Welcome to the Igneous and West Texas Bolsons Aquifers Modeling Project Stakeholder Advisory Forum

Thank you for signing in early. The meeting will begin at 10:00 am, Central Standard Time Please stay muted during the meeting and use the chat box to submit questions

Meeting Information

- An audio and video recording of the meeting, presentation, and the report summarizing the meeting will be made available on the project's TWDB website
- <u>https://www.twdb.texas.gov/groundwater/models/gam/wtbi/wtbi.asp</u>

Outline

- Groundwater Availability Modeling program
- Basic terminology of groundwater flow
- Igneous and West Texas Bolsons aquifers
- Groundwater modeling process
- Data collection
- Project schedule

Texas Water Development Board (TWDB) Groundwater Modeling (GAM) Program

Groundwater Modeling Program Texas Water Development Board

What is the Texas Water Development Board?

Not regulatory agency like Texas Commission on Environmental Quality.

Science: Groundwater, surface water, innovative water technology, conservation, education, flooding.

Planning: Assist with regional planning and state planning (drought and flood plans)

Groundwater Modeling (GAM) Program

Aim: Develop groundwater flow models for the major and minor aquifers of Texas.

Purpose: Tools that can be used to aid in groundwater resources management by stakeholders.

Public process: Stakeholder involvement during model development process.

Models: Freely available, standardized, thoroughly documented. Reports, data, models are available for download from TWDB download page for models.

Living tools: Periodically updated.

GAMs for Minor Aquifers

Why Stakeholder Advisory Forums?

Keep stakeholders updated about progress of the modeling project Inform how the groundwater model can, should, and should not be used Provide stakeholders with the opportunity to provide input and data to assist with model development

Contact Information

Ian Jones, Ph.D., P.G. TWDB Contract Manager 512-463-6641 <u>ian.jones@twdb.texas.gov</u>

Daryn Hardwick, Ph.D. Manager of Groundwater Modeling Department 512-475-0470

daryn.hardwick@twdb.texas.gov

Texas Water Development Board P.O. Box 13231 Austin, Texas 78711-3231

Web information:

https://www.twdb.texas.gov/groundwater/models/gam/wtbi/wtbi.asp

Igneous and West Texas Bolsons Aquifers

Groundwater Availability Modeling

Ian Jones, Ph.D., P.G. January 19, 2023

BASICS OF GROUNDWATER FLOW

Ryan Flat

Confined/Unconfined Aquifer

Hydrogeology Terminology

Aquifer: Geologic unit capable of transmitting useable amounts of groundwater to a well. **Unconfined** – water table is upper boundary. **Confined** – overlain by non-aquifer material, groundwater under pressure.

Water Table: Boundary between saturated (filled with water) and unsaturated zones (filled with air).

Hydraulic head: Water level in well expressed as an elevation

Hydraulic conductivity: A measure of the ability of material to transmit groundwater.

Recharge: The processes involved in water entering an aquifer. Examples, infiltration through the soil or from streams

Discharge: The processes involved in water leaving an aquifer. Examples, discharge from springs, pumping wells, discharge to streams.

HYDROGEOLOGY

Eagle Mountains

Era	System	Stratigraphic Units		
	Quaternary	Quaternary deposits		
		Windblown sand		
		Bolson deposits		
	Tertiary	Volcanic rocks undivided	Merrill Formation	
		Intrusive Igneous rocks	Duff Formation/Decie Member	
		Chambers Tuff	Sheep Pasture Formation	
		Garren Group	Sleeping Lion Formation	
		Tarantula Gravel	Frazier Canyon Formation	
		Hogeye Tuff	Cottonwood Spring Basalt	
		Trachyte Porphery	Bracks Rhyolite	
		Upper Rhyolite	Adobe Canyon Formation	
Cenozoic		Pantera Trachyte	Chambers Tuff	
		Perdiz Conglomerate	Limpia Formation	
		Petan Basalt	Potato Hill Andesite	
		Tascotal Formation	Gomez Tuff	
		Mitchell Mesa Welded Tuff	Star Mountain Rhyolite	
		Brooks Mountain Formation	Crossen Trachyte	
		Goat Canyon Formation	Sheep Canyon Basalt	
		Medley Formation	Pruett Formation	
		Wild Cherry Formation	Huelster Formation	
		Eppenauer Ranch Formation	Buckshot Ignimbrite	
		Mount Locke Formation	Colmena Tuff	
		Barrel Springs Formation	Gill Breccia	
		Capote Mountain Tuff		
Mesozoic	Cretaceous	Cretaceous undivided	Benevides Formation	
		Buda Limestone	Finlay Limestone	
		Boracho Formation	Cox Sandstone	
		San Martine Limestone Member	Bluff Mesa Formation	
		Levinson Limestone Member	Yucca Formation	
		Eagle Mountain Sandstone	Etholean Conglomerate	
		Espy Limestone	Torcer Formation	
	Jurassic	Malone Formation		
Paleozoic	Permian	Hueco Limestone		
Precambrian	Precambrian	Carrizo Mountain Group		
		Precambrian bedrock undivided		

West Texas Bolsons Aquifer

Ε

West Texas Bolsons Aquifer

Igneous Aquifer

West Texas Bolsons Aquifer

GROUNDWATER MODELING

Eagle Flat

Definition

- A mathematical device that represents an approximation of an aquifer (*The Compendium of Hydrogeology*)
- Simulation of groundwater flow by means of a governing equation used to represent the physical processes that occur in the aquifer, together with equations that describe heads or flows along the boundaries of the model (Anderson and Woessner, 2002)

Why Groundwater Flow Models?

- In contrast to surface water, groundwater flow is difficult to observe
- Aquifers are typically complex in terms of spatial extent and hydrogeological characteristics
- A groundwater model provides the only means for integrating available data for the prediction of groundwater flow at the scale of interest

Objectives/Goals

Update the MODFLOW code

Original Models developed in older MODFLOW code

29	Better understand	
6	Intraformational Flow	

Important for updates to local models

Explore better ways to model surface water/groundwater interactions

Provide updates on local models

Newer MODFLOW is more robust, easier to link models or refine areas of interest.

Flow Chart

DATA COLLECTION

Data Collection

- Heads, discharge, hydraulic properties, water quality data
 - County Reports (predevelopment)
 - Evidence of artesian wells
 - Evidence of flowing springs
 - TWDB groundwater database
 - Railroad Commission Surface Casing Database
 - GCDs
 - Thesis work
 - Other literature
 - Stakeholders

Data Request

Well information - log/location/construction

Groundwater data - level/pumping/water quality

 \checkmark

Aquifer data - testing/study

 \Diamond

Surface water information – Groundwater Diversion/Interaction

C	\checkmark	
- '	\checkmark	Ļ
	Ú	

Not currently publicly available/ May be a great study we need to consider.

When do we need the data?

• No later than March 2023

PROJECT SCHEDULE

Project Schedule*

*Schedule is Tentative

Additional Information

Web information:

https://www.twdb.texas.gov/groundwater /models/gam/wtbi/wtbi.asp

Texas Water Development Board P.O. Box 13231 Austin, Texas 78711-3231

Contact Information

Ian C. Jones, Ph.D., P.G. <u>ian.jones@twdb.texas.gov</u> 512-463-6641 Texas Water Development Board P.O. Box 13231 Austin, Texas 78711-3231

Web information:

<u>https://www.twdb.texas.gov/groundwater/models/</u> gam/wtbi/wtbi.asp

QUESTIONS?

Wild Horse Flat