

HILL STORE

GROUND-WATER RESOURCES OF SABINE AND SAN AUGUSTINE COUNTIES, TEXAS

JANUARY 1967

TEXAS WATER DEVELOPMENT BOARD

REPORT 37

GROUND-WATER RESOURCES OF SABINE AND

SAN AUGUSTINE COUNTIES, TEXAS

By

Robert B. Anders United States Geological Survey

Prepared by the U.S. Geological Survey in cooperation with the Texas Water Development Board Sabine River Authority of Texas and Sabine and San Augustine Counties

•

TEXAS WATER DEVELOPMENT BOARD

Mills Cox, Chairman Robert B. Gilmore Milton T. Potts Marvin Shurbet, Vice Chairman Groner A. Pitts W. E. Tinsley

Joe G. Moore, Jr., Executive Director

Authorization for use or reproduction of any material contained in this publication, i.e., not obtained from other sources, is freely granted without the necessity of securing permission therefor. The Board would appreciate acknowledgement of the source of original material so utilized.

> Published and distributed by the Texas Water Development Board Post Office Box 12386 Austin, Texas 78711

TABLE OF CONTENTS

	Page
ABSTRACT	1
INTRODUCTION	3
Purpose and Scope of Investigation	3
Location and Extent of Area	3
Physiography and Drainage	5
Economic Development	5
Previous Investigations	5
Acknowledgments	6
Well-Numbering System	6
GEOLOGY AS RELATED TO THE OCCURRENCE OF GROUND WATER	7
General Stratigraphy and Structure	7
Physical Characteristics and Water-Bearing Properties of the Geologic Units	11
Tertiary System	11
Paleocene Series	11
Midway Group	11
Eocene Series	11
Wilcox Group	11
Claiborne Group	12
Carrizo Sand	12
Cane River Formation	17
Sparta Sand	17

TABLE OF CONTENTS (Cont'd.)

Page

Cook Mountain Formation	17
Yegua Formation	17
Jackson Group	18
Oligocene Series	18
Miocene(?) Series	19
Catahoula Sandstone	19
Quaternary System	19
Pleistocene and Recent Series	19
Alluvium	19
GROUND-WATER HYDROLOGY	19
Source and Occurrence of Ground Water	20
Recharge of Ground Water	20
Movement of Ground Water	23
Discharge of Ground Water	23
Hydraulic Characteristics of the Aquifers	24
Development of Ground Water	28
Changes in Water Levels	28
Well Construction	30
QUALITY OF GROUND WATER	31
Source and Significance of Chemical Constituents and Properties of Water	31
Suitability of Water for Various Uses	31
Public Supply	34
Industrial Use	41
Irrigation	42

TABLE OF CONTENTS (Cont'd.)

Deductions Concerning Chemical Quality of Ground Water	43
Bacteriological Contamination	43
AVAILABILITY OF GROUND WATER	44
DEFINITION OF TERMS	51
REFERENCES CITED	53

TABLES

1.	Well and spring numbers used by Follett (1943) and the	
	corresponding numbers used in this report	8
2.	Stratigraphic units and their water-bearing properties	9
3.	Municipal pumpage of ground water, 1955-64	29
4.	Source and significance of dissolved-mineral constituents and properties of water	32
5.	Comparison of quality of ground water with standards	
	recommended by the U.S. Public Health Service and other authorities	33
6.	Records of wells and springs	55
7.	Drillers' logs of wells	74
8.	Chemical analyses of water from wells and springs	105

ILLUSTRATIONS

Figures

1.	Index Map of Texas Showing Location of Sabine and San Augustine Counties	4
2.	Generalized Geologic Map	10
3.	Structure-Contour Map of the Top of the Carrizo Sand and Wilcox Group	13
4.	Structure-Contour Map of the Top of the Sparta Sand	15
5.	Graph Showing Annual Precipitation at Bronson, 1925-64	21

6.	Graph Showing Average Monthly Precipitation and Temperature at Bronson and Average Monthly Gross Lake-Surface Evaporation in Sabine and San Augustine Counties
7.	Graph Showing Relation of Drawdown to Distance for Various Coefficients of Transmissibility and Storage 26
8.	Graph Showing Relation of Drawdown to Distance for Various Periods of Time 27
9.	Map Showing Depths of Wells Tapping Various Aquifers, and Iron and Nitrate Content of Water from Wells and Springs 37
10.	Map Showing Approximate Altitude of the Base of Fresh to Slightly Saline Water
11.	Map Showing Approximate Thickness of Sand Containing Fresh to Slightly Saline Water in the Carrizo Sand and Wilcox Group
12.	Map Showing Approximate Thickness of Sand Containing Fresh to Slightly Saline Water in the Sparta Sand 47
13.	Map Showing Locations of Wells and Springs117
14.	Geologic Section A-A', San Augustine County
15.	Geologic Section B-B', Sabine and San Augustine Counties121
16.	Geologic Section C-C', Sabine and Newton Counties

GROUND-WATER RESOURCES OF SABINE AND SAN AUGUSTINE COUNTIES, TEXAS

ABSTRACT

Sabine and San Augustine Counties, areas of 554 and 551 square miles, respectively, had populations of 7,302 and 7,722 in 1960. At that time San Augustine, which is the oldest Anglo-American town in Texas and the county seat of San Augustine County, had a population of 2,584. Simultaneously the population of Hemphill, the county seat of Sabine County, was 913. The climate is humid; the average precipitation is about 50 inches a year. The economy of these counties is largely dependent upon lumbering and agriculture. Manufactured items include furniture and bathroom fixtures.

Rocks underlying the area are composed of sand, silt, and clay, and contain lesser amounts of glauconite and lignite. The important aquifers are in the Carrizo Sand and Wilcox Group, the Sparta Sand, and the Yegua Formation.

Precipitation on the outcrops of the aquifers is the primary source of recharge. The aquifers are full and about 46 mgd (million gallons per day) is presently moving downdip through the important aquifers.

Throughout the area about 1.3 mgd was discharged in 1964 from municipal, livestock, rural domestic, industrial, and uncontrolled flowing wells. About 40 percent of the ground water is discharged by municipal wells. The towns of Bronson and Pineland derive their water supplies from ground water, but Hemphill and San Augustine obtain their supplies from surface-water reservoirs.

The quality of water from the important aquifers is generally acceptable for municipal and irrigation use, and many industrial purposes. Water from a few of the drilled wells is relatively high in dissolved solids, and bacteria are probably present in most of the dug wells. Of the 6 dug wells for which analyses were made, 3 contained dangerous numbers of the coliform type of bacteria.

The aquifers in Sabine and San Augustine Counties are practically untapped. Estimates indicate that the Carrizo Sand and Wilcox Group, Sparta Sand, and Yegua Formation are capable of supporting a total perennial ground-water development of at least 44 mgd, and possibly as much as 165 mgd, from pumping levels not exceeding 200 to 400 feet along assumed lines of discharge.

GROUND-WATER RESOURCES OF SABINE AND SAN AUGUSTINE COUNTIES, TEXAS

INTRODUCTION

Purpose and Scope of Investigation

The purpose of the investigation was to obtain information as a guide for securing increased benefits from the ground-water supplies of Sabine and San Augustine Counties. Therefore, data relating to the occurrence, quality, availability, quantity, use, and dependability of the ground-water resources were obtained and studied. The report contains information on the surface and subsurface geology and on streams, data from 79 oil tests and 281 water wells and springs (Table 6), and 56 drillers' logs of wells (Table 7). Data on 120 water wells and springs included in the report, were taken from a report by Follett (1943). An effort was made to recheck most of these wells and springs and to obtain additional data about them. The report also contains 284 chemical analyses of water from 263 wells and springs (Table 8). Of the analyses, 173 were unpublished heretofore; of the 173 analyses, 162 were the work of the U.S. Geological Survey laboratory, 4 were processed by a commercial laboratory, and 7 were made by the author with a water-analysis field kit.

Technical terms used in discussing the ground-water resources of the area are defined and listed alphabetically in the section entitled 'Definition of Terms.''

The investigation, begun in September 1963, is a cooperative project of the U.S. Geological Survey, the Texas Water Development Board, the Sabine River Authority of Texas, and Sabine and San Augustine Counties.

Location and Extent of Area

Sabine and San Augustine Counties, with respective populations of 7,302 and 7,722 in 1960, are 554- and 551-square-mile areas, respectively. This twocounty area is in East Texas between latitudes 31°05' and 31°40'N, and longitudes 93°35' and 94°25'W. It adjoins Jasper and Newton Counties on the south, Angelina and Nacogdoches Counties on the west, Shelby County on the north, and the State of Louisiana on the east (Figure 1). San Augustine, the oldest Anglo-American town in Texas, is the largest in the report area. According to 1960 statistics, the population was 2,584 in San Augustine, the county seat of San Augustine County; 913 in Hemphill, the county seat of Sabine County; and 1,236 in Pineland, the site of a sawmill and wood-products manufacturing plant.

Physiography and Drainage

Sabine and San Augustine Counties are in the West Gulf Coastal Plain physiographic province. The topography ranges from almost flat near the larger streams and in some of the interstream areas in the southern part of the twocounty area to hilly in much of the northern part. Two hills, one 3 miles northeast of San Augustine and the other 5 miles northwest of Geneva (11 miles north-northeast of Hemphill), have altitudes about 590 feet above mean sea level and are the highest points in the area. The lowest altitudes, about 100 feet above mean sea level, are where the southward-flowing Ayish Bayou and the Sabine and Angelina Rivers leave the area. These streams and Attoyac Bayou, with the aid of their tributaries, drain the two-county area.

The two-county area is within the Neches and Sabine River drainage basins. About 10 percent of San Augustine County and 80 percent of Sabine County are drained by the Sabine River and its principal tributaries--Patroon, Palo Gaucho, and Housen Bayous, and Big Sandy and Sixmile Creeks. Tributaries to the Neches River, which drain most of San Augustine County and the southwestern part of Sabine County, include the Angelina River and its tributaries--Attoyac and Ayish Bayous.

Economic Development

The major sources of income in Sabine and San Augustine Counties are poultry production, cattle raising, and lumbering. Poultry production is the principal enterprise on farms. Manufactured items include furniture and bathroom fixtures.

About 80 percent of the area is covered by a dense growth of pine and hardwood trees, and grassland is rare except where man has removed the trees. Both counties have been systematically logged for timber for many years. Conservation measures have been effectively practiced and the forested areas have not been substantially reduced. In many places the forest and the undergrowth are so dense that walking through them is difficult.

Truck- and field-crop production is limited by the large forested areas, and neither Sabine nor San Augustine County has had commercial oil or gas production since the San Augustine oil field stopped producing in 1949.

The income of the area is expected to be augmented appreciably by the recreational areas that will develop as a result of completion of Sam Rayburn Dam in 1966 and by Toledo Bend Dam now under construction.

Previous Investigations

Early investigations of the geology and ground-water resources of Sabine and San Augustine Counties were generalized because large areas were investigated, drilled wells were few, and transportation was slow and difficult. Among the first investigations was one by Taylor (1907, p. 63-64), who studied the whole Coastal Plain of Texas. The geology and occurrence of ground water in the two-county area were briefly discussed in his report. A report by Deussen (1914, p. 37-72, 332-339) described in some detail the geology along the Sabine River, incorporated drillers' logs of 4 wells, and gave additional data on 10 wells and 3 springs.

Understanding of the geology was advanced considerably by a report on the geology of Texas by Sellards, Adkins, and Plummer (1932, p. 571-726) which described in considerable detail the stratigraphy of Sabine and San Augustine Counties and surrounding areas.

Prior to the present report, the only one devoted exclusively to the groundwater resources of Sabine and San Augustine Counties was prepared by C. R. Follett in 1943. His report contained information on 159 wells and springs, chemical analyses of water from 98 of these, and 27 drillers' logs.

Sundstrom, Hastings, and Broadhurst (1948, p. 252-254) reported on the public-water supplies in eastern Texas including those of Hemphill, Pineland, and San Augustine. Their report contained drillers' logs, chemical analyses, pumpage figures, and well-construction data.

Two reconnaissance reports by Baker and others (1963a, 1963b) discussed the order of magnitude of the ground-water supplies available from the principal aquifers of the Sabine and Neches River basins, which include Sabine and San Augustine Counties.

Acknowledgments

Grateful acknowledgment is made to city, county, and industrial officials and personnel, and to the many landowners for their gracious assistance in supplying well data and other information as well as for allowing access to their wells. Mr. Pete Newton of the Newton Well Service Company, San Augustine, and Mrs. C. H. Chambers of the Chambers Drilling Company, Center, have been especially helpful.

Well-Numbering System

The well-numbering system used in this report is one adopted by the Texas Water Development Board for use throughout the State and is based on latitude and longitude. Under this system, each l-degree quadrangle in the State is given a number consisting of two digits. These are the first two digits appearing in the well number and may range from 01 to 89. Each 1-degree quadrangle is divided into $7\frac{1}{2}$ -minute quadrangles which also are given 2-digit numbers from 01 to 64. These are the third and fourth digits of the well number. Each $7\frac{1}{2}$ -minute quadrangle is subdivided into $2\frac{1}{2}$ -minute quadrangles and given a singledigit number from 1 to 9. This is the fifth digit of the well number. Finally, each well within a $2\frac{1}{2}$ -minute quadrangle is given a 2-digit number in the order in which it is inventoried, starting with 01. These are the last two digits of the well number. The $7\frac{1}{2}$ -minute quadrangles are shown on the well location map of this report (Figure 13) and numbered in the northwest corner of each quadrangle. Also shown are the 1-degree quadrangles, indicated by the large double-lined Figures 36 and 37. The 3 digits shown with the well symbol include the number of the $2\frac{1}{2}$ -minute quadrangle in which the well is located and the last two digits of the well number. In addition to the complete 7-digit number, a

2-letter prefix is used to identify the county. The prefixes for Sabine and San Augustine Counties are WS and WT, respectively. In order to facilitate the use of data from Follett's report, wells and springs inventoried by him in 1942 and used in the present report have been given new numbers. The old and new numbers are cross-referenced in Table 1.

GEOLOGY AS RELATED TO THE OCCURRENCE OF GROUND WATER

General Stratigraphy and Structure

The stratigraphic units that crop out in Sabine and San Augustine Counties are of Eocene, Oligocene, Miocene(?), Pleistocene, and Recent ages. These units are of sedimentary origin and are composed primarily of a series of alternating sand, silt, and clay strata. Locally, beds of glauconite are relatively thick. The units are, from oldest to youngest, the Wilcox Group, Carrizo Sand, Cane River Formation, Sparta Sand, Cook Mountain Formation, Yegua Formation, and Jackson Group (all of Eocene age); the Vicksburg Group of Oligocene age; the Catahoula Sandstone of Miocene(?) age; and alluvium of Pleistocene and Recent age (Table 2).

Repeated submergence beneath the sea and emergence of the area during the deposition of the Eocene, Oligocene, and Miocene(?) rocks resulted in a series of alternating marine and brackish-water deposits and fresh-water beds. Beds of sand in the stratigraphic units that were deposited primarily in marine and littoral environments (such as the Cane River and Cook Mountain Formations, and the Jackson and Vicksburg Groups) generally are thin and, in some places, of small areal extent. Although some of these beds carry fresh to slightly saline water to depths of several hundred feet, they are relatively unimportant as aquifers because the beds yield only small quantities of water and are not widespread. Those stratigraphic units that had a large amount of their sediments deposited under nonmarine environments have thicker and much more numerous beds of sand that are the important aquifers in the area. On the basis of potential well yield and areal extent, the important aquifers, in order of decreasing significance, are in the following formations or groups: Carrizo Sand and Wilcox Group, Sparta Sand, and Yegua Formation. The Catahoula Sandstone, although capable of yielding large quantities of water to wells, is relatively unimportant because of its small areal extent in the two-county area.

In general, the stratigraphic units strike parallel to the coast (Figure 2) and dip southward toward the Gulf of Mexico. Rocks of the Wilcox Group crop out along the north boundary of the two-county area. Southward toward the coast, the rocks become progressively younger, the Catahoula being the youngest formation except for the alluvium. Alluvium (not shown on the geologic map) occurs along many of the streams as flood-plain and higher-level terrace deposits but is not an important aquifer, although small quantities of water can be obtained from it in some areas.

The stratigraphic units commonly change in lithology, dip, and thickness in the direction of the dip and some change slightly in lithology and thickness along the strike (Figures 14, 15, and 16). The thickness of some of the rocks increases with depth of burial whereas others maintain a more or less constant

Table 1.--Well and spring numbers used by Follett (1943) and the corresponding numbers used in this report.

01d number	New number	Old New number number		01d number	New number	01d number	New number
			Sabine	County			
1	WS-36-25-506	22	WS -36 -33 -207	-33-207 39 WS-36-49-108		57	WS-36- 35 - 804
3	WS -36 -26 -802	23	WS -36 -33 -205	40	WS-36-49-111	58	WS-36-43-101
7	WS-36-26-803	24	WS-37-40-601	41	WS-37-56-901	59	WS-36-42-503
10	WS-36-35-101	25	WS -36 -33 -404	42	WS-37-56-902	60	WS-36-42-811
11	WS-36-35-403	26	WS-36-33-702	43	WS-36-49-704	61	WS-36-50-202
12	WS-36-35-404	27	WS-36-41-101	44	WS-36-33-802	62	WS-36-51-407
13	WS-36-35-402	28	WS-37-48-303	45	WS-36-33-901	63	WS-36-51-408
14	WS -36 -34 -606	29	WS-37-48-302	46	WS-36-41-206	64	WS - 36 - 43 - 70 2
15	WS-36-34-904	30	WS-37-48-304	48	WS-36-42-102	65	WS-36-43-803
16	WS-36-34-501	31	WS-37-48-606	51	WS-36-42-101	66	WS-36-43-901
17	WS-36-34-502	32	WS-36-41-705	52	WS -36 -34 -702	67	WS-36-51-302
18	WS-36-34-405	34	WS-36-41-706	53	WS -36 -34 -703	68	WS-36-51-303
19	WS-36-25-802	35	WS-36-49-102	54	WS-36-34-902	69	WS -36 -52 -403
20	WS-36-25-901	36	WS-36-49-103	55	WS-36-35-701	70	WS -36 -52 -402
21	WS-36-33-208	37	WS-36-49-104	56	WS-36-35-803		
			San August	ine County			
1	WT-37-22-801	21	WT-37-32-110	40	WT-37-31-805	62	WT-37-48-201
2 .	WT-37-22-901	22	WT-37-32-108	41	WT-37-31-704	63	WT-37-48-401
3	WT-37-30-301	23	WT - 37 - 32 - 202	42	WT-37-30-903	64	WT -37-47-602
5	WT-37-31-101	24	WT-37-32-203	46	WT-37-38-602	65	WT-37-47-903
6	WT-37-31-202	25	WT-37-32-204	47	WT-37-38-603	66	WT-37-55-102
7	WT-37-31-201	26	WT -37 -32 -504	48	WT-37-38-906	67	WT-37-55-205
8	WT-37-31-203	27	WT - 27 - 32 - 602	49	WT-37-46-201	68	WT-37-47-801
9	WT-37-31-506	28	WT-27-32-902	50	WT-37-46-602	70	WT-37-46-604
10	WT-37-31-505	29	WT-37-32-901	51	WT-37-46-603	71	WT-37-46-9 02
11	WT-37-32-702	30	WT-37-40-306	52	WT-37-46-301	72	WT-37-54-201
12	WT-37-32-701	31	WT -37 -40 -502	55	WT-37-47-101	73	WT-37-54-301
13	WT-37-32-706	33	WT-37-33-708	- 56	WT-37-39-704	75	WT-37-55-401
16	WT-37-32-707	35	WT-37-39-605	57	WT-37-47-303	76	WT-37-56-701
17	WT-37-32-404	36	WT-37-39-6 04	58	WT-37-40-701		
19	WT-37-31-302	38	WT-37-39-502	60	WT-37-40-803		
20	WT-37-32-109	39	WT-37-39-101	61	WT-37-48-202		

System	Series	Group	Stratigraphic unit	Approximate thickness (feet)	Character of rocks	Water-bearing properties		
Quaternary	Recent and Pleistocene		Alluvium	0- 50?	Terrace and flood-plain deposits in stream valleys, composed of clay, silt, sand, and gravel.	Locally yields small quantities of fresh water to shallow dug wells.		
	Miocene(?)		Catahoula Sandstone	0- 450	Sand and beds of clay. Small amounts of pyroclastic and calcareous material.	Probably capable of yielding mod- erate to large quantities of fresh to slightly saline water.		
	Oligocene	Vicksburg			Mostly clay and silt and a few beds of very fine to medium	Yields small quantities of fresh		
		Jackson		0- 780	sand, lignite, marl, and glauconite.	to moderately saline water.		
				0-1,000	Sand, silt, clay, and small amounts of lignite and glauconite.	Yields small to moderate quantities of fresh to moderately saline water. Capable of yielding large quantities.		
			Cook Mountain Formation	0- 400	Mostly clay with a few thin beds of sand, glauconite, calcareous material, and lignite.	Yields small quantities of fresh to slightly saline water.		
Tertiary	Eocene	Claiborne	Sparta Sand	0- 340	Massive beds of fine to medium sand, thin beds of sand, silt, and clay, and lesser amounts of glauconite and lignite.	Yields small quantities of fresh to slightly saline water. Capable of yielding large quantities.		
			Cane River Formation	0- 220	Thick beds of glauconite and silty clay. Locally thin beds of sand.	Yields small quantities of fresh water to shallow dug wells.		
			Carrizo Sand	0- 130?	Massive beds of fine to medium sand. Difficult to distinguish from Wilcox Group.	Capable of yielding small to moderate quantities of fresh to slightly saline water.		
		Wilcox		1,400-3,000	Very fine to medium sand, silt, clay, glauconite, lignite, and small amounts of pyrite and iron oxide.	Capable of yielding large quantities of fresh to slightly saline water.		
	Paleocene	Midway		Not deter- mined	Mostly clay and silt.	Not an aquifer.		

Table 2.--Stratigraphic units and their water-bearing properties

~

,

thickness. A gradation of sand into clay with increasing depth of burial is typical of many of the formations. The most noteworthy example of this change is the Sparta Sand.

The structure of the rocks is, in general, monoclinal. The amount of dip depends to some extent on the rock unit and its distance from the center of the Sabine uplift which is north of the two-county area; the steepest dips occur in the eastern part of the area along the Sabine River. In Sabine County the monocline seems to be broken by a number of faults, at least one of which may have considerable displacement. These faults could not be accurately located and are not shown in the geologic sections or on the geologic map.

Some caution should be observed in using the geologic map, as the locations of the contacts are only approximate. The contacts were determined by reconnaissance surface mapping, and by projecting subsurface contacts--as determined from electric and drillers' logs--to the surface. Some of the difficulties encountered in mapping the surface geology of the area were the inaccessibility of some parts of the two counties, the gradational nature of some of the contacts, the lithologic similarity of adjacent units, and the lack of exposures.

Physical Characteristics and Water-Bearing Properties of the Geologic Units

The following descriptions of the geologic units in Sabine and San Augustine Counties, for the most part, are restricted to the outcrop and downdip portions of the section that contains fresh and slightly saline water (Table 2).

Tertiary System

Paleocene Series

Midway Group

The Midway Group does not crop out in the two-county area but underlies the Wilcox Group throughout the area. The top of the Midway Group, as used in this report, is where the electric-log characteristics indicate that the lithology changes from the predominant sand and silt of the Wilcox Group to an underlying predominance of clay and silt of the Midway. Electric logs indicate that the Midway is several hundred feet thick, but definite limits were not established. The abundance of clay makes the Midway relatively impermeable and it does not contain aquifers.

Eocene Series

Wilcox Group

The oldest rocks that crop out in the area belong to the Wilcox Group. They are exposed in the northern part of both counties and overlie the relatively impermeable clays of the Midway Group. They are composed of sand, silt, clay, and glauconite, lesser amounts of lignite, and small amounts of pyrite and calcareous material. Because both the glauconite (a silicate of iron and potassium) and the pyrite (a sulfide of iron) weather to yellow, red, and brownishred oxides and hydrated oxides of iron, most of the outcropping areas of the Wilcox Group reflect these colors.

The Wilcox Group ranges in thickness from about 1,400 feet in the northern part of Sabine County where only part of the group is present to about 3,000 feet downdip where the water in the upper part becomes moderately saline. The rocks contain about 40 percent sand that ranges in size from very fine to medium. Locally the sand is nearly free of iron. Some parts of the Wilcox crop out as light-colored belts of either slightly indurated or loose sand which strongly resembles the Carrizo Sand. In general, however, the Wilcox is somewhat indurated and contains appreciable amounts of silt, clay, and iron oxides.

In general, sand strata in the upper part of the Wilcox contain fresh or slightly saline water farther downdip than do sand strata in the lower part of the unit. According to the log of well WT-37-39-502 (Figure 14) the uppermost 120 feet of the Wilcox below the Carrizo contains fresh water. Below this sand the group contains slightly saline water to a depth of about 1,250 feet, as indicated by the line showing the approximate base of the fresh to slightly saline water. Below 1,250 feet, the Wilcox Group contains more highly mineralized water. A water well drilled at the location of this oil test hole would produce small to possibly moderate quantities of fresh water from the fresh-water sand, at least moderate quantities of slightly saline water from sands between about 650 and 1,250 feet.

In the outcrop area most of the wells tapping the Wilcox are shallow and therefore yield only small quantities of fresh water. However, in most of the outcrop area and for some distance downdip the unit is capable of yielding large quantities of fresh to slightly saline water to properly constructed wells that screen a sufficiently thick section. For this reason and because that part of the Wilcox Group containing fresh to slightly saline water underlies a large part of the area, the Wilcox (together with the Carrizo Sand as a hydrologic unit) is potentially the most important aquifer in the two counties.

Claiborne Group

Carrizo Sand.--In Sabine and San Augustine Counties the similarities between the Carrizo Sand and sands in the Wilcox Group make the separation of the Carrizo Sand and the Wilcox Group difficult. The Carrizo, containing massive beds of fine to medium sand, attains a maximum thickness of probably 130 feet where the water in the sand is fresh to slightly saline in the southern onethird of San Augustine County. The formation thins eastward and may not be present in all areas. In most places the Carrizo and Wilcox appear to be one hydrologic unit and will generally be considered as such in this report. The Carrizo-Wilcox contact is not shown on the geologic map, but an inferred contact is indicated in the cross sections (Figures 14, 15, and 16). The altitude of the top of the Carrizo Sand and Wilcox Group and its downdip limit of fresh to slightly saline water are shown in Figure 3. In this figure the top of the unit is shown to dip southward at an average rate of about 140 feet per mile. Although the Carrizo contains fresh to slightly saline water for many miles downdip, it is a relatively unimportant aquifer when treated separately from the Wilcox. The main reasons for the comparative unimportance of the Carrizo are that the sand tends to be too fine and loose to be effectively screened out of a well, and that the net thickness of sand is relatively small. Hence, the Carrizo is, in some wells, cased off. The Carrizo, however, is capable of yielding small to moderate quantities of fresh to slightly saline water.

<u>Cane River Formation</u>.--The rocks herein called the Cane River Formation overlie the Carrizo Sand and underlie the Sparta Sand. This formation is in the same stratigraphic position as, and is equivalent to, the Reklaw Formation, Queen City Sand, and the Weches Greensand in central and south Texas.

The Cane River Formation is primarily composed of thick beds of glauconite and silty clay. Locally the formation contains thin beds of sand. The full thickness of the formation ranges from about 220 feet near the outcrop in San Augustine County to about 60 feet along the Sabine River. The formation yields only small quantities of water to shallow wells and has no important aquifers.

<u>Sparta Sand</u>.--The Sparta Sand is possibly the second most important aquifer in the report area. This formation consists of rather massive beds of fine to medium sand, thin beds of sand, silt, and clay, and lesser amounts of glauconite and lignite. The full thickness of the Sparta ranges from about 250 feet in the southern one-third of Sabine County to about 340 feet in the southern onethird of San Augustine County. Contours in Figure 4, by which are shown the altitude of the top of the Sparta and its downdip limit of fresh to slightly saline water, reveal that the Sparta dips southward at an average rate of about 130 feet per mile. The Sparta Sand yields small quantities of fresh to slightly saline water to many wells in Sabine and San Augustine Counties. The formation is capable of yielding large quantities of water to properly constructed wells that screen most of its sands.

<u>Cook Mountain Formation</u>.--The Cook Mountain Formation contains no important aquifers in Sabine and San Augustine Counties. It consists primarily of clay but smaller amounts of sand, glauconite, calcareous material, and lignite are well distributed through the formation. Electric logs indicate that the Cook Mountain Formation contains several rather persistent beds of undetermined composition. One of these, which occurs about 140 feet above the base of the formation, is indeed remarkably persistent, as this bed underlies most of the southern half of the two-county area (Figures 14, 15, and 16). The bed is believed to be composed of calcareous material but it may be a thin bed of sand. The Cook Mountain attains a thickness of 400 feet in western San Augustine County.

Most wells in the area of outcrop of the Cook Mountain Formation pass through it and obtain water from the underlying Sparta Sand. However, the Cook Mountain does yield small quantities of fresh to slightly saline water to a few dug wells, possibly to one drilled well, and to a few small springs.

Yegua Formation.--The Yegua Formation, in the south-central part of the area, has, on the average, the widest outcrop of those formations in the report area. The width ranges between 4 and 11 miles, with the maximum being in the western part of San Augustine County.

The formation is primarily composed of an alternating series of beds of sand, silt, and clay; most beds of one material contain appreciable amounts of the other two. Minor amounts of lignite and glauconite are also present. In general, the beds are thin and can be traced only for short distances, although some sand zones may be traceable for many miles. A sand zone at the base of the formation (Figures 14, 15, and 16) occurs throughout most of the area underlain by the Yegua, and in many places electric logs indicate that this zone has the thickest accumulation of sand within the Yegua. This sand zone probably is the most prolific water-yielding zone in the formation. The Yegua attains a thickness of 1,000 feet in southern San Augustine County.

Where the sand is sufficiently thick in the outcrop area it will yield large quantities of fresh to slightly saline water to properly constructed wells. The formation yields water to a relatively large number of dug and drilled wells and a few springs; the city of Pineland derives its water supply from sands in this formation. Although not tapped heavily by wells, the Yegua is considered to be an important aquifer, potentially, in the two-county area.

Jackson Group

The Jackson Group, composed mainly of clay, crops out as a belt about 9 miles wide in southwestern San Augustine County. The belt thins eastward toward the Sabine River where the outcrop is slightly more than 2 miles wide. The Jackson also contains thin beds, sparsely distributed, of very fine to fine sand, considerable amounts of bentonitic clay, and smaller amounts of lignite, marl, and glauconite. Because the contact with the overlying strata equivalent to the Vicksburg Group of Louisiana is obscure in places, the Jackson is not separated from the Vicksburg equivalent on the geologic map or on the geologic sections. Their total maximum thickness is about 780 feet in southeastern Sabine County.

The Jackson yields small quantities of fresh to moderately saline water to wells throughout most of its outcrop. Near its contact with the overlying Vicksburg equivalent in eastern Sabine County the Jackson is reported to yield fresh to slightly saline water only to shallow wells. The Jackson probably has other areas in which only shallow fresh to slightly saline water is available; but because only a few wells tap the Jackson and because too few electric logs are available, these other areas cannot be accurately delineated.

Oligocene Series

Rocks of the Oligocene Series (although not delineated on the geologic map or on the cross sections) crop out as a narrow belt that rarely exceeds 1 mile in width in Sabine County and possibly in San Augustine County also, although the width in the latter county was not definitely determined. The Oligocene rocks, equivalent to the Vicksburg Group of Louisiana, are composed of a lower sand, silt, and clay, the Sandel Formation of Delaney (1958, p. 13; Delaney, 1963, p. 355; and Anderson, 1960), and an upper silty clay which Anderson (1960, p. 106) named the Nash Creek Formation. They and the Jackson Group have a total maximum thickness of 780 feet in southeastern Sabine County.

The Sandel Formation crops out in southern Sabine County as a narrow ribbon of sand, silt, and clay which in some areas forms a narrow range of hills 0.5 to 0.75 mile north of a ridge named the Catahoula Cuesta. Electric logs in Sabine County and in Newton County to the south, as well as surface mapping in the former, show that in some areas the sand beds in the Sandel Formation aggregate a thickness of nearly 30 feet although generally their thickness is much less. The sand ranges in size from very fine to medium. In areas where the sand beds are poorly developed, the contact between the Jackson and Vicksburg equivalent is obscure. Where the sand beds are free of silt and clay they probably carry fresh water for a short distance downdip.

The Nash Creek Formation of Anderson (1960), which separates the Sandel from the overlying Catahoula Sandstone, is composed of silt, clay, and sand. The Nash Creek Formation does not yield water to wells in the two-county area.

Miocene(?) Series

Catahoula Sandstone

The Catahoula Sandstone, the youngest hydrologically significant formation, crops out in a narrow strip that more or less parallels the southern boundary of the two-county area. Much of the outcrop, though, is in Jasper and Newton Counties to the south. The Catahoula is primarily composed of beds of sand and clay. A clay bed more than 100 feet thick occurs at the top of the formation. Small amounts of pyroclastic and calcareous material are widely distributed. The Catahoula yields only small quantities of water to a few shallow dug wells in its sparsely populated outcrop area. However, in the southeastern corner of Sabine County, where the formation reaches a maximum thickness of about 450 feet, the Catahoula probably is capable of yielding moderate to large quantities of fresh to slightly saline water. Towards the west where both the width of the outcrop and thickness diminish, the formation will yield only moderate to small quantities of water. Downdip in the northern parts of Newton and Jasper Counties where the Catahoula is thicker it is generally capable of yielding large quantities of fresh to slightly saline water to properly constructed wells.

Quaternary System

Pleistocene and Recent Series

Alluvium

Terrace and flood-plain deposits occur along some of the larger streams and may thinly cap a few hills. The deposits are composed of gravel, sand, silt, and clay, and are not believed to exceed 50 feet in thickness. The alluvium is not an important aquifer in either of the two counties.

GROUND-WATER HYDROLOGY

General hydrologic principles have been described in considerable detail by Meinzer (1923a, 1923b, and 1932), Meinzer and others (1942), Tolman (1937), and

by a number of other authors in the United States and elsewhere. The following discussion applies these principles to the ground-water hydrology of Sabine and San Augustine Counties.

Source and Occurrence of Ground Water

The source of ground water in Sabine and San Augustine Counties is precipitation on the outcrops of the aquifers, primarily in the two counties and in Shelby County to the north. Most of the precipitation, however, is evaporated either at the land surface or from the soil or is transpired by vegetation. Some of the precipitation runs off within a short time to gulfward-flowing streams. A relatively small remainder of the precipitation infiltrates the land surface and reaches the zone of saturation, thereby becoming ground water.

Ground water occurs under water-table and artesian conditions. Under watertable conditions the water is unconfined and does not rise in wells above the level at which it was first encountered. Under artesian conditions the water is confined under hydrostatic pressure in the sands between relatively impermeable beds, and where the elevation of the land surface at a well is considerably lower than the level of the outcrop of the aquifer, the pressure may be sufficient to cause water to rise in the well--possibly even high enough for the well to flow. Although the terms "water table" and "piezometric surface" are synonymous in the outcrops of the aquifers, the term piezometric surface as used in this report is applicable only in the artesian part of the aquifers.

The monoclinal coastward-dipping beds in the two-county area are ideally suited for the occurrence of both artesian and unconfined water. With the exception of the alluvium where ground water is unconfined, artesian conditions prevail downdip from the outcrops in all aquifers throughout the counties. Water-table conditions, however, are restricted to the outcrop of the aquifers.

Recharge of Ground Water

The natural and principal means of recharging the aquifers in the twocounty area is precipitation. In general, the greater the precipitation on the outcrop of the aquifers, the greater the recharge. A larger proportion of the precipitation during the dormant or nongrowing season (from early November to late March) will reach the zone of saturation than during the season of active plant growth. The loamy sand and sandy soils that cover much of the area are highly receptive to infiltration of rainfall. Figure 5 indicates that severe droughts are rare, but every year or so part or all of the area experiences dry periods. These dry periods may occur even during years of above-average precipitation. On the average, however, precipitation is fairly well distributed throughout the year but is greatest in January, May, and December (Figure 6). Because rainfall is greatest in several of the winter months, which are largely times of vegetation dormancy, the winter season is most conducive to recharge.

The exact amount of recharge to the aquifers in the area is difficult to determine. Two main factors relating to the amount of recharge are the quantity of ground water being discharged to the streams as base flow and the quantity of water moving downdip through the aquifers. Base flow in the area was not

ANNUAL PRECIPITATION, IN INCHES records Incomplete 1945 1948 1949 1950 1954 1961 1962 1926 1928 1928 1929 1930 1931 1934 1936 1937 1939 1940 1957 Figure 5 Annual Precipitation at Bronson, 1925-64 (From records of U.S. Weather Bureau) U.S. Geological Survey in cooperation with the Texas Water Development Board, Sabine River Authority of Texas, and Sabine and San Augustine Counties

U.S. Geological Survey in cooperation with the Texas Water Development Board, Sabine River Authority of Texas, and Sabine and San Augustine Counties determined but is probably equal to one inch or more of annual precipitation on the outcrops of the aquifers. (See subsection entitled "Discharge of Ground Water" in this report.) The quantity of water moving downdip through the important aquifers in Sabine and San Augustine Counties into adjoining counties amounted to about 51,000 acre-feet per year, or 46 mgd (million gallons per day). (See section entitled "Availability of Ground Water" in this report.) This amount represents about 2 inches of annual precipitation that enters the outcrops and becomes ground water.

Movement of Ground Water

The ground water moves from areas of recharge to areas of discharge, gravity being the motivating force in the movement of the water. After initial infiltration the dominant direction of movement through the zone of aeration is vertical. After reaching the zone of saturation, the movement of the water generally has a large horizontal component in the direction of lower altitudes-that is, the water follows the same laws that govern streamflow.

The relatively small residue of water (derived from precipitation) that is not lost by one means or another moves downdip through the water-table part of the aquifer into the artesian part. In the two-county area, water that has entered the aquifer at a higher altitude and moved a considerable number of miles downdip--the exact distance depending upon the dip of the rocks, topography, transmissibility, and other factors--generally has a higher pressure head than water in the overlying sands. Hence, the deeper water moves upward into overlying sands even though the sands may be separated by thick beds of clay. Where beds of this type are present, such as in the Cane River Formation, the movement of water is extremely slow. Where the sands are separated by thinner clays or are locally connected, as in parts of the Wilcox Group, this movement is more rapid.

In the two-county area the velocity of the ground water, based on the natural undisturbed gradient, might be about 10 feet per year. Velocities vary, however, depending on the hydraulic gradient, permeability, porosity, and the temperature of the water at any locality. The ground water generally moves in the direction normal to the strike of the outcrops of the aquifers--that is, southward toward the Gulf of Mexico.

All fresh to slightly saline water underlying the two-county area is in transient storage, a constant state of movement; and the volume of water moving into the aquifers by replenishment is essentially offset by water moving out of the area through the aquifers or being discharged within the area.

Discharge of Ground Water

Ground water is discharged both naturally and artificially in Sabine and San Augustine Counties. The principal methods of natural discharge are transpiration by vegetation, seepage and spring flow to streams, and evaporation. Pumping and flowing wells represent artificial discharge.

Transpiration, chiefly by the forests of the area, probably represents a major means of natural discharge of ground water. The consumptive use of water by forests depends on various factors, such as the amount and distribution of rainfall, climate, topography, and type of trees. Determination of the quantity of ground water transpired by trees was beyond the scope of the report, but on the basis of studies in other areas this form of ground-water discharge in Sabine and San Augustine Counties could be a significant one.

Discharge of ground water to streams by seepage and spring flow in the outcrops of the aquifers reduces the quantity of ground water in storage. This discharge is water that enters the outcrops but, because the aquifers are so full, cannot move down the dip under present hydraulic gradients. Thus the water moves toward topographic lows in the outcrops and runs off. In Sabine and San Augustine Counties, the seepage and spring flow which are common along many of the creeks and streams sustain their flow even during periods of below-normal rainfall. In the Gulf Coast region, within the rainfall belt of 40 to 50 inches per year (annual precipitation in the two-county area is about 50 inches), probably 1 inch or more of the water that enters the outcrops of the aquifers is discharged to the streams in the outcrops as base flow (Wood, 1956, p. 30).

Evaporation in the study area consumes a significant amount of ground water. The average annual gross lake-surface evaporation is about 40.7 inches in Sabine and San Augustine Counties. Evaporation is greatest during the hot summer months when the soil-moisture demand to sustain plant life also is large (Figure 6). The 40.7 inches of annual evaporation is considerably greater than the actual evaporation from the soil. Nevertheless, the moisture evaporated from the soil decreased potential replenishment of ground water to the aquifers.

The withdrawal of ground water by pumping and flowing wells is only a small part of the total quantity of water discharged from the aquifers. In 1964 about 1,457 acre-feet, or 1.3 mgd, was withdrawn by wells in Sabine and San Augustine Counties.

Hydraulic Characteristics of the Aquifers

The value of an aquifer as a source of ground water relates principally to the ability of that aquifer to transmit and store water. Coefficients of transmissibility, permeability, and storage determined by aquifer tests are the measurements of that ability.

Data from three aquifer tests in the report area were utilized in appraising some of the hydraulic characteristics of the aquifers. Additional tests could not be made because well construction precluded measurements of water levels or because pumping conditions were not suitable for obtaining reliable results of tests. Two tests were made by personnel of the U.S. Geological Survey on two of the city of San Augustine wells producing from the Carrizo Sand and Wilcox Group; and another test, a recovery test on a well completed in 1951 in the Yegua Formation, utilized data obtained by the contractor who drilled the well. For the sections tested, the results showed transmissibilities of about 13,000 and 18,000 gpd (gallons per day) per foot for the Carrizo-Wilcox and Yegua, respectively. According to calculations, however, the Carrizo-Wilcox had a higher permeability than the Yegua, as the permeabilities were 280 and 220 gpd per square foot, respectively. On the basis of data obtained from tests of the city of San Augustine wells, the coefficient of storage of the Carrizo-Wilcox was 0.00006. Extensive testing of the Carrizo Sand and Wilcox Group at the Southland Paper Mill in Nacogdoches County revealed permeabilities of 158, 281, and 213 gpd per square foot. The average of these permeabilities and that determined at San Augustine is about 230 gpd per square foot. On the basis of this permeability and an average sand thickness of 300 feet (Figure 11), the average transmissibility of the fresh to slightly saline water-bearing sands in the Carrizo Sand and Wilcox Group in the two-county area is about 70,000 gpd per foot. In the absence of extensive aquifer testing and if the wells tested screen only a small part of the aquifer, then transmissibilities determined by the above method are necessarily subject to error. This is because the average values of permeability may not apply to the average sand thicknesses.

The average permeability of the Sparta Sand in the two-county area was estimated from the results of testing in Brazos County, Texas, at the city of Bryan well field and at Bryan Air Force Base; in Smith County, at the city of Tyler; in Houston County; and in northern Louisiana. The locations of the test sites and permeabilities (in gpd per square foot) are: city of Bryan, 158, 210, 171, 129, 119, 81, and 138; Bryan Air Force Base, 146 and 200; city of Tyler, 250; Houston County (irrigation well), 120; and northern Louisiana, a range between 245 and 320 (Page and others, 1963, p. 81). On the basis of an average permeability of 200 gpd per square foot and an average sand thickness of 120 feet (Figure 12), the average transmissibility of the fresh to slightly saline water-bearing sands in the Sparta Sand is 24,000 gpd per foot.

The permeability of the Yegua Formation in the two-county area (determined at Pineland to be 220 gpd per square foot) roughly agrees with an assumption of 200 gpd per square foot in Vernon Parish, Louisiana, by Rogers and Calandro (1965, p. 18). On the basis of an average permeability of 200 gpd per square foot and an average sand thickness of 200 feet, the average transmissibility of the fresh to slightly saline water-bearing sands in the Yegua Formation is 40,000 gpd per foot.

The coefficients of transmissibility and storage may be used to predict future drawdowns of water levels in wells caused by pumping. Figure 7 shows the theoretical relation between drawdown and the distance from the center of pumping for the range of coefficients of transmissibility and storage most likely to apply to large-capacity wells in the report area; a theoretical line source of recharge to the aquifer was assumed to be 7 miles from the center of pumping. For example, if the coefficients of transmissibility and storage are 50,000 gpd per foot and 0.001, respectively, the drawdown or decline of the water level would be about 3 feet at a distance of 8,000 feet from a well or group of wells pumping 0.5 mgd (about 350 gpm) for 1 year. If the coefficients of transmissibility and storage are 5,000 gpd per foot and 0.0001, respectively, the same pumping rate for the same time would cause about 30 feet of drawdown at the same distance. Coefficients of transmissibility and storage smaller than 5,000 gpd per foot and 0.0001, respectively, are undoubtedly common; but only the larger capacity wells are likely to be tested and they probably will have values within the range of the curves.

Figure 8 shows the relation of drawdown to distance for various periods of time as a result of discharging 0.5 mgd from an aquifer having coefficients of transmissibility and storage of 15,000 gpd per foot and 0.0001, respectively. A theoretical line source of recharge 7 miles from the point of discharge was assumed. The graph shows that the rate of drawdown or decline of water levels decreases with time. For example, the drawdown or decline 1,000 feet from a

- 27 -

well would be 10 feet after 0.5 mgd had been pumped for 1 day; after 0.5 mgd had been pumped for 180 days, the drawdown would be about 22 feet. The drawdown after pumping for an unlimited extent of time would not exceed the values indicated by the equilibrium curve.

Wells drilled close together may create cones of depression that intersect. The total drawdown at any one place within the cone of depression or influence of several wells is the sum of their influence. The overlapping of cones of depression, or interference between wells, may cause a decrease in the yield of the wells and an increase in pumping costs.

One of the most meaningful ways in which the yield of wells is expressed is by the specific capacity: the number of gallons per minute a well will yield per foot of drawdown. Until the water level in the discharging well stops declining--that is, reaches an equilibrium--time is a factor; so the length of time the well has been discharging is generally given when reporting the specific capacity. Thus, a well discharging 100 gpm for 2 hours and having a drawdown of 25 feet has a 2-hour specific capacity of 4 gpm per foot.

Development of Ground Water

Records of 267 water wells, 14 springs, and 79 oil tests in the two-county area were used during the ground-water investigation (Table 6). The well inventory made included only a part of the total number of wells in the counties. Locations of the wells inventoried are shown in Figure 13.

The quantity of ground water used by municipalities for public supply and the quantity used for rural, domestic, and livestock purposes was about 0.80 mgd, or about 897 acre-feet in 1964. This quantity does not include an estimated 0.5 mgd or 560 acre-feet per year from flowing wells. About 0.45 mgd (508 acre-feet per year) was estimated to be used for rural domestic and livestock needs in 1964. A very small and insignificant amount of ground water is reported to be used for irrigation and industrial purposes.

Between 1955 and 1964, the withdrawals of ground water for municipal supply ranged from a maximum of about 0.46 mgd in 1958 to a minimum of about 0.23 mgd in 1961, 1962, and 1963 (Table 3). The cities of San Augustine and Hemphill obtain their municipal water supplies from surface-water reservoirs, San Augustine converting to surface water in 1961. San Augustine, however, maintains two standby wells. Pineland has used ground water for its municipal supply for a number of years, and Bronson began using ground water in 1964. About 27 percent of the ground water used in the two-county area in 1964 was for municipal supply.

Changes in Water Levels

Water levels in wells continuously respond to natural and artificial influences which act on the aquifers. In general, the major influences that control water levels are the rates of recharge to and discharge from the aquifer. Relatively minor changes are due to variations in atmospheric pressure and in load on aquifers. Fluctuations usually are gradual, but in some wells levels occasionally rise or fall several inches or even a few feet in a few minutes.

	San Augu	ustine	Pine	land	Bron	son	Totals		
Year	Mgd	Acre- ft/yr	Mgd	Acre- ft/yr	Mgd	Acre- ft/yr	Mgd	Acre- ft/yr	
1955	0.27	298	0.01	6	0	0	0.27	304	
1956	.35	393	.04	49	0	0	.40	442	
1957	.36	402	.06	68	0	0	•42	470	
1958	.36	399	.10	117	0	0	•46	516	
1959	.22	252	.11	123	0	0	.33	375	
1960	.26	288	.15	167	0	0	.41	455	
1961	0	0	.23	258	0	0	.23	258	
1962	0	0	.23	261	0	0	•23	261	
1963	0	0	.23	261	0	0	.23	261	
1964	0	0	.29	322	.06	67	•35	389	

Table 3.--Municipal pumpage of ground water, 1955-64

Figures are approximate because some of the pumpage is estimated. Figures are shown to nearest 0.01 mgd and to nearest acre-foot. Totals are rounded to two significant figures.

Water-level declines in water-table or artesian wells usually result from large withdrawals of water from wells or from a decrease in the amount of recharge to the aquifer. In shallow wells under water-table conditions and in some shallow artesian wells near the recharge area, water-level declines may be caused by drought or overpumping in the aquifer. Where artesian conditions prevail, water levels respond to increasing or decreasing hydrostatic pressures in the aquifer; but the change in the quantity of water in storage may be small.

The report area has a few deep wells in which water levels may be measured without causing considerable inconvenience to the well owners, such as the loss of their water supply for one or more hours. Because of the scarcity of waterlevel data in the drilled wells and because of the relatively steep dip of the beds, most of the water-level data available are from wells that do not tap the same sand bed. Hence, because water-level data for wells tapping the same sand beds were scarce throughout the area, maps showing either the elevations of water levels in wells tapping the major aquifers or the change in water levels could not be prepared.

Long-term records of consecutive annual measurements of water levels in Sabine and San Augustine Counties are not available, but on the basis of measurements made in 1942 and 1964, information on changes of water levels is afforded by several dug wells (under water-table conditions) in the area. The net change from 1942-64 in water levels measured in 10 wells (ranging in depth from 15 to 38 feet) ranged from a decline of 2.0 feet in well WT-37-32-109 tapping the Carrizo Sand and Wilcox Group to a decline of 11.2 feet in well WS-36-41-206 tapping the Yegua Formation. The average decline of water levels in the 10 wells was 6.3 feet. The causes of the declines in the water levels are not known because of an inadequate number of water-level measurements for each well. However, because these wells are very shallow and draw water from the water table, the declines of water levels are probably related to declines in the amount of recharge in the outcrop of the aquifers. Although precipitation in 1942 was essentially the same as in 1964, precipitation in 1940 and 1941 was about 20 inches greater than precipitation in 1962 and 1963 (determined at Spurger. about 50 miles south of Bronson). The deficiency in rainfall in the 2 years prior to 1964 may have contributed to the net declines of water levels in the outcrops.

Well Construction

Large-capacity wells completed in the aquifers underlying the two-county area have been drilled to furnish mostly municipal needs, whereas smallercapacity wells are used to supply water for rural domestic and livestock needs.

Recently drilled municipal wells are underreamed, screened, and gravel packed. Underreaming enlarges the bore hole opposite the screened section to accommodate the gravel pack. The gravel packing increases the effective diameter of the well, aids in preventing the entrance of sand into the well, and protects the casing from caving of the surrounding formation. A few of the earlier drilled municipal and some industrial wells were completed without gravel packing. Rural domestic and livestock wells are drilled, bored, or dug; and their capacity is generally small. Most of the wells are equipped with small jet pumps. The shallow dug well penetrates no more than a few feet into the zone of saturation and requires little or no casing. Bored wells, and some drilled wells, are cased nearly to the bottom of the hole and have neither screen nor slotted casing in their construction. Accordingly such wells are termed "openend" wells. In a well of this type, the ground-water intake is restricted because the bottom opening of the casing is small in area. Therefore, in wells from which larger yields are needed, torch-slotted casing, perforated casing, or screen is installed or else the well is equipped with larger jet pumps or submersible pumps.

The problem of sand being pumped by a well may be avoided by proper well construction. The sand is pumped by some wells because a loose, very fine- to fine-grained sandy texture characterizes some of the aquifers. Sand-pumping reduces the effective life of most pumps, especially submersible pumps. A properly gravel-packed screen will greatly reduce the sand intake and thus lengthen pump life.

QUALITY OF GROUND WATER

Source and Significance of Chemical Constituents and Properties of Water

The chemical constituents in the fresh and slightly saline ground water underlying Sabine and San Augustine Counties are derived principally from the solution of material in the soil and rocks and in some degree from the atmosphere and plants. The differences in the chemical character of the water reflect, at least to some extent, the types of soil and rock that have been in contact with the water. Usually, as the water moves deeper, the chemical content increases by dissolving the rocks through which it moves, by removal of salts held by molecular forces, or by mixing with more concentrated waters. The source and significance of mineral constituents and properties commonly found in water are summarized in Table 4, which is modified from Doll, Meyer, and Archer (1963, p. 39-43).

Suitability of Water for Various Uses

The major factors affecting the use of a water supply for a given purpose are the amount and kind of minerals the water contains. A number of waterquality requirements have been set up to serve as guides in determining the suitability of water for various uses. These guides cover chemical constituents, bacterial content, and physical characteristics (such as temperature, odor, color, and turbidity). The bacterial content and physical characteristics can usually be controlled relatively economically, but the removal of most undesirable chemical constituents can be difficult and expensive.

Table 5 summarizes 284 chemical analyses from 263 wells and springs in Sabine and San Augustine Counties (Table 8) from various ground-water units and compares them with standards recommended by the U.S. Public Health Service and other authorities.

Constituent		
or property	Source or cause	Significance
Silice (SiO ₂)	Dissolved from practically all rocks and soils, commonly less than 30 ppm. High concentrations, as much as 100 ppm, generally occur in highly alkaline waters.	Forms hard scale in pipes and boilers. Carried over in steam of high-pressure boilers to form deposits on blades of tur- bines. Inhibits deterioration of zeolite-type water soften- ers.
Iron (Fe)	Dissolved from practically all rocks and soils. May also be derived from iron pipes, pumps, and other equipment.	On exposure to air, iron in ground water oxidizes to reddish- brown precipitate. More than about 0.3 ppm stains laundry and utensils reddish brown. Objectionable for food proces- sing, textile processing, beverages, ice manufacture, brew- ing, and other processes. Large quantities cause unpleasant taste and favor growth of iron bacteria.
Calcium (Ca) and Magnesium (Mg)	Dissolved from practically all soils and rocks, but especially from limestone, dolomite, and gypsum. Calcium and magnesium are found in large quantities in some brines. Magnesium is present in large quantities in sea water.	Cause most of the hardness and scale-forming properties of water; soap consuming (see hardness). Waters low in calcium and magnesium desired in electroplating, tanning, dyeing, and in textile manufacturing.
Sodium (Na) and Potassium (K)	Dissolved from practically all rocks and soils. Found also in oil-field brines, sea water, industrial brines, and sewage.	Large amounts, in combination with chloride, give a salty taste. Moderate quantities have little effect on the useful- ness of water for most purposes. Sodium salts may cause foaming in steam boilers and a high sodium content may limit the use of water for irrigation.
Bicarbonate (HCO ₃) and Carbonate (CO ₃)	Action of carbon dioxide in water on carbonate rocks such as limestone and dolomite.	Bicarbonate and carbonate produce alkalinity. Bicarbonates of calcium and magnesium decompose in steam boilers and hot- water facilities to form scale and release corrosive carbon dioxide gas. In combination with calcium and magnesium, cause carbonate hardness.
Sulfate (SO ₄)	Dissolved from rocks and soils containing gypsum, iron sulfides, and other sulfur compounds. Commonly present in some industrial wastes.	Sulfate in water containing calcium forms hard scale in steam boilers. In large amounts, sulfate in combination with other ions gives a bitter taste to water and a laxative effect.
Chloride (Cl)	Dissolved from rocks and soils. Present in sewage, and found in large amounts in oil- field brines, sea water, and industrial brines.	In large amounts in combination with sodium, gives salty taste to drinking water. In large quantities, increases the cor- rosiveness of water.
Fluoride (F)	Dissolved in small to minute quantities from most rocks and soils. Added to many waters by fluoridation of municipal supplies.	Fluoride in drinking water reduces the incidence of tooth decay when the water is consumed during the period of enamel calci- fication. However, it may cause mottling of the teeth, de- pending on the concentration of fluoride, the age of the child, amount of drinking water consumed, and susceptibility of the individual (Maier, 1950).
Nitrate (NO ₃)	Decaying organic matter, sewage, fertilizers, and nitrates in soil.	Concentration much greater than the local average may suggest pollution. Nitrate has been shown to be helpful in reducing intercrystalline cracking of boiler steel. It encourages growth of algae and other organisms which produce undesirable tastes and odors.
Boron (B)	A minor constituent of rocks and of natural waters.	An excessive boron content will make water unsuitable for irri- gation.
Dissolved solids	Chiefly mineral constituents dissolved from rocks and soils.	For many purposes the dissolved-solids content is a major limitation on the use of water.
Hardness as CaCO ₃	In most waters nearly all the hardness is due to calcium and magnesium. All of the metallic cations other than the alkali metals also cause hardness.	Consumes soap before a lather will form. Deposits soap curd on bathtubs. Hard water forms scale in boilers, water heaters, and pipes. Hardness equivalent to the bicarbonate and carbonate is called carbonate hardness. Any hardness in excess of this is called non-carbonate hardness.
Sodium-adsorption ratio (SAR)	Sodium in water.	A ratio for soil extracts and irrigation waters used to express the relative activity of sodium ions in exchange reactions with soil (U.S. Salinity Laboratory Staff, 1954, p. 72, 156). Water with high SAR values may cause soil damage.
Residual sodium carbonate (RSC)	Sodium and carbonate or bicarbonate in water.	As calcium and magnesium precipitate as carbonates in the soil, the relative proportion of sodium in the water is increased. Water with RSC values in excess of 2.5 may cause soil damage.
Specific conductance (micromhos at 25°C)	Mineral content of the water.	Indicates degree of mineralization. Specific conductance is a measure of the capacity of the water to conduct an electric current. Varies with concentration and degree of ionization of the constituents.
Hydrogen ion concentration (pH)	Acids, acid-generating salts, and free carbon dioxide lower the pH. Carbonates, bicarbon- ates, hydroxides, phosphates, silicates, and borates raise the pH.	A pH of 7.0 indicates neutrality of a solution. Values higher than 7.0 denote increasing alkalinity; values lower than 7.0 indicate increasing acidity. The pH is a measure of the activity of the hydrogen ions. Corrosiveness of water gen- erally increases with decreasing pH. However, excessively alkaline waters may also attack metals.

.

Table 5.--Comparison of quality of ground water in Sabine and San Augustine Counties with standards recommended by the U.S. Public Health Service (1962, p. 7-8) and other authorities

Chemical constituents in parts per million (ppm)--except specific conductance, sodium-adsorption ratio (SAR), and residual sodium carbonate (RSC);

	Criteria for public and domestic supply									ria for irriş	z ati on	
	Silica (SiO ₂)	Iron ^{a/ b/} (Fe)	Sulfate (SO ₄)	Chloride ^{bj} (Cl)	Fluoride (F)	Nitrate ^{b/} (NO ₃)	Dissolved solids	Hardness as CaCO ₃	Specific conductance (micromhos at 25°C)	SAR	RSC	Boron
Upper limits ^{C/}	20	0.3	250	250	1.0	45	500	60	2,250	14	2.5	1.0

Number of determinations

	Total	Over 20 ppm	Total	Over 0.3 ppm	Total	Over 250 ppm	Total	Over 250 ppm	Total	Over 1.0 ppm	Total	Over 45 ppm	Total	Over 500 ppm	Over 1,000 ppm	Total	Over 60 ppm	Total	Over 2,250	Total	Over 14	Total	Over 2.5	Total	Over 1.0
All wells	33	13	83	31	153	12	285	12	56	5	160	23	118	39	11	282	75	184	9	19	12	125	64	5	1
Carrizo Sand and Wilcox Group	11	1	36	22	52	1	95	3	20	2	46	6	35	11	4	95	23	65	1	6	3	52	19	1	0
Sparta Sand	8	4	10	2	25	1	44	2	7	2	18	1	19	7	2	44	13	30	1	4	3	22	13	1	0
Yegua Formation	11	7	17	4	43	6	77	4	17	1	37	5	34	17	4	77	22	49	2	6	4	39	26	2	1
Other formations	3	1	24	3	33	4	69	3	12	0	59	11	30	4	1	66	17	40	5	3	2	12	6	1	0

a, Iron in solution at time of analysis or at time of sampling. b, Includes field determinations. c, See section entitled "Quality of Ground Water" in this report.

Public Supply

The U.S. Public Health Service has established standards of drinking water for use on common carriers engaged in interstate commerce. These standards are periodically revised as more information becomes available. The limitations set by the standards are designed to protect the public from exposure to digestively disturbing, unpalatable, unsightly, or poisonous water. The standards suggest that constituents should not be present in a water supply in excess of listed concentrations if more suitable supplies are, or can be made, available at reasonable cost. Many of the constituents for which standards have been set are not normally determined in routine water analyses, either because previous work has indicated that undesirable amounts of these constituents are normally not present in drinking water or because of the combination of this with the high cost of analysis. Below is a partial list of chemical standards adopted by the U.S. Public Health Service (1962, p. 7-8) including those constituents that are in the analyses in the two-county area:

Substance	Concentration (parts per million)						
Iron	0.3						
Sulfate	250						
Chloride	250						
Fluoride	1.0*						
Nitrate	45						
Dissolved solids	500						

* Based on the annual average of maximum daily air temperatures (78.3°F) for the town of Bronson, the recommended control limits of fluoride concentration in ppm are: lower, 0.7; optimum, 0.8; and upper, 1.0.

Excessive iron in water is one of the chief water-quality problems in the counties. The minimum concentration of iron found was 0.02 ppm (parts per million) in well WS-36-49-102 (depth 597 feet) tapping the Yegua Formation, and the maximum was 35 ppm in well WT-37-31-602 (depth 271 feet) tapping the Carrizo Sand and Wilcox Group. Iron concentrations exceeded 0.3 ppm in slightly more than one-third of all samples. Of the 36 iron determinations in Sabine County and the 47 determinations in San Augustine County, the iron concentrations found in 6 of the former and 25 of the latter exceeded the limit set by the U.S. Public Health Service. The Carrizo Sand and Wilcox Group had the highest percentage (about 60 percent) of water samples containing more than 0.3 ppm iron; the Yegua Formation had about 25 percent containing more than 0.3 ppm; and the Sparta Sand had only about 20 percent.

Figure 9 shows the concentration of iron in ground water in various aquifers in the two-county area and its relation to depth of occurrence. Most of the water containing less than 0.3 ppm of iron came either from relatively shallow
wells or relatively deep wells. The relatively shallow wells produce water containing sufficient oxygen to precipitate iron, and the relatively deep wells produce from a zone of reduction where iron has a low solubility. Wells intermediate in depth produce water from a chemically unstable zone having a high content of soluble iron in the water. Fortunately iron may be partially or completely removed from water by filter systems which are commercially available.

Sulfate is not a significant problem in the two-county area. The minimum concentration of sulfate in the analyzed samples was 0.0 ppm in several wells, and the maximum was 970 ppm in well WS-36-49-702 (depth 278 feet) tapping the Jackson Group. Of 153 samples analyzed for sulfate, only 12 contained more than 250 ppm. Of the major water-bearing formations, the Yegua Formation had the highest percentage of samples (14 percent) containing sulfate in excess of 250 ppm.

Of the 285 chloride determinations, in only 12 did the concentration exceed 250 ppm. The minimum concentration of chloride in the analyzed samples was 0.0 in several wells, and the maximum was 15,050 ppm in well WS-36-35-403 (depth 3,012 feet) tapping the Carrizo Sand and Wilcox Group. However, this well produces from below the base of fresh to slightly saline water.

The upper limit of fluoride for an area varies with the annual average maximum daily air temperatures. On the basis of the annual average of maximum daily air temperatures at Bronson (78.3°F), fluoride in the water should not average more than 1.0 ppm. Fluoride in average concentrations greater than 1.6 ppm constitutes grounds for rejection of the water supply by the U.S. Public Health Service. Fluoride in optimum concentration (0.8 ppm) in drinking water may reduce the incidence of tooth decay if the consumer uses the water during the early period of enamel calcification (Dean, Arnold, and Elvove, 1942, p. 1155-1179; Dean and others, 1941, p. 761-792). Excessive concentrations may cause teeth to become mottled. Of the 56 samples analyzed for fluoride, 37 had concentrations of 0.7 ppm or less, and only 5 had concentrations exceeding 1.0 ppm. The minimum concentration of fluoride in the analyzed samples was 0 from well WT-37-48-201 (depth 26 feet) tapping the Yegua Formation, and the maximum concentration was 1.7 ppm in well WS-36-41-301 (depth 388 feet) tapping the Sparta Formation.

Water containing more than about 45 ppm nitrate may be dangerous for infant feeding. Maxcy (1950, p. 271) has related water containing more than 45 ppm nitrate to the incidence of infant cyanosis (methemoglobinemia or "blue baby" disease). Of 160 nitrate concentrations determined, 23 exceeded 45 ppm. Nitrate ranged from a low of 0.0 in many wells to a high of 300 ppm in well WT-37-48-202 (depth 15 feet) tapping the Yegua Formation.

Nitrate is considered the oxidation product of nitrogenous matter. The presence in water of nitrate in concentrations of more than a few parts per million may indicate past or present contamination by sewage or other organic matter (Lohr and Love, 1954, p. 10). Other organic matter in Sabine and San Augustine Counties includes lignite, which is present in significant quantities in most of the rocks underlying the area, nitrogenous plants, or nitrogenforming bacteria. Although no chemical analyses of the lignite are available, analyses of lignite from Eocene rocks in other areas show that they contain nitrogen compounds, some of which may be the source material for nitrates in water (Hanway and others, 1963, p. 10). Figure 9 shows the concentration of nitrate in ground water from many shallow dug wells and from a few deeper drilled or bored wells tapping the aquifers. The shallow dug wells, in general, yielded water containing higher nitrate concentrations than did the deeper drilled wells, but there were some exceptions. The source of the nitrate concentrations in some of the deeper drilled wells is not definitely known although casing deterioration or improper well construction may permit the entry of contaminated shallow water.

A major influence or limitation in the general use of ground water is the dissolved-solids content. It is a measure of the total mineral constituents dissolved in the water and is important because water with a high mineral content generally has an undesirable taste, may act as a laxative, and is generally undesirable for use in industry and agriculture. In this report the classification of water is based on the dissolved-solids content as outlined by Winslow and Kister (1956, p. 5; see quality descriptions in section entitled "Definition of Terms").

Electric logs were used to estimate the base of fresh to slightly saline water by careful interpretation of the resistivity and self-potential curves. Although the interpretations are based primarily on specific principles, considerable experience and judgment are also necessary. The interpretations are more accurate if the results are checked with chemical analyses of water from some of the logged sands. A few checks were available in the report area, although more would be desirable in key areas to substantiate the interpretations used to construct some of the maps and part of all cross sections.

In general, thick or very permeable sands will contain fresh to slightly saline water farther downdip, and hence to greater depths, than will thinner or less permeable sands. The altitude and general configuration of the base of the fresh to slightly saline water (Figures 10, 14, 15, and 16) reveal that the deepest fresh to slightly saline water is in the Wilcox Group in northwestern San Augustine County, and in the Sparta Sand in southern Sabine and San Augustine Counties near Pineland.

Water containing more than 500 ppm dissolved solids is undesirable for drinking and many industrial uses. Of the 118 dissolved-solids concentrations determined, 39 exceeded 500 ppm and 11 exceeded 1,000 ppm. The minimum concentration was 15 ppm in well WS-36-35-101 (depth 20 feet) tapping the Carrizo Sand and Wilcox Group, and also 15 ppm in spring WT-37-31-101 likewise in the Carrizo Sand and Wilcox Group. The maximum concentration was about 25,000 ppm in well WS-36-35-403 (depth 3,012 feet) also tapping the Carrizo Sand and Wilcox Group. The largest percentage of samples exceeding 500 ppm were from the Yegua Formation.

Calcium and magnesium are the principal causes of hardness in water. Hardness is responsible not only for increased soap consumption and the attendant precipitate (the common bathtub ring), but also for inducing the formation of scale in boilers and other objects in which water is heated as well as in the pipes through which the hot water may pass.

Commonly accepted standards and classifications of water hardness are:

Hardness range (ppm)	Classification
60 or less	Soft
61 - 120	Moderately hard
121 - 180	Hard
More than 180	Very hard

Ground water that contains moderate quantities of dissolved material may change from hard to soft by ion-exchange reactions in passage through sediments. In the report area, water that contains calcium and magnesium in the outcrop moves downdip and may contain little or no calcium or magnesium at depth. Sodium and bicarbonate are the principal constituents of the deeper fresh water, whereas calcium or magnesium and bicarbonate generally characterize the relatively shallow water.

Of the 282 values for hardness reported in Table 8, approximately 27 percent exceeded 60 ppm. Hardness exceeded 60 ppm in about 25 percent of the water samples from the principal aquifers. The minimum hardness was 0 ppm in well WT-37-39-901 (depth 210 feet) tapping the Sparta Sand, and the maximum was 1,194 ppm in well WT-37-48-201 (depth 26 feet) tapping the Yegua Formation.

Hardness in water may be reduced by water-softening systems commercially available. As large volumes of excessively hard water are relatively expensive to soften, a common practice is to have separate water-distributing systems for treated and untreated water. Thus, water used for lawn or garden irrigation and for sanitary purposes where hardness is not significant may bypass the watersoftening system.

Industrial Use

The quality requirements for industrial water range widely, and almost every industrial application has different standards. Because of the wide variations of chemical-quality standards for industrial water, only facts and interpretations of a general nature that can be further studied by those who have special requirements are discussed.

In general, temperature and chemical quality of water are the most significant factors in judging the suitability of a water for most industrial uses. In Sabine and San Augustine Counties, the temperature of ground water increases about 1°F for every 85 feet of depth; the temperature of near-surface ground water is about 66°F.

Table 5 lists 20 ppm as the upper limit for silica in boiler feed water if boiler pressures are as much as 250 pounds per square inch. In the samples analyzed, the minimum concentration of silica was 12 ppm in well WS-36-34-202

(depth 392 feet) tapping the Carrizo Sand and Wilcox Group and in well WS-36-41-301 (depth 388 feet) tapping the Sparta Sand, and the maximum was 56 ppm in well WS-36-49-102 (depth 597 feet) tapping the Yegua Formation. In slightly more than one-third of all samples the silica concentration exceeded 20 ppm. Of the major water-bearing units, the Carrizo Sand and Wilcox Group had the lowest percentage of samples containing more than 20 ppm, and the Yegua Formation had the highest percentage.

Other factors significant for many industrial uses, such as concentrations of iron, dissolved solids, and hardness in ground water, have been discussed in the subsection on suitability of water for public supply.

Irrigation

The suitability of water for irrigation is determined by a number of factors, among the more important of which are: the chemical characteristics of the water; the permeability of the soil and subsoil; the slope of the land surface; the amount, frequency, and duration of rainfall; the quantity of water used; and the type of crop grown. In general, water of poor quality may be satisfactory for irrigation where the soil is well drained, permeable, and adequately leached by sufficient water from rainfall or irrigation.

The chemical characteristics of water that relate specifically to irrigation are specific conductance, SAR (sodium-adsorption ratio), RSC (residual sodium carbonate), and boron. Water becomes less suitable for irrigation as the salinity (dissolved-solids content) or specific conductance, SAR, RSC, and boron increase. The following discussion offers criteria for a general evaluation of the suitability of ground water for irrigation.

The U.S. Salinity Laboratory Staff (1954, p. 69-82) proposes a classification that commonly is used for judging the quality of a water for irrigation. Briefly the classification bases the suitability of irrigation water on the salinity hazard as measured by the specific conductance of the water and on the sodium hazard as measured by the SAR. Generally, water is safe for supplemental irrigation, according to Wilcox (1955, p. 16), if its conductivity is less than 2,250 micromhos per centimeter at 25°C and its SAR is less than 14; because the annual rainfall in the two-county area averages about 50 inches, most irrigation would be supplemental.

The specific conductance exceeded 2,250 micromhos in only 9 of 184 samples. The minimum value was 42 micromhos in well WT-37-32-402 (depth 170 feet) tapping the Carrizo Sand and Wilcox Group, and the maximum was 5,120 micromhos in well WS-36-49-701 (depth 460 feet) tapping the Jackson Group. In only one sample each from the Carrizo Sand and Wilcox Group and the Sparta Sand and in only two samples from the Yegua Formation did the specific conductance exceed 2,250 micromhos. The specific conductance in micromhos per centimeter at 25°C is about $l\frac{1}{2}$ times the dissolved-solids content in parts per million, although this ratio varies to some extent depending upon the amount and type of dissolved constituents.

The upper limit of the SAR for supplemental irrigation is 14. Of the 19 values calculated for SAR, 12 exceeded 14. The minimum SAR was 1.1 in well WS-36-49-704 (depth 23 feet) tapping the Jackson Group, and the maximum was

139 in well WS-36-43-701 (depth 405 feet) tapping the Yegua Formation. In the major water-bearing units, from 50 to 75 percent of the SAR values exceeded the upper limit. Excessive SAR may be expected in relatively deep ground water in the area.

The suitability of water for irrigation is also determined by the RSC. Wilcox (1955, p. 11) reports that water containing more than 2.5 epm (equivalents per million) RSC is undesirable for irrigation, 1.25 to 2.5 epm RSC is marginal, and less than 1.25 epm RSC probably is safe. Water from many of the wells in the two-county area has no RSC. The maximum was 24.9 epm in well WS-36-34-203 (depth 410 feet) tapping the Carrizo Sand and Wilcox Group. RSC exceeded 2.5 epm in about half of the samples tested. Of the major aquifers, the Carrizo Sand and Wilcox Group had the lowest percentage (37 percent) of samples exceeding 2.5 epm.

Boron is also significant in evaluating irrigation water. Although boron is essential to normal plant growth, the required amount is very small and excesses are injurious to some plants. Wilcox (1955, p. 11) suggests that a permissible boron concentration for irrigating boron-sensitive crops can be as much as 1.0 ppm and for boron-tolerant crops as much as 3.0 ppm. In the five samples tested, only one contained more than 1.0 ppm boron. The minimum concentration of boron was 0.04 ppm in well WS-36-49-704 (depth 23 feet) tapping the Jackson Group, and the maximum was 1.7 ppm in well WT-37-55-204 (depth 295 feet) tapping the Yegua Formation.

Deductions Concerning Chemical Quality of Ground Water

As shown by the chemical analyses (Table 8), the quality of water from wells in Sabine and San Augustine Counties varies widely in total solids and in the proportion of the constituents to each other. The analyses further indicate that, with two exceptions, the quality of ground water in the study area cannot be reliably given in general statements. The first exception is that water from most of the shallow dug wells is relatively low in dissolved solids, including iron. The second is that water obtained from relatively deep wells is higher in dissolved solids, RSC, and SAR, and probably relatively low in iron and hardness. The quality of water from wells of intermediate depth ranges widely and is unpredictable.

In summary, ground water of good chemical quality suitable for public supply, irrigation, and many industrial needs is generally obtainable from the major aquifers in Sabine and San Augustine Counties.

Bacteriological Contamination

The high nitrate content of water from several shallow dug wells suggested that they might be contaminated, possibly with bacteria, some of which could make the water dangerous to drink unless it was first boiled or otherwise treated. Water samples whose nitrate content ranged from 0 to 201 ppm were obtained from six dug wells to determine: if the samples contained bacteria; if a relationship existed between nitrate and bacteria; and if a change occurred in the bacteria and nitrate content after the well was pumped long enough to replace an appreciable quantity of the water in the well with additional formation water. Analyses of the samples by the city of Houston Health Department's Bacteriological Laboratory showed that water from all six wells was contaminated with coliform bacteria, three wells dangerously so. The results of the bacteria and nitrate analyses were nevertheless inconclusive in establishing a statistical relationship between nitrate and bacteria; in fact, the sample having the third highest bacteria count was free of nitrate. The results of these analyses are significant, however, in indicating that probably most of the dug wells in the report area are contaminated by bacteria and many are a potential health menace.

Bacterial contamination can be minimized: (1) by sealing the well to prevent surface water and contaminated shallow ground water from seeping into the well; (2) by sealing the part of the well above ground to prevent small animals and other forms of life from falling into the well; and (3) by making certain that wells are uphill from any possible source of contamination from human or animal waste in septic tanks or barnyards.

Bacteria already in the well can be reduced in number or eliminated by periodically treating the well with household (chlorine) bleach. A gallon of bleach is poured into the well and allowed to remain for about 1 hour after which 10 or 20 gallons of water are added to force the bleach behind the casing. The well is then allowed to stand idle for 4 or 5 hours or preferably overnight before it is pumped to remove the bleach. A good practice is to discharge the well containing bleach through the various faucets in the house to clear the pipes of bacteria. All dug wells should be checked periodically for bacteria.

AVAILABILITY OF GROUND WATER

The ground-water resources of Sabine and San Augustine Counties are practically untapped. Of the water available in the aquifers, only a small quantity is currently being used. The principal aquifers are in the Carrizo Sand and Wilcox Group, the Sparta Sand, and the Yegua Formation. Other aquifers or water-bearing units in the county are relatively unimportant because they are small either in areal extent or in sand thickness. The isopachous maps (Figures 11 and 12) which show the thickness of sand containing fresh to slightly saline water in the Carrizo Sand and Wilcox Group and in the Sparta Sand are useful in indicating areas most favorable for developing large groundwater supplies, as areas of relatively thick sands generally yield relatively large quantities of ground water.

The exact quantity of water available from the principal aquifers is difficult to determine. It depends upon the potential rate of recharge to the aquifers, the ability of the aquifers to transmit water, and the quantity of ground water in transient storage. In this report two values are given for the quantity of ground water that is suitable for municipal use as well as for use by most industries and that is perennially available from each of the principal aquifers in the counties. The first value (a minimum value) is the quantity of water currently moving through the aquifer under the present hydraulic gradient. Not included, therefore, in this value, is water which may be salvaged from present evapotranspiration and rejected recharge on the outcrop. The second value is based on: (1) a theoretical line of pumping wells extending the width of the counties parallel to the outcrop of the aquifer, and spaced midway between the outcrop and the downdip limit of fresh to slightly saline water; and (2) pumping lifts not exceeding 400 feet but otherwise in proportion to the potential quantity of water which may be transmitted to the line of pumping wells without exceeding an assumed potential rate of recharge to the aquifer.

The quantity of water perennially available from the Carrizo Sand and Wilcox Group ranges from about 27 mgd (million gallons a day) to possibly as much as 78 mgd. The estimate of the minimum value of 27 mgd, or 31,000 acre-feet per year, was based on the present hydraulic gradient of about 10 feet per mile. The maximum value was based on a theoretical northwesterly-trending line of pumping wells about 2 miles north of San Augustine. At a gradient established by pumping lifts of 400 feet along the line of discharge the Carrizo Sand and Wilcox Group would transmit 78 mgd, or about 87,000 acre-feet per year. The amount of recharge necessary to replace this water was difficult to determine because the effective area of recharge to the two-county area is not known. However, if the Wilcox in about the eastern three-fourths of Shelby County effectively recharges the aquifer in the two-county area, 78 mgd would be equivalent to about 3 inches of water per year on the outcrop.

The thickness of sand containing fresh to slightly saline water in the Carrizo Sand and Wilcox Group (Figure 11) ranges from 0 feet at the downdip limit of fresh to slightly saline water to at least 650 feet immediately south of the outcrop in northern San Augustine County. In areas of relatively thick sand, properly constructed wells screening all available sand in the Carrizo Sand and Wilcox Group may yield in excess of 1,500 gpm (gallons per minute).

The quantity of water available from the Sparta Sand ranges from about 6.4 mgd to possibly as much as 29 mgd. The minimum value of 6.4 mgd or about 7,200 acre-feet per year was based on the present hydraulic gradient of about 7 feet per mile. The maximum value of 29 mgd was based on a theoretical westerly-trending line of pumping wells extending through Hemphill. At a gradient established by pumping lifts of 200 feet along the line of discharge the Sparta Sand would transmit about 29 mgd or about 33,000 acre-feet per year. The amount of recharge necessary to replace water moving downdip (29 mgd) is equivalent to about 5.1 inches of rainfall per year on the area of outcrop. This quantity of water is about 10 percent of the average annual precipitation at Bronson.

The thickness of sand containing fresh to slightly saline water in the Sparta Sand (Figure 12) ranges from 0 feet near its northern margin of outcrop and at the downdip limit of fresh to slightly saline water to at least 150 feet immediately south of the outcrop in west-central San Augustine County. In areas of relatively thick sand, yields of perhaps as much as 1,000 gpm might be obtained from properly constructed wells screening all available sand in the aquifer.

The quantity of water available from the Yegua Formation ranges from about 11 mgd to possibly as much as 58 mgd. The minimum value of 11 mgd or about 12,000 acre-feet per year was based on the present hydraulic gradient of about 8 feet per mile. The maximum value of 58 mgd was based on a theoretical eastnortheasterly-trending line of pumping wells extending through Pineland. At a gradient established by pumping lifts of 200 feet at the line of discharge, the Yegua Formation would transmit about 58 mgd or about 65,000 acre-feet per year. The amount of recharge necessary to replace the water moving downdip (58 mgd) is equivalent to about 3.7 inches of rainfall per year on the outcrop area. This quantity of water is about 7 percent of the average annual precipitation at Bronson.

Sufficient electric logs were not available in the area underlain by the Yegua Formation to construct a sand-thickness map. But on the basis of a few scattered electric logs, the thickness of sand containing fresh to slightly saline water in the Yegua ranges from 0 feet near its northern margin of outcrop and at the downdip limit of fresh to slightly saline water in southern Sabine County to about 350 feet near Pineland. In areas of relatively thick sand, yields of 1,000 gpm might be obtained from properly constructed wells screening all available sand in the aquifer.

In summary, the Carrizo Sand and Wilcox Group, Sparta Sand, and Yegua Formation are capable of supporting a ground-water development of at least 44 mgd and possibly as much as 165 mgd indefinitely and without impairing the quality of the water. These quantities are from 34 to 127 times the total discharge in the two-county area in 1964.

The estimates of availability, of course, are based on a limited amount of basic data, theoretical lines of discharge, and assumptions of potential rates of recharge; moreover, no consideration was given to the effect of future large-scale withdrawals from the aquifers in adjoining counties, a possibility which could have a significant influence on the total quantity of water perennially available.

The most beneficial ground-water development in Sabine and San Augustine Counties requires that a wealth of basic data be available. Such data, which include records of pumpage, water levels, and chemical analyses of water, would permit the calculation of more reliable estimates of availability and allow for revision of the estimates as development takes place. A continuing observationwell program for monitoring changes in water levels and water quality is desirable.

- <u>Acre-foot</u>.--The volume of water required to cover 1 acre to a depth of 1 foot. It is equal to 325,851 gallons.
- Aquifer.--A formation, group of formations, or part of a formation that is capable of yielding water to wells.
- Aquifer test.--A test in which at least one well is pumped and the discharge and water level measured during pumping or after pumping stops. Used to determine the hydraulic properties of aquifers.
- Artesian aquifer.--An aquifer overlain by impermeable rocks which confine the water under pressure greater than atmospheric.

Artesian well .-- A well in an artesian aquifer.

- Base flow of a stream. -- The flow of a stream supplied by ground-water discharge.
- <u>Coefficient of permeability.--The coefficient of transmissibility divided by the</u> thickness in feet of the aquifer.
- <u>Coefficient of storage</u>.--The volume of water released from or taken into storage per unit surface area of the aquifer per unit change in the component of head normal to that surface. Stated in a different way, it is the volume of water released by a column of the aquifer having a cross-sectional area of 1 square foot when the head is lowered 1 foot.
- <u>Coefficient of transmissibility</u>.--The amount of water in gallons per day that will pass through a vertical strip of the aquifer having a width of 1 foot and a height equal to the thickness of the aquifer under a gradient of 1 foot per foot at the prevailing aquifer temperature.
- <u>Cone of depression</u>.--The depression in the water table or piezometric surface surrounding a discharging well.
- Equivalents per million (epm).--A way of expressing concentration in which the unit concentration of one ion is equal to the unit concentration of any other ion. It may be computed by dividing concentration of a given ion, expressed as parts per million, by the equivalent weight of that ion.
- <u>Interference test</u>.--A type of aquifer test in which one well is pumped and the water decline in one or more nearby wells in the same section is measured. The pump is then stopped, and the water-level rise in all wells is measured.
- Main water table.--The upper surface of the lowest zone of saturation in which the water remains unconfined.
- Parts per million (ppm).--A measure of the weight ratio of the solute to the solution.

Permeability.--A measure of the ability of a rock to transmit water.

<u>Piezometric surface</u>.--An imaginary surface that everywhere coincides with the static level of the water in an aquifer.

Quality description .--

Description	Dissolved solids (ppm)
Fresh	Less than 1,000
Slightly saline	1,000 to 3,000
Moderately saline	3,000 to 10,000
Very saline	10,000 to 35,000
Brine	More than 35,000

Specific capacity.--The rate that a well will yield water per unit drawdown. Usually expressed as gallons per minute per foot.

Transpiration.--The process by which water is lost by plants. Generally, the plants lose water to the atmosphere from their leaves.

<u>Water table.</u>--The upper surface of a zone of saturation in which the water is under atmospheric pressure.

Yield.--

Description	Yield (gpm)				
Sma11	Less than 50				
Moderate	50 to 500				
Large	More than 500				

Anderson, H. V., 1960, Geology of Sabine Parish, Louisiana: Louisiana Dept. Conserv. Bull. 34.

Baker, B. B., and others, 1963a, Reconnaissance investigation of the groundwater resources of the Neches River basin, Texas: Texas Water Comm. Bull. 6308.

1963b, Reconnaissance investigation of the ground-water resources of the Sabine River basin, Texas: Texas Water Comm. Bull. 6307.

Darton, N. H., and others, 1937, Geologic map of Texas: U.S. Geol. Survey map.

- Dean, H. T., and others, 1941, Domestic water and dental caries: Public Health Repts., v. 56, p. 761-792.
- Dean, H. T., Arnold, F. A., and Elvove, Elias, 1942, Domestic water and dental caries: Public Health Repts., v. 57, p. 1155-1179.
- Delaney, Patrick, J. V., 1958, Stratigraphy of the Louisiana Vicksburg equivalent: Louisiana Dept. Conserv., unpub.

_____ 1963, Stratigraphy of the Vicksburg equivalent of Louisiana: (Abs.) AAPG Bull., v. 47, no. 2, p. 355.

- Deussen, Alexander, 1914, Geology and underground waters of the southeastern part of the Texas Gulf Coastal Plain: U.S. Geol. Survey Water-Supply Paper 335.
- Doll, W. L., Meyer, G., and Archer, R. J., 1963, Water resources of West Virginia: West Virginia Dept. Nat. Resources, Div. Water Resources.
- Follett, C. R., 1943, Records of wells and springs, drillers' logs, water analyses, and map showing locations of wells and springs in Sabine and San Augustine Counties, Texas: Texas Board Water Engineers duplicated rept.
- Hanway, J. J., and others, 1963, The nitrate problem: Iowa State Univ. of Science and Technology, Spec. Rept. 34.
- Lohr, E. W., and Love, S. K., 1954, The industrial utility of public-water supplies in the United States, 1952, pt. 2: U.S. Geol. Survey Water-Supply Paper 1300.
- Lowry, R. L., Jr., 1960, Monthly reservoir evaporation rates for Texas, 1940 through 1957: Texas Board Water Engineers Bull. 6006.
- Maier, F. J., 1950, Fluoridation of public-water supplies: Jour. Am. Water Works Assoc., v. 42, pt. 1, p. 1120-1132.
- Maxcy, K. F., 1950, Report on the relation of nitrate concentrations in well waters to the occurrence of methemoglobinemia: Nat'l. Research Council Bull. Sanitary Eng., App. D, p. 265-271.

Meinzer, O. E., 1923a, The occurrence of ground water in the United States, with a discussion of principles: U.S. Geol. Survey Water-Supply 489.

1923b, Outline of ground-water hydrology, with definitions: U.S. Geol. Survey Water-Supply Paper 494.

1932, Outline of methods for estimating ground-water supplies: U.S. Geol. Survey Water-Supply Paper 638-C, p. 99-144.

- Meinzer, O. E., and others, 1942, Physics of the earth, v. 9, Hydrology: New York, McGraw-Hill Co., Inc., p. 385-478.
- Page, L. V., and others, 1963, Water resources of Sabine Parish, Louisiana: Louisiana Dept. Conserv., Geol. Survey and Louisiana Dept. Pub. Works Water Resources Bull. 3.
- Rogers, J. E., and Calandro, A. J., 1965, Water resources of Vernon Parish, Louisiana: Louisiana Dept. Conserv., Geol. Survey and Louisiana Dept. Pub. Works Water Resources Bull. 6.
- Sellards, E. H., Adkins, W. S., and Plummer, F. B., 1932, The geology of Texas, v. 1, Stratigraphy: Univ. Texas Bull. 3232 [1933].
- Sundstrom, R. W., Hastings, W. W., and Broadhurst, W. L., 1948, Public water supplies in eastern Texas: U.S. Geol. Survey Water-Supply Paper 1047.
- Taylor, T. U., 1907, Underground waters of Coastal Plain of Texas: U.S. Geol. Survey Water-Supply Paper 190.
- Tolman, C. F., 1937, Ground water: New York, McGraw-Hill Book Co.
- U.S. Public Health Service, 1962, Public Health Service drinking water standards: Public Health Service Pub. 956.
- U. S. Salinity Laboratory Staff, 1954, Diagnosis and improvement of saline and alkali soils: U.S. Dept. Agriculture Agr. Handb. 60.
- Wilcox, L. V., 1955, Classification and use of irrigation waters: U.S. Dept. Agriculture Circ. 969.
- Winslow, A. G., and Kister, L. R., Jr., 1956, The saline water resources of Texas: U.S. Geol. Survey Water-Supply Paper 1365.
- Wood, L. A., 1956, Availability of ground water in the Gulf Coast region of Texas: U.S. Geol. Survey open-file rept.

Thickness	Depth	Thickness	Depth
(feet)	(feet)	(feet)	(feet)

Sabine County

Well WS-36-26-901

Owner: Ernest L. Brown. Driller: Newton Well Service.

Surface	6	6	Shale, hard, and lime 22	66
Clay and shale	16	22	Shale and rock 22	88
Shale, hard	22	44	Shale and sandy shale 27	115

Well WS-36-33-205

Owner: Robert Dennis, well 1. Driller: Sebastian & Cunningham.

Sand	15	15	Rock 2	259
Clay	10	25	Sand, gumbo streaks 141	400
Sand, water	45	70	Sand 25	425
Rock, hard	8	78	Rock 1	426
Gumbo	5	83	Sand, gumbo streaks 75	501
Rock, hard	1	84	Rock 1	502
Gumbo	6	90	Sand and gumbo 33	535
Rock	1	91	Rock 1	536
Gumbo, tough	5	96	Sand 33	569
Packsand, hard	52	148	Rock 2	571
Rock	6	154	Sand 9	580
Sand, water	31	185	Limestone, hard, sandy – 1	581
Rock, hard	5	190	Limestone and rock, hard- 2	583
Sand	15	205	Sand and boulders 267	850
Gravel	25	230	Gumbo, sandy 150	1,000
Gumbo	27	257	Rock 1	1,001
	(Con	tinued or	n next page)	

- 74 -

Sabine County

Thickness (feet)	Depth (feet)	Thickness (feet)	Depth (feet)
Well W	IS- 36-33-2	205Continued	
Sand and boulders 139	1,140	Sand with hard streaks - 89	1,792
Sand, gumbo, and boulders 84	1,224	Sand, hard 88	1,880
Limestome, hard, and Rock 6	1,230	Sandrock, hard 5	1,885
Sand 90	1,320	Sand, hard 10	1,895
Gumbo, sandy 15	1,335	Shale, hard 18	1,913
Packsand, hard 18	1,353	Sand, hard 20	1,933
Limestone, hard and rock 3	1,356	Sandrock, hard 9	1,933
Sand 79	1,435	Sand, hard 133	2,075
Rock 1	1,436	Gumbo, tough 5	2,080
Sand 29	1,465	Shale 20	2,100
Rock 2	1,467	Shale and sand 42	2,142
Sand and boulders 63	1,530	Limestone and rock,	0.1/6
Rock 2	1,532	hard, sandy 4	2,146
Sand 23	1,555	Sand, broken, and limestone 4	2,150
Sandrock 7	1,562	Sand 9	2,159
Gumbo, sandy 33	1,595	Sand, hard 75	2,234
Rock 1	1,596	Limestone and rock, hard 3	2,237
Sand and boulders 38	1,634	Sand, hard 59	2,296
Rock 1	1,635	Gumbo 3	2,299
Sand, gummy 55	1,690	Limestone and rock, hard 3	2,302
Sand 13	1,703	Gumbo 8	2,310
		Total Depth	3,531

Sabine County

Thickness	Depth	Thickness	Depth
(feet)	(feet)	(feet)	(feet)

Well WS-36-33-403

Owner: E. D. Henry. Driller: Newton Well Service.

Sand and gravel	22	22	Rock and shell	22	110
Shale and shell	44	66	Shale and sand	29	139
Shale and rock	22	88			

Well WS-36-33-701

Owner: E. R. Fuller. Driller: Newton Well Service.

Topsoil and clay	22	22	Shale, sand and shale	22	110
Shale, black, and sand - 2	22	44	Shale and sandy shale	22	132
Sand and shale, solid 2	22	66	Shale, sandy	22	154
Shale and shell 2	22	88	Shale, sandy, and sand	21	175

Well WS-36-34-202

Owner: U.S. Forest Service. Driller: -- Frye.

······································		·····	Y		
Topsoil and clay, red	22	22	Rock, soft to medium	21	187
Clay, rock, and clay	21	43	Shale, sandy, and hard		
Clay, gray	21	64	shale	20	207
			Rock and shale	21	228
Shale, blue and lignite-	20	84	Chala conducted and shale	20	2/.9
Shale and some lignite -	21	105	Shale, sandy and shale -	20	248
			Shale and rock	21	269
Shale and thin rock	20	125	Cand and shale		
Shale, blue, and hard			Sand and shale, Stratified	20	289
rock layers	21	146		_ 0	
			Sand and shale	21	310
Shale, blue	20	166			

Sabine County

Thickness	Depth	Thickness	Depth
(feet)	(feet)	(feet)	(feet)

Well WS-36-34-202--Continued

Sand, medium	20	330	Shale and medium sand and shale	21	392
Shale, hard		351			
Sand and shale	20	371			

Well WS-36-34-401

Owner: Mrs. Howard Sparks. Driller: Newton Well Service.

Clay, red	10	10	Shale 22	154
Rock, blue	12	22	Shale and sandy shale 22	176
Rock, blue and shell	22	44	Shale, sandy 44	220
Rock, blue and shale	22	66	Shale, hard 44	264
Shale, sandy blue rock	22	88	Shale, sandy 22	286
Shale, sandy, and rock and shale	22	110	Shale, sandy and rock 44	330
Shale, sandy, and blue rock	22	132		

Well WS-36-34-402

Owner: Maxie McCary. Driller: Newton Well Service.

Clay and blue marl	44	44	Shale	22	198
Marl, blue 6	66	110	Shale and sand lenses	22	220
Shale, sandy 2	22	132	Shale	44	264
Shale, sandy and shell - 2	22	154	Sand and shale	44	308
Shale and shell	22	176			

Sabine County

Thickness	Depth	Thickness	Depth
(feet)	(feet)	(feet)	(feet)

Well WS-36-34-404

Owner: Halbert Bros. Driller: Newton Well Service.

Clay, sandy, and gravel- 22	22	Rock and sand	22	88
Rock, blue and shell 44	66	Sand	9	97

Well WS-36-34-501

Owner: U.S. Forest Service. Driller: --

Clay, red 60	60	Shale, sticky 75	450
Shale 55	115	Shale, sandy and shell- 15	465
Shale, sandy, and limy	100	Shale, hard sandy 19	484
shale 13	128	Shale 85	569
Shale 117	245	Sand and sandy limestone 7	576
Shale, sandy and shell 71	316	Shale, sandy and sand - 105	681
Sand, gas 59	375		

Well WS-36-35-701

Owner: Sabine Oil & Mineral Co. Driller: Will Spurm.

Clay, red and blue 3) 30	Sandrock, soft, green, with 1 ft of hard pyrite	
Sand, white 10	40	at bottom 146	241
Rock, red, soft 1	50	Shale(?), soft, with	200
Shells and rock	2 52	flow of water 59	300
Sandrock with 1 ft of hard		Shale, blue, and sand - 79	379
pyrite at bottom	7 59	Sand, blue, caving,	
		capped by 1늘 ft hard	
Marl, blue, and shells - 2	L 80	pyrites 149	528
Lignite 1	5 95		

Sabine County

Thickness	Depth	Thickness	Depth
(feet)	(feet)	(feet)	(feet)

Well WS-36-35-701--Continued

Sand, blue, capped by hard rock 6.5	534.5	Sandrock, soft, gray 72	800
Sand, $13\frac{1}{2}$ ft underlain		Gravel and pyrites 4	804
by $\frac{1}{2}$ ft shells and rock 13.5	548	Sandrock, soft 56	860
Sand 52	600	Shale and sand, mixed 15	876
Shells and rock 4	604	Sandrock, soft, 1 ft very hard rock at bottom 32	907
Sandrock, 1 ft of very			
hard rock at bottom 41	645	Sandrock, soft, 2 ft hard rock at bottom 89	996
Shale and sandrock 29	674	TOCK AL DOLLOM 89	990
Rock, very hard 6	680	Sandrock, medium hard, underlain by 2 ft	1 025
Gumbo 10	690	hard pyrites 39	1,035
Sandrock, soft 38	728		

Well WS-36-41-202

Owner: F. P. Armstrong. Driller: Newton Well Service.

Clay, sandy	22	22	Rock and sand 2	2	88
Shale and sand	44	66	Sand 1	1	99

Well WS-36-41-205

Owner: R. B. White. Driller: Newton Well Service.

Sand and shale	22	22	Shale, sandy	22	66
Shale	22	44	Shale and sand	15	81

Sabine County

Thickness	Depth	Thickness	Depth
(feet)	(feet)	(feet)	(feet)

Well WS-36-41-701

Owner: United Gas Pipeline Co. Driller: F. R. Balcar.

Clay, red, sandy	45	45	Shale	33	3 72
Shale	59	104	Sand	8	380
Shale, sandy	22	126	Shale, sandy	12	392
Rock	1	127	Shale	25	417
Shale and lignite	67	194	Rock	2	419
Sand	13	207	Shale, sticky	51	470
Shale	53	260	Shale	12	482
Sand and boulders	8	268	Shale, sandy, lignite -	107	589
Shale	14	282	Rock	2	591
Sand	18	300	Sand	18	609
Shale	31	331	Shale, hard	11	620
Sand	8	339	Sand	15	635

Well WS-36-41-702

Owner: United Gas Pipeline Co. Driller: Layne-Texas Co., Inc.

Topsoil 6	б	Sand	13	363
Clay, streaks of sand 31	37	Sand and sand streaks -	71	434
Clay, sandy clay, layers of rock 229	266	Sand and sandy clay	14	448
		Clay	7	455
Sand, clay layers 19	285	Sand and sandy clay	13	468
Sand and sandy clay 39	324	Clay, sandy and clay	10	478
Clay 26	350			

		Depth (feet)	Thick (fe	ness et)	Depth (feet)				
Well WS-36-41-702Continued									
Sand and sandy clay	21	499	Clay	6	651				
Clay, and sandy clay	30	529	Clay and sand layers	25	676				
Shale, hard and rock layers	53	582	Sand	11	687				
Sand, shale breaks	14	596	Shale, sandy, with sandy streaks	27	714				
Clay, sandy, sand streaks	35	631	Shale, sandy streaks	40	754				
			Shale, hard	43	797				
Clay, sand streaks	9	640	Shale and sandy shale -	3	800				
Sand	5	645							

Sabine County

Well WS-36-41-703

Owner:	Temple Lumber Co.	Driller:	Layne-Texas Co.	
Topsoil		2 2	Shale	_

Topsoil	2	2	Shale	32	243
Clay	20	22	Shale, sandy and shale	36	279
Shale	23	45	Sand	12	291
Sand	15	60	Shale	18	309
Shale, sandy and lignite	30	90	Sand, fine-grained	31	340
Sand, fine-grained, and shale streaks	29	119	Shale	18	358
	51	170	Shale, sandy and shale-	141	499
Shale, sandy and sand -			Sand, coarse, white,	07	500
Shale	31	201	and black specks	87	586
Shale, sandy	10	211	Shale	8	594

Sabine County

ThicknessDepth(feet)(feet)	Thickness Depth (feet) (feet)
----------------------------	----------------------------------

Well WS-36-41-704

Owner: Temple Lumber Co. Driller: Layne-Texas Co.

Soil	3	3	Mud, clean, gray	34	334
Clay	12	15	Shale	18	352
Shale, sandy	68	83	Shale, sandy and shale-	80	432
Sand, gray and shale	47	130	Sand, gray	7	439
layers	-		Shale, sandy	46	485
Shale, sandy	80	210	Sand, coarse	80	565
Shale, sticky	20	230	Shale	5	
Shale, sandy	70	300	Share		570

Well WS-36-42-503

Owner: Warner Stave Co., well 1. Driller: Sebastian & Smith.

Soil	2	2	Gumbo and shale	24	320
Clay	8	10	Rock	1	321
Sand and gravel	23	33	Gumbo, shale, streaks of sand	59	380
Sand and gumbo	25	58			
Rock	2	60	Packsand	10	390
Sand and gravel	80	140	Shale and gumbo	50	440
Sand and gumbo	50	190	Gumbo, sandy	40	480
Rock	1	191	Shale, hard	30	510
	50		Sand and boulders	80	590
Sand, shale, and gumbo -	59	250	Gumbo, sandy	15	605
Rock	1	251	Shale, hard, streaks of		
Shale and gumbo	45	296	gumbo	45	650

Sabine County

Thicknes (feet)	s Depth (feet)	Thicknes (feet)	, .
Well	WS-36-42-	-503Continued	
Gumbo and shale 65	715	Sand and lignite 18	3 1,414
Sand 60	775	Rock, sand, and lignite	2 1,416
Gumbo, tough 15	790	Sand and gumbo 90) 1,506
Gumbo 20	810	Sand 19	9 1,525
Chalk, green, boulders, and hard gray sand 80	890	Gumbo	9 1,534
Shale and boulders 150	1,040	Rock, sand, and shale -	1,535
Shale 10	1,050	Gumbo, tough 69	9 1,604
Gumbo, soft 20	1,070	Sand 4	+ 1,608
Gumbo, sandy 8	1,078	Sand, streaks of gumbo- 76	5 1,684
Rock, hard 1	1,079	Sandrock, hard	+ 1,688
Sand, green 5	1,084	Sand, hard	5 1,693
Gumbo 10	1,094	Sandrock, hard	1,694
Shale, sandy 46	1,140	Sand 20	5 1,720
Sand 50	1,190	Gumbo, sandy 10	0 1,730
Gumbo 20	1,210	Sand 30	0 1,760
Sand, soft 5	1,215	Shale and sand 13	3 1,773
Sand, and sandy shale 35	1,250	Rock	2 1,775
Gumbo 3	1,253	Sand, soft 8	3 1,783
Lignite, coal, and sand,		Packsand, hard 1	ŕ
50,000 bb1 fresh water 56	1,309	Sand, soft, salt water- 44	4 1,843
Gumbo 49	1,358	Sand 31	0 1,872
Sand and shale 38	1,396	Total depth	3,785

Sabine County

Thickness	Depth	Thickness	Depth
(feet)	(feet)	(feet)	(feet)

Well WS-36-42-807

Owner: Billy D. Sparks. Driller: Newton Well Service.

Surface clay and rock	22	22	Rock and shale	22	236
Rock and shale	22	44	Shale, hard	22	258
Shale	44	88	Shale, sandy	22	280
Shale and rock	44	110	Lime and hard shale	22	302
Shale, sandy	22	132	Shale, hard	22	324
Shale, sandy, and hard	0.0	15/	Shale and fine sand	22	346
shale	22	154	Sand and sandy shale	22	368
Shale, hard, and sandy shale	16	170	Shale and sand	22	390
Shale	22	192	Shale	18	408
Shale and rock	22	214			

Well WS-36-42-810

Owner: L. T. Impson. Driller: Newton Well Service.

Surface clay	22	22	Shale and sand	22	88
Clay and shale	22	44	Sand	2	90
Shale	22	66			

Well WS-36-43-102

Owner: R. L. Gooch. Driller: Newton Well Service.

Clay and gravel	22	22	Shale	22	132
Clay and shale	22	44	Shale and rock	22	154
Shale	44	88	Shale and shell	22	176
Shale and rock	22	110	Sand	21	197

Sabine County

Thickness	Depth	Thickness	Depth
(feet)	(feet)	(feet)	(feet)

Well WS-36-43-901

Owner: East Texas Timber & Oil Co. Driller: W. A. Turner.

Soil	2	2	Limestone 8	468
Sand, yellow	33	35	Gumbo, blue 30	498
Clay, blue	20	55	Sandstone 18	516
Clay, hard, blue	40	95	Gumbo, very dark 34	550
Rock with fossil shells-	3	98	C lay, soft 30	580
Shale, blue	22	120	Clay, hard 60	640
Clay, hard, blue	60	180	Marl, fossiliferous 9	649
Rock with fossil shells-	5	185	Clay, hard 1	650
Clay, stiff blue (gumbo)	45	230	Sandstone, fossiliferous 115	665
Sand	8	238	Rock 1	666
Gumbo (stiff blue clay)-	48	286	Clay, hard 18	684
Sand, soft	4	290	Rock, flint, very hard - 1	685
Gumbo	31	321	Shale, dark-colored 41	726
Sand	6	327	Sandstone, soft 15	741
Rock	4	331	Gumbo 26	767
Lignite	44	335	Sandstone, soft 12	779
Sand	25	360	Shale 5	784
Clay, dark-brown	15	375	Sandstone, soft with shells 16	800
Coal (lignite)	5	380	No record 210	1,010
Gumbo, blue	62	442	Sand, good artesian	1,010
Sandstone	18	460	water 20	1,030

Sabine County

Thickness (feet)	Depth (feet)	Thickness (feet)	Depth (feet)			
Well WS-36-43-901Continued						
Clays, mostly dark-colored,		Artesian salt water 375	1,800			
containing fossil shells 320	1,350	Total depth	1,975			

Well WS-36-49-103

Owner: Temple Lumber Co., well 2. Driller: J.D. Adams.

75

Rock, hard -----

1,425

Surface material and			Gumbo	60	280
clay	40	40	Shale, hard	20	300
Sand, hard	10	50	Shale	10	310
Shale and clay	30	80	Lignite	25	335
Gumbo	40	120	Gumbo	75	410
Gumbo, hard	10	130	Gumbo, hard	11	421
Sand, hard	30	160			
Gumbo	52	212	Gumbo	18	439
Sand, dry, fine	8	220	Sand, water	40	479

Well WS-36-49-105

Owner: Temple Lumber Co., well 4. Driller: F. Balcar.

Sand and red clay	21	21	Shale and gumbo	131	283
Shale	28	49	Rock	2	285
Rock	2	51	Shale	50	335
Sand, fine, blue	7	58	Gumbo	55	390
Gumbo, gray	44	102	Shale and rock	4	394
Sand, blue	50	152	Shale and gumbo	37	431

Sabine County

Thickness	Depth	Thickness	Depth
(feet)	(feet)	(feet)	(feet)

Well WS-36-49-105--Continued

Boulders	6	437	Shale, hard	21	533
Shale, sandy	21	458	Sand	74	607
Sand	10	468	Gravel	12	619
Shale and gumbo	39	507	Shale, sticky	14	633
Boulders	5	512			

Well WS-36-49-109

Owner: J. T. Short. Driller: Newton Well Service.

Surface clay, gray, and shale 22	22	Shale, sandy	22	318
		Shale	22	340
Shale 132	154	Shale, sandy	22	362
Rock and shale 32	186	Shale	22	384
Shale, sandy 22	208	Shale and sandy shale -	44	428
Shale and sandy shale 22	230	Shale	22	450
Shale, limey, and dark shale 22	252		22	472
	252	Shale and sandy shale -	22	472
Shale and sand 22	274	Shale, sandy, and sand-	27	499
Sand and shale 22	296			

Well WS-36-50-306

Owner: Carl V. Smith. Driller: Newton Well Service.

Clay and sand	22	22	Shale	22	66
Clay, sand, and shale	22	44	Sand	31	97

Sabine County

Thickness	Depth	Thickness	Depth
(feet)	(feet)	(feet)	(feet)

Well WS-36-52-402

Owner: Stark & Brown, well 1. Driller: K. E. Menen.

Surface clay	30	30	Shale, sandy, and shale	193	1,618
Clay and hard sand	8	38	Rock	1	1,619
Shale	12	50	Shale with streaks of	0/0	1 050
Sand	10	60	rock	240	1,859
			Sand	18	1,877
Shale, sand, rock, and gravel	153	213	Shale, sandy, and		
			boulders	41	1,918
Sand and shale	64	277			
			Rock	3	1,921
Shale (651	928			
			Shale and boulders	39	1,960
Shale and boulders	127	1,055			
			Shale, sandy	153	2,113
Shale	114	1,169			
			Sand	10	2,125
Sand	10	1,179			
			Shale, gummy, lime		
Shale, sandy and			streaks	72	. 2,195
boulders 2	243	1,422			
			Total depth		4,532
Rock	3	1,425	1		

Well WS-36-52-403

Owner: Wier Longleaf Lumber Co., well 1. Driller: Crater Oil Co. of Texas.

Sand and clay	16	16	Sand, hard	10	180
Sandrock	27	43	Lignite, soft	2	182
Quicksand, soft	27	70	Gumbo, sandy	6	188
Sand, water	51	121	Sand	12	200
Sand, hard	29	150	Sandrock	42	242
Sand, soft	20	170	Sand	24	266
	(0-	ntinued .	m nowt nago)		

Sabine County

Thickness	Depth	Thickness	Depth
(feet)	(feet)	(feet)	(feet)

Well WS-36-52-403--Continued

Sand, hard 2	268	Gumbo, shale, and	1 000
Sand and shale 22	290	boulders 198	1,028
Sand 20	310	Sand, hard, and shale - 8	1,036
	510	Shale, gummy 65	1,101
Sand and shale 57	367	Sand, brown, and lignite 8	1,109
Shale, green, sandy 219	587		1,107
Gumbo 54	640	Shale, gummy, lignite, and boulders 174	1,283
Shale, soft 6	646	Shale, soft, sandy 32	1,315
Gumbo 54	700	Shale, gummy 140	1,455
Shale, soft 10	710	Rock and sand 15	1,470
Gumbo and shale 46	756	Shale, sandy 60	1,530
Gumbo 64	820	Shale, brown, sandy 10	1,540
Shale, soft, sandy, and fossils 10	830	Total depth	2,963

Well WS-37-48-302

Owner: Gulf, Colorado, and Santa Fe RR. Co. Driller: --

Clay, yellow	30	30	Limestone and rock	1	164
Clay, blue	30	60	Clay, blue	94	258
Shale, brown	43	103	Sand	14	272
Sand	12	115	Clay, blue	50	322
Shale, brown	30	145	Shale, brown	30	352
Sand	10	155	Clay, blue	22	374
Clay, blue	8	163	Clay, blue, and shell -	6	380

Sabine County

Thickne (feet		Thickness (feet)	Depth (feet)
Wel	1 WS-37-48	-302Continued	
Clay, blue 10	6 486	Sand, dark 8	818
Sandrock	3 489	Clay, blue 74	892
Clay, blue 8	9 578	Shale, blue, and shell- 36	928
Clay, blue, and boulders	8 586	Shale, dark 90	1,018
Clay, blue 8	8 674	Sand, water 50	1,068
Sand, water 5	5 729	Clay, dark 2	1,070
Clay, blue 8	1 810		

Well WS-37-48-602

Owner: W. W. McBride. Driller: Newton Well Service.

Surface clay, and sand -	22	22	Sand, shale, and hard sand	22	88
Clay, sand, and shale	22	44	Sand	40	128
Shale, sand, and hard shale	22	66			

Well WS-37-48-604

Owner: E. B. Diehl. Driller: Newton Well Service.

Surface clay, and shale	22	22	Shale, sandy, and shale	24	134
Shale and limerock, shale	22	44	Coal, hard, and shale and coal	20	154
Shale, sandy shale and- rock	22	66	Shale and limy sandy shale	22	176
Shale and sandy shale -	22	88	Shale and sandy shale -	22	198
Shale, sandy, and rock	22	110	Shale and sandy shale -	22	220

Sabine County

Thickness (feet)	Depth (feet)	Thickness (feet)	Depth (feet)
Well W	s-37-48-6	504Continued	
Sand and shale 22	242	Shale and sandy shale - 92	378
Shale 44	286		

San Augustine County

Thickness	Depth	Thickness	Depth
(feet)	(feet)	(feet)	(feet)

Well WT-37-30-302

Owner: J. W. Butler. Driller: L. L. Higgins.

Shale, red	20	20	Sand, gray	65	230
Marl, blue	145	165	Sand	55	285

Well WT-37-30-901

Owner: M. R. Goss. Driller: Newton Well Service.

Surface sand and clay -	22	22	Shale, shell, and sandy shale	44	242
Shale and shell	44	66	Shale		
Shale	22	88	Sand, hard, and shale -	22	264
Shale and shell	22	110	Sand, hard, and shale - Sand and shale lenses - Sand with shale Sand	22	286
Shale and shell	22	110	Sand with shale	22	308
Shale and sticky shale-	22	132	Sand	10	318
Shale, sticky, and rock	22	1.54		10	510
Shale and shell	44	198			

Well WT-37-31-505

Owner: A. P. Davis, well 1. Driller: T. W. Tennant.

Clay	15	15	Sandrock 41	149
Clay, sandy, and gravel	10	25	Packsand 57	206
Clay, gummy	25	50	Sand, streaks of lignite 22	228
Sand and gravel	19	69	Sand 218	446
Sand	20	89	Sand, streaks of lignite 15	461
Rock	1	90	Rock 1	462
Shale, sandy	18	108	Lignite and sand 4	466

San Augustine County

Thickness (feet)	Depth (feet)	Thickness (feet)	Depth (feet)				
Well WT-37-31-505Continued							
Sand 100	566	Rock 1	1,275				
Sand, gravel streaks, and shale 40	606	Limerock, sandy 1	1,276				
Shale streaks 112	718	Limerock 3	1,279				
Sand 20	738	Sand 21	1,300				
Shale, sandy 190	928	Shale, sandy 65	1,365				
Limerock 3	931	Limerock 2	1,367				
Shale, sandy 24	955	Shale 11	1,378				
Rock 1	956	Rock 3	1,381				
Shale and boulders 127	1,083	Shale, sandy, and 264	1,645				
Limerock 3	1,086	Total depth	3,026				
Shale, sandy, and boulders 188	1,274						

Well WT-37-31-506

Owner: Santa Fe Railway Co. Driller: --

Clay, red	15	15	Clay, blue	12	69
Clay, yellow, and marl-	5	20	Shale, brown	3	72
Marl, blue	14	34	Shale, brown, soapy with boulders	10	82
Marl, blue, black as coal when wet	10	44	Shale, brown, soapy	7	89
Marl, blue, streaks of harder marl	8	52	Soapstone, brown, and thin layers of limestone	7	96
Marl, blue	5	57			

San Augustine County

Thick (fee		Depth (feet)	Thicknes (feet)	· ·				
Well WT-37-31-506Continued								
Marl, blue	18	114	Clay, brown, with layers	2 74				
Clay, blue	1	115	Sand, fine 1					
Shale, blue and brown, with hard streaks	17	132	Clay, brown 2					
Limestone, blue, and marl			Sand, fine 1	278				
with pyrite, very hard	7	139	Clay, brown	283				
Sand, hard, gray	2	141	Lime boulders 2	285				
Sand, hard, gray, and pyrite	26	167	Clay, brown	290				
Sand, blue and gray	6	173	Sand, brown	294				
Clay, brown, and sand -	14	187	Clay, brown, with layers) 304				
Sand, brown, and clay streaks	11	198	No record 24					
Sand, brown	10	208	Clay, brown, little oil 14					
Clay, white	1	209	Sand, fine 18	360				
Gumbo, brown, and clay-	29	238	Sand or clay, fine	368				
Pyrite	2	240	No record 36	6 404				
Sand, water	10	250	Clay and shells 19	423				
Clay, water	10	260	Clay or sand, fine 13	434				
Rock, black, and pyrite	1	261	Shale with layers of lignite 20	460				
Clay, brown	6	267	Clay or sand, fine 23					
Lime boulders with little	1	268		2 485				
		270		488				
Clay, brown	1 2		,					

San Augustine County

Thickness	Depth	Thickness	Depth
(feet)	(feet)	(feet)	(feet)

Well WT-37-31-506--Continued

Clay	15	503	Shale, thin lignite layers	57	588
Shale	5	508			
Shale with little lignite	6	514	Lignite	2	590
Shale and few shells	4	518	Shale	1	591
Shale	12	530	Lignite	4	595
Lignite	1	531			

Well WT-37-31-705

Owner: C. Preajene. Driller: Newton Well Service.

Sand and shale	22	22	Shale and shell	44	242
Shale and rock, blue	22	44	Shale and sandy shale -	22	264
Shale and shell	132	176	Shale, sandy, and sand	25	289
Rock, blue	22	198			

Well WT-37-32-201

Owner: James D. Dezelle. Driller: Newton Well Service.

Surface sand and clay -	22	22	Shale, gray, and sand -	22	88
Sand	44	66	Sand	29	117

Well WT-37-32-401

Owner: Liberty Hill Baptist Church. Driller: Newton Well Service.

Surface sand and gravel	22	22	Shale and shell	44	88
Sand, gravel, and blue rock	22	44	Shale, shell, and sandy shale	22	110

Thickness (feet)	Depth (feet)		Thickness (feet)	
Well WT-37-32-401Continued				
Shale, sandy 22	132	Sand	22	198
Shale 22	154	Shale and sand	22	220
Rock and shale 22	176	Sand	12	232

San Augustine County

Well WT-37-32-502

Owner: Mrs. Lois Wilburn. Driller: Newton Well Service.

Surface clay	22	22	Sand	57	101
Sand and pyrite	22	44			

Well WT-37-32-503

Owner: Roy Hardy. Driller: Newton Well Service.

Surface sand and lime -	22	22	Sand, hard	34	100
Shale, sandy	22	44			

Well WT-37-32-702

Owner: City of San Augustine. Driller: W. K. Banker.

Surface clay	18	18	Limerock, hard	4	81
Limerock, soft	13	31	Sand, artesian	8	89
Shale, green	4	35	Shale, brown	22	111
Limerock	8	43	Limerock, hard	2	113
Shale	4	47	Shale, brown	57	170
Sand, green, and shale, stratified	30	77	Gumbo	12	182

Thickness (feet)		Depth (feet)	Thickness (feet)	Depth (feet)		
Well WT-37-32-702Continued						
Muck, brown, soft	0.0		Sand and gravel, water- 45	522		
	08	290	Gumbo, blue, very hard 24	546		
Soapstone	9	299	Limerock, soft 3	549		
Gypsum, blue	8	307	Gumbo, tough 11	560		
Shale	7	314	Rock, very hard 2	562		
	34 5	348	Gumbo, tough 4	566		
Lignite		353	Shale, showing of oil - 9	575		
,	57	410	Gumbo 50	625		
Soapstone, brown	7	417				
Gumbo, brown	60	477	1			

San Augustine County

Well WT-37-32-703

Owner: City of San Augus	stine.	Drille	r: Layne-Texas Co., Inc.		
Clay, red	14	14	Shale	206	488
Shale, gray	31	45	Sand	65	553
Shale, green	27	72	Shale	3	556
Sand, blue	32	104	Sand, layers of shale -	49	605
Rock, hard	3	107	Layers, hard	1	606
Shale, sandy	30	137	Sand and sandy lime	10	616
Sand	70	207	Layers, hard	1	617
Sand and shale layers -	75	282	Sand and layers of shale	84	701

Owner: City of San Augustine. Driller: Layne-Texas Co., Inc.

. . .

San Augustine County

Thickness	Depth	Thickness	Depth
(feet)	(feet)	(feet)	(feet)

Well WT-37-38-301

Owner: Ray Horton. Driller: -- English.

Sand	25	25	Shale	25	210
Shale	50	75	Sand	5	215
Sand	35	110	Shale	205	420
Shale	30	140	Sand and shale	45	465
Rock and shale	45	185	Sand	45	510

Well WT-37-39-603

Owner: Carl Cox. Driller: Newton Well Service.

Sand and hard lenses	22	22	Sand and sandy shale	22	88
Shale and sand	44	66	Sand	12	100

Well WT-37-39-701

Owner: Martin H. Stringer. Driller: Chambers Drilling Co.

Topsoil and clay	21	21	Shale, blue	34	97
Shale, blue	21	42	Limerock	1	98
Sandrock	1	42麦	Shale, blue	4	1 02
Shale, blue	19	62	Sand	23	125
Limerock	1	63			

Well WT-37-39-804

Owner: E. J. Bailey. Driller: Newton Well Service.

Clay, sandy	22	22	Shale and rock	22	66		
Shale, sandy	22	44	Shale	22	88		
(Continued on next page)							

San Augustine County

Thickness (feet)	Depth (feet)	Thickness (feet)	Depth (feet)		
Well WT-37-39-804Continued					
Shale and rock 44	132	Shale 22	242		
Shale, sandy 22	154	Shale and sandy shale - 42	284		
Shale, sandy, and rock- 22	176	Shale 22	306		
Shale, sandy, and sand - 22	198	Sand 27	333		
Sand and sandy shale 22	220				

Well WT-37-39-805

Owner: A. P. Ross. Driller: Newton Well Service.

Surface clay	22	22	Shale with hard lenses-	22	110
Clay, yellow, and shale	22	44	Shale, and rock, sandy-	20	130
Shale, rock, sand, and shale	22	66	Shale, sandy, with hard lenses	24	154
Shale	22	88	Shale, sandy, and sand-	29	18 3

Well WT-37-39-905

Owner: D. L. Spears. Driller: Newton Well Service.

Surface clay and sand	22	22	Shale and sand	22	154
Clay and sand	22	44	Shale, sandy	22	176
Shale and rock	22	66	Shale, sticky	20	196
Shale	22	88	Shale and shell	22	218
Rock and shale	22	110	Sand	30	248
Shale, sandy	22	132			

San Augustine County

Thickness	Depth	Thickness	Depth
(feet)	(feet)	(feet)	(feet)

Well WT-37-40-303

Owner: Weldon Cousins. Driller: Newton Well Service.

Sand, red, and rock	6	6	Sand with shale lenses-	15	168
Clay, yellow, and gravel	11	17	Sand and shale	22	190
Rock, blue with shell	26	43	Coal and shale	9	199
Shale and shell	15	58	Dolomite	1	200
Shell, very hard, and			Shale	10	210
shell	6	64	Dolomite	4	214
Shale and shell	41	105	Shale, sandy	20	234
Pyrites, iron	3	108	Shale	5	239
Shale	8	116		_	
Sand and shale	27	143	Shale, sticky	5	244
Shale	4	147	Shale, sandy	13	257
Sand and shale	6	153			

Well WT-37-40-304

Owner: B. T. Pickard. Driller: Newton Well Service.

Sand and gravel	22	22	Shale and rock	22	110
Clay and shale	22	44	Sand and shale	22	132
Shale	44	88	Sand	10	142

San Augustine County

Thickness	Depth	Thickness	Depth
(feet)	(feet)	(feet)	(feet)

Well WT-37-40-305

Owner: Elbert Ford. Driller: Newton Well Service.

Sand and clay	22	22	Sand and shell	44	262
Shale and rock, blue	22	44	Sand	22	284
Shale and shell	152	196	Shale, sandy	44	328
Shale and sand lenses -	22	218	Total depth		431

Well WT-37-40-501

Owner: R. L. Whitesides. Driller: Newton Well Serv
--

Clay, red and white	22	22	Sand with shale	22	176
Sand, clay and gravel -	22	44	Shale	22	198
Shale, sandy	22	66	Shale and limerock	22	220
Sand and shale	44	110	Shale and shell	176	396
Shale	22	132	Shale and shelly sand -	46	442
Shale and sand	22	154			

Well WT-37-46-601

Owner: Robert Wall. Driller: Newton Well Service.

No record	15	15	Sand	6	81
Sand	10	25	Coal	3	84
No record	13	38	Sand	6	90
Coal	17	55	No record	40	130
No record	18	73	Sand	5	135
Limerock	2	75	Lime, hard	27	162

San Augustine County

Thickness (feet)	Depth (feet)	Thickness (feet)	•
------------------	-----------------	---------------------	---

Well WT-37-46-601--Continued

Shale, sandy, with coal streaks 7	169	Sand with shale breaks	22	310
No record 119	288			

Well WT-37-47-101

Owner: U. S. Forest Service. Driller: --

Surface	70	70	Shale, sticky	54	383
Shale, sandy	43	113	Shale, sandy, and shells	90	473
Shale and shell	12	125	Sand	15	488
Shale, sticky	53	178	Shale, hard, and sandy-	4	492
Shale, sandy, and hard	46	224	Shale, hard	25	517
Shale and shells	40	264	Shale, sticky	23	540
Shale, sticky	30	294	Shale, sandy and shells	20	560
Shale, sticky, and limy shells	35	329	Sand	65	625

Well WT-37-55-101

Owner: S. T. Bryan. Driller: Newton Well Service

Gravel, sandy, and jointed clay	22	22	Shale and sand	22	154
	<i>4 4</i>	2.2	Shale, sandy	22	176
Clay, jointed, shale and sand	22	44	Shale and sandy shale -	44	220
Shale, hard	44	88	Shale and sand	22	242
Shale, hard and soft	22	110	Shale and sandy shale -	22	264
Sand and shale	22	132	Shale, sandy, and shale	22	286

San Augustine County

ThicknessDepthThicknessDep(feet)(feet)(feet)(feet)	oth eet)

Well WT-37-55-101--Continued

Shale, sandy, shale and rock	22	308	Shale, sandy	66	418
and FOCK	2.2	200	Shale	20	438
Shale, hard	22				
Shale, hard, sandy	22	352			

Well WT-37-55-102

Owner: Hunter-Longbell, well 2. Driller: --

		· · · · · · · · · · · · · · · · · · ·	r	······
Clay, sandy	17	17	Shale, sandy, hard sand and lignite 18	1,368
Sand and gravel	34	51		
Gravel	5	56	Shale, sandy, and boulders 119	1,487
Rock	1	57	Shale, sticky, boulders and hard sand 41	1,528
Sand, gravel, and gumbo	43	100		
Shale, sticky, and sand	211	311	Marl, hard 1	1,529
Rock	1	312	Marl, green 71	1,600
	-	512	Marl, hard streaks 16	1,616
Shale, sticky	31	343	Marl, green, streaks of	
Shale, sticky, streaks	316	659	shale and sandy streaks 18	1,634
of sand	210	679	Marl and sandy shale 18	1,652
Shale, sticky, and boulders	261	92 0	Marl, green, and shale- 17	1,669
Shale, sticky, and			Shale, hard streaks,	
boulders	33	953	sand and boulders 36	1,705
Marl, hard	4	957	Marl 30	1,735
Marl	86	1,043	Shale, gray and brown, sandy 36	1,771
Shale, sticky, streaks o	f		sandy 36	
rock and marl		1,320	Shale, very soft, sandy 36	1,807
Shale, sticky, hard sand and marl	30	1,350	Sand, soft, and streaks of shale 18	1,825

San Augustine County

Thickness (feet)	Depth (feet)	Thicknes (feet)				
Well WT-37-55-102Continued						
Shale, streaks of soft	1	Shale, sticky 98 Shale and boulders 83 Rock 2	2,200			
sand 8	1,833	Shale and boulders 83	2,283			
Sand, water 23		Rock 2	2,285			

			ROCK	2	2,205
Shale, boulders, and san sand streaks 15	55	2,011	Shale and boulders	86	2,371
Sand, hard, green, and	0.1	0.0/0	Rock, hard	2	2,373
shells	31	2,042	Shale and boulders	147	2,520
Rock	2	2,044	Sand, hard, and shells-	8	2,528
Sand, hard, green, and shells	12	2,056	Sand and shells, hard streaks	22	2,550
Sand, sticky, gray	25	2,081			
Sand and sticky shale -	21	2,102			

Well WT-37-55-204

Owner: Harris F. West. Driller: Newton Well Service.

Conglomerate	21	21	Shale, sandy	14	125
Sand, yellow, sand and			Rock	5	130
gravel	21	42	Shale, hard, sticky	44	174
Shale and shell	22	64	Shale, sandy	22	196
Shale	18	82	· -		
Rock	4	86	Shale, sticky, and rock	22	218
Shale	8	94	Shale, sand lenses	22	240
	_		Shale and rock	22	262
Shale, light	3	97	Sand	31	293
Rock	4	101			
Shale	10	111			