Volumetric and Sedimentation Survey of LAVON LAKE May - July 2021

Texas Water
 Development Board

Texas Water Development Board

Brooke T. Paup, Chairwoman | George B. Peyton V, Board Member
Jeff Walker, Executive Administrator

Prepared for: North Texas Municipal Water District

[^0]This report was prepared by staff of the Surface Water Division:

Mindy Conyers, Manager
Nathan Leber
Holly Holmquist
Khan Iqbal
Josh Duty
Dane McCollum

Published and distributed by the

Texas Water
 Development Board

P.O. Box 13231, 1700 N. Congress Ave.

Austin, TX 78711-3231, www.twdb.texas.gov
Phone (512) 463-7847, Fax (512) 475-2053

Executive summary

In March 2021, the Texas Water Development Board (TWDB) entered into an agreement with the North Texas Municipal Water District (NTMWD) to perform a volumetric and sedimentation survey of Lavon Lake (Collin County, Texas). Surveying was performed using a multi-frequency ($208 \mathrm{kHz}, 50 \mathrm{kHz}$, and 12 kHz), sub-bottom profiling depth sounder. Sediment core samples were collected and correlated with sub-bottom acoustic profiles to estimate sediment accumulation thicknesses and sedimentation rates.

Lavon Dam, impounding Lavon Lake, is located on the East Fork of the Trinity River in Collin County, approximately three miles east of Wylie, and 22 miles northeast of Dallas, Texas. The conservation pool elevation of Lavon Lake is 492.0 feet above mean sea level (NGVD29). The TWDB collected bathymetric data for Lavon Lake between May 3 and July 7, 2021, while daily average water surface elevations ranged between 492.65 and 501.93 feet NGVD29.

The 2021 TWDB volumetric survey indicates Lavon Lake has a total reservoir capacity of 412,498 acre-feet and encompasses 20,595 acres at conservation pool elevation (492.0 feet NGVD29). Previous capacity estimates at elevation 492.0 feet include a U.S. Army Corps of Engineers estimate of 456,527 acre-feet in 1970, and a 2011 TWDB re-calculated capacity estimate of 411,745 acre-feet. Because of differences in past and present survey methodologies, direct comparison of volumetric surveys to others to estimate loss of area and capacity can be unreliable. Information from past surveys is presented here for informational purposes only.

The 2021 TWDB sedimentation survey measured $\mathbf{3 9 , 8 5 1}$ acre-feet of sediment. The sedimentation survey indicates sediment deposition is occurring throughout the reservoir with heavy accumulation near the dam, on the west side of the reservoir north of the Clear Lake Campground, and north of the U.S. Highway 380 bridge. The TWDB recommends that a similar methodology be used to resurvey Lavon Lake in 10 years or after a major high flow event.

Table of Contents

Introduction 1
Lavon Lake general information 1
Volumetric and sedimentation survey of Lavon Lake 4
Datum 4
TWDB bathymetric and sedimentation data collection 4
Data processing 7
Model boundary 7
LIDAR data points 8
Triangulated Irregular Network model 8
Spatial interpolation of reservoir bathymetry. 9
Area, volume, and contour calculation. 11
Analysis of sediment data from Lavon Lake 15
Survey results 24
Volumetric survey 24
Sedimentation survey 25
Sediment range lines 27
Recommendations. 27
TWDB contact information 27
References 28

List of Tables

Table 1: \quad Pertinent data for Lavon Dam and Lavon Lake
Table 2: \quad Sediment core analysis data
Table 3: \quad Surface area and total capacity at conservation pool elevation 492.0 feet
Table 4: \quad Surface area and total capacity at conservation pool elevation 472.0 feet
Table 5: Average annual capacity loss comparisons at elevation 492.0 feet

List of Figures

Figure 1: Location map
Figure 2: $\quad 2021$ - 2022 TWDB sounding data and sediment coring locations
Figure 3: Anisotropic spatial interpolation
Figure 4: Elevation relief map
Figure 5: Depth range map
Figure 6: 2-foot contour map
Figure 7: Sediment core sample LAV-1
Figure 8: Comparison of sediment core LAV-1 with acoustic signal returns
Figure 9: \quad Sediment thickness map
Figure 10: Change in capacity of Lavon Lake between TWDB 2021 and 2011 surveys

Appendices

Appendix A: Lavon Lake 2011 re-calculated elevation-capacity table
Appendix B: Lavon Lake 2011 re-calculated elevation-area table
Appendix C: Lavon Lake 2011 re-calculated capacity curve
Appendix D: Lavon Lake 2011 re-calculated area curve
Appendix E: Lavon Lake 2021 bathymetric elevation-capacity table
Appendix F: Lavon Lake 2021 bathymetric elevation-area table
Appendix G: Lavon Lake 2021 bathymetric capacity curve
Appendix H: Lavon Lake 2021 bathymetric area curve
Appendix I: Lavon Lake 2021 bathymetric and topographic elevation-capacity table
Appendix J: Lavon Lake 2021 bathymetric and topographic elevation-area table
Appendix K: Lavon Lake 2021 bathymetric and topographic capacity curve
Appendix L: Lavon Lake 2021 bathymetric and topographic area curve
Appendix M: Sediment range lines

Note: References to brand names throughout this report do not imply endorsement by the Texas Water Development Board.

Introduction

The Hydrographic Survey Program of the Texas Water Development Board (TWDB) was authorized by the 72nd Texas State Legislature in 1991. Texas Water Code Section 15.804 authorizes the TWDB to perform surveys to determine reservoir storage capacity, sedimentation levels, rates of sedimentation, and projected water supply availability.

In March 2021, the TWDB entered into an agreement with the North Texas Municipal Water District (NTMWD), to perform a volumetric and sedimentation survey of Lavon Lake (Collin County, Texas) (Texas Water Development Board, 2021). This report provides an overview of the survey methods, analysis techniques, and associated results. Also included are the following contract deliverables: (1) an elevation-area-capacity table of the reservoir acceptable to the Texas Commission on Environmental Quality (Appendices E and F), (2) a bottom contour map (Figure 6), (3) a shaded relief plot of the reservoir bottom (Figure 4), and (4) an estimate of sediment accumulation and location (Figure 9).

Lavon Lake general information

Lavon Dam, impounding Lavon Lake, is located on the East Fork of the Trinity River in Collin County, approximately three miles east of Wylie, and 22 miles northeast of Dallas, Texas (Figure 1). Lavon Lake is owned by the U.S. Government and operated by the U.S. Army Corps of Engineers (USACE), Fort Worth District. Lavon Lake is primarily a water supply reservoir, storing water for the member cities of the North Texas Municipal Water District, and provides flood control to parts of Collin, Dallas, and Rockwall Counties (U.S. Army Corps of Engineers, 2022a).

The North Texas Municipal Water District, created in 1951, provides drinking water, wastewater treatment, and solid waste disposal to its member cities and customers, encompassing approximately 2.0 million people across 10 counties (North Texas Municipal Water District, 2022a, North Texas Municipal Water District, 2022b).

Construction on Lavon dam began in January 1948, and the dam was completed in September 1953. Deliberate impoundment began on September 14, 1953 (U.S. Army Corps of Engineers, 2022b). On May 15, 1970, construction began on a modification of Lavon Dam that increased the conservation storage pool from elevation 472.0 feet to the current
elevation of 492.0 feet by raising the top of the dam 12 feet. The modification was completed, and deliberate impoundment began December 1, 1975 (U.S. Army Corps of Engineers, 2022b). Additional pertinent data about Lavon Dam and Lavon Lake can be found in Table 1.

Water rights for Lavon Lake have been appropriated to the NTMWD through Certificate of Adjudication Nos. 08-2410 and Amendments to Certificate of Adjudication Nos. 08-2410A, 08-2410B, 08-2410C, 08-2410D, 08-2410E, 08-2410F, 08-2410G, 08$2410 \mathrm{H}, 08-2410 \mathrm{I}$, and 08-2410J (Texas Commission on Environmental Quality, 2022). The complete certificates are on file at the Texas Commission on Environmental Quality (TCEQ).

Figure 1. Location map.

Table 1. Pertinent Data for Lavon Dam and Lavon Lake

Owner(s)

United States (U.S.) Government
Operator(s)
U.S. Army Corps of Engineers (USACE), Fort Worth District

Engineer (Design)
U.S. Army Corps of Engineers (USACE)

Drainage Area

Total Drainage Area
Dam
Type
Length
Maximum Height
Top Width

Spillway

Type
Total Length
Control
Crest Elevation
Top of gate elevation

Outlet Works

Type
Control
Invert elevation
770 square miles

19,493 feet, including the spillway
81 feet
30 feet
ngth
evation
gate ele
Concrete Ogee Weir
480.0 feet

12 tainter gates, each gate is 40 by 28 feet
475.5 feet above mean sea level
503.5 feet above mean sea level

Five 36-inch diameter sluices through spillway piers controlled by slide gate action
Five manually operated slide gates with 3 by 4 feet emergency slide gates
Three - 453.0 feet NGVD29
One - 473.0 feet NGVD29
One - 482.0 feet NGVD29

Reservoir Data (Based on 2021 TWDB survey)

Feature

Top of dam
Maximum design water surface elevation
Top of flood control pool elevation
Top of conservation pool elevation
Spillway crest elevation
Invert of lowest intake
Streambed
Conservation storage capacity ${ }^{\text {b }}$
$\left.\left.\begin{array}{ccc}\begin{array}{c}\text { Elevation } \\ \text { (feet above MSL }\end{array} \text {) }\end{array} \begin{array}{ccc}\text { Capacity } \\ \text { (acre-feet) }\end{array}\right) \begin{array}{c}\text { Area } \\ \text { (acres) }\end{array}\right\}$

Sources: Texas Water Development Board, 2013; U.S. Army Corps of Engineers, 2022b.
a. Mean Sea Level indicates a reference to USGS National Geodetic Vertical Datum 1929 (NGVD29).
b. Usable conservation storage equals total capacity at conservation pool elevation minus dead pool capacity. Dead pool refers to water that cannot be drained by gravity through the dam outlet works.

Volumetric and sedimentation survey of Lavon Lake

Datum

The vertical datum used during this survey is the National Geodetic Vertical Datum 1929 (NGVD29). This datum is utilized by the United States Geological Survey (USGS) for the reservoir elevation gage USGS 08060500 Lavon Lk nr Lavon, TX (U.S. Geological Survey, 2021). Elevations herein are reported in feet relative to the NGVD29 datum. Volume and area calculations in this report are referenced to water levels reported by the USGS gage. The horizontal datum used for this report is North American Datum 1983 (NAD83), and the horizontal coordinate system is State Plane Texas North Central Zone (feet).

TWDB bathymetric and sedimentation data collection

The TWDB collected bathymetric data for Lavon Lake between May 3 and July 7, 2021, while daily average water surface elevations ranged between 492.65 and 501.93 feet NGVD29. For data collection, the TWDB used a Specialty Devices, Inc. (SDI), singlebeam, multi-frequency ($208 \mathrm{kHz}, 50 \mathrm{kHz}$, and 12 kHz) sub-bottom profiling depth sounder integrated with differential global positioning system (DGPS) equipment. Data were collected along pre-planned survey lines oriented perpendicular to the assumed location of the original river channels and spaced approximately 500 feet apart. Many of the same survey lines also were used by the TWDB for the Volumetric and Sedimentation Survey of Lavon Lake, June - July 2011 Survey (Texas Water Development Board, 2013). The depth sounder was calibrated daily using a velocity profiler to measure the speed of sound in the water column and a weighted tape or stadia rod for depth reading verification. Each speed of sound profile, or velocity cast, is saved for further data processing. Figure 2 shows the data collection locations for the 2021 TWDB survey.

The TWDB partnered with the USACE Engineer Research and Development Center (ERDC) to collect high-resolution multibeam bathymetry data adjacent to three raw water intake structures owned by NTMWD at Lavon Lake on August 13, 2021, while the daily water surface elevation averaged 491.01 feet NGVD29. The raw water intake structures are located on the south shoreline in the East Fork of the Trinity River of Lavon Lake (Figure 2). For data collection, the TWDB used a Teledyne Odom Hydrographic MB1 Multibeam Echosounder System with a maximum ping frequency of $60 \mathrm{hertz}(\mathrm{Hz})$, an adjustable
operating frequency ranging from 170 to 220 kilohertz (kHz), adjustable swath coverage up to 120 degrees, and an integrated real-time sound velocity probe. Data were collected in a manner to provide full coverage bathymetry plots of the raw water intake structure channels and the reservoir bottom near these structures. A patch test was performed to quantify any residual biases in the initial alignment measurements of the multibeam echosounder, the motion reference unit (MRU), and the heading sensor. A patch test is a series of reciprocal transects where data are collected at varying speeds, depths, and bottom terrain in a test area. These data are used to determine angular offsets and time delays to calibrate the sensor orientation system between each component and the vessel. The patch test determines the vessel orientation alignment corrections for latency, pitch, roll, and yaw (U.S. Army Corps of Engineers, 2013). The collected data was post processed by USACE ERDC and provided to TWDB as a one foot by one foot spaced grid of data points. All data anomalies were removed during the post processing routine.

All sounding data were collected and reviewed before sediment core sampling sites were selected. Sediment core samples are collected throughout the reservoir to assist with interpretation of the sub-bottom acoustic profiles. After analyzing the sounding data, the TWDB selected 18 locations to collect sediment core samples (Figure 2). Sediment cores were collected on June 9-10, 2022, with a custom-coring boat and an SDI VibeCore system. Two cores were not recoverable, therefore a Ponar grab sampler was used.

Sediment cores are collected in 3-inch diameter aluminum tubes. A sediment core extends from the current reservoir-bottom surface, through the accumulated sediment, and into the pre-impoundment surface. After the sample is retrieved, the core tube is cut to the level of the sediment core. The tube is capped, labeled, and transported to TWDB headquarters for further analysis.

Sediment core sites:

- core sample
- grab sample
..... 2019 LIDAR data points
..... 2020 LIDAR data points
..... 2021 survey data points
4 Islands elevation 492.0 feet
3 Lavon Lake conservation
\int Islands elevation 514.0 feet
$\sum \begin{aligned} & \text { Lavon Lake Top of dam } \\ & \text { elevation } 514.0 \text { feet }\end{aligned}$

Figure 2. 2021 TWDB sounding data (blue dots), sediment coring locations (yellow circles), grab sample locations (gray circles), 2019 LIDAR data for topographic model (pink dots), and 2020 LIDAR data for topographic model (red dots).

Data processing

Model boundary

The topographic model boundary of the reservoir was generated with Light Detection and Ranging (LIDAR) data available from the Texas Natural Resource Information System (TNRIS). Multiple LIDAR datasets were needed for complete coverage of Lavon Lake acquired at different times. These data were collected on April 20, 2019, while the daily average water surface elevation of the reservoir measured 497.67 feet; on February 27, 2020, while the daily average water surface elevation of the reservoir measured 492.28 feet; and on February 7-8, 2020, and March 1, 2020, while the daily average water surface elevation of the reservoir measured 490.46, 490.49, and 492.08 feet, respectively. The LIDAR data files (.las) were imported into an LAS Dataset and the dataset was converted to a raster using a cell size of 1.0 meters by 1.0 meters. The horizontal datum of the LIDAR data is North American Datum 1983 (NAD83; meters) and the projection is Universal Transverse Mercator (UTM) Zone 14. The vertical datum is North American Vertical Datum 1988 (NAVD88; meters). Contours representing the top of the dam elevation of 156.6552 meters NAVD88, equivalent to 514.0 feet NGVD29, was extracted from the raster. The vertical datum transformation offset of 0.012 meters, was used to convert from meters NAVD88 to meters NGVD29 before converting to feet NGVD29. The vertical datum transformation offset for the conversion from NAVD88 to NGVD29 was determined by applying the National Oceanic and Atmospheric Administration National Geodetic Survey's NADCON software (National Geodetic Survey, 2022a) and VERTCON software (National Geodetic Survey, 2022b) to a single reference point in the vicinity of the survey, the reservoir elevation gage USGS 08060500 Lavon Lk nr Lavon, TX Latitude $33^{\circ} 01$ '54"'N, Longitude $96^{\circ} 28^{\prime} 56^{\prime \prime} W$ NAD27. The topographic model contour was edited to close the contour across the dam and remove other artifacts. Horizontal coordinate transformations to NAD83 State Plane Texas North Central Zone (feet) coordinates were applied using the ArcGIS Project tool.

The bathymetric model boundary of the reservoir was digitized from aerial photographs, also known as digital orthophoto quarter-quadrangle images (DOQQs), obtained through the Texas Imagery Service. The Texas Natural Resources Information System (TNRIS) manages the Texas Imagery Service, allowing public organizations in the State of Texas to access Google Imagery as a service using Environmental Systems

Research Institute's ArcGIS software (Texas Natural Resources Information System, 2022). The boundary was digitized at the land-water interface from images photographed on September 6, 2017, while the daily average water surface elevation measured 492.22 feet NGVD29. For modeling purposes, the boundary was assigned an elevation of 492.2 feet.

LIDAR data points

To utilize the LIDAR data in the reservoir topographic model, the LIDAR data files (.las) were converted to a multipoint feature class in an Environmental Systems Research Institute's ArcGIS file geodatabase filtered to include only data classified as ground points. A topographical model of the data was generated. The ArcGIS tool Terrain to Points was used to extract points from the Terrain, or topographical model, of the reservoir. The Terrain was created using the z-tolerance Pyramid Type. Points were extracted from the terrain at the z-tolerance level of 0.25 meters. New attribute fields were added to convert the elevations from meters NAVD88 to meters NGVD29, then feet NGVD29 for compatibility with the bathymetric survey data. LIDAR data outside of the 514.00 -foot contour were deleted and the feature class projected to NAD83 State Plane Texas North Central Zone (feet). LIDAR data inside the bathymetric model boundary did not agree with survey data where the data overlapped, therefore, all LIDAR data was removed from the bathymetric model.

Triangulated Irregular Network model

Following completion of data collection, the raw data files collected by the TWDB were edited to remove data anomalies. The current bottom surface of the reservoir is automatically determined by the data acquisition software. Hydropick software, developed by TWDB staff, was used to display, interpret, and edit the multi-frequency data by manually removing data anomalies in the current bottom surface and to manually edit the pre-impoundment surfaces. The speed of sound profiles, also known as velocity casts, were used to further refine the measured depths. For each location velocity casts are collected, the harmonic mean sound speed of all the casts is calculated. From this, depths collected using one average speed of sound are corrected with an overall optimum speed of sound for each specific depth (Specialty Devices, Inc., 2018).

All data were exported into a single file, including the current reservoir bottom surface, pre-impoundment surface, and sediment thickness at each sounding location. The
water surface elevation at the time of each sounding was used to convert each sounding depth to a corresponding reservoir-bottom elevation. This survey point dataset was then preconditioned by inserting a uniform grid of artificial survey points between the actual survey lines. Bathymetric elevations at these artificial points were determined using an anisotropic spatial interpolation algorithm described in the next section. This technique creates a high resolution, uniform grid of interpolated bathymetric elevation points throughout a majority of the reservoir (McEwen et al. 2011a). The resulting point file was used in conjunction with sounding and boundary data to create volumetric and sediment Triangulated Irregular Network (TIN) models utilizing the 3D Analyst Extension of ArcGIS. The 3D Analyst algorithm uses Delaunay's criteria for triangulation to create a grid composed of triangles from non-uniformly spaced points, including the boundary vertices (Environmental Systems Research Institute, 1995).

Spatial interpolation of reservoir bathymetry

Isotropic spatial interpolation techniques such as the Delaunay triangulation used by the 3D Analyst extension of ArcGIS are, in many instances, unable to suitably interpolate bathymetry between survey lines common to reservoir surveys. Reservoirs and stream channels are anisotropic morphological features where bathymetry at any particular location is more similar to upstream and downstream locations than to transverse locations. Interpolation schemes that do not consider this anisotropy lead to the creation of several types of artifacts in the final representation of the reservoir bottom surface and hence to errors in volume. These artifacts may include artificially curved contour lines extending into the reservoir where the reservoir walls are steep or the reservoir is relatively narrow, intermittent representation of submerged stream channel connectivity, and oscillations of contour lines in between survey lines. These artifacts reduce the accuracy of the resulting volumetric and sediment TIN models in areas between actual survey data.

To improve the accuracy of bathymetric representation between survey lines, the TWDB developed various anisotropic spatial interpolation techniques. Generally, the directionality of interpolation at different locations of a reservoir can be determined from external data sources. A basic assumption is that the reservoir profile in the vicinity of a particular location has upstream and downstream similarity. In addition, the sinuosity and directionality of submerged stream channels can be determined by directly examining the survey data, or more robustly by examining scanned USGS 7.5-minute quadrangle maps
(DRGs), hypsography files (the vector format of USGS 7.5-minute quadrangle map contours), and historical aerial photographs, when available. Using the survey data, polygons are created to partition the reservoir into segments with centerlines defining the directionality of interpolation within each segment. Using the interpolation definition files and survey data, the current reservoir-bottom elevation, pre-impoundment elevation, and sediment thickness are calculated for each point in the high-resolution uniform grid of artificial survey points. The reservoir boundary, artificial survey points grid, and survey data points are used to create volumetric and sediment TIN models representing reservoir bathymetry and sediment accumulation throughout the reservoir. Specific details of this interpolation technique can be found in the HydroTools manual (McEwen and others, 2011a) and in McEwen and others (2011b).

In areas inaccessible to survey data collection, such as small coves and shallow upstream areas of the reservoir, linear interpolation is used for volumetric and sediment accumulation estimations (McEwen and others, 2011a). Although LIDAR was utilized for the topographic TIN model, linear interpolation was necessary to accurately model features in the areas between survey data and LIDAR data and in some cases between the bathymetric model boundary and the LIDAR data points. Linear interpolation results in improved elevation-capacity and elevation-area calculations.

Figure 3 illustrates typical results from application of the anisotropic interpolation as applied to Lavon Lake. In Figure 3A, deeper channels and steep slopes indicated by surveyed cross-sections are not continuously represented in areas between survey crosssections. This is an artifact of the TIN generation routine rather than an accurate representation of the physical bathymetric surface. Inclusion of interpolation points in creation of the volumetric TIN model, represented in Figure 3B, directs Delaunay triangulation to better represent the reservoir bathymetry between survey cross-sections. The bathymetry shown in Figure 3C was used in computing reservoir elevation-capacity (Appendix E and I) and elevation-area (Appendix F and J) tables.

Figure 3. Anisotropic spatial interpolation as applied to Lavon Lake sounding data; A) bathymetric contours without interpolated points, B) sounding points (black) and interpolated points (red), C) bathymetric contours with interpolated points.

Although anisotropic spatial interpolation and linear interpolation were originally applied to the 2011 TWDB survey, in 2017, the 2011 TWDB survey of Lavon Lake was updated to account for flat triangles. Computed areas between 484.0 feet and 493.0 feet were linearly interpolated between the computed values, and volumes above 484.0 feet were calculated based on the corrected areas (Texas Water Development Board, 2016). The 2011 re-calculated elevation-capacity table and elevation-area table are presented in Appendices A and B, respectively. The re-calculated capacity curve is presented in Appendix C, and the re-calculated area curve is presented in Appendix D.

Area, volume, and contour calculation

Volumes and areas were computed for the entire reservoir at 0.1 -foot intervals, from 447.2 to 492.2 feet for the bathymetric TIN model, and from 447.2 to 514.0 feet for the bathymetric and topographic TIN model. The bathymetric elevation-capacity table and
bathymetric elevation-area table, based on the 2021 survey and analysis, are presented in Appendices E and F, respectively. The bathymetric capacity curve is presented in Appendix G, and the bathymetric area curve is presented in Appendix H. The topographic elevationcapacity table and topographic elevation-area table developed from the 2021 survey and analysis are presented in Appendices I and J, respectively. The topographic capacity curve is presented in Appendix K, and the topographic area curve is presented in Appendix L.

The bathymetric volumetric TIN model was converted to a raster representation using a cell size of 2 feet by 2 feet. The raster data then were used to produce three figures: (1) an elevation relief map representing the topography of the reservoir bottom (Figure 4); (2) a depth range map showing depth ranges for Lavon Lake (Figure 5); and (3) a 2-foot contour map (Figure 6).

Analysis of sediment data from Lavon Lake

Sedimentation in Lavon Lake was determined by analyzing the acoustic signal returns of all three depth sounder frequencies using customized software called Hydropick. While the 208 kHz signal is used to determine the current bathymetric surface, the 208 kHz , 50 kHz , and 12 kHz are analyzed to determine the reservoir bathymetric surface at the time of initial impoundment, i.e., pre-impoundment surface. Sediment core samples collected in the reservoir are correlated with the acoustic signals in each frequency to assist in identifying the pre-impoundment surface. The difference between the current surface bathymetry and the pre-impoundment surface bathymetry yields a sediment thickness value at each sounding location.

Sediment cores were analyzed at TWDB headquarters in Austin. Each core was split longitudinally and analyzed to identify the location of the pre-impoundment surface. The pre-impoundment surface was identified within the sediment core using the following methods: (1) a visual examination of the sediment core for terrestrial materials, such as leaf litter, tree bark, twigs, intact roots, etc., concentrations of which tend to occur on or just below the pre-impoundment surface; (2) recording changes in texture from well sorted, relatively fine-grained sediment to poorly sorted mixtures of coarse and fine-grained materials; and, (3) identifying variations in the physical properties of the sediment, particularly sediment water content and penetration resistance with depth (Van Metre and others, 2004). Total sediment core length, post impoundment sediment thickness, and preimpoundment thickness were recorded. Physical characteristics of the sediment core, such as Munsell soil color, texture, relative water content, and presence of organic materials are presented in Table 2.

Table 2. Sediment core sample analysis data.

Sediment core sample	Easting ${ }^{\text {a }}$ (feet)	Northing ${ }^{\text {a }}$ (feet)	Total core sample / post-impoundment sediment length (inches)		Sediment core description ${ }^{\text {b }}$	Munsell soil color
LAV-1	2589651.7	7066769.1	68.0 / 61.0	post-impoundment	$0.0-5.0$ " high water content, silty clay with fine silt on top, soupy, smooth	2.5Y 4/2 dark grayish brown
					5.0-57.0" high to moderate water content, water content decreases with depth, silty clay, peanut butter like, density increases with depth, uniform consistency and texture throughout	2.5Y 2.5/1 black
					57.0-61.0" moderate water content, silty clay, sticky, smooth, uniform consistency and texture throughout	5Y 4/1 dark gray
				pre-impoundment	61.0-68.0" moderate to low water content, water content decreases with depth, silty clay, density increases with depth, loosely packed at top, malleable, organic material present throughout (fibrous roots, vegetation, leaf litter)	2.5Y 3/1 very dark gray
LAV-2	2574924.55	7069466.4	43.0 / 31.0	post-impoundment	$0.0-3.0$ " very high water content, silt, soupy, smooth	5Y 4/1 dark gray
					3.0-9.0" high water content, silt, pudding like, uniform consistency and texture throughout	5Y 4/1 dark gray
					9.0-31.0" moderate water content, silty clay, peanut butter like, sticky, more dense than previous layer, uniform consistency and texture throughout	2.5Y 2.5/ black
				pre-impoundment	31.0-43.0" moderate to low water content, water content decreases with depth, silty clay, loosely packed at top, density increases with depth, malleable, organic material present throughout (fibrous roots)	5Y 3/1 very dark gray
LAV-3	2569451.34	7078618.99	42.0 / 29.0	post-impoundment	$0.0-5.0$ " high water content, silty clay with fine silt on top of layer, soupy, smooth	5Y 3/2 dark olive gray
					5.0-29.0" moderate water content, silty clay with small bits of clay throughout, peanut butter like, sticky, organic material present (pecan shell at 11 inches)	2.5Y 3/1 very dark gray

[^1]Table 2 (continued). Sediment core sample analysis data.

Sediment core sample	Easting (feet)	Northinga (feet)	Total core sample / post-impoundment sediment length (inches)		Sediment core description

a. Coordinates are based on NAD83 State Plane Texas North Central System (feet).
${ }^{\text {b. }}$ Sediment core samples are measured in inches with zero representing the current bottom surface.

Table 2 (continued). Sediment core sample analysis data.

$\begin{aligned} & \text { Sediment } \\ & \text { core } \\ & \text { sample } \end{aligned}$	Easting ${ }^{\text {a }}$ (feet)	Northing ${ }^{\text {a }}$ (feet)	Total core sample / post-impoundment sediment length (inches)		Sediment core description ${ }^{\text {b }}$	Munsell soil color
LAV-7 (continued)	2589204.41	7079180.42	45.0 / 39.0	pre-impoundment	39.0-45.0" low water content, silty clay, not very dense, malleable, uniform consistency and texture throughout, organic material present throughout (fibrous/small roots)	2.5Y 3/1 very dark gray
LAV-8	2593491.62	7097574.04	38.0 / 30.0	post-impoundment	0.0-2.0" high water content, silt, soupy, smooth	2.5Y 4/2 dark grayish brown
					2.0-12.0" high water content, silty clay, smooth, pudding like, uniform consistency and texture throughout	2.5Y 3/1 very dark gray
					12.0-30.0" high to moderate water content, water content decreases with depth, silty clay, smooth, peanut butter like, more dense than previous layer, uniform consistency and texture throughout	2.5Y 3/1 very dark gray
				pre-impoundment	30.0-38.0" low water content, silty clay, loosely packed at top, density increases with depth, malleable, organic material present throughout (fibrous roots)	2.5Y 2.5/1 black
LAV-9	2601554.15	7105229.52	34.0 / 26.0	post-impoundment	0.0-2.0" high water content, silt, soupy, smooth	2.5Y 4/2 dark grayish brown
					2.0-26.0" high to moderate water content, water content decreases with depth, silty clay, smooth, pudding like to peanut butter consistency with increases in depth, density increases with depth, uniform texture, mottled coloration	2.5Y 4/1 dark gray 2.5Y $2.5 / 1$ black
				pre-impoundment	26.0-34.0" low water content, silty clay, malleable, dense, uniform consistency and texture throughout, organic material present throughout (fibrous roots, vegetation)	2.5Y 2.5/1 black
LAV-10	2602108.93	7107356.92	29.0 / 15.0	post-impoundment	0.0-4.0" high water content, silt soupy smooth	5Y 4/1 dark gray
					4.0-9.0" moderate water content, silty clay, pudding like consistency, smooth, uniform consistency and texture throughout	5Y 4/1 dark gray
					9.0-15.0" moderate water content, silty clay, pudding like consistency, large bits of clay throughout	GLEY 2.5/N black

[^2]Table 2 (continued). Sediment core sample analysis data.

$\begin{aligned} & \text { Sediment } \\ & \text { core } \\ & \text { sample } \end{aligned}$	Easting ${ }^{\text {a }}$ (feet)	Northing ${ }^{\text {a }}$ (feet)	Total core sample / post-impoundment sediment length (inches)		Sediment core description ${ }^{\text {b }}$	Munsell soil color
LAV-10 (continued)	2602108.93	7107356.92	29.0 / 15.0	pre-impoundment	15.0-29.0" low water content, silty clay, loosely packed with bits of clay, density increases with depth, malleable, organic material present (fibrous roots)	2.5Y 3/1 very dark gray
LAV-11	2602296.82	7112650.67	100.0 / 98.0	post-impoundment	0.0-3.0" high water content, silt, soupy, smooth	2.5 Y 4/1 dark gray
					3.0-10.0" high water content, silty clay, smooth, pudding like, uniform consistency and texture throughout	2.5Y 3/1 very dark gray
					10.0-38.0" moderate water content, silty clay, smooth, sticky, density increases with depth, uniform consistency and texture throughout	2.5Y 2.5/1 black
					38.0-98.0" moderate water content, water content decreases with depth, silty clay, sticky, peanut butter like, density increases with depth	2.5Y 4/1 dark gray
				pre-impoundment	98.0-100.0" low water content, silty clay, very dense and compact, malleable, crumbly when broken apart organic material present throughout (fibrous roots)	2.5Y 2.5/1 black
LAV-12	2599449.82	7114624.42	12.0 / 6.0	post-impoundment	$0.0-6.0$ " high water content, silty clay with small bits of clay throughout but increasing amounts near the following layer, pudding like	2.5Y 3/1 very dark gray
				pre-impoundment	6.0-12.0" low water content, silty clay, malleable, loosely packed, organic material present throughout (fibrous roots, vegetation)	2.5Y 3/1 very dark gray
LAV-13	2586193.76	7086476.86	52.0 / 43.0	post-impoundment	$0.0-11.0$ " high water content, silty clay with a thin layer of silt on top, smooth, pudding like, uniform consistency and texture throughout, mottled coloration	2.5Y 3/1 very dark gray 2.5Y 4/2 dark grayish brown
					11.0-22.0" moderate water content, silty clay, peanut butter like, sticky, more dense than previous layer, uniform consistency and texture throughout	GLEY1 2.5/N black
					22.0-43.0" moderate water content, silty clay, peanut butter like, sticky, smooth, more dense than previous layer, organic material present (sparce, 2 pieces of woody debris)	2.5Y 3/1 very dark gray

[^3]Table 2 (continued). Sediment core sample analysis data.

| Sediment
 core
 sample | Easting ${ }^{\text {(feet) }}$ | Northing
 (feet) | Total core sample /
 post-impoundment
 sediment length
 (inches) | | Sediment core description ${ }^{\text {b }}$ |
| :---: | :---: | :---: | :---: | :---: | :--- | :--- |

a. Coordinates are based on NAD83 State Plane Texas Central System (feet).
${ }^{\text {b. }}$ Sediment core samples are measured in inches with zero representing the current bottom surface.
c. Grab Samples were collected using a petite Ponar dredge sampler.

A photograph of sediment core LAV-1 (for location, refer to Figure 2) is shown in Figure 7. The base, or deepest part of the sample is denoted by the blue line. The preimpoundment boundary (yellow line closest to the base) was evident within this sediment core sample at 61 inches and identified by the change in color, texture, moisture, porosity, and structure. Identification of the pre-impoundment surface for each sediment core followed a similar procedure.

Figure 7. Sediment core LAV-1. Post-impoundment sediment layers occur in the top 61 inches of this sediment core (identified by the yellow box). Pre-impoundment sediment layers were identified and are defined by the blue box.

Figure 8 illustrates the relationships between acoustic signal returns and the depositional layering seen in sediment cores. In this example, sediment core LAV-1 is shown correlated with each frequency: $208 \mathrm{kHz}, 50 \mathrm{kHz}$, and 12 kHz . The current bathymetric surface is determined based on signal returns from the 208 kHz transducer as represented by the top red line in Figure 8. The pre-impoundment surface is identified by comparing boundaries observed in the $208 \mathrm{kHz}, 50 \mathrm{kHz}$, and 12 kHz signals to the location of the pre-impoundment surface of the sediment core sample. Many layers of sediment may be identified during analysis based on changes in observed characteristics such as water content, organic matter content, and sediment particle size, and each layer is classified as either post-impoundment or pre-impoundment. Yellow boxes represent post-impoundment sediments identified in the sediment core. Blue boxes indicate pre-impoundment sediments.

Figure 8. Sediment core sample LAV-1 compared with acoustic signal returns. A) 208 kHz frequency, B) $\mathbf{5 0} \mathbf{k H z}$ frequency, and C) $\mathbf{1 2} \mathbf{~ k H z}$ frequency.

The pre-impoundment boundary in sediment core LAV-1 most closely aligned with the different layers picked up by the 208 kHz acoustic returns (Figure 8). The preimpoundment surface is first identified along cross-sections for which sediment core samples were collected. This information then is used as a guide for identifying the preimpoundment surface along cross-sections where sediment core samples were not collected.

After the pre-impoundment surface for all cross-sections is identified, a preimpoundment TIN model and a sediment thickness TIN model are created. Preimpoundment elevations and sediment thicknesses are interpolated between surveyed crosssections using HydroTools with the same interpolation definition file used for bathymetric interpolation. For the purposes of TIN model creation, the TWDB assumed the sediment thickness at the reservoir boundary was zero (0.0) feet (defined as the 492.2-foot elevation contour). The sediment thickness TIN model was converted to a raster representation using a cell size of 5 feet by 5 feet and was used to produce a sediment thickness map (Figure 9). Elevation-capacity and elevation-area tables were computed from the pre-impoundment TIN model for the purpose of calculating the total volume of accumulated sediment.

Sediment thickness
 (20-0.5

Texas Water
Development Board

Figure 9
Lavon Lake
Sediment thickness map

Survey results

Volumetric survey

The 2021 TWDB volumetric survey indicates Lavon Lake has a total reservoir capacity of 412,498 acre-feet and encompasses 20,595 acres at conservation pool elevation (492.0 feet NGVD29). Current area and capacity estimates are compared to previous area and capacity estimates at conservation pool elevation, 492.0 feet, in Table 3. Current area and capacity estimates are compared to previous area and capacity estimates at the original conservation pool elevation, 472.0 feet, in Table 4. Because of differences in past and present survey methodologies, direct comparison of volumetric surveys to others to estimate loss of area and capacity can be unreliable. However, the similarity in methodology and technology between the 2011 and 2021 surveys provides substantial opportunity for insight into how the reservoir has changed in the last decade. The apparent increase in capacity over the 2011 TWDB survey is largely due to better survey data coverage of the lake in 2021, especially in areas upstream of roadways U.S. Highway 380 and FM 3286 and in general around the lake above elevation 487.0 feet, because of higher water surface elevations during data collection. Figure 10 illustrates how capacity has changed throughout the reservoir since 2011, with capacity losses occurring between elevations 449.8 and 485.3 feet due to sedimentation.

Table 3. Surface area and total capacity at conservation pool elevation 492.0 feet.

Survey	Surface area (acres)	Total capacity (acre-feet)	Conservation pool elevation	Source
USACE 1970	21,357	456,527	492.0	U.S. Army Corps of Engineers, 1974
TWDB 2011	20,559	409,360	492.0	Texas Water Development Board, 2013
TWDB 2011 re-calculated	21,004	411,745	492.0	Texas Water Development Board, 2016
TWDB 2021	20,595	412,498	492.0	

[^4]Table 4. Surface area and total capacity at conservation pool elevation 472.0 feet.

Survey	Surface area (acres)	Total capacity (acre-feet)	Conservation pool elevation	Source
$\mathbf{1 9 4 6}$ Original	11,080	143,600	472.0	U.S. Army Corps of Engineers, 1975
1951 Revised	11,085	150,324	472.0	U.S. Army Corps of Engineers, 1975
USACE 1959	10,987	143,297	472.0	U.S. Army Corps of Engineers, 1975
USACE 1965	10,857	133,776	472.0	U.S. Army Corps of Engineers, 1975
USACE 1970	10,947	136,847	472.0	U.S. Army Corps of Engineers, 1974
TWDB 2011 re-calculated	10,053	107,962	472.0	Texas Water Development Board, 2016
TWDB 2021	10,055	107,247	472.0	

Figure 10. Change in capacity of Lavon Lake between TWDB 2021 and 2011 surveys. The red segments show elevations where capacity decreased since 2011. The blue segments show elevations where capacity increased since 2011. Capacity loss due to sedimentation is occurring between elevations 449.8 and 485.3 feet. Capacity gain above elevation 485.3 feet is largely a result of increased data coverage in the 2021 survey.

Sedimentation survey

The 2021 TWDB sedimentation survey measured $\mathbf{3 9 , 8 5 1}$ acre-feet of sediment.
The 2021 TWDB sedimentation survey indicates Lavon Lake has lost capacity at an average of 586 acre-feet per year since impoundment due to sedimentation below conservation pool elevation (492.0 feet above mean sea level) The sedimentation survey indicates post-impoundment sediment deposition is occurring throughout the reservoir with
heavy accumulation near the dam, on the west side of the reservoir north of the Clear Lake Campground, and north of the U.S. Highway 380 bridge (Figure 9). Comparison of capacity estimates of Lavon Lake derived using differing methodologies are provided in Table 5 for sedimentation rate calculation. Identification of the pre-impoundment surface can be made more challenging by fluctuating water levels. Lavon Lake has periodically experienced low water levels leading to the desiccation of any exposed sediment, for example, between August 21, 2013, and March 3, 2015, the water surface elevation of the reservoir measured below 482.0 feet NGVD29, reaching as low as 479.0 feet on December 14, 2014. Upon inundation and re-saturation, exposed sediment will not return to its original high level of water content (Dunbar and Allen, 2003). Drying of sediment in exposed areas create hard surfaces that cannot be penetrated with gravity coring techniques, and compressive stresses on the sediments may also increase sediment density, inhibiting the measurement of the original, pre-impoundment surface. Density stratification in the sediment layers can also impair acoustic return signals of the multi-frequency depth sounder (U.S. Army Corps of Engineers, 2013).

Table 5. Average annual capacity loss comparisons at elevation 492.0 feet.

Survey	Top of conservation pool elevation 492.0 feet NGVD29 (acre-feet)		
USACE 1970	456,527	<>	<>
TWDB 2011 re-calculated	<>	411,745	<>
TWDB pre-impoundment estimate based on 2021 survey	<	<	452,349
2020 volumetric survey	412,498	412,498	412,498
Volume difference (acre-feet) Percent change	$\begin{gathered} 44,029 \\ 9.6 \end{gathered}$	$\begin{aligned} & -753 \\ & -0.2 \end{aligned}$	$\begin{gathered} 39,851 \\ 8.8 \\ \hline \end{gathered}$
Number of years ${ }^{\text {a }}$	$46^{\text {b }}$	10	$68^{\text {c }}$
Capacity loss rate (acre-feet/year)	957	-75	586
Capacity loss rate (acre-feet/square mile of drainage area of 770 square miles /year)	1.24	-0.10	0.76

a. Note: Lavon Dam was completed in September 1953, and deliberate impoundment began on September 14, 1953. Modification to raise the dam 12 feet and conservation pool elevation 20 feet started on May 15, 1970, and deliberate impoundment on the modified dam began on December 1, 1975.
b. Number of years based on difference between 2021 survey date and impoundment date of 1975
c. Number of years based on difference between 2021 survey date and impoundment date of 1953 .

Sediment range lines

Sixty-three sediment range lines for Lavon Lake were established to measure sediment accumulation over time by the U.S. Army Corps Engineers (U.S. Army Corps of Engineers, 1975). In the resurvey of 1965 survey report, nine sediment range lines are plotted showing comparison of the 1951, 1959, and 1965 surveys (U.S. Army Corps of Engineers, 1975). The TWDB digitized the U.S. Army Corps of Engineers maps and the historical cross-sections for comparison with the TWDB 2011 and 2021 surveys. A map depicting these range lines can be found in Appendix M along with Table M1 listing the endpoint coordinates for each range line. Some differences in the cross-sections may be a result of difficulties interpreting the quadrangle map contours and inaccuracies in the quadrangle maps due to scale (U.S. Army Corps of Engineers, 1975) and distortions caused by digitizing the cross-sections from the U.S. Army Corps of Engineers report.

Additionally, some differences between the TWDB cross-sections may be a result of spatial interpolation and the interpolation routine of the TIN Model.

Recommendations

The TWDB recommends a detailed analysis of sediment deposits in the areas where exposure of the lake bottom may have led to identification of a false pre-impoundment using augured-coring techniques, as well as a volumetric and sedimentation survey in 10 years or after a major high flow event to further improve estimates of sediment accumulation rates.

TWDB contact information

For more information about the TWDB Hydrographic Survey Program, visit www.twdb.texas.gov/surfacewater/surveys. Any questions regarding the TWDB Hydrographic Survey Program or this report may be addressed to:

Hydrosurvey@twdb.texas.gov.

References

Dunbar, J.A. and Allen, P.M., 2003, Sediment Thickness from Coring and Acoustics within Lakes Aquilla, Granger, Limestone, and Proctor: Brazos River Watershed, TX: Baylor University, Department of Geology.

Environmental Systems Research Institute, 1995, ARC/INFO Surface Modeling and Display, TIN Users Guide: ESRI, California.

McEwen, T., Brock, N., Kemp, J., Pothina, D. and Weyant, H., 2011a, HydroTools User's Manual: Texas Water Development Board.

McEwen, T., Pothina, D. and Negusse, S., 2011b, Improving efficiency and repeatability of lake volume estimates using Python: Proceedings of the 10th Python for Scientific Computing Conference.

National Geodetic Survey, 2022a, NADCON computations, accessed July 6, 2022, http://www.ngs.noaa.gov/cgi-bin/nadcon.prl.

National Geodetic Survey, 2022b, Orthometric Height Conversion, accessed July 6, 2022, https://geodesy.noaa.gov/NCAT/.

North Texas Municipal Water District, 2022a, North Texas Municipal Water District History, accessed September 12, 2022, at https://www.ntmwd.com/history/.

North Texas Municipal Water District, 2022b, North Texas Municipal Water District - Our Water System, accessed September 12, 2022, at https://www.ntmwd.com/our-watersystem/.

Specialty Devices, Inc., 2018, SDI DepthPic post-processing software instruction manual: Wylie, Texas, Specialty Devices, Inc., p. 45.

Texas Commission on Environmental Quality, 2022, Texas Water Rights Viewer, accessed September 12, 2022, at https://tceq.maps.arcgis.com/home/item.html?id=44adc80d90b749cb85cf39e04027d bdc.

Texas Natural Resources Information System, 2020, Texas Imagery Service | TNRIS Texas Natural Resources Information System, accessed July 31, 2020, at https://www.tnris.org/texas-imagery-service/.

Texas Water Development Board, 2013, Volumetric and Sedimentation Survey of Lavon Lake, accessed April 14, 2022, at https://www.twdb.texas.gov/hydro_survey/Lavon/201107/Lavon2011_FinalReport.pdf.

Texas Water Development Board, 2021, Contract No. 2148012517 with the North Texas Municipal Water District (NTMWD).
U.S. Army Corps of Engineers, 1974, Elevation - capacity table for 1970 conditions (Projected), Lavon Lake modification.
U.S. Army Corps of Engineers, 1975, Report on Sedimentation, Lavon Lake, East Fork of Trinity River, Trinity River Basin, Texas, Resurvey of October 1965.
U.S. Army Corps of Engineers, 2013, Engineering and Design, Hydrographic Surveying Engineer Manual, EM 1100-2-1003 (30 Nov 13): U.S. Army Corps of Engineers, Appendix P.
U.S. Army Corps of Engineers, 2022a, U.S. Army Corps of Engineers, Fort Worth District - Lavon Lake, accessed May 2022, at http://www.swf-wc.usace.army.mil/lavon/.
U.S. Army Corps of Engineers, 2022b, Pertinent Data Sheet for Lavon Lake, accessed May 2022, at https://www.swf-wc.usace.army.mil/pertdata/lvnt2.pdf.
U.S. Geological Survey, 2021, U.S. Geological Survey National Water Information System: Web Interface, USGS 08060500 Lavon Lk nr Lavon, TX, accessed December 7, 2021, at https://waterdata.usgs.gov/nwis/inventory/?dv?referred_module=sw\&site_no=0806 0500.

Van Metre, P.C., Wilson, J.T., Fuller, C.C., Callender, E., and Mahler, B.J., 2004, Collection, analysis, and age-dating of sediment cores from 56 U.S. lakes and reservoirs sampled by the U.S. Geological Survey, 1992-2001: U.S. Geological Survey Scientific Investigations Report 2004-5184, 180 p.

Appendix A

LAVON LAKE
RESERVOIR CAPACITY TABLE

	TEXAS WATER DEVELOPMENT BOARD CAPACITY IN ACRE-FEET ELEVATION INCREMENT IS ONE TENTH FOOT				June - July 2011 Survey re-calculated May 2017 Conservation Pool Elevation 492.0 feet NGVD29					
$\begin{gathered} \text { ELEVATION } \\ \text { in Feet } \end{gathered}$	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
448	0	0	0	0	0	0	0	0	0	0
449	0	0	0	0	0	0	1	1	3	8
450	16	29	48	75	109	152	203	262	329	404
451	485	572	663	759	859	963	1,071	1,183	1,299	1,418
452	1,542	1,670	1,802	1,937	2,075	2,217	2,362	2,510	2,661	2,815
453	2,972	3,132	3,295	3,461	3,629	3,800	3,974	4,151	4,329	4,510
454	4,693	4,878	5,067	5,257	5,451	5,647	5,847	6,049	6,256	6,467
455	6,686	6,910	7,139	7,373	7,611	7,853	8,099	8,349	8,604	8,862
456	9,125	9,392	9,663	9,938	10,217	10,501	10,789	11,082	11,378	11,678
457	11,982	12,291	12,604	12,920	13,240	13,562	13,889	14,219	14,553	14,889
458	15,228	15,570	15,916	16,264	16,617	16,973	17,333	17,697	18,065	18,437
459	18,812	19,191	19,574	19,962	20,354	20,751	21,151	21,556	21,963	22,374
460	22,790	23,209	23,632	24,059	24,489	24,923	25,360	25,801	26,246	26,696
461	27,151	27,611	28,076	28,546	29,022	29,503	29,989	30,480	30,976	31,478
462	31,986	32,498	33,015	33,538	34,066	34,599	35,137	35,681	36,229	36,783
463	37,344	37,909	38,480	39,058	39,644	40,237	40,836	41,441	42,051	42,667
464	43,287	43,913	44,544	45,180	45,821	46,468	47,119	47,776	48,437	49,104
465	49,775	50,451	51,132	51,816	52,504	53,197	53,894	54,596	55,301	56,012
466	56,729	57,450	58,176	58,907	59,641	60,379	61,122	61,868	62,618	63,372
467	64,129	64,889	65,653	66,421	67,192	67,968	68,749	69,535	70,326	71,122
468	71,922	72,726	73,535	74,347	75,164	75,986	76,812	77,644	78,479	79,319
469	80,164	81,013	81,867	82,726	83,590	84,459	85,332	86,211	87,094	87,983
470	88,878	89,778	90,685	91,597	92,515	93,437	94,365	95,299	96,240	97,187
471	98,140	99,099	100,063	101,033	102,009	102,990	103,975	104,965	105,960	106,959
472	107,962	108,970	109,981	110,996	112,015	113,037	114,063	115,093	116,127	117,166
473	118,209	119,257	120,309	121,364	122,423	123,487	124,554	125,625	126,699	127,778
474	128,861	129,947	131,037	132,131	133,230	134,332	135,437	136,547	137,659	138,776
475	139,897	141,022	142,152	143,285	144,423	145,566	146,715	147,869	149,029	150,195
476	151,367	152,545	153,730	154,923	156,122	157,328	158,540	159,758	160,983	162,213
477	163,449	164,691	165,939	167,195	168,457	169,726	171,003	172,287	173,578	174,875
478	176,177	177,484	178,797	180,114	181,436	182,763	184,094	185,430	186,770	188,115
479	189,466	190,820	192,180	193,543	194,912	196,286	197,664	199,048	200,437	201,831
480	203,230	204,633	206,041	207,454	208,873	210,297	211,726	213,161	214,600	216,045
481	217,495	218,949	220,409	221,874	223,345	224,820	226,301	227,787	229,278	230,775
482	232,277	233,785	235,297	236,813	238,334	239,861	241,393	242,930	244,473	246,023
483	247,578	249,138	250,704	252,274	253,851	255,433	257,020	258,612	260,208	261,809
484	263,415	265,025	266,643	268,266	269,895	271,531	273,172	274,820	276,474	278,134
485	279,801	281,473	283,152	284,836	286,527	288,225	289,928	291,637	293,353	295,075
486	296,802	298,536	300,277	302,023	303,776	305,534	307,299	309,070	310,847	312,631
487	314,420	316,216	318,017	319,825	321,639	323,460	325,286	327,119	328,957	330,802
488	332,653	334,511	336,374	338,244	340,119	342,001	343,889	345,783	347,684	349,590
489	351,503	353,421	355,346	357,277	359,215	361,158	363,108	365,063	367,025	368,993
490	370,968	372,948	374,934	376,927	378,926	380,931	382,942	384,959	386,983	389,013
491	391,048	393,090	395,138	397,193	399,253	401,320	403,392	405,471	407,556	409,648
492	411,745	413,848	415,958	418,074	420,196	422,324	424,458	426,599	428,746	430,898
493	433,057									

Note: Capacities above elevaiton 484.0 feet calculated from interpolated areas

Appendix B
LAVON LAKE
RESERVOIR AREA TABLE
TEXAS WATER DEVELOPMENT BOARD
AREA IN ACRES
ELEVATION INCREMENT IS ONE TENTH FOOT

$\begin{gathered} \text { ELEVATION } \\ \text { in Feet } \\ \hline \end{gathered}$	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
448	0	0	0	0	0	0	0	0	0	0
449	0	0	0	1	1	2	3	7	32	64
450	104	161	225	301	387	471	550	631	709	782
451	841	894	939	979	1,022	1,060	1,097	1,137	1,177	1,218
452	1,259	1,299	1,335	1,368	1,400	1,433	1,464	1,495	1,525	1,554
453	1,585	1,616	1,644	1,671	1,698	1,726	1,751	1,773	1,796	1,819
454	1,843	1,869	1,895	1,921	1,949	1,979	2,010	2,044	2,086	2,151
455	2,214	2,271	2,315	2,358	2,401	2,442	2,481	2,523	2,565	2,605
456	2,647	2,688	2,731	2,773	2,817	2,861	2,903	2,942	2,982	3,021
457	3,067	3,107	3,145	3,179	3,212	3,245	3,285	3,324	3,351	3,376
458	3,403	3,434	3,470	3,505	3,541	3,583	3,622	3,661	3,699	3,735
459	3,771	3,810	3,854	3,900	3,943	3,988	4,025	4,057	4,094	4,134
460	4,172	4,212	4,250	4,287	4,322	4,355	4,390	4,429	4,469	4,524
461	4,574	4,624	4,678	4,732	4,783	4,834	4,886	4,938	4,992	5,047
462	5,097	5,148	5,201	5,254	5,306	5,356	5,405	5,458	5,514	5,573
463	5,628	5,682	5,744	5,821	5,891	5,959	6,022	6,081	6,131	6,180
464	6,231	6,283	6,336	6,387	6,436	6,487	6,540	6,592	6,641	6,690
465	6,738	6,783	6,825	6,864	6,904	6,948	6,994	7,035	7,082	7,137
466	7,190	7,239	7,284	7,324	7,363	7,404	7,443	7,480	7,518	7,555
467	7,589	7,622	7,658	7,693	7,734	7,781	7,836	7,886	7,935	7,980
468	8,023	8,065	8,106	8,147	8,190	8,241	8,289	8,334	8,377	8,422
469	8,472	8,518	8,567	8,615	8,662	8,709	8,758	8,809	8,862	8,919
470	8,976	9,032	9,094	9,153	9,204	9,252	9,306	9,375	9,440	9,500
471	9,558	9,615	9,676	9,731	9,781	9,830	9,878	9,924	9,969	10,012
472	10,053	10,092	10,132	10,171	10,207	10,243	10,280	10,319	10,365	10,411
473	10,454	10,497	10,536	10,575	10,614	10,652	10,691	10,728	10,765	10,804
474	10,844	10,884	10,923	10,962	11,000	11,038	11,074	11,112	11,149	11,191
475	11,230	11,271	11,312	11,354	11,406	11,461	11,515	11,569	11,628	11,691
476	11,748	11,815	11,891	11,959	12,026	12,089	12,153	12,215	12,272	12,331
477	12,392	12,452	12,514	12,592	12,657	12,731	12,805	12,874	12,937	12,996
478	13,048	13,097	13,149	13,198	13,246	13,291	13,336	13,380	13,429	13,478
479	13,523	13,569	13,617	13,665	13,712	13,758	13,811	13,865	13,916	13,962
480	14,008	14,056	14,108	14,159	14,213	14,267	14,317	14,372	14,423	14,472
481	14,521	14,572	14,626	14,678	14,729	14,780	14,834	14,887	14,940	14,995
482	15,048	15,097	15,143	15,189	15,239	15,293	15,347	15,400	15,462	15,522
483	15,575	15,631	15,682	15,737	15,790	15,847	15,894	15,940	15,987	16,033
484	16,078	16,140	16,201	16,263	16,324	16,386	16,448	16,509	16,571	16,632
485	16,694	16,756	16,817	16,879	16,940	17,002	17,063	17,125	17,187	17,248
486	17,310	17,371	17,433	17,494	17,556	17,618	17,679	17,741	17,802	17,864
487	17,926	17,987	18,049	18,110	18,172	18,233	18,295	18,357	18,418	18,480
488	18,541	18,603	18,664	18,726	18,788	18,849	18,911	18,972	19,034	19,096
489	19,157	19,219	19,280	19,342	19,403	19,465	19,527	19,588	19,650	19,711
490	19,773	19,834	19,896	19,958	20,019	20,081	20,142	20,204	20,266	20,327
491	20,389	20,450	20,512	20,573	20,635	20,697	20,758	20,820	20,881	20,943
492	21,004	21,066	21,128	21,189	21,251	21,312	21,374	21,436	21,497	21,559
493	21,620									

[^5]
—Total capacity 2011
. Conservation pool elevation 492.0 feet
Lavon Lake
June - July 2011 Survey
re-calculated May 2017
Prepared by: TWDB
Appendix C: 2011 re-calculated capacity curve

Conservation pool elevation 492.0 feet

Lavon Lake
 June - July 2011 Survey
 re-calculated May 2017

Prepared by: TWDB

Appendix E

LAVON LAKE
RESERVOIR BATHYMETRIC CAPACITY TABLE

Appendix F

LAVON LAKE
RESERVOIR BATHYMETRIC AREA TABLE

	TEXAS WATER DEVELOPMENT BOARD AREA IN ACRES				May - July 2021 Survey					
					Conservation Pool Elevation 492.0 feet NGVD29					
	ELEVAT	CREMEN	NE TENT							
ELEVATION (feet NGVD29)	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
447	0	0	0	0	0	0	0	0	0	0
448	0	0	0	0	0	0	0	0	0	0
449	0	0	1	1	2	3	4	6	9	29
450	68	123	195	252	311	397	492	584	671	734
451	790	847	898	942	985	1,025	1,062	1,097	1,132	1,169
452	1,208	1,251	1,295	1,334	1,371	1,406	1,438	1,469	1,499	1,532
453	1,562	1,594	1,627	1,659	1,689	1,716	1,741	1,763	1,783	1,804
454	1,825	1,845	1,865	1,886	1,907	1,932	1,960	1,989	2,024	2,063
455	2,128	2,207	2,264	2,304	2,344	2,387	2,429	2,472	2,515	2,556
456	2,594	2,636	2,675	2,712	2,752	2,797	2,842	2,882	2,922	2,960
457	3,000	3,043	3,087	3,124	3,159	3,198	3,238	3,270	3,301	3,333
458	3,370	3,406	3,440	3,474	3,509	3,542	3,576	3,614	3,660	3,700
459	3,740	3,785	3,830	3,877	3,924	3,964	4,004	4,049	4,087	4,123
460	4,160	4,198	4,233	4,268	4,301	4,333	4,368	4,407	4,444	4,487
461	4,545	4,602	4,650	4,699	4,751	4,802	4,855	4,906	4,961	5,013
462	5,066	5,121	5,173	5,222	5,268	5,319	5,371	5,423	5,475	5,529
463	5,583	5,638	5,698	5,759	5,822	5,891	5,951	6,008	6,064	6,119
464	6,173	6,224	6,272	6,318	6,362	6,408	6,457	6,505	6,554	6,602
465	6,649	6,696	6,742	6,787	6,830	6,875	6,920	6,966	7,010	7,053
466	7,096	7,143	7,208	7,266	7,310	7,354	7,398	7,446	7,491	7,531
467	7,570	7,609	7,648	7,700	7,747	7,793	7,839	7,887	7,934	7,979
468	8,024	8,070	8,117	8,166	8,214	8,262	8,315	8,358	8,401	8,448
469	8,496	8,545	8,591	8,641	8,690	8,742	8,795	8,848	8,897	8,951
470	9,001	9,048	9,097	9,153	9,213	9,273	9,328	9,388	9,448	9,503
471	9,557	9,610	9,667	9,722	9,770	9,816	9,871	9,920	9,969	10,012
472	10,055	10,094	10,132	10,172	10,211	10,248	10,287	10,327	10,368	10,406
473	10,445	10,486	10,525	10,564	10,604	10,646	10,686	10,727	10,766	10,805
474	10,844	10,881	10,918	10,955	10,990	11,027	11,064	11,101	11,139	11,177
475	11,215	11,253	11,291	11,332	11,375	11,422	11,473	11,522	11,572	11,625
476	11,684	11,743	11,809	11,874	11,938	12,005	12,072	12,132	12,193	12,259
477	12,326	12,390	12,462	12,532	12,600	12,668	12,732	12,795	12,854	12,910
478	12,963	13,019	13,072	13,125	13,178	13,232	13,286	13,341	13,395	13,445
479	13,496	13,547	13,601	13,655	13,709	13,760	13,811	13,860	13,909	13,962
480	14,016	14,071	14,126	14,183	14,238	14,285	14,333	14,377	14,423	14,470
481	14,519	14,572	14,635	14,687	14,737	14,788	14,839	14,889	14,942	14,994
482	15,047	15,100	15,154	15,205	15,254	15,308	15,369	15,433	15,508	15,591
483	15,681	15,770	15,853	15,932	16,014	16,100	16,177	16,249	16,316	16,383
484	16,446	16,510	16,572	16,629	16,688	16,746	16,801	16,860	16,919	16,980
485	17,039	17,098	17,156	17,212	17,270	17,336	17,402	17,463	17,523	17,580
486	17,638	17,696	17,753	17,813	17,872	17,933	17,998	18,066	18,132	18,197
487	18,269	18,342	18,412	18,476	18,540	18,604	18,670	18,731	18,792	18,853
488	18,910	18,965	19,020	19,072	19,122	19,170	19,218	19,265	19,312	19,358
489	19,403	19,445	19,485	19,523	19,562	19,600	19,637	19,683	19,725	19,763
490	19,803	19,842	19,881	19,918	19,956	19,994	20,032	20,070	20,107	20,144
491	20,182	20,220	20,258	20,296	20,335	20,375	20,416	20,459	20,502	20,548
492	20,595	20,645	20,701							

—Total capacity 2021
. Conservation pool elevation 492.0 feet

Lavon Lake
May - July 2021 Survey
Prepared by: TWDB

Appendix G: 2021 Bathymetric capacity curve

—Total area 2021
------ Conservation pool elevation 492.0 feet

Lavon Lake

May - July 2021 Survey
Prepared by: TWDB

Appendix

LAVON LAKE
RESERVOIR BATHYMETRIC AND TOPOGRAPHIC CAPACITY TABLE

Appendix I
LAVON LAKE
RESERVOIR BATHYMETRIC AND TOPOGRAPHIC CAPACITY TABLE (continued)

TEXAS WATER DEVELOPMENT BOARD	May - July 2021 Survey
CAPACITY IN ACRE-FEET	Conservation pool elevation 492.0 feet NGVD29
LEVATION INCREMENT IS ONE TENTH FOOT	Top of dam elevation 514.0 feet NGVD29

$\begin{aligned} & \text { ELEVATION } \\ & \text { (feet } \\ & \text { NGVD29) } \\ & \hline \end{aligned}$	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
501	627,476	630,188	632,908	635,636	638,372	641,116	643,868	646,628	649,396	652,172
502	654,957	657,750	660,552	663,363	666,182	669,008	671,843	674,685	677,535	680,392
503	683,258	686,131	689,012	691,901	694,798	697,702	700,614	703,534	706,461	709,397
504	712,339	715,290	718,248	721,214	724,187	727,168	730,157	733,153	736,157	739,168
505	742,186	745,212	748,246	751,288	754,338	757,395	760,461	763,534	766,616	769,706
506	772,804	775,910	779,024	782,146	785,276	788,414	791,560	794,714	797,875	801,045
507	804,222	807,408	810,601	813,803	817,012	820,230	823,455	826,688	829,929	833,178
508	836,434	839,699	842,971	846,251	849,539	852,834	856,136	859,446	862,763	866,088
509	869,420	872,760	876,107	879,461	882,823	886,193	889,571	892,957	896,352	899,755
510	903,166	906,585	910,012	913,447	916,890	920,341	923,801	927,269	930,746	934,231
511	937,724	941,226	944,735	948,252	951,778	955,311	958,853	962,403	965,961	969,528
512	973,103	976,687	980,278	983,878	987,486	991,102	994,725	998,357	1,001,996	1,005,643
513	1,009,297	1,012,959	1,016,628	1,020,305	1,023,989	1,027,680	1,031,378	1,035,084	1,038,797	1,042,517
514	1,046,246									

Appendix J

LAVON LAKE
RESERVOIR BATHYMETRIC AND TOPOGRAPHIC AREA TABLE

	$\begin{array}{r} \text { TEXA } \\ \text { ELEVATI } \end{array}$				May - July 2021 Survey Conservation pool elevation 492.0 feet NGVD29 Top of dam elevation 514.0 feet NGVD29					
ELEVATION (feet NGVD29)	0.0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
447	0	0	0	0	0	0	0	0	0	0
448	0	0	0	0	0	0	0	0	0	0
449	0	0	1	1	2	3	4	6	9	29
450	68	123	195	252	311	397	492	584	671	734
451	790	847	898	942	985	1,025	1,062	1,097	1,132	1,169
452	1,208	1,251	1,295	1,334	1,371	1,406	1,438	1,469	1,499	1,532
453	1,562	1,594	1,627	1,659	1,689	1,716	1,741	1,763	1,783	1,804
454	1,825	1,845	1,865	1,886	1,907	1,932	1,960	1,989	2,024	2,063
455	2,128	2,207	2,265	2,304	2,344	2,387	2,429	2,472	2,515	2,556
456	2,594	2,636	2,675	2,713	2,752	2,797	2,842	2,882	2,922	2,960
457	3,000	3,043	3,087	3,124	3,160	3,198	3,238	3,270	3,301	3,333
458	3,370	3,406	3,440	3,475	3,509	3,542	3,576	3,614	3,660	3,700
459	3,740	3,785	3,830	3,878	3,924	3,964	4,004	4,049	4,087	4,124
460	4,160	4,198	4,233	4,268	4,301	4,333	4,368	4,407	4,444	4,487
461	4,545	4,602	4,650	4,699	4,751	4,802	4,855	4,907	4,961	5,013
462	5,066	5,121	5,173	5,222	5,269	5,319	5,371	5,423	5,475	5,529
463	5,583	5,638	5,699	5,759	5,822	5,891	5,951	6,008	6,064	6,119
464	6,173	6,224	6,272	6,318	6,362	6,408	6,457	6,505	6,555	6,602
465	6,649	6,696	6,742	6,787	6,830	6,875	6,921	6,966	7,010	7,053
466	7,096	7,143	7,208	7,266	7,310	7,354	7,398	7,446	7,491	7,531
467	7,570	7,609	7,648	7,700	7,747	7,794	7,839	7,887	7,934	7,979
468	8,025	8,070	8,117	8,166	8,214	8,262	8,315	8,358	8,402	8,449
469	8,496	8,545	8,591	8,641	8,690	8,742	8,795	8,848	8,897	8,951
470	9,001	9,049	9,098	9,153	9,213	9,273	9,328	9,388	9,448	9,503
471	9,557	9,610	9,667	9,722	9,770	9,816	9,871	9,920	9,969	10,012
472	10,055	10,094	10,133	10,172	10,211	10,248	10,287	10,327	10,368	10,406
473	10,445	10,486	10,525	10,565	10,605	10,646	10,687	10,727	10,767	10,805
474	10,844	10,881	10,918	10,955	10,990	11,027	11,064	11,101	11,139	11,177
475	11,215	11,253	11,292	11,333	11,376	11,422	11,473	11,523	11,572	11,625
476	11,684	11,744	11,809	11,875	11,939	12,006	12,072	12,132	12,193	12,260
477	12,326	12,391	12,462	12,533	12,600	12,668	12,732	12,795	12,854	12,911
478	12,963	13,019	13,072	13,125	13,179	13,232	13,287	13,341	13,395	13,446
479	13,496	13,547	13,601	13,655	13,710	13,761	13,811	13,860	13,909	13,963
480	14,016	14,071	14,126	14,183	14,239	14,285	14,333	14,378	14,424	14,471
481	14,520	14,573	14,636	14,688	14,738	14,788	14,840	14,889	14,942	14,995
482	15,047	15,100	15,155	15,205	15,255	15,309	15,370	15,434	15,508	15,592
483	15,682	15,771	15,854	15,933	16,015	16,101	16,178	16,250	16,317	16,384
484	16,447	16,511	16,573	16,630	16,690	16,747	16,802	16,861	16,920	16,982
485	17,040	17,100	17,157	17,214	17,272	17,338	17,404	17,465	17,524	17,582
486	17,640	17,698	17,755	17,815	17,874	17,936	18,000	18,068	18,135	18,200
487	18,272	18,344	18,414	18,478	18,542	18,607	18,673	18,736	18,802	18,867
488	18,925	18,981	19,039	19,091	19,141	19,189	19,237	19,284	19,331	19,378
489	19,423	19,465	19,505	19,543	19,582	19,620	19,658	19,704	19,745	19,784
490	19,823	19,863	19,901	19,939	19,977	20,015	20,053	20,091	20,128	20,166
491	20,203	20,241	20,280	20,318	20,358	20,398	20,440	20,483	20,527	20,573
492	20,622	20,674	20,734	20,843	20,883	20,926	20,969	21,014	21,061	21,108
493	21,157	21,208	21,260	21,313	21,367	21,422	21,477	21,533	21,589	21,645
494	21,701	21,760	21,834	21,960	22,136	22,293	22,438	22,572	22,698	22,819
495	22,935	23,047	23,148	23,241	23,326	23,407	23,482	23,553	23,624	23,693
496	23,760	23,828	23,896	23,963	24,030	24,096	24,162	24,228	24,294	24,361
497	24,427	24,494	24,559	24,625	24,689	24,752	24,815	24,878	24,940	25,002
498	25,064	25,126	25,189	25,251	25,314	25,375	25,437	25,499	25,560	25,621
499	25,680	25,738	25,797	25,855	25,914	25,974	26,035	26,096	26,161	26,231
500	26,299	26,367	26,437	26,509	26,583	26,663	26,746	26,829	26,910	26,993

Appendix J
LAVON LAKE
RESERVOIR BATHYMETRIC AND TOPOGRAPHIC AREA TABLE (continued)

TEXAS WATER DEVELOPMENT BOARD
AREA IN ACRES
ELEVATION INCREMENT IS ONE TENTH FOOT

ELEVATION (feet NGVD29)
501
502
503
504
505
506
507
508
509
510
511
512
513
514

Elevation (feet above mean sea level)
Total capacity 2021
. Conservation pool elevation 492.0 feet - - - Top of dam elevation 514.0 feet

Lavon Lake

May - July 2021 Survey
Prepared by: TWDB
Appendix K: 2021 Bathymetric and topographic capacity curve

Sediment range line R1

Sediment range line R3

Sediment range line R18

Figure 6

Lavon Lake

Contours
 feet NGVD29

$\sim_{\sim}^{\sim} 492$

2' - contour map

[^0]: Authorization for use or reproduction of any original material contained in this publication, i.e not obtained from other sources, is freely granted. The Texas Water Development Board would appreciate acknowledgement.

[^1]: a. Coordinates are based on NAD83 State Plane Texas North Central System (feet).
 ${ }^{\text {b. }}$ Sediment core samples are measured in inches with zero representing the current bottom surface.

[^2]: ${ }^{\text {a. }}$ Coordinates are based on NAD83 State Plane Texas North Central System (feet).
 ${ }^{\text {b. }}$ Sediment core samples are measured in inches with zero representing the current bottom surface.

[^3]: a. Coordinates are based on NAD83 State Plane Texas North Central System (feet).
 ${ }^{\text {b. }}$ Sediment core samples are measured in inches with zero representing the current bottom surface.

[^4]: a. National Geodetic Vertical Datum 1929 (NGVD29).

[^5]: Note: Areas between elevations 484.0 and 493.0 feet linearly interpolated

