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2 Project title: Use of past satellite imagery to model algal dynamics in bays, estuaries 
3 and coastal ponds 
4 
5 Pol.: Mathew Leibold, Section of Integrative Biology, UT at Austin 
6 
7 Postdoc: Lisette N. de Senerpont Domis, Section of Integrative Biology, UT at Austin 
8 
9 Undergraduate research assistant: Jeff Scott, Section of Integrative Biology, UT at 

10 Austin 
11 
12 Project objective: To develop and evaluate the use of Landsat imagery combined 
13 with "wavelet" statistical methods as a means to determine and quantify the role of 
14 different water inputs (runoff, marine, riverine) on algal dynamics in esturaties, bays 
15 and coastal ponds in Texas and do so in a way that optimizes utility of such analyses 
16 to TWDB needs. 
17 
18 Project background: The Texas Water Development Board (TWDB) is charged with 
19 evaluating the consequences of altered water use on Texas ecosystems. To that end 
20 it is important that the best possible information be used in making such decisions. 
21 In this project we wanted to evaluate the utility of long-term satellite imagery from 
22 Landsat in combination with other data to assess how different forms of water 
23 inflows (riverine, marine, and local runoff) and associated inputs of nutrients and 
24 materials affect the dynamics of algal blooms in estuary, bay, and coastal pond 
25 ecosystems. Each of these three ecosystem types are affected differently by the 
26 three sources of water inflows allowing contrasts between them to reveal the 
27 relative roles of each input type. In principle it should be possible to identify the 
28 roles of these inputs using simple models of plant growth and relating these to 
29 nutrient inputs. However the issue is more complex because algal dynamics are also 
30 prone to showing cycles that depend on other factors such as consumer-resource 
31 oscillations with their grazers. While this makes inferences more difficult it is 
32 important to take these into account because this also allows an evaluation of how 
33 the ecosystem as a whole (including higher trophic levels) are affected by water 
34 inflows. 
35 One way to study such dynamics is to use statistical methods that focus on 
36 such oscillations and then study how different forms of inputs including both the 
37 type and the occurrence of these inputs affect these oscillations. This requires 
38 reasonably comprehensive data sets over fairly long periods of time as well as 
39 sophisticated statistical methods that dissect the role of these factors on dynamics. 
40 Collecting the data from scratch has the problem that the analyses will not be 
41 possible until fairly far into the future (Le. 5-10 years) and will be expensive. It is 
42 possible that currently available data from long-term satellite imagery can do this 
43 much more promptly and less expensively. Our goal was to evaluate if such data 
44 available from satellite monitoring can be used to conduct such studies in a way that 
45 useful to the TWDB. 
46 
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Project overview 

2 Acquisition of satellite images 
3 Lisette N. de Senerpont Domis started working on the project on 5/1/2007. She 
4 started with making an inventory of all the satellite images available for the area of 
5 interest (Table 1) through Texas Synergy, the Texas View Remote Sensing 
6 Consortium and the United States Geological Survey (USGS) or the Global Land Cover 
7 facility at the University of Maryland (GLFC). The Texas Synergy project is one of 
8 several NASA-sponsored projects that promotes the use of NASA's Earth observing 
9 System (EOS) data and data products in the daily work of state, regional and local 

10 government. It is run from the offices of the Center for Space Research (C.S.R.) at the 
II University of Texas at Austin. Contacts at the UT- C.S.R. are Gayla Mullins (in charge 
12 of the Texasview Landsat archive), Larry Teng (who has experimented with 
13 developing chlorophyll concentration products using data from the Ocean Color 
14 Monitor (OCM) satellite for the Texas coast) and Theresa Howard (Mid-American 
15 Geospatiallnformation Center (MAGIC) program coordinator) . 
16 

17 Table 1: Overview of satellite images available for the area of interest, including sensor characteristics 
18 and evaluation of the utility of the images for the current project. 

19 

MODIS 
Aqua/ 
Seawifs 

OCM 

Landsat 
sTM/ 
7ETM 

1 km, 4 36 bands 
km, 9 km, 

350m 

15m, 
30m, GOm 

8 bands 

7 (TM) 
8 (ETM) 

20 Selection of study area and images: 

Daily, 
daily, 
monthly, 
yearly 

Daily 

16-daily 

8- July 
2002-
present 

April 
1999-
present 

March 
1984-
present 

Chlorophyll 
data are 
readily 
available 
(Ocean Color 
products) with 
a high 
temporal 
resolution 
High temporal 
resolution, 
moderate 
spatial 
resolution 
High spatial 
resolution, 
high image 
quality, images 
are 
georefe re nced 

Poor spatial 
resolution, 
image quality 
varies due to 
sun glint and 
clouding, 
currently not 
georeferenced 

Chlorophyll 
algorithms in 
developmental 
stage 

Poor spectral 
resolution 
requires test of 
different 
algorithms, 
limited images 
freely available 

21 In the original research proposal we focused on the use of Landsat images, given its 
22 high spatial resolution and potential moderate temporal resolution. After the initial 

3 



Final report TWDB 

1 drawback of finding only 5-10% of the archived Landsat images freely available for 
2 the areas of interests (i.e. path 25/row 39, path 25/row 40, path 26/row 40, path 
3 26/row 41, path 26/row 42), we proceeded with selecting the Galveston Bay area 
4 (Fig. 1) as our main study area, given the relatively high number of images freely 
5 available (67 of which 9 are sliced off), the amount of ground truthing data available, 
6 (and the high number of Texas surface water and sediment quality stations 
7 (providing data on water chemistry, heavy metals, total suspended solids). In 
8 addition, the Galveston Bay area has a wide array of aquatic systems, differing in size 
9 and the type of water inflow (e.g. large freshwater reservoirs, bays, and estuaries). 

10 Although relatively small reservoirs are present in the area east of Galveston Bay 
11 (Fig.L), the coastal ponds typical for Kenedy County (the original focal site) are 
12 absent in this area. 
13 Through Dr. Antonietta Quigg (Department of Marine Biology, Texas A&M 
14 University) we were able to access three different sources of groundthruthing data: 
15 i.e. a data set authored by Dr. Jay Pickney (University of South Carolina) covering 6 
16 stations in the Galveston bay from 1999-2002; a data set authored by Dr. Daniel 
17 Roelke and Dr. Stephen Davis of Tecas A&M University covering the same 6 stations 
18 in the Galveston bay from 2005-2006, and data from the Texas Commission on 
19 Environmental Quality and the Clean Rivers, collected from 1969-2006 (data set 
20 maintained by Lisa Gonzalez of the Houston Advanced Research Center). An 
21 overview of the Landsat images useable for time series analyses and the 
22 groundtruthing data available for part of these images (including the source) is 
23 presented in Table 2. All these images were acquired by either the Landsat 5 
24 thematic mapper (TM) sensor, or by the Landsat 7 enhanced thematic mapper plus 
25 (ETM+) sensor. Landsats 5 and 7 orbit at an altitude of 705 km, and each provides a 
26 16-day, 233-orbit cycle. The two satellite orbits are offset, allowing 8-day repeat 
27 coverage. These satellites were also designed to collect data over a 185-km swath. 
28 Both the TM sensor and the ETM+ sensor operate in seven spectral bands, which 
29 differ in spectral resolution and the potential use for this study (Table 3) 

4 



Final report TWDB 

1 Figure 1: Landsat image of oath 25, Row 39, taken on 5/4/2005, source: United States Geological 
2 Survey 

3 

4 Table 3: Overview of images that will be used for timeseries analyses. Images were both chlorophyll 
5 and suspended matter data was available are used for ground truth ing the respective 
6 chlorophyll/suspended matter models 

Chlorophyll/ TCE 

5 
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~ IITIlf.: lFlTJ ~ ~ letT·PI • I.'i!.flfl ~ 

1998 364 30-12-1998 Landsat 5 

1999 263 2009-1999 Landsat 7 

1999 279 06-10-1999 Landsat 7 Chlorophyll/ TCEQi 

Su'>ppnded matter 

1999 295 22-10-1999 Landsat 7 

1999 311 07-11-1999 Landsat 7 Chlorophyll/ Texas A&M 
Suspended matter Universitl 

1999 350 16-12-1999 Landsat 7 Chlorophyll/ Texas A&M 
Suspended matter University} 

2000 10 10-01-2000 Landsat 7 

2000 34 03-02-2000 Landsat 5 

2000 58 27-02-2000 Landsat 7 

2000 202 20-07-2000 Landsat 7 Chlorophyll/ Texas A&M 
Suspended matter University} 

2000 274 30-09-2000 Landsat 5 

2000 314 09-11-2000 Landsat 7 

2001 116 26-04-2001 Landsat 5 Chlorophyll/ TCEQ' 
Suspended matter 

2001 268 25-09-2001 Landsat 7 Chlorophyll/ Texas A&M 
Suspended matter Universitl 

2002 15 15-01-2002 Landsat 7 

2002 63 04-03-2002 Landsat 7 

2002 135 15-05-2002 Landsat 5 Chlorophyll/ TCEQl 

Suspended matter 

2002 215 03-08-2002 Landsat 5 

2003 2 02-01-2003 Landsat 7 

2003 18 18-01-2003 Landsat 7 

2003 82 23-03-2003 landsat 7 

2003 266 23-09-2003 Landsat 5 Chlorophylll TCEQ' 
Suspended matter 

2004 125 04-05-2004 Landsat 5 Chlorophyll/ TCEQi 

Suspended matter 

2004 253 09-09-2004 Landsat 5 

2004 349 14-12-2004 landsat 5 Chlorophyll/ TCEQ' 
Suspended matter 

2005 303 30-10-2005 Landsat 5 Chlorophylll TCEQI 

Suspended matter 

2006 18 18-01-2006 Landsat 5 

2006 178 27-06-2006 Landsat 5 

2006 290 17-10-2006 Landsat 5 

1 1 
Contact person: Igonzalez@harc.edu 

2 2Contact person : jpinckney@biol.sc.edu 
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1 

2 Table 3: Characteristics of Landsat channels and potential use 

~ .~ l!lG 
IIbVJ :tIL~ a I mrinl 
1 Blue 0.45-0.515 Useful for bathymetric 

mapping ,soil and vegetation 
discrimination 

2 Green 0.525-0.605 Vegetation discrimination and 
vigor assessment, water 
quality assessment 
(chlorophyll and sediment) 

3 Red 0.63-0.69 Near-surface information on 
sediment and chlorophyll 
concentrations 

4 Near-Infrared 0.75-0.90 Delineating water features, 
assessing turbidity 

5 Short-wave infrared 1.55-1.75 Distinguishing clouds from 
snow and ice 

6 Thermal infrared 10.4-12.5 Water temperature and soil 
moisture 

7 Short wave infrared 2.08-2.35 Mapping hyd rotherma Ily 
altered rocks associated with 
mineral deposits 

3 

4 Image calibration and standardization 

5 All of the acquired images were at least systematic corrected, implying that 
6 radiometric and geometric correction was derived from data collected systematically 
7 by the sensor and spacecraft. Certain scenes had even higher geometric accuracy, as 
8 the United States Geological Survey incorporated ground control points and a digital 
9 elevation model for topographic accuracy. All additional image restoration, 

10 rectification (both radiometric and geometric), and indices calculation operations 
11 were carried out in Erdas Image V9.1 (leica Geosystems Geospatial imaging). Of the 
12 available 67 satellite images (both landsat 5 TM and landsat 7 ETM covering a time 
13 span of 1984-2007) 27 images are of lesser quality, either due to severe clouding/sun 
14 glint, or due to presence of striping (a consequence of the permanent failure of the 
15 Scan line Corrector of landsat 7 ETM (as of May 31, 2003) . 

16 Reprojection: The images originated from four different sources: Columbia Center 
17 regional geospatial service center; the USGS Global Visualization Viewer (GlOVIS); 
18 the Global land Cover Facility (GlCF) at the University of Maryland; and the Center 
19 for Space Research (C.S.R.) at the University of Texas at Austin. As they had different 
20 projections, they had to be reprojected into the same pixel size and map projections. 
21 We resampled these images to 30 x 30m grid spacing and map prOjection WGS 84, 
22 UTM zone 15, using the nearest neighbor method with polynomial approximation. 
23 The maximum polynomial order allowed for polynomial approximation was three, 
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1 whereas the tolerance for polynomial approximation as expressed in root mean 
2 square error (RMSE) was set on 0.1 pixels per image. In those cases where tolerance 
3 was exceeded, we chose to continue to use polynomial approximation with the 
4 solution which has the lowest RMSE. We chose nearest neighbor resampling as it 
5 retains the original pixel value (Aronoff 2005). 

6 Geometric correction: To achieve the high geographic accuracy necessary for 
7 mulititemporal image analyses the images were rectified on an image-to-image 
8 basis. Thus, all images were co-registered to the Landsat 5 TM images of 5/4/2005 
9 with a root mean square error of less than 0.5 pixels per image, using a second order 

10 polynomial with at least 25 Ground Control Points (Wilson and Sader 2002). We 
11 chose this scene for co-registration as it was completely cloud free and had the 
12 highest level of procession (i.e. terrain corrected) provided by the United States 
13 Geological Survey. In addition, groundtruthing data was available for that image. 

14 Radiometric correction: Radiance measured by a sensor is affected by differences in 
15 sun illumination, viewing geometry, atmospheric effects and instrument calibration. 
16 The resulting errors in sensor output are to a certain extent compensated by 
17 systematic radiometric correction of each band derived from the data from the 
18 sensor and space craft. These additive errors become even more significant when 
19 using multitemporal data. To correct for the degradation of image quality we had to 
20 resort to image-based radiometric correction methods, as we did not have in-situ 
21 atmospheric measurements nor radiometric transfer code on the date of image 
22 acquisition. For our image-based radiometric correction, two different methods 
23 were used and compared: 

24 1. Digital number to reflectance conversion: The Landsat sensor typically measures 
25 the total radiance reflected from a particular ground target; subsequently converts it 
26 to a digital number (ON or voltage measurements) and transmits it to the ground 
27 stations. These 8-bit satellite-quantize calibrated digital numbers of the images are 
28 converted to at-sensor reflectance by normalizing for the solar elevation angle 
29 (Chavez 1996; Markham and Barker 1986). This form of radiometric correction 
30 assumes a Lambertian surface under cloudfree conditions, and can therefore be 
31 used a null-model for models that remove atmospheric effects (see below). The 
32 equation is as follows: 

33 IhBcmdN = rr(C [DNJ lDandN • GlbandN + B1ba>td.N) )f(E"bardN" cos((90 - 6) ~ IT/l80))" D'2 

34 Where, 
35 PsuU(lN = At-satellite Reflectance for Band N (unitless) 
36 DVbaPffN = Digital Number for Band N 
37 (;bcrnciN = Gain band N (ON) 
38 BVUfUL'l = Bias band N (ON) 

39 D = Normalized Earth-Sun Distance (astronomical units), function of date 
40 Eba;ldN= Solar exoatmospheric Irradiance for Band N (mW cm 2 Jlm-1

) 

41 {j = Solar elevation (degrees) 
42 
43 To account for the impact of sensor degradation on gain parameters we followed the 
44 approach described by Schroeder et al. (2006). 

8 



Final report TWDB 

1 2. Dark Object Substraction - Cosine approximation (DOS-COST): This is a 
2 combination of the Dark Object Substraction or DOS model (Chavez 1988) and 
3 Cosine estimation of atmospheric transmittance or COST model (Chavez 1996) and in 
4 addition to radiometric calibration, removes atmospheric effects from the image. 
5 The DOS model is based on the assumption that within satellite images there exist 
6 features that have near-zero reflectance (e.g. asphalt, shadow). Consequently, the 
7 signal recorded by the sensor is proportional to atmospheric scattering or path 
8 radiance, and can be used to account for degradation of image quality caused by the 
9 atmospheric scattering. In the COST Model, a second order cosine function is used to 

10 approximate atmospheric transmittance. In a comparison of different atmospheric 
11 correction model, Chavez et al (1996) reported that the combination of the DOS and 
12 COST model can compute reflectances values comparable to results with complex 
13 radiative transfer models using in situ atmospheric measurements. The equation is 
14 as follows: 

15 

16 p~BandN = rr( (DNR ~!JandN. G.bandN + BJ,iJandN) - ( [.cNdarU 1ba'IdN ¥ CiJ,bandN + BtbandN) )I(E 
17 
18 Where, 
19 PSav.dN = At-satellite Reflectance for Band N (unitless) 
20 DVbandN = Digital Number for Band N 
21 Ghands = Gain band N (ON) 
22 RlwndN = Bias band N (ON) 
23 DNdaTkuWHLV = Digital Number representing Dark Object for Band N 

24 D = Normalized Earth-Sun Distance (astronomical units) 
25 lJ;,m,dN = Solar exoatmospheric Irradiance for Band N (mW cm-2Ilm-1) 

26 0 = Solar elevation (degrees) 

27 r = Atmospheric transmittance expressed as ccs«90 - 0) • rr/t80)) 
28 
29 To account for the impact of sensor degradation on gain parameters we followed the 
30 approach described by Schroeder et al. (2006). 
31 
32 The 40 images of good to high quality have been coregistered and atmospherically 
33 corrected. 
34 
35 Chlorophyll algorithms: 

36 Lisette de Senerpont Domis developed a total of 14 chlorophy" retrieval models 
37 based on (adaptations) of existing algorithms (Table 4). In addition, to evaluate the 
38 effect of suspended matter on chlorophyll retrieval she developed two turbidity 
39 models as we" (Table 4). 
40 

41 Table 4: Overview of algorithms used to retrieve chlorophyll and suspended matter estimates from 
42 Landsat images. TMx stands for (enhanced)Thematic Mapper band x. ETM stands for enhanced 
43 Thematic Mapper plus. 
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I ~{~, •• 1I~".'r.1" II Il;.t c:Tf II ~".t r.r. [:1. .1;r. .... ~A •• . ~c, 

.. ( , '.; ,: 

Chlorophyll TM l - T. f 3 Mayo et al. 

TAIl (1995) 

Chlorophyll 

Lindell et al. 

TM4 
(1999) 

TMl"," TM2.nh 

T 12 Ekstrand 
Chlorophyll T 13 (1992) 

T 14 
Chlorophyll TM7. 

T 13 Braga et al. 
Chlorophyll T I t (2003) 

TI /+ 
Chlorophyll 1M3 

Normalized 
Vegetation 

TMi- - TM3 Index (Tucker 
Chlorophyll TM4 +- TM:i 1979) 

Soil-adjusted 
Vegetation 

7" f 4 - T . 13 Index (Huete 
Chlorophyll TM4 + 'fM3 +0 5 1988) 

Enhanced 
7"M4 -T 1:1 Vegetation 

2.5 • 
6.0. TI\I - 7 5 . TMl Index (Uu and I ... m4 1. 

Chlorophyll Huete 1995) 

Modified Soil 

( (2 - T t4 1 - J(a - TM-t) ... l - 8 - (T Ii - T. 13») r Adjusted 
Vegetation 

Chlorophyll 7. Index 

Soil Adjusted 
To al 
Vegetation 

(TMS - TAJ3) TM6 Index (Marsett ---
Chlorophyll (entS - TM3 - 0.1) - l . l) z et al. 2006) 

r.vl 
Suspended matter nn +- TM 2 ... nIl 
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f.i!::l::l. °lll1.".· 'H· :,U·II' l ('l r.r. rll .PO ..- ."{:Ii· '. 
Suspended matter TM3 - TM4 

Chlorophyll/suspended 
Brightness = 0.356{ETM1) + 0.3972(ETM2) + 0.3904 (ETM3) 

matter 
+ 0,6966 (ETM4) + 0.2286 (ETM5) + 0.1596 (ETM7) 

Greenness = -0.3344 (ETM1) -0 3544 (ETM2) - 0.4556 
(ETM3) + 0.6966 (ETM4) -0.02420(ETM5) -0 ,2630 (ETM7) Tasseled Cap 

transformation 
Wetness = 0.2626 (ETM1) + 0.2141 (ETM2) + 0.0926 (ETM3) for ETM+ data 
+ 0.0656 (ETM4) - 0 , 7629{ETM5) -0.5388 (ETM7) (Huang et al. 

2002) 

Haze = 0,0805 (ETM1) - 0.0498 (ETM2) - 0.1950 (ETM3) -
0.1327 (ETM4) - 0,5752(ETM5) + -0.7775 (ETM7) 

Chlorophyll/suspended Brightness = 0.2043(TM1) + 0.4158{TM2) + 0.5524 (TM3) + 
matter 0.5741 (TM4) +0.3124 (TM5) + 0.2303 (TM7) 

Greenness = -0,1063{TM1) -0 .2819 (TM2) - 0.4934 (TM3) + 
Tasseled Cap 

0.7940 (TM4) -0.0002 (TM5) -0 .1446 (TM7) 
transformation 
for TM data 

Wetness = 0.0315 (TM1) + 0.2021 (TM2) + 0.3102 (TM3) + 
(Crist and 
Cicone 1984; 

0.1594 (TM4) - 06806 (TM5) -0 6109 (TM7) 
Crist and 
Kauth 1986) 

Haze = -0,2117 (TM1) - 0.0284 (TM2) - 0.1302 (TM3) -
0.1007 (TM4) + 0,6529{TM5) - 0.7078 (TM7) 

1 
2 Developed for use with Landsat data, the Tasseled Cap transformation (Crist and 
3 Cicone 1984; Crist and Kauth 1986; Huang et al. 2002) is essentially a guided and 
4 scaled principal components analysis, which compresses the 6 Landsat TM or ETM+ 
5 bands into 4 bands, These four resulting components typically represent 
6 "brightness"; "greenness"; "wetness"; and "haze" of an image. 
7 It seems to be the most promising model, taking different aspects of water quality 
8 into account. All models are run on both the digital number to reflectance 
9 conversion atmospheric correction model as well as the DOS-COST atmospheric 

10 correction model to be able to evaluate the usefulness of these atmospheric 
11 correction models. 
12 

13 
14 Ground truthing data: 

15 In September 2008, Lisette de Senerpont Domis and Mathew Leibold had a meeting 
16 with both scientists from University of Texas at Port Aransas (James McClelland) and 
17 from Texas A&M University (Antonietta Quigg and Daniel Roelke) to talk about 

11 
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1 available datasets for testing our chlorophyll retrieval algorithms. Making use of the 
2 extensive Galveston Bay study network of Dr. Antonietta Quigg, we gained access to 
3 chlorophyll and suspended matter data of Dr. Pinckney (former Texas A&M 
4 University, time period 1999-2002); Dr. Davis and Roelke (Texas A&M University, 
5 time period 2005-2006), Lisa Gonzalez (HARC, time period 1984-2006), and data 
6 from the TPWD (via Ruben Solis, time period 1976-2005). In addition, Ruben Solis 
7 provided both daily meteorological data from the National Climatic Data Center and 
8 water quality data for the time period and area under study. All these data are 
9 formatted into an easy to use Microsoft Access database. For 13 images (of a total of 

10 40) ground truthing data is available for both chlorophyll and suspended matter 
11 estimates (Table 2). These data will be used to validate the different chlorophyll and 
12 suspended matter models. At present the data is not groundtruthed, as the 
13 chlorophyll and suspended solids data needed to be georeferenced using 
14 Geographical Information System (GIS) analysis (see below). 

15 GIS analyses 

16 Currently, different layers are being created in ARCGIS of the available data on 
17 chlorophyll, suspended matter and meteorological data. This will allow for ground 
18 truthing of the satellite image, taking into account prevailing weather conditions. 
19 Originating from four different sources, we have to georeference the data available 
20 for ground truthing. The majority of the data available is for the Galveston bay area 
21 only, hampering good ground truthing of other water bodies in the path 25/ row39 
22 image. As most of the data on environmental variables also focuses on the Galveston 
23 bay area, most likely we will proceed by concentrating our time series analyses on 
24 both environmental and chlorophyll data on the Galveston Bay area. 

25 Conclusions: 

26 Landsat images are of somewhat limited utility for long term monitoring of 
27 chlorophyll dynamics. First, while there are many images taken, only a small portion 
28 of these are readily available at low expense. Acquiring images outside the ones 
29 freely available requires purchasing them through USGS. A terrain corrected image, 
30 having the level of correction which we need for our subsequent analyses would cost 
31 $500 (Landsat 5) to $640 (Landsat 7) per scene. In addition, a good proportion 
32 (roughly 1/3) of these are not useful due to cloud cover or sun glint. Finally the work 
33 needed to calibrate and standardize these images is high (roughly 4 hours/image). 
34 Only after these initial processing steps are undertaken, chlorophyll modeling and 
35 subsequent GIS analyses can take place. As a consequence, the frequency and spatial 
36 and spectral resolution of the data can be used in time series analysis but just barely. 
37 This means that they could be used to examine large trends and effects but probably 
38 not be useful in detailed work. 

39 Additional work needed 

40 At this point, we have 40 images, 13 of which have ground truthing data 
41 associated with them. These have been radiometrically corrected and geometrically 
42 corrected and the different algorithms listed in Table 4 have been executed. Our 

12 
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1 next step is to evaluate the different model outcome using the available ground 
2 truth data in GIS analysis. This will allow us to select one (or two) algorithms to use 
3 for future work. The next step is to run an initial time series analyses on the 40 
4 images, and to check for the presence of long-term trends. We will test for long-term 
5 trends, for short term associations with climate and water flow data, and for 
6 oscillations using wavelets or fourier analyses. This allows us to identify how much 
7 temporal resolution and time series length are needed to get significant results and 
8 to evaluate future work to obtain missing Landsat images) are warranted. 

9 Whereas most remote sensing studies use a rather low number (typical up to 
10 5) of images on a yearly interval, our study stands out by using a large number of 
11 images (40), with multiple data points per year. In addition, using time series 
12 analyses, such as wavelet analyses on these types of data is innovative as well. 

13 
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