# **REGION B TECHNICAL MEMORANDUM**

Prepared for:

# Texas Water Development Board On behalf of the Region B Water Planning Group

February 29, 2024

### TABLE OF CONTENTS

| EXEC | CUTIVE SUMMARY                                                          | ES-1 |
|------|-------------------------------------------------------------------------|------|
| 1.0  | REGION B RWPG DATA ANALYSIS AND TWDB DB27 REPORTS                       | 1    |
| 1.1  | Population Projection and Water Demand                                  | 1    |
| 1.2  |                                                                         |      |
| 1    | .2.1 Surface Water                                                      | 6    |
| 1    | .2.2 Groundwater                                                        | 7    |
| 1    | .2.3 Reuse                                                              | 8    |
| 1.3  | Existing Water Supplies                                                 | 8    |
| 1.4  | Identified Water Needs/Surpluses                                        | 9    |
| 1.5  | Comparison to 2021 Regional Water Plan                                  | 13   |
| 2.0  | DETERMINING SOURCE AVAILABILITY                                         | 14   |
| 2.1  | Surface Water                                                           | 14   |
| 2    | 2.1.1 Hydrologic Models                                                 | 14   |
| 2    | 2.1.2 Versions and Dates of Hydrologic Models                           | 16   |
| 2    | 2.1.3 Reservoir Sedimentation and Area-Capacity Calculation Methodology | 19   |
| 2.2  | Groundwater                                                             | 21   |
| 2    | 2.2.1 Written Summary of Modeled Available Groundwater (MAGs)           | 21   |
| 2    | 2.2.2 Documented Methodologies Utilized for Non-MAG Availabilities      | 22   |
| 3.0  | POTENTIALLY FEASIBLE WATER MANAGEMENT STRATEGIES                        | 23   |
| 3.1  | Process for Identifying Potentially Feasible WMS                        | 23   |
| 3.2  |                                                                         |      |
| 4.0  | INFEASIBLE WMS FROM 2021 REGOINAL WATER PLAN                            | 24   |
| 5.0  | INTERREGIONAL COORDINATION                                              | 25   |
| 6.0  | PUBLIC COMMENT                                                          | 25   |
|      |                                                                         |      |

# **List of Figures**

| Figure 1-1: Total RWPG Adopted Water Demand Projections by Use Type (Acre-Feet per Year). 5 |
|---------------------------------------------------------------------------------------------|
| Figure 1-2: Water Supply Needs by Use Type Based on RWPG Adopted Demand Projections 10      |

### **List of Tables**

| Table 1-1: RWPG Adopted Population Projections for Region B by County                       |
|---------------------------------------------------------------------------------------------|
| Table 1-2: RWPG Adopted Total Dry-Year Water Demand Projections for Region B by County      |
| Table 1-3: Overall Water Supply Source Availability in Region B (Acre-Feet per Year)        |
| Table 1-4: Summary of Surface Water Reliable Supplies¹ (Acre-Feet per Year)                 |
| Table 1-5: Summary of Groundwater Supplies in Region B (Acre-Feet per Year)                 |
| Table 1-6: Currently Permitted Reuse Supplies Available to Region B                         |
| Table 1-7: Existing Water Supplies Available to Region B by Source                          |
| Table 1-8: Existing Water Supplies Available to Region B by County                          |
| Fable 1-9: Water Supply Needs by Use Type Based on RWPG Adopted Demand Projections $f 1$    |
| Fable 1-10: Water Supply Needs by County Based on RWPG Adopted Demand Projections $f 1$     |
| Table 1-11: Water Supply Needs by WUG Based on RWPG Adopted Demand Projections 1            |
| Гable 1-12: Water Supply Needs by Major Water Provider Based on RWPG Adopted Deman          |
| Projections 1                                                                               |
| Table 2-1: Estimated Firm Yield and Reliable Supply for Major Reservoirs in Region B (Acre  |
| Feet/Year) 1                                                                                |
| Table 2-2: Hydrologic Models Used in Determining Surface Water Availability 1               |
| Table 2-3: Sedimentation Rates and Projected Storage Capacity of Major Reservoirs in Region |
|                                                                                             |
| Table 2-4: GAM Models Used in Determining Ground Water Availability         2               |
| Table 2-5: Modeled Available Groundwater Supplies in Region B                               |
| Table 2-6: Estimated Available Groundwater Supplies for Non-Relevant Aquifers and Othe      |
| Aguifer 2                                                                                   |

### **Appendices**

| Appendix A: | WUG Summaries based on RWPG Adopted Planning Date     |
|-------------|-------------------------------------------------------|
| Appendix B: | DB27 Reports                                          |
| Appendix C: | WAM Modification Request and TWDB Approval            |
| Appendix D: | Methodology for Developing Groundwater Availabilities |
| Appendix E: | Identifying Potentially Feasible WMSs                 |
| Appendix F: | List of Potentially Feasible WMSs                     |
| Annendix G  | Interregional Coordination Memos                      |

#### **EXECUTIVE SUMMARY**

This Technical Memorandum discusses population and water demand projections, water availability, existing water supplies, identified water needs and surpluses, and identified potentially feasible water management strategies in Region B for the sixth cycle of regional water plan development. The population and water demand projections presented in the main body of the report are the projections adopted by the Regional Water Planning Group (RWPG), and the identified water needs and surpluses are based on these demand projections. Also, included as appendices to this report are the required Texas Water Development Board (TWDB) DB27 reports (seven) along with the additional information required for the Technical Memorandum submittal as set forth in Section 2.12.1 of TWDB's Second Amended General Guidelines for Development of the 2026 Regional Water Plans (Exhibit C) dated September 2023. The DB27 reports include the population and demand projections adopted by TWDB, and the water needs and surpluses based on the TWDB adopted projections. These projections differ from the RWPG adopted population and demand projections is labeled as "RWPG adopted" and information based on TWDB adopted population and demand projections is labeled as "TWDB adopted".

A public meeting was held on *February 7, 2024*, to discuss the contents of this memorandum. Notice of the meeting was posted on *January 23, 2024*. Public comments were solicited at the public meeting and for two weeks after the meeting, closing on *February 23, 2024*.

#### 1.0 REGION B RWPG DATA ANALYSIS AND TWDB DB27 REPORTS

The data reported in the following sections is the data adopted by the RWPG for use in the development of the 2026 Region B Water Plan. This includes RWPG adopted population and demand projections, source water availability, existing water supplies, and identified water supply needs and surpluses. A summary of RWPG adopted population, demand, water supply, and needs/surpluses are provided in **Appendix A**, organized by water user group (WUG).

All required TWDB DB27 reports are provided in **Appendix B** of this document. These include DB27 reports numbered 1 through 5, 7, and 8, listed below:

- TWDB DB27 Report #1 –WUG Population
- TWDB DB27 Report #2 WUG Water Demand
- TWDB DB27 Report #3 Source Availability
- TWDB DB27 Report #4 –WUG Existing Water Supply
- TWDB DB27 Report #5 –WUG Needs/Surpluses
- TWDB DB27 Report #7 –WUG Data Comparison to 2021 Regional Water Plan (RWP)
- TWDB DB27 Report #8 Source Data Comparison to 2021 Regional Water Plan (RWP)

The DB27 reports included the TWDB adopted planning data for Region B for use in the development of the 2027 TWDB State Water Plan. Data in DB27 Reports 1, 2, 5, and 7 will differ from the RWPG adopted data as they are based on different population and demand projection numbers. Data in DB27 Reports 3, 4 and 8 will match the RWPG adopted data.

#### 1.1 POPULATION PROJECTION AND WATER DEMAND

In early 2022, TWDB released their draft population and demand projections for all regions. Each Regional Planning Group was given the ability to request adjustments to the projections. In accordance with the bottom-up regional water planning approach established in Senate Bill 1, the Region B RWPG submitted requested revisions to the projections which were reviewed by TWDB staff. The revisions were based on the following supporting information:

- Documented 2020 Census under counts of approximately 2% for the State of Texas.
- Local well development data from Upper Trinity Groundwater Conservation District (UTGCD) for Montague County.
- Local data from water providers on trends for new building permits, subdivision plats, and metered connections suggesting steady increases in population.

TWDB did not approve most of the of the RWPG municipal projections and therefore the RWPG group adopted their own set of population projections that they felt better represented the future water demands for the region. The RWPG-adopted municipal projections also include a 15 percent safe supply factor. The population and demand projections presented in the main body of this technical memo are the RWPG adopted projections and differ from the TWDB adopted projections which are presented in the required TWDB DB27 Reports #1 and #2 included in Appendix B.

**Table 1-1** shows the RWPG adopted population projections by county. According to the RWPG adopted projections, the total population in Region B is expected to increase from 205,160 to 228,068 over the planning horizon. Wichita County has the highest population of the eleven counties.

**Table** 1-2 shows the total demands for Region B by county (including municipal and non-municipal demand). The total dry-year water demand increases slightly from 139,590 to 143,761 acre-feet between 2030 and 2080. Wichita and Wilbarger counties have the largest demands, which reflects high irrigation use in these counties.

Table 1-1: RWPG Adopted Population Projections for Region B by County

| County           | 2030    | 2040    | 2050    | 2060    | 2070    | 2080    |
|------------------|---------|---------|---------|---------|---------|---------|
| ARCHER           | 8,698   | 8,632   | 8,562   | 8,451   | 8,315   | 8,208   |
| BAYLOR           | 3,534   | 3,492   | 3,491   | 3,413   | 3,335   | 3,359   |
| CLAY             | 10,462  | 10,474  | 10,485  | 10,444  | 10,404  | 10,369  |
| COTTLE           | 1,408   | 1,379   | 1,340   | 1,311   | 1,286   | 1,281   |
| FOARD            | 1,117   | 1,111   | 1,105   | 1,093   | 1,081   | 1,069   |
| HARDEMAN         | 3,620   | 3,597   | 3,569   | 3,524   | 3,467   | 3,409   |
| KING             | 270     | 272     | 276     | 283     | 288     | 292     |
| MONTAGUE         | 25,241  | 28,575  | 31,909  | 35,249  | 38,585  | 41,916  |
| WICHITA          | 134,083 | 136,111 | 138,164 | 139,275 | 140,389 | 141,505 |
| WILBARGER        | 13,148  | 13,165  | 13,179  | 13,172  | 13,151  | 13,130  |
| YOUNG (Region B) | 3,579   | 3,562   | 3,545   | 3,522   | 3,526   | 3,530   |
| TOTAL            | 205,160 | 210,369 | 215,625 | 219,737 | 223,827 | 228,068 |

Table 1-2: RWPG Adopted Total Dry-Year Water Demand Projections for Region B by County

| County           | 2020    | 2030    | 2040    | 2050    | 2060    | 2070    |
|------------------|---------|---------|---------|---------|---------|---------|
| ARCHER           | 3,328   | 3,308   | 3,294   | 3,272   | 3,247   | 3,226   |
| BAYLOR           | 6,803   | 6,792   | 6,794   | 6,779   | 6,765   | 6,770   |
| CLAY             | 4,746   | 4,737   | 4,734   | 4,723   | 4,713   | 4,704   |
| COTTLE           | 5,060   | 5,052   | 5,042   | 5,035   | 5,029   | 5,028   |
| FOARD            | 3,078   | 3,077   | 3,076   | 3,075   | 3,073   | 3,072   |
| HARDEMAN         | 19,570  | 19,571  | 19,575  | 19,575  | 19,574  | 19,573  |
| KING             | 771     | 771     | 772     | 774     | 776     | 777     |
| MONTAGUE         | 6,392   | 6,938   | 7,502   | 8,067   | 8,632   | 9,195   |
| WICHITA          | 52,117  | 52,401  | 52,802  | 53,031  | 53,262  | 53,495  |
| WILBARGER        | 37,020  | 37,053  | 37,099  | 37,141  | 37,183  | 37,226  |
| YOUNG (Region B) | 705     | 699     | 696     | 693     | 694     | 695     |
| TOTAL            | 139,590 | 140,399 | 141,386 | 142,166 | 142,946 | 143,761 |

**Figure 1-1** shows the total demands for the Region by use category. Irrigation demand accounts for roughly 60 percent of total projected demand over the planning horizon while municipal (including county-other) demand comprises roughly 28 percent. The remaining use types each encompass only 6 percent or less of total demand in each decade.

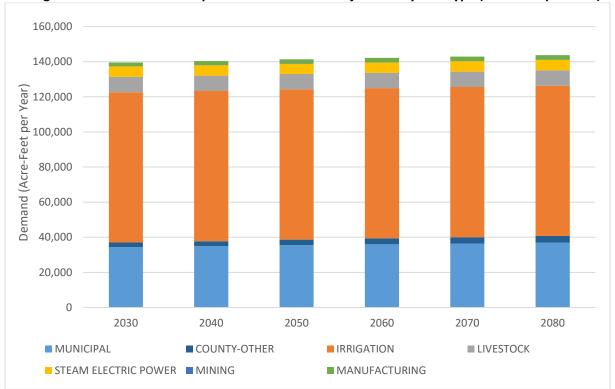



Figure 1-1: Total RWPG Adopted Water Demand Projections by Use Type (Acre-Feet per Year)

**TWDB DB27 Report #1** presents the TWDB adopted projected populations for each municipal water user group. This includes water utilities or water systems that provide an average of more than 100 acre-feet per year to retail municipal customers, and rural/unincorporated areas of municipal water use, known as County Other. **TWDB DB27 Report #2** provides the TWDB adopted projected water demands for each water user group. This includes both municipal and non-municipal demands. The data in Reports #1 and #2 are reported by entity, county, and river basin. These reports are included in **Appendix B**.

#### 1.2 SOURCE WATER AVAILABILITY

TWDB DB27 Report #3 – Source Availability in Appendix B presents the available water by source. Under the TWDB regional water planning guidelines, each region is to identify available water supplies in the region by source and user. The supplies available by source are based on the supply available during drought of record conditions. For surface water reservoirs, this is generally the equivalent of firm yield supply or permitted amount (whichever is lower). The Region B Water Planning Group elected to use reliable supplies with a 20 percent reserve supply, if possible, as the basis for planning for reservoir supplies. For run-of-the-river supplies, the firm yield is the minimum supply available in a year over the historical record. Available groundwater supplies are defined by county and aquifer. Groundwater supply

is the supply available that meets the Desired Future Conditions, as defined by the Groundwater Joint Planning Process. The TWDB developed the Modeled Available Groundwater (MAG) values to define the long-term available groundwater supply. MAGs were developed for the Trinity, Seymour, and Blaine aquifers within existing Groundwater Conservation Districts (GCDs). MAGs were not developed for the Cross Timbers Aquifer, Other Aquifer, and all aquifers within counties with no GCD. Groundwater supplies from these sources were developed by the RWPG. Existing reuse supplies include Wichita Falls' indirect reuse to Lake Arrowhead and known sales of direct reuse.

Region B has a total of over 179,000 acre-feet per year of available water in 2030, which decreases to about 177,000 acre-feet per year by 2080. These projections include both developed and undeveloped supplies. More than half of Region B's water supply is from groundwater sources. **Table 1-3** shows the overall water supply source availability in Region B over the planning horizon. More detail on the development of these source availabilities is included in **Section 2.0** of this document. It should be noted that these supplies have not been limited by the current infrastructure that treats and delivers the water. The amount of supply available to individual water user groups (WUGs) is referred to as "Existing Water Supplies" and is discussed further in **Section 1.3** of this report.

Table 1-3: Overall Water Supply Source Availability in Region B (Acre-Feet per Year)

| Summary                    | 2030    | 2040    | 2050    | 2060    | 2070    | 2080    |
|----------------------------|---------|---------|---------|---------|---------|---------|
| RESERVOIRS                 | 51,685  | 49,031  | 46,377  | 43,723  | 41,069  | 38,415  |
| RUN-OF-RIVER & SMALL LAKES | 6,680   | 6,680   | 6,680   | 6,680   | 6,680   | 6,680   |
| LOCAL SUPPLY               | 6,878   | 6,878   | 6,878   | 6,878   | 6,878   | 6,878   |
| GROUNDWATER                | 105,214 | 111,069 | 112,209 | 114,229 | 123,636 | 116,240 |
| REUSE                      | 9,427   | 9,427   | 9,427   | 9,427   | 9,427   | 9,427   |
| REGION B TOTAL             | 179,884 | 183,085 | 181,571 | 180,937 | 187,690 | 177,640 |

#### 1.2.1 Surface Water

Surface water in Region B is comprised of reservoirs and local supplies. This includes six in-region lakes (Lakes Kickapoo, Arrowhead, Kemp/Diversion, Amon Carter, Nocona, and Olney/Cooper) and one lake located wholly in another region (Greenbelt Reservoir). The following water supply reservoirs account for over 90 percent of the reservoir water supply available in Region B: Little Wichita and Wichita River supplies (Lake Kickapoo, Lake Arrowhead, Kemp/Diversion system). Local supplies include direct

diversions from rivers and creeks (run-of-river supplies associated with water rights) and local stock ponds. A summary of surface water supplies available to Region B are shown in **Table 1-4**.

Table 1-4: Summary of Surface Water Supplies (Acre-Feet per Year)

| Source                      | 2030   | 2040   | 2050   | 2060   | 2070   | 2080   |
|-----------------------------|--------|--------|--------|--------|--------|--------|
| KICKAPOO <sup>1</sup>       | 5,400  | 5,060  | 4,720  | 4,380  | 4,040  | 3,700  |
| ARROWHEAD <sup>1</sup>      | 10,900 | 10,220 | 9,540  | 8,860  | 8,180  | 7,500  |
| KEMP/DIVERSION <sup>1</sup> | 32,900 | 31,340 | 29,780 | 28,220 | 26,660 | 25,100 |
| AMON CARTER <sup>2</sup>    | 1,080  | 1,018  | 956    | 894    | 832    | 770    |
| NOCONA <sup>3</sup>         | 1,260  | 1,260  | 1,260  | 1,260  | 1,260  | 1,260  |
| OLNEY/COOPER <sup>2</sup>   | 145    | 133    | 121    | 109    | 97     | 85     |
| RUN-OF-RIVER & SMALL LAKES  | 6,680  | 6,680  | 6,680  | 6,680  | 6,680  | 6,680  |
| LOCAL SUPPLIES              | 6,878  | 6,878  | 6,878  | 6,878  | 6,878  | 6,878  |
| TOTAL                       | 65,243 | 62,589 | 59,935 | 57,281 | 54,627 | 51,973 |

<sup>&</sup>lt;sup>1</sup> Reliable supply is the amount approved by the RWPG for planning purposes. It includes a 20% reserve supply.

#### 1.2.2 Groundwater

Groundwater in Region B is from the Seymour, Trinity, Blaine, and Cross Timbers aquifers, as well as from undifferentiated local supplies, referred to as "Other Aquifer" for planning purposes. The Seymour and Trinity are major aquifers while the Blaine and Cross Timbers are minor aquifers. The Cross Timbers Aquifer was designated as a minor aquifer in 2017 (formerly called the Paleozoic Aquifer). Supplies from alluvial sediments are classified as Other Aquifer. **Table 1-5** summarizes the available groundwater supplies in Region B over the planning horizon.

Table 1-5: Summary of Groundwater Supplies in Region B (Acre-Feet per Year)

| Aquifer               | 2030    | 2040    | 2050    | 2060    | 2070    | 2080    |
|-----------------------|---------|---------|---------|---------|---------|---------|
| BLAINE AQUIFER        | 26,700  | 26,700  | 26,700  | 26,700  | 26,700  | 26,700  |
| CROSS TIMBERS AQUIFER | 8,225   | 8,225   | 8,225   | 8,225   | 8,225   | 8,225   |
| OTHER AQUIFER         | 5,750   | 5,750   | 5,750   | 5,750   | 5,750   | 5,750   |
| SEYMOUR AQUIFER       | 58,435  | 64,290  | 65,430  | 67,450  | 76,857  | 69,461  |
| TRINITY AQUIFER       | 6,104   | 6,104   | 6,104   | 6,104   | 6,104   | 6,104   |
| TOTAL                 | 105,214 | 111,069 | 112,209 | 114,229 | 123,636 | 116,240 |

<sup>&</sup>lt;sup>2</sup> A one-year safe yield was used for reservoirs that could not achieve a 20% reserve supply during the drought of record.

<sup>&</sup>lt;sup>3</sup>Reliable supply for Lake Nocona water right diversion limit of 1,260 ac-ft/yr because it is less than the reliable supply with 20% reserve.

#### 1.2.3 Reuse

Reuse supply accounts for about 5 percent of total source availability in Region B. **Table 1-6** is the summary of availability from current reuse projects by county.

Table 1-6: Currently Permitted Reuse Supplies Available to Region B

| County   | Туре     | Permitted Reuse (Acre-Feet/Year) |       |       |       |       |       |  |  |
|----------|----------|----------------------------------|-------|-------|-------|-------|-------|--|--|
| County   |          | 2030                             | 2040  | 2050  | 2060  | 2070  | 2080  |  |  |
| BAYLOR   | DIRECT   | 63                               | 63    | 63    | 63    | 63    | 63    |  |  |
| MONTAGUE | DIRECT   | 34                               | 34    | 34    | 34    | 34    | 34    |  |  |
| WICHITA  | DIRECT   | 357                              | 357   | 357   | 357   | 357   | 357   |  |  |
| WICHITA  | INDIRECT | 8,968                            | 8,968 | 8,968 | 8,968 | 8,968 | 8,968 |  |  |
| YOUNG    | DIRECT   | 5                                | 5     | 5     | 5     | 5     | 5     |  |  |
| TOTAL    |          | 9,427                            | 9,427 | 9,427 | 9,427 | 9,427 | 9,427 |  |  |

#### 1.3 EXISTING WATER SUPPLIES

Existing Water Supplies (sometimes referred to as "currently available supplies" or "connected supplies") are supplies that are limited by water rights, contracts, and facilities that are currently in place. The Existing Water Supplies are less than the overall supplies available to the region (Source Water Availability from Section 1.2) because the facilities needed to use some of the source water have not yet been developed. Common constraints limiting supplies include the availability and capacity of transmission systems, treatment plants, and wells. **Table 1-7** shows the Existing Water Supplies in Region B by different source types. **Table 1-8** shows the Existing Water Supplies for water user groups by county. **TWDB DB27 Report #4 – Water User Group (WUG) Existing Water Supply** is included in **Appendix B**.

Table 1-7: Existing Water Supplies Available to Region B by Source

| ranie = 11 = moning trater outperior realisation of region = 17 octained |                                          |         |         |         |         |         |  |  |  |
|--------------------------------------------------------------------------|------------------------------------------|---------|---------|---------|---------|---------|--|--|--|
| Cummany                                                                  | Existing Water Supplies (Acre-Feet/Year) |         |         |         |         |         |  |  |  |
| Summary                                                                  | 2030                                     | 2040    | 2050    | 2060    | 2070    | 2080    |  |  |  |
| RESERVOIRS                                                               | 49,346                                   | 46,723  | 44,170  | 41,616  | 39,060  | 36,507  |  |  |  |
| RUN-OF-RIVER <sup>1</sup>                                                | 4,448                                    | 4,448   | 4,448   | 4,448   | 4,448   | 4,448   |  |  |  |
| LOCAL SUPPLY                                                             | 6,799                                    | 6,799   | 6,799   | 6,799   | 6,799   | 6,799   |  |  |  |
| GROUNDWATER                                                              | 70,186                                   | 70,176  | 70,228  | 70,277  | 70,085  | 70,109  |  |  |  |
| REUSE                                                                    | 9,427                                    | 9,427   | 9,426   | 9,425   | 9,427   | 9,427   |  |  |  |
| TOTAL                                                                    | 140,206                                  | 137,573 | 135,071 | 132,565 | 129,819 | 127,290 |  |  |  |
| SURFACE WATER IMPORTS <sup>2</sup>                                       | 569                                      | 554     | 544     | 538     | 533     | 534     |  |  |  |
| GROUNDWATER IMPORTS <sup>3</sup>                                         | 366                                      | 371     | 374     | 371     | 366     | 357     |  |  |  |
| TOTAL AVAILABLE                                                          | 141,141                                  | 138,498 | 135,989 | 133,474 | 130,718 | 128,181 |  |  |  |

<sup>&</sup>lt;sup>1</sup> Run-of-river supplies also includes Santa Rosa Lake

Table 1-8: Existing Water Supplies Available to Region B by County

| County           | Existing Water Supplies (Acre-Feet/Year) |         |         |         |         |         |  |  |  |
|------------------|------------------------------------------|---------|---------|---------|---------|---------|--|--|--|
| County           | 2030                                     | 2040    | 2050    | 2060    | 2070    | 2080    |  |  |  |
| ARCHER           | 4,382                                    | 4,232   | 4,077   | 3,955   | 3,834   | 3,717   |  |  |  |
| BAYLOR           | 6,788                                    | 6,777   | 6,777   | 6,764   | 6,749   | 6,473   |  |  |  |
| CLAY             | 6,792                                    | 6,732   | 6,665   | 6,604   | 6,545   | 6,486   |  |  |  |
| COTTLE           | 5,078                                    | 5,033   | 5,031   | 5,027   | 5,023   | 5,017   |  |  |  |
| FOARD            | 3,889                                    | 3,887   | 3,887   | 3,886   | 3,645   | 3,883   |  |  |  |
| HARDEMAN         | 19,767                                   | 19,768  | 19,772  | 19,773  | 19,772  | 19,775  |  |  |  |
| KING             | 771                                      | 772     | 772     | 774     | 775     | 776     |  |  |  |
| MONTAGUE         | 5,559                                    | 5,525   | 5,491   | 5,459   | 5,426   | 5,391   |  |  |  |
| WICHITA          | 47,861                                   | 45,964  | 44,083  | 42,169  | 40,256  | 38,341  |  |  |  |
| WILBARGER        | 38,923                                   | 38,607  | 38,293  | 37,976  | 37,659  | 37,344  |  |  |  |
| YOUNG (Region B) | 1,331                                    | 1,201   | 1,141   | 1,087   | 1,034   | 978     |  |  |  |
| TOTAL            | 141,141                                  | 138,498 | 135,989 | 133,474 | 130,718 | 128,181 |  |  |  |

#### 1.4 IDENTIFIED WATER NEEDS/SURPLUSES

For each Water User Group, the existing water supply was compared to the RWPG adopted projected demand, resulting in either a need or a surplus for the WUG. The water supply needs are summarized below in and **Figure 1-2** by category of use. Irrigation and municipal needs are the largest, with municipal

<sup>&</sup>lt;sup>2</sup> Surface water imports are from Millers Creek Lake (Region G), Greenbelt Lake (Region A), and local surface water supply in the Brazos basin in Young County (Region G).

<sup>&</sup>lt;sup>3</sup> Groundwater imports are from the Ogallala Aquifer in Donley County (Region A) and Cross-Timbers Aquifer in Young County (Region G).

needs increasing at the largest rate over the planning horizon The are also a small amount of needs for manufacturing and steam electric power that are shown to increase over the planning horizon. No needs are projected for livestock and mining.

Table 1-9: Water Supply Needs by Use Type Based on RWPG Adopted Demand Projections

| Use Type      | Water Supply Needs (Acre-Feet/Year) |        |        |        |        |        |  |  |
|---------------|-------------------------------------|--------|--------|--------|--------|--------|--|--|
| Ose Type      | 2030                                | 2040   | 2050   | 2060   | 2070   | 2080   |  |  |
| MUNICIPAL     | 2,826                               | 4,399  | 6,112  | 7,713  | 9,324  | 10,925 |  |  |
| IRRIGATION    | 5,007                               | 5,963  | 6,920  | 7,878  | 8,834  | 10,072 |  |  |
| LIVESTOCK     | 0                                   | 0      | 0      | 0      | 0      | 0      |  |  |
| MANUFACTURING | 0                                   | 0      | 4      | 49     | 95     | 146    |  |  |
| MINING        | 0                                   | 0      | 0      | 0      | 0      | 0      |  |  |
| SEP           | 2,991                               | 3,130  | 3,268  | 3,406  | 3,543  | 3,681  |  |  |
| TOTAL         | 10,824                              | 13,492 | 16,304 | 19,046 | 21,796 | 24,824 |  |  |

20,000

20,000

15,000

10,000

5,,000

2050

■ LIVESTOCK ■ MANUFACTURING

2060

2070

MINING

2080

■ SEP

2030

■ MUNICIPAL

2040

■ IRRIGATION

Projected needs are also shown in **Table 1-10** by county. Six out of eleven Region B counties show needs at some point in the planning horizon, with Wichita County showing the greatest needs, followed by Wilbarger and Montage Counties.

Table 1-10: Water Supply Needs by County Based on RWPG Adopted Demand Projections

| County           | Water Supply Needs (Acre-Feet/Year) |        |        |        |        |        |  |  |
|------------------|-------------------------------------|--------|--------|--------|--------|--------|--|--|
| County           | 2030                                | 2040   | 2050   | 2060   | 2070   | 2080   |  |  |
| ARCHER           | 34                                  | 44     | 62     | 73     | 83     | 92     |  |  |
| BAYLOR           | 0                                   | 0      | 0      | 0      | 0      | 282    |  |  |
| CLAY             | 108                                 | 125    | 142    | 159    | 175    | 189    |  |  |
| COTTLE           | 0                                   | 0      | 0      | 0      | 0      | 0      |  |  |
| FOARD            | 0                                   | 0      | 0      | 0      | 0      | 0      |  |  |
| HARDEMAN         | 0                                   | 0      | 0      | 0      | 0      | 0      |  |  |
| KING             | 0                                   | 0      | 0      | 0      | 0      | 0      |  |  |
| MONTAGUE         | 905                                 | 1,485  | 2,082  | 2,680  | 3,279  | 3,875  |  |  |
| WICHITA          | 6,781                               | 8,702  | 10,744 | 12,722 | 14,710 | 16,698 |  |  |
| WILBARGER        | 2,996                               | 3,136  | 3,274  | 3,412  | 3,549  | 3,688  |  |  |
| YOUNG (Region B) | 0                                   | 0      | 0      | 0      | 0      | 0      |  |  |
| TOTAL            | 10,824                              | 13,492 | 16,304 | 19,046 | 21,796 | 24,824 |  |  |

Each WUG with projected needs is shown in **Table 1-11** Many of the WUGs with projected needs receive water from Wichita Falls, who themselves have the second largest need behind Wichita County irrigation. Baylor County irrigation shows a need in 2080 due to Seymour aquifer MAG limitations, and several WUGs in Montague County show needs due to supply limitations in Lakes Amon Carter and Nocona, or infrastructure constraints.

Table 1-11: Water Supply Needs by WUG Based on RWPG Adopted Demand Projections

| WILC                | Water Supply Needs (Acre-Feet/Year) |       |       |       |       |       |  |  |  |
|---------------------|-------------------------------------|-------|-------|-------|-------|-------|--|--|--|
| WUG                 | 2030                                | 2040  | 2050  | 2060  | 2070  | 2080  |  |  |  |
| ARCHER COUNTY       |                                     |       |       |       |       |       |  |  |  |
| HOLLIDAY            | 34                                  | 44    | 55    | 60    | 67    | 70    |  |  |  |
| LAKESIDE CITY       | 0                                   | 0     | 7     | 13    | 16    | 22    |  |  |  |
| BAYLOR COUNTY       |                                     |       |       |       |       |       |  |  |  |
| IRRIGATION          | 0                                   | 0     | 0     | 0     | 0     | 282   |  |  |  |
| CLAY COUNTY         |                                     |       |       |       |       |       |  |  |  |
| RED RIVER AUTHORITY | 108                                 | 125   | 142   | 159   | 175   | 189   |  |  |  |
| MONTAGUE COUNTY     |                                     |       |       |       |       |       |  |  |  |
| BOWIE               | 363                                 | 536   | 714   | 894   | 1,073 | 1,251 |  |  |  |
| COUNTY-OTHER        | 448                                 | 653   | 866   | 1,078 | 1,290 | 1,502 |  |  |  |
| NOCONA              | 74                                  | 222   | 373   | 524   | 676   | 827   |  |  |  |
| SAINT JO            | 20                                  | 74    | 129   | 184   | 240   | 295   |  |  |  |
| WICHITA COUNTY      |                                     |       |       |       |       |       |  |  |  |
| ELECTRA             | 152                                 | 187   | 224   | 260   | 294   | 327   |  |  |  |
| HARROLD WSC         | 4                                   | 4     | 5     | 6     | 7     | 8     |  |  |  |
| IOWA PARK           | 0                                   | 0     | 42    | 99    | 154   | 209   |  |  |  |
| SHEPPARD AFB        | 89                                  | 137   | 188   | 232   | 277   | 321   |  |  |  |
| WICHITA FALLS       | 1,528                               | 2,408 | 3,357 | 4,193 | 5,044 | 5,891 |  |  |  |
| IRRIGATION          | 5,007                               | 5,963 | 6,920 | 7,878 | 8,834 | 9,790 |  |  |  |
| MANUFACTURING       | 0                                   | 0     | 4     | 49    | 95    | 146   |  |  |  |
| SEP                 | 1                                   | 3     | 4     | 5     | 5     | 6     |  |  |  |
| WILBARGER COUNTY    |                                     |       |       |       |       |       |  |  |  |
| HARROLD WSC         | 6                                   | 9     | 10    | 11    | 11    | 13    |  |  |  |
| SEP                 | 2,990                               | 3,127 | 3,264 | 3,401 | 3,538 | 3,675 |  |  |  |

**Table 1-12** shows projected needs for the two major water providers (MWP) in Region B: Wichita Falls and Wichita County Water Improvement District #2 (WCWID #2). The needs for Wichita Falls include both the WUG's municipal needs and needs to supply their wholesale customer contractual obligations. WCWID #2 needs include irrigation in Wichita and Clay Counties, and the Dundee Fish Hatchery in Archer County. Both Wichita Falls and WCWID #2 share a joint contract to supply water from Lake Kemp under their shared water right permit for industrial use to steam electric power facilities at the Oklaunion site in Wilbarger County. The City and WCWID # 2 also entered into an agreement to supply water to a company that produces green energy under the Oklaunion contract. The TWDB did not include this demand in the manufacturing projections for Wilbarger County. The needs shown on Table 1-12 include both the power plant and the green energy facility.

Table 1-12: Water Supply Needs by Major Water Provider Based on RWPG Adopted Demand Projections

| MWP                                                          | Water Supply Needs (Acre-Feet/Year) |        |        |        |        |        |  |  |  |
|--------------------------------------------------------------|-------------------------------------|--------|--------|--------|--------|--------|--|--|--|
| IVIVVP                                                       | 2030                                | 2040   | 2050   | 2060   | 2070   | 2080   |  |  |  |
| WICHITA FALLS                                                | 2,583                               | 4,047  | 5,603  | 6,983  | 8,361  | 9,741  |  |  |  |
| WCWID #2                                                     | 7,710                               | 7,159  | 8,137  | 9,116  | 10,094 | 11,072 |  |  |  |
| Wilbarger County<br>SEP/Oklaunion Site<br>Needs <sup>1</sup> | 7,059                               | 7,383  | 7,706  | 8,029  | 8,353  | 8,676  |  |  |  |
| TOTAL                                                        | 17,352                              | 18,589 | 21,446 | 24,128 | 26,808 | 29,488 |  |  |  |

<sup>&</sup>lt;sup>1</sup>Contract with SEP facilities in Wilbarger County is shared between Wichita Falls and WCWID #2. Water is supplied through the industrial water right permit on Lake Kemp.

TWDB DB27 Report #5 – Water User Group (WUG) Needs/Surpluses, is included in Appendix B.

#### 1.5 COMPARISON TO 2021 REGIONAL WATER PLAN

Using the RWPG-approved projections, the population projections for the Region B planning area are slightly less (4%) for the 2026 Regional Water Plan than projected in the 2021 Regional Plan. The municipal demands, considering the safe supply demands, are also slightly lower for the 2026 projections. Total demands are approximately 13% lower for the 2026 Regional Water Plan in 2030 and 11% lower in 2070. This is primarily driven by lower irrigation demands and significant reductions in mining water use. Water supply needs are substantially less in the 2026 Region Water Plan in 2030 than shown in the 2021 Regional Water Plan, because strategies have been implemented (e.g., Wichita Falls' reuse project) and there are lower irrigation demands.

The TWDB developed comparisons of the TWDB adopted information for the current 2026 Regional Water Plan to the 2021 Regional Water Plan differ from the comparison above for the population, demands, and needs by water user group. The comparisons for the water supplies to the WUGs and the source water are the same for the RWPG-adopted projections and TWDB-approved projections. The TWDB generated comparisons are contained in TWDB DB27 Report #7 –Water User Group (WUG) Data Comparison to 2021 Regional Water Plan (RWP) and TWDB DB27 Report #8 – Source Data Comparison to 2021 Regional Water Plan (RWP). Both reports are included in Appendix B.

#### 2.0 DETERMINING SOURCE AVAILABILITY

#### 2.1 SURFACE WATER

#### 2.1.1 Hydrologic Models

Surface water supplies in Region B are obtained mostly from the Red River basin. A small amount of surface water is also obtained from the Brazos and Trinity River basins. Reservoirs provide the majority of surface water supply, and about 95 percent of reservoir supply is from the Little Wichita and Wichita River supplies (Lake Kickapoo, Lake Arrowhead, Kemp/Diversion system). In accordance with regional planning rules and guidelines, Region B used the latest version of the TCEQ Water Availability Models (WAMs) with full authorization to determine surface water availability in each of the three river basins.

The RWPG requested hydrologic variances for all three river basins to use alternative availability assumptions other than firm yield for supply planning. The hydrologic variance for the Red River basin also included two additional variances. The first was a request to model Lakes Kemp and Diversion as a reservoir system rather than individual reservoirs in the WAM for supply planning. The second was a request for subordination of senior downstream water rights in Lake Texoma which caused an underestimation of Lake Arrowhead supply availability in the latest version of the Red River WAM. Further details regarding the subordination request are included in the Red River basin hydrologic variance request. These hydrologic variances were requested to reflect the current conditions and operations more accurately in the region.

These requested variances are detailed in a request letter to TWDB dated October 26, 2023, and an amended request letter dated November 27, 2023, both included in **Appendix C**. TWDB approved the RWPG's variance request in a letter dated January 4, 2024, also included in **Appendix C**.

The use of a 20 percent reserve storage at the end of the drought of record as reliable supplies for all Region B reservoirs was approved by the RWPG and by TWDB as a part of the hydrologic variances. After modeling reservoir supplies using the Red and Trinity WAMs, it was determined that a 20 percent reserve storage could only be achieved for Lakes Arrowhead, Kickapoo, Kemp/Diversion, and Nocona. Current water rights on Lake Nocona have a diversion limit of 1,260 ac-ft/yr which is less than the reliable supplies with 20% reserve storage. The water right diversion limit was used as the reliable supplies for Lake Nocona. For Lakes Amon Carter, Electra, North Fork Buffalo Creek, Olney/Cooper, and Santa Rosa, the "one-year safe yield" was used for reliable supplies since a 20% reserve storage could not be achieved.

The one-year safe yield is defined as the amount that can be diverted from the reservoir each year while leaving a one-year supply in storage at the end of the drought of record. Region B also uses some surface water supplies from Lake Greenbelt located in Region A. The reliable supplies for Greenbelt were determined by the Region A RWPG and use a one-year safe yield. **Table 2-1** presents the yields for major reservoirs in Region B. Existing water supplies provided by run-of-river water rights were determined using TCEQ WAM Run 3 for the Red, Trinity, and Brazos River Basins. Supplies are assumed to be constant for all planning decades.

Table 2-1: Estimated Firm Yield and Reliable Supply for Major Reservoirs in Region B (Acre-Feet/Year)

| Scenario                   | 2030                   | 2040                | 2050   | 2060   | 2070   | 2080   |  |  |  |  |
|----------------------------|------------------------|---------------------|--------|--------|--------|--------|--|--|--|--|
| LAKE KICKAPOO              |                        |                     |        |        |        |        |  |  |  |  |
| Firm Yield (ac-ft/yr)      | 11,800                 | 11,480              | 11,160 | 10,840 | 10,520 | 10,200 |  |  |  |  |
| Reliable Supply (ac-ft/yr) | 5,400                  | 5,060               | 4,720  | 4,380  | 4,040  | 3,700  |  |  |  |  |
|                            | LAKE A                 | RROWHEA             | D      |        |        |        |  |  |  |  |
| Firm Yield (ac-ft/yr)      | 21,500                 | 21,300              | 21,100 | 20,900 | 20,700 | 20,500 |  |  |  |  |
| Reliable Supply (ac-ft/yr) | 10,900                 | 10,220              | 9,540  | 8,860  | 8,180  | 7,500  |  |  |  |  |
| 1                          | KEMP/DIVI              | ERSION SYS          | STEM   |        |        |        |  |  |  |  |
| Firm Yield (ac-ft/yr)      | 46,500                 | 44,060              | 41,620 | 39,180 | 36,740 | 34,300 |  |  |  |  |
| Reliable Supply (ac-ft/yr) | 32,900                 | 31,340              | 29,780 | 28,220 | 26,660 | 25,100 |  |  |  |  |
|                            | LAKE                   | NOCONA <sup>1</sup> |        |        |        |        |  |  |  |  |
| Firm Yield (ac-ft/yr)      | 1,260                  | 1,260               | 1,260  | 1,260  | 1,260  | 1,260  |  |  |  |  |
| Reliable Supply (ac-ft/yr) | 1,260                  | 1,260               | 1,260  | 1,260  | 1,260  | 1,260  |  |  |  |  |
|                            | LAKE AN                | ION CARTI           | ER     |        |        |        |  |  |  |  |
| Firm Yield (ac-ft/yr)      | 1,400                  | 1,340               | 1,280  | 1,220  | 1,160  | 1,100  |  |  |  |  |
| Safe Yield (ac-ft/yr)      | 1,080                  | 1,018               | 956    | 894    | 832    | 770    |  |  |  |  |
| L                          | LAKES OLNEY AND COOPER |                     |        |        |        |        |  |  |  |  |
| Firm Yield (ac-ft/yr)      | 247                    | 228                 | 209    | 191    | 172    | 153    |  |  |  |  |
| Safe Yield (ac-ft/yr)      | 145                    | 133                 | 121    | 109    | 97     | 85     |  |  |  |  |

<sup>&</sup>lt;sup>1</sup>Firm yield and reliable supply with 20% reserve for Lake Nocona are greater than the water right diversion limit of 1,260 ac-ft/yr. The diversion limit is used as the firm yield and reliable supply for planning purposes.

#### 2.1.2 Versions and Dates of Hydrologic Models

The following information is required for the hydrologic models used to determine Source Water Availability. More discussion on Source Water Availability is included in **Section 1.2** of this report. The required details for each hydrologic model used are included in **Table 2-2** and the respective input and output files are provided electronically with this Technical Memorandum. Modifications to the surface water availability analysis are described in **Appendix C**, which contains the RWPG's letters of request for hydrologic variances. TWDB's response letter approving the requested modifications is also included in **Appendix C**. The analyses of surface water availability were carried out by Freese and Nichols, Inc.

Table 2-2: Hydrologic Models Used in Determining Surface Water Availability

| WAM Version | Date Used        | Run Used                                            | Model Inputs Files Used                                                                                                                                                                                                                                                                 | Model Outputs Files Used                                                                                                                                                                                                                                               | Comments                                      |
|-------------|------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------|
| Brazos WAM  | May 2023         | Region B<br>Modified WAM<br>Run 3 (October<br>2021) | Brazos_IrrigationBC.dat Brazos_IrrigationKC.dat                                                                                                                                                                                                                                         | Brazos_IrrigationBC.OUT Brazos_IrrigationKC.OUT                                                                                                                                                                                                                        | Used to determine run-of-river supplies       |
| May 2023    |                  | Region B<br>Modified WAM<br>Run 3 (October<br>2014) | Trin_IrrigationMC.dat                                                                                                                                                                                                                                                                   | Trin_IrrigationMC.OUT                                                                                                                                                                                                                                                  | Used to determine run-of-river supplies       |
| Trinity WAM | November<br>2023 | Region B<br>Modified WAM<br>Run 3 (October<br>2014) | trin3_AmonCarter_2030FY.dat<br>trin3_AmonCarter_2030SY.dat<br>trin3_AmonCarter_2080FY.dat<br>trin3_AmonCarter_2080SY.dat                                                                                                                                                                | trin3_AmonCarter_2030FY.OUT<br>trin3_AmonCarter_2030SY.OUT<br>trin3_AmonCarter_2080FY.OUT<br>trin3_AmonCarter_2080SY.OUT                                                                                                                                               | Used for firm and safe yields for Amon Carter |
| Red WAM     | April 2023       | Region B<br>Modified WAM<br>Run 3 (October<br>2021) | red3_IrrigationAC.dat red3_MuniAC.dat red3_IrrigationBC.dat red3_IndusCC.dat red3_IrrigationCC.dat red3_MinCC.dat red3_MunGreaterCC.dat red3_MuniCC.dat red3_IrrigationCoC.dat red3_IrrigationHC.dat red3_IrrigationHC.dat red3_OtherKC.dat red3_IrrigationMC.dat red3_IrrigationMC.dat | red3_IrrigationAC.OUT red3_MuniAC.OUT red3_IrrigationBC.OUT red3_IndusCC.OUT red3_IrrigationCC.OUT red3_MinCC.OUT red3_MunGreaterCC.OUT red3_MuniCC.OUT red3_IrrigationCOC.OUT red3_IrrigationHC.OUT red3_IrrigationHC.OUT red3_IrrigationMC.OUT red3_IrrigationMC.OUT | Used to determine<br>run-of-river supplies    |

Region B Technical Memorandum
Prepared for Texas Water Development Board on behalf of RWPG

| WAM Version | Date Used                                          | Run Used                                            | Model Inputs Files Used                                                                                                                                                                                                                                                              | Model Outputs Files Used                                                                                                                                                                                                                                                                     | Comments                                                                                      |
|-------------|----------------------------------------------------|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| Red WAM     | August<br>2023                                     | Region B<br>Modified WAM<br>Run 3 (October<br>2021) | red3_IrrigationWC.dat red3_MuniWC.dat red3_OtherWC.dat red3_IrrigationWLC.dat red3_MinWLC.dat red3_MuniWLC.dat                                                                                                                                                                       | red3_IrrigationWC.OUT red3_MuniWC.OUT red3_OtherWC.OUT red3_IrrigationWLC.OUT red3_MinWLC.OUT red3_MuniWLC.OUT                                                                                                                                                                               | Used to determine run-of-river supplies                                                       |
|             | November<br>2023                                   | Region B<br>Modified WAM<br>Run 3 (October<br>2021) | red3_Arrowhead_Kickapoo_2030FY.dat<br>red3_Arrowhead_Kickapoo_2030SY.dat<br>red3_Arrowhead_Kickapoo_2080FY.dat<br>red3_Arrowhead_Kickapoo_2080SY.dat<br>red3_Olney_Cooper_2030FY.dat<br>red3_Olney_Cooper_2030SY.dat<br>red3_Olney_Cooper_2080FY.dat<br>red3_Olney_Cooper_2080SY.dat | red3_Arrowhead_Kickapoo_2030FY.OUT red3_Arrowhead_Kickapoo_2030SY.OUT red3_Arrowhead_Kickapoo_2080FY.OUT red3_Arrowhead_Kickapoo_2080SY.OUT red3_Olney_Cooper_2030FY.OUT red3_Olney_Cooper_2030SY.OUT red3_Olney_Cooper_2080FY.OUT red3_Olney_Cooper_2080FY.OUT red3_Olney_Cooper_2080SY.OUT | Used for firm and<br>safe yields for<br>Arrowhead,<br>Kickapoo, Olney and<br>Cooper           |
| Red WAM     | Red WAM  December Modified V 2023 Run 3 (Oct 2021) |                                                     | red3_Kemp_Diversion_2030FY.dat red3_Kemp_Diversion_2030SY.dat red3_Kemp_Diversion_2080FY.dat red3_Kemp_Diversion_2080SY.dat red3_Nocona_2030FY.dat red3_Nocona_2030SY.dat red3_Nocona_2080FY.dat red3_Nocona_2080FY.dat red3_Nocona_2080FY.dat                                       | red3_Kemp_Diversion_2030FY.OUT red3_Kemp_Diversion_2030SY.OUT red3_Kemp_Diversion_2080FY.OUT red3_Kemp_Diversion_2080SY.OUT red3_Nocona_2030FY.OUT red3_Nocona_2030SY.OUT red3_Nocona_2080FY.OUT red3_Nocona_2080FY.OUT                                                                      | Used for Kemp,<br>Diversion and<br>Nocona firm and<br>safe yields                             |
|             | December<br>2023                                   | TCEQ WAM Run<br>3 (October<br>2021)                 | Electra_FY.dat Electra_SY.dat NFBC_FY.dat NFBC_SY.dat SantaRosa_FY.dat SantaRosa_SY.dat                                                                                                                                                                                              | Electra_FY.OUT Electra_SY.OUT NFBC_FY.OUT NFBC_SY.OUT SantaRosa_FY.OUT SantaRosa_SY.OUT                                                                                                                                                                                                      | Used for safe and<br>firm yields for<br>Electra, NF Buffalo<br>Creek, and Santa<br>Rosa lakes |

#### 2.1.3 Reservoir Sedimentation and Area-Capacity Calculation Methodology

For all major reservoirs in the Region B, which includes seven reservoirs in the Red Rivers basin and one (Amon Carter) in the Trinity Basin, anticipated sedimentation rates and revised area-capacity rating curves were developed to estimate reservoir storage in future decades (2030 – 2080). Anticipated sedimentation rates, expressed in acre-feet per square mile per year, were estimated for each major reservoir based on actual sediment surveys (part of a volumetric survey), published sedimentation rates, or comparing changes in conservation pool capacity between two or more reservoir surveys. The reservoirs were sliced into incremental storage volumes based on elevation, then a uniform reduction was applied to the horizontal surface area of each slice. New storage volumes were then calculated for each increment and added together to calculate the total storage at each elevation. Two standard methods were used to calculate revised incremental storage volumes. The simplest assumes that each incremental volume can be represented as a trapezoid (trapezoidal method), while the other assumes that each incremental volume is a cross-section of a cone (conical method). The method with the best fit to the original rating curve data was used. The data utilized for calculating anticipated sedimentation rates and revised areacapacity rating curves are shown in **Table 2-3** 

Table 2-3: Sedimentation Rates and Projected Storage Capacity of Major Reservoirs in Region B

| Reservoir      | Most | Recent Survey                      | 2026                                                  | Source of Sedimentation Rate                                                 | Sediment-                              | Projected                | Projected                |
|----------------|------|------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------|----------------------------------------|--------------------------|--------------------------|
|                | Year | Conservation Pool Capacity (ac-ft) | Sedimentation<br>Rate (ac-ft/yr/<br>mi <sup>2</sup> ) |                                                                              | Contributing<br>Drainage<br>Area (mi²) | 2030 Capacity<br>(ac-ft) | 2080 Capacity<br>(ac-ft) |
| Arrowhead      | 2013 | 230,359                            | 1.29                                                  | TWDB Volumetric Survey-<br>Derived Sedimentation Rate<br>(2013) <sup>1</sup> | 557                                    | 218,102                  | 182,053                  |
| Kickapoo       | 2013 | 86,345                             | 1.07                                                  | TWDB Volumetric Survey-<br>Derived Sedimentation Rate<br>(2013) <sup>2</sup> | 275                                    | 81,364                   | 66,715                   |
| Kemp           | 2006 | 245,434                            | 0.90                                                  | Calculated based on multiple historical volumetric surveys                   | 2,060                                  | 200,942                  | 108,254                  |
| Diversion      | 2013 | 35,234                             | 0.69                                                  | TWDB Volumetric Survey-<br>Derived Sedimentation Rate<br>(2013) <sup>3</sup> | 78                                     | 34,414                   | 31,736                   |
| Nocona         | 2001 | 21,749                             | 1.12                                                  | TWDB Volumetric Survey-<br>Derived Sedimentation Rate<br>(2001) <sup>4</sup> | 94                                     | 18,696                   | 13,431                   |
| Olney          | 2014 | 1,189                              | 1.68                                                  | TWDB Volumetric Survey-<br>Derived Sedimentation Rate<br>(2014) <sup>5</sup> | 7.1                                    | 994                      | 386                      |
| Cooper         | 2014 | 3,357                              | 1.56                                                  | TWDB Volumetric Survey-<br>Derived Sedimentation Rate<br>(2014) <sup>5</sup> | 12.2                                   | 3,052                    | 2,100                    |
| Amon<br>Carter | N/A  | N/A                                | 0.65                                                  | TBWE Bulletin 5912 <sup>6</sup>                                              | 100                                    | 25,670                   | 22,426                   |

#### 2.2 **GROUNDWATER**

#### 2.2.1 Written Summary of Modeled Available Groundwater (MAGs)

The geographic area of Region B includes two of the state-designated Groundwater Management Areas (GMAs), GMA6 and GMA8. The MAGs for Region B for this planning cycle came from GAM RUN 21-013 (for aquifers within GMA8) and GAM RUN 21-011 (for aquifers in GMA6). Aquifers in areas without a Groundwater Conservation District (GCD) and the Cross Timbers Aquifer were declared non-relevant because either there is no GCD to regulate the Desired Future Conditions or there is no GAM to determine the MAG. This affects much of the eastern part of Region B.

**Table 2-4** documents the GAM runs used to develop the groundwater availability for Region B, and **Table 2-5** lists the modeled available groundwater supplies. GR 21-011 includes the MAG volumes for the Trinity Aquifer in Montague County using the Northern Trinity and Woodbine Aquifers GAM. GR 21-013 summarizes the MAG volumes for the Seymour and Blaine Aquifers in Foard, Hardeman, Baylor, King and Cottle counties (except for Seymour aquifer Pod 7) using the Seymour Aquifer GAM and the Seymour Aquifer in Haskell, Knox, and Baylor Counties GAM.

Table 2-4: GAM Models Used in Determining Ground Water Availability

| GAM Version | Date Results Published / Date of Model Run | Model Inputs/ Outputs Files Used                                                                                                           | Comments                                |
|-------------|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|
| GR 21-011   | November 14,<br>2022                       | Version 2.01 Northern Trinity and Woodbine Aquifers GAM                                                                                    | Seymour and Blaine<br>Aquifers in GMA 6 |
| GR 21-013   | November 1,<br>2022                        | Version 1.01 Seymour and Blaine<br>Aquifers GAM (Except for Pod 7)<br>Seymour Aquifer in Haskell, Knox,<br>and Baylor Counties GAM (Pod 7) | Trinity Aquifer in GMA<br>8             |

Table 2-5: Modeled Available Groundwater Supplies in Region B

| rable 2 37 Modeled Available Croamawater Supplies in Region 5 |          |                                          |        |        |        |        |        |  |  |
|---------------------------------------------------------------|----------|------------------------------------------|--------|--------|--------|--------|--------|--|--|
| Aquifor                                                       | County   | Modeled Available Groundwater (ac-ft/yr) |        |        |        |        |        |  |  |
| Aquifer                                                       | County   | 2030                                     | 2040   | 2050   | 2060   | 2070   | 2080   |  |  |
| SEYMOUR (POD 4)                                               | FOARD    | 3,779                                    | 4,209  | 6,900  | 6,628  | 2,777  | 4,049  |  |  |
| SETIVIOUR (POD 4)                                             | HARDEMAN | 14,209                                   | 20,002 | 18,689 | 21,116 | 34,037 | 26,577 |  |  |
| SEYMOUR (PODS 7, 8)                                           | BAYLOR   | 7,330                                    | 6,962  | 6,731  | 6,593  | 6,930  | 5,722  |  |  |
|                                                               | COTTLE   | 11,621                                   | 11,621 | 11,621 | 11,621 | 11,621 | 11,621 |  |  |
| DLAINE                                                        | FOARD    | 6,565                                    | 6,565  | 6,565  | 6,565  | 6,565  | 6,565  |  |  |
| BLAINE                                                        | HARDEMAN | 8,465                                    | 8,465  | 8,465  | 8,465  | 8,465  | 8,465  |  |  |
|                                                               | KING     | 49                                       | 49     | 49     | 49     | 49     | 49     |  |  |
| TRINITY                                                       | MONTAGUE | 6,104                                    | 6,104  | 6,104  | 6,104  | 6,104  | 6,104  |  |  |

#### 2.2.2 Documented Methodologies Utilized for Non-MAG Availabilities

Non-MAG availabilities are determined by the RWPG for groundwater aquifers that the Joint Planning Process did not define a Desired Future Condition. This includes all aquifers declared non-relevant, including portions of major and minor aquifers, Cross Timbers Aquifer, and "Other Aquifer". For this planning cycle, these non-MAG availabilities are listed in **Table 2-5**. A memorandum describing the process for determining groundwater supplies is included in **Appendix D**. Region B re-adopted the non-MAG availabilities from the 2021 Regional Water Plan to use for the current plan at the August 2, 2023, RWPG meeting. For Other Aquifer availability for the 2026 Regional Water Plan, the availability values from the 2021 Region B Water Plan are used. Groundwater that was previously categorized as Other Aquifer is now listed as Cross Timbers Aquifer in Archer, Baylor, Clay, Montague, Wichita, and Young counties. Other Aquifer supplies are found in only Cottle, Foard, Hardeman, King, and Wilbarger counties.

The Seymour Aquifer availability values from the 2021 Region B Water Plan are used for Wichita, Archer, Wilbarger, and Clay counties. These values are based on the MAGs developed during the previous Joint Planning Process.

Table 2-6: Estimated Available Groundwater Supplies for Non-Relevant Aquifers and Other Aquifer

| Aquifer          | County    | Estimated Available Groundwater Supplies (ac-ft/yr) |        |        |        |        |        |  |  |
|------------------|-----------|-----------------------------------------------------|--------|--------|--------|--------|--------|--|--|
| Aquilei          | County    | 2030                                                | 2040   | 2050   | 2060   | 2070   | 2080   |  |  |
|                  | ARCHER    | 35                                                  | 35     | 35     | 35     | 35     | 35     |  |  |
| CEVACUE          | CLAY      | 787                                                 | 787    | 787    | 787    | 787    | 787    |  |  |
| SEYMOUR          | WICHITA   | 2,295                                               | 2,295  | 2,288  | 2,291  | 2,291  | 2,291  |  |  |
|                  | WILBARGER | 30,000                                              | 30,000 | 30,000 | 30,000 | 30,000 | 30,000 |  |  |
|                  | ARCHER    | 625                                                 | 625    | 625    | 625    | 625    | 625    |  |  |
|                  | BAYLOR    | 60                                                  | 60     | 60     | 60     | 60     | 60     |  |  |
| CROSS-           | CLAY      | 2,000                                               | 2,000  | 2,000  | 2,000  | 2,000  | 2,000  |  |  |
| TIMBERS          | MONTAGUE  | 4,000                                               | 4,000  | 4,000  | 4,000  | 4,000  | 4,000  |  |  |
|                  | WICHITA   | 840                                                 | 840    | 840    | 840    | 840    | 840    |  |  |
|                  | YOUNG     | 700                                                 | 700    | 700    | 700    | 700    | 700    |  |  |
|                  | COTTLE    | 1,800                                               | 1,800  | 1,800  | 1,800  | 1,800  | 1,800  |  |  |
| 071150           | FOARD     | 200                                                 | 200    | 200    | 200    | 200    | 200    |  |  |
| OTHER<br>AQUIFER | HARDEMAN  | 50                                                  | 50     | 50     | 50     | 50     | 50     |  |  |
| AQUILIN          | KING      | 650                                                 | 650    | 650    | 650    | 650    | 650    |  |  |
|                  | WILBARGER | 3,050                                               | 3,050  | 3,050  | 3,050  | 3,050  | 3,050  |  |  |

#### 3.0 POTENTIALLY FEASIBLE WATER MANAGEMENT STRATEGIES

#### 3.1 PROCESS FOR IDENTIFYING POTENTIALLY FEASIBLE WMS

The process for identifying potentially feasible water management strategies was presented at the November 15, 2023, RWPG meeting. There were no public comments and the RWPG approved the methodology. A copy of the presentation of the methodology is presented in **Appendix E**.

#### 3.2 LIST OF POTENTIALLY FEASIBLE WMS

A list of potentially feasible water management strategies is included in **Appendix F**. These strategies are based on preliminary discussions with wholesale water providers, water user survey responses, and recommendations from the 2021 regional water plan. During analysis and development of the regional water plan, other strategies may be identified and included in this list. The types of strategies considered include:

- Conservation (for all WUGs shown to have a need)
- Drought management
- Reuse
- Reallocation of storage/ change of use
- Purchase water from a provider (voluntary transfer)
- Conjunctive use (may be combined with other strategy types)
- Expansion of existing supplies
- Develop additional groundwater or surface water
  - Lake Ringgold
- Regional water supply
- Improvement of water quality
- Emergency transfer of water
- System optimization, subordination, and enhancement
- Brush control
- Precipitation enhancement
- Desalination
- Aquifer, storage and recovery (may be combined with other strategy types)
- Interbasin transfers
- Chloride control

#### 4.0 INFEASIBLE WMS FROM 2021 REGOINAL WATER PLAN

The methodology for identifying infeasible water management strategies was presented at the November 15, 2023, RWPG meeting. The methodology focused on WMS with online decades of 2020 to 2030. Forty total strategies were identified in those decades.

- 33 Conservation
- 2 Groundwater
- 1 Indirect Reuse
- 3 Voluntary Transfer
- 1 Reservoir

Infeasibility review is not required for conservation or voluntary transfer. The remaining four strategies need to demonstrate that the sponsor has taken affirmative action to implement the strategy which may include spending money, voting to spend money or applying for a federal or state permit.

Conservation, Voluntary transfer → Feasible, no review required
 Baylor SUD wells → Feasible, sponsor has taken action
 Vernon wells → Feasible, sponsor has taken action
 Lake Ringgold → Feasible, sponsor has taken action

• Indirect reuse (Bowie)  $\rightarrow$  Infeasible, sponsor has not taken action

#### 5.0 INTERREGIONAL COORDINATION

Memos were written to document coordination with Regions A, C, G, O. Copies of the memos are included as **Appendix G**.

#### 6.0 PUBLIC COMMENT

Per the TWDB Regional Planning Rules [31 TAC Section 357.21(c)(7)(C)], written comments from the public were accepted for the period of 14 days after the public meeting on February 7, 2024, when this Technical Memorandum was presented and considered for approval by the RWPG. Public comments were also accepted at this meeting; however, no public comments we received at the meeting or during the comment period from February 7, 2024, to February 23, 2024.

#### LIST OF REFERENCES

- 1. Texas Water Development Board. "Volumetric Survey of Lake Arrowhead. September 2013 Survey" February 2014.
- 2. Texas Water Development Board. "Volumetric Survey of Lake Kickapoo. September 2013 Survey" February 2014.
- 3. Texas Water Development Board. "Volumetric Survey of Lake Diversion. June 2013 Survey" March 2014.
- 4. Texas Water Development Board. "Volumetric Survey of Lake Nocona" July 17, 2002.
- 5. Texas Water Development Board. "Volumetric Survey of Lake Olney and Lake Cooper. April 2014 Surveys" February 2015.
- 6. Texas Board of Water Engineers. Bulletin 5912, "Inventory and Use of Sedimentation Data in Texas" Prepared by Soil Conservation Service (USDA). January 1959.

Region B Technical Memorandum
Prepared for Texas Water Development Board on behalf of RWPG

## **APPENDIX A WUG Summaries Based on RWPG Adopted Planning Data**

# APPENDIX A WUG SUMMARY TABLES MULTIPLE COUNTY

| Water User Group:                    | <b>Baylor Coun</b> | ty SUD - Arcl | ier, Baylor an | d Young Cou | nties |       |
|--------------------------------------|--------------------|---------------|----------------|-------------|-------|-------|
|                                      | 2030               | 2040          | 2050           | 2060        | 2070  | 2080  |
| Population - Archer                  | 180                | 175           | 170            | 165         | 160   | 155   |
| Population - Baylor                  | 1,019              | 1,029         | 1,076          | 1,099       | 1,121 | 1,145 |
| Population - Young                   | 239                | 242           | 245            | 252         | 259   | 266   |
| Population - Total                   | 1 420              | 1 446         | 1 401          | 1.516       | 1.540 | 1 566 |
| (number of persons)                  | 1,438              | 1,446         | 1,491          | 1,516       | 1,540 | 1,566 |
| Water Demand - Archer (ac-ft/yr)     | 45                 | 43            | 42             | 41          | 39    | 38    |
| Water Demand - Baylor (ac-ft/yr)     | 252                | 254           | 265            | 271         | 276   | 282   |
| Water Demand - Young (ac-ft/yr)      | 59                 | 60            | 60             | 62          | 64    | 66    |
| Water Demand - Total                 | 356                | 356           | 367            | 374         | 270   | 386   |
| (ac-ft/yr)                           | 350                | 350           | 307            | 3/4         | 379   | 380   |
| Current Supply - Seymour Aquifer     | 350                | 351           | 363            | 372         | 378   | 386   |
| Baylor County                        | 330                | 331           | 303            | 372         | 3/8   | 380   |
| Current Supply - Milllers Creek Lake |                    |               |                |             |       |       |
| Sales from North Central Texas       | 6                  | 5             | 4              | 2           | 1     | 0     |
| MWA                                  |                    |               |                |             |       |       |
| <b>Total Current Supply</b>          | 356                | 356           | 367            | 374         | 379   | 386   |
| Supply - Archer County               | 45                 | 43            | 42             | 41          | 39    | 38    |
| Supply - Baylor County               | 252                | 254           | 265            | 271         | 276   | 282   |
| Supply - Young County                | 59                 | 60            | 60             | 62          | 64    | 66    |
| Supply - Demand                      | 0                  | 0             | 0              | 0           | 0     | 0     |
| (ac-ft/yr)                           | 0                  | U             | U              | U           | U     | 0     |

| Water User Group:                                                      | Wichita Valley WSC - Archer and Wichita Counties |       |       |       |       |       |  |  |
|------------------------------------------------------------------------|--------------------------------------------------|-------|-------|-------|-------|-------|--|--|
|                                                                        | 2030                                             | 2040  | 2050  | 2060  | 2070  | 2080  |  |  |
| Population - Archer                                                    | 1,650                                            | 1,636 | 1,622 | 1,622 | 1,594 | 1,594 |  |  |
| Population - Wichita                                                   | 3,330                                            | 3,340 | 3,350 | 3,360 | 3,370 | 3,380 |  |  |
| Population - Total                                                     | 4.000                                            | 4.076 | 4.072 | 4 002 | 4.064 | 4.074 |  |  |
| (number of persons)                                                    | 4,980                                            | 4,976 | 4,972 | 4,982 | 4,964 | 4,974 |  |  |
| Water Demand - Archer (ac-ft/yr)                                       | 216                                              | 212   | 211   | 211   | 207   | 207   |  |  |
| Water Demand - Wichita (ac-ft/yr)                                      | 435                                              | 434   | 435   | 436   | 438   | 439   |  |  |
| Water Demand - Total                                                   | 650                                              | 646   | 646   | 647   | 615   | 646   |  |  |
| (ac-ft/yr)                                                             | 050                                              | 040   | 040   | 047   | 645   | 040   |  |  |
| Current Supply - treated and raw -                                     | 1,038                                            | 987   | 933   | 886   | 839   | 792   |  |  |
| Wichita Falls (ac-ft/yr)                                               | 1,036                                            | 767   | 755   | 880   | 637   | 172   |  |  |
| Current Supply - sales from Iowa                                       | 619                                              | 589   | 556   | 528   | 500   | 473   |  |  |
| Park (Wichita System) (ac-ft/yr)                                       | 017                                              | 307   | 220   | 320   | 200   | 173   |  |  |
| Current Supply - sales from Archer<br>City (Wichita System) (ac-ft/yr) | 37                                               | 35    | 33    | 31    | 30    | 28    |  |  |
| Total Current Supply                                                   | 1,694                                            | 1,611 | 1,522 | 1,445 | 1,369 | 1,293 |  |  |
| Supply - Archer County                                                 | 586                                              | 554   | 518   | 491   | 460   | 434   |  |  |
| Supply - Wichita County                                                | 1,108                                            | 1,057 | 1,004 | 954   | 909   | 859   |  |  |
| Supply - Demand                                                        | 1,044                                            | 965   | 876   | 798   | 724   | 647   |  |  |
| (ac-ft/yr)                                                             | 1,011                                            | 703   | 0,0   | 170   | /21   | 017   |  |  |

# APPENDIX A WUG SUMMARY TABLES MULTIPLE COUNTY

| Water User Group:                | Dean Dale SUD - Clay and Wichita Counties |       |       |       |       |         |  |  |
|----------------------------------|-------------------------------------------|-------|-------|-------|-------|---------|--|--|
|                                  | 2030                                      | 2040  | 2050  | 2060  | 2070  | 2080    |  |  |
| Population - Clay                | 1,743                                     | 1,800 | 1,861 | 1,930 | 1,996 | 2,060   |  |  |
| Population - Wichita             | 838                                       | 838   | 854   | 896   | 941   | 988     |  |  |
| Population - Total               | 2.501                                     | 2 (29 | 2.715 | 2.926 | 2.027 | 2 0 4 0 |  |  |
| (number of persons)              | 2,581                                     | 2,638 | 2,715 | 2,826 | 2,937 | 3,048   |  |  |
| Demand - Clay                    | 145                                       | 148   | 153   | 159   | 164   | 170     |  |  |
| Demand - Wichita                 | 70                                        | 69    | 70    | 74    | 77    | 81      |  |  |
| Water Demand                     | 21.4                                      | 217   | 222   | 222   | 242   | 251     |  |  |
| (ac-ft/yr)                       | 214                                       | 217   | 223   | 233   | 242   | 251     |  |  |
| Current Supply - Contracts w/    | 848                                       | 805   | 761   | 722   | 696   | 646     |  |  |
| Wichita Falls (ac-ft/yr)         | 040                                       | 803   | /61   | 122   | 686   | 040     |  |  |
| Current Supply - Seymour Aquifer | 0                                         | 0     | 0     | 0     | 0     | 0       |  |  |
| (ac-ft/yr)                       | U                                         | U     | U     | U     | U     | 0       |  |  |
| Total Current Supply             | 848                                       | 805   | 761   | 722   | 686   | 646     |  |  |
| Current Supply - Clay County     | 572                                       | 549   | 521   | 493   | 466   | 436     |  |  |
| Current Supply - Wichita County  | 276                                       | 256   | 240   | 229   | 220   | 210     |  |  |
| Supply - Demand                  | 634                                       | 588   | 538   | 489   | 444   | 395     |  |  |
| (ac-ft/yr)                       | 034                                       | 366   | 336   | 707   | 777   | 373     |  |  |

| Water User Group:                                         | Windthorst V | Windthorst WSC - Archer and Clay Counties |      |      |      |      |  |  |  |
|-----------------------------------------------------------|--------------|-------------------------------------------|------|------|------|------|--|--|--|
|                                                           | 2030         | 2040                                      | 2050 | 2060 | 2070 | 2080 |  |  |  |
| Population - Archer                                       | 686          | 680                                       | 675  | 664  | 653  | 642  |  |  |  |
| Population - Clay                                         | 325          | 320                                       | 310  | 305  | 300  | 300  |  |  |  |
| Population - Total                                        | 1,011        | 1,000                                     | 985  | 969  | 953  | 942  |  |  |  |
| (number of persons)                                       | 1,011        | 1,000                                     | 965  | 909  | 955  | 942  |  |  |  |
| Demand - Archer                                           | 232          | 229                                       | 228  | 224  | 220  | 217  |  |  |  |
| Demand - Clay                                             | 110          | 108                                       | 105  | 103  | 101  | 101  |  |  |  |
| Water Demand (ac-ft/yr)                                   | 342          | 337                                       | 332  | 327  | 322  | 318  |  |  |  |
| Current Supply - Contracts w/<br>Wichita Falls (ac-ft/yr) | 770          | 733                                       | 692  | 657  | 622  | 588  |  |  |  |
| Total Current Supply                                      | 770          | 733                                       | 692  | 657  | 622  | 588  |  |  |  |
| Current Supply - Archer County                            | 522          | 498                                       | 474  | 450  | 426  | 401  |  |  |  |
| Current Supply - Clay County                              | 248          | 235                                       | 218  | 207  | 196  | 187  |  |  |  |
| Supply - Demand<br>(ac-ft/yr)                             | 428          | 396                                       | 360  | 330  | 300  | 270  |  |  |  |

# APPENDIX A WUG SUMMARY TABLES MULTIPLE COUNTY

| Water User Group:                 | Harrold WS | C - Wichita aı | nd Wilbarger | Counties |      |      |
|-----------------------------------|------------|----------------|--------------|----------|------|------|
|                                   | 2030       | 2040           | 2050         | 2060     | 2070 | 2080 |
| Population - Wichita              | 66         | 66             | 66           | 66       | 66   | 66   |
| Population - Wilbarger            | 123        | 121            | 119          | 115      | 111  | 107  |
| Population - Total                | 189        | 187            | 185          | 181      | 177  | 173  |
| (number of persons)               | 109        | 10/            | 165          | 101      | 1//  | 1/3  |
| Demand - Wichita                  | 21         | 21             | 21           | 21       | 21   | 21   |
| Demand - Wilbarger                | 39         | 39             | 38           | 37       | 35   | 34   |
| Water Demand (ac-ft/yr)           | 60         | 60             | 59           | 58       | 56   | 55   |
| Current Supply - Electra          | 50         | 47             | 44           | 41       | 38   | 34   |
| Current Supply - Wichita County   | 17         | 17             | 16           | 15       | 14   | 13   |
| Current Supply - Wilbarger County | 33         | 30             | 28           | 26       | 24   | 21   |
| Supply - Demand<br>(ac-ft/yr)     | -10        | -13            | -15          | -17      | -18  | -21  |

| Water User Group:                         | Holliday - W | Holliday - Wichita and Archer Counties |       |       |       |       |  |  |
|-------------------------------------------|--------------|----------------------------------------|-------|-------|-------|-------|--|--|
|                                           | 2030         | 2040                                   | 2050  | 2060  | 2070  | 2080  |  |  |
| Population - Wichita                      | 33           | 33                                     | 32    | 32    | 31    | 31    |  |  |
| Population - Archer                       | 1,595        | 1,593                                  | 1,589 | 1,561 | 1,535 | 1,508 |  |  |
| Population - Total<br>(number of persons) | 1,628        | 1,625                                  | 1,621 | 1,593 | 1,566 | 1,539 |  |  |
| Demand - Wichita                          | 5            | 5                                      | 5     | 5     | 5     | 5     |  |  |
| Demand - Archer                           | 255          | 254                                    | 253   | 249   | 245   | 240   |  |  |
| Water Demand<br>(ac-ft/yr)                | 261          | 259                                    | 258   | 254   | 250   | 245   |  |  |
| Current Supply - Wichita Falls            | 226          | 214                                    | 202   | 193   | 182   | 173   |  |  |
| Current Supply - Wichita County           | 5            | 4                                      | 4     | 4     | 4     | 3     |  |  |
| Current Supply - Archer County            | 221          | 210                                    | 198   | 189   | 178   | 170   |  |  |
| Supply - Demand<br>(ac-ft/yr)             | -35          | -45                                    | -56   | -61   | -68   | -72   |  |  |

#### APPENDIX A WUG SUMMARY TABLES ARCHER COUNTY

| Water User Group:                                        | Archer City - | archer City - Archer |       |       |       |       |  |
|----------------------------------------------------------|---------------|----------------------|-------|-------|-------|-------|--|
|                                                          | 2030          | 2040                 | 2050  | 2060  | 2070  | 2080  |  |
| Population                                               | 1,683         | 1,668                | 1,654 | 1,625 | 1,597 | 1,570 |  |
| Water Demand<br>(ac-ft/yr)                               | 286           | 283                  | 280   | 275   | 271   | 266   |  |
| Current Supply - contract<br>w/ Wichita Falls (ac-ft/yr) | 399           | 380                  | 359   | 341   | 322   | 305   |  |
| Supply - Demand<br>(ac-ft/yr)                            | 113           | 97                   | 79    | 66    | 51    | 39    |  |

| Water User Group:                                        | Archer Count |       |       |       |       |       |
|----------------------------------------------------------|--------------|-------|-------|-------|-------|-------|
|                                                          | 2030         | 2040  | 2050  | 2060  | 2070  | 2080  |
| Population                                               | 1,179        | 1,170 | 1,160 | 1,150 | 1,140 | 1,130 |
| Water Demand<br>(ac-ft/yr)                               | 243          | 240   | 238   | 236   | 234   | 232   |
| Current Supply - contract<br>w/ Wichita Falls (ac-ft/yr) | 474          | 451   | 426   | 404   | 383   | 362   |
| Supply - Demand<br>(ac-ft/yr)                            | 231          | 211   | 188   | 168   | 149   | 130   |

| Water User Group:                                 | <b>Baylor Count</b> | Baylor County SUD - Archer |      |      |      |      |  |
|---------------------------------------------------|---------------------|----------------------------|------|------|------|------|--|
|                                                   | 2030                | 2040                       | 2050 | 2060 | 2070 | 2080 |  |
| Population                                        | 180                 | 175                        | 170  | 165  | 160  | 155  |  |
| Water Demand<br>(ac-ft/yr)                        | 45                  | 43                         | 42   | 41   | 39   | 38   |  |
| Current Supply - Seymour<br>Aquifer Baylor County | 45                  | 43                         | 42   | 41   | 39   | 38   |  |
| Supply - Demand<br>(ac-ft/yr)                     | 0                   | 0                          | 0    | 0    | 0    | 0    |  |

#### APPENDIX A WUG SUMMARY TABLES ARCHER COUNTY

| Water User Group:                                                    | County-Other |      |      |      |      |      |
|----------------------------------------------------------------------|--------------|------|------|------|------|------|
|                                                                      | 2030         | 2040 | 2050 | 2060 | 2070 | 2080 |
| Population<br>(number of persons)                                    | 262          | 260  | 257  | 252  | 247  | 243  |
| Water Demand<br>(ac-ft/yr)                                           | 51           | 50   | 50   | 49   | 48   | 47   |
| Current supply - Lake<br>Megargel                                    | 0            | 0    | 0    | 0    | 0    | 0    |
| Current Supply - Seymour<br>Aquifer Baylor County<br>from Baylor SUD | 15           | 15   | 15   | 15   | 15   | 15   |
| Current Supply - Cross<br>Timbers Aquifer                            | 36           | 35   | 35   | 34   | 33   | 32   |
| Supply - Demand<br>(ac-ft/yr)                                        | 0            | 0    | 0    | 0    | 0    | 0    |

| Water User Group:                               | Holliday - Are |       |       |       |       |       |
|-------------------------------------------------|----------------|-------|-------|-------|-------|-------|
|                                                 | 2030           | 2040  | 2050  | 2060  | 2070  | 2080  |
| Population (number of persons)                  | 1,595          | 1,593 | 1,589 | 1,561 | 1,535 | 1,508 |
| Water Demand<br>(ac-ft/yr)                      | 255            | 254   | 253   | 249   | 245   | 240   |
| Current Supply - Wichita<br>Falls<br>(ac-ft/yr) | 221            | 210   | 198   | 189   | 178   | 170   |
| Supply - Demand<br>(ac-ft/yr)                   | -34            | -44   | -55   | -60   | -67   | -70   |

| Water User Group:                               | Lakeside City | akeside City - Archer |       |       |       |       |  |
|-------------------------------------------------|---------------|-----------------------|-------|-------|-------|-------|--|
|                                                 | 2030          | 2040                  | 2050  | 2060  | 2070  | 2080  |  |
| Population (number of persons)                  | 1,179         | 1,170                 | 1,160 | 1,150 | 1,140 | 1,130 |  |
| Water Demand<br>(ac-ft/yr)                      | 162           | 160                   | 159   | 156   | 153   | 151   |  |
| Current Supply - Wichita<br>Falls<br>(ac-ft/yr) | 169           | 160                   | 152   | 143   | 137   | 129   |  |
| Supply - Demand<br>(ac-ft/yr)                   | 7             | 0                     | -7    | -13   | -16   | -22   |  |

| Water User Group:                                     | City of Scotla | nd   |      |      |      |      |
|-------------------------------------------------------|----------------|------|------|------|------|------|
|                                                       | 2030           | 2040 | 2050 | 2060 | 2070 | 2080 |
| Population (number of persons)                        | 375            | 370  | 365  | 360  | 355  | 350  |
| Water Demand<br>(ac-ft/yr)                            | 150            | 148  | 146  | 144  | 142  | 140  |
| Current Supply- Wichita<br>Falls System<br>(ac-ft/yr) | 150            | 150  | 150  | 150  | 150  | 144  |
| Supply - Demand<br>(ac-ft/yr)                         | 1              | 3    | 5    | 7    | 9    | 4    |

| Water User Group:                                                                                                  | Wichita Valle | y WSC - Arche | er    |       |       |       |
|--------------------------------------------------------------------------------------------------------------------|---------------|---------------|-------|-------|-------|-------|
|                                                                                                                    | 2030          | 2040          | 2050  | 2060  | 2070  | 2080  |
| Population (number of persons)                                                                                     | 1,650         | 1,636         | 1,622 | 1,622 | 1,594 | 1,594 |
| Water Demand<br>(ac-ft/yr)                                                                                         | 216           | 212           | 211   | 211   | 207   | 207   |
| Current Supply- Wichita<br>Falls System (Sales from<br>Wichita Falls, Iowa Park,<br>and Archer City)<br>(ac-ft/yr) | 586           | 554           | 518   | 491   | 460   | 434   |
| Supply - Demand<br>(ac-ft/yr)                                                                                      | 370           | 342           | 307   | 280   | 253   | 227   |

| Water User Group:                                           | Windthorst W | Windthorst WSC - Archer |       |       |       |       |  |
|-------------------------------------------------------------|--------------|-------------------------|-------|-------|-------|-------|--|
|                                                             | 2030         | 2040                    | 2050  | 2060  | 2070  | 2080  |  |
| Population (number of persons)                              | 1,019        | 1,029                   | 1,076 | 1,099 | 1,121 | 1,145 |  |
| Water Demand<br>(ac-ft/yr)                                  | 232          | 229                     | 228   | 224   | 220   | 217   |  |
| Current Supply - raw<br>water - Wichita Falls<br>(ac-ft/yr) | 522          | 498                     | 474   | 450   | 426   | 401   |  |
| Supply - Demand<br>(ac-ft/yr)                               | 290          | 269                     | 246   | 226   | 206   | 184   |  |

| Water User Group:                                               | Livestock - A | rcher |       |       |       |       |
|-----------------------------------------------------------------|---------------|-------|-------|-------|-------|-------|
|                                                                 | 2030          | 2040  | 2050  | 2060  | 2070  | 2080  |
| Water Demand<br>(ac-ft/yr)                                      | 1,686         | 1,686 | 1,686 | 1,686 | 1,686 | 1,686 |
| Current Supply stock<br>ponds<br>(ac-ft/yr)                     | 1,349         | 1,349 | 1,349 | 1,349 | 1,349 | 1,349 |
| Current Supply - Cross<br>Timbers Aquifer                       | 0             | 0     | 0     | 15    | 33    | 51    |
| Current Supply Lake<br>Kemp/Diversion (Dundee<br>Fish Hatchery) | 375           | 357   | 339   | 322   | 304   | 286   |
| Supply - Demand<br>(ac-ft/yr)                                   | 38            | 20    | 2     | 0     | 0     | 0     |

| Water User Group:                                    | Manufacturin |      |      |      |      |      |
|------------------------------------------------------|--------------|------|------|------|------|------|
|                                                      | 2030         | 2040 | 2050 | 2060 | 2070 | 2080 |
| Water Demand<br>(ac-ft/yr)                           | 1            | 1    | 1    | 1    | 1    | 1    |
| Current Supply - Cross<br>Timbers Aquifer (ac-ft/yr) | 1            | 1    | 1    | 1    | 1    | 1    |
| Supply - Demand<br>(ac-ft/yr)                        | 0            | 0    | 0    | 0    | 0    | 0    |

| Water User Group:                                    | Mining - Archer |      |      |      |      |      |  |  |
|------------------------------------------------------|-----------------|------|------|------|------|------|--|--|
|                                                      | 2030            | 2040 | 2050 | 2060 | 2070 | 2080 |  |  |
| Water Demand<br>(ac-ft/yr)                           | 1               | 1    | 1    | 1    | 1    | 1    |  |  |
| Current Supply - Cross<br>Timbers Aquifer (ac-ft/yr) | 1               | 1    | 1    | 1    | 1    | 1    |  |  |
| Supply - Demand<br>(ac-ft/yr)                        | 0               | 0    | 0    | 0    | 0    | 0    |  |  |

| Water User Group:                                                                          | Baylor County SUD - Baylor |       |       |       |       |       |
|--------------------------------------------------------------------------------------------|----------------------------|-------|-------|-------|-------|-------|
|                                                                                            | 2030                       | 2040  | 2050  | 2060  | 2070  | 2080  |
| Population<br>(number of persons)                                                          | 1,019                      | 1,029 | 1,076 | 1,099 | 1,121 | 1,145 |
| Water Demand<br>(ac-ft/yr)                                                                 | 252                        | 254   | 265   | 271   | 276   | 282   |
| Current Supply - Milllers Creek<br>Lake - Sales from North Central<br>Texas MWA (ac-ft/yr) |                            | 5     | 4     | 2     | 1     | 0     |
| Current Supply - Seymour<br>Aquifer Baylor County<br>(ac-ft/yr)                            | 246                        | 249   | 261   | 269   | 275   | 282   |
| Supply - Demand<br>(ac-ft/yr)                                                              | 0                          | 0     | 0     | 0     | 0     | 0     |

| Water User Group:                                       | County-Other - Baylor |      |      |      |      |      |
|---------------------------------------------------------|-----------------------|------|------|------|------|------|
|                                                         | 2030                  | 2040 | 2050 | 2060 | 2070 | 2080 |
| Population (number of persons)                          | 13                    | 13   | 12   | 11   | 11   | 11   |
| Water Demand<br>(ac-ft/yr)                              | 2                     | 2    | 1    | 1    | 1    | 1    |
| Current Supply - Seymour<br>Aquifer<br>(ac-ft/yr)       | 2                     | 2    | 1    | 1    | 1    | 1    |
| Current Supply - Cross Timbers<br>Aquifer<br>(ac-ft/yr) |                       |      |      |      |      |      |
| Supply - Demand<br>(ac-ft/yr)                           | 0                     | 0    | 0    | 0    | 0    | 0    |

| Water User Group:                                 |                |       |       |       |       |       |
|---------------------------------------------------|----------------|-------|-------|-------|-------|-------|
|                                                   | Irrigation - B | I     |       |       |       |       |
|                                                   | 2030           | 2040  | 2050  | 2060  | 2070  | 2080  |
| Water Demand<br>(ac-ft/yr)                        | 5,070          | 5,070 | 5,070 | 5,070 | 5,070 | 5,070 |
| Current Supply - Brazos<br>Run-of-river           | 13             | 13    | 13    | 13    | 13    | 13    |
| Current Supply - Seymour<br>Aquifer<br>(ac-ft/yr) | 5,058          | 5,058 | 5,058 | 5,058 | 5,058 | 4,776 |
| Supply - Demand<br>(ac-ft/yr)                     | 0              | 0     | 0     | 0     | 0     | -282  |

| Water User Group:                         | Livestock - Baylor |      |      |      |      |      |  |
|-------------------------------------------|--------------------|------|------|------|------|------|--|
|                                           | 2030               | 2040 | 2050 | 2060 | 2070 | 2080 |  |
| Water Demand<br>(ac-ft/yr)                | 963                | 963  | 963  | 963  | 963  | 963  |  |
| Current Supply Stock ponds (ac-ft/yr)     | 770                | 770  | 770  | 770  | 770  | 770  |  |
| Current Supply - Seymour<br>Aquifer       | 163                | 163  | 163  | 163  | 163  | 163  |  |
| Current Supply - Cross Timbers<br>Aquifer | 30                 | 30   | 30   | 30   | 30   | 30   |  |
| Supply - Demand<br>(ac-ft/yr)             | 0                  | 0    | 0    | 0    | 0    | 0    |  |

| Water User Group:                                       | Mining - Bay | lor  |      |      |      |      |
|---------------------------------------------------------|--------------|------|------|------|------|------|
|                                                         | 2030         | 2040 | 2050 | 2060 | 2070 | 2080 |
| Water Demand<br>(ac-ft/yr)                              | 10           | 10   | 10   | 10   | 10   | 10   |
| Current Supply - Seymour<br>Aquifer<br>(ac-ft/yr)       |              |      |      |      |      |      |
| Current Supply - Cross Timbers<br>Aquifer<br>(ac-ft/yr) | 10           | 10   | 10   | 10   | 10   | 10   |
| Supply - Demand<br>(ac-ft/yr)                           | 0            | 0    | 0    | 0    | 0    | 0    |

| Water User Group:                                                     | Seymour - Ba | ylor  |       |       |       |       |
|-----------------------------------------------------------------------|--------------|-------|-------|-------|-------|-------|
|                                                                       | 2030         | 2040  | 2050  | 2060  | 2070  | 2080  |
| Population (number of persons)                                        | 2,502        | 2,450 | 2,403 | 2,303 | 2,203 | 2,203 |
| Water Demand<br>(ac-ft/yr)                                            | 506          | 494   | 484   | 464   | 444   | 444   |
| Current Supply - Seymour<br>Aquifer<br>(ac-ft/yr)                     | 443          | 431   | 421   | 401   | 381   | 381   |
| Current Supply - Direct Reuse<br>Golf Course Irrigation<br>(ac-ft/yr) | 63           | 63    | 63    | 63    | 63    | 63    |
| Supply - Demand<br>(ac-ft/yr)                                         | 0            | 0     | 0     | 0     | 0     | 0     |

| Water User Group:                                      | County-Other | r - Clay |       |       |       |       |
|--------------------------------------------------------|--------------|----------|-------|-------|-------|-------|
|                                                        | 2030         | 2040     | 2050  | 2060  | 2070  | 2080  |
| Population (number of persons)                         | 3,307        | 3,257    | 3,204 | 3,104 | 3,008 | 2,914 |
| Water Demand<br>(ac-ft/yr)                             | 452          | 443      | 436   | 422   | 409   | 396   |
| Current Supply - Seymour<br>Aquifer<br>(ac-ft/yr)      | 170          | 170      | 170   | 170   | 170   | 170   |
| Current Supply - Cross<br>TimbersAquifer<br>(ac-ft/yr) | 330          | 330      | 330   | 330   | 330   | 330   |
| Supply - Demand<br>(ac-ft/yr)                          | 48           | 57       | 64    | 78    | 91    | 104   |

| Water User Group:                                         | Dean Dale SU |       |       |       |       |       |
|-----------------------------------------------------------|--------------|-------|-------|-------|-------|-------|
|                                                           | 2030         | 2040  | 2050  | 2060  | 2070  | 2080  |
| Population<br>(number of persons)                         | 1,743        | 1,800 | 1,861 | 1,930 | 1,996 | 2,060 |
| Water Demand<br>(ac-ft/yr)                                | 145          | 148   | 153   | 159   | 164   | 170   |
| Current Supply - Contracts<br>w/ Wichita Falls (ac-ft/yr) | 572          | 549   | 521   | 493   | 466   | 436   |
| Current Supply - Seymour<br>Aquifer<br>(ac-ft/yr)         | 0            | 0     | 0     | 0     | 0     | 0     |
| Supply - Demand<br>(ac-ft/yr)                             | 427          | 401   | 368   | 334   | 302   | 266   |

| Water User Group:                              | Henrietta - C |       |       |       |       |       |
|------------------------------------------------|---------------|-------|-------|-------|-------|-------|
|                                                | 2030          | 2040  | 2050  | 2060  | 2070  | 2080  |
| Population (number of persons)                 | 3,317         | 3,332 | 3,350 | 3,350 | 3,350 | 3,350 |
| Water Demand<br>(ac-ft/yr)                     | 744           | 745   | 749   | 749   | 749   | 749   |
| Current Supply -<br>Run-of-river<br>(ac-ft/yr) | 1,130         | 1,130 | 1,130 | 1,130 | 1,130 | 1,130 |
| Supply - Demand<br>(ac-ft/yr)                  | 386           | 385   | 381   | 381   | 381   | 381   |

| Water User Group:                                       | Irrigation - C |       |       |       |       |       |
|---------------------------------------------------------|----------------|-------|-------|-------|-------|-------|
|                                                         | 2030           | 2040  | 2050  | 2060  | 2070  | 2080  |
| Water Demand (ac-ft/yr)                                 | 1,358          | 1,358 | 1,358 | 1,358 | 1,358 | 1,358 |
| Current Supply - Lake<br>Kemp (ac-ft/yr)                | 80             | 76    | 73    | 69    | 65    | 61    |
| Current supply -<br>Run-of-river                        | 1,241          | 1,241 | 1,241 | 1,241 | 1,241 | 1,241 |
| Current Supply - Seymour<br>Aquifer<br>(ac-ft/yr)       | 587            | 587   | 587   | 587   | 587   | 587   |
| Current Supply - Cross<br>Timbers Aquifer<br>(ac-ft/yr) | 600            | 600   | 600   | 600   | 600   | 600   |
| Supply - Demand<br>(ac-ft/yr)                           | 1,150          | 1,146 | 1,143 | 1,139 | 1,135 | 1,131 |

| Water User Group:                                  | Livestock - C |       |       |       |       |       |
|----------------------------------------------------|---------------|-------|-------|-------|-------|-------|
|                                                    | 2030          | 2040  | 2050  | 2060  | 2070  | 2080  |
| Population                                         |               |       |       |       |       |       |
| Water Demand<br>(ac-ft/yr)                         | 1,443         | 1,443 | 1,443 | 1,443 | 1,443 | 1,443 |
| Current Supply Stock<br>Ponds (ac-ft/yr)           | 1,227         | 1,227 | 1,227 | 1,227 | 1,227 | 1,227 |
| Current Supply Cross<br>Timbers Aquifer (ac-ft/yr) | 190           | 190   | 190   | 190   | 190   | 190   |
| Current Supply - Seymour<br>Aquifer<br>(ac-ft/yr)  | 30            | 30    | 30    | 30    | 30    | 30    |
| Supply - Demand<br>(ac-ft/yr)                      | 4             | 4     | 4     | 4     | 4     | 4     |

| Water User Group:                              | Mining - Clay |      |      |      |          |      |
|------------------------------------------------|---------------|------|------|------|----------|------|
|                                                | 2030          | 2040 | 2050 | 2060 | 2070     | 2080 |
| Population                                     |               |      |      |      |          |      |
| Water Demand                                   | 4             | 4    | 4    | 4    | 4        | 4    |
| (ac-ft/yr)                                     | Т.            | -    | 7    | 7    | 7        | 7    |
| Current Supply                                 | 1             | 1    | 1    | 1    | 1        | 1    |
| Red Run-of-River                               | 1             | •    | 1    | •    | <u>.</u> | 1    |
| Current Supply<br>Cross Timbers Aquifer        | 3             | 3    | 3    | 3    | 3        | 3    |
| Current Supply - Seymour<br>Aquifer (ac-ft/yr) | 0             | 0    | 0    | 0    | 0        | 0    |
| Supply - Demand<br>(ac-ft/yr)                  | 0             | 0    | 0    | 0    | 0        | 0    |

| Water User Group:                  | Red River Au | Red River Authority - Clay |       |       |       |       |  |
|------------------------------------|--------------|----------------------------|-------|-------|-------|-------|--|
|                                    | 2030         | 2040                       | 2050  | 2060  | 2070  | 2080  |  |
| Population (number of persons)     | 1,770        | 1,765                      | 1,760 | 1,755 | 1,750 | 1,745 |  |
| Water Demand<br>(ac-ft/yr)         | 491          | 488                        | 486   | 485   | 484   | 482   |  |
| Current Supply - Lake<br>Arrowhead | 383          | 363                        | 344   | 326   | 309   | 293   |  |
| Supply - Demand<br>(ac-ft/yr)      | -108         | -125                       | -142  | -159  | -175  | -189  |  |

| Water User Group:                                     | Windthorst V | Windthorst WSC - Clay |      |      |      |      |  |
|-------------------------------------------------------|--------------|-----------------------|------|------|------|------|--|
|                                                       | 2030         | 2040                  | 2050 | 2060 | 2070 | 2080 |  |
| Population<br>(number of persons)                     | 325          | 320                   | 310  | 305  | 300  | 300  |  |
| Water Demand<br>(ac-ft/yr)                            | 110          | 108                   | 105  | 103  | 101  | 101  |  |
| Current Supply - Sales<br>Wichita Falls<br>(ac-ft/yr) | 248          | 235                   | 218  | 207  | 196  | 187  |  |
| Supply - Demand<br>(ac-ft/yr)                         | 138          | 127                   | 113  | 104  | 95   | 86   |  |

| Water User Group:                             | County-Othe | County-Other - Cottle |      |      |      |      |  |
|-----------------------------------------------|-------------|-----------------------|------|------|------|------|--|
|                                               | 2030        | 2040                  | 2050 | 2060 | 2070 | 2080 |  |
| Population<br>(number of persons)             | 215         | 210                   | 205  | 200  | 195  | 190  |  |
| Water Demand<br>(ac-ft/yr)                    | 33          | 32                    | 31   | 30   | 30   | 29   |  |
| Current Supply<br>Other Aquifer<br>(ac-ft/yr) | 33          | 32                    | 31   | 30   | 30   | 29   |  |
| Supply - Demand<br>(ac-ft/yr)                 | 0           | 0                     | 0    | 0    | 0    | 0    |  |

| Water User Group:                              | Irrigation - Cottle |       |       |       |       |       |
|------------------------------------------------|---------------------|-------|-------|-------|-------|-------|
|                                                | 2030                | 2040  | 2050  | 2060  | 2070  | 2080  |
| Population                                     |                     |       |       |       |       |       |
| Water Demand<br>(ac-ft/yr)                     | 4,319               | 4,319 | 4,319 | 4,319 | 4,319 | 4,319 |
| Current Supply<br>Blaine Aquifer<br>(ac-ft/yr) | 2,708               | 2,708 | 2,708 | 2,708 | 2,708 | 2,708 |
| Current Supply Other<br>Aquifer (ac-ft/yr)     | 1,600               | 1,600 | 1,600 | 1,600 | 1,600 | 1,600 |
| Current Supply<br>Run of River<br>(ac-ft/yr)   | 11                  | 11    | 11    | 11    | 11    | 11    |
| Supply - Demand<br>(ac-ft/yr)                  | 0                   | 0     | 0     | 0     | 0     | 0     |

| Water User Group:                              | Livestock - C |      |      |      |      |      |
|------------------------------------------------|---------------|------|------|------|------|------|
|                                                | 2030          | 2040 | 2050 | 2060 | 2070 | 2080 |
| Population                                     |               |      |      |      |      |      |
| Water Demand<br>(ac-ft/yr)                     | 376           | 376  | 376  | 376  | 376  | 376  |
| Current Supply<br>Blaine Aquifer<br>(ac-ft/yr) | 225           | 225  | 225  | 225  | 225  | 225  |
| Current Supply Other Aquifer (ac-ft/yr)        | 55            | 55   | 55   | 55   | 55   | 55   |
| Current Supply<br>Stock Ponds<br>(ac-ft/yr)    | 113           | 113  | 113  | 113  | 113  | 113  |
| Supply - Demand<br>(ac-ft/yr)                  | 17            | 17   | 17   | 17   | 17   | 17   |

| Water User Group:                              | Mining - Cott |      |      |      |      |      |
|------------------------------------------------|---------------|------|------|------|------|------|
|                                                | 2030          | 2040 | 2050 | 2060 | 2070 | 2080 |
| Population                                     |               |      |      |      |      |      |
| Water Demand<br>(ac-ft/yr)                     | 6             | 6    | 6    | 6    | 6    | 6    |
| Current Supply Blaine<br>Aquifer<br>(ac-ft/yr) | 6             | 6    | 6    | 6    | 6    | 6    |
| Supply - Demand<br>(ac-ft/yr)                  | 0             | 0    | 0    | 0    | 0    | 0    |

| Water User Group:                                | Paducah - Co | Paducah - Cottle |       |       |      |      |  |  |
|--------------------------------------------------|--------------|------------------|-------|-------|------|------|--|--|
|                                                  | 2030         | 2040             | 2050  | 2060  | 2070 | 2080 |  |  |
| Population                                       | 1,090        | 1,065            | 1,030 | 1,004 | 981  | 981  |  |  |
| Water Demand<br>(ac-ft/yr)                       | 298          | 254              | 253   | 249   | 245  | 240  |  |  |
| Current Supply - Blaine<br>Aquifer<br>(ac-ft/yr) | 298          | 254              | 253   | 249   | 245  | 240  |  |  |
| Supply - Demand<br>(ac-ft/yr)                    | 0            | 0                | 0     | 0     | 0    | 0    |  |  |

| Water User Group:                 | Red River Au | Red River Authority - Cottle |      |      |      |      |  |
|-----------------------------------|--------------|------------------------------|------|------|------|------|--|
|                                   | 2030         | 2040                         | 2050 | 2060 | 2070 | 2080 |  |
| Population<br>(number of persons) | 103          | 104                          | 105  | 107  | 110  | 110  |  |
| Water Demand<br>(ac-ft/yr)        | 29           | 29                           | 29   | 30   | 30   | 30   |  |
| Current Supply - Other<br>Aquifer | 29           | 29                           | 29   | 30   | 30   | 30   |  |
| Supply - Demand<br>(ac-ft/yr)     | 0            | 0                            | 0    | 0    | 0    | 0    |  |

| Water User Group:                                       | County-Other - Foard |      |      |      |      |      |  |
|---------------------------------------------------------|----------------------|------|------|------|------|------|--|
|                                                         | 2030                 | 2040 | 2050 | 2060 | 2070 | 2080 |  |
| Population (number of persons)                          | 84                   | 83   | 82   | 80   | 78   | 76   |  |
| Water Demand<br>(ac-ft/yr)                              | 17                   | 17   | 17   | 17   | 16   | 16   |  |
| Current Supply<br>Seymour Aquifer (Pod 4)<br>(ac-ft/yr) | 17                   | 17   | 17   | 17   | 16   | 16   |  |
| Supply - Demand<br>(ac-ft/yr)                           | 0                    | 0    | 0    | 0    | 0    | 0    |  |

| Water User Group:                                                                  | Crowell - Foa | Crowell - Foard |      |      |      |      |  |  |
|------------------------------------------------------------------------------------|---------------|-----------------|------|------|------|------|--|--|
|                                                                                    | 2030          | 2040            | 2050 | 2060 | 2070 | 2080 |  |  |
| Population (number of persons)                                                     | 771           | 764             | 756  | 741  | 726  | 711  |  |  |
| Water Demand<br>(ac-ft/yr)                                                         | 120           | 119             | 117  | 115  | 113  | 110  |  |  |
| Current Supply (Greenbelt<br>MIWA)<br>Greenbelt Reservoir<br>(ac-ft/yr)            | 80            | 78              | 76   | 75   | 74   | 74   |  |  |
| Current Supply (Greenbelt<br>MIWA)<br>Ogallala Aquifer Donley County<br>(ac-ft/yr) | 41            | 41              | 41   | 40   | 39   | 37   |  |  |
| Supply - Demand<br>(ac-ft/yr)                                                      | 1             | 0               | 0    | 0    | 0    | 1    |  |  |

| Water User Group:                               | Irrigation - Foard |       |       |       |       |       |  |  |
|-------------------------------------------------|--------------------|-------|-------|-------|-------|-------|--|--|
|                                                 | 2030               | 2040  | 2050  | 2060  | 2070  | 2080  |  |  |
| Population (number of persons)                  |                    |       |       |       |       |       |  |  |
| Water Demand<br>(ac-ft/yr)                      | 2,489              | 2,489 | 2,489 | 2,489 | 2,489 | 2,489 |  |  |
| Current Supply<br>Seymour Aquifer<br>(ac-ft/yr) | 3,000              | 3,000 | 3,000 | 3,000 | 2,761 | 3,000 |  |  |
| Current Supply<br>Blaine Aquifer<br>(ac-ft/yr)  | 200                | 200   | 200   | 200   | 200   | 200   |  |  |
| Current Supply Other Aquifer (ac-ft/yr)         | 100                | 100   | 100   | 100   | 100   | 100   |  |  |
| Supply - Demand<br>(ac-ft/yr)                   | 811                | 811   | 811   | 811   | 572   | 811   |  |  |

| Water User Group:   | Livestock - F | oard |      |      |      |      |
|---------------------|---------------|------|------|------|------|------|
|                     | 2030          | 2040 | 2050 | 2060 | 2070 | 2080 |
| Population          |               |      |      |      |      |      |
| (number of persons) |               |      |      |      |      |      |
| Water Demand        | 379           | 379  | 379  | 379  | 379  | 379  |
| (ac-ft/yr)          | 319           | 319  | 3/9  | 379  | 379  | 379  |
| Current Supply      |               |      |      |      |      |      |
| Other Aquifer       | 8             | 8    | 8    | 8    | 8    | 8    |
| (ac-ft/yr)          |               |      |      |      |      |      |
| Current Supply      |               |      |      |      |      |      |
| Blaine Aquifer      | 30            | 30   | 30   | 30   | 30   | 30   |
| (ac-ft/yr)          |               |      |      |      |      |      |
| Current Supply      |               |      |      |      |      |      |
| Stock Ponds         | 341           | 341  | 341  | 341  | 341  | 341  |
| (ac-ft/yr)          |               |      |      |      |      |      |
| Supply - Demand     | 0             | 0    | 0    | 0    | 0    | 0    |
| (ac-ft/yr)          | U             | U    | 0    | 0    | U    | 0    |

| Water User Group:   | Mining - Foar | rd   |      |      |      |      |
|---------------------|---------------|------|------|------|------|------|
|                     | 2030          | 2040 | 2050 | 2060 | 2070 | 2080 |
| Population          |               |      |      |      |      |      |
| (number of persons) |               |      |      |      |      |      |
| Water Demand        | 0             | 0    | 0    | 0    | 0    | 0    |
| (ac-ft/yr)          | U             | U    | U    | U    | U    | U    |
| Current Supply      |               |      |      |      |      |      |
| Other Aquifer       | 0             | 0    | 0    | 0    | 0    | 0    |
| (ac-ft/yr)          |               |      |      |      |      |      |
| Supply - Demand     | 0             | 0    | 0    | 0    | 0    | 0    |
| (ac-ft/yr)          |               | 0    |      | U    | U    | U    |

| Water User Group:                                                                  | Red River Au | ıthority - Foar | d    |      |      |      |
|------------------------------------------------------------------------------------|--------------|-----------------|------|------|------|------|
|                                                                                    | 2030         | 2040            | 2050 | 2060 | 2070 | 2080 |
| Population (number of persons)                                                     | 262          | 264             | 267  | 272  | 277  | 282  |
| Water Demand<br>(ac-ft/yr)                                                         | 73           | 73              | 74   | 75   | 77   | 78   |
| Current Supply (Greenbelt<br>MIWA)<br>Greenbelt Reservoir<br>(ac-ft/yr)            | 48           | 48              | 48   | 49   | 51   | 52   |
| Current Supply (Greenbelt<br>MIWA)<br>Ogallala Aquifer Donley County<br>(ac-ft/yr) | 25           | 25              | 26   | 26   | 26   | 26   |
| Supply - Demand<br>(ac-ft/yr)                                                      | 0            | 0               | 0    | 0    | 0    | 0    |

## APPENDIX A WUG SUMMARY TABLES HARDEMAN COUNTY

| Water User Group:                                                          | Chillicothe - l | Hardeman |      |      |      |      |
|----------------------------------------------------------------------------|-----------------|----------|------|------|------|------|
|                                                                            | 2030            | 2040     | 2050 | 2060 | 2070 | 2080 |
| Population (number of persons)                                             | 508             | 505      | 500  | 493  | 486  | 479  |
| Water Demand<br>(ac-ft/yr)                                                 | 72              | 71       | 71   | 70   | 69   | 68   |
| Current Supply (Greenbelt<br>MIWA)<br>Greenbelt Reservoir<br>(ac-ft/yr)    | 19              | 19       | 18   | 18   | 18   | 18   |
| Current Supply (Greenbelt<br>MIWA)<br>Ogallala Donley County<br>(ac-ft/yr) | 10              | 10       | 10   | 10   | 9    | 9    |
| Current Supply<br>Seymour Aquifer<br>(ac-ft/yr)                            | 43              | 43       | 42   | 42   | 41   | 41   |
| Supply - Demand<br>(ac-ft/yr)                                              | 0               | 0        | 0    | 0    | 0    | 0    |

| Water User Group:                               | County-Othe | r - Hardeman |      |      |      |      |
|-------------------------------------------------|-------------|--------------|------|------|------|------|
|                                                 | 2030        | 2040         | 2050 | 2060 | 2070 | 2080 |
| Population (number of persons)                  | 273         | 271          | 269  | 269  | 257  | 244  |
| Water Demand<br>(ac-ft/yr)                      | 49          | 48           | 48   | 48   | 46   | 43   |
| Current Supply<br>Seymour Aquifer<br>(ac-ft/yr) | 36          | 36           | 36   | 36   | 36   | 36   |
| Current Supply<br>Blaine Aquifer<br>(ac-ft/yr)  | 14          | 14           | 14   | 14   | 14   | 14   |
| Supply - Demand<br>(ac-ft/yr)                   | 1           | 2            | 2    | 2    | 4    | 7    |

| Water User Group:                               | Irrigation - H | ardeman |        |        |        |        |
|-------------------------------------------------|----------------|---------|--------|--------|--------|--------|
|                                                 | 2030           | 2040    | 2050   | 2060   | 2070   | 2080   |
| Water Demand<br>(ac-ft/yr)                      | 18,290         | 18,290  | 18,290 | 18,290 | 18,290 | 18,290 |
| Current Supply<br>Blaine Aquifer<br>(ac-ft/yr)  | 6,444          | 6,444   | 6,444  | 6,444  | 6,444  | 6,444  |
| Current Supply<br>Run-of-river                  | 141            | 141     | 141    | 141    | 141    | 141    |
| Current Supply<br>Seymour Aquifer<br>(ac-ft/yr) | 11,846         | 11,846  | 11,846 | 11,846 | 11,846 | 11,846 |
| Supply - Demand<br>(ac-ft/yr)                   | 141            | 141     | 141    | 141    | 141    | 141    |

## APPENDIX A WUG SUMMARY TABLES HARDEMAN COUNTY

| Water User Group:                               | Livestock - H | ardeman |      |      |      |      |
|-------------------------------------------------|---------------|---------|------|------|------|------|
|                                                 | 2030          | 2040    | 2050 | 2060 | 2070 | 2080 |
| Water Demand<br>(ac-ft/yr)                      | 387           | 387     | 387  | 387  | 387  | 387  |
| Current Supply<br>Seymour Aquifer<br>(ac-ft/yr) | 40            | 40      | 40   | 40   | 40   | 40   |
| Current Supply<br>Blaine Aquifer<br>(ac-ft/yr)  | 120           | 120     | 120  | 120  | 120  | 120  |
| Current Supply<br>Other Aquifer<br>(ac-ft/yr)   | 50            | 50      | 50   | 50   | 50   | 50   |
| Current Supply<br>Stock Ponds<br>(ac-ft/yr)     | 232           | 232     | 232  | 232  | 232  | 232  |
| Supply - Demand<br>(ac-ft/yr)                   | 55            | 55      | 55   | 55   | 55   | 55   |

| Water User Group:                                                          | Manufacturii | ng - Hardemar | 1    |      |      |      |
|----------------------------------------------------------------------------|--------------|---------------|------|------|------|------|
|                                                                            | 2030         | 2040          | 2050 | 2060 | 2070 | 2080 |
| Water Demand<br>(ac-ft/yr)                                                 | 225          | 233           | 242  | 251  | 260  | 270  |
| Current Supply Blaine<br>Aquifer                                           | 175          | 183           | 192  | 201  | 210  | 220  |
| Current Supply (Greenbelt<br>MIWA)<br>Greenbelt Reservoir<br>(ac-ft/yr)    | 33           | 33            | 32   | 33   | 33   | 33   |
| Current Supply (Greenbelt<br>MIWA)<br>Ogallala Donley County<br>(ac-ft/yr) | 17           | 17            | 18   | 17   | 17   | 17   |
| Supply - Demand<br>(ac-ft/yr)                                              | 0            | 0             | 0    | 0    | 0    | 0    |

## APPENDIX A WUG SUMMARY TABLES HARDEMAN COUNTY

| Water User Group:                              | Mining - Har | Mining - Hardeman |      |      |      |      |  |  |
|------------------------------------------------|--------------|-------------------|------|------|------|------|--|--|
|                                                | 2030         | 2040              | 2050 | 2060 | 2070 | 2080 |  |  |
| Water Demand<br>(ac-ft/yr)                     | 5            | 5                 | 5    | 5    | 5    | 5    |  |  |
| Current Supply<br>Blaine Aquifer<br>(ac-ft/yr) | 5            | 5                 | 5    | 5    | 5    | 5    |  |  |
| Supply - Demand<br>(ac-ft/yr)                  | 0            | 0                 | 0    | 0    | 0    | 0    |  |  |

| Water User Group:                                                          | Quanah - Hai | Quanah - Hardeman |       |       |       |       |  |  |
|----------------------------------------------------------------------------|--------------|-------------------|-------|-------|-------|-------|--|--|
|                                                                            | 2030         | 2040              | 2050  | 2060  | 2070  | 2080  |  |  |
| Population (number of persons)                                             | 2,135        | 2,121             | 2,106 | 2,078 | 2,050 | 2,022 |  |  |
| Water Demand (ac-ft/yr)                                                    | 347          | 343               | 340   | 336   | 331   | 327   |  |  |
| Current Supply (Greenbelt<br>MIWA)<br>Greenbelt Reservoir<br>(ac-ft/yr)    | 230          | 224               | 221   | 219   | 217   | 218   |  |  |
| Current Supply (Greenbelt<br>MIWA)<br>Ogallala Donley County<br>(ac-ft/yr) | 117          | 119               | 119   | 117   | 114   | 109   |  |  |
| Supply - Demand<br>(ac-ft/yr)                                              | 0            | 0                 | 0     | 0     | 0     | 0     |  |  |

| Water User Group:                                                          | Red River Au | Red River Authority - Hardeman |      |      |      |      |  |  |
|----------------------------------------------------------------------------|--------------|--------------------------------|------|------|------|------|--|--|
|                                                                            | 2030         | 2040                           | 2050 | 2060 | 2070 | 2080 |  |  |
| Population (number of persons)                                             | 704          | 700                            | 694  | 684  | 674  | 664  |  |  |
| Water Demand<br>(ac-ft/yr)                                                 | 195          | 193                            | 192  | 189  | 186  | 184  |  |  |
| Current Supply (Greenbelt<br>MIWA)<br>Greenbelt Reservoir<br>(ac-ft/yr)    | 129          | 126                            | 125  | 123  | 122  | 122  |  |  |
| Current Supply (Greenbelt<br>MIWA)<br>Ogallala Donley County<br>(ac-ft/yr) | 66           | 67                             | 67   | 66   | 64   | 62   |  |  |
| Supply - Demand<br>(ac-ft/yr)                                              | 0            | 0                              | 0    | 0    | 0    | 0    |  |  |

| Water User Group:                              | County-Other | County-Other - King |      |      |      |      |  |  |
|------------------------------------------------|--------------|---------------------|------|------|------|------|--|--|
|                                                | 2030         | 2040                | 2050 | 2060 | 2070 | 2080 |  |  |
| Population (number of persons)                 | 49           | 49                  | 50   | 52   | 52   | 52   |  |  |
| Water Demand<br>(ac-ft/yr)                     | 15           | 15                  | 15   | 15   | 15   | 15   |  |  |
| Current Supply<br>Blaine Aquifer<br>(ac-ft/yr) | 15           | 15                  | 15   | 15   | 15   | 15   |  |  |
| Current Supply<br>Other Aquifer<br>(ac-ft/yr)  |              |                     |      |      |      |      |  |  |
| Supply - Demand<br>(ac-ft/yr)                  | 0            | 0                   | 0    | 0    | 0    | 0    |  |  |

| Water User Group:                             | Irrigation - K | Irrigation - King |      |      |      |      |  |  |
|-----------------------------------------------|----------------|-------------------|------|------|------|------|--|--|
|                                               | 2030           | 2040              | 2050 | 2060 | 2070 | 2080 |  |  |
| Water Demand<br>(ac-ft/yr)                    | 245            | 245               | 245  | 245  | 245  | 245  |  |  |
| Current Supply<br>Other Aquifer<br>(ac-ft/yr) | 245            | 245               | 245  | 245  | 245  | 245  |  |  |
| Supply - Demand<br>(ac-ft/yr)                 | 0              | 0                 | 0    | 0    | 0    | 0    |  |  |

| Water User Group:                              | Livestock - K | ing  |      |      |      |      |
|------------------------------------------------|---------------|------|------|------|------|------|
|                                                | 2030          | 2040 | 2050 | 2060 | 2070 | 2080 |
| Water Demand<br>(ac-ft/yr)                     | 446           | 446  | 446  | 446  | 446  | 446  |
| Current Supply<br>Other Aquifer<br>(ac-ft/yr)  | 278           | 278  | 278  | 278  | 278  | 278  |
| Current Supply<br>Blaine Aquifer<br>(ac-ft/yr) | 34            | 34   | 34   | 34   | 34   | 34   |
| Current Supply<br>Stock Ponds<br>(ac-ft/yr)    | 134           | 134  | 134  | 134  | 134  | 134  |
| Supply - Demand<br>(ac-ft/yr)                  | 0             | 0    | 0    | 0    | 0    | 0    |

| Water User Group:                         | Mining - King | g    |      |      |      |      |
|-------------------------------------------|---------------|------|------|------|------|------|
|                                           | 2030          | 2040 | 2050 | 2060 | 2070 | 2080 |
| Water Demand<br>(ac-ft/yr)                | 4             | 4    | 4    | 4    | 4    | 4    |
| Current Supply - Other Aquifer (ac-ft/yr) | 4             | 4    | 4    | 4    | 4    | 4    |
| Supply - Demand<br>(ac-ft/yr)             | 0             | 0    | 0    | 0    | 0    | 0    |

| Water User Group:                               | Red River Au |      |      |      |      |      |
|-------------------------------------------------|--------------|------|------|------|------|------|
|                                                 | 2030         | 2040 | 2050 | 2060 | 2070 | 2080 |
| Population (number of persons)                  | 221          | 223  | 226  | 231  | 236  | 240  |
| Water Demand<br>(ac-ft/yr)                      | 61           | 62   | 62   | 64   | 65   | 66   |
| Current Supply - Other Aquifer (Dickens County) | 61           | 62   | 62   | 64   | 65   | 66   |
| Supply - Demand<br>(ac-ft/yr)                   | 0            | 0    | 0    | 0    | 0    | 0    |

| Water User Group:                           | <b>Bowie - Mont</b> | ague  |       |       |        |        |
|---------------------------------------------|---------------------|-------|-------|-------|--------|--------|
|                                             | 2030                | 2040  | 2050  | 2060  | 2070   | 2080   |
| Population (number of persons)              | 6,735               | 7,220 | 7,705 | 8,190 | 8,675  | 9,160  |
| Water Demand<br>(ac-ft/yr)                  | 1,286               | 1,373 | 1,465 | 1,558 | 1,650  | 1,742  |
| Current Supply<br>Amon Carter<br>(ac-ft/yr) | 923                 | 837   | 751   | 664   | 577    | 491    |
| Supply - Demand<br>(ac-ft/yr)               | -363                | -536  | -714  | -894  | -1,073 | -1,251 |

| Water User Group:                                     | County-Othe | r - Montague |        |        |        |        |
|-------------------------------------------------------|-------------|--------------|--------|--------|--------|--------|
|                                                       | 2030        | 2040         | 2050   | 2060   | 2070   | 2080   |
| Population (number of persons)                        | 11,678      | 13,528       | 15,378 | 17,228 | 19,078 | 20,928 |
| Water Demand<br>(ac-ft/yr)                            | 1,568       | 1,806        | 2,053  | 2,300  | 2,547  | 2,793  |
| Current Supply<br>Amon Carter<br>(ac-ft/yr)           | 157         | 181          | 205    | 230    | 255    | 279    |
| Current Supply<br>Trinity Aquifer<br>(ac-ft/yr)       | 200         | 200          | 200    | 200    | 200    | 200    |
| Current Supply<br>Lake Nocona<br>(ac-ft/yr)           | 63          | 72           | 82     | 92     | 102    | 112    |
| Current Supply<br>Cross Timbers Aquifer<br>(ac-ft/yr) | 700         | 700          | 700    | 700    | 700    | 700    |
| Supply - Demand<br>(ac-ft/yr)                         | -448        | -653         | -866   | -1,078 | -1,290 | -1,502 |

| Water User Group:                 | Irrigation - N | Iontague |      |      |      |      |
|-----------------------------------|----------------|----------|------|------|------|------|
|                                   | 2030           | 2040     | 2050 | 2060 | 2070 | 2080 |
| Population                        |                |          |      |      |      |      |
| (number of persons)               |                |          |      |      |      |      |
| Water Demand                      | 425            | 425      | 425  | 425  | 425  | 425  |
| (ac-ft/yr)                        | 1              |          |      | 1-4  |      |      |
| Current Supply                    |                |          |      |      |      |      |
| Trinity Aquifer                   | 140            | 140      | 140  | 140  | 140  | 140  |
| (ac-ft/yr)                        |                |          |      |      |      |      |
| Current Supply                    |                |          |      |      |      |      |
| Cross Timbers Aquifer             | 300            | 300      | 300  | 300  | 300  | 300  |
| (ac-ft/yr)                        |                |          |      |      |      |      |
| Current Supply                    |                |          |      |      |      |      |
| Lk Nocona                         | 19             | 19       | 19   | 19   | 19   | 19   |
| (ac-ft/yr)                        |                |          |      |      |      |      |
| Current Supply                    |                |          |      |      |      |      |
| Red Run-of-River                  | 6              | 6        | 6    | 6    | 6    | 6    |
| Wtr Rt 5605                       |                |          | -    | -    | -    |      |
| (ac-ft/yr)                        |                |          |      |      |      |      |
| Current Supply                    |                |          |      |      |      |      |
| Direct Reuse from Nocona for Golf | 31             | 31       | 31   | 31   | 31   | 31   |
| Course                            | 31             | 31       | 31   | 31   | 31   | 31   |
| (ac-ft/yr)                        |                |          |      |      |      |      |
| Supply - Demand                   | 71             | 71       | 71   | 71   | 71   | 71   |
| (ac-ft/yr)                        | / 1            | / 1      | / 1  | / 1  | / 1  | / 1  |

| Water User Group:     | Livestock - Montague |       |       |       |       |       |  |  |  |
|-----------------------|----------------------|-------|-------|-------|-------|-------|--|--|--|
|                       | 2030                 | 2040  | 2050  | 2060  | 2070  | 2080  |  |  |  |
| Population            |                      |       |       |       |       |       |  |  |  |
| (number of persons)   |                      |       |       |       |       |       |  |  |  |
| Water Demand          | 1,474                | 1,474 | 1,474 | 1,474 | 1,474 | 1,474 |  |  |  |
| (ac-ft/yr)            | 1,4/4                | 1,474 | 1,474 | 1,4/4 | 1,4/4 | 1,4/4 |  |  |  |
| Current Supply        |                      |       |       |       |       |       |  |  |  |
| Trinity Aquifer       | 15                   | 15    | 15    | 15    | 15    | 15    |  |  |  |
| (ac-ft/yr)            |                      |       |       |       |       |       |  |  |  |
| Current Supply        |                      |       |       |       |       |       |  |  |  |
| Cross Timbers Aquifer | 60                   | 60    | 60    | 60    | 60    | 60    |  |  |  |
| (ac-ft/yr)            |                      |       |       |       |       |       |  |  |  |
| Current Supply        |                      |       |       |       |       |       |  |  |  |
| Stock ponds           | 1,400                | 1,400 | 1,400 | 1,400 | 1,400 | 1,400 |  |  |  |
| (ac-ft/yr)            |                      |       |       |       |       |       |  |  |  |
| Supply - Demand       | 1                    | 1     | 1     | 1     | 1     | 1     |  |  |  |
| (ac-ft/yr)            | 1                    | 1     | 1     | 1     | 1     | 1     |  |  |  |

| Water User Group:                                           | Mining - Mon |      |      |      |      |      |
|-------------------------------------------------------------|--------------|------|------|------|------|------|
|                                                             | 2030         | 2040 | 2050 | 2060 | 2070 | 2080 |
| Population                                                  |              |      |      |      |      |      |
| (number of persons)                                         |              |      |      |      |      |      |
| Water Demand                                                | 34           | 34   | 34   | 34   | 34   | 34   |
| (ac-ft/yr)                                                  | 34           | 34   | 34   | 34   | 34   | 34   |
| Current Supply<br>Cross Timbers Aquifer<br>(ac-ft/yr)       | 31           | 31   | 31   | 31   | 31   | 31   |
| Current Supply<br>Trinity Aquifer<br>(ac-ft/yr)             |              |      |      |      |      |      |
| Current Supply                                              |              |      |      |      |      |      |
| Run-of-River                                                | 0            | 0    | 0    | 0    | 0    | 0    |
| (ac-ft/yr)                                                  |              |      |      |      |      |      |
| Current Supply - Direct Reuse (Sales from Bowie) (ac-ft/yr) | 3            | 3    | 3    | 3    | 3    | 3    |
| Supply - Demand<br>(ac-ft/yr)                               | 0            | 0    | 0    | 0    | 0    | 0    |

| Water User Group:                           | Nocona - Montague |       |       |       |       |       |  |  |
|---------------------------------------------|-------------------|-------|-------|-------|-------|-------|--|--|
|                                             | 2030              | 2040  | 2050  | 2060  | 2070  | 2080  |  |  |
| Population<br>(number of persons)           | 4,126             | 4,662 | 5,198 | 5,734 | 6,270 | 6,806 |  |  |
| Water Demand<br>(ac-ft/yr)                  | 1,091             | 1,230 | 1,371 | 1,512 | 1,654 | 1,795 |  |  |
| Current Supply<br>Lake Nocona<br>(ac-ft/yr) | 1,017             | 1,008 | 998   | 988   | 978   | 968   |  |  |
| Supply - Demand<br>(ac-ft/yr)               | -74               | -222  | -373  | -524  | -676  | -827  |  |  |

| Water User Group:                           | rer User Group: Nocona Hills WSC - Montague |       |       |       |       |       |  |  |
|---------------------------------------------|---------------------------------------------|-------|-------|-------|-------|-------|--|--|
|                                             | 2030                                        | 2040  | 2050  | 2060  | 2070  | 2080  |  |  |
| Population (number of persons)              | 912                                         | 1,037 | 1,162 | 1,287 | 1,412 | 1,537 |  |  |
| Water Demand<br>(ac-ft/yr)                  | 201                                         | 228   | 255   | 283   | 310   | 338   |  |  |
| Current Supply - Trinity Aquifer (ac-ft/yr) | 201                                         | 228   | 255   | 283   | 310   | 338   |  |  |
| Supply - Demand<br>(ac-ft/yr)               | 0                                           | 0     | 0     | 0     | 0     | 0     |  |  |

| Water User Group:                | Red River Authority - Montague |      |      |      |      |      |  |  |
|----------------------------------|--------------------------------|------|------|------|------|------|--|--|
|                                  | 2030                           | 2040 | 2050 | 2060 | 2070 | 2080 |  |  |
| Population (number of persons)   | 160                            | 163  | 166  | 175  | 180  | 180  |  |  |
| Water Demand<br>(ac-ft/yr)       | 44                             | 45   | 46   | 48   | 50   | 50   |  |  |
| Current Supply - Trinity Aquifer | 44                             | 45   | 46   | 48   | 50   | 50   |  |  |
| Supply - Demand<br>(ac-ft/yr)    | 0                              | 0    | 0    | 0    | 0    | 0    |  |  |

| Water User Group:                         | Saint Jo - Mo | Saint Jo - Montague |       |       |       |       |  |  |  |
|-------------------------------------------|---------------|---------------------|-------|-------|-------|-------|--|--|--|
|                                           | 2030          | 2040                | 2050  | 2060  | 2070  | 2080  |  |  |  |
| Population (number of persons)            | 1,630         | 1,965               | 2,300 | 2,635 | 2,970 | 3,305 |  |  |  |
| Water Demand<br>(ac-ft/yr)                | 269           | 323                 | 378   | 433   | 488   | 544   |  |  |  |
| Current Supply Trinity Aquifer (ac-ft/yr) | 249           | 249                 | 249   | 249   | 249   | 249   |  |  |  |
| Supply - Demand<br>(ac-ft/yr)             | -20           | -74                 | -129  | -184  | -240  | -295  |  |  |  |

| Water User Group:                                                  | Burkburnett - | Wichita |        |        |        |        |
|--------------------------------------------------------------------|---------------|---------|--------|--------|--------|--------|
|                                                                    | 2030          | 2040    | 2050   | 2060   | 2070   | 2080   |
| Population (number of persons)                                     | 11,270        | 11,285  | 11,303 | 11,336 | 11,370 | 11,403 |
| Water Demand<br>(ac-ft/yr)                                         | 1,673         | 1,667   | 1,670  | 1,675  | 1,680  | 1,685  |
| Current Supply<br>Seymour Aquifer<br>(ac-ft/yr)                    | 1,000         | 1,000   | 1,000  | 1,000  | 1,000  | 1,000  |
| Current Supply<br>Wichita System<br>(ac-ft/yr)                     | 1,671         | 1,585   | 1,499  | 1,421  | 1,345  | 1,270  |
| Current Supply Direct Reuse for ISD, Golf Course, Parks (ac-ft/yr) | 167           | 167     | 167    | 167    | 167    | 167    |
| Supply - Demand<br>(ac-ft/yr)                                      | 1,165         | 1,085   | 996    | 913    | 832    | 752    |

| Water User Group:                                     | County-Other | - Wichita |       |       |       |       |
|-------------------------------------------------------|--------------|-----------|-------|-------|-------|-------|
|                                                       | 2030         | 2040      | 2050  | 2060  | 2070  | 2080  |
| Population (number of persons)                        | 1,226        | 1,226     | 1,230 | 1,234 | 1,238 | 1,242 |
| Water Demand<br>(ac-ft/yr)                            | 169          | 168       | 168   | 169   | 169   | 170   |
| Current Supply<br>Wichita System<br>(ac-ft/yr)        | 263          | 249       | 237   | 224   | 213   | 202   |
| Sales from Iowa Park to<br>Horseshoe Bend Estates     | 69           | 65        | 62    | 59    | 55    | 52    |
| Current Supply<br>Seymour Aquifer<br>(ac-ft/yr)       | 90           | 90        | 90    | 90    | 90    | 90    |
| Current Supply<br>Cross Timbers Aquifer<br>(ac-ft/yr) | 70           | 70        | 70    | 70    | 70    | 70    |
| Supply - Demand<br>(ac-ft/yr)                         | 323          | 306       | 291   | 274   | 259   | 244   |

| Water User Group:                               | Dean Dale WS | Dean Dale WSC - Wichita |      |      |      |      |  |
|-------------------------------------------------|--------------|-------------------------|------|------|------|------|--|
|                                                 | 2030         | 2040                    | 2050 | 2060 | 2070 | 2080 |  |
| Population (number of persons)                  | 838          | 838                     | 854  | 896  | 941  | 988  |  |
| Water Demand<br>(ac-ft/yr)                      | 70           | 69                      | 70   | 74   | 77   | 81   |  |
| Current Supply - Wichita<br>Falls<br>(ac-ft/yr) | 276          | 256                     | 240  | 229  | 220  | 210  |  |
| Supply - Demand<br>(ac-ft/yr)                   | 206          | 187                     | 170  | 155  | 143  | 129  |  |

| Water User Group:                                               | Electra - Wich | iita  |       |       |       |       |
|-----------------------------------------------------------------|----------------|-------|-------|-------|-------|-------|
|                                                                 | 2030           | 2040  | 2050  | 2060  | 2070  | 2080  |
| Population (number of persons)                                  | 2,348          | 2,350 | 2,355 | 2,362 | 2,369 | 2,376 |
| Water Demand<br>(ac-ft/yr)                                      | 874            | 873   | 874   | 877   | 880   | 882   |
| Current Supply<br>Lk Electra<br>(ac-ft/yr)                      | 0              | 0     | 0     | 0     | 0     | 0     |
| Current Supply Sales from Iowa Park (Wichita System) (ac-ft/yr) | 722            | 686   | 650   | 617   | 586   | 555   |
| Current Supply<br>Seymour Aquifer<br>(ac-ft/yr)                 | 0              | 0     | 0     | 0     | 0     | 0     |
| Supply - Demand<br>(ac-ft/yr)                                   | -152           | -187  | -224  | -260  | -294  | -327  |

| Water User Group:                              | Harrold WSC |      |      |      |      |      |
|------------------------------------------------|-------------|------|------|------|------|------|
|                                                | 2030        | 2040 | 2050 | 2060 | 2070 | 2080 |
| Population (number of persons)                 | 66          | 66   | 66   | 66   | 66   | 66   |
| Water Demand<br>(ac-ft/yr)                     | 21          | 21   | 21   | 21   | 21   | 21   |
| Current Supply - City of<br>Electra (ac-ft/yr) | 17          | 17   | 16   | 15   | 14   | 13   |
| Supply - Demand<br>(ac-ft/yr)                  | -4          | -4   | -5   | -6   | -7   | -8   |

| Water User Group:                               | Holliday - Wid | Holliday - Wichita |      |      |      |      |  |
|-------------------------------------------------|----------------|--------------------|------|------|------|------|--|
|                                                 | 2030           | 2040               | 2050 | 2060 | 2070 | 2080 |  |
| Population (number of persons)                  | 33             | 33                 | 32   | 32   | 31   | 31   |  |
| Water Demand<br>(ac-ft/yr)                      | 5              | 5                  | 5    | 5    | 5    | 5    |  |
| Current Supply - Wichita<br>Falls<br>(ac-ft/yr) | 5              | 4                  | 4    | 4    | 4    | 3    |  |
| Supply - Demand<br>(ac-ft/yr)                   | 0              | -1                 | -1   | -1   | -1   | -2   |  |

| Water User Group:                                        | Iowa Park - W | Iowa Park - Wichita |       |       |       |       |  |
|----------------------------------------------------------|---------------|---------------------|-------|-------|-------|-------|--|
|                                                          | 2030          | 2040                | 2050  | 2060  | 2070  | 2080  |  |
| Population (number of persons)                           | 6,759         | 6,769               | 6,779 | 6,799 | 6,819 | 6,839 |  |
| Water Demand<br>(ac-ft/yr)                               | 1,020         | 1,017               | 1,018 | 1,021 | 1,024 | 1,027 |  |
| Current Supply<br>Lk Iowa Park/Lake Gordon<br>(ac-ft/yr) | 0             | 0                   | 0     | 0     | 0     | 0     |  |
| Current Supply<br>NF Buffalo Crk<br>(ac-ft/yr)           | 0             | 0                   | 0     | 0     | 0     | 0     |  |
| Current Supply<br>Wichita Falls<br>(ac-ft/yr)            | 1,095         | 1,038               | 976   | 922   | 870   | 818   |  |
| Supply - Demand<br>(ac-ft/yr)                            | 75            | 21                  | -42   | -99   | -154  | -209  |  |

| Water User Group:     | Irrigation - W | ichita 💮 |        |        |        |        |
|-----------------------|----------------|----------|--------|--------|--------|--------|
|                       | 2030           | 2040     | 2050   | 2060   | 2070   | 2080   |
| Population            |                |          |        |        |        |        |
| Water Demand          | 26,657         | 26,657   | 26,657 | 26,657 | 26,657 | 26,657 |
| (ac-ft/yr)            | 20,037         | 20,037   | 20,037 | 20,037 | 20,037 | 20,037 |
| Current Supply        |                |          |        |        |        |        |
| Lk Kemp               | 20,172         | 19,216   | 18,259 | 17,301 | 16,345 | 15,389 |
| (ac-ft/yr)            |                |          |        |        |        |        |
| Current Supply        |                |          |        |        |        |        |
| Run-of-river          | 878            | 878      | 878    | 878    | 878    | 878    |
| (ac-ft/yr)            |                |          |        |        |        |        |
| Current Supply        |                |          |        |        |        |        |
| Seymour Aquifer       | 0              | 0        | 0      | 0      | 0      | 0      |
| (ac-ft/yr)            |                |          |        |        |        |        |
| Current Supply        |                |          |        |        |        |        |
| Cross Timbers Aquifer | 600            | 600      | 600    | 600    | 600    | 600    |
| (ac-ft/yr)            |                |          |        |        |        |        |
| Supply - Demand       | -5,007         | -5,963   | -6,920 | -7,878 | -8,834 | -9,790 |
| (ac-ft/yr)            | -5,007         | -5,965   | -0,920 | -1,878 | -0,034 | -9,790 |

| Water User Group:                                     | Livestock - Wichita |      |      |      |      |      |  |
|-------------------------------------------------------|---------------------|------|------|------|------|------|--|
|                                                       | 2030                | 2040 | 2050 | 2060 | 2070 | 2080 |  |
| Population                                            |                     |      |      |      |      |      |  |
| (number of persons)                                   |                     |      |      |      |      |      |  |
| Water Demand<br>(ac-ft/yr)                            | 718                 | 718  | 718  | 718  | 718  | 718  |  |
| Current Supply<br>Cross Timbers Aquifer<br>(ac-ft/yr) | 36                  | 36   | 36   | 36   | 36   | 36   |  |
| Current Supply<br>Stock Ponds<br>(ac-ft/yr)           | 682                 | 682  | 682  | 682  | 682  | 682  |  |
| Supply - Demand<br>(ac-ft/yr)                         | 0                   | 0    | 0    | 0    | 0    | 0    |  |

| Water User Group:                                                            | Manufacturin |      |      |      |       |       |
|------------------------------------------------------------------------------|--------------|------|------|------|-------|-------|
|                                                                              | 2030         | 2040 | 2050 | 2060 | 2070  | 2080  |
| Water Demand<br>(ac-ft/yr)                                                   | 880          | 913  | 947  | 982  | 1,018 | 1,056 |
| Current Supply<br>Wichita System (sales from<br>Wichita Falls)<br>(ac-ft/yr) | 484          | 478  | 468  | 461  | 453   | 443   |
| Current Supply<br>Wichita System (sales from<br>Burkburnett)<br>(ac-ft/yr)   | 40           | 40   | 39   | 38   | 38    | 37    |
| Current Supply<br>Wichita System (sales from<br>Iowa Park)<br>(ac-ft/yr)     | 121          | 119  | 117  | 115  | 113   | 111   |
| Current Supply<br>Seymour Aquifer<br>(ac-ft/yr)                              | 129          | 129  | 129  | 129  | 129   | 129   |
| Current Supply<br>Direct Reuse from Wichita<br>Falls and Iowa Park           | 190          | 190  | 190  | 190  | 190   | 190   |
| Supply - Demand<br>(ac-ft/yr)                                                | 84           | 43   | -4   | -49  | -95   | -146  |

| Water User Group:                               | Mining - Wichita |      |      |      |      |      |  |
|-------------------------------------------------|------------------|------|------|------|------|------|--|
|                                                 | 2030             | 2040 | 2050 | 2060 | 2070 | 2080 |  |
| Water Demand<br>(ac-ft/yr)                      | 45               | 45   | 45   | 45   | 45   | 45   |  |
| Current Supply<br>Seymour Aquifer<br>(ac-ft/yr) | 45               | 45   | 45   | 45   | 45   | 45   |  |
| Current Supply<br>Run-of-river<br>(ac-ft/yr)    | 0                | 0    | 0    | 0    | 0    | 0    |  |
| Supply - Demand<br>(ac-ft/yr)                   | 0                | 0    | 0    | 0    | 0    | 0    |  |

| Water User Group:                             | Sheppard Air | Sheppard Air Force Base - Wichita |       |       |       |       |  |  |  |
|-----------------------------------------------|--------------|-----------------------------------|-------|-------|-------|-------|--|--|--|
|                                               | 2030         | 2040                              | 2050  | 2060  | 2070  | 2080  |  |  |  |
| Population<br>(number of persons)             | 5,905        | 5,905                             | 5,905 | 5,905 | 5,905 | 5,905 |  |  |  |
| Water Demand<br>(ac-ft/yr)                    | 1,075        | 1,069                             | 1,069 | 1,069 | 1,069 | 1,069 |  |  |  |
| Current Supply<br>Wichita Falls<br>(ac-ft/yr) | 986          | 932                               | 881   | 837   | 792   | 748   |  |  |  |
| Supply - Demand<br>(ac-ft/yr)                 | -89          | -137                              | -188  | -232  | -277  | -321  |  |  |  |

| Water User Group:                             | Steam Electric Power - Wichita |      |      |      |      |      |
|-----------------------------------------------|--------------------------------|------|------|------|------|------|
|                                               | 2030                           | 2040 | 2050 | 2060 | 2070 | 2080 |
| Water Demand<br>(ac-ft/yr)                    | 20                             | 20   | 20   | 20   | 20   | 20   |
| Current Supply<br>Wichita Falls<br>(ac-ft/yr) | 19                             | 17   | 16   | 15   | 15   | 14   |
| Supply - Demand<br>(ac-ft/yr)                 | -1                             | -3   | -4   | -5   | -5   | -6   |

| Water User Group:                                     | Wichita Falls - Wichita |         |         |         |         |         |  |
|-------------------------------------------------------|-------------------------|---------|---------|---------|---------|---------|--|
|                                                       | 2030                    | 2040    | 2050    | 2060    | 2070    | 2080    |  |
| Population<br>(number of persons)                     | 102,308                 | 104,299 | 106,290 | 107,285 | 108,280 | 109,275 |  |
| Water Demand<br>(ac-ft/yr)                            | 18,455                  | 18,726  | 19,084  | 19,262  | 19,441  | 19,620  |  |
| Current Supply<br>Little Wichita System<br>(ac-ft/yr) | 8,402                   | 7,919   | 7,446   | 6,926   | 6,393   | 5,862   |  |
| Current Supply Indirect<br>Reuse                      | 5,181                   | 5,214   | 5,254   | 5,276   | 5,295   | 5,316   |  |
| Current Supply<br>Lk Kemp<br>(ac-ft/yr)               | 3,344                   | 3,185   | 3,027   | 2,867   | 2,709   | 2,551   |  |
| Supply - Demand<br>(ac-ft/yr)                         | -1,528                  | -2,408  | -3,357  | -4,193  | -5,044  | -5,891  |  |

| Water User Group:                                                                                            | Wichita Valle |       |       |       |       |       |
|--------------------------------------------------------------------------------------------------------------|---------------|-------|-------|-------|-------|-------|
|                                                                                                              | 2030          | 2040  | 2050  | 2060  | 2070  | 2080  |
| Population (number of persons)                                                                               | 3,330         | 3,340 | 3,350 | 3,360 | 3,370 | 3,380 |
| Water Demand<br>(ac-ft/yr)                                                                                   | 435           | 434   | 435   | 436   | 438   | 439   |
| Current Supply - Wichita<br>System (Sales from Wichita<br>Falls, Iowa Park and<br>Archer City)<br>(ac-ft/yr) | 1,108         | 1,057 | 1,004 | 954   | 909   | 859   |
| Supply - Demand<br>(ac-ft/yr)                                                                                | 673           | 623   | 569   | 518   | 471   | 420   |

| Water User Group:                                      | County-O | ther - Wilbar | ger   |       |       |       |
|--------------------------------------------------------|----------|---------------|-------|-------|-------|-------|
|                                                        | 2030     | 2040          | 2050  | 2060  | 2070  | 2080  |
| Population (number of persons)                         | 1,139    | 1,124         | 1,106 | 1,074 | 1,042 | 1,010 |
| Water Demand<br>(ac-ft/yr)                             | 203      | 199           | 196   | 190   | 184   | 179   |
| Current Supply<br>Seymour Aquifer<br>Sales from Vernon | 61       | 61            | 61    | 61    | 61    | 61    |
| Current Supply<br>Seymour Aquifer                      | 61       | 57            | 54    | 48    | 42    | 37    |
| Current Supply<br>Red Run-of-River<br>(ac-ft/yr)       | 81       | 81            | 81    | 81    | 81    | 81    |
| Supply - Demand<br>(ac-ft/yr)                          | 0        | 0             | 0     | 0     | 0     | 0     |

| Water User Group:                              | Harrold V |      |      |      |      |      |
|------------------------------------------------|-----------|------|------|------|------|------|
|                                                | 2030      | 2040 | 2050 | 2060 | 2070 | 2080 |
| Population<br>(number of persons)              | 123       | 121  | 119  | 115  | 111  | 107  |
| Water Demand<br>(ac-ft/yr)                     | 39        | 39   | 38   | 37   | 35   | 34   |
| Current Supply - City of<br>Electra (ac-ft/yr) | 33        | 30   | 28   | 26   | 24   | 21   |
| Supply - Demand<br>(ac-ft/yr)                  | -6        | -9   | -10  | -11  | -11  | -13  |

| Water User Group:                            | Irrigation |        |        |        |        |        |
|----------------------------------------------|------------|--------|--------|--------|--------|--------|
|                                              | 2030       | 2040   | 2050   | 2060   | 2070   | 2080   |
| Water Demand<br>(ac-ft/yr)                   | 26,736     | 26,736 | 26,736 | 26,736 | 26,736 | 26,736 |
| Current Supply<br>Seymour Aq<br>(ac-ft/yr)   | 23,692     | 23,692 | 23,692 | 23,692 | 23,692 | 23,692 |
| Current Supply<br>Other Aq<br>(ac-ft/yr)     | 3,029      | 3,029  | 3,029  | 3,029  | 3,029  | 3,029  |
| Current Supply<br>Run-of-river<br>(ac-ft/yr) | 15         | 15     | 15     | 15     | 15     | 15     |
| Supply - Demand<br>(ac-ft/yr)                | 0          | 0      | 0      | 0      | 0      | 0      |

| Water User Group:                               | Livestock | - Wilbarger |      |      |      |      |
|-------------------------------------------------|-----------|-------------|------|------|------|------|
|                                                 | 2030      | 2040        | 2050 | 2060 | 2070 | 2080 |
| Water Demand<br>(ac-ft/yr)                      | 780       | 780         | 780  | 780  | 780  | 780  |
| Current Supply<br>Seymour Aquifer<br>(ac-ft/yr) | 195       | 195         | 195  | 195  | 195  | 195  |
| Current Supply<br>Santa Rosa Lake<br>(ac-ft/yr) | 920       | 920         | 920  | 920  | 920  | 920  |
| Current Supply<br>Stock Ponds<br>(ac-ft/yr)     | 429       | 429         | 429  | 429  | 429  | 429  |
| Supply - Demand<br>(ac-ft/yr)                   | 764       | 764         | 764  | 764  | 764  | 764  |

| Water User Group:                                      | Manufact | uring - Wilba | rger  |       |       |       |
|--------------------------------------------------------|----------|---------------|-------|-------|-------|-------|
|                                                        | 2030     | 2040          | 2050  | 2060  | 2070  | 2080  |
| Water Demand<br>(ac-ft/yr)                             | 1,110    | 1,151         | 1,194 | 1,238 | 1,284 | 1,332 |
| Current Supply<br>Seymour Aquifer<br>Sales from Vernon | 746      | 773           | 802   | 832   | 863   | 895   |
| Current Supply<br>Seymour Aquifer                      | 364      | 378           | 392   | 406   | 421   | 437   |
| Supply - Demand<br>(ac-ft/yr)                          | 0        | 0             | 0     | 0     | 0     | 0     |

| Water User Group: | Mining - V | Mining - Wilbarger |      |      |      |      |  |  |  |
|-------------------|------------|--------------------|------|------|------|------|--|--|--|
|                   | 2030       | 2040               | 2050 | 2060 | 2070 | 2080 |  |  |  |
| Water Demand      | 32         | 32                 | 32   | 32   | 32   | 32   |  |  |  |
| (ac-ft/yr)        | 32         | 32                 | 32   | 32   | 32   | 32   |  |  |  |
| Current Supply    |            |                    |      |      |      |      |  |  |  |
| Other Aquifer     | 21         | 21                 | 21   | 21   | 21   | 21   |  |  |  |
| (ac-ft/yr)        |            |                    |      |      |      |      |  |  |  |
| Current Supply    |            |                    |      |      |      |      |  |  |  |
| Beaver Creek      | 11         | 11                 | 11   | 11   | 11   | 11   |  |  |  |
| (ac-ft/yr)        |            |                    |      |      |      |      |  |  |  |
| Supply - Demand   | 0          | 0                  | 0    | 0    | 0    | 0    |  |  |  |
| (ac-ft/yr)        | U          | U                  | 0    | U    | U    | U    |  |  |  |

| Water User Group:                                          | Steam Ele | Steam Electric Power - Wilbarger |        |        |        |        |  |  |  |
|------------------------------------------------------------|-----------|----------------------------------|--------|--------|--------|--------|--|--|--|
|                                                            | 2030      | 2040                             | 2050   | 2060   | 2070   | 2080   |  |  |  |
| Water Demand<br>(ac-ft/yr)                                 | 5,878     | 5,878                            | 5,878  | 5,878  | 5,878  | 5,878  |  |  |  |
| Current Supply<br>Lk Kemp from Wichita Falls<br>(ac-ft/yr) | 2,888     | 2,751                            | 2,614  | 2,477  | 2,340  | 2,203  |  |  |  |
| Supply - Demand<br>(ac-ft/yr)                              | -2,990    | -3,127                           | -3,264 | -3,401 | -3,538 | -3,675 |  |  |  |

| Water User Group:                                     | Red River | r Authority - V | Vilbarger |       |       |       |
|-------------------------------------------------------|-----------|-----------------|-----------|-------|-------|-------|
|                                                       | 2030      | 2040            | 2050      | 2060  | 2070  | 2080  |
| Population (number of persons)                        | 1,140     | 1,145           | 1,150     | 1,150 | 1,150 | 1,150 |
| Water Demand<br>(ac-ft/yr)                            | 316       | 316             | 318       | 318   | 318   | 318   |
| Curren Supplies - Sales from<br>Greenbelt MIWA        | 7         | 7               | 7         | 7     | 7     | 7     |
| Current Supply - Sales from<br>Vernon Seymour Aquifer | 263       | 263             | 264       | 264   | 264   | 264   |
| Current Supply -Seymour<br>Aquifer (Hardeman County)  | 46        | 46              | 47        | 47    | 47    | 47    |
| Supply - Demand<br>(ac-ft/yr)                         | 0         | 0               | 0         | 0     | 0     | 0     |

| Water User Group:                               | Vernon - | Vernon - Wilbarger |        |        |        |        |  |  |
|-------------------------------------------------|----------|--------------------|--------|--------|--------|--------|--|--|
|                                                 | 2030     | 2040               | 2050   | 2060   | 2070   | 2080   |  |  |
| Population (number of persons)                  | 10,746   | 10,775             | 10,804 | 10,833 | 10,848 | 10,863 |  |  |
| Water Demand<br>(ac-ft/yr)                      | 1,926    | 1,922              | 1,927  | 1,932  | 1,935  | 1,938  |  |  |
| Current Supply<br>Seymour Aquifer<br>(ac-ft/yr) | 2,130    | 2,103              | 2,073  | 2,043  | 2,012  | 1,980  |  |  |
| Supply - Demand (ac-ft/yr)                      | 204      | 181                | 146    | 110    | 77     | 42     |  |  |

| Water User Group:                                               | Baylor Co | Baylor County SUD - Young |      |      |      |      |
|-----------------------------------------------------------------|-----------|---------------------------|------|------|------|------|
|                                                                 | 2030      | 2040                      | 2050 | 2060 | 2070 | 2080 |
| Population (number of persons)                                  | 239       | 242                       | 245  | 252  | 259  | 266  |
| Water Demand<br>(ac-ft/yr)                                      | 59        | 60                        | 60   | 62   | 64   | 66   |
| Current Supply - Seymour<br>Aquifer Baylor County<br>(ac-ft/yr) | 59        | 60                        | 60   | 62   | 64   | 66   |
| Supply - Demand<br>(ac-ft/yr)                                   | 0         | 0                         | 0    | 0    | 0    | 0    |

| Water User Group:                                    | County-O | ther - You | ng (Regior | B portion | 1)   |      |
|------------------------------------------------------|----------|------------|------------|-----------|------|------|
|                                                      | 2030     | 2040       | 2050       | 2060      | 2070 | 2080 |
| Population (number of persons)                       | 626      | 626        | 626        | 624       | 621  | 618  |
| Water Demand<br>(ac-ft/yr)                           | 85       | 84         | 84         | 84        | 83   | 83   |
| Purchase from Graham                                 | 22       | 25         | 28         | 30        | 32   | 33   |
| Current Supply - Cross Timbers<br>Aquifer (ac-ft/yr) | 63       | 59         | 56         | 54        | 51   | 50   |
| Supply - Demand<br>(ac-ft/yr)                        | 0        | 0          | 0          | 0         | 0    | 0    |

| Water User Group:                                     | Irrigation | Irrigation - Young |      |      |      |      |  |
|-------------------------------------------------------|------------|--------------------|------|------|------|------|--|
|                                                       | 2030       | 2040               | 2050 | 2060 | 2070 | 2080 |  |
| Water Demand<br>(ac-ft/yr)                            | 6          | 6                  | 6    | 6    | 6    | 6    |  |
| Current Supply<br>Cross Timbers Aquifer<br>(ac-ft/yr) | 6          | 6                  | 6    | 6    | 6    | 6    |  |
| Supply - Demand<br>(ac-ft/yr)                         | 0          | 0                  | 0    | 0    | 0    | 0    |  |

| Water User Group:                                     | Livestock | Livestock - Young |      |      |      |      |
|-------------------------------------------------------|-----------|-------------------|------|------|------|------|
|                                                       | 2030      | 2040              | 2050 | 2060 | 2070 | 2080 |
| Water Demand<br>(ac-ft/yr)                            | 56        | 56                | 56   | 56   | 56   | 56   |
| Current Supply<br>Stock Ponds<br>(ac-ft/yr)           | 45        | 45                | 45   | 45   | 45   | 45   |
| Current Supply<br>Cross Timbers Aquifer<br>(ac-ft/yr) | 11        | 11                | 11   | 11   | 11   | 11   |
| Supply - Demand<br>(ac-ft/yr)                         | 0         | 0                 | 0    | 0    | 0    | 0    |

| Water User Group:                                     | Olney - Y | oung  |       |       |       |       |
|-------------------------------------------------------|-----------|-------|-------|-------|-------|-------|
|                                                       | 2030      | 2040  | 2050  | 2060  | 2070  | 2080  |
| Population (number of persons)                        | 2,714     | 2,694 | 2,674 | 2,646 | 2,646 | 2,646 |
| Water Demand<br>(ac-ft/yr)                            | 499       | 493   | 490   | 485   | 485   | 485   |
| Current Supply<br>Wichita System<br>(ac-ft/yr)        | 1,014     | 895   | 843   | 796   | 751   | 705   |
| Current Supply<br>Lk Olney/Cooper<br>(ac-ft/yr)       | 77        | 65    | 53    | 41    | 29    | 17    |
| Current Supply Direct Reuse to Golf Course (ac-ft/yr) | 5         | 5     | 5     | 5     | 5     | 5     |
| Supply - Demand<br>(ac-ft/yr)                         | 597       | 472   | 412   | 358   | 301   | 243   |

| Region B | Technical | Memorandum |
|----------|-----------|------------|
|----------|-----------|------------|

Prepared for Texas Water Development Board on behalf of RWPG

APPENDIX B DB27 Reports

### **DRAFT** Region B Water User Group (WUG) Population

|                                     |       |       | WUG Pop | ulation |       |       |
|-------------------------------------|-------|-------|---------|---------|-------|-------|
|                                     | 2030  | 2040  | 2050    | 2060    | 2070  | 2080  |
| Archer County Total                 | 8,363 | 7,911 | 7,433   | 6,996   | 6,575 | 6,169 |
| Archer County / Brazos Basin Total  | 65    | 61    | 56      | 52      | 48    | 44    |
| Baylor SUD*                         | 65    | 61    | 56      | 52      | 48    | 44    |
| Archer County / Red Basin Total     | 8,270 | 7,823 | 7,352   | 6,921   | 6,506 | 6,105 |
| Archer City                         | 1,617 | 1,531 | 1,436   | 1,345   | 1,263 | 1,180 |
| Archer County MUD 1                 | 1,134 | 1,072 | 1,007   | 952     | 901   | 849   |
| Baylor SUD*                         | 96    | 88    | 82      | 76      | 71    | 64    |
| Holliday                            | 1,534 | 1,459 | 1,379   | 1,291   | 1,214 | 1,134 |
| Lakeside City                       | 1,046 | 990   | 929     | 871     | 818   | 764   |
| Scotland                            | 361   | 339   | 317     | 298     | 281   | 263   |
| Wichita Valley WSC                  | 1,586 | 1,499 | 1,408   | 1,343   | 1,260 | 1,197 |
| Windthorst WSC                      | 660   | 623   | 586     | 550     | 516   | 483   |
| County-Other                        | 236   | 222   | 208     | 195     | 182   | 171   |
| Archer County / Trinity Basin Total | 28    | 27    | 25      | 23      | 21    | 20    |
| Baylor SUD*                         | 12    | 11    | 10      | 9       | 8     | 8     |
| County-Other                        | 16    | 16    | 15      | 14      | 13    | 12    |
| Baylor County Total                 | 3,407 | 3,311 | 3,267   | 3,221   | 3,177 | 3,135 |
| Baylor County / Brazos Basin Total  | 3,276 | 3,179 | 3,130   | 3,083   | 3,036 | 2,991 |
| Baylor SUD*                         | 901   | 910   | 951     | 972     | 991   | 1,012 |
| Seymour                             | 2,375 | 2,269 | 2,179   | 2,111   | 2,045 | 1,979 |
| Baylor County / Red Basin Total     | 131   | 132   | 137     | 138     | 141   | 144   |
| Baylor SUD*                         | 118   | 119   | 125     | 127     | 130   | 133   |
| County-Other                        | 13    | 13    | 12      | 11      | 11    | 11    |
| Clay County Total                   | 9,851 | 9,182 | 8,430   | 7,773   | 7,140 | 6,529 |
| Clay County / Red Basin Total       | 9,511 | 8,885 | 8,180   | 7,568   | 6,978 | 6,408 |
| Dean Dale WSC                       | 1,743 | 1,800 | 1,861   | 1,930   | 1,996 | 2,060 |
| Henrietta                           | 3,123 | 2,921 | 2,694   | 2,493   | 2,299 | 2,109 |
| Red River Authority of Texas*       | 1,667 | 1,547 | 1,415   | 1,306   | 1,201 | 1,099 |
| Windthorst WSC                      | 306   | 281   | 249     | 227     | 206   | 189   |
| County-Other                        | 2,672 | 2,336 | 1,961   | 1,612   | 1,276 | 951   |
| Clay County / Trinity Basin Total   | 340   | 297   | 250     | 205     | 162   | 121   |
| County-Other                        | 340   | 297   | 250     | 205     | 162   | 121   |

<sup>\*</sup>A single asterisk next to a WUG's name denotes that the WUG is split by two or more planning regions.

### **DRAFT** Region B Water User Group (WUG) Population

|                                       |        |        | WUG Pop | oulation |        |        |
|---------------------------------------|--------|--------|---------|----------|--------|--------|
|                                       | 2030   | 2040   | 2050    | 2060     | 2070   | 2080   |
| Cottle County Total                   | 1,333  | 1,250  | 1,193   | 1,159    | 1,126  | 1,094  |
| Cottle County / Red Basin Total       | 1,333  | 1,250  | 1,193   | 1,159    | 1,126  | 1,094  |
| Paducah                               | 1,031  | 966    | 917     | 887      | 859    | 838    |
| Red River Authority of Texas*         | 98     | 94     | 93      | 95       | 96     | 94     |
| County-Other                          | 204    | 190    | 183     | 177      | 171    | 162    |
| Foard County Total                    | 991    | 901    | 834     | 784      | 736    | 690    |
| Foard County / Red Basin Total        | 991    | 901    | 834     | 784      | 736    | 690    |
| Crowell                               | 684    | 620    | 570     | 532      | 494    | 459    |
| Red River Authority of Texas*         | 232    | 214    | 202     | 195      | 189    | 182    |
| County-Other                          | 75     | 67     | 62      | 57       | 53     | 49     |
| Hardeman County Total                 | 3,404  | 3,205  | 3,029   | 2,875    | 2,726  | 2,582  |
| Hardeman County / Red Basin Total     | 3,404  | 3,205  | 3,029   | 2,875    | 2,726  | 2,582  |
| Chillicothe                           | 478    | 450    | 424     | 402      | 382    | 363    |
| Quanah                                | 2,007  | 1,890  | 1,788   | 1,696    | 1,612  | 1,531  |
| Red River Authority of Texas*         | 662    | 624    | 589     | 558      | 530    | 503    |
| County-Other                          | 257    | 241    | 228     | 219      | 202    | 185    |
| King County Total                     | 253    | 253    | 261     | 269      | 277    | 285    |
| King County / Brazos Basin Total      | 13     | 13     | 13      | 14       | 14     | 14     |
| County-Other                          | 13     | 13     | 13      | 14       | 14     | 14     |
| King County / Red Basin Total         | 240    | 240    | 248     | 255      | 263    | 271    |
| Red River Authority of Texas*         | 207    | 207    | 214     | 220      | 227    | 234    |
| County-Other                          | 33     | 33     | 34      | 35       | 36     | 37     |
| Montague County Total                 | 23,138 | 25,913 | 28,688  | 31,463   | 34,236 | 37,012 |
| Montague County / Red Basin Total     | 8,954  | 10,112 | 11,267  | 12,425   | 13,580 | 14,732 |
| Bowie                                 | 60     | 64     | 67      | 71       | 75     | 78     |
| Nocona                                | 3,782  | 4,228  | 4,673   | 5,118    | 5,563  | 6,010  |
| Nocona Hills WSC                      | 836    | 940    | 1,045   | 1,149    | 1,253  | 1,357  |
| Red River Authority of Texas*         | 147    | 148    | 149     | 156      | 160    | 159    |
| County-Other                          | 4,129  | 4,732  | 5,333   | 5,931    | 6,529  | 7,128  |
| Montague County / Trinity Basin Total | 14,184 | 15,801 | 17,421  | 19,038   | 20,656 | 22,280 |
| Bowie                                 | 6,114  | 6,483  | 6,860   | 7,239    | 7,622  | 8,010  |
| Saint Jo                              | 1,494  | 1,782  | 2,068   | 2,352    | 2,635  | 2,918  |

<sup>\*</sup>A single asterisk next to a WUG's name denotes that the WUG is split by two or more planning regions.

### **DRAFT** Region B Water User Group (WUG) Population

|                                    |         |         | WUG Po  | pulation |         |         |
|------------------------------------|---------|---------|---------|----------|---------|---------|
|                                    | 2030    | 2040    | 2050    | 2060     | 2070    | 2080    |
| County-Other                       | 6,576   | 7,536   | 8,493   | 9,447    | 10,399  | 11,352  |
| Wichita County Total               | 131,847 | 130,415 | 126,938 | 122,441  | 118,105 | 113,924 |
| Wichita County / Red Basin Total   | 131,847 | 130,415 | 126,938 | 122,441  | 118,105 | 113,924 |
| Burkburnett                        | 11,079  | 10,797  | 10,349  | 9,910    | 9,491   | 9,089   |
| Dean Dale WSC                      | 838     | 838     | 854     | 896      | 941     | 988     |
| Electra                            | 2,308   | 2,248   | 2,156   | 2,065    | 1,978   | 1,894   |
| Harrold WSC                        | 65      | 63      | 60      | 58       | 55      | 53      |
| Holliday                           | 32      | 31      | 30      | 28       | 26      | 25      |
| Iowa Park                          | 6,644   | 6,476   | 6,207   | 5,944    | 5,692   | 5,451   |
| Sheppard Air Force Base            | 5,843   | 5,843   | 5,843   | 5,843    | 5,843   | 5,843   |
| Wichita Falls                      | 100,573 | 99,786  | 97,318  | 93,793   | 90,388  | 87,098  |
| Wichita Valley WSC                 | 3,300   | 3,195   | 3,067   | 2,937    | 2,813   | 2,694   |
| County-Other                       | 1,165   | 1,138   | 1,054   | 967      | 878     | 789     |
| Wilbarger County Total             | 12,996  | 12,650  | 12,087  | 11,553   | 11,038  | 10,541  |
| Wilbarger County / Red Basin Total | 12,996  | 12,650  | 12,087  | 11,553   | 11,038  | 10,541  |
| Harrold WSC                        | 122     | 116     | 109     | 101      | 93      | 86      |
| Red River Authority of Texas*      | 1,127   | 1,100   | 1,055   | 1,009    | 965     | 923     |
| Vernon                             | 10,621  | 10,354  | 9,909   | 9,501    | 9,105   | 8,721   |
| County-Other                       | 1,126   | 1,080   | 1,014   | 942      | 875     | 811     |
| Young County Total                 | 3,533   | 3,535   | 3,501   | 3,507    | 3,513   | 3,519   |
| Young County / Brazos Basin Total  | 3,529   | 3,531   | 3,497   | 3,503    | 3,508   | 3,514   |
| Baylor SUD*                        | 232     | 236     | 238     | 247      | 253     | 260     |
| Olney                              | 2,714   | 2,694   | 2,674   | 2,646    | 2,646   | 2,646   |
| County-Other*                      | 583     | 601     | 585     | 610      | 609     | 608     |
| Young County / Trinity Basin Total | 4       | 4       | 4       | 4        | 5       | 5       |
| Baylor SUD*                        | 4       | 4       | 4       | 4        | 5       | 5       |
| Region B Population Total          | 199,116 | 198,526 | 195,661 | 192,041  | 188,649 | 185,480 |

<sup>\*</sup>A single asterisk next to a WUG's name denotes that the WUG is split by two or more planning regions.

|                                     |       | wu    | G Demand (ad | cre-feet per y | ear)  |       |
|-------------------------------------|-------|-------|--------------|----------------|-------|-------|
|                                     | 2030  | 2040  | 2050         | 2060           | 2070  | 2080  |
| Archer County Total                 | 3,058 | 2,979 | 2,902        | 2,827          | 2,758 | 2,693 |
| Archer County / Brazos Basin Total  | 35    | 34    | 33           | 32             | 31    | 30    |
| Baylor SUD*                         | 14    | 13    | 12           | 11             | 10    | 9     |
| Livestock                           | 21    | 21    | 21           | 21             | 21    | 21    |
| Archer County / Red Basin Total     | 2,729 | 2,651 | 2,576        | 2,502          | 2,434 | 2,370 |
| Archer City                         | 239   | 226   | 212          | 198            | 186   | 174   |
| Archer County MUD 1                 | 203   | 191   | 180          | 170            | 161   | 152   |
| Baylor SUD*                         | 21    | 19    | 18           | 16             | 15    | 14    |
| Holliday                            | 214   | 202   | 191          | 179            | 168   | 157   |
| Lakeside City                       | 135   | 128   | 120          | 112            | 105   | 98    |
| Scotland                            | 125   | 118   | 110          | 103            | 97    | 91    |
| Wichita Valley WSC                  | 180   | 169   | 159          | 152            | 142   | 135   |
| Windthorst WSC                      | 194   | 183   | 172          | 161            | 151   | 142   |
| County-Other                        | 40    | 37    | 36           | 33             | 31    | 29    |
| Manufacturing                       | 1     | 1     | 1            | 1              | 1     | 1     |
| Livestock                           | 1,377 | 1,377 | 1,377        | 1,377          | 1,377 | 1,377 |
| Archer County / Trinity Basin Total | 294   | 294   | 293          | 293            | 293   | 293   |
| Baylor SUD*                         | 2     | 2     | 2            | 2              | 2     | 2     |
| County-Other                        | 3     | 3     | 2            | 2              | 2     | 2     |
| Mining                              | 1     | 1     | 1            | 1              | 1     | 1     |
| Livestock                           | 288   | 288   | 288          | 288            | 288   | 288   |
| Baylor County Total                 | 6,681 | 6,662 | 6,657        | 6,649          | 6,642 | 6,636 |
| Baylor County / Brazos Basin Total  | 4,884 | 4,865 | 4,858        | 4,850          | 4,842 | 4,836 |
| Baylor SUD*                         | 194   | 195   | 204          | 208            | 212   | 217   |
| Seymour                             | 418   | 398   | 382          | 370            | 358   | 347   |
| Mining                              | 1     | 1     | 1            | 1              | 1     | 1     |
| Livestock                           | 494   | 494   | 494          | 494            | 494   | 494   |
| Irrigation                          | 3,777 | 3,777 | 3,777        | 3,777          | 3,777 | 3,777 |
| Baylor County / Red Basin Total     | 1,797 | 1,797 | 1,799        | 1,799          | 1,800 | 1,800 |
| Baylor SUD*                         | 25    | 25    | 27           | 27             | 28    | 28    |
| County-Other                        | 1     | 1     | 1            | 1              | 1     | 1     |
| Mining                              | 9     | 9     | 9            | 9              | 9     | 9     |
| Livestock                           | 469   | 469   | 469          | 469            | 469   | 469   |

<sup>\*</sup>A single asterisk next to a WUG's name denotes that the WUG is split by more than one planning region.

|                                   |       | WUG   | G Demand (ac | re-feet per ye | ar)   |       |
|-----------------------------------|-------|-------|--------------|----------------|-------|-------|
|                                   | 2030  | 2040  | 2050         | 2060           | 2070  | 2080  |
| Irrigation                        | 1,293 | 1,293 | 1,293        | 1,293          | 1,293 | 1,293 |
| Clay County Total                 | 4,390 | 4,267 | 4,137        | 4,024          | 3,914 | 3,808 |
| Clay County / Red Basin Total     | 3,889 | 3,771 | 3,646        | 3,539          | 3,434 | 3,333 |
| Dean Dale WSC                     | 126   | 129   | 133          | 138            | 143   | 147   |
| Henrietta                         | 609   | 568   | 524          | 485            | 447   | 410   |
| Red River Authority of Texas*     | 402   | 372   | 340          | 314            | 289   | 264   |
| Windthorst WSC                    | 90    | 82    | 73           | 67             | 60    | 55    |
| County-Other                      | 318   | 276   | 232          | 191            | 151   | 113   |
| Livestock                         | 1,254 | 1,254 | 1,254        | 1,254          | 1,254 | 1,254 |
| Irrigation                        | 1,090 | 1,090 | 1,090        | 1,090          | 1,090 | 1,090 |
|                                   |       |       |              |                |       |       |
| Clay County / Trinity Basin Total | 501   | 496   | 491          | 485            | 480   | 475   |
| County-Other                      | 40    | 35    | 30           | 24             | 19    | 14    |
| Mining                            | 4     | 4     | 4            | 4              | 4     | 4     |
| Livestock                         | 189   | 189   | 189          | 189            | 189   | 189   |
| Irrigation                        | 268   | 268   | 268          | 268            | 268   | 268   |
| Cottle County Total               | 4,997 | 4,978 | 4,964        | 4,957          | 4,951 | 4,944 |
| Cottle County / Red Basin Total   | 4,997 | 4,978 | 4,964        | 4,957          | 4,951 | 4,944 |
| Paducah                           | 245   | 229   | 217          | 210            | 204   | 199   |
| Red River Authority of Texas*     | 24    | 23    | 22           | 23             | 23    | 23    |
| County-Other                      | 27    | 25    | 24           | 23             | 23    | 21    |
| Mining                            | 6     | 6     | 6            | 6              | 6     | 6     |
| Livestock                         | 376   | 376   | 376          | 376            | 376   | 376   |
| Irrigation                        | 4,319 | 4,319 | 4,319        | 4,319          | 4,319 | 4,319 |
| Foard County Total                | 3,031 | 3,015 | 3,005        | 2,997          | 2,990 | 2,983 |
| Foard County / Red Basin Total    | 3,031 | 3,015 | 3,005        | 2,997          | 2,990 | 2,983 |
| Crowell                           | 93    | 84    | 77           | 72             | 67    | 62    |
| Red River Authority of Texas*     | 56    | 51    | 49           | 47             | 45    | 44    |
| County-Other                      | 14    | 12    | 11           | 10             | 10    | 9     |
| Livestock                         | 379   | 379   | 379          | 379            | 379   | 379   |
| Irrigation                        | 2,489 | 2,489 | 2,489        | 2,489          | 2,489 | 2,489 |

<sup>\*</sup>A single asterisk next to a WUG's name denotes that the WUG is split by more than one planning region.

|                                       | WUG Demand (acre-feet per year) |        |        |        |        |        |  |  |
|---------------------------------------|---------------------------------|--------|--------|--------|--------|--------|--|--|
|                                       | 2030                            | 2040   | 2050   | 2060   | 2070   | 2080   |  |  |
| Hardeman County Total                 | 19,449                          | 19,423 | 19,404 | 19,388 | 19,374 | 19,362 |  |  |
| Hardeman County / Red Basin Total     | 19,449                          | 19,423 | 19,404 | 19,388 | 19,374 | 19,362 |  |  |
| Chillicothe                           | 59                              | 55     | 52     | 49     | 47     | 45     |  |  |
| Quanah                                | 283                             | 266    | 251    | 238    | 227    | 215    |  |  |
| Red River Authority of Texas*         | 160                             | 150    | 142    | 134    | 127    | 121    |  |  |
| County-Other                          | 40                              | 37     | 35     | 34     | 31     | 29     |  |  |
| Manufacturing                         | 225                             | 233    | 242    | 251    | 260    | 270    |  |  |
| Mining                                | 5                               | 5      | 5      | 5      | 5      | 5      |  |  |
| Livestock                             | 387                             | 387    | 387    | 387    | 387    | 387    |  |  |
| Irrigation                            | 18,290                          | 18,290 | 18,290 | 18,290 | 18,290 | 18,290 |  |  |
| King County Total                     | 757                             | 757    | 758    | 761    | 763    | 764    |  |  |
| King County / Brazos Basin Total      | 341                             | 341    | 341    | 342    | 342    | 342    |  |  |
| County-Other                          | 3                               | 3      | 3      | 4      | 4      | 4      |  |  |
| Mining                                | 4                               | 4      | 4      | 4      | 4      | 4      |  |  |
| Livestock                             | 334                             | 334    | 334    | 334    | 334    | 334    |  |  |
| King County / Red Basin Total         | 416                             | 416    | 417    | 419    | 421    | 422    |  |  |
| Red River Authority of Texas*         | 50                              | 50     | 51     | 53     | 55     | 56     |  |  |
| County-Other                          | 9                               | 9      | 9      | 9      | 9      | 9      |  |  |
| Livestock                             | 112                             | 112    | 112    | 112    | 112    | 112    |  |  |
| Irrigation                            | 245                             | 245    | 245    | 245    | 245    | 245    |  |  |
| Montague County Total                 | 5,488                           | 5,881  | 6,288  | 6,693  | 7,101  | 7,508  |  |  |
| Montague County / Red Basin Total     | 2,585                           | 2,774  | 2,966  | 3,158  | 3,351  | 3,543  |  |  |
| Bowie                                 | 10                              | 11     | 11     | 12     | 12     | 13     |  |  |
| Nocona                                | 870                             | 970    | 1,072  | 1,174  | 1,276  | 1,378  |  |  |
| Nocona Hills WSC                      | 160                             | 180    | 200    | 219    | 239    | 259    |  |  |
| Red River Authority of Texas*         | 35                              | 36     | 36     | 37     | 38     | 38     |  |  |
| County-Other                          | 482                             | 549    | 619    | 688    | 758    | 827    |  |  |
| Livestock                             | 816                             | 816    | 816    | 816    | 816    | 816    |  |  |
| Irrigation                            | 212                             | 212    | 212    | 212    | 212    | 212    |  |  |
| Montague County / Trinity Basin Total | 2,903                           | 3,107  | 3,322  | 3,535  | 3,750  | 3,965  |  |  |
| Bowie                                 | 1,015                           | 1,072  | 1,135  | 1,197  | 1,261  | 1,325  |  |  |
| Saint Jo                              | 215                             | 255    | 296    | 336    | 377    | 417    |  |  |
| County-Other                          | 768                             | 875    | 986    | 1,097  | 1,207  | 1,318  |  |  |
| Mining                                | 34                              | 34     | 34     | 34     | 34     | 34     |  |  |

<sup>\*</sup>A single asterisk next to a WUG's name denotes that the WUG is split by more than one planning region.

|                                    |        | WUG    | G Demand (ac | re-feet per ye | ar)    |        |
|------------------------------------|--------|--------|--------------|----------------|--------|--------|
|                                    | 2030   | 2040   | 2050         | 2060           | 2070   | 2080   |
| Livestock                          | 658    | 658    | 658          | 658            | 658    | 658    |
| Irrigation                         | 213    | 213    | 213          | 213            | 213    | 213    |
| Wichita County Total               | 48,667 | 48,388 | 47,890       | 47,232         | 46,599 | 45,993 |
| Wichita County / Red Basin Total   | 48,667 | 48,388 | 47,890       | 47,232         | 46,599 | 45,993 |
| Burkburnett                        | 1,431  | 1,387  | 1,329        | 1,273          | 1,219  | 1,168  |
| Dean Dale WSC                      | 60     | 60     | 61           | 64             | 67     | 71     |
| Electra                            | 747    | 726    | 696          | 667            | 639    | 612    |
| Harrold WSC                        | 18     | 17     | 17           | 16             | 15     | 15     |
| Holliday                           | 4      | 4      | 4            | 4              | 4      | 3      |
| Iowa Park                          | 872    | 846    | 811          | 776            | 743    | 712    |
| Sheppard Air Force Base            | 925    | 920    | 920          | 920            | 920    | 920    |
| Wichita Falls                      | 15,775 | 15,579 | 15,194       | 14,643         | 14,112 | 13,598 |
| Wichita Valley WSC                 | 375    | 361    | 346          | 332            | 318    | 304    |
| County-Other                       | 140    | 135    | 125          | 115            | 104    | 94     |
| Manufacturing                      | 880    | 913    | 947          | 982            | 1,018  | 1,056  |
| Mining                             | 45     | 45     | 45           | 45             | 45     | 45     |
| Steam Electric Power               | 20     | 20     | 20           | 20             | 20     | 20     |
| Livestock                          | 718    | 718    | 718          | 718            | 718    | 718    |
| Irrigation                         | 26,657 | 26,657 | 26,657       | 26,657         | 26,657 | 26,657 |
| Wilbarger County Total             | 36,671 | 36,645 | 36,597       | 36,553         | 36,515 | 36,482 |
| Wilbarger County / Red Basin Total | 36,671 | 36,645 | 36,597       | 36,553         | 36,515 | 36,482 |
| Harrold WSC                        | 34     | 32     | 30           | 28             | 26     | 24     |
| Red River Authority of Texas*      | 272    | 264    | 254          | 242            | 232    | 222    |
| Vernon                             | 1,655  | 1,606  | 1,537        | 1,474          | 1,412  | 1,353  |
| County-Other                       | 174    | 166    | 156          | 145            | 135    | 125    |
| Manufacturing                      | 1,110  | 1,151  | 1,194        | 1,238          | 1,284  | 1,332  |
| Mining                             | 32     | 32     | 32           | 32             | 32     | 32     |
| Steam Electric Power               | 5,878  | 5,878  | 5,878        | 5,878          | 5,878  | 5,878  |
| Livestock                          | 780    | 780    | 780          | 780            | 780    | 780    |
| Irrigation                         | 26,736 | 26,736 | 26,736       | 26,736         | 26,736 | 26,736 |
| Young County Total                 | 616    | 612    | 608          | 608            | 609    | 611    |
| Young County / Brazos Basin Total  | 600    | 596    | 592          | 592            | 593    | 595    |
| Baylor SUD*                        | 50     | 50     | 51           | 53             | 54     | 56     |
| Olney                              | 434    | 429    | 426          | 421            | 421    | 421    |
| County-Other*                      | 69     | 70     | 68           | 71             | 71     | 71     |

<sup>\*</sup>A single asterisk next to a WUG's name denotes that the WUG is split by more than one planning region.

|                                    | WUG Demand (acre-feet per year) |         |         |         |         |         |  |  |
|------------------------------------|---------------------------------|---------|---------|---------|---------|---------|--|--|
|                                    | 2030                            | 2040    | 2050    | 2060    | 2070    | 2080    |  |  |
| Livestock*                         | 41                              | 41      | 41      | 41      | 41      | 41      |  |  |
| Irrigation*                        | 6                               | 6       | 6       | 6       | 6       | 6       |  |  |
|                                    |                                 |         |         |         |         |         |  |  |
| Young County / Trinity Basin Total | 16                              | 16      | 16      | 16      | 16      | 16      |  |  |
| Baylor SUD*                        | 1                               | 1       | 1       | 1       | 1       | 1       |  |  |
| Livestock*                         | 15                              | 15      | 15      | 15      | 15      | 15      |  |  |
|                                    |                                 |         |         |         |         |         |  |  |
| Region B Demand Total              | 133,805                         | 133,607 | 133,210 | 132,689 | 132,216 | 131,784 |  |  |

<sup>\*</sup>A single asterisk next to a WUG's name denotes that the WUG is split by more than one planning region.

|                       |                 |         |           |         | Source A | Availability ( | acre-feet pe | er year) |         |
|-----------------------|-----------------|---------|-----------|---------|----------|----------------|--------------|----------|---------|
| Source Name           | County          | Basin   | Salinity* | 2030    | 2040     | 2050           | 2060         | 2070     | 2080    |
| Groundwater Source A  | vailability Tot | al      |           | 105,214 | 111,069  | 112,209        | 114,229      | 123,636  | 116,240 |
| Blaine Aquifer        | Cottle          | Red     | Brackish  | 11,621  | 11,621   | 11,621         | 11,621       | 11,621   | 11,621  |
| Blaine Aquifer        | Foard           | Red     | Brackish  | 6,565   | 6,565    | 6,565          | 6,565        | 6,565    | 6,565   |
| Blaine Aquifer        | Hardeman        | Red     | Brackish  | 8,465   | 8,465    | 8,465          | 8,465        | 8,465    | 8,465   |
| Blaine Aquifer        | King            | Brazos  | Brackish  | 0       | 0        | 0              | 0            | 0        | 0       |
| Blaine Aquifer        | King            | Red     | Brackish  | 49      | 49       | 49             | 49           | 49       | 49      |
| Blaine Aquifer        | Wilbarger       | Red     | Brackish  | 0       | 0        | 0              | 0            | 0        | 0       |
| Cross Timbers Aquifer | Archer          | Brazos  | Fresh     | 20      | 20       | 20             | 20           | 20       | 20      |
| Cross Timbers Aquifer | Archer          | Red     | Fresh     | 585     | 585      | 585            | 585          | 585      | 585     |
| Cross Timbers Aquifer | Archer          | Trinity | Fresh     | 20      | 20       | 20             | 20           | 20       | 20      |
| Cross Timbers Aquifer | Baylor          | Brazos  | Fresh     | 25      | 25       | 25             | 25           | 25       | 25      |
| Cross Timbers Aquifer | Baylor          | Red     | Fresh     | 35      | 35       | 35             | 35           | 35       | 35      |
| Cross Timbers Aquifer | Clay            | Red     | Fresh     | 1,495   | 1,495    | 1,495          | 1,495        | 1,495    | 1,495   |
| Cross Timbers Aquifer | Clay            | Trinity | Fresh     | 505     | 505      | 505            | 505          | 505      | 505     |
| Cross Timbers Aquifer | Montague        | Red     | Fresh     | 2,280   | 2,280    | 2,280          | 2,280        | 2,280    | 2,280   |
| Cross Timbers Aquifer | Montague        | Trinity | Fresh     | 1,720   | 1,720    | 1,720          | 1,720        | 1,720    | 1,720   |
| Cross Timbers Aquifer | Wichita         | Red     | Fresh     | 840     | 840      | 840            | 840          | 840      | 840     |
| Cross Timbers Aquifer | Wilbarger       | Red     | Fresh     | 0       | 0        | 0              | 0            | 0        | 0       |
| Cross Timbers Aquifer | Young           | Brazos  | Fresh     | 650     | 650      | 650            | 650          | 650      | 650     |
| Cross Timbers Aquifer | Young           | Trinity | Fresh     | 50      | 50       | 50             | 50           | 50       | 50      |
| Other Aquifer         | Cottle          | Red     | Fresh     | 1,800   | 1,800    | 1,800          | 1,800        | 1,800    | 1,800   |
| Other Aquifer         | Foard           | Red     | Fresh     | 200     | 200      | 200            | 200          | 200      | 200     |

<sup>\*</sup> Salinity field indicates whether the source availability is considered 'fresh' (less than 1,000 mg/L), 'brackish' (1,000 to 10,000 mg/L), 'saline' (10,001 mg/L to 34,999 mg/L), or 'seawater' (35,000 mg/L or greater). Sources can also be labeled as 'fresh/brackish' or 'brackish/saline', if a combination of the salinity types is appropriate.

<sup>\*\*</sup> Since reservoir sources can exist across multiple counties, the county field value, 'reservoir' is applied to all reservoir sources.

|                 |           |         |           |        | Source | Availability | (acre-feet p | er year) |        |
|-----------------|-----------|---------|-----------|--------|--------|--------------|--------------|----------|--------|
| Source Name     | County    | Basin   | Salinity* | 2030   | 2040   | 2050         | 2060         | 2070     | 2080   |
| Other Aquifer   | Hardeman  | Red     | Fresh     | 50     | 50     | 50           | 50           | 50       | 50     |
| Other Aquifer   | King      | Brazos  | Fresh     | 250    | 250    | 250          | 250          | 250      | 250    |
| Other Aquifer   | King      | Red     | Fresh     | 400    | 400    | 400          | 400          | 400      | 400    |
| Other Aquifer   | Wilbarger | Red     | Fresh     | 3,050  | 3,050  | 3,050        | 3,050        | 3,050    | 3,050  |
| Seymour Aquifer | Archer    | Red     | Fresh     | 35     | 35     | 35           | 35           | 35       | 35     |
| Seymour Aquifer | Baylor    | Brazos  | Fresh     | 7,036  | 6,668  | 6,437        | 6,299        | 6,636    | 5,428  |
| Seymour Aquifer | Baylor    | Red     | Fresh     | 294    | 294    | 294          | 294          | 294      | 294    |
| Seymour Aquifer | Clay      | Red     | Fresh     | 787    | 787    | 787          | 787          | 787      | 787    |
| Seymour Aquifer | Foard     | Red     | Fresh     | 3,779  | 4,209  | 6,900        | 6,628        | 2,777    | 4,049  |
| Seymour Aquifer | Hardeman  | Red     | Fresh     | 14,209 | 20,002 | 18,689       | 21,116       | 34,037   | 26,577 |
| Seymour Aquifer | Wichita   | Red     | Fresh     | 2,295  | 2,295  | 2,288        | 2,291        | 2,291    | 2,291  |
| Seymour Aquifer | Wilbarger | Red     | Fresh     | 30,000 | 30,000 | 30,000       | 30,000       | 30,000   | 30,000 |
| Trinity Aquifer | Montague  | Red     | Fresh     | 238    | 238    | 238          | 238          | 238      | 238    |
| Trinity Aquifer | Montague  | Trinity | Fresh     | 5,866  | 5,866  | 5,866        | 5,866        | 5,866    | 5,866  |

| Reuse Source Availability Total |          |         | 9,427 | 9,427 | 9,427 | 9,427 | 9,427 | 9,427 |       |
|---------------------------------|----------|---------|-------|-------|-------|-------|-------|-------|-------|
| Direct Reuse                    | Baylor   | Brazos  | Fresh | 63    | 63    | 63    | 63    | 63    | 63    |
| Direct Reuse                    | Montague | Red     | Fresh | 31    | 31    | 31    | 31    | 31    | 31    |
| Direct Reuse                    | Montague | Trinity | Fresh | 3     | 3     | 3     | 3     | 3     | 3     |
| Direct Reuse                    | Wichita  | Red     | Fresh | 357   | 357   | 357   | 357   | 357   | 357   |
| Direct Reuse                    | Young    | Brazos  | Fresh | 5     | 5     | 5     | 5     | 5     | 5     |
| Indirect Reuse                  | Wichita  | Red     | Fresh | 8,968 | 8,968 | 8,968 | 8,968 | 8,968 | 8,968 |

<sup>\*</sup> Salinity field indicates whether the source availability is considered 'fresh' (less than 1,000 mg/L), 'brackish' (1,000 to 10,000 mg/L), 'saline' (10,001 mg/L to 34,999 mg/L), or 'seawater' (35,000 mg/L or greater). Sources can also be labeled as 'fresh/brackish' or 'brackish/saline', if a combination of the salinity types is appropriate.

<sup>\*\*</sup> Since reservoir sources can exist across multiple counties, the county field value, 'reservoir' is applied to all reservoir sources.

|                                               |                 |         |           |        | Source | Availability | (acre-feet p | er year) |        |
|-----------------------------------------------|-----------------|---------|-----------|--------|--------|--------------|--------------|----------|--------|
| Source Name                                   | County          | Basin   | Salinity* | 2030   | 2040   | 2050         | 2060         | 2070     | 2080   |
| Surface Water Source A                        | vailability Tot | tal     |           | 65,243 | 62,589 | 59,935       | 57,281       | 54,627   | 51,973 |
| Amon G. Carter<br>Lake/Reservoir              | Reservoir**     | Trinity | Fresh     | 1,080  | 1,018  | 956          | 894          | 832      | 770    |
| Brazos Livestock Local<br>Supply              | Archer          | Brazos  | Fresh     | 21     | 21     | 21           | 21           | 21       | 21     |
| Brazos Livestock Local<br>Supply              | Baylor          | Brazos  | Fresh     | 395    | 395    | 395          | 395          | 395      | 395    |
| Brazos Livestock Local<br>Supply              | King            | Brazos  | Fresh     | 100    | 100    | 100          | 100          | 100      | 100    |
| Brazos Livestock Local<br>Supply              | Young           | Brazos  | Fresh     | 45     | 45     | 45           | 45           | 45       | 45     |
| Brazos Run-of-River                           | Baylor          | Brazos  | Fresh     | 13     | 13     | 13           | 13           | 13       | 13     |
| Electra City<br>Lake/Reservoir                | Reservoir**     | Red     | Fresh     | 230    | 230    | 230          | 230          | 230      | 230    |
| Farmers Creek/Nocona<br>Lake/Reservoir        | Reservoir**     | Red     | Fresh     | 1,260  | 1,260  | 1,260        | 1,260        | 1,260    | 1,260  |
| Kemp-Diversion<br>Lake/Reservoir System       | Reservoir**     | Red     | Fresh     | 32,900 | 31,340 | 29,780       | 28,220       | 26,660   | 25,100 |
| Little Wichita River<br>Lake/Reservoir System | Reservoir**     | Red     | Fresh     | 16,300 | 15,280 | 14,260       | 13,240       | 12,220   | 11,200 |
| North Fork Buffalo<br>Creek Lake/Reservoir    | Reservoir**     | Red     | Fresh     | 790    | 790    | 790          | 790          | 790      | 790    |
| Olney-Cooper<br>Lake/Reservoir System         | Reservoir**     | Red     | Fresh     | 145    | 133    | 121          | 109          | 97       | 85     |
| Red Livestock Local<br>Supply                 | Archer          | Red     | Fresh     | 1,040  | 1,040  | 1,040        | 1,040        | 1,040    | 1,040  |
| Red Livestock Local<br>Supply                 | Baylor          | Red     | Fresh     | 375    | 375    | 375          | 375          | 375      | 375    |
| Red Livestock Local<br>Supply                 | Clay            | Red     | Fresh     | 1,066  | 1,066  | 1,066        | 1,066        | 1,066    | 1,066  |
| Red Livestock Local<br>Supply                 | Cottle          | Red     | Fresh     | 113    | 113    | 113          | 113          | 113      | 113    |
| Red Livestock Local<br>Supply                 | Foard           | Red     | Fresh     | 341    | 341    | 341          | 341          | 341      | 341    |
| Red Livestock Local<br>Supply                 | Hardeman        | Red     | Fresh     | 232    | 232    | 232          | 232          | 232      | 232    |
| Red Livestock Local<br>Supply                 | King            | Red     | Fresh     | 34     | 34     | 34           | 34           | 34       | 34     |

<sup>\*</sup> Salinity field indicates whether the source availability is considered 'fresh' (less than 1,000 mg/L), 'brackish' (1,000 to 10,000 mg/L), 'saline' (10,001 mg/L to 34,999 mg/L), or 'seawater' (35,000 mg/L or greater). Sources can also be labeled as 'fresh/brackish' or 'brackish/saline', if a combination of the salinity types is appropriate.

<sup>\*\*</sup> Since reservoir sources can exist across multiple counties, the county field value, 'reservoir' is applied to all reservoir sources.

|                                |             |         |           |       | Source | Availability | (acre-feet p | er year) |       |
|--------------------------------|-------------|---------|-----------|-------|--------|--------------|--------------|----------|-------|
| Source Name                    | County      | Basin   | Salinity* | 2030  | 2040   | 2050         | 2060         | 2070     | 2080  |
| Red Livestock Local<br>Supply  | Montague    | Red     | Fresh     | 775   | 775    | 775          | 775          | 775      | 775   |
| Red Livestock Local<br>Supply  | Wichita     | Red     | Fresh     | 682   | 682    | 682          | 682          | 682      | 682   |
| Red Livestock Local<br>Supply  | Wilbarger   | Red     | Fresh     | 585   | 585    | 585          | 585          | 585      | 585   |
| Red Run-of-River               | Archer      | Red     | Fresh     | 137   | 137    | 137          | 137          | 137      | 137   |
| Red Run-of-River               | Clay        | Red     | Fresh     | 2,904 | 2,904  | 2,904        | 2,904        | 2,904    | 2,904 |
| Red Run-of-River               | Cottle      | Red     | Fresh     | 8     | 8      | 8            | 8            | 8        | 8     |
| Red Run-of-River               | Hardeman    | Red     | Fresh     | 141   | 141    | 141          | 141          | 141      | 141   |
| Red Run-of-River               | Montague    | Red     | Fresh     | 6     | 6      | 6            | 6            | 6        | 6     |
| Red Run-of-River               | Wichita     | Red     | Fresh     | 1,424 | 1,424  | 1,424        | 1,424        | 1,424    | 1,424 |
| Red Run-of-River               | Wilbarger   | Red     | Fresh     | 107   | 107    | 107          | 107          | 107      | 107   |
| Santa Rosa<br>Lake/Reservoir   | Reservoir** | Red     | Fresh     | 920   | 920    | 920          | 920          | 920      | 920   |
| Trinity Livestock Local Supply | Archer      | Trinity | Fresh     | 288   | 288    | 288          | 288          | 288      | 288   |
| Trinity Livestock Local Supply | Clay        | Trinity | Fresh     | 161   | 161    | 161          | 161          | 161      | 161   |
| Trinity Livestock Local Supply | Montague    | Trinity | Fresh     | 625   | 625    | 625          | 625          | 625      | 625   |
| Wichita Lake/Reservoir         | Reservoir** | Red     | Fresh     | 0     | 0      | 0            | 0            | 0        | 0     |

<sup>\*</sup> Salinity field indicates whether the source availability is considered 'fresh' (less than 1,000 mg/L), 'brackish' (1,000 to 10,000 mg/L), 'saline' (10,001 mg/L to 34,999 mg/L), or 'seawater' (35,000 mg/L or greater). Sources can also be labeled as 'fresh/brackish' or 'brackish/saline', if a combination of the salinity types is appropriate.

<sup>\*\*</sup> Since reservoir sources can exist across multiple counties, the county field value, 'reservoir' is applied to all reservoir sources.

|                      | Source     |                                               |       | Existi | ng Supply (a | cre-feet per | year) |       |
|----------------------|------------|-----------------------------------------------|-------|--------|--------------|--------------|-------|-------|
| WUG Name             | Region     | Source Description                            | 2030  | 2040   | 2050         | 2060         | 2070  | 2080  |
| Archer County WUG    | Total      |                                               | 4,382 | 4,232  | 4,077        | 3,955        | 3,834 | 3,717 |
| Archer County / Braz | os Basin \ | WUG Total                                     | 38    | 38     | 37           | 36           | 36    | 35    |
| Baylor SUD*          | В          | Seymour Aquifer   Baylor<br>County            | 17    | 17     | 16           | 15           | 15    | 14    |
| Livestock            | В          | Cross Timbers Aquifer  <br>Archer County      | 0     | 0      | 0            | 0            | 0     | 0     |
| Livestock            | В          | Local Surface Water<br>Supply                 | 21    | 21     | 21           | 21           | 21    | 21    |
| Archer County / Red  | Basin WU   | IG Total                                      | 4,049 | 3,900  | 3,746        | 3,625        | 3,504 | 3,387 |
| Archer City          | В          | Little Wichita River<br>Lake/Reservoir System | 257   | 239    | 220          | 203          | 186   | 169   |
| Archer City          | В          | Red Indirect Reuse                            | 142   | 141    | 139          | 138          | 136   | 136   |
| Archer County MUD    | В          | Little Wichita River<br>Lake/Reservoir System | 306   | 284    | 262          | 241          | 221   | 201   |
| Archer County MUD    | В          | Red Indirect Reuse                            | 168   | 167    | 164          | 163          | 162   | 161   |
| Baylor SUD*          | В          | Seymour Aquifer   Baylor<br>County            | 25    | 24     | 24           | 23           | 22    | 21    |
| Holliday             | В          | Little Wichita River<br>Lake/Reservoir System | 142   | 132    | 121          | 112          | 103   | 94    |
| Holliday             | В          | Red Indirect Reuse                            | 79    | 77     | 76           | 76           | 75    | 76    |
| Lakeside City        | В          | Little Wichita River<br>Lake/Reservoir System | 109   | 101    | 93           | 85           | 79    | 72    |
| Lakeside City        | В          | Red Indirect Reuse                            | 60    | 59     | 59           | 58           | 58    | 57    |
| Scotland             | В          | Little Wichita River<br>Lake/Reservoir System | 122   | 113    | 104          | 96           | 88    | 80    |
| Scotland             | В          | Red Indirect Reuse                            | 67    | 66     | 65           | 65           | 65    | 64    |
| Wichita Valley WSC   | В          | Little Wichita River<br>Lake/Reservoir System | 378   | 350    | 319          | 293          | 265   | 241   |
| Wichita Valley WSC   | В          | Red Indirect Reuse                            | 208   | 204    | 199          | 198          | 195   | 192   |
| Windthorst WSC       | В          | Little Wichita River<br>Lake/Reservoir System | 337   | 314    | 291          | 269          | 246   | 223   |
| Windthorst WSC       | В          | Red Indirect Reuse                            | 185   | 184    | 183          | 181          | 180   | 178   |
| County-Other         | В          | Cross Timbers Aquifer  <br>Archer County      | 34    | 33     | 33           | 32           | 31    | 30    |
| County-Other         | В          | Seymour Aquifer   Baylor<br>County            | 14    | 14     | 14           | 14           | 14    | 14    |
| Manufacturing        | В          | Cross Timbers Aquifer  <br>Archer County      | 1     | 1      | 1            | 1            | 1     | 1     |

<sup>\*</sup>A single asterisk next to a WUG's name denotes that the WUG is split by two or more planning regions.

|                                    | Source       |                                                                                                                                                                                     |                     | Existir             | ng Supply (a        | cre-feet per        | year)               |                     |
|------------------------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| WUG Name                           | Region       | Source Description                                                                                                                                                                  | 2030                | 2040                | 2050                | 2060                | 2070                | 2080                |
| Livestock                          | В            | Cross Timbers Aquifer  <br>Archer County                                                                                                                                            | 0                   | 0                   | 0                   | 15                  | 33                  | 51                  |
| Livestock                          | В            | Kemp-Diversion<br>Lake/Reservoir System                                                                                                                                             | 375                 | 357                 | 339                 | 322                 | 304                 | 286                 |
| Livestock                          | В            | Local Surface Water<br>Supply                                                                                                                                                       | 1,040               | 1,040               | 1,040               | 1,040               | 1,040               | 1,040               |
| Archer County / Trir               | nity Basin \ | WUG Total                                                                                                                                                                           | 295                 | 294                 | 294                 | 294                 | 294                 | 295                 |
| Baylor SUD*                        | В            | Seymour Aquifer   Baylor<br>County                                                                                                                                                  | 3                   | 2                   | 2                   | 2                   | 2                   | 3                   |
| County-Other                       | В            | Cross Timbers Aquifer  <br>Archer County                                                                                                                                            | 2                   | 2                   | 2                   | 2                   | 2                   | 2                   |
| County-Other                       | В            | Seymour Aquifer   Baylor<br>County                                                                                                                                                  | 1                   | 1                   | 1                   | 1                   | 1                   | 1                   |
| Mining                             | В            | Cross Timbers Aquifer  <br>Archer County                                                                                                                                            | 1                   | 1                   | 1                   | 1                   | 1                   | 1                   |
| Livestock                          | В            | Local Surface Water<br>Supply                                                                                                                                                       | 288                 | 288                 | 288                 | 288                 | 288                 | 288                 |
| Baylor County WUG                  | Total        |                                                                                                                                                                                     | 6,804               | 6,793               | 6,794               | 6,780               | 6,765               | 6,489               |
| Baylor County / Bra                | zos Basin \  | WUG Total                                                                                                                                                                           | 5,002               | 4,993               | 4,994               | 4,979               | 4,965               | 4,759               |
| Baylor SUD*                        | G            | Millers Creek<br>Lake/Reservoir                                                                                                                                                     | 6                   | 5                   | 4                   | 2                   | 1                   | 0                   |
| Baylor SUD*                        | В            | Seymour Aquifer   Baylor                                                                                                                                                            |                     |                     |                     |                     |                     |                     |
|                                    |              | County                                                                                                                                                                              | 217                 | 220                 | 231                 | 237                 | 244                 | 249                 |
| Seymour                            | В            |                                                                                                                                                                                     | 217<br>63           | 220<br>63           | 231<br>63           | 237<br>63           | 244                 | 249<br>63           |
| Seymour<br>Seymour                 |              | County                                                                                                                                                                              |                     |                     |                     |                     |                     |                     |
|                                    | В            | County Direct Reuse Seymour Aquifer   Baylor                                                                                                                                        | 63                  | 63                  | 63                  | 63                  | 63                  | 63                  |
| Seymour                            | ВВВ          | County Direct Reuse Seymour Aquifer   Baylor County Cross Timbers Aquifer                                                                                                           | 63<br>443           | 63<br>430           | 63<br>421           | 63<br>401           | 63                  | 63<br>381           |
| Seymour<br>Mining                  | B<br>B       | County Direct Reuse Seymour Aquifer   Baylor County Cross Timbers Aquifer   Baylor County Seymour Aquifer   Baylor                                                                  | 63<br>443<br>1      | 63<br>430<br>1      | 63<br>421<br>1      | 63<br>401<br>1      | 63<br>381<br>1      | 63<br>381<br>1      |
| Seymour  Mining  Mining            | B<br>B<br>B  | County Direct Reuse Seymour Aquifer   Baylor County Cross Timbers Aquifer   Baylor County Seymour Aquifer   Baylor County Cross Timbers Aquifer   Baylor County                     | 63<br>443<br>1<br>0 | 63<br>430<br>1      | 63<br>421<br>1<br>0 | 63<br>401<br>1<br>0 | 63<br>381<br>1      | 63<br>381<br>1<br>0 |
| Seymour  Mining  Mining  Livestock | B B B B      | County Direct Reuse Seymour Aquifer   Baylor County Cross Timbers Aquifer   Baylor County Seymour Aquifer   Baylor County Cross Timbers Aquifer   Baylor County Local Surface Water | 63<br>443<br>1<br>0 | 63<br>430<br>1<br>0 | 63<br>421<br>1<br>0 | 63<br>401<br>1<br>0 | 63<br>381<br>1<br>0 | 63<br>381<br>1<br>0 |

<sup>\*</sup>A single asterisk next to a WUG's name denotes that the WUG is split by two or more planning regions.

|                               | Source   |                                               |       | Existi | ng Supply (a | cre-feet per | year) |       |
|-------------------------------|----------|-----------------------------------------------|-------|--------|--------------|--------------|-------|-------|
| WUG Name                      | Region   | Source Description                            | 2030  | 2040   | 2050         | 2060         | 2070  | 2080  |
| Irrigation                    | В        | Seymour Aquifer   Baylor<br>County            | 3,765 | 3,767  | 3,767        | 3,768        | 3,768 | 3,558 |
| Baylor County / Red           | Basin WU | IG Total                                      | 1,802 | 1,800  | 1,800        | 1,801        | 1,800 | 1,730 |
| Baylor SUD*                   | В        | Seymour Aquifer   Baylor<br>County            | 29    | 29     | 30           | 32           | 31    | 33    |
| County-Other                  | В        | Seymour Aquifer   Baylor<br>County            | 2     | 2      | 1            | 1            | 1     | 1     |
| Mining                        | В        | Cross Timbers Aquifer  <br>Baylor County      | 9     | 9      | 9            | 9            | 9     | 9     |
| Livestock                     | В        | Cross Timbers Aquifer  <br>Baylor County      | 30    | 30     | 30           | 30           | 30    | 30    |
| Livestock                     | В        | Local Surface Water<br>Supply                 | 375   | 375    | 375          | 375          | 375   | 375   |
| Livestock                     | В        | Seymour Aquifer   Baylor<br>County            | 64    | 64     | 64           | 64           | 64    | 64    |
| Irrigation                    | В        | Seymour Aquifer   Baylor<br>County            | 1,293 | 1,291  | 1,291        | 1,290        | 1,290 | 1,218 |
| Clay County WUG To            | otal     |                                               | 6,792 | 6,732  | 6,665        | 6,604        | 6,545 | 6,486 |
| Clay County / Red Ba          | asin WUG | Total                                         | 6,244 | 6,184  | 6,117        | 6,056        | 5,997 | 5,938 |
| Dean Dale WSC                 | В        | Little Wichita River<br>Lake/Reservoir System | 371   | 346    | 320          | 294          | 270   | 242   |
| Dean Dale WSC                 | В        | Red Indirect Reuse                            | 201   | 203    | 201          | 199          | 196   | 194   |
| Henrietta                     | В        | Red Run-of-River                              | 1,130 | 1,130  | 1,130        | 1,130        | 1,130 | 1,130 |
| Red River Authority of Texas* | В        | Little Wichita River<br>Lake/Reservoir System | 247   | 229    | 211          | 194          | 178   | 163   |
| Red River Authority of Texas* | В        | Red Indirect Reuse                            | 136   | 134    | 133          | 132          | 131   | 130   |
| Red River Authority of Texas* | В        | Seymour Aquifer  <br>Hardeman County          | 0     | 0      | 0            | 0            | 0     | 0     |
| Red River Authority of Texas* | В        | Trinity Aquifer   Montague County             | 0     | 0      | 0            | 0            | 0     | 0     |
| Windthorst WSC                | В        | Little Wichita River<br>Lake/Reservoir System | 160   | 148    | 134          | 123          | 113   | 104   |
| Windthorst WSC                | В        | Red Indirect Reuse                            | 88    | 87     | 84           | 84           | 83    | 83    |
| County-Other                  | В        | Cross Timbers Aquifer  <br>Clay County        | 247   | 247    | 247          | 247          | 247   | 247   |
| County-Other                  | В        | Seymour Aquifer   Clay<br>County              | 170   | 170    | 170          | 170          | 170   | 170   |

<sup>\*</sup>A single asterisk next to a WUG's name denotes that the WUG is split by two or more planning regions.

|                               | Source      |                                         |       | Existi | ng Supply (a | cre-feet per | year) |       |
|-------------------------------|-------------|-----------------------------------------|-------|--------|--------------|--------------|-------|-------|
| WUG Name                      | Region      | Source Description                      | 2030  | 2040   | 2050         | 2060         | 2070  | 2080  |
| Livestock                     | В           | Cross Timbers Aquifer  <br>Clay County  | 158   | 158    | 158          | 158          | 158   | 158   |
| Livestock                     | В           | Local Surface Water<br>Supply           | 1,066 | 1,066  | 1,066        | 1,066        | 1,066 | 1,066 |
| Livestock                     | В           | Seymour Aquifer   Clay<br>County        | 30    | 30     | 30           | 30           | 30    | 30    |
| Irrigation                    | В           | Cross Timbers Aquifer  <br>Clay County  | 332   | 332    | 332          | 332          | 332   | 332   |
| Irrigation                    | В           | Kemp-Diversion<br>Lake/Reservoir System | 80    | 76     | 73           | 69           | 65    | 61    |
| Irrigation                    | В           | Red Run-of-River                        | 1,241 | 1,241  | 1,241        | 1,241        | 1,241 | 1,241 |
| Irrigation                    | В           | Seymour Aquifer   Clay<br>County        | 587   | 587    | 587          | 587          | 587   | 587   |
| Clay County / Trinity         | Docin M/I   | IC Total                                | 548   | 548    | 548          | 548          | 548   | 548   |
| clay County / Trinity         | Dasiii vv C | Cross Timbers Aquifer                   | 540   | 540    | 540          | 546          | 540   | 540   |
| County-Other                  | В           | Clay County                             | 83    | 83     | 83           | 83           | 83    | 83    |
| Mining                        | В           | Cross Timbers Aquifer  <br>Clay County  | 3     | 3      | 3            | 3            | 3     | 3     |
| Mining                        | В           | Red Run-of-River                        | 1     | 1      | 1            | 1            | 1     | 1     |
| Livestock                     | В           | Cross Timbers Aquifer  <br>Clay County  | 32    | 32     | 32           | 32           | 32    | 32    |
| Livestock                     | В           | Local Surface Water<br>Supply           | 161   | 161    | 161          | 161          | 161   | 161   |
| Irrigation                    | В           | Cross Timbers Aquifer  <br>Clay County  | 268   | 268    | 268          | 268          | 268   | 268   |
| Cottle County WUG             | Total       |                                         | 5,078 | 5,033  | 5,031        | 5,027        | 5,023 | 5,017 |
| Cottle County / Red           |             | G Total                                 | 5,078 | 5,033  | 5,031        | 5,027        | 5,023 | 5,017 |
| Paducah                       | В           | Blaine Aquifer   Cottle<br>County       | 298   | 254    | 253          | 249          | 245   | 240   |
| Red River Authority of Texas* | В           | Other Aquifer   Cottle<br>County        | 29    | 29     | 29           | 30           | 30    | 30    |
| Red River Authority of Texas* | В           | Red Indirect Reuse                      | 0     | 0      | 0            | 0            | 0     | 0     |
| Red River Authority of Texas* | В           | Seymour Aquifer  <br>Hardeman County    | 0     | 0      | 0            | 0            | 0     | 0     |
| Red River Authority of Texas* | В           | Trinity Aquifer   Montague<br>County    | 0     | 0      | 0            | 0            | 0     | 0     |
| County-Other                  | В           | Other Aquifer   Cottle<br>County        | 33    | 32     | 31           | 30           | 30    | 29    |

<sup>\*</sup>A single asterisk next to a WUG's name denotes that the WUG is split by two or more planning regions.

|                               | Source |                                      |       | Existi | ng Supply (a | cre-feet per | year) |       |
|-------------------------------|--------|--------------------------------------|-------|--------|--------------|--------------|-------|-------|
| WUG Name                      | Region | Source Description                   | 2030  | 2040   | 2050         | 2060         | 2070  | 2080  |
| Mining                        | В      | Blaine Aquifer   Cottle<br>County    | 6     | 6      | 6            | 6            | 6     | 6     |
| Livestock                     | В      | Blaine Aquifer   Cottle<br>County    | 225   | 225    | 225          | 225          | 225   | 225   |
| Livestock                     | В      | Local Surface Water<br>Supply        | 113   | 113    | 113          | 113          | 113   | 113   |
| Livestock                     | В      | Other Aquifer   Cottle<br>County     | 55    | 55     | 55           | 55           | 55    | 55    |
| Irrigation                    | В      | Blaine Aquifer   Cottle<br>County    | 2,708 | 2,708  | 2,708        | 2,708        | 2,708 | 2,708 |
| Irrigation                    | В      | Other Aquifer   Cottle<br>County     | 1,600 | 1,600  | 1,600        | 1,600        | 1,600 | 1,600 |
| Irrigation                    | В      | Red Run-of-River                     | 11    | 11     | 11           | 11           | 11    | 11    |
| Foard County WUG 1            | [otal  |                                      | 3,889 | 3,887  | 3,887        | 3,886        | 3,645 | 3,883 |
| Foard County / Red I          |        | G Total                              | 3,889 | 3,887  | 3,887        | 3,886        | 3,645 | 3,883 |
| Crowell                       | Α      | Greenbelt Lake/Reservoir             | 79    | 77     | 76           | 75           | 74    | 73    |
| Crowell                       | А      | Ogallala Aquifer   Donley<br>County  | 41    | 41     | 41           | 40           | 39    | 37    |
| Crowell                       | В      | Seymour Aquifer  <br>Hardeman County | 0     | 0      | 0            | 0            | 0     | 0     |
| Red River Authority of Texas* | А      | Greenbelt Lake/Reservoir             | 48    | 48     | 48           | 49           | 50    | 52    |
| Red River Authority of Texas* | А      | Ogallala Aquifer   Donley<br>County  | 25    | 25     | 26           | 26           | 26    | 26    |
| Red River Authority of Texas* | В      | Red Indirect Reuse                   | 0     | 0      | 0            | 0            | 0     | 0     |
| Red River Authority of Texas* | В      | Seymour Aquifer  <br>Hardeman County | 0     | 0      | 0            | 0            | 0     | 0     |
| Red River Authority of Texas* | В      | Trinity Aquifer   Montague<br>County | 0     | 0      | 0            | 0            | 0     | 0     |
| County-Other                  | В      | Seymour Aquifer   Foard<br>County    | 17    | 17     | 17           | 17           | 16    | 16    |
| Livestock                     | В      | Blaine Aquifer   Foard<br>County     | 30    | 30     | 30           | 30           | 30    | 30    |
| Livestock                     | В      | Local Surface Water<br>Supply        | 341   | 341    | 341          | 341          | 341   | 341   |
| Livestock                     | В      | Other Aquifer   Foard<br>County      | 8     | 8      | 8            | 8            | 8     | 8     |
| Irrigation                    | В      | Blaine Aquifer   Foard<br>County     | 200   | 200    | 200          | 200          | 200   | 200   |

<sup>\*</sup>A single asterisk next to a WUG's name denotes that the WUG is split by two or more planning regions.

|                               | Source    |                                      |        | Existi | ng Supply (a | cre-feet per | year)  |        |
|-------------------------------|-----------|--------------------------------------|--------|--------|--------------|--------------|--------|--------|
| WUG Name                      | Region    | Source Description                   | 2030   | 2040   | 2050         | 2060         | 2070   | 2080   |
| Irrigation                    | В         | Other Aquifer   Foard<br>County      | 100    | 100    | 100          | 100          | 100    | 100    |
| Irrigation                    | В         | Seymour Aquifer   Foard<br>County    | 3,000  | 3,000  | 3,000        | 3,000        | 2,761  | 3,000  |
| Hardeman County W             | /UG Total |                                      | 19,767 | 19,768 | 19,772       | 19,773       | 19,772 | 19,775 |
| Hardeman County /             | Red Basin | WUG Total                            | 19,767 | 19,768 | 19,772       | 19,773       | 19,772 | 19,775 |
| Chillicothe                   | А         | Greenbelt Lake/Reservoir             | 19     | 19     | 18           | 18           | 18     | 18     |
| Chillicothe                   | Α         | Ogallala Aquifer   Donley<br>County  | 10     | 10     | 10           | 9            | 8      | 8      |
| Chillicothe                   | В         | Seymour Aquifer  <br>Hardeman County | 43     | 43     | 42           | 42           | 41     | 41     |
| Quanah                        | А         | Greenbelt Lake/Reservoir             | 230    | 223    | 221          | 219          | 217    | 218    |
| Quanah                        | А         | Ogallala Aquifer   Donley<br>County  | 117    | 119    | 119          | 117          | 114    | 109    |
| Quanah                        | В         | Seymour Aquifer  <br>Hardeman County | 0      | 0      | 0            | 0            | 0      | 0      |
| Red River Authority of Texas* | А         | Greenbelt Lake/Reservoir             | 129    | 126    | 125          | 123          | 122    | 122    |
| Red River Authority of Texas* | А         | Ogallala Aquifer   Donley<br>County  | 66     | 67     | 67           | 66           | 64     | 61     |
| Red River Authority of Texas* | В         | Red Indirect Reuse                   | 0      | 0      | 0            | 0            | 0      | 0      |
| Red River Authority of Texas* | В         | Seymour Aquifer  <br>Hardeman County | 0      | 0      | 0            | 0            | 0      | 0      |
| Red River Authority of Texas* | В         | Trinity Aquifer   Montague<br>County | 0      | 0      | 0            | 0            | 0      | 0      |
| County-Other                  | В         | Blaine Aquifer   Hardeman<br>County  | 14     | 14     | 14           | 14           | 14     | 14     |
| County-Other                  | Α         | Greenbelt Lake/Reservoir             | 0      | 0      | 0            | 0            | 0      | 0      |
| County-Other                  | А         | Ogallala Aquifer   Donley<br>County  | 0      | 0      | 0            | 0            | 0      | 0      |
| County-Other                  | В         | Seymour Aquifer  <br>Hardeman County | 36     | 36     | 36           | 36           | 36     | 36     |
| Manufacturing                 | Α         | Greenbelt Lake/Reservoir             | 33     | 33     | 32           | 33           | 33     | 33     |
| Manufacturing                 | А         | Ogallala Aquifer   Donley<br>County  | 17     | 17     | 18           | 17           | 17     | 17     |
| Manufacturing                 | В         | Seymour Aquifer  <br>Hardeman County | 175    | 183    | 192          | 201          | 210    | 220    |
| Mining                        | В         | Blaine Aquifer   Hardeman<br>County  | 5      | 5      | 5            | 5            | 5      | 5      |

<sup>\*</sup>A single asterisk next to a WUG's name denotes that the WUG is split by two or more planning regions.

|                               | Source   |                                      |        | Existi | ng Supply (a | cre-feet per | year)  |        |
|-------------------------------|----------|--------------------------------------|--------|--------|--------------|--------------|--------|--------|
| WUG Name                      | Region   | Source Description                   | 2030   | 2040   | 2050         | 2060         | 2070   | 2080   |
| Mining                        | В        | Other Aquifer   Hardeman<br>County   | 0      | 0      | 0            | 0            | 0      | 0      |
| Livestock                     | В        | Blaine Aquifer   Hardeman<br>County  | 120    | 120    | 120          | 120          | 120    | 120    |
| Livestock                     | В        | Local Surface Water<br>Supply        | 232    | 232    | 232          | 232          | 232    | 232    |
| Livestock                     | В        | Other Aquifer   Hardeman<br>County   | 50     | 50     | 50           | 50           | 50     | 50     |
| Livestock                     | В        | Seymour Aquifer  <br>Hardeman County | 40     | 40     | 40           | 40           | 40     | 40     |
| Irrigation                    | В        | Blaine Aquifer   Hardeman<br>County  | 6,444  | 6,444  | 6,444        | 6,444        | 6,444  | 6,444  |
| Irrigation                    | В        | Red Run-of-River                     | 141    | 141    | 141          | 141          | 141    | 141    |
| Irrigation                    | В        | Seymour Aquifer  <br>Hardeman County | 11,846 | 11,846 | 11,846       | 11,846       | 11,846 | 11,846 |
| King County WUG To            | otal     |                                      | 771    | 772    | 772          | 774          | 775    | 776    |
| King County / Brazos          | Basin Wl | JG Total                             | 341    | 341    | 341          | 341          | 341    | 341    |
| County-Other                  | В        | Blaine Aquifer   King<br>County      | 3      | 3      | 3            | 3            | 3      | 3      |
| County-Other                  | В        | Other Aquifer   King<br>County       | 0      | 0      | 0            | 0            | 0      | 0      |
| Mining                        | В        | Other Aquifer   King<br>County       | 4      | 4      | 4            | 4            | 4      | 4      |
| Livestock                     | В        | Local Surface Water<br>Supply        | 100    | 100    | 100          | 100          | 100    | 100    |
| Livestock                     | В        | Other Aquifer   King<br>County       | 234    | 234    | 234          | 234          | 234    | 234    |
| King County / Red Ba          | asin WUG | Total                                | 430    | 431    | 431          | 433          | 434    | 435    |
| Red River Authority of Texas* | 0        | Other Aquifer   Dickens<br>County    | 61     | 62     | 62           | 64           | 65     | 66     |
| Red River Authority of Texas* | В        | Red Indirect Reuse                   | 0      | 0      | 0            | 0            | 0      | 0      |
| Red River Authority of Texas* | В        | Seymour Aquifer  <br>Hardeman County | 0      | 0      | 0            | 0            | 0      | 0      |
| Red River Authority of Texas* | В        | Trinity Aquifer   Montague<br>County | 0      | 0      | 0            | 0            | 0      | 0      |
| County-Other                  | В        | Blaine Aquifer   King<br>County      | 12     | 12     | 12           | 12           | 12     | 12     |

<sup>\*</sup>A single asterisk next to a WUG's name denotes that the WUG is split by two or more planning regions.

|                               | Source    |                                            |       | Existi | ng Supply (a | cre-feet per | year) |       |
|-------------------------------|-----------|--------------------------------------------|-------|--------|--------------|--------------|-------|-------|
| WUG Name                      | Region    | Source Description                         | 2030  | 2040   | 2050         | 2060         | 2070  | 2080  |
| Livestock                     | В         | Blaine Aquifer   King<br>County            | 34    | 34     | 34           | 34           | 34    | 34    |
| Livestock                     | В         | Local Surface Water<br>Supply              | 34    | 34     | 34           | 34           | 34    | 34    |
| Livestock                     | В         | Other Aquifer   King<br>County             | 44    | 44     | 44           | 44           | 44    | 44    |
| Irrigation                    | В         | Other Aquifer   King<br>County             | 245   | 245    | 245          | 245          | 245   | 245   |
| Montague County W             | UG Total  |                                            | 5,559 | 5,525  | 5,491        | 5,459        | 5,426 | 5,391 |
| Montague County /             | Red Basin | WUG Total                                  | 2,772 | 2,800  | 2,828        | 2,858        | 2,887 | 2,914 |
| Bowie                         |           | No water supply associated with WUG        | 0     | 0      | 0            | 0            | 0     | 0     |
| Nocona                        | В         | Farmers Creek/Nocona<br>Lake/Reservoir     | 1,017 | 1,008  | 998          | 988          | 978   | 968   |
| Nocona Hills WSC              | В         | Trinity Aquifer   Montague County          | 201   | 228    | 255          | 283          | 310   | 337   |
| Red River Authority of Texas* | В         | Red Indirect Reuse                         | 0     | 0      | 0            | 0            | 0     | 0     |
| Red River Authority of Texas* | В         | Seymour Aquifer  <br>Hardeman County       | 0     | 0      | 0            | 0            | 0     | 0     |
| Red River Authority of Texas* | В         | Trinity Aquifer   Montague County          | 44    | 45     | 46           | 48           | 50    | 50    |
| County-Other                  | В         | Cross Timbers Aquifer  <br>Montague County | 399   | 399    | 399          | 399          | 399   | 399   |
| County-Other                  | В         | Farmers Creek/Nocona<br>Lake/Reservoir     | 63    | 72     | 82           | 92           | 102   | 112   |
| County-Other                  | В         | Trinity Aquifer   Montague<br>County       | 3     | 3      | 3            | 3            | 3     | 3     |
| Livestock                     | В         | Cross Timbers Aquifer  <br>Montague County | 34    | 34     | 34           | 34           | 34    | 34    |
| Livestock                     | В         | Local Surface Water<br>Supply              | 775   | 775    | 775          | 775          | 775   | 775   |
| Livestock                     | В         | Trinity Aquifer   Montague<br>County       | 7     | 7      | 7            | 7            | 7     | 7     |
| Irrigation                    | В         | Cross Timbers Aquifer  <br>Montague County | 171   | 171    | 171          | 171          | 171   | 171   |
| Irrigation                    | В         | Direct Reuse                               | 31    | 31     | 31           | 31           | 31    | 31    |
| Irrigation                    | В         | Farmers Creek/Nocona<br>Lake/Reservoir     | 19    | 19     | 19           | 19           | 19    | 19    |
| Irrigation                    | В         | Red Run-of-River                           | 6     | 6      | 6            | 6            | 6     | 6     |

<sup>\*</sup>A single asterisk next to a WUG's name denotes that the WUG is split by two or more planning regions.

|                     | Source     |                                            |        | Existi | ng Supply (a | cre-feet per | year)  |        |
|---------------------|------------|--------------------------------------------|--------|--------|--------------|--------------|--------|--------|
| WUG Name            | Region     | Source Description                         | 2030   | 2040   | 2050         | 2060         | 2070   | 2080   |
| Irrigation          | В          | Trinity Aquifer   Montague<br>County       | 2      | 2      | 2            | 2            | 2      | 2      |
| Montague County /   | Trinity Ba | sin WUG Total                              | 2,787  | 2,725  | 2,663        | 2,601        | 2,539  | 2,477  |
| Bowie               | В          | Amon G. Carter<br>Lake/Reservoir           | 923    | 837    | 751          | 664          | 577    | 491    |
| Saint Jo            | В          | Trinity Aquifer   Montague<br>County       | 249    | 249    | 249          | 249          | 249    | 249    |
| County-Other        | В          | Amon G. Carter<br>Lake/Reservoir           | 157    | 181    | 205          | 230          | 255    | 279    |
| County-Other        | В          | Cross Timbers Aquifer  <br>Montague County | 301    | 301    | 301          | 301          | 301    | 301    |
| County-Other        | В          | Trinity Aquifer   Montague<br>County       | 197    | 197    | 197          | 197          | 197    | 197    |
| Mining              | В          | Cross Timbers Aquifer  <br>Montague County | 31     | 31     | 31           | 31           | 31     | 31     |
| Mining              | В          | Direct Reuse                               | 3      | 3      | 3            | 3            | 3      | 3      |
| Livestock           | В          | Cross Timbers Aquifer  <br>Montague County | 26     | 26     | 26           | 26           | 26     | 26     |
| Livestock           | В          | Local Surface Water<br>Supply              | 625    | 625    | 625          | 625          | 625    | 625    |
| Livestock           | В          | Trinity Aquifer   Montague<br>County       | 8      | 8      | 8            | 8            | 8      | 8      |
| Irrigation          | В          | Cross Timbers Aquifer  <br>Montague County | 129    | 129    | 129          | 129          | 129    | 129    |
| Irrigation          | В          | Trinity Aquifer   Montague<br>County       | 138    | 138    | 138          | 138          | 138    | 138    |
| Wichita County WU   | G Total    |                                            | 47,861 | 45,964 | 44,083       | 42,169       | 40,256 | 38,341 |
| Wichita County / Re |            | LIG Total                                  | 47,861 | 45,964 | 44,083       | 42,169       | 40,256 | 38,341 |
| Burkburnett         | B          | Direct Reuse                               | 167    | 167    | 167          | 167          | 167    | 167    |
| Burkburnett         | В          | Little Wichita River Lake/Reservoir System | 1,078  | 999    | 920          | 847          | 776    | 705    |
| Burkburnett         | В          | Red Indirect Reuse                         | 593    | 586    | 579          | 574          | 569    | 565    |
| Burkburnett         | В          | Seymour Aquifer   Wichita<br>County        | 1,000  | 1,000  | 1,000        | 1,000        | 1,000  | 1,000  |
| Dean Dale WSC       | В          | Little Wichita River Lake/Reservoir System | 176    | 161    | 147          | 136          | 126    | 117    |
| Dean Dale WSC       | В          | Red Indirect Reuse                         | 100    | 95     | 93           | 93           | 94     | 93     |

<sup>\*</sup>A single asterisk next to a WUG's name denotes that the WUG is split by two or more planning regions.

|                            | Source |                                               |       | Existi | ng Supply (a | cre-feet per | year) |       |
|----------------------------|--------|-----------------------------------------------|-------|--------|--------------|--------------|-------|-------|
| WUG Name                   | Region | Source Description                            | 2030  | 2040   | 2050         | 2060         | 2070  | 2080  |
| Electra                    | В      | Little Wichita River<br>Lake/Reservoir System | 466   | 432    | 399          | 368          | 338   | 308   |
| Electra                    | В      | Red Indirect Reuse                            | 256   | 254    | 251          | 249          | 248   | 247   |
| Harrold WSC                | В      | Little Wichita River<br>Lake/Reservoir System | 11    | 10     | 10           | 9            | 8     | 7     |
| Harrold WSC                | В      | Red Indirect Reuse                            | 6     | 6      | 6            | 6            | 6     | 6     |
| Holliday                   | В      | Little Wichita River<br>Lake/Reservoir System | 3     | 3      | 3            | 3            | 2     | 2     |
| Holliday                   | В      | Red Indirect Reuse                            | 1     | 2      | 2            | 2            | 2     | 1     |
| Iowa Park                  | В      | Little Wichita River<br>Lake/Reservoir System | 706   | 654    | 599          | 550          | 502   | 454   |
| Iowa Park                  | В      | Red Indirect Reuse                            | 389   | 384    | 377          | 372          | 368   | 364   |
| Sheppard Air Force<br>Base | В      | Little Wichita River<br>Lake/Reservoir System | 636   | 587    | 541          | 499          | 457   | 415   |
| Sheppard Air Force<br>Base | В      | Red Indirect Reuse                            | 350   | 345    | 340          | 338          | 335   | 333   |
| Wichita Falls              | В      | Kemp-Diversion<br>Lake/Reservoir System       | 3,344 | 3,185  | 3,027        | 2,867        | 2,709 | 2,551 |
| Wichita Falls              | В      | Little Wichita River<br>Lake/Reservoir System | 8,402 | 7,919  | 7,446        | 6,926        | 6,393 | 5,862 |
| Wichita Falls              | В      | Red Indirect Reuse                            | 5,181 | 5,214  | 5,254        | 5,276        | 5,295 | 5,316 |
| Wichita Valley WSC         | В      | Little Wichita River<br>Lake/Reservoir System | 715   | 666    | 616          | 569          | 524   | 478   |
| Wichita Valley WSC         | В      | Red Indirect Reuse                            | 393   | 391    | 388          | 385          | 385   | 382   |
| County-Other               | В      | Cross Timbers Aquifer  <br>Wichita County     | 70    | 70     | 70           | 70           | 70    | 70    |
| County-Other               | В      | Little Wichita River<br>Lake/Reservoir System | 215   | 198    | 183          | 169          | 155   | 141   |
| County-Other               | В      | Red Indirect Reuse                            | 117   | 116    | 116          | 114          | 113   | 113   |
| County-Other               | В      | Seymour Aquifer   Wichita<br>County           | 90    | 90     | 90           | 90           | 90    | 90    |
| Manufacturing              | В      | Direct Reuse                                  | 190   | 190    | 190          | 190          | 190   | 190   |
| Manufacturing              | В      | Little Wichita River<br>Lake/Reservoir System | 416   | 401    | 383          | 367          | 348   | 329   |
| Manufacturing              | В      | Red Indirect Reuse                            | 229   | 236    | 241          | 247          | 256   | 262   |
| Manufacturing              | В      | Seymour Aquifer   Wichita<br>County           | 129   | 129    | 129          | 129          | 129   | 129   |
| Mining                     | В      | Seymour Aquifer   Wichita<br>County           | 45    | 45     | 45           | 45           | 45    | 45    |

<sup>\*</sup>A single asterisk next to a WUG's name denotes that the WUG is split by two or more planning regions.

|                               | Source    |                                               |        | Existi | ng Supply (a | cre-feet per | year)  |        |
|-------------------------------|-----------|-----------------------------------------------|--------|--------|--------------|--------------|--------|--------|
| WUG Name                      | Region    | Source Description                            | 2030   | 2040   | 2050         | 2060         | 2070   | 2080   |
| Steam Electric<br>Power       | В         | Little Wichita River<br>Lake/Reservoir System | 12     | 11     | 10           | 9            | 9      | 8      |
| Steam Electric<br>Power       | В         | Red Indirect Reuse                            | 7      | 6      | 6            | 6            | 6      | 6      |
| Livestock                     | В         | Cross Timbers Aquifer  <br>Wichita County     | 36     | 36     | 36           | 36           | 36     | 36     |
| Livestock                     | В         | Local Surface Water<br>Supply                 | 682    | 682    | 682          | 682          | 682    | 682    |
| Irrigation                    | В         | Cross Timbers Aquifer  <br>Wichita County     | 600    | 600    | 600          | 600          | 600    | 600    |
| Irrigation                    | В         | Kemp-Diversion<br>Lake/Reservoir System       | 20,172 | 19,216 | 18,259       | 17,301       | 16,345 | 15,389 |
| Irrigation                    | В         | Red Run-of-River                              | 878    | 878    | 878          | 878          | 878    | 878    |
| Wilbarger County W            | UG Total  |                                               | 34,992 | 34,863 | 34,735       | 34,604       | 34,474 | 34,345 |
| Wilbarger County / F          | Red Basin | WUG Total                                     | 34,992 | 34,863 | 34,735       | 34,604       | 34,474 | 34,345 |
| Harrold WSC                   | В         | Little Wichita River<br>Lake/Reservoir System | 21     | 20     | 17           | 16           | 14     | 12     |
| Harrold WSC                   | В         | Red Indirect Reuse                            | 12     | 11     | 11           | 10           | 10     | 9      |
| Red River Authority of Texas* | Α         | Greenbelt Lake/Reservoir                      | 5      | 5      | 5            | 5            | 5      | 5      |
| Red River Authority of Texas* | Α         | Ogallala Aquifer   Donley<br>County           | 2      | 2      | 2            | 2            | 2      | 2      |
| Red River Authority of Texas* | В         | Red Indirect Reuse                            | 0      | 0      | 0            | 0            | 0      | 0      |
| Red River Authority of Texas* | В         | Seymour Aquifer  <br>Hardeman County          | 46     | 46     | 47           | 47           | 47     | 47     |
| Red River Authority of Texas* | В         | Seymour Aquifer  <br>Wilbarger County         | 263    | 263    | 264          | 264          | 264    | 264    |
| Red River Authority of Texas* | В         | Trinity Aquifer   Montague<br>County          | 0      | 0      | 0            | 0            | 0      | 0      |
| Vernon                        | В         | Seymour Aquifer  <br>Wilbarger County         | 2,130  | 2,103  | 2,073        | 2,043        | 2,012  | 1,980  |
| County-Other                  | В         | Red Run-of-River                              | 81     | 81     | 81           | 81           | 81     | 81     |
| County-Other                  | В         | Seymour Aquifer  <br>Wilbarger County         | 122    | 118    | 115          | 109          | 103    | 98     |
| Manufacturing                 | В         | Seymour Aquifer  <br>Wilbarger County         | 1,110  | 1,151  | 1,194        | 1,238        | 1,284  | 1,332  |
| Mining                        | В         | Other Aquifer   Wilbarger<br>County           | 21     | 21     | 21           | 21           | 21     | 21     |
| Mining                        | В         | Red Run-of-River                              | 11     | 11     | 11           | 11           | 11     | 11     |

<sup>\*</sup>A single asterisk next to a WUG's name denotes that the WUG is split by two or more planning regions.

|                                        | Source      |                                               |         | Existi  | ng Supply (a | cre-feet per | year)   |         |
|----------------------------------------|-------------|-----------------------------------------------|---------|---------|--------------|--------------|---------|---------|
| WUG Name                               | Region      | Source Description                            | 2030    | 2040    | 2050         | 2060         | 2070    | 2080    |
| Steam Electric<br>Power                | В           | Kemp-Diversion<br>Lake/Reservoir System       | 2,888   | 2,751   | 2,614        | 2,477        | 2,340   | 2,203   |
| Livestock                              | В           | Local Surface Water<br>Supply                 | 429     | 429     | 429          | 429          | 429     | 429     |
| Livestock                              | В           | Santa Rosa Lake/Reservoir                     | 920     | 920     | 920          | 920          | 920     | 920     |
| Livestock                              | В           | Seymour Aquifer  <br>Wilbarger County         | 195     | 195     | 195          | 195          | 195     | 195     |
| Irrigation                             | В           | Other Aquifer   Wilbarger<br>County           | 3,029   | 3,029   | 3,029        | 3,029        | 3,029   | 3,029   |
| Irrigation                             | В           | Red Run-of-River                              | 15      | 15      | 15           | 15           | 15      | 15      |
| Irrigation                             | В           | Seymour Aquifer  <br>Wilbarger County         | 23,692  | 23,692  | 23,692       | 23,692       | 23,692  | 23,692  |
| Young County WUG                       | Total       |                                               | 1,331   | 1,201   | 1,141        | 1,087        | 1,034   | 978     |
| Young County / Braz                    | zos Basin V | VUG Total                                     | 1,330   | 1,200   | 1,140        | 1,086        | 1,033   | 977     |
| Baylor SUD*                            | В           | Seymour Aquifer   Baylor<br>County            | 52      | 53      | 55           | 57           | 59      | 61      |
| Olney                                  | В           | Direct Reuse                                  | 5       | 5       | 5            | 5            | 5       | 5       |
| Olney                                  | В           | Little Wichita River<br>Lake/Reservoir System | 1,014   | 895     | 843          | 796          | 751     | 705     |
| Olney                                  | В           | Olney-Cooper<br>Lake/Reservoir System         | 77      | 65      | 53           | 41           | 29      | 17      |
| County-Other*                          | В           | Cross Timbers Aquifer  <br>Young County       | 10      | 11      | 15           | 18           | 20      | 20      |
| County-Other*                          | G           | Cross Timbers Aquifer  <br>Young County       | 27      | 28      | 29           | 30           | 31      | 31      |
| County-Other*                          | G           | Graham/Eddleman<br>Lake/Reservoir             | 20      | 18      | 15           | 14           | 13      | 13      |
| Livestock*                             | В           | Local Surface Water<br>Supply                 | 122     | 122     | 122          | 122          | 122     | 122     |
| Irrigation*                            | В           | Cross Timbers Aquifer  <br>Young County       | 3       | 3       | 3            | 3            | 3       | 3       |
| Young County / Trinity Basin WUG Total |             | 1                                             | 1       | 1       | 1            | 1            | 1       |         |
| Baylor SUD*                            | В           | Seymour Aquifer   Baylor<br>County            | 1       | 1       | 1            | 1            | 1       | 1       |
| Livestock*                             |             | No water supply associated with WUG           | 0       | 0       | 0            | 0            | 0       | 0       |
| Region B WUG Exist                     | ing Water   | Supply Total                                  | 137,226 | 134,770 | 132,448      | 130,118      | 127,549 | 125,198 |
|                                        |             |                                               | ,       | ,, , o  | ,            |              | ,       |         |

<sup>\*</sup>A single asterisk next to a WUG's name denotes that the WUG is split by two or more planning regions.

WUG supplies and projected demands are entered for each of a WUG's region-county-basin divisions. The needs shown in the WUG Needs/Surplus report are calculated by first deducting the WUG split's projected demand from its total existing water supply volume. If the WUG split has a greater existing supply volume than projected demand in any given decade, this amount is considered a surplus volume. Surplus volumes are shown as positive values, and needs are shown as negative values in parentheses.

|                               |        |         |      | Water Suppl | y Needs or Su | rplus (acre-fe | et per year) |       |
|-------------------------------|--------|---------|------|-------------|---------------|----------------|--------------|-------|
| WUG Name                      | County | Basin   | 2030 | 2040        | 2050          | 2060           | 2070         | 2080  |
| Baylor SUD*                   | Archer | Brazos  | 1    | 1           | 2             | 2              | 2            | 2     |
| Livestock                     | Archer | Brazos  | 0    | 0           | 0             | 0              | 0            | 0     |
| Archer City                   | Archer | Red     | 160  | 154         | 147           | 143            | 136          | 131   |
| Archer County MUD<br>1        | Archer | Red     | 271  | 260         | 246           | 234            | 222          | 210   |
| Baylor SUD*                   | Archer | Red     | 1    | 2           | 2             | 2              | 2            | 3     |
| Holliday                      | Archer | Red     | 7    | 7           | 6             | 9              | 10           | 13    |
| Lakeside City                 | Archer | Red     | 34   | 32          | 32            | 31             | 32           | 31    |
| Scotland                      | Archer | Red     | 25   | 33          | 40            | 48             | 54           | 53    |
| Wichita Valley WSC            | Archer | Red     | 406  | 385         | 359           | 339            | 318          | 298   |
| Windthorst WSC                | Archer | Red     | 328  | 315         | 302           | 289            | 275          | 259   |
| County-Other                  | Archer | Red     | 8    | 10          | 11            | 13             | 14           | 15    |
| Manufacturing                 | Archer | Red     | 0    | 0           | 0             | 0              | 0            | 0     |
| Livestock                     | Archer | Red     | 38   | 20          | 2             | 0              | 0            | 0     |
| Baylor SUD*                   | Archer | Trinity | 0    | 0           | 0             | 0              | 0            | 0     |
| County-Other                  | Archer | Trinity | 0    | 0           | 1             | 1              | 1            | 1     |
| Mining                        | Archer | Trinity | 0    | 0           | 0             | 0              | 0            | 0     |
| Livestock                     | Archer | Trinity | 0    | 0           | 0             | 0              | 0            | 0     |
| Baylor SUD*                   | Baylor | Brazos  | 16   | 16          | 15            | 18             | 18           | 19    |
| Seymour                       | Baylor | Brazos  | 88   | 95          | 102           | 94             | 86           | 97    |
| Mining                        | Baylor | Brazos  | 0    | 0           | 0             | 0              | 0            | 0     |
| Livestock                     | Baylor | Brazos  | 0    | 0           | 0             | 0              | 0            | 0     |
| Irrigation                    | Baylor | Brazos  | 1    | 3           | 3             | 4              | 4            | (206) |
| Baylor SUD*                   | Baylor | Red     | 1    | 2           | 2             | 2              | 2            | 2     |
| County-Other                  | Baylor | Red     | 1    | 1           | 0             | 0              | 0            | 0     |
| Mining                        | Baylor | Red     | 0    | 0           | 0             | 0              | 0            | 0     |
| Livestock                     | Baylor | Red     | 0    | 0           | 0             | 0              | 0            | 0     |
| Irrigation                    | Baylor | Red     | 0    | (2)         | (2)           | (3)            | (3)          | (75)  |
| Dean Dale WSC                 | Clay   | Red     | 446  | 420         | 388           | 355            | 323          | 289   |
| Henrietta                     | Clay   | Red     | 521  | 562         | 606           | 645            | 683          | 720   |
| Red River Authority of Texas* | Clay   | Red     | (19) | (9)         | 4             | 12             | 20           | 29    |
| Windthorst WSC                | Clay   | Red     | 158  | 153         | 145           | 140            | 136          | 132   |
| County-Other                  | Clay   | Red     | 99   | 141         | 185           | 226            | 266          | 304   |

<sup>\*</sup>A single asterisk next to a WUG's name denotes that the WUG is split by two or more planning regions.

|                               |          |         |       | Water Supply Needs or Surplus (acre-feet per year) |       |       |       |       |  |  |  |  |
|-------------------------------|----------|---------|-------|----------------------------------------------------|-------|-------|-------|-------|--|--|--|--|
| WUG Name                      | County   | Basin   | 2030  | 2040                                               | 2050  | 2060  | 2070  | 2080  |  |  |  |  |
| Livestock                     | Clay     | Red     | 0     | 0                                                  | 0     | 0     | 0     | 0     |  |  |  |  |
| Irrigation                    | Clay     | Red     | 1,150 | 1,146                                              | 1,143 | 1,139 | 1,135 | 1,131 |  |  |  |  |
| County-Other                  | Clay     | Trinity | 43    | 48                                                 | 53    | 59    | 64    | 69    |  |  |  |  |
| Mining                        | Clay     | Trinity | 0     | 0                                                  | 0     | 0     | 0     | 0     |  |  |  |  |
| Livestock                     | Clay     | Trinity | 4     | 4                                                  | 4     | 4     | 4     | 4     |  |  |  |  |
| Irrigation                    | Clay     | Trinity | 0     | 0                                                  | 0     | 0     | 0     | 0     |  |  |  |  |
| Paducah                       | Cottle   | Red     | 53    | 25                                                 | 36    | 39    | 41    | 41    |  |  |  |  |
| Red River Authority of Texas* | Cottle   | Red     | 5     | 6                                                  | 7     | 7     | 7     | 7     |  |  |  |  |
| County-Other                  | Cottle   | Red     | 6     | 7                                                  | 7     | 7     | 7     | 8     |  |  |  |  |
| Mining                        | Cottle   | Red     | 0     | 0                                                  | 0     | 0     | 0     | 0     |  |  |  |  |
| Livestock                     | Cottle   | Red     | 17    | 17                                                 | 17    | 17    | 17    | 17    |  |  |  |  |
| Irrigation                    | Cottle   | Red     | 0     | 0                                                  | 0     | 0     | 0     | 0     |  |  |  |  |
| Crowell                       | Foard    | Red     | 27    | 34                                                 | 40    | 43    | 46    | 48    |  |  |  |  |
| Red River Authority of Texas* | Foard    | Red     | 17    | 22                                                 | 25    | 28    | 31    | 34    |  |  |  |  |
| County-Other                  | Foard    | Red     | 3     | 5                                                  | 6     | 7     | 6     | 7     |  |  |  |  |
| Livestock                     | Foard    | Red     | 0     | 0                                                  | 0     | 0     | 0     | 0     |  |  |  |  |
| Irrigation                    | Foard    | Red     | 811   | 811                                                | 811   | 811   | 572   | 811   |  |  |  |  |
| Chillicothe                   | Hardeman | Red     | 13    | 17                                                 | 18    | 20    | 20    | 22    |  |  |  |  |
| Quanah                        | Hardeman | Red     | 64    | 76                                                 | 89    | 98    | 104   | 112   |  |  |  |  |
| Red River Authority of Texas* | Hardeman | Red     | 35    | 43                                                 | 50    | 55    | 59    | 62    |  |  |  |  |
| County-Other                  | Hardeman | Red     | 10    | 13                                                 | 15    | 16    | 19    | 21    |  |  |  |  |
| Manufacturing                 | Hardeman | Red     | 0     | 0                                                  | 0     | 0     | 0     | 0     |  |  |  |  |
| Mining                        | Hardeman | Red     | 0     | 0                                                  | 0     | 0     | 0     | 0     |  |  |  |  |
| Livestock                     | Hardeman | Red     | 55    | 55                                                 | 55    | 55    | 55    | 55    |  |  |  |  |
| Irrigation                    | Hardeman | Red     | 141   | 141                                                | 141   | 141   | 141   | 141   |  |  |  |  |
| County-Other                  | King     | Brazos  | 0     | 0                                                  | 0     | (1)   | (1)   | (1)   |  |  |  |  |
| Mining                        | King     | Brazos  | 0     | 0                                                  | 0     | 0     | 0     | 0     |  |  |  |  |
| Livestock                     | King     | Brazos  | 0     | 0                                                  | 0     | 0     | 0     | 0     |  |  |  |  |
| Red River Authority of Texas* | King     | Red     | 11    | 12                                                 | 11    | 11    | 10    | 10    |  |  |  |  |
| County-Other                  | King     | Red     | 3     | 3                                                  | 3     | 3     | 3     | 3     |  |  |  |  |
| Livestock                     | King     | Red     | 0     | 0                                                  | 0     | 0     | 0     | 0     |  |  |  |  |
| Irrigation                    | King     | Red     | 0     | 0                                                  | 0     | 0     | 0     | 0     |  |  |  |  |
| Bowie                         | Montague | Red     | (10)  | (11)                                               | (11)  | (12)  | (12)  | (13)  |  |  |  |  |
| Nocona                        | Montague | Red     | 147   | 38                                                 | (74)  | (186) | (298) | (410) |  |  |  |  |
| Nocona Hills WSC              | Montague | Red     | 41    | 48                                                 | 55    | 64    | 71    | 78    |  |  |  |  |

<sup>\*</sup>A single asterisk next to a WUG's name denotes that the WUG is split by two or more planning regions.

|                               |           |         |         | Water Suppl | y Needs or Su | rplus (acre-fe | et per year) |         |
|-------------------------------|-----------|---------|---------|-------------|---------------|----------------|--------------|---------|
| WUG Name                      | County    | Basin   | 2030    | 2040        | 2050          | 2060           | 2070         | 2080    |
| Red River Authority of Texas* | Montague  | Red     | 9       | 9           | 10            | 11             | 12           | 12      |
| County-Other                  | Montague  | Red     | (17)    | (75)        | (135)         | (194)          | (254)        | (313)   |
| Livestock                     | Montague  | Red     | 0       | 0           | 0             | 0              | 0            | 0       |
| Irrigation                    | Montague  | Red     | 17      | 17          | 17            | 17             | 17           | 17      |
| Bowie                         | Montague  | Trinity | (92)    | (235)       | (384)         | (533)          | (684)        | (834)   |
| Saint Jo                      | Montague  | Trinity | 34      | (6)         | (47)          | (87)           | (128)        | (168)   |
| County-Other                  | Montague  | Trinity | (113)   | (196)       | (283)         | (369)          | (454)        | (541)   |
| Mining                        | Montague  | Trinity | 0       | 0           | 0             | 0              | 0            | 0       |
| Livestock                     | Montague  | Trinity | 1       | 1           | 1             | 1              | 1            | 1       |
| Irrigation                    | Montague  | Trinity | 54      | 54          | 54            | 54             | 54           | 54      |
| Burkburnett                   | Wichita   | Red     | 1,407   | 1,365       | 1,337         | 1,315          | 1,293        | 1,269   |
| Dean Dale WSC                 | Wichita   | Red     | 216     | 196         | 179           | 165            | 153          | 139     |
| Electra                       | Wichita   | Red     | (25)    | (40)        | (46)          | (50)           | (53)         | (57)    |
| Harrold WSC                   | Wichita   | Red     | (1)     | (1)         | (1)           | (1)            | (1)          | (2)     |
| Holliday                      | Wichita   | Red     | 0       | 1           | 1             | 1              | 0            | 0       |
| Iowa Park                     | Wichita   | Red     | 223     | 192         | 165           | 146            | 127          | 106     |
| Sheppard Air Force<br>Base    | Wichita   | Red     | 61      | 12          | (39)          | (83)           | (128)        | (172)   |
| Wichita Falls                 | Wichita   | Red     | 1,152   | 739         | 533           | 426            | 285          | 131     |
| Wichita Valley WSC            | Wichita   | Red     | 733     | 696         | 658           | 622            | 591          | 556     |
| County-Other                  | Wichita   | Red     | 352     | 339         | 334           | 328            | 324          | 320     |
| Manufacturing                 | Wichita   | Red     | 84      | 43          | (4)           | (49)           | (95)         | (146)   |
| Mining                        | Wichita   | Red     | 0       | 0           | 0             | 0              | 0            | 0       |
| Steam Electric<br>Power       | Wichita   | Red     | (1)     | (3)         | (4)           | (5)            | (5)          | (6)     |
| Livestock                     | Wichita   | Red     | 0       | 0           | 0             | 0              | 0            | 0       |
| Irrigation                    | Wichita   | Red     | (5,007) | (5,963)     | (6,920)       | (7,878)        | (8,834)      | (9,790) |
| Harrold WSC                   | Wilbarger | Red     | (1)     | (1)         | (2)           | (2)            | (2)          | (3)     |
| Red River Authority of Texas* | Wilbarger | Red     | 44      | 52          | 64            | 76             | 86           | 96      |
| Vernon                        | Wilbarger | Red     | 475     | 497         | 536           | 569            | 600          | 627     |
| County-Other                  | Wilbarger | Red     | 29      | 33          | 40            | 45             | 49           | 54      |
| Manufacturing                 | Wilbarger | Red     | 0       | 0           | 0             | 0              | 0            | 0       |
| Mining                        | Wilbarger | Red     | 0       | 0           | 0             | 0              | 0            | 0       |
| Steam Electric<br>Power       | Wilbarger | Red     | (2,990) | (3,127)     | (3,264)       | (3,401)        | (3,538)      | (3,675) |
| Livestock                     | Wilbarger | Red     | 764     | 764         | 764           | 764            | 764          | 764     |
| Irrigation                    | Wilbarger | Red     | 0       | 0           | 0             | 0              | 0            | 0       |

<sup>\*</sup>A single asterisk next to a WUG's name denotes that the WUG is split by two or more planning regions.

|               |        |         | Water Supply Needs or Surplus (acre-feet per year) |      |      |      |      |      |  |
|---------------|--------|---------|----------------------------------------------------|------|------|------|------|------|--|
| WUG Name      | County | Basin   | 2030                                               | 2040 | 2050 | 2060 | 2070 | 2080 |  |
| Baylor SUD*   | Young  | Brazos  | 2                                                  | 3    | 4    | 4    | 5    | 5    |  |
| Olney         | Young  | Brazos  | 662                                                | 536  | 475  | 421  | 364  | 306  |  |
| County-Other* | Young  | Brazos  | (19)                                               | (15) | (14) | (13) | (10) | (7)  |  |
| Livestock*    | Young  | Brazos  | 81                                                 | 81   | 81   | 81   | 81   | 81   |  |
| Irrigation*   | Young  | Brazos  | (3)                                                | (3)  | (3)  | (3)  | (3)  | (3)  |  |
| Baylor SUD*   | Young  | Trinity | 0                                                  | 0    | 0    | 0    | 0    | 0    |  |
| Livestock*    | Young  | Trinity | (15)                                               | (15) | (15) | (15) | (15) | (15) |  |

<sup>\*</sup>A single asterisk next to a WUG's name denotes that the WUG is split by two or more planning regions.

|                                        | 2030     | Planning Dec | ade*              | 2070     | Planning Dec | ade*           |
|----------------------------------------|----------|--------------|-------------------|----------|--------------|----------------|
|                                        | 2021 RWP | 2026 RWP     | Difference<br>(%) | 2021 RWP | 2026 RWP     | Difference (%) |
| Archer County  Municipal WUG Type      |          |              |                   |          |              |                |
| Existing WUG supply total              | 2,132    | 2,611        | 22.5%             | 1,649    | 2,136        | 29.5%          |
| Projected demand total                 | 1,693    | 1,370        | -19.1%            | 1,656    | 1,070        | -35.4%         |
| Water supply needs total**             | 147      | 0            | -100.0%           | 343      | 0            | -100.0%        |
| Archer County   Manufacturing WUG Type |          |              |                   |          |              |                |
| Existing WUG supply total              | 3        | 1            | -66.7%            | 3        | 1            | -66.7%         |
| Projected demand total                 | 3        | 1            | -66.7%            | 3        | 1            | -66.7%         |
| Water supply needs total**             | 0        | 0            | 0.0%              | 0        | 0            | 0.0%           |
| Archer County   Mining WUG Type        |          |              |                   |          |              |                |
| Existing WUG supply total              | 82       | 1            | -98.8%            | 76       | 1            | -98.7%         |
| Projected demand total                 | 483      | 1            | -99.8%            | 213      | 1            | -99.5%         |
| Water supply needs total**             | 401      | 0            | -100.0%           | 137      | 0            | -100.0%        |
| Archer County   Livestock WUG Type     |          |              |                   |          |              |                |
| Existing WUG supply total              | 2,285    | 1,724        | -24.6%            | 2,285    | 1,686        | -26.2%         |
| Projected demand total                 | 2,165    | 1,686        | -22.1%            | 2,165    | 1,686        | -22.1%         |
| Water supply needs total**             | 0        | 0            | 0.0%              | 0        | 0            | 0.0%           |
| Archer County   Irrigation WUG Type    |          |              |                   |          |              |                |
| Existing WUG supply total              | 724      | 0            | -100.0%           | 494      | 0            | -100.0%        |
| Projected demand total                 | 1,251    | 0            | -100.0%           | 1,251    | 0            | -100.0%        |
| Water supply needs total**             | 527      | 0            | -100.0%           | 757      | 0            | -100.0%        |
| Baylor County   Municipal WUG Type     |          |              |                   |          |              |                |
| Existing WUG supply total              | 897      | 744          | -17.1%            | 892      | 705          | -21.0%         |
| Projected demand total                 | 685      | 638          | -6.9%             | 669      | 599          | -10.5%         |
| Water supply needs total**             | 0        | 0            | 0.0%              | 0        | 0            | 0.0%           |
| Baylor County   Mining WUG Type        |          |              |                   |          |              |                |
| Existing WUG supply total              | 20       | 10           | -50.0%            | 20       | 10           | -50.0%         |

<sup>\*</sup>The 2030 and 2070 planning decades are used in this comparison because they represent the earliest and latest planning decades in both the 2021 and 2026 RWPs

<sup>\*\*</sup>WUG supplies and projected demands are entered for each of a WUG's region-county-basin divisions. The needs shown in the WUG Data Comparison to 2021 RWP report are calculated by first deducting the WUG split's projected demand from its total existing water supply volume. If the WUG split has a greater existing supply volume than projected demand in any given decade, this amount is considered a surplus volume. Before aggregating the difference between supplies and demands to the WUG county and category level, calculated surpluses are updated to zero so that only the WUGs with needs in the decade are included with the water supply needs totals.

|                                     | 2030     | Planning Dec | ade*              | 2070     | Planning Dec | ade*           |
|-------------------------------------|----------|--------------|-------------------|----------|--------------|----------------|
|                                     | 2021 RWP | 2026 RWP     | Difference<br>(%) | 2021 RWP | 2026 RWP     | Difference (%) |
| Projected demand total              | 14       | 10           | -28.6%            | 13       | 10           | -23.1%         |
| Water supply needs total**          | 0        | 0            | 0.0%              | 0        | 0            | 0.0%           |
| Baylor County  Livestock WUG Type   |          |              |                   |          |              |                |
| Existing WUG supply total           | 1,190    | 963          | -19.1%            | 1,190    | 963          | -19.1%         |
| Projected demand total              | 1,190    | 963          | -19.1%            | 1,190    | 963          | -19.1%         |
| Water supply needs total**          | 0        | 0            | 0.0%              | 0        | 0            | 0.0%           |
| Baylor County   Irrigation WUG Type |          |              |                   |          |              |                |
| Existing WUG supply total           | 5,017    | 5,071        | 1.1%              | 5,017    | 5,071        | 1.1%           |
| Projected demand total              | 4,949    | 5,070        | 2.4%              | 4,949    | 5,070        | 2.4%           |
| Water supply needs total**          | 0        | 0            | 0.0%              | 0        | 3            | 100.0%         |
| Clay County  Municipal WUG Type     |          |              |                   |          |              |                |
| Existing WUG supply total           | 2,399    | 2,833        | 18.1%             | 2,194    | 2,601        | 18.6%          |
| Projected demand total              | 1,796    | 1,585        | -11.7%            | 1,734    | 1,109        | -36.0%         |
| Water supply needs total**          | 10       | 19           | 90.0%             | 89       | 0            | -100.0%        |
| Clay County   Mining WUG Type       |          |              |                   |          |              |                |
| Existing WUG supply total           | 786      | 4            | -99.5%            | 401      | 4            | -99.0%         |
| Projected demand total              | 786      | 4            | -99.5%            | 357      | 4            | -98.9%         |
| Water supply needs total**          | 0        | 0            | 0.0%              | 0        | 0            | 0.0%           |
| Clay County   Livestock WUG Type    |          |              |                   |          |              |                |
| Existing WUG supply total           | 2,101    | 1,447        | -31.1%            | 2,101    | 1,447        | -31.1%         |
| Projected demand total              | 2,101    | 1,443        | -31.3%            | 2,101    | 1,443        | -31.3%         |
| Water supply needs total**          | 0        | 0            | 0.0%              | 0        | 0            | 0.0%           |
| Clay County   Irrigation WUG Type   |          |              |                   |          |              |                |
| Existing WUG supply total           | 1,670    | 2,508        | 50.2%             | 1,652    | 2,493        | 50.9%          |
| Projected demand total              | 1,629    | 1,358        | -16.6%            | 1,629    | 1,358        | -16.6%         |
| Water supply needs total**          | 0        | 0            | 0.0%              | 0        | 0            | 0.0%           |

<sup>\*</sup>The 2030 and 2070 planning decades are used in this comparison because they represent the earliest and latest planning decades in both the 2021 and 2026 RWPs

<sup>\*\*</sup>WUG supplies and projected demands are entered for each of a WUG's region-county-basin divisions. The needs shown in the WUG Data Comparison to 2021 RWP report are calculated by first deducting the WUG split's projected demand from its total existing water supply volume. If the WUG split has a greater existing supply volume than projected demand in any given decade, this amount is considered a surplus volume. Before aggregating the difference between supplies and demands to the WUG county and category level, calculated surpluses are updated to zero so that only the WUGs with needs in the decade are included with the water supply needs totals.

|                                     | 2030     | Planning Dec | ade*              | 2070     | Planning Dec | ade*           |
|-------------------------------------|----------|--------------|-------------------|----------|--------------|----------------|
|                                     | 2021 RWP | 2026 RWP     | Difference<br>(%) | 2021 RWP | 2026 RWP     | Difference (%) |
| Cottle County   Municipal WUG Type  |          |              |                   |          |              |                |
| Existing WUG supply total           | 708      | 360          | -49.2%            | 708      | 305          | -56.9%         |
| Projected demand total              | 336      | 296          | -11.9%            | 333      | 250          | -24.9%         |
| Water supply needs total**          | 0        | 0            | 0.0%              | 0        | 0            | 0.0%           |
| Cottle County  Mining WUG Type      |          |              |                   |          |              |                |
| Existing WUG supply total           | 41       | 6            | -85.4%            | 31       | 6            | -80.6%         |
| Projected demand total              | 41       | 6            | -85.4%            | 31       | 6            | -80.6%         |
| Water supply needs total**          | 0        | 0            | 0.0%              | 0        | 0            | 0.0%           |
| Cottle County   Livestock WUG Type  |          |              |                   |          |              |                |
| Existing WUG supply total           | 551      | 393          | -28.7%            | 551      | 393          | -28.7%         |
| Projected demand total              | 551      | 376          | -31.8%            | 551      | 376          | -31.8%         |
| Water supply needs total**          | 0        | 0            | 0.0%              | 0        | 0            | 0.0%           |
| Cottle County   Irrigation WUG Type |          |              |                   |          |              |                |
| Existing WUG supply total           | 4,111    | 4,319        | 5.1%              | 4,011    | 4,319        | 7.7%           |
| Projected demand total              | 3,926    | 4,319        | 10.0%             | 3,926    | 4,319        | 10.0%          |
| Water supply needs total**          | 0        | 0            | 0.0%              | 0        | 0            | 0.0%           |
| Foard County  Municipal WUG Type    |          |              |                   |          |              |                |
| Existing WUG supply total           | 494      | 210          | -57.5%            | 338      | 205          | -39.3%         |
| Projected demand total              | 228      | 163          | -28.5%            | 224      | 122          | -45.5%         |
| Water supply needs total**          | 0        | 0            | 0.0%              | 24       | 0            | -100.0%        |
| Foard County  Mining WUG Type       |          |              |                   |          |              |                |
| Existing WUG supply total           | 12       | 0            | -100.0%           | 11       | 0            | -100.0%        |
| Projected demand total              | 12       | 0            | -100.0%           | 11       | 0            | -100.0%        |
| Water supply needs total**          | 0        | 0            | 0.0%              | 0        | 0            | 0.0%           |
| Foard County   Livestock WUG Type   |          |              |                   |          |              |                |
| Existing WUG supply total           | 401      | 379          | -5.5%             | 401      | 379          | -5.5%          |

<sup>\*</sup>The 2030 and 2070 planning decades are used in this comparison because they represent the earliest and latest planning decades in both the 2021 and 2026 RWPs

<sup>\*\*</sup>WUG supplies and projected demands are entered for each of a WUG's region-county-basin divisions. The needs shown in the WUG Data Comparison to 2021 RWP report are calculated by first deducting the WUG split's projected demand from its total existing water supply volume. If the WUG split has a greater existing supply volume than projected demand in any given decade, this amount is considered a surplus volume. Before aggregating the difference between supplies and demands to the WUG county and category level, calculated surpluses are updated to zero so that only the WUGs with needs in the decade are included with the water supply needs totals.

|                                          | 2030     | Planning Dec | ade*              | 2070     | Planning Dec | ade*           |
|------------------------------------------|----------|--------------|-------------------|----------|--------------|----------------|
|                                          | 2021 RWP | 2026 RWP     | Difference<br>(%) | 2021 RWP | 2026 RWP     | Difference (%) |
| Projected demand total                   | 401      | 379          | -5.5%             | 401      | 379          | -5.5%          |
| Water supply needs total**               | 0        | 0            | 0.0%              | 0        | 0            | 0.0%           |
| Foard County   Irrigation WUG Type       |          |              |                   |          |              |                |
| Existing WUG supply total                | 3,300    | 3,300        | 0.0%              | 3,300    | 3,061        | -7.2%          |
| Projected demand total                   | 3,213    | 2,489        | -22.5%            | 3,213    | 2,489        | -22.5%         |
| Water supply needs total**               | 0        | 0            | 0.0%              | 0        | 0            | 0.0%           |
| Hardeman County   Municipal WUG Type     |          |              |                   |          |              |                |
| Existing WUG supply total                | 860      | 664          | -22.8%            | 646      | 634          | -1.9%          |
| Projected demand total                   | 686      | 542          | -21.0%            | 716      | 432          | -39.7%         |
| Water supply needs total**               | 0        | 0            | 0.0%              | 148      | 0            | -100.0%        |
| Hardeman County   Manufacturing WUG Type |          |              |                   |          |              |                |
| Existing WUG supply total                | 528      | 225          | -57.4%            | 454      | 260          | -42.7%         |
| Projected demand total                   | 483      | 225          | -53.4%            | 483      | 260          | -46.2%         |
| Water supply needs total**               | 0        | 0            | 0.0%              | 29       | 0            | -100.0%        |
| Hardeman County  Mining WUG Type         |          |              |                   |          |              |                |
| Existing WUG supply total                | 19       | 5            | -73.7%            | 19       | 5            | -73.7%         |
| Projected demand total                   | 17       | 5            | -70.6%            | 18       | 5            | -72.2%         |
| Water supply needs total**               | 0        | 0            | 0.0%              | 0        | 0            | 0.0%           |
| Hardeman County  Livestock WUG Type      |          |              |                   |          |              |                |
| Existing WUG supply total                | 649      | 442          | -31.9%            | 649      | 442          | -31.9%         |
| Projected demand total                   | 646      | 387          | -40.1%            | 646      | 387          | -40.1%         |
| Water supply needs total**               | 0        | 0            | 0.0%              | 0        | 0            | 0.0%           |
| Hardeman County   Irrigation WUG Type    |          |              |                   |          |              |                |
| Existing WUG supply total                | 12,498   | 18,431       | 47.5%             | 12,498   | 18,431       | 47.5%          |
| Projected demand total                   | 12,498   | 18,290       | 46.3%             | 12,498   | 18,290       | 46.3%          |
| Water supply needs total**               | 0        | 0            | 0.0%              | 0        | 0            | 0.0%           |

<sup>\*</sup>The 2030 and 2070 planning decades are used in this comparison because they represent the earliest and latest planning decades in both the 2021 and 2026 RWPs

<sup>\*\*</sup>WUG supplies and projected demands are entered for each of a WUG's region-county-basin divisions. The needs shown in the WUG Data Comparison to 2021 RWP report are calculated by first deducting the WUG split's projected demand from its total existing water supply volume. If the WUG split has a greater existing supply volume than projected demand in any given decade, this amount is considered a surplus volume. Before aggregating the difference between supplies and demands to the WUG county and category level, calculated surpluses are updated to zero so that only the WUGs with needs in the decade are included with the water supply needs totals.

|                                          | 2030     | Planning Dec | ade*              | 2070     | Planning Dec | ade*           |
|------------------------------------------|----------|--------------|-------------------|----------|--------------|----------------|
|                                          | 2021 RWP | 2026 RWP     | Difference<br>(%) | 2021 RWP | 2026 RWP     | Difference (%) |
| King County  Municipal WUG Type          |          |              |                   |          |              |                |
| Existing WUG supply total                | 104      | 76           | -26.9%            | 103      | 80           | -22.3%         |
| Projected demand total                   | 77       | 62           | -19.5%            | 76       | 68           | -10.5%         |
| Water supply needs total**               | 0        | 0            | 0.0%              | 0        | 1            | 100.0%         |
| King County   Mining WUG Type            |          |              |                   |          |              |                |
| Existing WUG supply total                | 331      | 4            | -98.8%            | 219      | 4            | -98.2%         |
| Projected demand total                   | 331      | 4            | -98.8%            | 219      | 4            | -98.2%         |
| Water supply needs total**               | 0        | 0            | 0.0%              | 0        | 0            | 0.0%           |
| King County   Livestock WUG Type         |          |              |                   |          |              |                |
| Existing WUG supply total                | 422      | 446          | 5.7%              | 422      | 446          | 5.7%           |
| Projected demand total                   | 419      | 446          | 6.4%              | 419      | 446          | 6.4%           |
| Water supply needs total**               | 0        | 0            | 0.0%              | 0        | 0            | 0.0%           |
| King County   Irrigation WUG Type        |          |              |                   |          |              |                |
| Existing WUG supply total                | 0        | 245          | 100.0%            | 0        | 245          | 100.0%         |
| Projected demand total                   | 0        | 245          | 100.0%            | 0        | 245          | 100.0%         |
| Water supply needs total**               | 0        | 0            | 0.0%              | 0        | 0            | 0.0%           |
| Montague County   Municipal WUG Type     |          |              |                   |          |              |                |
| Existing WUG supply total                | 3,960    | 3,554        | -10.3%            | 3,652    | 3,421        | -6.3%          |
| Projected demand total                   | 3,263    | 3,555        | 8.9%              | 3,324    | 5,168        | 55.5%          |
| Water supply needs total**               | 0        | 232          | 100.0%            | 305      | 1,830        | 500.0%         |
| Montague County   Manufacturing WUG Type |          |              |                   |          |              |                |
| Existing WUG supply total                | 1        | 0            | -100.0%           | 1        | 0            | -100.0%        |
| Projected demand total                   | 1        | 0            | -100.0%           | 1        | 0            | -100.0%        |
| Water supply needs total**               | 0        | 0            | 0.0%              | 0        | 0            | 0.0%           |
| Montague County   Mining WUG Type        |          |              |                   |          |              |                |
| Existing WUG supply total                | 2,351    | 34           | -98.6%            | 800      | 34           | -95.8%         |

<sup>\*</sup>The 2030 and 2070 planning decades are used in this comparison because they represent the earliest and latest planning decades in both the 2021 and 2026 RWPs

<sup>\*\*</sup>WUG supplies and projected demands are entered for each of a WUG's region-county-basin divisions. The needs shown in the WUG Data Comparison to 2021 RWP report are calculated by first deducting the WUG split's projected demand from its total existing water supply volume. If the WUG split has a greater existing supply volume than projected demand in any given decade, this amount is considered a surplus volume. Before aggregating the difference between supplies and demands to the WUG county and category level, calculated surpluses are updated to zero so that only the WUGs with needs in the decade are included with the water supply needs totals.

|                                               | 2030 Planning Decade* |          |                   | 2070 Planning Decade* |          |                |  |  |  |  |
|-----------------------------------------------|-----------------------|----------|-------------------|-----------------------|----------|----------------|--|--|--|--|
|                                               | 2021 RWP              | 2026 RWP | Difference<br>(%) | 2021 RWP              | 2026 RWP | Difference (%) |  |  |  |  |
| Projected demand total                        | 2,577                 | 34       | -98.7%            | 777                   | 34       | -95.6%         |  |  |  |  |
| Water supply needs total**                    | 277                   | 0        | -100.0%           | 0                     | 0        | 0.0%           |  |  |  |  |
| Montague County   Livestock WUG Type          |                       |          |                   |                       |          |                |  |  |  |  |
| Existing WUG supply total                     | 1,704                 | 1,475    | -13.4%            | 1,704                 | 1,475    | -13.4%         |  |  |  |  |
| Projected demand total                        | 1,704                 | 1,474    | -13.5%            | 1,704                 | 1,474    | -13.5%         |  |  |  |  |
| Water supply needs total**                    | 0                     | 0        | 0.0%              | 0                     | 0        | 0.0%           |  |  |  |  |
| Montague County  Irrigation WUG Type          |                       |          |                   |                       |          |                |  |  |  |  |
| Existing WUG supply total                     | 889                   | 496      | -44.2%            | 889                   | 496      | -44.2%         |  |  |  |  |
| Projected demand total                        | 584                   | 425      | -27.2%            | 584                   | 425      | -27.2%         |  |  |  |  |
| Water supply needs total**                    | 0                     | 0        | 0.0%              | 0                     | 0        | 0.0%           |  |  |  |  |
| Wichita County  Municipal WUG Type            |                       |          |                   |                       |          |                |  |  |  |  |
| Existing WUG supply total                     | 24,207                | 24,465   | 1.1%              | 19,341                | 20,732   | 7.2%           |  |  |  |  |
| Projected demand total                        | 21,706                | 20,347   | -6.3%             | 22,571                | 18,141   | -19.6%         |  |  |  |  |
| Water supply needs total**                    | 357                   | 26       | -92.7%            | 4,994                 | 182      | -96.4%         |  |  |  |  |
| Wichita County  Manufacturing WUG Type        |                       |          |                   |                       |          |                |  |  |  |  |
| Existing WUG supply total                     | 1,188                 | 964      | -18.9%            | 997                   | 923      | -7.4%          |  |  |  |  |
| Projected demand total                        | 1,100                 | 880      | -20.0%            | 1,100                 | 1,018    | -7.5%          |  |  |  |  |
| Water supply needs total**                    | 0                     | 0        | 0.0%              | 103                   | 95       | -7.8%          |  |  |  |  |
| Wichita County  Mining WUG Type               |                       |          |                   |                       |          |                |  |  |  |  |
| Existing WUG supply total                     | 61                    | 45       | -26.2%            | 44                    | 45       | 2.3%           |  |  |  |  |
| Projected demand total                        | 61                    | 45       | -26.2%            | 44                    | 45       | 2.3%           |  |  |  |  |
| Water supply needs total**                    | 0                     | 0        | 0.0%              | 0                     | 0        | 0.0%           |  |  |  |  |
| Wichita County  Steam Electric Power WUG Type |                       |          |                   |                       |          |                |  |  |  |  |
| Existing WUG supply total                     | 30                    | 19       | -36.7%            | 24                    | 15       | -37.5%         |  |  |  |  |
| Projected demand total                        | 31                    | 20       | -35.5%            | 31                    | 20       | -35.5%         |  |  |  |  |
| Water supply needs total**                    | 1                     | 1        | 0.0%              | 7                     | 5        | -28.6%         |  |  |  |  |

<sup>\*</sup>The 2030 and 2070 planning decades are used in this comparison because they represent the earliest and latest planning decades in both the 2021 and 2026 RWPs

<sup>\*\*</sup>WUG supplies and projected demands are entered for each of a WUG's region-county-basin divisions. The needs shown in the WUG Data Comparison to 2021 RWP report are calculated by first deducting the WUG split's projected demand from its total existing water supply volume. If the WUG split has a greater existing supply volume than projected demand in any given decade, this amount is considered a surplus volume. Before aggregating the difference between supplies and demands to the WUG county and category level, calculated surpluses are updated to zero so that only the WUGs with needs in the decade are included with the water supply needs totals.

|                                                  | 2030 Planning Decade* |          |                   | 2070 Planning Decade* |          |                |  |  |  |  |
|--------------------------------------------------|-----------------------|----------|-------------------|-----------------------|----------|----------------|--|--|--|--|
|                                                  | 2021 RWP              | 2026 RWP | Difference<br>(%) | 2021 RWP              | 2026 RWP | Difference (%) |  |  |  |  |
| Wichita County  Livestock WUG Type               |                       |          |                   |                       |          |                |  |  |  |  |
| Existing WUG supply total                        | 975                   | 718      | -26.4%            | 975                   | 718      | -26.4%         |  |  |  |  |
| Projected demand total                           | 975                   | 718      | -26.4%            | 975                   | 718      | -26.4%         |  |  |  |  |
| Water supply needs total**                       | 0                     | 0        | 0.0%              | 0                     | 0        | 0.0%           |  |  |  |  |
| Wichita County  Irrigation WUG Type              |                       |          |                   |                       |          |                |  |  |  |  |
| Existing WUG supply total                        | 16,704                | 21,650   | 29.6%             | 9,680                 | 17,823   | 84.1%          |  |  |  |  |
| Projected demand total                           | 39,156                | 26,657   | -31.9%            | 39,156                | 26,657   | -31.9%         |  |  |  |  |
| Water supply needs total**                       | 22,452                | 5,007    | -77.7%            | 29,476                | 8,834    | -70.0%         |  |  |  |  |
| Wilbarger County  Municipal WUG Type             |                       |          |                   |                       |          |                |  |  |  |  |
| Existing WUG supply total                        | 2,796                 | 2,682    | -4.1%             | 2,791                 | 2,538    | -9.1%          |  |  |  |  |
| Projected demand total                           | 2,505                 | 2,135    | -14.8%            | 2,702                 | 1,805    | -33.2%         |  |  |  |  |
| Water supply needs total**                       | 18                    | 1        | -94.4%            | 69                    | 2        | -97.1%         |  |  |  |  |
| Wilbarger County  Manufacturing WUG Type         |                       |          |                   |                       |          |                |  |  |  |  |
| Existing WUG supply total                        | 1,048                 | 1,110    | 5.9%              | 1,035                 | 1,284    | 24.1%          |  |  |  |  |
| Projected demand total                           | 1,048                 | 1,110    | 5.9%              | 1,048                 | 1,284    | 22.5%          |  |  |  |  |
| Water supply needs total**                       | 0                     | 0        | 0.0%              | 13                    | 0        | -100.0%        |  |  |  |  |
| Wilbarger County  Mining WUG Type                |                       |          |                   |                       |          |                |  |  |  |  |
| Existing WUG supply total                        | 40                    | 32       | -20.0%            | 40                    | 32       | -20.0%         |  |  |  |  |
| Projected demand total                           | 20                    | 32       | 60.0%             | 18                    | 32       | 77.8%          |  |  |  |  |
| Water supply needs total**                       | 0                     | 0        | 0.0%              | 0                     | 0        | 0.0%           |  |  |  |  |
| Wilbarger County   Steam Electric Power WUG Type |                       |          |                   |                       |          |                |  |  |  |  |
| Existing WUG supply total                        | 5,409                 | 2,888    | -46.6%            | 3,005                 | 2,340    | -22.1%         |  |  |  |  |
| Projected demand total                           | 7,711                 | 5,878    | -23.8%            | 7,711                 | 5,878    | -23.8%         |  |  |  |  |
| Water supply needs total**                       | 2,302                 | 2,990    | 29.9%             | 4,706                 | 3,538    | -24.8%         |  |  |  |  |
| Wilbarger County  Livestock WUG Type             |                       |          |                   |                       |          |                |  |  |  |  |
| Existing WUG supply total                        | 965                   | 1,544    | 60.0%             | 965                   | 1,544    | 60.0%          |  |  |  |  |

<sup>\*</sup>The 2030 and 2070 planning decades are used in this comparison because they represent the earliest and latest planning decades in both the 2021 and 2026 RWPs

<sup>\*\*</sup>WUG supplies and projected demands are entered for each of a WUG's region-county-basin divisions. The needs shown in the WUG Data Comparison to 2021 RWP report are calculated by first deducting the WUG split's projected demand from its total existing water supply volume. If the WUG split has a greater existing supply volume than projected demand in any given decade, this amount is considered a surplus volume. Before aggregating the difference between supplies and demands to the WUG county and category level, calculated surpluses are updated to zero so that only the WUGs with needs in the decade are included with the water supply needs totals.

## DRAFT Region B 2026 Regional Water Plan (RWP) Water User Group (WUG) Data Comparison to 2021 RWP

Water Volumes Shown in Acre-Feet per year

|                                        | 2030     | Planning Dec      | ade*   | 2070 Planning Decade* |          |                |
|----------------------------------------|----------|-------------------|--------|-----------------------|----------|----------------|
|                                        | 2021 RWP | 21 RWP 2026 RWP D |        | 2021 RWP              | 2026 RWP | Difference (%) |
| Projected demand total                 | 965      | 780               | -19.2% | 965                   | 780      | -19.2%         |
| Water supply needs total**             | 0        | 0                 | 0.0%   | 0                     | 0        | 0.0%           |
| Wilbarger County   Irrigation WUG Type |          |                   |        |                       |          |                |
| Existing WUG supply total              | 29,347   | 26,736            | -8.9%  | 29,347                | 26,736   | -8.9%          |
| Projected demand total                 | 29,289   | 26,736            | -8.7%  | 29,289                | 26,736   | -8.7%          |
| Water supply needs total**             | 0        | 0                 | 0.0%   | 0                     | 0        | 0.0%           |
| Young County   Municipal WUG Type      |          |                   |        |                       |          |                |
| Existing WUG supply total              | 829      | 1,199             | 44.6%  | 671                   | 906      | 35.0%          |
| Projected demand total                 | 652      | 554               | -15.0% | 715                   | 547      | -23.5%         |
| Water supply needs total**             | 0        | 19                | 100.0% | 56                    | 10       | -82.1%         |
| Young County   Livestock WUG Type      |          |                   |        |                       |          |                |
| Existing WUG supply total              | 122      | 122               | 0.0%   | 122                   | 122      | 0.0%           |
| Projected demand total                 | 122      | 56                | -54.1% | 122                   | 56       | -54.1%         |
| Water supply needs total**             | 0        | 15                | 100.0% | 0                     | 15       | 100.0%         |
| Young County   Irrigation WUG Type     |          |                   |        |                       |          |                |
| Existing WUG supply total              | 3        | 3                 | 0.0%   | 3                     | 3        | 0.0%           |
| Projected demand total                 | 3        | 6                 | 100.0% | 3                     | 6        | 100.0%         |
| Water supply needs total**             | 0        | 3                 | 100.0% | 0                     | 3        | 100.0%         |
| Region B Total                         |          |                   |        |                       |          |                |
| Existing WUG supply total              | 136,964  | 137,158           | 0.1%   | 118,421               | 127,520  | 7.7%           |
| Projected demand total                 | 156,083  | 133,805           | -14.3% | 154,535               | 132,216  | -14.4%         |
| Water supply needs total**             | 26,492   | 8,313             | -68.6% | 41,256                | 14,518   | -64.8%         |

<sup>\*</sup>The 2030 and 2070 planning decades are used in this comparison because they represent the earliest and latest planning decades in both the 2021 and 2026 RWPs

<sup>\*\*</sup>WUG supplies and projected demands are entered for each of a WUG's region-county-basin divisions. The needs shown in the WUG Data Comparison to 2021 RWP report are calculated by first deducting the WUG split's projected demand from its total existing water supply volume. If the WUG split has a greater existing supply volume than projected demand in any given decade, this amount is considered a surplus volume. Before aggregating the difference between supplies and demands to the WUG county and category level, calculated surpluses are updated to zero so that only the WUGs with needs in the decade are included with the water supply needs totals.

## DRAFT Region B 2026 Regional Water Plan (RWP) Source Availability Comparison to 2021 RWP

Water Volumes Shown in Acre-Feet per year

|                                  | 2030 Planning Decade* |          |                   | 2070 Planning Decade* |          |                |
|----------------------------------|-----------------------|----------|-------------------|-----------------------|----------|----------------|
|                                  | 2021 RWP              | 2026 RWP | Difference<br>(%) | 2021 RWP              | 2026 RWP | Difference (%) |
| Archer County                    |                       |          |                   |                       |          |                |
| Groundwater availability total   | 660                   | 660      | 0.0%              | 660                   | 660      | 0.0%           |
| Surface Water availability total | 2,375                 | 1,486    | -37.4%            | 2,375                 | 1,486    | -37.4%         |
| Baylor County                    |                       |          |                   |                       |          |                |
| Groundwater availability total   | 7,390                 | 7,390    | 0.0%              | 6,990                 | 6,990    | 0.0%           |
| Reuse availability total         | 63                    | 63       | 0.0%              | 63                    | 63       | 0.0%           |
| Surface Water availability total | 964                   | 783      | -18.8%            | 964                   | 783      | -18.8%         |
| Clay County                      |                       |          |                   |                       |          |                |
| Groundwater availability total   | 2,787                 | 2,787    | 0.0%              | 2,787                 | 2,787    | 0.0%           |
| Surface Water availability total | 5,637                 | 4,131    | -26.7%            | 5,637                 | 4,131    | -26.7%         |
| Cottle County                    |                       |          |                   |                       |          |                |
| Groundwater availability total   | 13,421                | 13,421   | 0.0%              | 13,421                | 13,421   | 0.0%           |
| Surface Water availability total | 182                   | 121      | -33.5%            | 182                   | 121      | -33.5%         |
| Foard County                     |                       |          |                   |                       |          |                |
| Groundwater availability total   | 11,709                | 10,544   | -9.9%             | 10,707                | 9,542    | -10.9%         |
| Surface Water availability total | 370                   | 341      | -7.8%             | 370                   | 341      | -7.8%          |
| Hardeman County                  |                       |          |                   |                       |          |                |
| Groundwater availability total   | 21,555                | 22,724   | 5.4%              | 41,383                | 42,552   | 2.8%           |
| Surface Water availability total | 553                   | 373      | -32.5%            | 553                   | 373      | -32.5%         |
| King County                      |                       |          |                   |                       |          |                |
| Groundwater availability total   | 1,050                 | 699      | -33.4%            | 1,050                 | 699      | -33.4%         |
| Surface Water availability total | 142                   | 134      | -5.6%             | 142                   | 134      | -5.6%          |
| Montague County                  |                       |          |                   |                       |          |                |
| Groundwater availability total   | 7,875                 | 10,104   | 28.3%             | 7,875                 | 10,104   | 28.3%          |
| Reuse availability total         | 367                   | 34       | -90.7%            | 16                    | 34       | 112.5%         |
| Surface Water availability total | 1,736                 | 1,406    | -19.0%            | 1,736                 | 1,406    | -19.0%         |
| Reservoir** County               |                       |          |                   |                       |          |                |
| Surface Water availability total | 44,493                | 53,625   | 20.5%             | 27,770                | 43,009   | 54.9%          |
| Wichita County                   |                       |          |                   |                       |          |                |
| Groundwater availability total   | 3,135                 | 3,135    | 0.0%              | 3,131                 | 3,131    | 0.0%           |

<sup>\*</sup>The 2030 and 2070 planning decades are used in this comparison because they represent the earliest and latest planning decades in both the 2021 and 2026 RWPs.

<sup>\*\*</sup>Since reservoir sources can exist across multiple counties, the county field value, 'reservoir' is applied to all reservoir sources.

## DRAFT Region B 2026 Regional Water Plan (RWP) Source Availability Comparison to 2021 RWP

Water Volumes Shown in Acre-Feet per year

|                                  | 2030     | Planning Dec                   | ade*   | 2070 Planning Decade* |          |                   |  |
|----------------------------------|----------|--------------------------------|--------|-----------------------|----------|-------------------|--|
|                                  | 2021 RWP | 21 RWP 2026 RWP Difference (%) |        | 2021 RWP              | 2026 RWP | Difference<br>(%) |  |
| Reuse availability total         | 9,325    | 9,325                          | 0.0%   | 9,325                 | 9,325    | 0.0%              |  |
| Surface Water availability total | 4,523    | 2,106                          | -53.4% | 4,523                 | 2,106    | -53.4%            |  |
| Wilbarger County                 |          |                                |        |                       |          |                   |  |
| Groundwater availability total   | 33,050   | 33,050                         | 0.0%   | 33,050                | 33,050   | 0.0%              |  |
| Surface Water availability total | 1,742    | 692                            | -60.3% | 1,742                 | 692      | -60.3%            |  |
| Young County                     |          |                                |        |                       |          |                   |  |
| Groundwater availability total   | 700      | 700                            | 0.0%   | 700                   | 700      | 0.0%              |  |
| Reuse availability total         | 5        | 5                              | 0.0%   | 5                     | 5        | 0.0%              |  |
| Surface Water availability total | 122      | 45                             | -63.1% | 122                   | 45       | -63.1%            |  |
| Region B Total                   |          |                                |        |                       |          |                   |  |
| Groundwater availability total   | 103,332  | 105,214                        | 1.8%   | 121,754               | 123,636  | 1.5%              |  |
| Reuse availability total         | 9,760    | 9,427                          | -3.4%  | 9,409                 | 9,427    | 0.2%              |  |
| Surface Water availability total | 62,839   | 65,243                         | 3.8%   | 46,116                | 54,627   | 18.5%             |  |

<sup>\*</sup>The 2030 and 2070 planning decades are used in this comparison because they represent the earliest and latest planning decades in both the 2021 and 2026 RWPs.

<sup>\*\*</sup>Since reservoir sources can exist across multiple counties, the county field value, 'reservoir' is applied to all reservoir sources.

Prepared for Texas Water Development Board on behalf of RWPG

## APPENDIX C WAM Modification Request and TWDB Approval

#### Surface Water Hydrologic Variance Request Checklist

Texas Water Development Board (TWDB) rules¹ require that regional water planning groups (RWPG) use most current Water Availability Models (WAM) from the Texas Commission on Environmental Quality (TCEQ) and assume full utilization of existing water rights and no return flows for surface water supply analysis. Additionally, evaluation of existing stored surface water available during Drought of Record conditions must be based on Firm Yield using anticipated sedimentation rates. However, the TWDB rules also allow, and **we encourage**, RWPGs to use more representative, water availability modeling assumptions; better site-specific information; or justified operational procedures other than Firm Yield with written approval (via a Hydrologic Variance) from the Executive Administrator in order to better represent and therefore prepare for expected drought conditions.

RWPGs must use this checklist, which is intended to save time and reduce effort, to request a Hydrologic Variance for estimating the availability of surface water sources. For Questions 4 – 10, please indicate whether the requested variance is for determining Existing Supply, Strategy Supply, or both. Please complete a separate checklist for each river basin in which variances are being requested.

#### **Water Planning Region**: B

1. Which major river basin does the request apply to? Please specify if the request only applies part of the basin or only to certain reservoirs.

Brazos River WAM limited to the portions of those basins within Region B.

2. Please give a brief, bulleted, description of the requested hydrologic variances including how the alternative availability assumptions vary from rule requirements, how the modifications will affect the associated annual availability volume(s) in the regional water plan, and why the variance is necessary or provides a better basis for planning. You must provide more-detailed descriptions in the subsequent checklist questions. Attach any available documentation supporting the request.

To best represent how local supplies are managed the following modifications will be needed to a better basis for planning.

- One-Year Safe Yield
- 3. Was this request submitted in a previous planning cycle? If yes, please indicate which cycle and note how it is different, if at all, from the previous request?

Yes

A similar request was submitted as part of the 2021 Plan.

<sup>&</sup>lt;sup>1</sup> 31 Texas Administrative Code (TAC) §§ 357.10(14) and 357.32(c)

| 4. | Are you requesting to extend the period of record beyond the current applicable WAM       |
|----|-------------------------------------------------------------------------------------------|
|    | hydrologic period? If yes, please describe the proposed methodology. Indicate whether you |
|    | believe there is a new drought of record in the basin.                                    |

No

Choose an item.

Since the Brazos River WAM has been extended by TCEQ there is no need to request extended models. It is likely that this model captures the new drought of record from 2011-2014.

5. Are you requesting to use a reservoir safe yield? If yes, please describe in detail how the safe yield would be calculated and defined, which reservoir(s) it would apply to, and why the modification is needed or preferrable for drought planning purposes.

Yes

**Existing and Strategy Supply** 

One-year safe yield is defined as the maximum annual diversion that can be taken from a reservoir during a repeat of drought-of-record conditions with a minimum reserve supply equal to that annual maximum diversion.

6. Are you requesting to use a reservoir yield other than firm yield or safe yield? If yes, please describe, in a bulleted list, each modification requested including how the alternative yield was calculated, which reservoir(s) it applies to, and why the modification is needed or preferrable for drought planning purposes. Examples of alternative reservoir yield analyses may include using an alternative reservoir level, conditional reliability, or other special reservoir operations.

No

Choose an item.

Click or tap here to enter text.

7. Are you requesting to use a different model (such as a RiverWare or Excel-based models) than RUN 3 of the applicable TCEQ WAM? If yes, please describe the model being considered including how it incorporates water rights and prior appropriation and how it is more conservative than RUN 3 of the applicable TCEQ WAM.

No

Choose an item.

8. Are you requesting to use a modified TCEQ WAM? If yes, please describe in a bulleted list all modifications in detail including all specific changes to the WAM and whether the modified WAM is more conservative than the TCEQ WAM RUN 3. Examples of WAM modifications may include adding subordination agreements, contracts, updated water rights, modified spring flows, updated lake evaporation, updated sedimentation<sup>2</sup>, system or reservoir operations, or special operational procedures into the WAM.

Yes

**Existing and Strategy Supply** 

- Updating sedimentation for reservoirs based on TWDB volumetric surveys for 2030 and 2080 conditions.
- 9. Are you requesting to include return flows in the modeling? If yes, are you doing so to model an indirect reuse water management strategy (WMS)? Please provide complete details regarding the proposed methodology for determining reuse WMS availability.

No

Choose an item.

Click or tap here to enter text.

10. Are any of the requested Hydrologic Variances also planned to be used by another region for the same basin? If yes, please indicate the other Region. Please indicate if unknown.

No

Click or tap here to enter text.

11. Please describe any other variance requests not captured on this checklist or add any other information regarding the variance requests on this checklist.

<sup>&</sup>lt;sup>2</sup> Updating anticipated sedimentation rates does not require a hydrologic variance under 31 TAC § 357.10(14). The Technical Memorandum will require providing details regarding the sedimentation methodology utilized. Please consider providing that information with this request.

#### Surface Water Hydrologic Variance Request Checklist

Texas Water Development Board (TWDB) rules¹ require that regional water planning groups (RWPG) use most current Water Availability Models (WAM) from the Texas Commission on Environmental Quality (TCEQ) and assume full utilization of existing water rights and no return flows for surface water supply analysis. Additionally, evaluation of existing stored surface water available during Drought of Record conditions must be based on Firm Yield using anticipated sedimentation rates. However, the TWDB rules also allow, and **we encourage**, RWPGs to use more representative, water availability modeling assumptions; better site-specific information; or justified operational procedures other than Firm Yield with written approval (via a Hydrologic Variance) from the Executive Administrator in order to better represent and therefore prepare for expected drought conditions.

RWPGs must use this checklist, which is intended to save time and reduce effort, to request a Hydrologic Variance for estimating the availability of surface water sources. For Questions 4-10, please indicate whether the requested variance is for determining Existing Supply, Strategy Supply, or both. Please complete a separate checklist for each river basin in which variances are being requested.

#### **Water Planning Region**: B

1. Which major river basin does the request apply to? Please specify if the request only applies part of the basin or only to certain reservoirs.

Red River WAM limited to the portions of those basins within Region B.

2. Please give a brief, bulleted, description of the requested hydrologic variances including how the alternative availability assumptions vary from rule requirements, how the modifications will affect the associated annual availability volume(s) in the regional water plan, and why the variance is necessary or provides a better basis for planning. You must provide more-detailed descriptions in the subsequent checklist questions. Attach any available documentation supporting the request.

To best represent how local supplies are managed the following modifications will be needed to a better basis for planning.

- 20 percent reserve (20% of conservation storage remaining in the reservoir at all times)
- 3. Was this request submitted in a previous planning cycle? If yes, please indicate which cycle and note how it is different, if at all, from the previous request?

Yes

A similar request was submitted as part of the 2021 Plan, however, in this request, all reservoirs in the Red River Basin will include the 20 percent reserve safe yield. The 2021 Plan

<sup>&</sup>lt;sup>1</sup> 31 Texas Administrative Code (TAC) §§ 357.10(14) and 357.32(c)

request only included the 20% reserve for the City of Wichita Falls Supplies (Kickapoo, Arrowhead and the Kemp-Diversion reservoir system).

4. Are you requesting to extend the period of record beyond the current applicable WAM hydrologic period? If yes, please describe the proposed methodology. Indicate whether you believe there is a new drought of record in the basin.

No

Choose an item.

Since the Red River WAM has been extended by TCEQ there is no need to request extended models. It is likely that this model captures the new drought of record from 2011-2014.

5. Are you requesting to use a reservoir safe yield? If yes, please describe in detail how the safe yield would be calculated and defined, which reservoir(s) it would apply to, and why the modification is needed or preferrable for drought planning purposes.

Yes

**Existing and Strategy Supply** 

To maintain reservoir supply operations during a repeat of drought-of-record conditions, a minimum reserve supply equal to 20 percent of the conservation storage will be maintained in each Region B supply reservoir in the Red River Basin.

6. Are you requesting to use a reservoir yield other than firm yield or safe yield? If yes, please describe, in a bulleted list, each modification requested including how the alternative yield was calculated, which reservoir(s) it applies to, and why the modification is needed or preferrable for drought planning purposes. Examples of alternative reservoir yield analyses may include using an alternative reservoir level, conditional reliability, or other special reservoir operations.

No

7. Are you requesting to use a different model (such as a RiverWare or Excel-based models) than RUN 3 of the applicable TCEQ WAM? If yes, please describe the model being considered including how it incorporates water rights and prior appropriation and how it is more conservative than RUN 3 of the applicable TCEQ WAM.

No

Choose an item.

8. Are you requesting to use a modified TCEQ WAM? If yes, please describe in a bulleted list all modifications in detail including all specific changes to the WAM and whether the modified WAM is more conservative than the TCEQ WAM RUN 3. Examples of WAM modifications may include adding subordination agreements, contracts, updated water rights, modified spring flows, updated lake evaporation, updated sedimentation<sup>2</sup>, system or reservoir operations, or special operational procedures into the WAM.

Yes

**Existing and Strategy Supply** 

- Modeling Kemp and Diversion reservoirs as a system rather than as individual reservoirs
- Updating sedimentation for reservoirs based on TWDB volumetric surveys for 2030 and 2080 conditions.
- 9. Are you requesting to include return flows in the modeling? If yes, are you doing so to model an indirect reuse water management strategy (WMS)? Please provide complete details regarding the proposed methodology for determining reuse WMS availability.

No

Choose an item.

Click or tap here to enter text.

10. Are any of the requested Hydrologic Variances also planned to be used by another region for the same basin? If yes, please indicate the other Region. Please indicate if unknown.

No

Click or tap here to enter text.

11. Please describe any other variance requests not captured on this checklist or add any other information regarding the variance requests on this checklist.

<sup>&</sup>lt;sup>2</sup> Updating anticipated sedimentation rates does not require a hydrologic variance under 31 TAC § 357.10(14). The Technical Memorandum will require providing details regarding the sedimentation methodology utilized. Please consider providing that information with this request.

#### Surface Water Hydrologic Variance Request Checklist

Texas Water Development Board (TWDB) rules¹ require that regional water planning groups (RWPG) use most current Water Availability Models (WAM) from the Texas Commission on Environmental Quality (TCEQ) and assume full utilization of existing water rights and no return flows for surface water supply analysis. Additionally, evaluation of existing stored surface water available during Drought of Record conditions must be based on Firm Yield using anticipated sedimentation rates. However, the TWDB rules also allow, and **we encourage**, RWPGs to use more representative, water availability modeling assumptions; better site-specific information; or justified operational procedures other than Firm Yield with written approval (via a Hydrologic Variance) from the Executive Administrator in order to better represent and therefore prepare for expected drought conditions.

RWPGs must use this checklist, which is intended to save time and reduce effort, to request a Hydrologic Variance for estimating the availability of surface water sources. For Questions 4 – 10, please indicate whether the requested variance is for determining Existing Supply, Strategy Supply, or both. Please complete a separate checklist for each river basin in which variances are being requested.

#### **Water Planning Region**: B

1. Which major river basin does the request apply to? Please specify if the request only applies part of the basin or only to certain reservoirs.

Trinity River WAM limited to the portions of those basins within Region B.

2. Please give a brief, bulleted, description of the requested hydrologic variances including how the alternative availability assumptions vary from rule requirements, how the modifications will affect the associated annual availability volume(s) in the regional water plan, and why the variance is necessary or provides a better basis for planning. You must provide more-detailed descriptions in the subsequent checklist questions. Attach any available documentation supporting the request.

To best represent how local supplies are managed the following modifications will be needed to a better basis for planning.

- One-Year Safe Yield
- 3. Was this request submitted in a previous planning cycle? If yes, please indicate which cycle and note how it is different, if at all, from the previous request?

Yes

A similar request was submitted as part of the 2021 Plan.

<sup>&</sup>lt;sup>1</sup> 31 Texas Administrative Code (TAC) §§ 357.10(14) and 357.32(c)

| 4. | Are you requesting to extend the period of record beyond the current applicable WAM       |
|----|-------------------------------------------------------------------------------------------|
|    | hydrologic period? If yes, please describe the proposed methodology. Indicate whether you |
|    | believe there is a new drought of record in the basin.                                    |

No

Choose an item.

The Trinity WAM has not been extended, but it is unclear if a new drought of record has occurred in this portion of the basin.

5. Are you requesting to use a reservoir safe yield? If yes, please describe in detail how the safe yield would be calculated and defined, which reservoir(s) it would apply to, and why the modification is needed or preferrable for drought planning purposes.

Yes

**Existing and Strategy Supply** 

One-year safe yield is defined as the maximum annual diversion that can be taken from a reservoir during a repeat of drought-of-record conditions with a minimum reserve supply equal to that annual maximum diversion.

6. Are you requesting to use a reservoir yield other than firm yield or safe yield? If yes, please describe, in a bulleted list, each modification requested including how the alternative yield was calculated, which reservoir(s) it applies to, and why the modification is needed or preferrable for drought planning purposes. Examples of alternative reservoir yield analyses may include using an alternative reservoir level, conditional reliability, or other special reservoir operations.

No

Choose an item.

Click or tap here to enter text.

7. Are you requesting to use a different model (such as a RiverWare or Excel-based models) than RUN 3 of the applicable TCEQ WAM? If yes, please describe the model being considered including how it incorporates water rights and prior appropriation and how it is more conservative than RUN 3 of the applicable TCEQ WAM.

No

Choose an item.

8. Are you requesting to use a modified TCEQ WAM? If yes, please describe in a bulleted list all modifications in detail including all specific changes to the WAM and whether the modified WAM is more conservative than the TCEQ WAM RUN 3. Examples of WAM modifications may include adding subordination agreements, contracts, updated water rights, modified spring flows, updated lake evaporation, updated sedimentation<sup>2</sup>, system or reservoir operations, or special operational procedures into the WAM.

Yes

**Existing and Strategy Supply** 

- Updating sedimentation for reservoirs based on TWDB volumetric surveys for 2030 and 2080 conditions.
- 9. Are you requesting to include return flows in the modeling? If yes, are you doing so to model an indirect reuse water management strategy (WMS)? Please provide complete details regarding the proposed methodology for determining reuse WMS availability.

No

Choose an item.

Click or tap here to enter text.

10. Are any of the requested Hydrologic Variances also planned to be used by another region for the same basin? If yes, please indicate the other Region. Please indicate if unknown.

No

Click or tap here to enter text.

11. Please describe any other variance requests not captured on this checklist or add any other information regarding the variance requests on this checklist.

<sup>&</sup>lt;sup>2</sup> Updating anticipated sedimentation rates does not require a hydrologic variance under 31 TAC § 357.10(14). The Technical Memorandum will require providing details regarding the sedimentation methodology utilized. Please consider providing that information with this request.

801 Cherry Street, Suite 2800 + Fort Worth, Texas 76102 + 817-735-7300 + FAX 817-735-7491

www.freese.com

November 27, 2023

Jeff Walker Texas Water Development Board 1700 North Congress Austin, Texas 78711-3231

Re: Amended Hydrologic Variance Requests for Water Availability Determination in Region B

Dear Mr. Walker,

Region B submitted a hydrologic variance request to the TWDB on October 26, 2023. This request was for surface water modeling for the three river basins in Region B (Brazos, Red and Trinity). While evaluating the water availability in the Red River Basin, we identified several other changes to the Red River WAM. These changes are consistent with how the basin is operated and better reflect water availability in Region B. This amended request was approved by the Region B Water Planning Group during a meeting on November 15, 2023.

Attached is an amended Surface Water Hydrologic Checklist for the Red River Basin and supplemental information that details the reasons for the request.

Please contact me at 817-735-7446 or Jon Albright of Freese and Nichols at 817-735-7267 if you have any questions regarding our request.

Sincerely,

Simone Kiel

Simone Kiel

Region B Lead Consultant, Freese and Nichols

## Supplemental Information for Hydrologic Variance Request for Region B Red River Basin

November 27, 2023

#### **Subordination of Water Rights in Lake Texoma**

The Red River WAM used for previous regional water planning was originally developed in 2001 and included hydrology through 1998. This WAM has unique considerations since it must respect Texas water rights authorizations and the Red River Compact. The Red River Compact addresses the split of water between Texas and adjoining states. In the vicinity of Region B, the water in the Red River and downstream in Lake Texoma is shared by Texas and Oklahoma equally (50-50). All water originating in Texas and upstream of the Red River is owned solely by Texas.

In 2021, TCEQ updated the Red River WAM. These updates included extended hydrology through 2018 and other corrections identified during the update. One of these corrections was the inflows to Lake Texoma. The original Red River WAM Run 3 had double counted the inflows from Oklahoma directly into Lake Texoma. This was corrected for the 2021 Red River WAM. However, neither WAM (2001 or 2021) included inflows to the Red River from tributaries in Oklahoma upstream of Texoma in Run 3. As a result, the inflows to Texoma in the 2021 WAM were reduced from the 2001 WAM. However, the actual inflows to Texoma would be greater if the tributary flows from Oklahoma were considered. This inconsistency in how Oklahoma flows are treated results in unnecessary calls for passing upstream Texas inflows to meet senior water rights, which affect the water availability in Region B.

Review of the WAM identified two water rights affecting the supply for Lake Arrowhead. These rights include CA4901, a 1952 water right for the City of Denison and an equivalent water right for Oklahoma at the same priority date. The Oklahoma water right does not represent a real authorization by the state of Oklahoma – it is an assumption that was made in the WAM to mirror Texas authorizations with equivalent authorizations for Oklahoma. The Oklahoma water right should not impact water availability for Texas water rights. The Denison water right diverts water from Lake Texoma to Lake Randell for municipal and industrial use. Lake Texoma has plenty of storage to accommodate this water right and Denison would likely never call for upstream flows. We are unaware of any priority call being made by Denison to meet its needs.

This change in the functionality of the Red River WAM as it pertains to upstream water rights is the result of three things:

- 1. Correction of the error in Oklahoma inflows to Lake Texoma in the 2021 WAM update
- 2. Omission of inflows from Oklahoma upstream of Lake Texoma, which results in an underestimation of flows available at Lake Texoma
- 3. WAM modeling of USACE storage contracts and diversions of individual water right holders in Lake Texoma rather than evaluating the lake as a whole.

To reflect the reliable supply in Region B, we are requesting the inclusion of subordination of senior downstream water rights in Lake Texoma to current and future water supply reservoirs in the Little Wichita River Basin. This request includes the existing Lake Arrowhead and the future Lake Ringgold. Lake Kickapoo is senior to the 1952 water rights in Lake Texoma. Under current supply analyses this

| request does not change the water availability for the City of Denison. It is still able to fully divert its water right. |
|---------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |
|                                                                                                                           |

#### Surface Water Hydrologic Variance Request Checklist

Texas Water Development Board (TWDB) rules¹ require that regional water planning groups (RWPG) use most current Water Availability Models (WAM) from the Texas Commission on Environmental Quality (TCEQ) and assume full utilization of existing water rights and no return flows for surface water supply analysis. Additionally, evaluation of existing stored surface water available during Drought of Record conditions must be based on Firm Yield using anticipated sedimentation rates. However, the TWDB rules also allow, and **we encourage**, RWPGs to use more representative, water availability modeling assumptions; better site-specific information; or justified operational procedures other than Firm Yield with written approval (via a Hydrologic Variance) from the Executive Administrator in order to better represent and therefore prepare for expected drought conditions.

RWPGs must use this checklist, which is intended to save time and reduce effort, to request a Hydrologic Variance for estimating the availability of surface water sources. For Questions 4-10, please indicate whether the requested variance is for determining Existing Supply, Strategy Supply, or both. Please complete a separate checklist for each river basin in which variances are being requested.

#### **Water Planning Region**: B

1. Which major river basin does the request apply to? Please specify if the request only applies part of the basin or only to certain reservoirs.

Red River WAM, as applicable to Region B

2. Please give a brief, bulleted, description of the requested hydrologic variances including how the alternative availability assumptions vary from rule requirements, how the modifications will affect the associated annual availability volume(s) in the regional water plan, and why the variance is necessary or provides a better basis for planning. You must provide more-detailed descriptions in the subsequent checklist questions. Attach any available documentation supporting the request.

To best represent how local supplies are managed the following modifications will be needed to a better basis for planning.

- Subordinate senior water rights in Lake Texoma to Lake Arrowhead and Lake Ringgold (see attached)
- Include 20 percent reserve for all reservoirs for reliable supply (20% of conservation storage remaining in the reservoir at all times). Firm yield also will be determined in accordance with the TWDB rules.
- 3. Was this request submitted in a previous planning cycle? If yes, please indicate which cycle and note how it is different, if at all, from the previous request?

<sup>&</sup>lt;sup>1</sup> 31 Texas Administrative Code (TAC) §§ 357.10(14) and 357.32(c)

No

The Red River WAM was updated in 2021. Changes made in this update resulted in significant increases in pass throughs to downstream water right holders in Lake Texoma, which are not consistent with current operations. (see attached)

The use of the 20 percent reserve for reliable supply was requested for the 2021 Region B plan for the reservoirs used by the City of Wichita Falls, but not for other reservoirs. This request of a 20 percent reserve safe yield is expanded to include all reservoirs in the Red River Basin.

4. Are you requesting to extend the period of record beyond the current applicable WAM hydrologic period? If yes, please describe the proposed methodology. Indicate whether you believe there is a new drought of record in the basin.

No

Choose an item.

5. Are you requesting to use a reservoir safe yield? If yes, please describe in detail how the safe yield would be calculated and defined, which reservoir(s) it would apply to, and why the modification is needed or preferrable for drought planning purposes.

Yes

**Existing and Strategy Supply** 

To maintain reservoir supply operations during a repeat of drought-of-record conditions, a minimum reserve supply equal to 20 percent of the conservation storage will be maintained in each Region B supply reservoir in the Red River Basin.

6. Are you requesting to use a reservoir yield other than firm yield or safe yield? If yes, please describe, in a bulleted list, each modification requested including how the alternative yield was calculated, which reservoir(s) it applies to, and why the modification is needed or preferrable for drought planning purposes. Examples of alternative reservoir yield analyses may include using an alternative reservoir level, conditional reliability, or other special reservoir operations.

Yes

We are requesting the use of a safe yield that maintains a minimum 20 percent reserve capacity as noted above.

7. Are you requesting to use a different model (such as a RiverWare or Excel-based models) than RUN 3 of the applicable TCEQ WAM? If yes, please describe the model being considered including how it incorporates water rights and prior appropriation and how it is more conservative than RUN 3 of the applicable TCEQ WAM.

No

Choose an item.

Click or tap here to enter text.

8. Are you requesting to use a modified TCEQ WAM? If yes, please describe in a bulleted list all modifications in detail including all specific changes to the WAM and whether the modified WAM is more conservative than the TCEQ WAM RUN 3. Examples of WAM modifications may include adding subordination agreements, contracts, updated water rights, modified spring flows, updated lake evaporation, updated sedimentation<sup>2</sup>, system or reservoir operations, or special operational procedures into the WAM.

Yes

**Existing and Strategy Supply** 

- Subordinate senior water right from Lake Texoma to water rights in the Little Wichita River basin. This includes the existing Lake Arrowhead and future Lake Ringgold.
- Modeling Kemp and Diversion reservoirs as a system rather than as individual reservoirs
- Updating sedimentation for reservoirs based on TWDB volumetric surveys for 2030 and 2080 conditions.
- 9. Are you requesting to include return flows in the modeling? If yes, are you doing so to model an indirect reuse water management strategy (WMS)? Please provide complete details regarding the proposed methodology for determining reuse WMS availability.

No

Choose an item.

Click or tap here to enter text.

10. Are any of the requested Hydrologic Variances also planned to be used by another region for the same basin? If yes, please indicate the other Region. Please indicate if unknown.

No

Click or tap here to enter text.

11. Please describe any other variance requests not captured on this checklist or add any other information regarding the variance requests on this checklist.

<sup>&</sup>lt;sup>2</sup> Updating anticipated sedimentation rates does not require a hydrologic variance under 31 TAC § 357.10(14). The Technical Memorandum will require providing details regarding the sedimentation methodology utilized. Please consider providing that information with this request.



P.O. Box 13231, 1700 N. Congress Ave. Austin, TX 78711-3231, www.twdb.texas.gov Phone (512) 463-7847, Fax (512) 475-2053

January 4, 2024

Mr. Randy Whiteman Chair Region B Regional Water Planning Group c/o Red River Authority P.O. Box 240 Wichita Falls, Texas 76307

#### Dear Chairman Whiteman:

I have reviewed your request dated October 26, 2023, and amended request dated November 27, 2023, for approval of alternative water supply assumptions to be used in determining existing and future surface water availability. This letter confirms that the TWDB approves the following assumptions that require a variance:

- 1. Use of a one-year safe yield for existing and strategy supply from surface water reservoirs within portions of the Trinity and Brazos River Basins within Region B.
- 2. Modify the TCEQ Red River WAM to include subordination of senior water rights in Lake Texoma to current and future water supply reservoirs (i.e., Lake Arrowhead and Lake Ringgold) in the Little Wichita River Basin.
- 3. Use of a safe yield that maintains a minimum reserve supply equal to 20 percent of the conservation storage, for existing and strategy supply, in each Region B water supply reservoir within the Red River Basin.
- 4. Model Kemp and Diversion reservoirs as a system rather than as individual reservoirs in the TCEQ Red River WAM for existing and strategy supply.

Although the TWDB approves the use of a one-year and 20 percent reserve safe yield for developing estimates of current and future water supplies, firm yield for each reservoir must still be reported to TWDB in the online planning database and plan documents.

While the use of these modified conditions may be reasonable for planning purposes, WAM RUN3 would be utilized by the TCEQ for analyzing permit applications. It is acceptable to use the modified conditions for WMS supply evaluations only if the yield produced is more conservative (less) for surface water appropriations than WAM RUN3.

Mr. Randy Whiteman January 4, 2023 Page 2

While the TWDB authorizes these modification to evaluate existing and future water supplies for development of the 2026 Region B RWP, it is the responsibility of the RWPG to ensure that the resulting estimates of water availability are reasonable for drought planning purposes and will reflect conditions expected in the event of actual drought conditions; and in all other regards will be evaluated in accordance with the most recent version of regional water planning contract Exhibit C, *General Guidelines for Development of the 2026 Regional Water Plans.* 

Please do not hesitate to contact Kevin Smith of our Regional Water Planning staff at 512-475-1561 or kevin.smith@twdb.texas.gov if you have any questions.

Sincerely,

Matt Nelson Deputy Executive Administrator

c: Fabian Heaney, Red River Authority Jeremy Rice, P.E., Freese & Nichols, Inc. Kevin Smith, Water Supply Planning Sarah Lee, Water Supply Planning Nelun Fernando, Ph.D., Surface Water

#### Surface Water Hydrologic Variance Request Checklist

Texas Water Development Board (TWDB) rules¹ require that regional water planning groups (RWPG) use most current Water Availability Models (WAM) from the Texas Commission on Environmental Quality (TCEQ) and assume full utilization of existing water rights and no return flows for surface water supply analysis. Additionally, evaluation of existing stored surface water available during Drought of Record conditions must be based on Firm Yield using anticipated sedimentation rates. However, the TWDB rules also allow, and **we encourage**, RWPGs to use more representative, water availability modeling assumptions; better site-specific information; or justified operational procedures other than Firm Yield with written approval (via a Hydrologic Variance) from the Executive Administrator in order to better represent and therefore prepare for expected drought conditions.

RWPGs must use this checklist, which is intended to save time and reduce effort, to request a Hydrologic Variance for estimating the availability of surface water sources. For Questions 4 – 10, please indicate whether the requested variance is for determining Existing Supply, Strategy Supply, or both. Please complete a separate checklist for each river basin in which variances are being requested.

#### **Water Planning Region**: B

1. Which major river basin does the request apply to? Please specify if the request only applies part of the basin or only to certain reservoirs.

Red River WAM, as applicable to Region B

2. Please give a brief, bulleted, description of the requested hydrologic variances including how the alternative availability assumptions vary from rule requirements, how the modifications will affect the associated annual availability volume(s) in the regional water plan, and why the variance is necessary or provides a better basis for planning. You must provide more-detailed descriptions in the subsequent checklist questions. Attach any available documentation supporting the request.

To best represent how local supplies are managed the following modifications will be needed to a better basis for planning.

- Subordinate senior water rights in Lake Texoma to Lake Arrowhead and Lake Ringgold (see attached)
- Include 20 percent reserve for reliable supply (20% of conservation storage remaining in the reservoir at all times) for the following reservoirs:
  - o Arrowhead
  - Kickapoo
  - Kemp/Diversion system
- Include a one-year safe yield for reservoirs where a 20% reserve supply at all times is not attainable:

<sup>&</sup>lt;sup>1</sup> 31 Texas Administrative Code (TAC) §§ 357.10(14) and 357.32(c)

- o Santa Rosa
- o Electra
- o North Fork Buffalo Creek
- Olney/Cooper System
- 3. Was this request submitted in a previous planning cycle? If yes, please indicate which cycle and note how it is different, if at all, from the previous request?

No

The Red River WAM was updated in 2021. Changes made in this update resulted in significant increases in pass throughs to downstream water right holders in Lake Texoma, which are not consistent with current operations. (see attached)

4. Are you requesting to extend the period of record beyond the current applicable WAM hydrologic period? If yes, please describe the proposed methodology. Indicate whether you believe there is a new drought of record in the basin.

No

Choose an item.

5. Are you requesting to use a reservoir safe yield? If yes, please describe in detail how the safe yield would be calculated and defined, which reservoir(s) it would apply to, and why the modification is needed or preferrable for drought planning purposes.

Yes

**Existing and Strategy Supply** 

To maintain reservoir supply operations during a repeat of drought-of-record conditions, a minimum reserve supply equal to 20 percent of the conservation storage will be maintained in each of the following Region B supply reservoirs in the Red River Basin:

- Arrowhead
- Kickapoo
- Kemp/Diversion system

A one-year safe yield reserve supply will be maintained in the following Region B supply reservoirs in the Red River Basin:

- Santa Rosa
- Electra
- North Fork Buffalo Creek
- Olney/Cooper System
- 6. Are you requesting to use a reservoir yield other than firm yield or safe yield? If yes, please describe, in a bulleted list, each modification requested including how the alternative yield was

calculated, which reservoir(s) it applies to, and why the modification is needed or preferrable for drought planning purposes. Examples of alternative reservoir yield analyses may include using an alternative reservoir level, conditional reliability, or other special reservoir operations.

Yes

We are requesting the use of a safe yield that maintains a minimum 20 percent reserve capacity as noted above.

7. Are you requesting to use a different model (such as a RiverWare or Excel-based models) than RUN 3 of the applicable TCEQ WAM? If yes, please describe the model being considered including how it incorporates water rights and prior appropriation and how it is more conservative than RUN 3 of the applicable TCEQ WAM.

No

Choose an item.
Click or tap here to enter text.

8. Are you requesting to use a modified TCEQ WAM? If yes, please describe in a bulleted list all modifications in detail including all specific changes to the WAM and whether the modified WAM is more conservative than the TCEQ WAM RUN 3. Examples of WAM modifications may include adding subordination agreements, contracts, updated water rights, modified spring flows, updated lake evaporation, updated sedimentation<sup>2</sup>, system or reservoir operations, or special operational procedures into the WAM.

Yes

**Existing and Strategy Supply** 

- Subordinate senior water right from Lake Texoma to water rights in the Little Wichita River basin. This includes the existing Lake Arrowhead and future Lake Ringgold.
- Modeling Kemp and Diversion reservoirs as a system rather than as individual reservoirs
- Updating sedimentation for reservoirs based on TWDB volumetric surveys for 2030 and 2080 conditions.
- 9. Are you requesting to include return flows in the modeling? If yes, are you doing so to model an indirect reuse water management strategy (WMS)? Please provide complete details regarding the proposed methodology for determining reuse WMS availability.

| TA 1 | r -                   |
|------|-----------------------|
| 1    | $\boldsymbol{\alpha}$ |
|      |                       |

<sup>&</sup>lt;sup>2</sup> Updating anticipated sedimentation rates does not require a hydrologic variance under 31 TAC § 357.10(14). The Technical Memorandum will require providing details regarding the sedimentation methodology utilized. Please consider providing that information with this request.

Choose an item.

Click or tap here to enter text.

10. Are any of the requested Hydrologic Variances also planned to be used by another region for the same basin? If yes, please indicate the other Region. Please indicate if unknown.

No

Click or tap here to enter text.

11. Please describe any other variance requests not captured on this checklist or add any other information regarding the variance requests on this checklist.

| Region B Technical Memorandum |  |
|-------------------------------|--|
|                               |  |

Prepared for Texas Water Development Board on behalf of RWPG

## APPENDIX D Methodology for Developing Groundwater Availabilities

#### **MEMORANDUM**



Innovative approaches
Practical results
Outstanding service

801 Cherry Street, Suite 2800 + Fort Worth, Texas 76102 + 817-735-7300 + FAX 817-735-7491

www.freese.com

TO: Region B Water Planning Group

CC:

FROM: Jeremy Rice

**SUBJECT:** Groundwater Supplies in Region B Water Planning Area

**DATE:** 1/31/2024

PROJECT: RRG21896

#### **Executive Summary**

This technical memorandum discusses the development of groundwater supplies for regional planning purposes. As required by regional planning rules, Managed Available Groundwater (MAG) values must be used if developed through the Groundwater Joint Planning Process. If no MAGs are developed by the TWDB, then the RWPG develops the groundwater availability values. Table ES-1 presents a summary of the groundwater supplies by aquifer for Region B. More details on how these supplies were developed are provided in this technical memorandum.

As shown in Table ES-1, groundwater supplies in Region B are higher than estimated for the 2021 Regional Water Plan (RWP). This is due in part to the higher Managed Available Groundwater (MAG) estimates for the Trinity Aquifer in Montague County.

Supply estimates for the non-MAG portions of the Cross-Timber Aquifer and "Other Aquifer" (unclassified alluvium) are the same as determined for the 2021 RWP. In total, the groundwater supplies available to Region B range from 105,214 to 123,636 acre-feet per year. The Seymour Aquifer continues to be a significant source of groundwater for the region.

Table ES-1 Summary of Groundwater Supplies in Region B (ac-ft/yr)

| Aquifer             | 2030    | 2040    | 2050    | 2060    | 2070    | 2080    |
|---------------------|---------|---------|---------|---------|---------|---------|
| Seymour             | 58,435  | 64,290  | 65,430  | 67,450  | 76,857  | 69,461  |
| Blaine              | 26,700  | 26,700  | 26,700  | 26,700  | 26,700  | 26,700  |
| Trinity             | 6,104   | 6,104   | 6,104   | 6,104   | 6,104   | 6,104   |
| Cross-Timbers/Other | 13,975  | 13,975  | 13,975  | 13,975  | 13,975  | 13,975  |
| Total               | 105,214 | 111,069 | 112,209 | 114,229 | 123,636 | 116,240 |
|                     |         |         |         |         |         |         |
| Total 2021 RWP      | 104,337 | 110,666 | 111,924 | 114,013 | 123,164 | -       |

FREESE NICHOLS

Groundwater Supplies in Region B Water Planning Area January 31, 2024 Page 2 of 7

#### Introduction

#### Groundwater in the Regional Water Planning Process

Long-term groundwater supply estimates for regional water planning are based on Modeled Available Groundwater (MAG). MAG values are determined by the Texas Water Development Board (TWDB) and represent the "volume of groundwater production on an average annual basis that will achieve the desired future condition."

Under the joint planning process, Groundwater Conservation Districts (GCDs) within each Groundwater Management Area (GMA) coordinate to determine these desired future conditions (DFCs), which might specify, for example, the maximum average drawdown in each aquifer within a GCD over a 50-year period. According to TWDB rules, the MAG values determined by the TWDB must be used to represent existing groundwater supplies in the regional water plans.

Many counties throughout Texas are not part of a GCD. For these areas, DFCs may be determined directly by the GMA. However, both GCDs and GMAs may designate aquifers in some areas to be non-relevant to the joint planning process, in which case no DFC is set. Subsequently, no MAG is developed by the TWDB, and determination of groundwater availability is left up to the discretion of the regional water planning groups (RWPGs). RWPGs may use values from previous planning cycles, groundwater availability models (GAMs), or other methods.

#### Groundwater Resources in Region B Water Planning Area

In the Region B Water Planning Area, groundwater is found in the Seymour, the Trinity, the Blaine, and the Cross Timbers aquifers (Figure 1, Figure 2), as well as some unclassified local supplies, referred to as "Other Aquifer" for planning purposes. The Seymour Aquifer consists of a collection of isolated patches of alluvial sediments, which are called "pods." Due to the independence of each pod, the DFCs for the Seymour Aquifer are typically associated with a specific pod (Figure 3). There are four pods located in Region B (Pods, 4, 5, 7 and 8).

Within Region B, desired future conditions have been set by GMAs 6 and 8. Most of the region lies in GMA 6; however, the portion of the Trinity Aquifer in Region B is limited to Montague County in GMA 8. The Cross Timbers Aquifer was recently designated as a minor aquifer by the TWDB and exists in both GMAs, but no DFCs have yet been set. In previous regional planning rounds, available groundwater from the Cross Timbers has been referred to as "Other Aquifer" source water.

Three GCDs are partly in Region B: Gateway GCD includes Hardeman and Foard Counties, Baylor County is part of the Rolling Plains GCD, and Montague County is a part of the Upper Trinity GCD (Figure 3). It should be noted that the DFCs set by these districts apply to the entire district, including those counties which are outside of Region B. MAGs are determined based on the area associated with a DFC rather than the boundaries of a planning region.

<sup>&</sup>lt;sup>1</sup> "Second Amended General Guidelines for Development of the 2026 Regional Water Plans" (TWDB, September 2023)



Figure 1. Major Aquifers in Region B

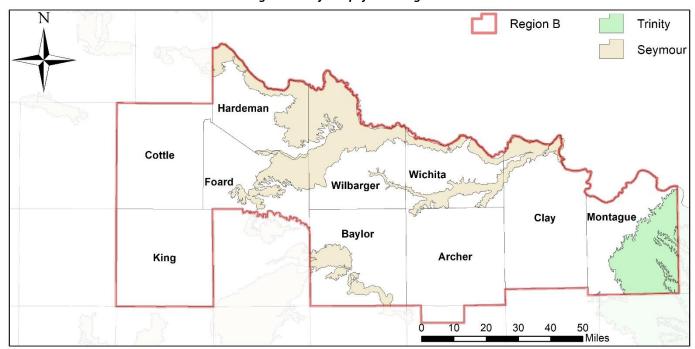
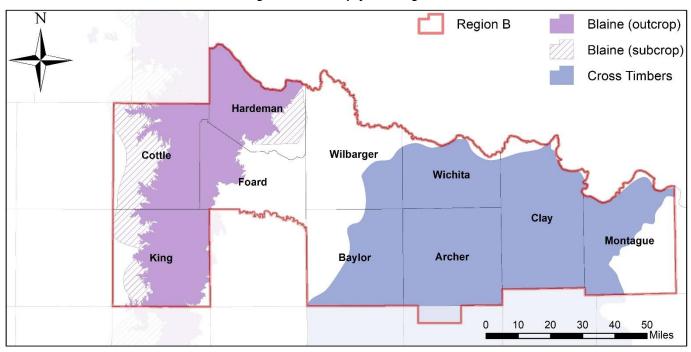




Figure 2. Minor Aquifers in Region B





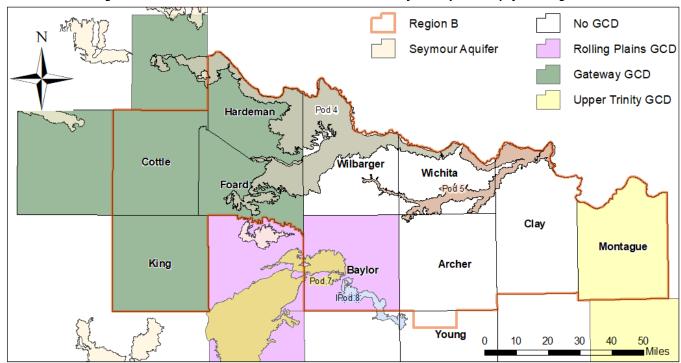



Figure 3. Groundwater Conservation Districts and Pods of the Seymour Aquifer in Region B

#### Modeled Available Groundwater in Region B

All desired future conditions in Region B are based on a maximum desired amount of drawdown of the groundwater table. For example, Gateway GCD set a DFC of 1 ft average decline (drawdown) for 2030 – 2080. This means that use of groundwater resources in the district should be managed such that the reduction in water table elevation from 2030 to 2080, when averaged spatially over the full extent of Pod 4 in Childress, Hardeman, and Foard Counties, should not exceed 1 foot. However, based on TWDB rules regarding MAG determination, the baseline for assessing a DFC must be a historical condition, so 2030 could not be used as the starting condition. So TWDB determined drawdown as the change in water levels from 2010 to 2080.

#### GMA 6

As of 11/14/2022, GMA 6 has defined DFCs for the Seymour Aquifer in Foard, Hardeman, and Baylor Counties and the Blaine Aquifer in Cottle, Foard, King, and Hardeman Counties. In Hardeman and Foard Counties, the desired future condition for Pod 4 of the Seymour Aquifer is no more than 1 foot of average decline in groundwater table elevation from 2010 to 2080. The DFC for Pods 7 and 8 of the Seymour Aquifer in Baylor County is no more than 18 feet decline in groundwater table elevation from 2010 to 2080. In Archer, Clay, Wichita, Wilbarger, and Young Counties, the Seymour Aquifer was declared non-relevant. Desired future conditions for the Blaine Aquifer are no more than 2 feet decline in groundwater level in Cottle and Hardeman Counties, no more than 10 feet decline in Foard County, and no more than 7 feet decline in King County. Information on the development of MAG values based on these DFCs can be found in the TWDB report for GAM Run 21-011. The Cross Timbers Aquifer has not yet been included in the joint planning process for GMA 6. DFCs and associated MAGs for GMA 6 are summarized in Table 1.

#### GMA 8

Desired future conditions for the Trinity Aquifer in Montague County were adopted 11/1/2022, and TWDB updated the MAG values based on this DFC (GAM Run 21-013, completed November 2022). As such, the updated



Groundwater Supplies in Region B Water Planning Area January 31, 2024 Page 5 of 7

MAGs will be used for 2026 RWP supplies (Table 1). The Cross Timbers Aquifer has not yet been included in the joint planning process for GMA 8.

Modeled Available Groundwater (ac-ft/yr) Aquifer County 2030 2040 2050 2060 2070 2080 4,209 6,900 4,049 Foard 3,779 6,628 2,777 Seymour (Pod 4) Hardeman 14,209 20,002 18,689 21,116 34,037 26,577 Seymour (Pods 7, 8) 7,330 6,962 6,731 6,593 6,930 5,722 **Baylor** Cottle 11,621 11,621 11,621 11,621 11,621 11,621 6,565 6,565 Foard 6,565 6,565 6,565 6,565 Blaine Hardeman 8,465 8,465 8,465 8,465 8,465 8,465 49 49 49 49 49 49 King Trinity 6,104 6,104 6,104 6,104 6,104 6,104 Montague

Table 1. Modeled Available Groundwater in Region B

#### Other Groundwater Supplies in Region B

The Region B Groundwater Technical Committee (Technical Committee) re-adopted the non-MAG availabilities from the 2021 Regional Water Plan to use for the current plan at the August 2, 2023 RWPG meeting for groundwater sources that do not have defined MAGs (non-relevant aquifers and Other Aquifer). For the 2026 RWP, the method for determining these supplies is being determined on a case-by-case basis depending on groundwater availability models, committee input, and the availability of historical pumping data.

#### Seymour Aquifer in Gateway GCD

As previously discussed in this memorandum, in regional planning the MAGs developed by TWDB must be used to represent groundwater supplies when available. The Technical Committee discussed the published MAGs and agreed that availability of supplies for Foard and Hardeman counties in the Seymour MAG run were appropriate and were thus used for the 2026 RWP.

#### Seymour Aquifer in Wichita, Archer, and Clay Counties

The Technical Committee decided to use the supply values from the 2021 Region B RWP for the Seymour Aquifer in Wichita, Archer, and Clay Counties, as no additional information has since become available. These values are based on the MAG values determined during the previous Joint Planning Process.

#### Seymour Aquifer in Wilbarger County

Available supply for the Seymour Aquifer in Wilbarger County in the 2021 Region B RWP was estimated using a modified GAM run of the model used to assess the DFCs for GMA 6. Since Wilbarger County was declared non-relevant, no changes were made to the original GAM model for pumping in Wilbarger County. The Technical Committee recommended using the 2021 RWP estimates from the previously modified GAM model for the 2026 Region B RWP.

#### Blaine Aquifer in King County

In the previous round of planning the Blaine Aquifer in King County was labeled as non-MAG, however, TWDB changed this designation to be included in the MAG analysis. The Blaine can be very high in minerals (calcium,

FREESE NICHOLS

Groundwater Supplies in Region B Water Planning Area January 31, 2024 Page 6 of 7

etc.), which limits its use in some areas. The 2026 RWP reflects supplies at the level determined by TWDB in King County and was set at 49 ac-ft/yr.

#### **Cross Timbers and Other Aquifers**

The Technical Committee discussed the non-modeled aquifers, which include the Cross Timbers (formerly known as the Paleozoic aquifer) and Other aquifer (alluvial sediments). The Technical Committee agreed that there was not any additional information available to warrant further study of these groundwater sources, and Region B should retain the groundwater supplies for "Other Aquifers" from the 2021 RWP. Supplies from alluvial sediments not associated with the Cross Timbers formation will continue to be classified as "Other Aquifer".

Upon review of the wells listed in the TWDB database for the Cross-Timber Aquifer, there is current production from this formation in Archer, Baylor, Clay, Montague, Wichita and Young Counties. While the formation is present in southwestern Wilbarger County, there are no known wells that produce useable water. There are approximately 120 wells in the non-Seymour alluvial sediments or other formations. The TWDB estimates the water produced from these formations varies from approximately 2,000 to 4,500 acre-feet per year between years 2000 to 2015. The average historical use is approximately 3,050 acre-feet per year in recent years (2010 – 2015). For Wilbarger County, the Other Aquifer supplies are estimated using this average recent historical use. The Other Aquifer supplies for counties that do not contain the Cross Timbers Aquifer (Cottle, Foard, Hardeman and King) will retain the supply estimates from the 2021 RWP.

#### **MAG Peaking Factors**

TWDB has introduced a new option for the 6<sup>th</sup> cycle of regional planning, under which RWPGs may seek to define a "peaking factor" to increase the available groundwater supplies above the published MAGs. After review of the MAGs and historical use, the Groundwater Technical Committee decided to recommend to the RWPG not to pursue this option for any aquifer in Region B at this time.

#### **Draft Groundwater Supplies for Region B**

As the Groundwater Technical Committee did not elect to use MAG Peaking Factors, MAG values as published by TWDB (Table 1) will be used to represent groundwater supplies in the 2021 Region B RWP, where available. Pending approval of the RWPG and TWDB, draft groundwater supplies in non-relevant aquifers will be represented as determined by the Groundwater Technical Committee (Table 2).



Groundwater Supplies in Region B Water Planning Area January 31, 2024 Page 7 of 7

Table 2. Estimated Available Groundwater Supplies for Non-Relevant Aquifers (ac-ft/yr)

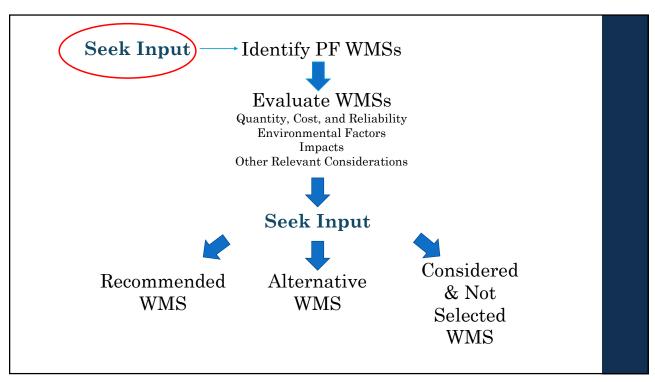
| Aquifer       | County    | Estimate | ed Availak | Comments |        |        |        |                               |
|---------------|-----------|----------|------------|----------|--------|--------|--------|-------------------------------|
|               |           | 2030     | 2040       | 2050     | 2060   | 2070   | 2080   |                               |
| Seymour       | Archer    | 35       | 35         | 35       | 35     | 35     | 35     | 2016 RWP                      |
|               | Clay      | 787      | 787        | 787      | 787    | 787    | 787    | 2016 RWP                      |
|               | Wichita   | 2,295    | 2,295      | 2,288    | 2,291  | 2,291  | 2,291  | 2016 RWP                      |
|               | Wilbarger | 30,000   | 30,000     | 30,000   | 30,000 | 30,000 | 30,000 | modified GAM run              |
| Cross-Timbers | Archer    | 625      | 625        | 625      | 625    | 625    | 625    | 2016 RWP                      |
|               | Baylor    | 60       | 60         | 60       | 60     | 60     | 60     | 2016 RWP                      |
|               | Clay      | 2,000    | 2,000      | 2,000    | 2,000  | 2,000  | 2,000  | 2016 RWP                      |
|               | Montague  | 4,000    | 4,000      | 4,000    | 4,000  | 4,000  | 4,000  | 2016 RWP                      |
|               | Wichita   | 840      | 840        | 840      | 840    | 840    | 840    | 2016 RWP                      |
|               | Young     | 700      | 700        | 700      | 700    | 700    | 700    | 2016 RWP                      |
| Other Aquifer | Cottle    | 1,800    | 1,800      | 1,800    | 1,800  | 1,800  | 1,800  | 2016 RWP                      |
|               | Foard     | 200      | 200        | 200      | 200    | 200    | 200    | 2016 RWP                      |
|               | Hardeman  | 50       | 50         | 50       | 50     | 50     | 50     | 2016 RWP                      |
|               | King      | 650      | 650        | 650      | 650    | 650    | 650    | 2016 RWP                      |
|               | Wilbarger | 3,050    | 3,050      | 3,050    | 3,050  | 3,050  | 3,050  | Historical use<br>(2010-2015) |

| Region I | Β. | Technical | Memorandum |
|----------|----|-----------|------------|
|----------|----|-----------|------------|

Prepared for Texas Water Development Board on behalf of RWPG

## APPENDIX E Identifying Potentially Feasible WMSs

# Discuss Methodology for Identifying Potentially Feasible WMS for 2026 Plan


Simone Kiel, FNI

18

## Potentially Feasible WMS Review Requirements

From TAC 357.12(b):

"A RWPG shall hold a public meeting to determine the process for identifying potentially feasible water management strategies; the process shall be documented and shall include input received at a public meeting; ..."



20

### Proposed Methodology

- 1. Identify entities with needs
- 2. Review recommended strategies in 2021 plan
- 3. Review new studies/reports
- 4. Identify potential new or changed strategies
- 5. Review strategy types appropriate for Region B
- 6. Contact entities for input
- 7. Contact RWPG representatives for county-wide WUGs
- 8. Verify recommendations

## Considerations for Feasible Strategies

- · A strategy must use proven technology
- · A strategy should have an identifiable sponsor
- Must consider end use. Includes water quality, economics, geographic constraints, etc.
- Must meet existing regulations
- 24 Water Management Strategy Types required to consider by TWDB
  - · Not all are applicable to every situation
  - · Not all are applicable to Region B

22

# Additional Considerations for Feasible Strategies

- Is there available existing supply that is not already allocated to another user?
- · Can new water be developed? If yes, identify the potential sources.
- Does the water quality meet the end use requirements? If not, can it be treated?
- Are there any technical considerations that would preclude the feasibility of the strategy type? For example, are there suitable geologic formations for aquifer storage and recovery (ASR)?

## Feasible Strategy Types

- Strategy Types Likely Not Appropriate for Region B
  - Drought Management (not a long-term supply strategy)
  - Precipitation Enhancement
  - · Rainwater Harvesting
- Strategy Types Not Appropriate for Region B
  - · Marine Seawater Desalination
  - · Cancellation of Water Rights

24

### Next Steps

- List of Potentially Feasible WMSs
- Strategy Specific Scope of Work for WMSs

### **Additional Public Comment Period**

Asking the Planning Group to vote to approve proposed methodology for identification of potentially feasible WMSs

26

| Region B | Technical | Memorandum |
|----------|-----------|------------|
|----------|-----------|------------|

Prepared for Texas Water Development Board on behalf of RWPG

## APPENDIX F List of Potentially Feasible WMSs

## REGION B DRAFT LIST OF POTENTIALLY FEASIBLE WATER MANAGEMENT STRATEGIES

| ENTITY NAME         | POTENTIALLY FEASIBLE WMSs                            |
|---------------------|------------------------------------------------------|
| ARCHER CITY         | MUNICIPAL CONSERVATION                               |
|                     | FULFILLMENT OF EXISTING CONTRACT WITH                |
|                     | WICHITA FALLS                                        |
|                     | PURCHASE ADDITIONAL SUPPLY FROM WICHITA              |
|                     | FALLS                                                |
| ARCHER COUNTY MUD 1 | MUNICIPAL CONSERVATION                               |
|                     | PURCHASE ADDITIONAL SUPPLY FROM WICHITA              |
|                     | FALLS                                                |
| BAYLOR SUD          | MUNICIPAL CONSERVATION                               |
| BOWIE               | MUNICIPAL CONSERVATION                               |
|                     | DIRECT REUSE FOR MINING                              |
| BURKBURNETT         | MUNICIPAL CONSERVATION                               |
|                     | FULFILLMENT OF EXISTING CONTRACT WITH                |
|                     | WICHITA FALLS                                        |
| CROWELL             | MUNICIPAL CONSERVATION                               |
|                     | PURCHASE ADDITIONAL SUPPLY FROM GREENBELT            |
|                     | MIWA                                                 |
| DEAN DALE SUD       | MUNICIPAL CONSERVATION                               |
|                     | FULFILLMENT OF EXISTING CONTRACT WITH                |
|                     | WICHITA FALLS                                        |
| ELECTRA             | MUNICIPAL CONSERVATION                               |
|                     | FULFILLMENT OF EXISTING CONTRACT WITH                |
|                     | WICHITA FALLS                                        |
|                     | PURCHASE ADDITIONAL SUPPLY FROM WICHITA              |
|                     | FALLS                                                |
| HARROLD WSC         | MUNICIPAL CONSERVATION                               |
| HENRIETTA           | MUNICIPAL CONSERVATION                               |
| HOLLIDAY            | MUNICIPAL CONSERVATION                               |
|                     | FULFILLMENT OF EXISITING CONTRACT WITH               |
| LONALA DA DIC       | WICHITA FALLS                                        |
| IOWA PARK           | MUNICIPAL CONSERVATION                               |
|                     | FULFILLMENT OF EXISTING CONTRACT WITH                |
| LAKESIDE CITY       | WICHITA FALLS MUNICIPAL CONSERVATION                 |
| LAKESIDE CITY       |                                                      |
|                     | FULFILLMENT OF EXISITING CONTRACT WITH WICHITA FALLS |
| NOCONA              | MUNICIPAL CONSERVATION                               |
|                     |                                                      |
| NOCONA HILLS WSC    | MUNICIPAL CONSERVATION                               |
| OLNEY               | CONSERVATION                                         |
|                     | INDIRECT REUSE                                       |
| PADUCAH             | MUNICIPAL CONSERVATION                               |
| QUANAH              | MUNICIPAL CONSERVATION                               |
|                     | PURCHASE ADDITIONAL SUPPLY FROM GREENBELT            |
|                     | MIWA                                                 |

| ENTITY NAME                      | POTENTIALLY FEASIBLE WMSs                             |
|----------------------------------|-------------------------------------------------------|
| RED RIVER AUTHORITY OF TEXAS     | MUNICIPAL CONSERVATION                                |
|                                  | PURCHASE FROM GREENBELT MIWA                          |
|                                  | DEVELOP GROUNDWATER WELLS                             |
|                                  | RED RIVER CHLORIDE CONTROL PROJECT                    |
| SAINT JO                         | MUNICIPAL CONSERVATION                                |
| SCOTLAND                         | MUNICIPAL CONSERVATION                                |
| 333.233                          | FULFILLMENT OF EXISTING CONTRACT WITH                 |
|                                  | WICHITA FALLS                                         |
|                                  | PURCHASE ADDITIONAL SUPPLY FROM WICHITA               |
|                                  | FALLS                                                 |
| SEYMOUR                          | MUNICIPAL CONSERVATION                                |
| SHEPPARD AIR FORCE BASE          | MUNICIPAL CONSERVATION                                |
|                                  | PURCHASE ADDITIONAL SUPPLY FROM WICHITA               |
|                                  | FALLS                                                 |
| VERNON                           | MUNICIPAL CONSERVATION                                |
|                                  | DIRECT REUSE (FOR SUPPLY TO MANUFACTURING             |
|                                  | USERS)                                                |
| WICHITA COUNTY WATER IMPROVEMENT | CANAL CONVERSION TO PIPELINE                          |
| DISTRICT NO. 2                   | RED RIVER CHLORIDE CONTROL PROJECT                    |
|                                  | REALLOCATION FROM LAKE KEMP                           |
| WICHITA FALLS                    | MUNICIPAL CONSERVATION                                |
|                                  | WICHITA RIVER SUPPLY                                  |
|                                  | DEVELOPMENT OF LAKE RINGGOLD                          |
|                                  | PRECIPITATION ENHANCEMENT                             |
|                                  | REALLOCATION OF LAKE KEMP                             |
|                                  | GROUNDWATER FROM LOCAL SEYMOUR AQUIFER                |
| WICHITA VALLEY WSC               | MUNICIPAL CONSERVATION                                |
|                                  | FULFILLMENT OF EXISTING CONTRACT WITH                 |
| WINDTHORST WGG                   | WICHITA FALLS                                         |
| WINDTHORST WSC                   | MUNICIPAL CONSERVATION                                |
|                                  | FULFILLMENT OF EXISTING CONTRACT WITH                 |
|                                  | WICHITA FALLS PURCHASE ADDITIONAL SUPPLY FROM WICHITA |
|                                  | FALLS                                                 |
| COUNTY-OTHER, BAYLOR             | MUNICIPAL CONSERVATION                                |
| COUNTY-OTHER, CLAY               | MUNICIPAL CONSERVATION                                |
| COONTI-OTHER, CEAT               | PURCHASE WATER FROM HENRIETTA                         |
| COUNTY-OTHER, FOARD              | MUNICIPAL CONSERVATION                                |
| Section Contains                 | PURCHASE ADDITIONAL SUPPLY FROM GREENBELT             |
|                                  | MIWA THROUH CROWELL AND RED RIVER                     |
|                                  | AUTHORITY                                             |
| COUNTY-OTHER, HARDEMAN           | MUNICIPAL CONSERVATION                                |
|                                  | PURCHASE ADDITIONAL SUPPLY FROM GREENBELT             |
|                                  | MIWA THROUH RED RIVER AUTHORITY                       |
| COUNTY-OTHER, MONTAGUE           | MUNICIPAL CONSERVATION                                |
|                                  | PURCHASE ADDITIONAL SUPPLY FROM BOWIE                 |
|                                  | AND/OR NOCONA                                         |

| ENTITY NAME                        | POTENTIALLY FEASIBLE WMSs               |
|------------------------------------|-----------------------------------------|
| COUNTY-OTHER, WICHITA              | MUNICIPAL CONSERVATION                  |
|                                    | FULFILLMENT OF EXISTING CONTRACT WITH   |
|                                    | WICHITA FALLS                           |
|                                    | PURCHASE ADDITIONAL SUPPLY FROM WICHITA |
|                                    | FALLS                                   |
| COUNTY-OTHER, WILBARGER            | MUNICIPAL CONSERVATION                  |
|                                    | PURCHASE WATER FROM VERNON              |
| COUNTY-OTHER, YOUNG                | MUNICIPAL CONSERVATION                  |
|                                    | PURCHASE WATER FROM OLNEY               |
| MANUFACTURING, HARDEMAN            | PURCHASE ADDITIONAL SUPPLY FROM QUANAH  |
| MANUFACTURING, WICHITA             | FULFILLMENT OF EXISTING CONTRACT WITH   |
|                                    | WICHITA FALLS                           |
| MANUFACTURING, WILBARGER           | PURCHASE WATER FROM VERNON              |
| MANUFACTURING (ALL OTHER COUNTIES) | CONSERVATION                            |
| STEAM ELECTRIC POWER, WICHITA      | FULFILLMENT OF EXISTING CONTRACT WITH   |
|                                    | WICHITA FALLS                           |
| STEAM ELECTRIC POWER, WILBARGER    | CONSERVATION (ALTERNATIVE COOLING)      |
| IRRIGATION (ALL COUNTIES)          | CONSERVATION                            |
| MINING (ALL COUNTIES)              | CONSERVATION                            |

Note: The following strategies were not discussed in the 2021 RWP but can apply to the 2026 RWP, but were not identified exclusively to any particular WUG:

- AQUIFER STORAGE AND RECOVERY WELLS
- MANAGED AQUIFER RECHARGE

| Region I | Β. | Technical | Memorandum |
|----------|----|-----------|------------|
|----------|----|-----------|------------|

Prepared for Texas Water Development Board on behalf of RWPG

## APPENDIX G Interregional Coordination Memos

#### **MEMORANDUM**



Innovative approaches
Practical results
Outstanding service

5100 E. Skelly Dr., Suite 602 + Tulsa, Oklahoma 74135 + 539-444-8677 + FAX 817-735-7491

www.freese.com

TO: Simone Kiel, Region A Consultant

**CC:** Kristal Williams

FROM: Jeremy Rice and Walter Chandler

**SUBJECT:** Issues of Interest to Region B and Region A

**DATE:** 1/18/2024

PROJECT: RRG21896

This is one of a series of memoranda on issues of mutual interest to Region B and other regions in the current round of regional water planning. This memorandum is intended to begin a discussion between Region B and Region A consultants. After reviewing this memorandum, please contact me to discuss how the memorandum should be revised. I can be reached at:

Jeremy Rice Freese and Nichols, Inc. 5100 E Skelly Dr. Suite 602 Tulsa, Oklahoma 74135 918-238-1930 jeremy.rice@freese.com

The memorandum includes the following sections:

- Shared Water User Groups and Shared Supplies
- Shared Wholesale Water Providers
- Supplies Located in Region A That Are Used in Region B
- Supplies Located in Region B That Are Used in Region A
- Potential Supplies in Region A Being Studied for Use in Region B
- New Supplies in Region B Being Studied for Use in Region A
- Other Issues of Mutual Interest

Please review this memorandum and contact us with your thoughts on the issues covered and other issues that should have been included. We are looking forward to working with you as we complete this round of regional water planning.

#### **Shared Water User Groups and shared supplies**

Region B borders two counties of Region A along the northwestern boundary of Region B. Region B is the primary region for the Red River Authority of Texas (RRA) which has service areas in Regions A, B, C, G, O. As such Region B prepared the allocation of supplies for RRA.

It should be noted that Region B submitted revisions to the TWDB population and demands that were not accepted by TWDB but will be used for planning. All demands for Region B portions reflect the RWPG adopted demands with a 15% increase.

|                                            | 2026 Plan RRA Demands (AF/Y) |       |       |       |       |       |
|--------------------------------------------|------------------------------|-------|-------|-------|-------|-------|
| Customers                                  | 2030                         | 2040  | 2050  | 2060  | 2070  | 2080  |
| Red River Authority - Clay County          | 491                          | 488   | 486   | 485   | 484   | 482   |
| Red River Authority - Childress County     | 382                          | 358   | 352   | 361   | 369   | 378   |
| Red River Authority - Collingsworth County | 90                           | 88    | 83    | 79    | 75    | 72    |
| Red River Authority - Cottle County        | 29                           | 29    | 29    | 30    | 30    | 30    |
| Red River Authority - Dickens County       | 1                            | 1     | 1     | 1     | 1     | 0     |
| Red River Authority - Donley County        | 82                           | 76    | 70    | 67    | 64    | 60    |
| Red River Authority - Foard County         | 73                           | 73    | 74    | 75    | 77    | 78    |
| Red River Authority - Grayson County       | 254                          | 304   | 347   | 390   | 436   | 486   |
| Red River Authority - Hall County          | 51                           | 48    | 45    | 42    | 39    | 36    |
| Red River Authority - Hardeman County      | 195                          | 193   | 192   | 189   | 186   | 184   |
| Red River Authority - King County          | 61                           | 62    | 62    | 64    | 65    | 66    |
| Red River Authority - Knox County          | 13                           | 13    | 12    | 11    | 10    | 8     |
| Red River Authority - Montague County      | 44                           | 45    | 46    | 48    | 50    | 50    |
| Red River Authority - Motley County        | 2                            | 1     | 1     | 1     | 1     | 1     |
| Red River Authority - Wilbarger County     | 316                          | 316   | 318   | 318   | 318   | 318   |
| Total                                      | 1,593                        | 1,607 | 1,632 | 1,676 | 1,721 | 1,767 |

|                                        |       | RRA Cu | rrently Availa | able Supplies | (AF/Y) |       |
|----------------------------------------|-------|--------|----------------|---------------|--------|-------|
| Sources                                | 2030  | 2040   | 2050           | 2060          | 2070   | 2080  |
| Wichita Falls Supply                   | 383   | 363    | 344            | 326           | 309    | 293   |
| Greenbelt Reservoir                    | 532   | 507    | 501            | 507           | 515    | 529   |
| Lake Texoma                            | 254   | 304    | 347            | 390           | 436    | 486   |
| Ogallala Aquifer - Donley County from  |       |        |                |               |        |       |
| Greenbelt MIWA                         | 271   | 270    | 270            | 271           | 269    | 263   |
| Ogallala Aquifer - Donley County       | 52    | 46     | 40             | 37            | 34     | 30    |
| Other Aquifer - Cottle County          | 29    | 29     | 29             | 30            | 30     | 30    |
| Other Aquifer - Dickens County         | 62    | 63     | 63             | 65            | 66     | 66    |
| Other Aquifer - Motley County          | 2     | 1      | 1              | 1             | 1      | 1     |
| Seymour Aquifer - Collingsworth County | 74    | 72     | 67             | 63            | 59     | 56    |
| Seymour Aquifer - Knox County          | 13    | 13     | 12             | 11            | 10     | 8     |
| Seymour Aquifer - Hardeman County      | 46    | 46     | 47             | 47            | 47     | 47    |
| Seymour Aquifer - from Vernon          | 263   | 263    | 264            | 264           | 264    | 264   |
| Trinity Aquifer - Montague County      | 44    | 45     | 46             | 48            | 50     | 50    |
| Total                                  | 2,025 | 2,022  | 2,031          | 2,060         | 2,090  | 2,123 |
| Surplus or (Shortage)                  | 432   | 415    | 400            | 384           | 369    | 357   |

#### **Shared Wholesale Water Providers**

RRA and other Region B WUGs are served water supply through Greenbelt Municipal and Industrial Water Authority (GMIWA) in both regions A and Region B. The following sections discuss the assumed supply amounts for planning purposes.

Region B consultants are coordinating with Region A on Greenbelt. The following reflects our understanding of GMIWA Allocation from Region A.

| Panhandle Regional Water Plan              |       |             |            |              |             |       |  |
|--------------------------------------------|-------|-------------|------------|--------------|-------------|-------|--|
|                                            |       | 2026 Plan D | RAFT Demai | nds on Green | belt (AF/Y) |       |  |
| Customers                                  | 2030  | 2040        | 2050       | 2060         | 2070        | 2080  |  |
| City of Childress                          | 1,274 | 1,315       | 1,296      | 1,261        | 1,224       | 1,186 |  |
| City of Chillicothe                        | 29    | 29          | 28         | 28           | 27          | 27    |  |
| City of Clarendon                          | 298   | 281         | 262        | 251          | 239         | 227   |  |
| City of Crowell                            | 120   | 119         | 117        | 115          | 113         | 110   |  |
| City of Hedley (Donley County-Other)       | 56    | 56          | 56         | 56           | 56          | 56    |  |
| City of Memphis                            | 37    | 37          | 37         | 37           | 37          | 37    |  |
| City of Quanah                             | 347   | 343         | 340        | 336          | 331         | 327   |  |
| Red River Authority - Childress County     | 382   | 358         | 352        | 361          | 369         | 378   |  |
|                                            |       |             |            |              |             |       |  |
| Red River Authority - Collingsworth County | 16    | 16          | 16         | 16           | 16          | 16    |  |
| Red River Authority - Donley County        | 30    | 30          | 30         | 30           | 30          | 30    |  |
| Red River Authority - Foard County         | 73    | 73          | 74         | 75           | 77          | 78    |  |
| Red River Authority - Hall County          | 100   | 100         | 100        | 100          | 100         | 100   |  |
| Red River Authority - Hardeman County      | 195   | 193         | 192        | 189          | 186         | 184   |  |
| Red River Authority - Wilbarger County     | 7     | 7           | 7          | 7            | 7           | 7     |  |
| Hardeman County Manufacturing              | 50    | 50          | 50         | 50           | 50          | 50    |  |
| Total                                      | 3,013 | 3,006       | 2,957      | 2,912        | 2,862       | 2,812 |  |

|                       | 2026 Plan Currently Available Supply (AF/Y) |       |       |       |       |       |  |
|-----------------------|---------------------------------------------|-------|-------|-------|-------|-------|--|
| Sources               | 2050                                        | 2060  | 2070  | 2080  |       |       |  |
| Ogallala groundwater  | 1,600                                       | 1,577 | 1,484 | 1,370 | 1,245 | 1,090 |  |
| Greenbelt Reservoir   | 3,140                                       | 2,947 | 2,754 | 2,561 | 2,368 | 2,175 |  |
| Total                 | 4,740                                       | 4,524 | 4,238 | 3,931 | 3,613 | 3,265 |  |
|                       |                                             |       |       |       |       |       |  |
| Surplus or (Shortage) | 1,727                                       | 1,518 | 1,281 | 1,019 | 751   | 453   |  |

#### Supplies in Region A used by RRA in Region A

#### • RRA – Childress County

| Source                                         | 2030 | 2040 | 2050 | 2060 | 2070 | 2080 |
|------------------------------------------------|------|------|------|------|------|------|
| Greenbelt Reservoir                            | 253  | 233  | 229  | 235  | 242  | 252  |
| Ogalla Aquifer Donley<br>County from Greenbelt | 129  | 125  | 123  | 126  | 127  | 126  |
| Total                                          | 382  | 358  | 352  | 361  | 369  | 378  |

### • RRA – Collingsworth

| Source                | 2030 | 2040 | 2050 | 2060 | 2070 | 2080 |
|-----------------------|------|------|------|------|------|------|
| Greenbelt Reservoir   | 11   | 10   | 10   | 10   | 10   | 11   |
| Ogalla Aquifer Donley |      |      |      |      |      |      |
| County from Greenbelt | 5    | 6    | 6    | 6    | 6    | 5    |
| Seymour Aquifer       |      |      |      |      |      |      |
| Collingsworth County  | 74   | 72   | 67   | 63   | 59   | 56   |
| Total                 | 90   | 88   | 83   | 79   | 75   | 72   |

#### • RRA – Donley County

| Source                  | 2030 | 2040 | 2050 | 2060 | 2070 | 2080 |
|-------------------------|------|------|------|------|------|------|
| Greenbelt Reservoir     | 20   | 20   | 19   | 20   | 20   | 20   |
| Ogalla Aquifer Donley   |      |      |      |      |      |      |
| County from Greenbelt   | 10   | 10   | 11   | 10   | 10   | 10   |
| Ogallala Aquifer Donley |      |      |      |      |      |      |
| County                  | 52   | 46   | 40   | 37   | 34   | 30   |
| Total                   | 82   | 76   | 70   | 67   | 64   | 60   |

#### • RRA – Hall County

| Source                | 2030 | 2040 | 2050 | 2060 | 2070 | 2080 |
|-----------------------|------|------|------|------|------|------|
| Greenbelt Reservoir   | 66   | 65   | 65   | 65   | 66   | 67   |
| Ogalla Aquifer Donley |      |      |      |      |      |      |
| County from Greenbelt | 34   | 35   | 35   | 35   | 34   | 33   |
| Total                 | 100  | 100  | 100  | 100  | 100  | 100  |

#### Supplies Located in Region A That Are Used in Region B

#### Region B WUGs served by GMIWA

• City of Chillicothe

| Water User Group:                                                          | Chillicoth | e - Hardema | an   |      |      |      |
|----------------------------------------------------------------------------|------------|-------------|------|------|------|------|
|                                                                            | 2030       | 2040        | 2050 | 2060 | 2070 | 2080 |
| Water Demand<br>(ac-ft/yr)                                                 | 72         | 71          | 71   | 70   | 69   | 68   |
| Current Supply<br>(Greenbelt MIWA)<br>Greenbelt Reservoir<br>(ac-ft/yr)    | 19         | 19          | 18   | 18   | 18   | 18   |
| Current Supply<br>(Greenbelt MIWA)<br>Ogallala Donley County<br>(ac-ft/yr) | 10         | 10          | 10   | 10   | 9    | 9    |
| Current Supply Seymour Aquifer (ac-ft/yr)                                  | 43         | 43          | 42   | 42   | 41   | 41   |

#### • City of Crowell

| Water User Group:     | Crowell - Foard |      |      |      |      |      |  |  |  |
|-----------------------|-----------------|------|------|------|------|------|--|--|--|
|                       | 2030            | 2040 | 2050 | 2060 | 2070 | 2080 |  |  |  |
|                       |                 |      |      |      |      |      |  |  |  |
| Water Demand          | 120             | 119  | 117  | 115  | 113  | 110  |  |  |  |
| (ac-ft/yr)            | 120             | 119  | 11/  | 113  | 113  | 110  |  |  |  |
| <b>Current Supply</b> |                 |      |      |      |      |      |  |  |  |
| (Greenbelt MIWA)      | 80              | 77   | 76   | 75   | 74   | 74   |  |  |  |
| Greenbelt Reservoir   | 80              | / /  | 70   | 13   | /4   | /4   |  |  |  |
| (ac-ft/yr)            |                 |      |      |      |      |      |  |  |  |
| <b>Current Supply</b> |                 |      |      |      |      |      |  |  |  |
| (Greenbelt MIWA)      |                 |      |      |      |      |      |  |  |  |
| Ogallala Aquifer      | 41              | 41   | 41   | 40   | 39   | 37   |  |  |  |
| <b>Donley County</b>  |                 |      |      |      |      |      |  |  |  |
| (ac-ft/yr)            |                 |      |      |      |      |      |  |  |  |

#### • City of Quannah

| Water User Group:                                                          | Quanah - Hardeman |      |      |      |      |      |  |  |
|----------------------------------------------------------------------------|-------------------|------|------|------|------|------|--|--|
|                                                                            | 2030              | 2040 | 2050 | 2060 | 2070 | 2080 |  |  |
| Water Demand<br>(ac-ft/yr)                                                 | 347               | 343  | 340  | 336  | 331  | 327  |  |  |
| Current Supply<br>(Greenbelt MIWA)<br>Greenbelt Reservoir<br>(ac-ft/yr)    | 230               | 223  | 221  | 219  | 217  | 218  |  |  |
| Current Supply<br>(Greenbelt MIWA)<br>Ogallala Donley County<br>(ac-ft/yr) | 117               | 119  | 119  | 117  | 114  | 109  |  |  |

#### • RRA – Foard County

| Water User Group:                                                                     | Red River | Authority - | Foard |      |      |      |
|---------------------------------------------------------------------------------------|-----------|-------------|-------|------|------|------|
|                                                                                       | 2030      | 2040        | 2050  | 2060 | 2070 | 2080 |
| Water Demand (ac-ft/yr)                                                               | 73        | 73          | 74    | 75   | 77   | 78   |
| Current Supply<br>(Greenbelt MIWA)<br>Greenbelt Reservoir<br>(ac-ft/yr)               | 48        | 48          | 48    | 49   | 50   | 52   |
| Current Supply<br>(Greenbelt MIWA)<br>Ogallala Aquifer<br>Donley County<br>(ac-ft/yr) | 25        | 25          | 26    | 26   | 26   | 26   |

#### • RRA – Hardeman County

| Water User Group:             | Red River Authority - Hardeman |      |      |      |      |      |  |  |  |
|-------------------------------|--------------------------------|------|------|------|------|------|--|--|--|
|                               | 2030                           | 2040 | 2050 | 2060 | 2070 | 2080 |  |  |  |
| Water Demand                  | 105                            | 102  | 102  | 100  | 106  | 104  |  |  |  |
| (ac-ft/yr)                    | 195                            | 193  | 192  | 189  | 186  | 184  |  |  |  |
| Current Supply                |                                |      |      |      |      |      |  |  |  |
| (Greenbelt MIWA)              | 120                            | 126  | 105  | 102  | 122  | 100  |  |  |  |
| Greenbelt Reservoir           | 129                            | 126  | 125  | 123  | 122  | 122  |  |  |  |
| (ac-ft/yr)                    |                                |      |      |      |      |      |  |  |  |
| Current Supply                |                                |      |      |      |      |      |  |  |  |
| (Greenbelt MIWA)              | 66                             | 67   | 67   | 66   | 6.1  | 61   |  |  |  |
| <b>Ogallala Donley County</b> | 66                             | 67   | 67   | 66   | 64   | 61   |  |  |  |
| (ac-ft/yr)                    |                                |      |      |      |      |      |  |  |  |

#### RRA - Wilbarger County

| Water User Group:                                     | Red River | Red River Authority - Wilbarger |      |      |      |      |  |  |  |  |
|-------------------------------------------------------|-----------|---------------------------------|------|------|------|------|--|--|--|--|
|                                                       | 2030      | 2040                            | 2050 | 2060 | 2070 | 2080 |  |  |  |  |
| Water Demand (ac-ft/yr)                               | 316       | 316                             | 318  | 318  | 318  | 318  |  |  |  |  |
| Curren Supplies - Sales from<br>Greenbelt MIWA        | 7         | 7                               | 7    | 7    | 7    | 7    |  |  |  |  |
| Current Supply - Sales from<br>Vernon Seymour Aquifer | 263       | 263                             | 264  | 264  | 264  | 264  |  |  |  |  |
| Current Supply -Seymour<br>Aquifer (Hardeman County)  | 46        | 46                              | 47   | 47   | 47   | 47   |  |  |  |  |

#### Hardeman County Manufacturing

| Water User Group:                                                 | Manufacti | uring - Har | deman |      |      |      |
|-------------------------------------------------------------------|-----------|-------------|-------|------|------|------|
|                                                                   | 2030      | 2040        | 2050  | 2060 | 2070 | 2080 |
| Water Demand (ac-ft/yr)                                           | 225       | 233         | 242   | 251  | 260  | 270  |
| Current Supply Blaine<br>Aquifer                                  | 175       | 183         | 192   | 201  | 210  | 220  |
| Current Supply (Greenbelt MIWA) Greenbelt Reservoir (ac-ft/yr)    | 33        | 33          | 32    | 33   | 33   | 33   |
| Current Supply (Greenbelt MIWA) Ogallala Donley County (ac-ft/yr) | 17        | 17          | 18    | 17   | 17   | 17   |

#### Supplies Located in Region B That Are Used in Region A

To our knowledge there are no supplies originating in Region B being used in Region A.

#### <u>Potential New Supplies in Region A Being Studied for Use in Region B</u>

GMIWA is working to expand the Ogallala well field that would increase available supplies that may serve WUGs in Region B.

#### New Supplies in Region B Being Studied for Use in Region A

To our knowledge, there are no supplies being studied in Region B that could be used in Region A. Water demand reduction (conservation) may be applied to RRA WUGs in Region A.

#### **MEMORANDUM**



Innovative approaches
Practical results
Outstanding service

5100 E. Skelly Dr., Suite 602 + Tulsa, Oklahoma 74135 + 539-444-8677 + FAX 817-735-7491

www.freese.com

**TO:** Abigail Gardner, Region C Consultant

**CC:** Simone Kiel

FROM: Jeremy Rice and Walter Chandler

**SUBJECT:** Issues of Interest to Region B and Region C

**DATE:** 1/18/2024

PROJECT: RRG21896

This is one of a series of memoranda on issues of mutual interest to Region B and other regions in the current round of regional water planning. This memorandum is intended to begin a discussion between Region B and Region C consultants. After reviewing this memorandum, please contact me to discuss how the memorandum should be revised. I can be reached at:

Jeremy Rice Freese and Nichols, Inc. 5100 E Skelly Dr. Suite 602 Tulsa, Oklahoma 74135 918-238-1930 jeremy.rice@freese.com

The memorandum includes the following sections:

- Shared Water User Groups and Shared Supplies
- Shared Wholesale Water Providers
- Supplies Located in Region C That Are Used in Region B
- Supplies Located in Region B That Are Used in Region C
- Potential Supplies in Region C Being Studied for Use in Region B
- New Supplies in Region B Being Studied for Use in Region C
- Other Issues of Mutual Interest

Please review this memorandum and contact us with your thoughts on the issues covered and other issues that should have been included. We are looking forward to working with you as we complete this round of regional water planning.

#### **Shared Water User Groups and shared supplies**

Region B borders three counties of Region C along the southeastern boundary of Region B. Region B is the primary region for the Red River Authority of Texas (RRA) which has service areas in Regions A, B, C, G, O. As such Region B prepared the allocation of supplies for RRA.

It should be noted that Region B submitted revisions to the TWDB population and demands that were not accepted by TWDB but will be used for planning. All demands for Region B portions reflect the RWPG adopted demands with a 15% increase.

|                                            | 2026 Plan RRA Demands (AF/Y) |       |       |       |       |       |  |
|--------------------------------------------|------------------------------|-------|-------|-------|-------|-------|--|
| Customers                                  | 2030                         | 2040  | 2050  | 2060  | 2070  | 2080  |  |
| Red River Authority - Clay County          | 491                          | 488   | 486   | 485   | 484   | 482   |  |
| Red River Authority - Childress County     | 382                          | 358   | 352   | 361   | 369   | 378   |  |
| Red River Authority - Collingsworth County | 90                           | 88    | 83    | 79    | 75    | 72    |  |
| Red River Authority - Cottle County        | 29                           | 29    | 29    | 30    | 30    | 30    |  |
| Red River Authority - Dickens County       | 1                            | 1     | 1     | 1     | 1     | 0     |  |
| Red River Authority - Donley County        | 82                           | 76    | 70    | 67    | 64    | 60    |  |
| Red River Authority - Foard County         | 73                           | 73    | 74    | 75    | 77    | 78    |  |
| Red River Authority - Grayson County       | 254                          | 304   | 347   | 390   | 436   | 486   |  |
| Red River Authority - Hall County          | 51                           | 48    | 45    | 42    | 39    | 36    |  |
| Red River Authority - Hardeman County      | 195                          | 193   | 192   | 189   | 186   | 184   |  |
| Red River Authority - King County          | 61                           | 62    | 62    | 64    | 65    | 66    |  |
| Red River Authority - Knox County          | 13                           | 13    | 12    | 11    | 10    | 8     |  |
| Red River Authority - Montague County      | 44                           | 45    | 46    | 48    | 50    | 50    |  |
| Red River Authority - Motley County        | 2                            | 1     | 1     | 1     | 1     | 1     |  |
| Red River Authority - Wilbarger County     | 316                          | 316   | 318   | 318   | 318   | 318   |  |
| Total                                      | 1,593                        | 1,607 | 1,632 | 1,676 | 1,721 | 1,767 |  |

|                                        | RRA Currently Available Supplies (AF/Y) |       |       |       |       |       |
|----------------------------------------|-----------------------------------------|-------|-------|-------|-------|-------|
| Sources                                | 2030                                    | 2040  | 2050  | 2060  | 2070  | 2080  |
| Wichita Falls Supply                   | 383                                     | 363   | 344   | 326   | 309   | 293   |
| Greenbelt Reservoir                    | 532                                     | 507   | 501   | 507   | 515   | 529   |
| Lake Texoma                            | 254                                     | 304   | 347   | 390   | 436   | 486   |
| Ogallala Aquifer - Donley County from  |                                         |       |       |       |       |       |
| Greenbelt MIWA                         | 271                                     | 270   | 270   | 271   | 269   | 263   |
| Ogallala Aquifer - Donley County       | 52                                      | 46    | 40    | 37    | 34    | 30    |
| Other Aquifer - Cottle County          | 29                                      | 29    | 29    | 30    | 30    | 30    |
| Other Aquifer - Dickens County         | 62                                      | 63    | 63    | 65    | 66    | 66    |
| Other Aquifer - Motley County          | 2                                       | 1     | 1     | 1     | 1     | 1     |
| Seymour Aquifer - Collingsworth County | 74                                      | 72    | 67    | 63    | 59    | 56    |
| Seymour Aquifer - Knox County          | 13                                      | 13    | 12    | 11    | 10    | 8     |
| Seymour Aquifer - Hardeman County      | 46                                      | 46    | 47    | 47    | 47    | 47    |
| Seymour Aquifer - from Vernon          | 263                                     | 263   | 264   | 264   | 264   | 264   |
| Trinity Aquifer - Montague County      | 44                                      | 45    | 46    | 48    | 50    | 50    |
| Total                                  | 2,025                                   | 2,022 | 2,031 | 2,060 | 2,090 | 2,123 |
| Surplus or (Shortage)                  | 432                                     | 415   | 400   | 384   | 369   | 357   |

#### **Shared Wholesale Water Providers**

There are no shared wholesale water providers between Region B and Region C.

#### Supplies Located in Region C That Are Used in Region C by RRA

• RRA – Grayson County

|      | Lake Texoma                   |     |     |     |     |  |  |  |  |
|------|-------------------------------|-----|-----|-----|-----|--|--|--|--|
| 2030 | 2030 2040 2050 2060 2070 2080 |     |     |     |     |  |  |  |  |
| 254  | 304                           | 347 | 390 | 436 | 486 |  |  |  |  |

#### Supplies Located in Region B That Are Used in Region C

To our knowledge there are no supplies originating in Region B being used in Region C.

#### Potential New Supplies in Region C Being Studied for Use in Region B

To our knowledge, there are no supplies being studied in Region C that could be used in Region B. There has been a request by RRA to include a strategy for treatment plant expansion to use additional Lake Texoma water.

#### New Supplies in Region B Being Studied for Use in Region C

To our knowledge, there are no supplies being studied in Region B that could be used in Region C. Water demand reduction (conservation) may be applied to RRA WUGs in Region C.

#### **MEMORANDUM**



Innovative approaches
Practical results
Outstanding service

5100 E. Skelly Dr., Suite 602 + Tulsa, Oklahoma 74135 + 539-444-8677 + FAX 817-735-7491

www.freese.com

TO: Tony Smith, Carollo, Region G Consultant

CC:

FROM: Jeremy Rice and Walter Chandler

**SUBJECT:** Issues of Interest to Region B and Region G

**DATE:** 1/31/2024

PROJECT: RRG21896

This is one of a series of memoranda on issues of mutual interest to Region B and other regions in the current round of regional water planning. This memorandum is intended to begin a discussion between Region B and Region G consultants. After reviewing this memorandum, please contact me to discuss how the memorandum should be revised. I can be reached at:

Jeremy Rice Freese and Nichols, Inc. 5100 E Skelly Dr. Suite 602 Tulsa, Oklahoma 74135 918-238-1930 jeremy.rice@freese.com

The memorandum includes the following sections:

- Shared Water User Groups and Shared Supplies
- Shared Wholesale Water Providers
- Supplies Located in Region G That Are Used in Region B
- Supplies Located in Region B That Are Used in Region G
- Potential Supplies in Region G Being Studied for Use in Region B
- New Supplies in Region B Being Studied for Use in Region G
- Other Issues of Mutual Interest

Please review this memorandum and contact us with your thoughts on the issues covered and other issues that should have been included. We are looking forward to working with you as we complete this round of regional water planning.

#### **Shared Water User Groups and shared supplies**

Region B borders three counties of Region G along the southern boundary of Region B and Young County is partially shared between Region B and G. Region B is the primary region for the Red River Authority of Texas (RRA) which has service areas in Regions A, B, C, G, O. As such Region B prepared the allocation of supplies for RRA. Regions B and G also share the following WUGs located in Young County: Baylor County SUD, County Other, Irrigation, and Livestock.

It should be noted that Region B submitted revisions to the TWDB population and demands that were not accepted by TWDB but will be used for planning. All demands for Region B portions reflect the RWPG adopted demands with a 15% increase.

|                                            | 2026 Plan RRA Demands (AF/Y) |       |       |       |       |       |  |
|--------------------------------------------|------------------------------|-------|-------|-------|-------|-------|--|
| Customers                                  | 2030                         | 2040  | 2050  | 2060  | 2070  | 2080  |  |
| Red River Authority - Clay County          | 491                          | 488   | 486   | 485   | 484   | 482   |  |
| Red River Authority - Childress County     | 382                          | 358   | 352   | 361   | 369   | 378   |  |
| Red River Authority - Collingsworth County | 90                           | 88    | 83    | 79    | 75    | 72    |  |
| Red River Authority - Cottle County        | 29                           | 29    | 29    | 30    | 30    | 30    |  |
| Red River Authority - Dickens County       | 1                            | 1     | 1     | 1     | 1     | 0     |  |
| Red River Authority - Donley County        | 82                           | 76    | 70    | 67    | 64    | 60    |  |
| Red River Authority - Foard County         | 73                           | 73    | 74    | 75    | 77    | 78    |  |
| Red River Authority - Grayson County       | 254                          | 304   | 347   | 390   | 436   | 486   |  |
| Red River Authority - Hall County          | 51                           | 48    | 45    | 42    | 39    | 36    |  |
| Red River Authority - Hardeman County      | 195                          | 193   | 192   | 189   | 186   | 184   |  |
| Red River Authority - King County          | 61                           | 62    | 62    | 64    | 65    | 66    |  |
| Red River Authority - Knox County          | 13                           | 13    | 12    | 11    | 10    | 8     |  |
| Red River Authority - Montague County      | 44                           | 45    | 46    | 48    | 50    | 50    |  |
| Red River Authority - Motley County        | 2                            | 1     | 1     | 1     | 1     | 1     |  |
| Red River Authority - Wilbarger County     | 316                          | 316   | 318   | 318   | 318   | 318   |  |
| Total                                      | 1,593                        | 1,607 | 1,632 | 1,676 | 1,721 | 1,767 |  |

|                                                         | RRA Currently Available Supplies (AF/Y) |       |       |       |       |       |
|---------------------------------------------------------|-----------------------------------------|-------|-------|-------|-------|-------|
| Sources                                                 | 2030                                    | 2040  | 2050  | 2060  | 2070  | 2080  |
| Wichita Falls Supply                                    | 383                                     | 363   | 344   | 326   | 309   | 293   |
| Greenbelt Reservoir                                     | 532                                     | 507   | 501   | 507   | 515   | 529   |
| Lake Texoma                                             | 254                                     | 304   | 347   | 390   | 436   | 486   |
| Ogallala Aquifer - Donley County from<br>Greenbelt MIWA | 271                                     | 270   | 270   | 271   | 269   | 263   |
| Ogallala Aquifer - Donley County                        | 52                                      | 46    | 40    | 37    | 34    | 30    |
| Other Aquifer - Cottle County                           | 29                                      | 29    | 29    | 30    | 30    | 30    |
| Other Aquifer - Dickens County                          | 62                                      | 63    | 63    | 65    | 66    | 66    |
| Other Aquifer - Motley County                           | 2                                       | 1     | 1     | 1     | 1     | 1     |
| Seymour Aquifer - Collingsworth County                  | 74                                      | 72    | 67    | 63    | 59    | 56    |
| Seymour Aquifer - Knox County                           | 13                                      | 13    | 12    | 11    | 10    | 8     |
| Seymour Aquifer - Hardeman County                       | 46                                      | 46    | 47    | 47    | 47    | 47    |
| Seymour Aquifer - from Vernon                           | 263                                     | 263   | 264   | 264   | 264   | 264   |
| Trinity Aquifer - Montague County                       | 44                                      | 45    | 46    | 48    | 50    | 50    |
| Total                                                   | 2,025                                   | 2,022 | 2,031 | 2,060 | 2,090 | 2,123 |
|                                                         |                                         |       |       |       |       |       |
| Surplus or (Shortage)                                   | 432                                     | 415   | 400   | 384   | 369   | 357   |

#### **Shared Wholesale Water Providers**

The Wholesale Water Providers shared between Regions B and G include RRA and Baylor SUD. RRA providers water to their systems in Knox County in Region G from their Seymour Aquifer supply in Knox County. The portion of Baylor SUD in Young County within Region B gets water supply from the Seymour Aquifer in Baylor County.

#### Supplies in Region G used by RRA in Region G

• RRA – Knox County

| Source                           | 2030 | 2040 | 2050 | 2060 | 2070 | 2080 |
|----------------------------------|------|------|------|------|------|------|
| Seymour Aquifer - Knox<br>County | 13   | 13   | 12   | 11   | 10   | 8    |

#### Supplies in Region B used by Baylor SUD in the Region B portion of Young County

Baylor SUD – Young County

| Source                   | 2030 | 2040 | 2050 | 2060 | 2070 | 2080 |
|--------------------------|------|------|------|------|------|------|
| Seymour Aquifer - Baylor | 59   | 60   | 60   | 62   | 64   | 66   |
| County                   | 59   | 60   | 60   | 62   | 04   | 66   |

#### Supplies Located in Region G That Are Used in Region B

Two WUGs get a portion of their water from supplies located in Region G. These include Baylor County SUD in Baylor County who purchases surface water from Millers Creek Lake from North Central Texas MWA, and the Region B portion of Young County Other who purchases surface water from the City of Graham.

| Water User Group:                                                                            | Baylor Co | Baylor County SUD - Baylor |       |       |       |       |  |  |
|----------------------------------------------------------------------------------------------|-----------|----------------------------|-------|-------|-------|-------|--|--|
|                                                                                              | 2030      | 2040                       | 2050  | 2060  | 2070  | 2080  |  |  |
| Population (number of persons)                                                               | 1,019     | 1,029                      | 1,076 | 1,099 | 1,121 | 1,145 |  |  |
| Water Demand<br>(ac-ft/yr)                                                                   | 252       | 254                        | 265   | 271   | 276   | 282   |  |  |
| Current Supply - Millers<br>Creek Lake - Sales from<br>North Central Texas<br>MWA (ac-ft/yr) | 6         | 5                          | 4     | 2     | 1     | 0     |  |  |
| Current Supply -<br>Seymour Aquifer Baylor<br>County<br>(ac-ft/yr)                           | 246       | 249                        | 261   | 269   | 275   | 282   |  |  |
| Supply - Demand (ac-ft/yr)                                                                   | 0         | 0                          | 0     | 0     | 0     | 0     |  |  |

| Water User Group:                                    | County-C | County-Other - Young (Region B portion) |      |      |      |      |  |  |
|------------------------------------------------------|----------|-----------------------------------------|------|------|------|------|--|--|
|                                                      | 2030     | 2040                                    | 2050 | 2060 | 2070 | 2080 |  |  |
| Population (number of persons)                       | 626      | 626                                     | 626  | 624  | 621  | 618  |  |  |
| Water Demand<br>(ac-ft/yr)                           | 85       | 84                                      | 84   | 84   | 83   | 83   |  |  |
| Purchase from Graham                                 | 22       | 25                                      | 28   | 30   | 32   | 33   |  |  |
| Current Supply - Cross Timbers<br>Aquifer (ac-ft/yr) | 63       | 59                                      | 56   | 54   | 51   | 50   |  |  |
| Supply - Demand<br>(ac-ft/yr)                        | 0        | 0                                       | 0    | 0    | 0    | 0    |  |  |

#### Supplies Located in Region B That Are Used in Region G

Region B is currently assuming that supplies from Lakes Olney and Cooper located in Region B are being sold from the City of Olney to Manufacturing in Young County which is located entirely within Region G. Based on historical data reported in TWDB Water Use Surveys, the estimated amount being sold to Manufacturing in Young County is 68 AF/Y.

#### Potential New Supplies in Region G Being Studied for Use in Region B

To our knowledge, there are no supplies being studied in Region G that could be used in Region B.

#### New Supplies in Region B Being Studied for Use in Region G

To our knowledge, there are no supplies being studied in Region B that could be used in Region G. Water demand reduction (conservation) may be applied to WUGs in Region G.

#### **MEMORANDUM**



Innovative approaches
Practical results
Outstanding service

5100 E. Skelly Dr., Suite 602 + Tulsa, Oklahoma 74135 + 539-444-8677 + FAX 817-735-7491

www.freese.com

TO: Paula Jo Lemonds, HDR, Region O Consultant

CC:

FROM: Jeremy Rice and Walter Chandler

**SUBJECT:** Issues of Interest to Region B and Region O

**DATE:** 1/31/2024

PROJECT: RRG21896

This is one of a series of memoranda on issues of mutual interest to Region B and other regions in the current round of regional water planning. This memorandum is intended to begin a discussion between Region B and Region O consultants. After reviewing this memorandum, please contact me to discuss how the memorandum should be revised. I can be reached at:

Jeremy Rice Freese and Nichols, Inc. 5100 E Skelly Dr. Suite 602 Tulsa, Oklahoma 74135 918-238-1930 jeremy.rice@freese.com

The memorandum includes the following sections:

- Shared Water User Groups and Shared Supplies
- Shared Wholesale Water Providers
- Supplies Located in Region O That Are Used in Region B
- Supplies Located in Region B That Are Used in Region O
- Potential Supplies in Region O Being Studied for Use in Region B
- New Supplies in Region B Being Studied for Use in Region O
- Other Issues of Mutual Interest

Please review this memorandum and contact us with your thoughts on the issues covered and other issues that should have been included. We are looking forward to working with you as we complete this round of regional water planning.

#### **Shared Water User Groups and shared supplies**

Cottle and King Counties in Region B border Motely and Dickens Counites Region O along the western boundary of Region B. Region B is the primary region for the Red River Authority of Texas (RRA) which has service areas in Regions A, B, C, G, O. As such Region B prepared the allocation of supplies for RRA.

It should be noted that Region B submitted revisions to the TWDB population and demands that were not accepted by TWDB but will be used for planning. All demands for Region B portions reflect the RWPG adopted demands with a 15% increase.

|                                            |       | 20    | 2026 Plan RRA Demands (AF/Y) |       |       |       |  |  |
|--------------------------------------------|-------|-------|------------------------------|-------|-------|-------|--|--|
| Customers                                  | 2030  | 2040  | 2050                         | 2060  | 2070  | 2080  |  |  |
| Red River Authority - Clay County          | 491   | 488   | 486                          | 485   | 484   | 482   |  |  |
| Red River Authority - Childress County     | 382   | 358   | 352                          | 361   | 369   | 378   |  |  |
| Red River Authority - Collingsworth County | 90    | 88    | 83                           | 79    | 75    | 72    |  |  |
| Red River Authority - Cottle County        | 29    | 29    | 29                           | 30    | 30    | 30    |  |  |
| Red River Authority - Dickens County       | 1     | 1     | 1                            | 1     | 1     | 0     |  |  |
| Red River Authority - Donley County        | 82    | 76    | 70                           | 67    | 64    | 60    |  |  |
| Red River Authority - Foard County         | 73    | 73    | 74                           | 75    | 77    | 78    |  |  |
| Red River Authority - Grayson County       | 254   | 304   | 347                          | 390   | 436   | 486   |  |  |
| Red River Authority - Hall County          | 51    | 48    | 45                           | 42    | 39    | 36    |  |  |
| Red River Authority - Hardeman County      | 195   | 193   | 192                          | 189   | 186   | 184   |  |  |
| Red River Authority - King County          | 61    | 62    | 62                           | 64    | 65    | 66    |  |  |
| Red River Authority - Knox County          | 13    | 13    | 12                           | 11    | 10    | 8     |  |  |
| Red River Authority - Montague County      | 44    | 45    | 46                           | 48    | 50    | 50    |  |  |
| Red River Authority - Motley County        | 2     | 1     | 1                            | 1     | 1     | 1     |  |  |
| Red River Authority - Wilbarger County     | 316   | 316   | 318                          | 318   | 318   | 318   |  |  |
| Total                                      | 1,593 | 1,607 | 1,632                        | 1,676 | 1,721 | 1,767 |  |  |

|                                                         |       | RRA Cu | rrently Availa | able Supplies | (AF/Y) |       |
|---------------------------------------------------------|-------|--------|----------------|---------------|--------|-------|
| Sources                                                 | 2030  | 2040   | 2050           | 2060          | 2070   | 2080  |
| Wichita Falls Supply                                    | 383   | 363    | 344            | 326           | 309    | 293   |
| Greenbelt Reservoir                                     | 532   | 507    | 501            | 507           | 515    | 529   |
| Lake Texoma                                             | 254   | 304    | 347            | 390           | 436    | 486   |
| Ogallala Aquifer - Donley County from<br>Greenbelt MIWA | 271   | 270    | 270            | 271           | 269    | 263   |
| Ogallala Aquifer - Donley County                        | 52    | 46     | 40             | 37            | 34     | 30    |
| Other Aquifer - Cottle County                           | 29    | 29     | 29             | 30            | 30     | 30    |
| Other Aquifer - Dickens County                          | 62    | 63     | 63             | 65            | 66     | 66    |
| Other Aquifer - Motley County                           | 2     | 1      | 1              | 1             | 1      | 1     |
| Seymour Aquifer - Collingsworth County                  | 74    | 72     | 67             | 63            | 59     | 56    |
| Seymour Aquifer - Knox County                           | 13    | 13     | 12             | 11            | 10     | 8     |
| Seymour Aquifer - Hardeman County                       | 46    | 46     | 47             | 47            | 47     | 47    |
| Seymour Aquifer - from Vernon                           | 263   | 263    | 264            | 264           | 264    | 264   |
| Trinity Aquifer - Montague County                       | 44    | 45     | 46             | 48            | 50     | 50    |
| Total                                                   | 2,025 | 2,022  | 2,031          | 2,060         | 2,090  | 2,123 |
| Surplus or (Shortage)                                   | 432   | 415    | 400            | 384           | 369    | 357   |

#### **Shared Wholesale Water Providers**

RRA is the only Wholesale Water Provider shared between Regions B and O. RRA provides water to their systems in Dickens and Motely Counties in Region O from their Other Aquifer supply in both counties respectively.

#### Supplies in Region O used by RRA in Region O

#### RRA – Dickens County

| Source                            | 2030 | 2040 | 2050 | 2060 | 2070 | 2080 |
|-----------------------------------|------|------|------|------|------|------|
| Other Aquifer - Dickens<br>County | 1    | 1    | 1    | 1    | 1    | 0    |

#### RRA – Motley County

| Source                           | 2030 | 2040 | 2050 | 2060 | 2070 | 2080 |
|----------------------------------|------|------|------|------|------|------|
| Other Aquifer - Motley<br>County | 2    | 1    | 1    | 1    | 1    | 1    |

#### Supplies Located in Region O That Are Used in Region B

To our knowledge, there are no supplies located in Region O that are used in Region B.

#### Supplies Located in Region B That Are Used in Region O

To our knowledge, there are no supplies located in Region B that are used in Region O.

#### Potential New Supplies in Region O Being Studied for Use in Region B

To our knowledge, there are no supplies being studied in Region O that could be used in Region B.

#### New Supplies in Region B Being Studied for Use in Region O

To our knowledge, there are no supplies being studied in Region B that could be used in Region O. Water demand reduction (conservation) may be applied to the RRA WUGs in Region O.