TEXAS WATER COMMISSION

€

ti

1

p.

Joe D. Carter, Chairman O. F. Dent, Commissioner H. A. Beckwith, Commissioner

BULLETIN 6412

OCCURRENCE AND QUALITY OF GROUND WATER

IN STEPHENS COUNTY, TEXAS

By

David C. Bayha, Geologist Texas Water Commission

Prepared by the Texas Water Commission in cooperation with the Texas Water Pollution Control Board

September 1964

Published and distributed by the Texas Water Commission Post Office Box 12311 Austin, Texas 78711 0

C

0

E

Ð

0

C

Authorization for use or reproduction of any original material contained in this publication, i. e., not obtained from other sources, is freely granted without the necessity of securing permission therefor. The Commission would appreciate acknowledgement of the source of original material so utilized.

FOREWORD

Ground-water studies that are currently being conducted by the staff of the Texas Water Commission in a block of counties in north-central Texas were begun in March 1962 to meet a growing need for more detailed and more accurate ground-water information in this area than was available from other sources. As initially planned, the investigations that are underway will be conducted in the following counties: Archer, Clay, Montague, Throckmorton, Young, Jack, Jones, Shackelford, Stephens, Palo Pinto, Taylor, Callahan, Eastland, Coleman, and Brown Counties. As work progresses on this project, it is probable that other counties adjoining the initial block selected will be added to the scope of the project.

In the 15 counties that are included in the present study, several towns with municipal water supplies are served by ground water or have water wells as a standby source of water supply. In addition to meeting municipal needs for water, ground water is often the sole source supplying domestic, farm, and ranch needs for water in much of the area. In recognizing the significance of ground water as a water resource in this area, the Water Commission was aware also of the vital need for obtaining information on the depth to which usable-quality water occurs, as the basis for providing adequate and equitable protection for these water supplies in the extensive petroleum development that continues in the area.

The area under study is underlain by Pennsylvanian and Permian rocks that either crop out at the surface or underlie Cretaceous and alluvial sediments at shallow depths. Ground water occurs erratically in most of the area in shallow discontinuous zones of low permeability in Pennsylvanian and Permian rocks, in sands and fractured limestones in the relatively thin Cretaceous sediments, and in Pleistocene to Recent alluvial sediments that are found at the surface in parts of most of the counties included in the study. Initially these investigations were to provide additional data for use by the Water Commission in making recommendations to the Railroad Commission and oil industry on the depth to which usable-quality water should be protected. It was recognized early in the course of the investigations, however, that the scope of the programs should be enlarged to provide information for landowners and others interested in waterresources development. Sufficient information should be provided to assure optimum development of the ground-water supplies available.

The Texas Water Commission has been considering the present program for several years, although personnel have not been available to initiate such a long range study. The scope, objectives, and methods of study to be employed have been part of the planning of the Texas Water Commission, and when funds become available the investigations were included in the Agency's ground-water program. In January 1962, funds allocated to the Texas Water Commission by the Texas Water Pollution Control Board for the purpose of investigation and prevention of ground-water pollution made possible the beginning of the present program. These funds were allocated to the Water Commission by the Pollution Control Board under provisions of the Act that created the Pollution Board and that directs the Texas Water Commission to "... investigate and ascertain those situations in which the underground waters of the State are being polluted or are threatened with pollution, and it shall report all findings to the Board together with its recommendations in regard thereto." \underline{J}

It was determined that these studies could be most feasibly conducted on a county-by-county basis, and the initial investigations were begun in Stephens, Young, and Brown Counties. Reports from the results of the investigations in each of the 15 counties will be prepared and published by the Texas Water Commission as the field studies are completed.

TEXAS WATER COMMISSION

ertulip

John J. Vandertulip Chief Engineer

^{1/ 57}th Legislature, 1961, Article 7621d.

TABLE OF CONTENTS

Page

€

ABSTRACT	1
INTRODUCTION	3
Purpose and Scope	3
Method of Investigation	4
Previous Investigations	4
Well-Numbering System	4
Acknowledgements	5
GEOGRAPHIC SETTING	5
Location	5
Climate	5
Topography and Drainage	9
Population and Economy	9
OCCURRENCE AND QUALITY OF GROUND WATER	10
Pennsylvanian System	17
Canyon Group	17
Cisco Group	19
Graham Formation	19
Thrifty Formation	20
Harpersville Formation	21
Summary of Well Yields and Construction in the	
Pennsylvanian System	21
Permian System	22
Wichita Group	22
Pueblo Formation	22

TABLE OF CONTENTS (Cont'd.)

€

Moran Formation	22
Cretaceous System	22
Trinity Group	22
Quaternary System	23
Alluvium	23
SURFACE CASING	24
OIL-FIELD BRINE PRODUCTION AND DISPOSAL	26
Quality and Distribution of Produced Brine	26
Chemical Quality of Produced Brine	26
ALTERATION OF NATIVE CHEMICAL QUALITY OF WATER	26
SELECTED REFERENCES	33

TABLES

1.	Well numbers used in this report and corresponding numbers previous- ly used in Stephens County by Samuell (1937)	6
2.	Geologic formations and their lithic descriptions, Stephens County.	11
3.	Records of wells and springs, Stephens County	36
4.	Chemical analyses of water from wells and springs, Stephens County.	54
5.	Reported brine production and disposal in 1961, Stephens County	69
6.	Chemical analyses of oil-field brines, Stephens County	74

ILLUSTRATIONS

Figures

1.	Well-Numbering System	7
2.	Map of Texas Showing Location of Stephens County	8
3.	Geologic Map of Stephens County	12
4.	Geologic Section A-A', Stephens County	13

TABLE OF CONTENTS (Cont'd.)

Page

€

5.	Geologic Section B-B', Stephens County	15
6.	Diagrams of Chemical Analyses of Water from Contaminated Wells, Showing Comparison with Native-Quality Ground Water and a Typical Oil-Field Brine	28
	Plates	
1.	Map Showing Locations of Wells and Springs, Stephens County	65
2.	Map Showing Base Chemical Quality of Ground Water in 1962, Stephens County	67
3.	Map Showing Location and Amounts of Reported 1961 Brine Disposal,	

Map Showing Location and Amounts of Reported 1961 Brine Disposal, Surface-Kill Areas, and Contaminated Water Wells, Stephens County 75

APPENDIX

SUPPLEMENTARY DISCUSSIONS OF QUALITY OF WATER, GEOLOGY, AND HYDROLOGY	A-1
Geology of North-Central Texas	A- 3
Regional Structure	A- 3
Depositional History	A- 3
Pennsylvanian Deposition	A- 5
Permian Deposition	A- 6
Mesozoic (Cretaceous) Deposition	A- 6
Quality of Ground Water	A - 7
Ground-Water Hydrology	A-12
Hydrologic Cycle	A-12
Ground-Water Occurrence and Movement	A-12
Figure Al. Major Structural Features in North-Central Texas	A- 4
Figure A2. Diagram for the Classification of Irrigation Waters	A-11
Figure A3. Hydrologic Cycle	A-13

OCCURRENCE AND QUALITY OF GROUND WATER

IN STEPHENS COUNTY, TEXAS

ABSTRACT

Stephens County is located within the outcrop area of upper Pennsylvanian and lower Permian formations in north-central Texas. An erosional remnant of Cretaceous rocks is present in the southeastern part of the county. This unit is probably a part of the Travis Peak Formation of the Trinity Group, and is an outlier to the Callahan Divide, which separates the Brazos River Valley from the Colorado River Valley. Pleistocene to Recent alluvial sediments occur along the streams in Stephens County.

Ground water occurs erratically in shallow discontinuous zones of low permeability, and most of the well development is located in the southeastern portion of the county. More than 85 percent of the water wells in the Cisco Group (upper Pennsylvanian) are completed in the Graham Formation, and the Graham Formation supplies over 48 percent of all the wells completed in the county.

The chemical quality of ground water is variable in Stephens County. This might be expected because of the erratic occurrence of ground water. However, trends in the variation of constituents were used to establish the base quality of ground water in different areas of the county. Some of the water samples contained a high concentration of chloride, which did not coincide with the normal variation or base quality changes of ground water. Water wells containing water having a high choride content are treated in this report as apparently contaminated or possibly contaminated wells. In many cases historical records to prove alteration of chemical quality are lacking.

The disposal of oil-field brine is an important source of chemical alteration of the native-quality water. In some areas, the vegetation has been killed because the soil has become impregnated with salt.

Reported brine production for 1961 in Stephens County was 5,796,313 barrels. Approximately 84 percent of the brine was disposed of into injection wells, and about 16 percent was disposed of into surface pits. Less than 1 percent was disposed of by other methods.

OCCURRENCE AND QUALITY OF GROUND WATER

IN STEPHENS COUNTY, TEXAS

INTRODUCTION

Purpose and Scope

The economic vitality of north-central Texas, coupled with the lack of readily obtainable surface-water supplies of good quality, has made it apparent that additional information regarding the occurrence and availability of ground water was essential to a clear evaluation of the area's potential waterresources development. Thus, the purpose of the study in Stephens County was two-fold: to obtain, through field study, information regarding the occurrence and chemical quality of ground water for use by landowners and others interested in water-resources development in the county; and to provide sufficient information for the Texas Water Commission and other agencies responsible for protection of water quality in the county so that water-quality-protection programs can be both adequate for protection of the water available and equitable when applied to industries operating in the county.

The objectives of the Stephens County study were to obtain supplementary basic data to better delineate underground formations containing usable water, the depth of this water, and its chemical quality; to supplement available data on brines produced with oil and gas and the location and method of their disposal, with field observations and spot quantative and qualitative checks; to review surface casing and brine regulations of this agency in the light of field observation to determine where revisions are needed; to evaluate the results of chemical analyses of water from wells and springs in the county in order to establish a base condition of water quality where possible and to pinpoint areas of contamination where it has occurred; and to prepare a report for the use of landowners, the Texas Water Commission, and other State and Federal agencies.

The project was planned to accomplish the following: the collection of records in the field regarding water wells and springs; the study of subsurface data from wells where available; the measurement of elevations above sea level and establishment of topographic control by selected means; obtaining information on brines produced with oil, and methods of brine disposal; the study of surface and shallow subsurface geology significant to the understanding of the occurrence of ground water; and preparation of a report presenting the results of the study, together with pertinent basic data and illustrations reflecting ground-water occurrence in the county.

The study was made during the period 1962-63 under the administrative direction of John J. Vandertulip, Chief Engineer, and L. G. McMillion, director,

Ground Water Division, and under the direct supervision of Donald C. Draper, coordinator of the Quality Protection Program.

Method of Investigation

€

0

0

€

€

In conducting the detailed ground-water investigation of Stephens County, the following items of work were performed.

A complete inventory of 385 wells and springs was conducted in 1962 to determine the manner in which water wells were constructed and, where possible, to determine the depth and aquifer in which the wells were completed. Elevations were established on most wells and springs with the aid of topographic maps and altimeter from grade elevations furnished by the Texas Highway Department. These elevations together with water levels measured in 169 wells were used, where possible, to determine the direction of ground-water movement in subsurface formations.

Chemical analyses were obtained to determine the water-quality characteristics of the ground water in Stephens County. The laboratory analyses of water samples were made by the State Department of Health and the U. S. Geological Survey under interagency and cooperative agreements with the Commission. Approximately 150 electric logs were studied as an aid in understanding the subsurface geologic conditions pertinent to the occurrence of ground water in the county. Oil-field brine disposal practices were observed, and existing analyses of oil-field brines were studied and tabulated.

Previous Investigations

Several reports containing general information on the geology of northcentral Texas are available; however, no detailed ground-water investigation of Stephens County has been made prior to this study. Samuell (1937) recorded the inventory of 96 wells and included drillers' logs of 13 oil wells, logs of 49 test wells, and partial chemical analyses of 95 water samples from wells along with partial chemical analyses of water samples from streams and tanks in Stephens County.

A preliminary report of the ground-water conditions in north-central Texas was made by Gard and others (1956, unpublished report) with the then Texas Board of Water Engineers.

More recent ground-water investigations in small areas of the county have been made by Grimes (1960, unpublished report) and by personnel of the Texas Water Commission. A recent reconnaissance investigation of the entire Brazos River Basin was made by Cronin and others (1963), but coverage within Stephens County was general. Other reports relating to the geology of the area are listed at the end of this report in the Selected References.

Well-Numbering System

Wells and springs in this report were numbered using a statewide numbering system adopted by the Texas Water Commission. Each well and spring is assigned an individual number to facilitate keeping records on file and locating the well within the State. This system is based on division of the State into

- 4 -

quadrangles formed by degrees of latitude and longitude, and repeated division of these quadrangles into smaller ones as illustrated in Figure 1.

The largest quadrangle, a 1-degree quadrangle, is divided into sixty-four 7-1/2 minute quadrangles, each of which is further divided into nine 2-1/2 minute quadrangles. Each 1-degree quadrangle in the State has been assigned a number for identification. The 7-1/2 minute quadrangles are numbered consecutively from left to right beginning in the upper left hand corner of the 1-degree quadrangle, and the 2-1/2 minute quadrangles within the 7-1/2 minute quadrangle are similarly numbered. The first two figures of a well number identify the 1-degree quadrangle, the third and fourth numbers identify the 7-1/2 minute quadrangle, and the 2ifth number identifies the 2-1/2 minute quadrangle, and the 2.1/2 minute designate the order in which the well was inventoried within the 2-1/2 minute quadrangle.

Some of the wells for which data are given in this report (Tables 3 and 4) are the same wells for which data are given in an earlier Works Progress Administration report by Samuell (1937). The corresponding numbers assigned to these wells in this and the earlier report are listed in Table 1. Some of the well records included in the earlier report are omitted in this report because the wells were not visited, or could not be located, during the present investigation.

Acknowledgements

Appreciation is expressed to the many farmers, ranchers, well drillers, and oil companies who generously contributed information and cooperated in the collection of field data. Thanks are extended to the Departments of Geology of The University of Texas, Baylor University, and other institutions who have made and currently are making investigations in the area. Appreciation also is expressed to the Breckenridge Chamber of Commerce, the Texas State Department of Health, the Texas Highway Department, the Railroad Commission of Texas, the U. S. Geological Survey, and other State and Federal agencies who furnished information.

GEOGRAPHIC SETTING

Location

Stephens County comprises an area of 926 square miles, and lies generally between 98°35' and 99°05' west longitude and between 32°30' and 33° north latitude in the plateau region of north-central Texas (Figure 2). Breckenridge, the county seat of Stephens County, is about 100 miles west of Fort Worth at the intersection of U. S. Highways 180 and 183.

Climate

The climate of Stephens County is subhumid, with an average annual rainfall of 27 inches as based on 30-year normals supplied by the U. S. Weather Bureau for the period 1931-60. The maximum annual rainfall was recorded as 46.78 inches at Breckenridge in 1957, and the minimum was recorded as 13.01 inches in 1956. About 75 percent of the monthly distribution of average annual

New Number	01d Number	New Number	01d Number	New Number	01d Number
30-08-801	1	31-19-310	73	31-26-504	129
24-801	55	401	69	804	130
32-201	114	402	70	27-101	95
31-03-601	16	20-101	78	102	96
602	17	103	79	201	91
603	18	701	82	202	92
801	15	25-301	112	203	93
10-701	27	902	119	204	94
11-601	20	903	120	301	89
701	23	26-101	109	402	137
801	22	102	110	403	138
17-301	31	103	124	501	139
18-108	28	201	100	502	140
501	63	202	103	503	141
601	66	206	101	513	142
605	67	207	102	701	131
802	99	208	106	702	132
901	97	216	105	703	133
909	64	401	123	704	134
910	65	402	125	801	143
19-301	74	501	126	28-101	85
303	75	502	127	102	84
309	77	503	128		

Table 1.--Well numbers used in this report and corresponding numbers previously used in Stephens County by Samuell (1937)

۲

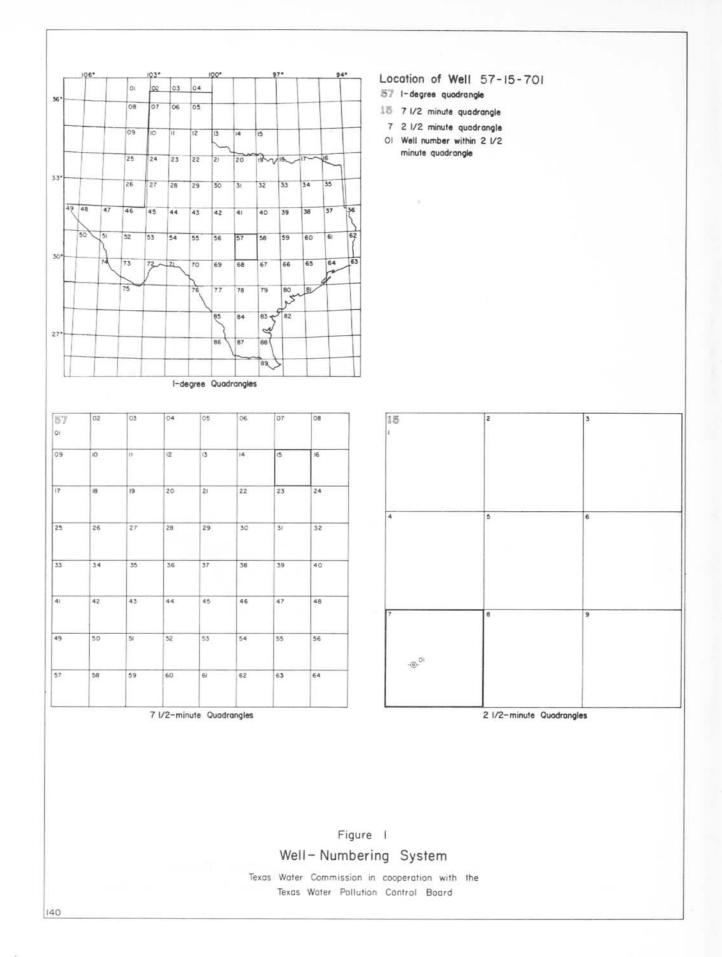
0

€.

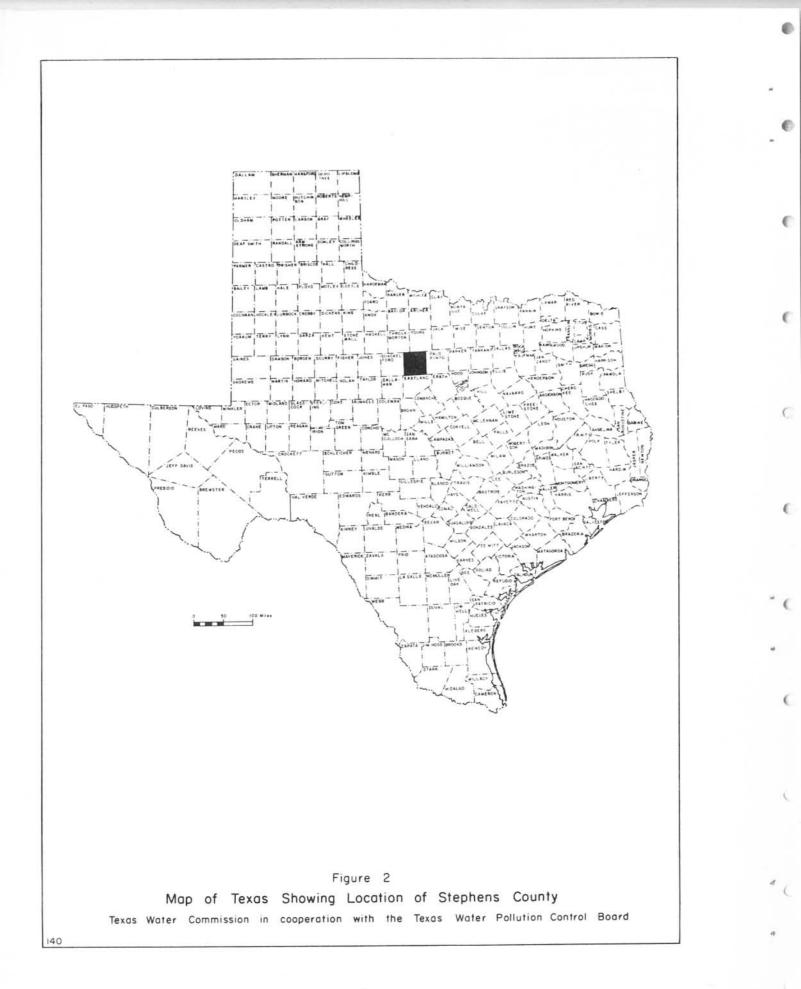
€

C

€


″€

C.


Ċ.

4 C

- 6 -

l

rainfall is concentrated during the 7-month growing season of April through October.

The mean annual temperature for Stephens County, based on 50 years of record, is 65°F. This mean is not a weighted average, but is based on the average of the maximum and minimum daily temperature readings. The range of temperature for this area is from a minimum of -1°F to a maximum of 110°F.

The average annual potential gross evaporation depth for the period 1940-57 is 80 inches; however, the average annual potential net evaporation depth, based on the gross evaporation of 80 inches minus the annual effective rainfall, is 56 inches. The average effective net evaporation (net depth of water actually evaporated) for the county ranges from 53 inches on the eastern edge of the county to 55 inches on the western edge.

Topography and Drainage

The land surface in Stephens County is generally rolling with some hills. The altitude ranges from about 1,000 to 1,650 feet, the total relief being about 650 feet. Prominent elevations include the Gunsight Mountains, Double Mountain, and Evans Peak.

Stephens County lies entirely within the Brazos River drainage system (Plate 1). The western part of the county is drained by Hubbard and Big Sandy Creeks, tributaries to the Clear Fork of the Brazos River, which cuts across the northern part of the county. The central part of the county is drained by Gonzales Creek, which also flows north into the Clear Fork of the Brazos River. The eastern portion of the county drains toward the east into the Brazos River. These eastward-flowing streams, as seen on Plate 1, are: Palo Pinto Creek, Big Caddo Creek, and Big Cedar Creek.

Lake Daniel, with a capacity of 10,000 acre-feet, is located about 8 miles south of Breckenridge on Gonzales Creek (Plate 1). This reservoir provided the municipal water supply for Breckenridge from 1948 until the construction of the Hubbard Creek Reservoir.

Hubbard Creek Reservoir, constructed in 1962 with a capacity of 320,000 acre-feet, is located in the western part of the county. The Reservoir is owned by the West Central Texas Municipal Water District, which was created by the State Legislature in 1955, and provides a new water supply for the cities of Abilene, Albany, Anson, and Breckenridge.

A standby municipal water supply for Breckenridge was served by Lake Grand, located about two miles northeast of Breckenridge (Plate 1). Lake Grand, with a capacity of about 1,000 acre-feet, had to be abandoned as a reservoir because of salt-water contamination, and is now being utilized as a salt-water-disposal basin. Additional discussion of Lake Grand will follow in the section headed Alteration of Native Chemical Quality of Water.

Population and Economy

Stephens County was organized early in 1876, and shortly thereafter Breckenridge was settled and designated the county seat. The population of Stephens County is 8,885, and that of Breckenridge is 6,273 according to the 1960 Federal census.

Transportation facilities in Stephens County include the U. S. Highways 180 and 183, State Highways 6 and 67, and many paved farm-to-market roads. Breckenridge is served by the Chicago, Rock Island, and Pacific Railroad. The nearest scheduled airline service is at Abilene, which is about 60 miles southwest of Breckenridge.

Cattle raising is the principal agricultural industry, and the raising of sheep, goats, swine, poultry, and dairying are other important sources of income. The principal crops are oats, wheat, grain, sorghum, cotton, and peanuts. In 1961 the total acreage under cultivation was 67,793 acres, while the total grazing land was 503,207 acres. Approximately 200 acres of cultivated land is irrigated. 0

€

C

€

€

€

Oil continues to provide a very important source of income in Stephens County. Drilling began in 1910, and oil production began in 1916. The Breckenridge oil boom began in 1920, with an associated increase in population. A conservative estimate of the population of Breckenridge on January 1, 1920 was around 1,500, whereas 1 year later the population was over 30,000. In 1952 Stephens County produced 2,415,646 barrels of oil. Most of the oil is produced from rocks of Pennsylvanian age at depths of 2,000 to 4,000 feet, but some production has been from strata of Mississippian and Ordovician age below 4,000 feet. Other natural resources include natural gas, gravel, sand, clay, limestone, and thin beds of coal.

OCCURRENCE AND QUALITY OF GROUND WATER

Ground water occurs quite erratically in Stephens County in relatively shallow, discontinuous zones of low permeability in Pennsylvanian and Permian rocks, and in the Pleistocene to Recent alluvial sediments found at the surface along most of the streams.

As can be seen from the geologic map (Figure 3) and from the map showing the location of wells and springs (Flate 1), ground-water development is principally in the Graham Formation, Cisco Group, of the upper Pennsylvanian. Water-well development is largely confined to the southeastern part of Stephens County.

Most of the ground water in Stephens County is used for domestic and livestock purposes; however, some of the ground water is used for waterflooding and other oil-field purposes, and one well furnishes water of sufficient quantity and quality for irrigation.

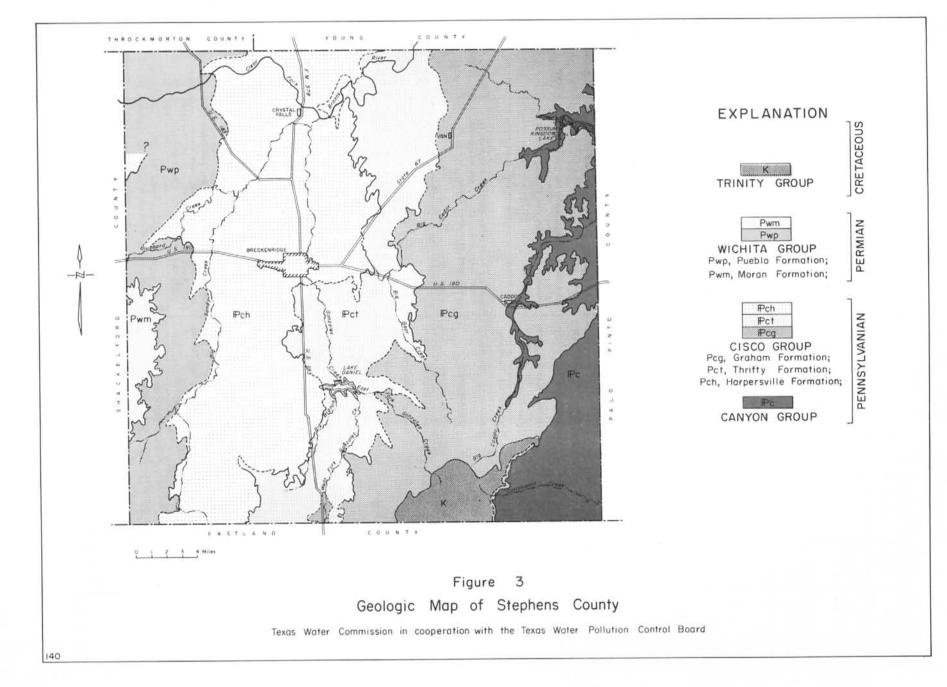
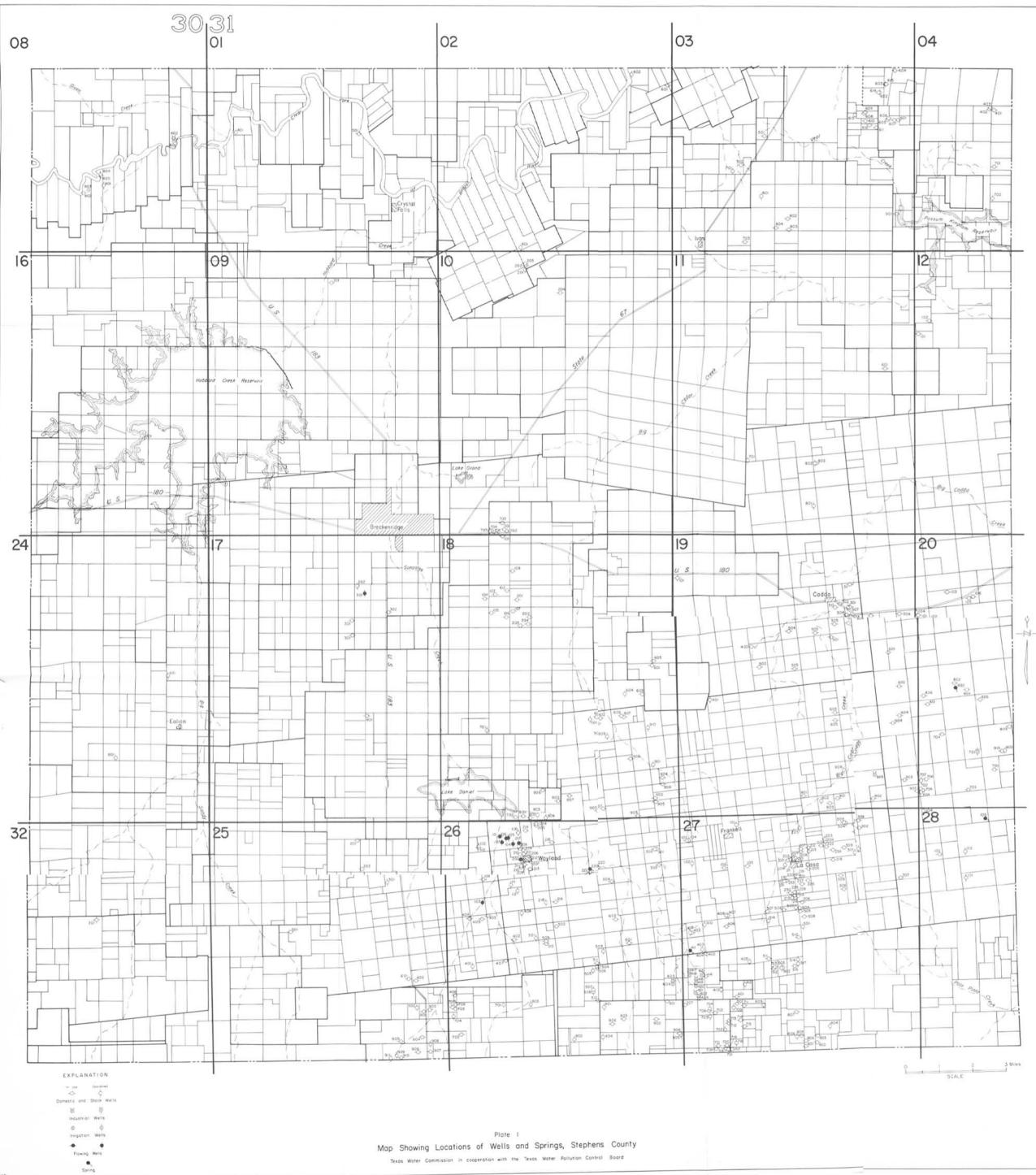
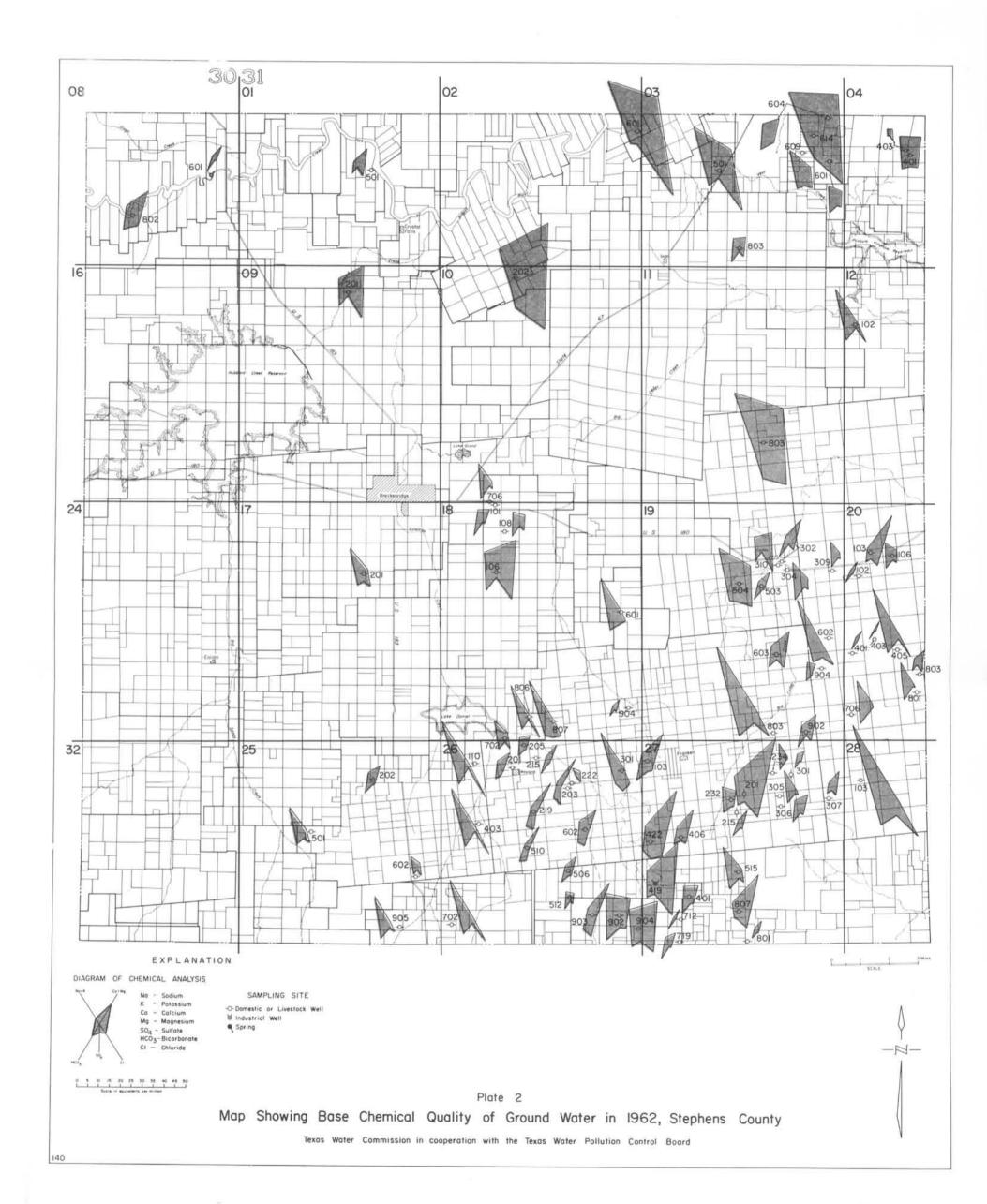

In ensuing sections of the report, conditions of ground-water occurrence in the following major geologic units are discussed: the Canyon and Cisco Groups of the upper Pennsylvanian System, the Wichita Group of the lower Permian System, the Trinity Group of Cretaceous age, and alluvial sediments of Quaternary age (Table 2). The stratigraphic relationships of these rock units are illustrated in Figures 4 and 5, and their areas of outcrop on Figure 3. The complex depositional history of north-central Texas is discussed in more detail in the Appendix.

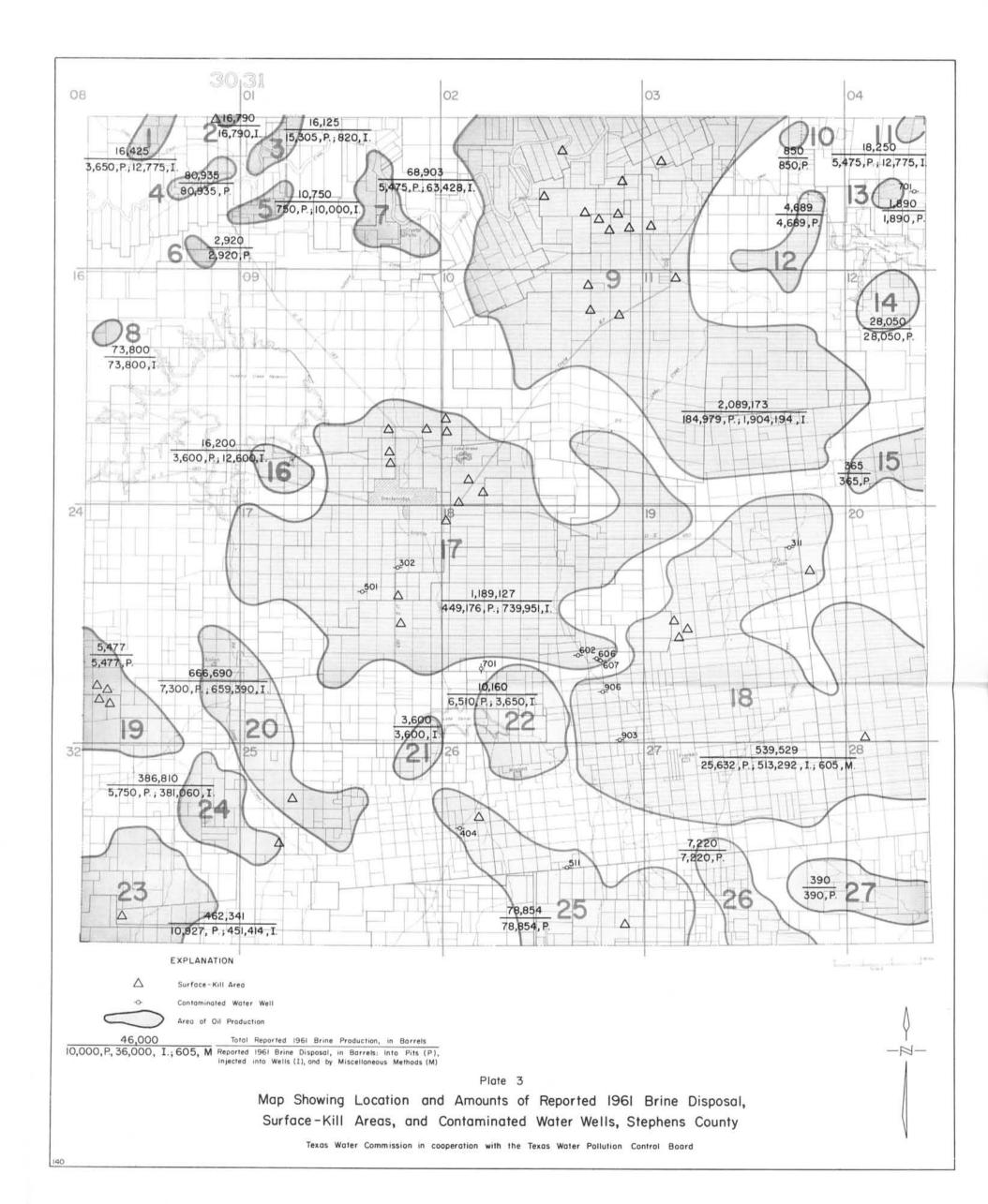
Table 2.--Geologic formations and their lithic descriptions, Stephens County

€

4

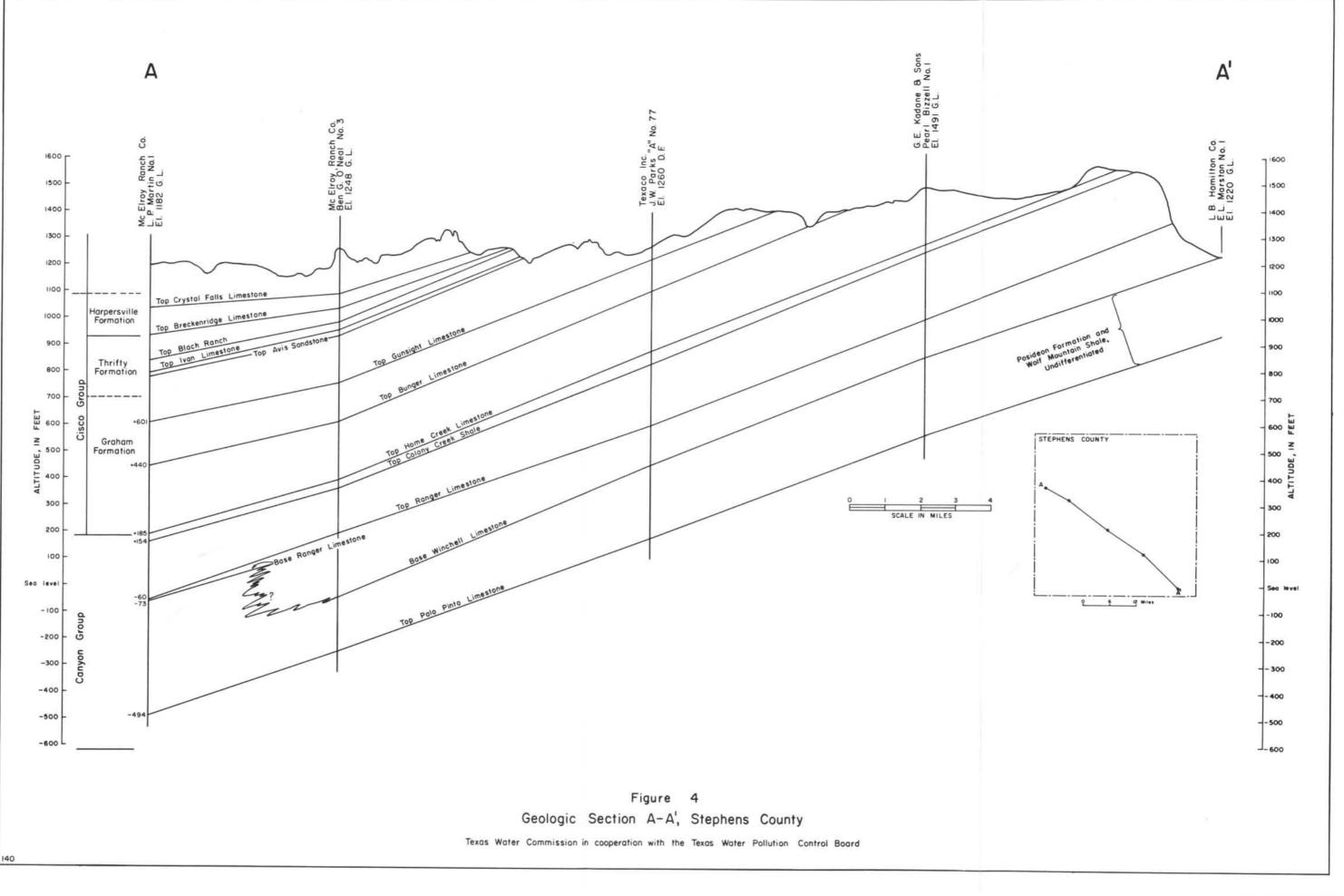

System	Group	Formation	Member	Lithologic character	Approximate maximum thickness (ft.
Quaternary				Surficial flood-plain and terrace alluvium of Pleistocene to Recent age along the streams; consists of sand, gravel, silt, and clay.	2
Unconfor	nity				
Cretaceous	Trinity			Conglomerate, sand, silt, and shale.	35
Unconford Permian	Wichita	Moran	Sedwick Limestone Santa Anna Shale Gouldbusk Limestone Dothan Limestone Watts Creek Shale	Shale, with some limestone, sandstone, and siltstone.	?
		Pueblo	Camp Colorado Limestone Salt Creek Bend Shale Stockwether Limestone Camp Creek Shale	Thin limestone beds, separated by shale units. Siltstone, sandstone, and coal beds are also present.	100-200
		Harpersville	Saddle Creek Limestone Waldrip Shale Crystal Falls Limestone Quinn Clay	Numerous lenticular sandstone and con- glomerate deposits, thin limestones, shale, siltstone, and thin coal beds.	200-275
	Cisco	Thrifty	Breckenridge Limestone Blach Ranch Limestone Ivan Limestone Avis Sandstone	Numerous lenticular sandstone deposits, thin limestones, shale, and siltstone, with some thin coal beds.	115-215
<pre>?ennsylvanian</pre>	540 1	Graham	Wayland Shale Gunsight Limestone South Bend Shale Bunger Limestone Gonzales Creek Limestone Finis Shale	do	550
		Home Creek Limestone		Massive, blue-gray, bioclastic limestone.	34
		Colony Creek Shale		Lenticular sandstone, calcareous shale, siltstone, and silty shale.	66
		Ranger Limestone		Irregularly bedded nodular, to massive limestone, and shale.	57
		Placid Shale		Shale, sandstone, siltstone, and a few thin calcareous sandstones, and limestones.	158
	Canyon	Winchell Limestone		Massive, bioclastic limestone and shale	43
		Wolf Mountain Shale		Soft, fossiliferous shale, with interbedded sandstone lentils, and limestone beds.	275
		Posideon	Wiles Limestone Fambro Sandstone	Limestones, shale, mudstones, and lenticular sandstones.	75
		Palo Pinto Limestone		Irregularly bedded crystalline limestone, dark gray in color. Fossiliferous.	25
	Strawn	Keechi Creek Shale		Shale, sandstone, and limestone units.	?




0

- 12 -

.



.

.

.....

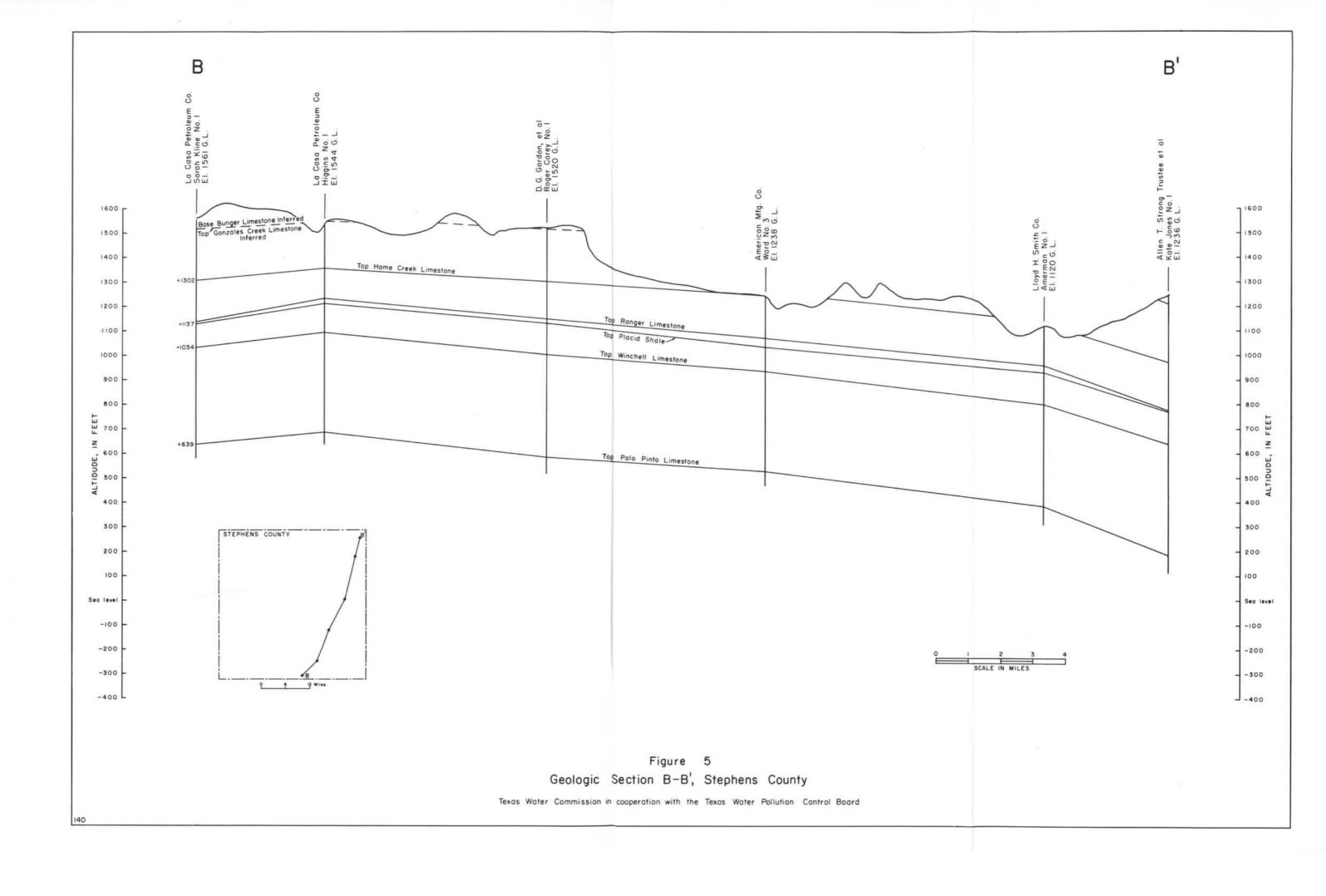
0 .

0

0

C

C


C

C.

C

0

8

C

C

C

(

0

C

0.

٤.

C

C

0

(*

The mode of occurrence of ground water in the county is discussed by group and formation where possible in the following sections. Certain general hydrologic principles that govern the occurrence and movement of ground water are discussed in the section on Ground-Water Hydrology in the Appendix. This discussion may be helpful to an understanding of the problems both in finding and developing ground-water resources in Stephens County.

Just as there is a wide range in the depth and mode of occurrence of ground water in the county, so is there a wide range in the chemical character of the water in the various formations in which it is found. The quality of water particular to each of the geologic units defined is discussed in detail in the following sections, and in the Appendix is a discussion of water-quality criteria for beneficial uses, which will be helpful in interpreting the data on analyses from wells in different parts of the county discussed in this text and tabulated in Table 4. Although the water-quality criteria contained in the Appendix provide useful guidelines, this investigation has shown use being made of ground water with mineral concentrations exceeding these criteria.

As can be seen from Table 4, the principal constituents of ground water are silica, calcium, magnesium, sodium, bicarbonate, sulfate, chloride, fluoride, and nitrate.

The silica and bicarbonate content is relatively constant throughout the county. The silica content is low, seldom in excess of 25 ppm (parts per million), whereas the bicarbonate content is generally high and usually ranges from about 200 to 600 ppm. The calcium generally ranges from 0 to 300 ppm, with most samples having less than 100 ppm. Magnesium, like calcium, is generally low with most of the samples containing less than 50 ppm. Magnesium generally increases with an increase in calcium, but only nine samples had magnesium in excess of 100 ppm.

The average fluoride content of all analyses of ground water in Stephens County was 0.9 ppm, and 31 percent of the samples had a fluoride content of 1.0 ppm or more.

In 15 water analyses, about 6 percent of the total, the nitrate content exceeded 45 ppm. Six of these analyses were from wells over 100 feet in depth.

The average sulfate content of the 240 recent analyses in Stephens County is 164 ppm. Thirty-five percent of the analyses have greater than average sulfate content.

No direct relationship was apparent between the chemical quality of the water and the depth of the wells in Stephens County. The water quality was found to be highly variable in most cases, which might be expected because of the erratic occurrence of ground water in the water-bearing formations.

Pennsylvanian System

Canyon Group

The oldest rocks exposed in Stephens County are in the Canyon Group (upper Pennsylvanian), which has been divided into eight formations, all of which are exposed in Stephens County. These formations in ascending order are: Palo Pinto Limestone, Posideon, Wolf Mountain Shale, Winchell Limestone, Placid Shale, Ranger Limestone, Colony Creek Shale, and Home Creek Limestone. The stratigraphic relationships of these formations with older and younger beds, together with a description of the water-bearing characteristics of each formation, are found in Table 2.

The Canyon Group is exposed in the southeastern corner and along the eastern margin of Stephens County, and westward upstream along Big Caddo and Big Cedar Creeks to about 5 to 7 miles west of the Palo Pinto-Stephens County line (Figure 3).

The Canyon Group is generally composed of thick bioclastic limestone beds and intervening shales, mudstone, thin limestones, and lenticular sandstones and siltstones. Ground water in the Canyon Group generally occurs erratically within the fractured limestones and in the lenticular sandstones and siltstones. The Colony Creek Shale is the principal water-bearing unit in the Canyon Group in Stephens County. The recharge to the Colony Creek is probably through thick lenticular sandstones that occur in the outcrop. The Colony Creek ranges in thickness from about 35 to over 60 feet, and the formation is composed of calcareous shales and siltstones with a thick, cross-bedded, fine-grained sandstone occurring in the upper part of the formation.

A few wells penetrate the Palo Pinto Limestone and the Posideon Formation, representing the lowermost Canyon rocks in the county; but most of the water supplying these wells probably comes from overlying younger strata. The Palo Pinto Limestone, Posideon Formation, Winchell Limestone, and the Ranger Limestone are not considered significant water-bearing formations in the Canyon. Interbedded sandstone lentils in the Wolf Mountain Shale and the Placid Shale produce limited quantities of water in local areas, and some limited well development is found in the Home Creek Limestone.

Most of the ground water from the Canyon Group, supplying 126 wells in Stephens County, is used for domestic or livestock purposes. Of these, approximately 75 wells are completed in the Colony Creek Shale. Three wells producing from the Canyon Group are used for waterflood or other oil-field purposes.

The quality of ground water from the Canyon Group ranges within relatively wide limits, probably as the result of lithologic differences in the formations in which ground water occurs. The water is generally suitable for livestock purposes, and in many areas is suitable also for domestic use. Total dissolved solids in samples of water from the Canyon Group analyzed in the course of this investigation ranged from 269 to 5,314 ppm. The chloride concentration in these samples ranged from 6 to 2,980 ppm, and averaged 358 ppm. Of the 86 samples analyzed, however, approximately 67 percent had chloride concentrations that were below this average. Water samples from the Canyon Group were generally high in bicarbonate.

In the Colony Creek Shale the range in chloride in the samples analyzed was from 14 to 1,320 ppm. The average chloride concentration for the 55 samples from the Colony Creek was 220 ppm, with 67 percent of these samples having chloride concentrations below 175 ppm. The range in total dissolved solids in samples from the Colony Creek was from 324 to 2,936 ppm. The average total dissolved solids in the Colony Creek samples was 938 ppm, with 69 percent of the samples tested having less than 950 ppm total dissolved solids.

0

Depths of wells in the Canyon Group in Stephens County range from shallow dug wells to 450 feet. Wells in the Palo Pinto Limestone and Posideon Formation range from 225 to 365 feet, in the Wolf Mountain Shale from 225 to 629 feet, in the Placid Shale from 22 to 450 feet, in the Colony Creek Shale from 12 to 340 feet, and in the Home Creek Limestone from 20 to 69 feet. The average depth of wells in the Colony Creek Shale is about 121 feet and in the Wolf Mountain Shale about 355 feet. The water in the formations represented in the Canyon Group in Stephens County becomes generally more saline downdip from the outcrop. It was not possible to map the base of fresh water in the Canyon Group with available data. There does not appear to be a direct relationship between the depths of wells completed in the Canyon and the chloride concentration of the samples that were analyzed during the course of this investigation.

Cisco Group

The Cisco Group, which is the group of rocks overlying the Canyon, crops out in the central portion of Stephens County, generally in a northeastsouthwest direction. The Group extends over 75 percent of the surface area of the county, and has an outcrop width of about 22 miles (Figure 3).

The Cisco Group in Stephens County consists of thin limestones and sandstones, with some siltstone, shale, and thin beds of coal. Like the underlying Canyon Group, the Cisco contains many lenticular sand bodies, most of which are channel-fill deposits; however, these lenticular sand bodies are more numerous in the Cisco Group. Most of the ground water occurs in these lenticular sandstones and siltstones, and some ground water occurs in the fractured limestones. These lenticular sand bodies occur erratically at various horizons within the Cisco Group

The Cisco Group is divided into the Graham, Thrifty, and Harpersville Formations in ascending order. A discussion of the three principal formations of the Cisco Group follows.

Graham Formation

The base of the Graham Formation in the Brazos River Valley has been described by Lee and others (1938, p. 12-16) as the base of a deep sandstonefilled channel deposit known as the Kisinger Channel. In other areas, however, the top of the Home Creek Limestone, whenever present, marks the base of the Graham Formation (Table 2). The thickness of the Graham Formation is about 600 feet in Young County, to the north, and is probably about the same in Stephens County.

The Graham Formation is the most highly developed ground-water-bearing formation in Stephens County, and probably contains the most abundant supply of water. More than 180 wells in Stephens County are completed in various horizons within the Graham Formation. More than 85 percent of the water wells in the Cisco Group are completed in the Graham Formation, and the Graham Formation supplies water to over 48 percent of all the wells completed in the county. Most of the water produced from the Graham Formation is used for domestic and livestock purposes, and nine wells furnish water for waterflood operations. Sixty-six of the wells observed in this study, completed in the Graham Formation, are either abandoned or are not being used.

- 19 -

Water quality in the Graham Formation in Stephens County is highly variable, and there appears to be no relationship between well depth and quality of the water. In many cases, there is a mixture of water from two or more waterproducing horizons in order to obtain a better supply.

Alteration of the native quality may have occurred in some areas, but historical records to show where or how much alteration has occurred are limited in number. Some of the wells for which there are historical records are no longer being used or have been abandoned, and as a consequence no new samples could be taken in this investigation. Chloride concentrations ranged from 13 to 5,160 ppm in the 109 wells sampled for analysis. The average chloride concentration was 529 ppm with only about 28 percent of the samples having a chloride content of more than 250 ppm. These ranges do not include those analyses where water-quality alteration had apparently occurred.

The range in total dissolved solids in the samples was from 260 to 8,440 ppm. The average total dissolved solids was 1,550 ppm with only about 32 percent of the wells having more than the average. About 54 percent of the wells have dissolved solids more than 1,000 ppm.

The range in depth of the wells completed in the Graham Formation is from 18 to 330 feet, and the average depth is 139 feet. About 54 percent of the wells in the Graham are deeper than 139 feet. Near Wayland are numerous flowing water wells, or wells in which the water level is near the surface. The depths of these flowing wells are generally about 150 feet.

C:

€

Thrifty Formation

The Thrifty Formation includes strata from the base of the Avis Sandstone Member to the top of the Breckenridge Limestone Member (Table 2). The Thrifty rests unconformably upon the Graham Formation, the Avis Sandstone member being deposited on the widely and deeply dissected Wayland Shale (Lee and others, 1938, p. 54). The thickness of the Thrifty ranges in the county from 117 feet near Rocky Mound to 215 feet near Graham (Lee and others, 1938, p. 54).

Twenty-six wells are listed in Table 3 as having been completed in the Thrifty Formation, of which 7 have been abandoned or are not being used. Most of the other wells are used for domestic purposes, with 6 wells being used for livestock.

Water quality in the Thrifty Formation is variable with chlorides ranging from 49 to 2,000 ppm in the 22 samples collected. The average chloride concentration was 409 ppm with about 41 percent of the samples having more than the average. The range in total dissolved solids is from 528 to 3,992 ppm, and the average is 1,292 ppm with about 41 percent of the samples having more than the average.

The wells in the Thrifty Formation range in depth from 20 to 375 feet, and the average depth is 109 feet. About 89 percent of the wells are 150 feet or less in depth.

Harpersville Formation

The Harpersville Formation includes the strata from the top of the Breckenridge Limestone Member to the top of the Saddle Creek Limestone Member, an interval of about 200 to 275 feet (Plummer and Moore, 1922, p. 160-162). Lee and others (1939, p. 61-63) described this sequence as "...part of a chaotic series of thin limestones, relatively thin lenticular sandstones, variegated sands and clay shales, and thin coals."

Only one well, 31-01-401, appears to be completed in the Harpersville, but it was never used because of poor water quality. This well was sampled from a bailer shortly after drilling, and the chloride content was 3,720 ppm. The well, drilled to a depth of 133 feet, was abandoned shortly after being drilled. Although it is not known what the water quality is in this portion of the Harpersville, the water quality from this well is not believed to be representative.

Water-well development in the Harpersville Formation, as in the Thrifty Formation, is not extensive because ground water occurs erratically in lenticular sandstone and siltstone bodies, which may not yield a sufficient quantity or adequate quality of ground water, and because of the limited need of water in less populated areas of the county.

Summary of Well Yields and Construction in the Pennsylvanian System

Well yields in the Canyon and Cisco Groups of the Pennsylvanian System are variable because of the lenticular nature of most of the water-bearing units within the formations. The maximum yield from the wells equipped with windmills is about 2 to 3 gpm (gallons per minute). Most of the wells that utilize windmills are completed with 5- to 7-inch steel or galvanized iron casing, either set at total depth and perforated or set above the water producing zone with the bottom few feet of the hole not cased. A 2-inch tubing of galvanized iron is generally employed to carry the water to the surface, with wooden sucker rods operating the working barrel. The casing is generally bonded to the bore hole with concrete near the surface, and a concrete curb stabilizes the foundation.

Wells that are equipped with windmills are generally used to furnish water to livestock, and a few furnish water for domestic use. Because of the nonuniform pumping rate, those windmills that supply water for domestic use have overhead storage tanks.

The other drilled wells generally are equipped with electric or small gasoline-operated pumps. Most of the pumps are either pump or jack or jet type, and some of the deeper wells utilize submersible-type pumps. The yield of the wells varies, not only as the result of the porosity, permeability, and thickness of the water-bearing units, but also because of the size of the pump and motor. Drilled wells used for domestic purposes are usually equipped with a pressure tank.

Drilled wells utilizing electric or gasoline-operated pumps are completed with 5- to 7-inch steel or galvanized iron casing, either set to total depth with perforations or set above the water-producing zone with the bottom few feet uncased. Some of the water wells are recompleted, abandoned oil-test holes, and these wells are completed with 7- to 10-inch, steel, oil-field pipe.

Most of the dug wells are lined with field stone to prevent caving, with the upper section of the lining cemented. Galvanized corrugated steel casing of the same type used in culverts was used in a few of the dug wells.

The maximum yield of the wells used for oil-field waterflooding in Stephens County varies from 5 to 10 gpm.

Permian System

Wichita Group

The Wichita Group in the Brazos River Valley includes the rocks from the top of the Saddle Creek Limestone Member of the Harpersville Formation to the top of the Lueders Limestone. The Wichita Group consists of seven formations, of which only the lower two are present in Stephens County. These two formations are, in ascending order: Pueblo and Moran Formations. The outcrop of the Wichita Group occupies the western margin of Stephens County. The Wichita Group extends over 15 percent of the surface area of the county.

(1)

€

Pueblo Formation

The Pueblo Formation, as presently defined, includes the strata from the top of the Saddle Creek Limestone Member to the top of the Camp Colorado Limestone Member (Table 2); its outcrop in western Stephens County generally trends in a north-south direction (Figure 3). The lower half of the Pueblo is distinctly sandy in character, whereas the upper half is principally shale and mudstone. The lower portion, like the underlying Harpersville, is quite variable, containing numerous lenticular sandstones, shale, and thin limestones. The Pueblo Formation ranges in thickness from about 100 to 200 feet. No water wells are known to be completed in the Pueblo in Stephens County.

Moran Formation

Only the lower portion of the Moran Formation outcrops in extreme western Stephens County (Figure 3). The Moran is composed primarily of shale with some limestone, sandstone, and siltstone. No water wells are known to be completed in the Moran in Stephens County.

Cretaceous System

Trinity Group

The rocks of the Trinity Group unconformably overlie rocks of Pennsylvanian and Permian age in north-central Texas. In southeastern Stephens County, an isolated erosional remnant of the Trinity occupies about 10 to 15 square miles (Figure 3). Less than 35 feet of the Trinity is present in Stephens County. The basal 2 to 10 feet consists of conglomerate interbedded with sandstone (Stafford, 1960, p. 277). The Trinity sands supply shallow dug wells in this area, and may contribute ground water to wells completed in older strata.

About 10 wells have been completed in the Trinity Group, and most of these are shallow dug wells, of which about half are either abandoned or are not being used. About 10 additional wells have been drilled through the Trinity in this area and are completed in older strata such as the Graham Formation and Home Creek Limestone. About half of these wells have been abandoned or are not in use. The water in the Trinity is utilized for domestic and livestock purposes.

The water in the Trinity Group is variable in quality. The chlorides in the 6 dug wells sampled for analysis range from 20 to 775 ppm, with 5 of the wells having a chloride content of 355 ppm or less. The dissolved solids range from 335 to 2,189 ppm in the 6 wells, with 3 of the wells having dissolved solids of 966 ppm or less.

The range in depth of the 10 water wells completed in the Trinity is from 14 to 41 feet; 4 of the wells are 30 feet deep. The base of fresh water in the Trinity is believed to be about 41 feet, but the Trinity may be supplying some ground water to the Graham Formation and Home Creek Limestone, which underlie the Trinity in the area. The base of fresh water could not be determined because of the erratic occurrence of channel sands in the formations that occur below the Trinity.

Well yields from the Trinity Group in Stephens County are determined by the depth of the well and the thickness of water-bearing sand or conglomerate in the vicinity of the well. The diameter of the hole also affects well yields; most of the wells are dug, having a diameter of 2 or 3 feet. Because the Trinity is relatively thin in Stephens County and most of the wells are shallow dug wells, the yield is generally low depending upon the amount of discharge and recharge. The area of Trinity outcrop is geographically high in Stephens County--the elevation is about 1,300 feet--so the recharge must come from rainfall.

Most of the dug wells are lined with field stone to prevent caving, and the upper portion of the lining is cemented. A few of the dug wells have galvanized corrugated steel casing of the same type as used in culverts. The wells are usually equipped with a pulley and a rope, or chain, attached to a bucket or bailer.

Quaternary System

Alluvium

Surficial deposits of alluvium and terrace gravel, sand, silt, and clay occur along the streams and in the valleys in Stephens County. According to Stafford (1960, p. 277) these deposits are probably Pleistocene to Recent in age, and were derived from rocks of the Pennsylvanian, Permian, and Cretaceous Systems. Most of these sediments are the result of stream deposition, although some are of windblown origin. Most of the deposits are probably lenticular and relatively thin in most places, generally not exceeding 60 feet. More than 30 wells have been drilled or dug in these deposits, of which about 12 have been abandoned or are not being used. Most of the wells supply water for domestic or livestock use, but two wells supply water for industrial use, and one well is pumped principally for irrigation.

The water quality is highly variable in the wells producing from these deposits. The chlorides range from 11 to 944 ppm in the 16 wells sampled for analysis, 9 of which have chlorides less than 90 ppm. The range in dissolved solids is from 228 to 2,772 ppm, with 11 wells having 725 ppm or less.

The range in depth of the 31 wells completed in these deposits is from 6 to 70 feet, with the average depth being 28 feet. About 61 percent of the wells are less than 25 feet deep. Some of the alluvium may supply ground water to the underlying strata. The base of fresh water is believed to be about 60 feet, depending upon the thickness of the deposit and the nature of the underlying strata. The actual base of fresh water was not determined because of the erratic occurrence of channel sands in the formations that occur below the alluvium.

Well yields from the alluvium in Stephens County are similar to yields from wells in the Trinity Group. The thickness and nature of the water-bearing units in the vicinity of a particular water well, and the well diameter and depth, affect the yield. Most of the shallow dug wells are from 2 to 4 feet in diameter.

One drilled well, 30-08-803, has a casing diameter of 12 inches and a depth of 47 feet. The well is equipped with a turbine pump, and the capacity of the well is 500 gallons per minute, according to the owner. This is the most exceptional well in Stephens County, as it is the only well being used principally for irrigation, and is also the well with the largest yield in the county.

Most of the dug wells are lined with field stone to prevent caving, and the upper portion of the lining is cemented. A few of the dug wells have galvanized corrugated steel casing of the same type as used in culverts.

The yield is small in many of the wells completed in the alluvium.

SURFACE CASING

۲

¢

The function of the Surface Casing Section in the Ground Water Division of the Texas Water Commission is to recommend to members of the oil and gas industry and the Railroad Commission of Texas the depth to which ground water should be protected in drilling tests for oil and gas. The authority for participation by the Texas Water Commission in the surface casing program is derived from rules promulgated by the Railroad Commission under authority given that agency by the statutes dealing with regulation of drilling and production activities of the oil industry.

Statewide Rule 12a of the Railroad Commission requires that operators obtain a letter from the Texas Water Commission recommending the depth to which fresh-water strata should be protected when drilling a new lease or area if the lease or area is not covered by field rules or lease recommendations. Rule 20 of the Railroad Commission requires that all fresh-water strata be protected in drilling or production activities.

- 24 -

In carrying out its duties under Rule 12a, the Texas Water Commission created the Surface Casing Section in the Ground Water Division. The staff of the Surface Casing Section is responsible for maintaining technical-data files upon which to base fresh-water-protection recommendations in all areas of the State, and for preparing these recommendations on application by operators contemplating drilling test wells. The depth to which ground water should be protected in a given area is based on all pertinent information available to the Surface Casing Section staff at the time the recommendation is given. Recommended depths in any one area may therefore be revised when additional subsurface information becomes available. Known depths of water wells being used or depths of wells known to contain water of usable quality, such as domestic. municipal, industrial, livestock, or irrigation wells, are of great value. Electric or gamma-ray neutron logs run on oil and gas tests are used in many areas of the State to determine the depth at which the base of usable quality ground water occurs. Surface elevation is considered when a recommendation is given in an area that has moderate to high surface relief, as is common in the north-central Texas counties. This consideration of elevations is imperative when the area is dissected by streams, because of the danger that poor-quality water will cause contamination of surface and ground water by moving along the dip of the beds to emerge at lower elevations. All of this information is interpreted in the light of the best knowledge of the geology and ground-water hydrology available on the area involved.

Because of the erratic occurrence of ground water in Stephens County, which was described in the preceding sections of this report, known depths of water wells are given special weight in preparing surface-casing recommendations in the county. Usefulness of electric logs in this geologic environment is limited because of the lack of continuous zones in the shallow subsurface that can be correlated over the area, and the difficulty in interpreting water quality from such logs where the aquifer materials range so widely from sands to gravels to limestones over relatively short distances. In the northern part of the county, the Surface Casing Section gives particularly close attention to surface elevations in addition to information on water wells because of the dissection of the surface rocks in this area by the Clear Fork of the Brazos.

In Stephens County a county-wide depth recommendation is not feasible because the depth of surface-casing protection, which would be required in those areas of the county where deep water wells are found, would be an excessive requirement in many other parts of the county. The preceding section of this report describes the occurrence of ground water of usable quality in a number of formations at depths ranging from the surface to over 500 feet. Thus, the results of this study confirm that surface-casing recommendations in this county should be made on a well-to-well or lease-to-lease basis in order to provide adequately for water protection without imposing unnecessary burdens for excessive protection in those areas where deep protection is not needed.

During the 5-year period from 1958 to 1962 inclusive, the Surface Casing staff prepared 515 recommendations for protection of usable-quality ground water for oil and gas tests in Stephens County. Eighty-seven recommendations were prepared during 1963. The depths of these recommendations range from 100 to 550 feet.

Quality and Distribution of Produced Brine

e

0

€

€

€

The 1961 inventory of salt-water production throughout the State, conducted by the Railroad Commission of Texas and the Texas Water Commission and reported by oil companies and operators, shows that a total of 5,796,313 barrels of oilfield brine was produced in Stephens County in 1961. Of this total, 936,169 barrels were disposed of into surface pits, and 4,859,539 barrels were disposed of into injection wells. An additional 605 barrels were disposed of by other methods, such as hauling, spraying on roads, leases, etc.

The tabulation of brine production and disposal in 1961 by oil field and by arbitrarily defined major producing areas is recorded in Table 5. Plate 3. which shows the location and amounts of reported brine disposal, areas of contamination, and apparently contaminated water wells, was drawn by outlining the areas of greatest concentration of producing oil wells. No attempt was made to define individual oil fields, but areas of extensive production were outlined on an arbitrary basis to show the relative concentration of production.

The major areas of surface contamination, or areas in which the vegetation has been killed, are shown on Plate 3, in addition to those water wells from which water sampled for chemical analysis indicated alteration of the chemical quality of the native water.

Chemical Quality of Produced Brine

The chemical quality of brines produced along with oil in Stephens County is presented in Table 5, which is a tabulation of chemical analyses. As can be seen, the ions normally present in most samples from water wells (Table 4) are present in the brines, but significant ions such as sodium (Na) and chloride (C1) are present in greater abundance.

Sodium concentrations in the brine samples ranged from 20,910 to 57,034 ppm. The average was about 39,060 with about 56 percent of the 39 samples having a sodium content of more than 40,000 ppm. The chlorides ranged from 14,500 to 123,700 ppm. The average of the chlorides was 81,153 ppm, with about 54 percent having a chloride content of more than 87,000 ppm.

ALTERATION OF NATIVE CHEMICAL QUALITY OF WATER

Although a study of contamination of surface water in Stephens County was not contemplated in the scope of this project, it is important to note that ground and surface water are interrelated. If the chemical quality of surface water is significantly altered, some of the ground water in that area may be affected through vertical percolation; and of course stream quality can be affected by altered ground water, which contributes to the base flow of the stream.

In 1952 a preliminary survey was conducted on oil-field brine production and disposal in the area drained by the upper part of the Brazos River by the Texas State Department of Health and the Texas Game and Fish Commission. Their report, a copy of which is on file in the Austin office of the Texas Water

- 26 -

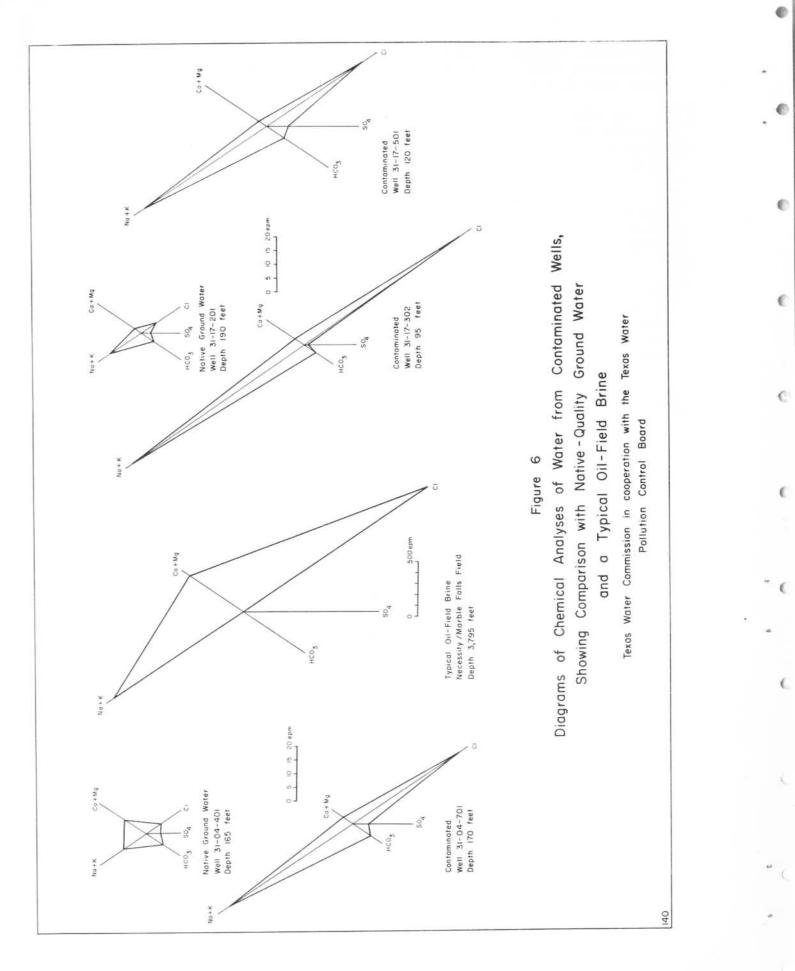
Commission, indicates, based on sample analyses in the area, that salt-water pollution in Stephens County was the most severe in the entire upper Brazos River watershed at that time. (Supplemental Report, unpublished, 1952b, p. 19).

By 1953, after another survey was conducted by the same agencies, it was reported that many of the operators of oil and gas leases were disposing the produced brines into injection wells (First Annual Report, unpublished, 1953, p. 6).

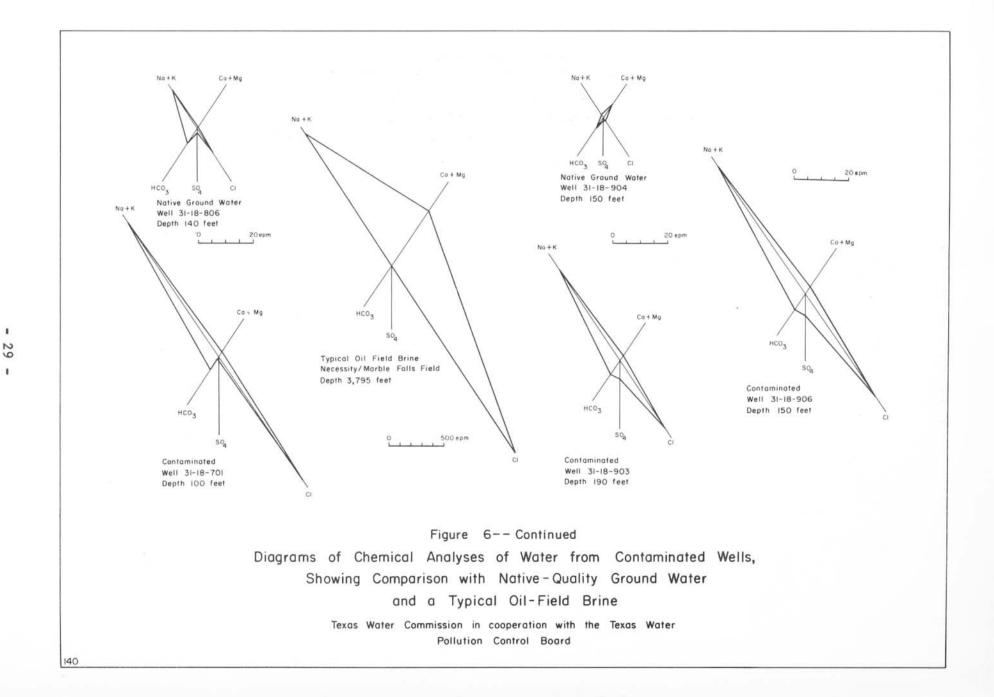
In 1960 an investigation was made by the Railroad Commission of Texas on a problem of salt-water pollution in the vicinity of Breckenridge, where it was found that salt water was entering the drainage of Lake Grand and Gonzales Creek (Parker and Smith, 1960).

Big Branch Dam or Lake Grand Dam was built in the early 1920's for mining, irrigation use, and standby municipal supply. The lake, with a reservoir caacity of about 1,000 acre-feet, is located about 2 miles northeast of Breckenridge (Plate 1). The lake became contaminated with salt water soon after it was constructed and apparently no use has been made of the lake subsequently except for the storage of salt water.

During this field study, it was observed that much of the area around the lake has been denuded of vegetation apparently because the soil has been impregnated with salt. In May of 1963, it was observed that there were numerous seep areas below the dam. A sample taken from the water seeping out below the dam on June 14, 1960 tested 40,000 ppm chlorides (Parker and Smith, 1960, unpublished report). The seepage below the dam runs for about a mile in a draw, tributary to Gonzales Creek, and then appears to go underground. No water wells are present in the area to determine whether alteration of the chemical quality of ground water has occurred.

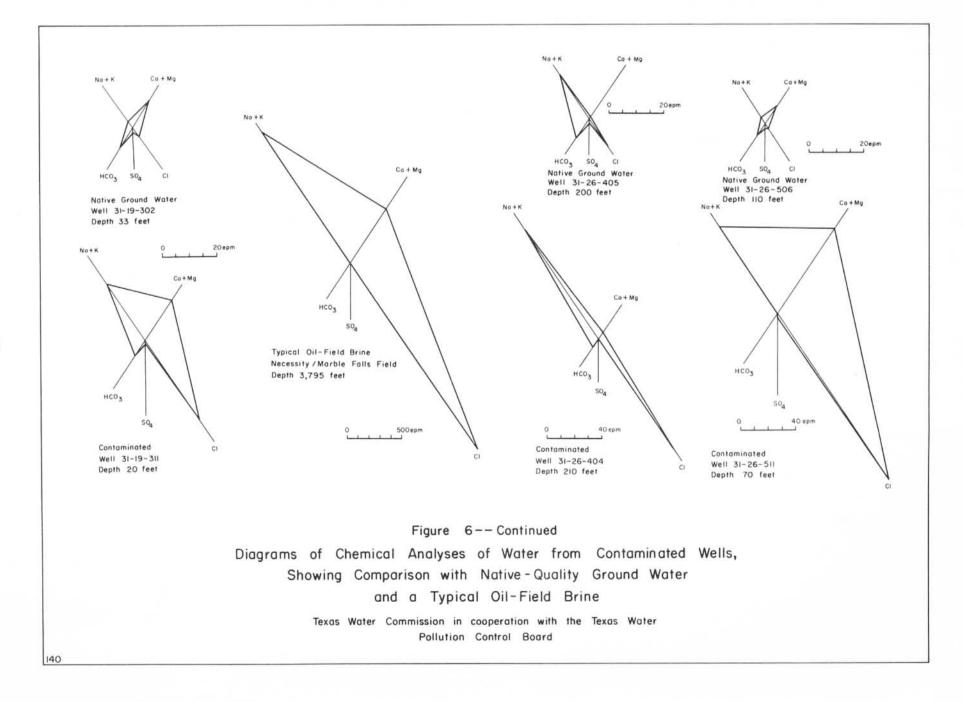

During the present investigation, it was observed that a buried pipeline from a separator on one lease empties brine directly into a draw, which empties into Lake Grand. Other leases were observed to have surface pits in use, with badly leaking earthen dams and large areas where vegetation had been killed.

In some areas where surface pits are no longer being used, large "kill" areas of salt-impregnated soil and salt deposits formed from evaporation continue to contribute to pollution of surface water as rainfall and runoff leaches the salt from the soil.


Another area that exhibits surface contamination is around Ivan in northeastern Stephens County. In this area, soil contamination is indicated by the lack of vegetation, although the areal extent of the "kill" is smaller than the area east of Breckenridge. Salt water is put into surface pits in the Ivan area, which in many cases were observed to leak around the earthen dams.

A few of the water wells in Stephens County that exhibit apparent alteration of native quality as the result of contamination by oil-field brine are shown on Plate 3, and Figure 6 compares diagrams of these contaminated wells with native-quality ground water and a typical oil-field brine. Other water wells exhibit apparent quality alteration, but historical records of chemical quality were not available for comparison.

The source of contamination in wells 31-19-311, 31-17-302, and 31-17-501 appears to be a nearby salt-impregnated "kill" area. In some other cases of



- 28 -

σ

. .

m

0

2

100

- 30 -

. 6

C .

. .

apparent water-quality alteration the source was not apparent, and shallow saltwater injection operations or unplugged or improperly plugged abandoned oil and gas wells may be contributing to ground-water mineralization.

Most of the surface pits observed during this study in Stephens County were unlined. These pits may serve to dispose of more fluid through seepage than evaporation. In such pits, salinity reduces the rate of evaporation. The average annual net evaporation depth for water having a saline concentration of 75,000 ppm is 49 inches in Stephens County, whereas a salinity concentration of 250,000 ppm reduces the average evaporation depth to 35 inches. These figures are intended only to illustrate the order of magnitude involved. They cannot be used to determine actual depth of water evaporation from a specific point for a specific period of time, because they are based on the assumption that the fresh water evaporation rates remain constant and that a free water surface is available for evaporation at all times. Frequently there is a film of oil on the surface of these pits that also substantially reduces the rate of evaporation.

Since dissolved salts in a pit are not evaporated, the fluid holding these minerals in solution becomes more concentrated. If the pits were lined and the salt water was not allowed to overflow the sides of the dikes, the salt would precipitate after the saturation point was reached; some method would have to be employed to haul away this precipitate in order to continue use of the pits for temporary storage.

SELECTED REFERENCES

- Armstrong, C. A., and McMillion, L. G., 1961, Geology and ground water resources of Pecos County, Texas: Texas Board Water Engineers Bull. 6106, v. 1, p. 26-28.
- BJ Service, Inc., 1960, The chemical analyses of brines from some fields in North and West Texas: Unpublished rept.
- Bradish, Ford, 1937, Geologic map of Stephens County, Texas [revised]: Univ. Texas Bur. Econ. Geology.
- Brown, L. F., Jr., 1959, Problems of stratigraphic nomenclature and classification, upper Pennsylvania, north-central Texas: Discussion Am. Assoc. Petroleum Geologists, v. 43, p. 2866-2871.
- 1960, Stratigraphy of the Blach Ranch-Crystal Falls section (upper Pennsylvanian), northern Stephens County, Texas: Univ. Texas Bur. Econ. Geology rept. of Inv. 41, 41 p.
- Cheny, M. G., 1929, Stratigraphic and structural studies in north-central Texas: Univ. Texas Bull. 2913, 27 p.
- Conselman, F. B., Jenke, A. L., and Tice, O. H., 1962a, Preliminary report Hubbard Creek Reservoir Basin, West Central Texas Municipal Water District, Shackelford and Stephens Counties, Texas: Unpublished rept., 10 p.
- 1962b, Final report Hubbard Creek Reservoir Watershed, West Central Texas Municipal Water District, Shackelford, Stephens, Callahan and Eastland Counties, Texas: Unpublished rept., 42 p.
- Cronin, J. G., Follett, C. R., Shafer, G. H., and Rettman, P. L., 1963, Reconnaissance investigation of the ground-water resources of the Brazos River Basin, Texas: Texas Water Comm. Bull. 6310.
- Dean, H. T., Arnold, F. A., and Elvove, Elias, 1942, Domestic water and dental caries: Public Health repts., v. 57, p. 1155-1179.
- Eargle, D. H., 1960, Stratigraphy of Pennsylvanian and lower Permian rocks in Brown and Coleman Counties, Texas: Geol. Soc. Prof. Paper 315-D, 77 p.
- Gard, Chris, and others, 1956, Ground water conditions in north central Texas, Preliminary Report: Texas Board Water Engineers unpublished rept.
- Grimes, D. N., 1960, Ground-water resources of the L. C. Link Ranch, Stephens County, Texas: Unpublished rept., 18 p.
- Guyton, W. F., and others, 1958, Possible movement of salt from salt-water disposal pits into ground-water reservoirs and surface streams: Unpublished rept., 6 p.
- Hem, J. D., 1959, Study and interpretation of the chemical characteristics of natural water: U. S. Geol. Survey Water-Supply Paper 1473, 269 p.

Holmquest, H. J., Jr., 1955, Structural development of west central Texas: Abilene Geol. Soc. Guidebook, p. 19-32. Kelley, W. P., 1951, Alkali soils: New York, Reinhold Pub. Corp., 196 p.

- Laury, R. L., 1962, Geology of the type area, Canyon Group, north-central Texas: Jour. Graduate Research Center, v. 30, no. 3, p. 107-180.
- Laxson, Rowland, and others, 1960, Resistivities and chemical analyses of formation waters from the west central Texas area: West Central Texas Section, Soc. Petroleum Engineers, A.I.M.E.
- Lee, W., Nickell, C. O., Williams, J. S., and Henbest, L. G., 1938, Stratigraphic and paleontologic studies of the Pennsylvanian and Permian rocks in north-central Texas: Univ. Texas Bur. Econ. Geology Pub. 3801, 247 p.

0

€

C

€

€

€

C.

C

- Maxcy, K. F., 1950, Report on the relation of nitrate concentrations in well waters to the occurrence of methemoglobinemia: Natl. Research Council Bull. Sanitary Engineering and Environment, App. D., p. 265-271.
- Moore, R. C., and others, 1944, Corelation of Pennsylvanian formations of North American: Bull. Geol. Soc. America, v. 55, p. 657-706.
- Ogilbee, William, and Osborne, F. L., Jr., 1962, Ground-water resources of Haskell and Knox Counties, Texas: Texas Water Comm. Bull. 6209, p. 1-40.
- Parker, A. L., and Smith, J. E., 1960, Salt water pollution, Breckenridge area, Stephens County, Texas: Texas Railroad Comm. unpublished rept.
- Plummer, F. B., and Moore, R. C., 1921, Stratigraphy of the Pennsylvanian formations of north-central Texas: Univ. Texas Bull. 2132, 228 p.
- Samuell, J. H., 1937, Stephens County, Texas, records of wells and drillers' logs; water analyses from wells, streams, and tanks; and map showing location of wells, streams, and tanks: Texas Board Water Engineers duplicated rept., 37 p.
- Scofield, C. S., 1936, The salinity of irrigation water: Smithsonian Inst. Ann. rept., 1935, p. 275-287.
- Sellards, E. H., Adkins, W. S., and Plummer, F. B., 1932, The geology of Texas, v. 1, stratigraphy: Univ. Texas Bull. 3232, p. 98-186.
- Stafford, P. T., 1960, Stratigraphy of the Wichita Group in part of the Brazos River Valley, north Texas: U. S. Geol. Survey Bull. 1081-G, p. 261-280.
- Texas Electric Service Company, 1953, The history of Breckenridge and Stephens County, community development survey: Unpublished rept. prepared for Breckenridge Chamber of Commerce, June 1953 [Revised June 1962.]
- Texas State Department of Health, and Texas Game and Fish Commission, 1952a, Preliminary survey of oil field brine pollution of the upper Brazos River in Young, Stephens, Throckmorton, Shackelford, Jones, Haskell, Fisher, and Stonewall Counties: Unpublished rept., 14 p.

Texas State Department of Health, and Texas Game and Fish Commission, 1952b, Supplemental report to preliminary survey of oil field brine pollution of the upper Brazos River in Young, Stephens, Throckmorton, Shackelford, Jones, Haskell, Fisher, and Stonewall Counties: Unpublished rept., 44 p.

1953, First annual supplementary report of progress for the control of oil field brines in Young, Stephens, Throckmorton, Shackelford, Jones, Haskell, Fisher, and Stonewall Counties: Unpublished rept., 24 p.

- Texas Water Commission, 1962, Scope of salt water problem: Unpublished Rept., 13 p.
- Texas Water Commission, and Texas Water Pollution Control Board, 1963, A statistical analysis of data on oil field brine production and disposal in Texas for the Year 1961 from an inventory conducted by the Texas Railroad Commission: Compilation of 17 vols.
- Turner, G. L., 1957, Paleozoic stratigraphy of the Fort Worth basin: Abilene and Fort Worth Geol. Soc. 1957 joint field trip guidebook, p. 57-77.
- U. S. Public Health Service, 1962, Public Health Service drinking water standards: Public Health Service Pub. 956, 61 p.
- U. S. Salinity Laboratory Staff, 1954, Diognosis and improvement of saline and alkali soils: U. S. Dept. Agriculture, Agr. Handbook 60, 160 p.
- Wilcox, L. V., 1955, Classification and use of irrigation waters: U. S. Dept. Agriculture Circ. 969, 19 p.

Winslow, A. G., and Kister, L. R., Jr., 1956, The saline water resources of Texas: U. S. Geol. Survey Water-Supply Paper 1365, 105 p.

Mater-bearing unit
 All, Pleistoenu to recent alluvium; CC, Golony Greek; G, Grahum; Har, Harpersville; HC, Home Greek; P, Posideon; PP, Palo Pinto; PS, Placid Shale; R, Ranger; Th, Thrifty; Tr, Trinity; W, Minchell; MA, Nolf Mountain Shale.
 Mater levels
 Reported water levels given in feet; measured water levels given in feet and tenths; P, indicates pumping level.
 Method of lift and type of power : B, bucket or bailer; C, centrifugal; E, electric; G, natural gas, butane, or gasoline; H, hand, J, jet; N, none; S, submersible; T, turbine; W, windmill; Number inficates horsepower.
 D, domestic; Ind, industrial; Irr, irrigation; S, stock; N, none.

	Remarks	Pumps 2-1/2 gpm.	Pumps 1-1/2 gpm.	Rock-lined dug well.		Pumps 500 gpm.			Last used about 10 or 12 years ago. Rock-lined dug well.	Unable to locate. Assumed abandoned. Rock-lined dug well.	011 test. Water sand 16-ft thick from 216 to 235. 10 bailers of water report- ed in 12 hours.	Abandoned after drilling. Water too salty. Sampled by bailer on April 19, 1962.			Last used about 2 years ago. Water re- ported to have become too salty.		
	fise of Mater	Ind, D	Ind, D	z	D,5	III	N	D,5	N	ŧ	N	N	D,S	D	N	z	55
	Method of 1ift	c,E, 3/4	C,E, 3/4	z	c, E, 1/4	с,т, 36	C,W	J,E, 1/3	z	;	z	z	J,E, 1/3	J,E, 1/2	z	с, и	C,W
-	Date of measurement	31, 1962	op	9, 1937	:	Mar. 13, 1962	Mar. 16, 1962	31, 1962	1	Feb. 16, 1937	:	:	Mar. 31, 1962	July 17, 1962	op	July 21, 1962	6, 1962
Water level	Dat	Mar.		Feb.		Mar.	Mar.	May		Feb.			Mar.	July		July	Apr.
2a1.e	Below Land- surface datum (ft.)	27.5P	53.9P	32.4	35	32.0	34.5	35.1	1	18.1	1	;	29.7	26.3	28.5	22.9	50.6
	Altitude of land suriace (ft.)	1,161	1,158	1,144	1,162	1,156	1,156	1,156	ł	:	1,300	1,166	1,113	1,133	1,064	1,132	1,147
	Mater- bearing unit	A11	111	A11	111	A11	A11	111	A11	A11	ų	Har	A11	Th or All	A11	Th	0
Mult	Depth (ft.)	30	30	36	47	47	45	85	15	35	1	z	36	60	35	24	144
Casing	Diam- eter (in.)	8	10	48	7	12	4	4	48	27	I	z	:	1	2	:	10
	Depth of well (ft.)	170	20	36	47	47	45	85	15	35	375	133	36	60	35	24	144
	Date com- plet- ed	1961	1961	1883	1945	1958	1926	1961	18857	£681	1934	1962	1937?	I	1	1885?	1941
	Driller	Luke Ledbetter	qo	D. G. Stover	:	1	A. W. Tipton	Doty	1	P. B. Loving	Belding & McKeelvain 1934	John Ed Conner	Tom Hefner	3	John Huffman	1	Dickson
	Owner	Southwestern Gas Products Co.	op	D. G. Stover	Lester Clark	op	R. W. Tipton	op	W. D. McCain Heirs	P. B. Loving	32-201 Henry Compton	Weldon Powers	W. D. Boyd	Mrs. J. T. McDonald	Claude Curry	B. H. Trannell	Mrs. Elon Rickles
	Well	*30-08-601	602	801	802	803	804	805	24-601	801	32-201	*31-01-401	105	02-601	602	801	03-501
		*3	*	*	*	*		*		*		*	*	*		*	*

See footnote at end of table.

٥

€

€

€

€

€

€

ł

ė 6

												Pump not	Pump not 90, and						not				
	Renarks											Not being used when visited. Pun connected.	Not being used when visited. Pump connected. Water sands at 45, 90, 145 ft.				Rock-lined dug well.	Do.	Water has never been used. Pump not connected.				
	Use of Water	s	z	N	so	D,S	D,S	s .	s	D,S	D,5	s	ŝ	z	s'q	D,S	N	Ω	ŝ	N	D,S	s	D,5
	Method of 11ft	с, и	z	z	c,E, 1-1/2	C,E, 1-1/2	с, и	с, и	C,W	J,E, 1	s,E, 1	c,w	C,E	N	с,Е, 3/4	с, и	N	J,E, 1/2	C,W	c,W	c,E, 1/2	с,Е, 1/2	J,E, 1-1/2
Tevel	Date of measurement	:	Mar. 17, 1937	op	;	I	Арт. 6, 1962	op	:	ł	ł	ı	;	:	Apr. 5, 1962	op	Nov. 8, 1962	Ĩ,	Apr. 6, 1962	i.	;	1	1
Water level	Below land- surface datum (ft.)	76	107.0	83.0	145	76	83.2	82.4	75	75	:	75	ł	75	103.3P	119.4	13.2	14	49.6	ł	1	:	;
	Altftude of land surface (ft.)	1,139	1,148	1,146	1,143	1,143	1,143	1,140	1,143	1,143	1,141	1,136	1,141	1,142	1,148	1,146	1,133	1,114	1,134	1,147	1,156	1,163	1,148
	Water- bearing unit	o	U	υ	5	0	9	U	9	9	9	U	υ	ç	0	Ð	9	A11	ŋ	9	U	9	U
Su	Depth (ft.)	150	148	:	160	160	160	150	127	132	160	127	1807	127	140	150	40	20	103	121	126?	1267	105
Casing	Diam- eter (in.)	5	5	;	5	5	2	5	9	9	7	9	2	9	9	4	;	;	5	5	5	s	5
	Depth of well (ft.)	150	148	166	160	160	160	150	127	132	160	127	180	127	140	150	40	20	103	167	126	126	105
	Date com- plet- ed	1915	1934	1915	1900?	1952	1915	1912	1910	1948	1942	1910	I	1910	1959	1944	18807	18807	1951	1920	1951	1953	1950
	Driller	:	;	Grover	McGowan	John Pemberton	:	:	Gallegar	Tom Watkins	:	Gallegar	John Pemberton	Gallegar	Luke Ledbetter	John Pemberton	;	1	Roy Micheal	;	Roy Micheal	op	do
	Owner	Ed Ford	do	H. J. Wesley	S. E. Copeland	Ed Ford	do	Do	Mrs. S. E. Burgess	op	Ben Burgess	Mrs. S. E. Burgess	op	op	Ed Ford	H. J. Wesley	J. B. Rickles	do	A. H. Davis	W. D. Dollar	Edmond Corbett	op	J. B. Collins
	Well	*31-03-601	602	603	604	605	909	607	608	609	610	611	612	613	614	615	701	702	703	801	802	803	804
	100	*31	*	*	*	*	*			*	*				*	*					*	*	*

- 37 -

Denty: Detail of the parts D						1000			11a + a w	A 1 - 2 million	P. a. T. and	τ.	3	And a strength		
II-Gold II-F. Cook II-F. Cok	Me	11	Owner	Driller	Date com- plet- ed	Depth of well (ft.)		(ft.)	bearing unit	of land surface (ft.)	land- surface datum (ft.)	measure	emesit	of of 11ft	use of Water	Remarks
W_{-0} W_{-} Gens. Interface 193 163 <	*31-(H. F. Cook	H. F. Cook	1962	22	36	22	A11	1,027	10.5		, 1962	J,E, 1-1/4	D	Galvanized casing. Dug well at location of spring.
40 Rue, Earli C. 40 193 100 6 100 6 1,229 $$ $-$ 6 0,3 0,3 403 $-$ 3 $-$ 3 100 5 100 5 5 5 5 1,23 6 1,23 5 5 5 5 5 1,23 5 5 5 5 5 1,23 5 1,23 5 5 5 5 1,13 73 4 7 1 5 5 5 5 1,13 73 4 7 5 5 5 5 5 7 1 <td< td=""><td></td><td></td><td>W. A. Gragg</td><td>Nate Harlan</td><td>1937</td><td>165</td><td>5</td><td>150</td><td>5</td><td>1,233</td><td>147.8</td><td></td><td>, 1962</td><td>с, W</td><td>D,S</td><td></td></td<>			W. A. Gragg	Nate Harlan	1937	165	5	150	5	1,233	147.8		, 1962	с, W	D,S	
40 do John Penkerton 193 140 7 1,29 65 \cdots g_{26}^{26} b_{27}^{26} <		402	Mrs. Emili C. Jones	qo	1938	130	9	130	U	1,229	;	1		с, и	D,S	
701Liopal Poeta $rank Lewia$ $-r$ 170 1 100 1	*	403	op	John Pemberton	1938	140	2	140	Ð	1,229	65	1		с,Е, 3/4	D,S	
703 kanch field Lake Ledherter 1930 193 <td>*</td> <td>701</td> <td>Lloyd Potts</td> <td>Frank Lewis</td> <td>ł.</td> <td>170</td> <td>4</td> <td>150</td> <td>U</td> <td>1,205</td> <td>79.1</td> <td></td> <td></td> <td>,Ξ,Έ,</td> <td>D,S</td> <td></td>	*	701	Lloyd Potts	Frank Lewis	ł.	170	4	150	U	1,205	79.1			,Ξ,Έ,	D,S	
09-201 Her. Ada Bali Jahn Ed Gonner 1956 43 41 1,119 13,4 Mar. 24, 1962 C, W D, S 10-201 Ja. H. Tramenti 19807 24 24 Th 1,113 7.3 Jaty 21, 1962 K D, S 202 Jack Black 1947 20 24 Th 1,131 7.3 Jaty 21, 1962 K D, S 203 do 1947 20 24 197 26 26 27 Jaty 21, 1962 K D, S 203 do - 1947 28 24 197 26 27 27 26 27		702		Luke Ledbetter	1959	189	9	189	o	1,112	78.8			N	N	
10-201 k .				John Ed Conner	1956	43	4	43	A11	1,119	13.4	Mar. 24	, 1962	c,w	D,S	
202 Jack Black 1947 20 1947 20 1947 20 1947 20 1 1,101 7.0 de $\frac{1}{3}$, $\frac{1}{6}$, $\frac{1}{3}$, $\frac{1}{3}$, $\frac{1}{6}$, $\frac{1}{3}$, $$		10-201		:	1880?	24	:	24	ЧТ	1,136	7.7	July 21	, 1962	z	N	Rock-lined dug well. No longer used. Water became salty in 1954.
20 do 1943 28 28 Th 1,137 12.6 do $\frac{1}{3}$, $\frac{1}{6}$ B 204 do 1920 20 20 A11 1,376 $\frac{1}{3}$, $\frac{1}{6}$ 8 70 Travis Robbins Rete Echola 1945 98 5 20 Th 1,326 63 1,376 8 9 703 Travis Robbins Rete Echola 1945 98 5 1 1 1,326 63 1 7 1	*	202	Jack Black	:	1947	20	1	20	. Th	1,131	7.0	da	62	J,E, 3/4	Q	Rock-lined dug well.
204 do 1920 20 -1 20 -1 <td>*</td> <td>203</td> <td>do</td> <td>1</td> <td>1943</td> <td>28</td> <td>1</td> <td>28</td> <td>Th</td> <td>1,137</td> <td>12,6</td> <td>do</td> <td></td> <td>J,E, 3/4</td> <td>Q</td> <td>Do.</td>	*	203	do	1	1943	28	1	28	Th	1,137	12,6	do		J,E, 3/4	Q	Do.
701Travis RobbinsPete Echols194398592Th1,32663 C,W D 702Mrs. J. K.Ed Savyers19501207120Th1,33162 C,W D 703Travis RobbinsAdo19511207120Th $1,331$ 62 C,W D 703Travis RobbinsAdo19511207120Th $1,333$ 50 C,W D 704David CahillAdo19471507120Th $1,333$ 50 C,W D 705Mrs. Sloan Baker1947150 D Th $1,323$ 50 C,W D 706Thuman Latham1947150 D D D D D D 706Thuman Latham1947150 D D D D D D 707Thuman Latham1947150 D D D D D D 708Thuman Latham19471950 D D D D D D 708Thuman Latham D D D D D D D D 711-60E. E. Mitchell D D D D D D D D D 708D. W. Denver D	*	204	do	1	1920	20	1	20	A11	;	I	;		c,E, 1/3	53	Concrete-lined dug well in center of creek bottom.
702Mes. J. E.Ed Sawyers19501207120Th1,31162 $\begin{bmatrix} C,F, \\ 1/2 \end{bmatrix}$ D703Travis Robbinsdo19511207120Th1,34362 $\begin{bmatrix} C,F, \\ 1/2 \end{bmatrix}$ 5704David Cahilldo194715051507150Th1,34362 $\begin{bmatrix} C,F, \\ 1/2 \end{bmatrix}$ 5705Mes. Sloan Baker19471505150Th1,32350 $\begin{bmatrix} C,F, \\ 1/2 \end{bmatrix}$ 0706Thurana Lathan19501096510977Th1,32350 $\begin{bmatrix} C,F, \\ 1/2 \end{bmatrix}$ 0705Thurana Lathan19361272571,32350 $\begin{bmatrix} C,F, \\ 1/2 \end{bmatrix}$ 0706E. E. Mitcheil19361275127701,16296.31962 $\begin{bmatrix} C,F, \\ 1/2 \end{bmatrix}$ 0701D. W. Deaver1906568567261,1962 $\begin{bmatrix} C,F, \\ 1/2 \end{bmatrix}$ 0701D. W. Deaver190672672626801C. M. Caldwell19361277726101802C. D. Devenport1996106726261802C. D. Devenport1936 <td< td=""><td>*</td><td>102</td><td></td><td>Pete Echols</td><td>1945</td><td>98</td><td>10</td><td>92</td><td>μL</td><td>1,326</td><td>63</td><td>1</td><td></td><td>c,W</td><td>Q</td><td>92</td></td<>	*	102		Pete Echols	1945	98	10	92	μL	1,326	63	1		c,W	Q	92
703Travis Robbinsdo19511207120Th1,34362 $$ C,W 8 704David Cahilldo19471505150Th1,32350 $$ C,W 8 705Mrs. Sloan Baker $$ 1947150 $$ 1947 150 $$ 1947 150 $$ C,W 8 706Thurman Latham $$ 1950109 6 109 Th $1,323$ $$ C,W N $11-601$ E. E. Mitchell $$ 1950127 5 127 CC $1,162$ 98.3 $June 28, 1962$ C,E D,S $11-601$ E. E. Mitchell $$ 1936 127 5 127 CC $1,162$ 98.3 $June 28, 1962$ C,E D,S $11-601$ D. W. Deaver $$ $Fincher190656856C26C,E101D. W. Deaver190672672C26802C. D. Devenport1906102NN$	#	702	Mrs. J. E.	Ed Sawyers	1950	120	2	120	ЧТ	1,331	62	1		c,E, 1/2	Q	Do.
704 David Cahill do 1947 150 5 150 Th 1,323 50 $0, 1, 3$ $1, 3$ 0 $0, 1, 3$ 0 $0, 1, 3$ 0 $0, 1, 3$ 0		703		op	1951	120	7	120	Th	1,343	62	;		C,W	60	E0 112
705 Mra. Sloan Baker 1947 150 -1 Th $1,223$ $$ $-$ N N N 706 Thuran Latham 1950 109 66 109 Th $1,330$ $$ $$ $0',E'$ $0'$ $0'$ $11-601$ E. E. Mitchell 1950 127 5 127 5 127 $0'$ $$ $0',E'$	*	704		qo	1947	150		150	ЧĻ	1,323	50	;		c,E, 1/3	٩	
706 Thurman Latham 1950 109 109 109 109 109 109 109 109 109 109 100		705		ł	1947	150	1	;	$_{\rm Th}$	1,323	;	:		N	N	Abundoned in 1952 because of poor supply
11-601 E. E. Mitchell 1936 127 5 127 CC 1,162 98.3 June 28, 1962 C,F, D,S 701 D. W. Deaver Fincher 1906 56 8 56 C 26	*	706)	1950	109	9	109	Th	1,330	ť	÷		c, E, 1/2	n	
701 D. W. Deaver Fincher 1906 56 8 56 C 26		11-601		:	1936	127	5	127	CC	1,162	98.3	June	1, 1962	C,E, 1/2	D,S	Water level measured in abandoned well about 20 ft, east of this well.
301 C. M. Caldwell do 1896 72 6 72 C 39.5 Mar. 18, 1937 N <td>*</td> <td>701</td> <td></td> <td> Fincher</td> <td>1906</td> <td>56</td> <td>80</td> <td>56</td> <td>U</td> <td>1</td> <td>26</td> <td>1</td> <td></td> <td>;</td> <td>;</td> <td>to locate.</td>	*	701		Fincher	1906	56	80	56	U	1	26	1		;	;	to locate.
G. D. Devenport Hayden 1956 102 N N CC 1,266 N N	Ψ.	801		qo	1896	72	9	72	C	ł	39.5	Mar. 18	1, 1937	:	;	Do.
		802	5	Hayden	1956	1.02	z	z	cc	1,266	ł	1		z	z	Abandoned in 1957 because of weak supply

۲

€

€

Ċ

€

€

C

ć

Ċ

¢

Table 3.--Records of wells and springs, Stephens County---Continued

- 38 -

WellDonerDrillerDiriller11-11-803G. D. DevenportG. D. Devenport195712-101S. G. CopelandRoy Micheal195312-101S. G. CopelandRoy Micheal195317-201Gilbert RidingsBuddy Jackson195417-201Gilbert RidingsBuddy Jackson195317-201Gilbert RidingsBuddy Jackson195317-201Gilbert RidingsBuddy Jackson195417-201Gilbert RidingsBuddy Jackson1953302G. V. Edwards1953303D. G. Edwards1950304D. C. Edwards1950305Mrs. Myrtle E1950306C. W. Wulfjen, Jr1950307D. C. EdwardsEd Savyers1950308Mrs. Myrtle E1950309D. C. Savyers1950301Jack FambroughDelmar Gentry1950302Jack Fambro1950303Jack Fambro1950304Jack Fambro1950305Gurges MastersB. K. Richardson1950306C. A. ForeB. K. Richardson1950307John VickB. Y. Hayden1950308Corge MastersJ. V. Hayden1950							Casing	gu			Mate	Water level	-	-		
(1.11)(1) (1.0. horempert) (1.0) </th <th>Well</th> <th></th> <th>Owner</th> <th>Driller</th> <th>Date com- plet- ed</th> <th>Depth of well (ft.)</th> <th></th> <th>Depth (ft.)</th> <th>Water- bearing unit</th> <th>Altitude of land surface (ft.)</th> <th>Bel Lan Burf dat dat (ft</th> <th>Date of measurement</th> <th></th> <th></th> <th>lise of ater</th> <th>Remarks</th>	Well		Owner	Driller	Date com- plet- ed	Depth of well (ft.)		Depth (ft.)	Water- bearing unit	Altitude of land surface (ft.)	Bel Lan Burf dat dat (ft	Date of measurement			lise of ater	Remarks
10.10 0. C. Operiud My theolet 193 10 1	-11-16			G, D. Devenport	1957	18	:	18	o	1,266		10,			s,	Rock-lined dug well.
10 5. d. d. bake baletere 190 17 0 $$ $0,0$ 17 0 $$ $0,0$ 17 0 $0,0$ 17.20 Buke stating Modu Jackana 193 $0,0$ $$ 0 $$ 0 $$ 0 $$ 0 $0,0$			s.	Roy Micheal	1955	150	ŝ	150	CC	1,247	26	ł	C. 1,		s,	
1.2-10 0 luber fielding ludy Jackson 196 197 $ -$	*		ů,	Luke Ledbetter	1960	137	5	110	CC	1,249	:	ł	1,0		s,	
	* 17-	-201	Gilbert Ridings	Buddy Jackson	1954	:061	:	:	о	1,242		July 20, 1		5°,	D	
		-	C. V. Edwards	ı	1953	80	:	1	μ	1,264		з,		7	N	
30 9. r. Dickenn 9.1 9.1 $\frac{1}{10}$	*	301	D. C. Edwards estate	:	1918	138	6-5/8	I.	9	1				7	z	
30 m_{cunstr} , \dots \cdots 340 12 \cdots 130 \cdots 1940 12 1 12 12 120 <t< td=""><td></td><td>302</td><td>B. F. Dickson</td><td>1</td><td>ł</td><td>95?</td><td>9</td><td>;</td><td>U</td><td>1,228</td><td>3</td><td>Ì</td><td>'n</td><td></td><td>s, c</td><td></td></t<>		302	B. F. Dickson	1	ł	95?	9	;	U	1,228	3	Ì	'n		s, c	
601 c. w. witfjew, Jr.	*			t	1940?	120	;	ł	0	1,239		July 20, 1			s ' (
IB-I01 J. D. Collins Ed Savyers 1951 135 7 133 Th 1,332 $$ $ -$ <td></td> <td></td> <td>C. W. Wulfjen, Jr.</td> <td></td> <td>1962</td> <td>120</td> <td>1</td> <td>1</td> <td>Th</td> <td>1,362</td> <td>1</td> <td>I</td> <td>255.0</td> <td>N</td> <td>N</td> <td>Test well. Owner plans to redrill hole with regular cable tool rig for water well.</td>			C. W. Wulfjen, Jr.		1962	120	1	1	Th	1,362	1	I	255.0	N	N	Test well. Owner plans to redrill hole with regular cable tool rig for water well.
				Ed Sawyers	1951	135	7	135	f	1,332	l.	ł	U	Ê,E	a	
				Delmar Gentry	1952	120	5	120	Th	1,350	20	1	r	а,	Q	
104 Jack Fambro 1949 80 6 80 Th 1,320 15 $\frac{1}{1}$, $\frac{1}{1}$, $\frac{1}{2}$ D 105 E111s Hope Texaco 1923 1537 Th 1,340 11.1 June 19, 1962 $\frac{1}{1}$, $\frac{1}{1}$, $\frac{1}{2}$ D 106 do Damon Gray 1958 100 Th 1,357 $\frac{1}{1}$, $\frac{1}{1}$, $\frac{1}{2}$ D 107 C. D. Griggs Ed Savyers 1947 128 6 128 Th 1,357 $\frac{1}{1}$, $\frac{1}{1}$, $\frac{1}{1}$, $\frac{1}{1}$ D 108 C. A. Fore B. K. Richardson 1910 75 $\frac{1}{1}$, $\frac{1}{3}$, $\frac{1}{1}$ D 201 John Vick Ed Savyers 1990 100 $\frac{1}{1}$, $\frac{3}{3}$, $\frac{1}{1}$ $\frac{1}{1}$, $\frac{1}{1}$, $\frac{1}{1}$ $\frac{1}{1}$, $\frac{1}{1}$, $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$, $\frac{1}{1}$, $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$, $\frac{1}{1}$ $\frac{1}{1}$ $\frac{1}{1}$	*	103	op	ł	1920	80	N	;	Th	1,342	18	ł	U	Μ,	so	Old oil well plugged back to 80 ft.
105 E111s Hope Texaco 1923 1537 Th 1,340 11.11 June 19, 1962 C,W S 106 do Damon Gray 1958 100 5 100 Th 1,357 $\frac{1}{12}$, $\frac{1}{12}$, $\frac{1}{12}$ D 107 C. D. Griggs Ed Sawyers 1947 128 6 128 Th 1,355 12 $\frac{1}{12}$, $\frac{1}{12}$, $\frac{1}{12}$, $\frac{1}{12}$ D 108 C. A. Fore B. K. Richardson 1910 75 $\frac{1}{1364}$ $\frac{1}{1364}$ $\frac{1}{112}$, $\frac{1}{126}$, $\frac{1}{126}$ D 201 John Vick Ed Sawyers 1910 75 $\frac{1}{1364}$ $\frac{1}{1364}$ $\frac{1}{112}$ $\frac{1}{122}$ D 201 John Vick Ed Sawyers 1950 100 $\frac{1}{1364}$ $\frac{1}{1017}$ $\frac{1}{122}$ $\frac{1}{105}$ $\frac{1}{122}$ $\frac{1}{122}$ $\frac{1}{1364}$ $\frac{1}{1017}$ $\frac{1}{122}$ $\frac{1}{1364}$ $\frac{1}{101}$ $\frac{1}{122}$ $\frac{1}{101}$ $\frac{1}{122}$ $\frac{1}{101}$ $\frac{1}{122}$ $\frac{1}{101}$ \frac				1	1949	80	9	80	Th	1,320	15	1	r 1	,E, -1/2	a	
106 do Damon Gray 1958 100 5 100 Th 1,357 $$ $$ $\frac{1}{1/2}$ 107 C. D. Griggs Ed Sawyers 1947 128 6 128 Th 1,355 12 $$ $\frac{1}{1/2}$ $\frac{1}{1/2}$ 108 C. D. Griggs Ed Sawyers 1947 128 6 128 Th 1,355 12 $$ $\frac{1}{1/2}$ 1				Техасо	1923	1537	1	:	Th	1,340		June 19, 1		а,	ŝ	01d oil test Tolbert #4 plugged back to 153?
107 C. D. Griggs Ed Savyers 1947 128 6 128 Th 1,355 12 3, E, 108 C. A. Fore B. K. Richardson 1910 75 Th 1,336 34.1 July 17, 1962 B.H 201 John Vick Ed Savyers 1950 100 Th 1,336 34.1 July 17, 1962 B.H 201 John Vick Ed Savyers 1950 100 Th 1,344 C,W 202 George Masters J. V. Hayden 1954 242 5 150 G 1,359 C,G,Y		106	op	Damon Gray	1958	100	ς.	100	Th	1,357	ł	:	7-	,E,	a	
108 C. A. Fore B. K. Richardson 1910 75 Th 1,336 34.1 July 17, 1962 B.H 201 John Vick Ed Savyers 1950 100 Th 1,344 C.M 202 George Masters J. V. Hayden 1954 242 5 150 G 1,359 C.G.S.		107	C. D. Griggs	Ed Sawyers	1947	128	9	128	Th	1,355	12	1	рř	,E,	D	
201 John Vick Ed Sawyers 1950 100 Th 1,344 C,W 202 George Masters J. V. Hayden 1954 242 5 150 G 1,359 C,G,W				B. K. Richardson	1910	75	ł	:	ŕĽ	1,336	34.1	July 17, 1			, S	
George Masters J. V. Hayden 1954 242 5 150 G 1,339 C,G, 2-1/2				Ed Sawyers	1950	100	;	1	Th	1,344	1	;	U	м,	ŝ	
		202	George Masters	J. V. Hayden	1954	242	Ś	150	0	1,359	Ì	1	5	,G,	ŝ	

¢

- 39 -

					1000	COBLEM								
Well	Owner	Driller	Date com- plet- ed	Depth of well (ft.)	Diam- eter (in.)	Depth (ft.)	Water- bearing unit	Altitude of land surface (ft.)	Lelow Land- surface datum (ft.)	Date of measurement	of ement	Method of 11ft	Use of Water	Renarks
*31-18-203	George Masters	Ed Sawyers	1947	150	9	4	Th	1,368	17.7	June 18	, 1962	B,H	55	
204	do	J. V. Hayden	1951	70	5	20	f	1,359	5.6	op		cf,G, 7	82	
501	L. Williams	1	1918	200	9	ţ	9	:	82.0	Feb. 10, 1937	, 1937	z	N	Unable to locate. Assumed abandoned.
109	S. T. Swenson	Nel Swenson	1885?	06	9	90	ß	1,515	19.4	June 20,	, 1962	C,E, 1/2	D,S	
602	J. D. Cox	Delmar Gentry	1951	200	9	200	U	1,351	65	1		C,E, 3/4	D,S	
603	Floyd Vick	McLaughlin	1930	120	9	120	Ð	1,537	14.0	July 18, 1962	3, 1962	с, и	s	
604	op	Unknown	1934	220	;	ţ	D	1,573	ł	ł		C,W	z	
605	S. T. Swenson	Nel Swenson	1887	35	t	:	ß	1,503	14.9	Nov. 1	15, 1962	с, а,	s	
606	L. C. Burke	Luke Ledbetter	1960	185	9	185	U	1,377	105	;		з,Е, З	D	
607	op	:	1934	210	9	210	U	1,388	116.8	May	1, 1962	с, ч	ŝ	
701	Mrs. M. M. Carey	Buyers	1919	100	ę	80	Th	1,281	4.7	Oct.	9, 1962	с, и	N	Last used for domestic and stock in 1955. Sampled from bailer.
702	Alex Fambro	1	1905	150	9	50	3	1,292	Flows	May	3, 1962	с,н	D,S	
801	do	Miller	1921	150	9	202	D	1,311	1		1	с, и	\$	
802	T. C. Fambro	op	6161	60	9	60	0	1,316	21.4	Oct. 1	10, 1962	С, И	ŝ	
803	do	:	;	125	;	*	9	1,308	4.1	op	0	z	z	
804	op	1	ł	125	;	ţ	9	1,326	33.4	op	0	z	z	
805	Alex Fambro	:	1920	100	9	60	9	1,322	ł	'	;	- C,W	D,S	
806	qo	Miller	1915	140	ġ	60	9	1,328	44.7	July 1	13, 1962	с, и	so	
807	Jess Fambro	:	1918	150	8	150	С	1,362	75		F	J,E, 1-1/2	D,S	
106	C. McCauley	:	1	14	36	14	A11	1	3.9	Feb. 1	10, 1937	N	N	Rock-lined dug well. Unable to locate. Assumed abandoned.
902	C. E. Langford	Luke Ledbetter	1961	130	5	130	U	1,464	;		;	C,E, 1/2	۵	
903	3 I. C. Peeks	Marvin Sides	1955	190	Q.	190	U	1,476	:		:	с,Е, 3/4	sa.	

€

€

€

€

¢

€

Table 3.--Records of wells and springs, Stephens County--Continued

- 40 -

12

C

					Casing	Bu			Wate	Water level				
Well	Owner	Driller	Date com- plet- ed	Depth of well (ft.)	Diam- eter (in.)	Depth (ft.)	Water- bearing unit	Altitude of land surface (ft.)	Relow land- surface datum (ft.)	Dat measu	Date of measurement	Method of lift	Use of Water	Remarks
*31-18-904	Hal Langford		1954	150	9	150	9	1,418	14.8	June	15, 1962	C,E, 3/4	s	
905	C. Newham	1	1956	72	2	I.	U	1,473	;		;	с, Е,	z	Not being used now. Pump disconnected. Very weak supply. Owner may drill deeper, later.
906	E. D. Morgan	Luke Ledbetter	1961	150	4	150	9	1,423	:		:	J,E,	D,S	
206	Alex Fambro	ł	1960	150	2	100	o	1,347	;		;	C,W	D,5	Not being used when visited in 1962.
906	G. E. Langford	Luke Ledbetter	1961	148	N.	148	U	1,427	54.7	Sept.	15, 1962	z	z	Not being used when visited in 1962. Owner plans to install pump later and use for stock. Sampled from bailer.
606	R. S. Taylor	ł	1917	200	9	200	Ð	ł	60.0	Feb.	10, 1937	z	z	
910	Floyd Vick	:	1901	110	9	110	o	1,615	31.7	July	18, 1962	C,W	z	
101-61	Техасо	Texaco	1921	3,200	18	1	67	1	1		;	z	z	Abandoned oil test. Black #7 plugged now. Water sand reported between 200 and 300 ft.
301	R. M. Rogers	1	1	89	5-1/2	;	cc	1,279	53.5	Feb	15, 1937	z	z	
302	Otis Hodges	;	1910	33	36	33	+ HC	1,241	16.4	Apr.	10, 1962	J,E, 1/2	D,S	Rock-lined dug well.
303	R. M. Rogers	;	:	135	9	;	cc	;	65.0	Feb.	17, 1937	z	z	
304	D. L. Neims	John Gray	1957	200	9	141	CC	1,279	12.7	June	12, 1962	J,E, 1/2	Q	
305	R. J. Carey	do	1958	166	7	70	cc	1,277	20		;	с,и	s	
306	Garland Coody	Marvin Sides	1952	175	ę	175	CC	1,282	1		;	J,E, 1/2	50	
307	R. M. Rogers	:	1950	65	9	65	22	1,279	14.8	June	12, 1962	1,E, 1/2	Q	
308	Garland Coody	:	1923	150	4	;	CC	1,221	:		:	J,E, 1/2	D,S	
309	J. R. Coody Estate	:	1890	100	9	100	CC	1,337	:		;	J,E, 1/2	D,S	
310	J. M. Luttrell	1	1910	24	192	24	HC	1,242	14.0	Apr.	10, 1962	J,E, 1	£	
311	J. M. Rogers	Prairie Oil & Gas Co.	1919	20	156	20	НС	1,227	12.9	Apr.	11, 1962	2 J,E, 1	D,S	
401	L. R. A. Sorgee Estate	Humble Oil Co.	1920	340	6-5/8	}	CC	:	118	Feb.	19, 1937	N	z	Unable to locate. Assumed abandoned.

- 41 -

Mell Denier Denier Deta Deta Deta *31-19-402 Garland Coody J. R. Coody 1919 501 R. J. Carey John Gray 1919 *007 John Gray 1900? * 503 Mrs. Albert Smith Proctor 1930 1 * 503 Mrs. Albert Smith Proctor 1930 1 * 503 Elmer Hudspeth Roy Micheal 1930 2 * 503 Oliver Ledbetter John Gray & Marvin 1952 1 * 601 Garland Coody Marvin Sides 1953 2 * 603 Mrs. L. C. Link - 1 * 603 Garland Coody Marvin Sides 1952 1 * 603 Sarland Coody Marvin Sides 1952 1 * 603 Sarland Coody Marvin Sides 1954 1 * 603 Sarland Coody Marvin Sides 1956 1 * 603 Sarland Coody Estate - - - * 603 Sarland Coody Estate - 1 1 * 603 S. A. Trower	Depth of well (fr.) 84 84 20 30 65 65 65 239 120 120 120 120	Diam- Depth eter (ft.) 5-1/2 84 7 134 7 134 6 239 6 239 6 120		Mater- Altitude bearing of land unit suriace (ft.) G 1,326 All 1,224	tude Felow and Land- ace surface .) datum (ft.) (26 37.7		Date of measurement		Method of 11ft N	Use of Water	Remarks
Carland Coody J. R. Coody 1919 R. J. Carey 1900? Ans. Albert Smith Proctor 1958 Mrs. Albert Smith Proctor 1930 Elmer Hudspeth Roy Micheal 1952 Oliver Ledbetter John Gray & Marvin 1953 Garland Coody Marvin Sides 1952 Mrs. L. C. Link 1953 J. R. Coody Estate 1955 R. A. Trower 1955 J. F. Eddleman John Gray 1950	84 20 134 65 65 239 239 120 141 141 120	- 1/3	~		-				-		
501 R. J. Carey 1900 502 do John Gray 1958 503 Mrs. Albert Smith Proctor 1930 504 Elmer Hudspeth Roy Micheal 1930 505 Dliver Ledbetter John Gray & Marvin 1952 506 Elmer Hudspeth Roy Micheal 1952 505 Oliver Ledbetter John Gray & Marvin 1953 601 Garland Coody Marvin Sides 1952 602 Mrs. L. C. Link 603 Garland Coody Marvin Sides 1954 603 Garland Coody Marvin Sides 1955 603 Statad 1954 604 J. R. Coody Estate 1955 605 R. A. Trower 1955 801 J. F. Eddleman John Gray 1950	20 134 30 65 65 239 120 141 141 120					7 June	13,	1962	C,W	s	
502doJohn Gray1958503Mrs. Albert Smith Proctor1930504Elmer HudspethRoy Micheal1952505Oliver LedbetterJohn Gray & Marvin1953601Garland CoodyMarvin Sides1952602Mrs. L. C. Link603Garland CoodyMarvin Sides1952604J. R. Coody Estate1953605R. A. Trower1956801J. F. EddlemanJohn Gray1955	134 30 65 239 120 141 141 120						:		c,c,	D,S	Last used in 1961. Pump not in opera- tion when visited in 1962. Rock-lined dug well.
503Mrs. Albert Smith Proctor1930504Elmer HudspethRoy Micheal1952505Oliver LedbetterJohn Gray & Marvin1953601Garland CoodyMarvin Sides1952602Mrs. L. C. Link603Garland CoodyMarvin Sides1952604J. R. Coody Estate1954605R. A. Trower1955601J. F. EddlemanJohn Gray1955	30 65 239 120 141 141 120			G 1,393	193 65.7	7 Aug.	. 25, 1962		C,W	s	
504Elmer HudspethRoy Micheal1952505Oliver LedbetterJohn Gray & Marvin1953601Carland CoodyMarvin Sides1952602Mrs. L. C. Link603Carland CoodyMarvin Sides1954604J. R. Coody Estate1954605R. A. Trower1954801J. F. EddlemanJohn Gray1955	65 239 120 141 120			A11 1,261	9.4	4 June	13,	1962	В,Н	D,S	Rock-lined dug well. Goes dry when creek goes dry.
505Oliver LedbetterJohn Gray & Marvin1953601Garland CoodyNarvin Sides1952602Mrs. L. C. Link603Garland CoodyMarvin Sides1954604J. R. Coody Estate1954605R. A. Trower1955801J. F. EddlemanJohn Gray1955	239 120 141 120			G 1,339	73.4	4 Aug.	28,	1962	9 [°] 2	D,S	Water level measured in abandoned well located 35 ft, southeast. This well was 74 ft, in depth.
601 Garland Coody Marvin Sides 1952 602 Mrs. L. C. Link 603 Garland Coody Marvin Sides 1954 603 Garland Coody Marvin Sides 1954 603 F. Coody Estate 1956 605 R. A. Trower 1955 801 J. F. Eddleman John Gray 1950	120 141 120		239 PS		1,370 66.1	1.	op		c,w	\$	Not in use now. Last used about 1951. Mater is reported salty to taste, but stock could drink water.
602 Mrs. L. C. Link 603 Garland Coody Marvin Sides 1954 604 J. R. Coody Estate 1956 605 R. A. Trower 1955 801 J. F. Eddleman John Gray 1950	141 120		120 CC		1,402 22.1	.1 Oct.	29,	1962	c,E, 1/3	s	Pump not operating when visited in 1962.
603 Garland Coody Marvin Sides 1954 604 J. R. Coody Estate 1940 605 R. A. Trower 1955 801 J. F. Eddleman John Gray 1950	120		5 :	cc 1,4	1,448 119.9	.9 July		10, 1962	с, и	ŝ	
604 J. R. Coody Estate 1940 605 R. A. Trower 1955 801 J. F. Eddleman John Gray 1950		9	120	G 1,3	1,365 26.	.3 June	13,	1962	J,E, 1/2	50	
R. A. Trower 1955 J. F. Eddleman John Gray 1950	100	9	100 C	cc 1,4	1,477		1		c,E, 3/4	ŝ	
J. F. Eddleman John Gray 1950	66	5	93	G 1,3	1,378		t		c,c, 1-1/2	co.	Not in use when visited in 1962. Last used in 1957.
	150	5	150 C	cc 1,4	1,436		ł		C,E, 5-1/2	D,S	Not in use when visited in 1962.
802 A. O. Templeton 1946	;	1	•	1,4	1,423	-	;		z	N	Abandoned in 1951.
* 803 D. B. Raney Texas & Pacific 1921 1,0 Coal & 011 Co.	1,000	7	150 P	ps? 1,4	1,432 40		1		c, E,	D,S	Abandoned oil test used for water well. Plug-back depth unknown.
* 901 D. M. Stanford do 1920 1	199	2	65 P	ps 1,4	1,449		ł		S,E, 3/4	D,S	Old gas well cleaned out and plugged back to 199 ft.
* 902 D. B. Raney 1953 2	200	5	200 P	PS 1,4	1,425		;		с,Е, 1	25	
903 B. C. McNabb B. C. McNabb 1940	20	66	20 A	A11 1,7	1,397 9.	9.4 June		4, 1962	Cf,G	s	Rock-lined dug well.
* 904 Mrs. L. C. Link 1949	75	5-1/2	757	G 1,	,458 32.2	.2 Sept.	28,	1962	C,W	53	
* 905 W. H. Birdwell W. H. Birdwell 1960 (629	5-1/2	629 W	WM 1,4	.453		;		с, Е,	3	
906 R. A. Trower 1951	118	S	110 0	cc 1,	1,418 60.4	.4 Aug.		27, 1962	s, E	S	Last used in 1953 because of poor qual- ity. May be used again, but only in emergency.

€

€

€

C

€

(

¢

ć,

C

								-	-	_				_		_	-		_	_	_	_	
Remarks		Well has been reentered, and dcepened.		Rock-lined dug well.	Well was drilled during drought, but has never been used. Will be used in emergency.					Spring. Water flows.				Unable to locate. Assumed abandoned.									
Use of Water	s	D,S	D,S	53	N	8	D,S	D,S	s	D,S	s	ŝ	s	z	s	s	so	D,S	s	z	s	D,S	
Method of lift	с, и	J,E, 3/4	c,E, 1/2	В,Н	N	c, c, 1-1/2	В,Н	c,w	C,W	z	S, E 3/4	c,w	с,Е, 3/4	z	C,W	C,W	c,w	с, W, 3/4	C,W	N	C,W	с, и	
Ater level and bate of ace measurement	1	Aug. 3, 1962	do	June 13, 1962	op	1	June 13, 1962	;	;	May 15, 1962	1	1	July 10, 1962	1	Sept. 12, 1962	:	Sept. 28, 1962	Sept. 26, 1962	June 2, 1962	Sept. 12, 1962	op	;	
Relow land- surface datum (ft.)	:	25.3	58.4	15.2	34.4	:	44.5	:	:	Flows	;	;	32.5	;	60.5	ł	130.0	190.1	13.7	4.5	42.6	1	
Altitude of land surface (ft.)	1,412	1,383	1,365	1,327	1,376	1,303	1,293	1,482	1,523	1,472	1,421	1,396	1,476	;	1,435	1,477	1,417	1,444	1,380	1,386	1,431	1,426	
Jater- bearing unit	PS	CC	CC	5	U	MM	PS	CC	HC	HC	MM	WM & B	CC	ЪЪ	PS	WM & P	PS	WM & P	PS	Sd	Sd	Sd	
Depth (ft.)	1	125	;	35	10	140	÷	70	;	ł	339	Ŧ	72	350	:	T	;	:	10	8, 100	;	110	
Casing Diam- De eter (f (in.)	;	4-1/2	4-1/2	:	6-1/4	2	9	5-1/2	;	:	5-1/2	5-1/2	5-1/2	6-5/8	;	7	;	2	7	10,	;	9	
Depth of well (ft.)	114	185	140	35	46	368	140	16	61	Surface	339	298	72	365	152	273	240	330	06	100	200	120	
Date com- plet- ed	1953	1924	1918	1890	1953	1956	1910?	1952	;	;	1952	1952	1952	1919	1945	1920	1948	1940	1946	1955	1954	1940	
Driller	John Gray	Dick Pope & John Lynn	1	I	Roy Micheal	John Gray	:	;	;	:	1	;	Luke Ledbetter	Lone Star Gas Co.	Bargsley	Texas & Pacific Oil Co.	:	Lone Star Gas Co.	Madison Bargsley	Marvin Sides	J. A. Gray	op	
Owner	D. D. Vaughn	H. C. Thompson	op	do	op	Lee Mitchell	do	Mrs. L. C. Link	qo	op	do	qo	op	Lone Star Gas Co.	D. D. Vaughn	Mrs. L. C. Link	op	op	Joe Jackson	op	D. D. Vaughn	op	
Well	*31-19-907	20-101	102	103	104	105	106	105	402	403	404	405	905	701	702	703	704	705	706	707	708	709	
	*3]	*	*	*		*	*	*	*	*	*	*	*	*		*		*	*			*	

l

- 43 -

L						1114					Tatan Tatat				
		2		Date	Depth	in l	Depth	Water-		Below	Dat	Date of	Method	0se	
	Well	Owner	briller	com- plet- ed	of well (ft.)	eter (in.)	(ft.)	bearing unit.	of land surface (ft.)	land- surface datum (ft.)	meast	measurèment	of 11ft	of Mater	Remon Fiks
*	*31-20-801	Texas & Pacific Coal & Oil Co.	Texas & Pacific Coal & Oil Co.	19207	225	ŝ	:	WM, P, PP?	1,394	1		:	c,E	D,S	
	802	op	do	ł	225	ł	:	WM, P, PP?	1	I		1	z	z	
*	803	E. W. Hohhertz	;	1900?	22	30	22	PS	1,298	17,4	July	10, 1962	$_{1/2}^{J,E},$	D,S	Rock-lined dug well.
*	25-201	Mrs. O. R. Wallis	McHall	1917	12	42	12	A11	1,371	10.8	June	16, 1962	с, и	D	Do.
*	202	G. B. Greiner	Luke Ledbetter	1960	75	5-1/2	75	Th	1,365	6		;	J,E, 1/2	ß	
*	301	Noble Robertson	Noble Robertson	1936	9	48	9	A11	:	4.1	Feb.	8, 1937	N	z	Unable to locate. Assumed abandoned.
*	501	Jesse Garrett	Luke Ledbetter	1962	158	5-1/2	158	Th & G	1,351	26.1	May	28, 1962	s,E, 1/2	D,S	
	601	A. R. Knight	Ed Sawyers	1947	247	7	247	U	1,412	1		;	с,Е,	D,S	
*	602	qo	do	1947	330	4	330	9	1,435	:		;	с,Е,	D,S	
	901	J. H. Perry	1	1920	180	9	:	G	1,403	30		1	C,E	Q	
	902	J. A. Baggett	Bell, McDonald, & Bell Oil Co.	1916	240	ę	1	U	1	1		1	z	N	
*	903	S. H. Boles	Tex-0-Kan Oil Co.	1919	140	ŝ	£	D	1,390	9*	June	29, 1962	J,E, 1/2	D,S	Well flows in wet weather.
*	904	Lester Thrope	Plateau Oil Co.	1920	200	6-5/8	170	9	1,442	35		1	C,G, 2-1/2	D,S	
*	905	Mrs. M. H. Thorpe Estate	Brig Owens	1906	206	9	180	8	1,439	42.9	June	29, 1962	J,E, 1/2	D,S	
*	906	G. W. Thorpe	1	1947	205	80	175	U	1,475	68.0		op	J,E, 1/2	D,S	
*	206	do	Davis	1928	175	5-1/2	175	U	1,470	55.7		op	J,E, 1/2	D,S	
_	908	qo	ł	1917	175	7-1/2	175	9	1,448	50		;	z	z	
	606	do	;	1917	175	80	175	9	1,438	34.9	June	29, 1962	N	N	
	016	op	1	1917	175	5-1/2	175	0	1,458	;		;	с, и	s	
_	911	Rapp Estate	ł	1917	175	:	I.	в	1,424	;		;	c, c,	z	Last used in 1957 for industrial supply.
*	26-101	Alex Fambro	;	1910	131	œ	1	9	1,292	Flows	Oct.	6, 1962	В,Н	S	
_	See foot	See footnote at end of table.													

- 44 -

۲

€

€

€

€

€

C

Ć

Č

-		-						-			-							-			_	_	_	-	
	Конагия										Rock-lined dug well.												Rock-lined dug well.		
	Use of Mater	N	z	z	N	N	N	N	D,S	D	и	z	D,S	z	Q	D,S	D,S	z	N	N	Q	ŝ	z	z	D,S
Î	Method af lift	N	z	z	N	N	z	z	J,E,	J,E, 1/2	z	z	J,E, 3/4	N	S,E, 1/2	C,W	J,E, 3/4	N	N	z	J,E, 1/3	с, н	N	z	В,Н
r level	Date of measurement	Feb. 8, 1937	Oct. 27, 1962	Oct. 6, 1962	Nov. 3, 1962	op	op	Oct. 6, 1962	;	June 21, 1962	July 13, 1962	Nov. 15, 1962	1	May 3, 1962	ł	July 13, 1962	1	Aug. 9, 1962	op	Oct. 6, 1962	June 22, 1962	op	do	:	:
Water	Felow land- surface datum (ft.)	29.5	Flows	Flows	Flows	Flows	Flows	3.3	25	18.8	24.9	26.4	:	Flows	10	27.6	20	6.7	4.0	4.1	5.4	10.3	32.0	:	:
	Altitude of land surface (ft.)	1,316	1,328	1,301	1,288	1,288	1,289	1,302	1,324	1,316	1,320	1,350	1,309	1,310	1,393	1,325	1,325	1,315	1,316	1,302	1,319	1,328	1,328	1,334	1,329
	Mater- bearing unit	9	υ	U	9	9	9	9	U	U	G	c	υ	0	C	9	C	g	9	U	g	U	g	C	U
ng	Depth (ft.)	:	192	;	150	;	1007	3	135	200	65	Ę	185	;	160	50	50	180	3	:	70	;	50	;	;
Casing	Diam- eter (in.)	9	9	5-1/2	6-5/8	6-5/8	5-1/2	1	9	9	30	4	9	7	æ	9	9	9	1	;	9	ł	42	:	;
	Depth of well (ft.)	135	192	150?	150	150?	150?	150	135	200	65	150	185	120	160	100	100	180	180	165	135	120	50	130	120
	Date com- plet- ed	19257	1920	;	1910	ł	1	3	1691	1950	ł	19307	1885	1920?	1954	1920	1950	1900	1908	1918	1925	1885	1880	1908	1895
	Driller	Aubrey Ramshire	Prairie Oil & Gas Co.	;	Will Gray	:	1	1	Aubrey Ramshire	I	i	ł	:	Sam Miller	1	Hodges	1	Will Gray	Charlie Smoot	Will Gray	db		:	1	1
	Owner	Joseph F. Rumsey	Paul Wagley	T. C. Fambro	qo	qo	Alex Fambro	op	E. C. Head	Joseph F. Runsey	A. R. Knight	qo	0. R. Gilbert	Mrs. Willie Sykes	J. W. Jackson	Alex Fambro	op	0. R. Gilbert	Wayland School	T. C. Fambro	G. M. Lauderdale	do	do	qo	P. D. Campbell
	We11	*31-26-102	103	104	105	106	107	108	109	110	111	112	201	202	203	204	205	206	207	208	209	210	211	212	213
_		*	*						*	*	*	_	*	*	*	*	*	*	*	4	*	*			

- 45 -

See footnote at end of table.

1	Dane r	Driller	Date com- plet- ed	Depth of well (ft.)	er n.)	m- Depth rr (ft.)	Hater- bearing unit	Altitude of Land surface (ft.)		neasu	Method of 11ft	Use of Water	Remarks
Alex Fambro	LO	1	1930	152	9	60	c	1,323	п	;	C,W	D,S	
D. M. Duncan	can	1	1910	94	F	t.	U	1,345	19	I	J,E, 3/4	D,S	
E. C. Head	p	1	1885	180	9	180	c	1,311	5.8	June 21, 1962	C,W	D,S	
T. C. Fambro	bro	Ť	1	165	6-1/2	ŧ	U	1,299	Flows	Oct. 6, 1962	N	N	
Troy Turner	er	J. F. Ford	1895	160	9	80	c	1,380	;	1	с, ч	z	
611	T. G Gilbert	Hayden	1957	115	9	65	U	1,368	28	;	J,E, 3/4	D,S	
Jac	J. W. Jackson	None	:	Surface	I	;	ю	1,351	Flows	Oct. 22, 1963	z	S	Seep spring.
641	R. Gilbert	I	6161	156	6-5/8	90	9	1,314	30.2	July 7, 1962	J,Е, 2	\$	
Jac	J. W. Jackson	Dale Trobough	1961	161	00	160	U	1,358	11.5	June 25, 1962	c, E, 1/4	53	
E. Turner	ner	Luke Ledbetter	1959	150	ŝ	150	9	1,473	100	ł	s,E,	D,S	
op		1	19407	125	ŝ	125	0	1,473	115	ł	J,E, 3/4	Q	
Lan	B. G. Langford	Norton	1945	150	50	150	U	1,610	1	1	с,Е, 3/4	Q	
Gre	B. Greenlee	Luke Ledbetter	1962	134	5-1/2	134	5	1,404	37	ł	л, Е,	D,S	
Bil	A. F. Billman	I	1915	158	9	;	U	;	116.5	Feb. 8, 1937	;	1	Unable to locate. Assumed abandoned.
Кош	J. C. Rominger	Aubrey Ramshire	1936	2007	9	149	IJ	1,363	14.7	July 19, 1962	C,W	so	
Paul Wagley	ey	Charlie Smoot	1906	198	se.	182	9	1,353	20	I	J,E, 1/2	D	
C. F. Hogan	ue	Wagley	1958	210	7-1/2	190	5	1,342	8	1	S,E, 3/4	S	
K. D. Pilgrim	grim	1	1878	200	4	180	o	1,361	24.0	June 21, 1962	J,E, 1/4	D,S	
P. L. Boles	es	1	1955	210	9	210	5	1,404	35.5	June 29, 1962	N	N	
Alex Fambro	ro	Jones Drilling Co.	1960	160	5-1/2	160	U	1,388	;	;	с, и	ŝ	
A. R. Knight	ght	ł	18907	150	Ę	;	C	1,388	56.5	July 13, 1962	C,E	z	
J. K. Pruitt Estate	ui t.t	1	1	11	in.	;	U	;	19.5	Feb. 6, 1937	2	Z	No new sample collected. Abandoned about 1926

- 46 -

C

6

€

e

6

¢

6

€

Ċ,

C

C

r

Ċ.

			Q	l	Gasing	fug		_		Anter level	_		
Well	Owner	Driller	Date com- plet- ed	Depth of well (ft.)	Diam- eter (in.)	Depth (ft.)	Mater- bearing unit	Altitude of land surface (ft.)	<pre>felow land. surface datum (ft.)</pre>	Date of measurement	Method of 11ft	Use of Water	Renarks
*31-26-502	R. F. Ledbetter	W. D. Gray	1926	125	5-1/2	125	0	1,422	;	1	J,E, 4-1/4	D,S	
503	J. C. Thompson	op	;	70	9	;	9	:	54.0	Feb. 11, 1937	z	z	No new sample collected. Abandoned about 1950.
504	T. W. Mills	:	1923	106	10	106	9	1,500	;	;	N	N	
505	op	1	1900	110	9	110	9	:	15	1	N	z	
506	op	1	1920	110	9	:	Ð	1,536	74.2	May 3, 1962	J,E, 3/4	D,S	
507	qo	1	1900	150	9	1	C	;	t	;	N	N	
508	do	;	1890	65	9	65	Ð	3	1	;	N	z	
509	Irven A. Gray	Luke Ledbetter	1961	06	æ	60	C	1,411	18	ł	$_{1/2}^{J,E}$,	D,S	×
510	op	Aubrey Ramshire	1938	091	9	160	9	1,412	18	I	c,E, 1/2	D,S	
511	Alfred Cole	1	:	70	-9	ł	U	. 1,496	34.2	May 30, 1962	$_{1/2}^{J,E}$,	D,S	
512	J. D. Ridling	:	1959	138	9	138	9	1,549	t	ł	c,E, 1/2	D	
109	P. C. Langford	ł	1930	110	2	110	g	1,520	30	1	C,W	D,S	
602	R. L. Tuton	:	1908	121	z	121	U	1,449	40	;	J,E, 3/4	D,5	
603	G. E. Hall	Ector Water Co.	1962	100	10	14	U	1,557	ł	;	s,E, 3/4	Ind	Used for waterflood supply.
604	op	op	1962	100	ł	:	U	1,558	1	۱	s,E, 3/4	Ind	Do.
701	T. L. Boles	1	1945	140	;	;	U	1,414	15.9	June 29, 1962	с, и	z	
702	J. R. Perry	1	1910	180	1	1	9	1,452	75	1	C,E, 3/4	D,S	
703	W. T. Hinson	Luke Ledbetter	1958	199	9	199	C	1,415	36.2	June 29, 1962	л,Е, 1	D,S	
704	A. R. Knight	1	1880	90	9	3	Ð	1,416	:	:	c, c, 1-1/2	z	
705	Gunsight Cementery Assoc.	Luke Ledberter	1961	215	5-1/2	215	g	1,402	8	1	s,E, 1/4	D	
706	J. H. Boles	Archie Kelly	1955	205	4-1/2	205	U	1,423	51.4	June 29, 1962	J,E,	D	

- 47 -

																		_					
Remarks				Unable to locate. Assumed abandoned.		Rock-lined dug well.					Unable to locate. Assumed abandoned. Dug well.	Do.						Concrete-lined dug well.					
Use of Mater	z	N	N	z	D,S	D	D,5	D, S	z	D,S	z	z	D,S	z	Q	Q	z	z	s	N	s	s	D
Method of Lift	z	N	z	z	с, Е, 1/3	B,H	C,W	J,E, 1/2	z	с,Е, 3/4	z	z	J,E, 1/4	z	c,E, 1/2	J,E,	z	z	В,Н	z	C,W	C,E, 3/4	J,E, 3/4
	1962		1962	1937		1962		1962		1962	1937	1937			1962	1962	1962	1962	1962		1962		1962
of	7, 1	;	7, 1	11, 1	ł	9, 1	;	16, 1	:	30, 1	12, 1	10, 1	;	:	12, 1	14, 1	25, 1	24, 1	1 '60	Ę	14, 1	:	24, 1
Date of measurement	July		July	Feb.		June		Oct.		May	Feb.	Feb.			Sept.	June	May	May	Aug.		June		May
Telow Date Lund- measur surface datum (ft.)	120.1 J	;	18.3	143.0 F	65	14.1	;	6.2 (ł	140.6	11.2	3.9	24	;	48.8	116.5	25.3	10.5	9.3	ŧ	98.7	27	51.9
440	1,586	;	;	:	1,597	1,608	1,594	1,552	1,560	1,621	:	ł	1,517	1,517	1,452	1,562	1,487	1,454	1,447	1,445	1,473	1,499	1,453
'later- bearing unit	U	9	9	U	9	Tr	U	9	U	U	A11	AII	U	U	U	U	CC	9	111	CC	cc	CC	CC
Depth (ft.)	1	;	;	:	120	30	ł	50	50	;	12	:	100	:	140	150	65	19	19	100	1	12	20
Diam- De ter (f (in.)	;	1	1	;	9	30	:	5	2	1	40	48	9	N	5	4	4-1/2	78	48	5	10	9	2
Depth of well (ft.)	135	145	185	173	120	30	150	50	50	192	12	Ξ	100	160	140	150	65	19	19	100	140	100	100
Date com- plet- ed	1893	1885	1918	1937	1	1920	1935	1950	1920	1947	1933	1880	1900?	1959	1942	1956	1906	1921	1906	1932	1918	1948	1953
Driller	:	1	Will Gray	ł	1	R. A. Barker	Ramsey	Norton	1	Wagley	Jones	ı	1	Luke Ledbetter	Frank Bargsley	1	Hilliard	A. W. Sechrist	Henry Bradford	L. A. Sides	:	3 ₂	Marvin Sides
Owner	H. C. Thompson	op	op	M. A. Frost	A. C. Thompson	R. A. Barker Estate	Mrs. M. E. Frasier Ramsey Estate	R. B. Wymer	qo	Mrs. Ola Frasier	Willis Knight	Mrs. Kit Gardenheim	G. M. Munnerlyn	do	A. W. Howton	G. R. Langford	J. B. Jones	M. A. Truesdell	J. C. Bradford	Charlie Bobo	W. L. Carey	D. M. Stanford	207 C. L. Bargsley
Well	31-26-801	802	803	804	106	902	903	904	905	906	27-101	102	103	104	105	106	201	202	203	204	2.05	206	207
	31			-14	-11	*	*	*		÷te.	*	*	*		*	*		*	*	*	*	#	4

- 48 -

6

0

€

¢

¢

*€

c

¢

C

C

		-					10.10	-				_						_			_	_	_	_
	Remarks.		Rock-lined dug well.		Rock-lined dug well.				Rock-lined dug well.		Water level measured in abandoned well 50 ft. to northeast.			Rock-lined dug well.					Abandoned oil test. Beck #1. Plug- back depth unknown.					
	Use of Water	50	D,S	D,S	z	q	D, S	D,5	z	D,S	۵	\$	D,S	z	us.	D,S	z	N	z	sa	D,S	z	N	ŝ
	Method of 11ft	C,W	J,E, 1/2	$_{1,E}^{J,E},$	z	J,E	C,W	с, и	z	J,E, 3/4	с,Е, 1/2	C,W	J,E, 3/4	N	В, И	s, E,	z	N	с, w	c,c,	с,Е, 1/2	z	N	c,c, 1-1/2
			1962	1962	1962			1962	1962	1962	1962			1962	1962		24, 1962		1962		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		1962	
1.0	Date of measurement	Ę	24,	19,	24,	;	:	4,	9,	4,	24,	1	I.	25,	29,		24,	;	23,	1	1	ł	22,	ab
Jater level			May	July	May			June	Sept.	June	May			May	Aug.		May		June				Aug.	
Ant.	Eelow land- surface datum (ft.)	;	14.2	10.1	13.5	ł	1	18.8	10.1	36.7	40.1	ł	;	23.1	28.5	ł	33.0	ł	13.4	;	I.	1	12.1	13,1
	Alfitude of Land surface (ft.)	1,456	1,445	1,448	1,445	1,454	1,454	1,471	1,465	1,478	1,459	1,483	1,487	1,487	1,451	1,463	1,457	1,456	1,429	1,499	1,494	1,489	1,466	1,464
	Mater- bearing unit	CC	114	CC	* A11	CC	CC	CC	111	CC	CC	CC	CC	U	22	CC	CC	cc	ł	CC	cc	CC	CC	CC
ng	Depth (ft.)	125	t	18	;	;	100	ł	20	;	110	;	130	t	;	125	100	100	1	8 5	ţ	;	100	100
Casing	Diam- eter (in.)	6	1	00	;	;	5	5	30	ġ	S	;	4-1/2	;	9	2	5	5	;	3	ŝ	:	5	5
	Depth of well (ft.)	125	18	115	18	100	100	110	20.	105	110	100	130	25	101	125	100	100	3	125	100	100	100	100
	Date com- plet- ed	1920	1910	1956	1910	1955	1915	1920	ł	5761	1961	1	2761	:	1933	1952	1952	1952	1923	1947	1947	1920	1910	1955
	Driller	:	:	:	;	George Register	Marvin Sides	ł	1	1	G. E. Register	1	:	1	Frank Bargsley	Dean Brothers Oil Co.	1	ł	1	Norton	do	Jennings	1	Norton
	Owner	C. L. Bargsley	M. A. Truesdell	op	dD	Frank Bargsley	qo	K. E. McDonald	op	op	New Hope Baptist Church	Robert Jackson	J. B. Jones	op	J. C. Bradford	Mrs. Artie Sherrill	do	do	Mrs. Ellen Justice	J. T. Justice	qp	do	S. A. Davis	op
	Well	31-27-208	209	210	211	212	213	214	215	216	217	218	219	220	221	222	223	224	225	226	227	228	229	230
		m		. 4		*		4	*	4	*	*	ġ.		*	ή¢				*	*			

¢

•

ç.

See footnote at end of table.

- 49 -

					Casing	115			date	dater level				
Well	Owner	priller	Date com- plet- ed	Depth of well (ft.)	Diam- eter (in.)	Depth (fl.)	Mater- bearing unit	Altitude of land surface (ft.)	Eelow land- surface datum (ft.)		Date of measurement	Method of 11ft	use of Water	Remarks
31-27-231	31 S. A. Davis	Hoover	1915	20	1	1	A11	1,452	7.3	Aug.	22, 1962	В,Н	60	Rock-lined dug well.
2	232 do	Unknown	1910	100	2	100	CC	1,449	8.5		op	c,w	ŝ	
2	233 do	Hoover	1915	20	30	20	A11	1,452	3.4		op	В,Н	s	Rock-lined dug well.
64	234 Mrs. Ellen Justice	Texas Fidelity 0il Co.	1927	ł	:	1	CC	1,465	;		1	с,Е, 3/4	55	
m	301 do	1	1936	į	18	;	ł	1,485	4.6	June	23, 1962	С, W	z	
e	302 do	Texas & Pacific Coal & Oil Co.	1919	450	00	;	cc,R, PS	1,469	1		1	С, W	S	
5	303 D. M. Stanford	Marshall Pipe & Supply Co.	1957	500	2	500	MM	1,449	200.8	April	April 19, 1962	С, И	ŝ	
n	304 do	:	1910	21	;	*	A11	1,431	10.6		op	В, Н	ŝ	Rock-lined dug well.
e	305 R. C. Stuard	Luke Ledbetter	1959	203	ŝ	203	Sd	1,521	59.8	Мау	25, 1962	с,с,	\$	
e	306 do	1	1908	125	10	125	Sd	1,539	49.2		qo	C,W	US	
n	307 Joe Jackson	:	1959	50	7	50	В	1,503	6.1	Sept.	11, 1962	ς,Ε, 1/4	D,S	
*	308 Mrs. Ellen Justice	Norton	1948	06	4	:	CC	1,471	:		1	c,E, 1/2	52	
n	309 do	1	1915	28	1	ł	HC	1,448	18.0	June	23, 1962	С, И	52	Rock-lined dug well.
4	401 T. B. Miller	C. P. Powers	1900	30	24	18	Tr	1,593	19.8	June	7, 1962	$_{1,E}^{J,E}$, 1/2	D,S	Do.
4	402 C. C. Jackson	Brumbalo	1926	61	2	79	Tr,G	1,613	27.0	Feb.	11, 1937	N	z	
4	403 A. A. Hardee	;	;	92	20	ł	Tr,G	;	55.7		op	N	z	
4	404 C. C. Jackson	Marvin Sides	1956	95	9	56	Tr,G	1,613	35.3	June	15, 1962	J,E, 3/4	D,S	
4	405 Oliver Wesley	Bud Griffin & Frank Marion	1954	200	2	60	CC	1,587	:		:	с, и	N	
*	406 C. A. Brown	;	1890	75	9	09	0	1,552	45		;	C,W	D, S	
4	407 do	1	1908	35	9	30	Tr,G	1,594	25.6	June	15, 1962	z	N	4
7	do do	L. A. Sides	1935	120	9	120	CC	1,594	90.1		op	N	z	
*	409 A. A. Hardee	John Ed Conner	1961	80	9	80	G	1,577	8.4		op	z	z	
4	410 do	J. A. Caraway	1925	125	9	125	U	1,560	64.4		qo	z	z	
4	411 do	1	1961	Surface	1	1	0	1,504	Flows		do	N	s	

0

€

C

€

¢

6

Ċ

¢

*

÷-

 c_{i}

11-00		Prest 11 area	Date	Depth	10	Depth	Water-	Altitude	Below	Water level	ovel Date of	Method	_		
-	Conter	DEILLEE	plet- ed	ot well (ft.)	eter (in.)	(11.)	bearing unit	of land surface (ft.)	Land- surface datum (ft.)	meast	measurement	ol Lift	of Mater	Roma r Es	
7-12	31-27-412 W. H. Boney	:	1920	£	9	;	Tr,G	1,607	37.4	Oct.	4, 1962	N	N		
	413 do	John Lester	1938	30	42	14	Tr	1,602	32.6		op	N	z		
	414 S. L. Williamson	Norton	1948	98	9	86	U	1,609	62.8	July	2, 1962	J,E, 1/2	D,S		
7	415 G. E. Hall	Ector Water Co.	1962	215	10	14	0	1,594	;		;	J,Ε, 3/4	s, Ind	Used for waterflood supply.	
-4	416 do	op	1925	215	10	14	5	1,601	1		:	S,E, 3/4	s, Ind	Do.	
	417 do	do	1962	75	10	10	ы	1,567	;		:	S,E, 3/4	Ind	Do.	
2	418 do	qo	1960	215	10	14	U	1,602	;		;	s,Ε, 3/4	Ind	Do.	
7	419 do	do	1960	215	10	14	5	1,594	;			s, E, 3/4	Ind	Do.	
4	420 do	do	1960	215	10	14	0	1,593	1		:	S,E, 3/4	Ind	bo.	
-4	421 do	do	1960	215	7	215	9	1,588	ł		:	s,E, 3/4	Ind	Do.	
7	422 A. A. Hardee	John Ed Conner	1962	145	9	130	U	1,581	50.0	Sept.	17, 1962	s, ε,	D,S		
-4	423 G. E. Hall	Ector Water Co.	1960	215	10	14	CC	1,578	51.2	July	11, 1962	S,E, 3/4	1	Used for waterflood supply.	
17	424 do	qo	1960	215	10	14	CC	1,568	i.		£	S,E, 3/4	:	Do.	
8C)	501 C. T. Botts	Frank Sides	1924	131	7	100	CC	1,572	39.7	April	April 23, 1962	z	z		
51	502 Unknown	Frank Dupree	6061	69	3-1/2	;	Tr, HC	3	30.0	Feb.	24, 1937	N	N	Unable to locate. Assumed abandoned.	
<u>81</u> 1	503 do	Humble 011 Co.	1920	100	18	;	CC	;	20.0		op	N	z	Do.	
11	504 C. L. Bargsley	1	1910	100	9	100	CC	1,490	ł		;	J,E, 3/4	60		
21	505 Frank Bargsley	Frank Bargsley	1948	54	9	54	CC	1,529	;		;	С, И	to		
113	506 C. C. Veale	1	1880	75	9	6	00	1,501	;		;	с,Е, 3/4	D,S		
10	507 N. L. Moore	ł	ł	80	;	1	cc	1,491	65		;	J,E, 1/2	Q	,	
-1	508 C. N. Dempsey	Brumbalo	1928	80	9	80	CC	1,562	1		:	J,E,	D,S		

- 51 -

					Gasing	Ing			121150	Jater level					
	Daner	Driller	Date com- plet- ed	Depth of well (ft.)	Diam- eter (in.)	Depth (ft.)	Water- bearing unit	< o s	Below land- surface datum (ft.)	Date of measurement	e of cement	Method of 11ft	Use of Water	Renarks	
U	C. N. Dempsey		1937	100	9	3	cc	1,490	ł		1	C,W	N		
5	J. W. Veale	Madison Bargsley	1930	168	S	60	CC	1,571	;		;	c,c, 1-1/4	D,S		
3	Wesley Dempsey	:	1936	120	ę	1	CC	1,532	;		;	J,E, 1	D, S		
\sim	A. H. Boney	1	1900	58	9	58	HC	1,537	38		;	с, и	s		
	op	1	1918	68	9	68	HC	1,534	38		;	J,E, 1	D		
H	H. L. Caraway	I	1910	180	;	;	cc	1,484	t		;	С,Н	z		
515 D	Don Bradford	Norton	1949	95	9	95	CC	1,570	;	1.9	1	с,Е, 1/2	D,5		
	op	;	1945	175	12-1/2	1002	CC	1,569	100.8	Sept.	24, 1962	c,c, 2-1/2	z		
	op	Madison Bargsley	1945	115	9	155	cc	1,571	71.4	June	5, 1962	N	z		
f 102	J. L. Ready	;	1909	41	9	;	Tr	1,601	29.4	Feb.	11, 1937	N	Ν		
0	C. C. Goforth	Collins	ł	19	36	19	Tr	1,580	12.1	Oct.	4, 1962	N	z	Rock-lined dug well.	
703 W	W. H. Boney	Ford	1933	182	6	:	CC	1,570	34.7	June Aug.	8, 1962 4, 1962	J,E, 1/2	D,S		
704 H	H. C. Wilkinson	1	1918	153	5	40	CC	1,572	;		;	C,W	N		
	do	I	1953	100	ţ	ł	CC	1,562			-	С, И	z		
	op	G. E. Register	1961	168	٩	168	CC	1,571	23		;	J,E, 3/4	D,S		
0	C. N. Adams	Norton	1940	60	9	60	D	1,594	40		r	J,E	\mathbf{D}, \mathbf{S}		
708 J	J. L. Ready	1	1	200	ł	ł	cc	1,591	28.1	June	7, 1962	s,E, 1-1/2	20		
709 C	C. E. Boney	M. C. Boney	1933	14	17	6	Tr	1,578	11.5	June	6, 1962	N	N	Rock-lined dug well.	
710	do	op	1936	24	;	÷	Υ.	1,595	23.2		op	J,E, 1/4	D,S	Do.	
f 112	J. A. Ridling	Marvin Sides	1956	98	5	98	cc	1,609	43		;	Ј,Е	D,S		
712 C	C. C. Goforth	C. C. Goforth	1923	21	36	21	Tr	1,581	5.5	June	6, 1962	В,Н	D,S	Rock-lined dug well.	
	do	G. E. Register	1945	57	9	57		1,576	10.3		do	В,Н	D,S		
714 H	Hames Estate	do	1959	81	9	72	CC	1,588	24.6	Oct.	5, 1962	С, И	10		
_															

- 52 -

¢

€

e

€

€

С

¢

¢

Ċ

Ċ

C

_					_				_								_		_			_	
	Armark s			Rock-lined dug well.							Old oil test. Hatton #1 plugged back to 245 ft.			Rock-lined dug well.	Do.		Old oil test plugged back to 50 ft.	Unable to locate. Assumed abandoned.	Do.			Wet weather spring.	
1'40	of Water	D,S	z	D,S	N	D,5	D,S	s	Q	D	ŝ	z	Q	z	s	D,S	z	z	z	D,S	z	z	
Method	01 1111	в,н	z	с, и	N	J,E, 1	c,w	с, и	cf,E, 1/2	c, E, 7	c,c, 7-1/2	z	s,E, 1-1/2	z	В, Н	с, Е,	z	z	N	с,Е,	с, и	z	
Jater level	ŧ	April 26, 1962	June 7, 1962	do	:	June 7, 1962	;	June 7, 1962	June 4, 1962	:	1	I	April 25, 1962	Sept. 19, 1962	June 5, 1962	;	1	Feb. 17, 1937	op	1	;	Sept. 26, 1962	
latow	Land- surface datum (ft.)	27.8	34.4	21.4	1	31.3	:	31.0	12.5	83	120	:	246.7	5.8	24.8	;	38	11.8	81.8	ł	;	Flows	
Altfrude	of land surface (ft.)	1,588	1,600	1,584	1,601	1,603	1,591	1,589	1,554	1,541	1,538	1,545	1,559	1,552	1,584	1,543	1,600	:	:	1,511	1,477	1,513	
later.	bearing unit	Tr	CC	Tr	Tr,G, HC	Tr,G, HC	Tr,G, HC	Tr,G, HC	CC	Sd	PS	PS,W, WM	MM	cc	HC	MM	Tr	111	PS	MM	CC	Я	
ng Denth	(ft)	40	88	30	60	60	65	65	19	;	240	E	400	12	ł	360	:	23	;	350	09	ţ	
Diam. De		42	5	36	89	æ	9	9	36	s	10	:	5-1/2	54	1	9	7	30	5	5	s	;	
Denth	of well (ft.)	40	88	30	09	60	65	65	22	118	245	285	400	12	1	375	50	23	107	365	100	Surface	
Date	plet- ed	1900	1960	1850	ł	42	1940	:	;	1956	1962	1918	1962	1930	1860	1954	;	1902	1890	1947	1910	;	
	Driller	;	1	I	:	1	Hefflin	do	I	G. E. Register	1	8	G. E. Register	W. W. Hatton	;	John Gray & Marvin Sides	;	1	;	Roy Johnson	;	1	
	Owner	Mrs. Miley E. Williams	J. D. Eakin	do	J. L. Ready	qo	Mrs. Ora Holder	op	Bullock School	B. R. Hatton	op	Paul Smith	Mrs. W. W. Hatton	qo	Rudy Wells	N. L. Sudderth	J. A. Ridling	28-101 Mrs. William Graham Estate	do	Mrs. C. Lambert	Robert Jackson	Mrs. L. C. Link	
	Well	*31-27-715	716	717	718	61/	720	721	801	802	803	804	805	806	807	808	809	28-101	102	103	104	105	
		#3	*	*		4	*	*	*	*			*		*	*		*		*			

¢

.

÷

i,

- 53 -

Tablo 4.--Chemical analyses of water from wells and springs, Stephens County (Analyses given are in parts per million except specific conductance, PH, percent sodium, and SAR)

SAR	0.7	1.0	1	2.4	2.9	2.4	;	22.0	1.3	1	;	9.8	11	ţ	1	3.0	6.4	ł	8.8	ł	6.8	23.0	14	3.3	4.1	1.
βH	6.9	6.8	ł	6.9	7.0	7.0	;	7.3	7.0	7.8	8.5	7.5	5	;	ł	6.8	7.3	7.6	7.3	1.1	7.2	7.4	7.4	7,2	7.4	6.9
<pre>Specific conduct- ance (micromhos at 25°C.)</pre>	735	775	1	1,750	2,010	1,580	3	10,700	1,130	4,650	3,150	3,270	1,165	1	1	1,370	2,720	1,740	1,740	1,540	4,080	3,600	2,490	1,100	1,390	500
Per- cent so- dium	16	21	ł	32	35	33	1	75	25	1	ł	68	11	ł	8	42	55	I	74	ì	51	89	83	64	54	24
Total hard- ness as CaCO ₃	330	332	ł	660	742	577	1,226	1,360	422	930	1,152	545	200 246	ł	1	444	667	344	236	387	1,080	188	214	300	314	266
Dis- solved solids	436	462	2,389	1,100	1,370	1,020	3,254	6,080	629	2,631	2,156	1,920	996 744	761	559	866	1,770	1,107	1,070	935	2,620	2,080	1,460	646	739	297
N1- trate (N03)	6.7	14	ł	8.7	28	44	I	1	37	34	164	2.2	** >	ł	ł	0.	29	3.8	8.	4. >	129	6.2	.2	0.	0*	.2
Fluo- ride (F)	0.3	4.	1	۲.	4.	.4.	1	;	.2	e.	.4*	٠,	¦ 4.	1	I,	8.	4.	5	.7	4.	4.	1.0	1.1	1.0	8.	4.
Chlo- ride (Cl)	40	37	560	220	202	182	1,120	3,720	178	1,204	430	760	255 124	142	174	132	430	240	232	2.32	920	870	525	132	216	11
Sul- fate (SO4)	25	20	814	246	474	246	808	0	42	274	687	189	226 131	179	58	202	453	245	226	173	96 tr	215	170	58	36	13
Bicar- bonate (HCO ₃)	370	406	439	480	408	340	415	108	286	386	285	516	281 406	348	250	442	474	420	426	370	340	384	420	416	707	304
Sodium* 1 (Na)	29	05	;	141	181	130	706	1,830	63	620	294	529	287 184	;	;	146	379	281	312	203	516	729	480	133	166	9.4
Magne- sium (Mg)	13	14	ł	41	56	39	114	121	26	68	81	67	32 22	;	;	35	50	34	26	42	81	19	24	27	35	0.6
Cal- cium (Ca)	111	110	;	197	205	167	302	345	126	260	329	108	28 63	:	ĩ	120	185	78	52	86	298	44	95	76	68	92
Iron (Fe)	1	;	;	;	;	ł	:	;	:	1	1	ţ	11	ł	;	1	;	į	1	;	ţ	;	;	8.6	3.9	;
Silica (SiO2)	26	27	:	15	18	11	1	9.3	16	15	12	13	20	3	ţ	13	8.2	18	16	17	13	1.6	1	14	18	17
Date of collection	3-19-62	do	2- 9-37	3-13-62	5-31-62	do	2-16-37	4-26-62	3-20-62	7-17-62	7-21-62	4- 6-62	3-17-37 8-22-62	3-17-37	do	4- 5-62	op	8-22-62	4- 6-62	8-24-62	4- 5-62	do	6-26-62	op	6-28-62	+- 7-62
Depth of well (ft.)	170	70	36	47	47	48	35	133	36	60	24	144	127 150	148	166	160	160	160	132	160	140	150	126	126	105	22
Owner	Southwestern Gas Products Co.	do	D. G. Stover	Lester Clark	do	A. W. Tipton	P. B. Loving	Weldon Powers	W. D. Boyd	Mrs. J. T. McDonald	B. H. Trannell	Mrs. Elon Rickles	Ed Ford	do	H. J. Wesley	S. E. Copeland	Ed Ford	do	Lee Burgess	Ben Burgess	Ed Ford	H. J. Wesley	Edmond Corbett	op	J. B. Collins	H. F. Cook
Well	30-08-601b/	602b/	8015/1	802b/	803b/	805b/	24-8015/ 1	31-01-401b	501b/	02-601型	8014	03-501by 1	を 109	6025/	6035/	604by	605b	6063/	/ <u>d</u> 6u9	610型	614b/	615b	802b	803by	804P	/q106

0

€

e

€

¢

€

€

€

¢

€

C

- 54 -

Table 4. -- Chemical analyses of water from wells and springs, Stephens County -- Continued

Well	Owner	Depth of well (ft.)	Date of collection	Silica (SiO ₂)	Iron (Fe)	Cal- cium (Ca)	Magne- síum (Mg)	Sodi um ^{tr} (Na)	Bicar- bonate (HCO ₃)	Sul- fate (SO4)	Chlo- ride (Cl)	Fluo- ride (F)	N1- trate (N03)	Dis- solved solids	Total hard- ness as CaCO ₃	Per- cent so- dium	Specific conduct- ance (micromhos at 25°C.)	pH	SAR
31-04-4019/	W. A. Gragg	165	8-22-62	22	ł	126	39	235	462	262	220	0.3	4. >	1,132	379	1	1,770	7.4	+
/2604	Mrs. Emili C. Jones	140	8-21-62	7	ł.	32	8	52	68	16	112	2	4. >	260	114	ł	512	7.0	î
70154	Lloyd Potts	170	4- 7-62	11	1	56	19	1,250	470	201	1,650	1.9	1.5	3,420	218	93	5,740	7.4	37
09-201b/	Mrs. Ada Ball	43	3-31-62	15	;	232	3232	175	406	66	480	ŗ.	16	1,220	710	35	2,190	6.8	2.9
10-2014	B. H. Tramell	24	7-21-62	18	ł	234	57	221	325	393	418	4.	17	1,518	820	ł	2,500	8.1	1
2023	Jack Black	20	op	18	1	457	81	357	287	634	950	е.	4. >	2,368	1,474	ł	4,150	8.1	+
2039	do	28	op	24	ł	377	195	714	583	1,162	1,230	÷.	3.1	3,992	1,740	1	6,020	7.9	- 12
2044	do	20	do	17	ł	457	85	420	290	706	944	.1	<. >	2,772	1,490	;	4,350	7.9	1
701 <u>9</u>	Travis Robbins	96 98	2-12-37 3-31-62		11	31 22	19 19	230 239	468 468	77 73	128	9	2.8	725	157	80	1,220	7.8	
702b/	Mrs. J. E. Townsend	120	op	18	;	32	22	175	450	39	67	1.3	2.0	607	170	69	1,030	7.4	5.8
7045	David Cahill	150	op	12	ł	13	7.9	288	608	94	96	2.4	2.8	767	65	16	1,270	1.1	16
706b/	Thurman Latham	109	4- 2-62	14	ł	12	9.2	231	492	37	86	2.3	1.2	635	68	88	1,070	7.6	12
ا1-601b ل	E. E. Mitchell	127 127	6-28-62 3-18-37	10	11	29	15	885	439	120 124	1,090	1.1	2.5	2,390 2,084	134	93	4,170	7.6	я I
5102	D. W. Deaver	56	op	ł	ł	ł	1	;	281	39	84	1	ł	417	1	ł	1	1	1
8019	C. M. Caldwell	72	do	ł	1	138	33	;	122	< 10	246	ł	ţ	476	480	ł	ł	ł	ł
803b/	G. D. Devenport	18	6-25-62	17	;	265	64	609	416	728	780	;	61	2,730	924	59	4,090	7.2	8.7
12-101b/	S. G. Copeland	150	6-28-62	8.3	ł	9.5	3.6	598	500	58	608	2.8	3.5	1,540	38	26	2,720	1.4	42
102b/	do	137	op	9.8	I	13	5.4	427	520	91	325	1.3	1.5	1,130	54	94	1,940	7.6	25
17-2013	Gilbert Ridings	190(2)	7-20-62	11	ł	32	17	308	329	160	235	4.	4. >	939	150	ł	1,650	8.5	;
3019	D. C. Edwards Estate	138	3-17-37	:	ł	74	26	1,040	512	81	1,450	;	;	2,923	291	;	1	3	1
302b/	B. F. Dickson	95(2)	6-16-62	8.2	4 . 6	48	17	1,740	322	35	2,600	ł	ł	4,610	190	95	8,000	7.2	55
501 3	Mrs. Myrtle E. Conner	120	7-20-62	Ξ	1	37	19	1,225	454	375	1,430	·9	 4. 	3,333	168	ł	5,700	8.6	;
[g101-81	J. D. Collins -	135	4- 4-62	19	ł	54	38	116	548	21	65	1.	1.5	568	291	94	626	7.3	3.0
102b/	T. D. Fambrough	120	6-19-62	18	ł	44	18	134	366	17	92	1.2	.2	528	184	61	887	7.1	4.3
103b/	do	80	op	1.5	9.8	28	20	149	146	116	166	9.	0	553	152	68	983	7.2	5.3
104b/	Jack Fambro	80	6-21-62	20	1	11	26	151	420	104	121	'n	3.8	710	299	52	1,170	7.1	3.8
105b/	Ellis Hope	153	6-19-62	19	T	275	38	264	420	19	745	4.	1.2	1,570	842	41	2,870	6.6	4.0

See footnotes at end of table.

Table 4.--Chemical analyses of water from wells and springs, Stephens County--Continued

SAR	3.6	1.8	11	5.8	2.8	3.8	ł	- 16	27	;	ł	61	61	ł	ł	3	ł	ł	34	ł	24	36	.7	44	3	ł
μd	6.4	6.9 7.3	7.9	6.9	7.1	7.0	;	7	7.2	8.6	Ĩ	7.2	7.1	7.4	8.6	1	8.7	8.6	7.5	1	7.2	7.4	7.1	7.2	6.9	;
conduct- ance (micromhos at 25°C.)	2,690	2,450 7,090	1,057	2,420	1,430	1,420	3	1,760	6,110	1,650	;	10,100	9,910	4,610	1,165	1	2,750	1,760	2,240	ŧ	4,990	4,200	267	5,970	4,950	:
cent so- dium	38	23	11	55	39	50	;		96	1	ł	95	95	;	ł	ł	;	ł	96	;	86	94	18	94	;	;
hard- ness as CaCO ₃	880	976 2,542	169 228	568	458	362	333	11	108	150	76	252	250	132	118	235	68	20	40	ł	389	120	246	168	2,438	;
Dis- solved solids	1,640	1,370	511 582	1,450	815	782	3,905	$^{1,185}_{1,090}$	3,610	1,572	433	5,930	5,850	3,592	683	626	1,692	986	1,380	212	3,680	2,480	320	3,550	4,127	942
Ni- trate (NO3)	162	۰0°, 845	4. >	12	4.5	0.	;	1.0	ŝ	* >	ł	ł	1	2.2	4. >	{	4.0	4. >	1.0	;	4.8	3.6	0.	2.5	4. >	1
Fluo- ríde (F)	0.3	.1	: 5	4	7.		1	1.8	ł	8.	ł	;	1	1.5	9.	ł	2	9	1.4	;	;	ſ	9.	;	٦.	;
Chio- ride (C1)	510	560 1,990	110	460	219	245	1,470	160	1,680	280	100	3,400	3,350	2,000	173	114	470	356	280	14	380	1,050	38	1,650	760	160
Sul- fate (SO4)	96	22 211	50 31	202	16	13	751	245 218	269	284	104	4.0	0.	S	99	116	350	24	356	< 10	1,870	302	16	338	1,727	220
Bicar- bonate (HCO ₃)	566	544 466	329 407	472	520	444	476	647 600	512	700	146	390	402	315	315	342	393	373	436	232	372	346	280	386	627	464
Sodium* (Na)	244	131 754	142 145	317	137	167	1,336	459 413	1,360	620	125	2,240	2,210	1,379	216	150	616	385	500	1	1,110	903	25	1,300	667	;
Magne- sium (Mg)	37	26 123	31 26	29	33	23	29	1.2.8	10	e	п	23	22	14	12	26	9	2	3.8	;	43	11	18	14	248	1
Cal- cium (Ca)	292	348 816	16 49	180	129	107	85	2.5	27	9	21	63	64	30	26	52	16	ംറ	10	1	85	30	69	44	568	3
Iron (Fe)	;	13	11	ţ	;	29	1	11	ł	ţ	:	ł	;	1	ł	ł	;	ł	I	;	1	.12	3	;	;	1
Sílica (SiO ₂)	19	15 19	1 12	19	20	8.2	I	9.2	8.6	12	:	7.4	8.3	7.5	16	;	11	п	10	1	8.6	6.6	15	10	16	1
Date of collection	6-19-62	6-18-62 9-21-62	2-10-37 7-17-62	6-19-62	6-18-62	do	2-10-37	2-19-37 6-20-62	6-15-62	7-18-62	2-19-37	6-16-62	op	10- 9-62	7-13-62	2- 5-37	7-13-62	do	6-22-62	2-10-37	6-15-62	6-14-62	6-15-62	6-18-62	9-15-62	2-10-37
Depth of well (ft.)	100	128 128	75 75	100	150	70	200	06 06	200	120	Dug 34	185	210	100	150	60	100	140	150	14	130	190	150	150	148	110
Owner	Ellis Hope	C. D. Griggs	C. A. Fore	201b/ John Vick	George Masters	do	L. Williams	S. T. Swenson	J. D. Cox	Floyd Vick	S. T. Swenson	L. C. Burke	do	Mrs. M. M. Carey	Alex Fambro	T. C. Fambro	Alex Fambro	do	Jess Fambro	C. McCauley	G. E. Langford	I. C. Peeks	Hal Langford	E. D. Morgan	G. E. Langford	allowd Vick
We11	31-18-106b/	107b/	1085	201b/	203b/	204b/	5016/	م 109	602b/	6034	6055	/4909	607b/	2013	7023	8025/	8054	806型	807b/	9015	902b/	903b/	A4406	906b/	9084	0100

See footnotes at end of table.

- 56 -

۲

6

€

€

.0

€

€

€

6

€

C

Table 4.---Chemical analyses of water from wells and springs, Stephens County--Continued

•

(

at 25°C.)	20 1 320 6.6 1.2	and a sector	:	7.2	 1,280 7.2 2,900 7.2 2	1,280 7.2 2,900 7.2 2,4,800 8.1	1,280 7.2 2 2,900 7.2 2 4,800 8.1	2,900 7.2 2 2,900 7.2 2 4,800 8.1 905 6.6	2,900 7.2 2 2,900 7.2 2 4,800 8.1 905 6.6 6 4,990 7.4 5 	2,900 7.2 2 2,900 7.2 2 4,800 8.1 905 6.6 5 4,990 7.4 5 792 7.1 1,650 6.8				2,900 7.2 2,900 7.2 2,900 7.2 2,900 8.1 2,905 6.6 6 6.6 6.6 6.6 6.4 6,990 7.4 5 7.1 1,650 6.8 6.8 4,180 6.8 6.8 4,180 6	2,900 7.2 2 2,900 7.2 2 4,800 8.1 905 6.6 6 4,990 7.4 5 792 7.1 1,650 6.8 6 4,180 6.8 6.8 6.8 4,180 6.8 4,180 7.4 928 7.1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	 1,280 7.2 2 2,900 7.2 2 4,800 8.1 905 6.6 6 4,990 7.4 5 1,650 6.8 6 4,180 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8 6.8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	17 - 558 20			140 7																						
-	847	3,210	751		1,640	1,640 2,935	1,640 2,935 551	1,640 2,935 551 2,930	1,640 2,935 551 2,930 486 477	1,660 2,935 551 2,930 477 4,77 1,089 -	1,660 2,935 551 551 2,930 486 477 910 2,370 2,370	1,660 2,935 551 2,930 486 477 1,089 - 910 2,370 2,723	1,6640 2,935 551 2,930 486 477 4,77 1,089 1,010 2,370 2,723 2,723	2,935 551 551 2,930 486 477 477 477 910 2,3370 2,723 2,723 2,539	1,6640 2,935 551 2,930 486 477 1,089 2,370 2,370 2,723 2,723 562 562	1,660 2,935 551 2,930 477 477 1,089 910 2,359 2,723 2,559 2,552 1,665	1,6640 2,935 551 2,930 486 477 486 486 2,370 2,370 2,599 2,599 2,599 2,599 1,665 1,426	1,640 2,935 551 2,930 486 477 477 4,77 2,930 2,370 2,723 964 2,723 964 1,065 1,426 1,426 1,426	1,6640 2,935 551 2,930 477 477 477 910 2,370 2,370 2,723 2,723 2,723 2,562 1,665 1,665 1,665 1,665 392 910	1,6640 2,935 551 2,930 486 477 486 486 2,370 2,370 2,599 562 1,465 1,465 1,465 1,426 392 1,990	1,640 2,935 551 2,930 486 477 477 477 477 41,089 562 2,723 910 562 1,665 1,426 910 910 910 1,990 1,990	1,6640 2,935 551 2,930 477 477 477 910 2,370 2,370 2,723 2,723 2,723 2,723 1,086 1,086 1,086 1,426 1,426 1,426 1,426 1,426 2,050 2,050	2,935 551 551 2,930 486 477 477 4,77 1,089 2,370 2,370 2,370 2,370 2,370 2,599 1,426 1,426 1,426 1,426 1,426 1,426 2,723 2,599 2,723 2,599 2,723 2,599 2,723 2,725	1,640 2,935 551 2,930 2,930 1,009 2,370 2,370 2,370 2,559 1,665 1,665 1,665 1,665 1,665 1,665 1,665 1,665 1,665 1,665 1,665 1,665 2,509 2,050 2,050 1,990 2,050 1,990 2,050 1,990 2,050 1,431 2,050 2,	1,660 2,935 551 2,930 486 477 477 910 2,370 2,370 2,370 2,370 2,529 1,086 1,665 1,426 1,426 1,426 1,426 1,426 1,426 1,426 2,050 2,050 1,990 2,050 1,990 1,918 1,91	, ,
		ł	2.6	0 0	0.7	₩. >	2.0 22	 22 22 22 	22 22 35 3.5	22 22 22 22 33 24 4	 4. 5 4. 22 4. 2 3. 5 5. 5 	<pre>22 22 22 22 22 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5</pre>	22 - 4 22 - 4 3.5 1 - 5 1 - 5	22 22 2. 2. 2. 5. 5. 5.										2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
	1 0.3	ł	1.5	2.4		5.0	5.0	5.0 .3	5.0 . 1 1.	6. .	6. I I 6. I I	6. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5.0 6.1 1.1 1.1 1.1	5.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1	5.0 6.1 1.9 1.1 1.1 1.1 4.	5.0 	5.0 .3 .9 .1 .3 .4 3 .3 .3	5.0 6.1 6.1 1.1 4. 1.1 4. 5.5 6.	5.0 19 19 19 19 19 19 19 19 19 19 19 19 19	5.0 	6.0 6.1 6.1 7.5 6.1 7.5 6.1 6.1 6.1 6.1 1	5.0 .3 .9 .4 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3	5.0 	5.0 	5.0 .3 .1 .4 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3 .3	5.0
104	136	1,440	108	740		1,291	1,291	1,291 36 1,320	1,291 36 1,320 54 53	1,291 36 1,320 54 53 615 374	1,291 36 1,320 54 53 53 615 374 1,230	1,291 36 1,320 54 53 53 615 374 1,230 1,020	1,291 36 35 54 53 53 53 74 1,220 1,020 275	1,291 36 1,320 53 53 53 615 374 1,230 1,020 1,020 1,121	1,291 36 36 54 53 374 1,290 1,020 1,020 1,021 1,121 57 57 57 57 57 57	1,291 36 1,320 53 53 374 1,220 1,020 1,020 1,121 1,121 1,121 4,15	1,291 36 35 53 54 53 74 1,230 1,020 1,020 1,020 1,121 1,121 1,121 67 67 63	1,291 36 36 53 53 374 1,230 1,020 1,020 1,020 1,020 1,121 1,121 1,121 2,75 57 67 67 67 67 67 67 67 67 67 67 67 67 67	1,291 36 36 53 575 53 74 1,230 1,230 1,220 1,121 1,121 1,121 1,121 1,121 275 57 415 57 53 53 53 53 53 53 53 53 53 53 53 53 53	1,291 36 36 53 53 374 1,230 1,230 1,230 1,230 1,212 1,121 1,121 2,55 67 67 67 67 67 239 520 530	1,291 36 36 53 374 53 374 1,230 1,220 1,220 1,121 1,121 1,121 2,46 67 67 67 67 246 23 246 53 23 520 520	1,291 36 36 53 575 53 374 1,230 1,220 1,220 1,121 1,121 1,121 1,121 1,121 275 67 415 23 23 23 23 23 23 230 230 2320 2320 23	1,291 36 36 53 374 53 374 1,230 1,020 1,020 1,230 67 67 67 67 67 67 53 349 246 23 246 23 520 520 520 520 520 520 520 53 53 53 53 53 53 53 53 53 53 53 53 53	1,291 36 36 53 374 53 374 1,230 1,230 1,220 275 1,121 1,121 1,121 1,121 275 23 23 23 23 23 23 23 23 23 23 23 23 23	1,291 1,220 36 53 575 573 1,200 1,200 1,200 1,210 1,121 1,121 1,121 1,121 1,121 1,200 275 275 235 236 237 236 237 237 237 237 237 237 237 237	1,291 1,20 36 53 374 53 374 1,230 1,230 1,020 1,020 1,230 52 349 246 23 246 23 246 23 23 23 23 23 23 23 23 23 23
13	54 78	< 10	76	38		116	116 28	116 28 49	116 28 49 54 49	116 28 49 54 49 27 32	116 28 54 49 49 32 32	116 28 49 54 49 32 32 32 32 32 350	116 28 29 49 54 49 49 27 32 20 32 32 20 350	116 28 49 54 54 54 27 32 32 350 123 123 363	116 28 54 49 54 49 32 32 20 350 123 363 363	116 28 54 54 54 32 32 32 32 350 123 363 363 385	116 28 54 49 54 32 32 350 123 363 363 363 363 363 363 243	116 28 54 49 54 32 32 350 350 350 123 353 363 363 363 363 363 243 119	116 28 54 69 54 54 20 350 350 350 350 363 363 385 54 385 243 119 47	116 28 28 49 49 32 32 20 350 123 350 123 363 363 363 363 363 363 363 363 243 119 47 243 243 243	116 28 28 49 54 54 32 350 350 353 363 363 363 363 363 363 243 243 243 243 353 353	116 28 54 69 54 54 20 350 350 363 363 363 363 363 363 363 363 363 36	116 28 54 49 54 54 32 350 350 353 363 363 363 363 363 363 363 363 363	116 28 54 54 54 32 350 350 350 350 353 363 363 363 363 363 363 363 354 363 243 119 119 262 89 89	116 28 28 54 54 54 54 20 350 385 54 385 243 119 123 385 243 243 385 243 119 119 119 119 89 89	116 28 28 49 54 54 32 350 350 353 363 363 363 363 363 363 363 243 119 119 290 89 89 81 33
878	628 494	976	526	408	775	1000	500	500	500 784 378 356	500 784 378 356 110 316	500 784 378 356 316 418	500 500 378 356 316 418 418 616	500 784 356 356 356 316 418 616 616	500 784 378 355 316 418 418 616 418 616 433	500 500 3784 378 356 316 418 616 616 418 373 373	500 784 378 378 316 418 616 439 444 444	500 784 378 378 378 418 418 418 418 418 418 418 418 418 531 531	500 784 378 378 316 418 616 418 616 444 444 512 512 512	500 784 378 356 316 418 616 418 418 414 429 531 531 531 531 531 532 532	500 500 3784 3783 378 418 418 418 418 416 418 418 418 418 418 418 418 531 531 531 531 531 531 806	500 500 3784 378 378 418 615 410 410 418 418 418 418 418 420 512 512 512 512 512 512 512 512 768	500 500 3784 3785 316 418 616 418 418 616 444 420 531 531 531 444 420 344 420 344 420 344 420 344 420	500 500 3784 3785 316 418 418 418 418 410 410 512 531 512 512 512 512 512 512 512 512 512 51	500 500 3784 3565 3110 3166 418 418 414 420 531 531 531 531 532 71 532 71 758	500 500 3784 3785 3110 3116 418 616 418 414 423 531 444 420 344 420 344 420 344 420 320 320 71 71	500 500 3784 3378 3378 418 616 418 616 413 420 531 512 512 512 512 512 512 512 512 512 51
EVE	343 66	1,250	243	602	1,093		37	37 1,130	37 1,130 164 158	37 1,130 164 158 	37 1,130 164 158 158 159 553	37 1,130 164 158 158 159 553 1,023	37 1,130 164 158 158 159 553 1,023	37 1,130 164 158 159 159 553 1,023 1,023	37 1,1130 164 158 159 553 1,023 1,023 604 59	37 1,130 164 158 159 553 553 1,023 604 59 59	37 1,1130 164 158 158 553 1,923 1,023 604 59 604 539	37 1,1130 164 158 159 553 1,023 604 59 604 539 539	37 1,1130 164 158 159 553 553 1,023 604 604 59 604 59 59 539 539 539	37 1,1130 164 158 159 553 1,023 604 59 604 539 6103 239 239	37 1,1130 164 158 159 553 604 604 59 604 539 103 239 239 754	37 1,1130 164 158 159 553 553 1,023 604 59 539 539 539 539 539 539 539 539 539	37 1,1130 164 158 159 553 553 604 59 59 539 539 103 29 754 770 82 82 82 108	37 1,1130 164 158 159 553 604 604 604 604 539 539 103 29 756 770 82 82 82 82 82 82 82 82	37 1,1130 164 158 553 553 1,023 604 539 612 770 82 82 82 82 82 82 82 82 82 82 82 82 82	37 1,1130 164 158 159 553 553 604 59 539 103 29 754 770 82 82 82 82 754 61 108
6	30 2	=	9.1	13	16		6 *•		6. 8.	6, 8, ,	6. 8.	6 8	6. 8.	с, щ	о, ж	6. w	6. 8.	6, 8,	6 8	e. 8	6 8	6 8 7 7 8 7	6, 8, 7, 8, 4,	6 8 7	6, 8, 7, 8, 7,	6, 8, 7, 1, 1,
	3 174	29	15	26	22	164	101	20	20 17 17	20 20 17 17 17	20 20 17 17 166 305	20 20 17 17 166 305 18	20 20 17 17 17 166 305 305													
	1 1	4	1	1.2	:	:		1.5	1.5								e.					2	2	2	2	
								0*6	-									м м	N	л 	N	л	N			N
_	-	1	2 11	10	2 11	2 13																				
76-21-2	6-12-62 6-12-62	2-17-37	6-12-62	op	8- 6-62	6-12-62		6-13-62	6-13-62 2-17-37 6-13-62	6-13-62 6-13-62 6-13-62 6-13-62 2-15-37 6-12-62	6-13-6 6-13-6 6-13-6 6-13-6 6-12-6 do	6-13-62 6-13-62 6-13-62 6-13-62 6-12-62 do 2-19-37 2-19-37	6-13-66 6-13-66 6-13-66 6-12-66 6-12-66 6-12-69 2-19-3 do 2-19-3	6-13-62 6-13-62 6-13-62 6-13-62 6-12-62 do 2-19-37 do 9- 4-62	6-13-62 6-13-62 6-13-62 6-13-62 6-12-62 do do 9- 4-62 6-13-62 6-13-62	6-13-62 6-13-62 6-13-62 6-13-62 6-12-62 6-12-62 do 9- 4-62 6-13-62 6-13-62 8-28-62	6-13-62 6-13-62 6-13-62 6-15-62 do 2-19-37 do 9- 4-62 6-13-62 6-13-62 8-28-62 8-28-62 7-10-62	6-13-62 6-13-62 6-13-62 6-13-62 6-13-62 do 2-19-37 do 9- 4-62 6-13-62 6-13-62 8-28-62 7-10-62 6-13-62	6-13-62 6-13-62 6-13-62 6-13-62 6-12-62 do 10 6-13-62 6-13-62 6-13-62 6-13-62 6-25-62 6-25-62	6-13-62 6-13-62 6-13-62 6-13-62 6-12-62 do 2-19-62 6-13-62 6-13-62 6-13-62 6-13-62 6-13-62 6-26-62 6-13-62 6-13-62 6-13-62	6-13-66 6-13-66 6-13-66 6-12-65 6-12-65 6-13-65 6-15 6-15 6-15 6-15 6-15 6-15 6-15 6	6-13-66 6-13-66 6-13-66 6-12-66 6-12-66 do 9- 4-66 6-13-66 6-14-66 6-1	6-13-62 6-13-62 6-13-62 6-12-62 6-12-62 do 2-19-37 6-13-62 6-13-62 6-13-62 6-13-62 6-13-62 6-13-62 6-13-62 4-19-62 40 do do do	6-13-62 6-13-62 6-13-62 6-13-62 6-13-62 do 2-19-37 6-13-62 6-13-62 6-13-62 6-13-62 6-13-62 6-13-62 6-13-62 7-10-62 do do do do do 11- 2-62	6-13-62 6-13-62 6-13-62 6-12-62 6-12-62 6-13-62 9- 4-62 9- 4-62 6-13-62 6-13-62 6-13-62 6-26-62 4-19-62 4-19-62 40 do do do do 2-17-37 2-17-37 2-17-37	6-13-62 6-13-62 6-13-62 6-13-62 6-13-62 do 2-19-62 6-13-62 6-13-62 6-13-62 6-13-62 6-13-62 4-19-62 40 do do do do 2-10-62 2-17-37 6-13-62 6-13-62 6-13-62 6-13-62 6-13-62
(ft.) 89	33	135	200	166	175	65		150	150 82 100	150 82 100 24 24	150 82 100 24 24 24	150 82 100 24 24 24 24 340	150 100 24 24 24 20 340 84	150 82 82 24 24 24 20 340 84 134	150 100 24 24 24 24 24 24 134 134 134	150 100 24 24 24 24 24 340 84 134 84 134 65	150 100 24 24 24 24 134 134 134 141	150 100 24 24 24 24 24 340 84 134 134 134 134 134 120	150 100 24 24 24 24 340 84 134 134 134 141 141 120 120	150 100 24 24 24 24 24 340 84 134 134 134 134 134 134 134 11,000 1,000	150 100 24 24 24 24 24 340 84 134 134 134 134 141 120 120 120 199	150 100 24 24 24 24 20 340 84 134 134 134 134 141 141 120 1,000 1,000 199 200	150 1000 24 24 24 24 24 20 340 84 134 134 134 134 134 134 134 134 134 13	150 1000 24 24 24 24 24 20 340 84 134 134 141 141 141 141 141 199 120 199 199 200 629	150 1000 24 24 24 20 340 84 134 134 141 141 141 141 141 141 199 199 199 200 75 75 98	150 1000 24 24 24 24 20 340 84 134 134 141 141 120 120 120 120 129 129 129 129 120 129 120 129 120 120 120 120 120 120 120 120 120 120
R. M. Rozers	N. H. AOGUES Otis Hodges	R. M. Rogers	D. L. Nelms	R. J. Carey	Garland Coody	R. M. Rogers		Garland Coody	Garland Coody J. R. Coody	Garland Coody J. R. Coody J. M. Luttrell	Garland Coody J. R. Goody J. M. Luttrell J. M. Rogers	Garland Coody J. R. Coody J. M. Luttrell J. M. Rogers R. A. Sorgee Estate														 Garland Coody J. R. Goody J. M. Luttrell J. M. Rogers Garland Coody R. J. Carey Mrs. Albert Smith Elmer Hudspeth Mrs. L. C. Link Garland Coody J. R. Coody J. R. Coody D. B. Raney Mrs. L. C. Link Mrs. L. C. Link Wrs. L. C. Link Wr H. Birdwell H. C. Thompson do
31-19-3015/		3035/	304b/	305 <u>b</u> /	3064	307b/	308b/		万百00																30955 3105 31105 3114 4025 4025 5039 1025 6039 9015 9025 9059 9059 120-1012	3095 3105 3116 3116 3118 4012 4025 5034 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1024 1026

See footnotes at end of table.

Table 4.--Chemical analyses of water from wells and springs, Stephens County--Continued

SAR	0.9	53	5.7	ł	ł	ţ	ł	ţ	ł	;	ţ	;	30	;	t	1	1.5	ł	1	ł	ł	45	6.4	38	36	34	1
pH	7.0	7.2	7.2	8.4	8.4	7.9	8.6	8.7	8.5	3	8.6	8.6	8.3	8.5	8.6	8.1	6.9	8.0	;	8.6	7.3	7.9	8.0	7.9	7.8	7.7	;
conduct- ance (micromhos at 25°C.)	2,250	6,720	1,040	557	565	428	3,430	2,290	600	1	3, 950	2,780	1,200	1,280	1,065	406	1,160	1,152	1	1,460	780	1,560	1,260	1,330	1,280	1,210	3
so- dium	12	96	68	;	ł	ł	Ŧ	ł	ł	1	ł	ł	16	1	l	ł	25	ł	1	;	ł		66	98	98	98	1
hard- hard- ness as CaCO ₃	1,010	150	181	228	283	235	82	28	230	29	55	25	18	16	8	322	470	320	;	95	110	12	9	12	12	12	103
Dis- solved solids	1,540	3,970	637	324	315	269	2,107	1,380	349	803	2,440	1,627	742	813	648	486	725	643	261	880	420	900	742	784	758	712	880
Ní- trate s (NO3) s	590	<i>.</i> .	1.2	1.8	4.0	4.0	< .4	4. >	4. >	ł	<. >	1.8	• -	2.9	4. >	4.0	1.2	13.5	Î	20	1.3	1.0	1.2	1.2	1.2	1.0	;
Fluo- ride (F)	0.3	;	1.5	•2	.2	.2	5	е	.2	I	s	7.5	1.4	1.7	.7	.2	8.	1.5	ł	.4	9	11	1.1	1.1	8.	6.	1
Chlo- Fide 1 (Cl)	225	1,960	108	15	9	11	632	115	16	136	942	556	41	34	57	146	85	85	24	205	149	244 260	134	150	140	124	230
Sul- fate (SO4)	116	158	62	21	14	10	349	66	31	58	167	56	102	138	54	23	188	114	31	118	14	47	69	86	127	111	16
Bicar- bonate (HCO ₃)	286	592	396	307	315	266	561	556	306	573	681	637	584	609	065	246	380	390	220	358	178	476 549	468	456	376	380	427
Sodi um# (Na)	65	1,500	176	32	9	œ	787	550	41	319	930	679	293	317	261	57	74	89	;	303	123	357 374	294	306	289	273	310
Magne- stum (Mg)	22	17	16	17	5	7	13	2	16	ŷ	5	2	2.1	2	;	80	45	40	ł	7	5	4 4	.7	1.1	1.0	6.	12
Cal- cium (Ca)	368	32	95	63	105	83	п	2	65	2	14	9	3.8	£	n	116	114	86	ŧ	26	35	n n	2.5	3.2	3.0	3.5	21
Iron (Fe)	1	ł	3	;	ł	;	ī	ł	1	;	;	1	ł	ł	1	I	I	;	;	t	1	11	1	:	ł	3	;
Silica (SiO ₂)	15	6	14	19	15	15	10	10	17	;	п	10	ş	6	10	п	30	22	;	6	5	12	9.1	п	п	11	;
Date of collection	6-13-62	op	op	7-10-62	do	op	op	op	op	2-18-37	7-10-62	op	6- 2-62	9-20-62	7-10-62	op	6-16-62	6- 2-62	2- 8-37	7-11-62	7-13-62	6-29-62 1-28-37	6-29-62	op	do	op	3- 9-37
Depth of well (ft.)	Dug 35	368	140	16	61	Spring	3.39 -	298	72	365	273	330	90	120	225	22	12	75	9	158	330	140	200	206	205	175	131
Owner	H. C. Thompson	Lee Mitchell	do	4014 Mrs. L. C. Link	do	do	qo	op	do	Lone Star Gas Co.	Mrs. L. C. Link	do	Joe Jackson	D, D, Vaughn	T & P Coal & Oil Co.	E. W. Hohhertz	Mrs. O. R. Wallis		Noble Robertson	Jesse Garrett	A. R. Knight	S. H. Boles	Lester Thorpe	Mrs. M. H. Thorpe Estate	0	do	26-101C/ Alex Fambro
Well	31-20-103b/	105b/	106b/	位10万	4023	4039/	10404	4053	4063	7019	7034	7053	706b/	AE601	8014/	8034	25-201b/	2023	3019	5013	6023	903b	Ad 406	905b/	A906	907b/	26-1019

- 58 -

¢

۲

4

€

€

0

€

€

¢

€

Table 4.---Chemical analyses of water from wells and springs, Staphens County--Continued

4

€

SAR	:	;	11	38	35	;		ł	6.	1	;	ł	1	ł	1.3	1.4	ł	1.0		6.	t.9	3.4	21	18	22	I
ht	8.5	ł	18.0	7.3	7.5	7.9	7.2	ł	7.0	8.4	8.5	1	1	1	7.1	7,0	8.4	6.8		6.9	7.0	6*9	7.2	7.0	7.5	8.3
conduct- ance (micromhos at 25°C.)	1,800	I	2,910	3,840	2,470	2,920		ł	1,390	872	880	ł	:	;	985	1,090	1,050	836	845	1,430	1,050	671	2,130	2,250	1,930	1,630
cent so- dium	1	ł	11	95	96	;	32	ľ	15	ł	ł	1	ł	I	25	24	ł	22	36	14	32	19	92	89	93	;
hard- ness as CaCO3	75	86	61 42	94	47	066	809 362	E	680	273	278	;	235	304	409	464	280	364	234 290	730	390	118	16	121	70	680
Dis- solved solids	1,043	2,212	$^{2,191}_{1,986}$	2,230	1,420	1,942	886	481	965	525	534	601	477	522	625	713	602	505	601 510	1,010	665	351	1,330	1,410	1,240	1,136
Ni- trate (NO3)	0.4	;	1 >	.5	8.	4. <i>></i>	11	;	3	1.3	1.3	;	1	ł	1	ł	4.0	æ,		0.	0.	0.	3.8	8.	0.	<. >
Fluo- ride (F)	0.8	ł	1.5	ł	1.9	4	1 4	I	1.0	.2	4.	;	ł	t	4.	7	4.	æ.	1 2	-2	4	.2	1.0	6.	۶.	24
Chlo- ride (Cl)	329	1,010	1,030	1,040	550	470	340 61	70	35	67	66	78	64	74	59	66	133	41	74 66	57	64	134	222	242	061	79
Sul- fate (SO4)	66	77	35	48	27	630	226 146	100	396	78	96	144	175	85	158	210	74	59	128 81	380	177	62	428	470	388	644
Bicar- bonate (HCO ₃)	381	512	549 528	508	532	378	85 358	281	905	344	315	336	165	354	360	364	305	418	366 334	454	364	60	378	364	402	449
Sodi um ^k (Na)	380	845	854 777	847	551	297		1	54	96	96	1	-62	82	62	68	123	917	140 75	55	85	85	452	465	429	127
Magne- sium (Mg)	6	10	9.6	9.4	4.8	90	72 26	;	22	25	29	3	24	23	29	29	29	29	23 22	30	28	13	9.4	13	7.2	43
Cal- cium (Ca)	12	18	16 1	22	11	247	206 102	1	236	68	65	;	54	84	116	138	64	98	56 80	243	110	26	21	27	16	206
Iron (Fe)	I	I	11	;	1	;	11	1	;	ł	ł	ł	;	;	ł	ł	ł	;	11	22	;	Î	1	ţ	ł	;
Silica (SiO ₂)	13	1	101	9.5	11	22	23 -	1	21	13	16	1	t	;	24	23	18	24	21	20	22	8.	10	10	12	17
Date of collection	7-13-62	2- 8-37	do 10-27-62	6-21-62	op	7-13-62	3- 9-37 6-22-62	2- 6-37	6-25-62	7-13-62	do	3- 9-37	op	op	6-22-62	op	7-13-62	6-22-62	3- 9-37 6-21-62	6-22-62	7- 7-62	6-25-62	6-14-62	op	do	7-13-62
Depth of well (ft.)	131	(13)	192 192	135	200	65	185 185	120	160	100	100	180	180	165	135	120	152	56	180	115	156	160	150	125	150	134
Owner	Alex Fambro	Joseph E. Runsey	Paul Wagley	E. C. Head	Joseph E. Rumsey	A. R. Knight	0. R. Gilbert	Mrs. Willie Sykes	J. W. Jackson	Alex Fambro	do	0. R. Gilbert	Wayland School (County or State)	T. C. Fambro	G. M. Lauderdale	db	Alex Fambro	D. M. Duncan	E. C. Head	T. G. Gilbert	0. R. Gilbert	J. W. Jackson	D. E. Turner	do	B. G. Langford	C. B. Greunlee
We I I	31-26-1014	1029	103 <u>9</u> 2	/de01	/i10b/	1113/	201 <u>9</u>	2029	203b/	2044	2054	2065/	2079	2089	/ <u>4</u> 602	210b/	2143	215b	216 <u>5</u>	2199	221b	222 <u>b</u> /	3015	302b	FERE	304.95

Table 4.*--Chemical analyses of water from wells and springs, Stephens County--Continued

SAR	ł	11	;		1	1	;	11	1	ł	ł	.7	20	12	:	:	1	1	35	Ξ	35	47	:	ł	;	ł
ЪH	1		8.1	8.3	7.7	8.6	;		;	;	7.2	6.7	7.0	4.7	7.1	7."	7.1	1.1	7.6	7.1	7.4	7.5	1	7.1	7.5	7.2
specific conduct- ance (micromhos at 25°G.)	:	3,500	2,280	9,280	2,150	2,270	ł	 1,600	ł	ł	1,035	1,150	1,170	13,800	735	1,200	1,450	1,030	2,180	1,680	1,830	3,290	:	1,195	2,000	1,800
cent so- dium	ł	::	;	93 94	;	ł	ł	11	ţ	ł	ł	12	14	50	;	ł	ł	1	16	82	16	76	ł	ł	;	ł
hard- ness as caCO ₃	32	42	40	276	37	22	151	675	ł	ł.	390	586	582	3,700	160	480	504	428	36	154	26	45	;	460	596	880
Dis- solved solids	1,341	1,941 2,000	1,266	6,206 5,760	1,145	1,316	1,383	895 1,108	544	176	600	773	794	8,440	397	746	936	592	1,240	970	1,040	1,860	924	663	1,296	1,197
Ni- trate (NO3)	1		<i>⁺</i> >	E E	4. V	4. >	;		;	ł	30	0.	.2	i	*' >	* · >	4. ×	1.8	2.5	1.2	0.	٠5	ţ	10.9	5.4	*. ~
Fluo- ride (F)	£	1.0	1.5	11	1.3	5	I	17	;	1	.2	е.	4	;	9.	4.	е.	ţ	2.1	1.5	1.7	I	;	• 5	2.4	т.
Chlo- ride (Cl)	400	900 939	465	3,275 3,250	395	442	490	102 95	43	310	81	38	50	5,160	99	42	76	38	++25	270	322	800	525	105	208	110
Sul- fate (SO4)	70	< 10 6	20	147 22	23	36	70	392 453	220	282	107	222	258	167	13	253	340	238	72	41	39	38	69	82	218	450
Bicar- bonate (HCO3)	671	531 478	517	461 448	515	559	561	220 365	201	104	320	468	410	2	303	366	405	244	482	532	506	548	9	425	727	449
Sod tum* (Na)	530	765 780	500	2,215 2,160	445	523	493		ł	1	97	38	43	1,730	54	11	106	25	479	327	408	723	1	11	291	75
Magne- stum (Mg)	2	4 M	5	34	4	5	10		;	ł	27	20	20	159	19	34	29	26	3.1	13	1.4	4.3	I	27	43	47
Cal- cium (Ca)	6	11	7	74 74	6	S	44		;	;	112	202	200	1,220	33	136	168	128	6	40	8	п	;	140	132	274
Iron (Fe)	ł	::	ł	: :	;	ł	ł	: :	É	;	ł	ţ	;	138	;	;	;	;	;	;	;	;	ł	;	ł	ł
Silica (SiO ₂)	Ł	۱ ₁	12	9.8	15	6	1		ł	ł	21	23	20	2	22	24	18	15	9.4	14	9.6	11	1	18	38	20
Date of collection	2- 8-37	2- 6-37 7-19-62	6- 2-62	8-21-58 6-21-62	6-11-62	7-13-62	2- 6-37	2-11-37 6-11-62	2-11-37	op	6- 9-62	5-29-62	op	6-22-62	6- 9-62	op	op	7-11-62	6-29-62	op	op	op	2-11-37	6- 8-62	6- 9-62	do
Depth of well (ft.)	158	149 Over 200	198	210 210	200	160	11	125 125	70	106	110	90	160	70	138	110	121	100	180	199	215	205	173	120	30	150
Owner	A. F. Billman	J. C. Rominger	4033/ Paul Wagley	C. F. Hogan	K. D. Pilgrim	Alex Fambro	J. K. Pruitt Estate	R. F. Ledbetter	J. C. Thompson	T. W. Mills	op	Irven A. Gray	do	Alfred Cole	J. D. Ridling	P. C. Langford	R. L. Tuton	G. E. Hall	J. R. Perry	W. T. Hinson	Gunsight Cemetary	J. H. Boles	M. A. Frost	A. C. Thompson	R. A. Barker Estate	Mrs. M. E. Frasier
We11	31-26-4015	402 <u>9</u>	4033	- वि कि	40534	/6/07	5015/	502 <u>4</u> 1	5035	5045	5063/	509 <u>b/</u>	510b/	511b/	5123/	6014/1	6023	6043/	702b/	703b/	705b/	706b/	5708	を106	90234	9034

See footnotes at end of table.

۲

₫

€

€

€

€

ě.

€

C

- 60 -

Table 4. -- Chemical analyses of water from wells and springs, Stephens County--Continued

SAR	:	1.3	ł	}	1.6	38	37	11	1	11	;	19	7	12	2.1	1.6	15	ł	Ĩ	1	13	5.9	п	ł	18	1
Hq	7.2	6.9	ł	1	6,8	7.5	7.2		ł	1.4	1	7.8	7.8	5.9	7.2	6.7	8,0	8.3	7.3	8.0	7,8	7.6	7.8	7.9	7.8	7.6
spectific conduct- ance (micromhos at 25°G.)	2,440	733	ł	ł	1,740	3,080	5,650	3,520	-		ł	690	587	1,080	1,040	956	844	776	822	785	781	586	672	715	864	560
cent so- dium	1	28	;	ł	22	96	93	11	ł	11	1	96	82	88	36	30	66	ł	ł	;	92	78	90	ş	56	;
hard- ness as cac03	760	291	ï	;	717	66	213	290	544		62	16	27	68	345	338	34	13	363	35	35	72	37	99	26	88
Dis- solved solids	1,455	436	342	2,190	1,050	1,860	3,550	492 2,692	1,082	548 570	552	436	357	648	623	527	522	489	514	449	478	357	412	488	531	345
Ni- trate (NO3)	27	.2	ł	ł	66	1.2	6.5		ŧ	*. 1 v	;	0.	1.5	°.	33	1.2	.8	* * >	÷. >	4. >	80	0.	1.2	4. >	8.	4. >
Fluo- ride (F)	0.7	.4.	ł	1	е.	ł	ł		F	: 7	ł	1.2	1.0	1.7	5	e.	1.2	1.7	.1	1.3	1.2	1.	.7	2.0	1.5	9 .
Chlo- ride (C1)	400	33	92	920	145	580	1,320	146	440	146 86	30	20	16	16	122	138	40	25	74	33	32	14	25	24	42	17
Sul- fate (SO4)	247	φ.	62	376	205	166	748	38 148	108	46 61	95	29	22	45	55	31	38	37	55	30	31	23	37	17	36	21
Bicar- bonate (HCO3)	500	372	134	268	552	752	318	256 354	275	311	512	402	332	482	346	308	450	441	3 2	388	428	336	350	479	458	322
Sodium* (Na)	250	52	1	1	96	710	1,240		190		206	172	121	237	90	99	200	194	97	172	182	115	150	180	207	103
Magne- sium (Mg)	66	21	1	3	59	8.1	22	- 20	15	1.0	11	2.0	7.2	п	2	9*5	4.5	T	11	9	4.2	8.3	4.2	6	2.7	=
cal- clum (Ca)	196	82	;	3	190	13	61		194		7	3.5	11	6	130	120	ę	3	127	5	11	15	7.8	п	T	18
Iron (Fe)	ţ	ł	;	ł	;	:)	: :	1	: :	;	1	1	i.	1	;	ł	I.	;	1	1	t t	ţ	;	;	;
Silica (Si02)	22	15	;	;	14	6	9.7		;	20	ł	10	14	10	18	9.6	10	10	18	11	10	16	14	6	10	16
Date of collection	6- 9-62	5-30-62	2-12-37	2-10-37	6-15-62	6-14-62	op	2-17-37 9- 8-62	2-17-37	2-12-37 9-10-62	2-12-37	6-14-62	4-19-62	5-24-62	op	7-19-62	5-24-62	9- 8-62	op	6- 4-62	5-24-62	6- 2-62	5-25-62	8-29-62	5-24-62	8=22=62
Depth of well (ft.)	50	192	12	11	100	140	150	65 65	19	19	100	140	100	100	18	115	100	110	20	105	110	100	130	101	125	125
Owner	R. B. Wymer	Mrs. Ola Frasier	Willis Knight	Mrs. Kit Gardenheim	H. M. Munnerlyn	A. W. Howton	G. R. Langford	J. B. Jones	M. A. Truesdell	J. C. Bradford	Charlie Bobo	W. L. Carey	D. M. Stanford	C. L. Burgsley	M. A. Truesdell	do	Frank Bargsley	K. E. McDonald	do	do	New Hope Baptist Church	Robert Jackson	J. B. Jones	J. C. Bradford	222by Mrs. Artie Sherrill	S. A. Davis
Well	31-26-9044	906b/	27-1019	1029 1	103b/	105by	106b/	2019 2019	2029 1	203 <u>9</u>	2045	2055/ 1	206b/ 1	207b/	2095/	210b/	212b/ 1	2143/	2153/	2163/	21.75/	218b/ I	2195	2214	222by	22634 \$

Table 4.--Chemical analyses of water from wells and springs, Stephens County--Continued

.

SAR	1	ł	ł	15	1.7	14	12	I	21	2.2	1.0	21	÷.	1	ł	ł	1.4	1.2	1.6	2.1	ł	ł	1	ł	ţ.	1	ł	1
hq	8.1	7.5	6.9	7.7	7.0	1.7	6.7	7.4	8.1	7.0	7.2	7.8	7.0	8.0	ł.	1	6.5	6.5	6.6	6.6	7.5	7.5	8.4	7.6	7.3	7.5	1.6	7.1
conduct- ance (micromhos at 25°C.)	677	1,079	366	696	618	4,390	13,000 3,040	638	1,010	1,160	940	141	669	1,250	ţ	1	1,110	1,500	2,220	5,900	1,750	1,750	1,600	1,550	2,800	2,900	1,750	2,420
cent so- dium	1	:	ł	476	38	96	51	ł	95	36	21	96	6	ł	ł	ł	24	19	22	18	l	ł	1	ł	ł	ł	ł	ł
hard- ness as CaCO ₃	23	253	130	22	201	94	3,370	304	24	396	369	14	343	320	363	ł	482	636	830	2,510	566	675	688	202	1,080	1,114	324	1,180
Dis- solved solids	424	697	228	428	353	2,820	7,820 1,609	383	607	712	525	456	404	735	561	745	726	920	1,190	3,380	266	957	965	902	1,555	1,660	922	1.671
Ni- trate ⁵ (NO3) ⁸	<0.4	8	** >	•2	4.4	2.8	1 >	4. >	5.	52	1.8	0.	2.6	27	1	ł	64	65	2.8	16	4	4.4	A. A	*· >	4. >	2.9	4.4	4. >
Fluo- ride (F)	1.0	4.	۰.	1.1	е.	;	1.0	7	2.7	·.	ŗ.	1.4	•2	1.0	;	ł	е.	г.	4.	ł	.1	г.	.1				۰.	1.
Chlo- H ride 1 (Cl)	21	96	16	18	40	750	4,650 613	35	84	107	156	20	38	17	100	192	117	188	360	1,820	235	253	165	148	600	565	228	364
Sul- fate (SO4)	28	130	27	28	22	558	101	23	81	82	71	34	24	105	11	254	89	166	222	208	169	164	308	257	214	260	122	502
Bicar- bonate (HCO ₃)	389	376	172	400	294	868	281 381	342	392	412	208	416	360	483	372	104	392	360	388	300	442	386	325	386	390	476	454	787
Sodium [#] (Na)	162	166	29	167	57	1,040	1,620	25	233	102	45	181	15	145	75	;	69	69	106	247	145	85	55	40	140	170	220	110
Magne- sium (Mg)	2	11	2	2.3	6.5	8.7	79 16	9	2.3	21	26	1.7	3.3	19	29	3	29	26	53	124	32	41	39	95	63	62	25	7.5
Cal- cium (Ca)	9	83	45	10	70	23	1,220	111	9	124	105	e	132	96	57	1	145	212	245	800	174	203	211	206	329	349	84	10.0
Iron (Fe)	1	ł	;	1	ł	I	; ;	;	;	ł	Î	;	;	1	ł	;	ł	;	:	1	ł,	:	;	:	:	;	;	
Silica (SiO ₂)	12	18	21	9.2	8.1	9.3	9.1	15	4.9	20	18	10	12	27	;	;	20	17	14	19	17	17	11	15	17	17	15	
Date of collection	8-22-62	do	op	6-23-62	do	op	4-19-62 9- 4-62	8-29-62	5-25-62	qo	5-29-62	6-23-62	op	6- 7-62	2-11-37	op	6-15-62	do	qo	7- 2-62	7-11-62	op	op	do	op	op	op	
Depth of well (ft.)	100	100	20	Unknown	Unknown	450	500	21	203	125	50	90	28	30	79	92	95	75	80	86	215	215	75	215	215	215	215	
Owner	S. A. Davis	op	op	Mrs, Ellen Justice	op	do	D. M. Stanford	op	R. C. Stuard	do	Joe Jackson	Mrs. Ellen Justice	do	T. B. Miller	C. C. Jackson	A. A. Hardee	C. C. Jackson	C. A. Brown	A. A. Hardee	S. L. Williamson	G. E. Hall	do	do	op	op	op	op	
Well	31-27-2279	2324	2333			302b/	303b/ 4	3043	305b/	3065	307b/	308b/	309b/	40134	4029	4039	404D/	406b/	/q607	414b/	4159	4164	4179	4183	位19	4203	4214	

€

€

€

€

C

(

See footnotes at end of table.

- 62 -

Table 4, --Chemical analyses of water from wells and springs, Stephens County--Continued

€

pH SAR	7.9	9.3	;	1	1	7.2 2.0	7.4 .6	7.7	7.9	8.0	7.4	8.3	8.2		1.8		1	7.2	11 8.6	7.8	7.8	7.1	7.5	6.7	
specific conduct- ance ance ance at 25°C.)	1,500 7			1	1	602 7	608 7	840 7	1,050 7	1,060 8	1,300 7	2,200 8	1,460 8		1,570 8	1,675 8	;		2,260 8	2,900 7	3,100 7	1,600 7	2,000 7	3,680 7	
rent sor dium	;	ł	;	1	ł	15	14	ł	1	;	ł	ł	1	11	ł	1	;	11	11	11	1	;	ł	£	
Total hard- ness as CaCO3	508	29	487	128	1,744	195	298	38	45	480	310	06	285	25 50	109	140	353	497	65.	85 74	270	640	805	1,340	
Dis- solved solids	753	1,430	703	1,126	5,957	357	356	499	656	626	761	1,195	871	1,074 1,005	935	6//3	482	223 557	1,775 1,569	1,657 1,691	1,780	879	1,517	2,189	
Ni- trate (NO3)	3.8	<.^	ł	;	1	1.2	0.	<.^	4. >	3.8	4.1	4°>	** >	*.v	·,· >	31	ł	1 >			4. >	5.5	70.5	310	
Fluo- ride (F)	0.1	5.0	ł	ł	I	6.	.7	2.4	3.8	۳.	1,2	4.8	8.	4.2	3.2	3.8	ł	1 3	3.3	1.0	4.0	۲.	.2	4.	
Chlo- ride (C1)	243	295	122	325	3,520	26	20	33	53	96	118	306	206	300 231	240	174	32	a0 a0	505 485	435 435	515	245	438	775	
Sul- fate (SO4)	65	210	85	81	15	26	16	36	55	65	100	132	109	111	75	124	36	<10 16	252 180	230 249	240	70	217	197	
Bicar- bonate (HCO3)	329	583	482	561	342	324	364	425	527	478	490	559	427	476 525	6493	+88	464	256 630	665 538	665 670	649	459	487	359	
Sodium* (Na)	88	567	11	402	1,618	63	22	195	255	52	186	077	232	418 372	331	307	52	12	670 607	616 630	605	J_{il}	228	240	1
Magne- s1um (Mg)	38	4	19	13	96	20	25	in i	9	38	40	16	18	¢ 4	15	12	13	30	3 m	9 10	35	34	31	105	
Cal- cium (Ca)	138	9	163	29	540	45	78	9	00	130	59	10	84	۲ ¹	20	37	119		13	20 13	50	200	272	364	ļ
Iron (Fe)	1	ł	;	I	;	I	1	1	ł	Î	;	;	1	11	1	ł	ï	11	11	11	1	î	ſ	;	
Silica (SiO ₂)	15	10	ł	1	1	16	15	12	12	22	12	п	12	11	80	14	ł	31.5	5.5	181	12	24	20	21	1
Date of collection	7-11-62	op	2-12-37	2-24-37	op	4-19-62	5-24-62	6-24-62	6- 8-62	6- 4-62	6- 5-62	op	6- 4-62	2-12-37 6- 4-62	10- 3-62	6- 5-62	2-11-37	do 10- 4-62	3- 2-37 10- 4-62	2-11-37 6- 8-62	op	op	10- 5-62	6- 6-62	
Depth of well (ft.)	215	215	131	69	100	100	54	75	80	80	168	120	58	50 68	180	95	41	19 19	182 182	153 153	168	60	200	24	
Owner	G. E. Hall	op	C. T. Botts	5029 Unknown	qo	C. L. Bargsley	Frank Bargsley	C. C. Veale	N. L. Moore	C. N. Dempsey	J. W. Veale	Wesley Dempsey	A. H. Boney	do	H. L. Caraway	Don Bradford	J. L. Ready	C. C. Goforth	W. H. Boney	H. C. Wilkinson	do	C. N. Adams	J. L. Ready	C. E. Boney	
Well	31-27-4233	4243	5015/	5029	2035/	504PJ	505b/	5064	5079	5084	6015	511 0	5123	513 <u>9</u>	5143/1	5154 1	/5102	702 <u>9</u>	103 <u>9</u> 12	1070L	70694	/EL01	7089	11034	

See footnotes at end of table.

Table 4.---Chemical analyses of water from wells and springs, Stephens County---Continued

SAR	1	t	1	1	1	1	ł	1	:	1.1	1	1	1	ł	1	67
рН	7.6	7.4	7.6	7.6	8.0	7.8	7.6	7.3	7.4		7.8	8.2	7.7	7.9	ţ	7.7
spectific conduct- ance (micromhos at 25°G.)	545	4,150	1,500	2,240	1,023	1,640	945	4,460	3,200		4,000	8,970	2,570	5,750	;	3,900
cent so- dium	;	ł	ł	:	ţ	ł	8	1	;	11	1	ţ	ł	ł	ł	98
hard- ness as CaCO3	278	1,780	405	725	370	370	295	1,380	925	230	50	300	975	201	:	34
Dis- solved solids	334	2,526	948	1,366	655	142	534	2,477	1,735	548 378	2,353	5,314	1,709	3,530	350	2,340
Ni- Lrate (NO ₃)	4.0>	314	4.	16.4	<. >	÷. >	14	14	13	** >	4.	** >	687	4. >	;	3.0
Fluo- ride (F)	1.6	•2	4.	۲.	τ.	1.5	7	۲.	.1	1.1	0.4	1.6	ŗ.	2.0	1	:
Chlo- F ride r (Cl)	20	905	161	355	42	214	77	1,075	735	96 33	975	2,980	280	1,890	21	680
Sul- fate (SO4)	1	275	110	172	63	107	45	250	131	69 42	5	2	173	12	139	336
Bicur- bonate (HCO ₃)	334	371	647	632	576	515	437	481	410	366 249	730	473	183	477	146	820
Sodium* (Na)	8	206	204	222	110	225	62	355	280	37	076	1,995	114	1,320	:	897
Magne- Stum stum (Mg)	25	141	35	07	18	18	10	44	33		9	41	62	26	1	3.5
cal- cium (Ca)	70	480	104	224	118	118	102	480	316	 61	15	52	288	38	1	8.0
Iron (Fe)	1	1	;	I.	1	:	ł	;	;	11	ł	I	;	;	ł	ł
Silica (Si0 ₂)	38	22	16	25	21	28	25	22	25		11	6	15	7	ł	11
Date of collection	6- 6-62	do	qo	op	6- 7-62	đo	do	op	op	2-12-37 6- 4-62	6- 5-62	6- 4-62	6- 5-62	9-19-62	2-17-37	5-29-62
Depth of well (ft.)	21	57	81	40	88	30	60	65	65	19 22	118	400	Dug unknown	375	23	365
Owner	C. C. Goforth	op	Hames Estate	Mrs. Miley E. Williams	J. D. Eakin	do	J. L. Ready	Mrs. Ora Holder	do	Bullock School	B. R. Hatton	Mrs. W. W. Hatton	Rudy Wells	N. L. Sudderth	28-1019 Mrs. Mm. Graham	Mrs. C. Lambert
Well	31-27-7123	7133/	7149	7154 1	71694	7179	719 <u>1</u>	7203	7214	801 ² /	802	805型	8079/	808.94	28-1019	103b/

b) Analysis by U. S. Geological Survey, Quality of Water Branch Analysis by The University of Texas d B1 Service Inc. * Includes both Sodium and Potassium (Na + K) for analyses performed by the U. S. Geological Survey, which are indicated by footnote b.

4

€

€

€

¢

* €

C

Table 5.--Reported brine production and disposal in 1961, Stephens County

e

Area no. shown on Plate 3	Field	pi	sal in ts bl)	Disposal in injection wells (bbl)	Total brine production (bbl)
1	Lenoir		3,650	0	
	County Regular		0	12,775	
		Total	3,650	12,775	16,425
2	Woodson-Allison/Caddo/		0	16,790	
		Total	ō	16,790	16,790
3	Bowar/Caddo/ Bowar/Mississippi/ Bowar, NE/Mississippi/ Bowar, SE/Mississippi/ Powers/Marble Falls/		6,080 9,065 0 100 0	0 0 820 0 0	
		Total	15,305	820	16,125
4	Harding Bros./Caddo, Lower/ Harding Bros./Caddo, Upper/ Harding Bros./Mississippi/ Harding Bros., NE/Caddo, Lower/ Harding Bros., NE/Mississippi/ Tipton, North/Caddo/ Tipton, North/Caddo, Lower/ Tipton, North/Strawn/		900 300 10,000 1,825 1,480 66,430 0	0 0 0 0 0 0 0	
		Total	80,935	ō	80,935
5	Eloise Kay/Marble Falls/ Eloise Kay/Mississippi/ Eloise Kay/Strawn/ Stribling		0 0 0 750	0 0 10,000 0	
	54	Total	750	10,000	10,750
6	Richard Kyle/Hope Sand/		2,920	o	
		Total	2,920	ō	2,920
7	Crystal Falls Crystal Falls/Mississippi/ Crystal Falls/4100 Conglomerate/ Hannah/Mississippi/ Ross Sloan		0 3,650 0 0 0	40,873 5,475 0 17,080	
	County Regular		1,825	0	
		Total	5,475	63,428	68,903

Table 5.--Reported brine production and disposal in 1961, Stephens County--Continued

0

C

 \mathbf{C}

€.

C

€

* €

47

 \mathbf{C}

~ (

rea no. hown on late 3	Field	pi	sal in ts bl)	Disposal in injection wells (bbl)	Total brine production (bbl)
8	County Regular		0	73,800	
		Total	ō	73,800	73,800
9	Alfred Donnell/Mississippi/ Atkins Bill-Ray/Atoka/ Britton/Mississippi/ Brownville Brownville, North/Mississippi/ Brownville, North/Mississippi/ Brownville, West/Caddo, Middle/ Con-Rich/Conglomerate/ Delong/Zone A/ Delong/Zone B/ Delong/Zone C/ Donnell Double-D/Ellenburger/ Echols Eliasville, East/Mississippi/ Eliasville, East/Mississippi/ Eliasville/Mississippi/ Hill Hill, North/Mississippi/ Jim Kern, East/Conglomerate/ Jim Kern, East/Mississippi/ Pratt/Mississippi Lime/ Rickels Rickels/Conglomerate/ Rickels/2nd Conglomerate/ Rounsaville/2650 Strawn/ Ryan/Bend Conglomerate/ Ryan, East/Mississippi/ Ryan, South/Bend Conglomerate/ Ryan, South/Bend Conglomerate/ Tullos Walker Davis Walker Davis Walker Davis Walker Davis Walker Davis Walker Davis/ Welwood-Morrison/Mississippi/ Welwood-TXL/Mississippi/ Welwood-TXL/Mississippi/ William & Jack County Regular		$\begin{array}{c} & 0 \\ & 0 \\ & 365 \\ & 0 \\ 2,920 \\ & 0 \\ & 0 \\ 2,500 \\ 1,200 \\ & 0 \\ & 0 \\ & 0 \\ & 5,235 \\ 12,775 \\ 18,411 \\ & 0 \\ & 0 \\ & 0 \\ & 5,235 \\ 12,775 \\ 18,411 \\ & 0 \\ &$	$\begin{array}{c} 5,475\\ 10,220\\ 0\\ 18,000\\ 0\\ 0\\ 219,000\\ 0\\ 0\\ 1,825\\ 34,451\\ 0\\ 0\\ 0\\ 158,410\\ 0\\ 0\\ 0\\ 158,410\\ 0\\ 0\\ 0\\ 153,300\\ 6,440\\ 0\\ 0\\ 0\\ 0\\ 153,300\\ 6,440\\ 0\\ 0\\ 0\\ 153,300\\ 6,440\\ 0\\ 0\\ 0\\ 0\\ 0\\ 5,000\\ 2,520\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$	2,089,173
10	Minnie-Roy/Mississippi/	Total	850	0	2,005,275
10	minite-Koy/mississippi/	Total	850	o o	850

Table 5.--Reported brine production and disposal in 1961, Stephens County--Continued

Area no. shown on Plate 3	Field	pi	osal in its obl)	Disposal in injection wells (bbl)	Total brine production (bbl)
11	Whittenburg/Strawn/	Total	5,475 5,475	12,775 12,775	18 250
12	Ivan/Mississippi Lime/	local	1,769	0	18,250
	County Regular		2,920	0	
		Total	4,689	ō	4,689
13	Stroud/Deep/		160	0	
	County Regular		1,730	0	
		Total	1,890	ō	1,890
14	Iles/Conglomerate/ Iles/Conglomerate, Upper/		28,050 0	0 0	
		Total	28,050	ō	28,050
15	Pharris/Conglomerate/		365	0	
		Total	365	ō	365
16	O'Neal/Caddo/		3,600	12,600	
		Total	3,600	12,600	16,200
17	Akin Bellvick/2750 Strawn/ Breckenridge Connally-Thorton Ivan/Marble Falls/ Moon Parks Pierce Singleton/Caddo/		3,926 375 0 0 91 1,500 547	0 0 0 0 0 89,425	
	County Regular	Total	442,737 449,176	650,526 739,951	1,189,127
18	Gourley, East/3900 Conglomerate/ Gourley/Strawn Sand/ Harris/Marble Falls/ Jackson/Lassiter Strawn/ Jackson/Strawn/ Rollins/2700 Sand/ Stanford/Strawn, Lower/ Sunshine/Strawn/		0 5,320 0 12 192 30 0 21	0 0 127,750 0 93,075 0 0 0	
	County Regular		20,057	292,467	
		Total	25,632	513,292	539,529*

See footnote at end of table.

€

Table 5.--Reported brine production and disposal in 1961, Stephens County--Continued

 \mathbf{C}

0

C

C

£

* €

 \mathbf{C}

° ¢

Area no. shown on Plate 3	Field	Dispos pit (bb	s	Disposal in injection wells (bbl)	Total brine production (bb1)
19	Ibex, East Ibex, East/Ellenburger/ Ibex, East Loving		1,460 500 730 2,787	0 0 0 0	
		Total	5,477	ō	5,477
20	Big Sandy/Marble Falls/ Chaney Eolian/Ellenburger/ Northeast Area Chaney Northeast Area		0 0 3,560 0 0	0 109,500 0 434,265 70,000 0	
	County Regular		3,650	45,625	
		Total	7,300	659,390	666,690
21	County Regular		0	3,600	
		Total	$\overline{0}$	3,600	3,600
22	Fincher/Caddo/ Necessity		0 4,320	3,650 0	
	County Regular		2,190	0	
		Total	6,510	3,650	10,160
23	Bloomquist/Lake Sand/ Lee Ray Manning-O'Connor		24 0 9,125	0 1,884 179,230	
	County Regular.		1,778	270,300	
		Total	10,927	451,414	462,341
24	Aunt Em/Ellenburger/ Mueller-O-/Ellenburger/ Norvell/Conglomerate/ Norvell, Southeast		0 0 300 3,650	30,660 350,400 0 0	
	County Regular		1,800	0	
		Total	5,750	381,060	386,810
25	Fletcher/Lake Sand/ Hancock/Strawn/		2,036 15,630	0 0	
	County Regular		61,188	0	
		Total	78,854	ō	78,854

Table 5 Reported	brine	production	and	disposal	in	1961,	Stephens	CountyContinued
------------------	-------	------------	-----	----------	----	-------	----------	-----------------

€

Area no. shown on Plate 3	Field	Dispos pit (bb	s	Disposal in injection wells (bbl)	Total brine production (bbl)
26	County Regular		7,220	0	
		Total	7,220	ō	7,220
27	Wiles/3450 Conglomerate/		0	0	
	County Regular		390	0	
		Total	390	ō	390
1 to 27	County Regular total		666,151	2,449,686	3,116,442*
1 to 27	All fields total	2	936,169	4,859,539	5,796,313*

 \ast Includes 605 barrels disposed of by methods other than pits and injection wells in County Regular field in Area 18.

Table 6 .- - Chemical analyses of oil-field brines, Stephens County

6

i,

6

÷,

8

(Analyses given are in parts per million except specific gravity and pH)

Compiled by Rowland Laxson, et al., 1960, Resistivities and chemical analyses of formation waters from the West Central Texas area: West Central Texas Section of the Society of Petroleum Engineers of A.I.M.E.; and BJ Service Inc., 1960, The chemical analyses of brines from some fields in North & West Texas.

	Field	Average depth of well (ft.)	Area no shown o Plate 3	cium cium (Ca)	Magne- stum (Mg)	Sodium (Na)	Bicar- bonate (HOO ₃)	Sul- fate (SO4)	Chlo- ride (Cl)	Specific gravity	ЪН
			Pe	Pennsylvanian	an						
D.	Manning-0'Connor	2,065	23	5,250	1,080	22,800	158	20	47,600	1.064	6.0
2 2 2	South Breckenridge	1,858	17	9,020	1,280	30,941	63	81	67,300	1.085	6.5
nn.	Connally-Thorton	1,975	17	10,215	1,958	26,380	47	65	70,800	1.101	6.2
her	Hohertz	1,640	18	7,340	1,086	29,810	93	п	65,600	1.082	6.1
CK-	Jackson	1,760	18	5,315	1,302	27,205	240	9	54,900	1.075	6.5
yla	Wayland	2,700	22	8,970	1,227	36,500	152	5	75,800	1,098	5.6
EC.	Breckenridge	3,075-	17	12,530	2,930	41,400	45	62	94,500	I.122	6.2
ath	South Breckenridge	3,360	17	11,970	4,321	44,503	132	19	102,300	1.128	6.4
	qo	3,400	17	10,300	3,800	43,900	11	55	97,100	1.123	6.3
orth	Northwest Breckenridge	3,207	17	10,280	3,770	43,276	106	12	95,800	1.124	6.6
ee	Lee Ray Ext.	3,358	23	10,480	3,630	44,200	98	53	97,200	1.126	6.8
uno	County Regular	3,200	l	14,580	3,365	48,830	68	51	110,900	1.140	6.0
	op	3,200	1	12,380	2,590	40,450	26	20	91,800	1.117	6.2
ann	Manning-0'Connor	3,300	23	9,700	4,240	41,100	124	20	93,000	1.123	6.7
0'Neal	al	1	16	12,090	4,135	42,530	26	20	91,800	1,127	6.3
Bowar		1	е	8,970	4,250	42,000	59	90	93,000	1.123	6.5
	op	1	e	8,610	4,620	41,400	54	2	92,500	1.124	6.7
ank	Bankline-Owens	3,675	23	12,020	1,223	40,550	130	417	87,100	1.113	6.5
U U	Breckenridge	3,777	17	13,680	2,120	45,000	170	127	99,700	1.132	6.8
out	South Breckenridge	3,972	17	10,530	2,370	41,000	105	158	88,500	1.116	6.6
ast	East Breckenridge	ł	17	14,900	2,180	55,500	100	270	118,000	1.142	6.1
101	N. E. Breckenridge	4,000	17	10,845	2,852	57,034	62	1,222	14,500	1.146	6.2
liec	Breckenridge Regular	Å,056	ł	14,200	1,896	52,100	108	168	110,800	1.135	6.1
ece	Necessity	3,740	22	15,300	2,110	47,656	72	190	106,650	1.129	5.9
Tiffin	in	3,794	25	8,650	1,913	38,250	109	261	79,600	1.103	6.4
lies		4,000	14	11,900	1,290	45,472	207	142	94,700	1.124	6.4
Wildcat	cat	3,800	18	15,260	I,693	56,400	87	154	117,588	1.135	ł
0'Neal	al	3,983	16	17,125		55,780	103	134	123,700	1.158	4.0
Green	en	1	60	15,890	2,297	56,620	141	156	122,200	1.158	6.8
Wildcat	cat	3,800	t	8,650	1,913	38,250	109	261	79,600	1	3
			W	Mississippian	Lan						
Valk	Walker-Davis	4,180- 4,192	6	13,980	1,222	31,500	447	837	76,150	1.098	6.7
Bowar	II.	:	m	11,070	2,020	33,700	80	421	77,200	1.100	6.5
hook	Woodson-Allison	;	evi	3,340	605	27,000	430	1,300	48,000	1.061	6.9
Wildcat	lcat	ł	1	3,180	395	31,450	140	1,925	53,800	1,062	6.9
				Ordovician	an						
Brec	Breckenridge	4,205	17	2,566	561	25,279	217	1,156	44,171	1.055	6.6
ill o	Compton	4,300	24	3,150	633	27,000	293	867	48,200	1,061	7.6
lann	Manning-0° Connor	4,224	23	2,231	564	26,198	261	720	45,300	1,056	7.4
AL Ld	Wildcat	4,352	18	1,605	530	20,910	256	763	35,900	1,048	6.8
alk	Walker-Davis	4,400	6	8,480	641	23,450	962	896	51,700	1.070	7.2

τ

÷

Y

4

1

APPENDIX

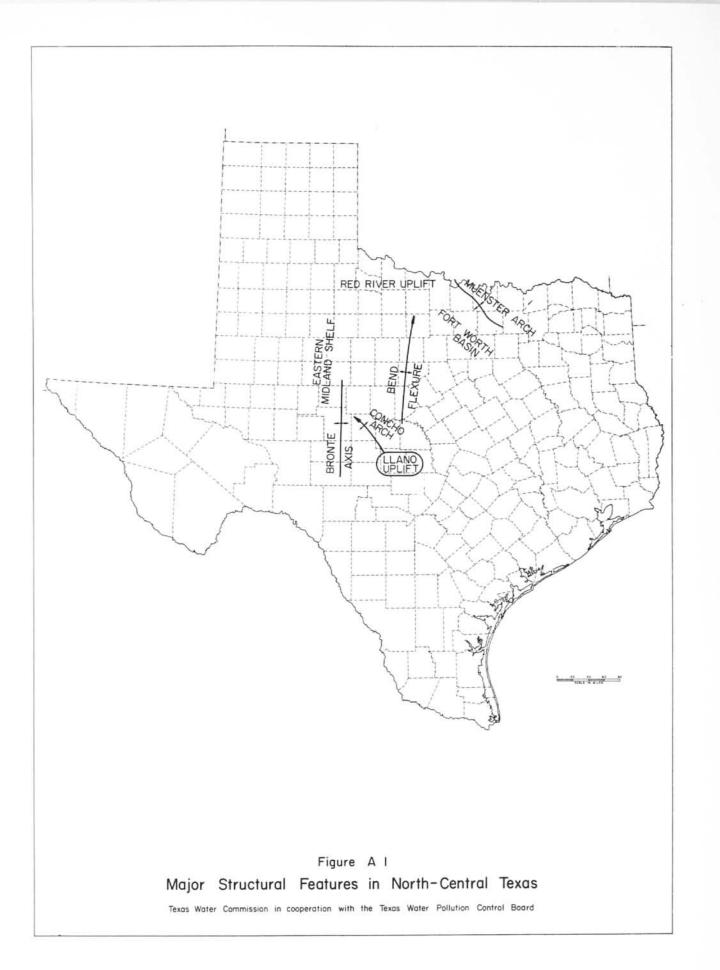
 \mathbf{C}

SUPPLEMENTARY DISCUSSIONS OF QUALITY OF WATER, GEOLOGY, AND HYDROLOGY

SUPPLEMENTARY DISCUSSIONS OF QUALITY OF WATER, GEOLOGY, AND HYDROLOGY

Geology of North-Central Texas

Regional Structure


The counties included by the Texas Water Commission in the study of groundwater resources in north-central Texas are in the Grand Prairie and Osage Plains geographic provinces of Texas. The Grand Prairie region is defined as a belt of counties west of the Balcones fault zone and north of the Llano uplift, and has been described as a modified northeastward continuation of the Edwards Plateau. At the surface in the Grand Prairie region are Cretaceous rocks of the Comanche Series dipping gently to the east and southeast. Some faulting is exhibited in the Cretaceous formations near the Balcones zone, but in general no major structural features are reflected by these beds other than the regional eastward dip. To the west of the Grand Prairie region is the Osage Plains province extending from the Edwards Plateau and Llano uplift northward to the Red River. Surface formations in the Osage Plains of north-central Texas are of Pennsylvanian and Permian age except where these rocks are overlain locally by remnants of Cretaceous sediments or Recent alluvial deposits. Pennsylvanian and Permian beds of the region form a westward dipping homocline with an average dip of 50 feet per mile. Formations significant to the occurrence of ground water under study in the Osage Plains have not been affected by major structural deformation. The principal, large, buried structural features, illustrated in Figure Al, include the Bend flexure, the Red River uplift. eastern Midland shelf, and the Concho arch and developing Concho foreland.

Depositional History

The geologic environment in which the rock units underlying north-central Texas were laid down and the stratigraphic relationship of these units one to another determine the character of the water-bearing formations, which are the sources of ground water. Structural movement and crustal settling and shifting, which followed the deposition of the rocks in the area, influenced the mode of occurrence of ground water. An understanding of these complex historical events is important to a comprehension of how ground water occurs and how it can best be developed.

The sequence of geologic events significant to the occurrence of ground water in north-central Texas began in Pennsylvanian times, and continued through the deposition of Permian rocks throughout most of the area, Cretaceous sediments over a large part of the area, and Pleistocene to Recent alluvial sediments found at the surface in local areas and along most of the streambeds.

The Pennsylvanian and Permian seas that deposited sediments in the northcentral Texas area were shallow--probably less than 100 feet deep. This is

 ϵ

6

Ċ

C

0

€

A-4

evidenced by the large amounts of sandstone, the repetition and extent of coal deposits, and the presence of frequent local unconformities. Present also are conglomerates, mud cracks, ripple marks, cross-bedding, and fossils that are found in a shallow-water environment. Thus, ground water occurs in this area in formations of sediments deposited very nearly horizontally in shallow seas that were alternately advancing and retreating. Such a depositional environment resulted in a complex system of lateral and vertical changes in the character of the materials deposited. Few widespread continuous mantles of sediments such as those that characterize the Gulf Coast region of Texas are found. However, in contrast to the local, discontinuous, highly variable, shallowwater, clastic deposits characteristic of these periods, certain limestone units are relatively widespread. These limestones were deposited in extensive shallow seas advancing from the north and east, and are traceable as continuous units throughout much of the area under study. Thus, these limestone beds, while only locally significant as water-bearing units, are extremely important as horizon markers in identifying the age and character of the intervening sediments.

Pennsylvanian Deposition

The upper Pennsylvanian rocks of north-central Texas include the Strawn, Canyon, and Cisco Groups, each of which has been subdivided into several formations and members. In the Colorado River Basin the Strawn Group is composed principally of alternating beds of sandstone and shale, probably representing near-shore deposits with the source area for the sediments being a land mass to the east and northeast, which is now concealed under younger strata. Beds of the Strawn Group overlap to the west so that the total thickness of the group is probably not greater than 1,200 feet at any one point. Cretaceous rocks overlying these older beds in the area of the Bend flexure prevent tracing individual units of the Strawn on the surface from the Colorado River Basin into the Brazos River Basin. In general, the Strawn of the Colorado River Basin contains coarser sediments than in the Brazos River Basin, although beneath the Cretaceous sediments to the north in Wise County the Strawn again assumes a near-shore facies marked by coal beds and lenses of sand and sandy shale.

The Canyon Group in north-central Texas is characterized by thick limestone beds alternating with shale, and contains relatively little sandstone. The source of the sediments in the Canyon was again from the east, and was lower than during Strawn deposition as shown by the decrease of terriginous clastic material, which marked much of the Strawn deposition. Sandstone lenses occurring in the Canyon Group, of extreme importance to the occurrence of ground water in local areas, probably were deposited in channels formed during periods of nonmarine occurrence. In Jack and Wise Counties the character of Canyon sediments--conglomerates, irregular sands, and several coal beds--indicates an approach to the shoreline. Also in the southern region of the Colorado River Basin some conglomerates are found in the basal Canyon. The surface expression of the Canyon Group in the Brazos River Basin is separated by Cretaceous rocks from Canyon beds in the Colorado River Basin, and no definitive stratigraphic correlation of individual formations has been traced from one basin into the other.

There was no widespread erosion of Canyon deposits except perhaps in the western Llano area. Tectonic activity to the north included the gradual uplift of the Red River arch, possible folding in the Wichita system, and other disturbances in the mid-continent area. Canyon sedimentation was also affected by the continued development of the eastern Midland shelf and the subdued, but still prominent, Concho arch and the Bronte axis.

C

C

C

C

0

C

* €

C

С.

0

Sedimentation continued into Cisco time, as evidenced by the lack of a marked unconformity between the Canyon and Cisco strata. Local disconformities and channeling are apparent in both the outcrop areas of these beds and in the subsurface, indicating that the shelf environment of late Canyon time became more and more deltaic locally during Cisco time. The Cisco Group in the northcentral Texas region is comprised chiefly of shale, sandstone, conglomerate, and limestone, with local coal beds. Eastward the sand and conglomerate deposits increase in thickness while to the west the conglomerate and the coal disappear. In the northern part of the area the limestone disappears from the Cisco Group as deposition occurred in a nonmarine or partially marine facies.

Deposition in the late Pennsylvanian was affected by uplift in the Llano area as the initial westward tilting of the Concho foreland began toward the Midland basin. This westward tilting was to continue throughout Permian time. The Bend flexure, previously called the Bend arch, which extends from the Llano area to the Red River uplift, came into existence during late Pennsylvanian and early Permian times as a result of the differential subsidence of the Midland basin and the eastern Midland shelf, and the consequent westward tilting of the Concho foreland.

Permian Deposition

No major unconformity marks the contact between Pennsylvanian and Permian rocks, indicating relatively continuous deposition from the Cisco of the upper Pennsylvanian into the Wichita of the lower Permian. Local disconformities and channeling are apparent both in the surface and the subsurface, however, with the shoreline of the Permian sea having oscillated back and forth while it continued its slow migration toward the west as the tilting of the Concho foreland into the Midland basin progressed. The extensive Permian sea was shallow over north-central Texas, resulting in deposition of sediments under widely varying conditions.

Rocks of the Wichita Group have been mapped at the surface from the Red River to the Llano uplift. In the Colorado River Basin the Wichita Group, representing the oldest Permian deposition, is characterized by a marine shale and limestone facies, while northward the marine beds decrease in importance and red beds become more prominent. Near the Red River, deposition of the Wichita Group was in a marginal marine environment marked chiefly by a red-bed facies of shale and sandstone. Deposition was apparently continuous in the Wichita, and no pronounced unconformities have been found in the Group.

Mesozoic (Cretaceous) Deposition

The close of Wichita deposition marked the end of Paleozoic time in northcentral Texas, and great changes in the position of the land masses in Texas were to characterize the beginning of the Mesozoic in the State. The early Mesozoic was a period of continental elevation, and no Triassic deposition is known to have occurred in the area included in this study. This period of nondeposition continued through the Jurassic, and the first marine deposition that occurred in north-central Texas after the close of the Permian was in early Cretaceous times. As a result of the massive change in land-surface elevation in the first half of the Mesozoic, however, drainage in the Texas area had been reversed by the time Cretaceous deposition began. Instead of northwesterly drainage into inland Paleozoic seas, drainage from the earliest Cretaceous period onward was toward the southeast in the direction of what is now the Gulf of Mexico. Thus the regional dip of Cretaceous rocks overlying the Pennsylvanian and Permian sediments of north-central Texas is toward the southeast.

West of an irregular, northeast-trending line through Brown, Eastland, Jack, Wise, and Montague Counties, the only Cretaceous rocks remaining after extensive periods of erosion are remnants and outliers that, although not extensive, are locally significant as sources of ground water and as recharge areas for underlying older rocks. East of this irregular line Cretaceous beds are found at the surface in a continuous band eastward to the outcrop of Eocene sediments.

All of the known Cretaceous deposition in the area of study belongs to the Comanche Series. The Comanche has been divided into the Trinity, Fredericksburg, and Washita Groups, and both the Trinity and the Fredericksburg are found in this area. Generally, all of the Comanche sediments belong to a nearshore or shallow-water environment.

Quality of Ground Water

All ground water contains dissolved mineral constituents. The type and concentration depends upon the source, movement, and the environment of the ground water. Water derived from precipitation is relatively free of mineral matter, but because water has considerable solvent power, it dissolves minerals from the soil and rocks through which it passes. Therefore, the differences in chemical character of ground water reflect in a general way the nature of the geologic formations and the soils that have been in contact with the water. The concentration of dissolved solids generally increases with depth, especially where the movement of the water is restricted. Rocks deposited under marine conditions will contain brackish or highly mineralized water unless flushing by fresh water has been accomplished. This flushing action will occur in the outcrop area and to a limited distance downdip, depending upon the permeability of the rocks.

The chemical quality of ground water that has not been artificially altered is relatively constant, as is the temperature of ground water, which makes it highly desirable for many uses.

In addition to the natural mineralization of water that occurs in its environment, the quality of ground water can also be affected by man. Municipal and domestic sewage systems (including septic tanks), industrial waste, and oil-field brine that is improperly disposed of can enter into ground-water bodies and render them unfit for most uses.

Included among the factors determining the suitability of ground water as a supply are the limitations imposed by the contemplated use of the water. Criteria have been developed to cover most categories of water quality, including bacterial content, physical characteristics, and chemical constituents. Water-quality problems associated with the first two categories can usually be alleviated economically, but the removal of undesirable chemical constituents can be difficult and expensive. For many purposes the dissolved solids content constitutes a major limitation on the use of water. One general classification of water based on dissolved-solids content (Winslow and Kister, 1956, p. 5) is as follows:

C

C

€

€

€.

Description	Dissolved-solids content (ppm)
Fresh	Less than 1,000
Slightly saline	1,000 to 3,000
Moderately saline	3,000 to 10,000
Very saline	10,000 to 35,000
Brine	More than 35,000

The United States Public Health Service has established standards of drinking water to be used on common carriers engaged in interstate commerce. The standards are designed primarily to protect the traveling public, and are often used to evaluate public water supplies. According to these standards, chemical constituents should not be present in the water supply in excess of the listed concentration shown in the following table, except where other more suitable supplies are not available. Some of the standards adopted by the U. S. Public Health Service (1962, p. 2152-2155) are as follows:

Substance	Concentration (ppm)
Chloride (C1)	250
Fluoride (F)	(*)
Iron (Fe)	0.3
Manganese (Mn)	0.05
Nitrate (NO3)	45
Sulfate (SO4)	250
Total dissolved solids	500

* When fluoride is present naturally in drinking water, the concentration should not average more than the appropriate upper limit shown in the following table.

Annual average of maximum daily air temperatures (°F)	Recommended control limits of fluoride concentrations (ppm)				
daily all temperatures (F)	Lower	Optimum	Upper		
50.0 - 53.7	0.9	1.2	1.7		
53.8 - 58.3	.8	1.1	1.5		
58.4 - 63.8	.8	1.0	1.3		
63.9 - 70.6	.7	.9	1.2		
70.7 - 79.2	.7	.8	1.0		
79.3 - 90.5	.6	.7	.8		

Water having concentration of chemical constituents in excess of the recommended limits may be objectionable for many reasons. Water containing an excess of 45 ppm of nitrate has been related (Maxcy, 1950, p. 271) to the incidence of infant cyanosis (methemoglobinemia or "blue baby" disease). The high concentrations of nitrate may be an indication of pollution from organic matter, commonly sewage. Iron and manganese in excessive concentrations cause reddish-brown or dark gray precipitates, which stain clothing and plumbing fixtures. Sulfate in water in excess of 250 ppm may produce a laxative effect, and water containing chloride exceeding 250 ppm may have a salty taste. Fluoride is concentrations of about 1 ppm may reduce the incidence of tooth decay, but excessive concentration may cause teeth to become mottled (Dean, Arnold, and Elvove, 1942, p. 1155-1159).

Hardness in water is caused principally by calcium and magnesium. Excessive hardness causes increased consumption of soap, and induces the formation of scale in hot water heaters and water pipes. The following table shows the commonly accepted standards and classifications of water hardness:

Hardness range (ppm)	Classification
60 or less	Soft
61 - 120	Moderately hard
121 - 180	Hard
More than 180	Very hard

Water that is suitable for industrial use may not be acceptable for human consumption, and different standards may apply. Ground water used for industry may be classified into four principal categories: cooling water, boiler water, process water, and water used for secondary recovery of oil by water injection.

Although cooling water is usually selected on the basis of its temperature and source of supply, its chemical quality is also significant. Any characteristic that may adversely affect the heat-exchange surfaces is undesirable. Substances such as magnesium, calcium, iron, and silica may cause the formation of scale. Another objectionable feature that may be found in cooling water is corrosiveness caused by calcium and magnesium chloride, sodium chloride in the presence of magnesium, acids, and the gases oxygen and carbon dioxide.

The production of steam requires high quality-of-water standards. Under the extreme temperature and pressure conditions the problems of corrosion and incrustation are intensified. Under these conditions the presence of silica becomes undesirable as it forms a hard scale or incrustation.

Water coming in contact with, or incorporated into, manufactured products is termed "process water" and is subject to a wide range of quality requirements. These requirements involve physical, biological, and chemical factors. Water used in the manufacture of textiles must be low in dissolved-solids content and free of iron and manganese, which could cause staining. The beverage industry normally requires water free of iron, manganese, and organic substances. €

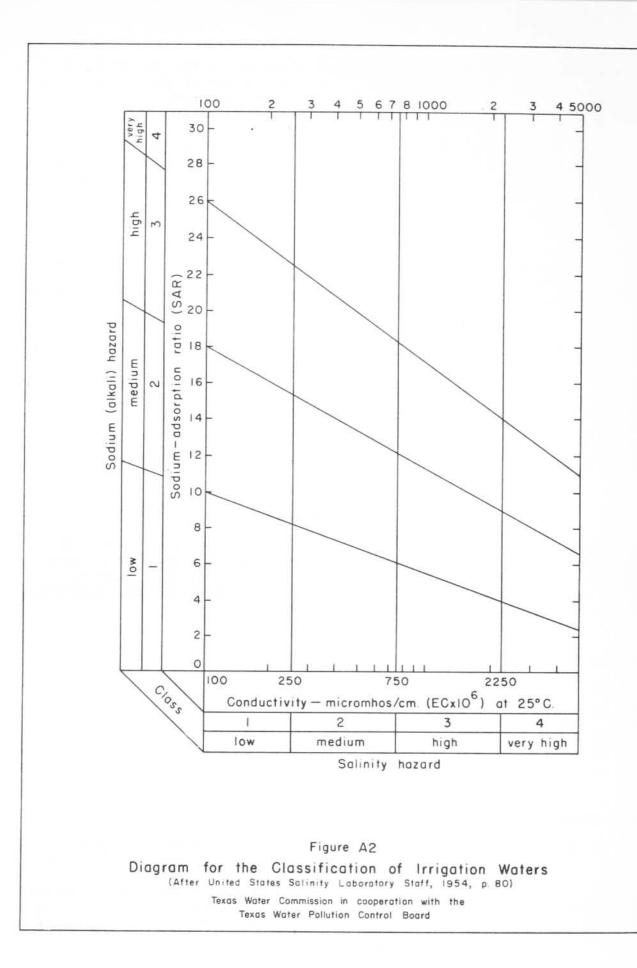
C

C

€

0

€


Water used for injection in the secondary recovery of oil is generally that water taken from the oil reservoir. However, this water--usually brine-must generally be supplemented in order to meet the requirements of volume. Careful control must be exercised over the injected water with regard to suspended solids, dissolved gases, microbiological growths, and mineral constituents. Suspended solids in the water, of course, can cause plugging of the reservoir. Hydrogen sulfide, carbon dioxide, and oxygen all have corrosive effects on the well equipment, and oxygen reacting with the metallic ions, primarily iron (Fe⁺⁺⁺), will cause plugging of the reservoir. Organisms, iron bacteria, algae, and fungi have an effect of plugging the reservoir or pumping equipment, and the sulfate reducers have a corrosive effect.

Insofar as the mineral constituents are concerned, iron and manganese are undesirable as they cause plugging in injection wells. Sulfates are of interest from a standpoint of deposition. Water that is high in sulfate should not be mixed with water containing appreciable amounts of barium, for this would result in formation of barium sulfate with a very low solubility. The pH value is also significant when corrosion control and the solubilities of calcium carbonate and iron are considered. The higher the pH, the more difficult it is to maintain iron in solution and to keep calcium scale from forming.

Both the concentration and the composition of the dissolved constituents should be considered in appraising quality of water for irrigation. The chemical characteristics that appear to be most important in evaluating the quality of water for irrigation are: (1) relative proportion of sodium to the other cations, (2) total concentration of soluble salt, (3) amount of residual sodium carbonate, and (4) concentration of boron.

The U. S. Salinity Laboratory staff (1954, p. 69-82) proposed a system of classification commonly used for checking the quality of water for irrigation. The classification is based on the salinity hazard as measured by the electrical conductivity of the water and the sodium hazard as measured by the sodium adsorption ratio (SAR). Figure A2 illustrates this classification system.

The importance of the dissolved constituents of water to be used for irrigation depends upon the degree to which the constituents accumulate in the soil. Kelley (1951, p. 95-99) cited areas having an average annual precipitation of

C

A-11

about 18 inches in which the salts did not accumulate in the irrigated soil. It has been suggested (Wilcox, 1955, p. 15) that the system of the classification of irrigation water proposed by the salinity laboratory staff is not directly applicable to the supplemental waters used in areas of relatively high rainfall.

C

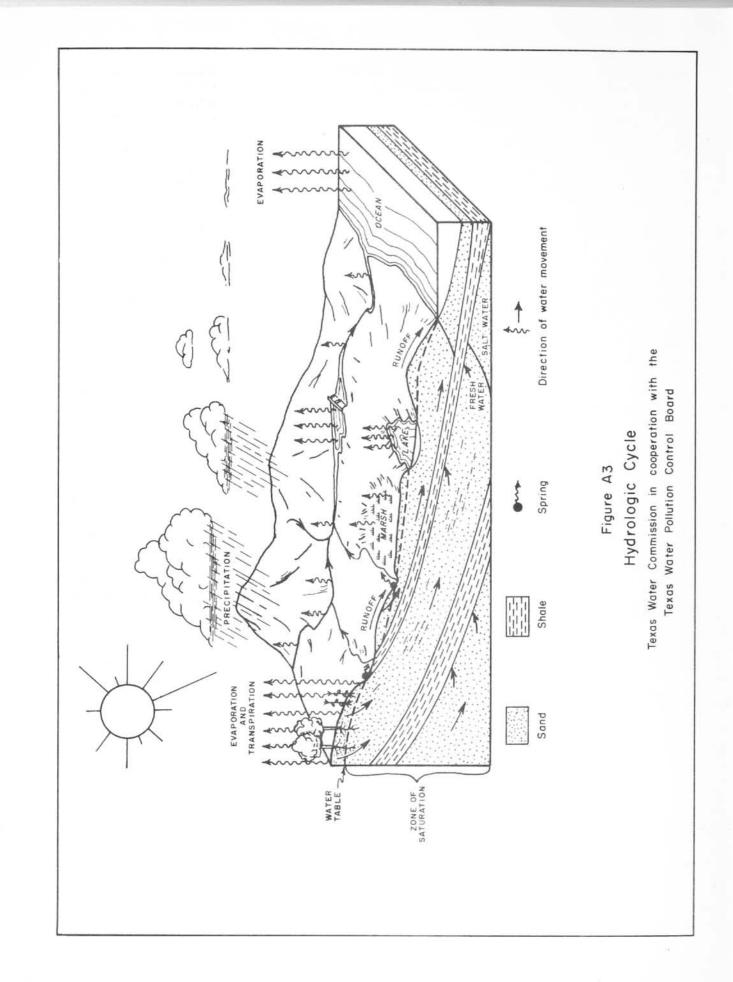
€

0

Boron in excess will also make water unsuitable for irrigation. Scofield (1936, p. 286) has indicated that a boron concentration of as much as 1 ppm is permissible for irrigating sensitive crops, and as much as 3 ppm is permissible for tolerant crops. His suggested permissible limits of boron for irrigation waters are shown in the following table:

Classes	of water	Sensitive	Semitolerant	Tolerant
Rating	Grade	crops (ppm)	crops (ppm)	crops (ppm)
1	Excellent	0.33	0.67	1.00
2	Good	0.33 to .67	0.67 to 1.33	1.00 to 2.00
3	Permissible	.67 to 1.00	1.33 to 2.00	2.00 to 3.00
4	Doubtful	1.00 to 1.25	2.00 to 2.50	3.00 to 3.75
5	Unsuitable	1.25	2.50	3.75

Ground-Water Hydrology


In north-central Texas the occurrence of ground water is erratic, and there are no large, continuous, prolific ground-water aquifers such as those found in the High Plains region of Texas and in the Gulf Coast. However, ground-water occurrences in north-central Texas conform to the same fundamental principles as those in other areas of the State.

Hydrologic Cycle

The water available for use by man--whether as rain, streamflow, water from wells, or spring discharge--is captured in transit, and after its use and reuse is returned to the hydrologic cycle from which it came. This cycle is illustrated in Figure A3. Graphically, Figure A3 shows the continuing movement of water from the oceans through evaporation to precipitation and its return either directly or ultimately to the ocean.

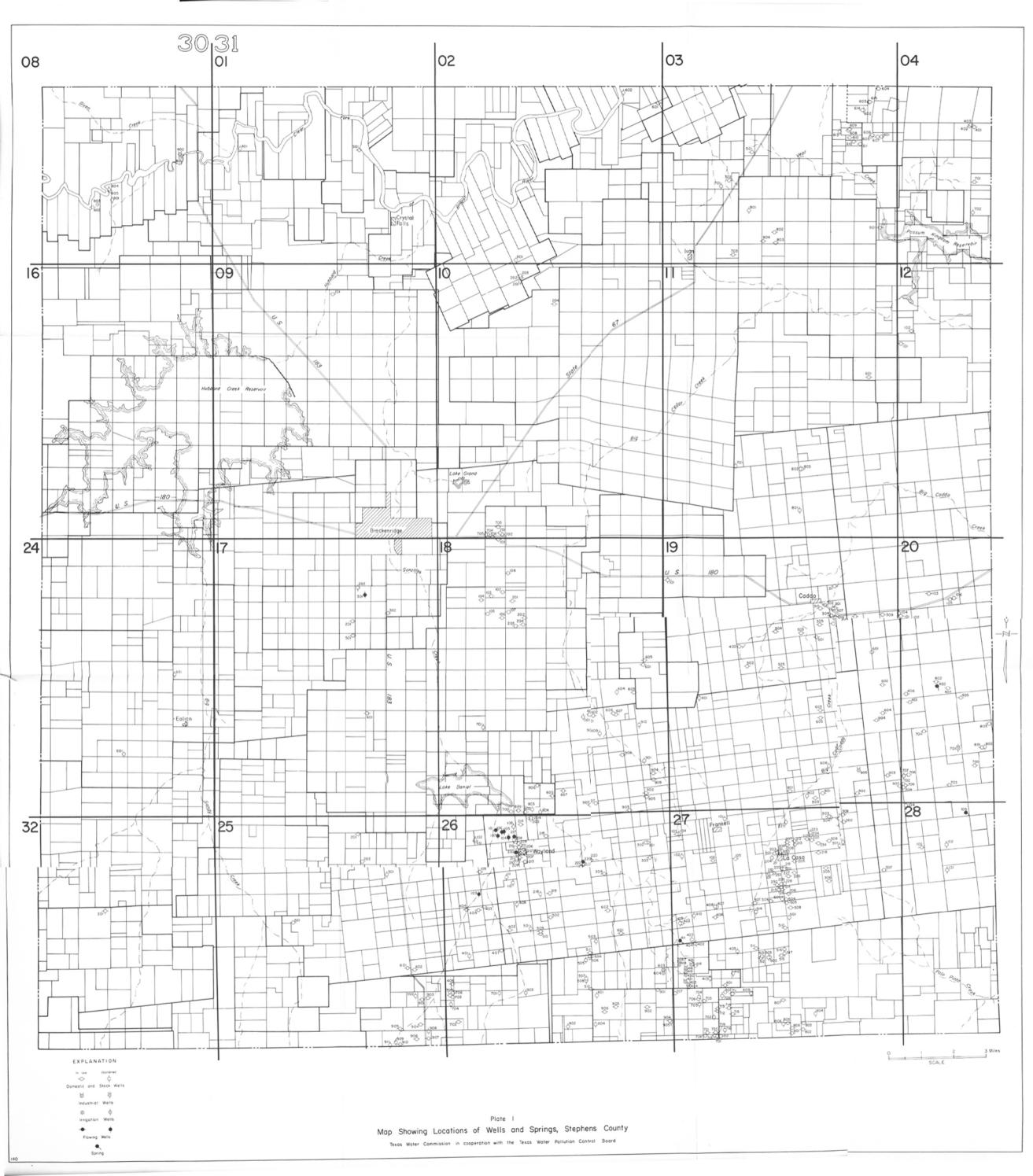
Ground-Water Occurrence and Movement

The geologic history of sedimentary deposition and erosion are primary factors controlling the occurrence and movement of ground water in the northcentral Texas area. The rocks found in the shallow subsurface range from sporadic, uncemented, clastic beds to the more widespread, continuous, cemented or compacted shales, sandstones, and limestones. In uncemented rocks such as sand, gravel, and clay, water occurs in the spaces between individual particles,

e

whereas in well cemented or compacted sedimentary rocks it occurs chiefly in cracks and fissures produced by earth movement or contraction, and in openings formed by solution where the rocks are soluble. If these openings are isolated, the movement of ground water is hindered. However, most openings are interconnected so as to permit ground water to move through them. The essential factor is that ground water of usable quality is continually moving from the point at which it entered the ground-water body, called the recharge area, to points of discharge, generally at lower elevations, either in stream drainage or through wells.

C


C

C

C

Recharge is the process by which water is added to an underground waterbearing formation, whether by precipitation on the outcrop of the formation or by seepage losses from surface streams or lakes on the outcrop. Factors that limit the amount of recharge received by a formation are the amount and frequency of precipitation, the area and extent of the outcrop, the topography, the type and amount of vegetation, the condition of the soil in the outcrop area, and the capacity of the formation to accept recharge. Discharge is the process by which water is removed from the formation, either through surface drainage or through wells.

The direction and rate of movement of water through a porous medium, such as an underground geologic formation, is influenced by a variety of factors, which include the nature of the formation itself and the external pressures applied on it as well as the fundamental physical laws of gravity and momentum. These factors include surface tension, friction, atmospheric pressure where the formation encounters the earth's surface, paths of differential permeability, effects of heavy local withdrawals or injection of water, and climatic changes affecting rates of recharge. In north-central Texas, ground-water movement is not constant in either direction or rate. The environment through which it moves is a heterogeneous complex of sedimentary deposits varying in porosity, permeability, and angle of repose. Thus it is not easy, and frequently not even possible in the light of present knowledge, to determine precisely the route water will take from the point of recharge to the points at which it is once again discharged at the surface to re-enter the hydrologic cycle. In the area of this study, however, this route generally is circuitous and probably of relatively short geographic extent. As a consequence, a landowner whether private or public has a particular need for understanding the hydrologic factors affecting the occurrence of ground water. Only by a carefully discriminating study of the geological environment of his immediate locality can he determine the availability of ground water for beneficial use, or the means required to protect available ground water from pollution.

