GAM Run 13-023: REAL-EDWARDS CONSERVATION AND RECLAMATION DISTRICT MANAGEMENT PLAN by Radu Boghici, P.G. Texas Water Development Board Groundwater Resources Division Groundwater Availability Modeling Section (512) 463-5808 December 18, 2013 The seal appearing on this document was authorized by Radu Boghici, P.G. 482 on December 18, 2013. # GAM Run 13-023: REAL-EDWARDS CONSERVATION AND RECLAMATION DISTRICT MANAGEMENT PLAN by Radu Boghici, P.G. Texas Water Development Board Groundwater Resources Division Groundwater Availability Modeling Section (512) 463-5808 December 18, 2013 ### **EXECUTIVE SUMMARY:** Texas Water Code, Section 36.1071, Subsection (h), states that, in developing its groundwater management plan, a groundwater conservation district shall use groundwater availability modeling information provided by the executive administrator of the Texas Water Development Board (TWDB) in conjunction with any available site-specific information provided by the district for review and comment to the executive administrator. Information derived from groundwater availability models that shall be included in the groundwater management plan includes: - the annual amount of recharge from precipitation to the groundwater resources within the district, if any; - for each aquifer within the district, the annual volume of water that discharges from the aquifer to springs and any surface water bodies, including lakes, streams, and rivers; and - the annual volume of flow into and out of the district within each aquifer and between aquifers in the district. This report (Part 2 of a two-part package of information from the TWDB to Real-Edwards Conservation and Reclamation District) fulfills the requirements noted above. Part 1 of the two-part package is the Historical Water Use/State Water Plan data report. The District will receive this data report from the TWDB Groundwater Technical Assistance Section. Questions about the data report can be directed to Mr. Stephen Allen, Stephen.Allen@twdb.texas.gov, (512) 463-7317. GAM Run 13-023: Real-Edwards Conservation and Reclamation District Management Plan December 18, 2013 Page 4 of 10 The groundwater management plan for the Real-Edwards Conservation and Reclamation District should be adopted by the district on or before May 12, 2014 and submitted to the executive administrator of the TWDB on or before June 11, 2014. The current management plan for Real-Edwards Conservation and Reclamation District expires on August 10, 2014. This report discusses the methods, assumptions, and results from model runs using the groundwater availability model (version 1.01) for the Edwards-Trinity (Plateau) and Pecos Valley aguifers (Anaya and Jones, 2009). Tables 1 and 2 summarize the groundwater availability model data required by the statute, and Figure 1 shows the area of the model from which the values in the tables were extracted. GAM Run 13-023 meets current standards. If after review of the figures, the Real-Edwards Conservation and Reclamation District determines that the district boundaries used in the assessment do not reflect current conditions, the District should notify the Texas Water Development Board immediately. Per statute, TWDB is required to provide the districts with data from the official groundwater availability models; however, the TWDB has also approved, for planning purposes, an alternative model that can have water budget information extracted for the district. The alternative model is the 1-layer alternative model for the Edwards-Trinity (Plateau) and Pecos Valley aguifers (Hutchison and others, 2011). Please contact the author of this report if a comparison table using this model is desired. ### **METHODS:** In accordance with the provisions of the Texas Water Code, Section 36.1071, Subsection (h), the groundwater availability model for the Edwards-Trinity (Plateau) and Pecos Valley aquifers was run for this analysis. Real-Edwards Conservation and Reclamation District water budgets for the historical model periods were extracted using ZONEBUDGET Version 3.01 (Harbaugh, 2009) The average annual water budget values for recharge, surface water outflow, inflow to the district, outflow from the district, net inter-aquifer flow (upper), and net inter-aquifer flow (lower) for the portions of the aquifers located within the district are summarized in this report. ## PARAMETERS AND ASSUMPTIONS: # Edwards-Trinity (Plateau) Aquifer - We used version 1.01 of the groundwater availability model for the Edwards-Trinity (Plateau) and Pecos Valley aquifers. See Anaya and Jones (2009) for assumptions and limitations of the groundwater availability model for the Edwards-Trinity (Plateau) and Pecos Valley aquifers. The Pecos Valley Aquifer does not occur within the Real-Edwards Conservation and Reclamation District and, therefore, no groundwater budget values are included for it in this report. - This groundwater availability model includes two layers within Real-Edwards Conservation and Reclamation District, which generally represent the Edwards Group (Layer 1) and the Trinity Group (Layer 2) of the Edwards-Trinity (Plateau) Aquifer. Individual water budgets for the District were determined for the Edwards-Trinity (Plateau) Aquifer (Layer 1 and Layer 2 combined). - Water budgets for the Trinity Aquifer (Hill Country portion) were determined from layer 2. - Within the Real-Edwards Conservation and Reclamation District, groundwater in the Edwards-Trinity (Plateau) Aquifer is fresh, with total dissolved solids of less than 500 milligrams per liter in all wells sampled by the TWDB from 2005 onwards. (TWDB Groundwater Database, queried in November 2013). - The model was run with MODFLOW-96 (Harbaugh and McDonald, 1996). ### **RESULTS:** A groundwater budget summarizes the amount of water entering and leaving the aquifer according to the groundwater availability model. Selected groundwater budget components listed below were extracted from the model results for the aquifers located within the district and averaged over the duration of the calibration and verification portion of the model runs in the district, as shown in Tables 1 and 2. • Precipitation recharge—The areally-distributed recharge sourced from precipitation falling on the outcrop areas of the aquifers (where the aquifer is exposed at land surface) within the district. GAM Run 13-023: Real-Edwards Conservation and Reclamation District Management Plan December 18, 2013 Page 6 of 10 - Surface water outflow—The total water discharging from the aquifer (outflow) to surface water features such as streams, reservoirs, and drains (springs). - Flow into and out of district—The lateral flow within the aquifer between the district and adjacent counties. - Flow between aquifers—The net vertical flow between aquifers or confining units. This flow is controlled by the relative water levels in each aquifer or confining unit and aquifer properties of each aquifer or confining unit that define the amount of leakage that occurs. "Inflow" to an aquifer from an overlying or underlying aquifer will always equal the "Outflow" from the other aquifer. The information needed for the District's management plan is summarized in Tables 1 and 2. It is important to note that sub-regional water budgets are not exact. This is due to the size of the model cells and the approach used to extract data from the model. To avoid double accounting, a model cell that straddles a political boundary, such as a district or county boundary, is assigned to one side of the boundary based on the location of the centroid of the model cell. For example, if a cell contains two counties, the cell is assigned to the county where the centroid of the cell is located (Figure 1). Also, due to differences in water budget-computing methodologies, certain budget components such as recharge and aquifer leakage to streams are now different from those reported to the Real-Edwards Conservation and Reclamation District in the past. GAM Run 13-023: Real-Edwards Conservation and Reclamation District Management Plan December 18, 2013 Page 7 of 10 TABLE 1: SUMMARIZED INFORMATION FOR THE EDWARDS-TRINITY (PLATEAU) AQUIFER THAT IS NEEDED FOR THE REAL-EDWARDS CONSERVATION AND RECLAMATION DISTRICT'S GROUNDWATER MANAGEMENT PLAN. ALL VALUES ARE REPORTED IN ACRE-FEET PER YEAR AND ROUNDED TO THE NEAREST 1 ACRE-FOOT. | Management Plan requirement | Aquifer or confining unit | Results | |--|---|---------| | Estimated annual amount of recharge from precipitation to the district | Edwards-Trinity (Plateau)
Aquifer | 75,382 | | Estimated annual volume of water that discharges from the aquifer to springs and any surface water body including lakes, streams, and rivers | Edwards-Trinity (Plateau)
Aquifer | 41,232 | | Estimated annual volume of flow into the district within each aquifer in the district | Edwards-Trinity (Plateau)
Aquifer | 25,004 | | Estimated annual volume of flow out of the district within each aquifer in the district | Edwards-Trinity (Plateau)
Aquifer | 79,007 | | Estimated net annual volume of flow between each aquifer in the district | From the Trinity Aquifer into the
Edwards-Trinity (Plateau)
Aquifer | 272 | TABLE 2: SUMMARIZED INFORMATION FOR THE TRINITY AQUIFER THAT IS NEEDED FOR THE REAL-EDWARDS CONSERVATION AND RECLAMATION DISTRICT'S GROUNDWATER MANAGEMENT PLAN. ALL VALUES ARE REPORTED IN ACRE-FEET PER YEAR AND ROUNDED TO THE NEAREST 1 ACRE-FOOT. | Management Plan requirement | Aquifer or confining unit | Results | |--|---|---------| | Estimated annual amount of recharge from precipitation to the district | Trinity Aquifer | 1,080 | | Estimated annual volume of water that discharges from the aquifer to springs and any surface water body including lakes, streams, and rivers | Trinity Aquifer | 0 | | Estimated annual volume of flow into the district within each aquifer in the district | Trinity Aquifer | 649 | | Estimated annual volume of flow out of the district within each aquifer in the district | Trinity Aquifer | 1,455 | | Estimated net annual volume of flow between each aquifer in the district | From the Trinity Aquifer into the
Edwards-Trinity (Plateau)
Aquifer | 272 | FIGURE 1: AREA OF THE GROUNDWATER AVAILABILITY MODEL (GAM) FOR THE EDWARDS-TRINITY (PLATEAU) AND PECOS VALLEY AQUIFERS FROM WHICH THE INFORMATION IN TABLE 1 WAS EXTRACTED FOR THE EXTENT OF THE EDWARDS-TRINITY (PLATEAU) AQUIFER. DATA FOR THE TRINITY (HILL COUNTRY PORTION) AQUIFER WITHIN THE DISTRICT BOUNDARY IS FOUND IN TABLE 2. GAM Run 13-023: Real-Edwards Conservation and Reclamation District Management Plan December 18, 2013 Page 9 of 10 ## LIMITATIONS The groundwater model(s) used in completing this analysis is the best available scientific tool that can be used to meet the stated objective(s). To the extent that this analysis will be used for planning purposes and/or regulatory purposes related to pumping in the past and into the future, it is important to recognize the assumptions and limitations associated with the use of the results. In reviewing the use of models in environmental regulatory decision making, the National Research Council (2007) noted: "Models will always be constrained by computational limitations, assumptions, and knowledge gaps. They can best be viewed as tools to help inform decisions rather than as machines to generate truth or make decisions. Scientific advances will never make it possible to build a perfect model that accounts for every aspect of reality or to prove that a given model is correct in all respects for a particular regulatory application. These characteristics make evaluation of a regulatory model more complex than solely a comparison of measurement data with model results." A key aspect of using the groundwater model to evaluate historic groundwater flow conditions includes the assumptions about the location in the aquifer where historic pumping was placed. Understanding the amount and location of historic pumping is as important as evaluating the volume of groundwater flow into and out of the district, between aquifers within the district (as applicable), interactions with surface water (as applicable), recharge to the aquifer system (as applicable), and other metrics that describe the impacts of that pumping. In addition, assumptions regarding precipitation, recharge, and interaction with streams are specific to particular historic time periods. Because the application of the groundwater models was designed to address regional scale questions, the results are most effective on a regional scale. The TWDB makes no warranties or representations related to the actual conditions of any aquifer at a particular location or at a particular time. It is important for groundwater conservation districts to monitor groundwater pumping and overall conditions of the aquifer. Because of the limitations of the groundwater model and the assumptions in this analysis, it is important that the groundwater conservation districts work with the TWDB to refine this analysis in the future given the reality of how the aquifer responds to the actual amount and location of pumping now and in the future. Historic precipitation patterns also need to be placed in context as future climatic conditions, such as dry and wet year precipitation patterns, may differ and affect groundwater flow conditions. GAM Run 13-023: Real-Edwards Conservation and Reclamation District Management Plan December 18, 2013 Page 10 of 10 # **REFERENCES:** - Anaya, R., and Jones, I., 2009, Groundwater Availability Model for the Edwards-Trinity (Plateau) and Pecos Valley Aquifers, 103 p., http://www.twdb.texas.gov/groundwater/models/gam/eddt_p/ET-Plateau_Full.pdf - Harbaugh, A. W., 2009, Zonebudget Version 3.01, A computer program for computing subregional water budgets for MODFLOW ground-water flow models, U.S. Geological Survey Groundwater Software. - Harbaugh, A. W., and McDonald, M. G., 1996, User's documentation for MODFLOW-96, an update to the U.S. Geological Survey modular finite-difference groundwaterwater flow model: U.S. Geological Survey Open-File Report 96-485, 56 p. - Hutchison, W. R., Jones, I., and Anaya, R., 2011, Update of the Groundwater Availability Model for the Edwards-Trinity (Plateau) and Pecos Valley Aquifers of Texas, 60 p., http://www.twdb.texas.gov/groundwater/models/alt/eddt_p_2011/alt1_eddt_p_asp - National Research Council, 2007, Models in Environmental Regulatory Decision Making Committee on Models in the Regulatory Decision Process, National Academies Press, Washington D.C., 287 p. - TWDB Groundwater Database, 2013, Texas Water Development Board, http://www.twdb.texas.gov/groundwater/data/index.asp, queried November 2013.