Draft Study Design

Instream Flow Study of the Middle and Lower Brazos River

Draft Study Design

Prepared for Middle and Lower Brazos River Sub-Basin Study Design Workgroup

Prepared by
TEXAS INSTREAM FLOW PROGRAM
AND BRAZOS RIVER AUTHORITY

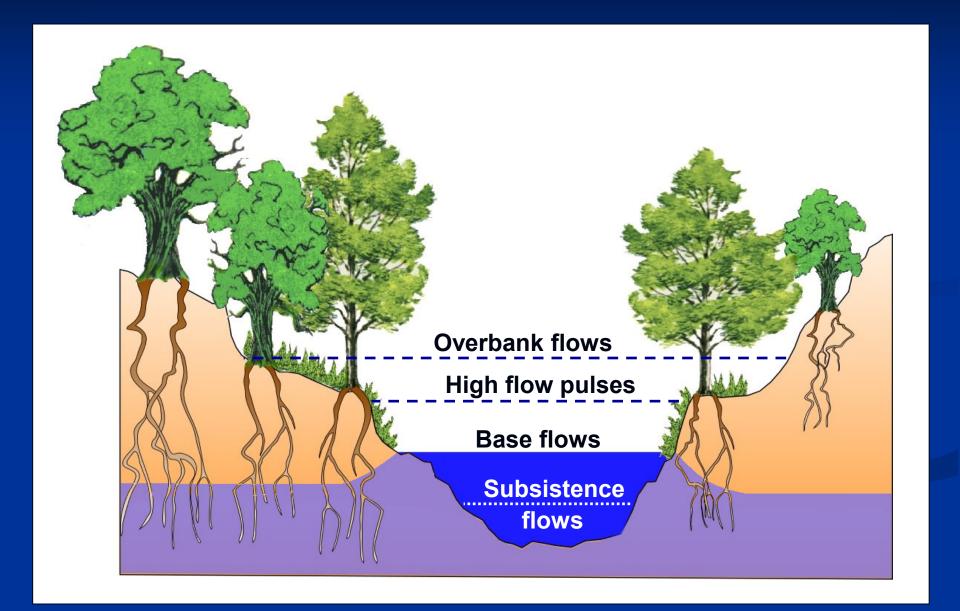
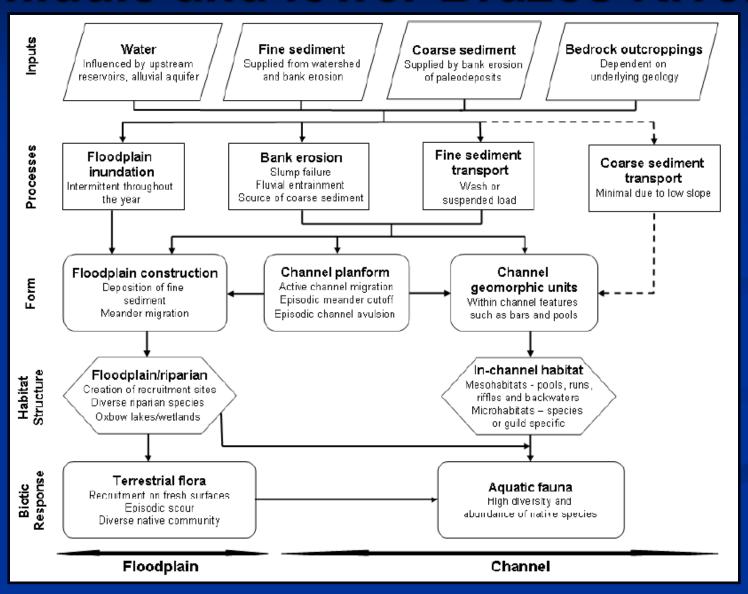

JANUARY 2010

Table of Contents


Contents

.0	INTRODUCTION5						
	1.1 Summary of available information and results of prelimina	ary analysis and					
	reconnaissance surveys	6					
	1.1.1 Hydrology	9					
	1.1.2 Biology	15					
	1.1.3 Physical Processes	21					
	1.1.4 Water Quality	23					
	1.1.5 Connectivity	26					
	1.1.6 Allens Creek Reservoir Study	29					
	1.2 Assessment of Current Conditions	29					
	1.2.1 Hydrology	29					
	1.2.2 Biology						
	1.2.3 Physical Processes	31					
	1.2.4 Water Quality						
	1.2.5 Connectivity						
	1.3 Conceptual Model	31					
0	STAKEHOLDER INVOLVEMENT AND STUDY DESIGN						
	DEVELOPMENT						
	2.1 Stakeholder Involvement	35					
	2.2 Study Goal and Objectives						
	2.2.1 Hydrology						
	2.2.2 Biology						
	2.2.3 Physical Processes						
	2.2.4 Water Quality						
	2.2.5 Connectivity						
	2.3 Study Indicators						
0	DESCRIPTION OF TECHNICAL STUDIES	43					
-	3.1 Study Site Selection						
	3.2 Study Components						
	3.2.1 Hydrology and Hydraulics						
	3.2.2 Biology	53					
	3.2.3 Physical Processes						
	3.2.4 Water Quality						
	3.2.5 Connectivity						
0	CONTINUED STAKEHOLDER INVOLVMENT AND FU						
-	ACTIVITIES						
0	REFERENCES						

Statewide Conceptual Model

Conceptual Model of middle and lower Brazos River

Ecological Processes/Flow Regimeof middle and lower Brazos River

Component	Hydrology	Geomorphology	Biology	Water Quality	Connectivity
Subsistence flows Infrequent, low flows	Typically during summer	Increase deposition of fine and organic particles	Provide limited aquatic habitat Maintain populations of organisms capable of repopulating system when favorable conditions return	Maintain adequate levels of dissolved oxygen, temperature, and constituent concentrations (particularly nutrients)	Provide limited lateral connectivity along the length of the river May be affected by groundwater/ surface water interactions Maintain longitudinal connectivity
Base flows Average flow conditions, including variability.	Vary by season and year	Maintain soil moisture and groundwater table in riparian areas Maintain a diversity of habitats	Provide suitable aquatic habitat for all life stages of native species	Provide suitable in- channel water quality	Provide connectivity along channel corridor May be affected by groundwater / surface water interactions

Eco. Proc./Flow Regime (continued)

Component	Hydrology	Geomorphology	Biology	Water Quality	Connectivity
High flow pulses In-channel, short duration, high flows	May be influenced b reservoir operations and land use changes	Maintain channel and substrate characteristics Prevent encroachment of riparian vegetation Play an important role in recovery of channel after flood events	Provide spawning cues for organisms	Restore in-channel water quality after prolonged low flow periods	Provide connectivity to near-channel water bodies
Overbank flows Infrequent, high flows that exceed the channel	Influenced by reservoir operation	Provide lateral channel movement, an important source of coarse material for channel Form new habitats Flush organic material into channel Transport nutrients and sediment to floodplain	Provide spawning cues for organisms Provide access to floodplain habitats Maintain diversity of riparian vegetation	Restore water quality in floodplain water bodies	Provide connectivity to floodplain Recharge the alluvium aquifer Provide large volumes of freshwater to estuary

Hydrology and Hydraulics

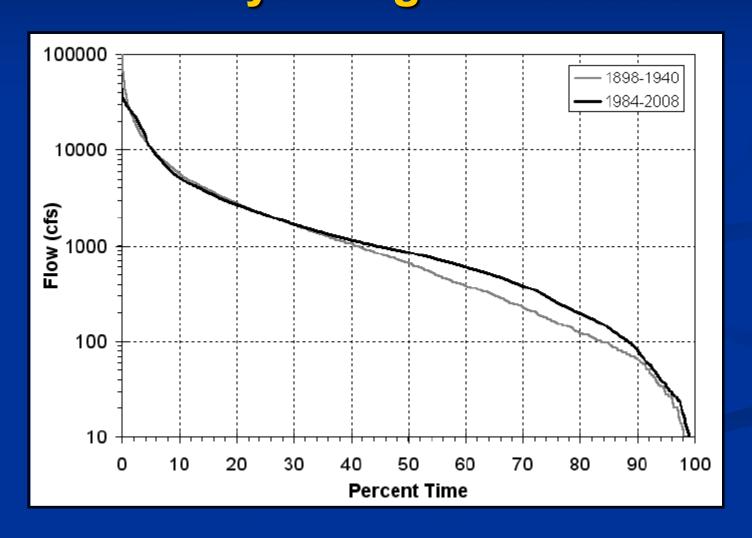
<u>Indicators</u>

Flow regime components (frequency, timing, duration, rate of change, magnitude)

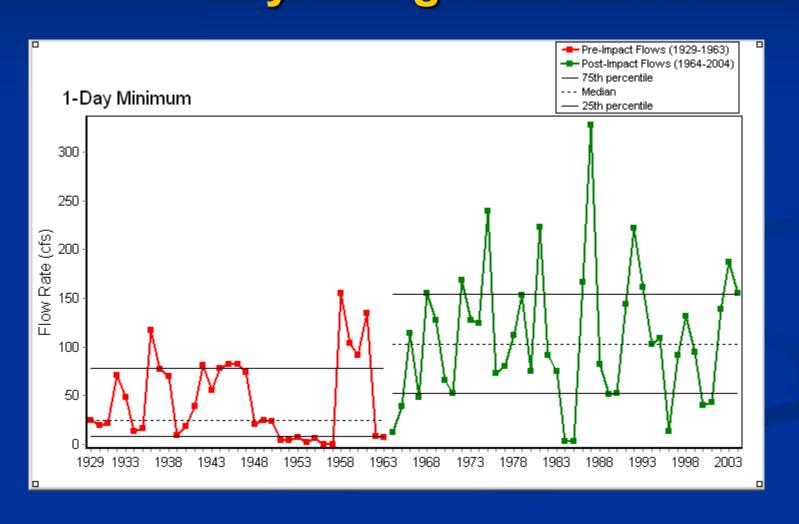
and

<u>Activities</u>

Hydrologic evaluation


Natural variability

Hydrologic evaluation


Gaines/losses

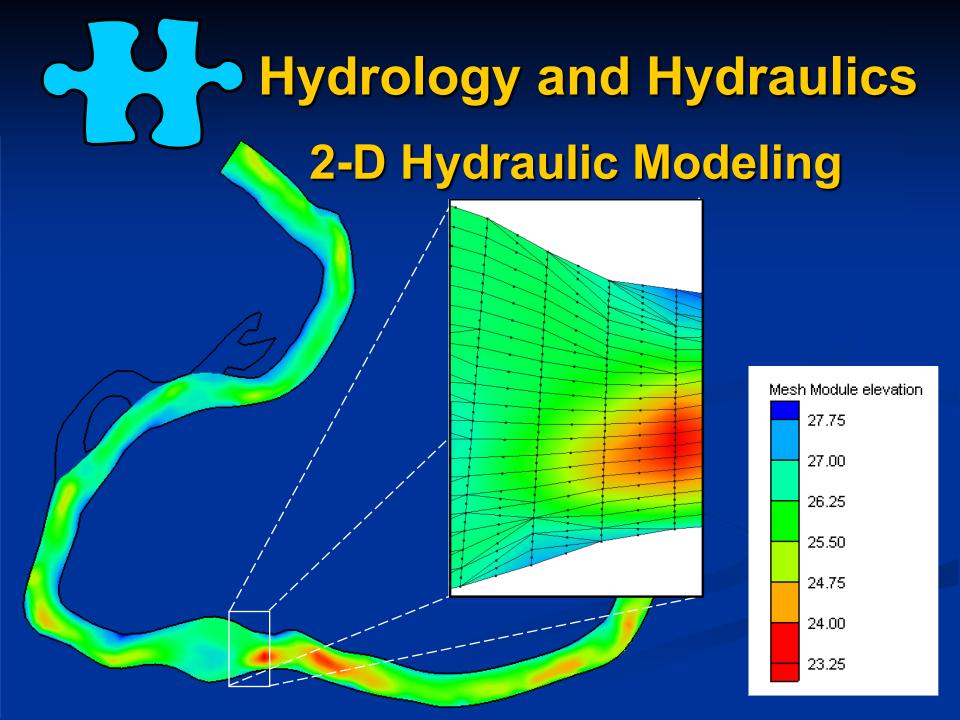
USGS studies

Hydrologic Evaluation

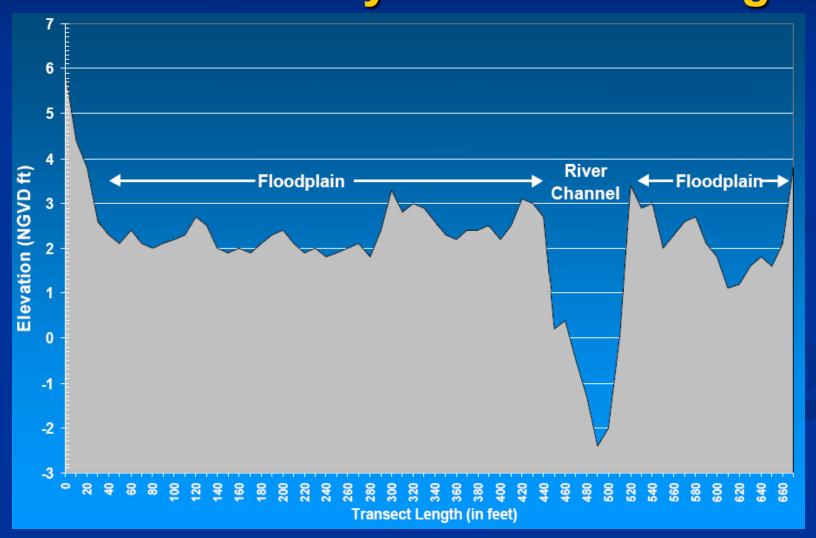
Hydrologic Evaluation

Hydrology and Hydraulics

Activities to support Other disciplines


2-d hydraulic modeling

Biology (habitat modeling)


Physical Processes (sediment transport)

1-d hydraulic modeling

Biology (riparian studies)

Hydrology and Hydraulics 1-D Hydraulic Modeling

Physical Processes (Geomorphology)

<u>Indicators</u>

and

Activities

Analysis of aerial photos

Bank stability

(lateral migration, channel avulsion, bank erosion rates)

Channel maintenance

(in-channel bars, meander pools)

Aquifer interaction

Flood impacts

Sediment budgeting, transport modeling

USGS gain/loss studies

NWS flood impacts

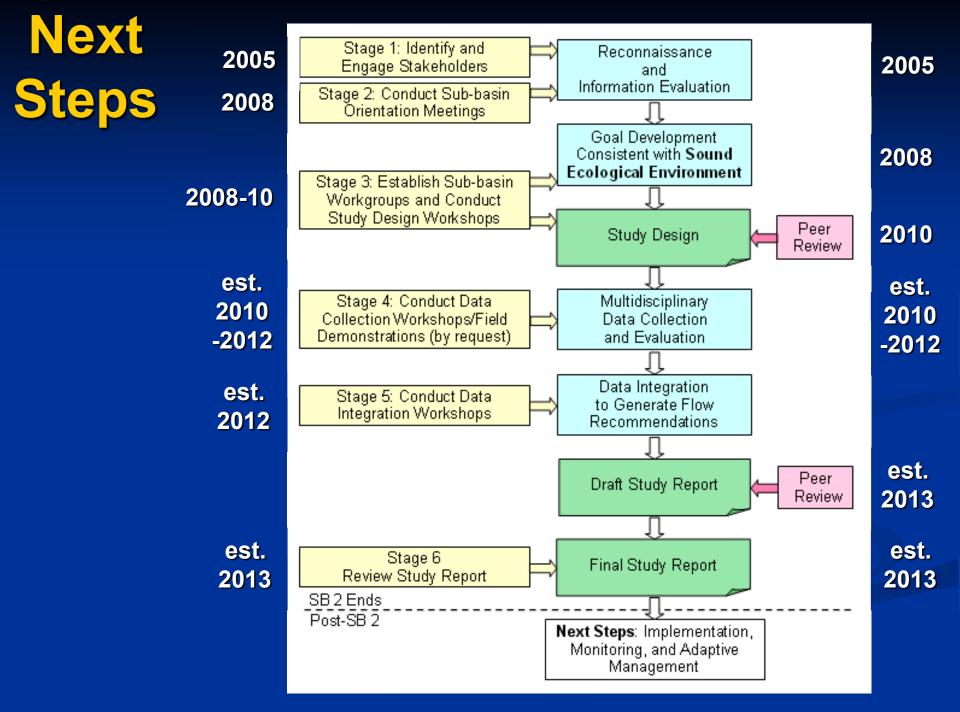
Connectivity

Indicators

and

<u>Activities</u>

Riparian zone (habitat and total area)


Inundation modeling

Lateral connectivity (frequency, duration, timing)

Oxbow lake study

Groundwater/Surface water interaction

USGS gain/loss studies

Comments on Draft Study Design

- Today's meeting
- Send comments by Feb. 19, 2010
 - E-mail: tifp@twdb.state.tx.us
 - Mail: Texas Instream Flow Program

P.O. Box 13231

Austin, TX 78711-3231

How to stay involved

- Check website for updates
 - www.twdb.state.tx.us/instreamflows/
- Electronic/postal newsletter
- Contact TIFP if interested in seeing study activities in field
- Participate in Data Integration Workshops
- Review Study Report