Conceptual Model: Igneous and West Texas Bolsons Aquifers of Texas **Texas Water Development Board**

Ian C. Jones, Ph.D., P.G. February 2024 Texas Water Development Board Groundwater Modeling

This page is intentionally blank.

Conceptual Model: Igneous and West Texas Bolsons Aquifers of Texas

by Ian C. Jones, Ph.D., P.G.

February 2024

Table of Contents

]	List of Figures	ii	
]	List of Tables	viii	
]	EXECUTIVE SU	MMARY	1
	1.0	INTRODUCTION	3
	2.0	STUDY AREA	6
	2.1	Physiography and Climate	17
	2.2	Geology	
	3.0	PREVIOUS WORK	43
4	4.0	HYDROLOGIC SETTING	45
	4.1	Hydrostratigraphy and Hydrostratigraphic Framework	45
	4.1.1	West Texas Bolsons Aquifer	45
	4.1.2	Igneous Aquifer	45
	4.2	Water Levels and Regional Groundwater Flow	53
	4.3	Recharge	65
	4.4	Rivers, Streams, Springs, and Lakes	67
	4.4.1 River	s and Streams	67
	4.4.2 Sprin	gs	68
	4.4.3 Lake:	s and Reservoirs	68
	4.5	Hydraulic Properties	72
	4.5.1 Data	Sources	72
	4.5.2 Hydr	aulic Conductivity	72
	4.5.3 Stora	tivity	73
	4.6	Discharge	79
	4.6.1 Natu	ral Aquifer Discharge	79
	4.6.2 Aquif	fer Discharge through Pumping	79
	4.7	Water Quality	96
	4.7.1	Major Elements	96
	4.7.2 Isoto	pes	97
	4.7.3 Impli	cations for Recharge Based on Groundwater Major Element and Isotopic	
	Compositi	ons	99

5.0	CONCEPTUAL MODEL OF GROUNDWATER FLOW IN THE IGNEOUS	AND WEST
	TEXAS BOLSONS AQUIFERS	
6.0	ACKNOWLEDGEMENTS	118
7.0	REFERENCES	
APPENDIX A.	AQUIFER DATA TABLES	
APPENDIX B.	CONCEPTUAL MODEL REPORT COMMENTS AND RESPONSES	

List of Figures

Figure 1.0.1.	Locations of the major aquifers in Texas
Figure 1.0.2.	Locations of the minor aquifers in Texas
Figure 2.0.1.	The location of the study area
Figure 2.0.2.	Map showing the nine bolsons (basins) that constitute the West Texas Bolsons Aquifer. 8
Figure 2.0.3.	Cities and major roadways in the Igneous and West Texas Bolsons aquifers study area.9
Figure 2.0.4.	Rivers, streams, lakes, and reservoirs in the Igneous and West Texas Bolsons aquifer study area. From USEPA and USGS (2012)
Figure 2.0.5.	Major aquifers in the study area11
Figure 2.0.6.	Minor aquifers in the study area12
Figure 2.0.7.	Texas regional water planning areas in the study area13
Figure 2.0.8.	Texas groundwater conservation districts in the study area as of August 2023
Figure 2.0.9.	Texas groundwater management areas in the study area15
Figure 2.0.10. M	ajor river basins in the study area16
Figure 2.1.1.	Physiographic provinces in the study area (Wermund, 1996)19
Figure 2.1.2.	Level III ecological regions in the study area (United States Environmental Protection Agency, 2022a)
Figure 2.1.3.	Topographic map of the study area showing land surface elevation in feet above mean sea level. Based on data from USGS and NED (2014)
Figure 2.1.4.	Average annual maximum air temperature in degrees Fahrenheit in the study area. Based on 1991 to 2020 data (National Centers for Environmental Information, 2022).22
Figure 2.1.5.	Average annual precipitation in inches in the study area for the time period 1991 through 2020 (National Centers for Environmental Information, 2022)23
Figure 2.1.6.	Location of selected precipitation gages in the Igneous and West Texas Bolsons aquifers study area (National Centers for Environmental Information, 2022)24

Figure 2.1.7.	Selected time series of annual precipitation in inches in the study area (National Centers for Environmental Information, 2022). Zero values indicate missing data25
Figure 2.1.7. (cor	ntinued). Selected time series of annual precipitation in inches in the study area (National Centers for Environmental Information, 2022). Zero values indicate missing data. 26
Figure 2.1.8.	Selected time series of median monthly precipitation in inches in the study area between 2006 and 2020 (National Centers for Environmental Information, 2022)27
Figure 2.1.8. (cor	ntinued). Selected time series of median monthly precipitation in inches in the study area between 2006 and 2020 (National Centers for Environmental Information, 2022). 28
Figure 2.1.9.	Average annual lake evaporation rate in inches in the study area between 1941 and 2000 (Narasimhan and others, 2005)
Figure 2.1.10. Av	verage monthly lake surface evaporation in inches at selected weather stations in the study area (Narasimhan and others, 2005)
Figure 2.2.1.	Generalized stratigraphic column for the West Texas Bolsons and Igneous aquifers and underlying formations
Figure 2.2.2.	Faults that cut through or lie adjacent to the study area
Figure 2.2.3.	Generalized surface geology in the study area
Figure 2.2.4.	Locations of cross-sections through the study area
Figure 2.2.5.	Generalized cross-section across Eagle Flat and Red Light Draw. Modified from Beach and others, 2008
Figure 2.2.6.	Generalized cross-section along the axis of Red Light Draw. Modified from Beach and others, 2008
Figure 2.2.7.	Generalized cross-section along the axes of Eagle Flat and Green River Valley. Modified from Beach and others, 2008
Figure 2.2.8.	Generalized cross-section across the Davis Mountains and Ryan Flat. Modified from Beach and others, 2004
Figure 2.2.9.	Generalized cross-section along the axes of Wild Horse Flat, Lobo Flat, and Ryan Flat. Modified from Beach and others, 2004
Figure 2.2.10. G	eneralized cross-section across the Rio Grande valley. Modified from Wade and others, 2011
Figure 3.0.1.	Approximate extents of previous model grids for models used for simulating groundwater flow through the Igneous and West Texas Bolsons aquifers
Figure 4.1.1.	Hydrostratigraphic chart for Igneous and West Texas Bolsons aquifers and underlying Mesozoic and Paleozoic stratigraphic units

Figure 4.1.2.	The elevation (in feet relative to mean sea level) of the top of the West Texas Bolsons
	Aquifer (based on data from Beach and others, 2004; 2008; Wade and Jigmond, 2013).
	47

- Figure 4.1.3. The elevation (in feet relative to mean sea level) of the base of the West Texas Bolsons
 Aquifer (based on data from Beach and others, 2004; 2008; Wade and Jigmond, 2013).
 48
- Figure 4.1.4.Thickness (in feet) of the West Texas Bolsons Aquifer (based on data from Beach and
others, 2004; 2008; Wade and Jigmond, 2013).49
- Figure 4.1.5.The elevation (in feet above mean sea level) of the top of the Igneous Aquifer (based
on data from Beach and others, 2004).50
- Figure 4.1.6.The elevation (in feet above mean sea level) of the base of the Igneous Aquifer (based
on data from Beach and others, 2004).51
- Figure 4.1.7. Thickness (in feet) of the Igneous Aquifer (based on data from Beach and others, 2004). 52
- Figure 4.2.2.Temporal distribution of water-level measurements for 1950 to 2022 in the Igneous
and West Texas Bolsons aquifers (Texas Water Development Board, 2022a)......55

- Figure 4.2.5.Average water-level elevations (in feet above mean sea level) for wells completed in
the West Texas Bolson Aquifer. This is based on water-level measurements mostly
collected over the period 1940 to 2022 (Texas Water Development Board, 2022a).....58

Figure 4.2.8 (con	tinued). Hydrographs of transient water-level data (in feet above mean sea level) for the selected Igneous and West Texas Bolsons aquifers wells (Texas Water Development Board, 2022a). See Figure 4.2.7 for locations
Figure 4.2.8 (con	tinued). Hydrographs of transient water-level data (in feet above mean sea level) for the selected Igneous and West Texas Bolsons aquifers wells (Texas Water Development Board, 2022a). See Figure 4.2.7 for locations
Figure 4.2.8 (con	tinued). Hydrographs of transient water-level data (in feet above mean sea level) for the selected Igneous and West Texas Bolsons aquifers wells (Texas Water Development Board, 2022a). See Figure 4.2.7 for locations
Figure 4.3.1.	Spatial distribution of recharge in the Igneous and West Texas Bolsons aquifers study area (from Beach and others, 2004; 2008, and Wade and Jigmond, 2013)
Figure 4.3.2.	Annual recharge to the Igneous and West Texas Bolsons aquifers during the period 1980 through 2000 (from Beach and others, 2004; 2008, and Wade and Jigmond, 2013)
Figure 4.4.1.	Streamflow gain-loss data from Slade and others (2002) along Limpia Creek, where negative values indicate losing streams while positive values indicate gaining streams. 69
Figure 4.4.2.	Locations of springs in the Igneous and West Texas Bolsons aquifers study area. Based on data from Brune (2002) and Heitmuller and Reece (2003)
Figure 4.4.3.	Spring discharge measurements from springs in the Igneous and West Texas Bolsons aquifers study area
Figure 4.4.4.	Locations of the major springs in the Igneous and West Texas Bolsons aquifers study area
Figure 4.5.1.	Hydraulic conductivity data for the Igneous Aquifer (Data from Texas Water Development Board, 2022a)
Figure 4.5.2.	Hydraulic conductivity data for the Igneous Aquifer in the study area (based on data from Beach and others, 2004)
Figure 4.5.3.	Hydraulic conductivity data for the West Texas Bolsons Aquifer (Data from Texas Water Development Board, 2022a)
Figure 4.5.4.	Hydraulic conductivity data for the West Texas Bolsons Aquifer in the study area (based on data from Beach and others, 2004; 2008; Wade and Jigmond, 2013)
Figure 4.5.5.	Histogram of hydraulic conductivity data in feet per day for the Igneous and West Texas Bolsons aquifers and underlying Cretaceous rocks based on data from the hydraulic data indicated in Table A1 (Data from Beach and others, 2004; 2008; Wade and others, 2011)
Figure 4.6.1.	Spatial distribution of irrigated land cover from the National Land Cover Dataset throughout the study area (Vogelmann and others, 1998a; 1998b)

Figure 4.6.2.	Estimated irrigation and livestock pumpage from the Igneous and West Texas Bolsons aquifers. Data from Texas Water Development Board (2022b)
Figure 4.6.3.	The spatial distribution of grassland and scrubland land cover from the National Land Cover Dataset throughout the study area (Vogelmann and others, 1998a; 1998b). Error! Bookmark not defined.
Figure 4.6.4.	The spatial distribution of known manufacturing (industrial), mining, municipal (public supply), and steam electric power pumping. Data from Texas Water Development Board (2022a)
Figure 4.6.5.	Estimated manufacturing and mining pumpage from the Igneous and West Texas Bolsons aquifers. Data from Texas Water Development Board (2022b)85
Figure 4.6.6.	Estimated municipal and steam electric power pumpage from the Igneous and West Texas Bolsons aquifers. Data from Texas Water Development Board (2022b)
Figure 4.6.7.	Total estimated pumpage from the Igneous and West Texas Bolsons aquifers. Data from Texas Water Development Board (2022b)
Figure 4.6.8.	Total estimated pumpage for each of the counties in the Igneous and West Texas Bolsons aquifers study area. Data from Texas Water Development Board (2022b)88
Figure 4.6.8. (cor	ntinued). Total estimated pumpage for each of the counties in the Igneous and West Texas Bolsons aquifers study area. Data from Texas Water Development Board (2022b). 89
Figure 4.6.8. (cor	ntinued). Total estimated pumpage for each of the counties in the Igneous and West Texas Bolsons aquifers study area. Data from Texas Water Development Board (2022b). 90
Figure 4.6.9.	Total estimated pumpage from the Igneous Aquifer for the year 2000. Data from Beach and others (2004)
Figure 4.6.10. To	tal estimated pumpage from the West Texas Bolsons Aquifer for the year 2000. Data from Beach and others (2004; 2008) and Wade and Jigmond (2013)
Figure 4.6.11. Pie	e charts showing relative amounts of pumping from steam electric power, irrigation, livestock, manufacturing, and municipal in the Igneous and West Texas Bolsons aquifers for the year 2020. Data from Texas Water Development Board (2022b)93
Figure 4.6.12. Pie	e charts showing relative amounts of pumping from steam electric power, irrigation, livestock, manufacturing, and municipal in each of the counties that overlie the Igneous and West Texas Bolsons aquifers for the year 2020. Data from Texas Water Development Board (2022b)
Figure 4.6.12. (cc	ontinued). Pie charts showing relative amounts of pumping from steam electric power, irrigation, livestock, manufacturing, and municipal in each of the counties that overlie the Igneous and West Texas Bolsons aquifers for the year 2020. Data from Texas Water Development Board (2022b)
Figure 4.6.8. (cor Figure 4.6.9. Figure 4.6.10. To Figure 4.6.11. Pie Figure 4.6.12. Pie	ntinued). Total estimated pumpage for each of the counties in the Igneous and West Texas Bolsons aquifers study area. Data from Texas Water Development Board (2022b 89 ntinued). Total estimated pumpage for each of the counties in the Igneous and West Texas Bolsons aquifers study area. Data from Texas Water Development Board (2022b 90 Total estimated pumpage from the Igneous Aquifer for the year 2000. Data from Beac and others (2004)

Figure 4.6.12. (co	ontinued). Pie charts showing relative amounts of pumping from steam electric power, irrigation, livestock, manufacturing, and municipal in each of the counties that overlie the Igneous and West Texas Bolsons aquifers for the year 2020. Data from Texas Water Development Board (2022b)
Figure 4.7.1.	Total dissolved solids concentration (in milligrams per liter) in the Igneous Aquifer (Data from Texas Water Development Board, 2022a)100
Figure 4.7.2.	Total dissolved solids concentration (in milligrams per liter) in the West Texas Bolsons Aquifer (Data from Texas Water Development Board, 2022a)
Figure 4.7.3.	A Piper diagram showing the range of groundwater compositions in the Igneous Aquifer (red dots) and the overlying West Texas Bolsons Aquifer (yellow dots) (Data from Texas Water Development Board, 2022a)
Figure 4.7.4.	Groundwater Carbon-13 isotopes (in per mil) in the Igneous Aquifer (Data from Texas Water Development Board, 2022a)
Figure 4.7.5.	Groundwater Carbon-13 isotopes (in per mil) in the West Texas Bolsons Aquifer (Data from Texas Water Development Board, 2022a)
Figure 4.7.6.	Groundwater Carbon-14 (in fraction of modern carbon) in the Igneous Aquifer (Data from Texas Water Development Board, 2022a)
Figure 4.7.7.	Groundwater Carbon-14 (in fraction of modern carbon) in the West Texas Bolsons Aquifer (Data from Texas Water Development Board, 2022a)
Figure 4.7.8.	Groundwater carbon-13 and carbon-14 isotopes in the Igneous and West Texas Bolsons aquifers. The arrow indicates down-gradient groundwater compositions (Data from Texas Water Development Board, 2022a)
Figure 4.7.9.	Groundwater tritium and carbon-14 isotopes in the Igneous and West Texas Bolsons aquifers. The arrow indicates down-gradient groundwater compositions (Data from Texas Water Development Board, 2022a)
Figure 4.7.10. Gr	oundwater tritium (in Tritium Units) in the Igneous Aquifer (Data from Texas Water Development Board, 2022a)
Figure 4.7.11. Gr	oundwater tritium (in Tritium Units) in the West Texas Bolsons Aquifer (Data from Texas Water Development Board, 2022a)110
Figure 4.7.12. Gr	oundwater stable oxygen isotopes (δ^{18} O, in per mil) and stable hydrogen isotopes (δ^{2} H, in per mil) in the Igneous and West Texas Bolsons aquifers (Data from Texas Water Development Board, 2022a)
Figure 4.7.13. Gr	oundwater stable oxygen isotopes (δ^{18} O, in per mil) in the Igneous and West Texas Bolsons aquifers (Data from Texas Water Development Board, 2022a)
Figure 4.7.14. Gr	oundwater stable oxygen and carbon-14 isotopes in the Igneous and West Texas Bolsons aquifers. The arrow indicates down-gradient groundwater compositions (Data from Texas Water Development Board, 2022a)

List of Tables

Table A2.	Estimates of Igneous and West Texas Bolsons aquifers irrigation pumping. The data—expressed in acre-feet per year (AFY)—was taken from Texas Water Development Board (2022b)
Table A3.	Estimates of Igneous and West Texas Bolsons aquifers livestock pumping. The data—expressed in acre-feet per year (AFY)—was taken from Texas Water Development Board (2022b)
Table A4.	Estimates of Igneous and West Texas Bolsons aquifers manufacturing pumping. The data—expressed in acre-feet per year (AFY)—was taken from Texas Water Development Board (2022b)
Table A5.	Estimates of Igneous Aquifer mining pumping. The data—expressed in acre-feet per year (AFY)—was taken from Texas Water Development Board (2022b) 141
Table A6.	Estimates of Igneous and West Texas Bolsons aquifers municipal pumping. The data—expressed in acre-feet per year (AFY)—was taken from Texas Water Development Board (2022b)
Table A7.	Estimates of West Texas Bolsons Aquifer steam electric power pumping expressed in acre-feet per year (AFY)146
Table A8.	Estimates of Igneous and West Texas Bolsons aquifers total pumping expressed in acre-feet per year (AFY)

EXECUTIVE SUMMARY

The Igneous and West Texas Bolsons aquifers are located in far west Texas in Jeff Davis, Presidio, western Brewster, and the southern parts of Culberson, Reeves, and Hudspeth counties. These aquifers are important sources of water for municipalities, irrigation, and livestock in west Texas. These aquifers underlie several relatively large cities in the region, including Alpine, Fort Davis, Marfa, Presidio, and Van Horn. This report documents the development of a conceptual model of the Igneous and West Texas Bolsons aquifers. A conceptual model describes the hydrogeologic environment and the groundwater flow regime within a model study area. In other words, it describes a simplified representation of the hydrogeological features—hydrostratigraphy, hydraulic properties, hydrologic boundaries, recharge, and discharge—that influence groundwater flow through the aquifers. It forms the basis for a numerical groundwater flow model.

The Igneous and West Texas Bolsons aquifers consist of several stratigraphic units that are grouped together to form the respective aquifers. The Igneous Aquifer is composed of several Tertiary age volcanic and intrusive formations. The West Texas Bolsons Aquifer is made up of Quaternary alluvial sediment that filled basins that formed due to late Tertiary tensional tectonics.

Available water-level data suggest that groundwater within the Igneous Aquifer generally flows from the highest elevations in the Davis Mountains radiating outwards to lower elevations. In the West Texas Bolsons Aquifer, groundwater flows to the Rio Grande in the topographically open bolsons—Red Light Draw, Green River, Presidio, and Redford bolsons. The fate of groundwater is less certain in the topographically closed bolsons— Eagle Flat, Lobo Flat, Michigan Flat, Ryan Flat, and Wild Horse Flat. In the Eagle Flat, groundwater may discharge to underlying Tertiary or older stratigraphic units and eventually flow southward to the Rio Grande. In the Lobo Flat, Michigan Flat, Ryan Flat, and Wild Horse Flat—together sometimes referred to as the Salt Basin (Angle, 2001) groundwater flows northward from bolson to bolson, eventually flowing into the Salt Flats located north of the West Texas Bolsons Aquifer and discharging by evapotranspiration.

Groundwater in the West Texas Bolsons Aquifer is utilized primarily for irrigation uses (90 percent), but is also used locally for municipal, and livestock uses. Groundwater in the Igneous Aquifer is utilized for a combination of municipal (about 50 percent), irrigation (about 35 percent), and livestock (about 15 percent).

Most of the available hydraulic property data—data measuring how easily groundwater flows through a system—are from the northeastern portion of the Igneous Aquifer and the Lobo Flat, Michigan Flat, Ryan Flat, and Wild Horse Flat portions of the West Texas Bolsons Aquifer. The data available show significant variability in the aquifer properties resulting from structural complexity within the basin, and lithologic variability. Hydraulic conductivity values for the Igneous and West Texas Bolsons aquifers mostly lie within the range of 10 to 1,000 feet per day and 10 to 100 feet per day, respectively, with no apparent spatial trends.

Water quality in the Igneous Aquifer is generally fresh throughout the aquifer. In the West Texas Bolsons Aquifer, groundwater is also generally fresh, but the occurrence of slightly saline groundwater becomes more common in northernmost parts of the aquifer, especially in Wild Horse Flat and Michigan Flat, and in the south, in Presidio Bolson. Groundwater compositions in both aquifers range from calcium-bicarbonate compositions to sodium-sulfate-chloride compositions.

Groundwater isotope compositions in the two aquifers indicate: (1) the most recent recharge to the West Texas Bolsons Aquifer occurred in the Presidio Bolson, and (2) the most recent recharge to the Igneous Aquifer occurs along the margins of the aquifer. Please note that carbon-14 isotopes suggest that recent recharge in these aquifers occurred during the past 5,000 years. The oldest apparent groundwater ages occur in the northernmost bolsons of the West Texas Bolsons Aquifer and in central portions of the Igneous Aquifer. These apparent groundwater ages suggest that recharge took place several thousand years ago.

The conceptual model for the Igneous and West Texas Bolsons aquifers is composed of three model layers simulating groundwater flow through the West Texas Bolsons Aquifer, the Igneous Aquifer, and the underlying Cretaceous and Permian stratigraphic units. The three-layer model accommodates the processes of recharge to the aquifer outcrops, groundwater flow, inter-aquifer flow between the West Texas Bolsons and Igneous aquifers and the underlying Cretaceous and Permian rocks, discharge to streams and springs and through evapotranspiration, and pumping from the respective aquifers. This report is part of work being conducted to update previous groundwater availability models of the Igneous and West Texas Bolsons aquifers (Beach and others, 2004, 2008; Wade and Jigmond, 2013) into a single groundwater availability model.

1.0 INTRODUCTION

The Igneous and West Texas Bolsons aquifers are among the 22 minor aquifers in Texas. The Texas Water Development Board (TWDB) defines a major aquifer (Figure 1.0.1) as an aquifer that produces large amounts of water over a large area, and minor aquifers (Figure 1.0.2) as aquifers that produce minor amounts of water over large areas or large amounts of water over small areas (George and others, 2011). From 1980 through 2020, estimates of total pumping from the Igneous and West Texas Bolsons aquifers has ranged from about 8,000 to 4,000 acre-feet per year and 60,000 to 16,000 acre-feet per year, respectively. These aquifers are important sources of water for municipal and agricultural water users in the region.

This report describes the aquifer data used to develop an updated conceptual model for the Igneous and West Texas Bolsons aquifers. This conceptual model will be the basis for updating the groundwater availability model for the Igneous and West Texas Bolsons aquifers. Once the groundwater availability model is calibrated, it can be used as a quantitative tool to evaluate the effects of pumping, drought, and different water management scenarios on the groundwater flow system. This report includes descriptions of (1) the study area; (2) previous investigations of the Igneous and West Texas Bolsons aquifers; (3) the hydrologic setting including hydrostratigraphy, geologic framework, groundwater hydrology, recharge, discharge, surface water, hydraulic properties of the rocks, and water quality; and (4) the resultant conceptual model.

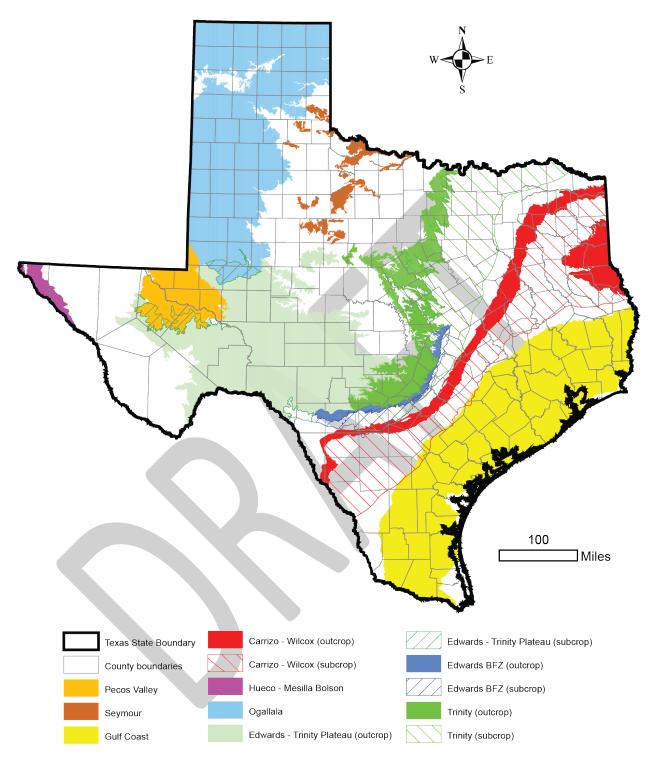


Figure 1.0.1. Locations of the major aquifers in Texas.

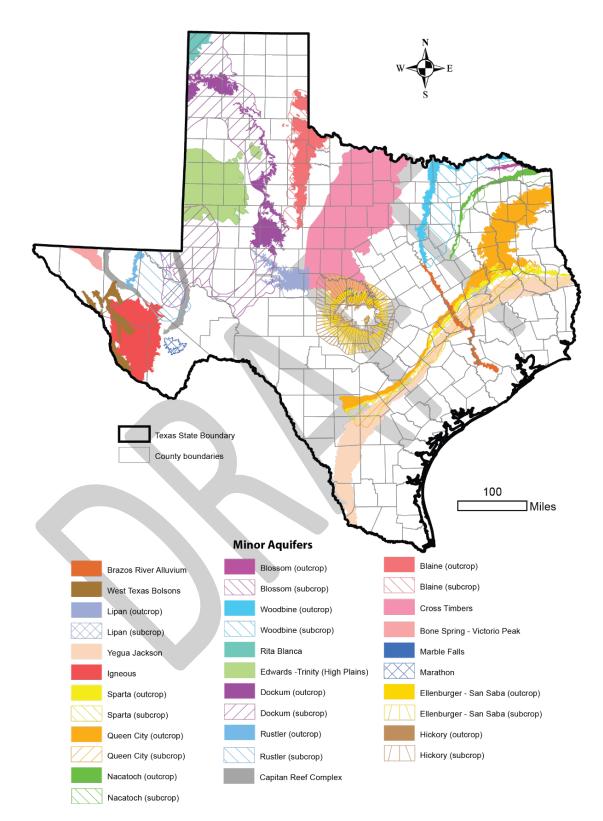


Figure 1.0.2. Locations of the minor aquifers in Texas.

2.0 STUDY AREA

The Igneous and West Texas Bolsons aquifers consist of igneous and sedimentary rocks and sediment that occur in far west Texas. The aquifers cover parts of Brewster, Culberson, Hudspeth, Jeff Davis, Pecos, Presidio, and Reeves counties (Figure 2.0.1). The West Texas Bolsons Aquifer is divided into nine bolsons, which are defined as extensive flat alluviumfloored depressions or basins—the Eagle Flat, Green River Valley, Lobo Flat, Michigan Flat, Presidio Bolson, Red Light Draw, Redford Bolson, Ryan Flat, and Wild Horse Flat (Figure 2.0.2). The northern extent of the West Texas Bolsons Aquifer represents the extent of fresh to slightly saline groundwater.

Figure 2.0.3 shows the counties, major roadways, and cities in the study area. Cities overlying the Igneous and West Texas Bolsons aquifers include Alpine, Marfa, Fort Davis, and Van Horn. Figure 2.0.4 shows the locations of rivers, streams, lakes, and reservoirs in the study area. There are few perennial streams and, therefore, surface runoff is typically associated with heavy rainfall events during the summer months.

Figures 2.0.5 and 2.0.6 show the major and minor aquifers that occur within the study area. The major aquifers occurring in the study area are the Edwards-Trinity (Plateau) and Pecos Valley aquifers that overlie small parts of the Igneous Aquifer. The minor aquifers in the study area—the Capitan Reef Complex and Rustler aquifers—underlie both the Igneous and West Texas Bolsons aquifers.

There are several entities and groups responsible for the planning and management of surface water and groundwater within the study area. The Igneous and West Texas Bolsons aquifers overlap part of the Far West Texas Regional Water Planning Area (Region E) and the Region F Regional Water Planning Area (Figure 2.0.7). There are parts of six different groundwater conservation districts (GCDs) within the study area: the Brewster County GCD, Culberson County GCD, Jeff Davis County Underground Water Conservation District (UWCD), Middle Pecos GCD, Presidio County UWCD, and Reeves County GCD (Figure 2.0.8). The Igneous and West Texas Bolsons aquifers lie mostly within Groundwater Management Area 4, but also occur within groundwater management areas 3 and 7 (Figure 2.0.9). The study area lies completely within the Rio Grande River Basin (Figure 2.0.10). There are no river authorities in the study area.

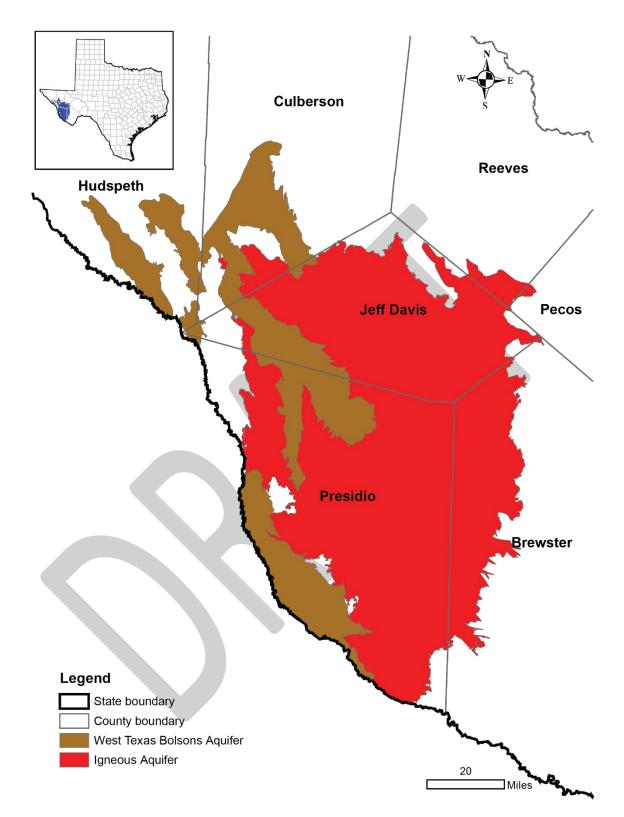


Figure 2.0.1. Location of the study area.

Figure 2.0.2. Map showing the nine bolsons (basins) that constitute the West Texas Bolsons Aquifer.

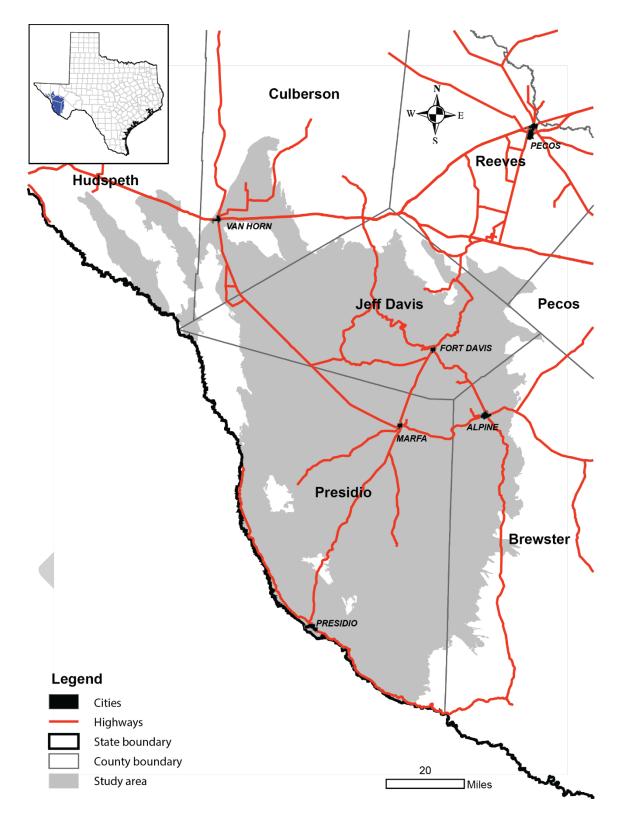


Figure 2.0.3. Cities and major roadways in the study area.

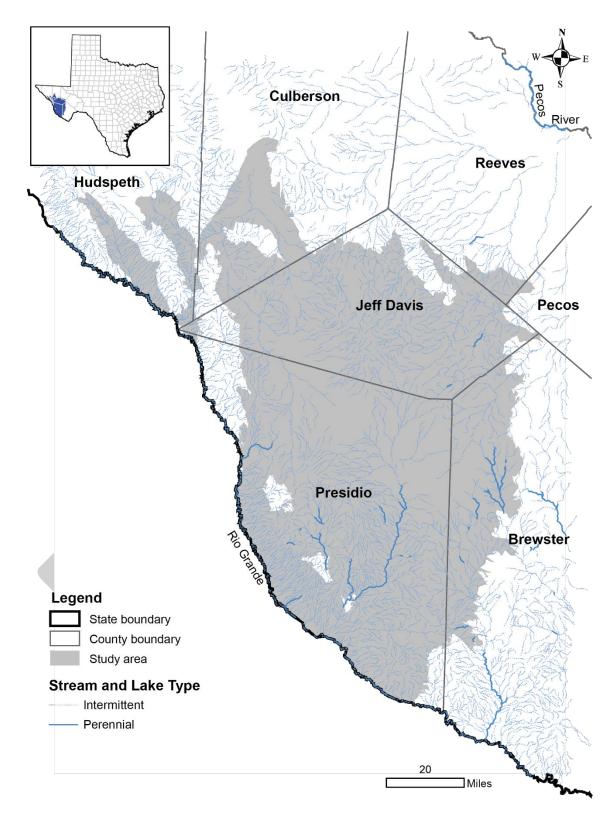


Figure 2.0.4. Rivers, streams, lakes, and reservoirs in the study area. From USGS (2021).

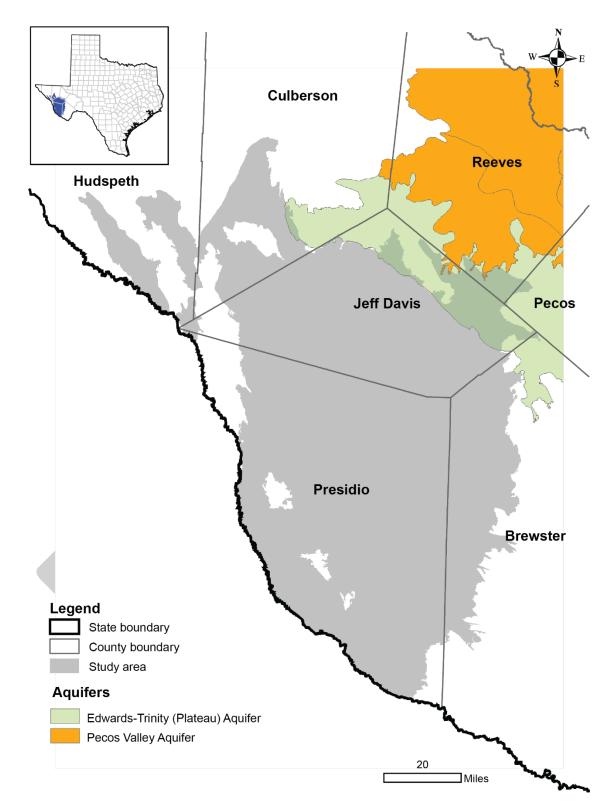


Figure 2.0.5. Major aquifers in the study area.

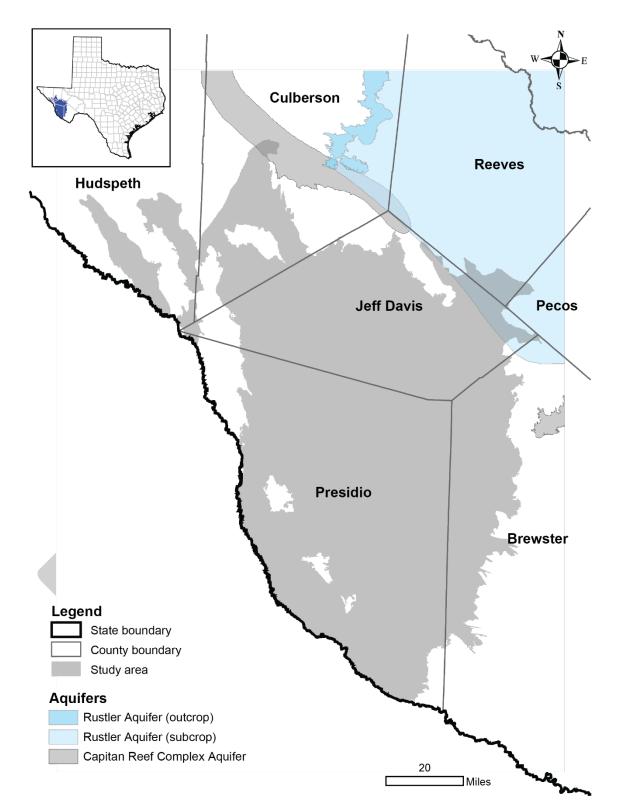


Figure 2.0.6. Minor aquifers in the study area.

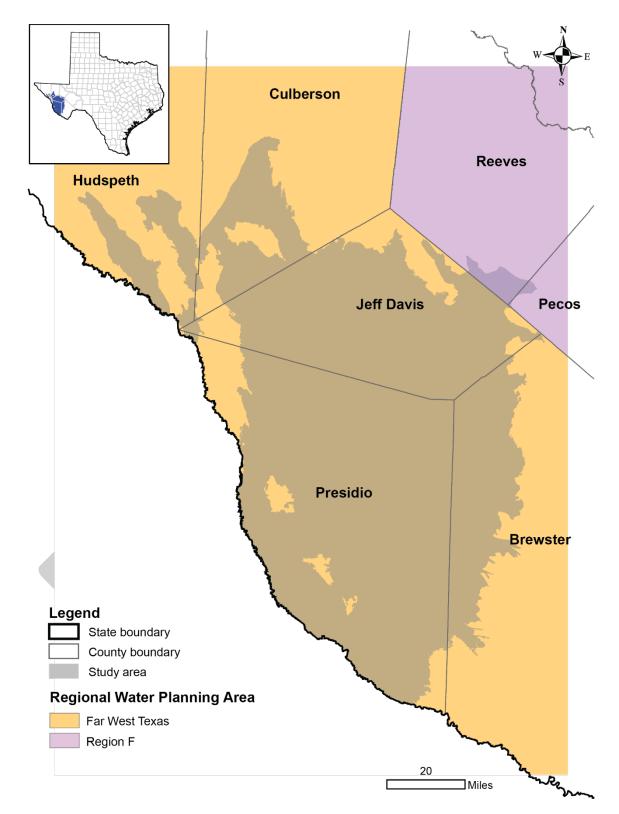


Figure 2.0.7. Regional water planning areas in the study area.

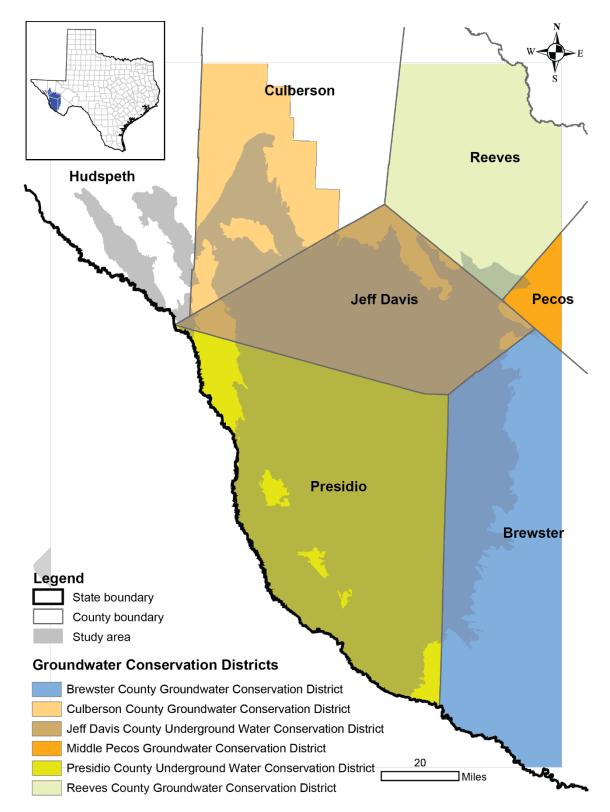


Figure 2.0.8. Groundwater conservation districts in the study area as of August 2023.

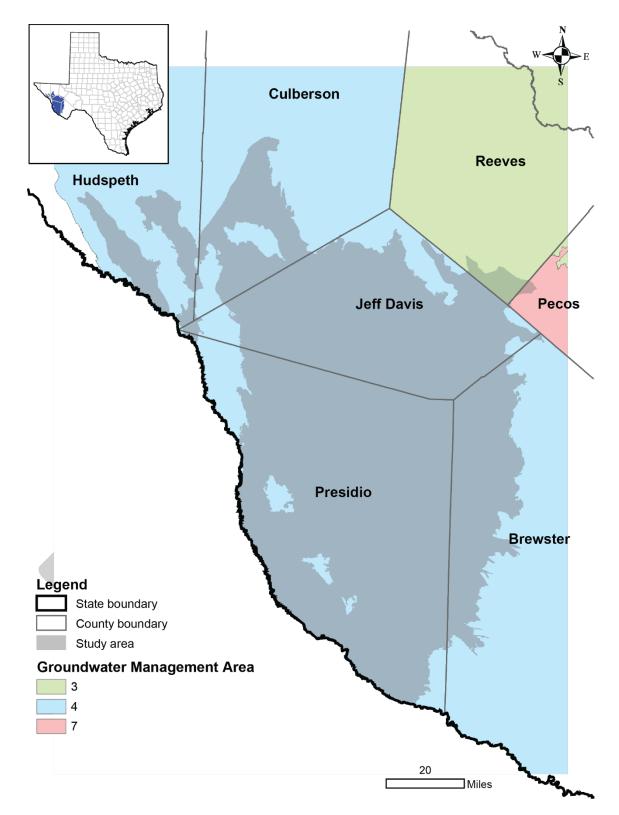


Figure 2.0.9. Groundwater management areas in the study area.

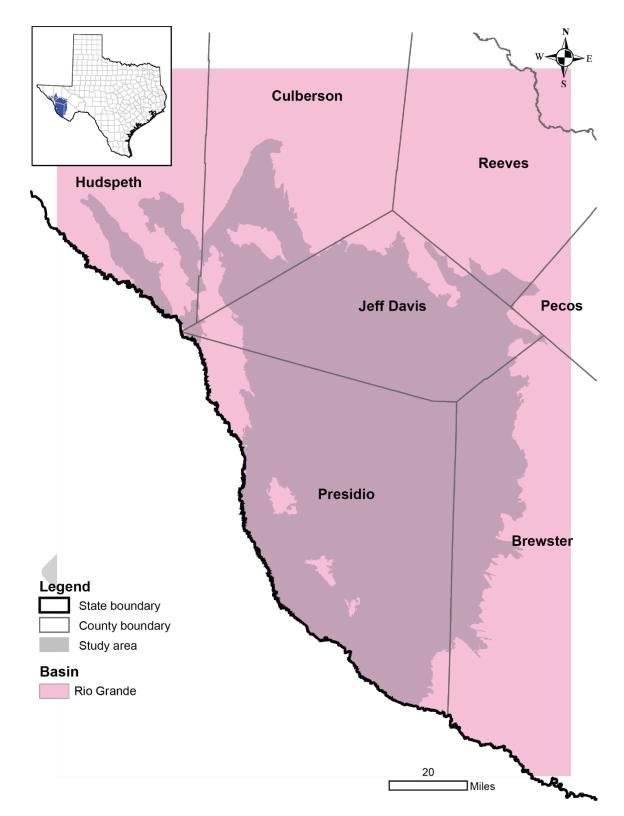


Figure 2.0.10. Major river basins in the study area.

2.1 Physiography and climate

The study area for the Igneous and West Texas Bolsons aquifers lies within the Basin and Range physiographic province (Wermund, 1996; Figure 2.1.1). The Basin and Range is characterized by generally north-south oriented alternating mountain ranges and basins. Volcanic rocks form many of the mountain peaks which are flanked by large flows of volcanic ash and thick deposits of volcanic debris.

The Igneous and West Texas Bolsons aquifers are located in the Chihuahuan Desert Level III ecological region (USEPA, 2022a and 2022b; Figure 2.1.2). This is an ecological region that extends west to Arizona and south into Mexico and coincides with part of the Basin and Range physiographic province. The mountain ranges are a geologic mix of Tertiary volcanic and intrusive granitic rocks, Paleozoic sedimentary layers, and some Precambrian granitic plutonic rocks. Outside the major river drainages, such as the Rio Grande and Pecos rivers in New Mexico and Texas, the landscape primarily drains internally. Vegetative cover is predominantly desert grassland and arid shrubland, except for high elevation islands of oak, juniper, and pinyon pine woodland. The extent of desert shrubland is increasing across lowlands and mountain foothills due to gradual desertification caused in part by historical grazing pressure (USEPA, 2022a and 2022b).

Figure 2.1.3 is a topographic map of the study area (USGS, 2014). Land-surface elevation within the study area is greatest in the Davis Mountains of central Jeff Davis County and in other mountain ranges such as the Sierra Diablo, Eagle Mountains, Sierra Vieja, and Chinati Mountains.

The average annual maximum air temperature in the study area ranges from about 47 degrees Fahrenheit in the Davis Mountains to about 63 degrees Fahrenheit in the Rio Grande valley, with temperatures decreasing as elevation increases (Figure 2.1.4). Figure 2.1.5 shows average annual precipitation from 1991 through 2020 (National Centers for Environmental Information, 2022). The annual average precipitation generally increases with elevation in the study area, from a high of 26 inches per year in the Davis Mountains in Jeff Davis County to a low of 7 inches per year in the Rio Grande valley.

Figures 2.1.6 and 2.1.7 show annual precipitation data recorded at four selected stations— Alpine, Marfa, Mount Locke, and Van Horn—from 1940 through 2015. Figure 2.1.7 indicates wide interannual variation of precipitation, ranging from lows of about 5 inches to highs of over 35 inches per year. Figure 2.1.8 shows monthly precipitation for the four stations averaged over the period 2006 through 2020. In the study area, the highest monthly precipitation occurs in July at Mount Locke, exceeding 4 inches. Most precipitation occurs during late spring and summer months—June through September—with the least precipitation occurring in February. The average annual lake evaporation rate in the study area ranges from a high of 90 inches per year to a low of 39 inches per year (Figure 2.1.9; Narasimhan and others, 2005). Average annual lake evaporation correlates to elevation and is generally lowest in the mountains in the study area, especially in the Davis Mountains in Jeff Davis County. Lake evaporation rates significantly exceed the annual average precipitation. Monthly variations in lake surface evaporation are shown for three locations in the study area (Figure 2.1.10; Narasimhan and others, 2005). These values represent the average of the monthly lake surface evaporation data from 1971 through 2000. Figure 2.1.10 shows that average lake evaporation peaks in May or June.

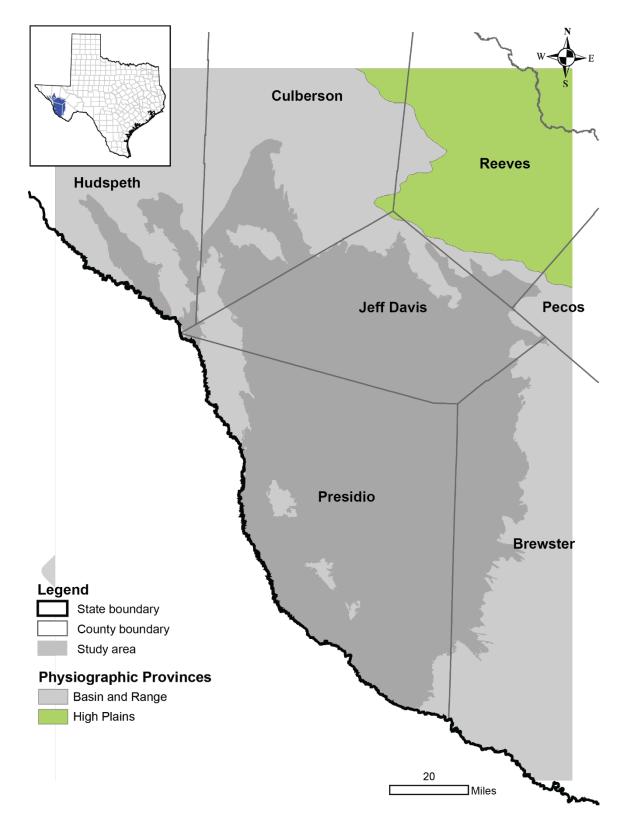


Figure 2.1.1. Physiographic provinces in the study area (Wermund, 1996).

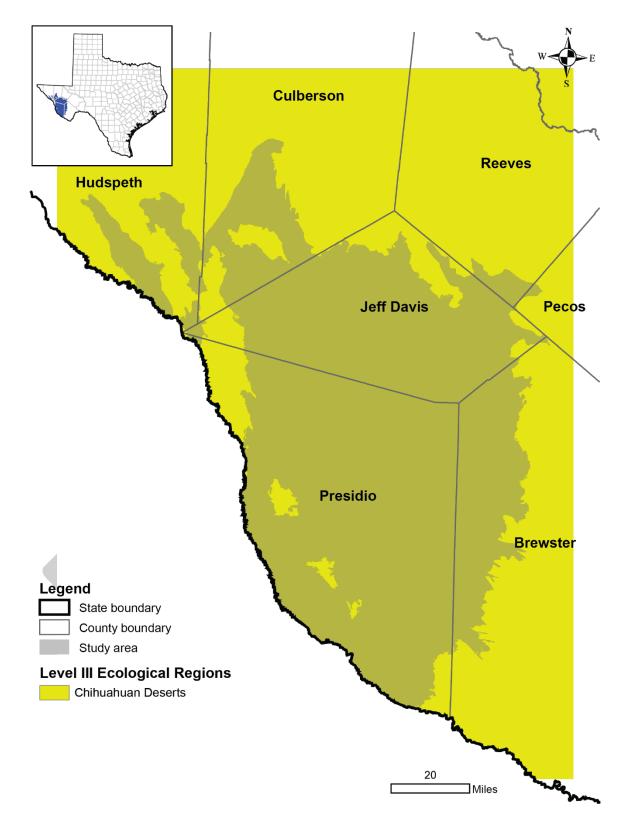


Figure 2.1.2. Level III ecological regions in the study area (United States Environmental Protection Agency, 2022a).

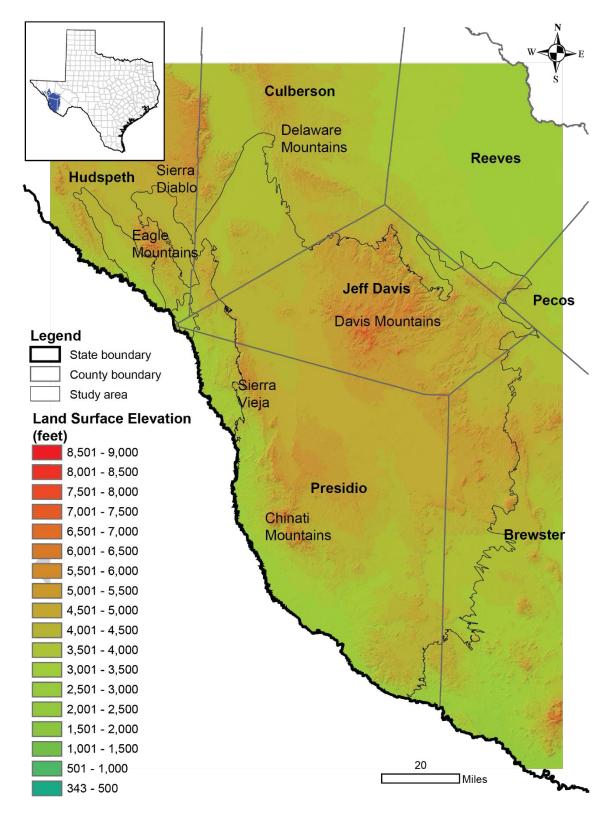


Figure 2.1.3. Topographic map of the study area showing land surface elevation in feet above mean sea level (data from USGS and NED, 2014).

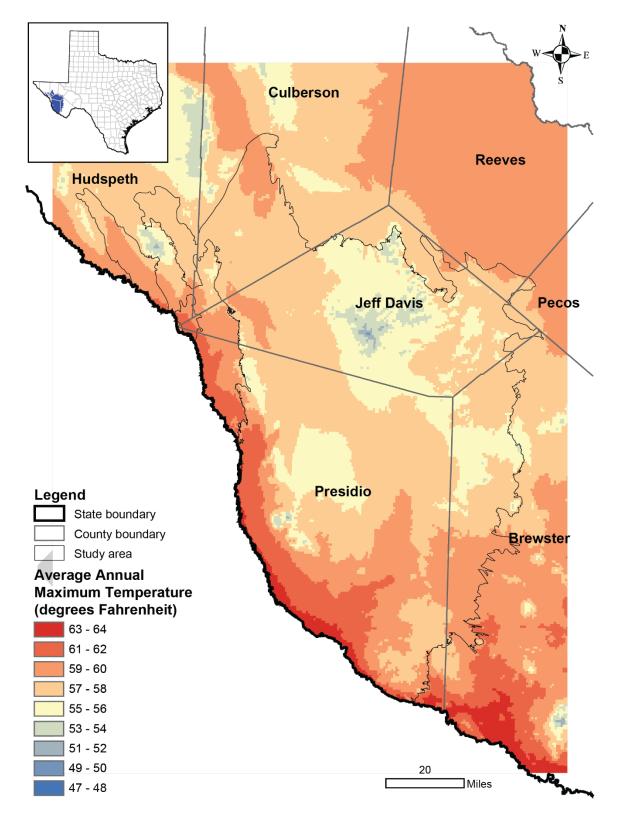


Figure 2.1.4. Average annual maximum air temperature in degrees Fahrenheit in the study area from 1991 to 2020 (data from National Centers for Environmental Information, 2022).

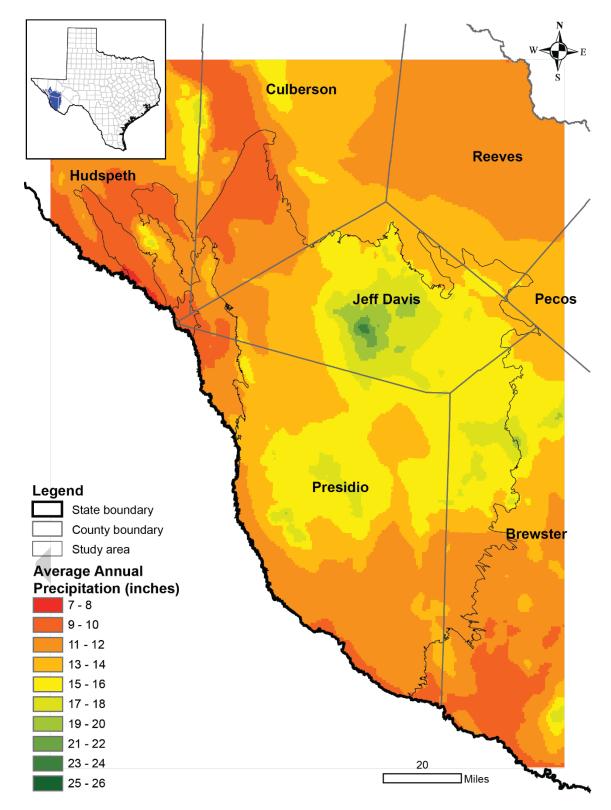


Figure 2.1.5. Average annual precipitation in inches in the study area from 1991 through 2020 (data from National Centers for Environmental Information, 2022).

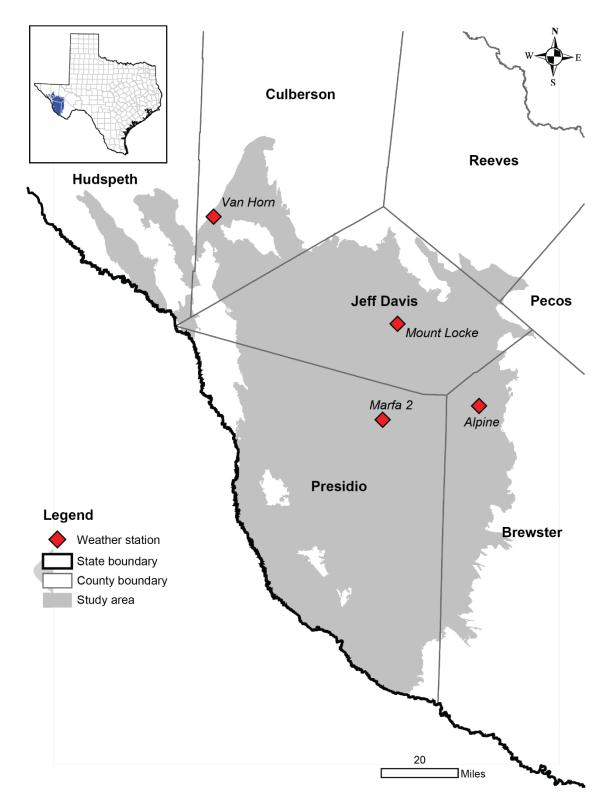


Figure 2.1.6. Location of selected precipitation gages in the study area (National Centers for Environmental Information, 2022).

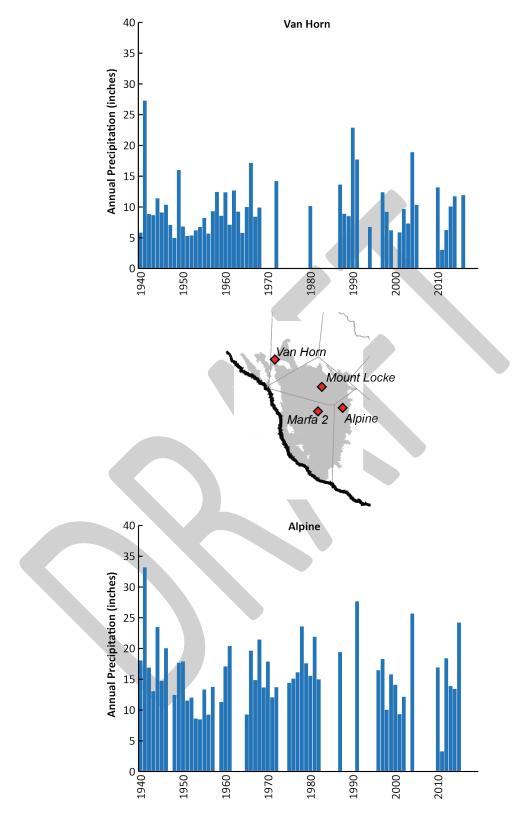


Figure 2.1.7. Selected time series of annual precipitation in inches in the study area (data from National Centers for Environmental Information, 2022). Zero values indicate missing data.

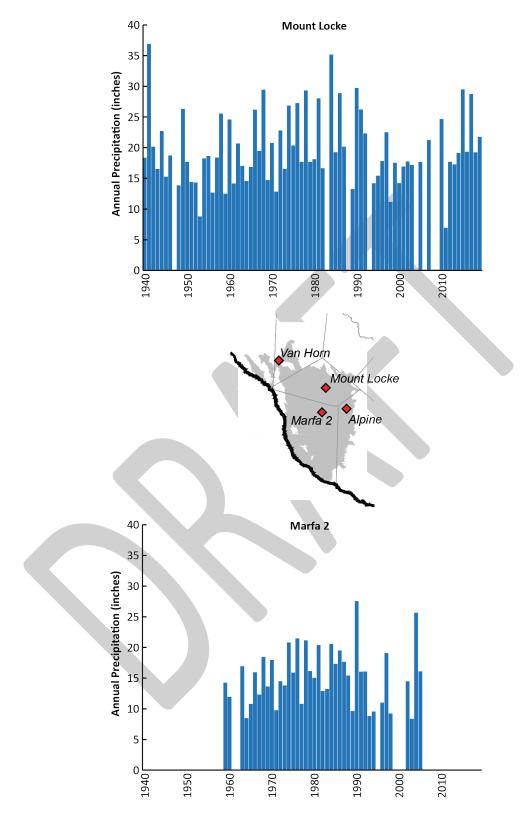


Figure 2.1.7. (continued). Selected time series of annual precipitation in inches in the study area (data from National Centers for Environmental Information, 2022). Zero values indicate missing data.

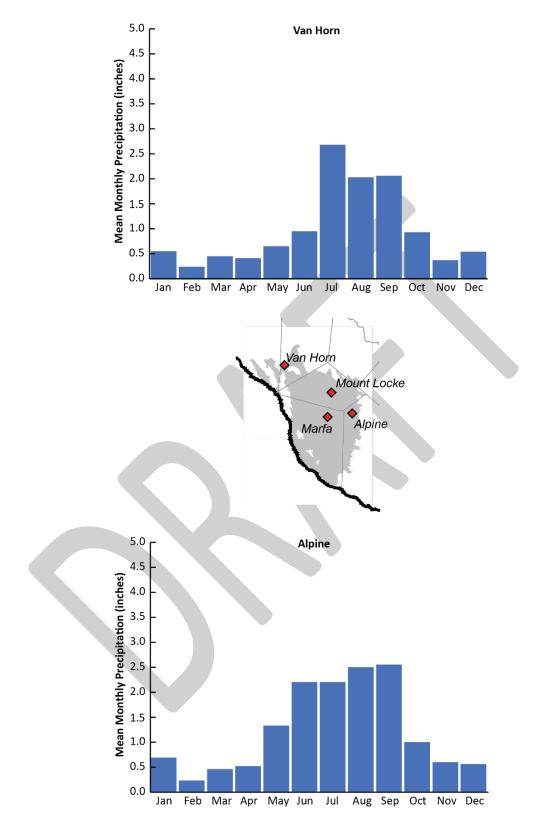


Figure 2.1.8. Selected time series of median monthly precipitation in inches in the study area between 2006 and 2020 (data from National Centers for Environmental Information, 2022).

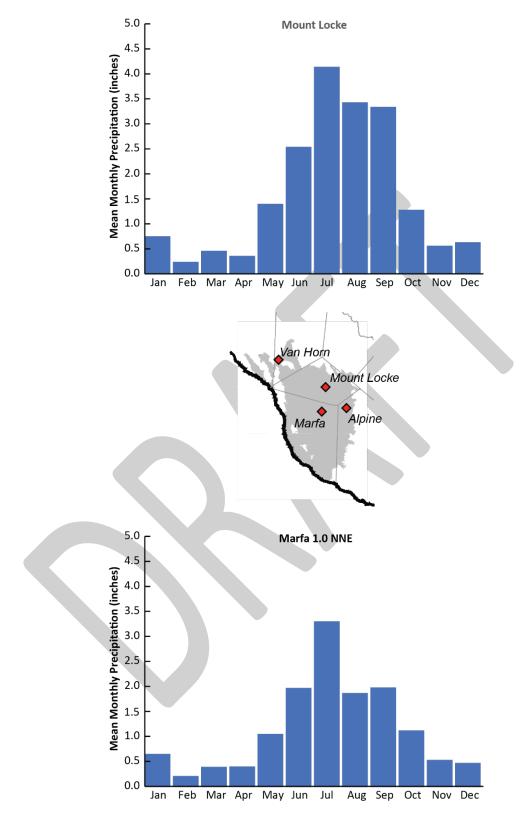


Figure 2.1.8. (continued). Selected to study area

Selected time series of median monthly precipitation in inches in the study area between 2006 and 2020 (data from National Centers for Environmental Information, 2022).

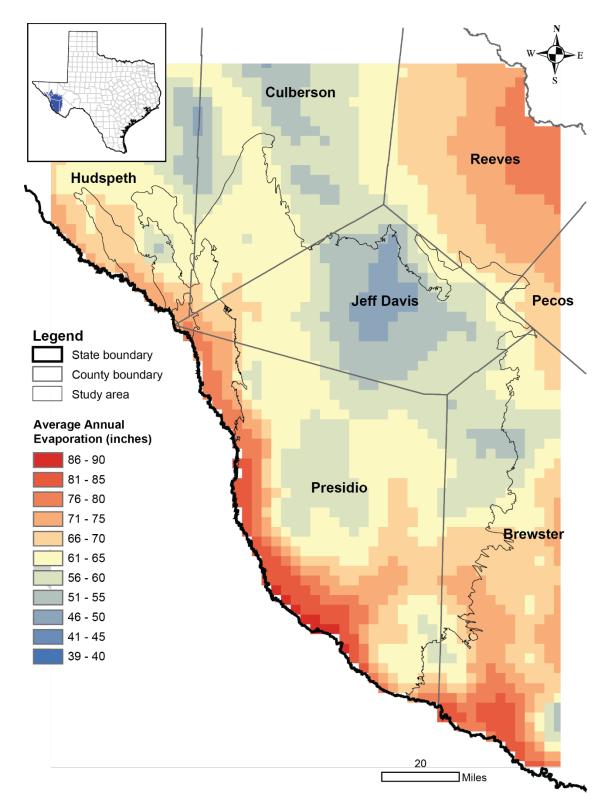


Figure 2.1.9. Average annual lake evaporation rate in inches in the study area between 1941 and 2000 (data from Narasimhan and others, 2005).

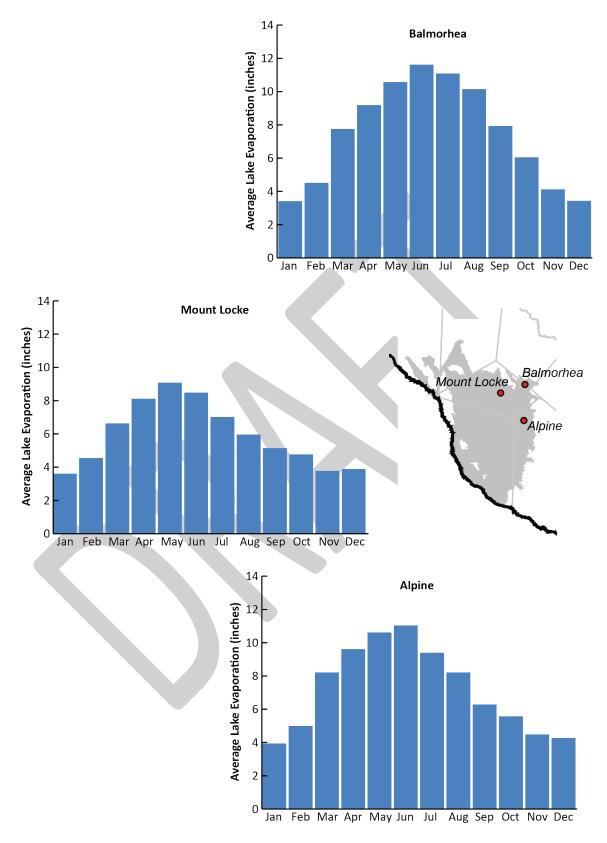


Figure 2.1.10. Average monthly lake surface evaporation in inches at selected weather stations in the study area (data from Narasimhan and others, 2005).

2.2 Geology

This section provides a brief discussion of the geology of the study area. The discussion is divided into the structural setting, surface geology, and stratigraphy of the Igneous and West Texas Bolsons aquifers, including a description of geologic structural cross-sections through the study area.

The study area is underlain by Precambrian rocks and Paleozoic sedimentary rocks of the Permian Basin that crop out in the Van Horn, Chinati, and Sierra Diablo mountains (King, 1959). The Precambrian rocks in the study area have undergone several processes over geologic time and include sedimentary, metamorphic, and igneous rocks. The Paleozoic limestones were mostly deposited in a passive-margin marine environment. There was a depositional hiatus from the Triassic to Mid-Cretaceous due to the study area being exposed at land surface (Twiss, 1959; Albritton and Smith, 1965; King, 1965; Underwood, 1980). This period of erosion was followed by the deposition of the Cretaceous limestones that cover much of central and far west Texas and comprises important aquifers such as the Edwards-Trinity (Plateau) Aquifer (Henry and Price, 1985; Muehlberger and Dickerson, 1989; Raney and Collins, 1993; Collins and Raney, 1994 and 1997; Figure 2.2.1).

Tertiary Laramide orogeny compression was followed by a long period of large-scale volcanism in the study area (Henry and McDowell, 1986). This volcanic event produced a complex series of welded pyroclastic rocks, lavas, and volcaniclastic sediments. These igneous rocks include more than 40 different named units (see Figure 2.2.1; Beach and others, 2004). There is a wide compositional and textural range among these igneous formations, from tuffs and breccias to basalts and trachytes. Each has a different geographic extent, and there are only a few mappable units in the study area, such as the Petan Basalt and the Mitchell Mesa Rhyolite. These igneous rocks were formed between 48 and 27 million years ago. The volcanic rocks consist of a complex layering of vents, flows, and interbedded volcanic-sedimentary units, which were deposited in numerous intervals between eruptions. This layering has led to the very complex interrelationships between the igneous units. Although Tertiary-age volcanic rocks occur elsewhere in far west Texas, the Davis Mountains igneous rocks that make up the Igneous Aquifer occur mostly in Brewster, Jeff Davis and Presidio counties.

As Laramide orogeny and associated volcanism ended. The compressional tectonic forces in the study area changed to extensional tectonics that resulted in the formation of the Basin and Range structures in the study area (Muehlberger and others, 1978; Henry and others, 1991). Between these mountain ranges, which include the Sierra Diablo, Sierra Vieja, and Van Horn mountains, large intermontane basins formed, beginning in the Tertiary and continuing throughout the Quaternary. The basins filled with thick sequences of gravel and sand eroded from the adjacent mountains and represent deposition in different settings, including alluvial fan, lacustrine, fluvial, and eolian deposits. These basins (bolsons)—including the Eagle Flat, Green River Valley, Lobo Flat, Michigan Flat, Presidio Bolson, Red Light Draw, Redford Bolson, Ryan Flat, and Wild Horse Flat—formed as the result of the extensional tectonics that produced a discontinuous series of northnorthwest-trending grabens that terminate at west-northwest-trending strike-slip faults (Figure 2.2.2).

The surface geology in the study area is shown in Figure 2.2.3. This map shows the Quaternary sediments overlying Tertiary igneous rocks in the study area. Older Precambrian through Cretaceous rocks crop out along the mountains along the margins of the study area. The generalized stratigraphy of the study area is illustrated in a series of hydrostratigraphic cross-sections, the locations of which are shown in Figure 2.2.4. Individual cross-sections are shown in Figures 2.2.5 through Figure 2.2.10.

Era	System	Stratigraphic Units		
Cenozoic	Quaternary	Quaternary deposits		
		Windblown sand		
		Bolson deposits		
	Tertiary	Volcanic rocks undivided	Merrill Formation	
		Intrusive Igneous rocks	Duff Formation/Decie Member	
		Chambers Tuff	Sheep Pasture Formation	
		Garren Group	Sleeping Lion Formation	
		Tarantula Gravel	Frazier Canyon Formation	
		Hogeye Tuff	Cottonwood Spring Basalt	
		Trachyte Porphery	Bracks Rhyolite	
		Upper Rhyolite	Adobe Canyon Formation	
		Pantera Trachyte	Chambers Tuff	
		Perdiz Conglomerate	Limpia Formation	
		Petan Basalt	Potato Hill Andesite	
		Tascotal Formation	Gomez Tuff	
		Mitchell Mesa Welded Tuff	Star Mountain Rhyolite	
		Brooks Mountain Formation	Crossen Trachyte	
		Goat Canyon Formation	Sheep Canyon Basalt	
		Medley Formation	Pruett Formation	
		Wild Cherry Formation	Huelster Formation	
		Eppenauer Ranch Formation	Buckshot Ignimbrite	
		Mount Locke Formation	Colmena Tuff	
		Barrel Springs Formation	Gill Breccia	
		Capote Mountain Tuff	-	
Mesozoic	Cretaceous	Cretaceous undivided	Benevides Formation	
		Buda Limestone	Finlay Limestone	
		Boracho Formation	Cox Sandstone	
		San Martine Limestone Member	Bluff Mesa Formation	
		Levinson Limestone Member	Yucca Formation	
		Eagle Mountain Sandstone	Etholean Conglomerate	
		Espy Limestone	Torcer Formation	
	Jurassic	Malone Formation		
Paleozoic	Permian	Hueco Limestone		
Precambrian	Precambrian	Carrizo Mountain Group		
		Precambrian bedrock undivided		

Figure 2.2.1. Generalized stratigraphic column for the Igneous and West Texas Bolsons aquifers and underlying formations.

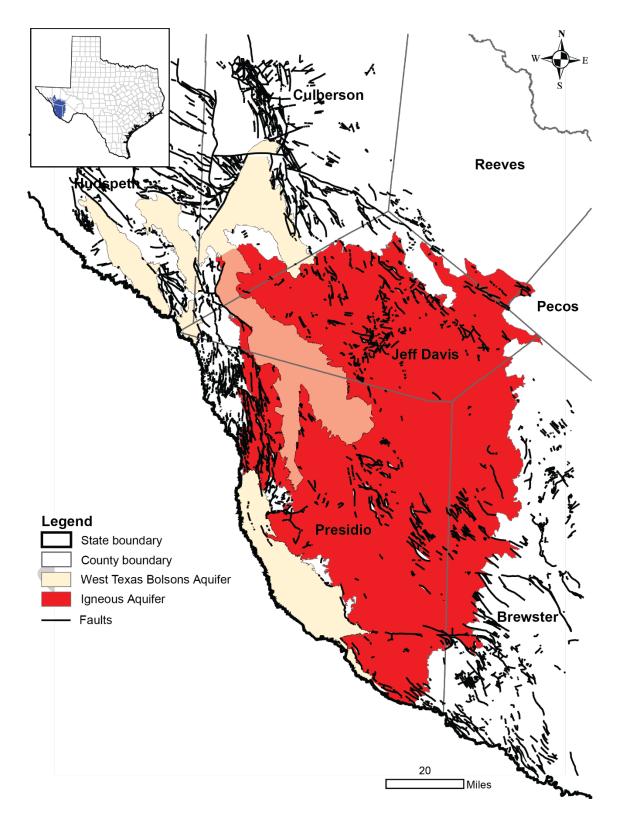


Figure 2.2.2. Faults that cut through or lie adjacent to the study area.

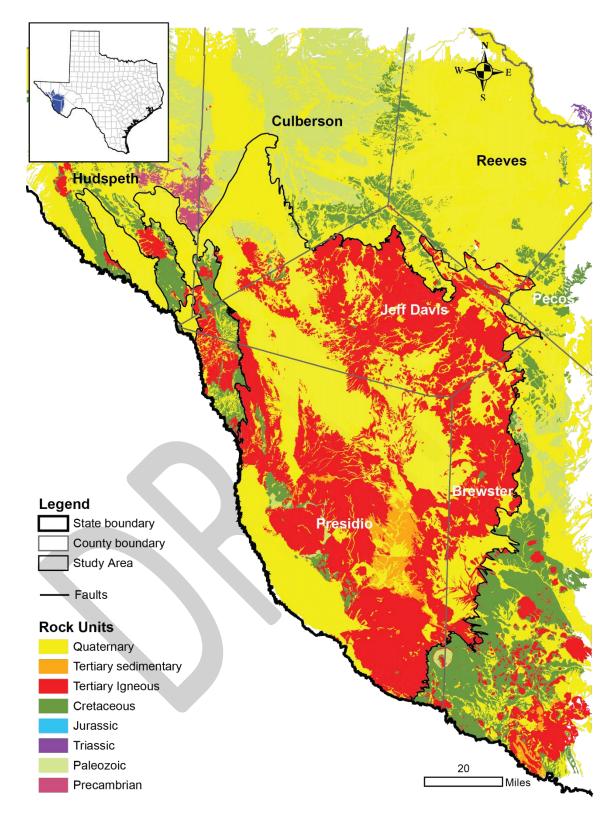


Figure 2.2.3. Generalized surface geology in the study area.

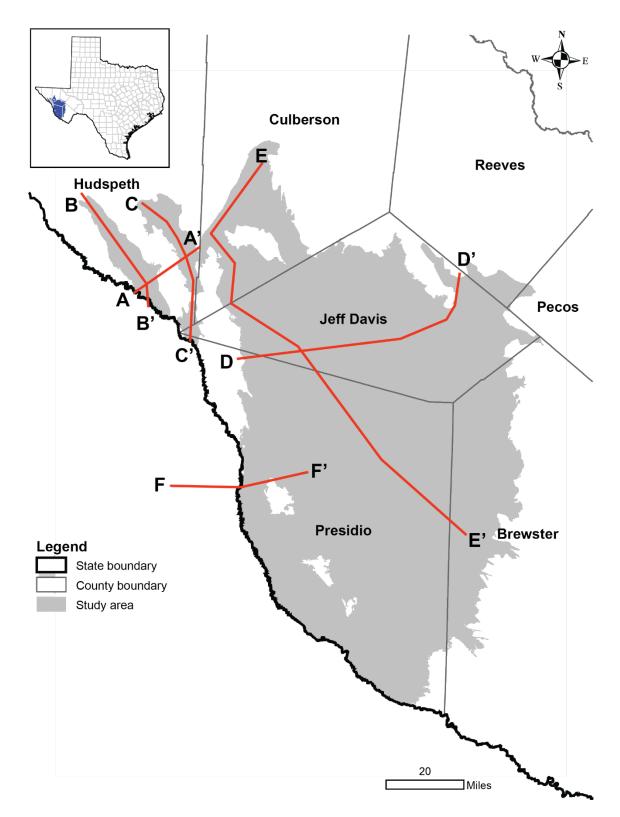
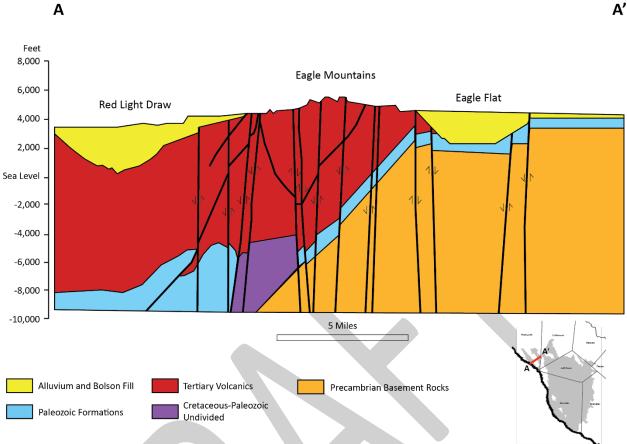



Figure 2.2.4. Locations of cross-sections through the study area.

Generalized cross-section across Eagle Flat and Red Light Draw (modified from Beach and others, 2008). Figure 2.2.5.

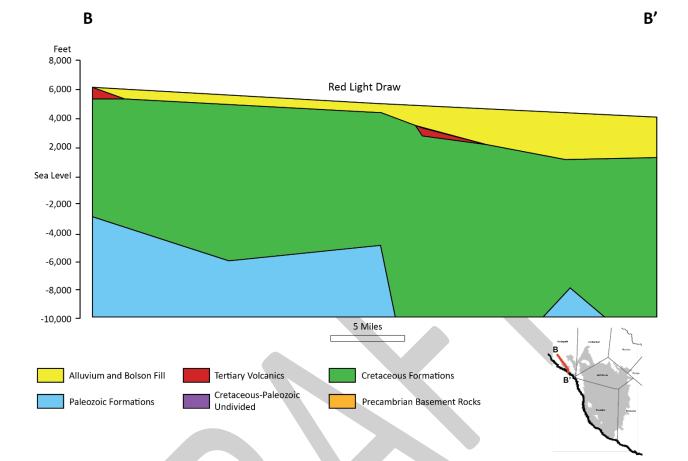


Figure 2.2.6. Generalized cross-section along the axis of Red Light Draw (modified from Beach and others, 2008).

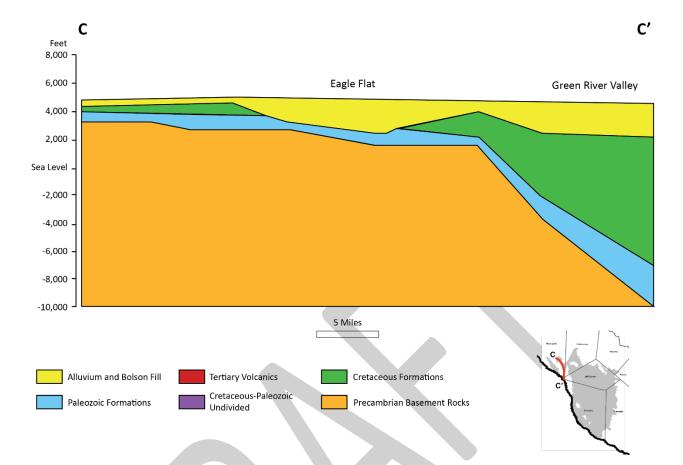


Figure 2.2.7. Generalized cross-section along the axes of Eagle Flat and Green River Valley (modified from Beach and others, 2008).

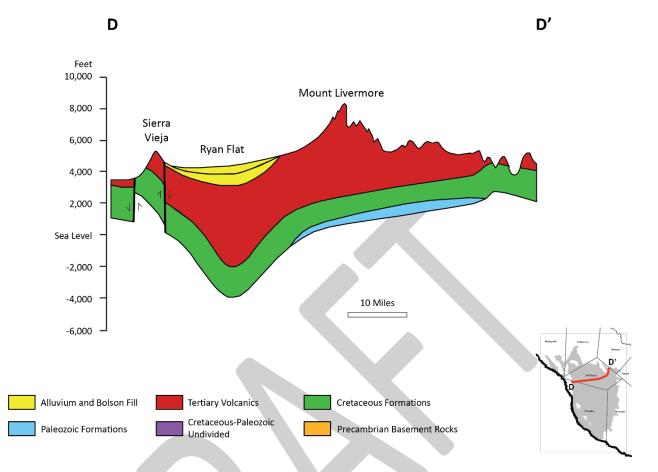


Figure 2.2.8. Generalized cross-section across the Davis Mountains and Ryan Flat (modified from Beach and others, 2004).

Figure 2.2.9. Generalized cross-section along the axes of Wild Horse Flat, Lobo Flat, and Ryan Flat (modified from Beach and others, 2004).



Figure 2.2.10. Generalized cross-section across the Rio Grande valley (modified from Henry, 1979).

3.0 PREVIOUS WORK

Many geologic and hydrogeologic reports include the Igneous and West Texas Bolsons aquifers. Several studies of the stratigraphy and structure of the study area include: Albritton and Smith, 1965; Chastain-Howley, 2001; Collins and Raney, 1994; 1997; DeFord and Bridges, 1959; DeFord and Haenggi, 1971; Groat, 1972; Gries and Haenggi, 1971; Gries, 1980; Henry and others, 1986; 1991; Henry and Price, 1985; 1986; 1989; Horak, 1985; Jackson and others, 1993; King and Flawn, 1953; King, 1965; Langford, 1993; Mack and Seager, 1990; Mack and others, 1998; Muehlberger, 1980; Muehlberger and Dickerson, 1989; Muehlberger and others, 1978; Mraz and Keller, 1980; Mraz, 1977; Price and Henry, 1984; 1985; Price and others, 1986; Raney and Collins, 1993; Seager and others, 1984; Stevens and Stevens, 1985; Strain, 1971; Urbanczyk and others, 2001. More detailed hydrogeologic studies discuss both the groundwater geochemistry and hydrology of the study area (Muse, 1966; Henry, 1979; Gates and others, 1980; Hibbs and others, 1995; Hibbs and Darling, 1995; Darling, 1997; George and others, 2005).

Three regional groundwater availability models have been constructed to simulate groundwater flow in the Igneous and West Texas Bolsons aquifers (Beach and others, 2004, 2008; Wade and others, 2011; Wade and Jigmond, 2013; Figure 3.0.1). Prior to the groundwater availability models, five other two- or three-dimensional groundwater flow models were constructed covering parts of the study area (Nielson and Sharp, 1990; Black, 1993; Darling and others, 1994; Brown and Caldwell, 2001; Finch and Armour, 2001)

This report is part of work being conducted to update the groundwater availability models of the Igneous and West Texas Bolsons aquifers (Beach and others, 2004, 2008; Wade and Jigmond, 2013) into a single groundwater availability model. The previous groundwater flow models are three-layer models using MODFLOW-96 (Beach and others, 2004), and MODFLOW-2000 (Beach and others, 2008; Wade and Jigmond, 2013). The updated model will use up-to-date versions of MODFLOW and extend the calibration period to more recent times.

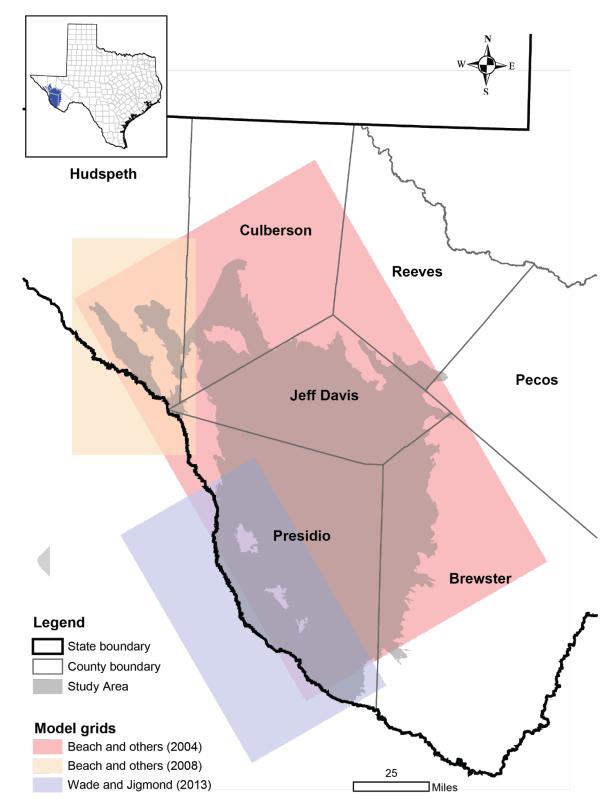


Figure 3.0.1. Approximate extents of previous model grids for models used for simulating groundwater flow through the Igneous and West Texas Bolsons aquifers.

4.0 HYDROLOGIC SETTING

The hydrologic setting is a description of the factors that contribute to the groundwater hydrology of the Igneous and West Texas Bolsons aquifers. These factors include the hydrostratigraphy, hydrogeologic framework, water levels, regional groundwater flow, recharge, surface-water bodies, hydraulic properties, discharge, and water quality.

4.1 Hydrostratigraphy and hydrostratigraphic framework

The Igneous and West Texas Bolsons aquifers (Figure 2.0.1) generally consist of the Tertiary igneous and quaternary alluvial sediments and rocks, respectively, that occur in the study area (Figure 4.1.1). The aquifers overlie several older Precambrian and Cretaceous rock units that also crop out in the adjacent mountains (Figure 2.2.1).

4.1.1 West Texas Bolsons Aquifer

The West Texas Bolsons Aquifer is composed of undifferentiated Quaternary alluvium derived from adjacent mountains (Figure 4.1.1). The aquifer consists of several basins that are connected in some cases. Alluvial fan deposits of sand, gravel, silt, and clays are found along the margins of the basin and typically become finer grained away from the mountains. Coarser grained deposits along the mountain front readily infiltrate recharge from stormwater runoff (Scanlon and others, 2001). Salt flats north of the Baylor Mountains and on the northern model boundary represent areas of groundwater discharge by evaporation (Boyd and Kreitler, 1986).

The top of the West Texas Bolsons Aquifer has elevations ranging from about 2,400 feet to more than 5,000 feet above mean sea level (Figure 4.1.2). The aquifer top represents land surface elevation, which is highest in the southeastern Ryan Flat adjacent to the Davis Mountains and lowest along the Rio Grande in the Presidio Bolson. Aquifer base elevations generally decrease towards the center of each basin (Figure 4.1.3). The aquifer base elevations range from elevations of more than 2,000 feet below mean sea level in the Presidio Bolson to more than 5,000 feet above mean sea level along the margins of the northernmost bolsons. The West Texas Bolsons Aquifer thickness is highly variable, ranging from less than 100 feet to more than 6,000 feet (Figure 4.1.4). In the study area, the West Texas Bolsons Aquifer is thickest along the Rio Grande, especially in the Presidio and Redford bolsons.

4.1.2 Igneous Aquifer

The Igneous Aquifer is composed of all contiguous Tertiary igneous formations that underlie the Davis Mountains and adjacent areas. These igneous rocks cover most of Presidio and Jeff Davis counties, western Brewster County, as well as small parts of the adjacent Culberson, Reeves, and Pecos counties. The Igneous Aquifer is comprised of over 40 named volcanic units (Figure 2.2.1). Individual igneous formations are highly variable in nature and suggest varying forms of intrusive and extrusive volcanic activity interspersed with periods of low activity when erosional clastic sediments (volcaniclastics) accumulated.

The elevation of the top of the Igneous Aquifer ranges from about 2,500 to 8,000 feet above mean sea level (Figure 4.1.5). The aquifer top represents land surface except where it is overlain by Quaternary alluvium stratigraphic units. The estimated elevation of the base of the Igneous Aquifer varies from below 1,800 feet below mean sea level to about 6,000 feet above mean sea level (Figure 4.1.6). The lowest base elevations occur in western Jeff Davis County, coinciding with a graben that was infilled with alluvium to form Ryan Flat. The thickness of Tertiary igneous rocks has been estimated from geophysical and sample logs of prospective oil wells (Figure 4.1.7). Thickness ranges from 1,000 to 6,000 feet for most of the aquifer's areal extent. The aquifer thickness decreases along the outer edges as the volcanic rocks pinch out.

Era	System	Stratigraphy	Hydrostratigraphic Units	Model Layer
	Quaternary	Quaternary deposits Bolsons deposits	West Texas Bolsons Aquifer	1
Cenozoic	Tertiary	Undifferentiated volcanic rocks, tuffs, intrusive igneous rocks, and tuffaceous sedimentary rocks	Igneous Aquifer	2
Mesozoic	Cretaceous	Limestone, sandstone,	Permian and Cretaceous	
Paleozoic	Permian	quartzite, marl, and mudtone	hydrostratigraphic units	

Figure 4.1.1. Hydrostratigraphic chart for Igneous and West Texas Bolsons aquifers and underlying Mesozoic and Paleozoic stratigraphic units.

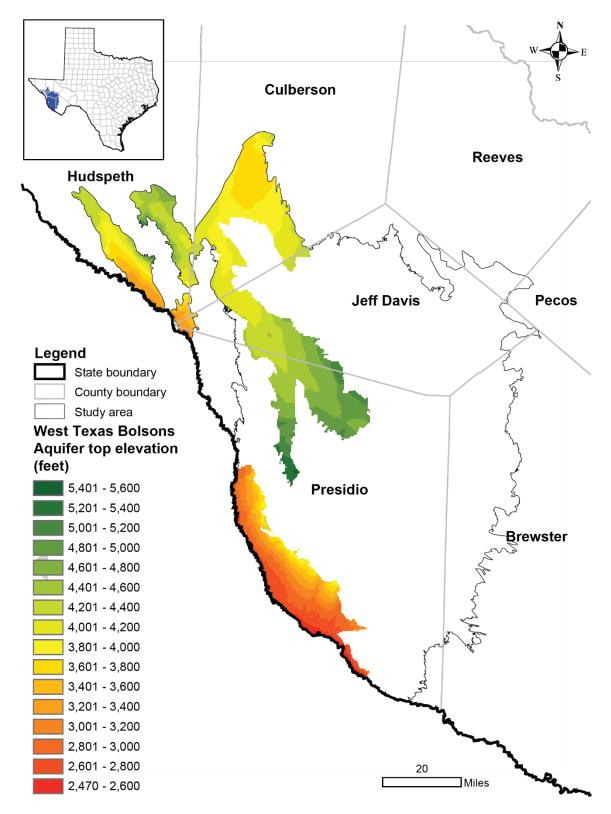


Figure 4.1.2. The elevation (in feet relative to mean sea level) of the top of the West Texas Bolsons Aquifer (data from Beach and others, 2004, 2008; Wade and Jigmond, 2013).

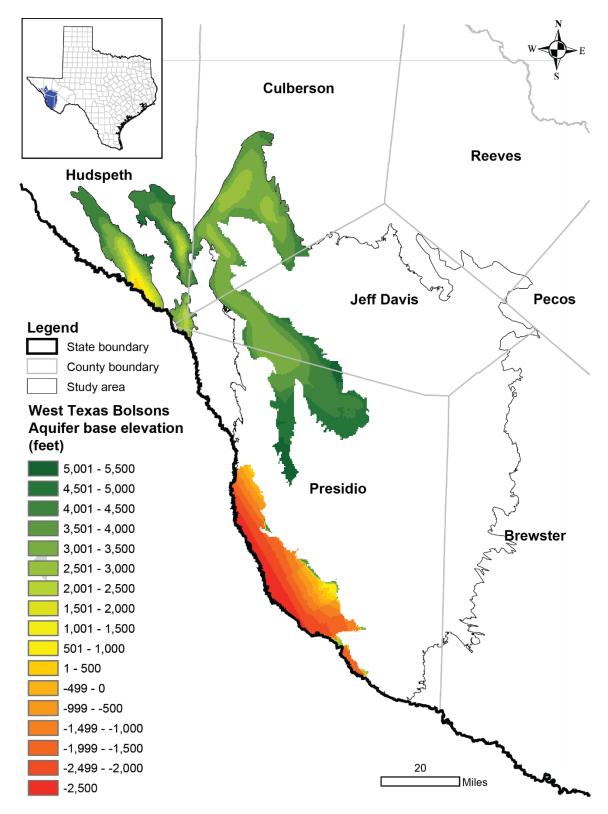


Figure 4.1.3. The elevation (in feet relative to mean sea level) of the base of the West Texas Bolsons Aquifer (data from Beach and others, 2004, 2008; Wade and Jigmond, 2013).

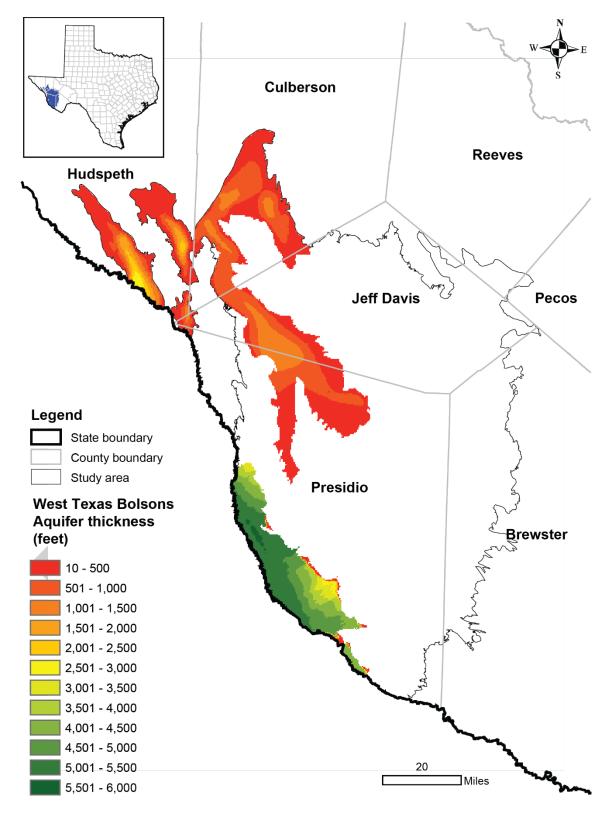


Figure 4.1.4. Thickness (in feet) of the West Texas Bolsons Aquifer (data from Beach and others, 2004, 2008; Wade and Jigmond, 2013).

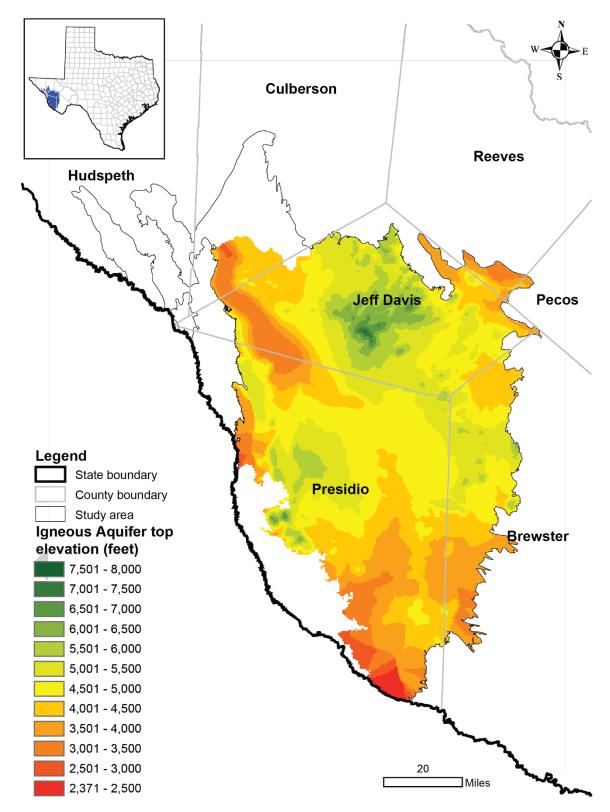


Figure 4.1.5. The elevation (in feet above mean sea level) of the top of the Igneous Aquifer (data from Beach and others, 2004).

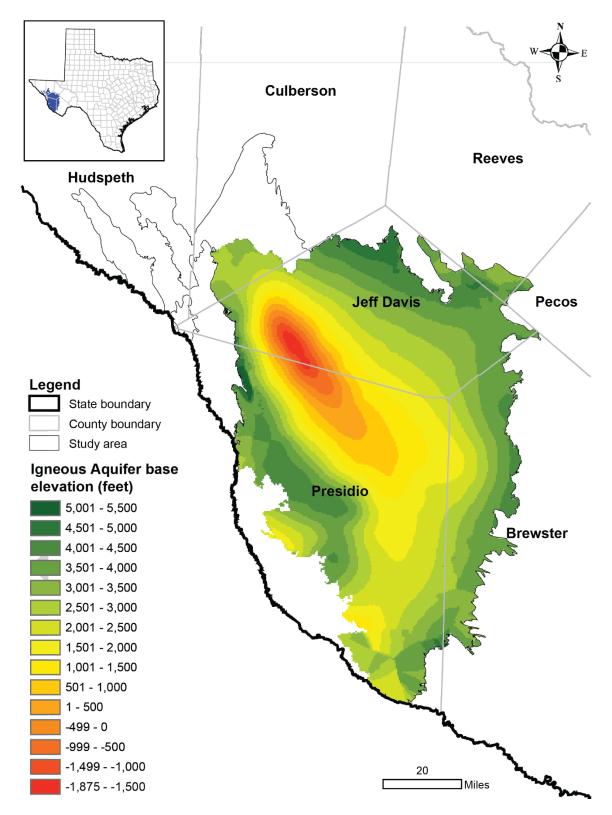


Figure 4.1.6. The elevation (in feet above mean sea level) of the base of the Igneous Aquifer (data from Beach and others, 2004).



Figure 4.1.7. Thickness (in feet) of the Igneous Aquifer (data from Beach and others, 2004).

4.2 Water levels and regional groundwater flow

The TWDB Groundwater Database contains over 13,904 water-level measurements from 585 wells in the Igneous Aquifer and 558 wells in the West Texas Bolsons Aquifer taken between 1930 and 2022 (Figure 4.2.1; TWDB, 2022a). Figure 4.2.2 shows the temporal distribution of water-level data in the Igneous and West Texas Bolsons aquifers from 1950 through 2022.

In the Igneous Aquifer, the potentiometric surface slopes generally radiate outward from the Davis Mountains in central Jeff Davis County (Figures 4.2.3 and 4.2.4). In the West Texas Bolsons Aquifer, groundwater potentiometric surfaces suggest groundwater flow converges on the Rio Grande in the bolsons that interact with the river—the Green River Valley, Presidio Bolson, Redford Bolson, and Red Light Draw (Figures 4.2.5 and 4.2.6). The Eagle Flat is internally drained with no apparent discharge zones. In Eagle Flat, there is the possibility of groundwater inflow from the adjacent Lobo Flat and the possibility of groundwater discharge through inter-basin flow to Red Light Draw or Green River Valley (Darling, 1997). West Texas Bolsons Aquifer water-level measurements also indicate topographically driven inter-basin groundwater flow northward from Ryan Flat into Lobo Flat and then Wild Horse Flat. There are also indications of groundwater flow into Wild Horse Flat from Michigan Flat. It is quite likely that groundwater flows from Wild Horse Flat northward into the Salt Flat that is not included in the West Texas Bolsons Aquifer. In the Salt Flat, groundwater discharges by evapotranspiration, resulting in the occurrence of highly saline groundwater (Angle, 2001).

Water-level fluctuations observed in the Igneous and West Texas Bolsons aquifers (Figures 4.2.7 and 4.2.8) are aquifer responses to changes in pumping. Some hydrographs indicate effects of pumping resulting in gradual long-term water-level decline (for example, wells 5225209 and 5235711 in the Igneous Aquifer in Jeff Davis and Brewster counties, respectively, and well 4751719 in the West Texas Bolsons Aquifer of Culberson County). The declining water levels in these wells can be attributed to municipal pumping as they are located near Fort Davis, Alpine, and Van Horn, respectively. Igneous Aquifer well 5148604 and West Texas Bolsons Aquifer well 7430813, both located in Presidio County, display relatively constant water levels. West Texas Bolsons Aquifer wells 5110305 and 5110615 in Culberson County and well 5129805 in Presidio County display periods of drawdown followed by periods of recovery. The fluctuations in these wells reflect periodic irrigation of nearby croplands.

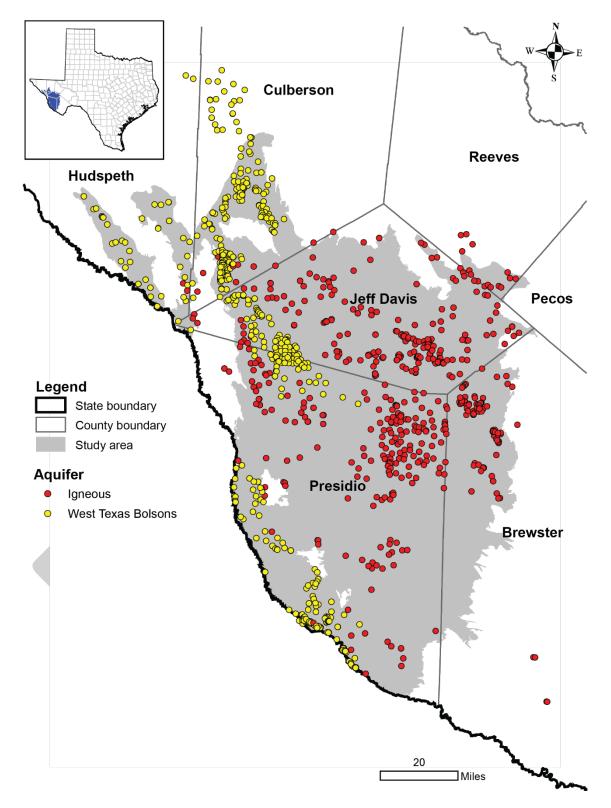


Figure 4.2.1. Water-level measurement locations for the Igneous and West Texas Bolsons aquifers (TWDB, 2022a).

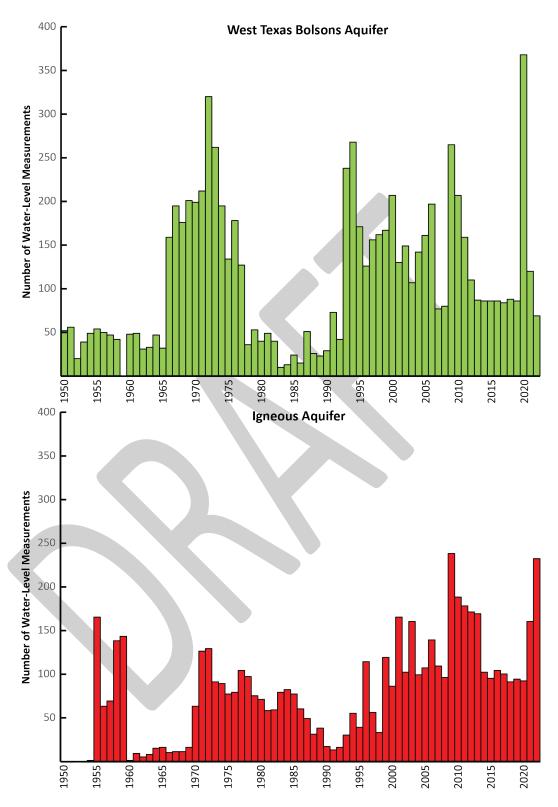


Figure 4.2.2. Temporal distribution of water-level measurements for 1950 to 2022 in the Igneous and West Texas Bolsons aquifers (TWDB, 2022a).

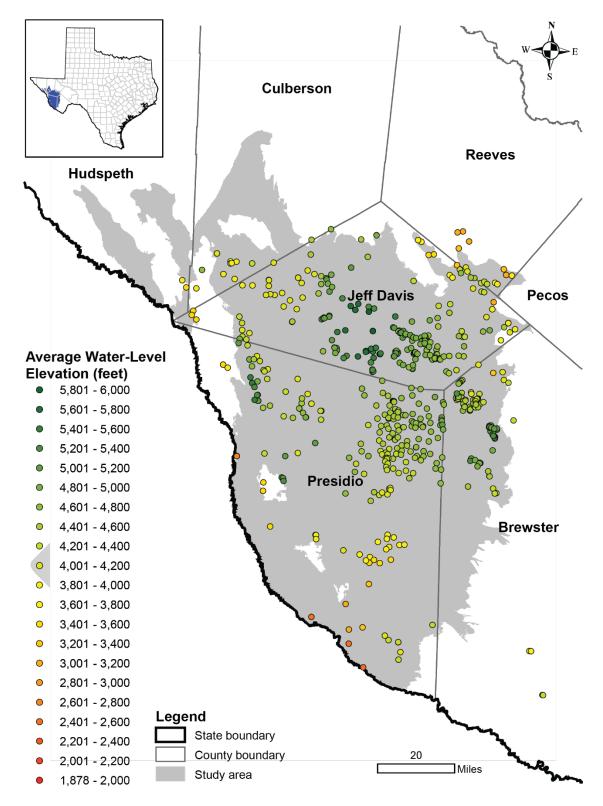


Figure 4.2.3. Average water-level elevations (in feet above mean sea level) for wells completed in the Igneous Aquifer. This is based on water-level measurements mostly collected over the period 1940 to 2022 (TWDB, 2022a).

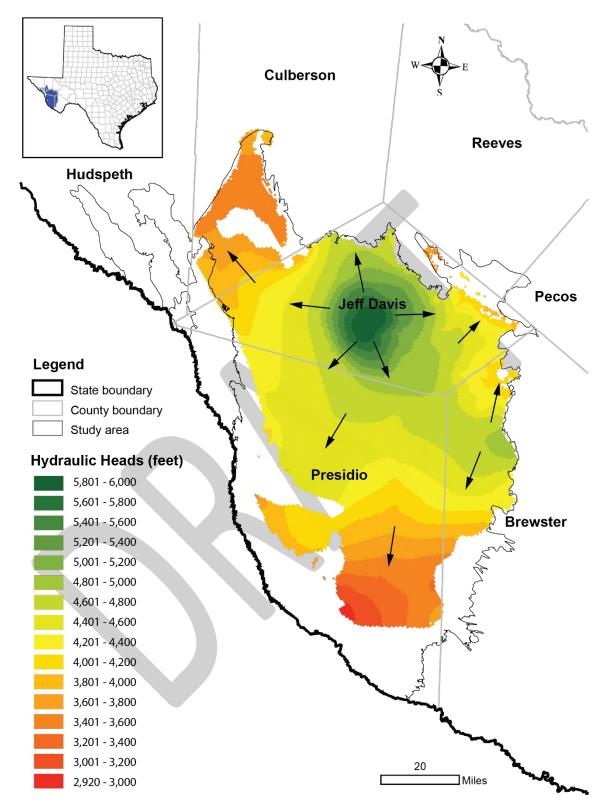


Figure 4.2.4. Simulated water levels for 2000 in the Igneous Aquifer (data from Beach and others, 2004). General direction of groundwater flow is shown by the black arrows.

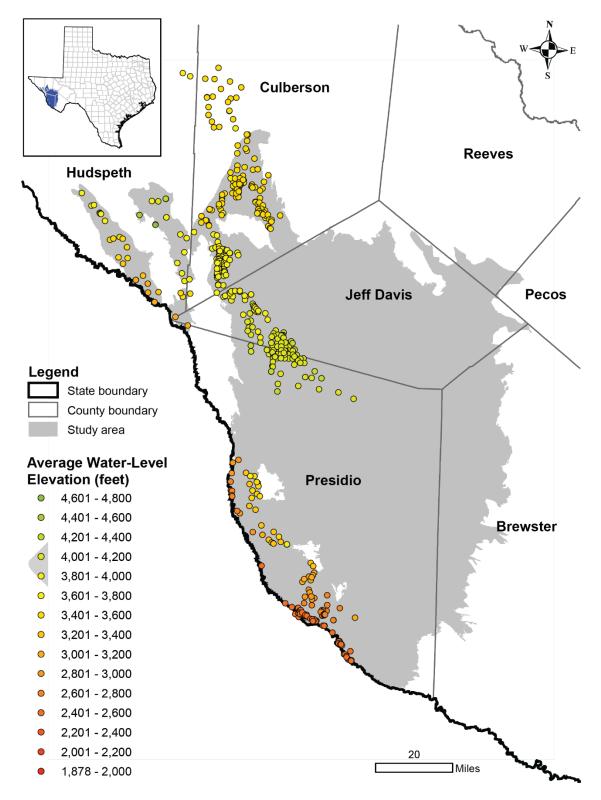


Figure 4.2.5. Average water-level elevations (in feet above mean sea level) for wells completed in the West Texas Bolson Aquifer. This is based on water-level measurements mostly collected over the period 1940 to 2022 (TWDB, 2022a).

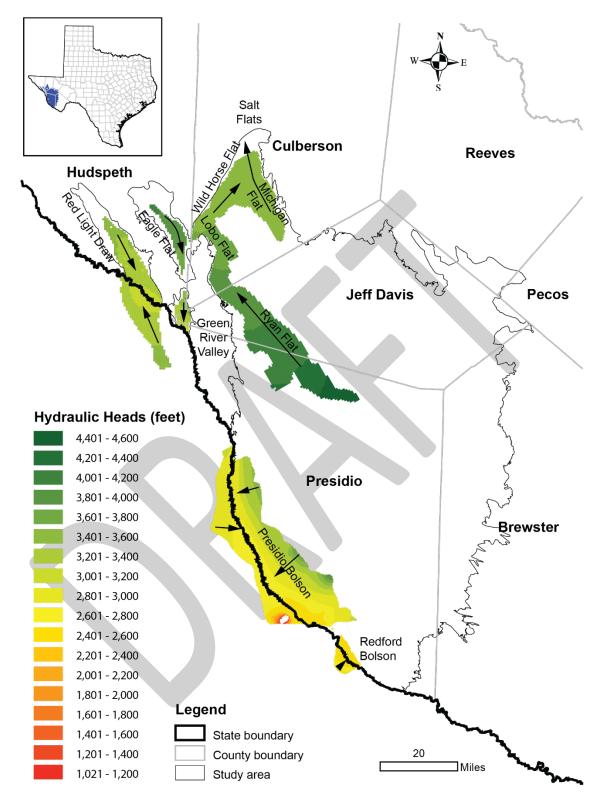


Figure 4.2.6. Simulated water levels (in feet above mean sea level) for 2000 in the West Texas Bolsons Aquifer (data from Beach and others, 2004, 2008; Wade and Jigmond, 2013). General direction of groundwater flow is shown by the black arrows.

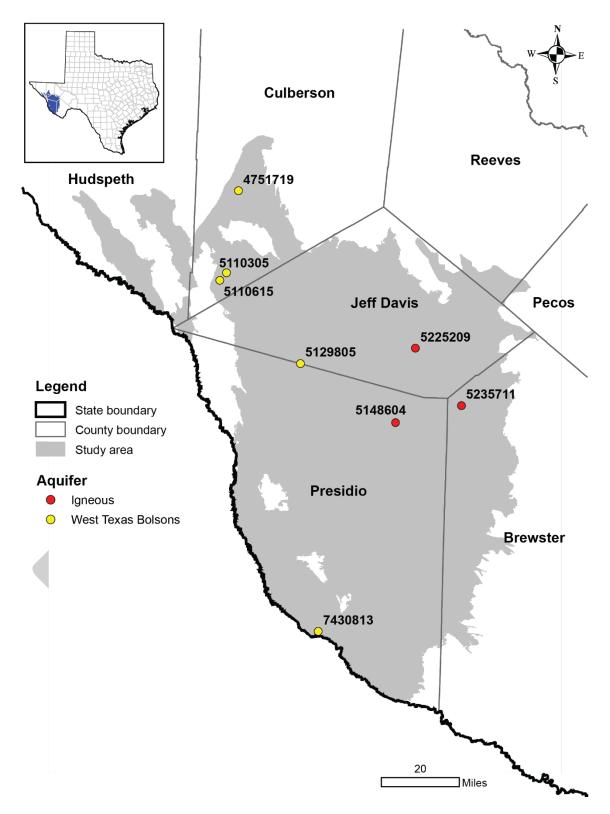


Figure 4.2.7. Locations of selected Igneous and West Texas Bolsons aquifers wells and associated state well number with transient water-level data (TWDB, 2022a).

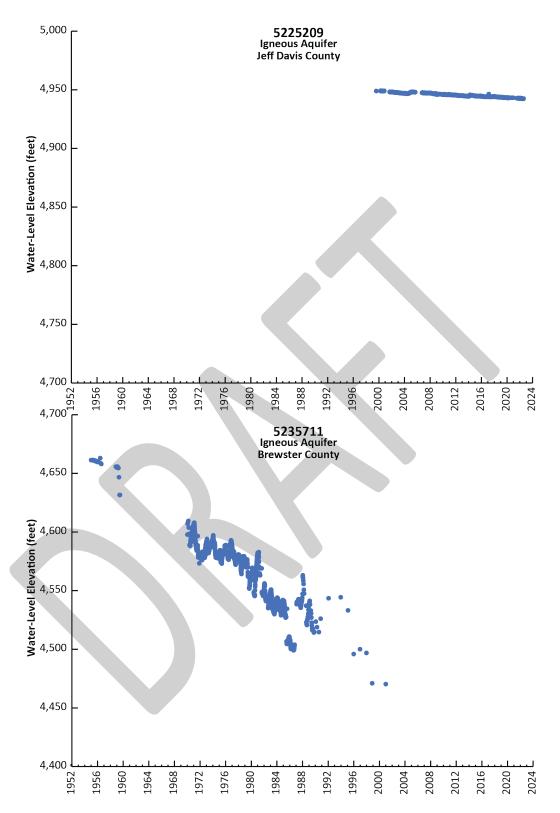


Figure 4.2.8. Hydrographs of transient water-level data (in feet above mean sea level) for the selected Igneous and West Texas Bolsons aquifers wells (TWDB, 2022a). See Figure 4.2.7 for locations.

Figure 4.2.8 (continued). Hydrographs of transient water-level data (in feet above mean sea level) for the selected Igneous and West Texas Bolsons aquifers wells (TWDB, 2022a). See Figure 4.2.7 for locations.

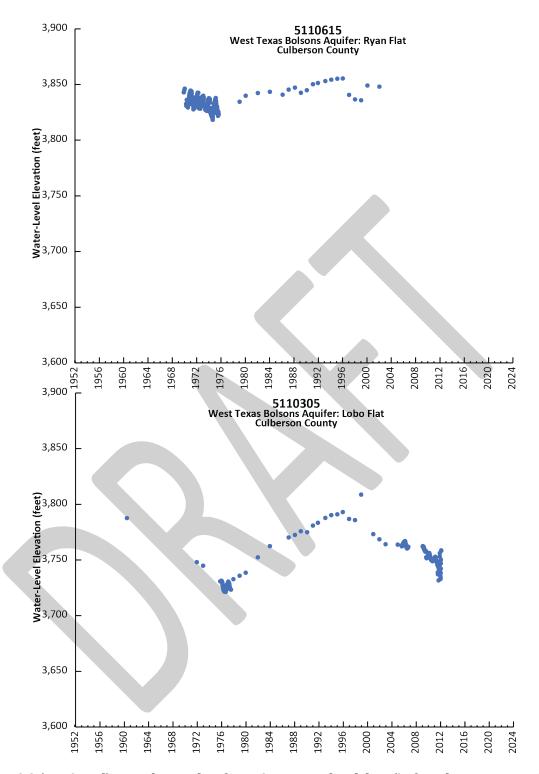


Figure 4.2.8 (continued).

ed). Hydrographs of transient water-level data (in feet above mean sea level) for the selected Igneous and West Texas Bolsons aquifers wells (TWDB, 2022a). See Figure 4.2.7 for locations.

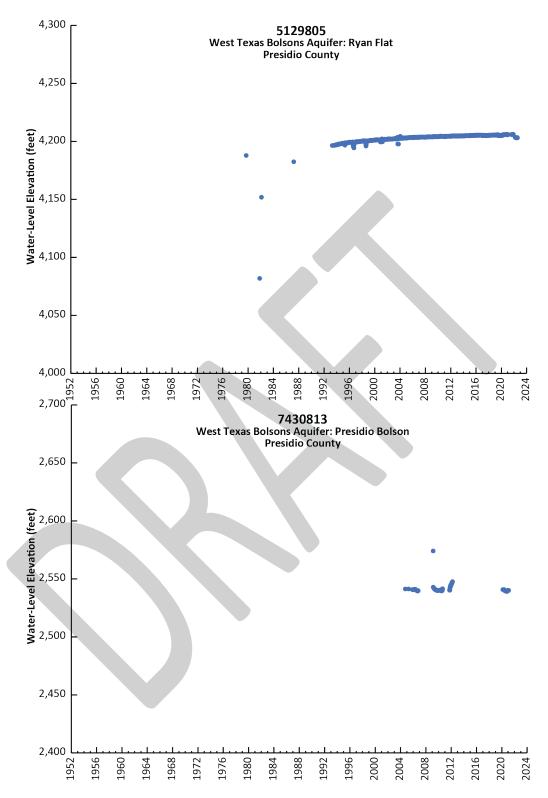


Figure 4.2.8 (continued). Hydrographs of transient water-level data (in feet above mean sea level) for the selected Igneous and West Texas Bolsons aquifers wells (TWDB, 2022a). See Figure 4.2.7 for locations.

4.3 Recharge

Recharge is defined as the processes involved in the addition of water to the water table (Jackson, 1997). In the Igneous and West Texas Bolsons aquifers study area, groundwater recharge primarily occurs by 1) infiltration of precipitation in the Eagle and Davis mountains, and 2) bolson-fringe recharge—also referred to as mountain front recharge—due to infiltration of storm-water runoff along intermittent streams in alluvial fans along the bolson margins (Gates and others, 1980; Scanlon and others 2001; Finch and Armour, 2001). Due to high evapotranspiration rates and low precipitation in the study area, little to no recharge occurs directly to the bolsons (Figure 4.3.1). The calibration results of previous models by Beach and others (2004, 2008) and Wade and Jigmond (2013), indicate that most of the recharge in the study area occurs in the Igneous Aquifer with relatively little in the West Texas Bolsons Aquifer (Figure 4.3.2).

Previous investigators have estimated recharge to the West Texas bolsons based on a percentage of precipitation and calculations of groundwater inflow (Hood and Scalapino, 1951; Gates and others, 1980; Cliett, 1994). A United States Geological Survey study in the late 1970s determined that one percent of the average annual precipitation should be used as the rate of recharge for the Basin and Range province of the Trans-Pecos Region (Gates and others, 1980). However, this method does not consider watershed characteristics that influence recharge, such as rock type or the feasibility of surface water to infiltrate into the groundwater system.

Isotopes, such as carbon-13, carbon-14, tritium, stable hydrogen, and oxygen in groundwater can be used to determine the spatial and seasonal distribution of recharge to an aquifer (See Sections 4.7.2 and 4.7.3). The tritium, carbon-13, and carbon-14 isotopic compositions of groundwater in the Igneous and West Texas Bolsons aquifers indicate recent recharge in the southernmost parts of the study area (in the southern portion of the Igneous Aquifer and in the Presidio Bolson of the West Texas Bolsons Aquifer). Elsewhere in the study area, groundwater isotopes indicate ancient recharge. Darling (1997) suggests that much of this recharge took place during the Pleistocene epoch—more than 10,000 years ago—at a time when the climate of the study area was wetter than it is today.

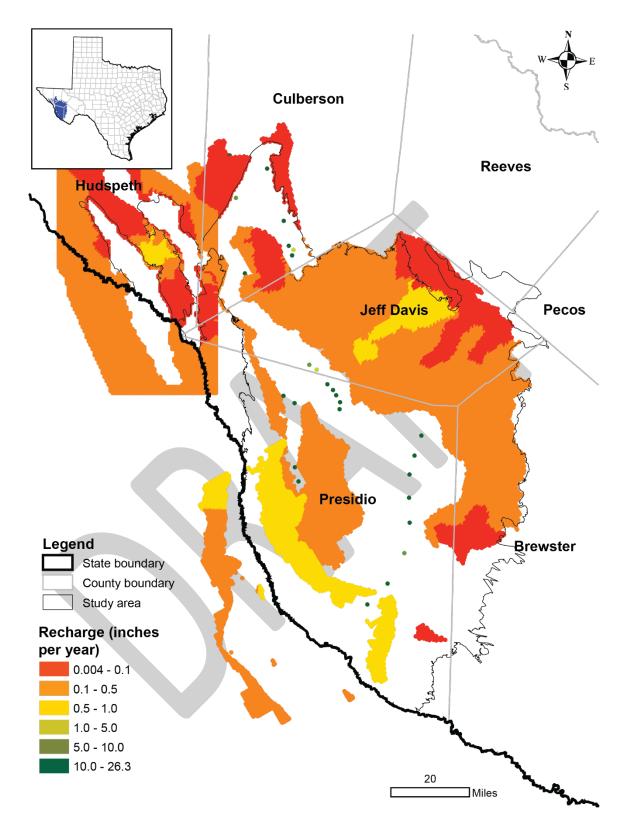


Figure 4.3.1. Spatial distribution of recharge in the Igneous and West Texas Bolsons aquifers study area in Beach and others (2004, 2008) and Wade and Jigmond (2013).

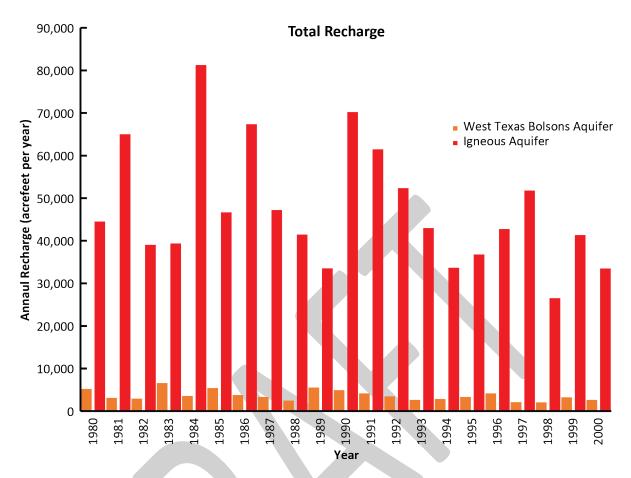


Figure 4.3.2. Annual recharge to the Igneous and West Texas Bolsons aquifers from 1980 through 2000 (from Beach and others, 2004, 2008, and Wade and Jigmond, 2013).

4.4 Surface-water bodies

Interaction between groundwater and surface water occurs primarily where surface water bodies—rivers, streams, springs, and lakes—intersect with aquifer outcrops. These interactions result in flow between the aquifer and surface-water bodies. The direction of flow depends on the relative groundwater and surface-water levels with water flowing from relatively high to relatively low water levels.

4.4.1 Rivers and streams

The Igneous and West Texas Bolsons aquifers study area lie completely within the Rio Grande watershed (Figure 2.0.10). Consequently, surface water in the study area either flows southward directly to the Rio Grande or in some cases toward the Pecos River and eventually to the Rio Grande. In the study area, there are only a few perennial streams, mostly located in the south (Figure 2.0.4). The overwhelming majority of streams are intermittent or ephemeral and only flow after heavy rainfall (Figure 4.4.1). In addition to surface water flow to the Rio Grande, some bolsons in the study area are topographically

closed with no surface water outlet (Hibbs and Darling, 2005). Examples of closed basins include Eagle Flat, Ryan Flat, Lobo Flat, Michigan Flat, and Wild Horse Flat.

A streamflow study by the United States Geological Survey in 1932 indicated areas of streamflow loss balanced by areas of streamflow gain along Limpia Creek in Jeff Davis County (Figure 4.4.1; Slade and others, 2002). Limpia Creek is an intermittent stream.

4.4.2 Springs

Springs are locations where the water table intersects the ground surface (Figure 4.4.2). Spring data for the Igneous and West Texas Bolsons aquifers study area were found in the TWDB Groundwater Database (TWDB, 2022a), a database of Texas springs compiled by the United States Geological Survey (Heitmuller and Reece, 2003), and a report on the springs of Texas by Brune (2002).

The identified springs mostly occur in the northern portion of the Igneous Aquifer along the margins of the Davis Mountains, and in the west associated with the Sierra Vieja and Chinati Mountains. Springs also occur in the West Texas Bolsons Aquifer, mostly in the Green River Valley and the Presidio Bolson. The springs with the highest reported discharge rates mostly occur along the western boundary of the study area associated with the Sierra Vieja, Chinati Mountains, and Presidio Bolson (Figure 4.4.3). Major springs—springs with reported spring discharge more than 100 cubic feet per second— are shown in Figure 4.4.2.

4.4.3 Lakes and reservoirs

Typically, interaction between an aquifer and a lake or reservoir is restricted to the outcrop area of an aquifer where the lake or reservoir lies directly on the aquifer. There are no perennial natural lakes on the Igneous and West Texas Bolsons aquifers study area. However, Grayton Lake located within northern Eagle Flat only contains water occasionally after heavy rainfall events.

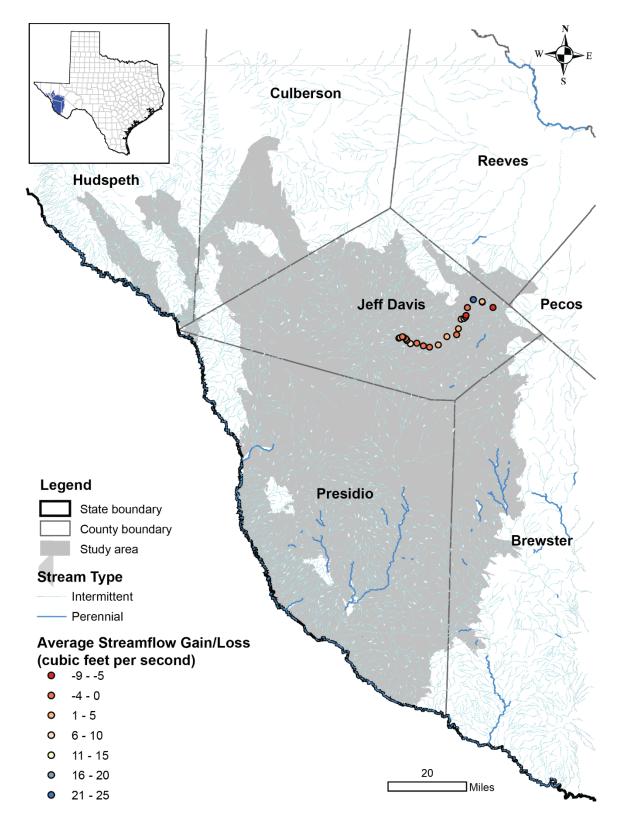


Figure 4.4.1. Streamflow gain-loss data from Slade and others (2002) along Limpia Creek. Negative values indicate losing streams while positive values indicate gaining streams.

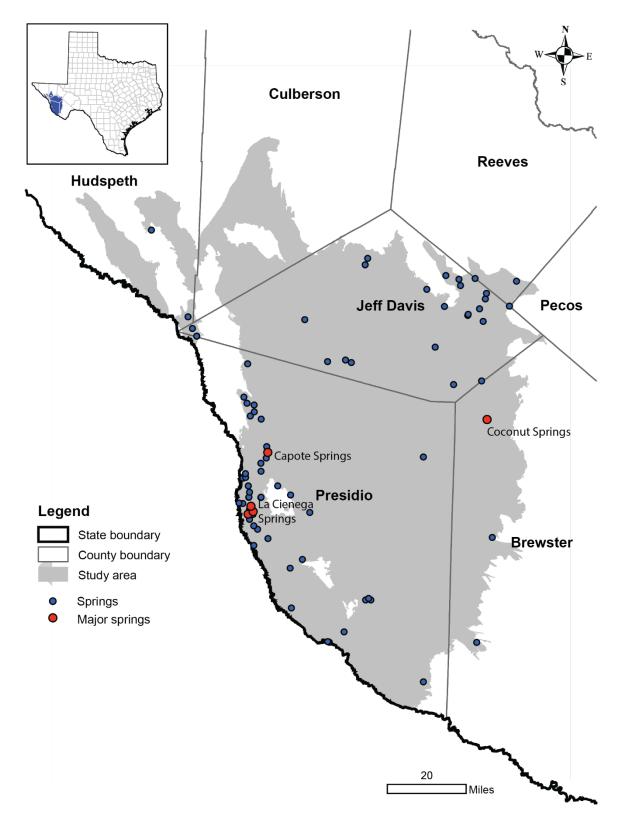


Figure 4.4.2. Locations of springs in the Igneous and West Texas Bolsons aquifers study area. (based on data from Brune, 2002 and Heitmuller and Reece, 2003).

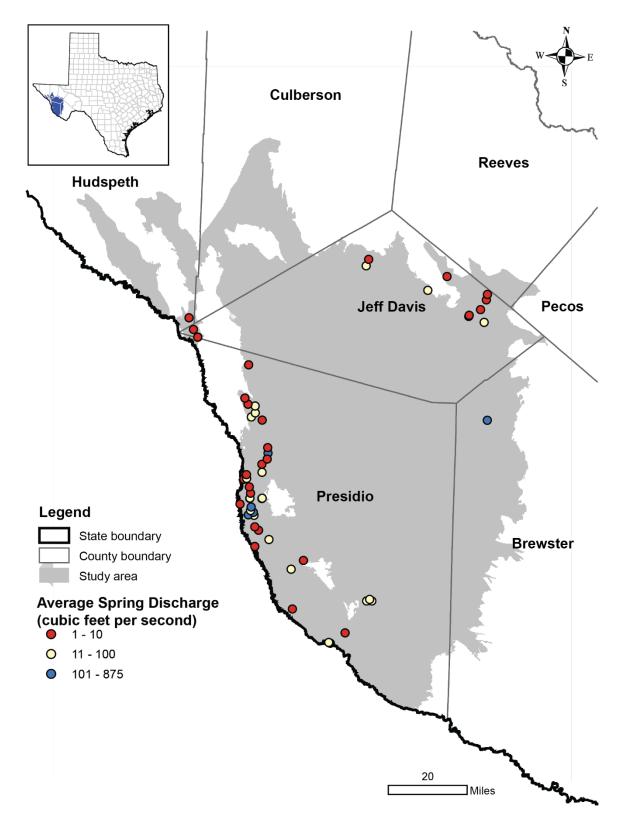


Figure 4.4.3. Spring discharge measurements in the Igneous and West Texas Bolsons aquifers study area.

4.5 Hydraulic properties

There is a paucity of hydraulic property data for the Igneous and West Texas Bolsons aquifers. The ability of the aquifer to transmit groundwater to a well varies greatly. Factors influencing the ability of an aquifer to transmit groundwater include aquifer lithology, sediment cementation, structural deformation, and fracturing. This section reviews the sources of available data describing the Igneous and West Texas Bolsons aquifers hydraulic properties. Several hydraulic properties are used to describe groundwater flow in aquifers. The properties discussed here are hydraulic conductivity and storativity.

Hydraulic conductivity is a measure of the ease with which groundwater can flow through an aquifer. Higher hydraulic conductivity indicates that an aquifer will allow more groundwater flow under the same hydraulic gradient. In this study, units for hydraulic conductivity are feet per day.

Storativity—also referred to as the coefficient of storage—is the volume of water that a confined aquifer releases per square foot of surface area per foot decline of water level. Storativity is a dimensionless parameter.

4.5.1 Data sources

Development of hydraulic properties for the Igneous and West Texas Bolsons aquifers study area used multiple sources, including the Submitted Drillers Report Database and the TWDB Groundwater Database (Texas Department of Licensing and Regulation, 2022; TWDB, 2022a). The hydraulic property data for the Igneous and West Texas Bolsons aquifers are shown in Figures 4.5.1 through 4.5.4 and Table A1.

4.5.2 Hydraulic conductivity

There is little hydraulic conductivity data that are based on pumping tests for the Igneous and West Texas Bolsons aquifer study area. Hydraulic conductivity values in the Igneous Aquifer range between 0.1 and more than 2,500 feet per day, and median and geometric mean values are 10.3 feet per day and 23 feet per day, respectively (Figure 4.5.5). The spatial distribution of hydraulic conductivity in the Igneous Aquifer from the groundwater flow model by Beach and others (2004) shows lowest hydraulic conductivity in the Davis Mountains (Figure 4.5.2). Hydraulic conductivity values in the West Texas Bolsons Aquifer range between 0.5 and more than 2,400 feet per day, and median and geometric mean values are 13 feet per day and 12 feet per day, respectively (Figure 4.5.5). Most of the hydraulic conductivity data is derived from Lobo Flat, Michigan Flat, Ryan Flat, and Wild Horse Flat. Little or no data was obtained from the remaining bolsons that make up the West Texas Bolsons Aquifer. The spatial distribution of hydraulic conductivity in the West Texas Bolsons Aquifer from the groundwater flow model by Beach and others (2008) and Wade and Jigmond (2013) shows highest hydraulic conductivity in eastern bolsons—Lobo Flat, Michigan Flat, Ryan Flat, Ryan Flat, and Wild Horse Flat, Michigan Flat, Ryan Flat, Ryan Flat, and Wild Horse Flat, Michigan Flat, Ryan Flat, and Wild Horse Flat—and the lowest hydraulic conductivity

occurs in the west and southern parts of the aquifer (Figure 4.5.4). In the Presidio and Redford bolsons, hydraulic conductivity increases along the Rio Grande. A small amount of hydraulic conductivity data is available from the Cretaceous stratigraphic units that underlie the bolsons. The hydraulic conductivity values in these Cretaceous stratigraphic units range between 0.01 and 280 feet per day, with median and geometric mean values of 0.3 feet per day and 0.9 feet per day, respectively (Figure 4.5.5).

4.5.3 Storativity

The specific storage of a confined aquifer is defined as the volume of water that a unit volume of aquifer releases from storage under a unit decline in hydraulic head (Freeze and Cherry, 1979). The storativity is equal to the product of specific storage and aquifer thickness and is dimensionless. For unconfined conditions, the storage is referred to as the specific yield and is defined as the volume of water an unconfined aquifer releases from storage per unit surface area of aquifer per unit decline in water table (Freeze and Cherry, 1979). Aquifer storage properties are directly related to aquifer porosity in the unconfined portions of an aquifer and aquifer porosity and matrix compressibility in the confined portions of the aquifer.

There is only one published storativity measurement in the Igneous and West Texas Bolsons aquifers study area, an aquifer test in a well (State Well Number 4854902) completed in the Cretaceous stratigraphic units below the bolsons. The aquifer test conducted in 1997 yielded a storativity of 4×10^{-3} (Beach and others, 2008). Specific yield, storativity, and porosity values previously used in the study area have been based on published ranges of 0.01 to 0.3, 5×10^{-5} to 5×10^{-3} , and 0 to 0.1, respectively (Freeze and Cherry, 1979). A narrower range of specific yield of 0.1 to 0.15 has been applied to the West Texas Bolsons Aquifer (Gates and others, 1980).

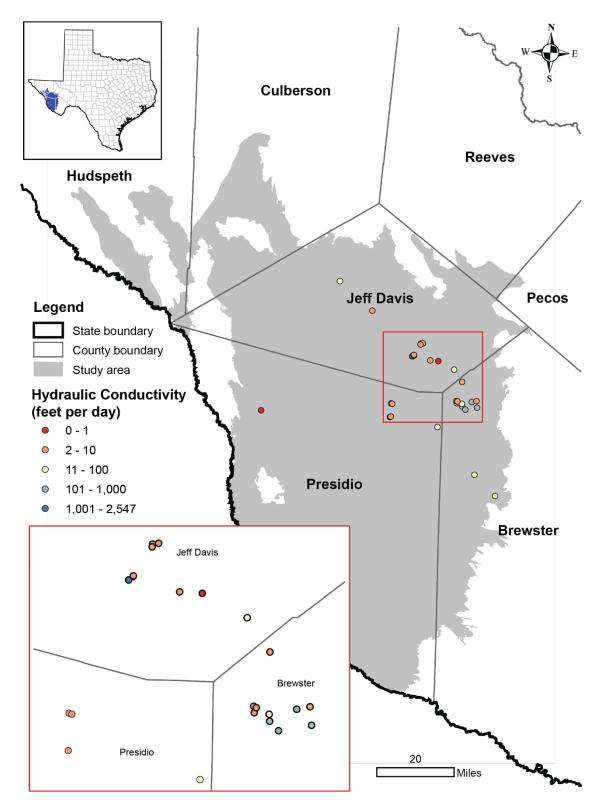


Figure 4.5.1. Hydraulic conductivity data for the Igneous Aquifer (data from TWDB, 2022a).

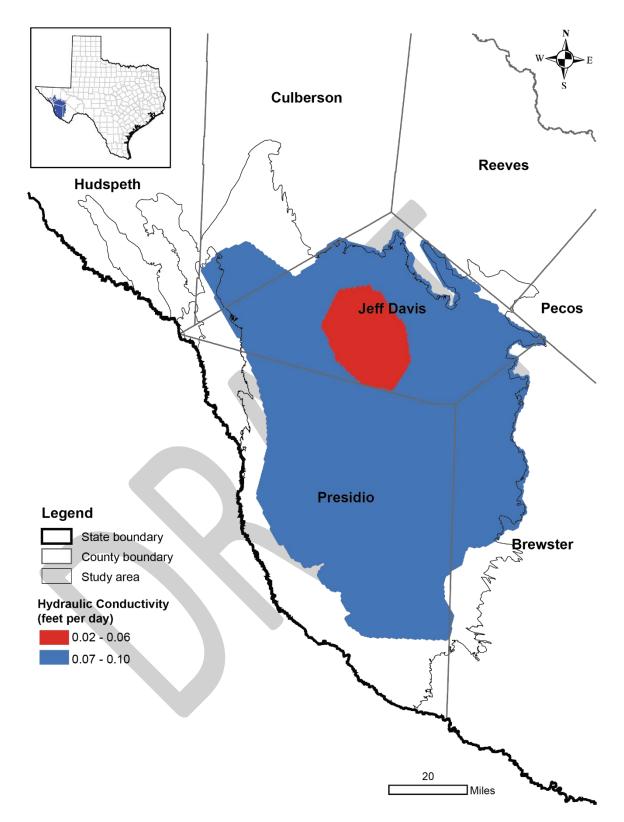


Figure 4.5.2. Hydraulic conductivity data for the Igneous Aquifer in the study area (based on data from Beach and others, 2004).

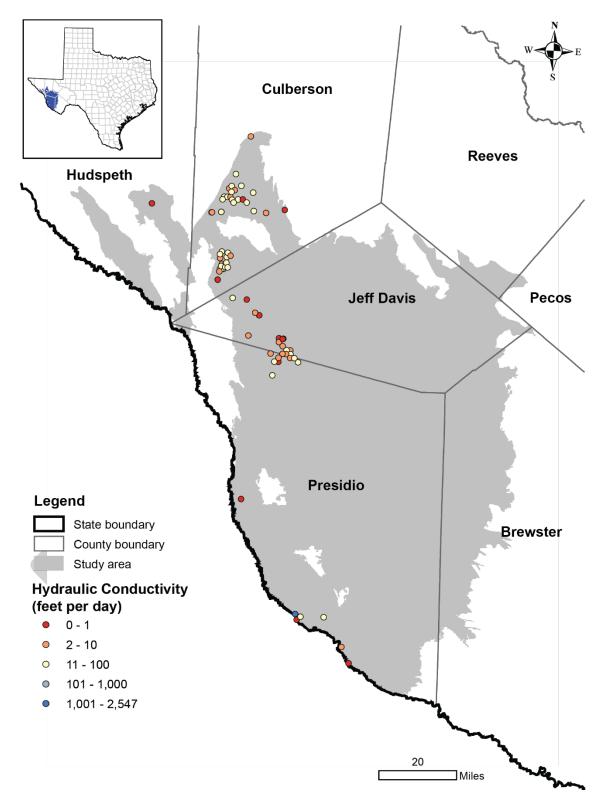


Figure 4.5.3. Hydraulic conductivity data for the West Texas Bolsons Aquifer (data from TWDB, 2022a).

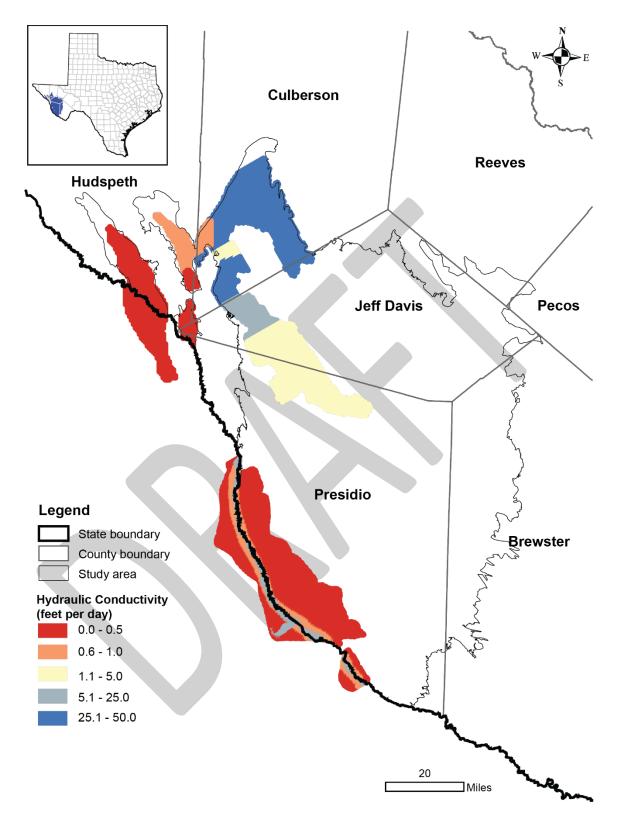


Figure 4.5.4.Hydraulic conductivity data for the West Texas Bolsons Aquifer in the study area
(based on data from Beach and others, 2004, 2008; Wade and Jigmond, 2013).

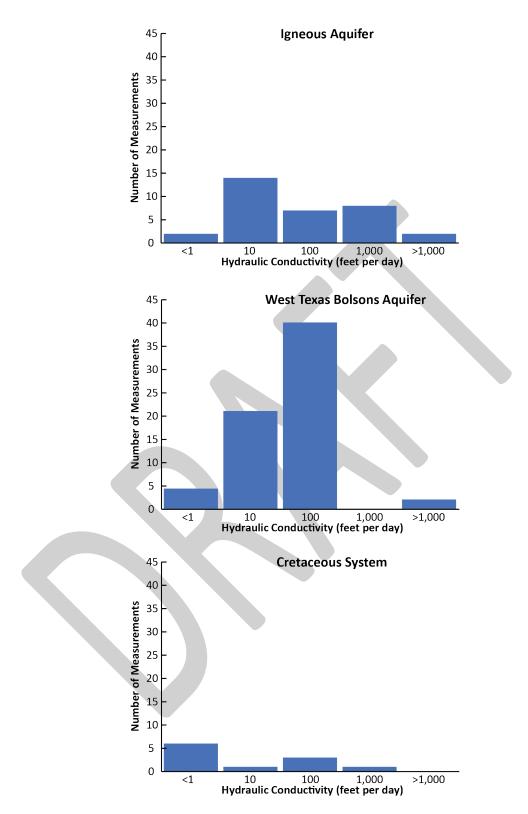


Figure 4.5.5. Histogram of hydraulic conductivity data in feet per day for the Igneous and West Texas Bolsons aquifers and underlying Cretaceous rocks based on data from the hydraulic data indicated in Table A1 (data from Beach and others, 2004, 2008; Wade and others, 2011).

4.6 Discharge

Discharge is the process by which water leaves an aquifer. These processes include both natural and anthropogenic processes. Groundwater discharges from aquifers naturally to streams or springs, evapotranspiration, and cross-formational flow. Pumping wells are an anthropogenic form of discharge from aquifers.

4.6.1 Natural aquifer discharge

In a typical topography-driven flow system, percolation of precipitation results in recharge at the water table, which flows from topographic highs and discharges at topographic lows through streams and springs and groundwater evapotranspiration. In the Igneous and West Texas Bolsons aquifers, the most likely forms of discharge are stream and spring discharge and cross-formational flow in the subsurface. Groundwater discharge to surface water bodies is discussed in Sections 4.4.1 through 4.4.3. In a region with little surface runoff, most of the natural discharge from the Igneous and West Texas Bolsons aquifers is likely to take the form of discharge to the Rio Grande—the main perennial river in the study area (Figure 2.0.4). This form of discharge occurs where the respective aquifers intersect with the Rio Grande, for example, Red Light Draw, Green River Valley, Presidio Bolson and Redford Bolson. Alternatively, in the West Texas Bolsons Aquifer, groundwater discharge from Eagle Flat may take the form of cross-formational flow to Green River Valley through underlying stratigraphic units and groundwater discharges from Wild Horse Flat through lateral flow into the Salt Flat located to the north (Figure 4.2.6). Discharge via cross-formational flow is likely to occur in the Igneous Aquifer by upward discharge where it underlies the West Texas Bolsons Aquifer or Pecos Valley Aquifer.

4.6.2 Aquifer discharge through pumping

Estimates of groundwater pumping from the Igneous and West Texas Bolsons aquifers for the years 1980 through 2020 were obtained from the TWDB historical groundwater pumpage estimates (TWDB, 2022b). The six water-use categories defined in the TWDB database are municipal, manufacturing, steam electric generation, irrigation, mining, and livestock.

Potential areas for irrigation pumping from the Igneous and West Texas Bolsons aquifers study area are in the eastern and northern parts of the study area (Figure 4.6.1). This spatial distribution assumes that irrigation pumping is directly associated with crops, such as orchards, hay, row crops, and small grains, as determined by National Land Cover Database land classification (Vogelmann and others, 1998a, 1998b). TWDB pumping data for the Igneous and West Texas Bolsons aquifers indicate irrigation pumping up to 4,486 acre-feet per year in the Igneous Aquifer and 88,648 acre-feet per year in the West Texas Bolsons Aquifer (Figure 4.6.2; Table A2).

Livestock pumping was distributed using land cover data obtained from the National Land Cover Dataset (Vogelmann and others, 1998a, 1998b). Livestock pumping is associated with grassland and scrubland land cover (Figure 4.6.1). These types of land cover are distributed over most of the land cover over the Igneous and West Texas Bolsons aquifers study area. Estimates of livestock pumping from the Igneous Aquifer has risen gradually from about 500 acre-feet per year in 1980 to about 750 acre-feet per year in 2020 (Figure 4.6.2; Table A3). In the West Texas Bolsons Aquifer, livestock pumping has declined from about 550 to 300 acre-feet per year over the same period.

Manufacturing, mining, steam electric power, and municipal pumping are spatially distributed based on known well locations (Figure 4.6.3). These wells tend to be clustered around the main municipalities in the study area—Alpine, Fort Davis, Marfa, Presidio, and Van Horn. TWDB pumping estimates (TWDB, 2022b) indicate manufacturing pumping from the Igneous and West Texas Bolsons aquifers is very low, totaling up to 24 acre-feet per year in the Igneous Aquifer and about 100 acre-feet per year in the West Texas Bolsons Aquifer (Figure 4.6.4; Table A4). Mining pumping estimates are less than 3 acre-feet per year (Figure 4.6.4; Table A5). Pumping estimates from the water use survey suggest that mining pumping from the study area occurs only in Hudspeth County and only from the West Texas Bolsons aquifers are as high as 5,723 acre-feet per year and 2,158 acre-feet per year, respectively (Figure 4.6.5; Table A6). Most municipal pumping is from the Igneous Aquifer for the main municipalities in the study area—Alpine, Fort Davis and Marfa.

Steam electric power pumping took place in Culberson County from 1980 through 1997 (Figure 4.6.5; Table A7). This category of pumping declined rapidly between 1980 and 1990, starting at about 500 acre-feet per year in 1980 and was insignificant—fluctuating between 3 and less than 1 acre-feet per year—between 1990 and the last reported pumping in 1997. This pumping was most likely associated with power generation for the City of Van Horn.

Total pumping from the Igneous and West Texas Bolsons aquifers from 1980 through 2020 is shown in Table A8 and Figure 4.6.6. Total pumping from the Igneous Aquifer was relatively constant over the period fluctuating between 2,500 and 9,000 acre-feet per year. Total pumping from the West Texas Bolsons Aquifer is much higher, fluctuating between 15,000 and 60,000 acre-feet per year. The wide variation of pumping in the West Texas Bolsons Aquifer largely reflects variation of pumpage in Culberson County which accounts for the bulk of the pumpage from the aquifer (Figure 4.6.7). Figures 4.6.8 and 4.6.9 show the spatial distribution of pumping from the Igneous and West Texas Bolsons aquifers, respectively, from the groundwater availability models by Beach and others (2004, 2008) and Wade and Jigmond (2013). These figures show pumping in the Igneous Aquifer is highest in the vicinity of Alpine, Fort Davis, and Marfa. In the West Texas Bolsons Aquifer,

pumping is highest along the Rio Grande in the Presidio and Redford Bolsons, and in Lobo, Michigan, Ryan, and Wild Horse Flat.

Municipal pumping is the main pumping category in the Igneous Aquifer and irrigation is the main pumping category in the West Texas Bolsons Aquifer (Figure 4.6.10). In the Igneous Aquifer, municipal pumping is the main category of pumping in Brewster County (Alpine), Jeff Davis County (Fort Davis), and Presidio County (Presidio) (Figure 4.6.11). Other pumping categories dominate in Hudspeth (livestock) and Culberson and Reeves (irrigation) counties where the Igneous Aquifer is a minor source of groundwater. Irrigation dominates pumping from the West Texas Bolsons Aquifer in Culberson and Jeff Davis counties while livestock and municipal pumping dominate pumping in Hudspeth and Presidio counties, respectively.

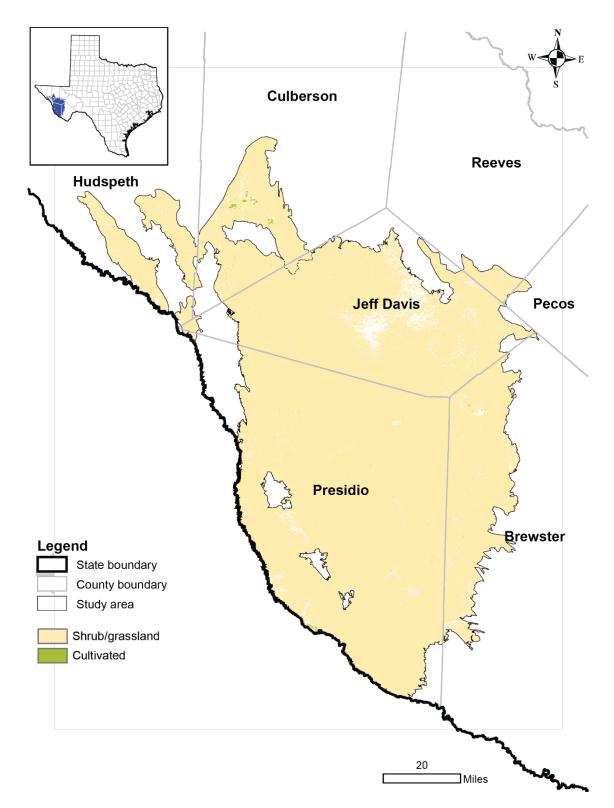


Figure 4.6.1. Spatial distribution of irrigated and grassland and shrubland land cover from the National Land Cover Dataset throughout the study area (Vogelmann and others, 1998a, 1998b).

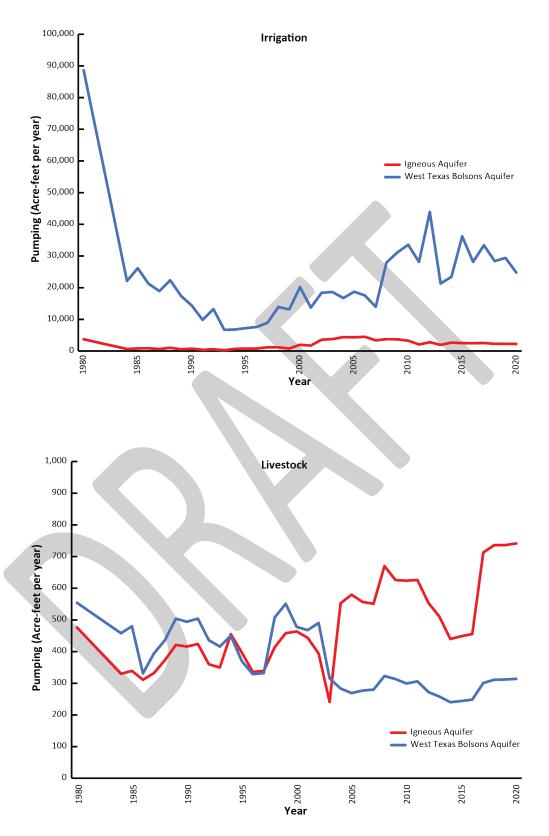


Figure 4.6.2. Estimated irrigation and livestock pumpage from the Igneous and West Texas Bolsons aquifers (data from TWDB, 2022b).

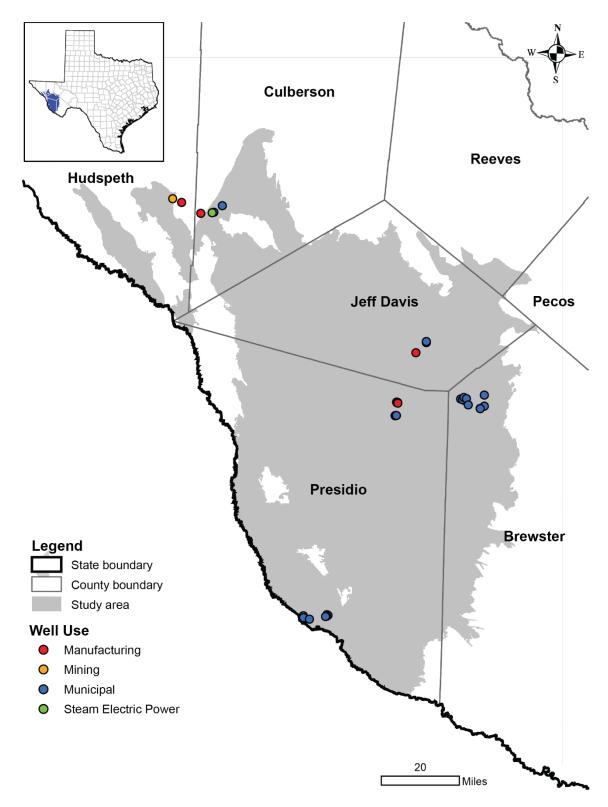


Figure 4.6.3. The spatial distribution of known manufacturing (industrial), mining, municipal (public supply), and steam electric power pumping (data from TWDB, 2022a).

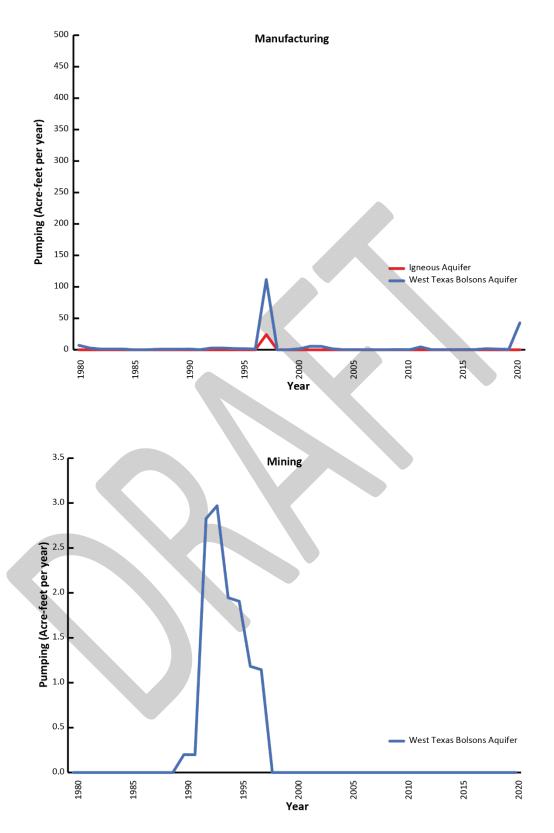


Figure 4.6.4. Estimated manufacturing and mining pumpage from the Igneous and West Texas Bolsons aquifers (data from TWDB, 2022b).

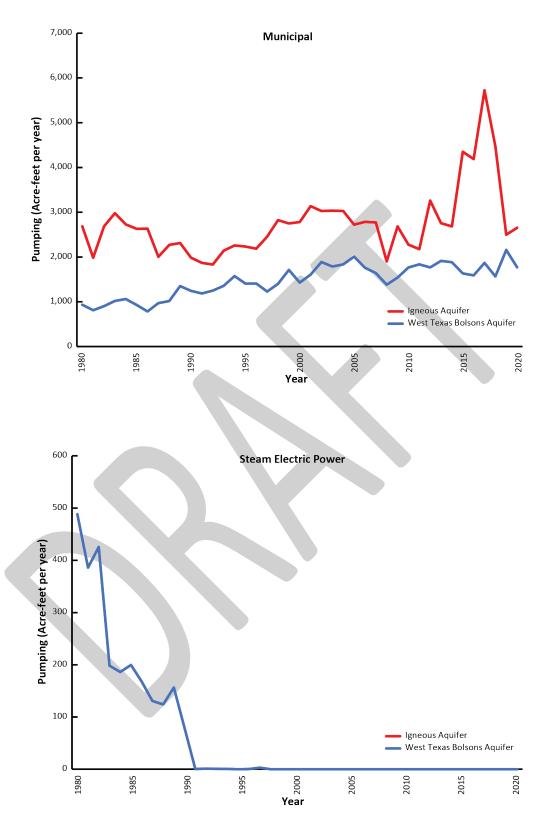


Figure 4.6.5. Estimated municipal and steam electric power pumpage from the Igneous and West Texas Bolsons aquifers (data from TWDB, 2022b).

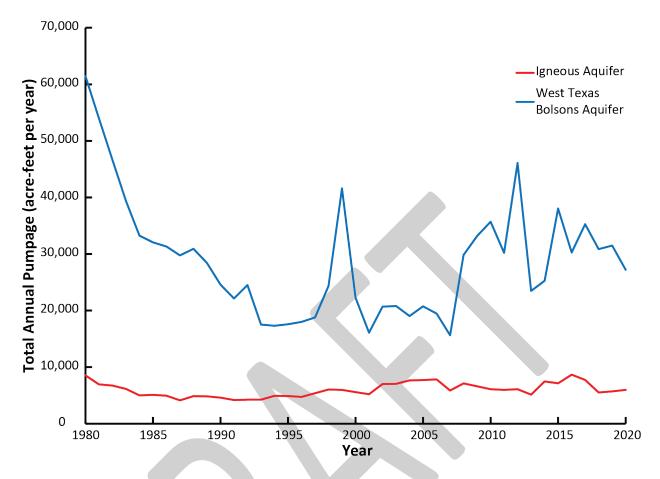


Figure 4.6.6. Total estimated pumpage from the Igneous and West Texas Bolsons aquifers (data from TWDB, 2022b).

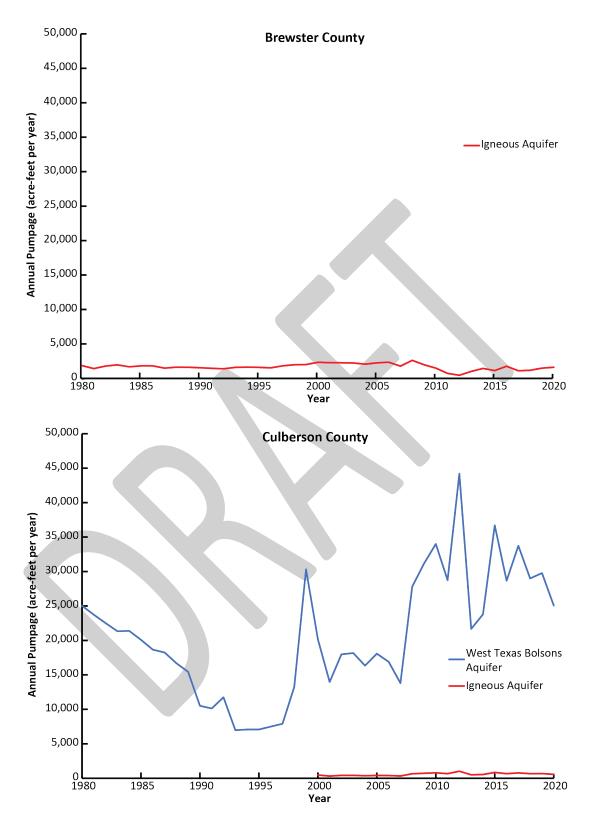


Figure 4.6.7. Total estimated pumpage for each of the counties in the Igneous and West Texas Bolsons aquifers study area (data from TWDB, 2022b).

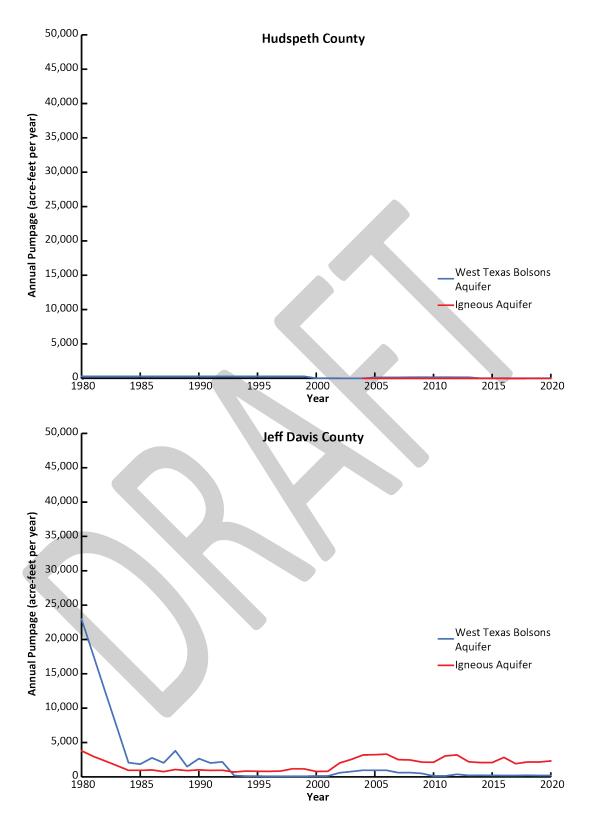


Figure 4.6.7. (continued). Total estimated pumpage for each of the counties in the Igneous and West Texas Bolsons aquifers study area (data from TWDB, 2022b).

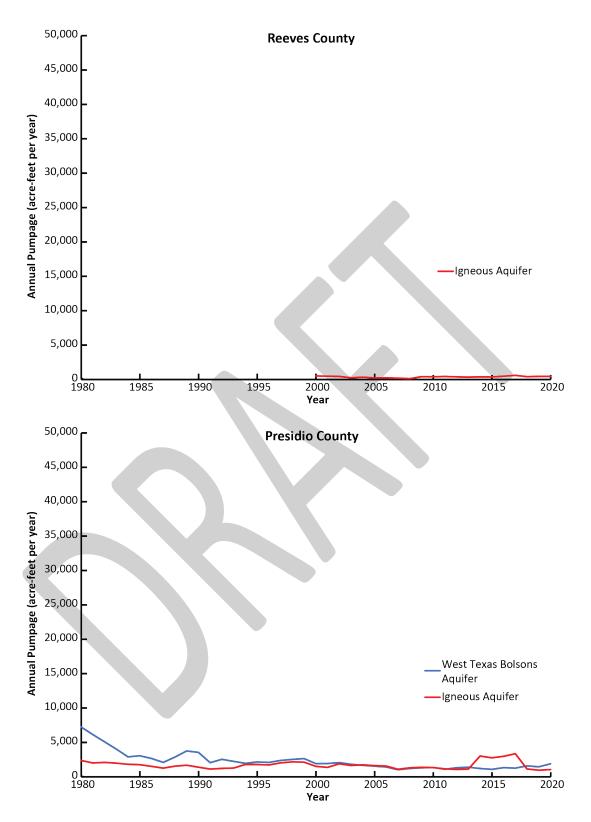


Figure 4.6.7. (continued). Total estimated pumpage for each of the counties in the Igneous and West Texas Bolsons aquifers study area (data from TWDB, 2022b).

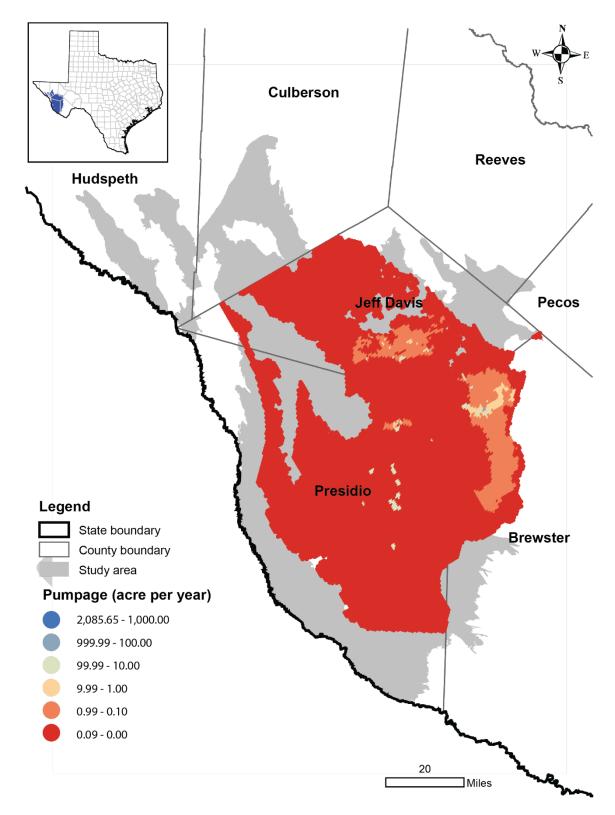


Figure 4.6.8. Total estimated pumpage from the Igneous Aquifer for the year 2000 (data from Beach and others, 2004).

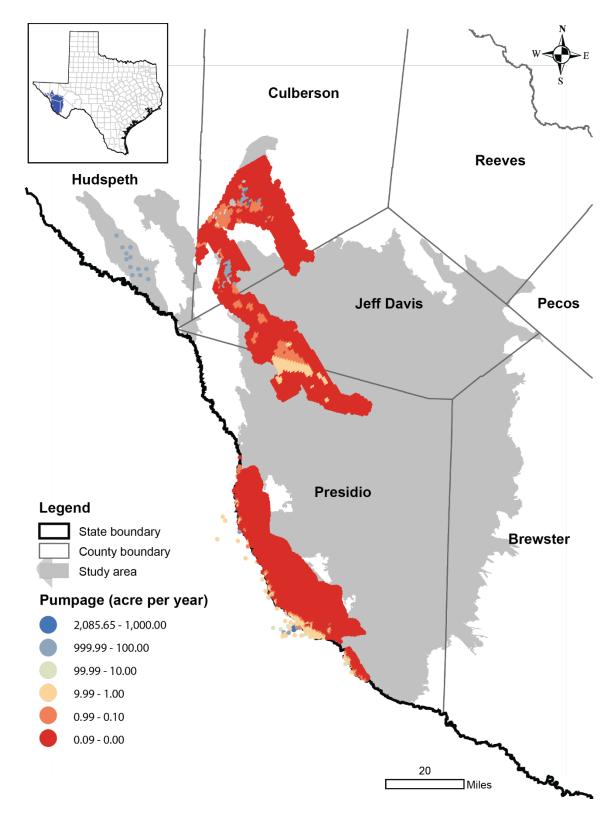


Figure 4.6.9. Total estimated pumpage from the West Texas Bolsons Aquifer for the year 2000 (data from Beach and others, 2004, 2008 and Wade and Jigmond, 2013).

Figure 4.6.10. Pie charts showing relative amounts of pumping from steam electric power, irrigation, livestock, manufacturing, and municipal in the Igneous and West Texas Bolsons aquifers for the year 2020 (data from TWDB, 2022b).

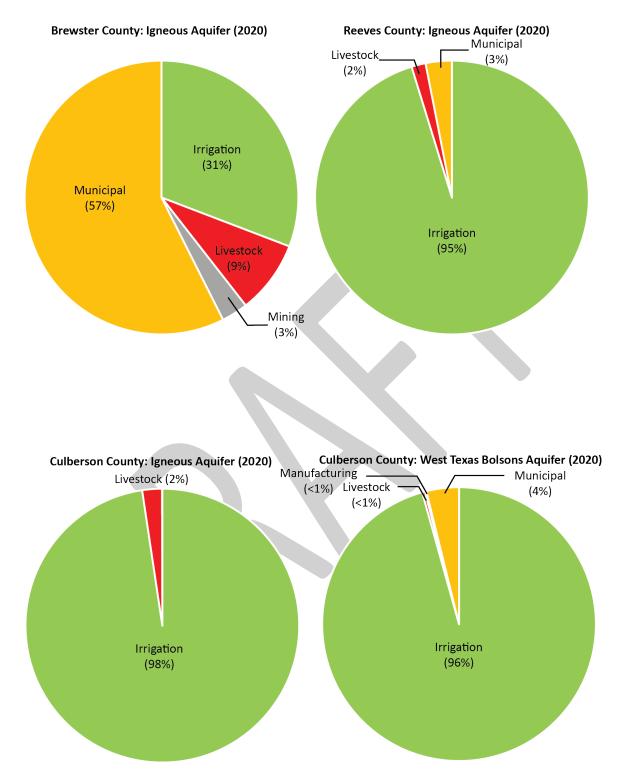


Figure 4.6.11. Pie charts showing relative amounts of pumping from steam electric power, irrigation, livestock, manufacturing, and municipal in each of the counties that overlie the Igneous and West Texas Bolsons aquifers for the year 2020 (data from TWDB, 2022b).

Hudspeth County: West Texas Bolsons Aquifer (2020)

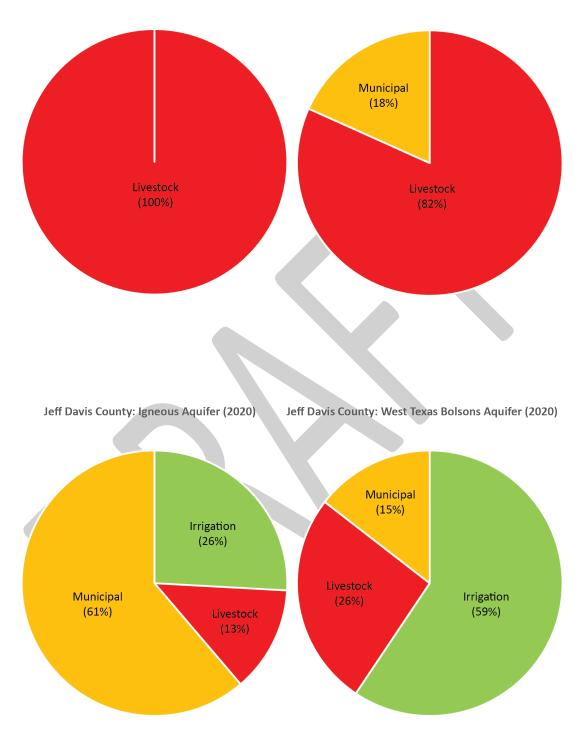


Figure 4.6.11. (continued). Pie charts showing relative amounts of pumping from steam electric power, irrigation, livestock, manufacturing, and municipal in each of the counties that overlie the Igneous and West Texas Bolsons aquifers for the year 2020 (data from TWDB, 2022b).

Presidio County: Igneous Aquifer (2020)

Presidio County: West Texas Bolsons Aquifer (2020)

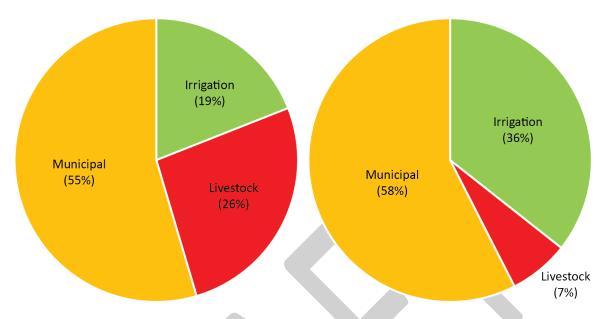


Figure 4.6.11. (continued). Pie charts showing relative amounts of pumping from steam electric power, irrigation, livestock, manufacturing, and municipal in each of the counties that overlie the Igneous and West Texas Bolsons aquifers for the year 2020 (data from TWDB, 2022b).

4.7 Water quality

The Igneous Aquifer has fresh groundwater that is generally less saline than the overlying West Texas Bolsons Aquifer. This section is a discussion of the major element and isotopic compositions of groundwater in the Igneous and West Texas Bolsons aquifers with implications for determination of groundwater flow through and recharge to the respective aquifers.

4.7.1 Major elements

Figures 4.7.1 and 4.7.2 show total dissolved solids concentrations in the Igneous and West Texas Bolsons aquifers groundwater. Fresh groundwater—total dissolved solids less than 1,000 milligrams per liter—occurs throughout the aquifers. Slightly saline groundwater total dissolved solids of 1,000 milligrams per liter to 3,000 milligrams per liter—occur mostly in the West Texas Bolsons Aquifer, in the Presidio and Redford bolsons, and in the north in the Lobo Flat Michigan Flat, and Wild Horse Flat. Moderately saline groundwater—total dissolved solids of 3,000 milligrams per liter to 10,000 milligrams per liter—occurs in the Salt Flat, north of the West Texas Bolsons Aquifer. These higher groundwater salinities can be attributed to discharge through evaporation in a closed basin (Boyd and Kreitler, 1986; Angle, 2001).

Groundwater in the Igneous and West Texas Bolsons aquifers display a wide range of geochemical compositions (Figure 4.7.3). Igneous Aquifer groundwater compositions range

from calcium-magnesium-bicarbonate to sodium-bicarbonate compositions. West Texas Bolsons Aquifer groundwater has a wider range of compositions, from calcium-magnesium to sodium and bicarbonate to sulfate-chloride. These compositional ranges are determined by geochemical processes that take place as the groundwater flows through the aquifer interacting with volcanic or alluvial aquifer rock and mixing with groundwater inflows from surrounding stratigraphic units.

4.7.2 Isotopes

Groundwater isotopic compositions can provide information about groundwater hydrology. Concentrations of different isotopes often change in response to processes such as evaporation, water-rock interaction, recharge processes, and the elapsed time since recharge.

Groundwater carbon-13 isotopic compositions (δ^{13} C) represent the ratios of stable carbon isotopes (¹²C and ¹³C) in groundwater relative to the composition of a standard—Peedee Belemnite calcite (Clark and Fritz, 1997). These isotope ratios are expressed as the relative difference in parts per thousand (per mil). Groundwater carbon-13 isotopic compositions often reflect relative carbon inputs from interaction with soil and aquifer rock. Groundwater near recharge zones tends to have more negative carbon-13 compositions reflecting recent contact with the soil. With increasing groundwater residence in the aquifer, increasing effects of water-rock interaction results in the groundwater taking on more positive carbon-13 isotopic compositions, reflecting those of the aquifer rock. This process is apparent in the Igneous and West Texas Bolsons aquifers where groundwater carbon-13 compositions indicate areas of relatively recent recharge (Figures 4.7.4 and 4.7.5). In the Igneous Aquifer, more negative groundwater carbon-13 compositions—about -15 to -8 per mil—indicate relatively recent recharge along the margins of the aquifer with older groundwater in the central parts of the aquifer. Carbon-13 isotopes in the West Texas Bolsons Aquifer indicate relatively recent recharge only in Ryan Flat and Presidio Bolson. Indications are that the groundwater in Red Light Draw and Eagle Flat, and possibly Lobo, Michigan, and Wild Horse Flat is very old.

Carbon-14 decays over time and, consequently, without a continuous influx of carbon-14 with recharging groundwater, the carbon-14 activity in groundwater will decrease over time. The result typically is that groundwater carbon-14 activity is higher in shallower parts of an aquifer where recharge is occurring. In the Igneous and West Texas Bolsons aquifers, carbon-14 activity is generally highest—up to 1.0 fraction modern carbon—where there is no recharge occurs, and lowest—less than 0.2 fraction modern carbon—where there is no recharge and almost all the groundwater carbon-14 has decayed (Figures 4.7.6 and 4.7.7). The groundwater carbon-14 in the study area has the similar indications to carbon-13—recent recharge along the margins of the Igneous Aquifer and Presidio Bolson of the West Texas Bolsons Aquifer. This similarity is due to the fact that both isotopic

compositions change over time. Carbon-14 due to radioactive decay and carbon-13 due to water-rock interaction processes (Figure 4.7.8).

Groundwater tritium behaves like carbon-14 (Figure 4.7.9). The difference is that tritium has a faster decay rate with a half-life of 12.3 years compared to 5,730 years for carbon-14 and is therefore more sensitive to more recent recharge than carbon-14 (Clark and Fritz, 1997). High tritium activity indicates the most recent recharge. In the Igneous and West Texas Bolsons aquifers, the groundwater tritium activity ranges between 0 and 7 Tritium Units (Figures 4.7.10 and 4.7.11). Most groundwater samples in the study area display tritium activity less than 1.0 suggesting little recharge to the aquifer within the past 50 years. The few groundwater samples with relatively high tritium activity tend to occur along the margins of the aquifers, suggesting relatively recent recharge.

Groundwater stable hydrogen (δ^{2} H) and oxygen (δ^{18} O) isotopic compositions represent the ratios of stable hydrogen isotopes (H and ²H) and stable oxygen isotopes (¹⁶O and ¹⁸O) in groundwater relative to the composition of standard mean ocean water (Clark and Fritz, 1997). These isotope ratios are expressed as the relative difference in parts per thousand (per mil). Groundwater stable hydrogen and oxygen isotopic compositions reflect the composition of the precipitation that recharged the aquifer, which may vary spatially or temporally in response to factors such as elevation, temperature, and amount of precipitation (Dansgaard, 1964; Fontes and Olivry, 1977; Fontes, 1980; Gonfiantini, 1985; Scholl and others, 1996). Consequently, the hydrogen and oxygen isotopic compositions of groundwater can be used as an indicator of the conditions under which recharge to the aquifer occurred. Figure 4.7.12 shows groundwater hydrogen and oxygen isotopic compositions in the Igneous and West Texas Bolsons aquifers.

Groundwater stable hydrogen and oxygen isotopic compositions in the Igneous Aquifer range between -60 to -40 per mil and -8 to -4 per mil, respectively. Groundwater stable hydrogen and oxygen isotopic compositions in the West Texas Bolsons Aquifer range between -70 to -40 per mil and -9 to -6 per mil, respectively. Stable hydrogen and oxygen isotope compositions are generally slightly below the Global Meteoric Water Line—the average relationship between stable hydrogen and oxygen isotopic compositions in precipitation around the world—but follow the same trend (Craig, 1961). The average stable hydrogen and oxygen isotope composition. This difference can be explained by Figure 4.7.13 which shows the groundwater stable oxygen isotopic trends across the study area. Stable oxygen isotopic compositions tend to become increasingly negative from southeast to northwest, with the highest values occurring in the southern Igneous Aquifer and the Presidio Bolson, and the lowest values occurring in the northern and westernmost bolsons—Eagle Flat and Red Light Draw of the West Texas Bolsons Aquifer.

4.7.3 Implications for recharge based on major element and isotopic compositions in groundwater

The most likely effects influencing the range of groundwater stable oxygen isotopic compositions in the Igneous and West Texas Bolsons aquifers are the temperature and/or the amount of precipitation. Higher precipitation amounts and/or lower temperatures produce more negative isotopic compositions in the precipitation and resultant groundwater.

Figure 4.7.14 shows the variation of groundwater stable oxygen isotopic compositions with groundwater carbon-14 compositions in the study area, where carbon-14 is a representation of time. Carbon-14 compositions around 1 represent recent recharge within the last 25 years, while compositions approaching 0 indicate on average recharge several thousand years ago during the Pleistocene epoch. Figure 4.7.14 indicates the most ancient groundwater in the study area occurs in the Green River Valley, Red Light Draw, and the Salt Basin which is made up of Lobo Flat, Michigan Flat, Ryan Flat, and Wild Horse Flat. This groundwater tends to be characterized by stable oxygen isotopic compositions below -7 per mil.

The most recently recharged groundwater in the Presidio Bolson and Igneous Aquifer are characterized by stable oxygen isotopic compositions above -7 per mil. This relationship between the apparent age of the groundwater and stable oxygen isotopic composition is related to the climatic differences between the Pleistocene when the study area was cooler and wetter than it currently is today. The conclusion that can be made from Figures 4.7.13 and 4.7.14 is that most recharge in the western and northern bolsons of the West Texas Bolsons Aquifer occurred during the Pleistocene. Elsewhere in the study area, especially in the Igneous Aquifer and the Presidio Bolson of the West Texas Bolsons Aquifer, the aquifers are characterized by a mixture of Pleistocene and modern recharge.

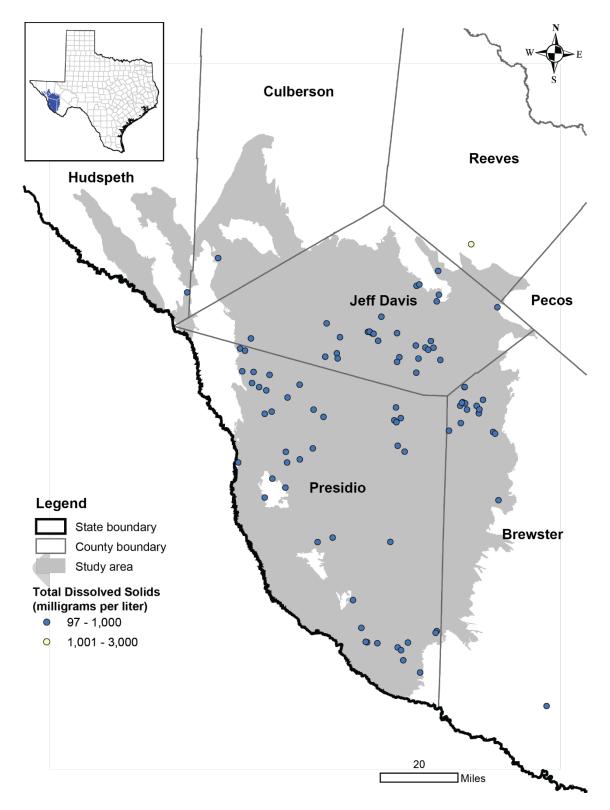


Figure 4.7.1. Total dissolved solids concentration (in milligrams per liter) in the Igneous Aquifer (data from TWDB, 2022a).

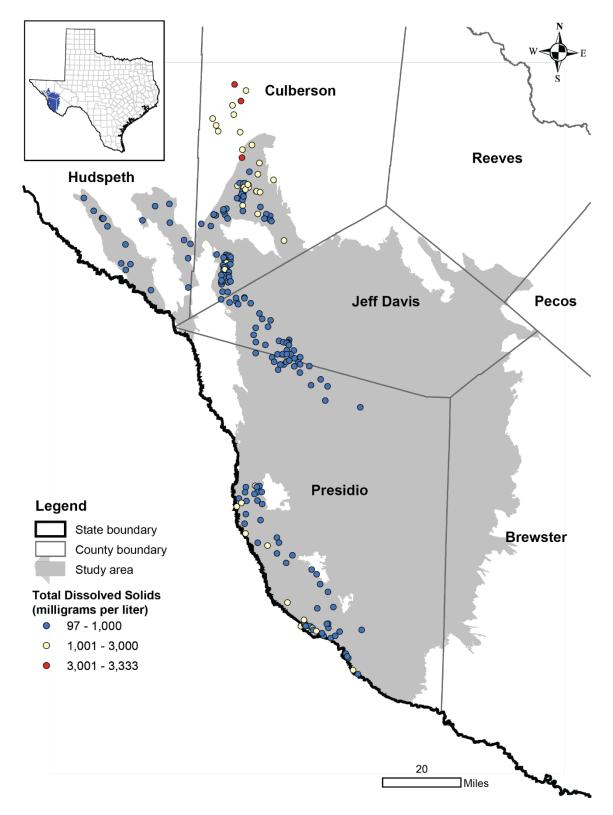


Figure 4.7.2. Total dissolved solids concentration (in milligrams per liter) in the West Texas Bolsons Aquifer (data from TWDB, 2022a).

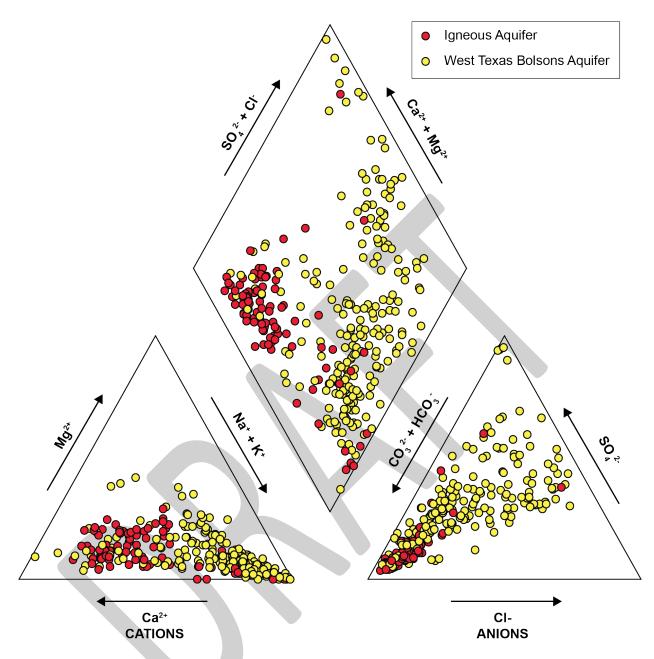


Figure 4.7.3. A Piper diagram showing the range of groundwater compositions in the Igneous Aquifer (red dots) and the overlying West Texas Bolsons Aquifer (yellow dots) (data from TWDB, 2022a).

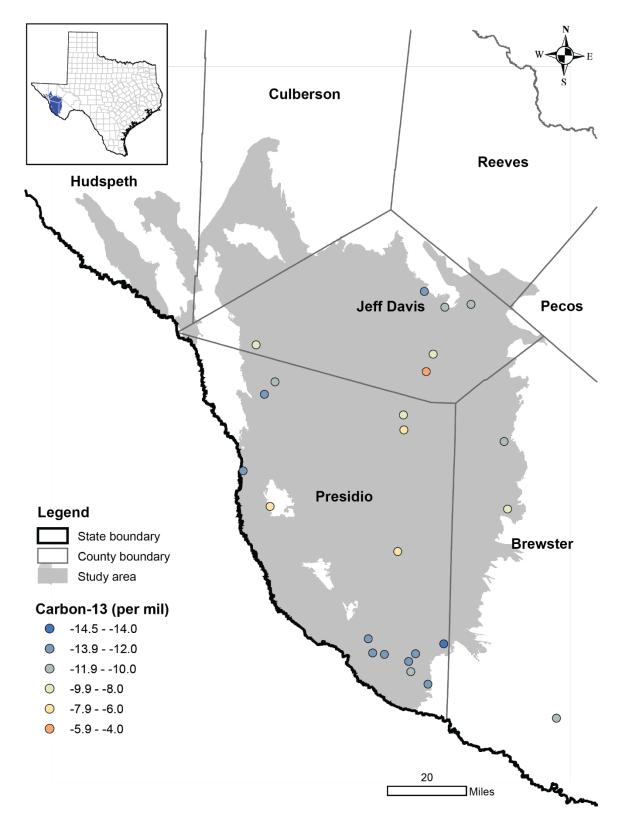


Figure 4.7.4. Groundwater carbon-13 isotopes (in per mil) in the Igneous Aquifer (data from TWDB, 2022a).

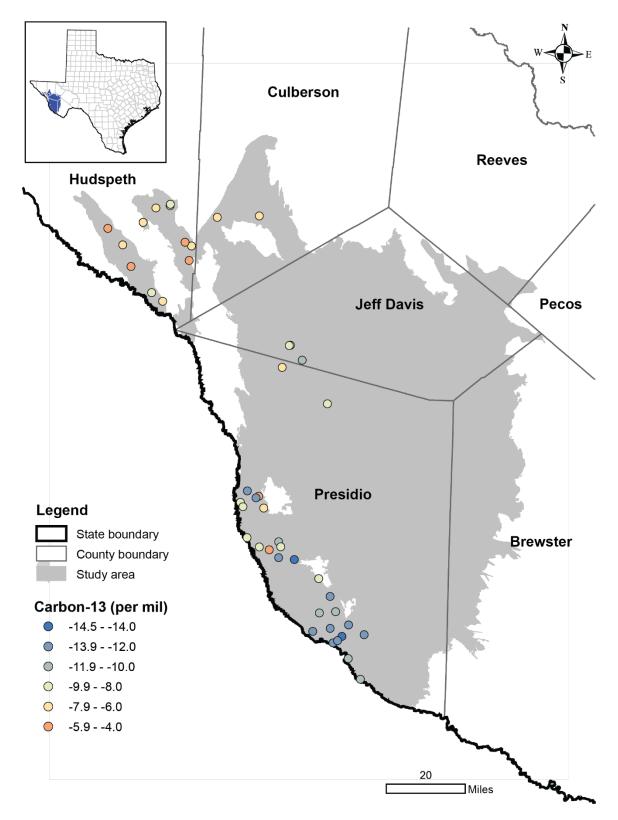


Figure 4.7.5. Groundwater carbon-13 isotopes (in per mil) in the West Texas Bolsons Aquifer (data from TWDB, 2022a).

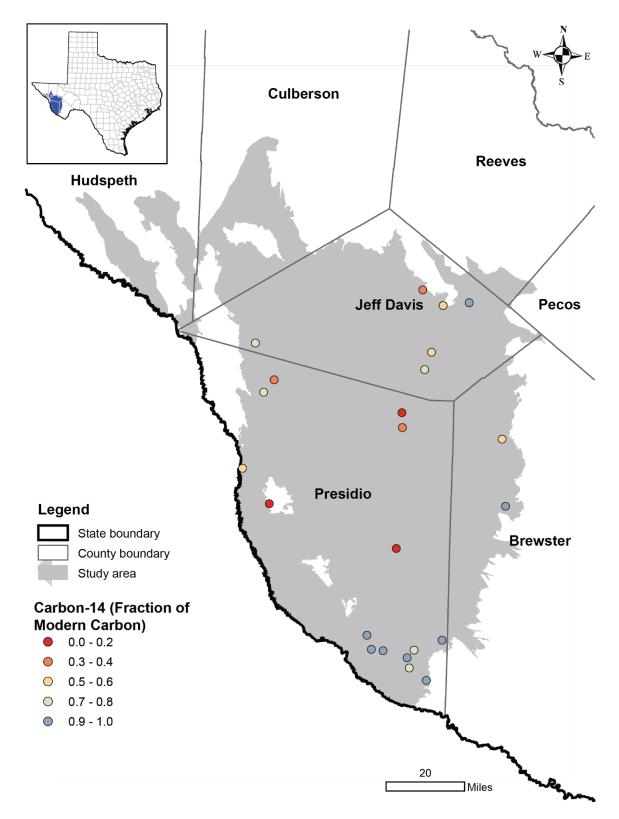


Figure 4.7.6. Groundwater carbon-14 (in fraction of modern carbon) in the Igneous Aquifer (data from TWDB, 2022a).

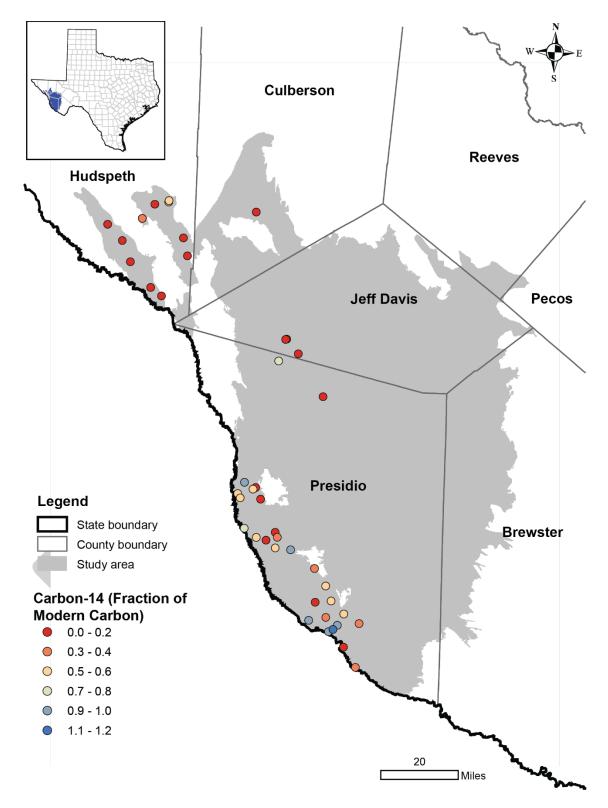


Figure 4.7.7. Groundwater carbon-14 (in fraction of modern carbon) in the West Texas Bolsons Aquifer (data from TWDB, 2022a).

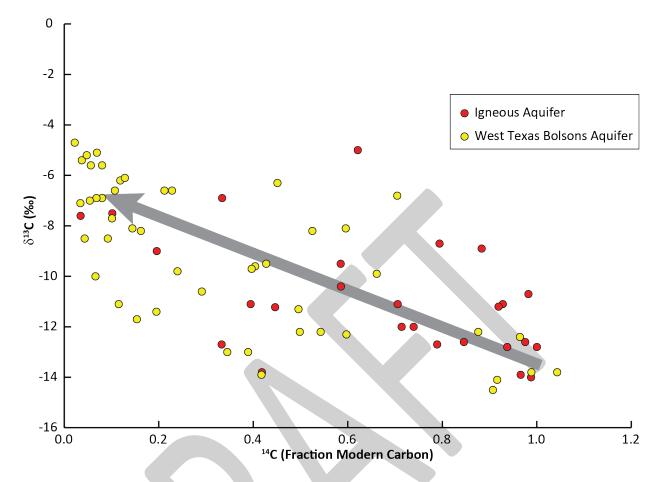


Figure 4.7.8. Groundwater carbon-13 and carbon-14 isotopes in the Igneous and West Texas Bolsons aquifers. The arrow indicates down-gradient groundwater compositions (data from TWDB, 2022a).

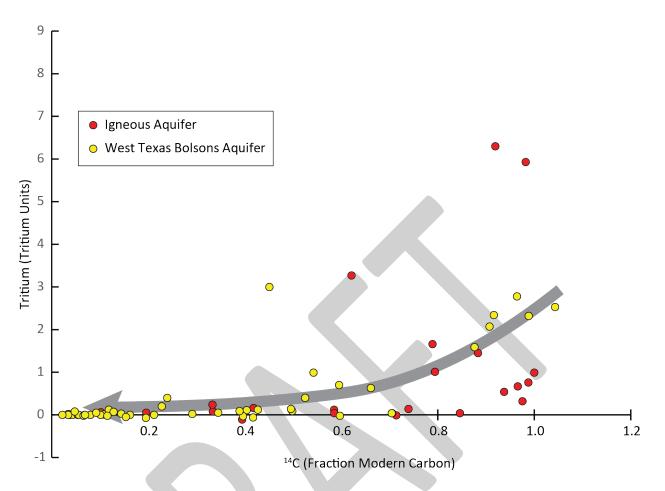


Figure 4.7.9. Groundwater tritium and carbon-14 isotopes in the Igneous and West Texas Bolsons aquifers. The arrow indicates down-gradient groundwater compositions (data from TWDB, 2022a).

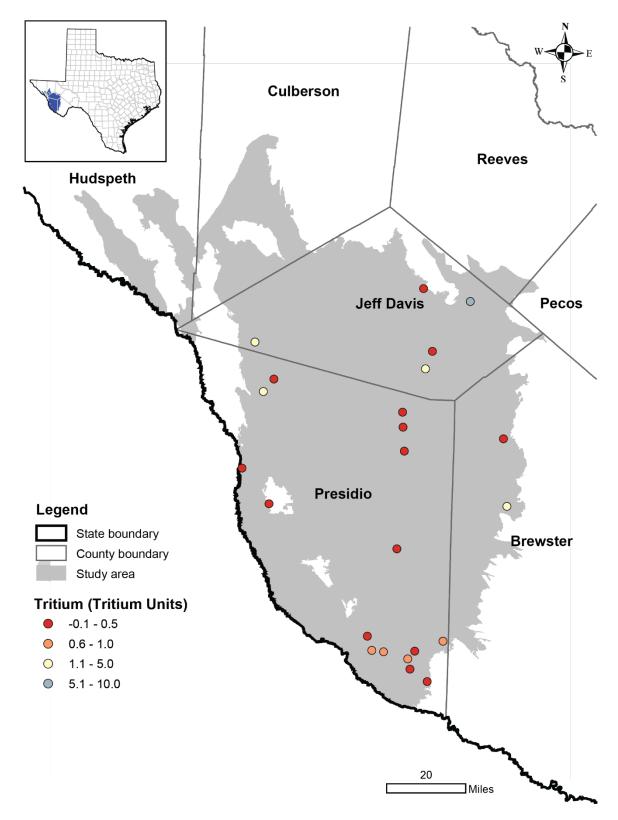


Figure 4.7.10. Groundwater tritium (in Tritium Units) in the Igneous Aquifer (data from TWDB, 2022a).

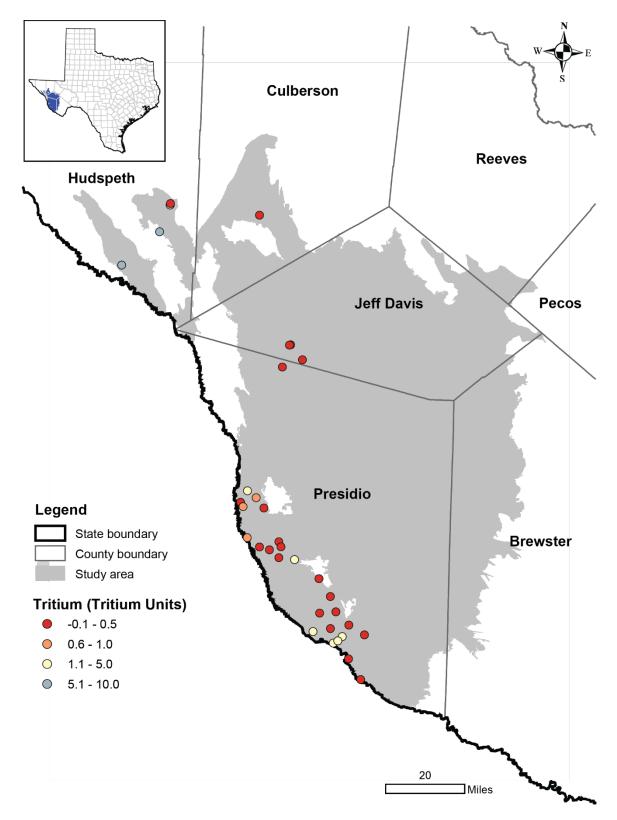


Figure 4.7.11. Groundwater tritium (in Tritium Units) in the West Texas Bolsons Aquifer (data from TWDB, 2022a).

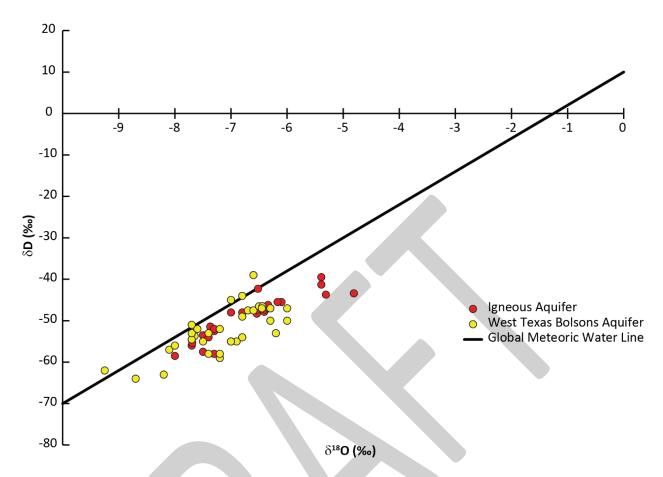


Figure 4.7.12. Groundwater stable oxygen isotopes (δ^{18} O, in per mil) and stable hydrogen isotopes (δ^{2} H, in per mil) in the Igneous and West Texas Bolsons aquifers (data from TWDB, 2022a).

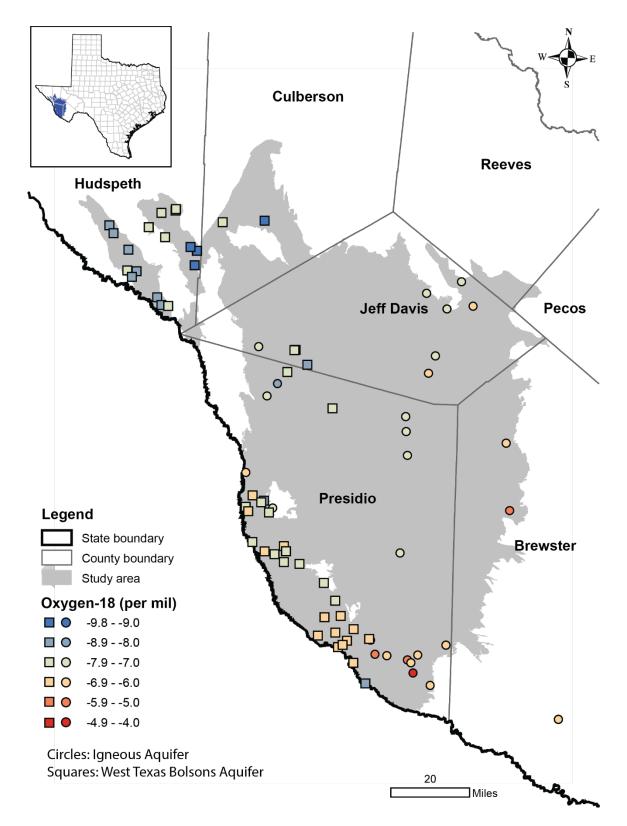


Figure 4.7.13. Groundwater stable oxygen isotopes (δ^{18} O, in per mil) in the Igneous and West Texas Bolsons aquifers (data from TWDB, 2022a).

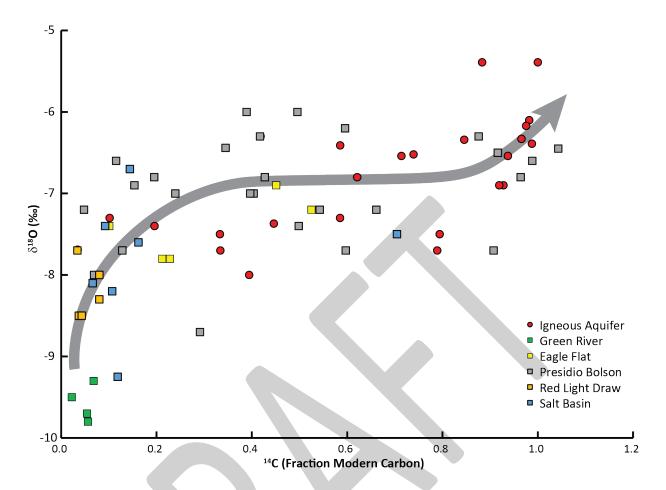


Figure 4.7.14. Groundwater stable oxygen and carbon-14 isotopes in the Igneous and West Texas Bolsons aquifers. The arrow indicates down-gradient groundwater compositions (data from TWDB, 2022a).

5.0 CONCEPTUAL MODEL OF GROUNDWATER FLOW IN THE IGNEOUS AND WEST TEXAS BOLSONS AQUIFERS

The conceptual model of groundwater flow in the Igneous and West Texas Bolsons aquifers is based on the hydrogeologic setting, described in Section 4.0. The conceptual model is a simplified representation of the hydrogeological features that govern groundwater flow in these aquifers. It includes the hydrostratigraphy, hydrogeologic framework, hydraulic properties, hydrologic boundaries, recharge, and discharge.

The Igneous and West Texas Bolsons aquifers extend over most of Jeff Davis and Presidio counties and include parts of Brewster, Culberson, Hudspeth, and Reeves counties. The Igneous Aquifer and West Texas Bolsons Aquifer are composed of the Tertiary volcanic and overlying Quaternary alluvium, respectively, that occur in the study area (Figure 2.2.1).

TWDB groundwater level data (Beach and others, 2004; TWDB, 2022a) indicate that groundwater flow through the Igneous Aquifer generally radiates from the Davis Mountains (Figure 4.2.4). Beach and others (2004, 2008), Wade and Jigmond (2013), and TWDB (2022a) indicate that in the West Texas Bolsons Aquifer, groundwater flow converges on the Rio Grande in the Green River Valley, Presidio Bolson, Red Light Draw, and Redford Bolson (Figure 4.2.6). The remaining bolsons are closed basins. There is no apparent surface water discharge in Eagle Flat. In the Salt Basin—Ryan Flat, Lobo Flat, Michigan Flat, and Wild Horse Flat—groundwater flows northward from one bolson to the next, eventually discharging by evapotranspiration in the salt flats located north of the study area. The Igneous and West Texas Bolsons aquifers recharge by infiltration of precipitation or resultant runoff along the margins of the mountains in the study area as noted in Sections 4.3 and 4.7.2. Groundwater isotopes indicate that most groundwater in the Igneous and West Texas Bolsons aquifer is ancient, characteristic of recharge during the Pleistocene epoch. Evidence of recent recharge is restricted to the Presidio Bolson portion of the West Texas Bolsons Aquifer and southernmost parts of the Igneous Aquifer.

Figure 5.0.1 is two cross-sections through the study area and proposed conceptual block diagrams illustrating aquifer contact relationships and sources and sinks of groundwater in the Igneous and West Texas Bolsons aquifers and the underlying stratigraphic units. The conceptual model block diagram differs from the conceptual models used in the previous groundwater availability models of the Igneous and West Texas Bolsons aquifers by Beach and others (2004, 2008) and Wade and Jigmond (2013) which were all three-layer models. The proposed conceptual model is a two-layer model representing the West Texas Bolsons Aquifer (Layer 1) and the Igneous Aquifer and the underlying non-aquifer stratigraphic units (Layer 2). The non-aquifer stratigraphic units underly the three westernmost bolsons—Red Light Draw, Eagle Flat, and Green River Valley—and the Presidio and Redford bolsons.

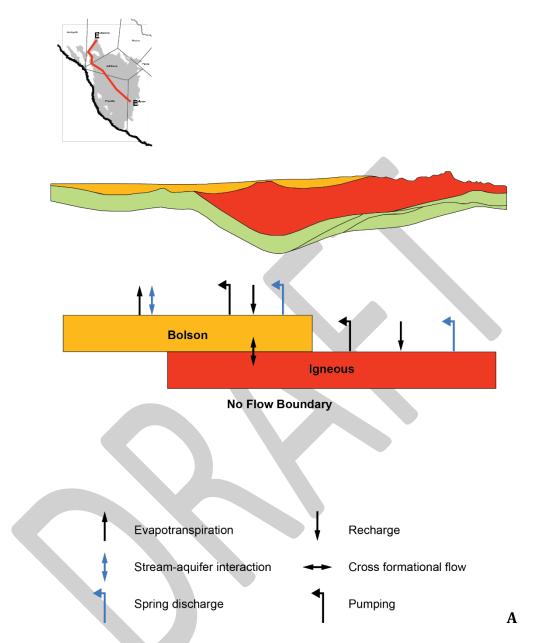


Figure 5.0.1. Schematic cross-section and conceptual groundwater flow model for the Igneous and West Texas Bolsons aquifers groundwater availability model.

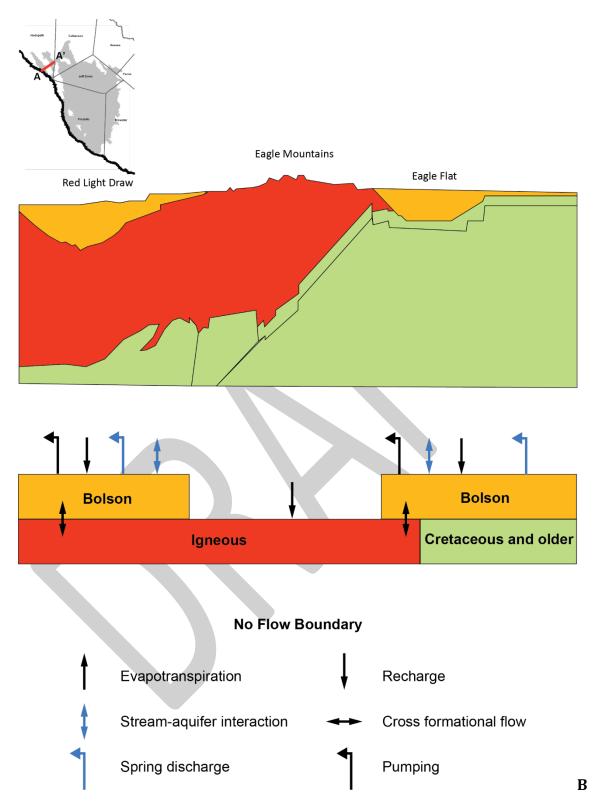


Figure 5.0.1. (continued). Schematic cross-section and conceptual groundwater flow model for the Igneous and West Texas Bolsons aquifers groundwater availability model.

6.0 ACKNOWLEDGEMENTS

I would like to acknowledge the interest in this project shown by the stakeholders who attended the initial and conceptual model stakeholder advisory forums. I would also like to acknowledge staff who reviewed and otherwise contributed to this conceptual model report.

7.0 REFERENCES

- Albritton Jr., C. C., and Smith Jr., J. F., 1965, Geology of the Sierra Blanca area, Hudspeth County, Texas: U.S. Geological Survey Professional Paper 479, 131 p.
- Angle, E. S., 2001, Hydrogeology of the Salt Basin, in Mace, R. E., Mullican, W. F., and Angle, E. S., eds., Aquifers of west Texas, Texas Water Development Board, Report 356, p. 232-247.
- Beach, J. A., Ashworth, J. B., Finch Jr., S. T., Chastain-Howley, A., Calhoun, K., Urbanczyk, K.
 M., Sharp Jr., J. M., and Olson, J., 2004, Groundwater Availability Model for the
 Igneous and parts of the West Texas Bolsons (Wild Horse Flat, Michigan Flat, Ryan
 Flat, and Lobo Flat) aquifers: Prepared for Texas Water Development Board, 393 p.
- Beach, J. A., Symank, L., Huang, Y., Ashworth, J. B., Davidson, T., Collins, E. W., Hibbs, B. J., Darling, B. K., Urbanczyk, K., Calhoun, K., and Finch, S., 2008, Groundwater Availability Model for the West Texas Bolsons (Red Light Draw, Green River Valley, and Eagle Flat) Aquifer in Texas: Prepared for Texas Water Development Board, 320 p.
- Black, J. W., 1993, Hydrogeology of the Lobo and Ryan Flats area, Trans-Pecos Texas: MA Thesis, The University of Texas at Austin, 113 p.
- Boyd, F. M., and Charles W. Kreitler, 1986, Hydrogeology of a Gypsum Playa, Northern Salt Basin, Texas, The University of Texas at Austin, Bureau of Economic Geology, Report of Investigations No. 158, 37 p.
- Brown and Caldwell, 2001, West Texas water resources evaluation: Consultant's report prepared for Hunt Building Corporation.
- Brune, G., 2002, Springs of Texas, Volume I, Second Edition: Texas A&M University Press, College Station, Texas, 566 p.
- Chastain-Howley, A., 2001, Igneous aquifers of Far West Texas: in Aquifers of West Texas: Texas Water Development Board Report 356, pp. 241-256.
- Cliett, T., 1994, Hydrogeology of Wild Horse Flat Culberson County, Texas: Consultant's report prepared by Tom Cliett & Associates, Inc. for El Paso Water Utilities, 9 p.
- Clark, I. D., and Fritz, P., 1997, Environmental isotopes in hydrogeology: Lewis Publishers, Boca Raton, Florida, 328 p.
- Collins, E. W., and Raney, J. A., 1994, Impact of late Cenozoic extension on Laramide overthrust belt and Diablo Platform margins, northwestern Trans-Pecos Texas, in Ahlen, Jack, Peterson, John, and Bowsher, A. L., eds., Geologic activities in the 90s: New Mexico Bureau of Mines and Mineral Resources, Bulletin No. 150, p. 71–81.

- Collins, E. W., and Raney, J. A., 1997, Quaternary faults within intermontane basins of northwest Trans-Pecos Texas and Chihuahua, Mexico: Bureau of Economic Geology Report of Investigations No. 245, University of Texas, 59 p.
- Craig, H., 1961, Isotopic variations in meteoric waters: Science, v. 133, p. 1702-1703.
- Dansgaard, W., 1964, Stable isotopes in precipitation: Tellus, v. 16, p. 436-468.
- Darling, B. K., 1997, Delineation of the groundwater flow systems of the Eagle Flat and Red Light basins of Trans-Pecos Texas: The University of Texas at Austin, Ph.D. dissertation, 179 p.
- Darling, B. K., Hibbs, B. J., and Dutton, A. R., 1994, Ground-water hydrology and hydrochemistry of Eagle Flat and surrounding area: The University of Texas at Austin Bureau of Economic Geology, contract report prepared for Texas Low-Level Radioactive Waste Disposal Authority, Interagency Contract No. (92-93)-0910, 137 p.
- DeFord, R. K., and Bridges, L. W., 1959, Tarantula Gravel, northern Rim Rock country, Trans-Pecos Texas: Texas Journal of Science, v. 11, p. 268-295.
- DeFord, R. K., and Haenggi, W. T., 1971, Stratigraphic nomenclature of Cretaceous rocks in northeastern Chihuahua: in Seewald, Ken, and Sundeen, Dan, eds., The geologic framework of the Chihuahua tectonic belt: West Texas Geological Society Publication 71-59, p. 175–196.
- Finch Jr., S. T. and Armour, J., 2001, Hydrogeologic analysis and groundwater flow model of the Wild Horse Flat area, Culberson County, Texas: Consultant's report prepared by John Shomaker & Associates, Inc. for Culberson County Groundwater Conservation District, 37 p.
- Fontes, J. C., 1980, Environmental isotopes in groundwater hydrology, *in* P. Fritz, and J. C. Fontes (eds.), Handbook of environmental isotope geochemistry, Elsevier, New York, v. 1, Ch. 3, p. 75-140.
- Fontes, J. C., and Olivry, J. C., 1977, Gradient isotopique entre 0 et 4000m dans les précipitations du Mont Cameroun: Comptes Rendus Réunion Annuelle Sciences de la Terres, Société Géologique Française, Paris, no. 4, p. 171.
- Freeze, R. A., and Cherry, J. A., 1979, Groundwater: Prentice-Hall, Inc., Englewood Cliffs, NJ, 604 p.
- Gates, J. S., White, D. E., Stanley, W. D., and Ackermann, H. D., 1980, Availability of fresh and slightly saline ground water in basins of westernmost Texas: Texas Department of Water Resources Report No. 256, 108 p.
- George, P., Mace, R. E., and Mullican, W. F., 2005, The hydrogeology of Hudspeth County, Texas: Texas Water Development Board Report 364, 95 p.

- George, P. G., Mace, R. E., and Petrossian, R., 2011, Aquifers of Texas: Texas Water Development Board Report 380, 182 p.
- Gonfiantini, R., 1985, On the isotopic composition of precipitation in tropical stations: Acta Amazonica, v. 15, no. 1-2, p. 121-139.
- Groat, C., 1972, Presidio Bolson, Trans-Pecos Texas and Adjacent Mexico: Geology of a Desert Basin Aquifer System, Bureau of Economic Geology Report of Investigations No. 76, 45 p., 1 map.
- Gries, J. G., and Haenggi, W. T., 1971, Structural evolution of the eastern Chihuahua Tectonic Belt, in Seewald, Ken, and Sundeen, Dan, eds., The geologic framework of the Chihuahua Tectonic Belt: West Texas Geological Society, p. 119-138.
- Gries, J. G., 1980, Laramide evaporite tectonics along the Texas–northern Chihuahua border, in Dickerson, P. W., Hoffer, J. M., and Callender, J. F., eds., Trans-Pecos region, southeastern New Mexico and West Texas: New Mexico Geological Society, 31st Annual Field Conference, p. 93–100.
- Heitmuller, F. T., and Reece, B. D., 2003, Database of historical documented springs and spring measurements in Texas: United States Geological Survey, Open-File Report 03-315.
- Henry, C. D., 1979, Geologic Setting and Geochemistry of Thermal Water and Geothermal Assessment, Trans-Pecos Texas, Bureau of Economic Geology, Report of Investigations No. 96, 48 p.
- Henry, C. D., McDowell, F. W., Price, J. G., and Smyth, R. C., 1986, Compilation of potassiumargon ages of Tertiary igneous rocks, Trans-Pecos Texas: The University of Texas at Austin, Bureau of Economic Geology, Geological Circular 86-2, 34 p.
- Henry, C. D. and McDowell, F. W., 1986, Geochronology of magmatism in the Tertiary volcanic field, Trans-Pecos Texas, in Price, J.G., Henry, C.D., Parker, D.F., and Barker, D.S., eds., Igneous geology of Trans-Pecos Texas: Field trip guide and research articles: The University of Texas, Bureau of Economic Geology Guidebook 23, pp. 99-122.
- Henry, C. D., and Price, J. F., 1985, Summary of the tectonic development of Trans-Pecos Texas: The University of Texas at Austin, Bureau of Economic Geology, Miscellaneous Map No. 36, scale 1:500,000, 8-p. text.
- Henry, C. D., and Price, J. F., 1986, Early Basin and Range development in Trans-Pecos Texas and adjacent Chihuahua: magmatism and orientation, timing, and style of extension: Journal of Geophysical Research, v. 91, no. B6, p. 6213-6224.
- Henry, C. D., and Price, J. F., 1989, Characterization of the Trans-Pecos region, Texas: geology, in Bedinger, M. S., Sargent, K. A., and Langer, W. H., eds., Studies of geology and hydrology in the Basin and Range Province, southwestern United States, for

isolation of high-level radioactive waste- characterization of the Trans-Pecos region, Texas: U.S. Geological Survey Professional Paper 1370-B, p. B4-B22.

- Henry, C. D., Price, J. G., and James, E. W., 1991, Mid-Cenozoic stress evolution and magmatism in the southern Cordillera, Texas and Mexico: Transition from continental arc to intraplate extension: Journal of Geophysical Research, v. 96, pp. 13545-13560.
- Hibbs, B. J., Darling, B. K., and Ashworth, J. B., 1995, Interbasin movement of groundwater and vertical ground-water flow in Hudspeth County, Texas: Proceedings of Texas Water 95, a Component Conference of the First International Conference on Water Resources Engineering, American Society of Civil Engineers, San Antonio, TX, p. 267-277.
- Hibbs, B. J., and Darling, B. K., 1995, Salinization of the Rio Grande alluvial aquifer in Trans-Pecos, Texas: Proceedings of the 24th Water for Texas Conference, Research Leads the Way, Austin, TX, p.157-161.
- Hibbs, B. J., and Darling, B. K., 2005, Revisiting a classification scheme for U.S.-Mexico alluvial basin-fill aquifers: Ground Water, v. 43, no. 5, p. 750-763.
- Hood, J. W., and Scalapino, R. A., 1951, Summary of the development of ground water for irrigation in the Lobo Flats area, Culberson and Jeff Davis Counties, Texas: Texas Board Water Engineers Bulletin 5102, 29 p.
- Horak, R. L., 1985, Trans-Pecos tectonism and its effect on the Permian Basin, in Dickerson,
 P. W., and Muehlberger, W. R., eds., Structure and tectonics of Trans-Pecos Texas:
 West Texas Geological Society Publication 85-81, p. 81–87.
- Jackson, J. A., 1997, Glossary of geology: American Geological Institute, Alexandria, VA, 769 p.
- Jackson, M. L. W., Langford, R. P., and Whitelaw, M. J., 1993, Basin-fill stratigraphy, Quaternary history, and paleomagnetics of the Eagle Flat study area, southern Hudspeth County, Texas: The University of Texas at Austin, Bureau of Economic Geology, final report prepared for the Texas Low-Level Radioactive Waste Disposal Authority under interagency contract no. IAC (92-93)-0910, 137 p.
- King, P.B., 1959, The Evolution of North America: Princeton University Press, 190 p.
- King, P. B., 1965, Geology of the Sierra Diablo region, Texas: U.S. Geological Survey Professional Paper 480, 185 p.
- King, P. B., and Flawn, P. T., 1953, Geology and mineral deposits of the Precambrian rocks of the Van Horn area, Texas: University of Texas, Austin, Bureau of Economic Geology Publication 5301, 218 p.
- Langford, R. P., 1993, Landscape evolution of the Eagle Flat and Red Light Basins, Chihuahuan Desert, South-Central Trans-Pecos Texas: The University of Texas at

Austin, Bureau of Economic Geology, final report prepared for the Texas Low-level Radioactive Waste Disposal Authority under interagency contract no. IAC (92-93)-0910, 153 p.

- Mack, G. H., and Seager, W. R., 1990, Tectonic control on facies distribution of the Camp Rice and Palomas Formations (Plio-Pleistocene) in the southern Rio Grande rift: Geological Society of America Bulletin, v. 102, p. 45–53.
- Mack, G. H., Kottlowski, F. E., and Seager, W. R., 1998, The stratigraphy of southcentral New Mexico, in Mack, G. H., Austin, G. S., and Barker, J. M., eds., Las Cruces country II: New Mexico Geological Society Guidebook, 49th Field Conference, p. 135–154.
- Muehlberger, W. R., 1980, Texas lineament revisited, in Dickerson, P. W., Hoffer, J. M., and Callender, J. F., eds., Trans-Pecos region, southeastern New Mexico and West Texas: New Mexico Geological Society Guidebook No. 31, p. 113–121.
- Muehlberger, W. R., Belcher, R. C., and Goetz, L. K., 1978, Quaternary faulting in Trans-Pecos Texas: Geology, v. 6, p. 337-340.
- Muehlberger, W. R. and Dickerson, P. W., 1989, A tectonic history of Trans-Pecos Texas: in Muehlberger, W. R. and Dickerson, P. W. (editors), Structure and Stratigraphy of Trans-Pecos Texas: American Geophysical Union field trip Guidebook T317, pp. 35-54.
- Mraz, R. J., 1977, A Gravity and Subsurface Investigation of the Presidio Bolson Area, Texas, Austin, the University of Texas, M.S. Thesis, 49 p., 1 map.
- Mraz, J. R., and Keller, G. R., 1980, Structure of the Presidio Bolson Area, Texas, Interpreted from Gravity Data, Bureau of Economic Geology Geological Circular 80-13, 20 p., 1 map.
- Muse, W. R., 1966, Water-level data from observation wells in Culberson, Jeff Davis, Presidio and Brewster counties, Texas: Texas Water Development Board Report 16, 61 p.
- Narasimhan, B., Srinivasan, R., Quiring, S., and Nielsen-Gammon, J. W., 2005, Digital climatic atlas of Texas: Texas A & M University, submitted to Texas Water Development Board, TWDB contract #2005-483-559, 108 p.
- National Centers for Environmental Information, 2022, Data access: Website https://www.ncei.noaa.gov/access/search/index, accessed August 2022.
- Nielson, P. D. and Sharp Jr., J. M., 1990, Tectonic controls on the hydrogeology of the Salt Basin, Trans-Pecos Texas: In Kreitler, C. W., and Sharp, J. M. (editors), 1990, Hydrogeology of Trans-Pecos Texas: The University of Texas at Austin, Bureau of Economic Geology Guidebook 25, p. 101-104.

- Price, J. G., and Henry, C. D., 1984, Stress orientations during Oligocene volcanism in Trans-Pecos Texas: timing the transition from Laramide compression of Basin and Range tension: Geology, v. 12, no. 4, p. 238-241.
- Price, J. G., and Henry, C. D., 1985, Summary of Tertiary stress orientations and tectonic history of Trans-Pecos Texas, in Dickerson, P. W., and Muehlberger, W. R., eds., Structure and tectonics of Trans-Pecos Texas: West Texas Geological Society Publication 85-81, p. 149-151.
- Price, J. G., Henry, C. D., Parker, D. F., and Barker, D. S., 1986, Igneous geology of Trans-Pecos Texas: The University of Texas at Austin, Bureau of Economic Geology Guidebook 23, 360 p.
- Raney, J. A., and Collins, E. W., 1993, Regional geologic setting of the Eagle Flat study area, Hudspeth County, Texas: The University of Texas at Austin, Bureau of Economic Geology, final report prepared for the Texas Low-level Radioactive Waste Disposal Authority under interagency contract no. IAC (92-93)-0910, 53 p.
- Scanlon, B. R., Darling, B. K., and Mullican, W. F., 2001, Evaluation of groundwater recharge in basins in Trans-Pecos Texas: in Aquifers of West Texas: Texas Water Development Board Report 356, pp. 26-40.
- Scholl, M. A., Ingebritsen, S. E., Janik, C. J., and Kauahikaua, J. P., 1996, Use of precipitation and groundwater isotopes to interpret regional hydrology on a tropical volcanic island: Kilauea volcano area, Hawaii: Water Resources Research, v. 32, p. 3525-3537.
- Seager, W. R., Shafiqullah, M., Hawley, J. W., and Marvin, R. F., 1984, New K-Ar dates from basalts and the evolution of the southern Rio Grande rift: Geological Society of America Bulletin, v. 95, no. 1, p. 87-99.
- Slade, R. M., Jr., Bentley, J. T., and Michaud, D., 2002, Results of streamflow gain-loss studies in Texas, with emphasis on gains from and losses to major and minor aquifer: U.S. Geological Survey Open-File Report 02-068, 49 p.
- Stevens, J. B., and Stevens, M. S., 1985, Basin and Range deformation and depositional timing, Trans-Pecos Texas, in Dickerson, P. W., and Muehlberger, W. R., eds., Structure and tectonics of Trans-Pecos Texas: West Texas Geological Society Field Conference, Publication 85-81, p. 157-163.
- Strain, W. S., 1971, Late Cenozoic bolson integration in the Chihuahua tectonic belt, in Hoffer, J. M., ed., Geologic framework of the Chihuahua tectonic belt: West Texas Geological Society Publication 71-59, p. 167–173.
- Texas Department of Licensing and Regulation, 2022, Submitted drillers' reports database: website <u>http://www2.twdb.texas.gov/ReportServerExt/Pages/ReportViewer.aspx?%2fSDR</u> <u>%2fWellRpts_Advanced&rs:Command=Render</u>, accessed August 2022.

- TWDB (Texas Water Development Board), 2022a, Well information/groundwater data: website http://www.twdb.texas.gov/groundwater/data/gwdbrpt.asp, accessed August 2022.
- TWDB, 2022b, Water use survey: website <u>http://www.twdb.texas.gov/waterplanning/waterusesurvey/index.asp</u>, accessed November 2022.
- Twiss, P. C., 1959, Geology of the Van Horn Mountains, Trans-Pecos Texas: The University of Texas at Austin, unpublished M.A. thesis, 234 p.
- Underwood, J. R., 1980, Geology of the Eagle Mountains, Hudspeth County, Texas: Dickerson, P. W., and Hoffer, J. M., eds., Trans-Pecos Region, New Mexico Geological Society Guidebook, 31st Field Conference, Trans-Pecos Region, p. 183-193.
- USEPA (United States Environmental Protection Agency), 2022a, Primary distinguishing characteristics of Level III ecoregions of the continental United States: website https://www.epa.gov/eco-research/level-iii-and-iv-ecoregions-continental-united-states, accessed August 2022.
- USEPA, 2022b, Level II and IV Ecoregions of the Continental United States: website <u>https://www.epa.gov/eco-research/level-iii-and-iv-ecoregions-continental-united-states</u>, accessed August 2022.
- USGS (U.S. Geological Survey) and NED (National Elevation Dataset), 2014, Data available at: http://www.usgs.gov/pubprod/, accessed April 2014.
- USGS, 2021, National Hydrography Dataset (NHD), Data available at: https://www.usgs.gov/core-science-systems/ngp/national-hydrography/nhdplushigh-resolution, accessed July 2023.
- Urbanczyk, K. M., Rohr, D., and White, J. C., 2001, Geologic history of West Texas, in Mace, R.E., Mullican, W.F., and Angle, E.S., Aquifers of West Texas: Texas Water Development Board Report 356, p. 17-25.
- Vogelmann, J. E., Sohl, T., and Howard, S. M., 1998a, Regional characterization of land cover using multiple sources of data: Photogrammetric Engineering & Remote Sensing, v. 64, no. 1, p. 45-47.
- Vogelmann, J. E., Sohl, T., Campbell, P. V., and Shaw, D. M., 1998b, Regional land cover characterization using Landsat thematic mapper data and ancillary data sources: Environmental Monitoring and Assessment, v. 51, p. 415-428.
- Wade, S. C., and Jigmond, M., 2013, Groundwater availability model of West Texas Bolsons (Presidio and Redford) Aquifer: Texas Water Development Board report, 100 p.
- Wade S.C., Hutchison, W. R., Chowdhury, A. H., and Coker, D., 2011, A conceptual model of groundwater flow in the Presidio and Redford bolsons aquifers: Texas Water Development Board report, 98 p.

Wermund, E. G., 1996, Physiographic Map of Texas: The University of Texas at Austin, Bureau of Economic Geology, 1 p., 1 map plate.

APPENDIX A. AQUIFER DATA TABLES

127

Well Number	County	Aquifer	Latitude	Longitude	Hydraulic Conductivity (feet per day)
4845602	Hudspeth	Cretaceous System	31.3053	-105.4069	31
4845603	Hudspeth	Cretaceous System	31.2992	-105.3975	17
4853801	Hudspeth	Cretaceous System	31.1419	-105.4417	279
4853802	Hudspeth	Cretaceous System	31.1436	-105.4414	13
4853803	Hudspeth	Cretaceous System	31.1478	-105.4417	0.33
4854503	Hudspeth	Cretaceous System	31.1675	-105.3264	7
4854902	Hudspeth	Cretaceous System	31.1450	-105.2622	0.05
4854903	Hudspeth	Cretaceous System	31.1361	-105.2850	0.06
4854904	Hudspeth	Cretaceous System	31.1397	-105.2542	0.01
4862301	Hudspeth	Cretaceous System	31.1133	-105.2672	0.01
4863101	Hudspeth	Cretaceous System	31.1000	-105.2222	0.34
4864502	Hudspeth	West Texas Bolsons	31.0658	-105.0831	0.54
7403305	Presidio	West Texas Bolsons	29.9931	-104.6475	0.45
7429604	Presidio	West Texas Bolsons	29.5689	-104.3889	1,977
7429606	Presidio	West Texas Bolsons	29.5786	-104.3992	2,356
7429612	Presidio	West Texas Bolsons	29.5575	-104.3917	0.98
7429617	Presidio	West Texas Bolsons	29.5686	-104.3769	30
7430606	Presidio	West Texas Bolsons	29.5706	-104.2783	13
7439202	Presidio	West Texas Bolsons	29.4636	-104.1992	2
7439904	Presidio	West Texas Bolsons	29.4047	-104.1664	0.52
4743503	Culberson	West Texas Bolsons	31.3279	-104.6713	6
4750901	Culberson	West Texas Bolsons	31.1332	-104.7547	5
4751403	Culberson	West Texas Bolsons	31.1874	-104.7283	45
4751717	Culberson	West Texas Bolsons	31.1421	-104.7441	11
4751718	Culberson	West Texas Bolsons	31.1279	-104.7302	5
4751807	Culberson	West Texas Bolsons	31.1451	-104.7030	23
4758309	Culberson	West Texas Bolsons	31.1026	-104.7744	11
4758310	Culberson	West Texas Bolsons	31.1024	-104.7608	15
4758311	Culberson	West Texas Bolsons	31.0924	-104.7813	38
4758502	Culberson	West Texas Bolsons	31.0428	-104.8256	11
4758505	Culberson	West Texas Bolsons	31.0431	-104.8236	9
4758602	Culberson	West Texas Bolsons	31.0462	-104.7838	26
4758602	Culberson	West Texas Bolsons	31.0462	-104.7838	33
4759102	Culberson	West Texas Bolsons	31.0946	-104.7147	28
4759116	Culberson	West Texas Bolsons	31.1024	-104.7472	9
4759117	Culberson	West Texas Bolsons	31.0921	-104.7405	30

Table A1.Hydraulic property data from wells shown in Figures 4.5.1 through 4.5.3.

Well Number	County	Aquifer	Latitude	Longitude	Hydraulic Conductivity (feet per day)
4759120	Culberson	West Texas Bolsons	31.1210	-104.7438	20
4759209	Culberson	West Texas Bolsons	31.0843	-104.6766	18
4759307	Culberson	West Texas Bolsons	31.1215	-104.6513	13
4759404	Culberson	West Texas Bolsons	31.0821	-104.7335	14
4759603	Culberson	West Texas Bolsons	31.0540	-104.6449	71
4760404	Culberson	West Texas Bolsons	31.0490	-104.5922	5
5102906	Culberson	West Texas Bolsons	30.9004	-104.7738	68
5102918	Culberson	West Texas Bolsons	30.8762	-104.7810	5
5102923	Culberson	West Texas Bolsons	30.8901	-104.7824	79
5102926	Culberson	West Texas Bolsons	30.8810	-104.7527	28
5103702	Culberson	West Texas Bolsons	30.8968	-104.7483	18
5103703	Culberson	West Texas Bolsons	30.8862	-104.7363	2
5110306	Culberson	West Texas Bolsons	30.8549	-104.7719	10
5110309	Culberson	West Texas Bolsons	30.8363	-104.7644	38
5110316	Culberson	West Texas Bolsons	30.8476	-104.7644	36
5110317	Culberson	West Texas Bolsons	30.8501	-104.7616	14
5110321	Culberson	West Texas Bolsons	30.8363	-104.7797	40
5110322	Culberson	West Texas Bolsons	30.8363	-104.7713	11
5110328	Culberson	West Texas Bolsons	30.8471	-104.7747	39
5110331	Culberson	West Texas Bolsons	30.8435	-104.7574	23
5110332	Culberson	West Texas Bolsons	30.8599	-104.7524	61
5110624	Culberson	West Texas Bolsons	30.8268	-104.7816	3
5111106	Culberson	West Texas Bolsons	30.8429	-104.7463	11
5119104	Jeff Davis	West Texas Bolsons	30.7313	-104.7194	16
5120404	Jeff Davis	West Texas Bolsons	30.6804	-104.6210	3
5127302	Jeff Davis	West Texas Bolsons	30.5954	-104.6460	4
5128303	Jeff Davis	West Texas Bolsons	30.5901	-104.5149	1
5128606	Jeff Davis	West Texas Bolsons	30.5760	-104.5144	2
5128803	Presidio	West Texas Bolsons	30.5324	-104.5483	9
5128903	Presidio	West Texas Bolsons	30.5035	-104.5135	1
5128904	Presidio	West Texas Bolsons	30.5182	-104.5138	3
5128907	Presidio	West Texas Bolsons	30.5035	-104.5308	15
5129403	Jeff Davis	West Texas Bolsons	30.5471	-104.4644	3

 Table A1. (continued). Hydraulic property data from wells shown in Figures 4.5.1 through 4.5.3.

Well Number	County	Aquifer	Latitude	Longitude	Hydraulic Conductivity (feet per day)
5129404	Jeff Davis	West Texas Bolsons	30.5474	-104.4805	14
5129406	Jeff Davis	West Texas Bolsons	30.5615	-104.4977	2
5129702	Jeff Davis	West Texas Bolsons	30.5332	-104.4635	29
5129704	Jeff Davis	West Texas Bolsons	30.5324	-104.4821	2
5129705	Jeff Davis	West Texas Bolsons	30.5329	-104.4969	9
5129706	Presidio	West Texas Bolsons	30.5188	-104.4641	10
5129806	Presidio	West Texas Bolsons	30.5043	-104.4296	87
5129808	Presidio	West Texas Bolsons	30.5188	-104.4463	12
5136601	Presidio	West Texas Bolsons	30.4529	-104.5363	33
52431	Brewster	Igneous	30.3631	-103.7131	228
52358	Brewster	Igneous	30.3800	-103.6725	571
51244	Jeff Davis	Igneous	30.7052	-104.1130	10
52428	Presidio	Igneous	30.2836	-103.8156	21
52358	Brewster	Igneous	30.3736	-103.7369	8
52253	Jeff Davis	Igneous	30.5872	-103.8994	280
52604	Brewster	Igneous	30.1103	-103.6508	27
52359	Brewster	Igneous	30.3839	-103.6525	8
52253	Jeff Davis	Igneous	30.5900	-103.9000	721
51145	Jeff Davis	Igneous	30.8103	-104.2572	12
52267	Jeff Davis	Igneous	30.5286	-103.8564	3
52608	Brewster	Igneous	30.0350	-103.5597	10
52253	Jeff Davis	Igneous	30.5914	-103.8908	7
52268	Jeff Davis	Igneous	30.5278	-103.8219	0.40
52255	Jeff Davis	Igneous	30.5419	-103.9344	2,547
52255	Jeff Davis	Igneous	30.5442	-103.9272	19
52255	Jeff Davis	Igneous	30.5450	-103.9275	7
52255	Jeff Davis	Igneous	30.5467	-103.9294	325
52255	Jeff Davis	Igneous	30.5475	-103.9275	1
52433	Brewster	Igneous	30.3597	-103.6494	127
52432	Brewster	Igneous	30.3511	-103.6992	222
74142	Presidio	Igneous	29.8558	-104.3256	753
52343	Jeff Davis	Igneous	30.4978	-103.7525	41
52253	Jeff Davis	Igneous	30.5864	-103.9006	5

 Table A1. (continued). Hydraulic property data from wells shown in Figures 4.5.1 through 4.5.3.

Well Number	County	Aquifer	Latitude	Longitude	Hydraulic Conductivity (feet per day)
51483	Presidio	Igneous	30.3646	-104.0178	9

52431	Brewster	Igneous	30.3722	-103.7142	79
52431	Brewster	Igneous	30.3819	-103.7381	6
52354	Brewster	Igneous	30.4539	-103.7161	3
51483	Presidio	Igneous	30.3634	-104.0133	7
52357	Brewster	Igneous	30.3803	-103.7339	6
51445	Presidio	Igneous	30.3200	-104.5731	0.10
51486	Presidio	Igneous	30.3142	-104.0208	1,808
51486	Presidio	Igneous	30.3153	-104.0167	2

Table A2.Estimates of Igneous and West Texas Bolsons aquifers irrigation
pumping. The data—expressed in acre-feet per year (AFY)—was taken
from Texas Water Development Board (2022b).

Igneous Aquifer							
Year	Brewster	Culberson	Hudspeth	Jeff Davis	Presidio	Reeves	
1980	0.0			3,120	600		
1981	38			2,409	506		
1982	75			1,697	412		
1983	113			986	318		
1984	150			274	224		
1985	351			244	239		
1986	351			373	152		
1987	351			273	35		
1988	351			514	163		
1989	84			193	289		
1990	106			352	289		
1991	106			268	31		
1992	106			291	163		
1993	116			21	130		
1994	0.0			132	575		
1995	0.0			120	656		
1996	0.0			120	672		
1997	0.0			120	1,059		
1998	0.0			120	1,065		
1999	0.0			120	704		
2000	191	451		395	542	392	
2001	137	301		433	513	353	
2002	137	396		1,623	1,085	331	
2003	177	401		2,184	869	137	
2004	186	351		2,683	930	229	
2005	339	400		2,700	791	117	
2006	598	374		2,709	687	117	
2007	873	306		1,820	317	78	
2008	867	629		1,776	490	0.0	
2009	657	702		1,463	605	276	
2010	1,236	769		455	574	254	
2011	418	648		467	256	292	
2012	137	1,010		1,118	264	247	

Table A2. (continued).Estimates of Igneous and West Texas Bolsons aquifers
irrigation pumping. The data—expressed in acre-feet per
year (AFY)—was taken from Texas Water Development
Board (2022b).

Igneous Aquifer							
Brewster	Culberson	Hudspeth	Jeff Davis	Presidio	Reeves		
146	485		718	382	207		
679	533		840	358	252		
259	831		794	388	230		
407	644		692	396	336		
309	767		604	379	474		
433	651		588	317	287		
506	669		667	128	322		
513	558		610	195	339		
	146 679 259 407 309 433 506	Brewster Culberson 146 485 679 533 259 831 407 644 309 767 433 651 506 669	Brewster Culberson Hudspeth 146 485 - 679 533 - 259 831 - 407 644 - 309 767 - 433 651 - 506 669 -	Brewster Culberson Hudspeth Jeff Davis 146 485 718 679 533 840 259 831 794 407 644 692 309 767 604 433 651 588 506 669 667	BrewsterCulbersonHudspethJeff DavisPresidio146485718382679533840358259831794388407644692396309767604379433651588317506669667128		

West Texas Bolsons Aquifer								
Year	Brewster	Culberson	Hudspeth	Jeff Davis	Presidio	Reeves		
1980		50,868	3,500	22,880	11,400			
1981		42,401	2,625	17,660	9,331			
1982		33,934	1,750	12,440	7,263			
1983		25,467	875	7,220	5,194			
1984		17,000	0.0	2,000	3,125			
1985		21,055	0.0	1,784	3,324			
1986		16,406	0.0	2,722	2,113			
1987		16,462	0.0	2,000	494			
1988		16,321	0.0	3,758	2,272			
1989		11,993	0.0	1,410	4,028			
1990		7,751	0.0	2,572	4,028			
1991		7,471	0.0	1,958	429			
1992		8,832	0.0	2,128	2,259			
1993		4,737	0.0	152	1,809			
1994		5,583	0.0	59	1,150			
1995		5,885	0.0	53	1,313			
1996		6,196	0.0	53	1,344			
1997		6,751	0.0	53	2,119			
1998		11,702	0.0	53	2,131			
1999		11,702	0.0	53	1,407			

Table A2. (continued).Estimates of Igneous and West Texas Bolsons aquifers
irrigation pumping. The data—expressed in acre-feet per
year (AFY)—was taken from Texas Water Development
Board (2022b).

Year	Brewster	Culberson	Hudspeth	Jeff Davis	Presidio	Reeves
2000		19,361		45	759	
2001		12,936		60	735	
2002		16,995		513	888	
2003		17,208		727	711	
2004		15,058		917	761	
2005		17,174		899	647	
2006		16,083		902	562	
2007		13,136		564	260	
2008		27,004		561	401	
2009		30,169		441	495	
2010		33,033		62	469	
2011		27,845		67	209	
2012		43,376		315	216	
2013		20,845		177	313	
2014		22,908		195	293	
2015		35,714		178	318	
2016		27,655		165	324	
2017		32,932		146	310	
2018		27,962		162	259	
2019		28,758		144	502	
2020		23,980		145	659	
		1	1	1		

Table A3.Estimates of Igneous and West Texas Bolsons aquifers livestock
pumping. The data—expressed in acre-feet per year (AFY)—was taken
from Texas Water Development Board (2022b).

		Igneous A	quifer			
Year	Brewster	Culberson	Hudspeth	Jeff Davis	Presidio	Reeves
1980	280			96	100	
1981	248			90	102	
1982	215			84	105	
1983	183			77	107	
1984	150			71	109	
1985	140			76	123	
1986	183			57	71	
1987	220			44	68	
1988	244			50	79	
1989	241			78	102	
1990	238			77	101	
1991	243			78	103	
1992	180			78	102	
1993	180			68	102	
1994	266			66	123	
1995	239			56	102	
1996	202			56	78	
1997	207			54	78	
1998	207			79	128	
1999	234			84	140	
2000	224	17		72	128	23
2001	202	15		77	128	21
2002	165	24		73	112	20

Table A3. (continued)Estimates of Igneous and West Texas Bolsons aquifers
livestock pumping. The data—expressed in acre-feet per year
(AFY)—was taken from Texas Water Development Board
(2022b).

Igneous Aquifer								
Year	Brewster	Culberson	Hudspeth	Jeff Davis	Presidio	Reeves		
2003	86	13		54	74	14		
2004	79	14	6	240	198	17		
2005	103	11	5	239	202	20		
2006	93	13	6	228	192	25		
2007	103	15	6	239	174	16		
2008	112	15	6	299	224	14		
2009	102	14	7	268	217	18		
2010	109	13	6	282	205	9		
2011	107	13	7	284	207	9		
2012	93	13	5	251	184	8		
2013	109	14	5	201	167	14		
2014	88	14	5	183	138	13		
2015	89	14	5	186	140	13		
2016	91	15	5	190	142	13		
2017	139	13	4	291	261	6		
2018	144	13	4	299	270	6		
2019	144	13	4	299	270	6		
2020	144	13	4	304	270	6		

Table A3. (continued). Estimates of Igneous and West Texas Bolsons aquifers livestock pumping. The data—expressed in acre-feet per year (AFY)—was taken from Texas Water Development Board (2022b).

West Texas Bolsons Aquifer								
Year	Brewster	Culberson	Hudspeth	Jeff Davis	Presidio	Reeves		
1980		181	68	100	205			
1981		169	64	94	204			
1982		156	61	87	203			
1983		144	57	81	201			
1984		131	53	74	200			
1985		145	30	79	226			
1986		124	18	58	131			
1987		195	28	46	125			
1988		208	31	52	145			
1989		205	31	81	187			
1990		201	30	79	184			
1991		205	30	81	188			
1992		134	35	81	186			
1993		127	33	71	185			
1994		113	45	69	223			
1995		92	34	59	185			
1996		99	30	59	141			
1997		106	29	56	141			
1998		144	51	82	231			
1999		155	55	88	253			
2000		123	51	75	229			

Table A3. (continued). Estimates of Igneous and West Texas Bolsons aquifers livestock pumping. The data—expressed in acre-feet per year (AFY)—was taken from Texas Water Development Board (2022b).

	W	est Texas Bols	sons Aquifer			
Year	Brewster	Culberson	Hudspeth	Jeff Davis	Presidio	Reeves
2001		111	48	80	229	
2002		168	45	76	202	
2003		91	35	56	133	
2004		85	55	50	93	
2005		70	54	50	95	
2006		80	59	48	90	
2007		90	58	50	82	
2008		93	62	63	105	
2009		85	70	56	102	
2010		80	64	59	96	
2011		80	69	60	97	
2012		80	53	53	86	
2013		90	48	42	78	
2014		88	50	38	65	
2015		90	49	39	66	
2016		91	51	40	67	
2017		80	37	61	123	
2018		83	38	63	127	
2019		83	39	63	127	
2020		83	40	64	127	

Table A4.Estimates of Igneous and West Texas Bolsons aquifers manufacturing
pumping. The data—expressed in acre-feet per year (AFY)—was taken
from Texas Water Development Board (2022b).

Igneous Aquifer						
Year	Brewster	Culberson	Hudspeth	Jeff Davis	Presidio	Reeves
1997				24		

	W	est Texas Bols	sons Aquifer			
Year	Brewster	Culberson	Hudspeth	Jeff Davis	Presidio	Reeves
1980		6	1			
1981		0.0	3			
1982		0.0	1			
1983		0.0	1			
1984		0.0	1			
1985		0.0	0.0			
1986		0.0	0.0			
1987		0.0	1			
1988		0.0	1			
1989		0.0	1			
1990		0.0	1			
1991		0.0	0.2			
1992		0.0	3			
1993		0.0	3			
1994		0.0	2			
1995		0.0	2			
1996		0.0	1			
1997	<u> </u>	0.0	1	<u> </u>	110	
1998		0.0	0.0			

Table A4. (continued).Estimates of Igneous and West Texas Bolsons aquifers
manufacturing pumping. The data—expressed in acre-feet
per year (AFY)—was taken from Texas Water Development
Board (2022b).

Year Brewster Culberson Hudspeth Jeff Davis Presidio 1999 0.0	Reeves
2000 0.4 1 2001 5 1 2002 4 1 2003 1 1 2004 0.2 0.2	
2001 5 1 2002 4 1 2003 1 1 2004 0.2 0.2	
2002 4 1 2003 1 1 2004 0.2 0.2	
2003 1 1 2004 0.2 1	
2004 0.2	
2005 0.4	
2006 0.1	
2007 0.2	
2008 0.2	
2009 0.5	
2010 0.2	
2011 5	
2012 0.1	
2013 0.3	
2014 0.2	
2015 0.3	
2016 0.4	
2017 2	
2018 1	
2019 1 1	
2020 43	

Table A5.Estimates of Igneous Aquifer mining pumping. The data—expressed in
acre-feet per year (AFY)—was taken from Texas Water Development
Board (2022b).

	W	est Texas Bols	sons Aquifer			
Year	Brewster	Culberson	Hudspeth	Jeff Davis	Presidio	Reeves
1990			0.2			
1991			0.2			
1992			2.8			
1993			3.0			
1994			1.9			
1995			1.9			
1996			1.2			
1997			1.1			

Table A6.Estimates of Igneous and West Texas Bolsons aquifers municipal
pumping. The data—expressed in acre-feet per year (AFY)—was taken
from Texas Water Development Board (2022b).

		Igneous A	quifer			
Year	Brewster	Culberson	Hudspeth	Jeff Davis	Presidio	Reeves
1980	1,594			116	975	
1981	1,091			101	795	
1982	1,511			127	1,048	
1983	1,713			156	1,110	
1984	1,458			157	1,114	
1985	1,458			164	1,008	
1986	1,481			163	991	
1987	1,015			151	839	
1988	1,128			168	975	
1989	1,224			197	893	
1990	1,108			170	707	
1991	1,015			157	696	
1992	993			163	676	
1993	1,204			178	760	
1994	1,265			200	794	
1995	1,233			214	787	
1996	1,203			219	766	
1997	1,547			210	698	
1998	1,750			255	819	
1999	1,750			232	769	
2000	1,750			251	781	
2000	1,974			355	808	
2001	1,985			349	693	

Table A6. (continued).Estimates of Igneous and West Texas Bolsons aquifers
municipal pumping. The data—expressed in acre-feet per
year (AFY)—was taken from Texas Water Development
Board (2022b).

		Igneous A	quifer			
Year	Brewster	Culberson	Hudspeth	Jeff Davis	Presidio	Reeves
2002	2,019			360	657	
2003	2,025			344	659	
2004	1,839			305	580	
2005	1,855			329	600	
2006	1,712	3		413	641	4
2007	844	2		482	571	3
2008	1,695	2		431	552	4
2009	1,270	2		465	524	15
2010	189	2		1,430	526	28
2011	245	2		2,335	649	30
2012	274	2		1,868	582	29
2013	806	2		1,311	538	27
2014	729	1		1,107	2,491	22
2015	834	1		1,141	2,189	23
2016	1,308	1		1,987	2,404	22
2017	704	1		1,063	2,680	24
2018	642	0.1		1,320	512	24
2019	868	0.1		1,238	522	25
2020	956	0.2		1,444	559	11

Table A6. (continued).Estimates of Igneous and West Texas Bolsons aquifers
municipal pumping. The data—expressed in acre-feet per
year (AFY)—was taken from Texas Water Development
Board (2022b).

	W	est Texas Bols	sons Aquifer			
Year	Brewster	Culberson	Hudspeth	Jeff Davis	Presidio	Reeves
1980		614	74		246	
1981		562			251	
1982		592			312	
1983		661			358	
1984		722			340	
1985		584			346	
1986		414			370	
1987		653			318	
1988		647			370	
1989		827			525	
1990		747			498	
1991		693			493	
1992		767			483	
1993		825			532	
1994		934			641	
1995		657			750	
1996		763			646	
1997		611			618	
1998		716			686	
1999		957			755	
2000		575			853	

Table A6. (continued).Estimates of Igneous and West Texas Bolsons aquifers
municipal pumping. The data—expressed in acre-feet per
year (AFY)—was taken from Texas Water Development
Board (2022b).

2000	677	0.3	35	895	
2001	926	0.3	33	931	
2002	812	0.2	42	933	
2003	867	0.3	37	932	
2004	1,194	0.3	37	777	
2005	835	114	38	773	
2006	743	121	38	740	
2007	578	120	35	650	
2008	697	143	41	660	
2009	912	143	47	663	
2010	889	142	52	753	
2011	819	143	53	753	
2012	741	142	52	979	
2013	734	140	40	971	
2014	790	2	34	807	
2015	890	1	33	665	
2016	923	7	39	900	
2017	728	10	41	787	
2018	943	13	39	1,162	
2019	926	14	39	792	
2020	963	9	36	1,064	

West Texas Bolsons Aquifer							
Brewster	Culberson	Hudspeth	Jeff Davis	Presidio	Reeves		
	488						
	386						
	426						
	198						
	186						
	200						
	168						
	131						
	124						
	156						
	78						
	0.4						
	1						
	1						
	1						
	0.1						
	0.4						
	3						
		Brewster Culberson 488 386 426 198 198 186 200 186 200 186 120 156 78 0.4 1 1 1 0.4 0.1 0.4	Brewster Culberson Hudspeth 488 386 386 426 426 198 198 200 186 186 200 168 1131 168 124 124 156 78 0.4 1 1 1 1 1 1 1 0.4 1 0.1 0.1 0.4 0.4	Brewster Culberson Hudspeth Jeff Davis 488	Brewster Culberson Hudspeth Jeff Davis Presidio 488		

Table A7.Estimates of West Texas Bolsons Aquifer steam electric power pumping
expressed in acre-feet per year (AFY).

Igneous Aquifer								
Year	Brewster	Culberson	Hudspeth	Jeff Davis	Presidio	Reeves		
1980	1,874			3,332	1,675	0		
1981	1,376			2,599	1,403	1		
1982	1,801			1,908	1,564	0		
1983	2,008			1,219	1,535	0		
1984	1,758			502	1,447	0		
1985	1,949			484	1,370			
1986	2,015			593	1,214			
1987	1,586			468	942			
1988	1,723			732	1,217			
1989	1,549			468	1,284			
1990	1,452			599	1,097			
1991	1,364			503	830			
1992	1,279			532	941			
1993	1,500			267	992			
1994	1,531			398	1,492			
1995	1,472			390	1,545			
1996	1,405	ľ		395	1,516			
1997	1,754			384	1,835			
1998	1,957			454	2,012			
1999	1,984			436	1,613			
2000	4,139	468		1,072	2,259	415		
2001	2,324	317		859	1,334	373		
2002	2,320	419		2,056	1,854	352		
2003	2,288	413		2,582	1,602	151		
2004	2,103	364	6	3,227	1,707	246		
2005	2,297	411	5	3,268	1,593	137		
2006	2,402	390	6	3,351	1,520	146		
2007	1,819	322	6	2,541	1,063	96		
2008	2,674	646	6	2,506	1,266	17		
2009	2,029	718	7	2,196	1,345	309		
2010	1,534	784	6	2,168	1,305	290		
2011	769	663	7	3,086	1,112	332		
2012	504	1,025	5	3,237	1,030	284		
2013	1,062	501	5	2,231	1,087	247		
2014	1,495	548	5	2,130	2,986	287		
2015	1,183	846	5	2,122	2,718	266		
2015	1,105	659	5	2,869	2,943	372		

Table A8.Estimates of Igneous and West Texas Bolsons aquifers total pumping
expressed in acre-feet per year (AFY).

Table A8. (continued).Estimates of Igneous and West Texas Bolsons aquifers
total pumping expressed in acre-feet per year (AFY).

Igneous Aquifer							
Year	Brewster	Culberson	Hudspeth	Jeff Davis	Presidio	Reeves	
2017	1,151	780	4	1,957	3,320	504	
2018	1,219	664	4	2,207	1,099	317	
2019	1,518	683	4	2,204	920	354	
2020	1,613	572	4	2,358	1,024	356	

	West Texas Bolsons Aquifer								
Year	Brewster	Culberson	Hudspeth	Jeff Davis	Presidio	Reeves			
1980		52,157	3,643	22,980	11,851				
1981		43,517	2,692	17,754	9,786				
1982		35,107	1,812	12,527	7,777				
1983		26,470	933	7,301	5,753				
1984		18,039	54	2,074	3,665				
1985		21,984	30	1,863	3,896				
1986		17,112	18	2,780	2,614				
1987		17,441	29	2,046	937				
1988		17,301	32	3,810	2,787				
1989		13,181	32	1,491	4,740				
1990		8,778	31	2,651	4,710				
1991		8,369	30	2,039	1,110				
1992		9,735	38	2,209	2,928				
1993		5,690	36	223	2,526				
1994		6,630	47	128	2,014				
1995		6,634	36	112	2,248				
1996		7,058	31	112	2,131				
1997		7,471	30	133	2,989				
1998		12,562	51	135	3,048				
1999		12,814	55	141	2,415				
2000		20,737	52	155	2,736				
2001		13,976	49	173	1,895				
2002		17,979	46	631	2,023				
2003		18,167	36	820	1,777				
2004		16,337	56	1,005	1,631				
2005		18,079	168	987	1,515				
2006		16,906	180	988	1,392				

Table A8. (continued).Estimates of Igneous and West Texas Bolsons aquifers total
pumping expressed in acre-feet per year (AFY).

	West Texas Bolsons Aquifer								
Year	Brewster	Culberson	Hudspeth	Jeff Davis	Presidio	Reeves			
2007		13,804	178	649	991				
2008		27,794	206	664	1,166				
2009		31,167	213	545	1,260				
2010		34,003	206	173	1,319				
2011		28,750	212	179	1,059				
2012		44,197	195	419	1,281				
2013		21,670	188	259	1,362				
2014		23,786	52	268	1,165				
2015		36,694	51	250	1,049				
2016		28,669	59	244	1,291				
2017		33,741	48	248	1,219				
2018		28,989	51	264	1,548				
2019		29,767	53	246	1,421				
2020		25,069	49	245	1,849				

APPENDIX B. CONCEPTUAL MODEL REPORT COMMENTS AND RESPONSES

General Comments

Specific Comments