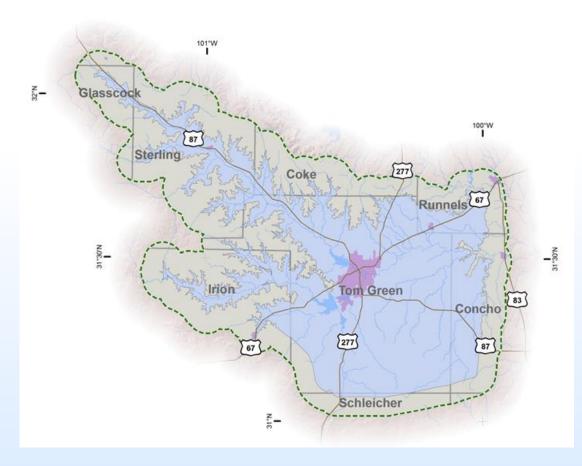
Lipan Aquifer Brackish Groundwater Study

WTGS 2017 Symposium

September 27, 2017

Mark Robinson Matt Webb Innovative Water Technologies

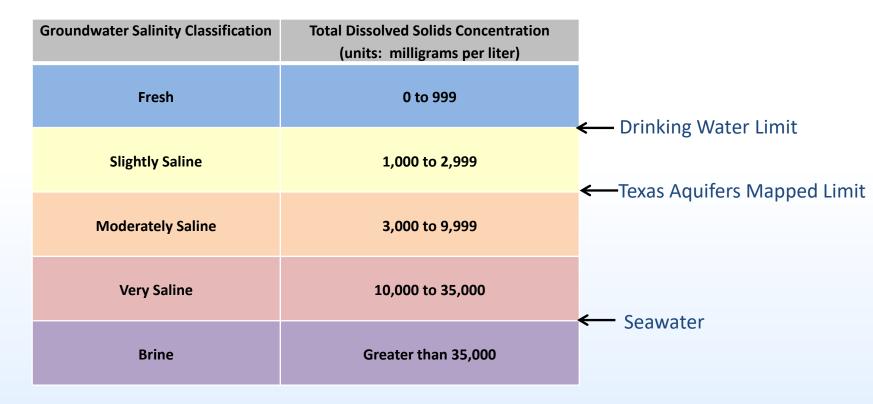

Texas Water **Development Board**

The following presentation is based upon professional research and analysis within the scope of the Texas Water Development Board's statutory responsibilities and priorities but, unless specifically noted, does not necessarily reflect official Board positions or decisions.

Study Area

- Designation of the Lipan Aquifer for the report
 - Lateral extent of the TWDB-defined Lipan Aquifer with added four-mile buffer
 - Quaternary and Neogene sediments and underlying Permian formations

Study area



Projection: Albers Datum: North American 1983

Salinity Classification

Saltier than fresh water, less salty than seawater

Data Collection

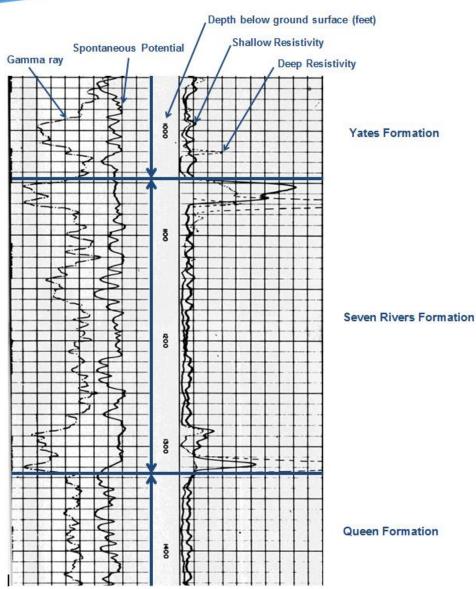
Total of 6,995 wells evaluated

- All from public sources
- 2,314 from TWDB Groundwater Database (GWDB)
- 4,287 unique to BRACS Database
- 394 shared between BRACS and GWDB

BRACS well sample sources

- Abilene Geological Society published report
- BEG paper/digital geophysical logs
- BEG Report of Investigations 191
- LBG Brackish GW for San Angelo study
- LBG Lipan GAM study well data
- RRC digital geophysical Logs
- RRC GAU Q-log paper/digital geophysical logs
- TCEQ PWS water wells

- TCEQ water well images
- TDLR digital water well reports
- TWDB aquifer test information
- TWDB geophysical logs
- TWDB Groundwater Database
- TWDB published reports
- USGS geophysical logs


Geophysical logging tools

Resistivity tools

- Measures the resistivity of a formation by passing current between electrodes
- Wider electrode spacing increases depth of formation investigation
- Can be used to determine formation water resistivity
 - Differences between shallow and deep resistivity readings
 - Proper geologic conditions are necessary
- Spontaneous potential (SP) tool
 - Measures current between electrode at surface and on the tool
 - Some factors that influence SP response are:
 - Salinity difference between borehole mud filtrate and formation water
 - Formation fluid type water or hydrocarbon
 - Lithology shale content decreases response
- Gamma ray tool
 - Measures naturally occurring gamma radiation
 - Typically higher in shales and clays than sands
 - Useful for determining stratigraphy
 - Not useful for salinity calculations

Stratigraphy (1)

- Total of 1,046 wells with 5,424 picks used for formation mapping
- Fifteen Permian units mapped
- Ten potential water-bearing formations identified
- Other formations mapped
 - One Triassic formation (Dockum Group)
 - One Cretaceous formation (Trinity Group)
 - Referenced only as applicable to Lipan Aquifer as defined in report
 - To be studied in future reports

Stratigraphy (2)

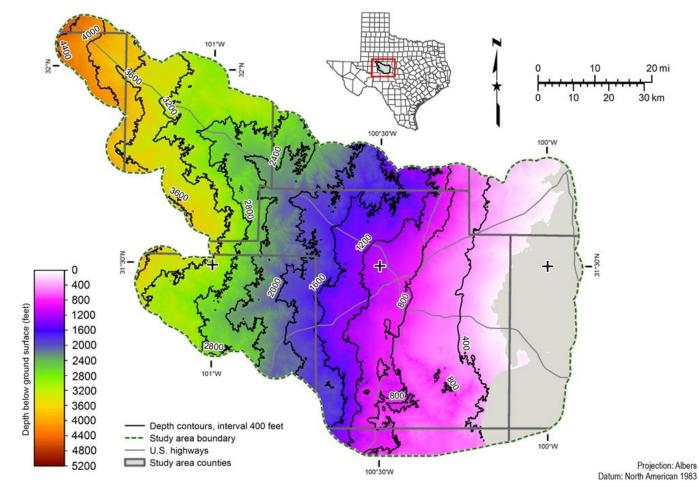
One example of many BRACS well ID 37978

	Epoch and age			Stratigraphic unit			
Geologic period	(millions of years before present)	Regional series	Geologic group	Midland Basin	ung	Eastern Shelf	
Quarternary	Holocene			alluvium		alluvium	
	(0.01-present)						
	Pleistocene			Pleistocene		Leona	
	(2.6-0.01)						
Neogene	Pliocene			Pliocene		Ogallala	
(Tertiary)	(5.33-2.6)						
						unconformity	
Cretaceous	Early	Comanchean	Fredericksburg	Fredericksburg		Edwards Limestone	
	(145.0-100.5)					Fort Terrett	
			Trinity	Trinity Sand		Antlers Sand	
						unconformity	
Triassic	Upper		Dockum	Dockum		Dockum	
	(237.0-201.3)					unconformity	
Permian	Lopingian	Ochoan		Dewey Lake		Dewey Lake	
	(260-252)			Rustler		Rustler	
				Salado		Salado	
				Castille			
						unconformity	
	Guadalupian	Guadalupian	Whitehorse	Tansill		Tansill	
	(272-260)			Yates		Yates	
				Seven Rivers		Seven Rivers	
				Queen		Queen	
				Grayburg		Grayburg	
			Pease River	San Andres		San Andres (Blaine)	
						San Angelo	
						unconformity	
	Cisuralian	Leonardian	Clear Fork	Clear Fork	ıza	Upper Choza	
	(299-272)			undifferentiated	Choza	Tubb member	
					Vale	Bullwagon Dolomite	
						Vale shale	
					y'o	Standpipe Limestone	
					Arroyo	Arroyo	
			Wichita - Albany	Wichita		Lueders	
				undifferentiated			

Stratigraphy (3)

- Geological units that produce water in the Lipan aquifer are highlighted.
- Geologic epochs and ages as defined by the International Commission on Stratigraphy Chronostratigraphic Chart (Gradstein and others, 2012).

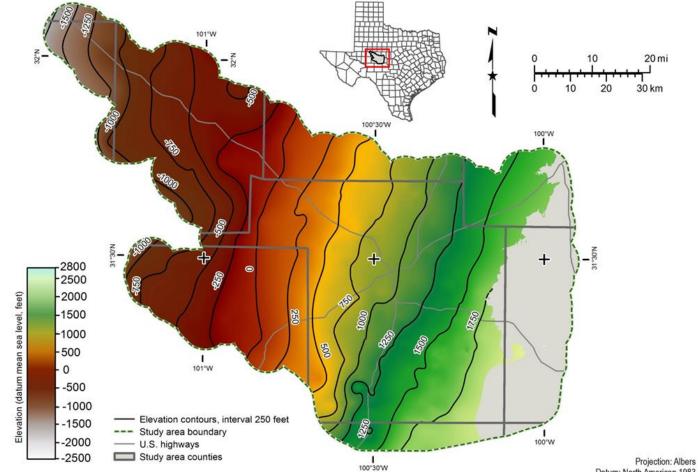
Surface Maps


Total of 50 maps of formation surfaces generated

- Ground elevation
- Formation top depth below ground surface
- Formation top elevation relative to mean sea level
- Isochore (vertical formation thickness)
- Arroyo Formation examples shown in following slides
- Total of five salinity surfaces generated
 - Top of moderately saline groundwater zone shown later in the presentation

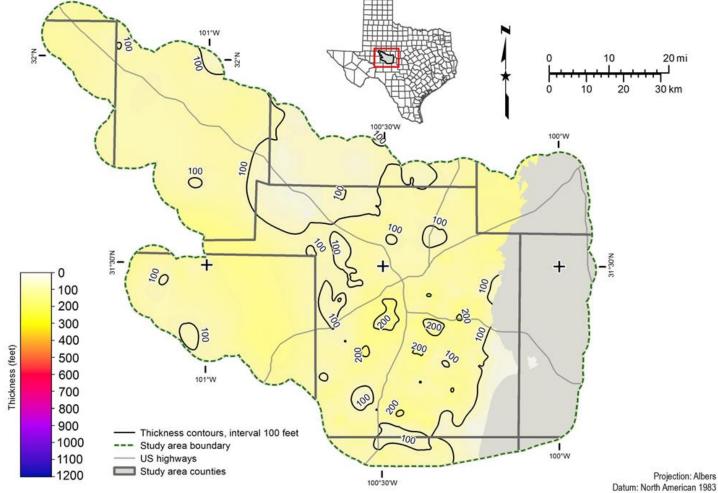
Arroyo Formation (1)

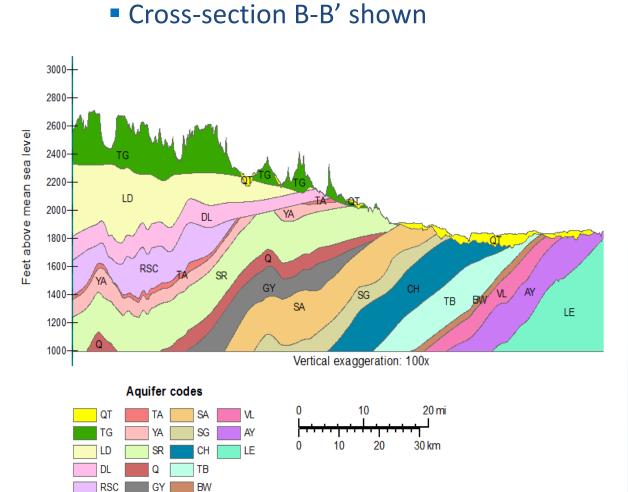
Formation top


- Depth in feet below ground surface
- Gray area represents area where formation top does not exist

Arroyo Formation (2)

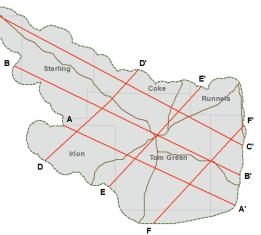
Formation top


- Elevation in feet above mean sea level
- Gray area represents area where formation top does not exist


Arroyo Formation (3)

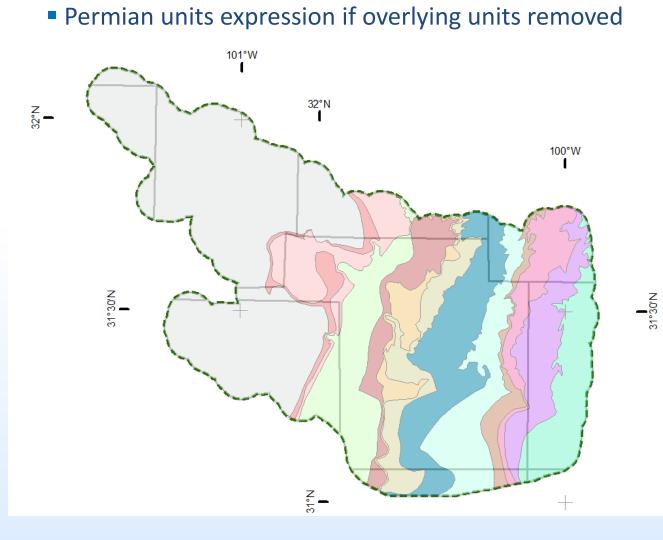
Formation isochore

- Vertical thickness in feet
- Gray area represents area where formation pinches out or does not exist



13

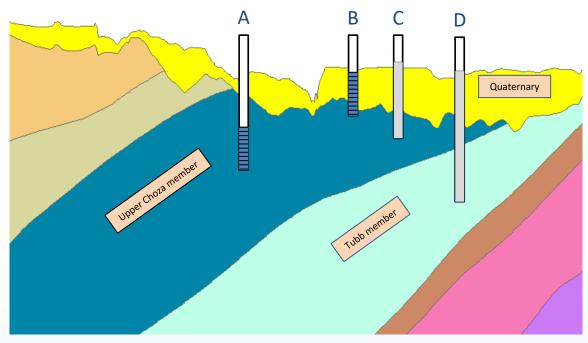
Six cross-sections generated


Cross-section

С

Aquifer code	Stratigraphic unit
QT	Quaternary and Neogene sediment
TG	Trinity Group
LD	Dockum Group
DL	Dewey Lake Formation
RSC	Rustler-Salado formations
TA	Tansill Formation
YA	Yates Formation
SR	Seven Rivers Formation
Q	Queen Formation
GY	Grayburg Formation
SA	San Andres Formation
SG	San Angelo Formation
CH	Upper Choza member
TB	Tubb member
BW	Bullwagon Dolomite
VL	Vale Shale member
AY	Arroyo Formation
LE	Lueders Formation and older formations

Permian subcrop areas



Permian subcrop

Study area boundary
 Study area counties

Aquifer Determination

- Scenario Description
- A: Entire completion in the Upper Choza
- B: Completion in Upper Choza and Quaternary
- C: Unknown well completion
 - Well depth penetrates the Quaternary and Upper Choza
- D: Unknown well completion
 - Total depth penetrates the Quaternary, and Upper Choza and Tubb members

Scenario database designations X denotes unknown completion

Well A: CH Well B: QT, CH Well C: X, QT, CH Well D: X, QT,CH, TB

Well Completion Screen/Open interval

Unknown

Aquifer Test

Aquifer hydraulic properties summary

- Limited to Lipan Aquifer formations*
- Single Permian completions only tabulated
- No hydraulic conductivity or specific yield data available
- No Queen Formation data available

Limited data negated productivity per formation classification

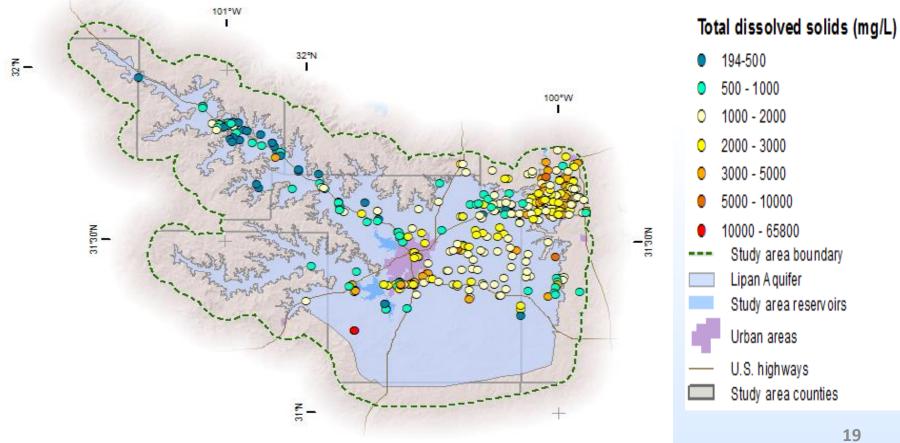
Geological unit	Property	Sample count	Min	Max	Mean		
Quaternary and	Well yield	24	2	750	157		
Neogene sediment	Drawdown	4	3	20	10		
	Specific capacity	4	0.86	15	5		
Yates Formation	Well yield	9	9	395	126		
	Drawdown	3	10	15	11.7		
	Specific capacity	3	6	26.3	13.1		
Seven Rivers	Well yield	40	2	500	54.5		
Formation	Drawdown	1	165	165	165		
	Specific capacity	1	1.25	1.25	1.25		
San Angelo	Well yield	26	2	150	20.1		
Formation	Drawdown	2	2	12	7		
	Specific capacity	2	1.17	15	8.1		
Upper Choza	Well yield	128	1	720	89		
member	Drawdown	11	2	60	20.4		
	Specific capacity	11	0.05	75	8		

Geological unit	Property	Sample count	Min	Max	Mean
Tubb	Well yield	77	10	1,000	299
member	Drawdown	7	2	30	12.1
	Specific capacity	4	16.7	106	79.2
	•				
Bullwagon	Well yield	2	20	100	60
Dolomite	Drawdown	N/A	N/A	N/A	N/A
	Specific capacity	N/A	N/A	N/A	N/A
	•				
Arroyo	Well yield	65	1	1,200	148
Formation	Drawdown	1	70	70	70
	Specific capacity	1	2.14	2.14	2.14
	1				
Lueders Formation	Well yield	25	2	400	139
	Drawdown	1	33	33	33
	Specific capacity	1	0.06	0.06	0.06
					7

Water Quality

Water Quality

- Total of 1,003 samples available within study area
- Excluded Trinity and Dockum group wells
- Excluded wells with indeterminate completions
- Resulting in 384 samples available for reporting
- Constituents sampled
 - Total dissolved solids (TDS)
 - Arsenic
 - Chloride

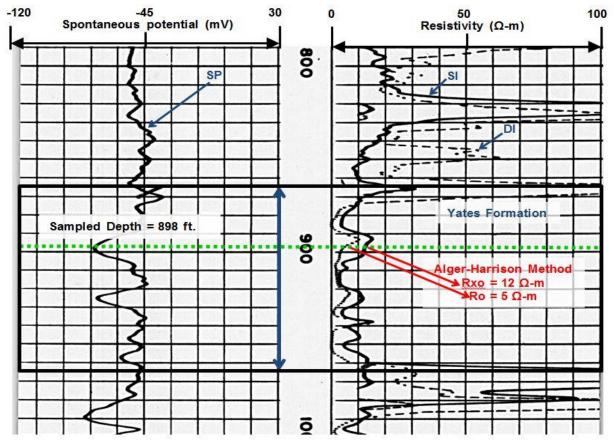

- Sulfate
- Barium
- Radionuclides

Iron

- Uranium
- Percent of samples exceeding, primary or secondary standard *
 - Total dissolved solids: 70%, secondary
 - Chloride: 61%, secondary
 - Iron: 11%, secondary
 - Sulfate: 39%, secondary
 - Radionuclides, gross alpha: 6%, primary

Total Dissolved Solids (TDS)

- One example of seven produced constituent maps
 - Silica tabulated due to small sample size (5)
- Mapped results from 384 samples
 - Single value above 10,000 mg/L for LBG Guyton test well at ~900 feet, BRACS ID well 51449



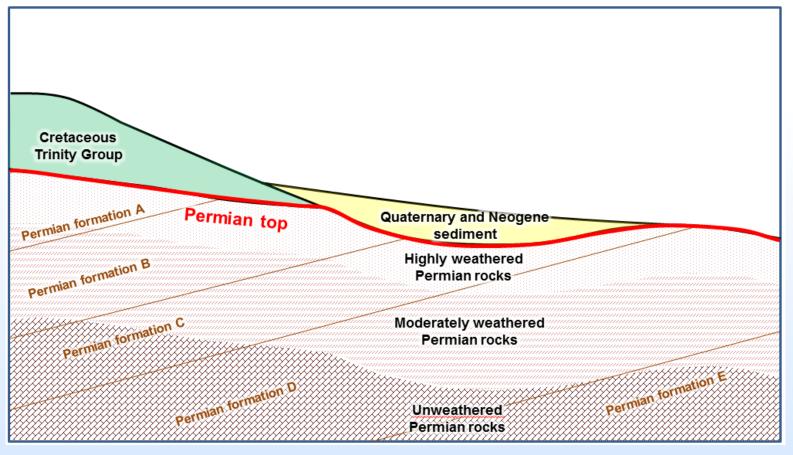
Salinity calculation

- Seven available methods defined by Estepp (1988)
 - Estimate formation water resistivity from well logs
 - TDS calculated from resistivity
 - Five methods determined on initial examination to be nonapplicable
- Spontaneous Potential (SP) Method selected
 - Selected SP curve deflection is a function of formation water resistivity
 - Determined as not applicable for well-lithified shaly limestone rocks predominant at depth in the study area
- Alger-Harrison Method selected
 - Ratio of shallow and deep resistivities correlate to formation water resistivity
 - Determined as most appropriate for study area geology
 - 179 wells evaluated resulting in 771 calculated TDS values

Alger-Harrison Method

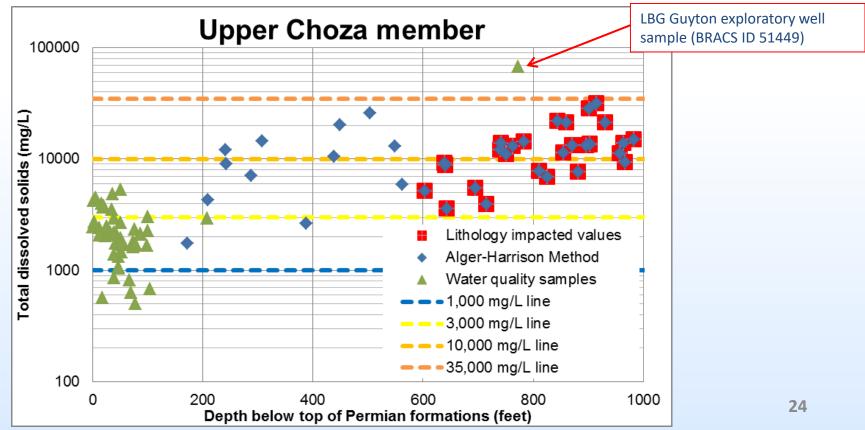
- BRACS well ID 35809 example log
 - Deep formation resistivity 5 Ω-m (ohm-meter)
 - Shallow formation resistivity 12 Ω-m (ohm-meter)
 - Other required information (temperature, depths, Rm, Rmf, etc.) on log header (not shown)

BRACS data processing


Form entry for BRACS well identification number 35809

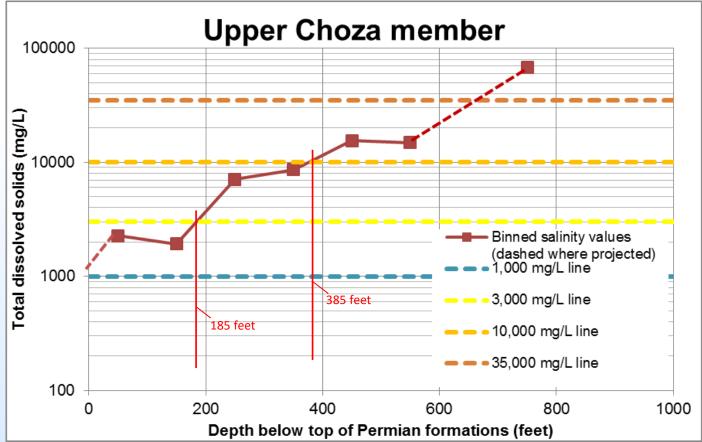
- Information from log entered into BRACS database form for processing
- Calculated interim values in gray background
- Calculated TDS value of 5377 mg/L

Geophysical Resistivity Analysis											
Well Id 35809		BRACS Geophy	sical Loa A	nalysis for T	DS Calcul	ations	Well Location	n table o	WNER	R.L. FOREE	
GL NUMBER: 56062	G L FILE TYPE TIF In							5	OURCE WELL DATA	BEG Paper/Digital	l Geop
30002		mage 💌	Geophysical L	og Suite		Depth Top	Depth Bottom R	emarks		-	
		eophysicalWellLogs\42 431\4	RESISTIV	ITY		330	7469	,			
Perform Geophysical Log Analysis	GENTPERLINK J <u>D:/Ge</u>	eophysicaliveliLogs (42 431)4	SPONTAN	EOUS POTENTIAL			7469				
Edit an Existing Record	G L Co The Elgen Cor	rporation				• 0	0 N/A				
	Remarks		-								
Add a New Record											
			Death Ten	Tbh Rm	Rmf Mu	ud Type	Rem	nden			
Temperature Surface 65 Log Run		Log Run Parameters Log	Run Depth Top Depth Bot	Rm Temp	RmfTemp Mu	ud Weight		Date	Initials		
			1 0	140 2.5	2.26 Ma	agcogel		nf from R	m using method =	Non-Lignosul	
	Rm Rmf		7470	84	84	9.5			JEM 💌		
Load Log Run Data for Log Analys	sis Rm Rmf Rm Temp Rmf T	Temp		0 0	0 N/	A					_
.og Run Top Depth	- 0	_		0	0				ZZZ 💌		-
.og Run Bottom Depth	- 0										
emperature Bottom Hole	-										-
		Reco	rd: I4 → 1 of 1	🕨 🕨 👫 No F	ilter Search						
Depth Formation (Df):	898 TDS Interpreted	0		Tf	74 Formation	Yates Forma	ation		In T	tials: gP 💌	
	Consensus TDS Met			RmfTf	2.57 Remarks:	N/A					
Thickness Lithologic Unit:	0			-							
TDS Method:			Dura [07 Dw.75		0.000 0C TDC		Initials:	gP 👻	
Alge	er Harrison Method	•	Rwe	1.07 Rw 1.	07 Rw75	1.06 Cw	9433.96 TDS	53	77	g. 💌	
Geophysical Log Used:	Resistivity								~		
SP	0	Correcti	on Factors								
Rxo	12	C								 Calc 	culat
Ro	5	1		er Harrison, and Rwa M er Harrision Methods	4inimum Methods		Chart 🛛	I/A			
	2.4	0.57	-					IPAN			
		0.57		ger Harrison Method							
Source m N/A		1	m correction facto	or: Estepp Method hig	h anion waters						
Porosity:	0	1	Ro: Mean Ro Met	hod							
Source Porosity: N	I/A										
	N 👀 📉 No Filter Sea										
Record: I + 1 of 2											


Formation Schematic

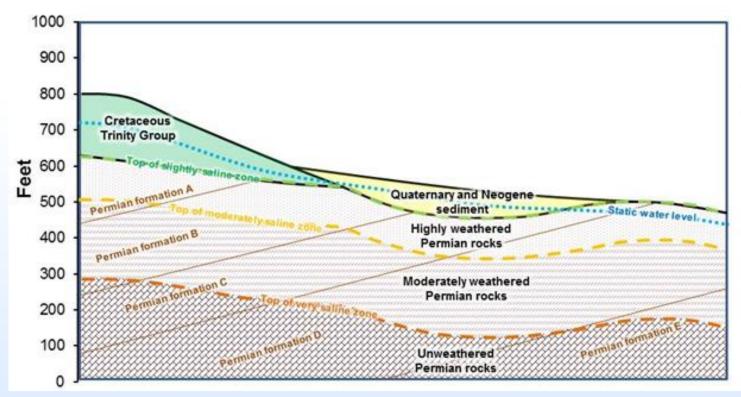
- Top of Permian formations interface (red line) is significant
- Used as basis for salinity analysis
- Weathering prior to younger unit deposition
- Weathered rock differs from deeper formation zones

Salinity vs. depth plots


- Performed for nine Permian potential water-bearing formations
 - Combination of water quality samples and calculated values
 - Lithology impacted calculations at greater depths
 - Depth below Permian top used rather than depth below surface
 - Upper Choza member shown as example

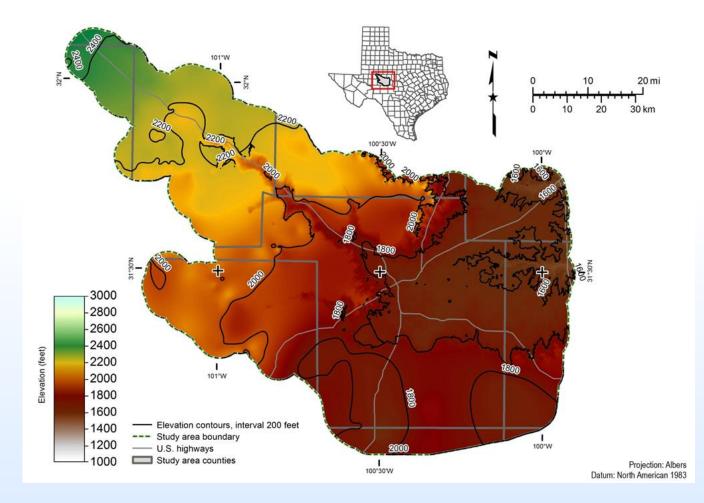
Bin vs. depth plots

- Performed for nine Permian potential water-bearing formations
 - Sample values "binned" based on average TDS value within 100-foot depth incremental
 - Effort to classify salinity trends with depth
 - Depth below Permian top used rather than depth below surface

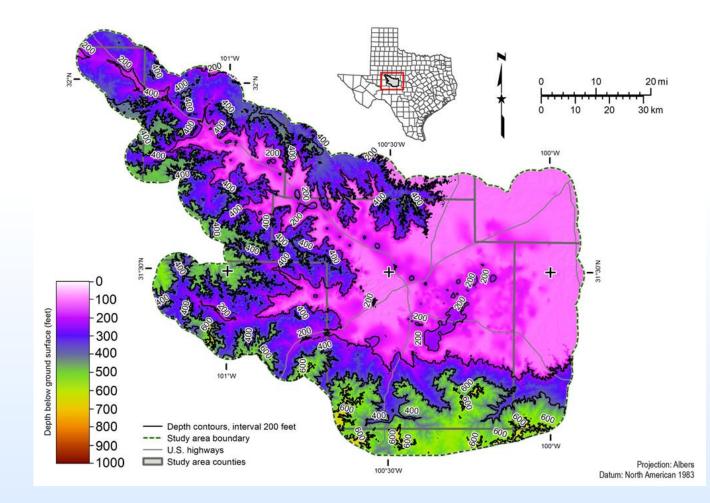

Salinity zone determination

- Performed for nine Permian potential water-bearing formations
 - Bin cutoff values tabulated for all evaluated formations
 - Cutoff values averaged across formations to determine regional relationship
 - Resulting surfaces mapped and used for groundwater volume calculation
 - Depth below ground for general reference

	Depth below	ground (feet)	Depth below top	Depth below top of Permian (feet)		
Geological formation	3,000 mg/L	10,000 mg/L	3,000 mg/L	10,000 mg/L		
Yates Formation	190	390	110	215		
Seven Rivers Formation	150	500	60	315		
Queen Formation	0	<mark>660</mark>	0	390		
San Angelo Formation	160	370	205	445		
Upper Choza member	190	310	185	385		
Tubb member	270	330	150	425		
Bullwagon Dolomite	190	240	115	290		
Arroyo Formation	180	240	80	260	Cutoff values from	
Lueders Formation	150	220	40	225	previous slide	
Average	164	362	105	328	26	


Salinity zone schematic

- Water storage top is historical static water level
- Fresh water in formations younger than Permian
- Slightly saline water in the highly weathered Permian units
- Moderately saline water in moderately weathered Permian units
- Very saline water at greater depths


Salinity surfaces (1)

- Top of each zone mapped in feet of elevation above mean sea level
- Moderately saline zone shown as example

Salinity surfaces (2)

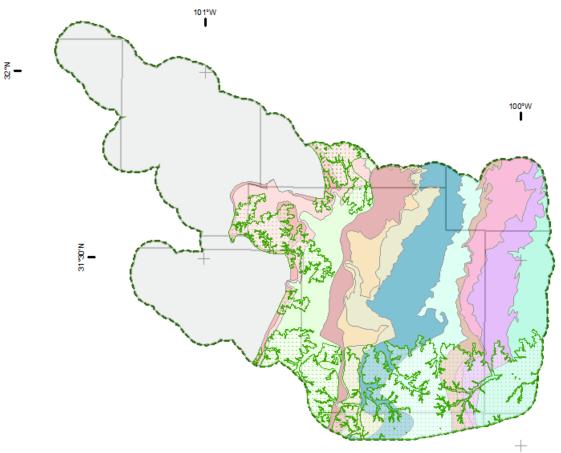
- Top of each zone mapped in feet depth below ground surface
- Moderately saline zone shown as example

Bulk Volume

- Total formation volume available for water storage
- Ten potential water-bearing formations shown
- Volumes in millions of cubic feet
- Fresh water isolated to Quaternary and Neogene sediments
- Volumes based on three-dimensional intersection of formation surfaces with salinity surfaces

Formation	Fresh total	Fresh saturated	Slightly saline total	Slightly saline saturated	Moderately saline
Lueders Formation	0	0	1,201,942	944,447	4,073,862
Arroyo Formation	0	0	747,114	449,598	1,962,219
Bullwagon Dolomite	0	0	289,492	208,596	440,634
Tubb member	0	0	787,211	527,067	1,391,130
Upper Choza member	0	0	955,461	427,797	1,341,568
San Angelo Formation	0	0	395,581	157,029	833,100
Queen Formation	0	0	123,428	122,300	727,997
Seven Rivers Formation	0	0	1,005,388	678,368	2,192,383
Yates Formation	0	0	507,209	354,141	1,026,302
Dockum Group	0	0	2,883,943	2,027,727	3,139,185
Quaternary and Neogene Sediments	1,029,090	149,591	0	0	0

Groundwater Volume


Top of saturated volumetric calculation is historic static water level

- Derived from 167 wells with 14,755 records taken since January 2001
- Specific yield (volume water per bulk volume) applied
 - 0.05 applied to fresh and slightly saline volumes
 - 0.005 applied to moderately saline volumes
- Groundwater volumes in acre-feet
 - Very saline and brine groundwater were not mapped
 - Due to lack of data and lithology impacted effects on salinity calculations

Formation	Fresh	Slightly saline	Moderately saline
Lueders Formation	0	1,084,079	467,616
Arroyo Formation	0	516,069	225,232
Bullwagon Dolomite	0	239,435	50,578
Tubb member	0	604,992	159,680
Upper Choza member	0	491,044	153,991
San Angelo Formation	0	180,245	95,627
Queen Formation	0	140,381	83,563
Seven Rivers Formation	0	778,661	251,652
Yates Formation	0	406,499	117,804
Quaternary and Neogene sediments	171,707	0	0
Total volume	171,707	4,441,405	1,605,743

Cretaceous Overlay

- Significant area overlain by Cretaceous
 - Small percentage in the overlay area penetrate the Permian units
 - Only three of 137 wells with water quality data
 - TDS concentrations range from 384 to 2,848 mg/L

Permian subcrop

31°30'N

Brackish Groundwater Production Zones

84th Texas Legislature passed House Bill 30 in 2015

TWDB is directed to:

- Identify and designate brackish groundwater production zones in all major and minor aquifers.
- Determine the volumes of groundwater that a brackish groundwater production zone can produce over 30-year and 50-year periods without causing significant impact to water availability or water quality.
- Work with groundwater conservation districts and stakeholders.
- Make recommendations on reasonable monitoring to observe the effects of brackish groundwater production within the zone.
- Provide a summary of brackish groundwater production zone designations in the biennial report due December 1 of each even-numbered year.
- By December 1, 2016, identify and designate brackish groundwater production zones for four specified aquifers.
- By December 1, 2022, identify and designate brackish groundwater production zones for rest of the state.

House Bill 30 exclusion areas

- House Bill 30 also excluded certain areas from designation:
 - The Edwards (Balcones Fault Zone) Aquifer located within the jurisdiction of the Edwards Aquifer Authority.
 - Areas within the boundaries of the Barton Springs-Edwards Aquifer Conservation District, the Harris-Galveston Subsidence District, and the Fort Bend Subsidence District.
 - Aquifers, subdivisions of aquifers, or geologic strata that have an average total dissolved solids concentration of more than 1,000 milligrams per liter and serve as a significant source of water supply for municipal, domestic, or agricultural purposes.
 - Geologic formations that are designated or used for wastewater injection through the use of injection or disposal wells permitted under Texas Water Code Chapter 27

Lipan Aquifer meets two exemption criteria

- No significant hydrogeologic barrier between brackish and overlying fresh water groundwater resources
- Significant current use of brackish water for municipal, domestic, or agricultural use

Conclusions

- Volumes of groundwater by salinity zones
 - Not all can be economically or technically recovered
 - 0.17 million acre-feet of fresh groundwater
 - 4.44 million acre-feet of slightly saline groundwater
 - 1.61 million acre-feet of moderately saline groundwater
 - Much of water-bearing Permian units overlain by Cretaceous
 - Little evidence of groundwater development in this zone
 - May present an opportunity for brackish groundwater development
- No brackish groundwater production zones identified per House Bill 30
- All data to be made public once report is published
 - Collected well data and geophysical logs
 - Calculated parameters
 - GIS files
 - Supporting database (Microsoft Access 2007 format)

Future Improvements

 Additional well information would allow for improved aquifer characterization

- Aquifer test and water quality from all salinity zones
- More refined groundwater modeling
 - Perhaps variable density modeling
 - To evaluate effect of slightly saline development on higher salinity zones

Texas Water Development Board

Mark Robinson <u>mark.robinson@twdb.texas.gov</u> 512-463-7657

Matt Webb matthew.webb@twdb.texas.gov 512.463.6929