Numerical Model of Groundwater Flow in the southern portion of the Trinity Aquifer

What to Expect Today

Draft model is ready

Highly technical in nature

Official public comment period TBD

Meeting information

 An audio and video recording of the meeting, presentation, and the report summarizing the meeting will be made available on the TWDB project webpage

http://www.twdb.texas.gov/groundwater/models/gam/trnt h/trnt s.asp

Agenda

Numerical Model for the southern portion of the Trinity Aquifer

Question and Answer

Numerical Model of Groundwater Flow in the southern portion of the Trinity Aquifer

Model Boundary

Model Boundary

Planning Boundaries

- GMAs 9 & 10
- Kinney County

PECOS VALLEY B EDWARDS-TRINITY (PLATEAU) D TRINITY D EDWARDS (BALCONES FAULT ZONE)

Stratigraphy (Southern Trinity GAM)

Plateau (West)	Model Layer	
Edwards	1	
Trinity	2	

Stratigraphy (Southern Trinity GAM)

Plateau (West)	Hill Country (Central)	Edwards BFZ (Southeast)	Model Layer
Edwards		Edwards	1
Upper Trinity	Upper Trinity	Upper Trinity	2
Middle Trinity	Middle Trinity	Middle Trinity	3
Hammett Shale	Hammett Shale	Hammett Shale	4
Lower Trinity	Lower Trinity	Lower Trinity	5

Model Summary

- MODFLOW 6
- 5 layers (Edwards, Upper Trinity, Middle Trinity, Hammett, Lower Trinity)
- 341,249 active cells (443,425 total)
- Time Period: 1980-2020
- 41 stress periods (1 Steady-state & 40 annual transient)
- Average run time : 17-19 minutes
- Steady-state model calibration using pestpp-ies

Model Standards

- "The range of hydraulic head fluctuations in the observation wells must be matched as closely as possible"
- ➤ "The mean absolute error or root mean squared error between measured hydraulic head and simulated hydraulic head must be less than 10 percent of the measured hydraulic head drop across the model area for each model layer."
- "Any error must **not** be spatially biased"

History Matching - Hydrographs

GOOD – matches Elevation Range

GOOD – matches Trend

History Matching – Edwards

History Matching – Upper Trinity

History Matching – Middle Trinity

History Matching – Lower Trinity

Observed vs. Simulated Head - HCa_5674 LT - Bexar

Observed vs. Simulated Head - HCa_4584 LT - Kendall

Observed vs. Simulated Head - HCa_3551 LT - Travis

Model Results

Figure 4.3-17. Generalized regional groundwater flow path for the Pecos Valley and Edwards-Trinity (Plateau) Region (modified from Anaya and Jones, 2009; Edwards Aquifer Authority, 2021).

Model Results

(Cha & others, 2022)

Southern Trinity Aquifer Groundwater Flow Budget

- > IMS (solver)
- > TDIS (time discretization)
- > IC (initial conditions)
- ➤ DISU (grid)
- NPF (hydrologic properties)
- > STO (storage properties)
- > RIV (rivers)
- > DRN (springs)
- GHB (general head boundary)
- RCH (recharge)
- WEL (pumping)

```
BEGIN options
 SAVE FLOWS
 NEWTON UNDER RELAXATION
END options
BEGIN packages
 RIV6 trnt s.riv riv 0
 DRN6 trnt s.drn drn 0
 GHB6 trnt s.ghb ghb 0
 STO6 trnt s.sto sto
 ic6 trnt s.ic ic
 disu6 trnt s.disu disu
 npf6 trnt s.npf npf
 obs6 trnt s.obs headobs
 RCH6 trnt s.rch rch
 OC6 trnt s.oc oc
 WEL6 trnt s.wel irrigation
 WEL6 trnt s 0.wel municipal
 WEL6 trnt s 1.wel livestock
 WEL6 trnt s 2.wel ruraldomestic
 WEL6 trnt s 3.wel manufacturing
 WEL6 trnt s 4.wel mining
END packages
```

```
BEGIN options
CONTINUE
END options

BEGIN timing
TDIS6 modflowsim.tdis
END timing

BEGIN models
gwf6 trnt_s.nam trnt_s
END models

BEGIN exchanges
END exchanges
END exchanges
END solutiongroup 1
ims6 trnt_s.ims trnt_s
END solutiongroup 1
```



```
> IMS
> TDIS
             Model Setup
> IC
> DISU
> NPF
             Physical Properties
> STO
> RIV
DRN
> GHB
             Boundary Conditions
> RCH
> WEL
```

```
BEGIN options
 SAVE FLOWS
 NEWTON UNDER RELAXATION
END options
BEGIN packages
 RIV6 trnt s.riv riv 0
 DRN6 trnt s.drn drn 0
 GHB6 trnt s.ghb ghb 0
 STO6 trnt s.sto sto
 ic6 trnt s.ic ic
 disu6 trnt s.disu disu
 npf6 trnt s.npf npf
 obs6 trnt s.obs headobs
 RCH6 trnt s.rch rch
 OC6 trnt s.oc oc
 WEL6 trnt s.wel irrigation
 WEL6 trnt s 0.wel municipal
 WEL6 trnt s 1.wel livestock
 WEL6 trnt s 2.wel ruraldomestic
 WEL6 trnt s 3.wel manufacturing
 WEL6 trnt s 4.wel mining
END packages
```

```
BEGIN options
CONTINUE
END options

BEGIN timing
TDIS6 modflowsim.tdis
END timing

BEGIN models
gwf6 trnt_s.nam trnt_s
END models

BEGIN exchanges
END exchanges
END exchanges
END exchanges

BEGIN solutiongroup 1
ims6 trnt_s.ims trnt_s
END solutiongroup 1
```



```
BEGIN options
 SAVE FLOWS
 NEWTON UNDER RELAXATION
END options
BEGIN packages
 RIV6 trnt s.riv riv 0
 DRN6 trnt s.drn drn 0
 GHB6 trnt s.ghb ghb 0
 STO6 trnt s.sto sto
 ic6 trnt s.ic ic
 disu6 trnt s.disu disu
 npf6 trnt s.npf npf
 obs6 trnt s.obs headobs
 RCH6 trnt s.rch rch
 OC6 trnt s.oc oc
 WEL6 trnt s.wel irrigation
 WEL6 trnt s 0.wel municipal
 WEL6 trnt s 1.wel livestock
 WEL6 trnt s 2.wel ruraldomestic
 WEL6 trnt s 3.wel manufacturing
 WEL6 trnt s 4.wel mining
END packages
```

```
BEGIN options
CONTINUE
END options

BEGIN timing
TDIS6 modflowsim.tdis
END timing

BEGIN models
gwf6 trnt_s.nam trnt_s
END models

BEGIN exchanges
END exchanges
END exchanges
END solutiongroup 1
ims6 trnt_s.ims trnt_s
END solutiongroup 1
```


Model Packages: Grid (DISU)

MODFLOW 6 Discretization Options:

Completely remove inactive cells	Add refinement around areas of interest	Specify cell connections regardless of layer	
DIS			
DISV	DISV		
DISU	DISU	DISU	

MODFLOW 6 Discretization Options:

Completely remove inactive cells	Add refinement around areas of interest	Specify cell connections regardless of layer	
DIS			
DISV	DISV		
DISU	DISU	DISU	

Model Grid

- 443,425 total cells (341,249 active)
- All layers same # of cells
- Eroded areas are inactive
- Bottom 2 layers pinchout

* Layer 4 Hammett Shale extent approximately same as Layer 5

MODFLOW 6 Discretization Options:

Completely remove inactive cells	Add refinement around areas of interest	Specify cell connections regardless of layer	
DIS			
DISV	DISV		
DISU	DISU	DISU	

Model Grid

- Quadtree Refinement
- Max cell = 1 mile
- Min Cell: Streams (1/16 mile) Lakes (1/4 mile)

MODFLOW 6 Discretization Options:

Completely remove inactive cells	Add refinement around areas of interest	Specify cell connections regardless of layer
DIS		
DISV	DISV	
DISU	DISU	DISU

Model	MODFLOW Version	Grid Type	Remove Excess cells	Quadtree Refinement	Different grids in different layers	Connections across layers
Llano Uplift (TWDB)	USG	DISV*	-	1	-	-
S. Gulf Coast (TWDB)	USG	DISV*	-	X	-	-
N. Gulf Coast (USGS)	6	DIS	-	-	-	-
S. Carrizo-Wilcox (Panday et al)	6	DISU	X	X	-	-
N. Carrizo-Wilcox (Panday et al)	6	DISU	X	-	X	-
Cross Timbers (INTERA)	6	DIS	-	-	-	-
CURRENT	6	DISU	X	X	-	X

- Typical model assumes that horizontal flow mostly follows model layers
- Decent simplifying assumption for most geology in Texas
- Easy for structured grid models to replicate

Fault blocks & disconnected geology are more complicated

MODFLOW will automatically connect model layers even if elevations don't overlap

- Typical solution : Don't include complicated geology!
- This is why original "Hill Country" Trinity GAM does NOT include Edwards Balcones Fault Zone

- Workaround: Define Model layers separately from Geology (ex. HUF package)
- Requires simplifications & assumptions
- Makes post-processing by geologic layer difficult

- Fully unstructured grid less reliant on model "layers"
- Can specify flow connections for individual model cells

Before corrections (ja):

→ **484208** 593223 **593606 593608** 594050

After corrections (ja):

→ **374810 484208 484209 593608** 594050

Flopy Row 130 (MODFLOW Row 131) NW to SE - EDWARDS Head - Base Xsection [Zoom in : Flopy(0) Node 145978 to 146000 (MODFLOW Node 145979 to 146001)]

4 - Hammett

2 - Upper Trinity

- Unstructured Grid Getting more usefulness from Real-life geology info
 - Calculate fault flow based on elevation first
 - > Minimizes reliance on uncertain fault property assumptions
 - Identify cells that are not physically attached to rest of model
 - Minimizes errors from forcing connections that aren't REAL
 - Identify true erosional edges
 - Minimizes guessing about boundaries

Model Packages: Pumping (WEL)

Pumping Distribution

Individual WEL package by Water Use Type*

- Municipal (MUN)
- Irrigation (IRR)
- Industrial (IND)

- Mining (MIN)
- Stock (STK)
- Rural-Domestic (RD)

```
4.84430000E+04 -13507 HCa_7043;Bexar_IRR
4.84450000E+04 -13507 HCa_7049;Bexar_IRR
4.84480000E+04 -13507 HCa_7524;Bexar_IRR
4.92130000E+04 -13507 HCa_6175;Bexar_IRR
4.92300000E+04 -13507 HCa_7508;Bexar_IRR
4.92310000E+04 -864 HCa_7522;Bexar_IRR
4.92320000E+04 -13507 HCa_7507;Bexar_IRR
4.92320000E+04 -61806 HCa_6171;Medina_IRR
4.99440000E+04 -61806 HCa_6919;HCa_6926;Bexar_IRR
5.07270000E+04 -13507 HCa_6918;Bexar_IRR
5.07350000E+04 -27014 HCa_7541;HCa_7546;Bexar_IRR
5.16380000E+04 -61806 HCa_6799;Medina_IRR
5.16390000E+04 -61806 HCa_6800;Medina_IRR
5.16560000E+04 -13507 HCa_7544;Bexar_IRR
5.16560000E+04 -61806 HCa_6166;Medina_IRR
5.28760000E+04 -61806 HCa_6166;Medina_IRR
```

Variables:

- Pumping rate
 - ➤ Values from LRE-contracted study & TWDB Water Use Survey
 - By Water Use Type*
 - By TWDB Major Aquifer (Edwards-BFZ, Edwards-Trinity Plateau, & Trinity)

TRAVIS

TRAVIS

UVALDE

UVALDE

Model Design

Model Packages

Model Packages: Recharge (RCH)

Recharge Distribution

- Initial values from contracted WSP Recharge study
- Chose most "realistic" spatial distribution:
 - Soil-water-balance (SWB) method
- Avoid double-counting:
 - Did not apply Recharge to RIV cells
 - Only in topmost active layer
- Variables:
 - Recharge flux rate (LT-1)
 - Multipliers by Surface Geology Zones

Recharge Distribution

- Variables:
 - ➤ Recharge flux rate (LT-1)
 - Multipliers by Surface Geology Zones

```
60976 1.66872007E-04 ED Devils River
60993 1.25804241E-03 ED Devils River
61017 1.00000000E-07 ED Devils River
61018 1.00000000E-07 ED Devils River
61020 1.00000000E-07 ED Devils River
61023 1.00000000E-07 ED Devils River
61024 1.00000000E-07 ED Devils River
61326 1.00000000E-07 ED Edwards BFZ outcrop
61327 6.84462721E-04 ED Edwards BFZ outcrop
61328 7.87132085E-05 ED Edwards BFZ outcrop
61329 2.52110418E-04 ED Edwards BFZ outcrop
61330 6.39516278E-04 ED Edwards BFZ outcrop
61331 1.00000000E-07 ED Edwards BFZ outcrop
61332 5.66050643E-04 ED Edwards BFZ outcrop
61333 5.57608961E-04 ED Edwards BFZ outcrop
61334 5.58293425E-04 ED Edwards BFZ outcrop
61376 4.87109297E-04 ED Fort Terrett and Segovia
61377 4.84371412E-04 ED Fort Terrett and Segovia
61378 6.21263986E-04 ED Fort Terrett and Segovia
61379 4.67944366E-04 ED Fort Terrett and Segovia
```


Recharge Zones

Model Packages: RCH

1981 Recharge

Model Packages: RCH

2000 Recharge

Model Packages: RCH

2011 Recharge

Model Design

Model Packages

Model Packages: Properties (NPF)

Model Packages: NPF

Variables:

- Cell type
 - All cells convertible (confined/unconfined based on head)
- Hydraulic conductivity:
 - Horizontal : Calibrated values (zone multipliers see map)
 - Vertical: tied to Horizontal
 - \triangleright Kv = 0.1 x Kh (majority)
 - ➤ Kv = Kh (faults and in Western Edwards-Trinity Plateau region)

K Zones

Layer	Layer Name	K Zones	
		Geologic	Fault*
1	Edwards	6	16
2	Upper Trinity	3	16
3	Middle Trinity	6	16
4	Hammett	2	16
5	Lower Trinity	4	16

^{*}Faults based on traces + model layer displacement

Horizontal Hydraulic Conductivity

Vertical Hydraulic Conductivity

Model Design

Model Packages

Model Packages: Storage (STO)

Specific storage

Values from previous GAM

Specific yield

Values from previous GAM

Model Design

Model Packages

Model Packages: Rivers (RIV)

Model Packages: **RIV**

Represents:

- Perennial rivers
- Major Lakes

Lake Travis Lake Austin Canyon Lake Medina Lake

Model Packages: RIV

Variables:

- Stream stage (elevation):
 - land surface elevation (corrected to flow downhill)
- Stream bottom (elevation):
 - > 0.5 feet below land surface elevation
- Conductance:
 - Calibrated value (multiplier by river)

Model Packages: RIV

Model Packages: RIV

Variables:

- Stream stage (elevation):
 - land surface elevation
- Stream bottom (elevation):
 - > 0.5 feet below land surface
- Conductance:
 - Calibrated value (multiplier by river)

```
151167 1.74123669E+03 2.82972000E+00 1.74073669E+03 frio river
151172 1.74012122E+03 2.82972000E+00 1.73962122E+03
       1.74002122E+03 2.82972000E+00 1.73952122E+03 frio river
       1.73992122E+03 2.82972000E+00 1.73942122E+03
       1.69295203E+03 4.92576000E+00 1.69245203E+03
      1.69275203E+03 4.92576000E+00 1.69225203E+03
       1.68231287E+03 4.92576000E+00 1.68181287E+03
151230 1.68034436E+03 4.92576000E+00 1.67984436E+03
151237 1.68024436E+03 4.92576000E+00 1.67974436E+03
151238 1.67771973E+03 4.92576000E+00 1.67721973E+03 east frio river
151240 1.67761973E+03 4.92576000E+00 1.67711973E+03 east frio river
151243 1.67751973E+03 4.92576000E+00 1.67701973E+03 east frio river
151245 1.67741973E+03 4.92576000E+00 1.67691973E+03 east frio river
151255 1.67721973E+03 4.92576000E+00 1.67671973E+03 east frio river
151256 1.67731973E+03 4.92576000E+00 1.67681973E+03 east frio river
151257 1.67711973E+03 4.92576000E+00 1.67661973E+03 east frio river
151262 1.67681973E+03 4.92576000E+00 1.67631973E+03 east frio river
151263 1.67701973E+03 4.92576000E+00 1.67651973E+03
       1.67691973E+03 4.92576000E+00 1.67641973E+03
       1.67666992E+03 4.92576000E+00 1.67616992E+03 east frio
       1.67434045E+03 4.92576000E+00 1.67384045E+03
151277 1.67128931E+03 4.92576000E+00 1.67078931E+03 east frio river
151279 1.66325122E+03 4.92576000E+00 1.66275122E+03 east frio river
       1.61731958E+03 4.09260000E+02 1.61681958E+03 west sabinal river
151306 1.61695874E+03 4.09260000E+02 1.61645874E+03 west sabinal river
151308 1.61531824E+03 4.09260000E+02 1.61481824E+03 west sabinal river
```


River Conductance

Model Packages: Drains (DRN)

Model Packages: DRN

Represents:

- Springs
- Rivers

 Llano
 Upper Pedernales
 Little Devils
- Erosional edges

Uncorrected Grid (only horizontal & vertical connections)

Corrected Grid (diagonal connections & inactive cells)

Erosional Edge:

- 1) A cell loses a horizontal connection
- 2) The lost horizontal connection does not get replaced with a diagonal connection

Non-Erosional Edge:

- 1) A cell loses a horizontal connection
- 2) The lost horizontal connection is replaced with a diagonal connection (in same vertical "family"*)

Model Packages: DRN

Variables:

- Head (elevation):
 - land surface elevation at spring/drain location

- Conductance
 - calibrated value (multiplier by individual spring or edge zone)

```
774 8.25818542E+02 1.50000000E-01 yd-58-43-107_+_yd-58-42-308_+_spicewood_springs
1550 5.31921509E+02 5.19510000E+01 yd-58-42-617
1816 4.12998840E+02 3.05919000E+01 power_house_spring
2150 4.38220917E+02 1.26637000E+01 barton_springs
3455 5.69544556E+02 3.12439500E+00 backdoor_spring
6436 9.06887939E+02 1.50000000E-01 unnamed_64
7658 1.03270789E+03 3.52026000E+01 e-13_hays
11860 1.06479443E+03 1.77586500E+00 d-54_hays
12807 8.56658386E+02 1.24305600E+00 g-23_hays
13118 2.59848663E+02 2.78672000E+02 san_marcos_springs
17504 1.25127698E+03 2.10856500E-01 devil's_backbone_spring_+_rancho_cima_dam_spring
17946 1.20705139E+03 5.15565000E+02 bailey_ranch_spring
```


Model Packages: DRN

Model Packages: Boundary Flow (GHB)

Model Packages: GHB

Represents:

- Western Boundary
- Edwards Downdip

Model Packages: GHB

Variables:

- Boundary Head
 - Western Boundary
 - Edwards (Layer 1)
 - Assumed to be unconfined
 - calibrated value above Edwards bottom (as additive value by grid cell)
 - Trinity (Layers 2-5)
 - Assumed to be confined
 - calibrated value above Edwards bottom (as additive value by grid cell)
 - Southeastern Edwards downdip
 - Edwards (Layer 1) only
 - calibrated value below land surface (as additive value by grid cell)
- Conductance
 - ➤ Calibrated value (as multiplier by zone Western or Edwards)

Model Packages: GHB

Western Boundary:
Edwards – Layer 1
Trinity – Layers 2 through 5 (lumped)

Model Packages: **GHB**

Edwards Downdip: Edwards - Layer 1

Model Packages: GHB

Conductance Zones:

- 1) Western Boundary
- 2) Edwards Downdip:

Contact Information

Jevon Harding, P.G.

Lead Modeler 512-463-7979 Jevon.Harding@twdb.texas.gov

Daryn Hardwick, Ph.D.

Manager
512-475-0470

Daryn.Hardwick@twdb.texas.gov

Web information:

https://www.twdb.texas.gov/groundwater/models/gam/trnt h/trnt s.asp

