000 (stations 254, 270, 450), which were also assessed and reported as part of this 
project.  

Vegetation and Porewater monitoring 
The abundance and distribution of emergent plants was monitored quarterly for one year starting 
fall 2017 at three sites in the lower marsh. The resulting dataset documents observed changes in 
seasonal plant community composition and coverage since monitoring began in 1997. The 
abundance of emergent plants for this time period was estimated from percent cover data 
collected within 0.25 m2 quadrats (percent cover data was used as a proxy for abundance). 
Measurements were taken at 2-m intervals along 6 parallel 10 m transects (30 quadrats / site) at 
each of three sites. Soil characteristics were obtained by extracting water from soil cores (2.5 cm 
diameter x 10 cm length) by centrifugation. The extracted water was analyzed for salinity using a 
handheld refractometer (Reichert Scientific Instruments, Buffalo, NY). Quarterly sampling 
(percent cover and plant composition was completed at sites 254, 270, and 450 on the following 
dates:  27 November 2017, and 19 March, 29 June, 28 September and 18 December 2018. 

Data Archival 

We propose to archive datasets from this work with the Texas Natural Resources Information 
System (TNRIS).  We have contacted TNRIS, and they confirmed that they are willing and able 
to house our data should we choose to archive with them.  We plan to archive the following 
datasets: 

• Original images from 2016 (62, in 12-bit format) 
• Mosaicked image (21 images from 2016, unclipped) 
• 2016 study area shapefile 
• Raw classified result, which includes 11 classes 
• Reclassified result for accuracy assessment, 6 classes 
• Accuracy assessment points 
• Confusion matrix 

A confusion matrix was created using 311 points, none of which had been used in the training 
process (Table 1). The mapped class of each point was determined by comparing the mapped 
value in the classified image with the previously determined reference class based on the ground 
data.  The reference class was chosen by selecting the class that contained most of the percent 
cover based on field sampling.  For example, if a site contained 80% water and 10% sediment it 
was classified as water.  The user and producer accuracy and the overall accuracy and Kappa 
Index were calculated for each class (Table 3). We will include a description for the GIS 
procedure used to create the classified result, similar to the methodology section, and metadata 
associated with the imagery provided by Quantum Spatial, Inc. 
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Results and Discussion 

Vegetation Classification 
The results of this study demonstrated that salt marsh plant communities can be accurately 
mapped utilizing supervised classification of imagery integrated with ancillary data.  We 
obtained a Kappa Index of 0.70 and overall accuracy of nearly 76% (Tables 2 and 3) compared 
to the medium level of matching (Landis and Koch 1997 that Rasser (2009) obtained in the 2005 
classification (Kappa Index 0.41 and overall accuracy 57%).  Our results are likely a product of 
the large numbers of points we used for training the software and samples used for accuracy 
assessment.  Sadro et al. (2007) had an average overall accuracy of 59% with a Kappa coefficient 
of 0.40 for a supervised classification of plant distribution in California, which consisted of six 
classes.  In another study, Gilmore et al. (2008) had a high accuracy utilizing multi-temporal 
satellite imagery combined with LiDAR vegetation canopy data to map wetland vegetation in 
tidal wetlands of the lower Connecticut River.  This higher accuracy was attributed to their using 
a multi-temporal data set consisting of QuickBird multi-spectral imagery, which allowed for 
differentiation of species based on phenology.  

In the past few years there has been substantial research on integrating LiDAR data with 
hyperspectral data such as CASI (Verrelst et al. 2009).  Classification appears to be somewhat 
more accurate as compared to the multi-spectral imagery incorporated in this study.  For 
example, Pengra et al. (2007) had higher accuracy (overall accuracy = 81.4%) in mapping marsh 
plants on the west coast of Greenbay, Wisconsin using hyperspectral imagery as opposed to 
using multi-spectral imagery.  Similarly, Wang et al. (2007) had a high level of matching 
utilizing a neural network classification of salt marshes in the Venice Lagoon in Italy.  Despite 
these successes, hyperspectral imagery has practical limitations because of the coarse spatial 
resolution and complex image processing techniques required (Hirano et al. 2003).  In fact, the 
success of a remote sensing analysis can decrease as the landscape becomes more complex 
(Andrew and Ustin 2008). 

As in many vegetation classification studies, our major challenges and mapping errors were 
associated with errors of commission. These were related to our inability to spectrally separate 
plant species as well as substrate subcategories (as illustrated in Fig. 5 and 6). There are apparent 
differences in spectral values between images and in this study we used a mosaic of many 
images. When we investigated areas that were incorrectly assigned following classification, it 
was clear that many of the errors were due to fine differences in the spectral signatures of the 
classes that occurred among the original images. 

Rasser (2009) found that many areas with water were shallow and contained large amounts of 
suspended sediments, which may have impeded accurate classification of these categories. There 
were also several places in the image where tidal mudflats were misclassified as vegetation. This 
has happened in other studies as well, for example, Belluco et al. (2006) had trouble in 
classifying salt marsh vegetation in areas containing microphytobenthos in a salt marsh in 
Venice, Italy. Similarly, the reason for the misclassification in this study could be cyanobacteria 
mats that were observed in many tidal flats during field data collection. It is possible that these 
cyanobacteria were active during image acquisition, thus making it difficult for the classification 
methods to spectrally separate large areas of cyanobacteria mats from other vegetation.  
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Table 3.  The Confusion Matrix calculated from the 2016 Imagery Classification. The overall Kappa 
Index was 0.70 and the overall accuracy was 75.9%. NA: not applicable 

Category B. 
frutescens 

S. 
spartinae 

B. 
maritima 
&  
S. 
virginica 

Other 
vegetation Bare Water Total 

User 
Accuracy 
% 

B. 
frutescens 

10 1 4 5 0 0 20 50.0 

S. spartinae 2 26 0 3 0 0 31 83.9 
B. maritima 
&  
S. virginica 

0 0 42 13 11 4 70 60.0 

Other 
vegetation 

1 4 4 24 6 1 40 60.0 

Bare 1 0 3 4 39 6 53 73.6 
Water 1 0 0 1 0 95 97 97.9 
Total 15 31 53 50 56 106 311 NA 
Producer 
Accuracy % 

66.7 83.9 79.2 48.0 69.6 89.6 NA 75.9 

 

There was relatively little forested cover within the study area and the limited data precluded a 
thorough accuracy assessment. However, the classified image did appear to represent accurately 
forested areas in the study area as well as scattered small patches of forest (Fig.6).  The 
integration of vegetation texture and LiDAR may have contributed to the apparent accuracy of 
this class. 

In conclusion, the integration of high resolution multi-spectral imagery and ancillary data such as 
LiDAR provided a relatively accurate classification of vegetation in the Rincon Delta. Due to the 
increasing availability of high-resolution remote sensing data the methods developed here should 
prove valuable for mapping other estuarine areas. For example, the United States National 
Imagery Acquisition Program has begun to incorporate DMC imagery. The methods 
incorporated in this study are part of a growing body of research that has shown the utility of 
remote sensing in monitoring coastal and estuarine systems and incorporating imagery with other 
spatial datasets to improve classification accuracy (Goetz et al. 2008). 

Landscape Vegetation Patterns in the Rincon Delta 
Vegetation patterns were examined using geospatial analysis to gain a better understanding of 
landscape scale patterns of vegetation. These landscape patterns often confirmed some of the 
very obvious visual observations we have often made in the Rincon Delta. For example, one 
classified vegetation image shows the zonation patterns in species along tidal creeks (Fig. 14). 
The edges of the tidal creeks are dominated by Borrichia frutescens, which transition into 
relatively pure mixed zones of two salt tolerant succulents, Salicornia virginica and Batis 
maritima.  The most likely explanation is the presence of the tidal creek network, which 
facilitates inundation and ameliorates high salinity.  We also found that B. frutescens and S. 
virginica were most common closer to tidal creeks and the bay, and that in many areas of the 
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lower marsh these species dominated the overall vegetative cover.  At still higher elevations, one 
can see patches of Spartina spartinae. 

 

Figure 14.  The zonation of vegetation that border tidal creeks in the lower marsh is dominated by 
Borrichia at creek edges, followed by mixed and pure stands of Batis and Salicornia. 

The general six category classification of the lower Rincon Delta depicts a system that is 
permeated with water trapped in ponds and tidal creeks (Fig. 15). GIS analysis reveals that the 
open water areas compose nearly a third of the system, with unvegetated areas composing nearly 
another 20% (Fig. 16).  This is in general agreement with Rasser (2009), who found that the 
vegetative cover of the lower Rincon Delta is about 50%. The most dominant plan cover type are 
pure stands and mixtures of Salicornia and Batis, which compose nearly 20% of the total cover. 
The lower levels of vegetation cover observed were similar to data available from California salt 
marshes. For example, remote sensing and field surveys were used to determine that non-
vegetated areas accounted for between 44.6% and 86% of the ground cover at four salt marsh 
sites in California (Shuman and Ambrose 2003).  In each of these California salt marshes S. 
virginica was the dominant plant species (13.5 to 32.8% cover).  In general, S. virginica is the 
dominant plant in the lowest tidal levels of salt marshes (Li et al. 2005). 

A more detailed 11-category classification shows that the contribution made by Salicornia and 
Batis (8% each) is about equal, confirming are own field observations (Fig. 17 and 18). 
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Figure 15.  A generalized vegetation classification of the lower Rincon Delta (2016 imagery).
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As mentioned earlier, both species are succulents and highly salt tolerant and thrive in 
hypersaline soils. The balance of other species includes Borrichia (8%), Spartina spartinae, 
which is more common at higher elevations, and “other” species that include many salt tolerant 
perennials that are intermixed with Borrichia, Salicornia and Batis.  The contribution we report 
for Salicornia is similar to that reported by Rasser (2009) in his vegetation analysis, who found 
that Salicornia’s component of the overall vegetation in the Rincon Delta was approximately 6% 
of the total cover (Fig. 19). 

Perhaps the most conspicuous difference between the salt marsh communities of the lower 
Rincon Delta and many well studied North American salt marshes, particularly along the 
Atlantic coast, is the lack of graminoids in the lower marsh.  For example, a remote sensing 
study of North Inlet, South Carolina found that S. alterniflora and Juncus roemerianus accounted 
for 83% of the estuarine area (Morris et al. 2005).  S. spartinae is considered a brackish species 
with less salt tolerance than B. frutescens and S. virginica.  Rasser (2009) found this species was 
most often found at distances greater than 113 meters from tidal creeks. A study by Sadro et al. 
(2007) found that S. virginica was inundated approximately 13% of the time.  It is probable that 
S. spartinae meadows, due to their distance from tidal creeks and apparent higher elevation, are 
only flooded during infrequent episodes of very high-water levels such as tidal storm surges.  

 

Figure 16.  The major components and contributions of the various cover types in the Rincon Delta 
(2016).
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Figure 17.  A more detailed classification of the lower Rincon Delta based on 11 category types (based on 2016 imagery).
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Figure 18.  The major components and contributions of eleven cover types in the Rincon Delta (based 
on 2016 imagery). 

S. alterniflora is only a very minor component of the Rincon Delta.  Although it is found 
throughout the Texas coast (Kunza 2006), extensive salt marshes dominated by S. alterniflora 
are not typical.  The reduced abundance of this species is probably due to the small tidal 
amplitude in the western Gulf of Mexico.  S. alterniflora typically occurs within the intertidal 
range (Morris et al. 2005).  Due to the small tidal amplitude of approximately 15 cm there is a 
limit amount of marsh surface that is regularly flooded, which creates ideal growing conditions 
for Spartina alterniflora.  

Our results confirm the observations of Rasser (2009), who found that the abundance of S. 
spartinae increased with greater distance from the tidal creek network and Nueces Bay and 
increased elevation, often forming almost monospecific stands in the marsh such as the area 
south of North Lake (Fig. 19).  This result corroborates other findings on the Gulf of Mexico 
coastline, where this species forms large meadows between lowland marshes and upland 
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communities that are relatively stable over time (Scifres et al.1980).  The increase in vegetative 
cover of S. spartinae appeared to be the result of reduced tidal influence and a transition to 
upland plant communities.  Visual inspection of the resulting classified image also shows that the 
largest areas of S. spartinae are located further from Nueces Bay. 

Comparison of vegetative and non-vegetative classes between the 2009 (Rasser, 2009) and the 
2016 study proved difficult, but for those categories where direct comparisons were possible, the 
results illustrated excellent continuity between the two studies (Table 5). Since Rasser (2009) 
was able obtain a significantly higher user accuracy (nearly 89%) when combining Borrichia 
frutescens and Salicornia virginica (and by default, Batis maritima), we were able to examine 
that assemblage against the 2016 classification.  Based on the intersection of both study areas 
(3,445 ha), the analysis yielded only a 0.9% difference for this important group of three 
competing salt tolerant marsh species (Table 5). Differences between 2005 and 2016 in the 
remaining three classes were also low, demonstrating the inherent value of this classification 
approach. Improvements in image analysis software, additional training data, and a more focused 
effort allowed the team to improve the resolution among vegetative species in the 2016 
classification.  This is an exciting development and will allow a greatly expanded use of these 
data for modeling and assessment. 

Table 4.   Vegetative communities in the Rincon Delta based on the 2016 classification (3817 hectares). 

Cover Class Area (ha) Percent of Total 
Area 

Borrichia frutescens 302 7.9 

Batis maritima 300 7.9 

Spartina spartinae 459 12.0 

Salicornia virginica 300 7.9 

Batis maritima and Salicornia virginica  74 1.9 

Forest 246 6.5 

Other vegetated 306 8.0 

Railroad track 13 0.4 

Sand 40 1.1 

Bare (other than sand and railroad track) 642 16.8 

Water 1133 29.7 
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Figure 19.   Classified image of study area based on classification of digital aerial imagery acquired 1 November 2005 (from Rasser, 2005).
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Table 5.   Comparison of the vegetative communities in the Rincon Delta based on the direct intersection 
of the 2005 (Rasser 2009) and 2016 classification area (3445 hectares). 

Cover Class 
Percent of Total 

Area 

 2005 2017 

Borrichia frutescens, Salicornia virginica, Batis maritima 23 23.9 

Spartina spartinae 17.7 13.3 

Water 26.1 28.4 

Sand 2.6 1.1 

 

Long-Term Vegetation Response to Drought and Salinity 

Previous studies have shown that the emergent plant community is responsive to variations in 
salinity and freshwater inflow (U.S. Bureau of Reclamation 2000; Alexander and Dunton 2002; 
Forbes and Dunton 2006). Patterns in species composition observed over nearly two decades at 
three sites in the Rincon Delta (Fig. 20) reveal distinct vegetation responses to drought. This 
dataset is unique in that it considers both some of the wettest (2002 -2004) and the driest periods 
(2009-2011) since reservoir construction. Plant communities observed during early droughts 
(1999-2001) were present during subsequent dry periods in 2005 and 2008. These drought period 
communities were characterized by a high abundance of S. virginica and a low abundance of S. 
alterniflora. The time required for the reappearance of drought period assemblages was related to 
the magnitude of freshwater inflow events during the preceding wet period. High freshwater 
inflows during 2002-2004, extended the time period between the reemergence of drought period 
vegetation communities.  The sensitivity to drought periods is best reflected by variations in pore 
water salinity, which can increase to values exceeding 100 (Fig. 21). The cover of Borrichia 
frutescens declined dramatically in 2009 when pore water salinities were consistently above 45. 
Borrichia cover has been slow to recover over the past decade, reaching values that approach its 
cover before the 2009 drought began (Fig. 21).
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Figure 20.  Quarterly percent cover of emergent plants at selected sites in the Nueces River Delta for the period 1999-2019.  
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Figure 21.  Porewater salinity (blue circles) and percent cover of Borrichia frutescens (red triangles) 
along the creek bank in the low marsh. Porewater salinities exceeding about 45 result in 
declines of B. frutescens abundance. 
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Estimation of Rate of Shoreline Erosion 
Rasser and Dunton (2007) examined color infrared photographs acquired on 26 September 1997 
and 1 November 2005 to estimate rates of shoreline erosion of the Nueces River Delta.  They 
measured the distance between the 1997 and 2005 shorelines to estimate the average erosion 
along the length of the study area based on the selection of random points (Fig 22).  Based on the 
distance between the 1997 and 2005 shorelines at each of the 30 locations along the average 
shoreline retreat was 20.15 m (n=30, sd = 7.4 m) for the period 1997 – 2005 or 2.5 m year-1 for a 
net loss of 4.1 ha within the defined study area (Rasser and Dunton, 2007).  

Our comparison of 2005 and 2016 imagery show an even greater annual rate of shoreline loss 
(Fig. 23). Based on our preliminary measurements, we estimate that shoreline erosion could be 
occurring as fast as 4.5 m yr-1.  More importantly, comparison of the 2005 and 2016 imagery 
show breaching of Nueces Bay into large ponds of the lower delta.  This breaching serves to 
further accelerate marsh loss and seriously compromises estuarine habitat of the lower marsh 
system. Factors contributing to the continued erosion of the Delta shoreline are reduced sediment 
delivery owing to the dam construction on the Nueces River and a relative sea level rise, which 
at 6 mm yr-1 in the Coastal Bend is about twice that of the global average. 

The lower marsh assemblage of B. frutescens and S. virginica appears to be most impacted by 
erosion as these species grow close to tidal creeks and Nueces Bay.  An estimated 80% of the 
area lost to erosion consists of this vegetation class (Rasser, 2009). It is difficult to estimate the 
total area lost to erosional processes because our imagery only covers a portion of the entire 
Rincon Delta shoreline that is in contact with Nueces Bay. However, the erosion of the Delta has 
clearly resulted in large losses of wetlands dominated by B. frutescens and S. virginica.  

Concluding Statements 

The decadal assessments of areas occupied by water, sand, and vegetation is critical to 
understanding how the Rincon Delta is responding to regional climate, sea level rise, and 
freshwater inflow events. The vegetation is particularly sensitive to climatic conditions and 
reflects long-term changes in the hydrological regime.  The patterns apparent in the imagery are 
also reflective of salinity, which is a product of droughts and/or reduced freshwater inflow 
events. 

Our results suggest that if droughts become longer and more frequent, species replacements are 
likely to occur. Rasser (2009) hypothesized that under increasing saline conditions, S. virginica 
will likely replace S. alterniflora and make up even a greater proportion of the overall 
community. Drought conditions may also decrease the overall extent of emergent salt marsh 
plants in the Rincon Delta as decreases in freshwater inflow, concurrent with more erratic and 
possibly decreasing precipitation (Forbes and Dunton 2006). 

One way in which environmental stress is expressed in the vegetation community is through 
zonation. Zonation is characterized by distinct banding or spatial separation of species depending 
on differing tolerance to environmental stress and interspecific competition for resources (Adams 
1963; Pennings et al. 2005). Typically, this occurs in response to variations in inundation 
frequency corresponding with an elevation gradient (Rasser 2009). 
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Figure 22.  Shoreline erosion was measured at 30 random points along the study area baseline.  The 
distance between the 1997 and 2005 shorelines was determined from each point 
perpendicular to the shoreline along the measurement path. 
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Figure 23.  A comparison of the 2005 and 2016 imagery reveals shoreline erosional losses up 4.5 m yr-1 

and significant breaching events of the Rincon Delta. 

Zonation can be observed in the Nueces Delta under intermediate flooding disturbance.  
However, during extreme drought or flooding, zonation bands are dissolved, and extensive bare 
areas are created (Alexander and Dunton 2002). Large magnitude events, such as floods, are 
known to cause wholesale reorganization of the vegetation community (Forbes and Dunton 
2006).  

This finding is important because the use of emergent vegetation as indicators of ecosystem 
condition is predicated on the assumption that community structure is predictable under a given 
set of hydroclimatic conditions.  We have found that vegetation communities in the Rincon 
Bayou Delta follow a predictable trajectory.  First, bare areas, which are created following large 
inflow events, are initially colonized by stress intolerant species such as S. alterniflora and 
Suaeda maritima.  In the absence of freshwater inundation, these individuals are eventually 
replaced by the moderately stress tolerant B. frutescens (Fig. 21). Finally, with the onset of 
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drought conditions, we see the replacement of nearly all species by the stress tolerant S. virginica 
(Forbes and Dunton 2006). Interestingly, following freshwater inflow events, the opposite 
occurs, and we see the displacement S. virginica by B. frutescens (Forbes and Dunton 2006).  In 
addition, a variety of studies determined that S. virginica is resilient to extreme environmental 
stress (Zedler 1983; Rasser 2009).  Clearly, frequent freshwater inflow events are required for 
the maintenance of an estuarine S. alterniflora creekbank habitat, which although present in the 
Rincon Delta, is very limited in its extent. 

The ongoing patterns of displacement, invasion, and re-establishment of plant species in 
response to alternating periods of drought with periods of precipitation are well reflected in 
vegetative species composition (Fig. 20). At site 270, the increases and decreases in percent 
cover in S. alterniflora are coincident with corresponding decreases and increases in the cover of 
S. virginica. The overall community response is sufficient to produce clusters of vegetation 
communities that correspond to dry and wet periods using a multidimensional scaling ordination 
(Stachelek and Dunton, 2013). These analyses clearly show that plant communities undergo 
major quantifiable changes in response to precipitation. However, based on the patterns in 
vegetative cover (Fig. 20) and the comparison of major plant assemblages between 2005 and 
2016 (Table 5), long-term shifts in vegetative patterns are not evident in our data that indicate a 
clear trajectory of ecosystem change. Certainly, variations in vegetation assemblages occurred 
during the 11-yr period from 2005 to 2016 (Fig. 20), but the resiliency of the vegetation to large 
swings in salinity has not created additional bare areas that are unsuitable for plant 
establishment. 
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