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1.0 CONTINUITY EQUATION

Both the vertically-integrated (ADCIRC-2DDI) and the fully three-dimensional (ADCIRC-3D)
versions of ADCIRC solve a vertically-integrated continuity equation for water surface elevation.
To avoid the spurious oscillations that are associated with a primitive Galerkin finite element
formulation of this equation, ADCIRC utilizes the Generalized Wave Continuity Equation
(GWCE) formulation. Development of the weak weighted residual form of the GWCE used in
ADCIRC is briefly summarized below.

The vertically-integrated continuity equation is
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where

UV= % f} u,v dz = depth-averaged velocities in the x,y directions

u,v = vertically-varying velocities in the x,y directions
H ={ + h = total water column thickness

h = bathymetric depth

{ = free surface departure from the geoid

Take df/dt of Eq. (0.1), add to this Eq. (0.1) multiplied by the parameterz, (which may be
variable in space), assume a bathymetric depth that does not change in time, (le.
BH/at = 8 /ot ) and rearrange using the chain rule '
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Q.. Q,=UH,VH =x, y - directed flux per unit width
Note that Egs. (0.3), (0.4) and (0.5) are equivalent as are Egs. (0.6), (0.7) and (0.8).

The weighted residual method is applied to Eq. (0.2) by multiplying each term by a weighting
function ¢, and integrating over the horizontal computational domain 2.
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where, the inner product notation ( ) is defined as

(r.¢,)= [reo, da

Integrating the terms involving 4, and 4,by parts, using Egs. (0.4) and (0.7), yields a weak
form of this equation
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Eq. (0.10) includes an integral along the boundary, 1", of the computational domain involving
the outward flux per unit width, Q,, , normal to this boundary.

(0.10)

The GWCE derivation is completed by substituting the vertically-integrated momentum
equations in conservative form into Egs. (0.3), (0.6) or in non-conservative form into Egs. (0.5),
(0.8). ADCIRC is formulated using the non-conservative momentum equations. Making this
substitution and isolating the linear free surface gravity wave terms gives:
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Substituting Egs. (0.11), (0.12) into Eq. (0.10) and rearranging yields the weighted residual form
of the GWCE that is solved by ADCIRC:
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Term by term integration of Eq. (0.13) yields:
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where

A, = area of element n
NE,
A, = Z A, = area of all elements containing node j

n=l
NE ; = number of elements containing node j
L, =length of element leg n
1
h,= gz h, = average bathymetric water depth over element n
i=|
1

3
Top = —3—210[ = gverage T, over element n
i=1
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¢ , = horizontal weighting function, =1 at node j, =0 at all other nodes,

varies linearly between adjacent nodes
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h=EY,= Vs b=V Y b=y — Y,

x» ¥, = horizontal coordinates of node i

The definition of the weighting function ¢, reduces integration over the horizontal domain € to

integration over only the NE; elements containing nodej. Also, we assume a Galerkin finite
element formulation in which the basis and weighting functions vary linearly within an element.
Therefore, spatial derivatives are constant within an element and can be pulled out of elemental
integrations.

After integration, Eq. (0.13) becomes
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Equation (0.14) presents the spatially discretized solution for elevation at horizontal node ;j used
by ADCIRC. This equation is discretized in time using a three time level scheme at the past (s-
1), present (s) and future (s+1) times as described below:
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Substituting these time discretizations into Eq. (0.14) and re-arranging yields:
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where
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The left side of Eq. (0.15) is a sparse symmetric matrix (number of nodes x number of nodes)
and the right side is a vector. The normal flux terms are only present in the equations
corresponding io boundary nodes.



2.0 2D MOMENTUM EQUATIONS
The vertically-integrated, non-conservative momentum equations are:
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M.=E, d Uf] + 2 U;:I = vertically-integrated horizontal stress gradient
L ox oy
VH pVH
M,=E, J —+ 4 = vertically-integrated horizontal stress gradient
' | Ox ay’
Dy = D + Dy _ momentum dispersion
Ox
D, = % + Dy _ momentum dispersion
as

D= [ (u-U)(u-U)dz
Duw = fh(u—U)(v—V)dz
= fh(v—V)(v—V)dz

B.= fh b, dz= vertically-infegrated baroclinic pressure gradient

= fh b, dz= vertically-integrated baroclinic pressure gradient

b,=g 2 (p—_pL)dz = baroclinic pressure gradient

x = p,

2 f(ﬂ P 4y _

=g— baroclinic pressure gradient

L= tlme and spatzally varying density of water due to salinity and temperature variations

p, = reference density of water

Tw, Ty = imposed surface stresses
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Th, Toy = bottom stress components, suitably defined, e.g., using a linear or quadratic drag law

P. = atmospheric pressure al the sea surface
n = Newtonian equilibrium tide potential
E, = horizontal stress coefficient (often called the horizontal eddy viscosity)



3.0 3D MOMENTUM EQUATIONS

ADCIRC uses the shallow water form of the momentum equations {(applying the Boussinesq and
hydrostatic pressure approximations).
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where,

u, v, w = velocity components in the coordinate directions x, y, z

- ou :
L= = g =" = vertical stress
p, 0
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ov .
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E .= vertical eddy viscosity
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E. = lateral stress coefficient (often called the lateral eddy viscosity)
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b,= g — | ~———%dz = baroclinic pressure gradient
o= p,

b,=8 2 ____(p — p(,) dz = baroclinic pressure gradient
T p,

All horizontal derivatives in Eq. (0.18) and the accompanying definitions are computed in a level
or “z” coordinate system. ADCIRC utilizes a generalized stretched vertical coordinate system

Z=n o=a

Figure 1. Schematic of level and stretched coordinates
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(Figure 1) in which the vertical dimension is transformed from z, ranging from -hto £, to G,
ranging from b to a, where b and a are arbitrary constants. (Most models assume b=-1, a=0.
ADCIRC assumes b=-1, a=1.) While ADCIRC uses the vanable ¢ to represent the stretched
vertical coordinate, a traditional “¢” coordinate system implies that the nodes are spaced
uniformly over the vertical at any given horizontal location. ADCIRC does not carry this
limitation, but rather nodes can be distributed over the vertical in any manner desired.

Using the chain rule we can relate derivatives along level (z) surfaces to derivatives along the
stretched (o) surfaces:

Li_[(o—b]ég(a—a)a_fa}@_ an
., o, a-bJdy_ \a-b/dy |0z

where for clarity, o subscripts have been used on the horizontal derivatives computed along the
stretched surfaces in Eqs. (11).

Considerable discussion exists in the literature regarding the generation of spurious circulation

due to the use of stretched vertical coordinates. Most of this attention has focused on problems
arising from the baroclinic pressure gradient terms and to a lesser extent the lateral stress terms.
In ADCIRC we apply the stretched coordinate system to al} but the baroclinic pressure gradient
terms resulting in the following transformed momentum equations:
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Note that the first term on the right hand side of each equation is not a function of depth and
therefore horizontal derivatives in level coordinates are identical to horizontal derivatives in
stretched coordinates.

Introduction of the stretched coordinate system in the advective terms produces similar-looking
advective terms in the stretched coordinate system, Eqs. (12), provided a stretched-coordinate,
vertical velocity, w, , is introduced that is related to the true vertical velocity by:

e {SDE (8 [ oo fema)
a-b ;o a-b)ox La-—b GxJ Na-b/8 \a-b)ody

ADCIRC does not formally transform the lateral stress terms (., m, ) In Egs. (11) to obtain
equivalent terms in Egs. (12). Rather, the original lateral stress terms (atong horizontal surfaces)
are approximated as lateral stresses “along stretched surfaces”, i.e.,

—_— 0 { E, u J+ 9 [ E: Ou ]z lateral stress gradients along streiched surface
Y o Vol W

Ox 0o o
(14)
m, = g (E, v ]+ ¢ E¢ o = lateral stress gradients along stretched surface
T e o) OV, Vo

The generation of spurious circulation because of this assumption has also been discussed in the
literature. ADCIRC uses the lateral stress gradient terms purely to dampen numerical noise in
the solution and therefore assumes a lateral stress coefficient that is as small as possible. This
should minimize the generation of spurious circulation by these terms,

The weighted residual method is applied to Egs. (12) by multiplying each term by a horizontal
weighting function ¢ and integrating over the horizontal computational domain € and then
multiplying the result by a vertical weighting function i, and integrating over the vertical

domain, Z. By constructing the grid so that the vertical nodes line up vertically beneath each
horizontal node, the horizontal and vertical integrations can be performed independently.
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Horizontal integrations of each term in Eq. (15a) are presented below (Eq. (15b) is fully
analogous) and are carried out using one of two integration rules:

(15b)
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Rule 1: (nodal lumping, applied to terms that do not contain spatial gradients)

(1) =3 [ré,aa =13 [8,d0 -4,

HIQ nIQ

Rule 2: (fully consistent, applied only to spatial gradient terms)

<aay > ( U‘é _g;[axayl

where,

A, =area of element n
NE ;
A = Z A, = area of all elements containing node j

n=l

NE , = number of elements conltaining node j
¢ , = horizontal weighting function, =1 at node j. =0 at all other nodes,

varies linearly between adjacent nodes
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Note, that the definition of the weighting function ¢, reduces integration over the horizontal

domain  to integration over only the NEj elements containing node /. Also, Rule 2 assumes a
Galerkin finite element formulation in which the quantity being differentiated (Y in the
integration rules described above) varies linearly within an element. Therefore, the spatial
derivative is constant within an element and can be pulled out of the elemental integrations.

Horizontal integration of the transient term in Eq. (15a) utilizes Rule 1:

Ju ¢ _ AN{:‘,— ?EJ
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Horizontal integration of the horizontal advection terms in Eq. (15a) utilizes Rule 2 and assumes

Z

3 3
the un-differentiated velocity terms are elementally averaged (i.e., 4, = %Z u,andy, = %Z Vi)
i=1 =1
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Horizontal integration of the vertical advection term in Eq. (15a) utilizes Rule 1:

(a—bjﬁu p _AN[:'_j a—-b ou )
Wo I, 2 17 Q,Wk Z— 3 H, WJ'/%,V/I( .

Horizontal integration of the Coriolis term in Eq. (15a) utilizes Rule 1:

(po ), -3,

Horizontal integration of the combined barotropic pressure (i.e., the free surface elevation,
atmospheric pressure and tidal potential) gradient term in Eq. (15a) utilizes Rule 2:

6 . _ NE; . a s -
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3 ox
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Horizontal integration of the vertical stress gradient term in Eq. (15a) utilizes Rule 1:
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Z

Horizontal integration of the baroclinic pressure gradient terms in Eq. (15a) utilizes Rule 2:
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Horizontal integration of the lateral stress gradient term in Eq. (15a) initially utilizes integration

by parts
B [E 8u]+ 0 P ou )
axa I axa ayo_ / ayo_ ¥, . k

<<m“”¢’>n’w">z
i NE d o
(o 2§ g 2220 2020 i,
Lr” axo— aya n=\ Qn axc' ax ayg ay

z

_ i u i NE; 'y ou 6¢'V’. acl.
[E|— ~ Jcﬁ Z{@xgax 5.5 [E.d0y, Z

o n=| n Qn

where, 1", = external boundary segment of element n. The term is further reduced by assuming
that the lateral stresses are zero along all external boundary segments and by lumping the lateral
stress coefficient
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Thus, following horizontal integration and multiplication by 3/4, ;> BOS- (13a,b) become:
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A standard one-dimensional, Galerkin FEM discretization is used in the vertical, yielding the
following integration rule,

Oy T
Yoo | wewido+y. [ vy, do k=NV
Tk C k-1

Tk T il
(Y,'/fk>zz Yo I Vi, do+ Y, J W, do+ Y I YW, do 1<k <NV

(o581 (o'} Ty
T kat O ksl
\ _[ W, do+ Y j YiaW, do k=1
O Ok

In shorthand notation this can be written as:

3
<Y, Wy >Z = Tkullnmk,l +Yidnmga + Yiandnmes = Z Y kem—-20mg

m=I|
where,
v, = vertical weighting function, =1 at node k, =0 at all other nodes,

varies linearly between adjacent nodes
k =1 at the bottom

k = NV at the free surface

NV = number of nodes in the vertical
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Note, that the definition of the weighting/basis function y, reduces integration over the vertical
domain Z to integration over only the two vertical elements containing node £, i.e., from node
k—1tonode £+1. Also, because the basis functions are linear in space, their derivatives are
constant within an element and can be pulled out of elemental integrations.

Vertical integration of the transient term in Eq. (16a) yields
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Vertical integration of the horizontal advection terms in Eq. (16a) yields
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Vertical integration of the vertical advection term in Eq. (16a) yields
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Vertical integration of the Coriolis term in Eq. (16a) yields
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Vertical integration of the barotropic pressure gradient term in Eq. (16a) yields
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Vertical integration of the baroclinic pressure gradient term in Eq. (16a) yields
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Vertical integration of the lateral stress terms in Eq. (16a) yields
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The vertical stress gradient term in Eq. (16a) is initially integrated by parts, yielding
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where the free surface stress, 7. ; (applied only for k=NF) and bottom stress 7s; (applied only
for k=1) have been introduced. Expressing the vertical stress in terms of the vertical gradient of
velocity in the remaining integral term, yields:
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2(O'k+l _O'k)

0 for k=NV

ADCIRC utilizes a generalized slip formulation for the bottom stress term:
Tbx,

= K\‘IJ U /s
~hip J?
pn /

Th_l/,'
= K‘\'ﬁp I'V,‘

4

where,

Kjp, —> 0 = no slip bottom boundary condition

K up , = constant,
K, = Cm/ui +v),
In final form, the vertical stress gradient term is:

2
a-b O | ru; a—b |7y, a—>b a-b| &
- 5 = ’ | T Uy _ K.\"i A U j K+ n— KVnm ko
( H, ] (30'{ puJ o z [ H Lo k=NV H; I‘k_l " H Z e Jk

J m=l

linear slip bottom boundary condition, ( K sip = linear drag coefficent)

fl

quadratic slip bottom boundary condition, (C, = quadratic drag coefficent)
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Thus, following vertical integration Eqs. (16a,b) become:

au/ k+m-2 1 : i ‘ ﬂu ﬁu
—_— wt ) T " n
Z Py Inmy, y Z Z Al 1, " +y p Inmy
" k+m-2

m=1 NEj =l e Xo o

a—b Ou Bu,
* Fyn + Yo i ] + - o+ .
[ H‘,' )|:( oo )k-u« (Woﬂ;.k—l 2w a,,,k) M) ( bo ]k.kﬂ (2wg ik Wo ,,M) Inmu:]

3 1 NI, a + P,g- g - a
. Z f v i,k+m—21n-mk.m = Z An(g [4’ / p n] LVHk (203)
mi=} ANH/— n=i ax M

2
a-b a-b) 3
- (_—] ]'J_j‘k:!I(v!)'lprI - [—] Z u‘j_kﬂu—zKVnm jkem
k=NV H

+ { a-b ] };’“J,
H.f pﬂ = . Hj I =1

RN I NE, ou 0¢ by 00
- Z!:Z Anbrnj| [nmk_m - Z{E”Z An( 4 = + “ d Inmk,m
K+1-2 k-2

ANIL' f m=1| n=1 NE j m=] n=1 axo' 6x ayg- ay

£ 3 ] o
av Jhk+m=12 ] ! &V 5‘;
WZ:II 6{ [nmkﬂm + Z Z An {UM(*)" + V’I(E@TJ } Inm}(.",
H k+m=2

NE m=1] =) Xo -

a->b av; 6\?,
+ o A + | L o
( H; J{[ oo )k-l,k (WU jhot T 2Wo i’k) I [50' ]k‘kﬂ (2WU o war,‘h]) I”m"-{|

1 NE, ol _ _
+ Y fU o Irmi, = - : ZA,,(g l¢ +P"§p : a"]J LVni (20b)

m=1 NI p=l

2
a-b a—-b| <
) (W—Pij,le"l'.F’ —( H ] ZV-I'J”""ZKV”mJJ“"'
k=NV

{a_b]f.\'yl-
+ p
H’ . H,f i =1

3 [ g, 3 Nii 0 0
- 1 Z[z Anb_y,} Inmk.m-A_:;—Z{EuZ An( e ¢" + e ¢’) } Inmk,m
k+m=2 M k=2

NEj m=1{ n=| NE; m=1 n=l axa ax 8}}(; ay

Equations (20a,b) present the spatially discretized solution for velocity at horizontal node j and
vertical node k used by ADCIRC 3D. These equations are discretized in time using a two time
level scheme at the present (s) and future (s+1) time levels as described below:

s+1

3
] Ujkem2— U
Transient term: Z LAt '

.
jham=2

Inmk,m
m=1 At

NEjm=11 pe) Xo -

‘ ) 1 3 NE § 5 5 0—)“\'
Horizontal advection: Z ZA,, il | v Inmy
5
" " k+m-2
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Vertical advection:

a-b) { ou; . ‘ Ou, -
[ . ] (u_,) (W‘::r;,k4+2W;,~k)InWlk‘l + (—u") (2w;§,_k+w;‘;,_k+1)1nmk_3
H_f 60’ k-1k 80’ k k+1

3
3 1ar s+1 K3
Coriolis: Zf[alv;fkmuz + (1—al)vj,k+1;|—2:11nmk,p:r

m=i

(+1 &
a— b T“f o
Free surface stress: - 7;?, 4o
S+ Y
HJ' pn Hipr» k=Nl

4+l N
s ] l-a
Bottom stress: (a—b)Km‘ al““ll + ( f)“r
: I’V, H;+ H, \

=}

Barotropic pressure gradient:

1 NE A a[é’ + PI‘./gpa — an]‘ a[é’ + P.‘/gp" _ an].ﬁ-]
AN[;‘/‘NZIL 2 [g ax + g ax "LVnk

3 s+1 i
Vertical stress: (a—b)2 > a, LAEALE (1-e; )y—’k—ﬂ% KVnam s.m
m=1 (H‘/H) (H})

o ) 1 3 NE, ‘
Baroclinic pressure gradient: Z[Z Anby, Inmy m
k+m=-2

AN!'ZI- m=1

n=l

3 NI, B a¢» 5 a¢
Lateral stress: 3 Z{E‘;/Z A,{ Ou 74 + Qu___,] :| nmi
Ao lk+m=2

NIZf =1 H=| axcr ax ayo- ay

Substituting these into Eqgs. (20a,b), multiplying by Ar and grouping velocities at time levels s+1
and s yields:
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bj

k=1

3 3
e+l s+l
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m=1 m=|
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a b 3 3 3
- s+ : _ 5 5
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/
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3A1 %A oq" a¢./ + oq" a¢-’ Inmy
; " i
ANI j m=l ’n 1 axﬂ ox ay” ay [ DRI

(22)

Re-arranging and consolidating terms yields the form of the 3D momentum equations solved in

ADCIRC V36.01:
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s+]
(1+1Atfa1 qu ke m— zlnmk m+a At( \+I ) zqﬂn—m ZKVnmlkw

m=1 m=1

(a-b)Ata, Kj,,,p_’ .
/

+

k=I

A+l
H,

3
Z:l{(l —iAr f{1- a,))q s — AM[ladvec +lstrew+bcpg]l kw?z} Inmiw (23)
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8 X . sy sV
+ X + J i J J
k=Nt
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3o o
ladvec ;x = An| thn + v,
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a-b {0, _ oq, ‘ ‘
= i Skt 2wy k)l + | == o ik T Wo ik | Inmg ;
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NE ox ox
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iEQ%A 0q" 08, 34" 99,
ANI:', n=1 axcax ay 6_;/

k

2
3
s _pa-— b R ¥
Vstress_;gk = (—:- Zq’l‘k'f'l""zKVnm}rk’”’
i

m=l

Eq. (23) has a matrix structure, although due to the specific formulation that was used to obtain
this equation, the matrix is uncoupled in the horizontal direction and is tri-diagonal in the vertical
direction. Thus, Eq. (23) is solved separately for each horizontal node j. Symbolically, Eq. (23)
can be written as:
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Mg=r,
where,
M = complex tridiagonal matrix
q = complex solution vector for velocity

F. =complex forcing vector

and M consists of®

y+1
i

2
M(k'k—l) = (Hima‘f)[”mk,l +a; At( a—b) KVam')

0

\ 2
(1+iAta.f)1nmk_2 +0:3At(a—b) KVnm’ 2

H.\‘_+]
M(kk) = /

for k=1

for k=1

Jor k=1

s+l
/

2
- —b ‘,
M(k,k + 1) = (1 AT S ) Inmi s + @ At( (;[.\’ﬂ ) KVam

0
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4.0 VERTICAL VELOCITY

The vertical component of velocity is obtained in ADCIRC by solving the 3D continuity
equation

@:_(_a_zﬁ,] 04
oz Ox. Oy,

for w after u and v have been determined from the solution of the 3D momentum equations. The
subscript “z” has been added to the horizontal derivatives to emphasize that these derivatives are
computed in a level coordinate system. Eq. (24) is solved subject to the free-surface and bottom
kinematic boundary conditions:

o of of

Tl — 4V —— af Z= 25a
we=o +u. axz+v_ o 4 (23a)
oh Oh
Wi = —Up T —Vh at z=-h (25b)
ox:

where ug, vg, wy are the velocity components at the free surface (z=C) and up, vp, wp are the
velocity components at the bottom (z=-/4) assuming a slip condition is applied there.

Eq. (24) is discretized in horizontal space as:

ow u i
haldd =f—,¢ ) - —.¢. 26
<52 ’¢l>Q <8x.— ¢’>Q <5y5 ¢I>Q o

The horizontal integration utilizes Rule 1 for the left side and Rule 2 for the right side. After

multiplication by 3/ 4 Eqg. (26) becomes:

Wi

) Nli_j
é,f_vi:_AI ZA" ?ﬁ + é‘i (27)
oz NEj p=l Ox - N ayz \

Eq. (27) is discretized over the vertical using a simple finite-difference for the left side and
centering the right side:

Wk~ Wik-I 1 cu av Ou av
i, Jksl AR e “r i i 28
Zk T Zk-1 2A"Wfl’ NZ|A {[[aXJ],r+[®ZJp::|k+I:[ ax"]n-*.(ayz]nll} Y

Eq. (28) can be written in terms of the stretched coordinate system as:
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Discretizing the vertical derivative of horizontal velocity as:

ou ;

ou
Ooc
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k-1

and re-arranging yields:
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i Cxt o,
N ag o2 6H
V), a~b Y J,

28

1

)

]n_J

IR(ES

] [ ov
+ —_—
N a))ﬂ

(M‘j,k - uv,,/m)

(Vj.k ‘V_;Jc—n)

k-1

1)

(29)

(30)



Eq. (25b) is used to determine w;, ; Eq. (30) can then be solved recursively for 4=2, 3, ... up to

the surface. (Notice that the vertical differences of horizontal velocity in Eq. (30) are evaluated
at node ; only.)

As discussed by Luettich et al. (in review) and Muccino et al. (1997), the result obtained for the
vertical velocity at the free surface from Eq. (30), w, s . » may not match the free surface
boundary condition, w,,. as specified in Eq. (25a). This discrepancy is due to error in local fluid
mass conservation, (Luettich et al., in review). ADCIRC attempts to optimally correct the

vertical velocity obtained from Eq. (30) using an adjoint approach. This results in a correction to
Eq. (30) that is linear over the depth:

ajoinil correcied __

W,k = Wi + (Wj_.v - W/‘.k:.\wrfuccf)

(31)

In Eq. (31), Wy weights the relative importance of satisfying continuity in the interior of the fluid
vs satisfying the free surface boundary condition in the adjoint equation. Setting Wy=0 forces
the corrected vertical velocity to exactly satisfy the free surface and bottom boundary conditions.
Setting Wy to be large (e.g.. Wr ~100) adds a uniform correction to the vertical velocity solution
that is equal to half the surface boundary error. ADCIRC uses a default value of Wr=0.
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5.0 LATERAL BOUNDARY CONDITIONS
Elevation specified boundary condition ~ADCIRC 2DDI and 3D

An elevation specified boundary condition is implemented by zeroing out all off diagonal terms
in the row corresponding to each elevation boundary node in the GWCE, Eq. (0.15), and setting
the on diagonal term in that row equal to the root mean square value of all of the other diagonal
terms in the GWCE matrix (to maintain matrix conditioning). The right side vector entry
corresponding to each elevation specified boundary node is set equal to the specified elevation
multiplied by the root mean square value mentioned previously., Symmetry is maintained in the
left side matrix by zeroing out the off diagonal terms in the column corresponding to each
elevation boundary node. To allow this, each off diagonal term in the column corresponding to
an elevation boundary node is multiplied by the elevation boundary value and then subtracted
from the right side vector of the corresponding equation.

Specified flux boundary condition —-ADCIRC 2DDI

ADCIRC allows the specification of boundary conditions consisting of normal flux per unit
width (e.g., zero flux across land boundary segments and nonzero flux across river boundary
segments). These normal fluxes can be applied as either natural or essential boundary conditions
and the user may specify whether the tangential velocity along these boundaries is set to zero or
computed assuming free slip along the boundary. The specified normal flux per unit width is
inserted into the boundary integral term that appears in the right side of the GWCE, Eq. (0.15), at
each normal flux boundary node. (The convention used in ADCIRC for inputting normal flux
per unit width 1s that flux into the domatn is positive and flux out of the domain is negative.
Therefore, the sign must be changed on the normal flux prior to using it in the GWCE since the
derivation of this equation assumes that a positive flux is in the direction of the outward pointing
normal.) If the normal flux is applied as a natural boundary condition, no modifications are
made to the momentum equations. If the normal flux is applied as an essential boundary
condition, the depth-average normal velocity, Uy, is forced to be equal to the normal flux per
unit width divided by the local depth and multipled by —1 (to maintain the convention that Uy is
positive in the direction of the outward pointing normal). Further details of the implementation
of the essential normal flux boundary condition in ADCIRC are presented below.

At any node in the horizontal, the momentum equations solved in ADCIRC 2DDI have the
structure:

- U u
AUV, =AUV, _|@ 0.19)
AUV, AUV, |V oV
where AUV, AUV > are the matrix entries computed from the finite element assembly process,

and QU, OV comprise the right side forcing vector. At flux specified boundary nodes, the
equations are rotated into a normal - tangential coordinate system. The normal and tangential
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velocities, Uy and U7, are defined as the dot product of the velocity vector and the normal and
tangential unit vectors, N = (NeN,} and 7= (T-T.):

UN,+VN,=Uy

(0.20)
Ur+vr,=Uy

(}{/' and 7 are defined in the APPENDIX.) At specified normal flux boundary nodes the y-
momentum equation in (0.19) is replaced by the expression for the normal velocity in (0.20) and
the x-momentum equation is replaced by the tangential momentum equation formed by
multiplying the x-momentum equation (0.19) by 7y and adding the y-momentum equation (0.19}
multiplied by 7). Since Ty = Ny and Ty = -Nx (see APPENDIX), the resulting system is:

{A UV\N,— AUV:N, —AUV:N,— 4 UVINX}[U } _ {QU N,-QV N }

(0.21)
Nx N) V UN

The left side matrix in {0.21) does not have the symmetry of the original equations, (0.19). This
can be recovered by adding the tangential momentum equation and to the normal equation
multiplied by 4UV, and dividing the result by AUV,

QU N, —QV N +AUV2 Uy

Ny _Nx U
' = auvy (0.22)
[NX Ny MV] |

U

For the case that the tangential flux is also specified (e.g., equal to zero), the right side of the first
equation in {0.22) is replaced by U7

Zero normal velocity gradient boundary condition — ADCIRC 2DDI

A zero normal velocity gradient boundary condition is implemented by imposing the condition

Ux _g (0.23)
oN
at the boundary nodes. This condition can be expressed in terms of U, " and N as:
, . AUN+VN, O(UN:+VN,
OUx _ y Us y v 0Us ( ')+N,; ( )
oN Ox oy Ox dy
(0.24)
"/VN'@—[’]—"'NN §_V__+§g_ +NN_a_V—O
xiV oy ax x{Vy ax (9)/ yiv y 6y

Applying a Galerkin weighted residual formulation with linear basis functions to Eq. (0.24)
yields:
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oU x 8U v oU ov
—_— = P + yNyv— ¢ .
o <N N ¢> <N N (Bx 8y] ¢_,> <N_ Ny ¢,>

oU oV BU ov
=>| [NN.S2p,d0+ INXN{ i fn N =g, a0
ox a ox o oy

m=l q,

DI PAELS j.;zs dQ+NN[(ZV aU]w doe NN, j¢,d@

_ (0.25)
Gafy U (o vy v
a3 | Ox ox Oy oy
NI B 3 37 3
 An a9, op, ., 99, J ¢,
- N,\:Nx U1_+Nfov +Ul +NN Vf—-
25| VLU e DI

NEL
=3 - {N NXZUb + NN, Z(Vb +U,a)+ NN, ZVa,] =0

nl =1

where a; and b; are defined in the Appendix. Multiplying Eq. (0.25) by the constant 6 gives one
of the momentum equations solved at each zero normal velocity gradient boundary node, j.

NE;
}:[N N ZU Bi+ NN, Z(V bi+U.a)+ NN ZV,aJ =0 (0.26)

n=l i=l

In matrix form, (0.26) has the form:

BUV\U, .+ BUVYV .+ BUVU ;+ BUVLV ,+ BUV U ju+ BUV 6V ;.1 = BF; (0.27)

where subscripts j-/, j, j+/ designate the consecutive node ordering along the boundary and
BUV;, BUV), BUV3, BUV 4, BUVs and BUVg are coefficients whose values are determined by
evaluating Eq. (0.26). BFj is the forcing generated by the contribution of non-boundary neighbor
nodes to node j in Eq. (0.26).

The other equation consists of the tangential momentum equation formed by multiplying the x-
momentum equation (0.19) by 7 and adding the y-momentum equation (0.19) multiplied by 7},.
Since Tx = Ny and T), = -Nx (see the Appendix), the result is:

(AUV\N, = AUV N YU, =AUV N, + AUVIN)V ;= QU N —QV N, (0.28)

Together Eqs. (0.27) and (0.28) form a banded matrix with bandwidth of 6 and length equal to
the number of nodes in the zero normal velocity gradient boundary. Once this system of
equations is solved for the velocities along the boundary, these velocities are used to compute the
normal flux across the boundary and the time derivative of normal flux across the boundary
required to solve the GWCE at the next time step.
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Specified flux boundary condition —ADCIRC 3D

ADCIRC allows the specification of boundary conditions consisting of normal flux per unit
width (e.g., zero flux across land boundary segments and nonzero flux across river boundary
segments). These normal fluxes can either be applied as natural or essential boundary conditions
and the user may specify whether the tangential velocity along these boundaries is set to zero or
computed assuming free slip along the boundary. The specified normal flux per unit width is
inserted into the boundary integral term that appears in the right side of the GWCE, Eq. (0.15), at
each normal flux boundary node. (The convention used in ADCIRC for inputting normal flux
per unit width is that flux into the domain 1s positive and flux out of the domain is negative.
Therefore, the sign must be changed on the normal flux prior to using it in the GWCE since the
derivation of this equation assumes that a positive flux is in the direction of the outward pointing
normal.} If the normal flux is applied as a natural boundary condition, no modifications are
made to the momentum equations. In this case the momentum equations will try to generate an
appropriate vertical distribution of velocity over the depth, although vertical integration of this
velocity may not exactly match the specified normal boundary flux. If the normal flux is applied
as an essential boundary condition, the depth-average normal velocity, Uy, is forced to be equal
to the normal flux per unit width divided by the local depth and multipled by —1 (to maintain the
convention that U/ is positive in the direction of the outward pointing normal}. In this case
ADCIRC assumes the normal velocity 1s distributed uniformly over the depth. This is probably
not a good assumption if the normal velocity is nonzero! If a free slip tangential boundary
condition is used, ADCIRC will attempt to compute a tangential velocity that is consistent with
the specified normal velocity. Implementation of the essential normal flux boundary condition in
ADCIRC is described below.

At any node in the horizontal, the momentum equations solved in the 3D version of ADCIRC
have the structure:

Mg=F, (0.29)
where, M is a complex tridiagonal matrix, g (= u -+ iv) is the complex solution vector for velocity,

F 1s the complex forcing vector and recall that the real and imaginary parts of (0.29) correspond
to the x and y momentum equations, respectively. Row k in matrix M consists of:

Mk k=1)= Auv ,_ +iAuv,,
M(k.k) = Auv,, +iAuv,, (0.30)
M(kk+1)= Auv,, +iduv,,,,

where:
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2
Auy. = ) mea+ 3 Af(a_‘j) KV« Jor k=1
1.k-1 j
0 Jor k=1
Ata f Inmy, Jor k#1
Auv,, =
' 0 Jor k=1
2
Inm o+ & /_\.t( c;];f) KVnm'x» Jor k=1
Auwv,, = ! ,
’ _ (a-b)Ata,K,
Inmi, + o A1 il l? KVnm'iso+t = L for k=1
HY H;
Auv,, = At f Inmy 2 Jor all k
Auv _ Inmyp s+, A[(af{_dl])) KVnm",',k's fOF k= NV
1.k+1 j
0 Jor k=NV
Auv, , = A1 [ T Jor k= NV
o Jor k=NV

At boundary nodes where normal flux is specified, the y-momentum equation is replaced by the
equation for the normal velocity:

N+ wlN,y=Uy 031
Because the vertical distribution of normal velocity is uniform, this applies locally at each node
in the vertical. The x-momentum equation is replaced by the tangential momentum equation
formed by multiplying the original x-momentum equation by 7 and adding the original y-

momentum equation multiplied by 7). Since 7 = Ny and 7), = -Ny (see APPENDIX), the
resulting system is:

(A1 Ny = Auva s N Duwr = (Auvs s a N+ Awvie N ) v
+(AUVI_kNy — Auvis N« )uk —(Aqu‘kNy + Auvia Ny )Vk
+ (AuvauNy - AuquNx) Ujsl ™ (A warnN, + AuvLmN,r) Visl
=Re{F N, ~Im{FIN.

(0.32)

The left sides of (0.31) and (0.32) do not have the symmetry of the original momentum

equations. This can be recovered by multiplying (0.31) by 4uv, at levels -1, &, and &+1 and
adding these to (0.32):
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Auvig Ny s = AuvigaN v + Auvi Ny e — Auvie N < vi

+Auvika N yttor — Auviga N 2 vin (0.33)
= Re {Fr}Ny - Im {Fr}Nr + (AMVZ,A--| + Auvzgk + AMVUH]) UN

Multiplying (0.31) by Auv, at levels -1, &, and k+1 and adding these together gives:

At g aN ctti- 1 ¥ Auvic N i ¥ Auvia N cu + Auvie N i

(0.34)
TAuv) ja N s ttinn + Auvi g N ypvin = (Auv.,k_] + Auvii + AHVI,k+])Uh'
Equations (0.33) and (0.34) can now be written in the form of (0.29):
Mq=F, (0.35)
where
M (kk=1)= duv,, +iduv,,
M (k, k) = Auv;_k +t'Auv;k
M (k,/c + I) = Auv;_kﬂ +7 Auv;_,HI
Auv:.,‘_, = Auv,, \N,
Auv;:k&] =Auv, N,
Auv:_k = Auv N,
Auv;_k =Auv N,
Auv;!k+l = Auv,, N,
Auv;M =Auv N,
Fr=[Re{F AN, ~Im{F } N+ (duvsi+ Auvag + Auvas) Uy |
+ f[:(Auvu(_l + Auvi AHVI,/HI)UN:I
For the case that the tangential flux is also specified (e.g., equal to zero), the x-momentum
equation is replaced by.
wN,~wN.=U; (0.36)

and the y-momentum equation is replaced by (0.31). This also generates a system of equations of
the form of (0.35) where:

M'(k,k—l)zO
M*(k,k) = Auv:_k +1'Auv;_k
M (kk+1)=0
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Auvik =N,
Auv;‘k =N,
Fr=Up+iUy

Zero normal elevation gradient boundary condition — ADCIRC 2DDI and 3D

A zero normal elevation gradient boundary condition is implemented by replacing the GWCE
equation corresponding to each zero normal elevation gradient boundary node with the equation:

9 _ 96, %
=N, = =0 0.37
on =N Ox "y ( )
where the normal unit vector, N = (N Y y) is defined in the APPENDIX. Applying the
Galerkin spatial discretization to Eq. (0.37) gives:

o AN_ [ % o
<an’ -’>‘<N‘ax’ ’>+<Nyay’ >

NZ{IN—%CJQJFJ'N ¢d§2}
:ﬁ{N(ax) [#,a0+ N(ﬁy} (¢ dQ} (0.38)

o, n Qn

B le‘,é’i a—g ) %
ik {N( ox ] " N[ dy ”

NE, 1

Zé{N ZCb +N Zia,}

n=l

Eq. (0.38) is evaluated implicitly in time using Eq. (0.16). Multiplying through by the constant
6, yields the final set of discrete equations for the zero normal elevation gradient boundary
condition.

NI,

E[N 2.6 b+ N Z{ ! }= (0.39)

h=]

One problem with applying this boundary condition is that it renders the GWCE left side matrix
nonsymmetric. In contrast to the case of an elevation specified boundary condition where a
straightforward manipulation restores matrix symmetry, there is no exact method for restoring
the symmetry of this system. Consequently, this boundary condition has not been implemented
in ADCIRC at the present.
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Radiation boundary condition on elevation — ADCIRC 2DDI/3D

A radiation boundary condition on elevation is implemented by specifying a relationship
between the normal flux and the elevation field along the boundary. The most common of this
type of boundary condition is a Sommerfield radiation condition. A difficulty with applying any
type of boundary condition imposed on the GWCE, is that it renders the left side matrix
nonsymmetric and therefore is not supported in the present version of ADCIRC.
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BAROCLINIC PRESSURE GRADIENT CALCULATION NOTES

As presented previously, the baroclinic pressure gradient is defined by

8 ,(p—pu)dz’ - r(p—p[.)dz
p()

g b=go- |

These terms are evaluated in ADCIRC in two steps. In the initial step, the 3D baroclinic pressure
field is computed as:

_rslp=p) gH __gH
BPress(z) = J( o, dz = o (a—b) _C(,O—p,,)dd = m _E(O'r—ara)do'

where, density has been replace by the standard oceanographic “sigma t” variable

U[EP—IOOO’ J??)EP(J_IOOO

This should not be confused with the variable, , representing the dimensionless vertical
coordinate system. In the second step, the horizontal baroclinic pressure gradients are computed
as horizontal derivatives (in level or z coordinates) of the baroclinic pressure field.

hi= 9 BPress, b,= 9 BPress
Ox Y

For any horizontal node j and vertical node k&, ADCIRC computes these gradients at the vertical
position of node k4. This is accomplished for each element containing node j by vertically
interpolating the baroclinic pressure field at the element vertices to the vertical position of node &
and then computing the horizontal gradients directly.
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APPENDIX - BASIC CALCULATIONS ON LINEAR TRIANGLES

Consider the triangular finite element with vertices numbered 1-3, counter-clockwise around the

element. Any variable, Y, can be expanded linearly within the element based on nodal values
as:

Y=Y@+ Y28, + s, = Z Y9,
il

where,

Y. Y5 Y3 = hodal values of Y at elemental verticies 1, 2, 3
¢,.0,.¢, = linear basis functions defined as:

¢ = szz_XSJ;2A+be+aLy L g, =
A= X3~ Xp A2 X7 X3 diT X217 X)
=Y, Vs b= Y=V 3=V,

g = hax—baa
2

Xay,~xiYythaxtayy
24

X1V,—x2 ) thXtay
24

S

= elemental area

Spatial derivatives are computed as:

where,

%, _b. %_a

ax 24 &y 24

Spatial integrations are computed using:

(e;)!(ev,»)!

@ ¢ dd =24

J ¢’ (e,-+e’-+2)!

Ifi#jand e;=e, =1, [¢¢dA:£. Ifi=jand es=e;=1, j¢¢dA:j¢2¢4=£.
’ [ 12 'A A ; ] 6

Because linear basis and expansion functions are used, their derivatives are constant across an
element and spatial integrations involving derivatives become:

o8, 4%,
J¢fé;é:v_d‘4 j¢ 3 6x Oy
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The component of a vector quantity, Y. ( Y=Y.Y y), in any direction can be computed as the

dot product of the vector quantity and the unit vector in the specified direction. In ADCIRC this
is done at boundary nodes, where the horizontal velocity field may be rotated into components
that are normal and tangential to each boundary node or where the elevation gradient normal to
the boundary may be specified.

If a node is on the interior of a boundary (i.e., it 1s not the end node where two different types of
boundaries meet), unique normal and tangential directions are defined as shown in the figure
below.

Definition figure for normal and tangential directions at boundary node 2, provided
that this node does not mark the end of one boundary type and the beginning of
another. In this situation the normal direction is defined to be perpendicular to the
line connecting nodes 1 and 3. The ADCIRC grid file requires boundary nodes to be
specified with the domain interior on the left as one progresses along the boundary.

The normal and tangential components (Y,’VaYi") of vector Y are:

Yv=Y-N=YN.+Y,N,
Y

and the normal and tangential spatial derivatives of a scalar function, Y, are:

or _ar, L or
8N x T ey
or_or  ar.
T ox T oy’

The unit vectors, N and T , are;
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N,=cosa N,=sing

T.=cos{a—90) T, =sin{a —90)
Since S = a + 90, the unit vectors can be written more conveniently as:

N.=cos(B-90)=sinf = RAlnb ! N,=sin(f-90)=-cosf = X1 X3

31 3

7,=cos(f-180)=~-cos S =N, T,=sin{f—180)=-sinf =-N,

where (x],yl) , (xz,yz) and (x3,y3) are the horizontal coordinates of nodes 1, 2 and 3 and

L= \/(x3 —x1)) +(y;—,) is the horizontal distance between nodes 1 and 3.

If a node is located where two different types of boundaries meet, two normal and tangential
directions are defined for the node, one for each boundary, as shown in the figure below.

Ny, Ni2

3

Definition figure for normal and tangential directions at boundary node 2, when this
node marks the end of one boundary type and the beginning of another. In this
situation two normal and two tangential directions are defined for node 2, one for
computations pertaining to the boundary type to the right of node 2 (i.e., for
boundary segment 1,2) and one for computations pertaining to the boundary type to
the left of node 2 (i.e., for boundary segment 2,3). The tangential direction for each
segment is 90 degrees to the right of the normal direction.

In this case
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and spatial derivatives are handled in an analogous way.

The unit vectors are:

. - X1— X
Niz ZSmﬁu:iyz % Nia,==c0sff,=>—=
2y . =y .
Lo Lo
T2, =N, T2, =—Niz,
: Y=V, X2~ X3
NZJ):Slnﬂsz NZ‘%:—COSﬂz_B:
L» | Ly»
Tz,sx = Nz.zp sz_,, = —Nz.ax

where 7, = \/(M - xl)2 +(y,— yl)2 and [, = \/(xz - xg)2 +(y,- }’2)2 are the distances between
nodes 1 and 2 and nodes 2 and 3, respectively.
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