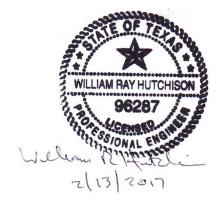

GMA 3 Explanatory Report - FinalCapitan Reef Complex Aquifer

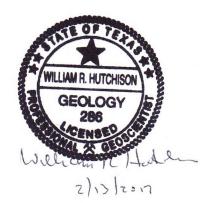
Prepared for:
Groundwater Management Area 3

Prepared by:

William R. Hutchison, Ph.D., P.E., P.G.

Independent Groundwater Consultant 9305 Jamaica Beach Jamaica Beach, TX 77554 512-745-0599 billhutch@texasgw.com


GMA 3 Explanatory Report (Final) Capitan Reef Complex Aquifer


Geoscientist and Engineering Seal

This report documents the work and supervision of work of the following licensed Texas Professional Geoscientist and licensed Texas Professional Engineers:

William R. Hutchison, Ph.D., P.E. (96287), P.G. (286)

Dr. Hutchison completed the analyses and model simulations described in this report, and was the principal author of the final report.

Table of Contents

2.0 Desired Future Condition	1.0	Groundwater Management Area 3	1
2.2 Capitan Reef Complex Groundwater Availability Model	2.0	Desired Future Condition	4
4.0 Technical Justification	2.2 2.3	Capitan Reef Complex Groundwater Availability Model Desired Future Condition	4 5
5.0 Factor Consideration			
5.2 Groundwater Supply Needs and Strategies			
List of Figures Figure 1. Groundwater Management Area 3	5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9	Groundwater Supply Needs and Strategies Hydrologic Conditions, including Total Estimated Recoverable Storage Other Environmental Impacts, including Impacts on Spring Flow Subsidence Socioeconomic Impacts Impact on Private Property Rights Feasibility of Achieving the Desired Future Condition Other Information Discussion of Other Desired Future Conditions Considered	111213131313
List of Figures Figure 1. Groundwater Management Area 3	7.0	Discussion of Other Recommendations	15
Figure 1. Groundwater Management Area 3	8.0	References	16
Table 1. Historic Pumping Estimates for the Capitan Reef Complex Aquifer, GMA 3 Counties	Figure Figure	 Groundwater Management Area 3 GMA 3 Counties (from TWDB) 	2
Table 4. Total Estimated Recoverable Storage – Capitan Reef Complex Aquifer	Table Table ? Table ?	 Historic Pumping Estimates for the Capitan Reef Complex Aquifer, GMA 3 Counties Modeled Available Groundwater for the Capitan Reef Complex Aquifer Groundwater Budget from Capitan Reef Complex Aquifer GAM 	11 12

Appendices

- A Desiried Future Condition Resolution
- B Region F Socioeconomic Impact Report from TWDB
- C Comment Letter from Mr. Gilbert Van Deventer

1.0 Groundwater Management Area 3

Groundwater Management Area 3 is one of sixteen groundwater management areas in Texas, and covers that portion of west Texas that is underlain by the Pecos Valley Aquifer (Figure 1).

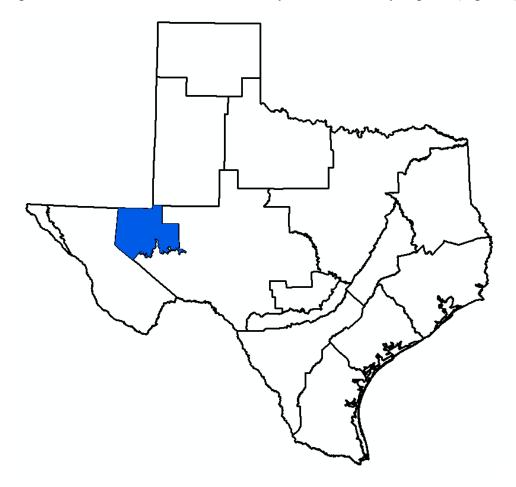


Figure 1. Groundwater Management Area 3

Groundwater Management Area 3 covers all or part of the following counties: Crane, Loving, Pecos, Reeves, Ward, and Winkler (Figure 2).

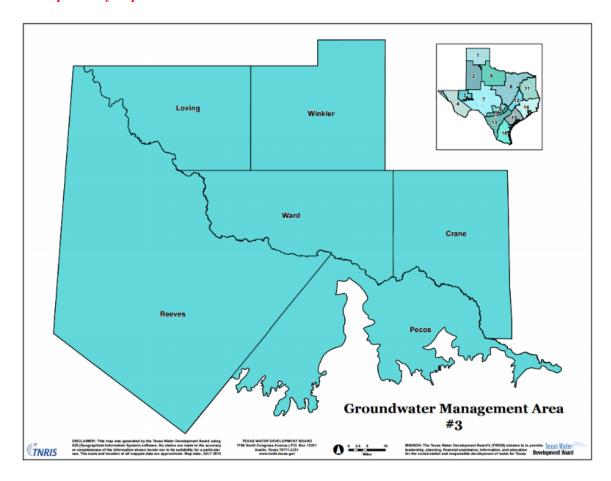


Figure 2. GMA 3 Counties (from TWDB)

There are two groundwater conservation districts in Groundwater Management Area 3: Middle Pecos Groundwater Conservation District and Reeves County Groundwater Conservation District (Figure 3).

Figure 3. Groundwater Conservation Districts in GMA3 (from TWDB)

The explanatory report covers the Capitan Reef Complex Aquifer. As described in George and others (2011):

The Capitan Reef Complex Aquifer is a minor aquifer located in Culberson, Hudspeth, Jeff Davis, Brewster, Pecos, Reeves, Ward, and Winkler counties. It is exposed in mountain ranges of Far West Texas; elsewhere it occurs in the subsurface. The aquifer is composed of as much as 2,360 feet of massive, cavernous dolomite and limestone. Water-bearing formations include the Capitan Limestone, Goat Seep Dolomite, and most of the Carlsbad facies of the Artesia Group, including the Grayburg, Queen, Seven Rivers, Yates, and Tansill formations. Water is contained in solution cavities and fractures that are unevenly distributed within these formations. Water from the Capitan Reef Complex Aquifer is thought to contribute to the base flow of San Solomon Springs in Reeves County. Overall, the aquifer contains water of marginal quality, yielding small to large quantities of slightly saline to saline groundwater containing 1,000 to greater than 5,000 milligrams per liter of total dissolved solids. Water of the freshest quality, with total dissolved solids between 300 and 1,000 milligrams per liter, is present in the west near areas of recharge where the reef rock is exposed in several mountain ranges. Although most of the groundwater pumped from the aquifer in Texas is used for oil reservoir flooding in Ward and Winkler counties, a small amount is used to irrigate salt-tolerant crops in Pecos, Culberson, and Hudspeth counties. Over the last 70 years, water levels have declined in some areas as a result of localized production. The Far West Texas Regional Water Planning Group, in its 2006 Regional Water Plan, recommended several water management strategies for the Capitan Reef Complex Aquifer, including redeveloping an existing well field, desalinating the water, and transporting it to El Paso County.

2.0 Desired Future Condition

2.1 Existing Desired Future Conditions

GMA 3 adopted a desired future condition for the Rustler Aquifer on August 9, 2010 as follows:

- 1. Total net decline in water levels within GMA 3 at the end of the fifty-year period in 2060 shall not exceed two hundred (200) feet below water levels in the aquifer in the year 2010, and;
- 2. The results of the 2-D Model for the Capitan Aquifer in Pecos, Reeves, Ward, and Winkler Counties within GMA 3 developed by Bar-W Groundwater Exploration and as presented on August 9, 2010, used to develop the DFC for the Capitan Aquifer are adopted in their entirety, and;
- 3. The Capitan Aquifer is not considered a relevant aquifer for joint planning purposes in Crane and Loving Counties within GMA-3, at the time.

The desired future condition was developed after considering a water budget analysis was that was completed on behalf of Middle Pecos GCD. A groundwater model of the aquifer was not available at the time of the initial desired future condition.

2.2 Capitan Reef Complex Groundwater Availability Model

In 2016, the Texas Water Development Board released a draft groundwater availability model (GAM) for the minor aquifers of the eastern arm of the Capitan Reef Complex Aquifer (Jones, 2016). The model was in draft form when the DFC was proposed and during the public comment period. The model was finalized in November 2016, after the public comment period, and after the adoption of the DFC (October 22, 2016).

Documentation of the GAM runs used in the development of the DFC is in GMA 3 Technical Memorandum 16-06. The simulations were designed to test the new draft GAM under varying pumping simulations. A base case was developed using the historic pumping from the calibrated model using the 2005 pumping (last stress period of the calibrated model) to test the stability of the model for predictive simulations. Four predictive scenarios were also completed based on input from Steve Finch, hydrogeology consultant to La Escalera Ranch. For the four predictive scenarios, the default was to use 2005 pumping. In addition, pumping in the GMA 7 portion of Pecos County was added as recommended by Mr. Finch:

- Scenario 1 had 8 wells, pumping 7,560 AF/yr
- Scenario 2 had 15 wells, pumping 15,000 AF/yr
- Scenario 3 had 25 wells, pumping 25,000 AF/yr
- Scenario 4 had 28 wells, pumping 34,500 AF/yr

There was no additional pumping beyond the 2005 estimated pumping in the GMA 3 portion of the model area.

Capitan Reef Complex Aquifer GMA 3 Explanatory Report - Final

The drawdown from the predictive scenarios was documented, evaluated and discussed at the GMA 3 meetings of March 16, 2016 and April 26, 2016. There was also subsequent discussion at the GMA 3 meeting of October 22, 2016.

These simulated drawdowns are not considered reliable due to issues with the model, but are useful for comparative purposes.

Jones (2016, pp. 164 to 166) reported that lateral inflow to Pecos County during the calibration period was about 17,000 AF/yr in 1931 and increased to 18,268 AF/yr in 2005. Jones (2016) did not subdivide the lateral inflow.

Water budget calculations from the output of the scenarios shows that in Scenario 1 (lowest additional La Escalera Ranch pumping) showed 38,089 AF/yr inflow to the GMA 7 portion of Pecos County from Brewster County in 2006, increasing to 40,024 AF/yr in 2070. Outflow to the GMA 3 portion of Pecos County was 21,524 AF/yr in 2006 and decreased to 16,592 AF/yr in 2070. Thus, the net lateral inflow for the GMA 7 portion of Pecos County was 16,565 AF/yr in 2006 (similar to Jones' 2005 values) and was 23,432 AF/yr in 2070.

There is some question as to the large amount of inflow from Brewster County and the effect of this inflow can be seen in plots of pumping vs. drawdown in 2070 for individual cells in the GMA 7 portion of Pecos County.

There are several cells with "negative" drawdown, even in areas where pumping occurs. The model is simulating a groundwater level increase from 2006 to 2070 that appears to be caused by some boundary condition that results in increased flow.

The drawdown values are not particularly reliable given the issues with the model. However, for purposes of meeting the requirements of the Texas Water Development Board in linking DFCs with MAGs, they are superior to the Aquifer Analysis approach taken in 2010. It is recommended that these values be updated when the GAM is improved.

It is also recommended that these values not be relied upon in the evaluation of any permit applications. Essentially, the simulations with the draft GAM have shown that the GAM cannot be considered reliable in the context of permit review. An alternative tool should be developed as part of any permit application and/or review process.

2.3 Desired Future Condition

The resolution that documents the adoption of the desired future condition for the Rustler Aquifer is presented in Appendix A. The desired future condition for the Capitan Reef Complex Aquifer in GMA 3 is based on Scenario 4 of Technical Memorandum 16-06 as follows:

1. Total net drawdown not to exceed 4 feet in Pecos County (Middle Pecos GCD) in 2070 as compared with aquifer levels in 2006, as set forth in Scenario 4 in exhibit "A" (GMA 3 Technical Memorandum, 16-06) attached hereto and fully incorporated herein;

Capitan Reef Complex Aquifer GMA 3 Explanatory Report - Final

- 2. Total net drawdowns in Ward and Winkler Counties no to exceed 2 feet in 2070 as compared with 2006 aquifer levels, as set forth in Scenario 4 in exhibit "A" (GMA 3 Technical Memorandum 16-06) attached hereto and fully incorporated herein;
- 3. The Capitan Reef Aquifer is not relevant for joint planning purposes in all other areas of GMA 3.

3.0 Policy Justification

As developed more fully in this report, the proposed desired future condition was adopted after considering:

- Aquifer uses and conditions within Groundwater Management Area 3
- Water supply needs and water management strategies included in the 2012 State Water Plan
- Hydrologic conditions within Groundwater Management Area 3 including total estimated recoverable storage, average annual recharge, inflows, and discharge
- Other environmental impacts, including spring flow and other interactions between groundwater and surface water
- The impact on subsidence
- Socioeconomic impacts reasonably expected to occur
- The impact on the interests and rights in private property, including ownership and the rights of landowners and their lessees and assigns in Groundwater Management Area 3 in groundwater as recognized under Texas Water Code Section 36.002
- The feasibility of achieving the desired future condition
- Other information

In addition, the proposed desired future condition provides a balance between the highest practicable level of groundwater production and the conservation, preservation, protection, recharging, and prevention of waste of groundwater in Groundwater Management Area 3.

There is no set formula or equation for calculating groundwater availability. This is because an estimate of groundwater availability requires the blending of policy and science. Given that the tools for scientific analysis (groundwater models) contain limitations and uncertainty, policy provides the guidance and defines the bounds that science can use to calculate groundwater availability.

As developed more fully below, many of these factors could only be considered on a qualitative level since the available tools to evaluate these impacts have limitations and uncertainty.

4.0 Technical Justification

The process of using the groundwater model in developing desired future conditions revolves around the concept of incorporating many of the elements of the nine factors (e.g. current uses and water management strategies in the regional plan). For the Capitan Reef Complex Aquifer, 5 scenarios were, and the results discussed prior to adopting a desired future condition.

Some critics of the process asserted that the districts were "reverse-engineering" the desired future conditions by specifying pumping (e.g., the modeled available groundwater) and then adopting the resulting drawdown as the desired future condition. However, it must be remembered that among the input parameters for a predictive groundwater model run is pumping, and among the outputs of a predictive groundwater model run is drawdown. Thus, an iterative approach of running several predictive scenarios with models and then evaluating the results is a necessary (and time-consuming) step in the process of developing desired future conditions.

One part of the reverse-engineering critique of the process has been that "science" should be used in the development of desired future conditions. The critique plays on the unfortunate name of the groundwater models in Texas (Groundwater Availability Models) which could suggest that the models yield an availability number. This is simply a mischaracterization of how the models work (i.e. what is a model input and what is a model output).

The critique also relies on a fairly narrow definition of the term *science* and fails to recognize that the adoption of a desired future condition is primarily a policy decision. The call to use science in the development of desired future conditions seems to equate the term *science* with the terms *facts* and *truth*. Although the Latin origin of the word means knowledge, the term *science* also refers to the application of the scientific method. The scientific method is discussed in many textbooks and can be viewed as a means to quantify cause-and-effect relationships and to make useful predictions.

In the case of groundwater management, the scientific method can be used to understand the relationship between groundwater pumping and drawdown, or groundwater pumping and spring flow. A groundwater model is a tool that can be used to run "experiments" to better understand the cause-and-effect relationships within a groundwater system as they relate to groundwater management.

Much of the consideration of the nine statutory factors involves understanding the effects or the impacts of a desired future condition (e.g. groundwater-surface water interaction and property rights). The use of the models in this manner in evaluating the impacts of alternative futures is an effective means of developing information for the groundwater conservation districts as they develop desired future conditions.

5.0 Factor Consideration

Senate Bill 660, adopted by the legislature in 2011, changed the process by which groundwater conservation districts within a groundwater management area develop and adopt desired future conditions. The new process includes nine steps as presented below:

- The groundwater conservation districts within a groundwater management area consider nine factors outlined in the statute.
- The groundwater conservation districts adopt a "proposed" desired future condition
- The "proposed" desired future condition is sent to each groundwater conservation district for a 90-day comment period, which includes a public hearing by each district
- After the comment period, each district compiles a summary report that summarizes the relevant comments and includes suggested revisions. This summary report is then submitted to the groundwater management area.
- The groundwater management area then meets to vote on a desired future condition.
- The groundwater management area prepares an "explanatory report".
- The desired future condition resolution and the explanatory report are then submitted to the Texas Water Development Board and the groundwater conservation districts within the groundwater management area.
- Districts then adopt desired future conditions that apply to that district.

The nine factors that must be considered before adopting a proposed desired future condition are:

- 1. Aquifer uses or conditions within the management area, including conditions that differ substantially from one geographic area to another.
- 2. The water supply needs and water management strategies included in the state water plan.
- 3. Hydrological conditions, including for each aquifer in the management area the total estimated recoverable storage as provided by the executive administrator (of the Texas Water Development Board), and the average annual recharge, inflows and discharge.
- 4. Other environmental impacts, including impacts on spring flow and other interactions between groundwater and surface water.
- 5. The impact on subsidence.
- 6. Socioeconomic impacts reasonably expected to occur.
- 7. The impact on the interests and rights in private property, including ownership and the rights of management area landowners and their lessees and assigns in groundwater as recognized under Section 36.002 (of the Texas Water Code).
- 8. The feasibility of achieving the desired future condition.
- 9. Any other information relevant to the specific desired future condition.

In addition to these nine factors, statute requires that the desired future condition provide a balance between the highest practicable level of groundwater production and the conservation, preservation, protection, recharging, and prevention of waste of groundwater and control of subsidence in the management area.

5.1 Groundwater Demands and Uses

Table 1 summarizes county-level groundwater demands and uses from 1980 and 1984 to 2012 for the Capitan Reef Aquifer in GMA 3 counties. Please note that the Pecos County values are for both the GMA 3 and GMA 7 portions of the county since TWDB does not subdivide the data on a GMA basis. Data were obtained from the Texas Water Development Board historic pumping database:

http://www.twdb.state.tx.us/waterplanning/waterusesurvey/historical-pumpage.asp

Table 1. Historic Pumping Estimates for the Capitan Reef Complex Aquifer, GMA 3 Counties

Year	County	Aquifer	Mining	Irrigation	Livestock	Total
2000	PECOS	CAPITAN REEF COMPLEX AQUIFER	0	1,564	18	1,582
2001	PECOS	CAPITAN REEF COMPLEX AQUIFER	0	1,388	19	1,407
2002	PECOS	CAPITAN REEF COMPLEX AQUIFER	0	1,323	17	1,340
2003	PECOS	CAPITAN REEF COMPLEX AQUIFER	0	813	14	827
2004	PECOS	CAPITAN REEF COMPLEX AQUIFER	0	918	14	932
2005	PECOS	CAPITAN REEF COMPLEX AQUIFER	0	894	15	909
2006	PECOS	CAPITAN REEF COMPLEX AQUIFER	0	1,337	17	1,354
2008	PECOS	CAPITAN REEF COMPLEX AQUIFER	0	1,229	15	1,244
2009	PECOS	CAPITAN REEF COMPLEX AQUIFER	0	1,962	14	1,976
2010	PECOS	CAPITAN REEF COMPLEX AQUIFER	0	2,650	14	2,664
2011	PECOS	CAPITAN REEF COMPLEX AQUIFER	0	2,702	13	2,715
2012	PECOS	CAPITAN REEF COMPLEX AQUIFER	0	2,381	12	2,393
1980	WARD	CAPITAN REEF COMPLEX AQUIFER	12,276	0	0	12,276
1984	WARD	CAPITAN REEF COMPLEX AQUIFER	653	0	0	653
1985	WARD	CAPITAN REEF COMPLEX AQUIFER	645	0	0	645
1986	WARD	CAPITAN REEF COMPLEX AQUIFER	62	0	0	62
1987	WARD	CAPITAN REEF COMPLEX AQUIFER	582	0	0	582
1988	WARD	CAPITAN REEF COMPLEX AQUIFER	583	0	0	583
1989	WARD	CAPITAN REEF COMPLEX AQUIFER	527	0	0	527
1990	WARD	CAPITAN REEF COMPLEX AQUIFER	486	0	0	486
1991	WARD	CAPITAN REEF COMPLEX AQUIFER	354	0	0	354
1992	WARD	CAPITAN REEF COMPLEX AQUIFER	351	0	0	351

The Modeled Available Groundwater is the amount of pumping that the Texas Water Development Board calculated that will achieve the desired future condition. The current modeled available groundwater values are presented in Table 2.

Table 2. Modeled Available Groundwater for the Capitan Reef Complex Aquifer

County	Modeled Available Groundwater (2010 to 2060) AF/yr
Pecos	1,361
Reeves	1,007
Ward	1,051
Winkler	1,061

5.2 Groundwater Supply Needs and Strategies

The 2016 Region F Plan lists county-by-county shortages and strategies. Shortages are identified when current supplies (e.g. existing wells) cannot meet future demands. Strategies are then recommended (e.g. new wells) to meet the future demands.

For the counties in GMA 3, the only county with a shortage is Winkler County (421 AF/yr), and a recommended strategy is to develop an additional 500 AF/yr of groundwater with three wells. In addition, although there is no shortage, a strategy for Pecos County is listed to develop an additional well pumping 250 AF/yr for Pecos County WCID No. 1 to improve system reliability.

5.3 Hydrologic Conditions, including Total Estimated Recoverable Storage

The calibrated steady-state groundwater budget as presented by Jones (2016) is presented in Table 2. The Capitan Reef Complex is in layer 5 of the model. Please note that the model conceptualizes no spring flow or groundwater-surface water interaction directly with the Capitan Reef.

Total storage estimates from Jones and others (2013) are presented in Table 3.

Table 3. Groundwater Budget from Capitan Reef Complex Aquifer GAM (Capitan Reef Complex Aquifer is represented in Layer 5) from Jones (2016) All Values in AF/yr

Flux	Layer 1	Layer 2	Layer 3	Layer 4	Layer 5	Overall
Inflow	•					
General-Head Boundary	2,555	0	5,110	13,870	24,455	45,990
Lateral Flow	140,890	141,620	102,565	1,095	49,275	435,445
Recharge	305,505	5,110	365	365	36,500	347,845
Vertical Leakage (Lower)	283,970	208,780	70,080	56,940	0	
Vertical Leakage (Upper)	0	210,605	138,335	0	730	
Outflow						
Drains	365	0	0	0	0	365
General-Head Boundary	40,880	0	730	0	4,745	46,355
Lateral Flow	140,525	141,985	103,660	730	49,640	436,540
River Leakage	326,675	0	0	0	0	326,675
Vertical Leakage (Lower)	210,605	138,335	0	730	0	
Vertical Leakage (Upper)	0	283,970	208,780	70,080	56,940	
Wells	12,045	0	2,555	0	0	14,600

Table 4. Total Estimated Recoverable Storage – Capitan Reef Complex Aquifer

County	Total Storage (acre-feet)	25 percent of Total Storage (acre-feet)	75 percent of Total Storage (acre-feet)
Pecos	2,800,000	700,000	2,100,000
Reeves	930,000	232,500	697,500
Ward	5,900,000	1,475,000	4,425,000
Winkler	6,100,000	1,525,000	4,575,000
Total	15,730,000	3,932,500	11,797,500

5.4 Other Environmental Impacts, including Impacts on Spring Flow

Table 1 above includes the entire steady-state budget from the Capitan Reef GAM. As noted, there is no conceptualized direct spring flow or groundwater surface water interaction from the Capitan Reef Complex Aquifer (layer 5).

5.5 Subsidence

Subsidence is not an issue in the Capitan Reef Complex Aquifer in GMA 3.

5.6 Socioeconomic Impacts

The Texas Water Development Board prepared reports on the socioeconomic impacts of not meeting water needs for each of the Regional Planning Groups during development of the 2011 Regional Water Plans. Because the development of this desired future condition used the State Water Plan demands and water management strategies as an important foundation, it is reasonable to conclude that the socioeconomic impacts associated with this proposed desired future condition can be evaluated in the context of not meeting the listed water management strategies. Groundwater Management Area 3 is covered by Regional Planning Group F. The socioeconomic impact report for Regions F is included in Appendix B.

5.7 Impact on Private Property Rights

The impact on the interests and rights in private property, including ownership and the rights of landowners and their lessees and assigns in Groundwater Management Area 3 in groundwater is recognized under Texas Water Code Section 36.002.

The desired future conditions adopted by GMA 3 are consistent with protecting property rights of landowners who are currently pumping groundwater and landowners who have chosen to conserve groundwater by not pumping. All current and projected uses (as defined in the 2015 Region F plan) can be met based on the simulations. In addition, the pumping associated with achieving the desired future condition (the modeled available groundwater) will cause impacts to exiting well owners and to surface water. However, as required by Chapter 36 of the Water Code, GMA 3 considered these impacts and balanced them with the increasing demand of water in the GMA 3 area, and concluded that, on balance and with appropriate monitoring and project specific review during the permitting process, the desired future condition is consistent with protection of private property rights.

5.8 Feasibility of Achieving the Desired Future Condition

Groundwater levels are routinely monitored by the districts and by the TWDB in GMA 3. Evaluating the monitoring data is a routine task for the districts, and the comparison of these data with the model results that were used to develop the DFCs is covered in each district's management plan. These comparisons will be useful to guide the update of the DFCs that are required every five years.

5.9 Other Information

GMA 3 did not consider any other information in developing these DFCs.

6.0 Discussion of Other Desired Future Conditions Considered

There were 7 GAM scenarios completed that included a range of future pumping scenarios. Results of these scenarios were originally presented at the GMA 7 meeting of April 23, 2015 since the model covered both GMA 3 and GMA 7 areas of the Rustler Aquifer. The model results of all 12 scenarios were summarized in GMA 3 Technical Memorandum 16-02, which was discussed at the March 16, 2016 GMA 3 meeting.

After review and discussion, the groundwater conservation districts found that the 0.5 ft/yr decline for the overlying formations was reasonable, and Scenario 4 was a reasonable scenario as a basis for the desired future condition.

7.0 Discussion of Other Recommendations

Public comments were invited and each district held a public hearing on the proposed desired future condition as follows:

Groundwater Conservation	Date of Public Hearing	Number of Comments
District	_	Received
Middle Pecos GCD	July 19, 2016	1
Reeves County GCD	September 8, 2016	None

Middle Pecos GCD received one written comment on the proposed desired future conditions for the Capitan Reef Complex Aquifer from Mr. Gilbert Van Deventer of Trident Environmental, Inc. Attached to the comment letter was a letter than Mr. Van Deventer had previously sent to Dr. Ian Jones of the TWDB regarding the draft GAM. Mr. Van Deventer's letter is presented in Appendix C.

Mr. Van Deventer stated that the GAM is not reliable, and should not be used for groundwater management by districts. He further stated that the GAM is useful in a qualitative sense, but not suitable for quantitative predictions. The comments also noted that Technical Memorandum 16-06, which summarized the initial simulations with the model warned that the predictions of simulated drawdowns are not considered reliable, and that, if used for DFC purposes, that the values not be relied upon for review of any permit applications.

Specific recommendations included not adopting DFCs without the use of the GAM results until model uncertainties can be resolved.

In response to this comment letter, there was discussion on how to proceed at the October 20, 2016 GMA 3 meeting. Options explored included: 1) find that the Capitan Reef Complex is not relevant for purposes of joint planning in GMA 3, and establish no DFC, 2) use the DFCs values that were adopted in 2010 with the Aquifer Analysis, or 3) adopt the proposed DFCs that were developed using the GAM.

The decision to adopt the proposed DFCs that were based on the GAM (despite the limitations) was based partly on the need to link the DFCs and the MAGs with the most recent tool developed by TWDB. Middle Pecos GCD acknowledged that the adopted DFC is essentially a place-holder until a better model is developed, and acknowledged the recommendations not to use the model or the DFC values in reviewing permit applications.

8.0 References

Bradley, R.G., 2011, GTA Aquifer Assessment 10-13 MAG. Texas Water Development Board, Groundwater Technical Assistance Section, November 18, 2011, 8p.

Ewing, J.E., Kelley, V.A., Jones, T.L., Yan, T., Singh, A., Powers, D.W., Holt, R.M., and Sharp, J.M., 2012. Final Groundwater Availability Model Report for the Rustler Aquifer. Prepared for the Texas Water Development Board, 460p.

George, P.G., Mace, R.E., and Petrossian, R., 2011. Aquifers of Texas. Texas Water Development Board Report 380, July 2011, 182p.

Jones, I.C., Boghici, R., Kohlrenken, W., and Shi, J., 2013. GAM Task 13-027: Total Estimated Recoverable Storage for Aquifers in Groundwater Management Area 3. Texas Water Development Board, Groundwater Resources Division, September 19, 2013, 28 p.

Appendix A Desired Future Conditions Resolution

Groundwater Management Area 3 Resolution 16-01

Desired Future Conditions for the Capitan Reef Aquifer in Groundwater Management Area 3

WHEREAS, Groundwater Conservation Districts (GCDs) located within or partially within Groundwater Management Area 3 (GMA 3) are required under Chapter 36.108, Texas Water Code to conduct joint planning and designate the Desired Future Conditions of aquifers within GMA 3 and;

WHEREAS, the Board Presidents or their Designated Representatives of GCDs in GMA 3 have met in various meetings and conducted joint planning in accordance with §36.108, Texas Water Code since September 2010; and

WHEREAS, the GMA 3 committee has received and considered Groundwater Availability Model runs and other technical advice regarding local aquifers, hydrology, geology, recharge characteristics, the nine factors set forth in§36.108(d) of the Texas Water Code, local groundwater demands and usage, population projections, total water supply and quality of water supply available from all aquifers within the respective GCDs, regional water plan water management strategies, ground and surface water interactions, that affect groundwater conditions through the year 2070; and

WHEREAS, the member GCDs of GMA 3, having given proper and timely notice, held an open meeting on April 26, 2016 at the Ward County Convention Center Room#2, 400 East 4th, Monahans, Texas to vote to adopt proposed Desired Future Conditions for the Capitan Reef Aquifer within the boundaries of GMA 3; and

WHEREAS, the member GCDs in which the Capitan Reef Aquifer is relevant for joint planning purposes held open meetings within each said district between July 19, 2016and September 8, 2016 to take public comment on the proposed DFCs for that district; and

WHEREAS on this day of October 20, 2016, at an open meeting duly noticed and held in accordance with law at the Ward County Convention Center Room #2, 400 East 4th, Monahans, Texas, the GCDs within GMA 3, having considered at this meeting comments submitted to the individual districts during the comment period and at this meeting, have voted, 2 districts in favor, 0 districts opposed, to adopt the following DFCs for in the following counties and districts through the year 2070 as follows:

- 1. Total net drawdown not to exceed 4 feet in Pecos County (Middle Pecos GCD) in 2070 as compared with aquifer levels in 2006, as set forth in Scenario 4 in exhibit "A" (GMA 3 Technical Memorandum, 16-06) attached hereto and fully incorporated herein;
- 2. Total net drawdowns in Ward and Winkler Counties no to exceed 2 feet in 2070 as compared with 2006 aquifer levels, as set forth in Scenario 4 in exhibit "A" (GMA 3 Technical Memorandum 16-06) attached hereto and fully incorporated herein;
- 3. The Capitan Reef Aquifer is not relevant for joint planning purposes in all other areas of GMA3.

NOW THEREFORE BE IT RESOLVED, that Groundwater Management Area 3 does hereby document, record, and confirm the above-described Desired Future Conditions for the Capitan Reef Aquifer which were adopted by vote of the following Designated Representatives of Groundwater Conservation Districts present and voting on October 20, 2016:

Middle Pecos GCD

Ty Edwards, Assistant Manager Designated Representative

Reeves County GCD

Alan Zeman, Secretary and Treasurer #2

Designated Representative

Appendix B Region F Socioeconomic Resolution

TEXAS WATER DEVELOPMENT BOARD

James E. Herring, *Chairman* Lewis H. McMahan, *Member* Edward G. Vaughan, *Member*

J. Kevin Ward

Executive Administrator

Jack Hunt, *Vice Chairman*Thomas Weir Labatt III, *Member*Joe M. Crutcher, *Member*

July 22, 2010

Mr. John Grant Chairman, Region F Regional Water Planning Group c/o Colorado River Municipal Water District P.O. Box 869 Big Spring, Texas 79721-0869

Re: Socioeconomic Impact Analysis of Not Meeting Water Needs for the 2011 Region F

Regional Water Plan

Dear Chairman Grant:

We have received your request for technical assistance to complete the socioeconomic impact analysis of not meeting water needs. In response, enclosed is a report that describes our methodology and presents the results. Section 1 provides an overview of the methodology. Section 2 presents results at the regional level, and Appendix 2 show results for individual water user groups.

If you have any questions or comments, please feel free to contact me at (512) 463-7928 or by email at stuart.norvell@twdb.state.tx.us.

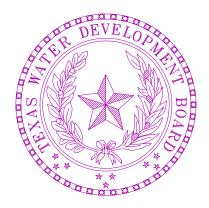
Sincerely,

Settati D. Notveii

Manager, Water Planning Research and Analysis

Water Resources Planning Division

SN/ao


Enclosure

c. Angela Kennedy, TWDBS. Doug Shaw, TWDB

Our Mission

To provide leadership, planning, financial assistance, information, and education for the conservation and responsible development of water for Texas.

Economic Impacts of Projected Water Shortages for the Region F Regional Water Planning Area

Prepared in Support of the 2011 Region F Regional Water Plan

Stuart D. Norvell, Managing Economist Water Resources Planning Division Texas Water Development Board Austin, Texas

S. Doug Shaw, Agricultural Economist Water Resources Planning Division Texas Water Development Board Austin, Texas

July 2010

Table of Contents

Section	Title	Page
	Introduction	3
1.0	Methodology	
1.1	Economic Impacts of Water Shortages	
1.1.1	General Approach	
	General Assumptions and Clarifications of the Methodology	9
1.1.2	Impacts to Agriculture	
1.1.2	Irrigation	9
	Livestock	_
1.1.3	Impacts to Municipal Water User Groups	13
1.1.5	Disaggregation of Municipal Water Demands	
	Domestic Water Uses	14
	Commercial Businesses	17
	Water Utility Revenues	18
	Horticulture and Landscaping	18
	Recreational Impacts	19
1.1.4	Impacts to Industrial Water User Groups	20
1.1.4	Manufacturing	20
	Mining	20
	Steam-electric	21
1.2	Social Impacts of Water Shortages	21
2.0	Results	22
2.0	Overview of Regional Economy	22
2.2	Impacts to Agricultural Water User Groups	24
2.3	Impacts to Agricultural Water User Groups	24
2.4	Impacts to Manufacturing Water User Groups	25
2.5	Impacts to Mining Water User Groups	26
2.6	Impacts to Steam-electric Water User Groups	27
2.7	Social Impacts	27
2.8	Distribution of Impacts by Major River Basin	28
_	ix 1: Economic Data for Individual IMPLAN Sectors	29
	ix 2: Impacts by Water User Group	
Appendi	x 2. Impacts by Water Oser Group	43
Tables		
1	Crop Classifications and Corresponding IMPLAN Crop Sectors	9
2	Summary of Irrigated Crop Acreage and Water Demand	9
3	Average Gross Sales Revenues per Acre for Irrigated Crops	10
4	Description of Livestock Sectors	13
5	Water Use and Costs Parameters Used to Estimated Domestic Water Demand Functions	15
6	Economic Losses Associated with Domestic Water Shortages	16
7	Impacts of Municipal Water Shortages at Different Magnitudes of Shortages	19
8	Regional Baseline Economy by Water User Group	
9	Economic Impacts of Water Shortages for Irrigation Water User Groups	24
10	Economic Impacts of Water Shortages for Municipal Water User Groups	
11	Social Impacts of Water Shortages	26

Introduction

Water shortages during drought would likely curtail or eliminate economic activity in business and industries reliant on water. For example, without water farmers cannot irrigate; refineries cannot produce gasoline, and paper mills cannot make paper. Unreliable water supplies would not only have an immediate and real impact on existing businesses and industry, but they could also adversely affect economic development in Texas. From a social perspective, water supply reliability is critical as well. Shortages would disrupt activity in homes, schools and government and could adversely affect public health and safety. For all of the above reasons, it is important to analyze and understand how restricted water supplies during drought could affect communities throughout the state.

Administrative rules require that regional water planning groups evaluate the impacts of not meeting water needs as part of the regional water planning process, and rules direct TWDB staff to provide technical assistance: "The executive administrator shall provide available technical assistance to the regional water planning groups, upon request, on water supply and demand analysis, including methods to evaluate the social and economic impacts of not meeting needs" [(§357.7 (4)(A)]. Staff of the TWDB's Water Resources Planning Division designed and conducted this report in support of the Region F Regional Water Planning Group.

This document summarizes the results of our analysis and discusses the methodology used to generate the results. Section 1 outlines the overall methodology and discusses approaches and assumptions specific to each water use category (i.e., irrigation, livestock, mining, steam-electric, municipal and manufacturing). Section 2 presents the results for each category where shortages are reported at the regional planning area level and river basin level. Results for individual water user groups are not presented, but are available upon request.

1. Methodology

Section 1 provides a general overview of how economic and social impacts were measured. In addition, it summarizes important clarifications, assumptions and limitations of the study.

1.1 Economic Impacts of Water Shortages

1.1.1 General Approach

Economic analysis as it relates to water resources planning generally falls into two broad areas. Supply side analysis focuses on costs and alternatives of developing new water supplies or implementing programs that provide additional water from current supplies. Demand side analysis concentrates on impacts or benefits of providing water to people, businesses and the environment. Analysis in this report focuses strictly on demand side impacts. When analyzing the economic impacts of water shortages as defined in Texas water planning, three potential scenarios are possible:

Scenario 1 involves situations where there are physical shortages of raw surface or groundwater due to drought of record conditions. For example, City A relies on a reservoir with average conservation storage of 500 acre-feet per year and a firm yield of 100 acre feet. In 2010, the city uses about 50 acre-feet per year, but by 2030 their demands are expected to increase to 200 acre-feet. Thus, in 2030 the reservoir would not have enough water to meet the city's demands, and people would experience a shortage of 100 acre-feet assuming drought of record conditions. Under normal or average climatic conditions, the reservoir would likely be able to provide reliable water supplies well beyond 2030.

- 2) Scenario 2 is a situation where despite drought of record conditions, water supply sources can meet existing use requirements; however, limitations in water infrastructure would preclude future water user groups from accessing these water supplies. For example, City B relies on a river that can provide 500 acre-feet per year during drought of record conditions and other constraints as dictated by planning assumptions. In 2010, the city is expected to use an estimated 100 acre-feet per year and by 2060 it would require no more than 400 acre-feet. But the intake and pipeline that currently transfers water from the river to the city's treatment plant has a capacity of only 200 acre-feet of water per year. Thus, the city's water supplies are adequate even under the most restrictive planning assumptions, but their conveyance system is too small. This implies that at some point perhaps around 2030 infrastructure limitations would constrain future population growth and any associated economic activity or impacts.
- 3) Scenario 3 involves water user groups that rely primarily on aquifers that are being depleted. In this scenario, projected and in some cases existing demands may be unsustainable as groundwater levels decline. Areas that rely on the Ogallala aquifer are a good example. In some communities in the region, irrigated agriculture forms a major base of the regional economy. With less irrigation water from the Ogallala, population and economic activity in the region could decline significantly assuming there are no offsetting developments.

Assessing the social and economic effects of each of the above scenarios requires various levels and methods of analysis and would generate substantially different results for a number of reasons; the most important of which has to do with the time frame of each scenario. Scenario 1 falls into the general category of static analysis. This means that models would measure impacts for a small interval of time such as a drought. Scenarios 2 and 3, on the other hand imply a dynamic analysis meaning that models are concerned with changes over a much longer time period.

Since administrative rules specify that planning analysis be evaluated under drought of record conditions (a static and random event), socioeconomic impact analysis developed by the TWDB for the state water plan is based on assumptions of Scenario 1. Estimated impacts under scenario 1 are point estimates for years in which needs are reported (2010, 2020, 2030, 2040, 2050 and 2060). They are independent and distinct "what if" scenarios for a particular year and shortages are assumed to be temporary events resulting from drought of record conditions. Estimated impacts measure what would happen if water user groups experience water shortages for a period of one year.

The TWDB recognize that dynamic models may be more appropriate for some water user groups; however, combining approaches on a statewide basis poses several problems. For one, it would require a complex array of analyses and models, and might require developing supply and demand forecasts under "normal" climatic conditions as opposed to drought of record conditions. Equally important is the notion that combining the approaches would produce inconsistent results across regions resulting in a so-called "apples to oranges" comparison.

A variety tools are available to estimate economic impacts, but by far, the most widely used today are input-output models (IO models) combined with social accounting matrices (SAMs). Referred to as IO/SAM models, these tools formed the basis for estimating economic impacts for agriculture (irrigation and livestock water uses) and industry (manufacturing, mining, steam-electric and commercial business activity for municipal water uses).

Since the planning horizon extends through 2060, economic variables in the baseline are adjusted in accordance with projected changes in demographic and economic activity. Growth rates for municipal water use sectors (i.e., commercial, residential and institutional) are based on TWDB population forecasts. Future values for manufacturing, agriculture, and mining and steam-electric activity are based on the same underlying economic forecasts used to estimate future water use for each category.

The following steps outline the overall process.

Step 1: Generate IO/SAM Models and Develop Economic Baseline

IO/SAM models were estimated using propriety software known as IMPLAN PROTM (Impact for Planning Analysis). IMPLAN is a modeling system originally developed by the U.S. Forestry Service in the late 1970s. Today, the Minnesota IMPLAN Group (MIG Inc.) owns the copyright and distributes data and software. It is probably the most widely used economic impact model in existence. IMPLAN comes with databases containing the most recently available economic data from a variety of sources. Using IMPLAN software and data, transaction tables conceptually similar to the one discussed previously were estimated for each county in the region and for the region as a whole. Each transaction table contains 528 economic sectors and allows one to estimate a variety of economic statistics including:

- total sales total production measured by sales revenues;
- intermediate sales sales to other businesses and industries within a given region;
- final sales sales to end users in a region and exports out of a region;
- employment number of full and part-time jobs (annual average) required by a given industry including self-employment;
- regional income total payroll costs (wages and salaries plus benefits) paid by industries, corporate income, rental income and interest payments; and
- business taxes sales, excise, fees, licenses and other taxes paid during normal operation of an industry (does not include income taxes).

TWDB analysts developed an economic baseline containing each of the above variables using year 2000 data. Since the planning horizon extends through 2060, economic variables in the baseline were allowed to change in accordance with projected changes in demographic and economic activity. Growth rates for municipal water use sectors (i.e., commercial, residential and institutional) are based on TWDB population forecasts. Projections for manufacturing, agriculture, and mining and steam-electric activity are based on the same underlying economic forecasts used to estimate future water use for each category. Monetary impacts in future years are reported in constant year 2006 dollars.

It is important to stress that employment, income and business taxes are the most useful variables when comparing the relative contribution of an economic sector to a regional economy. Total sales as reported in IO/SAM models are less desirable and can be misleading because they include sales to other industries in the region for use in the production of other goods. For example, if a mill buys grain from local farmers and uses it to produce feed, sales of both the processed feed and raw corn are counted as "output" in an IO model. Thus, total sales double-count or overstate the true economic value of goods

¹The IMPLAN database consists of national level technology matrices based on benchmark input-output accounts generated by the U.S. Bureau of Economic Analysis and estimates of final demand, final payments, industry output and employment for various economic sectors. IMPLAN regional data (i.e. states, a counties or groups of counties within a state) are divided into two basic categories: 1) data on an industry basis including value-added, output and employment, and 2) data on a commodity basis including final demands and institutional sales. State-level data are balanced to national totals using a matrix ratio allocation system and county data are balanced to state totals.

and services produced in an economy. They are not consistent with commonly used measures of output such as Gross National Product (GNP), which counts only final sales.

Another important distinction relates to terminology. Throughout this report, the term *sector* refers to economic subdivisions used in the IMPLAN database and resultant input-output models (528 individual sectors based on Standard Industrial Classification Codes). In contrast, the phrase *water use category* refers to water user groups employed in state and regional water planning including irrigation, livestock, mining, municipal, manufacturing and steam electric. Each IMPLAN sector was assigned to a specific water use category.

Step 2: Estimate Direct and Indirect Economic Impacts of Water Needs

Direct impacts are reductions in output by sectors experiencing water shortages. For example, without adequate cooling and process water a refinery would have to curtail or cease operation, car washes may close, or farmers may not be able to irrigate and sales revenues fall. Indirect impacts involve changes in inter-industry transactions as supplying industries respond to decreased demands for their services, and how seemingly non-related businesses are affected by decreased incomes and spending due to direct impacts. For example, if a farmer ceases operations due to a lack of irrigation water, they would likely reduce expenditures on supplies such as fertilizer, labor and equipment, and businesses that provide these goods would suffer as well.

Direct impacts accrue to immediate businesses and industries that rely on water and without water industrial processes could suffer. However, output responses may vary depending upon the severity of shortages. A small shortage relative to total water use would likely have a minimal impact, but large shortages could be critical. For example, farmers facing small shortages might fallow marginally productive acreage to save water for more valuable crops. Livestock producers might employ emergency culling strategies, or they may consider hauling water by truck to fill stock tanks. In the case of manufacturing, a good example occurred in the summer of 1999 when Toyota Motor Manufacturing experienced water shortages at a facility near Georgetown, Kentucky. As water levels in the Kentucky River fell to historic lows due to drought, plant managers sought ways to curtail water use such as reducing rinse operations to a bare minimum and recycling water by funneling it from paint shops to boilers. They even considered trucking in water at a cost of 10 times what they were paying. Fortunately, rains at the end of the summer restored river levels, and Toyota managed to implement cutbacks without affecting production, but it was a close call. If rains had not replenished the river, shortages could have severely reduced output.

To account for uncertainty regarding the relative magnitude of impacts to farm and business operations, the following analysis employs the concept of elasticity. Elasticity is a number that shows how a change in one variable will affect another. In this case, it measures the relationship between a percentage reduction in water availability and a percentage reduction in output. For example, an elasticity of 1.0 indicates that a 1.0 percent reduction in water availability would result in a 1.0 percent reduction in economic output. An elasticity of 0.50 would indicate that for every 1.0 percent of unavailable water, output is reduced by 0.50 percent and so on. Output elasticities used in this study are:⁴

² Royal, W. "High And Dry - Industrial Centers Face Water Shortages." in Industry Week, Sept, 2000.

³ The efforts described above are not planned programmatic or long-term operational changes. They are emergency measures that individuals might pursue to alleviate what they consider a temporary condition. Thus, they are not characteristic of long-term management strategies designed to ensure more dependable water supplies such as capital investments in conservation technology or development of new water supplies.

⁴ Elasticities are based on one of the few empirical studies that analyze potential relationships between economic output and water shortages in the United States. The study, conducted in California, showed that a significant number of industries would suffer reduced output during water shortages. Using a survey based approach researchers posed two scenarios to different industries. In

- if water needs are 0 to 5 percent of total water demand, no corresponding reduction in output is assumed;
- if water needs are 5 to 30 percent of total water demand, for each additional one percent of water need that is not met, there is a corresponding 0.50 percent reduction in output;
- if water needs are 30 to 50 percent of total water demand, for each additional one percent of water need that is not met, there is a corresponding 0.75 percent reduction in output; and
- if water needs are greater than 50 percent of total water demand, for each additional one percent of water need that is not met, there is a corresponding 1.0 percent (i.e., a proportional reduction).

In some cases, elasticities are adjusted depending upon conditions specific to a given water user group.

Once output responses to water shortages were estimated, direct impacts to total sales, employment, regional income and business taxes were derived using regional level economic multipliers estimating using IO/SAM models. The formula for a given IMPLAN sector is:

$$D_{i,t} = Q_{i,t} *_{,} S_{i,t} *_{,} E_{Q} *_{,} RFD_{i} *_{,} DM_{i(Q,L,I,T)}$$

where:

 $D_{i,t}$ = direct economic impact to sector i in period t

 $Q_{i,t}$ = total sales for sector *i* in period *t* in an affected county

RFD_{i.} = ratio of final demand to total sales for sector *i* for a given region

 $S_{i,t}$ = water shortage as percentage of total water use in period t

 E_0 = elasticity of output and water use

 $DM_{i(L,I,T)}$ = direct output multiplier coefficients for labor (L), income (I) and taxes (T) for sector i.

Secondary impacts were derived using the same formula used to estimate direct impacts; however, indirect multiplier coefficients are used. Methods and assumptions specific to each water use sector are discussed in Sections 1.1.2 through 1.1.4.

the first scenario, they asked how a 15 percent cutback in water supply lasting one year would affect operations. In the second scenario, they asked how a 30 percent reduction lasting one year would affect plant operations. In the case of a 15 percent shortage, reported output elasticities ranged from 0.00 to 0.76 with an average value of 0.25. For a 30 percent shortage, elasticities ranged from 0.00 to 1.39 with average of 0.47. For further information, see, California Urban Water Agencies, "Cost of Industrial Water Shortages," Spectrum Economics, Inc. November, 1991.

General Assumptions and Clarification of the Methodology

As with any attempt to measure and quantify human activities at a societal level, assumptions are necessary and every model has limitations. Assumptions are needed to maintain a level of generality and simplicity such that models can be applied on several geographic levels and across different economic sectors. In terms of the general approach used here several clarifications and cautions are warranted:

- 1. Shortages as reported by regional planning groups are the starting point for socioeconomic analyses.
- 2. Estimated impacts are point estimates for years in which needs are reported (i.e., 2010, 2020, 2030, 2040, 2050 and 2060). They are independent and distinct "what if" scenarios for each particular year and water shortages are assumed to be temporary events resulting from severe drought conditions combined with infrastructure limitations. In other words, growth occurs and future shocks are imposed on an economy at 10-year intervals and resultant impacts are measured. Given, that reported figures are not cumulative in nature, it is inappropriate to sum impacts over the entire planning horizon. Doing so, would imply that the analysis predicts that drought of record conditions will occur every ten years in the future, which is not the case. Similarly, authors of this report recognize that in many communities needs are driven by population growth, and in the future total population will exceed the amount of water available due to infrastructure limitations, regardless of whether or not there is a drought. This implies that infrastructure limitations would constrain economic growth. However, since needs as defined by planning rules are based upon water supply and demand under the assumption of drought of record conditions, it improper to conduct economic analysis that focuses on growth related impacts over the planning horizon. Figures generated from such an analysis would presume a 50-year drought of record, which is unrealistic. Estimating lost economic activity related to constraints on population and commercial growth due to lack of water would require developing water supply and demand forecasts under "normal" or "most likely" future climatic conditions.
- 3. While useful for planning purposes, this study is not a benefit-cost analysis. Benefit cost analysis is a tool widely used to evaluate the economic feasibility of specific policies or projects as opposed to estimating economic impacts of unmet water needs. Nevertheless, one could include some impacts measured in this study as part of a benefit cost study if done so properly. Since this is not a benefit cost analysis, future impacts are not weighted differently. In other words, estimates are not discounted. If used as a measure of economic benefits, one should incorporate a measure of uncertainty into the analysis. In this type of analysis, a typical method of discounting future values is to assign probabilities of the drought of record recurring again in a given year, and weight monetary impacts accordingly. This analysis assumes a probability of one.
- 4. IO multipliers measure the strength of backward linkages to supporting industries (i.e., those who sell inputs to an affected sector). However, multipliers say nothing about forward linkages consisting of businesses that purchase goods from an affected sector for further processing. For example, ranchers in many areas sell most of their animals to local meat packers who process animals into a form that consumers ultimately see in grocery stores and restaurants. Multipliers do not capture forward linkages to meat packers, and since meat packers sell livestock purchased from ranchers as "final sales," multipliers for the ranching sector do fully account for all losses to a region's economy. Thus, as mentioned previously, in some cases closely linked sectors were moved from one water use category to another.
- 5. Cautions regarding interpretations of direct and secondary impacts are warranted. IO/SAM multipliers are based on "fixed-proportion production functions," which basically means that input use including labor moves in lockstep fashion with changes in levels of output. In a

scenario where output (i.e., sales) declines, losses in the immediate sector or supporting sectors could be much less than predicted by an IO/SAM model for several reasons. For one, businesses will likely expect to continue operating so they might maintain spending on inputs for future use; or they may be under contractual obligations to purchase inputs for an extended period regardless of external conditions. Also, employers may not lay-off workers given that experienced labor is sometimes scarce and skilled personnel may not be readily available when water shortages subside. Lastly people who lose jobs might find other employment in the region. As a result, direct losses for employment and secondary losses in sales and employment should be considered an upper bound. Similarly, since projected population losses are based on reduced employment in the region, they should be considered an upper bound as well.

- 6. IO models are static. Models and resultant multipliers are based upon the structure of the U.S. and regional economies in 2006. In contrast, water shortages are projected to occur well into the future. Thus, the analysis assumes that the general structure of the economy remains the same over the planning horizon, and the farther out into the future we go, this assumption becomes less reliable.
- 7. Impacts are annual estimates. If one were to assume that conditions persisted for more than one year, figures should be adjusted to reflect the extended duration. The drought of record in most regions of Texas lasted several years.
- 8. Monetary figures are reported in constant year 2006 dollars.

1.1.2 Impacts to Agriculture

Irrigated Crop Production

The first step in estimating impacts to irrigation required calculating gross sales for IMPLAN crop sectors. Default IMPLAN data do not distinguish irrigated production from dry-land production. Once gross sales were known other statistics such as employment and income were derived using IMPLAN direct multiplier coefficients. Gross sales for a given crop are based on two data sources:

- 1) county-level statistics collected and maintained by the TWDB and the USDA Farm Services Agency (FSA) including the number of irrigated acres by crop type and water application per acre, and
- 2) regional-level data published by the Texas Agricultural Statistics Service (TASS) including prices received for crops (marketing year averages), crop yields and crop acreages.

Crop categories used by the TWDB differ from those used in IMPLAN datasets. To maintain consistency, sales and other statistics are reported using IMPLAN crop classifications. Table 1 shows the TWDB crops included in corresponding IMPLAN sectors, and Table 2 summarizes acreage and estimated annual water use for each crop classification (five-year average from 2003-2007). Table 3 displays average (2003-2007) gross revenues per acre for IMPLAN crop categories.

Table 1: Crop Classifications Used in TWDB Water Use Survey and Corresponding IMPLAN Crop Sectors				
IMPLAN Category	TWDB Category			
Oilseeds	Soybeans and "other oil crops"			
Grains	Grain sorghum, corn, wheat and "other grain crops"			
Vegetable and melons	"Vegetables" and potatoes			
Tree nuts	Pecans			
Fruits	Citrus, vineyard and other orchard			
Cotton	Cotton			
Sugarcane and sugar beets	Sugarcane and sugar beets			
All "other" crops	"Forage crops", peanuts, alfalfa, hay and pasture, rice and "all other crops"			

Table 2: Summary of Irrigated Crop Acreage and Water Demand for the Region F Water Planning Area (average 2003-2007)				
Sector	Acres (1000s)	Distribution of acres	Water use (1000s of AF)	Distribution of water use
Oilseeds	<1	<1%	<1	<1%
Grains	45	20%	62	17%
Vegetable and melons	5	2%	9	<1%
Tree nuts	6	3%	13	<1%
Fruits	<1	<1%	1	<1%
Cotton	104	47%	154	42%
All "other" crops	61	28%	123	34%
Total	221	100%	363	100%

Source: Water demand figures are a 5- year average (2003-2007) of the TWDB's annual Irrigation Water Use Estimates. Statistics for irrigated crop acreage are based upon annual survey data collected by the TWDB and the Farm Service Agency. Values do not include acreage or water use for the TWDB categories classified by the Farm Services Agency as "failed acres," "golf course" or "waste water."

IMPLAN Sector	Gross revenues per acre	Crops included in estimates
	•	
Oilseeds	\$177	Irrigated figure is based on five-year (2003-2007) average weighted by acreage for "irrigated soybeans" and "irrigated 'other' oil crops."
Grains	\$199	Based on five-year (2003-2007) average weighted by acreage for "irrigated grain sorghum," "irrigated corn", "irrigated wheat" and "irrigated 'other' grain crops."
Vegetable and melons	\$6,053	Based on five-year (2003-2007) average weighted by acreage for "irrigated shallow and deep root vegetables", "irrigated Irish potatoes" and "irrigated melons."
Tree nuts	\$3,451	Based on five-year (2003-2007) average weighted by acreage for "irrigated pecans."
Fruits	\$5,902	Based on five-year (2003-2007) average weighted by acreage for "irrigated citrus", "irrigated vineyards" and "irrigated 'other' orchard."
Cotton	\$488	Based on five-year (2003-2007) average weighted by acreage for "irrigated cotton."
All other crops	\$335	Irrigated figure is based on five-year (2003-2007) average weighted by acreage for "irrigated 'forage' crops", "irrigated peanuts", "irrigated alfalfa", "irrigated 'hay' and pasture" and "irrigated 'all other' crops."

A&M University.

An important consideration when estimating impacts to irrigation was determining which crops are affected by water shortages. One approach is the so-called rationing model, which assumes that farmers respond to water supply cutbacks by fallowing the lowest value crops in the region first and the highest valued crops last until the amount of water saved equals the shortage. For example, if farmer A grows vegetables (higher value) and farmer B grows wheat (lower value) and they both face a proportionate cutback in irrigation water, then farmer B will sell water to farmer A. Farmer B will fallow her irrigated acreage before farmer A fallows anything. Of course, this assumes that farmers can and do transfer enough water to allow this to happen. A different approach involves constructing farm-level profit maximization models that conform to widely-accepted economic theory that farmers make decisions based on marginal net returns. Such models have good predictive capability, but data requirements and complexity are high. Given that a detailed analysis for each region would require a substantial amount of farm-level data and analysis, the following investigation assumes that projected shortages are distributed equally across predominant crops in the region. Predominant in this case are crops that comprise at least one percent of total acreage in the region.

The following steps outline the overall process used to estimate direct impacts to irrigated agriculture:

- 1. Distribute shortages across predominant crop types in the region. Again, unmet water needs were distributed equally across crop sectors that constitute one percent or more of irrigated acreage.
- 2. Estimate associated reductions in output for affected crop sectors. Output reductions are based on elasticities discussed previously and on estimated values per acre for different crops. Values per acre stem from the same data used to estimate output for the year 2006 baseline. Using multipliers, we then generate estimates of forgone income, jobs, and tax revenues based on reductions in gross sales and final demand.

Livestock

The approach used for the livestock sector is basically the same as that used for crop production. As is the case with crops, livestock categorizations used by the TWDB differ from those used in IMPLAN datasets, and TWDB groupings were assigned to a given IMPLAN sector (Table 4). Then we:

1) Distribute projected water needs equally among predominant livestock sectors and estimate lost output: As is the case with irrigation, shortages are assumed to affect all livestock sectors equally; however, the category of "other" is not included given its small size. If water needs were small relative to total demands, we assume that producers would haul in water by truck to fill stock tanks. The cost per acre-foot (\$24,000) is based on 2008 rates charged by various water haulers in Texas, and assumes that the average truck load is 6,500 gallons at a hauling distance of 60 miles.

3) Estimate reduced output in forward processors for livestock sectors. Reductions in output for livestock sectors are assumed to have a proportional impact on forward processors in the region such as meat packers. In other words, if the cows were gone, meat-packing plants or fluid milk manufacturers) would likely have little to process. This is not an unreasonable premise. Since the

_

⁵ The rationing model was initially proposed by researchers at the University of California at Berkeley, and was then modified for use in a study conducted by the U.S. Environmental Protection Agency that evaluated how proposed water supply cutbacks recommended to protect water quality in the Bay/Delta complex in California would affect farmers in the Central Valley. See, Zilberman, D., Howitt, R. and Sunding, D. "Economic Impacts of Water Quality Regulations in the San Francisco Bay and Delta." Western Consortium for Public Health. May 1993.

1950s, there has been a major trend towards specialized cattle feedlots, which in turn has decentralized cattle purchasing from livestock terminal markets to direct sales between producers and slaughterhouses. Today, the meat packing industry often operates large processing facilities near high concentrations of feedlots to increase capacity utilization. As a result, packers are heavily dependent upon nearby feedlots. For example, a recent study by the USDA shows that on average meat packers obtain 64 percent of cattle from within 75 miles of their plant, 82 percent from within 150 miles and 92 percent from within 250 miles.

Table 4: Description of Livestock Sectors			
IMPLAN Category	TWDB Category		
Cattle ranching and farming	Cattle, cow calf, feedlots and dairies		
Poultry and egg production	Poultry production.		
Other livestock	Livestock other than cattle and poultry (i.e., horses, goats, sheep, hogs)		
Milk manufacturing	Fluid milk manufacturing, cheese manufacturing, ice cream manufacturing etc.		
Meat packing	Meat processing present in the region from slaughter to final processing		

1.1.3 Impacts to Municipal Water User Groups

Disaggregation of Municipal Water Demands

Estimating the economic impacts for the municipal water user groups is complicated for a number of reasons. For one, municipal use comprises a range of consumers including commercial businesses, institutions such as schools and government and households. However, reported water needs are not distributed among different municipal water users. In other words, how much of a municipal need is commercial and how much is residential (domestic)?

The amount of commercial water use as a percentage of total municipal demand was estimated based on "GED" coefficients (gallons per employee per day) published in secondary sources. For example, if year 2006 baseline data for a given economic sector (e.g., amusement and recreation services) shows employment at 30 jobs and the GED coefficient is 200, then average daily water use by that sector is $(30 \times 200 = 6,000 \text{ gallons})$ or 6.7 acre-feet per year. Water not attributed to commercial use is considered

⁶ Ferreira, W.N. "Analysis of the Meat Processing Industry in the United States." Clemson University Extension Economics Report ER211, January 2003.

⁷ Ward, C.E. "Summary of Results from USDA's Meatpacking Concentration Study." Oklahoma Cooperative Extension Service, OSU Extension Facts WF-562.

⁸ Sources for GED coefficients include: Gleick, P.H., Haasz, D., Henges-Jeck, C., Srinivasan, V., Wolff, G. Cushing, K.K., and Mann, A. "Waste Not, Want Not: The Potential for Urban Water Conservation in California." Pacific Institute. November 2003. U.S. Bureau of the Census. 1982 Census of Manufacturers: Water Use in Manufacturing. USGPO, Washington D.C. See also: "U.S. Army Engineer Institute for Water Resources, IWR Report 88-R-6.," Fort Belvoir, VA. See also, Joseph, E. S., 1982, "Municipal and Industrial Water Demands of the Western United States." Journal of the Water Resources Planning and Management Division, Proceedings of the American Society of Civil Engineers, v. 108, no. WR2, p. 204-216. See also, Baumann, D. D., Boland, J. J., and Sims, J. H., 1981, "Evaluation of Water Conservation for Municipal and Industrial Water Supply." U.S. Army Corps of Engineers, Institute for Water Resources, Contract no. 82-C1.

domestic, which includes single and multi-family residential consumption, institutional uses and all use designated as "county-other." Based on our analysis, commercial water use is about 5 to 35 percent of municipal demand. Less populated rural counties occupy the lower end of the spectrum, while larger metropolitan counties are at the higher end.

After determining the distribution of domestic versus commercial water use, we developed methods for estimating impacts to the two groups.

Domestic Water Uses

Input output models are not well suited for measuring impacts of shortages for domestic water uses, which make up the majority of the municipal water use category. To estimate impacts associated with domestic water uses, municipal water demand and needs are subdivided into residential, and commercial and institutional use. Shortages associated with residential water uses are valued by estimating proxy demand functions for different water user groups allowing us to estimate the marginal value of water, which would vary depending upon the level of water shortages. The more severe the water shortage, the more costly it becomes. For instance, a 2 acre-foot shortage for a group of households that use 10 acre-feet per year would not be as severe as a shortage that amounted to 8 acre-feet. In the case of a 2 acre-foot shortage, households would probably have to eliminate some or all outdoor water use, which could have implicit and explicit economic costs including losses to the horticultural and landscaping industry. In the case of an 8 acre-foot shortage, people would have to forgo all outdoor water use and most indoor water consumption. Economic impacts would be much higher in the latter case because people, and would be forced to find emergency alternatives assuming alternatives were available.

To estimate the value of domestic water uses, TWDB staff developed marginal loss functions based on constant elasticity demand curves. This is a standard and well-established method used by economists to value resources such as water that have an explicit monetary cost.

A constant price elasticity of demand is estimated using a standard equation:

$$w = kc^{(-\epsilon)}$$

where:

- w is equal to average monthly residential water use for a given water user group measured in thousands of gallons;
- k is a constant intercept;
- c is the average cost of water per 1,000 gallons; and
- ϵ is the price elasticity of demand.

Price elasticities (-0.30 for indoor water use and -0.50 for outdoor use) are based on a study by Bell et al. that surveyed 1,400 water utilities in Texas that serve at least 1,000 people to estimate demand elasticity for several variables including price, income, weather etc. Costs of water and average use per month per household are based on data from the Texas Municipal League's annual water and wastewater rate surveys - specifically average monthly household expenditures on water and wastewater

⁹ Bell, D.R. and Griffin, R.C. "Community Water Demand in Texas as a Century is Turned." Research contract report prepared for the Texas Water Development Board. May 2006.

in different communities across the state. After examining variance in costs and usage, three different categories of water user groups based on population (population less than 5,000, cities with populations ranging from 5,000 to 99,999 and cities with populations exceeding 100,000) were selected to serve as proxy values for municipal water groups that meet the criteria (Table 5).¹⁰

Table 5: Water Use and Costs Parameters Used to Estimated Water Demand Functions
(average monthly costs per acre-foot for delivered water and average monthly use per household)

Community Population	Water	Wastewater	Total monthly cost	Avg. monthly use (gallons)
Less than or equal to 5,000	\$1,335	\$1,228	\$2,563	6,204
5,000 to 100,000	\$1,047	\$1,162	\$2,209	7,950
Great than or equal to 100,000	\$718	\$457	\$1,190	8,409

Source: Based on annual water and wastewater rate surveys published by the Texas Municipal League.

As an example, Table 6 shows the economic impact per acre-foot of domestic water needs for municipal water user groups with population exceeding 100,000 people. There are several important assumptions incorporated in the calculations:

- 1) Reported values are net of the variable costs of treatment and distribution such as expenses for chemicals and electricity since using less water involves some savings to consumers and utilities alike; and for outdoor uses we do not include any value for wastewater.
- 2) Outdoor and "non-essential" water uses would be eliminated before indoor water consumption was affected, which is logical because most water utilities in Texas have drought contingency plans that generally specify curtailment or elimination of outdoor water use during droughts. Determining how much water is used for outdoor purposes is based on several secondary sources. The first is a major study sponsored by the American Water Works Association, which surveyed cities in states including Colorado, Oregon, Washington, California, Florida and Arizona. On average across all cities surveyed 58 percent of single family residential water use was for outdoor activities. In cities with climates comparable to large metropolitan areas of Texas, the average was 40 percent. Earlier findings of the U.S. Water Resources Council showed a national

¹¹ In Texas, state law requires retail and wholesale water providers to prepare and submit plans to the Texas Commission on Environmental Quality (TCEQ). Plans must specify demand management measures for use during drought including curtailment of "non-essential water uses." Non-essential uses include, but are not limited to, landscape irrigation and water for swimming pools or fountains. For further information see the Texas Environmental Quality Code §288.20.

¹⁰ Ideally, one would want to estimate demand functions for each individual utility in the state. However, this would require an enormous amount of time and resources. For planning purposes, we believe the values generated from aggregate data are more than sufficient.

¹² See, Mayer, P.W., DeOreo, W.B., Opitz, E.M., Kiefer, J.C., Davis, W., Dziegielewski, D., Nelson, J.O. "Residential End Uses of Water." Research sponsored by the American Water Works Association and completed by Aquacraft, Inc. and Planning and Management Consultants, Ltd. (PMCL@CDM).

average of 33 percent. Similarly, the United States Environmental Protection Agency (USEPA) estimated that landscape watering accounts for 32 percent of total residential and commercial water use on annual basis. 13 A study conducted for the California Urban Water Agencies (CUWA) calculated average annual values ranging from 25 to 35 percent. ¹⁴ Unfortunately, there does not appear to be any comprehensive research that has estimated non-agricultural outdoor water use in Texas. As an approximation, an average annual value of 30 percent based on the above references was selected to serve as a rough estimate in this study.

3) As shortages approach 100 percent values become immense and theoretically infinite at 100 percent because at that point death would result, and willingness to pay for water is immeasurable. Thus, as shortages approach 80 percent of monthly consumption, we assume that households and non-water intensive commercial businesses (those that use water only for drinking and sanitation would have water delivered by tanker truck or commercial water delivery companies. Based on reports from water companies throughout the state, we estimate that the cost of trucking in water is around \$21,000 to \$27,000 per acre-feet assuming a hauling distance of between 20 to 60 miles. This is not an unreasonable assumption. The practice was widespread during the 1950s drought and recently during droughts in this decade. For example, in 2000 at the heels of three consecutive drought years Electra - a small town in North Texas - was down to its last 45 days worth of reservoir water when rain replenished the lake, and the city was able to refurbish old wells to provide supplemental groundwater. At the time, residents were forced to limit water use to 1,000 gallons per person per month - less than half of what most people use - and many were having water delivered to their homes by private contractors. 15 In 2003 citizens of Ballinger, Texas, were also faced with a dwindling water supply due to prolonged drought. After three years of drought, Lake Ballinger, which supplies water to more than 4,300 residents in Ballinger and to 600 residents in nearby Rowena, was almost dry. Each day, people lined up to get water from a well in nearby City Park. Trucks hauling trailers outfitted with large plastic and metal tanks hauled water to and from City Park to Ballinger. 16

¹³ U.S. Environmental Protection Agency. "Cleaner Water through Conservation." USEPA Report no. 841-B-95-002. April, 1995.

¹⁴ Planning and Management Consultants, Ltd. "Evaluating Urban Water Conservation Programs: A Procedures Manual." Prepared for the California Urban Water Agencies. February 1992.

¹⁵ Zewe, C. "Tap Threatens to Run Dry in Texas Town." July 11, 2000. CNN Cable News Network.

¹⁶ Associated Press, "Ballinger Scrambles to Finish Pipeline before Lake Dries Up." May 19, 2003.

Table 6: Economic Losses Associated with Domestic Water Shortages in Communities with Populations Exceeding 100,000 people Water shortages as a No. of gallons No of gallons percentage of total **Economic loss Economic loss** remaining per remaining per person monthly household (per acre-foot) (per gallon) household per day per day demands \$0.00005 1% 278 93 \$748 5% 89 \$0.0002 266 \$812 10% 252 84 \$900 \$0.0005 15% 238 79 \$999 \$0.0008 20% 224 75 \$1,110 \$0.0012 25% 210 70 \$1,235 \$0.0015 30%^a 196 65 \$1,699 \$0.0020 35% 182 61 \$3,825 \$0.0085 40% 168 \$0.0096 56 \$4,181 154 \$4,603 \$0.011 45% 51 50% 140 47 \$5,109 \$0.012 55% 126 42 \$5,727 \$0.014 60% 37 \$6,500 \$0.017 112 65% 98 33 \$7,493 \$0.02 70% 84 28 \$8,818 \$0.02 75% 70 23 \$10,672 \$0.03 80% 56 19 \$13,454 \$0.04 42 \$0.05 (\$0.07)^b 85% 14 \$18,091 (\$24,000)^b 90% 28 9 \$27,363 (\$24,000) \$0.08 (\$0.07) 95% 5 \$55,182 (\$24,000) \$0.17 (\$0.07) 14 99% 3 0.9 \$277,728 (\$24,000) \$0.85 (\$0.07) 99.9% 1 0.5 \$2,781,377 (\$24,000) \$8.53 (\$0.07) 100% 0 0 Infinite (\$24,000)Infinite (\$0.07)

^a The first 30 percent of needs are assumed to be restrictions of outdoor water use; when needs reach 30 percent of total demands all outdoor water uses would be restricted. Needs greater than 30 percent include indoor use

^b As shortages approach 100 percent the value approaches infinity assuming there are not alternatives available; however, we assume that communities would begin to have water delivered by tanker truck at an estimated cost of \$24,000 per acre-foot when shortages breached 85 percent.

Commercial Businesses

Effects of water shortages on commercial sectors were estimated in a fashion similar to other business sectors meaning that water shortages would affect the ability of these businesses to operate. This is particularly true for "water intensive" commercial sectors that are need large amounts of water (in addition to potable and sanitary water) to provide their services. These include:

- car-washes,
- laundry and cleaning facilities,
- sports and recreation clubs and facilities including race tracks,
- amusement and recreation services,
- hospitals and medical facilities,
- hotels and lodging places, and
- eating and drinking establishments.

A key assumption is that commercial operations would not be affected until water shortages were at least 50 percent of total municipal demand. In other words, we assume that residential water consumers would reduce water use including all non-essential uses before businesses were affected.

An example will illustrate the breakdown of municipal water needs and the overall approach to estimating impacts of municipal needs. Assume City A experiences an unexpected shortage of 50 acrefeet per year when their demands are 200 acre-feet per year. Thus, shortages are only 25 percent of total municipal use and residents of City A could eliminate needs by restricting landscape irrigation. City B, on the other hand, has a deficit of 150 acre-feet in 2020 and a projected demand of 200 acre-feet. Thus, total shortages are 75 percent of total demand. Emergency outdoor and some indoor conservation measures could eliminate 50 acre-feet of projected needs, yet 50 acre-feet would still remain. To eliminate" the remaining 50 acre-feet water intensive commercial businesses would have to curtail operations or shut down completely.

Three other areas were considered when analyzing municipal water shortages: 1) lost revenues to water utilities, 2) losses to the horticultural and landscaping industries stemming for reduction in water available for landscape irrigation, and 3) lost revenues and related economic impacts associated with reduced water related recreation.

Water Utility Revenues

Estimating lost water utility revenues was straightforward. We relied on annual data from the "Water and Wastewater Rate Survey" published annually by the Texas Municipal League to calculate an average value per acre-foot for water and sewer. For water revenues, average retail water and sewer rates multiplied by total water needs served as a proxy. For lost wastewater, total unmet needs were adjusted for return flow factor of 0.60 and multiplied by average sewer rates for the region. Needs reported as "county-other" were excluded under the presumption that these consist primarily of self-supplied water uses. In addition, 15 percent of water demand and needs are considered non-billed or "unaccountable" water that comprises things such as leakages and water for municipal government functions (e.g., fire departments). Lost tax receipts are based on current rates for the "miscellaneous gross receipts tax, "which the state collects from utilities located in most incorporated cities or towns in Texas. We do not include lost water utility revenues when aggregating impacts of municipal water shortages to regional and state levels to prevent double counting.

Horticultural and Landscaping Industry

The horticultural and landscaping industry, also referred to as the "green Industry," consists of businesses that produce, distribute and provide services associated with ornamental plants, landscape and garden supplies and equipment. Horticultural industries often face big losses during drought. For example, the recent drought in the Southeast affecting the Carolinas and Georgia horticultural and landscaping businesses had a harsh year. Plant sales were down, plant mortality increased, and watering costs increased. Many businesses were forced to close locations, lay off employees, and even file for bankruptcy. University of Georgia economists put statewide losses for the industry at around \$3.2 billion during the 3-year drought that ended in 2008. Municipal restrictions on outdoor watering play a significant role. During drought, water restrictions coupled with persistent heat has a psychological effect on homeowners that reduces demands for landscaping products and services. Simply put, people were afraid to spend any money on new plants and landscaping.

In Texas, there do not appear to be readily available studies that analyze the economic effects of water shortages on the industry. However, authors of this report believe negative impacts do and would result in restricting landscape irrigation to municipal water consumers. The difficulty in measuring them is two-fold. First, as noted above, data and research for these types of impacts that focus on Texas are limited; and second, economic data provided by IMPLAN do not disaggregate different sectors of the green industry to a level that would allow for meaningful and defensible analysis.¹⁸

Recreational Impacts

Recreational businesses often suffer when water levels and flows in rivers, springs and reservoirs fall significantly during drought. During droughts, many boat docks and lake beaches are forced to close, leading to big losses for lakeside business owners and local communities. Communities adjacent to popular river and stream destinations such as Comal Springs and the Guadalupe River also see their business plummet when springs and rivers dry up. Although there are many examples of businesses that have suffered due to drought, dollar figures for drought-related losses to the recreation and tourism industry are not readily available, and very difficult to measure without extensive local surveys. Thus, while they are important, economic impacts are not measured in this study.

Table 7 summarizes impacts of municipal water shortages at differing levels of magnitude, and shows the ranges of economic costs or losses per acre-foot of shortage for each level.

¹⁷ Williams, D. "Georgia landscapers eye rebound from Southeast drought." Atlanta Business Chronicle, Friday, June 19, 2009

¹⁸ Economic impact analyses prepared by the TWDB for 2006 regional water plans did include estimates for the horticultural industry. However, year 2000 and prior IMPLAN data were disaggregated to a finer level. In the current dataset (2006), the sector previously listed as "Landscaping and Horticultural Services" (IMPLAN Sector 27) is aggregated into "Services to Buildings and Dwellings" (IMPLAN Sector 458).

Table 7: Impacts of Municipal Water Shortages at Different Magnitudes of Shortages				
Water shortages as percent of total municipal demands	Impacts	Economic costs per acre-foot*		
0-30%	 ✓ Lost water utility revenues ✓ Restricted landscape irrigation and non- essential water uses 	\$730 - \$2,040		
30-50%	 ✓ Lost water utility revenues ✓ Elimination of landscape irrigation and non-essential water uses ✓ Rationing of indoor use 	\$2,040 - \$10,970		
>50%	 ✓ Lost water utility revenues ✓ Elimination of landscape irrigation and non-essential water uses ✓ Rationing of indoor use ✓ Restriction or elimination of commercial water use ✓ Importing water by tanker truck 	\$10,970 - varies		
	*Figures are rounded	1		

1.1.4 Industrial Water User Groups

Manufacturing

Impacts to manufacturing were estimated by distributing water shortages among industrial sectors at the county level. For example, if a planning group estimates that during a drought of record water supplies in County A would only meet 50 percent of total annual demands for manufactures in the county, we reduced output for each sector by 50 percent. Since projected manufacturing demands are based on TWDB Water Uses Survey data for each county, we only include IMPLAN sectors represented in the TWBD survey database. Some sectors in IMPLAN databases are not part of the TWDB database given that they use relatively small amounts of water - primarily for on-site sanitation and potable purposes. To maintain consistency between IMPLAN and TWDB databases, Standard Industrial Classification (SIC) codes both databases were cross referenced in county with shortages. Non-matches were excluded when calculating direct impacts.

Mining

The process of mining is very similar to that of manufacturing. We assume that within a given county, shortages would apply equally to relevant mining sectors, and IMPLAN sectors are cross referenced with TWDB data to ensure consistency.

In Texas, oil and gas extraction and sand and gravel (aggregates) operations are the primary mining industries that rely on large volumes of water. For sand and gravel, estimated output reductions are straightforward; however, oil and gas is more complicated for a number of reasons. IMPLAN does not necessarily report the physical extraction of minerals by geographic local, but rather the sales revenues reported by a particular corporation.

For example, at the state level revenues for IMPLAN sector 19 (oil and gas extraction) and sector 27 (drilling oil and gas wells) totals \$257 billion. Of this, nearly \$85 billion is attributed to Harris County. However, only a very small fraction (less than one percent) of actual production takes place in the county. To measure actual potential losses in well head capacity due to water shortages, we relied on county level production data from the Texas Railroad Commission (TRC) and average well-head market prices for crude and gas to estimate lost revenues in a given county. After which, we used to IMPLAN ratios to estimate resultant losses in income and employment.

Other considerations with respect to mining include:

- 1) Petroleum and gas extraction industry only uses water in significant amounts for secondary recovery. Known in the industry as enhanced or water flood extraction, secondary recovery involves pumping water down injection wells to increase underground pressure thereby pushing oil or gas into other wells. IMPLAN output numbers do not distinguish between secondary and non-secondary recovery. To account for the discrepancy, county-level TRC data that show the proportion of barrels produced using secondary methods were used to adjust IMPLAN data to reflect only the portion of sales attributed to secondary recovery.
- 2) A substantial portion of output from mining operations goes directly to businesses that are classified as manufacturing in our schema. Thus, multipliers measuring backward linkages for a given manufacturer might include impacts to a supplying mining operation. Care was taken not to double count in such situations if both a mining operation and a manufacturer were reported as having water shortages.

Steam-electric

At minimum without adequate cooling water, power plants cannot safely operate. As water availability falls below projected demands, water levels in lakes and rivers that provide cooling water would also decline. Low water levels could affect raw water intakes and outfalls at electrical generating units in several ways. For one, power plants are regulated by thermal emission guidelines that specify the maximum amount of heat that can go back into a river or lake via discharged cooling water. Low water levels could result in permit compliance issues due to reduced dilution and dispersion of heat and subsequent impacts on aquatic biota near outfalls. However, the primary concern would be a loss of head (i.e., pressure) over intake structures that would decrease flows through intake tunnels. This would affect safety related pumps, increase operating costs and/or result in sustained shut-downs. Assuming plants did shutdown, they would not be able to generate electricity.

¹⁹ Section 316 (b) of the Clean Water Act requires that thermal wastewater discharges do not harm fish and other wildlife.

Among all water use categories steam-electric is unique and cautions are needed when applying methods used in this study. Measured changes to an economy using input-output models stem directly from changes in sales revenues. In the case of water shortages, one assumes that businesses will suffer lost output if process water is in short supply. For power generation facilities this is true as well. However, the electric services sector in IMPLAN represents a corporate entity that may own and operate several electrical generating units in a given region. If one unit became inoperable due to water shortages, plants in other areas or generation facilities that do not rely heavily on water such as gas powered turbines might be able to compensate for lost generating capacity. Utilities could also offset lost production via purchases on the spot market.²⁰ Thus, depending upon the severity of the shortages and conditions at a given electrical generating unit, energy supplies for local and regional communities could be maintained. But in general, without enough cooling water, utilities would have to throttle back plant operations, forcing them to buy or generate more costly power to meet customer demands.

Measuring impacts end users of electricity is not part of this study as it would require extensive local and regional level analysis of energy production and demand. To maintain consistency with other water user groups, impacts of steam-electric water shortages are measured in terms of lost revenues (and hence income) and jobs associated with shutting down electrical generating units.

1.2 Social Impacts of Water Shortages

As the name implies, the effects of water shortages can be social or economic. Distinctions between the two are both semantic and analytical in nature — more so analytic in the sense that social impacts are harder to quantify. Nevertheless, social effects associated with drought and water shortages are closely tied to economic impacts. For example, they might include:

- demographic effects such as changes in population,
- disruptions in institutional settings including activity in schools and government,
- conflicts between water users such as farmers and urban consumers,
- health-related low-flow problems (e.g., cross-connection contamination, diminished sewage flows, increased pollutant concentrations),
- mental and physical stress (e.g., anxiety, depression, domestic violence),
- public safety issues from forest and range fires and reduced fire fighting capability,
- increased disease caused by wildlife concentrations,
- loss of aesthetic and property values, and
- reduced recreational opportunities.²¹

²⁰ Today, most utilities participate in large interstate "power pools" and can buy or sell electricity "on the grid" from other utilities or power marketers. Thus, assuming power was available to buy, and assuming that no contractual or physical limitations were in place such as transmission constraints; utilities could offset lost power that resulted from waters shortages with purchases via the power grid.

²¹ Based on information from the website of the National Drought Mitigation Center at the University of Nebraska Lincoln. Available online at: http://www.drought.unl.edu/risk/impacts.htm. See also, Vanclay, F. "Social Impact Assessment." in Petts, J. (ed) International Handbook of Environmental Impact Assessment. 1999.

Social impacts measured in this study focus strictly on demographic effects including changes in population and school enrollment. Methods are based on demographic projection models developed by the Texas State Data Center and used by the TWDB for state and regional water planning. Basically, the social impact model uses results from the economic component of the study and assesses how changes in labor demand would affect migration patterns in a region. Declines in labor demand as measured using adjusted IMPLAN data are assumed to affect net economic migration in a given regional water planning area. Employment losses are adjusted to reflect the notion that some people would not relocate but would seek employment in the region and/or public assistance and wait for conditions to improve. Changes in school enrollment are simply the proportion of lost population between the ages of 5 and 17.

2. Results

Section 2 presents the results of the analysis at the regional level. Included are baseline economic data for each water use category, and estimated economics impacts of water shortages for water user groups with reported deficits. According to the 2011 *Region F Regional Water Plan*, during severe drought irrigation, livestock municipal, manufacturing, mining and steam-electric water user groups would experience water shortages in the absence of new water management strategies.

2.1 Overview of Regional Economy

On an annual basis, the Region F economy generates \$20.8 billion worth of gross state product for Texas (\$19.1 billion in income and \$1.7 billion in business taxes) and supports nearly 227,000 jobs (Table 8). Generating about \$9.8 billion in gross state product, agriculture, manufacturing, and mining are the region's primary base economic sectors. 22 Municipal sectors also generate substantial amounts of income and are major employers in the region; however, many businesses that make up the municipal category such as restaurants and retail stores are non-basic industries meaning they exist to provide services to people who work would in base industries. In other words, without base industries, many jobs categorized as municipal would not exist.

-

²² Base industries are those that supply markets outside of the region. These industries are crucial to the local economy and are called the economic base of a region. Appendix A shows how IMPLAN's 529 sectors were allocated to water use category, and shows economic data for each sector.

	Table 8: The	Region F Econom	ny by Water Use	er Group (\$mi	illions)*	
Water Use Category	Total sales	Intermediate sales	Final sales	Jobs	Income	Business taxes
Irrigation	\$131.11	\$21.48	\$109.67	2,267	\$68.24	\$1.79
Livestock	\$801.61	\$432.80	\$368.82	11,083	\$78.45	\$11.11
Manufacturing	\$8,793.15	\$1,386.66	\$7,406.49	36,089	\$2,613.94	\$51.57
Mining	\$11,507.80	\$5,279.12	\$6,228.68	27,668	\$6,415.53	\$563.76
Steam-electric	\$376.64	\$105.96	\$270.68	932	\$261.54	\$44.63
Municipal	\$15,709.07	\$3,801.30	\$11,907.77	148,786	\$9,682.07	\$981.89
Regional total	\$37,319.38	\$11,027.32	\$26,292.11	226,825	\$19,119.77	\$1,654.75

^a Appendix 1 displays data for individual IMPLAN sectors that make up each water use category. Based on data from the Texas Water Development Board, and year 2006 data from the Minnesota IMPLAN Group, Inc.

2.2 Impacts of Agricultural Water Shortages

According to the 2011 Region F Regional Water Plan, during severe drought most counties in the region would experiences shortages of irrigation water ranging anywhere from about 5 to 90 percent of total annual irrigation demands. Shortages of these magnitudes would reduce gross state product (income plus state and local business taxes) by about \$30 to 35 million depending upon the decade Table 9).

Table 9: Economic Impacts of Water Shortages for Irrigation Water User Groups (\$millions)				
Decade	Lost income from reduced crop production *	Lost state and local tax revenues from reduced crop production	Lost jobs from reduced crop production	
2010	\$34.97	\$1.70	454	
2020	\$34.45	\$1.68	448	
2030	\$33.89	\$1.65	442	
2040	\$33.02	\$1.61	432	
2050	\$32.48	\$1.58	426	
2060	\$31.97	\$1.56	419	

^{*}Changes to income and business taxes are collectively equivalent to a decrease in gross state product, which is analogous to gross domestic product measured at the state rather than national level. Appendix 2 shows results by water user group.

2.3 Impacts of Municipal Water Shortages

Water shortages are projected to occur in a significant number of communities throughout the region, and deficits range anywhere from 1 to 100 percent of total annual water demands. At the regional level, the estimated economic value of domestic water shortages totals \$164 million in 2010 and \$446 million in 2060 (Table 10). Due to curtailment of commercial business activity, municipal shortages would also reduce gross state product (income plus taxes) by \$40 million in 2010 and \$433 million in 2060.

	Table 10: Econom	nic Impacts of Water Sh	ortages for Municipal V	/ater User Groups (\$m	illions)
Decade	Monetary value of domestic water shortages	Lost income from reduced commercial business activity*	Lost state and local taxes from reduced commercial business activity	Lost jobs from reduced commercial business activity	Lost water utility revenues
2010	\$164.31	\$35.84	1,165	\$3.58	\$22.60
2020	\$244.46	\$36.34	1,180	\$3.64	\$38.89
2030	\$275.39	\$119.12	3,208	\$9.52	\$48.62
2040	\$363.08	\$366.53	9,367	\$27.34	\$62.99
2050	\$432.97	\$386.74	9,940	\$29.00	\$67.58
2060	\$446.11	\$403.41	10,360	\$30.22	\$72.94

^{*}Changes to Income and business taxes are collectively equivalent to a decrease in gross state product, which is analogous to gross domestic product measured at the state rather than national level. Appendix 2 shows results by water user group.

2.4 Impacts of Manufacturing Water Shortages

Manufacturing water shortages are projected to occur in the counties of Coleman, Ector, Howard, Kimble, Runnels, and Tom Green. Projected shortages would reduce gross state product (income plus taxes) by an estimated \$891 million in 2020 and \$1,356 million in 2060 (Table 11).

Decade	Lost income due to reduced manufacturing output*	Lost state and local business tax revenues due to reduced manufacturing output	Lost jobs due to reduced manufacturing output
2010	\$829.61	\$62.12	15,723
2020	\$936.77	\$69.97	17,705
2030	\$994.28	\$75.07	19,076
2040	\$1,092.03	\$82.10	20,836
2050	\$1,166.59	\$87.70	22,261
2060	\$1,261.31	\$94.74	24,041

^{*}Changes to Income and business taxes are collectively equivalent to a decrease in gross state product, which is analogous to gross domestic product measured at the state rather than national level. Appendix 2 shows results by water user group.

2.5 Impacts of Mining Water Shortages

Mining water shortages are projected to occur in Coleman, Coke, and Howard counties, and would primarily affect oil extraction. Combined shortages for each county would result in estimated losses of gross state product totaling \$13.5 million dollars in 2010 and \$11.0 million 2060 (Table 12).

Table 12: Economic Impacts of Water Shortages for Mining Water User Groups (\$millions)			
Lost income due to reduced mining output*	Lost state and local business tax revenues due to reduced mining output	Lost jobs due to reduced mining output	
\$12.50	\$0.94	78	
\$16.04	\$1.21	101	
\$2.26	\$0.14	13	
\$4.75	\$0.33	29	
\$6.70	\$0.49	41	
\$9.83	\$0.73	61	
	Lost income due to reduced mining output* \$12.50 \$16.04 \$2.26 \$4.75 \$6.70	Lost income due to reduced revenues due to reduced mining output \$12.50 \$0.94 \$16.04 \$1.21 \$2.26 \$0.14 \$4.75 \$0.33 \$6.70 \$0.49	

^{*}Changes to Income and business taxes are collectively equivalent to a decrease in gross state product, which is analogous to gross domestic product measured at the state rather than national level. Appendix 2 shows results by water user group.

2.6 Impacts of Steam-electric Water Shortages

Water shortages for electrical generating units are projected in Coke, Ector, Mitchell, Tom Green and Ward counties resulting in estimated losses of gross state product totaling \$607 million dollars in 2010, and \$2,017 billion in 2060 (Table 13).

Table 13: Economic Impacts of Water Shortages for Steam-electric Water User Groups (\$millions)			r User Groups (\$millions)
Decade	Lost income due to reduced electrical generation*	Lost state and local business tax revenues due to reduced electrical generation	Lost jobs due to reduced electrical generation
2010	\$530.83	\$76.19	1,805
2020	\$691.34	\$99.23	2,350
2030	\$1,045.50	\$150.07	3,554
2040	\$1,232.24	\$176.87	4,189
2050	\$1,468.65	\$210.80	4,993

^{*}Changes to Income and business taxes are collectively equivalent to a decrease in gross state product, which is analogous to gross domestic product measured at the state rather than national level. Appendix 2 shows results by water user group.

5,996

\$253.16

2.7 Social Impacts of Water Shortages

2060

\$1,763.75

As discussed previously, social impacts focus on changes in population and school enrollment in the region. In 2010, estimated population losses total 25,050 with corresponding reductions in school enrollment of 7,065 students (Table 15). In 2060, population would decline by 49,236 and school enrollment would fall by 9,106.

Table 15: Social Impacts of Water Shortages (2010-2060)			
Year	Population Losses	Declines in School Enrollment	
2010	25,050	7,065	
2020	26,239	7,444	
2030	31,670	8,389	
2040	41,980	7,759	
2050	45,362	8,378	
2060	49,236	9,106	

2.8 Distribution of Impacts by Major River Basin

Administrative rules require that impacts are presented by both planning region and major river basin. To meet rule requirements, impacts were allocated among basins based on the distribution of water shortages in relevant basins. For example, if 50 percent of water shortages in River Basin A and 50 percent occur in River Basin B, then impacts were split equally among the two basins. Table 16 displays the results.

River Basin	2010	2020	2030	2040	2050	2060
Brazos	1%	1%	1%	1%	1%	1%
Colorado	80%	82%	82%	83%	83%	83%
Rio Grande	19%	17%	17%	16%	16%	16%
Total	100%	100%	100%	100%	100%	100%

Appendix 1: Economic Data for Individual IMPLAN Sectors

Water Use Category	IMPLAN Sector	IMPLAN Code	Total Sales	Intermediate Sales	Final Sales	Jobs	Income	Business Taxes
Irrigation	Cotton Farming	8	\$53.73	\$0.73	\$53.04	919	\$19.78	\$0.48
Irrigation	Vegetable and Melon Farming	3	\$27.14	\$0.73	\$33.04	233	\$19.78	\$0.48
Irrigation	Tree Nut Farming	4	, \$19.17	\$1.01	\$18.16	376	\$13.34	\$0.46
Irrigation	All "Other" Crop Farming	10	\$18.30	\$16.92	\$1.38	206	\$8.98	\$0.35
Irrigation	Grain Farming	2	\$8.96	\$1.29	\$7.67	446	\$4.14	\$0.16
Irrigation	Fruit Farming	5	\$3.75	\$0.57	\$3.18	85	\$2.13	\$0.08
Irrigation	Oilseed Farming	1	\$0.07	\$0.00	\$0.07	2	\$0.03	\$0.00
Livestock	Cattle ranching and farming	11	\$401.54	\$278.43	\$123.11	7,838	\$31.72	\$8.44
Livestock	Animal- except poultry- slaughtering	67	\$315.06	\$84.24	\$230.82	832	\$31.15	\$1.73
Livestock	Animal production- except cattle and poultry	13	\$54.48	\$46.20	\$8.29	2,237	\$5.30	\$0.84
Livestock	Poultry and egg production	12	\$30.53	\$23.93	\$6.60	176	\$10.28	\$0.10
	Total Agriculture		\$932.73	\$454.27	\$478.50	13,350	\$146.68	\$12.90

Water Use Category	IMPLAN Sector	IMPLAN Code	Total Sales	Intermediate Sales	Final Sales	Jobs	Income	Business Taxes
Mining	Oil and gas extraction	19	\$5,205.54	\$4,834.32	\$371.22	8,214	\$3,001.63	\$308.29
Mining	Drilling oil and gas wells	27	\$3,371.52	\$16.83	\$3,354.69	5,299	\$997.63	\$131.53
Mining	Support activities for oil and gas operations	28	\$2,408.86	\$334.58	\$2,074.28	11,698	\$2,184.47	\$98.47
Mining	Stone mining and quarrying	24	\$348.51	\$35.86	\$312.65	2,055	\$178.44	\$13.95
Mining	Natural gas distribution	31	\$134.21	\$53.79	\$80.42	261	\$31.27	\$10.24
Mining	Sand- gravel- clay- and refractory mining	25	\$22.60	\$2.39	\$20.21	85	\$13.55	\$0.67
Mining	Other nonmetallic mineral mining	26	\$13.05	\$1.30	\$11.74	30	\$7.39	\$0.49
Mining	Support activities for other mining	29	\$3.52	\$0.05	\$3.47	26	\$1.16	\$0.14
Total Mining	NA		\$11,507.80	\$5,279.12	\$6,228.68	27,668	\$6,415.53	\$563.76
Steam-electric	Power generation and supply		\$376.64	\$105.96	\$270.68	932	\$261.54	\$44.63

Economic Data for Manufacturing Water User Groups (\$millions)

		IMPLAN		Intermediate				Business
Water Use Category	IMPLAN Sector	Code	Total Sales	Sales	Final Sales	Jobs	Income	Taxes
Manufacturing	Petroleum refineries	142	\$1,416.82	\$526.63	\$890.19	156	\$154.70	\$5.98
Manufacturing	New residential one-unit structures- all	33	\$851.38	\$0.00	\$851.38	5,727	\$282.36	\$4.44
Manufacturing	Oil and gas field machinery and equipment	261	\$523.73	\$19.50	\$504.22	1,465	\$124.96	\$2.54
Manufacturing	Other aluminum rolling and drawing	213	\$482.71	\$13.42	\$469.30	642	\$68.79	\$2.74
Manufacturing	Commercial and institutional buildings	38	\$479.41	\$0.00	\$479.41	4,993	\$242.23	\$2.98
Manufacturing	Air and gas compressor manufacturing	289	\$392.54	\$4.04	\$388.51	911	\$128.34	\$2.41
Manufacturing	Vitreous china plumbing fixture manufacturing	182	\$370.11	\$19.16	\$350.94	1,581	\$194.11	\$3.58
Manufacturing	Prefabricated metal buildings and components	232	\$244.97	\$12.30	\$232.68	1,032	\$50.43	\$1.18
Manufacturing	Other new construction	41	\$209.12	\$0.00	\$209.12	2,290	\$112.29	\$0.88
Manufacturing	Other miscellaneous chemical products	171	\$149.55	\$78.24	\$71.31	333	\$26.61	\$0.65
Manufacturing	Synthetic rubber manufacturing	153	\$148.58	\$3.64	\$144.94	199	\$34.04	\$0.82
Manufacturing	Asphalt paving mixture and blocks	143	\$140.29	\$125.83	\$14.46	211	\$27.81	\$0.15
Manufacturing	Machine shops	243	\$134.79	\$32.53	\$102.26	860	\$70.03	\$1.12
Manufacturing	Fabricated structural metal manufacturing	233	\$121.00	\$6.27	\$114.74	482	\$41.45	\$0.67
Manufacturing	New residential additions and alterations-all	35	\$120.95	\$0.00	\$120.95	682	\$44.73	\$0.63
Manufacturing	Cement manufacturing	191	\$120.37	\$0.32	\$120.05	202	\$53.57	\$1.09
Manufacturing	Plastics pipe- fittings- and profile shapes	173	\$116.14	\$71.44	\$44.70	310	\$35.38	\$0.80
Manufacturing	Plate work manufacturing	234	\$110.15	\$6.93	\$103.21	446	\$43.92	\$0.57
Manufacturing	Iron- steel pipe and tubes	205	\$107.02	\$7.47	\$99.55	209	\$37.69	\$0.96
Manufacturing	Motor vehicle parts manufacturing	350	\$104.97	\$8.44	\$96.53	279	\$26.82	\$0.49
Manufacturing	Highway- street- bridge- and tunnel construct	39	\$103.00	\$0.00	\$103.00	967	\$51.86	\$0.66
Manufacturing	Soft drink and ice manufacturing	85	\$93.76	\$5.24	\$88.52	161	\$7.92	\$0.35
Manufacturing	New multifamily housing structures	34	\$92.77	\$0.00	\$92.77	832	\$43.47	\$0.25
Manufacturing	Cut and sew apparel manufacturing	107	\$76.34	\$2.07	\$74.27	541	\$26.77	\$0.43
Manufacturing	Water- sewer- and pipeline construction	40	\$74.90	\$0.00	\$74.90	630	\$33.22	\$0.48
Manufacturing	Paperboard container manufacturing	126	\$74.18	\$0.79	\$73.39	241	\$18.19	\$0.71
Manufacturing	Household vacuum cleaner manufacturing	328	\$73.63	\$2.78	\$70.84	263	\$24.46	\$0.55
Manufacturing	All other manufacturing	various	\$1,859.96	\$439.61	\$1,420.35	9,444	\$607.80	\$13.47
	Total manufacturing		\$8,793.15	\$1,386.66	\$7,406.49	36,089	\$2,613.94	\$51.57

Based on year 2006 data from the Minnesota IMPLAN Group, Inc.

		IMPLAN		Intermediate				Business
Water Use Category	IMPLAN Sector	Code	Total Sales	Sales	Final Sales	Jobs	Income	Taxes
Municipal	Wholesale trade	390	\$2,098.95	\$1,004.90	\$1,094.05	12,934	\$1,105.37	\$310.12
Municipal	Owner-occupied dwellings	509	\$1,892.34	\$0.00	\$1,892.34	0	\$1,465.93	\$223.76
Municipal	State & Local Education	503	\$1,254.80	\$0.00	\$1,254.79	31,837	\$1,254.80	\$0.00
Municipal	Telecommunications	422	\$965.38	\$331.59	\$633.79	3,360	\$362.46	\$60.38
Municipal	Food services and drinking places	481	\$928.45	\$118.56	\$809.89	19,811	\$373.53	\$43.64
Municipal	Monetary authorities and depository credit in	430	\$736.91	\$242.70	\$494.21	4,003	\$517.47	\$9.43
Municipal	State & Local Non-Education	504	\$729.16	\$0.00	\$729.16	13,857	\$729.16	\$0.00
Municipal	Offices of physicians- dentists- and other he	465	\$692.35	\$0.00	\$692.35	6,505	\$486.53	\$4.26
Municipal	Pipeline transportation	396	\$617.24	\$269.94	\$347.30	801	\$204.11	\$43.20
Municipal	Truck transportation	394	\$524.82	\$284.17	\$240.64	4,007	\$240.77	\$5.45
Municipal	Hospitals	467	\$508.85	\$0.00	\$508.85	4,933	\$252.98	\$3.23
Municipal	Motor vehicle and parts dealers	401	\$498.77	\$54.24	\$444.54	4,626	\$257.34	\$72.89
Municipal	Machinery and equipment rental and leasing	434	\$433.59	\$235.80	\$197.78	1,401	\$175.66	\$6.14
Municipal	Real estate	431	\$414.65	\$164.14	\$250.51	2,447	\$240.10	\$50.89
Municipal	Commercial machinery repair and maintenance	485	\$413.71	\$217.81	\$195.90	2,466	\$216.38	\$15.81
Municipal	Architectural and engineering services	439	\$402.20	\$253.54	\$148.67	3,640	\$201.97	\$1.68
Municipal	General merchandise stores	410	\$375.62	\$39.59	\$336.03	7,016	\$167.88	\$53.50
Municipal	Other State and local government enterprises	499	\$356.82	\$116.19	\$240.62	1,797	\$121.61	\$0.04
Municipal	Federal Military	505	\$312.73	\$0.00	\$312.73	4,027	\$312.73	\$0.00
Municipal	Food and beverage stores	405	\$283.68	\$37.93	\$245.75	5,296	\$142.16	\$31.15
Municipal	Federal Non-Military	506	\$261.85	\$0.00	\$261.84	1,655	\$261.84	\$0.00
Municipal	Nursing and residential care facilities	468	\$260.81	\$0.00	\$260.81	5,608	\$161.88	\$3.82
Municipal	Legal services	437	\$258.66	\$164.16	\$94.50	2,162	\$161.43	\$5.06
Municipal	Management of companies and enterprises	451	\$243.64	\$229.12	\$14.52	1,331	\$136.89	\$2.19
Municipal	Gasoline stations	407	\$243.12	\$36.92	\$206.19	3,266	\$131.09	\$35.27
Municipal	All other municipal	various	\$5,964.80	\$2,337.40	\$3,627.40	95,011	\$2,952.30	\$228.33
Municipal	Total municipal		\$15,709.07	\$3,801.30	\$11,907.77	148,786	\$9,682.07	\$981.89

Appendix 2: Impacts by Water User Group

Iri	rigation cont. (\$millions)					
	2010	2020	2030	2040	2050	2060
Andrews County		•	•		•	•
Reduced income from curtailed crop production	\$2.6873	\$2.6810	\$2.6522	\$2.3621	\$2.3197	\$2.2847
Reduced business taxes from curtailed crop production	\$0.1093	\$0.1090	\$0.1079	\$0.0961	\$0.0943	\$0.0929
Reduced jobs from curtailed crop production	33	33	33	29	29	28
Borden County						
Reduced income from curtailed crop production	\$0.49	\$0.49	\$0.49	\$0.49	\$0.49	\$0.49
Reduced business taxes from curtailed crop production	\$0.02	\$0.02	\$0.02	\$0.02	\$0.02	\$0.02
Reduced jobs from curtailed crop production	6	6	6	6	6	6
Brown County						
Reduced income from curtailed crop production	\$1.31	\$1.31	\$1.31	\$1.30	\$1.30	\$1.30
Reduced business taxes from curtailed crop production	\$0.06	\$0.06	\$0.06	\$0.06	\$0.06	\$0.06
Reduced jobs from curtailed crop production	31	31	31	31	31	31
Coke County						
Reduced income from curtailed crop production	\$0.03	\$0.03	\$0.03	\$0.03	\$0.03	\$0.03
Reduced business taxes from curtailed crop production	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
Reduced jobs from curtailed crop production	1	1	1	1	1	1
Coleman County						
Reduced income from curtailed crop production	\$0.23	\$0.23	\$0.23	\$0.23	\$0.23	\$0.23
Reduced business taxes from curtailed crop production	\$0.01	\$0.01	\$0.01	\$0.01	\$0.01	\$0.01
Reduced jobs from curtailed crop production	6	6	6	6	6	6
Glasscock County						
Reduced income from curtailed crop production	\$12.24	\$12.06	\$11.88	\$11.69	\$11.51	\$11.33
Reduced business taxes from curtailed crop production	\$0.60	\$0.59	\$0.58	\$0.57	\$0.56	\$0.55
Reduced jobs from curtailed crop production	142	140	138	136	134	132

ırı	igation cont. (\$millions)					
	2010	2020	2030	2040	2050	2060
Irion County						
Reduced income from curtailed crop production	\$0.13	\$0.12	\$0.12	\$0.11	\$0.11	\$0.10
Reduced business taxes from curtailed crop production	\$0.003	\$0.003	\$0.003	\$0.003	\$0.003	\$0.003
Reduced jobs from curtailed crop production	2	2	2	1	1	1
Martin County						
Reduced income from curtailed crop production	\$0.26	\$0.19	\$0.11	\$0.00	\$0.00	\$0.00
Reduced business taxes from curtailed crop production	\$0.01	\$0.01	\$0.00	\$0.00	\$0.00	\$0.00
Reduced jobs from curtailed crop production	5	5	5	5	4	4
Menard County						
Reduced income from curtailed crop production	\$0.46	\$0.46	\$0.45	\$0.45	\$0.44	\$0.44
Reduced business taxes from curtailed crop production	\$0.03	\$0.03	\$0.03	\$0.02	\$0.02	\$0.02
Reduced jobs from curtailed crop production	10	10	10	10	10	10
Midland County						
Reduced income from curtailed crop production	\$1.72	\$1.73	\$1.73	\$1.72	\$1.71	\$1.69
Reduced business taxes from curtailed crop production	\$0.09	\$0.09	\$0.09	\$0.09	\$0.08	\$0.08
Reduced jobs from curtailed crop production	22	22	22	22	22	22
Reagan County						
Reduced income from curtailed crop production	\$1.36	\$1.31	\$1.25	\$1.18	\$1.11	\$1.04
Reduced business taxes from curtailed crop production	\$0.07	\$0.07	\$0.06	\$0.06	\$0.06	\$0.05
Reduced jobs from curtailed crop production	15	14	14	13	12	11
Runnels County						
Reduced income from curtailed crop production	\$3.17	\$3.09	\$3.02	\$2.94	\$2.87	\$2.79
Reduced business taxes from curtailed crop production	\$0.16	\$0.15	\$0.15	\$0.15	\$0.14	\$0.14
Reduced jobs from curtailed crop production	45	44	43	42	41	40
Tom Green County						
Reduced income from curtailed crop production	\$0.20	\$0.20	\$0.20	\$0.20	\$0.19	\$0.19
Reduced business taxes from curtailed crop production	\$0.01	\$0.01	\$0.01	\$0.01	\$0.01	\$0.01
Reduced jobs from curtailed crop production	3	3	3	3	3	3
Upton County						
Reduced income from curtailed crop production	\$5.99	\$5.96	\$5.93	\$5.90	\$5.86	\$5.83
Reduced business taxes from curtailed crop production	\$0.30	\$0.30	\$0.30	\$0.29	\$0.29	\$0.29
Reduced jobs from curtailed crop production	79	78	78	77	77	77

Irrigati	on cont. (\$millions)					
	2010	2020	2030	2040	2050	2060
Ward County						
Reduced income from curtailed crop production	\$0.09	\$0.08	\$0.10	\$0.11	\$0.11	\$0.11
Reduced business taxes from curtailed crop production	\$0.004	\$0.004	\$0.005	\$0.01	\$0.01	\$0.01
Reduced jobs from curtailed crop production	2	1	2	2	2	2

Man	ufacturing (\$millions)					
	2010	2020	2030	2040	2050	2060
Coleman County					•	
Reduced income from reduced manufacturing output	\$0.78	\$0.78	\$0.78	\$0.78	\$0.78	\$0.78
Reduced business taxes from reduced manufacturing output	\$0.11	\$0.11	\$0.11	\$0.11	\$0.11	\$0.11
Reduced jobs from reduced manufacturing output	55	55	55	55	55	55
Ector County						
Reduced income from reduced manufacturing output	\$14.56	\$19.85	\$4.30	\$15.75	\$15.36	\$16.23
Reduced business taxes from reduced manufacturing output	\$0.71	\$0.97	\$0.21	\$0.77	\$0.75	\$0.80
Reduced jobs from reduced manufacturing output	147	201	43	159	155	164
Howard County						
Reduced income from reduced manufacturing output	\$7.04	\$11.97	\$0.00	\$2.82	\$4.93	\$8.75
Reduced business taxes from reduced manufacturing output	\$0.35	\$0.59	\$0.00	\$0.14	\$0.24	\$0.43
Reduced jobs from reduced manufacturing output	71	121	0	29	50	89
Kimble County						
Reduced income from reduced manufacturing output	\$50.42	\$55.11	\$59.15	\$63.27	\$67.02	\$72.07
Reduced business taxes from reduced manufacturing output	\$2.69	\$2.94	\$3.16	\$3.38	\$3.58	\$3.84
Reduced jobs from reduced manufacturing output	163	179	192	205	217	234
Runnels County						
Reduced income from reduced manufacturing output	\$20.83	\$23.14	\$25.13	\$27.11	\$28.76	\$31.08
Reduced business taxes from reduced manufacturing output	\$1.60	\$1.78	\$1.93	\$2.09	\$2.21	\$2.39
Reduced jobs from reduced manufacturing output	421	467	508	548	581	628
Tom Green County						
Reduced income from reduced manufacturing output	\$735.98	\$825.91	\$904.93	\$982.30	\$1,049.74	\$1,132.40
Reduced business taxes from reduced manufacturing output	\$56.65	\$63.58	\$69.66	\$75.61	\$80.81	\$87.17
Reduced jobs from reduced manufacturing output	14,865	16,682	18,278	19,840	21,203	22,872

			1			1
	2010	2020	2030	2040	2050	2060
Coke County		•	•	•		•
Reduced income from reduced mining activity	\$2.12	\$2.93	\$0.05	\$0.59	\$1.06	\$1.77
Reduced business taxes from reduced mining activity	\$0.15	\$0.20	\$0.00	\$0.04	\$0.07	\$0.12
Reduced jobs from reduced mining activity	13	18	0	4	6	11
Coleman County						
Reduced income from reduced mining activity	\$1.91	\$2.02	\$2.02	\$2.02	\$2.02	\$2.02
Reduced business taxes from reduced mining activity	\$0.11	\$0.12	\$0.12	\$0.12	\$0.12	\$0.12
Reduced jobs from reduced mining activity	11	12	12	12	12	12
Howard County						
Reduced income from reduced mining activity	\$8.48	\$11.09	\$0.19	\$2.14	\$3.63	\$6.04
Reduced business taxes from reduced mining activity	\$0.68	\$0.89	\$0.02	\$0.17	\$0.29	\$0.49
Reduced jobs from reduced mining activity	54	71	1	14	23	39

	2010	2020	2030	2040	2050	2060
Coke County		•	•	•		
Reduced income from reduced electrical generation	\$23.08	\$18.39	\$21.52	\$25.24	\$29.86	\$35.52
Reduced business taxes from reduced electrical generation	\$3.31	\$2.64	\$3.09	\$3.62	\$4.29	\$5.10
Reduced jobs from reduced electrical generation	78	63	73	86	102	121
Ector County						
Reduced income from reduced electrical generation	\$31.29	\$203.76	\$565.96	\$759.10	\$994.54	\$1,281.52
Reduced business taxes from reduced electrical generation	\$4.49	\$29.25	\$81.23	\$108.96	\$142.75	\$183.94
Reduced jobs from reduced electrical generation	106	693	1,924	2,580	3,381	4,356
Mitchell County						
Reduced income from reduced electrical generation	\$456.24	\$440.25	\$424.18	\$408.10	\$392.11	\$376.04
Reduced business taxes from reduced electrical generation	\$65.49	\$63.19	\$60.88	\$58.58	\$56.28	\$53.97
Reduced jobs from reduced electrical generation	1,551	1,497	1,442	1,387	1,333	1,278
Tom Green County						
Reduced income from reduced electrical generation	\$20.22	\$28.93	\$33.85	\$39.80	\$47.06	\$55.92
Reduced business taxes from reduced electrical generation	\$2.90	\$4.15	\$4.86	\$5.71	\$6.76	\$8.03
Reduced jobs from reduced electrical generation	69	98	115	135	160	190
Ward County						
Reduced income from reduced electrical generation	\$0.00	\$0.00	\$0.00	\$0.00	\$5.07	\$14.74
Reduced business taxes from reduced electrical generation	\$0.00	\$0.00	\$0.00	\$0.00	\$0.73	\$2.12
Reduced jobs from reduced electrical generation	0	0	0	0	17	50

Munic	ipal (\$millions)					
	2010	2020	2030	2040	2050	2060
Andrews		•				•
Monetary value of domestic water shortages	\$0.00	\$0.00	\$0.00	\$0.96	\$0.98	\$0.99
Lost utility revenues	\$0.00	\$0.00	\$0.00	\$1.49	\$1.51	\$1.53
Ballinger						
Monetary value of domestic water shortages	\$7.38	\$10.75	\$7.67	\$8.54	\$23.75	\$24.94
Lost income from reduced commercial business activity	\$3.51	\$4.15	\$1.67	\$1.95	\$7.52	\$7.90
Lost jobs due to reduced commercial business activity	132	156	63	74	284	298
Lost state and local taxes from reduced commercial business activity	\$0.38	\$0.45	\$0.18	\$0.21	\$0.82	\$0.86
Lost utility revenues	\$1.31	\$1.49	\$1.35	\$1.51	\$2.33	\$2.45
Brady						
Monetary value of domestic water shortages	\$8.03	\$8.13	\$7.99	\$7.84	\$7.75	\$7.75
Lost income from reduced commercial business activity	\$1.06	\$1.09	\$1.05	\$1.02	\$1.00	\$1.00
Lost jobs due to reduced commercial business activity	41	42	40	39	38	38
Lost state and local taxes from reduced commercial business activity	\$0.12	\$0.13	\$0.12	\$0.12	\$0.12	\$0.12
Lost utility revenues	\$1.97	\$2.00	\$1.96	\$1.92	\$1.90	\$1.90
Bronte Village						
Monetary value of domestic water shortages	\$0.00	\$0.02	\$0.03	\$0.05	\$0.07	\$0.09
Lost utility revenues	\$0.00	\$0.04	\$0.06	\$0.07	\$0.09	\$0.11
Coahoma						
Monetary value of domestic water shortages	\$0.10	\$0.12	\$0.001	\$0.01	\$0.02	\$0.04
Lost utility revenues	\$0.10	\$0.12	\$0.002	\$0.02	\$0.04	\$0.06
Coleman						
Monetary value of domestic water shortages	\$25.91	\$25.58	\$25.24	\$24.90	\$24.66	\$24.66
Lost income from reduced commercial business activity	\$12.43	\$12.28	\$12.11	\$11.95	\$11.83	\$11.83
Lost jobs due to reduced commercial business activity	348	344	339	335	332	332
Lost state and local taxes from reduced commercial business activity	\$0.96	\$0.95	\$0.94	\$0.92	\$0.91	\$0.91
Lost utility revenues	\$2.54	\$2.51	\$2.48	\$2.45	\$2.42	\$2.42

Muni	cipal (\$millions)					
	2010	2020	2030	2040	2050	2060
County-other (Coke)				I.		
Monetary value of domestic water shortages	\$0.04	\$0.05	\$0.00	\$0.01	\$0.01	\$0.02
County-other (Coleman)						
Monetary value of domestic water shortages	\$0.46	\$0.43	\$0.43	\$0.43	\$0.43	\$0.46
County-other (Kimble)						
Monetary value of domestic water shortages	\$0.01	\$0.01	\$0.003	\$0.00	\$0.00	\$0.00
County-other (Menard)						
Monetary value of domestic water shortages	\$0.03	\$0.03	\$0.03	\$0.02	\$0.02	\$0.03
County-other (Runnels)						
Monetary value of domestic water shortages	\$7.92	\$6.38	\$5.21	\$3.96	\$3.00	\$1.85
County-other (Scurry)						
Monetary value of domestic water shortages	\$0.07	\$0.08	\$0.00	\$0.01	\$0.03	\$0.04
County-other (Tom Green)						
Monetary value of domestic water shortages	\$0.04	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00
County-other (Ward)						
Monetary value of domestic water shortages	\$0.00	\$3.60	\$3.60	\$3.60	\$3.60	\$3.60
Junction						
Monetary value of domestic water shortages	\$18.87	\$18.85	\$18.67	\$18.49	\$18.35	\$18.35
Lost income from reduced commercial business activity	\$9.58	\$9.57	\$9.48	\$9.38	\$9.31	\$9.31
Lost jobs due to reduced commercial business activity	373	373	369	365	363	363
Lost state and local taxes from reduced commercial business activity	\$1.22	\$1.22	\$1.21	\$1.19	\$1.19	\$1.19
Lost utility revenues	\$1.85	\$1.85	\$1.83	\$1.82	\$1.80	\$1.80
Menard						
Monetary value of domestic water shortages	\$0.07	\$0.07	\$0.05	\$0.05	\$0.04	\$0.04
Lost utility revenues	\$0.10	\$0.10	\$0.09	\$0.07	\$0.07	\$0.07

Municipal (\$millions)										
	2010	2020	2030	2040	2050	2060				
Midland										
Monetary value of domestic water shortages	\$1.06	\$3.01	\$95.81	\$201.95	\$244.36	\$251.36				
Lost income from reduced commercial business activity	\$0.00	\$0.00	\$85.32	\$311.55	\$324.80	\$339.87				
Lost jobs due to reduced commercial business activity	0	0	2,125	7,760	8,090	8,466				
Lost state and local taxes from reduced commercial business activity	\$0.00	\$0.00	\$6.16	\$22.49	\$23.45	\$24.54				
Lost utility revenues	\$2.29	\$4.88	\$30.91	\$41.59	\$42.80	\$44.20				
Miles										
Monetary value of domestic water shortages	\$5.12	\$5.60	\$5.97	\$3.50	\$3.71	\$3.91				
Lost income from reduced commercial business activity	\$1.54	\$1.69	\$1.80	\$1.91	\$2.03	\$2.14				
Lost jobs due to reduced commercial business activity	41	45	48	51	54	57				
Lost state and local taxes from reduced commercial business activity	\$0.19	\$0.21	\$0.23	\$0.24	\$0.26	\$0.27				
Lost utility revenues	\$0.28	\$0.30	\$0.32	\$0.34	\$0.36	\$0.38				
Millersview-Doole WSC										
Monetary value of domestic water shortages	\$0.02	\$0.03	\$0.00	\$0.00	\$1.66	\$2.91				
Lost utility revenues	\$0.03	\$0.05	\$0.00	\$0.00	\$0.47	\$0.57				
Odessa										
Monetary value of domestic water shortages	\$4.36	\$61.75	\$5.35	\$6.24	\$7.22	\$10.05				
Lost utility revenues	\$7.35	\$18.65	\$7.94	\$9.18	\$10.61	\$13.16				
Robert Lee										
Monetary value of domestic water shortages	\$0.16	\$0.22	\$0.00	\$0.01	\$0.03	\$0.07				
Lost utility revenues	\$0.17	\$0.21	\$0.00	\$0.03	\$0.05	\$0.10				
San Angelo										
Monetary value of domestic water shortages	\$64.65	\$79.05	\$83.30	\$65.88	\$76.44	\$77.63				
Lost income from reduced commercial business activity	\$0.00	\$0.00	\$0.00	\$21.05	\$22.71	\$24.02				
Lost jobs due to reduced commercial business activity	0	0	0	519	559	592				
Lost state and local taxes from reduced commercial business activity	\$0.00	\$0.00	\$0.00	\$1.46	\$1.58	\$1.67				
Lost utility revenues	\$0.17	\$0.56	\$0.30	\$0.39	\$0.46	\$0.57				

	2010	2020	2030	2040	2050	2060					
Snyder		•	•	•	•						
Monetary value of domestic water shortages	\$0.66	\$0.92	\$0.01	\$0.11	\$0.20	\$0.32					
Lost utility revenues	\$0.31	\$0.39	\$0.01	\$0.07	\$0.12	\$0.19					
Stanton											
Monetary value of domestic water shortages	\$7.93	\$8.54	\$8.68	\$8.70	\$8.40	\$7.95					
Lost income from reduced commercial business activity	\$4.90	\$5.29	\$5.38	\$5.39	\$5.20	\$4.92					
Lost jobs due to reduced commercial business activity	127	137	139	140	135	127					
Lost state and local taxes from reduced commercial business activity	\$0.40	\$0.43	\$0.44	\$0.44	\$0.42	\$0.40					
Lost utility revenues	\$0.78	\$0.84	\$0.85	\$0.85	\$0.82	\$0.78					
Winters											
Monetary value of domestic water shortages	\$8.90	\$7.24	\$7.30	\$7.37	\$7.42	\$7.63					
Lost income from reduced commercial business activity	\$2.82	\$2.29	\$2.31	\$2.33	\$2.35	\$2.41					
Lost jobs due to reduced commercial business activity	102	83	84	85	85	88					
Lost state and local taxes from reduced commercial business activity	\$0.30	\$0.24	\$0.25	\$0.25	\$0.25	\$0.26					
Lost utility revenues	\$1.09	\$1.11	\$1.12	\$1.13	\$1.14	\$1.17					

Appendix C Comment Letter from Mr. Gilbert Van Deventer

Paul Weatherby - District General Manager Middle Pecos Groundwater Conservation District P. O. Box 1644 Fort Stockton, TX 79735

RE: Comments on proposed DFCs for GMA 3

Dear Dr. Weatherby,

I appreciate this opportunity to comment on the proposed Desired Future Conditions (DFCs) for the relevant aquifers within Groundwater Management Area 3 (GMA 3). My comments are primarily limited to the proposed DFCs for Capitan Aquifer in GMA 3. In short, I object to the DFCs proposed for the Capitan aquifer in GMA 3, where it is confined, because they are inexplicably and excessively conservative for the large, and mis-understood aquifer that it is.

I take this matter seriously as evidenced by my attendance at each stakeholder meeting for the Capitan GAM since the first one in October 2012, my thorough review of several professional publications conducted on the Capitan Aquifer and its associated hydrogeological framework as well as my own studies in Ward and Winkler counties. I also attended the GMA 3 DFC stakeholder meetings lead by you in Monahans.

I have attached the comments that I submitted to the TWDB for the Draft Capitan Reef Complex Aquifer Groundwater Availability Model (CRCX GAM) as they are relevant to my comments herein. The CRCX GAM is not yet reliable enough for use by groundwater conservations districts (GCDs) to adequately manage the CRCX as a resource because it has a prohibitively high level of scientific uncertainty, particularly if it relates to considering production permits and developing modeled available groundwater (MAG) estimates. The model is useful in a qualitative interpretive sense but is not yet reliable to quantitatively and confidently predict future aguifer conditions. As acknowledged by the TWDB, the CRCX GAM has several limitations including that the model is interpretive rather than being a fully predictive model because of: the limited historical stresses on the aquifer, limited amount of measured water levels, and limited hydraulic property data. In addition, because of the lack of historical stresses, it was not possible to fully calibrate the storage coefficient. The use of a constant transmissivity in the model makes it inappropriate to assume that water-level drawdown is significant relative to the total aquifer thickness. Another very important consideration is that the root mean square error for calibration of the model to measured water levels is 129 feet and 104 feet for the overall model and the eastern arm of the Capitan Reef Complex Aquifer, respectively. This means that, on average, simulated water levels deviate from measured water levels by this amount. Therefore, establishing a DFC lower than those amounts is pointless because the model is not calibrated to that precision or accuracy.

For now, the model is only useful for aquifer-wide planning and evaluation of *conceptual* flow dynamics and not as a predictive tool for effective groundwater management. In the Draft CRCX GAM, the TWDB acknowledges that future improvements are necessary, as explained below.

- Due to its scarcity in the current GAM, far more water-level data and hydraulic property information needs to be included in future updates of the model.
- Use of spatially variable hydraulic conductivity values instead of the single value used in the current version of the model to improve the calibration results.
- Combining improved and updated versions of the upper three model layers (Pecos Valley, Edwards-Trinity Plateau, Dockum, and Rustler aquifers) that act as a boundary condition are not yet modeled in detail. Additionally, the range of hydraulic conductivity values in these model layers is relatively narrow, so conversion to a single value does not significantly change overall model results.
- Further investigation of the effects and hydraulic properties of the confining unit overlying the Capitan Reef Complex Aquifer is needed.
- Assessment and quantification of the interconnection between the Capitan Aquifer and the adjacent San Andres Formation for incorporation into the CRCX GAM. Crossformational flow to and from the CRCX and San Andres Formation was not included in the model, yet there is an obvious connection as evidenced by the scores of past and present artesian wells tapping the San Andres Fm. in Pecos, Ward, and Winkler counties.

In the *GMA 3 Technical Memorandum for the Capitan Reef Complex Aquifer* (TM 16-06), Bill Hutchinson correctly acknowledges that his simulated DFC drawdowns are not considered reliable due to issues with the draft CRCX GAM. In TM 16-06, Hutchinson uses 4 scenarios of pumping in the GMA 7 portion of Pecos County as recommended by Steve Finch. Those scenarios had little effect in GMA 3. Scenarios pumping in GMA 3 should have been simulated for a more realistic and appropriate comparison of affects in GMA 3. For many decades there has been significant commercial extraction of Capitan groundwater by Centurian Pipeline in Winkler County and Chevron in Ward County, and their predecessors. TM 16-06 does not simulate for what will likely be a significant outflow from the Texas-New Mexico border. New Mexico Office of the State Engineer has already taken steps in appropriating significant withdrawals from the Capitan aquifer for industrial (potash mining) and commercial (oil & gas) use. More can be expected in their future. This will especially have direct impact to Winkler County.

In TM 16-06 Hutchinson recommends that the DFC values should not be relied upon in the evaluation of any permit applications. Essentially, the simulations with the draft CRCX GAM have shown that the model cannot be considered reliable in the context of permit review. He also recommended an alternative tool should be developed as part of any permit application and/or review process.

Districts should not adopt DFCs without first estimating what the modeled available groundwater will be. The reason for this is to ensure that whatever the MAG is, that districts understand how that value relates to current and projected groundwater use and to any proposed groundwater supply projects. There are a multitude of Capitan water projects in Ward, Winkler, and Pecos counties, as well as New Mexico, that should to be recognized and considered while developing DFCs and MAGs.

Establishing the DFC, without the use of the CRCX GAM may be the better option until model uncertainties can be resolved. The previously established, and empirically derived DFC of 200 feet is closer to being a realistic, conservative, and purposeful value for the average drawdown over a 50-year period, as it only represents 10 percent of the approximately 2,000 ft aquifer thickness in GMA 3, and is reasonably close to the root mean square error in the CRCX GAM calibration. It is times like these that the simple "2-D" Aquifer Analysis approach done in 2010 is more suitable for an interim DFC than using the complex CRCX GAM, until the prohibitively high level of scientific uncertainties of the model can be minimized to acceptable levels.

As for DFCs in the Pecos Valley, Edwards-Trinity (Plateau), Dockum, and Rustler aquifers, the recently created *Reeves County GCD* should have precedence on establishing GMA 3 DFCs since they represent the largest political subdivision in GMA 3. If the Reeves County GCD defers to only making comments, such comments should be thoroughly and competently developed.

Please consider the above comments as challenges, new goals, and *not* criticisms. I applaud and appreciate the efforts towards this very difficult task of establishing DFCs for such a complex hydrogeological system. I can be reached at 432-638-8740 or at gil@trident-environmental.com.

Gilbert J. Van Devente

Sincerely,

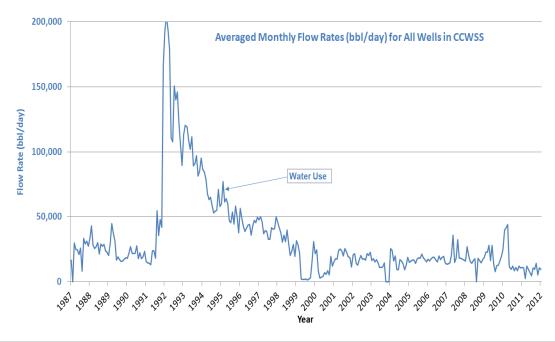
Gilbert J. Van Deventer, PG

Trident Environmental – Partner / Hydrogeologist

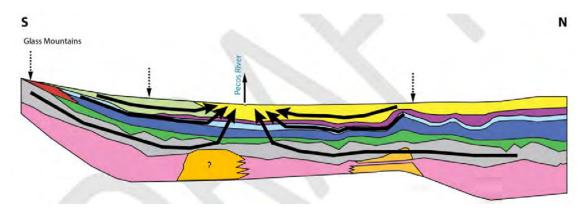
Attachment: Comments submitted to TWDB on the Draft CRCX GAM

Ian C. Jones, PhD., P.G. - Hydrogeologist Texas Water Development Board P.O. Box 13231 Austin, Texas 78711-3231

RE: Comments on the Draft CRCX GAM


Dear Dr. Jones,

I have attended each stakeholder meeting since the first one in October 2012 and have studied several peer-reviewed publications conducted on the Capitan Aquifer and its associated hydrogeological framework as well as conduct some studies of my own in Ward and Winkler counties. I appreciate the opportunity to review and comment on the Capitan Reef Complex Aquifer Groundwater Availability Model: Eastern Arm of the Capitan Reef Complex Aquifer of Texas (CRCX GAM). It doesn't take long to realize why the CRCX is one of the latter aquifers to be modeled and that is due in large part to lack of data and the extreme difficulty to quantitatively unlock its complexity which everyone acknowledges. However, it has been subject to increasing consideration as a beneficial resource by potential water users which gives a sense of urgency to develop a valid groundwater model.


My main concern is that the model does not appear to be reliable enough for use by groundwater conservations districts (GCDs) to adequately manage the CRCX as a resource. The model may be useful in a qualitative interpretive sense but is not reliable to confidently predict future aquifer conditions for reasons explained below:

- The four overlying layers (1-4) that were input from their respective GAMs still have some error and uncertainty. Adding the individual GAMs for these layers cumulatively adds a wider margin of error and uncertainty into the CRCX GAM. Making estimates from estimates from estimates cumulatively introduces more uncertainty to a point of incalculable error to be used successfully as a predictive tool.
- 2. The 5th layer (CRCX) has yet the most uncertainty, in most part because of the lack of target points (~79 out of 8200), lack of wells for water-level calibration (16), and even more lack of historical stresses on the aquifer, to confidently and accurately calibrate the model that covers a large region (approx. 1,350 square miles). Substantial uncertainty also exists because of estimation of critical parameters, particularly hydraulic conductivity, storativity, and recharge, versus direct calculated measurements.
- 3. Use of uniform values, such as was done for horizontal and vertical hydraulic conductivity, for a complex fractured, faulted, hypogene karst limestone and dolomite aquifer such as the CRCX is not a valid concept for modeling because faults and fractures occur in a highly irregular pattern and act as conduits or barriers to flow in the vertical, horizontal, or both directions. Also, it is stated in the CRCX GAM that there is a large component of vertical inter-aquifer groundwater flow as groundwater flows upwards

- eventually discharging to the Pecos River. That statement suggests that there is a variable value for hydraulic conductivity that is not accounted for in the model.
- 4. There is a lack of uncertainty analysis in verifying the accuracy of this model including the use of available aquifer tests that have been conducted on the CRCX including a monitor well drilled south of Fort Stockton in 2013, four wells drilled in 2005 by Enstor in northern Pecos County, numerous wells drilled by Gulf in northern Ward County and Shell in northern Winkler County in the 1950's through the 1970's. Efforts to conduct aquifer tests from these active wells should be performed to enhance CRCX GAM development. Use of measured hydrologic parameters from aquifer tests can be used as pilot points in the model to allow for greater flexibility in the spatial assignment of aquifer properties.
- 5. Water level data reported for Enstor's Capitan wells (45-49-203 and 45-49-205) have static (no flow) positive pressure heads equivalent to 2958 and 2948 ft AMSL, respectively, in the TWDB database. These measurements were obtained in 2005 immediately prior to aquifer testing and should be considered reliable for the purposes of comparing simulated water levels and measured water levels. Data for Capitan wells operated by Centurion in northern Winkler County and the Capitan well completed for the City of Fort Stockton at Belding should also be considered for this purpose if they haven't already.
- 6. The annual pumping for Layer 5 (Capitan) in Appendix C appears to have some discrepancy with historical pumping. I would expect significantly larger pumping between the late 1950's through the 1970's and beyond when water flooding oilfields for secondary oil recovery was prevalent as reported in well schedules in the TWDB database. Below is an example of Chevron's water use (1987-2012) in Ward County that varies from about 500 af/y to 10,000 af/y when water use was *less* prevalent.

7. The model does not consider what is likely to be a very significant amount of crossformational flow from the San Andres Formation. Currently there are at least 14 artesian San Andres wells south of Imperial that continue to flow uncontrollably since the 1940's and 1950's. At least 36 wells completed in the San Andres Formation are documented in TWBE Bulletin 6106 up to the year 1961. All of the wells flowed when drilled, but many no longer flow because they either have been plugged, have caved in, the casing has collapsed, or the pressure head has declined. According to B6106, the total withdrawal of water from the San Andres Formation in 1957 is estimated to have been 10,000 acre-feet. This amount of flow is very significant as it is likely in direct hydraulic contact with the CRCX which lies about two to six miles west. Outflow from the CRCX into the San Andres Formation coupled with any reduction of recharge into the CRCX will have a huge effect on the groundwater availability estimates. I am disappointed that cross-formational flow to and/or from the San Andres Formation was not considered in this model despite the attention given in the first stakeholder meeting, but understand that effort brings even more uncertainty to the model results. Figure 6.0.1 in the CRCX GAM depicts presence of the San Andres Formation only near the Ward-Winkler area. It should be also depicted in the Imperial area as approximated below.

- 8. The draft CRCX GAM shows outflow of the CRCX upward towards the Pecos River from both the north and south which is a different concept from other previous reports and publications, including the Draft Conceptual Model Report (April 2014) and presentation at the second stakeholder meeting (May 2014), which depict flow in the Capitan beneath the Pecos River as continuing its northerly flow towards the Ward-Winkler county line. This significant change in flow path should be further explained and justified in the CRCX GAM.
- 9. The *Draft Conceptual Model Report* (April 2014) includes interpretations of isotope data that should be included in the CRCX GAM to validate conclusions of groundwater flow paths and recharge. More isotopic studies, specifically within the CRCX, need to be conducted to better substantiate groundwater flow paths and recharge patterns modeled in the CRCX GAM. There should be a sense of urgency to this method because some of the isotopes have a relatively short half-life making them less useful over time.

10. Most of the eastern arm of the CRCX contains saline groundwater, typically ranging between 3,000 mg/L to 10,000 mg/L, and much higher in some cases. Future model versions should take into account the effects of higher density associated with saline groundwater.

Most of the above limitations and deficiencies were acknowledged in the CRCX GAM report, particularly in sections 5 and 6. These limitations and deficiencies must be considered a major issue such that additional studies, aquifer tests, corresponding geophysical log analysis, are performed to better refine and improve the model for effective predictive use.

Due to an accumulation of unforeseen delays the draft CRCX GAM is almost 2 years behind the original schedule resulting in little time to sufficiently revised it for use in establishing modeled available groundwater (MAGs) and desired future conditions (DFCs) by May 1st. The proposed CRCX GAM should not be adopted without properly addressing the concerns cited above and those of other commenter's. The model should only be considered for aquifer-wide evaluation of conceptual flow dynamics and not as a predictive tool for groundwater management until the GAM can be confidently considered for adoption and used as a predictive tool for groundwater management use. Establishing the DFC, without the use of the CRCX GAM or MAG may be the better option until model uncertainties can be resolved.

Please consider the above comments as challenges, new goals, and *not* criticisms. I applaud and appreciate the efforts towards this very difficult task in developing the CRCX GAM for such a complex hydrogeological system. I look forward to future work on the model. I can be reached at 432-638-8740 or at gil@trident-environmental.com.

Gilbert J. Van Devente

Sincerely,

Gilbert J. Van Deventer, PG

Trident Environmental – Partner / Hydrogeologist