### **Draft Study Design**

#### Instream Flow Study of the Lower Sabine River

**Draft Study Design** 



Prepared for Lower Sabine River Sub-Basin Study Design Workgroup

Prepared by TEXAS INSTREAM FLOW PROGRAM AND SABINE RIVER AUTHORITY OF TEXAS

MARCH 26, 2010

#### **Table of Contents**

#### Contents

| 1.0 | INTRODUCTION                                                                 | 4  |  |  |  |  |  |
|-----|------------------------------------------------------------------------------|----|--|--|--|--|--|
|     | 1.1 Summary of available information and results of preliminary analysis and |    |  |  |  |  |  |
|     | reconnaissance surveys                                                       | 5  |  |  |  |  |  |
|     | 1.1.1 Hydrology                                                              | 8  |  |  |  |  |  |
|     | 1.1.2 Biology                                                                | 12 |  |  |  |  |  |
|     | 1.1.3 Physical Processes                                                     | 15 |  |  |  |  |  |
|     | 1.1.4 Water Quality                                                          | 15 |  |  |  |  |  |
|     | Lower Sabine Basin Tidal Study                                               |    |  |  |  |  |  |
|     | 1.2 Assessment of Current Conditions                                         | 22 |  |  |  |  |  |
|     | 1.2.1 Biology                                                                |    |  |  |  |  |  |
|     | 1.2.2 Physical Processes                                                     | 25 |  |  |  |  |  |
|     | 1.2.3 Water Quality                                                          | 25 |  |  |  |  |  |
|     | 1.2.4 Connectivity                                                           | 25 |  |  |  |  |  |
|     | 1.3 Conceptual Model                                                         | 25 |  |  |  |  |  |
| 2.0 | STAKEHOLDER INVOLVEMENT AND STUDY DESIGN DEVELOPMENT                         |    |  |  |  |  |  |
|     | 2.1 Stakeholder Involvement                                                  |    |  |  |  |  |  |
|     | 2.2 Study Goal, Objectives and Indicators                                    |    |  |  |  |  |  |
| 3.0 | DESCRIPTION OF TECHNICAL STUDIES                                             |    |  |  |  |  |  |
|     | 3.1 Study Site Selection                                                     |    |  |  |  |  |  |
|     | 3.2 Study Components                                                         |    |  |  |  |  |  |
|     | 3.2.1 Hydrology and Hydraulics                                               |    |  |  |  |  |  |
|     | 3.2.2 Biology                                                                |    |  |  |  |  |  |
|     | 3.2.3 Physical Processes                                                     |    |  |  |  |  |  |
|     | 3.2.4 Water Quality                                                          |    |  |  |  |  |  |
|     | 3.2.5 Connectivity                                                           |    |  |  |  |  |  |
| 4.0 | CONTINUED STAKEHOLDER INVOLVMENT AND FUTURE ACTIVITIES.                      |    |  |  |  |  |  |
| 5.0 | REFERENCES                                                                   |    |  |  |  |  |  |

#### **Statewide Conceptual Model**



## Conceptual Model of Iower Sabine River



## Ecological Processes/Flow Regime of Sabine River

| Component                                                                           | Hydrology                                                                                                                   | Geomorphology                                                                                                                 | Biology                                                                                                                                                      | Water Quality                                                                                                                              | Connectivity                                                                                                                                                                          |
|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Subsistence<br>flows<br>Infrequent, low<br>flows<br>(typically<br>during<br>summer) |                                                                                                                             | Increase<br>deposition of fine<br>and organic<br>particles                                                                    | Provide limited<br>aquatic habitat<br>Maintain<br>populations of<br>organisms<br>capable of<br>repopulating<br>system when<br>favorable<br>conditions return | Maintain<br>adequate levels<br>of dissolved<br>oxygen,<br>temperature,<br>and constituent<br>concentrations<br>(particularly<br>nutrients) | Provide limited lateral<br>connectivity along the<br>length of the river<br>May be affected by<br>groundwater/ surface<br>water interactions<br>Maintain longitudinal<br>connectivity |
| <b>Base flows</b><br>Average flow<br>conditions,<br>including<br>variability.       | Influenced by<br>reservoir<br>operation,<br>peaking<br>hydropower,<br>and land use<br>changes<br>Vary by season<br>and year | Maintain soil<br>moisture and<br>groundwater<br>table in riparian<br>areas<br>Maintain a<br>diversity of<br>instream habitats | Provide suitable<br>aquatic habitat for<br>all life stages of<br>native species                                                                              | Provide<br>suitable in-<br>channel water<br>quality                                                                                        | Provide connectivity<br>along channel corridor<br>May be affected by<br>groundwater / surface<br>water interactions                                                                   |

# Eco. Proc./Flow Regime (continued)

| Component                                                                                  | Hydrology                                                                                      | Geomorphology                                                                                                                                                                                                               | Biology                                                                                                                                        | Water<br>Quality                                                                    | Connectivity                                                                                                                                |
|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| High flow<br>pulses<br>In-channel,<br>short duration,<br>high flows                        | Influenced by<br>reservoir<br>operations,<br>peeking<br>hydropower,<br>and land use<br>changes | Maintain channel and substrate<br>characteristics<br>Prevent encroachment of<br>riparian vegetation<br>Play an important role in<br>recovery of channel after flood<br>events                                               | Provide<br>migratory and<br>spawning cues<br>for organisms<br>Transport semi-<br>buoyant fish<br>eggs                                          | Restore<br>in-channel<br>water<br>quality after<br>prolonged<br>low flow<br>periods | Provide<br>connectivity to<br>near-channel<br>water bodies<br>(e.g. oxbows<br>and<br>distributary<br>channels)                              |
| <b>Overbank</b><br><b>flows</b><br>Infrequent,<br>high flows<br>that exceed<br>the channel | Influenced by<br>reservoir<br>operation                                                        | Provide lateral channel<br>movement, an important source<br>of coarse material for channel<br>Form new habitats<br>Flush organic material/woody<br>debris into channel<br>Transport nutrients and sediment<br>to floodplain | Provide<br>spawning cues<br>for organisms<br>Provide access<br>to floodplain<br>habitats<br>Maintain<br>diversity of<br>riparian<br>vegetation | Restore<br>water<br>quality in<br>floodplain<br>water bodies                        | Provide<br>connectivity to<br>floodplain<br>Recharge<br>alluvial<br>aquifers<br>Provide large<br>volumes of<br>freshwater to<br>Sabine Lake |

# Hydrology and Hydraulics

#### <u>Indicators</u>

Flow regime components (frequency, timing, duration, rate of change, magnitude)

**Natural variability** 

#### and



Hydrologic evaluation

#### **Hydrologic evaluation**

# Hydrology and Hydraulics Hydrologic Evaluation



# Hydrology and Hydraulics

#### Activities to support Other disciplines

2-d hydraulic modeling Biology (habitat modeling) Physical Processes (sediment transport)

# Hydrology and Hydraulics 2-D Hydraulic Modeling



# Physical Processes (Geomorphology)

### <u>Indicators</u>

and

# **Activities**

**Analysis of aerial photos** 

#### **Bank stability**

(lateral migration, channel avulsion, bank erosion rates)

#### Channel maintenance (in-channel bars, meander

pools)

**Flood impacts** 

Sediment budgeting, transport modeling

**NWS flood impacts** 



Connectivity

and

Indicators

<u>Activities</u>

**Riparian zone** (habitat and total area)

Lateral connectivity (frequency, duration, timing)

Longitudinal connectivity

Inundation modeling

Pressure transducer deployment

Non-proposed at this time

### Inundation Modeling

Speingh

Shreveport



#### 5-m DEM Coverage (based on LiDAR)







### Inundation Modeling







#### Legend

GParkhouse\_grd\_gcs VALUE

- 0
  - 01 Water
  - 02 Bottomland Hardwood
  - 03 Secondary Bottomland Hardwood
  - 04 Oak-Hickory
  - 05 Cedar-Hardwood/Pine-Hardwood
  - 06 Pure Pine/Cedar Grove
  - 07 Pasture/Grassland
  - 08 Crops/Managed Pasture
  - 10 Bare Soil/Ground

#### Pressure Transducer Deployment



12-2003

11-2004



**Comments on Draft Study Design** 

Today's meeting

 Send comments by Apr. 23, 2010
E-mail: tifp@twdb.state.tx.us
Mail: Texas Instream Flow Program P.O. Box 13231 Austin, TX 78711-3231

# How to stay involved

- Check website for updates
  - www.twdb.state.tx.us/instreamflows/
- Electronic/postal newsletter
- Contact TIFP if interested in seeing study activities in field
- Participate in Data Integration Workshops
- Review Study Report