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Effect of Climatic Variability on Freshwater Inflow,
Benthic Communities, and Secondary Production in Texas
Lagoonal Estuaries: FY2007-FY2008

Abstract
This is the final report for a 2-year project (TWDB contract numbers 07-483-0672

and 08-483-0791) with the objective to complete implementation of an ecological
model to predict system-wide secondary production for two trophic groups of
benthic organisms in response to different freshwater inflow regimes that result
from the climatic ecotone along the Texas coast. The bioenergetic model was
calibrated using an 11-year dataset (from 1988 to 1999) and validated with a 20-
year data from (1988 to 2008) from four estuaries in South Texas: Lavaca-
Colorado (LC), Guadalupe (GE), Nueces (NE) and Laguna Madre Estuaries (LM).
The estuaries lie in a climatic gradient where LC and GE receive more rainfall
than NE, and NE receives more rainfall than LM. Consequently inflow decreases
along the gradient and salinity increases. In addition there is year-to-year
variation in rain and inflow that results in wet and dry years. Therefore, this
combination of the climatic gradient and temporal variability can be used to
identify the effects of inflow on estuarine productivity.

Among Texas estuaries, increased salinity (and thus decreased inflow)
benefited deposit feeders, while suspension feeders were harmed, but the net
overall effect is a decrease in functional diversity when salinity is increased.
Within estuaries, the benthic community of secondary bays is harmed by
reduced inflow, whereas, the community in primary bays appears to benefit in
biomass increase by reduced inflow. This is because lower salinity regimes are
required to support food production for suspension feeders, and there are more
polyhaline deposit feeding species. Freshwater inflow is important in to
maintain productivity and functional diversity; and required to maintain

functional, healthy estuarine ecosystems.



1. Introduction
The ecology of estuaries is strongly influenced by the quantity, timing,

frequency, and duration of freshwater pulses to coastal ecosystems (Montagna et
al. 2002a). In Texas, there is a strong climatic gradient with decreasing
precipitation, and concomitant freshwater inflow, from northeast to southwest
(Montagna et al. 2007). Along this gradient, rainfall decreases by a factor of two,
but inflow balance decreases by almost two orders of magnitude. Inflow balance
is the sum of freshwater inputs (gaged, modeled runoff, direct precipitation, plus
return flows) minus the outputs (diversions and evaporation). The net effect is a
gradient with estuaries with similar physical characteristics but a declining
salinity gradient (Montagna et al. 2009).

Another characteristic of Texas estuaries is the extreme year-to-year
variability of precipitation, inflow, and salinity, which is caused by the El Nifio
Southern Oscillation (ENSO) (Tolan 2007). The ENSO climate signals are
correlated to salinity structure within Texas estuaries within 4 to 6 months.
During EI Nifio events, salinities in Texas estuaries decrease because of increased
freshwater flows to the coasts. During La Nifia periods, salinities increase
because of the drier climatic conditions. These cycles occur with a periodicity of
3.55, 5.33, and 10.67 years. The ENSO is dominated by the 3.55- and 5.33-year
periods and the 10.67-year period is defined by the Pacific Decadal Oscillation.
The combination of latitudinal and long-term climate differences (which drive
inflow variability) and the varying geography and tidal dynamics of the
estuaries is responsible for the uniqueness, or estuarine signature, common in
estuaries throughout the world. Thus, the differences in inflow regimes among
the Texas estuaries are driven by the combination of spatial and temporal
climatic regime shifts.

The climate regime differences in Texas estuaries drives freshwater inflow

(which is driven by precipitation and runoff) and biological processes also vary



along the same gradient. Thus, the objective of the current project is to link long
term data bases on temperature, salinity, and macrofauna communities to
predict how changes in climatic variability influence the structure and function
of estuarine communities. The approach is to study benthos and inflow
dynamics over a large regional scale for the long term to capture spatial and long
term effects. Benthos are good indicators of environmental change, because they
are fixed spatially, have relatively long life cycles, and are at the bottom of the
food chain, thus integrating long term changes in the overlying water column
(Montagna and Kalke 1995).

Benthic data has been collected in the Texas central coast estuaries from
1984 to present (as this is being written in 2009). At each quarterly sampling
period, nutrient concentrations, primary producer biomass, and benthos biomass
has been measured. The combination of benthos and water quality data
provides the opportunity to investigate the role of freshwater inflow in driving
ecosystem dynamics using a model framework that was first developed in 1995
(Montagna and Li 1996). The ecological model is mechanistic and calculates bay-
wide productivity for two different trophic groups of benthos: those relying on
primary producers in the water column for food, e.g., filter, interface, and
suspension feeders; and those relying on organic matter in sediments for food,
e.g., the deposit feeders and omnivores. The model framework was modified by
Kim and Montagna (2009) to better resolve predator-prey interactions and
responses to inflow. In the current project, the model has been refined again and
is recalibrated using an 11-year dataset from 1988 to 1999 and validated with
long-term data from 1988 to 2008. The project has been completed over a 2-year
period from FY 2007 (TWDB contract numbers 07-483-0672) and FY 2008 (08-483-
0791). The main activity in FY 2007 was data base assembly, and the current

report is based on modeling activities accomplished during FY 2008.



2. Methods

2.1 Databases
2.1.1. Study area

Four estuaries were studied that are located in South Texas: the Lavaca-
Colorado (LC), Guadalupe (GE), Nueces (NE) and Laguna Madre (LM) estuaries
(Table 1). The sampling design is along salinity gradients among and within the
estuaries. Within each estuary, two bays were sampled: the primary bay closer
to the connection with the Gulf of Mexico, and the secondary Bay closer to the
river source of the estuary (Fig. 1). There were at least two stations sampled in

each bay (Table 1).
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Fig. 1. Locations of long-term sampling stations in south central Texas bays.



Table 1. Sampling stations, locations and periods for the continuous long-term

monitoring database in the eight Texas bays. Environmental and biological variables
(temperature, salinity, nutrients, predator density and benthos biomass) used in the
model were selected from the same database.

Peri f Period for D
Estuary Bay Name Stations Location erlod' ° eriod °: ata
Sampling Analyses ("years)
28°40'12” N,
ac A 96° 34' 48" W 1984 - 2009 1988 — 2008 (21)
28°38' 24" N,
B 96° 34' 48" W 1988 — 2009 1988 — 2008 (21)
28°32' 24" N,
Clj\;ar:?j-o C 96° 28' 12" W 1988 — 2009 1988 — 2008 (21)
28°28'48" N
Est ’ - —
stuary atanords D 96° 17' 24" W 1988 — 2009 1988 — 2008 (21)
8 £ 28°33' 07 N, 1993 - 1995 1993 — 1995 (3)
96°12'36" W 2004 - 2007 2004 - 2007 (4)
F 28°36' 07 N, 1993 - 1995 1993 — 1995 (3)
96°02' 24" W 2004 - 2007 2004 - 2007 (4)
28°23'37" N
A ’ 1987 -2 1 -2 12
Upper San 96° a6/ 20" w | 198772009 | 1989-2000(12)
Antonio 28°20'52” N
B ’ 1987 — 2009 1989 —-2000 (12
Guadalupe 96° 44' 45" W (12)
Estuary 28°14' 46" N,
Lower San C 6° 45’ 547 W 1987 — 2009 1989 — 2000 (12)
Antonio 28°18'8” N,
D 96° 41' 4” W 1987 — 2009 1989 —2000 (12)
27°51'39” N,
Nueces A 97° 28 25" W 1987 — 2009 1988 — 2002 (15)
27°51' 26" N,
B 7° 24 377 W 1987 — 2009 1988 — 2002 (15)
Nueces 27°49'31" N
’ 1987 -2 1 —-2002 (1
Estuary C 97091 g | 19872009 988 — 2002 (15)
. 27°42' 46" N,
Corpus Christi D 97°10' 43" W 1987 - 2009 1988 — 2002 (15)
27°47'50" N,
E 97°9'3” W 1987 - 2009 1988 — 2002 (15)
27°16' 37" N,
. 6 97° 25' 377 W 1988 — 2000 1988 — 2000 (13)
Laguna Baffin 57915 50" N
Madre 24 97°33'5” W 1988 — 2000 1988 — 2000 (13)
Estuary 189G 27°20'60" N
Laguna Madre 1895 97°23'33” W 1988 — 2000 1988 — 2000 (13)

*number of years sampled




2.1.2. Benthic macrofauna

Long-term macrobenthos data used to perform the modeling experiment
to determine the effects of alterations in freshwater inflow in these estuaries has
been collected since 1987. From previous studies, it was learned that long-term
changes in benthos within these estuaries could be characterized by sampling on
a quarterly basis (Kalke and Montagna 1991, Montagna and Kalke 1992). A long-
term (12 to 21 years) data set was pooled from each estuary for the comparison of
simulation results (Table 1). During each sampling event, three independent
macrobenthos samples were collected using 6.7-cm diameter sediment cores (35.4
cm? area) to a depth of 10 cm and preserved with 5% buffered formalin. The
samples were sorted and dry weight biomass was measured by major taxa (see

Kalke and Montagna 1991, Montagna and Kalke 1992 for details).

2.1.3. Water quality

Concurrent with the benthic samples, hydrographic measurements were
also made during each sampling period, and these measurements included:
chlorophyll 4, nutrient concentrations, dissolved oxygen, salinity, temperature,
and water depth.

Nutrient concentration for dissolved inorganic nitrogen (DIN; sum of
nitrate, nitrite and ammonium), dissolved orthophosphate (PO4%), and silicate
(510y4), is inversely related with salinity; and salinity is inversely related with
inflow (Fig. 2 and slope a in Table 2). The inverse relationship between nutrients

and salinity is driven by freshwater inflow changes.



60 a — fitted
_ ® mean (+ std)
= 40}
Z
0 20:
0
0
10
b
s
E 5 ,
o
&)
‘M
0 I I I I I
0 10 20 30 40 50 60
300
c
s
S
(O]
S
S
n
0 I
0 10 20 30 40 50 60

Salinity (psu)

Fig. 2. Relationship between salinity and nutrients in the Lavaca-Colorado Estuary. (a)
DIN (sum of nitrate, nitrite and ammonium), (b) orthophosphate (PO,*) and (c) silicate
(Si04). Salinity was binned every 10 psu and mean nutrient concentration (filled circles)
with one standard deviation (error bar). Slope, Y-intercept and correlation coefficients
are listed in Table 2.



Table 2. The results of linear regression among variables in the Lavaca-Colorado
Estuary. X and Y represent independent and dependent variable, respectively. Slope
(a), intercept (b), coefficient of determination (r?), and probability values (p) are listed.
Abbreviations: DIN=dissolved inorganic nitrogen, DIP=dissolved inorganic phosphorus,
Si=silicate.

X Log(Y) a b r p
Salinity DIN (uM) -0.04 3.06 0.65 0.10
Salinity DIP (uM) -0.03 1.25 0.87 0.02
Salinity Si (uUM) -0.02 4.96 0.76 0.05

2.1.4. Predators

Fisheries data from 1988 to 2009 were obtained from Texas Parks and
Wildlife Department (TPWD). The TPWD, Coastal Fisheries Division samples
monthly in the four estuaries (LC, GE, NE, and LM) using an otter trawl and gills
nets. A study of stable isotopes and mercury bioaccumulation in different food
chains determined that black drum, red drum, and blue crab are the main
predators on benthic infauna (Montagna, unpublished data). Therefore, the
average value for catch per unit effort (CPUE) of each of these three main
predators was used. The crab data comes from the trawl samples and the fish
data comes from the gill net samples.
2.1.5. Other environmental variables

Primary production was used as input to the model. However, there is
very little primary production data from the study areas and no time series data
at all. Therefore, primary production data was created in a model as a function
of limiting factors (day length, temperature and nutrient concentration) from the
historical maximum value. Previous studies report a range from 0.5 to 5 g C m2
d- in the estuaries along the Texas coast (Armstrong 1985, Stockwell 1989, Brock
1994). To derive a forcing function that can simulate day length, a dataset of
monthly day length for the Texas coastal area was obtained from Tony Amos,

University of Texas Marine Science Institute.



2.2. Model description

The long-term benthic macrofaunal data sets from the four estuaries were
used to calibrate the model of biological processes. The two principle
environmental factors associated with freshwater inflow are salinity and nutrient
concentrations; therefore, the relationship between biomass of benthic
macrofauna and these environmental factors was incorporated into the model.
To test for inflow effects, the ideal input to the model would be freshwater
inflow as a forcing function driving a physical model of salinity. However,
inflow rates have variable effects on salinity depending on the hydrological,
hydrographic, and tidal characteristics of the estuary. Therefore, a physical
model (i.e., a box model or hydrodynamic model) that predicts salinity change
under varying inflow scenarios would be needed to provide input to the
biological model. To avoid this level of complexity, the empirical salinity values
were used as input, thus salinity was used as a surrogate for freshwater inflow.
Salinity values represent the integration of all the physical characteristics of the
estuary (e.g., size, inflow, outflow, residence time, tidal exchange, and climatic
variability). Other input data to the model included fish and crabs as predators,
temperature, water depth, day length, and nutrient concentrations.

Using energy circuit language (Odum 1971, 1983), a schematic of stores
and flows in the benthos was conceptualized to guide model development
(Fig. 3). There are two main trophic guilds in benthic sediments: the grazing
food-chain and the detrital food chain (Tenore et al. 2006). Grazers consume
autotrophic production and detritivores utilize heterotrophic production. To
simplify the model, all macrobenthic animals were separated into one of two
groups: the grazers, (hereafter called suspension feeders) to represent the
grazing food chain, and the detritivores (hereafter called deposit feeders) to
represent detritivores and omnivores. In Texas Lagoons, most of dominant

taxa and ecologically important species fall into these two functional groups,



suspension and deposit feeders (see Table 3 in Tenore et al. 2006), and these
two trophic groups are state variables in this modeling exercise.

Suspension feeders are those organisms obtaining their food by
capturing suspended particles from the sediment surface or water column,
filtering phytoplankton from the water column, or grazing benthic diatoms
on the sediment surface. Suspension feeding taxa include the Mollusca,
Crustacea, and chironomid larvae. Suspension feeders are members of the
grazing food chain and thus are linked primarily with food produced by
autotrophy.

Deposit feeders are defined as those organisms that obtain their food
through ingestion of the sediment, predation, or omnivory. The deposit
feeders include the Hemicordata, Nemertinea, Ophiuroidea, Polychaeta, and
Sipunculida. Deposit feeders are members of the detrital food chain and are
thus linked primarily with food produced by heterotrophy.

The simplification of classifying all organisms into one of two function
groups allows suspension feeders to be defined as organisms limited by
autotrophic food sources, and deposit feeders as organisms limited by
heterotrophic food sources. This is important for setting up the model so

that the drivers of benthic productivity are clearly delineated (Fig. 3).
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Fig. 3. Energy circuit diagram for the structure of the benthic macrofauna biomass
model. Dashed lines represent variable not included in the model.

The model schematic (Fig. 3) also shows two major environmental (i.e.,
salinity and temperature) and two major biological/ecological factors (i.e., food
sources and predators), which regulate both gain and loss of the biomass in the
two state variables. Effects of these environmental factors were parameterized in
terms of scaling factors representing environmental limitations. Other
environmental variables (nutrients and day length) were used for estimating
food source availability (i.e., primary production). Primary producers, whose
growth is based on irradiance, temperature, and nutrient concentrations, are the
main food source for suspension feeders. Deposit feeders primarily consume
particulate organic matter (POM), and this can be approximated by the
concentration of total organic carbon (TOC) in sediments, which is based on data

(Montagna, unpublished, Montagna 2000). However, in the present study, the
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dynamics of POM, nutrients, and salinity caused by mixing and benthic-pelagic
feedbacks were not simulated. Instead, the measured POM, concentration of
nutrients, and salinity were directly used as input data, assuming that the
observations of these properties are reflection of physical and biogeochemical

mixing features in the estuarine system.

2.3. Model equations
2.3.1. Governing equation for state variable

The governing equation uses a template of Lotka-Volterra growth model
(Lotka, 1925) that models a density-dependent logistic growth of a population
(Brown and Rothery, 1993):

dB B
L _r.Bl1-21]-g-F 1
T ( Cj g M)

where r is the maximum net growth rate of benthos (B) without predation
pressure. c is the biomass carrying capacity for a population that is limited by
space. The predation loss is calculated by the feeding rate of predators, g, and
the density of predatory crab and fish, F. Therefore, Eq. (1) has a unit in biomass
(mg or g) over time (day or month). In general, the net growth rate implicitly
represents the filtering rate, ingestion rate, assimilation efficiency, respiration
rate, aging mortality, and excretion rate; and the only loss of benthos biomass is
by the predation rate.

However, growth rates in a population are also influenced by many other
environmental effects. In this study Eq. (1) was modified to include
environmental limitations as dimensionless scaling factors (E’s), which range
between 0 and 1. When E = 1, there is no environmental limitation, and the
benthic population can obtain a maximal growth rate or the predators can reach
a maximal feeding rate. When E = 0, environmental factors reach maximum

limitation, benthic populations do not grow, or predators do not consume
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benthos. The governing equation of the model is as follows:

By _p g By |1
dt @ bend) "RG0 T =T

B..
(i)
“ =905 2 Fi (2)
CW) ‘
where i =1 - 2 for deposit feeders or suspension feeders, j =1 - 2 for the two bay

systems (primary and secondary bay), k =1 - 3 for three different predators (red

drum, black drum and blue crab), r; is the monthly net growth rate (month -1),

Epen(i,j) 18 the environmental limitation for benthic biomass growth

ben(i, j

(dimensionless), ¢, is the biomass carrying capacity levels for the two feeding
groups (mg dw m?2), and ¢ ; is the temperature- and density-dependent

predation rate (g dw m=2month individual?) by fish k in bay j to prey benthos

i. Fy ; is average density for predator fish k (number of individuals).

The next two sections describe the parameterizations of rate processes
(e.g., growth and predation) and effects of limitations (e.g., temperature, salinity
and density) in the governing equation (Eq. 2), and these parameters will be
derived for deposit and suspension feeders in all four bays. For convenience,
species and location index, i and j, will not be included in the parameterizations

described in the following sections.

2.3.2. Dimensionless scaling factor of benthic growth (E,,,)

Benthic growth can be controlled by three environmental variables:

temperature, salinity and food availability. Thus, the term E,,, in Eq. (2) can be

ben

parameterized with respect to temperature ( E,,, ), salinity ( E, ), and food

concentration limitation ( E,,, ):

=E : Esal ’ Efood (3)

ben tem
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An Arrhenius-type exponential equation was used to represent the
limiting effect of temperature (Carrada, 1983). This formula can provide an
accurate temperature-dependent metabolism function and is used in estimating

temperature-dependent growth rate:

1
Etem = m (4:)

e wa ben

where E,, is the temperature limitation, T is the temperature (°C), and T1p: is

tem

the most suitable temperature (°C). When | T - Tl | is close to Tw_pen, E,, =1,

tem =
and there is no temperature limitation. Therefore, Tw_ten is a parameter (°C) that
describes the weighting due to temperature limitation, and higher T _pen leads to

higher sensitivity of E,, to temperature (Fig. 4).

tem
Salinity is one of the most influential environmental variables affecting
benthic communities and is directly correlated with FWI. All invertebrates
have optimal salinity ranges at which population growth is maximal
(Wohlschlag et al., 1977). We used an Arrhenius exponential function in the

model in order to represent salinity limitation:

1
Esal = ‘ S_Sopt‘ (5)

e Sw_ ben

where E_, is the salinity limitation, S is salinity (psu), Sept is the optimal salinity
(psu) for a population, and S _ten is a parameter (psu) that describes the weight
of the salinity limitation. There is no salinity effect when Sw_pen =c0. Salinity
limitation has a centralized optimum, with greater effects at high and low
salinities. The greater the salinity tolerance range is, the higher is the Sq_pen

value (Fig. 4). The equation has the same form as that used for temperature

13



limitation, but the parameters (Topt, Sopt, Tew_ven , Sw_ven) Were calibrated

independently.

Salinity (psu)
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Fig. 4. Limitation by temperature and salinity. Optimal temperature (Top:), salinity (Sopt)
and sensitivity parameters (i.e., Ty _pen, Sw_ben) are based on Egs. (4) and (5), respectively,
and these parameters were calibrated independently.

The limitation of food source was described with a Michaelis-Menten
type of uptake kinetics (Keen and Spain, 1992):
M

E.=-—"® 6
food M(i)-l-KM ( )

where E,, is the food limitation, M ;, is the concentration of the food source

foo
for benthic organisms (i =1, 2), and K, is a parameter at which the food

concentration is at half the maximum level of the population growth rate.

14



As two feeding groups are simulated in the model (deposit and
suspension feeders), there are two different food sources: detritus in sediment
and organic matter in the water column. Sedimentary POM was used as a
food source for deposit feeders, and expected primary production was used for
suspension feeders.

The POM levels ( p,,, ) were calculated from the measured percent

carbon content in the sediment samples (C%) for two bays:

C%) = 22 100 %

sed

where p . is the sedimentary POC level (g C m?) for each bay, and p, isan

average dry weight of the whole sediment (g dw) per core sample (where area
and depth of the core is 35.4 cm? and 10 cm, respectively), which was set at 16.4
(Montagna, pers. comm.). The measured mean C% from CHN analyzer and the

calculated p,,, (P, +0.42) are listed in Table 3 for each bay. These sedimentary

poc

POM levels represent the food sources available for deposit-feeders (M (1)) in

each bay:

M = Prom (8)

Primary production is expected to be the most important food source for

suspension feeders (M (2)). Primary production is simulated as a function of

day length, temperature, and nutrient concentration:
©)

where M, is the available food for suspension feeders, F is the unit conversion

factor described in Eq. (10), and p,, is the maximum daily primary production

15



previously reported (5 g C m?2 d-1; Stockwell, 1989), respectively. The following

term, is the temperature limitation for primary production

‘T—Tlﬁpt‘ /

e TW, pp

(dimensionless). The same type of response curve as in benthos (Eq. 4) was used,

but a different weighting for temperature limitation (Tw_ppin °C) was calibrated
L
for primary production. 1739 is the day length (L; hours) normalized by

maximum day length (13.9 hours) in the area between July and August. This is a
scaling factor to represent light limitation resulting from the length of daylight.

E,. is the nutrient limitation (dimensionless) for photosynthesis that includes

nut
concentrations of nitrogen (N), silica (Si), and phosphorus (P). The following

adjustment is to convert the unit:

30 10
F= X
0.42 100-d

(10)
(1

where djis the water depth (m) and the constants are used to convert from a day
to a month (30 days per month), from carbon to dry weight (42% of carbon
content per dry weight), and meter to centimeter (100 cm per m). Because
suspension feeders are assumed to use the available food source 10 cm above the
sediment surface, 10 (cm) is the fraction (i.e., boundary layer) of the entire water
column where suspension can reach to feed on primary production carbon.
However, when the water column is well mixed, the thickness of the boundary
layer will expand, thus, feeding behaviors of suspension feeder may not be
limited to the primary production in the lower 10 cm. To investigate the effects of
feeding depth on simulated suspension feeder biomass, a sensitivity test was

run. It was found that changes in boundary layer from 10 cm to 200 cm (average
depth of the Texas estuaries) made negligible increase (< 2%) in the simulated

biomass of suspension feeder in the study area. The final unit for suspension
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g-dw

feeder food availability is measured in (2—
m* - month

jwhere dw stands for dry

weight.

Nutrient limitation (E,,, ) for photosynthesis was based on Liebig’s law of

the minimum, which in this case states that nutrient-dependent photosynthesis
occurs at the rate permitted by the most limiting nutrient. In other words, the
minimum of the three Michaelis-Menten equations for uptake kinetics of N, Si

and P will determine the photosynthetic rate.

EMZM,N[ [N _[P] _I[Si] j a1
[N]+K, '[PI+K, "[Si]+Kq

where [N], [P], and [Si] are concentrations (pM) of inorganic nitrogen,
phosphorus and silica, respectively. Ky, Kp, and Ks; are half-saturation
concentration (M) for nitrogen, phosphorus and silica, respectively. Ky was
assumed to be 2.0 pM (Fisher et al., 1992), and Kp and Ks; were assumed to be
0.25 and 1.4 pM, respectively (Tilman and Kilham 1976). Authors used literature
values for half-saturation coefficients instead of using conversion based on
Redfield ratio (Redfield, 1934) in order to better simulate realistic conditions for
nutrient uptake by phytoplankton cells. Therefore, the rate constant determining
photosynthesis (the minimum value of Michaelis-Menten kinetics in Eq.11) was
determined by not only ambient nutrient concentrations but growth conditions
of phytoplankton cells.

A forcing function was derived to simulate day length (number of
hours) in order to represent seasonal effect of photosynthesis:

L, =12.15849 —1.755811 cos(z”l—'z(t) - o.2244535j (12)

where L, is day length (h) at time ¢ (month). In general, the photosysnthesis-

irradiance (P vs. I) relationship reveals hyperbolic response function (e.g., Jassby
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and Platt, 1976; Platt and Jassby, 1976; Platt et al., 1980; Neale and Richerson,
1987; Platt et al., 1988). Strictly speaking, it is photo-physiological responses of
phytoplankton cells and irradiance that drive changes in primary production, not
day length. However, given that day length and average (not day-to-day)
irradiance both vary as seasonal harmonics (e.g., cosine function in this study),
and should be proportional. Therefore, the simple normalized formulations (Egs.

9 and 12) should accomplish the general purpose of light limitation.

2.3.3. Predation

Predation is a function of environmental factors (e.g., temperature),
benthic biomass, and predator density. In this study, the predation rate (g dw m-2
month individual?) is modeled as a function of temperature and prey benthic
biomass, because temperature (Houde, 1987; Houde, 1989; Pepin, 1991; Poulet et
al., 1995; Calbet and Agusti, 1999) and prey aggregation (Montagna et al., 1993)
are related to the feeding rate of predators.

Predation was simplified as a function of temperature and prey density.

Therefore, the term g in Eq. (2) is the temperature- and density-dependent

predation rate (g dw m=2month? individual') and was parameterized as

follows:

g =100 T2 (13)

where, T is temperature (°C) in both bays, T2, is an optimal temperature (°C)

opt
that determines the range of responses, and Tw_pred (°C1) is the sensitivity

parameter for temperature-dependence. |, is a modified Ivlev’s equation (Ivlev,

1961) by Mayzaud and Poulet (1978) to express the non-linear effect of prey
density on predation rate (Eq. 14):

|, =A-B -(1-e"") (14)
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where, B is the biomass of the benthic prey in g dw m?2, and 4 ((g dw m-2)1) is
the parameter for the aggregation effect of prey. Therefore, as T increases, the
term g increases to its maximal grazing rate. When benthic biomass (B) is at a

very low level the value of term 1, is close to 0, and aggregation effect is nil.

2.4. Model calibration

Model calibration is necessary before actual simulation is conducted
because it can set boundaries within which reasonable and localized model
behaviors can be produced. The calibration process is based on long-term
average values of state variables (i.e., benthic biomass in this study),
environmental forcing (day length as a proxy of solar irradiance, temperature,
and salinity), and locally-derived (or measured) physiological rate constants
(nutrient uptake, grazing, and mortality rate). Long-term time series for state
variables and forcing functions are fundamental sources and prerequisite for the
model implementation, and in most cases, they are available, but physiological
parameters are often rare. Two approaches are frequently used to resolve the
unknown parameters: 1) using literature values, and 2) Monte Carlo analysis. In
this study, Monte Carlo analyses were used to estimate unknown parameters
presented in the previous equations (Egs. 4 - 14). The Monte Carlo approach
used here assigns random numbers to those parameters from defined probability
distributions and then a simulation result with the given set of parameters is
compared to observations. These steps (i.e., selection of random set - simulation
- comparison) are iterated hundreds or thousands of times (e.g., 15,000 times in
this study) until the model simulation satisfies a criterion for the model
prediction versus data observation comparison (Fig. 5). This process is called
optimizing a cost function, which is, in this study, minimization of goodness of
tit (GoF). When performing multivariate parameter estimation of nonlinear

models a quantitative measure for the difference between simulated results and
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observed data can be a cost function (de Hoop et al. 1989). Because the current
model has two state variables, the average of these two normalized residuals
(difference between model results and observed data, normalized by standard
deviation) was used as a Goodness of Fit, and therefore cost function. An 11-
year period (April 1988 to October 1999) was used for model calibration. The
initial ranges for the parameters were chosen to define upper and lower bounds
of the calibration. Fifteen thousand calibration runs were conducted until all
parameter ranges were reduced to less than 50% of the initial ranges. Within the
initial ranges, the best fit parameter set, which has the minimum normalized
residuals, was chosen (Table 3). These best fit values were used as parameters for
long-term simulations of benthic macrofauna biomass in the eight Texas
estuaries for a 20-year period from April 1988 to October 2008. In this study,
each estuary was divided into two bays: the primary bay and the secondary bay

(Fig. 1). The model was calibrated for each bay independently.

Parameters

Model [«——/ Forcings ;

Y

New Parameters

'y

Meeting Criteria?

Yes

Fig. 5. Schematic of benthic model calibration. Monte Carlo scheme reiterates the loop with
newly and randomly chosen new set of parameters for another simulation until model-data
comparison meets certain criteria.

20



SENECA (de Hoop et al., 1989) provides statistical and numerical features
to perform the calibration. For interested readers, the developer of SENECA
(Netherlands Institute of Ecology - Center for Estuarine and Coastal Ecology)
released a new modeling software package femme (flexible environment for
mathematically modeling the environment) that includes advanced numerical
techniques (e.g., adjoint method). For more information,

visit http:/ /www.nioo.knaw.nl/ projects/femme/ .

2.5. Model validation

To evaluate the model performance, the percent root mean square (RMS)
difference was calculated between model outputs and observations (Eq. 15). An
observed data set for the period April 1988 - October 2008 was used for

validation of the model.

(XMOD — XOBS)2
%RMSD = (xN E x100 (15)
OBS
2N

where Xmop and Xops are model simulations and observed data respectively. N

is the size of the sample (i.e., number of individual data points).
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3. Results

3.1. Salinity and temperature differences among estuaries
Significant long-term differences in salinity and temperature can be seen

among the estuaries during the calibration period, but not for dissolved oxygen
(Table 3). Salinity is is significantly different in each estuary (GE = 15.0, LC =
20.1, NC =28.3, and LM = 37.9). Salinity and is significantly lower in the
secondary bay than the primary bay in all estuaries, DO is significantly higher,

but temperature is the same in primary and secondary bays.

Table 3. Water column characteristics of the bays during the calibration period April
1988 to October 1999. A. Mean (and standard deviation). B. Analysis of variance using
a nested model where the water parameter if a function of the estuary and bay nested
within estuary and each sampling period is a replicate. Abbreviations: LC=Lavaca-
Colorado Estuary, GE=Guadalupe Estuary, NE=Nueces Estuary, LM=Laguna Madre
Estuary, LB=Lavaca Bay, MB=Matagorda Bay, USB=upper San Antonio Bay, LSB=lower
San Antonio Bay, NB=Nueces Bay, CCB=Corpus Christi Bay, BB=Baffin Bay, ULM=upper
Laguna Madre, DF = degrees of freedom, and P = probability.

A. Salinity(psu) Temperature(2C) DO(mg/l)
Estuary Bay Mean STD Mean STD Mean STD
LC Secondary (LB) 153 9.0 21.0 6.9 80 1.7
LC Primary (MB) 249 49 21.4 6.5 71 1.9
GE Secondary (USB) 11.2 8.2 22.1 6.8 82 20
GE Primary (LSB) 18.8 9.1 21.8 6.9 81 2.0
NE Secondary (NB) 252 8.2 22.9 6.1 71 1.5
NE Primary (CCB) 31.2 4.2 22.6 6.1 64 1.8
LM Secondary (BB) 389 9.9 23.0 6.2 6.1 1.6
LM Primary (ULM) 37.0 8.2 23.7 6.0 82 21

B. P

Source DF Salinity Temp DO

Estuary 3 0.026 0.0074 0.5044

Bay(Estuary) 4 <0.0001 0.9745 <0.0001

Error DF 378
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3.2. Model validation for the time series (1988 - 2008)

The Monte Carlo technique was used to calibrate the model for the 11-year
period (1988 - 1999), and the calibrated parameters in Table 4 represent the best
fit values for the Lavaca-Colorado Estuary. Using this calibrated parameter set,
the model was validated for periods of analyses given in Table 1. The initial
range for temperature was set from 0 to 50 °C, thus some of the estimated
temperature parameters are very low or very high. This range reflects a
limitation in our method, which is to estimate 19 unknown parameters.

To evaluate the model performance the percent RMS difference was
calculated between model outputs and observations (Eq. 15). The percent RMS
differences between the simulated and observed biomass for deposit and
suspension feeder in all eight bays ranged from 62.7% (deposit feeder in Lower
San Antonio Bay) to 116.2% (deposit feeder in Nueces Bay). Table 5 lists percent
RMS differences between the simulated and observed biomass for two benthic
groups along the Texas estuaries. Overall, the low percent RMS values indicate

the model performance with calibrated parameters was found to be successful.
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Table 4. Best fit parameter values from the Monte Carlo analysis for the eight Texas bays. The
calibration is based on for the eleven-year database: 1988 — 1999, and the parameters are
defined in Equations (2 — 14). Abbreviations: Param=Parameter; Ben=Benthos; LB=Lavaca Bay,
MB=Matagorda Bay, US=Upper San Antonio Bay, LS=Lower San Antonio Bay, NB=Nueces Bay,

CC=Corpus Christi Bay, BB=Baffin Bay, LM=Upper Laguna Madre.

Para-

Benthic

Best Fit Values

Units

meter  Group LB MB us LS NB cc BB LM

I Dep 5116 5311 5119 5084 5200 5337 5104  7.009 month ™

) Dep 30799 32705 61.449 42376 30.329 30.567 38320 31.154 mg dw m”

I Epi  7.844 5172 5862 6257 5314 12816 5426 5.445 month *

o) Epi  97.070 86.395 77.920 99.701 50.433 67.779 95.759 96.316 mg dw m”
Tl,:  Dep  49.422 46503 49.261 0.561 47.950 49.747 26.600 3.274 °c
Tdopt Epi 0792 2549 0592 2137 37460 42517 25957 0.294 °c
Twben Dep, Epi 30.244 33.195 32.272 30.230 35.267 35.046 31.193 47.873 °c

Sopt Dep  20.140 36410 38222 39.349 38.839 39.697 33.947 21.902 psu

Sopt Epi 0181 5433 7301 19275 7.159 11162 0249 5319 psu
Swben Dep, Epi 30303 31482 59.369 53.532 58455 57.186 57.945 30.310 psu

K Dep  80.593 89.934 88.873 31.682 88.284 0.891 96.642 31.628 gdwm?

Ky Epi  99.284 67.730 0515 30.087 0.646 17.131 61.948 78.109 gdwm?
Doom  Dep 14446 17752 3962.2 2292.6 21355 1847.2 2821.1 16783 gdwm?
Psed Dep  "164 164 164 164 164 164 164 164 gdw(35.4cm’)’

Pop Epi 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 gCm?d?
Tu oo Epi  48.967 49.737 17.501 16.338 16.145 40.661 17.460 19.780 °c

Ky Epi 2.0 2.0 2.0 2.0 2.0 2.0 2.0 2.0 my

*Kp Epi 0250 0250 0250 0250 0250 0250 0.250 0.250 uM

Ks; Epi 14 14 14 14 14 14 14 14 UM
Twoea Dep 0006 0.115 0341 0123 0.007 0.100 0051 0.684 °c
T2,  Dep 22232 38921 31211 30.789 24.130 49.691 46.939 32.990 °c
Twped  EPi 0232 0080 0225 0057 0009 0.062 0474 0.134 °c
T20pt Epi  33.368 32.790 28.060 47.384 9.896 37.575 28.476 36.308 °c

A Dep 0035 0218 0.155 0059 0034 0719 0371 0.829 (g dwm?)*

A Epi 0973 0156 0043 0366 0.069 0649 0.141 0.134 (gdwm?)™

®Dep and Epi represent deposit and suspension feeders, respectively

bAverage dry weight of the whole sediment (g dw) per core sample with area of 35.4 cm? (Montagna, pers. comm.)

CPpD,,, values were based on P,,c measurements from CHN analyzer (see the text)

dK,\, (Fisher et al., 1992); ®Kp (Tilman and Kilham 1976); st,- (Tilman and Kilham 1976)

24



Table 5. The percent root mean square (RMS) difference between observed and
simulated benthic biomass in the bays during the long-term simulation period of
analyses (see Table 1). Abbreviations: LB=LavacaBay, MB=Matagorda Bay, US=Upper
San Antonio Bay, LS=Lower San Antonio Bay, NB=Nueces Bay, CC=Corpus Christi Bay,
BB=Baffin Bay, LM=Upper Laguna Madre.

April 1988 — October 2008

Bay Benthic group (for long-term simulation)
% Root Mean Square

LB Deposit feeders 101.2
Suspension feeders 93.6
MB Deposit feeders 67.9
Suspension feeders 85.7
us Deposit feeders 69.5
Suspension feeders 83.1
LS Deposit feeders 736
Suspension feeders 97.7
NB Deposit feeders 61.0
Suspension feeders 95.4
cC Deposit feeders 116.1
Suspension feeders 88.0
BB Deposit feeders 63.0
Suspension feeders 77.0
LM Deposit feeders 103.2
Suspension feeders 74.2

25



3.3. Model simulation results

The simulations of benthic biomass are based on the best fit parameters
from the calibration of the period (1988 to 1999). All simulations were run
during the period of analyses (see Table 1) and results were compared to

observed benthic macrofauna biomass data (Figs. 6, 8, 10 and 12).

3.3.1. Lavaca-Colorado Estuary (Lavaca and Matagorda Bay)

The pattern for the simulations of deposit feeders in Lavaca Bay was
increases from 1987 to 1993 followed by a dramatic drop in biomass with the
lowest biomass concentration occurring between 1994 and 1996 (Fig. 6a). After
the year 2000, the biomass showed signs of slow increase. Simulations of
suspension feeder biomass in the same bay followed the same pattern as the
deposit feeder biomass, and had a trend of a slower increase in biomass after the
year 2000 (Fig. 6b). In Matagorda Bay, simulations of deposit feeders showed a
trend having low biomass during the period 1994 to 2000 and increased biomass
in 2001 and 2002 (Fig. 6¢c). Simulations of suspension feeders for Matagorda Bay
showed a similar trend to that of deposit feeders (Fig. 6d); having low biomass
during high the period 1994 t02000 and increased biomass around 2001 and 2002,
but the model failed to capture significantly increased biomass in 2008, which
was as high as that in 1989, being an order of magnitude higher than low
biomass during the period 1994 to 2000.

The simulations for both bays and each feeding group fit the observed
data relatively well during the entire period, 1988 to 2008 (Fig. 6, Table 5). It is
also noteworthy that the trends of the prediction over time fit the trends in the
observed biomass for both bays. However, the model still needs improved
performance (i.e., minor tuning processes) because a few segments of the time
period showed large deviations. For example, the worst fit happened to the

deposit feeders in Lavaca Bay (101.2%), which shows large discrepancies during
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the period of 1994 to 2000 when the model predicts rather low and constant
biomass, and 2004 to 2008 when the model overestimates the biomass compared
to the actual data (Fig. 6a). Similarly, simulations of suspension feeders on the
same bay were underestimated during entire period (Fig. 6b). The deviation in
Lavaca Bay seems to be attributed to the misfit for the period from 1994 to 2000
when predators’ biomass was high (Fig. 6a). This is because an increase in
predator populations during this period, particularly blue crabs (see Fig. 7a), did
not have much predation impact on prey, which caused prey populations to
remain relatively high during this period; whereas, the model simulations were
still strongly influenced by the increased number of predators during this period
when numbers of blue crabs caught in Lavaca Bay have increased (Fig. 7a). Same
is true for the period from 2004 to 2008 when predators” biomass was low (Figs.
6a and 7a). The model simulations were still strongly influenced by the reduced
predation pressure during this period when numbers of blue crabs caught in
Lavaca Bay remained low (Fig. 7a).

In Matagorda Bay, the simulated results (Figs. 6¢c, d) had a coupled trend
of both deposit and suspension feeders with a decreasing trend during the high
predation period (1994 - 2000), and an increasing trend during times of low blue
crab biomass (Fig. 6b). Blue crab abundance in Matagorda Bay also had a similar
trend of that in Lavaca Bay, having higher abundance during the period 1994
and 2000 and lower abundance in the period after 2000 (Fig. 6b). The simulations
for the deposit feeders fit the data best (67.9%, Table 5), having low biomass
during the high predation period (1994 - 2000) and high biomass when the
number of predators starts decreasing in the 2001 and 2002 period (Fig. 6b). The
higher variance for suspension feeders in Matagorda Bay can be attributed to

underestimated spiky biomass in 1989 and 2008 (Fig. 6d).
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Fig. 6. Comparison between observed (dashed line with open squares) and modeled (solid lines)

results in Lavaca and Matagorda Bay for the period 1988-2008. Each panel represents

comparison results for (a) deposit and (b) suspension feeder biomass in Lavaca Bay, and (c)

deposit and (d) suspension feeder biomass in Matagorda Bay.
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Fig. 7. Normalized anomaly of blue crab abundance. Positive and negative values represent
above and below long-term average, respectively. Anomaly was normalized by standard
deviation. Blue crab population data (1987 — 2006) were collected by TPWD for (a) Lavaca Bay
and (b) Matagorda Bay.
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3.3.2. Guadalupe Estuary (upper and lower San Antonio Bay)

Simulations of deposit feeders in upper San Antonio Bay revealed low
biomass at beginning, followed by a slow increase between 1995 and 1998 (Fig.
8a). Simulated biomass decreased during the period of 1998 to 1999, and
increased in 2000. Simulations of suspension feeder biomass in the same bay
followed the similar pattern as the deposit feeder biomass, but failed to capture
peaky biomass during 1994 to 1996 (Fig. 8b). In lower San Antonio Bay,
simulations of deposit feeders were successful during the period 1993 - 2000
(Fig. 8c). However, like simulations of deposit feeders in upper San Antonio Bay,
the model could not simulate high biomass during 1988 to 1991. Simulations of
suspension feeders for the same bay showed a similar trend to that of suspension
feeders in upper San Antonio Bay, not being able to capture peaky biomass
during 1993 to 1994 (Fig. 8d).

The statistics reveal that the simulations for both bays and each feeding
group fit the observed data relatively well showing 76 to 98% of RMS difference
(Table 5), but again the model still needs improved performance for early period
of simulations (e.g., deposit feeders) and for a few spiky period that showed
large deviations (e.g., suspension feeders). Like Lavaca-Colorado Estuary, the
deviation of deposit feeders in both upper and lower San Antonio Bay is
attributed to the misfit for the early period (e.g., the period of 1988 - 1994) when
predators’ biomass was high (Figs. 9a and b). Again, the model simulations were
still strongly influenced by the increased number of predators during this period.
For suspension feeders in the two bays the model was not able to reproduce

significantly increased biomass during mid-1990’s.
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3.3.3. Nueces Estuary (Nueces and Corpus Christi Bay)

Simulations of deposit feeders in Nueces Bay were successful overall,
capturing a trend of variation shown in data from early to late 1990’s. However,
the model simulated biomass was too low post-2000 compared to observations
(Fig. 10a). Both simulations and observations of suspension feeder biomass in
the same bay revealed similar patterns to those in San Antonio Bay (especially,
lower San Antonio Bay), not being able to capture significantly high biomass
during 1993 to 1994 (Fig. 10b). In Corpus Christi Bay, simulations of deposit
feeders were successful during the period 1989 to 1995 (Fig. 10c). However, like
simulations of deposit feeders in Nueces Bay, the model started showing quite
high deviation for the rest of the simulation period (1995 - 2002) Simulated
suspension feeders seems to fit the data fairly well in the same bay (Fig. 10d), but
the model could not simulate biomass increase in 1991.

The percent RMS difference between the model results and data was 62.7
and 116.2% for deposit feeders in Nueces and Corpus Christi Bay, respectively;
and suspension feeders of Nueces and Corpus Christi Bay revealed 95.8 and 89.2
% RMS difference (Table 5). The largest discrepancy in the deposit feeders of
Corpus Christi Bay may be explained by the period when predators” biomass
was remaining low (1995 - 2002), which drove model to estimate high biomass,
as a result (Fig. 11b). However, this was not the case for suspension feeders in
the same bay, and considering the fact that these two functional groups have the
same predators, there should be more plausible explanation than predation. This

will be discussed later.
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Fig. 11. Normalized anomaly of blue crab abundance. Positive and negative values represent
above and below long-term average, respectively. Anomaly was normalized by standard
deviation. Blue crab population data (1987 — 2006) were collected by TPWD for (a) Nueces and
(b) Corpus Christi Bay.
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3.3.4. Laguna Madre Estuary (Baffin Bay and upper Laguna Madre)

The percent RMS difference between simulation and observation in Baffin
Bay was 63% and 77% for deposit and suspension feeders, and in upper Laguna
Madre values were 98% and 68% for deposit and suspension feeders,
respectively. Results revealed that model performance was overall satisfactory.
Specifically, model simulations for deposit feeders in Baffin Bay and suspension
feeders in upper Laguna Madre were able to reproduce the fluctuating trend for
entire simulation period, whereas, simulated results for deposit feeders from
upper Laguna Madre failed to reproduce the extremely high values in during
1992 to 1993 (Fig. 12). Like suspension feeders in Corpus Christi Bay, time series
recorded extreme values during 1992 to 1993 and they were on the order of
magnitudes higher than data collected from other period. Interestingly, this
event coincides with elevated predator abundances (Fig. 13.b), indicating that
predation may not be the only factor driving benthic biomass changes.

The simulations of benthos biomass for deposit-feeders and suspension
feeders in all bays were successful overall and fit of the simulation results
revealed by the percent RMS difference ranged from 63% (deposit feeders in
Nueces Bay) to 116% (deposit feeders in Corpus Christi Bay) (Table 5). The
simulations fit well for most bays over the period of simulations, except for
events of extremely high values, which cannot be explained given model

structure. We leave this to future investigation.
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Fig. 12. Comparison between observed (dashed line with open squares) and modeled (solid
lines) results in Baffin Bay and upper Laguna Madre for the period 1989-2008. Each panel
represents comparison results for (a) deposit and (b) suspension feeder biomass in Baffin Bay,
and (c) deposit and (d) suspension feeder biomass in upper Laguna Madre.
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4., Discussion

4.1. Ecosystem modeling and goodness of fit
Ecosystem models are representations of underlying mechanistic

relationships among ecological components and processes. Ideally, they reduce
ambiguity and describe complexity with maximum parsimony. Models in
ecology are useful because of the inherent complexity of ecological relationships,
the characteristic variability in ecological systems, and the apparently
unpredictable effects of deliberate modification of systems by man. It is difficult
to understand benthic dynamics from empirical or static modeling analyses
alone (e.g. multivariate statistical methods). The concept that benthos are an
isolated subsystem, governed by internal interactions and “key species” is not
sufficient to explain the heterogeneity of benthos community dynamics in closely
related sites. However, a model can incorporate spatial variability to provide
insights into the dynamics and interactions of benthic populations within an
ecosystem, or to predict long-term effects of those interactions.

Modeling of an ecosystem can start from a qualitative conceptual model.
The conceptual model is largely theoretical and heuristic. The purposes for
modeling ecosystems can range from developing simple conceptual models to
provide a general understanding of system behavior, to detailed realistic
applications aimed at evaluating specific policy proposals. It is not possible to
judge this whole range of models by the same criteria. At least three criteria are
necessary: realism, precision, and generality. Unfortunately, no single model can
maximize all three. The conceptual model has high generality, but low realism
and low precision. A quantitative model, however, can provide the realism and
precision, and test hypotheses drawn from the conceptual model. Usually, a
quantitative model requires a long-term data set to calibrate the model. In
addition, independent data sets are also needed for model corroboration or

validation before these models are used for extensive predictions.
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In general, development and implementation of an ecosystem model are
not trivial processes because they involve high level of uncertainty. de Hoop et
al. (1989) did very nice and brief review on the concept of uncertainty. Major
sources of uncertainty include (O'Neill and Gardner, 1979; Walters, 1986): 1)
uncertainty of model structure; 2) uncertainty in the parameters, and 3)
uncertainty in the inputs. Uncertainty of model structure is almost impossible to
figure out because the fundamental governing equations are not known.
Uncertainty of the parameters is also hard to quantify when model complexity is
high because many parameters are known as a range. In addition, not so many
parameters are available from direct measurements from laboratory or other
literature. The uncertainty from the input data (e.g. state variables, forcing
functions, and other parameters) involves errors in observations or unexpected
and abrupt changes in forcing functions.

In this study, we presented results of secondary production in Texas
lagoonal estuaries, simulated by a bioenergetic model. Given uncertainties of
governing equations, large number of fitted parameters (therefore large
uncertainty), and limited number of data, authors have to admit there are
limitations of this approach for extensive applications. For example, the percent
root mean square difference (%RMSD), which is an indicator of model
performance, revealed the range from 61 to 116% between observed and
simulated biomass. Compared to primary production models that can estimate
primary production within 50 to 60% of %RMSD (e.g., Jung et al., 2007;
Friedrichs et al., 2009) these results are somewhat higher indicating poorer
performance of the presented model than those primary production models. In
general modeling benthic secondary production is challenging because the
benthic food web is complex, and because secondary production rate is not a
simple function of physico-chemical variables, unlike primary production. Thus,
considering the complexity of processes, authors find that the performance of the

presented model was found to be promising. The results are also comparable to
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other process-based ecosystem models. Two examples of process-based
ecosystem models are given here as references for skill assessment: Morales et al.
(2005); and Xu and Hood (2006). These models also show results as high
%RMSD (10-200%) as ours (see Figs. 1 and 2).

4.2. Simulated benthic biomass
Overall, the heuristic approach presented in this study was found to be

successful in simulating benthic biomass. However, the model still needs to be
improved by: 1) fixing potential errors resulting from parameterizations, i.e.,
there are too many unknown parameters estimated from a limited number of
observations; 2) including additional environmental variables that could be
driving carbon production or benthic growth; 3) modifying governing equations
(e.g., including additional state variables for nutrients, chlorophyll a, predators,
etc.); and most importantly, 4) changing the model structure (e.g., trophic
relationships and benthic-pelagic coupling).

Understanding and modeling predation is likely the most important
improvement needed. For example, actual observations of benthos biomass in
Lavaca Bay (Figs. 6a, b) show little indication of decrease despite the increased
predation pressure during the period of 1994 and 2000 (Fig. 7a). As mentioned
earlier, black drum, red drum, and blue crab were selected as the main predators
for the model. Blue crab was the dominant species found in the TPWD data set
during the study period, and the density of the fish species was negligible. The
density and impact of fish may not be adequately represented. Perhaps blue
crabs are not a top-down controller of benthic biomass in the Lavaca Bay
ecosystem, and there are other predators for which we have no data. Additional
observations support this hypothesis. Benthic biomass in Lavaca Bay revealed
little or no trend of increase despite the decreased predator abundance post-2000

(Fig. 7a). This indicates that another environmental factor or other predators not
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included in the model might have caused benthic prey density to remain. In
contrast, the Matagorda Bay data (Figs. 6¢c and d) indicate coupled effects
between benthic prey and predators. Low abundance in predators matches high
biomass in benthic prey during two periods: 1988 to 1994 and 2000 to 2005. The
period of high predation during 1994 to 2000 (Fig. 7b) has decreased benthic
biomass. Although the model was able to capture fluctuating trend in
Matagorda Bay, the magnitude of biomass change due to predation still needs
improvement. In addition, experiments are needed to better explain the trophic
relationship between prey and predators in this ecosystem, and this will guide
additional data needs and modification of the model structure in the future to

achieve more realistic model behavior.

4.3. Salinity/nutrients change scenario and benthic responses
Benthic ecosystem responses to different climate scenarios were

investigated by using sensitivity analyses for the salinity and nutrient input
parameters, which should change with changing rain, runoff, and inflow.
Salinity does vary quite a bit over the long-term (Fig. 14). However, it is also
obvious that the direction of salinity change over time is similar in the different
estuaries (Fig. 14) because of the wet and dry cycle driven by El Nifio (Tolan
2007).

The long term means of the salinity and chlorophyll a was different in
different estuaries, but the long-term mean of nutrients was not different (Table

6). The secondary bays always had higher nutrient levels than primary bays.
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Table 6. The long-term water column characteristics in Texas bays. Means were
average over stations-bays-dates, and then bays-dates, the number (n) is for bay-date
combinations. A) Hydrography. B) Nutrients. C) Analysis of variance using a nested
model where the water parameter if a function of the estuary and bay nested within
estuary and each sampling period is a replicate. Abbreviations: LC=Lavaca-Colorado
Estuary, GE=Guadalupe Estuary, NE=Nueces Estuary, LM=Laguna Madre Estuary,
LB=Lavaca Bay, MB=Matagorda Bay, USB=upper San Antonio Bay, LSB=lower San
Antonio Bay, NB=Nueces Bay, CCB=Corpus Christi Bay, BB=Baffin Bay, ULM=upper
Laguna Madre, n = number, DF = degrees of freedom, and P = probability.

A. Salinity (psu) Temperature (2C) Chl a (mg/l)
Estuary Bay n Mean STD Mean STD Mean STD
LC Secondary (LB) 82 15.8 8.8 21.8 6.8 81 5.2
LC Primary (MB) 82 24.5 5.8 22.3 6.6 7.8 4.5
GE Secondary (USB) 69 102 7.3 22.8 6.3 124 116
GE Primary (LSB) 69 180 9.1 22.6 6.4 103 9.0
NE Secondary (NB) 79 253 9.0 22.9 6.3 70 5.5
NE Primary (CCB) 80 314 4.7 22.7 6.2 48 2.9
LM Secondary (BB) 62 38.3 10.0 23.1 6.0 20.0 16.6
LM Primary (ULM) 61 370 8.1 23.7 5.9 142 10.2
B. NO, (uM) NHg4 (uM) PO, (UM) Si04 (UM)
Estuary Bay n Mean STD Mean STD Mean STD  Mean STD
LC Secondary (LB) 70 54 9.5 29 57 22 6.2 107.8 67.6
LC Primary (MB) 71 29 41 1.9 1.9 1.1 0.8 61.9 39.2
GE Secondary (USB) 60 22.0 21.2 31 41 32 27 1361 716
GE Primary (LSB) 60 6.0 12.4 1.8 2.2 1.7 15 105.5 66.6
NE Secondary (NB) 72 33 40 23 29 1.7 1.0 109.1 74.2
NE Primary (CCB) 72 1.1 1.9 1.5 1.8 0.7 0.6 48.5 40.9
LM Secondary (BB) 43 1.8 1.9 53 5.4 1.1 06 92.5 40.5
LM Primary (ULM) 43 1.3 35 21 1.8 09 0.7 77.7 474
C. P
Source DF Chl NOy NH4 PO, SiO4
Estuary 3 0.0201 0.2506 0.5873 0.3782 0.5744
Bay(Estuary) 4 0.2070 <0.0001 <0.0001 0.0008 <0.0001
Error DF 233 301 463 467 466
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The simulated percent change in deposit (filled circles) and suspension
feeder (open circles) biomasses reveal different responses caused by changes in
salinity and nutrients in estuarine systems along the Texas Gulf Coast (Fig. 15).
The change in benthic biomass was simulated as driven by a percent change of
mean salinity (-50% to 50%) and corresponding nutrients (based on the salinity-
nutrients relationships in Fig. 2) In Figure 15, the panels a, b, c and d represent
benthic responses from Lavaca-Colorado, Guadalupe, Nueces and Laguna
Madre Estuary, respectively. The error bars represent the standard error. The
long-term mean salinity for all bays is listed in Table 6. The long-term mean
biomass for deposit and suspension feeders were 1.24 and 0.77 g dw m? for
Lavaca Bay; 10.01 and 2.32 g dw m-2 for Matagorda; 88 and 7.89 g dw m™ for
upper San Antonio; 2.18 g dw m2 and 1.19 g dw m2 for lower San Antonio Bay;
5.09 and 3.33 g dw m2 for Nueces; 9.76 and 0.67 g dw m for Corpus Christi Bay;
0.55 and 1.36 g dw m for Baffin Bay; and 40.02 g dw m2 and 2.61 g dw m™ for

upper Laguna Madre, respectively.
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Fig. 15. Percent change from mean benthic biomass simulated with percent change of mean
salinity (-50% to 50%) and corresponding nutrients for deposit (filled circles), and suspension
feeder biomass (open circles) in Lavaca-Colorado (a); Guadalupe (b); Nueces (c); and Laguna
Madre Estuary (d) along the Texas Gulf Coast. The error bars represent the standard error.

Kalke and Montagna (1991) investigated the effects of freshwater inflow
on macrobenthos in the Lavaca Bay. A high freshwater inflow rate caused low
salinity species to populate the area, and, therefore, it was determined that
freshwater is necessary in the upper portion of the bay to induce recruitment of
low salinity species. Following an inflow event, Chironomid larvae (suspension
teeders) and Hobsonia florida (polychaete) increased in density, as both prefer
lower salinity environments. In contrast, the mollusks, Streblospio benedicti and
Mediomastus californiensis (deposit feeders), increased in benthic biomass during
periods of low freshwater inflow (Kalke and Montagna 1991). In upper Rincon
Bayou, near where it connects to the Nueces River, it was found that biomass,

abundance and diversity of macrofauna are low at salinities below 10, increase to
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salinities of about 20-25, and then decrease (Montagna et al. 2002b). Biomass
blooms were also found to occur in the lower part of Rincon Bayou where it
connects to Nueces Bay after inflow events (Palmer et al. 2002). These findings
from the previous studies are consistent with the results of the sensitivity tests
conducted in the present study, which, overall, shows that salinity increase
combined with nutrient decreases caused deposit feeder biomass to increase and
suspension feeder to decrease (Fig. 15).

It was also found that chlorophyll a concentrations increased in Lavaca
Bay during high inflow rates, and this indicates that primary production is
enhanced by increased nutrients loadings in discharged freshwater (Kalke and
Montagna 1991). As salinity increased during periods of low inflow, the
chlorophyll a concentration decreased due to reduced nutrient loadings and
elevated grazing pressure by the growing population of mollusks (Kalke and
Montagna 1991). A similar finding occurred in Baffin Bay during the brown tide
bloom (Buskey et al. 1997). Unfortunately, in the present study, chlorophyll was
not used as a direct food source for suspension feeders because of a lack of data.
Instead, primary production was parameterized with respect to temperature,
light, and nutrient limitation (Eqgs. 9 and 10). Nevertheless, the results of the
input sensitivity tests are consistent with field observations; i.e., there is a
harmful effect of reduced freshwater inflow that results in decreased
productivity of suspension feeders in both Lavaca and Matagorda Bay (Fig. 15).

Total benthic biomass in Lavaca Bay decreased by 0.4 g dw m2 (15%)
between changes in salinity that ranged from -50% to +50% of the mean (Figs. 16
a-b). This indicates that reduced inflow rates to this secondary bay would not be
beneficial to the benthic community. In contrast, total benthic biomass in
Matagorda Bay increased as salinity increased by 5.0 g dw m-2 (36%) from -50%
to +30%, and remained, more or less, constant when changes in salinity ranged
+30 and +50% (Fig. 16b). This implies that the benthic system in Matagorda Bay

approaches a plateau (or a maximum change) as salinity increases. The beneficial
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effect of reduced FWI was clear in Matagorda Bay. It is speculated that the
benthos in Matagorda Bay is more adaptable to change in salinity because
Matagorda Bay is the primary bay, having direct exchange of sea water. Total
benthic biomass in upper San Antonio Bay was found to have similar response to
that in Lavaca Bay, revealing that reduced inflow rates caused reduced benthic
productivity by 2 g dw m2 (15%) (Fig. 16c), whereas, benthic response from
lower San Antonio Bay resembles that in Matagorda Bay showing characters of
primary bay. Secondary productivity in this bay increased by 20% (2 g dw m?)
between -50% and +50% changes in salinity (Fig. 16d).
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Fig. 16. Percent change from mean benthic biomass for both deposit and suspension feeders
simulated with percent change of mean salinity (-50% to 50%) and corresponding nutrients in
Lavaca (a); Matagorda (b); upper San Antonio (c); lower San Antonio (d); Nueces (e); Corpus
Christi (f); Baffin Bay (g); and upper Laguna Madre (h). The error bars represent the standard
error. Long-term mean salinity and nutrient levels found in Table 6.

However, Nueces Bay revealed different benthic responses to reduced
freshwater inflow than previous secondary bays. The benthic community in this
bay appears to benefit by increased salinity (Fig. 16e). Secondary productivity
increased by 14% (0.5 g dw m2). Corpus Christi Bay followed the same pattern
as found in other primary bays with 15% (3 g dw m) increase in benthic
biomass (Fig. 16f). Interestingly, dramatic responses to changed freshwater
inflow occurred at the southern estuarine system. Baffin Bay and upper Laguna
Madre revealed 70% (1.3 g dw m2) and 68% (20.7 g dw m-?) decrease in
secondary productivity to reduced FWI, respectively. The upper Laguna Madre

did not respond as other primary bays, and this is likely due to seagrass habitat.
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Previous studies examined how benthic macrofaunal community
structure varied over space and time in response to changes in inflow in Lavaca
and Matagorda Bay. Matagorda Bay is a more productive and diverse ecosystem
compared to Lavaca Bay (Montagna and Kalke, 1995; Pollack et al., 2009). There
is also a direct relationship between freshwater inflow and salinity on benthic
communities. Distinct station differences were found in community structure
along salinity gradients, which implies that reduced flows will cause upstream
communities to take on characteristics of downstream communities. This effect
is likely a result of the benthic community acclimating to the elevated salinity by
the dominance of more salt tolerant species populating the area. However, there
is no direct evidence that the transition in community structure happens in
Lavaca Bay.

The simulations of benthic productivity change with changing freshwater
inflow (Fig. 16) are based on the assumption that percent changes in salinity
correspond with inverse changes in nutrients, based on the relationship between
salinity and nutrients (Fig. 2 and Table 2). In general, when salinity increased
with decreasing nutrient concentrations, deposit feeder biomass increased while
suspension feeder biomass decreased. Although we have not presented the
independent effect of each individual limiting factor (i.e., Esu vs. Efod), salinity
change was designed to have higher sensitivity in model simulations than
nutrient change in the structure of governing equations. For example, the effect
of nutrient change is included in Eos (see Egs. 6, 9 and 11), which is another
limiting effect of Epen (Eq. 3); whereas, the effect of salinity change (Eq. 5) is
directly included in Eq. (3). This reflects our best understanding as to how the
system is working in the dynamics of the model behavior. In fact, the high
sensitivity to salinity revealed in the model was confirmed by observed data.
Pollack et al. (2009) used a non-metric multidimensional scaling (nMDS) analysis
to illustrate similarities between communities on different sampling periods or

between stations. Results of the nMDS analysis showed that distinct benthic
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community differences in abundance, biomass, diversity, and species

composition are found among the study stations along the salinity gradients.

4.4, Lessons learned

It is difficult to understand benthic dynamics from empirical or static
modeling analyses alone (e.g., univariate or multivariate statistical methods).
The concept that benthos are an isolated subsystem, governed by internal
interactions and “keystone species” is not sufficient to explain the heterogeneity
of benthos community dynamics in closely related sites. However, a model can
incorporate spatial variability to provide insights into the dynamics and
interactions of benthic populations within an ecosystem, or to predict long-term
effects of those interactions (Li et al. 1996; Montagna and Li 1997; Kim and
Montagna 2009).

Modeling benthic secondary production is challenging because the
benthic food web and trophic interactions are complex, and because secondary
production rates are not a simple function of physico-chemical variables, as it is
with primary production. In this study, we present secondary production in
Lavaca and Matagorda Bays simulated by a bioenergetic model. Although the
model performance was found to be promising, there are limitations of this
heuristic approach because of uncertainties of the governing equations, the large
number of fitted parameters (therefore large uncertainty), and the limited
number of observed data. Owing to its level of complexity, this modeling
exercise is lacking some important mechanistic aspects in explaining the effects
of freshwater inflow on benthic ecosystems. Some examples may include: 1)
conservative (salinity) or non-conservative properties (nutrients) were forced
into the model as surrogates of FWI instead of being simulated within a box (or
hydrodynamic) modeling framework; 2) the food sources for deposit and

suspension feeders were not dynamically simulated (i.e., ecosystem dynamics for
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the lower-trophic level was not included); 3) the 10-cm deep boundary layer
(between sediment and water) was arbitrarily chosen; 4) day length was used to
represent primary production, which is the food source for suspension feeders
instead of a more robust photo-physiological modeling framework (i.e., radiative
transfer computation linked to a primary production model); and 5) an
uncertainty in the dynamics of benthos and predator interactions.

For instance, Montagna and Kalke (1995) observed how freshwater inflow
benefits estuaries in south Texas. Mulinia lateralis was one of the dominant
mollusks found, and is important as the predominant food source for black
drum. Mulinia was frequently found in bays along the Texas coast where
freshwater inflow has a large influence. It was concluded that recruitment
events for M. lateralis are likely initiated by a significant change in salinity
(Montagna and Kalke 1995). However, with the present approach, we cannot
resolve this population dynamical feature because larval recruitment dynamics is
not included in the model. Rozas et al. (2005) investigated the effect of
freshwater inflow in the Breton Sound Estuary, Louisiana, and found releases of
freshwater from the Caernarvon diversion structure led to an increase in
submerged aquatic vegetation (SAV) and dissolved oxygen concentrations.
Macrofauna populations also increased in density and biomass with increasing
inflow, which was probably due to the growing SAV coverage creating more
habitats (Rozas et al., 2005). Again, no information is available to incorporate
these findings because this modeling study does not include SAV-related habitat
for benthic juveniles.

However, all the weaknesses described above are related to the scope of
the studies (spatio-temporal resolution and the level of complexity). More
elaborate investigations are left for future studies. Nonetheless, using this simple
heuristic approach, we were able to learn that the effects of reduced freshwater
inflow (and concomitant increases in salinity) have important management

implications for water resource development that can influence estuarine
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ecosystems. For example, change in benthic community structure, biomass, and
diversity occurred when there were changes in the long-term average salinity.
This means freshwater inflow plays an important role in maintaining the
observed character of estuarine productivity through the combined effects of the
frequency, duration, timing, and magnitude of inflow, particularly during
droughts or low-flow periods. Interestingly, Texas estuaries are different from
one another because the major estuarine systems lie in a climatic gradient where
runoff decreases from the Louisiana border in the northeast to the Mexico border
in the southwest. Successful application of the model with reduced complexity
can be expanded to all Texas estuaries (and possibly to other estuaries) in order
to guide development of site-specific estuarine management plans. It is also
possible that the presented model will allow predictability of benthic ecosystem
responses to future global change (caused by climate and human activities) that

may alter the water cycle on Earth.
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5. Concluding Remarks

The present study heuristically combined long-term data sets with an
energetic model to predict how altering salinity in four Texas estuaries might
affect productivity of the macrobenthos population. Based on observed long-
term patterns and model predictions, it appears that reducing freshwater inflow
may cause components of the benthic community to respond in different ways.
Increased salinity benefits deposit feeders, while suspension feeders are harmed.
This effect is probably due to the benthic community acclimating to the different
salinity regimes, or more (or less) salt tolerant species populating the area.
Freshwater inflow into an estuary is recognized as an important factor in estuary
productivity, affecting physical, chemical, and biological aspects of the system
(Montagna et al., 2002a). River inflow drives increased circulation, salinity
gradients, and sediment transport as well as enhancing the productivity of
coastal fisheries (Powell et al., 2002). Nutrients from inflow become incorporated
into the estuarine food web, can increase vegetation, and enhance secondary
production in an area (Rozas et al., 2005). It is clear that inflow is important in
maintaining estuarine health and productivity. Management studies should
consider not only the quantity of inflow required, but also seek to determine the
regime of timing and magnitude of inflow that is needed to maintain functional,

healthy ecosystems.
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7. FORTRAN Programs

The SENECA program has automatically created the FORTRAN programs and
part of subprograms for the model during the setup of the subprograms for the
variances, parameters, forcing functions, calibration methods, and running
limitations. The subprograms we created are to describe the all relationships
among those variances, parameters and forcing functions. The following are
three subprograms we used for the model.

List of Programs in the Appendix:

TEXAS.FOR
DEPOSIT.FOR
EPIGROW.FOR
XSIMO.FOR
XFORC.FOR
XSTART.FOR
XCAL.FOR
XSENS.FOR

PN LN
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7.1 TEXAS.FOR

CHIHHHHHHHHHHHHHHHH

C SENECA 2.0 (C) NI0OO-CEMO/DGW

C File: "model™_FOR

C Date: 1-12-92

C Version: 4

C This File contains the main program for the single run program of

C the model.

CHAR BRI R R A R A R R
PROGRAM TEXAS

C Declarations:
C
INTEGER ERRCODE,ERRIND,TLCODE, TYPRUN, TUNIT,TZERO,
& FU,FURPR,FUSTR,FUVAR, FUPAR,FUBND, FUWST , FUFRC, FURAN, FUDAT , FURES,
& FUTLG,FULOG,
& FRSRES,FRSDAT,FPIRES, FPRRES,FNVRES, FRSRAN, FPTRES, FPTRAN, LOGMODE,
& NSVAR,NBOUND,NWASTE ,NFORC,NOUTVAR, NRANPAR ,NVALVAR , MVALVAR,
& NTLVAR, IOUTSTEP, IDRLABCH
REAL DELT,DELTA,MODTIME ,MXABSCHG, MNCHANGE , MNSWITCH, MNABSCHG,
& MXRLABCH, NOVALUE ,MAXVALUE
COMMON /XCBSIM/ ERRCODE,ERRIND,TLCODE, TYPRUN, TUNIT,TZERO,
FU,FURPR,FUSTR, FUVAR, FUPAR, FUBND, FUWST , FUFRC , FURAN, FUDAT , FURES,
FUTLG, FULOG,
FRSRES, FRSDAT ,FPIRES, FPRRES, FNVRES, FRSRAN, FPTRES , FPTRAN, LOGMODE ,
NSVAR , NBOUND , NWASTE ,NFORC ,NOUTVAR, NRANPAR , NVALVAR , MVALVAR,
NTLVAR, IOUTSTEP, IDRLABCH,
DELT,DELTA,MODT IME , MXABSCHG , MNCHANGE , MNSWITCH , MNABSCHG,
MXRLABCH , NOVALUE , MAXVALUE

R0 R0 R0 RO RO RO Ro

INTEGER XMXGOF
PARAMETER (XMXGOF = 8)
INTEGER TSTART(0:6),RP102,TSTOP(0:6), ITEND,
& OUTFACT,NOUTSTEP,MXSTEPS,RP105,GOFRES, GOFVAR , MNVALSTEP , NBAND,
& IRUN,NRANRUN,NCALRUN, IBAND,NCENTR, ISEED, IBCONT, STOPCODE,
& FIDENT, INTEGRATE, TIMEOFF,RP109, IBACTPAR,RP110(2:4)
REAL
MXDELT , MNDELT , MXCHANGE , MXSWITCH, MNRELCHG , RPRO2(2:4) ,RPRO3(4),
& GOFERR(XMXGOF)
COMMON /XCBRPR/ TSTART,RP102,TSTOP, ITEND,
& OUTFACT,NOUTSTEP,MXSTEPS,RP105,GOFRES, GOFVAR , MNVALSTEP , NBAND,
& IRUN,NRANRUN,NCALRUN, IBAND,NCENTR, ISEED, IBCONT, STOPCODE,
& FIDENT, INTEGRATE, TIMEOFF,RP109, IBACTPAR,RPI110,
& MXDELT,MNDELT ,MXCHANGE , MXSWITCH,MNRELCHG , RPRO2 , RPRO3, GOFERR

C
INTEGER TYPSIM, TYPSENS, TYPCAL
PARAMETER (TYPSIM = 1)
PARAMETER (TYPSENS = 2)
PARAMETER (TYPCAL = 3)
Cm e -
C Statements:
C

C Initialize single run simulation and read run parameters
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CALL XINSIM(TYPSIM)
IF (ERRCODE _NE. 0) GOTO 100

oN@]

Initialize variables, parameters and forcing functions
CALL XRDSTRUCT
IF (ERRCODE _NE. 0) GOTO 100

[@N@)

Create result file
CALL XOPRESULT
C
C Do a single run simulation
CALL XSIMULATE

[eNe!

Write results simulation to result file
CALL XWRRESULT

[@N@]

Stop simulation
IF (ERRCODE .EQ. 0) STOPCODE = 1
100  CALL XSTOP

C

END
C End of program.
C

CH##tt# End of File #HH#HIHFHIH I
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7.2 DEPOSIT.FOR

R
C SENECA 1.85 (C) NI00-CEMO/DGW
C Date: 1-7-92

R

SUBROUTINE DEPOSIT(TIME)
IMPLICIT REAL(A-2)

Parameter:
REAL TIME

(@)

Submodel routine

Declarations:

OO0OO0

INCLUDE "TEXAS.DCS*
INCLUDE "DEPOSIT.DCP*
INCLUDE "DEPOSIT.DCV*®
INCLUDE "XSIMO.DEX*

Statements:

OO0

integer j

real c(8)

real dep(8),ddep(8),epi(8)

real aledep(8)

real temp(8),mic(8),sal(8),scale
real predl(8),pred2(8),pred3(8)

equivalence(dep(1),depl)
equivalence(dep(2),dep2)
equivalence(dep(3),dep3)
equivalence(dep(4) ,depd)
equivalence(dep(5),dep5)
equivalence(dep(6),dep6)
equivalence(dep(7) ,dep7)
equivalence(dep(8),dep8)

equivalence(epi(1),epil)
equivalence(epi(2),epi2)
equivalence(epi(3),epil3)
equivalence(epi(4),epid)
equivalence(epi(5),epib)
equivalence(epi(6),epib)
equivalence(epi(7),epi7)
equivalence(epi(8),epi8)

equivalence(mic(1),micl)
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equivalence(mic(2),mic2)
equivalence(mic(3),mic3)
equivalence(mic(4),mic4)
equivalence(mic(5),mich)
equivalence(mic(6),mic6)
equivalence(mic(7),mic7)
equivalence(mic(8),mic8)

equivalence(ddep(1),ddepl)
equivalence(ddep(2),ddep2)
equivalence(ddep(3),ddep3)
equivalence(ddep(4) ,ddep4)
equivalence(ddep(5) ,ddep5)
equivalence(ddep(6) ,ddep6)
equivalence(ddep(7) ,ddep7)
equivalence(ddep(8),ddep8)

equivalence(c(l),cl)
equivalence(c(2),c2)
equivalence(c(3),c3)
equivalence(c(4),c4d)
equivalence(c(5),ch)
equivalence(c(6),c6)
equivalence(c(7),c7)
equivalence(c(8),c8)

sal(1)=sall(time)
sal(2)=sal2(time)
sal (3)=sal3(time)
sal(4)=sal4(time)
sal (5)=sal5(time)
sal(6)=sal6(time)
sal(7)=sal7(time)
sal(8)=sal8(time)

temp(1)=templ(time)
temp(2)=temp2(time)
temp(3)=temp3(time)
temp(4)=temp4(time)
temp(5)=temp5(time)
temp(6)=temp6(time)
temp(7)=temp7(time)
temp(8)=temp8(time)

predl(1)=predlli(time)
predl(2)=predl2(time)
predl(3)=predl13(time)
predl(4)=predl4(time)
pred1(5)=pred15(time)
pred1l(6)=predl6(time)
predl(7)=predl7(time)
predl1(8)=predl8(time)

pred2(1)=pred21(time)
pred2(2)=pred22(time)
pred2(3)=pred23(time)
pred2(4)=pred24(time)
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pred2(5)=pred25(time)
pred2(6)=pred26(time)
pred2(7)=pred27(time)
pred2(8)=pred28(time)

pred3(1)=pred31(time)
pred3(2)=pred32(time)
pred3(3)=pred33(time)
pred3(4)=pred34(time)
pred3(5)=pred35(time)
pred3(6)=pred36(time)
pred3(7)=pred37(time)
pred3(8)=pred38(time)

C Statements:
c j=1-8 for 8 bays

c dep(j) for deposit-feeders
c epi(@) for microfauna-feeders

J=bay

cx****x*x  cut off unused parameters Fx*x*xxix

cl do 5 j=bay,bay+1
ifT (dep()-gt-1.e30)then
c dep()=xdiv(1,0.) TH-C KIM(2009)
CALL XERROR(20) IH-C KIM(2009) to avoid
floating-point error
else
if (dep()-1t.1.e-30)then
c dep()=xdiv(1,0.) TH-C KIM(2009)
CALL XERROR(20) IH-C KIM(2009) to avoid
floating-point error
else
endif
endif
c5 continue
c do 10 j=bay,bay+1

c => c(j)=organic carbon % in the sediment, few observed data are
available

(o c()=poc(G)/(pm0*0.42*100*100*10)*100 ! By Jian Li

c()=poc(J)/(pm0/34.5*100*100*10)*100 ! By Hae-Cheol Kim
(2008)
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*AhkAhkX M R R e e R e e R R e e e S e e e e e
c production

c Combine intake rate,assimilation efficiency and respiration rate

c together,

c a Lotka-Volterra logistic model plus temperature and salinity effects
c for limited population growth is used here for biomass growth:
c [monthly growth rate] = [annual P/B]/12 = p8/12

c****** temperature and salinity effects *******

scale=1.00+0.0 I for sensitivity

c longterm average for sensitivity
c sal(1)=15.28
C sal (2)=24.67
c temp(1)=21.49
c temp(2)=21.79
C _________________________________
c ORIGINAL
c teffdep(J)=1/exp(abs(temp(j)-31.5)/pml)
c KIM2008
teffdep()=1/exp(abs(temp(j)-pml0a)/(pml))
c teffdep(()=1.-exp(-(temp(@)-0.7)7/40.)
seffdep(J)=1/exp(abs(sal (j)*scale-pm3A)/(pm2))
c Ffeffdep(J)=xdiv(xdiv(poc((),dep(()) . .xdiv(poc(j) ,dep(J))+pmda)

1Jian Li (1996)

C feffdep(@)=xdiv(xdiv(poc(j),1l.),xdiv(poc(j),1.)+pmda) ! Hae-

Cheol Kim (2008) This is more correct but has NO big difference
feffdep()=poc(()/(poc(j)+pmda) ! Hae-Cheol Kim (2009) Same as

above but with different expression

aledep(j)=teffdep(j)*seffdep()*feffdep(J)

prodep(J)=dep(J)*pm8A/12*(1-dep(J)/(pmOA))
& *aledep()

prrdep(jJ)=prodep(J)/dep(j)*12

cx**FxxEE add the predation effect (Frxxidxxix

ddep(j)=ddep(j)+prodep(j§)

c ORIGINAL (by Jian Li)
c byodep(j)=30.*
c & (1-(exp(-pm7*dep(d))))*
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c & (pm6la*predl(j)+pm62a*pred2(j)+pm63a*pred3(j))

cc & (A-(exp(-3.77488E-3*dep())))*
cc & (1.228183*pred3(j))
c MAPS et al., 2005 (lvlev®s type eq. used in MEPS 285:117-128)
c byodep(j)=30.*
c & 2000*(1.-EXP(-0.01*(temp(j)-0.2)))*
(o & pm7a*(1.-EXP(-pm7a*dep(J)))*
c & (pred1()+pred2(J)+pred3())*dep)
c KIM2008 (lvlev®s eq. used with parameterized 10**) - best working
byodep(j)=30.*

& 10**(pm7a2*(temp(j)-pm7a3))*

& pm7a*(1.-EXP(-pm7a*dep(J)))* I Ivlev™s
type

& (pred1()+pred2(J)+pred3())*dep()
c KIM2008 (lvlev®s eq. used with fixed 10**)
C byodep(j)=30.*
c & 1.44*10**(0.0275*(temp(J)-0.-7))*
cc & 0.05*(1.-EXP(-0.05*dep(jJ)))* I good-
working (replaced pm7a below with 0.05)
c & pm7a*(1.-EXP(-pm7a*dep(J)))* I Ivlev™s
type
c & (pred1()+pred2(J)+pred3())*dep)

ddep(J) = ddep(j)-byodep(d)
cl10 continue
END

C*********************************************************************
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7.3 EPIGROW.FOR

CHEHHHHHHHHHH T
C SENECA 1.85 (C) NIOO-CEMO/DGW
C Date: 1-7-92

CHHHHHH

SUBROUTINE DEPOSIT(TIME)
C

IMPLICIT REAL(A-2)
C Parameter:

REAL TIME
C
C Submodel routine
Cmm o

C Declarations:

INCLUDE "TEXAS.DCS*
INCLUDE "DEPOSIT.DCP*"
INCLUDE "DEPOSIT.DCV*®
INCLUDE "XSIMO.DEX"

integer j

real c(8)

real dep(8),ddep(8),epi(8)

real aledep(8)

real temp(8),mic(8),sal(8),scale
real predl(8),pred2(8),pred3(8)

equivalence(dep(1),depl)
equivalence(dep(2),dep2)
equivalence(dep(3),dep3)
equivalence(dep(4) ,dep4d)
equivalence(dep(5),dep5)
equivalence(dep(6),dep6)
equivalence(dep(7),dep7)
equivalence(dep(8),dep8)

equivalence(epi(1),epil)
equivalence(epi(2),epi2)
equivalence(epi(3),epil)
equivalence(epi(4),epid)
equivalence(epi(5),epib)
equivalence(epi(6),epib)
equivalence(epi(7),epi7)
equivalence(epi(8),epi8)

equivalence(mic(1),micl)
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equivalence(mic(2),mic2)
equivalence(mic(3),mic3)
equivalence(mic(4),mic4)
equivalence(mic(5),mich)
equivalence(mic(6),mic6)
equivalence(mic(7),mic7)
equivalence(mic(8),mic8)

equivalence(ddep(1),ddepl)
equivalence(ddep(2),ddep2)
equivalence(ddep(3),ddep3)
equivalence(ddep(4) ,ddep4)
equivalence(ddep(5) ,ddep5)
equivalence(ddep(6) ,ddep6)
equivalence(ddep(7) ,ddep7)
equivalence(ddep(8),ddep8)

equivalence(c(l),cl)
equivalence(c(2),c2)
equivalence(c(3),c3)
equivalence(c(4),c4d)
equivalence(c(5),ch)
equivalence(c(6),c6)
equivalence(c(7),c7)
equivalence(c(8),c8)

sal(1)=sall(time)
sal(2)=sal2(time)
sal (3)=sal3(time)
sal(4)=sal4(time)
sal (5)=sal5(time)
sal(6)=sal6(time)
sal(7)=sal7(time)
sal(8)=sal8(time)

temp(1)=templ(time)
temp(2)=temp2(time)
temp(3)=temp3(time)
temp(4)=temp4(time)
temp(5)=temp5(time)
temp(6)=temp6(time)
temp(7)=temp7(time)
temp(8)=temp8(time)

predl(1)=predlli(time)
predl(2)=predl2(time)
predl(3)=predl13(time)
predl(4)=predl4(time)
pred1(5)=pred15(time)
pred1l(6)=predl6(time)
predl(7)=predl7(time)
predl1(8)=predl8(time)

pred2(1)=pred21(time)
pred2(2)=pred22(time)
pred2(3)=pred23(time)
pred2(4)=pred24(time)
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pred2(5)=pred25(time)
pred2(6)=pred26(time)
pred2(7)=pred27(time)
pred2(8)=pred28(time)

pred3(1)=pred31(time)
pred3(2)=pred32(time)
pred3(3)=pred33(time)
pred3(4)=pred34(time)
pred3(5)=pred35(time)
pred3(6)=pred36(time)
pred3(7)=pred37(time)
pred3(8)=pred38(time)

C Statements:
c j=1-8 for 8 bays

c dep(j) for deposit-feeders
c epi(@) for microfauna-feeders

J=bay

cx****x*x  cut off unused parameters Fx*x*xxix

cl do 5 j=bay,bay+1
ifT (dep()-gt-1.e30)then
c dep()=xdiv(1,0.) TH-C KIM(2009)
CALL XERROR(20) IH-C KIM(2009) to avoid
floating-point error
else
if (dep()-1t.1.e-30)then
c dep()=xdiv(1,0.) TH-C KIM(2009)
CALL XERROR(20) IH-C KIM(2009) to avoid
floating-point error
else
endif
endif
c5 continue
c do 10 j=bay,bay+1

c => c(j)=organic carbon % in the sediment, few observed data are
available

(o c()=poc(G)/(pm0*0.42*100*100*10)*100 ! By Jian Li

c()=poc(J)/(pm0/34.5*100*100*10)*100 ! By Hae-Cheol Kim
(2008)
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*AhkAhkX M R R e e R e e R R e e e S e e e e e
c production

c Combine intake rate,assimilation efficiency and respiration rate

c together,

c a Lotka-Volterra logistic model plus temperature and salinity effects
c for limited population growth is used here for biomass growth:
c [monthly growth rate] = [annual P/B]/12 = p8/12

c****** temperature and salinity effects *******

scale=1.00+0.0 I for sensitivity

c longterm average for sensitivity
c sal(1)=15.28
C sal (2)=24.67
c temp(1)=21.49
c temp(2)=21.79
C _________________________________
c ORIGINAL
c teffdep(J)=1/exp(abs(temp(j)-31.5)/pml)
c KIM2008
teffdep()=1/exp(abs(temp(j)-pml0a)/(pml))
c teffdep(()=1.-exp(-(temp(@)-0.7)7/40.)
seffdep(J)=1/exp(abs(sal (j)*scale-pm3A)/(pm2))
c Ffeffdep(J)=xdiv(xdiv(poc((),dep(()) . .xdiv(poc(j) ,dep(J))+pmda)

1Jian Li (1996)

C feffdep(@)=xdiv(xdiv(poc(j),1l.),xdiv(poc(j),1.)+pmda) ! Hae-

Cheol Kim (2008) This is more correct but has NO big difference
feffdep()=poc(()/(poc(j)+pmda) ! Hae-Cheol Kim (2009) Same as

above but with different expression

aledep(j)=teffdep(j)*seffdep()*feffdep(J)

prodep(J)=dep(J)*pm8A/12*(1-dep(J)/(pmOA))
& *aledep()

prrdep(jJ)=prodep(J)/dep(j)*12

cx**FxxEE add the predation effect (Frxxidxxix

ddep(j)=ddep(j)+prodep(j§)

c ORIGINAL (by Jian Li)
c byodep(j)=30.*
c & (1-(exp(-pm7*dep(d))))*
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c & (pm6la*predl(j)+pm62a*pred2(j)+pm63a*pred3(j))

cc & (A-(exp(-3.77488E-3*dep())))*

cc & (1.228183*pred3(j))

c MAPS et al., 2005 (lvlev®s type eq. used in MEPS 285:117-128)

c byodep(j)=30.*

c & 2000*(1.-EXP(-0.01*(temp(j)-0.2)))*

(o & pm7a*(1.-EXP(-pm7a*dep(J)))*

c & (pred1()+pred2(J)+pred3())*dep)

c KIM2008 (lvlev®s eq. used with parameterized 10**) - best working

byodep(j)=30.*
10**(pm7a2*(temp(j)-pm7a3))*

& pm7a*(1.-EXP(-pm7a*dep(J)))* I Ivlev™s type
& (pred1()+pred2(J)+pred3())*dep()
c KIM2008 (lvlev®s eq. used with fixed 10**)
c byodep(j)=30.*
c & 1.44*10**(0.0275*(temp(J)-0.-7))*
cc & 0.05*(1.-EXP(-0.05*dep(J)))* I good-
working (replaced pm7a below with 0.05)
c & pm7a*(1.-EXP(-pm7a*dep(J)))* I lvlev™s type
c & (predl1(g)+pred2(J)+pred3(j))*dep()
ddep(J) = ddep(i)-byodep(d)
c10 continue

END

C*********************************************************************
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7.4 XSIMO.FOR

CHEHHHHHHHHHH T
C SENECA 2.0 (C) NIOO-CEMO/DGW
C File: XSIMO.FOR
C Model: TEXAS
C Creation date: 30-1-2008
C This file contains the routine that calls all submodel routines
(XSUBMODS)
CHHHHHHHHH
C

SUBROUTINE XSUBMODS(TIME)

REAL TIME
c
CALL DEPOSIT(TIME)
CALL EPIGROW(TIME)
RETURN
END
C of XSUBMODS
c

INCLUDE "XFORC.FOR"
INCLUDE "XBOUND.FOR™
INCLUDE "XWASTE.FOR"
INCLUDE "XTLAG.FOR*"
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7.5 XFORC.FOR

CHHHHEH A
C SENECA 2.0 (C) NI10O-CEMO/DGW
C File: XFORC.FOR
C Model: TEXAS
C Creation date: 30-1-2008
C This file contains all Forcing functions declarations.
CHUHHHHEHHHE A
C

REAL FUNCTION PRED11(TIME)

REAL TIME

EXTERNAL XTIMSER

PRED11 = XTIMSER(3,1,0,TIME)

RETURN

END
C of PRED11

REAL FUNCTION PRED21(TIME)
REAL TIME
EXTERNAL XTIMSER
PRED21 = XTIMSER(3,2,0,TIME)
RETURN
END

C of PRED21

REAL FUNCTION PRED31(TIME)
REAL TIME
EXTERNAL XTIMSER
PRED31 = XTIMSER(3,3,0,TIME)
RETURN
END

C of PRED31

REAL FUNCTION PRED12(TIME)
REAL TIME
EXTERNAL XTIMSER
PRED12 = XTIMSER(3,4,0,TIME)
RETURN
END

C of PRED12

REAL FUNCTION PRED22(TIME)
REAL TIME
EXTERNAL XTIMSER
PRED22 = XTIMSER(3,5,0,TIME)
RETURN
END

C of PRED22

REAL FUNCTION PRED32(TIME)
REAL TIME

EXTERNAL XTIMSER

PRED32 = XTIMSER(3,6,0,TIME)
RETURN
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of

of

of

of

of

of

of

END
PRED32

REAL FUNCTION PRED13(TIME)
REAL TIME

EXTERNAL XTIMSER

PRED13 = XTIMSER(3,7,0,TIME)
RETURN

END

PRED13

REAL FUNCTION PRED23(TIME)
REAL TIME

EXTERNAL XTIMSER

PRED23 = XTIMSER(3,8,0,TIME)
RETURN

END

PRED23

REAL FUNCTION PRED33(TIME)
REAL TIME

EXTERNAL XTIMSER

PRED33 = XTIMSER(3,9,0,TIME)
RETURN

END

PRED33

REAL FUNCTION PRED14(TIME)
REAL TIME

EXTERNAL XTIMSER

PRED14 = XTIMSER(3,10,0,TIME)
RETURN

END

PRED14

REAL FUNCTION PRED24(TIME)
REAL TIME

EXTERNAL XTIMSER

PRED24 = XTIMSER(3,11,0,TIME)
RETURN

END

PRED24

REAL FUNCTION PRED34(TIME)
REAL TIME

EXTERNAL XTIMSER

PRED34 = XTIMSER(3,12,0,TIME)
RETURN

END

PRED34

REAL FUNCTION PRED15(TIME)
REAL TIME

EXTERNAL XTIMSER

PRED15 = XTIMSER(3,13,0,TIME)
RETURN

END
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of

of

of

of

of

of

of

of

PRED15

REAL FUNCTION PRED25(TIME)
REAL TIME

EXTERNAL XTIMSER

PRED25 = XTIMSER(3,14,0,TIME)
RETURN

END

PRED25

REAL FUNCTION PRED35(TIME)
REAL TIME

EXTERNAL XTIMSER

PRED35 = XTIMSER(3,15,0,TIME)
RETURN

END

PRED35

REAL FUNCTION PRED16(TIME)
REAL TIME

EXTERNAL XTIMSER

PRED16 = XTIMSER(3,16,0,TIME)
RETURN

END

PRED16

REAL FUNCTION PRED26(TIME)
REAL TIME

EXTERNAL XTIMSER

PRED26 = XTIMSER(3,17,0,TIME)
RETURN

END

PRED26

REAL FUNCTION PRED36(TIME)
REAL TIME

EXTERNAL XTIMSER

PRED36 = XTIMSER(3,18,0,TIME)
RETURN

END

PRED36

REAL FUNCTION PRED17(TIME)
REAL TIME

EXTERNAL XTIMSER

PRED17 = XTIMSER(3,19,0,TIME)
RETURN

END

PRED17

REAL FUNCTION PRED27(TIME)
REAL TIME

EXTERNAL XTIMSER

PRED27 = XTIMSER(3,20,0,TIME)
RETURN

END

PRED27

76



of

of

of

of

of

of

of

REAL FUNCTION PRED37(TIME)
REAL TIME
EXTERNAL XTIMSER

PRED37 = XTIMSER(3,21,0,TIME)

RETURN
END
PRED37

REAL FUNCTION PRED18(TIME)
REAL TIME
EXTERNAL XTIMSER

PRED18 = XTIMSER(3,22,0,TIME)

RETURN
END
PRED18

REAL FUNCTION PRED28(TIME)
REAL TIME
EXTERNAL XTIMSER

PRED28 = XTIMSER(3,23,0,TIME)

RETURN
END
PRED28

REAL FUNCTION PRED38(TIME)
REAL TIME
EXTERNAL XTIMSER

PRED38 = XTIMSER(3,24,0,TIME)

RETURN
END
PRED38

REAL FUNCTION DAYL(TIME)
REAL TIME

EXTERNAL XTIMSER

DAYL = XTIMSER(3,25,0,TIME)
RETURN

END

DAYL

REAL FUNCTION TEMP1(TIME)
REAL TIME
EXTERNAL XTIMSER
TEMP1 = XTIMSER(3,26,0,TIME)
RETURN
END
TEMP1

REAL FUNCTION TEMP2(TIME)
REAL TIME
EXTERNAL XTIMSER
TEMP2 = XTIMSER(3,27,0,TIME)
RETURN
END
TEMP2
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of

of

of

of

of

of

REAL FUNCTION TEMP3(TIME)
REAL TIME
EXTERNAL XTIMSER
TEMP3 = XTIMSER(3,28,0,TIME)
RETURN
END
TEMP3

REAL FUNCTION TEMP4(TIME)
REAL TIME
EXTERNAL XTIMSER
TEMP4 = XTIMSER(3,29,0,TIME)
RETURN
END
TEMP4

REAL FUNCTION TEMPS5(TIME)
REAL TIME
EXTERNAL XTIMSER
TEMP5 = XTIMSER(3,30,0,TIME)
RETURN
END
TEMPS

REAL FUNCTION TEMP6(TIME)
REAL TIME
EXTERNAL XTIMSER
TEMP6 = XTIMSER(3,31,0,TIME)
RETURN
END
TEMP6

REAL FUNCTION TEMP7(TIME)
REAL TIME
EXTERNAL XTIMSER
TEMP7 = XTIMSER(3,32,0,TIME)
RETURN
END
TEMP7

REAL FUNCTION TEMP8(TIME)
REAL TIME
EXTERNAL XTIMSER
TEMP8 = XTIMSER(3,33,0,TIME)
RETURN
END
TEMP8

REAL FUNCTION DEPTH1(TIME)
REAL TIME

EXTERNAL XTIMSER

DEPTH1 = XTIMSER(3,34,0,TIME)
RETURN

END

DEPTH1

REAL FUNCTION DEPTH2(TIME)
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of

of

of

of

of

of

REAL TIME

EXTERNAL XTIMSER

DEPTH2 = XTIMSER(3,35,0,TIME)
RETURN

END

DEPTH2

REAL FUNCTION DEPTH3(TIME)
REAL TIME

EXTERNAL XTIMSER

DEPTH3 = XTIMSER(3,36,0,TIME)
RETURN

END

DEPTH3

REAL FUNCTION DEPTH4(TIME)
REAL TIME

EXTERNAL XTIMSER

DEPTH4 = XTIMSER(3,37,0,TIME)
RETURN

END

DEPTH4

REAL FUNCTION DEPTH5(TIME)
REAL TIME

EXTERNAL XTIMSER

DEPTH5 = XTIMSER(3,38,0,TIME)
RETURN

END

DEPTHS

REAL FUNCTION DEPTH6(TIME)
REAL TIME

EXTERNAL XTIMSER

DEPTH6 = XTIMSER(3,39,0,TIME)
RETURN

END

DEPTH6

REAL FUNCTION DEPTH7(TIME)
REAL TIME

EXTERNAL XTIMSER

DEPTH7 = XTIMSER(3,40,0,TIME)
RETURN

END

DEPTH7

REAL FUNCTION DEPTH8(TIME)
REAL TIME

EXTERNAL XTIMSER

DEPTH8 = XTIMSER(3,41,0,TIME)
RETURN

END

DEPTH8

REAL FUNCTION SAL1(TIME)
REAL TIME
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of

of

of

of

of

of

EXTERNAL XTIMSER

SAL1 = XTIMSER(3,42,0,TIME)
RETURN

END
SAL1

REAL FUNCTION SAL2(TIME)
REAL TIME
EXTERNAL XTIMSER
SAL2 = XTIMSER(3,43,0,TIME)
RETURN
END
SAL2

REAL FUNCTION SAL3(TIME)
REAL TIME
EXTERNAL XTIMSER
SAL3 = XTIMSER(3,44,0,TIME)
RETURN
END
SAL3

REAL FUNCTION SAL4(TIME)
REAL TIME
EXTERNAL XTIMSER
SAL4 = XTIMSER(3,45,0,TIME)
RETURN
END
SAL4

REAL FUNCTION SALS5(TIME)
REAL TIME
EXTERNAL XTIMSER
SAL5 = XTIMSER(3,46,0,TIME)
RETURN
END
SALS

REAL FUNCTION SALG6(TIME)
REAL TIME
EXTERNAL XTIMSER
SAL6 = XTIMSER(3,47,0,TIME)
RETURN
END
SAL6

REAL FUNCTION SAL7(TIME)
REAL TIME
EXTERNAL XTIMSER
SAL7 = XTIMSER(3,48,0,TIME)
RETURN
END
SAL7

REAL FUNCTION SAL8(TIME)
REAL TIME
EXTERNAL XTIMSER
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of

of

of

of

of

SAL8 = XTIMSER(3,49,0,TIME)

RETURN
END
SALS8

REAL FUNCTION P1(TIME)
REAL TIME

EXTERNAL XTIMSER

P1 = XTIMSER(3,50,0,TIME)
RETURN

END

P1

REAL FUNCTION P2(TIME)
REAL TIME

EXTERNAL XTIMSER

P2 = XTIMSER(3,51,0,TIME)
RETURN

END

P2

REAL FUNCTION P3(TIME)
REAL TIME

EXTERNAL XTIMSER

P3 = XTIMSER(3,52,0,TIME)
RETURN

END

P3

REAL FUNCTION P4(TIME)
REAL TIME

EXTERNAL XTIMSER

P4 = XTIMSER(3,53,0,TIME)
RETURN

END

P4

REAL FUNCTION P5(TIME)
REAL TIME

EXTERNAL XTIMSER

P5 = XTIMSER(3,54,0,TIME)
RETURN

END

P5

REAL FUNCTION P6(TIME)
REAL TIME

EXTERNAL XTIMSER

P6 = XTIMSER(3,55,0,TIME)
RETURN

END

P6

REAL FUNCTION P7(TIME)
REAL TIME

EXTERNAL XTIMSER

P7 = XTIMSER(3,56,0,TIME)
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of

of

of

of

of

of

RETURN
END
P7

REAL FUNCTION P8(TIME)
REAL TIME

EXTERNAL XTIMSER

P8 = XTIMSER(3,57,0,TIME)
RETURN

END

P8

REAL FUNCTION N1(TIME)
REAL TIME

EXTERNAL XTIMSER

N1 = XTIMSER(3,58,0,TIME)
RETURN

END

N1

REAL FUNCTION N2(TIME)
REAL TIME

EXTERNAL XTIMSER

N2 = XTIMSER(3,59,0,TIME)
RETURN

END

N2

REAL FUNCTION N3(TIME)
REAL TIME

EXTERNAL XTIMSER

N3 = XTIMSER(3,60,0,TIME)
RETURN

END

N3

REAL FUNCTION N4(TIME)
REAL TIME

EXTERNAL XTIMSER

N4 = XTIMSER(3,61,0,TIME)
RETURN

END

N4

REAL FUNCTION N5(TIME)
REAL TIME

EXTERNAL XTIMSER

N5 = XTIMSER(3,62,0,TIME)
RETURN

END

N5

REAL FUNCTION N6(TIME)
REAL TIME

EXTERNAL XTIMSER

N6 = XTIMSER(3,63,0,TIME)
RETURN
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of

of
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of

of

END
N6

REAL FUNCTION N7(TIME)
REAL TIME

EXTERNAL XTIMSER

N7 = XTIMSER(3,64,0,TIME)
RETURN

END

N7

REAL FUNCTION N8(TIME)
REAL TIME

EXTERNAL XTIMSER

N8 = XTIMSER(3,65,0, TIME)
RETURN

END

N8

REAL FUNCTION SI1(TIME)
REAL TIME
EXTERNAL XTIMSER
SI11 = XTIMSER(3,66,0,TIME)
RETURN
END
SI1

REAL FUNCTION SI2(TIME)
REAL TIME
EXTERNAL XTIMSER
S12 = XTIMSER(3,67,0,TIME)
RETURN
END
SI2

REAL FUNCTION SI3(TIME)
REAL TIME
EXTERNAL XTIMSER
SI3 = XTIMSER(3,68,0,TIME)
RETURN
END
SI3

REAL FUNCTION SI4(TIME)
REAL TIME
EXTERNAL XTIMSER
S14 = XTIMSER(3,69,0,TIME)
RETURN
END
Si4

REAL FUNCTION SI5(TIME)
REAL TIME

EXTERNAL XTIMSER

SI5 = XTIMSER(3,70,0,TIME)
RETURN

END
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[@N@]

a0

[@N@)

of SI5

REAL FUNCTION SI6(TIME)
REAL TIME

EXTERNAL XTIMSER

S16 = XTIMSER(3,71,0,TIME)
RETURN

END

of SI6

REAL FUNCTION SI7(TIME)
REAL TIME

EXTERNAL XTIMSER

S17 = XTIMSER(3,72,0,TIME)
RETURN

END

of S17

REAL FUNCTION SI8(TIME)
REAL TIME

EXTERNAL XTIMSER

SI8 = XTIMSER(3,73,0,TIME)
RETURN

END

of SI8
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7.6 XTART.FOR

CHIHHHHHHHHHH R R R
C SENECA 1.85 (C) NIOO-CEMO/DGW
C File: XSTART.FOR
C Date: 1-7-92
CHHHHHHHHHH R R R R R R R R
SUBROUTINE XSTART(TIME)
C
IMPLICIT REAL(A-2)
Parameter:
REAL TIME

This routine will be called once at the begin of a simulation run,
after all initializations but before the first results at TIME = 0
are stored.
Declarations:

INCLUDE "TEXAS.DCS*

INCLUDE "TEXAS.DCP*

INCLUDE "TEXAS.DCV*

INCLUDE *"XSIMO.DEX*

OO0OO0O0O0 (@)

real dep(8),epi(8),]

c integer j
equivalence (dep(l),depl)
equivalence (epi(l),epil)

C
Cm e -
C Statements:
C
J=bay
c do 10 j=1,8
dep(J)=dep(j)*inidep(J)
epi(@)=epi(d)*iniepi(g)
if(dep()-gt.-1.el0.or.epi(jJ)-gt-1el0)then
dep(@)=xdiv(1,0)
else
endif
cl0 continue
END
C End of XSTART
C
C

C*********************************************************************

SUBROUTINE XEND(TIME)
C

IMPLICIT REAL(A-2)
C Parameter:

REAL TIME
C
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This routine will be called once at the end of a simulation run,
after the last calls to the submodel routines but before the last
results are stored.
Declarations:

INCLUDE "TEXAS.DCS*

INCLUDE "TEXAS.DCP*

INCLUDE "TEXAS.DCV"

INCLUDE *XSIMO.DEX"

OO0O0O0

C Statements:

END
C End of XEND

C*********************************************************************
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7.7 XCAL.FOR

CHHHHHHHHHHH

OOOO0O0OO0O

SENECA 2.0 (C) NI100O-CEMO/DGW
File:
Date:
Version: 4
This file contains the main program for the calibration program
and the subroutines that are specific to the calibration program.
HHH R

XCAL.FOR
19-1-93

PROGRAM XCAL

C Declarations:

C

INTEGER ERRCODE,ERRIND,TLCODE,TYPRUN, TUNIT,TZERO,
& FU,FURPR,FUSTR,FUVAR, FUPAR, FUBND, FUWST , FUFRC, FURAN, FUDAT , FURES,
& FUTLG,FULOG,

& FRSRES, FRSDAT,FPIRES, FPRRES,FNVRES, FRSRAN, FPTRES, FPTRAN, LOGMODE,

& NSVAR,NBOUND ,NWASTE ,NFORC,NOUTVAR,NRANPAR ,NVALVAR ,MVALVAR,

& NTLVAR, IOUTSTEP, IDRLABCH
REAL DELT,DELTA,MODTIME,MXABSCHG , MNCHANGE ,MNSWITCH, MNABSCHG,

& MXRLABCH,NOVALUE ,MAXVALUE

COMMON /XCBSIM/ ERRCODE,ERRIND,TLCODE, TYPRUN,TUNIT,TZERO,
FU,FURPR,FUSTR, FUVAR,FUPAR, FUBND, FUWST , FUFRC, FURAN, FUDAT , FURES,
FUTLG, FULOG,

NSVAR,NBOUND,NWASTE ,NFORC,NOUTVAR,NRANPAR ,NVALVAR ,MVALVAR,
NTLVAR, IOUTSTEP, IDRLABCH,
DELT,DELTA,MODTIME ,MXABSCHG , MNCHANGE ,MNSWITCH , MNABSCHG,
MXRLABCH, NOVALUE , MAXVALUE

R0 R R0 RO RO RO Ro

INTEGER XMXGOF

PARAMETER (XMXGOF = 8)

INTEGER TSTART(0:6),RP102,TSTOP(0:6),1TEND,
& OUTFACT ,NOUTSTEP ,MXSTEPS,RP105,GOFRES, GOFVAR,MNVALSTEP ,NBAND,
& TRUN,NRANRUN,NCALRUN, IBAND,NCENTR, ISEED, IBCONT ,STOPCODE,
& FIDENT, INTEGRATE, TIMEOFF,RP109, IBACTPAR,RP110(2:4)

REAL

MXDELT ,MNDELT ,MXCHANGE ,MXSWITCH ,MNRELCHG,RPR02(2:4) ,RPR0O3(4),

& GOFERR(XMXGOF)
COMMON /XCBRPR/ TSTART,RP102,TSTOP, ITEND,
& OUTFACT,NOUTSTEP,MXSTEPS,RP105,GOFRES, GOFVAR , MNVALSTEP , NBAND,
& IRUN,NRANRUN,NCALRUN, IBAND,NCENTR, ISEED, IBCONT, STOPCODE,
& FIDENT, INTEGRATE, TIMEOFF,RP109, IBACTPAR,RPI110,
& MXDELT,MNDELT ,MXCHANGE , MXSWITCH,MNRELCHG ,RPRO2 ,RPRO3, GOFERR

INTEGER TYPSIM,TYPSENS, TYPCAL
PARAMETER (TYPSIM = 1)
PARAMETER (TYPSENS = 2)
PARAMETER (TYPCAL = 3)

C Statements:

C

C Initialize calibration and read run parameters

CALL XINSIM(TYPCAL)
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FRSRES, FRSDAT,FPIRES, FPRRES , FNVRES, FRSRAN, FPTRES, FPTRAN, LOGMODE,



IF (ERRCODE .NE. 0) GOTO 100

ON@]

IT proceeding calibration and initial are done
IF ((IBCONT _NE. 0) _.AND. (IRUN _GE. NRANRUN)) THEN
C then read random parameters from calibration result file
CALL XOPRNDPAR(FURES)
ELSE
C else read random parameters from random input file
CALL XOPRNDPAR(FURAN)
ENDIF
IF (ERRCODE _NE. 0) GOTO 100

[@N@)

Initialize variables, parameters and forcing functions
CALL XRDSTRUCT
IF (ERRCODE .NE. 0) GOTO 100

C
C Do calibration
CALL XCALIBRATE
o
100  CALL XSTOP
END
C End of program XCAL
C
C

C********************************************************************

SUBROUTINE XOPRNDPAR(FUR)
Parameter:

OO0

File unit/type number
INTEGER FUR

Routine reads names of random parameters from
random input or calibration result file.
Declarations:

INCLUDE "TEXAS.DCM®

OO0O0O0

INTEGER ERRCODE,ERRIND, TLCODE,TYPRUN, TUNIT,TZERO,
& FU,FURPR,FUSTR,FUVAR, FUPAR, FUBND, FUWST , FUFRC, FURAN, FUDAT , FURES,
& FUTLG,FULOG,
& FRSRES,FRSDAT,FPIRES, FPRRES, FNVRES, FRSRAN, FPTRES , FPTRAN, LOGMODE,
& NSVAR,NBOUND,NWASTE ,NFORC,NOUTVAR,NRANPAR ,NVALVAR ,MVALVAR,
& NTLVAR, IOUTSTEP, IDRLABCH
REAL DELT,DELTA,MODTIME,MXABSCHG , MNCHANGE ,MNSWITCH, MNABSCHG,
& MXRLABCH,NOVALUE ,MAXVALUE
COMMON /XCBSIM/ ERRCODE,ERRIND,TLCODE, TYPRUN,TUNIT,TZERO,
FU, FURPR,FUSTR, FUVAR, FUPAR , FUBND, FUWST , FUFRC,, FURAN , FUDAT , FURES,
FUTLG, FULOG,
FRSRES,FRSDAT ,FPIRES, FPRRES, FNVRES, FRSRAN, FPTRES,, FPTRAN, LOGMODE,
NSVAR ,NBOUND ,NWASTE ,NFORC, NOUTVAR , NRANPAR , NVALVAR , MVALVAR,
NTLVAR, IOUTSTEP, IDRLABCH,
DELT,DELTA,MODT IME , MXABSCHG , MNCHANGE , MNSW1TCH , MNABSCHG,
MXRLABCH , NOVALUE , MAXVALUE

R0 R0 R0 RO R RO Ro

INTEGER XMXGOF
PARAMETER (XMXGOF = 8)
INTEGER TSTART(0:6),RP102,TSTOP(0:6), ITEND,

88



& OUTFACT,NOUTSTEP,MXSTEPS,RP105,GOFRES, GOFVAR , MNVALSTEP , NBAND,
& IRUN,NRANRUN,NCALRUN, IBAND,NCENTR, ISEED, IBCONT, STOPCODE,
& FIDENT, INTEGRATE, TIMEOFF,RP109, IBACTPAR,RP110(2:4)
REAL
MXDELT , MNDELT , MXCHANGE , MXSWITCH , MNRELCHG ,RPRO2(2:4) ,RPRO3(4),
& GOFERR(XMXGOF)
COMMON /XCBRPR/ TSTART,RP102,TSTOP, ITEND,
& OUTFACT,NOUTSTEP,MXSTEPS,RP105,GOFRES, GOFVAR , MNVALSTEP, NBAND,
& IRUN,NRANRUN,NCALRUN, IBAND,NCENTR, ISEED, IBCONT, STOPCODE,
& FIDENT, INTEGRATE, TIMEOFF,RP109, IBACTPAR,RP110,
& MXDELT ,MNDELT ,MXCHANGE , MXSWITCH , MNRELCHG ,RPRO2 , RPRO3 , GOFERR

CHARACTER*16 NMMODEL ,NVMODEL ,NMTRES ,NMERROR

CHARACTER*16 NMFRPR,NMFSTR,NMFVAR,NMFPAR ,NMFBND , NMFWST ,NMFFRC,
& NMFRES,NMFRAN, NMFDAT ,NMFTLAG ,NMFLOG

CHARACTER*78 OUTTXT

CHARACTER*160 ERRTXT

COMMON /XCBNMS/ NMMODEL ,NVMODEL ,NMTRES ,NMERROR ,NMFRPR ,NMFSTR,
& NMFVAR,NMFPAR,NMFBND ,NMFWST ,NMFFRC , NMFRES , NMFRAN , NMFDAT ,NMFTLAG,
& NMFLOG,OUTTXT,ERRTXT

CHARACTER*16 NMOUTVAR(XMXOUTVAR) ,NMRANPAR(XMXRANPAR)
COMMON /XCBNAME/ NMOUTVAR,NMRANPAR

INTEGER IDOUTVAR(XMXOUTVAR) , ISOUTVAR(XMXOUTVAR),
& IDRANPAR(XMXRANPAR) , I SRANPAR (XMXRANPAR)
COMMON /XCBNMI/ I1DOUTVAR, ISOUTVAR, IDRANPAR, ISRANPAR

REAL PARVEC(XMXRANPAR) , LOCVEC(XMXRANPAR) , PARDIS(XMXRANPAR),
& PARMIN(XMXRANPAR) , PARMAX (XMXRANPAR)
COMMON /XCBRAN/ PARVEC,LOCVEC,PARDIS,PARMIN, PARMAX

INTEGER RCINT ,RCREAL

PARAMETER (RCINT = 10, RCREAL = 2)

INTEGER FRSHEAD,FRSTAIL,FRSTLAG

PARAMETER (FRSHEAD = 16, FRSTAIL = 8, FRSTLAG = 4)

INTEGER 1, 1DUM, IVAR,RNDRUN, IDENT ,NRTXT ,NRINT ,NRREAL

INTEGER POSINT,POSREAL,POSVARS

CHARACTER*16 NAME
e
C Statements:
C
C Initialization

DO 10 I=1,XMXRANPAR

IDRANPAR(I) =0

10 CONTINUE
C
C Open random input file / calibration result file

CALL XOPFILE(FUR,FRSHEAD, .TRUE.,.TRUE.,1)
C and read fTirst two records of header

CALL XRDHEAD(FRSRAN,NRTXT,NRINT,NRREAL ,NRANPAR,

& POSINT ,POSREAL ,POSVARS , FPTRAN)

IF (ERRCODE _NE. 0) RETURN
C
C Check file consistancy

IF (NRINT .LT. 1) THEN
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CALL XERROR(105)
RETURN
ENDIF

C Check number of random parameters in file
IF (NRANPAR .LE. 0) THEN
CALL XERROR(250)
RETURN
ELSEIF (NRANPAR .GT. XMXRANPAR) THEN
ERRIND = XMXRANPAR - NRANPAR
CALL XERROR(251)
RETURN
ENDIF
C
C Read number of random runs (RNDRUN) and Ffile identification number
(IDENT)
READ(FU,REC=POSINT+7,ERR=102, I0OSTAT=ERRIND) I1DUM,RNDRUN
READ(FU,REC=POSINT+9,ERR=102, IOSTAT=ERRIND) IDENT

C If not proceeding calibration
IF (IBCONT .EQ. 0) THEN
C Store number of random runs and file i1dentification number
C in run parameters
NRANRUN = RNDRUN
FIDENT = IDENT
C IT proceeding calibration
ELSE
C Check file identification and number of random runs
IF ((IDENT _NE. FIDENT) .OR. (RNDRUN _NE. NRANRUN) .OR.
& (NRANPAR _NE. FNVRES)) THEN
CALL XERROR(130)
RETURN
ENDIF
ENDIF

C Read names of random parameters
DO 20 IVAR = 1,NRANPAR
READ(FU,REC=POSVARS+1VAR,ERR=102, I0OSTAT=ERRIND) NAME
NMRANPAR(IVAR) = NAME
20 CONTINUE

C Close file
CLOSE(FU)

C and re-open with (new) tail record size
CALL XOPFILE(FUR,FRSRAN, .TRUE.,.TRUE.,0)

C Read distribution codes of random parameters
READ(FU,REC=FPTRAN+1,ERR=102, IOSTAT=ERRIND)
& (PARDIS(I), I1=1,NRANPAR)
C Read minimum values for random parameters
READ(FU,REC=FPTRAN+2,ERR=102, I0STAT=ERRIND)
& (PARMIN(1), 1=1,NRANPAR)
C Read maximum values for random parameters
READ(FU,REC=FPTRAN+3,ERR=102, IOSTAT=ERRIND)
& (PARMAX(I), I1=1,NRANPAR)

C Close file

90



CLOSE(FU)
C
C Check ranges random parameters
DO 30 I=1,NRANPAR
IF (PARMIN(I) .GE. PARMAX(1)) THEN
NMERROR = NMRANPAR(I)
CALL XERROR(253)
RETURN
ENDIF
30 CONTINUE
C
C Index sort random parameter names
CALL XSORTNAMES(XMXRANPAR , NMRANPAR,NRANPAR, ISRANPAR)

C
RETURN

C

102 CALL XERROR(102)
END

C End of XOPRNDPAR

C

C

C********************************************************************

SUBROUTINE XRDRNDPAR
C
C Routine reads irun-th random parameter vector from random input
C file, and stores random values in parameter common block.

C Declarations:
INCLUDE "TEXAS.DCS*
INCLUDE "TEXAS.DCM*"

INTEGER ERRCODE,ERRIND, TLCODE, TYPRUN,TUNIT,TZERO,
& FU,FURPR,FUSTR, FUVAR, FUPAR, FUBND, FUWST , FUFRC, FURAN, FUDAT , FURES,
& FUTLG,FULOG,
& FRSRES, FRSDAT,FPIRES, FPRRES,FNVRES, FRSRAN, FPTRES, FPTRAN, LOGMODE,
& NSVAR,NBOUND ,NWASTE ,NFORC,NOUTVAR ,NRANPAR ,NVALVAR ,MVALVAR,
& NTLVAR, IOUTSTEP, I1DRLABCH
REAL DELT,DELTA,MODTIME ,MXABSCHG , MNCHANGE ,MNSWITCH, MNABSCHG,
& MXRLABCH,NOVALUE ,MAXVALUE
COMMON /XCBSIM/ ERRCODE,ERRIND,TLCODE, TYPRUN,TUNIT,TZERO,
FU,FURPR,FUSTR, FUVAR,FUPAR, FUBND, FUWST , FUFRC, FURAN, FUDAT , FURES,
FUTLG, FULOG,
FRSRES, FRSDAT,FPIRES, FPRRES , FNVRES, FRSRAN, FPTRES, FPTRAN, LOGMODE,
NSVAR,NBOUND,NWASTE ,NFORC,NOUTVAR,NRANPAR ,NVALVAR ,MVALVAR,
NTLVAR, IOUTSTEP, IDRLABCH,
DELT,DELTA,MODTIME ,MXABSCHG , MNCHANGE ,MNSWITCH , MNABSCHG,
MXRLABCH, NOVALUE , MAXVALUE

R0 R0 R0 RO RO RO Ro

INTEGER XMXGOF
PARAMETER (XMXGOF = 8)
INTEGER TSTART(0:6),RP102,TSTOP(0:6), ITEND,
& OUTFACT,NOUTSTEP,MXSTEPS,RP105,GOFRES, GOFVAR , MNVALSTEP , NBAND,
& TRUN,NRANRUN,NCALRUN, IBAND,NCENTR, ISEED, IBCONT, STOPCODE,
& FIDENT, INTEGRATE, TIMEOFF,RP109, IBACTPAR,RP110(2:4)
REAL
MXDELT , MNDELT , MXCHANGE , MXSWITCH, MNRELCHG , RPRO2(2:4) ,RPRO3(4),
& GOFERR(XMXGOF)
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[@N@] [@N@)

COMMON /XCBRPR/ TSTART,RP102,TSTOP, ITEND,
& OUTFACT ,NOUTSTEP ,MXSTEPS,RP105,GOFRES, GOFVAR,MNVALSTEP ,NBAND,
& ITRUN,NRANRUN,NCALRUN, IBAND,NCENTR, ISEED, IBCONT,STOPCODE,
& FIDENT, INTEGRATE, TIMEOFF,RPI109, IBACTPAR,RPI110,
& MXDELT ,MNDELT ,MXCHANGE ,MXSWITCH ,MNRELCHG,RPRO2 ,RPRO3,GOFERR

CHARACTER*16 NMMODEL ,NVMODEL ,NMTRES, NMERROR

CHARACTER*16 NMFRPR,NMFSTR,NMFVAR,NMFPAR ,NMFBND , NMFWST ,NMFFRC,
& NMFRES,NMFRAN,NMFDAT ,NMFTLAG ,NMFLOG

CHARACTER*78 OUTTXT

CHARACTER*160 ERRTXT

COMMON /XCBNMS/ NMMODEL ,NVMODEL ,NMTRES,NMERROR ,NMFRPR ,NMFSTR,
& NMFVAR,NMFPAR,NMFBND ,NMFWST ,NMFFRC , NMFRES , NMFRAN , NMFDAT ,NMFTLAG,
& NMFLOG,OUTTXT,ERRTXT

CHARACTER*16 NMOUTVAR(XMXOUTVAR) ,NMRANPAR (XMXRANPAR)
COMMON /XCBNAME/ NMOUTVAR,NMRANPAR

INTEGER IDOUTVAR(XMXOUTVAR) , ISOUTVAR(XMXOUTVAR),
& IDRANPAR(XMXRANPAR) , I SRANPAR (XMXRANPAR)
COMMON /XCBNMI/ 1DOUTVAR, ISOUTVAR, IDRANPAR, ISRANPAR

REAL PARVEC(XMXRANPAR) , LOCVEC(XMXRANPAR) ,PARDIS(XMXRANPAR),
& PARMIN(XMXRANPAR) , PARMAX(XMXRANPAR)
COMMON /XCBRAN/ PARVEC,LOCVEC,PARDIS,PARMIN, PARMAX

REAL PAR(XMXPAR)
COMMON /XCBPAR/ PAR

INTEGER 1

Statements:

Open random input file
CALL XOPFILE(FURAN,FRSRAN, .TRUE.,.TRUE.,0)
IF (ERRCODE .NE. 0) RETURN

Read irun-th random parameter vector
READ(FU,REC=FPTRAN+4+1RUN,ERR=102, I0STAT=ERRIND)
& (PARVEC(I), I=1,NRANPAR)

Close random input file
CLOSE(FU)

For all random parameters
DO 10 I=1,NRANPAR
IF (IDRANPAR(1) .GT. 0) THEN
Check value random parameter with range
IF ((PARVEC(I) .GE. PARMIN(I)) -.AND.
& (PARVEC(I) .LE. PARMAX(1))) THEN
Set actual value of parameter
PAR(IDRANPAR(1)) = PARVEC(I)
ELSE
NMERROR = NMRANPAR(I)
CALL XERROR(254)
RETURN
ENDIF
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ENDIF
10 CONTINUE

C
RETURN

c

102  CALL XERROR(102)
END

C End of XRDRNDPAR

C

c

C*********************************************************************

SUBROUTINE XOPCALPAR

Routine creates calibration result file,
and writes the run parameters, names of the random parameters,
and the distribution codes, minimum and maxiumum values of the
random parameters to the result file.
Declarations:

INCLUDE “TEXAS.DCM*

OO0OO0OO0O0O0

INTEGER ERRCODE,ERRIND, TLCODE,TYPRUN, TUNIT,TZERO,
& FU,FURPR,FUSTR, FUVAR, FUPAR, FUBND, FUWST , FUFRC, FURAN , FUDAT , FURES,
& FUTLG,FULOG,
& FRSRES, FRSDAT,FPIRES, FPRRES,FNVRES, FRSRAN, FPTRES, FPTRAN, LOGMODE,
& NSVAR,NBOUND ,NWASTE ,NFORC,NOUTVAR ,NRANPAR ,NVALVAR ,MVALVAR,
& NTLVAR, I0UTSTEP, IDRLABCH
REAL DELT,DELTA,MODTIME ,MXABSCHG , MNCHANGE ,MNSWITCH, MNABSCHG,
& MXRLABCH,NOVALUE ,MAXVALUE
COMMON /XCBSIM/ ERRCODE,ERRIND,TLCODE, TYPRUN,TUNIT,TZERO,
FU,FURPR,FUSTR, FUVAR,FUPAR, FUBND, FUWST , FUFRC, FURAN, FUDAT , FURES,
FUTLG, FULOG,
FRSRES, FRSDAT ,FPIRES,FPRRES, FNVRES, FRSRAN ,,FPTRES, FPTRAN, LOGMODE,
NSVAR,NBOUND ,NWASTE ,NFORC,NOUTVAR , NRANPAR , NVALVAR ,MVALVAR,
NTLVAR, IOUTSTEP, IDRLABCH,
DELT,DELTA,MODTIME ,MXABSCHG , MNCHANGE ,MNSWITCH , MNABSCHG,
MXRLABCH , NOVALUE , MAXVALUE

R0 R0 R0 RO RO Ro Ro

INTEGER XMXGOF
PARAMETER (XMXGOF = 8)
INTEGER TSTART(0:6),RP102,TSTOP(0:6), ITEND,
& OUTFACT,NOUTSTEP,MXSTEPS,RP105,GOFRES, GOFVAR , MNVALSTEP , NBAND,
& IRUN,NRANRUN,NCALRUN, IBAND ,NCENTR, ISEED, IBCONT, STOPCODE,
& FIDENT, INTEGRATE, TIMEOFF,RP109, IBACTPAR,RP110(2:4)
REAL
MXDELT , MNDELT , MXCHANGE , MXSW1TCH, MNRELCHG , RPRO2(2:4) ,RPRO3(4) ,
& GOFERR(XMXGOF)
COMMON /XCBRPR/ TSTART,RP102,TSTOP, ITEND,
& OUTFACT,NOUTSTEP,MXSTEPS,RP105, GOFRES , GOFVAR , MNVALSTEP , NBAND,
& IRUN,NRANRUN,NCALRUN, IBAND,NCENTR, ISEED, IBCONT, STOPCODE,
& FIDENT, INTEGRATE, TIMEOFF,RP109, IBACTPAR,RP110,
& MXDELT,MNDELT ,MXCHANGE , MXSW1TCH , MNRELCHG , RPRO2 , RPRO3 , GOFERR

CHARACTER*16 NMMODEL ,NVMODEL ,NMTRES, NMERROR

CHARACTER*16 NMFRPR,NMFSTR,NMFVAR,NMFPAR ,NMFBND ,NMFWST ,NMFFRC,
& NMFRES,NMFRAN, NMFDAT ,NMFTLAG ,NMFLOG

CHARACTER*78 OUTTXT
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CHARACTER*160 ERRTXT

COMMON /XCBNMS/ NMMODEL ,NVMODEL ,NMTRES ,NMERROR ,NMFRPR ,NMFSTR,
& NMFVAR ,NMFPAR,NMFBND ,NMFWST ,NMFFRC , NMFRES , NMFRAN , NMFDAT ,NMFTLAG,
& NMFLOG,OUTTXT,ERRTXT

CHARACTER*16 NMOUTVAR(XMXOUTVAR) ,NMRANPAR (XMXRANPAR)
COMMON /XCBNAME/ NMOUTVAR,NMRANPAR

INTEGER IDOUTVAR(XMXOUTVAR) , ISOUTVAR(XMXOUTVAR),
& IDRANPAR(XMXRANPAR) , I SRANPAR (XMXRANPAR)
COMMON /XCBNMI/ 1DOUTVAR, ISOUTVAR, IDRANPAR, ISRANPAR

REAL PARVEC(XMXRANPAR) , LOCVEC(XMXRANPAR) ,PARDIS(XMXRANPAR),
& PARMIN(XMXRANPAR) , PARMAX(XMXRANPAR)
COMMON /XCBRAN/ PARVEC,LOCVEC,PARDIS,PARMIN, PARMAX

INTEGER RCINT ,RCREAL

PARAMETER (RCINT = 10, RCREAL = 2)

INTEGER FRSHEAD,FRSTAIL,FRSTLAG

PARAMETER (FRSHEAD = 16, FRSTAIL = 8, FRSTLAG = 4)

INTEGER 1,NREC,POSVARS

Statements:

O0O0O0

Calculate tail record size of calibration result file
FRSRES = (NRANPAR+NBAND)*4

Open calibration result file (with header record size),
and write run parameters to result file
CALL XWRRPR(FURES,FRSRES,NRANPAR,POSVARS,FPTRES,NMTRES)

OO0

C Write names of random parameters to result file
DO 10 I1=1,NRANPAR
WRITE(FU,REC=POSVARS+1 ,ERR=102, IOSTAT=ERRIND) NMRANPAR(I)
10 CONTINUE
C
C Fill remainder of header until start of tail-part with dummy stars
POSVARS = POSVARS + NRANPAR
NREC = FRSRES/FRSHEAD + 1
DO 20 I=1,NREC
WRITE(FU,REC=POSVARS+1 ,ERR=102, IOSTAT=ERRIND) "******kkkkkiitiin
20 CONTINUE
C
C Close result file
CLOSE(FU)
C and re-open with (new) tail record size
CALL XOPFILE(FURES,FRSRES, .FALSE., .TRUE.,0)
C
C Write distribution codes of random parameters to result file
WRITE(FU,REC=FPTRES+1,ERR=102, I0STAT=ERRIND)
& (PARDIS(1), 1=1,NRANPAR)
C Write minimum values of random parameters to result file
WRITE(FU,REC=FPTRES+2,ERR=102, I0STAT=ERRIND)
& (PARMIN(I), 1=1,NRANPAR)
C Write maximum values of random parameters to result file
WRITE(FU,REC=FPTRES+3,ERR=102, IOSTAT=ERRIND)
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C

& (PARMAX(1), 1=1,NRANPAR)

C Close result file

C

C

102

CLOSE(FU)
RETURN

CALL XERROR(102)
END

C End of XOPCALPAR

C
C

C*********************************************************************

C
C
C

OO0O0O0

SUBROUTINE XWRCALPAR(IDVEC)

Parameter:

Index number iIn vase/calibration result file

INTEGER IDVEC

Routine writes the values in random parameter vector PARVEC
to the calibration result file in vase record IDVEC

Declarations:

INCLUDE "TEXAS.DCM*"

INTEGER ERRCODE,ERRIND,TLCODE,TYPRUN, TUNIT,TZERO,
& FU,FURPR,FUSTR,FUVAR,FUPAR,FUBND, FUWST , FUFRC, FURAN, FUDAT , FURES,
& FUTLG,FULOG,
& FRSRES,FRSDAT,FPIRES, FPRRES,FNVRES, FRSRAN, FPTRES ,FPTRAN, LOGMODE,
& NSVAR,NBOUND,NWASTE,NFORC,NOUTVAR,NRANPAR,NVALVAR,MVALVAR,
& NTLVAR, I0UTSTEP, IDRLABCH
REAL DELT,DELTA,MODTIME ,MXABSCHG, MNCHANGE ,MNSWITCH , MNABSCHG,
& MXRLABCH,NOVALUE ,MAXVALUE
COMMON /XCBSIM/ ERRCODE,ERRIND,TLCODE, TYPRUN,TUNIT,TZERO,
FU,FURPR,FUSTR, FUVAR, FUPAR , FUBND, FUWST , FUFRC, FURAN , FUDAT , FURES,
FUTLG, FULOG,
FRSRES, FRSDAT ,FPIRES,FPRRES, FNVRES, FRSRAN , FPTRES, FPTRAN, LOGMODE,
NSVAR,NBOUND ,NWASTE ,NFORC,,NOUTVAR , NRANPAR ,NVALVAR ,MVALVAR,
NTLVAR, IOUTSTEP, IDRLABCH,
DELT,DELTA,MODT IME , MXABSCHG , MNCHANGE , MNSWITCH , MNABSCHG,
MXRLABCH , NOVALUE , MAXVALUE

Ro Ro Ro Ro Ro Ro Ro

INTEGER XMXGOF

PARAMETER (XMXGOF = 8)

INTEGER TSTART(0:6),RP102,TSTOP(0:6), I TEND,
& OUTFACT ,NOUTSTEP ,MXSTEPS,RP105,GOFRES, GOFVAR,MNVALSTEP ,NBAND,
& TRUN,NRANRUN,NCALRUN, IBAND,NCENTR, ISEED, IBCONT, STOPCODE,
& FIDENT, INTEGRATE, TIMEOFF,RP109, IBACTPAR,RP110(2:4)

REAL

MXDELT ,MNDELT ,MXCHANGE ,MXSWITCH ,MNRELCHG,RPR02(2:4) ,RPR03(4),

& GOFERR(XMXGOF)
COMMON /XCBRPR/ TSTART,RP102,TSTOP, ITEND,
& OUTFACT ,NOUTSTEP ,MXSTEPS,RP105,GOFRES, GOFVAR,MNVALSTEP ,NBAND,
& TRUN,NRANRUN,NCALRUN, IBAND,NCENTR, ISEED, IBCONT ,STOPCODE,
& FIDENT, INTEGRATE, TIMEOFF,RPI109, IBACTPAR,RP110,
& MXDELT ,MNDELT ,MXCHANGE ,MXSWITCH ,MNRELCHG,RPR0O2,RPRO3,GOFERR
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INTEGER IDMNGOF, IDMXGOF
REAL GOFNORM(XMXGOF+1) ,GOFWEIGHT (XMXOUTVAR),
& GOFVAL(XMXOUTVAR, XMXGOF),
& OBSDAT (XMXOUTSTEP) ,OBSERR(XMXOUTSTEP),
& OLDRES(0:XMXOUTVAR) ,CUMRES(0:XMXOUTVAR),
& RESULT(0:XMXOUTVAR,O0:XMXOUTSTEP+1)
COMMON /XCBRES/ 1DMNGOF, I1DMXGOF ,GOFNORM, GOFWEIGHT ,GOFVAL,
& OBSDAT,OBSERR,OLDRES,CUMRES ,RESULT

C
REAL PARVEC(XMXRANPAR) , LOCVEC(XMXRANPAR) ,PARDIS(XMXRANPAR),
& PARMIN(XMXRANPAR) , PARMAX(XMXRANPAR)
COMMON /XCBRAN/ PARVEC,LOCVEC,PARDIS,PARMIN,PARMAX
C
INTEGER 1
C—————————— e ————————
C Statements:
C
C Open calibration result file
CALL XOPFILE(FURES,FRSRES, .TRUE., .TRUE.,0)
C
C Write parameter vector to result file in record IDVEC
WRITE(FU,REC=FPTRES+3+IDVEC,ERR=102, IOSTAT=ERRIND)
& (PARVEC(I), 1=1,NRANPAR) , (GOFNORM(I), I=1,NBAND)
C
C Close result file
CLOSE(FU)
C
C Write run number to result file
CALL XWRRUN
C
RETURN
C
102 CALL XERROR(102)
END
C End of XWRCALPAR
C
C

C*********************************************************************

SUBROUTINE XRDCALPAR

C
C Routine calculates new random parameter vector out of the
C random parameter vectors in the vase, according to the
C controlled random search method as described in the manual.
cC-————— - . . -
C Declarations:
INCLUDE “TEXAS.DCS*®
INCLUDE "TEXAS.DCM®
C

INTEGER ERRCODE,ERRIND,TLCODE,TYPRUN, TUNIT,TZERO,
& FU,FURPR,FUSTR,FUVAR,FUPAR,FUBND, FUWST , FUFRC, FURAN, FUDAT , FURES,
& FUTLG,FULOG,
& FRSRES, FRSDAT,FPIRES, FPRRES, FNVRES, FRSRAN, FPTRES, FPTRAN, LOGMODE,
& NSVAR,NBOUND,NWASTE ,NFORC,NOUTVAR,NRANPAR,NVALVAR ,MVALVAR,
& NTLVAR, I0UTSTEP, IDRLABCH

REAL DELT,DELTA,MODTIME ,MXABSCHG,MNCHANGE ,MNSWITCH , MNABSCHG,
& MXRLABCH,NOVALUE ,MAXVALUE

COMMON /XCBSIM/ ERRCODE,ERRIND,TLCODE, TYPRUN,TUNIT,TZERO,
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FU,FURPR,FUSTR, FUVAR, FUPAR , FUBND, FUWST , FUFRC, FURAN , FUDAT , FURES,
FUTLG, FULOG,

FRSRES,FRSDAT ,FPIRES,FPRRES, FNVRES, FRSRAN , FPTRES,, FPTRAN, LOGMODE,
NSVAR,NBOUND ,NWASTE ,NFORC,NOUTVAR , NRANPAR , NVALVAR ,MVALVAR,
NTLVAR, IOUTSTEP, IDRLABCH,
DELT,DELTA,MODTIME , MXABSCHG , MNCHANGE , MNSWITCH, MNABSCHG,
MXRLABCH , NOVALUE , MAXVALUE

Ro Ro Ro Ro Ro RO Ro

INTEGER XMXGOF
PARAMETER (XMXGOF = 8)
INTEGER TSTART(0:6),RP102,TSTOP(0:6), ITEND,
& OUTFACT,NOUTSTEP,MXSTEPS,RP105, GOFRES, GOFVAR, MNVALSTEP , NBAND,
& IRUN,NRANRUN,NCALRUN, IBAND,NCENTR, ISEED, IBCONT, STOPCODE,
& FIDENT, INTEGRATE, TIMEOFF,RP109, IBACTPAR,RP110(2:4)
REAL
MXDELT , MNDELT , MXCHANGE , MXSWITCH, MNRELCHG , RPRO2(2:4) ,RPRO3(4),
& GOFERR(XMXGOF)
COMMON /XCBRPR/ TSTART,RP102,TSTOP, ITEND,
& OUTFACT,NOUTSTEP,MXSTEPS,RP105,GOFRES, GOFVAR , MNVALSTEP , NBAND,
& IRUN,NRANRUN,NCALRUN, IBAND,NCENTR, ISEED, IBCONT, STOPCODE,
& FIDENT, INTEGRATE, TIMEOFF,RP109, IBACTPAR,RPI110,
& MXDELT,MNDELT ,MXCHANGE , MXSWITCH, MNRELCHG , RPRO2, RPRO3, GOFERR

C
REAL PAR(XMXPAR)
COMMON /XCBPAR/ PAR
C
CHARACTER*16 NMOUTVAR(XMXOUTVAR) ,NMRANPAR(XMXRANPAR)
COMMON /XCBNAME/ NMOUTVAR, NMRANPAR
C
INTEGER IDOUTVAR(XMXOUTVAR), ISOUTVAR(XMXOUTVAR),
& IDRANPAR(XMXRANPAR) , I SRANPAR (XMXRANPAR)
COMMON /XCBNMI/ I1DOUTVAR, ISOUTVAR, IDRANPAR, ISRANPAR
C
REAL PARVEC(XMXRANPAR) , LOCVEC(XMXRANPAR) , PARDIS(XMXRANPAR),
& PARMIN(XMXRANPAR) , PARMAX(XMXRANPAR)
COMMON /XCBRAN/ PARVEC,LOCVEC,PARDIS,PARMIN,PARMAX
C
INTEGER IDMNCAL, IDMXCAL ,MNCENTR,MXCENTR
REAL CALNORM(XMXVASE)
COMMON /XCBCAL/ IDMNCAL, IDMXCAL ,MNCENTR,MXCENTR, CALNORM
C
INTEGER I, IREC, IVASE, VASE(XMXVASE)
REAL RANGE, SUMVEC(XMXRANPAR)
Cm e e
C Statements:
C
C Open calibration result file

CALL XOPFILE(FURES,FRSRES, .TRUE.,.TRUE.,0)
C
C Initialise sum array

DO 10 I=1,NRANPAR

SUMVEC(I) = 0.0

10 CONTINUE
C
C Get random permutation over NRANRUN

CALL XGETVASE(NRANRUN,VASE)
C
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C Read at random NCENTR parameter vectors from vase
C and calculate centroid
IREC = FPTRES + 3
DO 30 IVASE=1,NCENTR
READ(FU,REC=IREC+VASE(IVASE) ,ERR=102, IOSTAT=ERRIND)
& (LOCVEC(I), I=1,NRANPAR)
DO 20 I1=1,NRANPAR
SUMVEC(1) = SUMVEC(l1) + LOCVEC(I)

20 CONTINUE
30 CONTINUE
C

C Final calculation centroid
DO 40 I1=1,NRANPAR
SUMVEC(1) = SUMVEC(I1)/NCENTR
40 CONTINUE
C
C Read additional parameter vector from vase
READ(FU,REC=1REC+VASE(NCENTR+1) ,ERR=102, I0OSTAT=ERRIND)
& (LOCVEC(I), 1=1,NRANPAR)

C

C Close result file
CLOSE(FU)

C

C Mirror parameter vector at centroid
DO 50 I=1,NRANPAR
PARVEC(I) = SUMVEC(I) + SUMVEC(I) - LOCVEC(D)
C Check vector space
RANGE = PARMAX(1) - PARMIN(I)
IT parameter value out of range then
map value in range
IF (PARVEC(1) .LT. PARMIN(CI)+0.005*RANGE) THEN
PARVEC(I) = PARMIN(I) - (0.005/1.005) *
& (PARMIN(I) - RANGE - PARVEC(I))
ELSEIF (PARVEC(1) .GT. PARMAX(1)-0.005*RANGE) THEN
PARVEC(I) = PARMAX(I) - (0.005/1.005) *
& (PARMAX(I) + RANGE - PARVEC(I))
ENDIF
C Store new value for parameter in parameter common block
PAR(IDRANPAR(1)) = PARVEC(I)
50 CONTINUE

[@Ne@]

C
RETURN

c

102  CALL XERROR(102)
END

C End of XRDCALPAR

c

c

C*********************************************************************

SUBROUTINE XRDNORM
C
C Routine determines range of random parameter values and
C Goodness of Fit values (for active error band) in vase,
C and reads parameter vector with lowest Goodness of Fit
C value from vase.

C Declarations:
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INCLUDE "TEXAS.DCM*®

INTEGER ERRCODE,ERRIND, TLCODE,TYPRUN, TUNIT,TZERO,
& FU,FURPR,FUSTR,FUVAR,FUPAR,FUBND, FUWST , FUFRC, FURAN, FUDAT , FURES,
& FUTLG,FULOG,
& FRSRES, FRSDAT,FPIRES, FPRRES,FNVRES, FRSRAN, FPTRES, FPTRAN, LOGMODE,
& NSVAR,NBOUND ,NWASTE ,NFORC,NOUTVAR ,NRANPAR ,NVALVAR ,MVALVAR,
& NTLVAR, IOUTSTEP, I1DRLABCH
REAL DELT,DELTA,MODTIME,MXABSCHG , MNCHANGE ,MNSWITCH, MNABSCHG,
& MXRLABCH,NOVALUE ,MAXVALUE
COMMON /XCBSIM/ ERRCODE,ERRIND,TLCODE, TYPRUN,TUNIT,TZERO,
FU,FURPR,FUSTR, FUVAR,FUPAR, FUBND, FUWST , FUFRC, FURAN, FUDAT , FURES,
FUTLG, FULOG,
FRSRES, FRSDAT ,FPIRES, FPRRES , FNVRES, FRSRAN, FPTRES , FPTRAN,, LOGMODE,
NSVAR,NBOUND ,NWASTE ,NFORC,NOUTVAR , NRANPAR , NVALVAR ,MVALVAR,
NTLVAR, IOUTSTEP, IDRLABCH,
DELT,DELTA,MODTIME ,MXABSCHG , MNCHANGE ,MNSWITCH , MNABSCHG,
MXRLABCH , NOVALUE , MAXVALUE

R0 R0 R0 RO RO Ro Ro

INTEGER XMXGOF
PARAMETER (XMXGOF = 8)
INTEGER TSTART(0:6),RP102,TSTOP(0:6), ITEND,
& OUTFACT,NOUTSTEP,MXSTEPS,RP105,GOFRES, GOFVAR, MNVALSTEP , NBAND,
& IRUN,NRANRUN,NCALRUN, IBAND,NCENTR, ISEED, IBCONT, STOPCODE,
& FIDENT, INTEGRATE, TIMEOFF,RP109, IBACTPAR,RP110(2:4)
REAL
MXDELT , MNDELT , MXCHANGE , MXSWITCH, MNRELCHG , RPRO2(2:4) ,RPRO3(4),
& GOFERR(XMXGOF)
COMMON /XCBRPR/ TSTART,RP102,TSTOP, ITEND,
& OUTFACT,NOUTSTEP,MXSTEPS,RP105,GOFRES, GOFVAR , MNVALSTEP , NBAND,
& IRUN,NRANRUN,NCALRUN, IBAND,NCENTR, ISEED, IBCONT, STOPCODE,
& FIDENT, INTEGRATE, TIMEOFF,RP109, IBACTPAR,RPI110,
& MXDELT,MNDELT , MXCHANGE , MXSWITCH, MNRELCHG , RPRO2 , RPRO3, GOFERR

REAL PARVEC(XMXRANPAR) , LOCVEC(XMXRANPAR) , PARDIS(XMXRANPAR) ,
& PARMIN(XMXRANPAR) , PARMAX(XMXRANPAR)
COMMON /XCBRAN/ PARVEC,LOCVEC,PARDIS,PARMIN, PARMAX

INTEGER IDMNCAL, IDMXCAL ,MNCENTR ,MXCENTR
REAL CALNORM(XMXVASE)
COMMON /XCBCAL/ I1DMNCAL, IDMXCAL ,MNCENTR,MXCENTR, CALNORM

INTEGER I, IREC, IVASE
REAL NORM(XMXGOF)

Statements:

OO0

Open calibration result file
CALL XOPFILE(FURES,FRSRES, .TRUE., .TRUE.,0)

ON@]

Read all parameter vectors from vase
IREC = FPTRES + 3
DO 10 IVASE=1,NRANRUN
C Read ivase-th parameter vector
READ(FU,REC=IREC+I1VASE ,ERR=102, IOSTAT=ERRIND)
& (LOCVEC(I), I=1,NRANPAR) , (NORM(1), 1=1,NBAND)
C Store Goodness of Fit value of active error band
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CALNORM(IVASE) = NORM(IBAND)
10 CONTINUE
C
C Calculate minimum and maximum of Goodness of Fit values in vase
CALL XMINMAX(NRANRUN,CALNORM,NOVALUE, IDMNCAL , IDMXCAL)
C
C Read parameter vector with lowest Goodness of Fit value from vase
READ(FU,REC=IREC+IDMNCAL ,ERR=102, IOSTAT=ERRIND)
& (LOCVEC(I), I1=1,NRANPAR)

C

C Close result file
CLOSE(FU)

C
RETURN

C

102 CALL XERROR(102)
END

C End of XRDNORM

C

C

C*********************************************************************

SUBROUTINE XGETVASE(NVASE,VASE)
C Parameters:
C
C Number of values in VASE
INTEGER NVASE
Returns array with permutation
INTEGER VASE(NVASE)

@)

Routine generates permuation over NVASE and returns
permuation in VASE.
Declarations:

INCLUDE *TEXAS.DCM*®

OO0O0O0

INTEGER XMXGOF
PARAMETER (XMXGOF = 8)
INTEGER TSTART(0:6),RP102,TSTOP(0:6), ITEND,
& OUTFACT,NOUTSTEP,MXSTEPS,RP105,GOFRES, GOFVAR , MNVALSTEP, NBAND,
& IRUN,NRANRUN,NCALRUN, IBAND,NCENTR, ISEED, IBCONT, STOPCODE,,
& FIDENT, INTEGRATE, TIMEOFF,RP109, IBACTPAR,RP110(2:4)
REAL
MXDELT , MNDELT , MXCHANGE , MXSWITCH , MNRELCHG ,RPRO2(2:4) ,RPRO3(4),
& GOFERR(XMXGOF)
COMMON /XCBRPR/ TSTART,RP102,TSTOP, ITEND,
& OUTFACT,NOUTSTEP,MXSTEPS,RP105,GOFRES, GOFVAR, MNVALSTEP ,NBAND,
& IRUN,NRANRUN,NCALRUN, IBAND,NCENTR, ISEED, IBCONT, STOPCODE,
& FIDENT, INTEGRATE, TIMEOFF,RP109, IBACTPAR,RP110,
& MXDELT ,MNDELT ,MXCHANGE , MXSWITCH , MNRELCHG ,RPRO2 , RPRO3 , GOFERR

C
EXTERNAL XRAN
INTEGER 1
REAL RVASE(XMXVASE)
C _____________________________________________________________________
C Statements:
C

C Generate array with random values
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DO 10 I1=1,NVASE
RVASE(1) = XRAN(ISEED)
10 CONTINUE
C
C Index sort random array
C so that the index array will be a permution over NVASE
CALL XSORTREALS(NVASE,RVASE,VASE)

C
END
C End of XGETVASE
C
C

C*********************************************************************

REAL FUNCTION XRAN(ISEED)
C Parameter:
C
C Seed for generator

INTEGER ISEED

C
C Simple random value generator
C _____________________________________________________________________
C Declarations:
INTEGER IM, 1A, IC
REAL RM
PARAMETER (IM=259200, 1A=7141,1C=54773,RM=1.0/1M)
C _____________________________________________________________________
C Statements:
C
ISEED = MOD(ISEED*IA+IC, IM)
XRAN = FLOAT(ISEED)*RM
C
END
C End of XRAN
C
o
C********************************************************************
SUBROUTINE XCALIBRATE
C
C Main driver routine for calibration.
C ____________________________________________________________________

C Declarations:
INCLUDE "TEXAS.DCS*
INCLUDE "TEXAS.DCM*®

INTEGER ERRCODE,ERRIND,TLCODE,TYPRUN, TUNIT,TZERO,
& FU,FURPR,FUSTR,FUVAR,FUPAR,FUBND, FUWST , FUFRC, FURAN, FUDAT , FURES,
& FUTLG,FULOG,
& FRSRES, FRSDAT,FPIRES, FPRRES,FNVRES, FRSRAN, FPTRES, FPTRAN, LOGMODE,
& NSVAR,NBOUND ,NWASTE ,NFORC ,NOUTVAR ,NRANPAR ,NVALVAR ,MVALVAR,
& NTLVAR, I0UTSTEP, IDRLABCH

REAL DELT,DELTA,MODTIME ,MXABSCHG, MNCHANGE ,MNSWITCH ,MNABSCHG,
& MXRLABCH,NOVALUE ,MAXVALUE

COMMON /XCBSIM/ ERRCODE,ERRIND,TLCODE, TYPRUN,TUNIT,TZERO,
& FU,FURPR,FUSTR,FUVAR,FUPAR,FUBND, FUWST , FUFRC, FURAN, FUDAT , FURES,
& FUTLG,FULOG,
& FRSRES, FRSDAT,FPIRES, FPRRES, FNVRES, FRSRAN, FPTRES, FPTRAN,, LOGMODE,
& NSVAR,NBOUND,NWASTE ,NFORC,NOUTVAR,NRANPAR ,NVALVAR ,MVALVAR,
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& NTLVAR, IOUTSTEP, IDRLABCH,
& DELT,DELTA,MODTIME,MXABSCHG , MNCHANGE , MNSWITCH , MNABSCHG,
& MXRLABCH,NOVALUE ,MAXVALUE

INTEGER XMXGOF
PARAMETER (XMXGOF = 8)
INTEGER TSTART(0:6),RP102,TSTOP(0:6), ITEND,
& OUTFACT,NOUTSTEP,MXSTEPS,RP105,GOFRES, GOFVAR, MNVALSTEP , NBAND,
& IRUN,NRANRUN,NCALRUN, IBAND,NCENTR, ISEED, IBCONT, STOPCODE,
& FIDENT, INTEGRATE, TIMEOFF,RP109, IBACTPAR,RP110(2:4)
REAL
MXDELT , MNDELT , MXCHANGE , MXSW1TCH, MNRELCHG , RPRO2(2:4) ,RPRO3(4),
& GOFERR(XMXGOF)
COMMON /XCBRPR/ TSTART,RP102,TSTOP, ITEND,
& OUTFACT,NOUTSTEP,MXSTEPS,RP105,GOFRES, GOFVAR , MNVALSTEP , NBAND,
& IRUN,NRANRUN,NCALRUN, IBAND,NCENTR, ISEED, IBCONT, STOPCODE,
& FIDENT, INTEGRATE, TIMEOFF,RP109, IBACTPAR,RP110,
& MXDELT,MNDELT ,MXCHANGE , MXSW1TCH, MNRELCHG , RPRO2 , RPRO3 , GOFERR

CHARACTER*16 NMMODEL ,NVMODEL ,NMTRES ,NMERROR

CHARACTER*16 NMFRPR,NMFSTR,NMFVAR,NMFPAR ,NMFBND ,NMFWST ,NMFFRC,
& NMFRES, NMFRAN,NMFDAT ,NMFTLAG ,NMFLOG

CHARACTER*78 OUTTXT

CHARACTER*160 ERRTXT

COMMON /XCBNMS/ NMMODEL ,NVMODEL ,NMTRES ,NMERROR ,NMFRPR ,NMFSTR,

& NMFVAR ,NMFPAR,NMFBND ,NMFWST , NMFFRC , NMFRES , NMFRAN , NMFDAT ,NMFTLAG,
& NMFLOG,OUTTXT,ERRTXT

CHARACTER*16 NMOUTVAR(XMXOUTVAR) ,NMRANPAR(XMXRANPAR)
COMMON /XCBNAME/ NMOUTVAR,NMRANPAR

INTEGER IDOUTVAR(XMXOUTVAR), ISOUTVAR(XMXOUTVAR),
& I1DRANPAR(XMXRANPAR) , I SRANPAR (XMXRANPAR)
COMMON /XCBNMI/ I1DOUTVAR, ISOUTVAR, IDRANPAR, ISRANPAR

INTEGER 1DMNGOF, I DMXGOF
REAL GOFNORM(XMXGOF+1) , GOFWE IGHT (XMXOUTVAR)

& GOFVAL(XMXOUTVAR, XMXGOF),

& OBSDAT(XMXOUTSTEP) , OBSERR(XMXOUTSTEP),

& OLDRES(0:XMXOUTVAR) , CUMRES (0 - XMXOUTVAR),

& RESULT(0:XMXOUTVAR,,0: XMXOUTSTEP+1)
COMMON /XCBRES/ IDMNGOF , IDMXGOF , GOFNORM, GOFWE IGHT , GOFVAL ,

& OBSDAT,OBSERR,OLDRES, CUMRES,,RESULT

REAL PARVEC(XMXRANPAR) , LOCVEC(XMXRANPAR) , PARDIS(XMXRANPAR) ,
& PARMIN(XMXRANPAR) , PARMAX(XMXRANPAR)
COMMON /XCBRAN/ PARVEC,LOCVEC,PARDIS,PARMIN, PARMAX

INTEGER IDMNCAL, IDMXCAL ,MNCENTR ,MXCENTR
REAL CALNORM(XMXVASE)
COMMON /XCBCAL/ I1DMNCAL, IDMXCAL ,MNCENTR,MXCENTR, CALNORM

REAL PAR(XMXPAR)
COMMON /XCBPAR/ PAR

REAL DVAR(XMXSVAR) ,VAR(XMXVAR)
COMMON /XCBVAR/ DVAR,VAR
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INTEGER 1
LOGICAL REPLACED,FIRSTRUN
REAL SAVGOF,SAVVAR(XMXVAR)

Statements:

OO0

Check number of vectors in vase

IF (NRANRUN .LT. 20) THEN
ERRIND = 20
CALL XERROR(260)
RETURN

ENDIF

IF (NRANRUN .GT. XMXVASE) THEN
ERRIND = XMXVASE - NRANRUN
CALL XERROR(261)
RETURN

ENDIF

Check number of output variables with observed data
for calculating Goodness of Fit
IF (NVALVAR _LE. 0) THEN
CALL XERROR(406)
RETURN
ENDIF

OO0

ON@]

Determine working range for Centroid size
MNCENTR = NRANRUN/5 + 1
MXCENTR = (4*NRANRUN)/5

[@N@]

IT not proceeding calibration then
IF (IBCONT .EQ. O) THEN
C initialize Centroid size
NCENTR = MNCENTR
Create calibration result file
CALL XOPCALPAR
IT proceeding calibration then
ELSE
Check stop code
IF (STOPCODE .GT. 0) THEN
CALL XWARNING(121)
RETURN
ENDIF
CALL XWARNING(120)
ENDIF

O O

(@)

a0

Initializations
STOPCODE = 0
C Save initial values variables
DO 10 I=1,XMXVAR
SAWAR(I1) = VAR(D)
10 CONTINUE
FIRSTRUN = _TRUE.
C
C If initial runs have already been done then skip initial runs
IF (IBAND .GT. 0) GOTO 99
C
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Initial runs loop:

C
C
C Check for fatal error
C Don"t stop on non-fatal error
20 IF ((ERRCODE .GE. 100) .OR. (ERRCODE .LT. 0)) RETURN
C
C Reset error code
ERRCODE = O
C
C If last initial run has been done the goto next phase
IF (IRUN _GE. NRANRUN) THEN
IBAND = NBAND
IRUN = 0
GOTO 99
ENDIF
C
C Display number of run message on screen
WRITE(*,997) IRUN+1,NRANRUN
997  FORMAT(44X,"INITIAL RUN =",16," of ",16)
C
C Restore initial values of the variables:
DO 30 I=1,XMXVAR
VAR(I) = SAWAR(ID)
30 CONTINUE
C
C Read random values for the parameters from random input file
CALL XRDRNDPAR
C
C Do a simulation run
CALL XSIMULATE
C
C Check if values of random parameters have been changed
IF ((ERRCODE .EQ. 0) .AND. FIRSTRUN) THEN
FIRSTRUN = _FALSE.
DO 40 I1=1,NRANPAR
IF (PARCIDRANPAR(1)) -NE. PARVEC(1)) THEN
NMERROR = NMRANPAR(I)
CALL XERROR(257)
ENDIF
40 CONTINUE
ENDIF
C
C Write parameter vector to vase/result file
CALL XWRCALPAR(IRUN)
C
C Goto begin of initial runs loop
GOTO 20
C End of initial runs loop
99 CONTINUE

ON@]

Determine range of Goodness of Fit values in vase
CALL XRDNORM

Controlled random search runs loop

Check for fatal error
Don"t stop on non-fatal error
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100 IF ((ERRCODE .GE. 100) .OR. (ERRCODE .LT. 0)) RETURN
C
C Reset error code
ERRCODE = O
C
C Check if ready with active error band
C Active error band is ready when the worst Goodness of Fit is zero
105 IF ((IDMXCAL .GT. 0) .AND. (CALNORM(IDMXCAL) .LE. 0.0)) THEN
C
C IT last (most inner) error band is done the calibration is ready
IF (IBAND .LE. 1) THEN
WRITE(*,999) " Il READY with GoF band: *,GOFERR(1)
STOPCODE = 3
RETURN
ENDIF

C Decrease number of active error band
IBAND = IBAND - 1

C Reset run number counter (counts runs per error band)
IRUN = 0O

C Reset Centroid size
NCENTR = MNCENTR

C Display start of error band message on screen
WRITE(*,999) " Il Starting GoF band: *,GOFERR(IBAND)

C Determine range of Goodness of Fit values in vase for new error band
CALL XRDNORM

C Goto error band check for new error band
GOTO 105
ENDIF

If number of runs for error band exceeds allowed number of runs
then stop calibration
IF (IRUN _GE. NCALRUN) THEN
STOPCODE = -3
RETURN
ENDIF

OO0

C
C Display calibration run message on screen
WRITE(*,998) IBAND, IRUN+1,NCALRUN

998  FORMAT(44X,"BAND",12," RUN =",16," of ",16)
C
C Restore initial values of the variables:

DO 110 I=1,XMXVAR

VAR(1) = SAVVAR(I)

110 CONTINUE
C
C Generate new random values for random parameters

CALL XRDCALPAR
C
C Do a simulation run

CALL XSIMULATE
C
C Check if values of random parameters have been changed

IF ((ERRCODE .EQ. 0) .AND. FIRSTRUN) THEN
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FIRSTRUN = .FALSE.
DO 140 I=1,NRANPAR
IF (PARCIDRANPAR(1)) .NE. PARVEC(I)) THEN
NMERROR = NMRANPAR(I)
CALL XERROR(257)
ENDIF
140 CONTINUE
ENDIF

Check if Goodness of Fit of run is better (lower) then worst
Goodness of Fit in vase
REPLACED = _FALSE.
IF (ERRCODE .EQ. 0) THEN
C Check Goodness of Fit value
IF ((GOFNORM(IBAND) .LT. CALNORM(IDMXCAL)) .AND.
& (GOFNORM(IBAND+1) .EQ. 0.0)) THEN
C IT Goodness of Fit for run = 0 then increase centroid size
C for less randomness in Centroid -> faster convergence
IF (GOFNORM(IBAND) .EQ. 0.0) THEN
IF (NCENTR .LT. MXCENTR) NCENTR = NCENTR + 1
ENDIF

OO0

C Replace worst Goodness of Fit in vase with new Goodness of Fit value
SAVGOF = CALNORM(IDMXCAL)
CALNORM(IDMXCAL) = GOFNORM(IBAND)

C Write parameter vector of better run to vase/result file
CALL XWRCALPAR(IDMXCAL)

C Determine new best/worst Goodness of Fit values iIn vase
CALL XMINMAX(NRANRUN,CALNORM,NOVALUE, IDMNCAL , IDMXCAL)

¢
C Display success messages on screen
WRITE(*,999)
& " SUCCESSFUL 1! Replacing GoF(",GOFERR(IBAND),"): " ,SAVGOF
REPLACED = _TRUE.
ENDIF
ENDIF
¢

C If not better run then write only number of run to result file
IF (.NOT. REPLACED) CALL XWRRUN

C

C Continue with calibration loop
GOTO 100

C End of calibration loop.

C

999 FORMAT (A,F5.2,A,G13.5)
END

C End of XCALIBRATE

C

CH#t#t End of Tile #HH#HHHAHHHAHHH AR R R R R R R
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7.8 XSENS.FOR

CHHHHEH A

C SENECA 2.0 (C) NI100O-CEMO/DGW

C File: XSENS.FOR

C Date: 17-1-93

C Version: 4

C This file contains the main program for the sensitivity analysis

program

C and the subroutines that are specific to the sensitivity analysis

program.

CHHAHHHHH A
PROGRAM XSENS

C Declarations:
C
INTEGER ERRCODE,ERRIND, TLCODE,TYPRUN, TUNIT,TZERO,
& FU,FURPR,FUSTR,FUVAR,FUPAR,FUBND, FUWST, FUFRC, FURAN, FUDAT , FURES,
& FUTLG, FULOG,
& FRSRES,FRSDAT,FPIRES, FPRRES,FNVRES, FRSRAN, FPTRES, FPTRAN, LOGMODE,
& NSVAR,NBOUND,NWASTE ,NFORC,NOUTVAR ,NRANPAR ,NVALVAR ,MVALVAR,
& NTLVAR, IOUTSTEP, IDRLABCH
REAL DELT,DELTA,MODTIME,MXABSCHG , MNCHANGE ,MNSWITCH , MNABSCHG,
& MXRLABCH,NOVALUE ,MAXVALUE
COMMON /XCBSIM/ ERRCODE,ERRIND,TLCODE,TYPRUN,TUNIT,TZERO,
FU, FURPR,FUSTR, FUVAR, FUPAR,FUBND, FUWST , FUFRC, FURAN, FUDAT , FURES,
FUTLG, FULOG,
FRSRES, FRSDAT,FPIRES, FPRRES, FNVRES , FRSRAN, FPTRES, FPTRAN,, LOGMODE,
NSVAR ,NBOUND , NWASTE ,NFORC ,NOUTVAR, NRANPAR , NVALVAR , MVALVAR,,
NTLVAR, IOUTSTEP, IDRLABCH,
DELT,DELTA,MODTIME , MXABSCHG , MNCHANGE , MNSWITCH , MNABSCHG,
MXRLABCH , NOVALUE , MAXVALUE

Ro Ro Ro RO Ro RO Ro

INTEGER TYPSIM,TYPSENS, TYPCAL
PARAMETER (TYPSIM = 1)
PARAMETER (TYPSENS = 2)
PARAMETER (TYPCAL = 3)

Statements:

O0O0O0

Initialize sensitivity analysis and read run parameters
CALL XINSIM(TYPSENS)
IF (ERRCODE .NE. 0) GOTO 100

[eNe@!

Read random parameters from random input Ffile
CALL XOPRANPAR(FURAN)
IF (ERRCODE .NE. 0) GOTO 100

[@N@)

Initialize variables, parameters and forcing functions
CALL XRDSTRUCT
IF (ERRCODE .NE. 0) GOTO 100

oN@]

Do sensitivity analysis runs
CALL XMONTECARLO
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100  CALL XSTOP

END
C End of program XSENS
C
C

C********************************************************************

SUBROUTINE XOPRANPAR(FUR)
Parameter:

OO0

File unit/type number
INTEGER FUR
C
C Routine reads names of random parameters from random input file.

C Declarations:
INCLUDE "TEXAS.DCM"
C
INTEGER ERRCODE,ERRIND, TLCODE, TYPRUN, TUNIT,TZERO,
& FU,FURPR,FUSTR, FUVAR, FUPAR, FUBND, FUWST , FUFRC, FURAN, FUDAT, FURES,
& FUTLG,FULOG,
& FRSRES,FRSDAT,FPIRES,FPRRES,FNVRES, FRSRAN, FPTRES, FPTRAN, LOGMODE,
& NSVAR,NBOUND ,NWASTE, NFORC,NOUTVAR ,NRANPAR ,NVALVAR ,MVALVAR,
& NTLVAR, IOUTSTEP, IDRLABCH
REAL DELT,DELTA,MODTIME ,MXABSCHG, MNCHANGE , MNSWITCH, MNABSCHG,
& MXRLABCH,NOVALUE ,MAXVALUE
COMMON /XCBSIM/ ERRCODE,ERRIND,TLCODE,TYPRUN, TUNIT,TZERO,
FU, FURPR,FUSTR, FUVAR, FUPAR , FUBND, FUWST , FUFRC , FURAN, FUDAT , FURES,
FUTLG, FULOG,
FRSRES, FRSDAT,FPIRES, FPRRES, FNVRES , FRSRAN, FPTRES, FPTRAN, LOGMODE,
NSVAR ,NBOUND , NWASTE ,NFORC , NOUTVAR, NRANPAR , NVALVAR , MVALVAR,
NTLVAR, IOUTSTEP, IDRLABCH,
DELT,DELTA,MODTIME , MXABSCHG , MNCHANGE , MNSWITCH , MNABSCHG,
MXRLABCH , NOVALUE , MAXVALUE

R RO R0 RO RO RO Ro

INTEGER XMXGOF
PARAMETER (XMXGOF = 8)
INTEGER TSTART(0:6),RP102,TSTOP(0:6), ITEND,
& OUTFACT,NOUTSTEP,MXSTEPS,RP105, GOFRES, GOFVAR , MNVALSTEP , NBAND,
& TRUN,NRANRUN,NCALRUN, IBAND,NCENTR, ISEED, IBCONT, STOPCODE,
& FIDENT, INTEGRATE, TIMEOFF,RP109, IBACTPAR,RP110(2:4)
REAL
MXDELT , MNDELT , MXCHANGE , MXSWITCH , MNRELCHG ,RPRO2(2:4) ,RPRO3(4),
& GOFERR(XMXGOF)
COMMON /XCBRPR/ TSTART,RP102,TSTOP, ITEND,
& OUTFACT,NOUTSTEP,MXSTEPS,RP105,GOFRES, GOFVAR , MNVALSTEP , NBAND,
& IRUN,NRANRUN,NCALRUN, IBAND,NCENTR, ISEED, IBCONT, STOPCODE,
& FIDENT, INTEGRATE, TIMEOFF,RP109, IBACTPAR,RP110,
& MXDELT ,MNDELT , MXCHANGE , MXSWITCH , MNRELCHG ,RPRO2 , RPRO3 , GOFERR

CHARACTER*16 NMMODEL ,NVMODEL ,NMTRES, NMERROR

CHARACTER*16 NMFRPR,NMFSTR,NMFVAR,NMFPAR ,NMFBND , NMFWST ,NMFFRC,
& NMFRES, NMFRAN, NMFDAT ,NMFTLAG ,NMFLOG

CHARACTER*78 OUTTXT

CHARACTER*160 ERRTXT

COMMON /XCBNMS/ NMMODEL ,NVMODEL ,NMTRES,NMERROR ,NMFRPR ,NMFSTR,
& NMFVAR ,NMFPAR,NMFBND ,NMFWST ,NMFFRC , NMFRES , NMFRAN , NMFDAT ,NMFTLAG,
& NMFLOG,OUTTXT,ERRTXT
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CHARACTER*16 NMOUTVAR(XMXOUTVAR) ,NMRANPAR (XMXRANPAR)
COMMON /XCBNAME/ NMOUTVAR,NMRANPAR

C
INTEGER IDOUTVAR(XMXOUTVAR) , ISOUTVAR(XMXOUTVAR),
& IDRANPAR(XMXRANPAR) , ISRANPAR (XMXRANPAR)
COMMON /XCBNM1/ IDOUTVAR, ISOUTVAR, IDRANPAR, ISRANPAR
C
REAL PARVEC(XMXRANPAR) ,LOCVEC(XMXRANPAR) ,PARDIS(XMXRANPAR),
& PARMIN(XMXRANPAR) , PARMAX(XMXRANPAR)
COMMON /XCBRAN/ PARVEC,LOCVEC,PARDIS,PARMIN, PARMAX
C
INTEGER RCINT,RCREAL
PARAMETER (RCINT = 10, RCREAL = 2)
INTEGER FRSHEAD,FRSTAIL,FRSTLAG
PARAMETER (FRSHEAD = 16, FRSTAIL = 8, FRSTLAG = 4)
C
INTEGER 1, 1DUM, IVAR,RANRUN, IDENT
INTEGER NRTXT,NRINT,NRREAL,POSINT,POSREAL,POSVARS
CHARACTER*16 NAME
C ____________________________________________________________________
C Statements:
C

C Initialization
DO 10 I1=1,XMXRANPAR
IDRANPAR(I) = 0
10 CONTINUE
C
C Open random input file
CALL XOPFILE(FUR,FRSHEAD, .TRUE., .TRUE.,1)
C and read first two records of header
CALL XRDHEAD(FRSRAN,NRTXT,NRINT,NRREAL ,NRANPAR,
& POSINT,POSREAL ,POSVARS, FPTRAN)
IF (ERRCODE .NE. 0) RETURN
o
C Check file consistancy
IF (NRINT .LT. 1) THEN
CALL XERROR(105)
RETURN
ENDIF

C Check number of random parameters in fTile
IF (NRANPAR .LE. 0) THEN
CALL XERROR(250)
RETURN
ELSEIF (NRANPAR _GT. XMXRANPAR) THEN
ERRIND = XMXRANPAR - NRANPAR
CALL XERROR(251)
RETURN
ENDIF
C
C Read number of random runs (RANRUN) and Ffile identification number
(IDENT)
READ(FU,REC=POSINT+7,ERR=102, IOSTAT=ERRIND) IDUM,RANRUN
READ(FU,REC=POSINT+9,ERR=102, IOSTAT=ERRIND) IDENT
C
C If not proceeding sensitivity
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IF (IBCONT .EQ. 0) THEN
C Store number of random runs and file i1dentification number
C in run parameters
NRANRUN = RANRUN
FIDENT = IDENT
C If proceeding sensitivity
ELSE
C Check file identification and number of random runs
IF ((IDENT .NE. FIDENT) .OR. (RANRUN _NE. NRANRUN)) THEN
CALL XERROR(130)
RETURN
ENDIF
ENDIF
C
C Read names of random parameters
DO 20 IVAR = 1,NRANPAR
READ(FU,REC=POSVARS+1VAR,ERR=102, I0STAT=ERRIND) NAME
NMRANPAR(IVAR) = NAME
20 CONTINUE
C
C Close file
CLOSE(FU)
C and re-open with (new) tail record size
CALL XOPFILE(FUR,FRSRAN, .TRUE., .TRUE.,0)

C Read distribution codes of random parameters
READ(FU,REC=FPTRAN+1,ERR=102, IOSTAT=ERRIND)
& (PARDIS(1), 1=1,NRANPAR)
C Read minimum values for random parameters
READ(FU,REC=FPTRAN+2,ERR=102, IOSTAT=ERRIND)
& (PARMIN(I) , I=1,NRANPAR)
C Read maximum values for random parameters
READ(FU,REC=FPTRAN+3,ERR=102, I0STAT=ERRIND)
& (PARMAX (1), 1=1,NRANPAR)

o

C Close file
CLOSE(FV)

C

C Check ranges random parameters
DO 30 I=1,NRANPAR
IF (PARMIN(1) .GE. PARMAX(1)) THEN
NMERROR = NMRANPAR(I)
CALL XERROR(253)
RETURN
ENDIF
30 CONTINUE
C
C Index sort random parameter names
CALL XSORTNAMES(XMXRANPAR ,NMRANPAR ,NRANPAR, ISRANPAR)

C
RETURN

c

102  CALL XERROR(102)
END

C End of XOPRANPAR
C
C
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C********************************************************************

SUBROUTINE XRDRANPAR
C
C Routine reads irun-th random parameter vector from random input
C file, and stores random values in parameter common block.

C Declarations:
INCLUDE "TEXAS.DCS*
INCLUDE "TEXAS.DCM*

INTEGER ERRCODE,ERRIND, TLCODE,TYPRUN,TUNIT,TZERO,
& FU,FURPR,FUSTR,FUVAR,FUPAR,FUBND, FUWST , FUFRC, FURAN, FUDAT , FURES,
& FUTLG,FULOG,
& FRSRES, FRSDAT,FPIRES, FPRRES, FNVRES, FRSRAN, FPTRES, FPTRAN,, LOGMODE,
& NSVAR,NBOUND,NWASTE ,NFORC,NOUTVAR,NRANPAR,NVALVAR ,MVALVAR,
& NTLVAR, IOUTSTEP, IDRLABCH
REAL DELT,DELTA,MODTIME ,MXABSCHG,MNCHANGE ,MNSWITCH , MNABSCHG,
& MXRLABCH,NOVALUE ,MAXVALUE
COMMON /XCBSIM/ ERRCODE,ERRIND,TLCODE, TYPRUN,TUNIT,TZERO,
FU,FURPR,FUSTR, FUVAR, FUPAR , FUBND, FUWST , FUFRC, FURAN , FUDAT , FURES,
FUTLG, FULOG,
FRSRES,FRSDAT ,FPIRES,FPRRES, FNVRES, FRSRAN , FPTRES,, FPTRAN, LOGMODE,
NSVAR,NBOUND ,NWASTE ,NFORC,NOUTVAR , NRANPAR , NVALVAR ,MVALVAR,
NTLVAR, IOUTSTEP, IDRLABCH,
DELT,DELTA,MODT IME , MXABSCHG , MNCHANGE , MNSWITCH , MNABSCHG,
MXRLABCH, NOVALUE , MAXVALUE

Ro R0 Ro RO Ro RO Ro

INTEGER XMXGOF
PARAMETER (XMXGOF = 8)
INTEGER TSTART(0:6),RP102,TSTOP(0:6), ITEND,
& OUTFACT,NOUTSTEP,MXSTEPS,RP105,GOFRES, GOFVAR , MNVALSTEP, NBAND,
& IRUN,NRANRUN,NCALRUN, IBAND,NCENTR, ISEED, IBCONT, STOPCODE,
& FIDENT, INTEGRATE, TIMEOFF,RP109, IBACTPAR,RP110(2:4)
REAL
MXDELT , MNDELT , MXCHANGE , MXSWITCH, MNRELCHG , RPRO2(2:4) ,RPRO3(4),
& GOFERR(XMXGOF)
COMMON /XCBRPR/ TSTART,RP102,TSTOP, ITEND,
& OUTFACT,NOUTSTEP,MXSTEPS,RP105,GOFRES, GOFVAR , MNVALSTEP , NBAND,
& IRUN,NRANRUN,NCALRUN, IBAND,NCENTR, ISEED, IBCONT, STOPCODE,
& FIDENT, INTEGRATE, TIMEOFF,RP109, IBACTPAR,RPI110,
& MXDELT,MNDELT ,MXCHANGE , MXSWITCH, MNRELCHG , RPRO2, RPRO3, GOFERR

CHARACTER*16 NMMODEL ,NVMODEL ,NMTRES,NMERROR

CHARACTER*16 NMFRPR,NMFSTR,NMFVAR,NMFPAR,NMFBND ,NMFWST ,NMFFRC,
& NMFRES, NMFRAN,NMFDAT ,NMFTLAG ,NMFLOG

CHARACTER*78 OUTTXT

CHARACTER*160 ERRTXT

COMMON /XCBNMS/ NMMODEL ,NVMODEL ,NMTRES ,NMERROR ,NMFRPR ,NMFSTR,
& NMFVAR ,NMFPAR,NMFBND ,NMFWST ,NMFFRC , NMFRES , NMFRAN , NMFDAT ,NMFTLAG,
& NMFLOG,OUTTXT ,ERRTXT

CHARACTER*16 NMOUTVAR(XMXOUTVAR) ,NMRANPAR(XMXRANPAR)
COMMON /XCBNAME/ NMOUTVAR,NMRANPAR

INTEGER IDOUTVAR(XMXOUTVAR), ISOUTVAR(XMXOUTVAR),

& I1DRANPAR(XMXRANPAR) , 1 SRANPAR (XMXRANPAR)
COMMON /XCBNMI/ I1DOUTVAR, ISOUTVAR, IDRANPAR, ISRANPAR
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REAL PARVEC(XMXRANPAR) , LOCVEC(XMXRANPAR) , PARDIS(XMXRANPAR) ,
& PARMIN(XMXRANPAR) , PARMAX(XMXRANPAR)
COMMON /XCBRAN/ PARVEC,LOCVEC,PARDIS,PARMIN, PARMAX

REAL PAR(XMXPAR)
COMMON /XCBPAR/ PAR

INTEGER 1

Statements:

O0O0O0

Open random input fTile
CALL XOPFILE(FURAN,FRSRAN, .TRUE.,.TRUE.,0)
IF (ERRCODE .NE. 0) RETURN

[@N@]

Read irun-th random parameter vector
READ(FU,REC=FPTRAN+4+IRUN,ERR=102, I0STAT=ERRIND)
& (PARVEC(I), 1=1,NRANPAR)

C

C Close random input file
CLOSE(FU)

C

C For all random parameters
DO 10 I = 1,NRANPAR
IF (IDRANPAR(1) .GT. 0) THEN
C Check value random parameter with range
IF ((PARVEC(I) .GE. PARMIN(I)) .AND.
& (PARVEC(1) .LE. PARMAX(1))) THEN
C Set actual value of parameter
PAR(IDRANPAR(I1)) = PARVEC(I)
ELSE
NMERROR = NMRANPAR(I)
CALL XERROR(254)

RETURN
ENDIF
ENDIF
10 CONTINUE
RETURN
C
102 CALL XERROR(102)
END
C End of XRDRANPAR
C
C

C********************************************************************

SUBROUTINE XMONTECARLO

Uses Monte Carlo runs to asses influense of uncertain parameters

C
C Main driver routine for sensitivity analysis program.
C
C on outcome of simulation model.

C ____________________________________________________________________
C Declarations:

INCLUDE "TEXAS.DCS"

INCLUDE "TEXAS.DCM"
C

INTEGER ERRCODE,ERRIND, TLCODE,TYPRUN, TUNIT,TZERO,
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& FU,FURPR,FUSTR, FUVAR, FUPAR, FUBND, FUWST , FUFRC, FURAN, FUDAT , FURES,

& FUTLG,FULOG,

& FRSRES,FRSDAT,FPIRES, FPRRES,FNVRES, FRSRAN, FPTRES , FPTRAN, LOGMODE,

& NSVAR,NBOUND,NWASTE ,NFORC,NOUTVAR,NRANPAR ,NVALVAR ,MVALVAR,

& NTLVAR, IOUTSTEP, I1DRLABCH

REAL DELT,DELTA,MODTIME,MXABSCHG , MNCHANGE ,MNSWITCH, MNABSCHG,

& MXRLABCH,NOVALUE ,MAXVALUE

COMMON /XCBSIM/ ERRCODE,ERRIND,TLCODE, TYPRUN,TUNIT,TZERO,
FU,FURPR,FUSTR, FUVAR, FUPAR, FUBND , FUWST , FUFRC,, FURAN , FUDAT , FURES,
FUTLG, FULOG,

FRSRES, FRSDAT,FPIRES, FPRRES , FNVRES, FRSRAN, FPTRES , FPTRAN,, LOGMODE,
NSVAR,NBOUND ,NWASTE ,NFORC,NOUTVAR , NRANPAR , NVALVAR ,MVALVAR,
NTLVAR, IOUTSTEP, IDRLABCH,
DELT,DELTA,MODTIME , MXABSCHG , MNCHANGE , MNSW1TCH , MNABSCHG,
MXRLABCH , NOVALUE , MAXVALUE

R0 R0 R0 RO RO RO Ro

INTEGER XMXGOF

PARAMETER (XMXGOF = 8)

INTEGER TSTART(0:6),RP102,TSTOP(0:6),1TEND,
& OUTFACT ,NOUTSTEP ,MXSTEPS,RP105,GOFRES, GOFVAR,MNVALSTEP ,NBAND,
& TRUN,NRANRUN,NCALRUN, IBAND,NCENTR, ISEED, IBCONT ,STOPCODE,
& FIDENT, INTEGRATE, TIMEOFF,RP109, IBACTPAR,RP110(2:4)

REAL

MXDELT ,MNDELT ,MXCHANGE ,MXSWITCH ,MNRELCHG,RPR02(2:4) ,RPR03(4),

& GOFERR(XMXGOF)
COMMON /XCBRPR/ TSTART,RP102,TSTOP, ITEND,
& OUTFACT ,NOUTSTEP,MXSTEPS,RP105,GOFRES, GOFVAR , MNVALSTEP , NBAND,
& TRUN,NRANRUN,NCALRUN, IBAND,NCENTR, ISEED, IBCONT, STOPCODE,
& FIDENT, INTEGRATE, TIMEOFF,RP109, IBACTPAR,RP110,
& MXDELT ,MNDELT ,MXCHANGE , MXSWITCH , MNRELCHG ,RPRO2, RPRO3 , GOFERR

CHARACTER*16 NMMODEL ,NVMODEL ,NMTRES, NMERROR

CHARACTER*16 NMFRPR,NMFSTR,NMFVAR,NMFPAR ,NMFBND ,NMFWST ,NMFFRC,
& NMFRES,NMFRAN, NMFDAT ,NMFTLAG ,NMFLOG

CHARACTER*78 OUTTXT

CHARACTER*160 ERRTXT

COMMON /XCBNMS/ NMMODEL ,NVMODEL ,NMTRES,NMERROR ,NMFRPR ,NMFSTR,
& NMFVAR ,NMFPAR,NMFBND ,NMFWST ,NMFFRC , NMFRES , NMFRAN , NMFDAT ,NMFTLAG,
& NMFLOG,OUTTXT,ERRTXT

CHARACTER*16 NMOUTVAR(XMXOUTVAR) ,NMRANPAR(XMXRANPAR)
COMMON /XCBNAME/ NMOUTVAR,NMRANPAR

INTEGER IDOUTVAR(XMXOUTVAR) , ISOUTVAR(XMXOUTVAR),
& IDRANPAR(XMXRANPAR) , I SRANPAR (XMXRANPAR)
COMMON /XCBNMI/ 1DOUTVAR, ISOUTVAR, IDRANPAR, ISRANPAR

REAL PARVEC(XMXRANPAR) , LOCVEC(XMXRANPAR) , PARDIS(XMXRANPAR) ,
& PARMIN(XMXRANPAR) , PARMAX (XMXRANPAR)
COMMON /XCBRAN/ PARVEC,LOCVEC,PARDIS,PARMIN, PARMAX

REAL PAR(XMXPAR)
COMMON /XCBPAR/ PAR

REAL DVAR(XMXSVAR) ,VAR(XMXVAR)
COMMON /XCBVAR/ DVAR, VAR
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INTEGER 1
LOGICAL FIRSTRUN
REAL SAVVAR(XMXVAR)

IT not proceeding sensitivity analysis then create result file
IF (IBCONT .EQ. O) THEN
CALL XOPRESULT
IT proceeding sensitivity analysis then check stop code
ELSE
IF ((STOPCODE .GT. 0) -OR. (IRUN .GE. NRANRUN)) THEN
CALL XWARNING(121)
STOPCODE = 2
RETURN
ENDIF
CALL XWARNING(120)
ENDIF

(@)

C
STOPCODE = O
C Save initial values variables
DO 10 I=1,XMXVAR
SAWAR(1) = VAR(ID)
10 CONTINUE
FIRSTRUN = _TRUE.
C
C MONTE CARLO run loop:
C
C Check for fatal error
C Don"t stop on non-fatal error
20 IF ((ERRCODE .GE. 100) .OR. (ERRCODE .LT. 0)) RETURN
C
C Reset error code
ERRCODE = O
C
C If all random runs done then ready with sensitivity analysis and stop
IF (IRUN .GE. NRANRUN) THEN
STOPCODE = 2
RETURN
ENDIF
C
C Display run number message on screen
WRITE(*,999) IRUN+1,NRANRUN
999  FORMAT(44X,"SENSITIVITY RUN =",15," of ",15)
C
C Restore initial values of the variables
DO 30 I=1,XMXVAR
VAR(I) = SAWAR(D)
30 CONTINUE
C
C Read random values for the parameters from random input file
CALL XRDRANPAR
C
C Do a simulation run
CALL XSIMULATE
C
C Check if values of random parameters have been changed
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IF ((ERRCODE .EQ. 0) .AND. FIRSTRUN) THEN
DO 40 1=1,NRANPAR
IF (PAR(IDRANPAR(I)) .NE. PARVEC(I1)) THEN
NMERROR = NMRANPAR(I)
CALL XERROR(257)
ENDIF
40 CONTINUE
ENDIF
C
C Write simulation run results to result file
CALL XWRRESULT
C
C Continue with monte carlo loop
GOTO 20
C
END
C End of XMONTECARLO
C
CH#tttt End of Tile #HitH##HHHHHHHHHIH TR R R
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Effect of Climatic Variability on Freshwater | nflow, Benthic Communities, and Secondary
Production in Texas Lagoonal Estuaries

Pl Paul Montagna, PhD
Contract number #0804830791

TWDB commentsto final draft

This study reflects the tasks that were outlined in the Scope of Work (SOW), with two
exceptions: (1) The SOW identifies a 10-yr dataset for calibration and a 5-yr dataset for
validation, but the study actually used an 11-yr dataset for calibration and a 20-yr dataset for
validation. This change benefits the study by allowing for alonger period of record for model
development and analysis. (2) The draft final report was submitted in March 2010 rather than
the original target of December 2008 as identified in the SOW. A no-cost time extension was
allowed due to unforeseeable delays.

The report was a good effort to refine an ecological model to predict system-wide secondary
production. The deviations were at times large, but are expected from an ecological mechanistic
model.

REQUIRED CHANGES

General Draft Final Report Comments:

The report states that model calibration was based on an 11-year dataset (1988 to 1999) and
validation was based on a 20-year dataset (1988-2008). Since the 11-year dataset was used to
generate parameter estimates for model simulation, the results of model simulations, using those
parameters, should be compared only to data from 2000-2008. Simulation data for the period
1988-1999 isinformative when compared to real data, but does not provide atrue test of model
performance. The report should either clarify the model calibration and validation effort or
address this in the presentation of results and in the discussion of model performance.

Additionally, while the model shows promise, it has large amounts of unexplained variation.
Please explain how this variation affects the estimates of benthic responses to changesin salinity
shown in the Discussion section.

Overdl, thisis awell-structured report; however, please be sure to proofread the report, and
correct spelling and grammatical errors.

Specific Draft Final Report Comments:

1. Introduction, Page 3, 1% paragraph, last sentence: Please add the (Montagna and Kalke
1995) citation to the Reference section at the end of the document.

2. Introduction, Page 3, 2™ paragraph, 3" sentence: Please add the (Montagna and Li 1996)
citation to the Reference section.



3. Methods, Section 2.1.1, Page 4. Location names in the text do not match those shown in
Figure 1.

4. Methods, Section 2.1.3., Page 6, last paragraph: Table 2 only shows the correlations
between salinity and nutrients, and does not show the correlation between salinity and
inflow. Please add the salinity/inflow correlation statistics to the table, or revise the text.

5. Methods, Page 20, Section 2.4, second to last sentence: Please write out the acronym
‘GoF.’

6. Methods, Page 21, 1% sentence: Please add (de Hoop et al. 1989) citation to the Reference
section.

7. Methods, Section 2.5, Page 22, 2" sentence: The Model Validation sections needs
additional explanation about the model validation procedures. Additionally, please
identify the April 1988-October 2008 data set that was used for validation.

8. Results, Section 3.1, Page 23, Table 3 and associated text: Is salinity and temperature
statistically different between the primary and secondary bays? There may be atendency
for secondary bays to be lower, but the values don’t look to be statistically different.
Additionally, thisis more true for salinity than for temperature. Temperature looks to be
the same for all bays.

9. Results, Section 3.2, Page 24, Table 4: Some of the Best Fit values for Temperature
seem unrealistically high. Note: one valueis highlighted in red font. Please explain or
correct if red color is unintended.

10. Discussion, Section 4.1, Page 40, 3" sentence: Please add (O’ Neill and Gardner, 1979
and Walters 1986) citations to the Reference section.

11. Discussion, Section 4.3, Page 45, Figure 15: 1t would be helpful to list the long-term
mean salinity, which was used as the starting point for these graphics, for each bay. With
adifferent salinity starting point, one should be able to compare how existing conditions
in Bay A (e.g. 25psu) compare to a 20% change in Bay B which creates 25psu
conditions. Do these two bays ook similar when conditions are similar? Such questions
could then be explored.

12. Discussion, Page 46, 2™ paragraph, |ast sentence: Be sure to complete the sentence or
removeit.

13. Discussion, Page 47, Section 4.4, last sentence: Please add the (Li et al. 1996 and
Montagna and Li 1997) citations to the Reference section.

14. Discussion, Page 48, 2™ paragraph, last sentence: Please add Rozas et al. (2005) to the
Reference section.

15. Page 50: Please add the (Powell et al. 2002) citation to the Reference section.

SUGGESTED CHANGES

16. Page 8: Section 2.1.5: Consider describing the source of temperature and nutrient data
that was used in creating amodel for primary production.

17. Page 23, section 3.2: Consider mentioning arange of Percent RM S values that are
considered acceptable for ecological models. It may be helpful to the reader to mention it
here, or aert the reader that the topic will be discussed in more detail in the Discussion
section.

18. Page 42, Section 4.3: Consider putting this information in the Results section since new
results are being presented.
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