This page is intentionally blank.
EXECUTIVE SUMMARY:

Texas State Water Code, Section 36.1071, Subsection (h) (Texas Water Code, 2015), states that, in developing its groundwater management plan, a groundwater conservation district shall use groundwater availability modeling information provided by the Executive Administrator of the Texas Water Development Board (TWDB) in conjunction with any available site-specific information provided by the district for review and comment to the Executive Administrator.

The TWDB provides data and information to the Southeast Texas Groundwater Conservation District in two parts. Part 1 is the Estimated Historical Water Use/State Water Plan dataset report, which will be provided to you separately by the TWDB Groundwater Technical Assistance Section. Please direct questions about the water data report to Mr. Stephen Allen at (512) 463-7317 or stephen.allen@twdb.texas.gov. Part 2 is the required groundwater availability modeling information and this information includes:

1. the annual amount of recharge from precipitation, if any, to the groundwater resources within the district;

2. for each aquifer within the district, the annual volume of water that discharges from the aquifer to springs and any surface-water bodies, including lakes, streams, and rivers; and

3. the annual volume of flow into and out of the district within each aquifer and between aquifers in the district.

The groundwater management plan for the Southeast Texas Groundwater Conservation District should be adopted by the district on or before May 5, 2022 and submitted to the Executive Administrator of the TWDB on or before June 4, 2022.
The current management plan for the Southeast Texas Groundwater Conservation District expires on August 3, 2022.

We used two groundwater availability models to estimate the management plan information for the aquifers within the Southeast Texas Groundwater Conservation District. Information for the Yegua-Jackson Aquifer is from version 1.01 of the groundwater availability model for the Yegua-Jackson Aquifer (Deeds and others, 2010). Information for the Gulf Coast Aquifer System is from version 3.01 of the groundwater availability model for the northern portion of Gulf Coast Aquifer System (Kasmarek, 2013).

This report discusses the methods, assumptions, and results from the model runs described above. This report replaces the results of GAM Run 16-012 (Wade, 2016). Values may differ from the previous report resulting from routine updates to the spatial grid file used to define county, groundwater conservation district, and aquifer boundaries, which impact the calculated water budget values. This report also includes a new figure to help groundwater conservation districts better visualize water budget components that was not included in the previous report. Tables 1 and 2 summarize the groundwater availability model data required by statute. Figures 1 and 3 show the area of the models from which the values in the tables were extracted. Figures 2 and 4 provide generalized diagrams of the groundwater flow components provided in Tables 1 and 2. If after review of the figures, the Southeast Texas Groundwater Conservation District determines that the district boundaries used in the assessment do not reflect current conditions, please notify the TWDB at your earliest convenience.

METHODS:

In accordance with the provisions of the Texas State Water Code, Section 36.1071, Subsection (h), the groundwater availability models for the Yegua-Jackson Aquifer and the northern portion of the Gulf Coast Aquifer System were used to estimate information for the Southeast Texas Groundwater Conservation District management plan. Water budgets were extracted for the historical model periods (1980 through 1997 for the Yegua-Jackson Aquifer and 1980 through 2009 for the Gulf Coast Aquifer System) using ZONEBUDGET Version 3.01 (Harbaugh, 2009). The average annual water budget values for recharge, surface-water outflow, inflow to the district, and outflow from the district for the aquifers within the district are summarized in this report.
PARAMETERS AND ASSUMPTIONS:

Yegua-Jackson Aquifer

- We used version 1.01 of the groundwater availability model for the Yegua-Jackson Aquifer. See Deeds and others (2010) for assumptions and limitations of the groundwater availability model.

- This groundwater availability model includes five layers which all represent the Yegua-Jackson Aquifer in the outcrop. Outside the footprint of the Yegua-Jackson Aquifer the model layers represent the Catahoula Formation and other younger overlying units (Layer 1), the upper portion of the Jackson Group (Layer 2), the lower portion of the Jackson Group (Layer 3), the upper portion of the Yegua Group (Layer 4), and the lower portion of the Yegua Group (Layer 5).

- An overall water budget for the district was determined for the Yegua-Jackson Aquifer (Layer 1 through Layer 5, collectively, for the portions of the model that represent the Yegua-Jackson Aquifer). In separate water budget calculations we calculated groundwater flow between the Catahoula Formation and the Yegua-Jackson Aquifer.

- The model was run with MODFLOW-2000 (Harbaugh and others, 2000).

Gulf Coast Aquifer System

- We used version 3.01 of the groundwater availability model for the northern portion of the Gulf Coast Aquifer System for this analysis. See Kasmarek (2013) for assumptions and limitations of the model.

- The model has four layers which represent the Chicot Aquifer (Layer 1), the Evangeline Aquifer (Layer 2), the Burkeville Confining Unit (Layer 3), and the Jasper Aquifer and parts of the Catahoula Formation in direct hydrologic communication with the Jasper Aquifer (Layer 4).

- Water budgets for the district were determined for the Gulf Coast Aquifer System (Layers 1 through 4 collectively).

- The model was run with MODFLOW-2000 (Harbaugh and others, 2000).

- Because this model assumes a no-flow boundary condition at the base we also used version 1.01 of the groundwater availability model for the Yegua-Jackson Aquifer to investigate groundwater flows between the Catahoula Formation and the Yegua-Jackson Aquifer and between the Catahoula Formation and the base of
the Gulf Coast Aquifer System. See Deeds and others (2010) for assumptions and limitations of the groundwater availability model.

RESULTS:

A groundwater budget summarizes the amount of water entering and leaving the aquifer according to the groundwater availability model. Selected groundwater budget components listed below were extracted from the groundwater availability models for the Yegua-Jackson Aquifer and the northern portion of the Gulf Coast Aquifer System within Southeast Texas Groundwater Conservation District and averaged over the historical calibration periods, as shown in Table 1 and 2.

1. Precipitation recharge—the areally distributed recharge sourced from precipitation falling on the outcrop areas of the aquifers (where the aquifer is exposed at land surface) within the district.

2. Surface-water outflow—the total water discharging from the aquifer (outflow) to surface-water features such as streams, reservoirs, and springs.

3. Flow into and out of district—the lateral flow within the aquifer between the district and adjacent counties.

4. Flow between aquifers—the net vertical flow between the aquifer and adjacent aquifers or confining units. This flow is controlled by the relative water levels in each aquifer and aquifer properties of each aquifer or confining unit that define the amount of leakage that occurs.

The information needed for the district’s management plan is summarized in Tables 1 and 2. It is important to note that sub-regional water budgets are not exact. This is due to the size of the model cells and the approach used to extract data from the model. To avoid double accounting, a model cell that straddles a political boundary, such as a district or county boundary, is assigned to one side of the boundary based on the location of the centroid of the model cell. For example, if a cell contains two counties, the cell is assigned to the county where the centroid of the cell is located.
TABLE 1: SUMMARIZED INFORMATION FOR THE YEGUA-JACKSON AQUIFER FOR THE SOUTHEAST TEXAS GROUNDWATER CONSERVATION DISTRICT'S GROUNDWATER MANAGEMENT PLAN. ALL VALUES ARE REPORTED IN ACRE-FEET PER YEAR AND ROUNDED TO THE NEAREST ONE ACRE-FOOT.

<table>
<thead>
<tr>
<th>Management Plan requirement</th>
<th>Aquifer or confining unit</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated annual amount of recharge from precipitation to the district</td>
<td>Yegua-Jackson Aquifer</td>
<td>5</td>
</tr>
<tr>
<td>Estimated annual volume of water that discharges from the aquifer to springs and any surface-water body including lakes, streams, and rivers</td>
<td>Yegua-Jackson Aquifer</td>
<td>152</td>
</tr>
<tr>
<td>Estimated annual volume of flow into the district within each aquifer in the district</td>
<td>Yegua-Jackson Aquifer</td>
<td>405</td>
</tr>
<tr>
<td>Estimated annual volume of flow out of the district within each aquifer in the district</td>
<td>Yegua-Jackson Aquifer</td>
<td>849</td>
</tr>
<tr>
<td>Estimated net annual volume of flow between each aquifer in the district</td>
<td>From the Yegua-Jackson subcrop into the Yegua-Jackson Aquifer (outcrop)</td>
<td>459</td>
</tr>
<tr>
<td></td>
<td>From the Catahoula Formation and other overlying units into the Yegua-Jackson Aquifer</td>
<td>118</td>
</tr>
</tbody>
</table>
FIGURE 1: AREA OF THE GROUNDWATER AVAILABILITY MODEL FOR THE YEGUA-JACKSON AQUIFER FROM WHICH THE INFORMATION IN TABLE 1 WAS EXTRACTED (THE AQUIFER EXTENT WITHIN THE DISTRICT BOUNDARY).
Yegua-Jackson Aquifer

Within District

Recharge from precipitation

springs & surface water

Catahoula Formation and other overlying units

Yegua-Jackson equivalent units within District

Yegua-Jackson equivalent units outside District

Note: This diagram only includes the water budget items provided in Table 1. If the District requires values for additional water budget items, please contact TWDB.
TABLE 2: SUMMARIZED INFORMATION FOR THE GULF COAST AQUIFER SYSTEM FOR THE SOUTHEAST TEXAS GROUNDWATER CONSERVATION DISTRICT'S GROUNDWATER MANAGEMENT PLAN. ALL VALUES ARE REPORTED IN ACRE-FEET PER YEAR AND ROUNDED TO THE NEAREST ONE ACRE-FOOT.

<table>
<thead>
<tr>
<th>Management Plan requirement</th>
<th>Aquifer or confining unit</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated annual amount of recharge from precipitation to the district</td>
<td>Gulf Coast Aquifer System</td>
<td>60,705</td>
</tr>
<tr>
<td>Estimated annual volume of water that discharges from the aquifer to springs and any surface-water body including lakes, streams, and rivers</td>
<td>Gulf Coast Aquifer System</td>
<td>10,496</td>
</tr>
<tr>
<td>Estimated annual volume of flow into the district within each aquifer in the district</td>
<td>Gulf Coast Aquifer System</td>
<td>15,480</td>
</tr>
<tr>
<td>Estimated annual volume of flow out of the district within each aquifer in the district</td>
<td>Gulf Coast Aquifer System</td>
<td>15,679</td>
</tr>
<tr>
<td>Estimated net annual volume of flow between each aquifer in the district (^1)</td>
<td>From the Catahoula Formation into the Gulf Coast Aquifer</td>
<td>414</td>
</tr>
<tr>
<td></td>
<td>From the Catahoula portion of the Gulf Coast Aquifer into the Yegua-Jackson Aquifer</td>
<td>118</td>
</tr>
</tbody>
</table>

\(^1\) This information was obtained from the Yegua-Jackson groundwater availability model.
FIGURE 3: AREA OF THE GROUNDWATER AVAILABILITY MODEL FOR THE GULF COAST AQUIFER SYSTEM FROM WHICH THE INFORMATION IN TABLE 2 WAS EXTRACTED (THE AQUIFER SYSTEM EXTENT WITHIN THE DISTRICT BOUNDARY).
FIGURE 4: GENERALIZED DIAGRAM OF THE SUMMARIZED BUDGET INFORMATION FROM TABLE 2, REPRESENTING DIRECTIONS OF FLOW FOR THE GULF COAST AQUIFER WITHIN SOUTHEAST TEXAS GROUNDWATER CONSERVATION DISTRICT. FLOW VALUES EXPRESSED IN ACRE-FEET PER YEAR.

Note: This diagram only includes the water budget items provided in Table 2. If the District requires values for additional water budget items, please contact TWDB.
LIMITATIONS:

The groundwater models used in completing this analysis are the best available scientific tools that can be used to meet the stated objectives. To the extent that this analysis will be used for planning purposes and/or regulatory purposes related to pumping in the past and into the future, it is important to recognize the assumptions and limitations associated with the use of the results. In reviewing the use of models in environmental regulatory decision making, the National Research Council (2007) noted:

“Models will always be constrained by computational limitations, assumptions, and knowledge gaps. They can best be viewed as tools to help inform decisions rather than as machines to generate truth or make decisions. Scientific advances will never make it possible to build a perfect model that accounts for every aspect of reality or to prove that a given model is correct in all respects for a particular regulatory application. These characteristics make evaluation of a regulatory model more complex than solely a comparison of measurement data with model results.”

A key aspect of using the groundwater model to evaluate historic groundwater flow conditions includes the assumptions about the location in the aquifer where historic pumping was placed. Understanding the amount and location of historic pumping is as important as evaluating the volume of groundwater flow into and out of the district, between aquifers within the district (as applicable), interactions with surface water (as applicable), recharge to the Aquifer System (as applicable), and other metrics that describe the impacts of that pumping. In addition, assumptions regarding precipitation, recharge, and interaction with streams are specific to particular historic time periods.

Because the application of the groundwater models was designed to address regional-scale questions, the results are most effective on a regional scale. The TWDB makes no warranties or representations related to the actual conditions of any aquifer at a particular location or at a particular time.

It is important for groundwater conservation districts to monitor groundwater pumping and overall conditions of the aquifer. Because of the limitations of the groundwater model and the assumptions in this analysis, it is important that the groundwater conservation districts work with the TWDB to refine this analysis in the future given the reality of how the aquifer responds to the actual amount and location of pumping now and in the future. Historic precipitation patterns also need to be placed in context as future climatic conditions, such as dry and wet year precipitation patterns, may differ and affect groundwater flow conditions.
REFERENCES:

