

texas water development board

Agenda for Southern Ogallala GAM Model Training - SAF Meeting No. 8 January 10, 2003

- Introduction to groundwater flow modeling and MODFLOW computer code
- Overview of Southern Ogallala GAM model
- Introduction to PMWIN
- Application of PMWIN to GAM model

Project Status

We are here

O H H STORE RANGO CON

Modeling Process

- Develop "conceptual" model
- Incorporate conceptual model into a mathematical model
- Model Calibration (history matching)
- Model validation (optional)
- Post-audit and updating

Ogallala Aquifer

Groundwater Flow Modeling

Cells "Communicate"
Their Language is Mathematics!

Darcy's Law

Hydraulic Gradient $I = (h_1 - h_2)/L$

$$Q = KIA$$

$$\frac{PORE}{WATER} v = \frac{KI}{porosity}$$

$$VELOCITY$$

Let's Take a Look at One ...

Major Influences in the Life of a Cell

Natural recharge

Exchange of water with neighboring cells

Permeability

Storage value

Thickness

Irrigation return flow

Water removed from storage

Water remaining in storage

MODFLOW Code

- MODFLOW-96 prescribed by TWDB
- USGS computer code for simulating groundwater flow in three-dimensions
- Most commonly used code/industry standard

Basic and Block Centered Flow Packages

Exchange of water with neighboring cells

Permeability

Storage value

Thickness

Basic Package

- Grid definition
- Time period definition
- Initial conditions
- Boundary conditions

<u>Block Centered Flow Package</u>

- Grid dimensions
- Hydraulic conductivity
- Storage coefficients
- Bottom/top elevations of model layers

Recharge Package

Natural recharge

Well Package

Daniel B. Stephens & Associates, Inc.

well

Boundary Conditions

- Prescribed hydraulic head (water levels)
 - Used along northeastern boundary
- Prescribed groundwater flux
 - Not used (some would consider recharge and pumping here)
- Head-dependent flux
 - Used along eastern escarpment and for small reach along western escarpment

Simulated and Observed Hydraulic Heads

GAM Modeling Approach

- Quantify recharge terms separately
 - Natural (precipitation)
 - Irrigation return flow
- Refine estimates of agricultural water use
- Update aquifer parameters
 - Specific capacity data
 - Previous field investigations
 - Geological models
- All data sets available electronically

Conceptual Model

- Where water flows and why
- How water enters and exists the aquifer

Incorporate Conceptual Model Into a Mathematical Model

- Model Grid 1 mi x 1 mi; 1 layer
- Boundary conditions along edge of grid and internally around salt lakes
- Assign hydraulic conductivity
- Assign recharge
- Assign specific yield (transient model)
- Assign pumping (transient model)

Approximate Altitude of the Base of the Ogallala Aquifer with Model Grid

DEPOSITIONAL SYSTEMS, OGALLALA FORMATION

HYDRAULIC CONDUCTIVITY OF OGALLALA AQUIFER

New Mexico trends inferred from sand and gravel percentage

> Hydraulic Conductivity (Feet/day)

Documented Springs

Outflows: Escarpment = 57% 'Interior' = 43%

Model Boundaries

Recharge
Zones
Used in
the Model
(inches/yr)

Model Calibration

- Predevelopment (1940) point data and spring discharge
- Transient (1940 2000) 80 well hydrographs and all water levels for 1980, 1990 and 2000

Simulated vs. Observed Hydraulic Head

Comparison With Previous Regional Models

GAM

R = 0.037 inch/yr

K = 17 ft/d

USGS RASA

R = 0.086 inch/yr

K = 10 - 150 ft/d

■ TWDB (begins 1960) R = 0.2 inch/yr

K = 68 ft/d

Model Calibration

- Transient (1940 2000)
 - 80 well hydrographs
 - All water levels for 1980, 1990 and 2000

Return Flow Estimates

1940 - 1960 55%

1961 - 1965 50%

1966 - 1970 45%

1971 - 1975 40%

1976 - 1980 35%

1981 - 1985 25%

1986 - 1990 20%

1991 - 1995 15%

1996 - 2000 10%

Enhanced Recharge

- Irrigated areas; 1.75 2.5 in/yr
- Dry land farming; 0.25 2.0 in/yr
- Non-farmed areas; predevelopment rates

Land Use

PostDevelopment Recharge Rates

1994 Irrigated
Lands with
Hydrograph
Locations

Model Validation

Transient (1940 - 2000) - 10 well hydrographs

Predictive Simulations

- 2001-2050 Average conditions
- Last 5 yrs drought of record
 - ◆ 2001-2010
 - 2001-2020
 - 2001-2030
 - ◆ 2001-2040
 - 2001-2050
- 2001-2050 Reduced pumping, 45-55%

Predictive Simulations

- Agricultural pumping from TWDB spreadsheet
- Applied to 1994 "footprint"
- Drought period = 5 years; increase in Q
 from Amosson calculations
- Non-ag pumping: use year 2000 footprint

Historical and Future Pumping

Simulated 2020 Saturated Thickness

