STAKEHOLDER ADVISORY FORUM MEETING
MAY 9, 2003
STAGES IN MODELING PROCESS

- Conceptual model
- Model construction
- Calibration
 - steady-state
 - transient
- Verification
- Prediction
PRESENTATION

• TRANSIENT SIMULATION
 - Hydraulic Properties
 - Boundary Conditions
 - Stresses -- monthly stress periods

• TRANSIENT CALIBRATION
 - Calibration targets
 - Calibration results
HYDRAULIC PROPERTIES
HYDRAULIC CONDUCTIVITY
SWRI + CONDUITS

Conduit
K <= 25 ft/d
Recharge zone
BOUNDARY CONDITIONS
BOUNDARY CONDITIONS

Northern boundary: General-Head (SS) > Constant-Flux (Transient)
STRESSES
Annual recharge

Year

Annual recharge (1000 acre-ft per year)

Annual recharge
PUMPAGE

Cells with pumpage
TRANSIENT CALIBRATION TARGETS
TRANSIENT CALIBRATION TARGETS
HYDRAULIC HEADS

• Calibration targets
 (1) Hydraulic heads - long-term record wells
 - County Index wells
 - match hydrographs
 (2) Hydraulic heads - selected time periods
 - periods of above- and below-normal precipitation
 - match hydraulic heads for a set of wells
TRANSIENT CALIBRATION TARGETS
HYDRAULIC HEADS

• Selected time periods
 (1) Below-normal precipitation
 (a) 1952-57
 -May thru November 1956
 - 175 wells
 (2) Above-normal precipitation
 (a) 1973-77
 - November 1974 thru July 1975
 - 172 wells
TRANSIENT CALIBRATION TARGETS
SPRINGFLOW

• 5 springs simulated:

 San Marcos compiled
 Comal compiled
 Leona compiled
 San Pedro compiled*
 San Antonio compiled*

*Based on relation with index well J-17
TRANSIENT CALIBRATION PROCESS
TRANSIENT CALIBRATION
REVISIONS

• Recharge adjusted
 - Cibolo Creek basin reduced by 50 percent
 - High recharge years (>1,400,000 acre-ft) reduced by 20 percent (1958, 1973, 1981, 1987)
• Storativity zones and values adjusted
• Hydraulic conductivity and placement of conduits adjusted
• Drain (spring) elevation and conductance adjusted
TRANSIENT CALIBRATION RESULTS
TRANSIENT CALIBRATION
PERIODS

• To make size of data sets and simulation run times more manageable

(1) 1947-60
 - includes drought period

(2) 1961-75
 - includes period of high water levels

(3) 1976-90
TRANSIENT PERIOD 1947-60
Central Bexar County
Southwest Medina County
South-central Uvalde County
North-central Comal County
Central Hays County
HYDRAULIC HEAD RESIDUALS

(For August 1956)

Negative value () indicates simulated head is higher than measured head.
HYDRAULIC HEAD RESIDUALS

(For August 1956)

Negative value (●) indicates simulated head is higher than measured head.
HYDRAULIC HEAD RESIDUALS

(For August 1956)

Negative value (●) indicates simulated head is higher than measured head
HYDRAULIC HEAD RESIDUALS

(For August 1956)

Negative value () indicates simulated head is higher than measured head
Algebraic mean residual: 4.8 ft
Absolute mean residual: 19.5 ft
San Antonio Springs -- 1947-60

Springflow (cubic feet per day)

Date

Measured
Simulated
TRANSIENT PERIOD 1961-75
Central Bexar County
East-central Uvalde County
HYDRAULIC HEAD RESIDUALS
(For February 1975)

Negative value (●) indicates simulated head is higher than measured head
HYDRAULIC HEAD RESIDUALS

(For February 1975)

Negative value (○) indicates simulated head is higher than measured head.
HYDRAULIC HEAD RESIDUALS

(For February 1975)

Negative value (○) indicates simulated head is higher than measured head
Algebraic mean residual: -12.6 ft
Absolute mean residual: 33.5 ft
Comal Springs -- 1961-75

Springflow (cubic feet per day)

Measured
Simulated

Date
Jan-61 to Jan-76

Comal Springs -- 1961-75

Springflow (cubic feet per day)

Measured
Simulated

Date
Jan-61 to Jan-76
TRANSIENT PERIOD 1976-90
Northeast Bexar County
Southwest Medina County
East-central Medina County
South-central Uvalde County
East-central Uvalde County
LEFT TO DO
TASKS TO BE COMPLETED

• Complete 1991-2000 verification simulation
• Complete sensitivity analysis
• Local calibration
• Complete reports
 (2) Interpretive report (WRIR)
 (3) Fact Sheet