

TEXAS DEPARTMENT OF WATER RESOURCES

REPORT 278

OCCURRENCE, QUALITY, AND AVAILABILITY OF GROUND WATER IN CALLAHAN COUNTY, TEXAS

Ву

Robert D. Price, Loyd E. Walker, and Thomas W. Sieh, Geologists

TEXAS DEPARTMENT OF WATER RESOURCES

Charles E. Nemir, Executive Director

TEXAS WATER DEVELOPMENT BOARD

Louis A. Beecherl Jr., Chairman Glen E. Roney W. O. Bankston George W. McCleskey, Vice Chairman Lonnie A. "Bo" Pilgrim Louie Welch

TEXAS WATER COMMISSION

Felix McDonald, Chairman Lee B. M. Biggart, Commissioner John D. Stover, Commissioner

Authorization for use or reproduction of any original material contained in this publication, i.e., not obtained from other sources, is freely granted. The Department would appreciate acknowledgement.

Published and distributed by the Texas Department of Water Resources Post Office Box 13087 Austin, Texas 78711

ABSTRACT

The principal source of fresh to very saline ground water in Callahan County is the Antlers Formation of the Trinity Group of Cretaceous age. Small amounts of fresh to moderately saline water are present in alluvial deposits found along major streams. A limited amount of fresh to brine water also occurs in shallow discontinuous zones of low permeability in Permian limestones and sandstones.

Chemical quality of the ground water varies widely. Dissolved-solids concentrations in ground water from the Antlers ranges from 134 to 16,923 milligrams per liter. Much higher concentrations of dissolved solids are usually present in ground waters derived from Permian rocks.

About 1,900 acre-feet (2.34 hm³) of ground water, or approximately 1.7 million gallons per day (6.4 million I/d), was used within the county for all purposes during 1978. Of this amount, approximately 52 percent was used for irrigation, about 10 percent for public supply, and about 38 percent for rural domestic and livestock needs. Because of the small amount of pumpage, water-level declines have been restricted to small isolated areas and in most wells the water level has risen during the past few years.

Recharge to the Antlers Formation, derived from precipitation on its outcrop, is estimated at 5,400 acre-feet per year (6.66 hm³/yr). This represents 1.5 percent of the county's average annual rainfall that reaches the water table and enters storage. It is conservatively estimated that one-half of the total annual effective recharge or about 2,700 acre-feet (3.33 hm³) can be safely developed from the aquifer on a yearly basis.

During the winter of 1970 - 71, the quantity of ground water estimated to be stored within the Antlers aquifer in both the Cross Plains and Clyde-Oplin areas of the county was about 836,100 acre-feet (1,031 hm³). Approximately 627,100 acre-feet (773.2 hm³) is thought to be recoverable from storage.

TABLE OF CONTENTS

	Page
ABSTRACT	. iii
INTRODUCTION	1
Location and Extent	1
Purpose and Scope	1
Methods of Investigation	2
Previous Investigations	2
Well-Numbering System	2
Acknowledgements	3
Conversion From English to Metric Units	3
GEOGRAPHIC SETTING	4
Topography and Drainage	4
Climate	5
History, Population, and Economy	6
GEOLOGY AS RELATED TO THE OCCURRENCE OF GROUND WATER	6
Geologic History	6
Structure	9
Stratigraphy of the Water-Bearing Units	15
Pre-Permian Systems	15
Permian System	15
Cretaceous System	16

		Page
	Trinity Group	16
	Fredericksburg Group	16
	Quaternary System	17
	Recent Alluvium	17
GRO	UND-WATER HYDROLOGY	17
G	General Principles of Occurrence	17
	Hydrologic Cycle	18
	Definition of Ground Water and Related Terms	18
	Source and Occurrence of Ground Water	19
	Recharge, Discharge, and Movement	19
	Water-Level Fluctuations	20
	Hydraulic Properties of Aquifers	20
CHEN	MICAL QUALITY OF GROUND WATER	22
G	General Chemical Quality	22
Р	Public Supply	23
	Primary Standards	31
	Secondary Standards	32
D	Domestic and Livestock	33
lr	rrigation	35
Ir	ndustrial	38
Т	reatment	38

	Page
WELL DEVELOPMENT	38
History of Well Development in Callahan County	38
Well Construction	40
Yields of Wells	41
Pump Types and Energy Sources	41
GROUND-WATER PUMPAGE AND UTILIZATION	41
Irrigation Pumpage	44
Municipal Pumpage	44
Public Water Supply—Cross Plains	44
Public Water Supply—Clyde	45
Public Water Supply—Baird	45
Public Water Supply—Putnam	45
Denton Valley Missile Site Water Supply	46
Industrial Water Use	46
Domestic and Livestock Use	46
AVAILABILITY AND QUALITY OF GROUND WATER	46
Primary Aquifer	46
Trinity Group—Antlers Formation	46
Extent of the Aquifer	47
Geologic Characteristics	47
Ground-Water Source, Occurrence, and Movement	47
Changes in Water Levels	51

30. JA	Page
Recharge and Discharge	57
Chemical Quality	60
Historical Changes in Water Quality	64
Ground Water Available for Development	68
Possible Areas of Future Development	73
Other Water-Bearing Units	74
Permian Rocks Undifferentiated	74
Extent of the Aquifer	74
Ground-Water Source, Occurrence, and Movement	74
Changes in Water Levels	75
Recharge and Discharge	75
Chemical Quality	75
Recent Alluvium	76
Ground-Water Source, Occurrence, and Movement	77
Changes in Water Levels	77
Recharge and Discharge	77
Chemical Quality	77
SURFACE-CASING RECOMMENDATIONS FOR WATER QUALITY PROTECTION	79
PRODUCTION AND DISPOSAL OF OIL-FIELD BRINE	80
Areas of Disposal, Disposal Methods, and Quantities	80
Chemical Quality of Produced Brines	83
Produced Brine as a Potential Source of Ground-Water Contamination	83

Pa		
SUN	MMARY AND CONCLUSIONS	83
SEL	ECTED REFERENCES	86
	TABLES	
1.	Geologic Units and Their Water-Bearing Properties	13
2.	Source, Significance, and Concentration of Dissolved- Mineral Constituents and Properties of Water	24
3.	Water-Use Limitations of Salinity and Sodium Hazard	37
4.	Yields and Other Hydrologic Properties of Selected Wells Completed in the Antlers Formation	42
5.	Records of Selected Wells, Springs, and Test Holes	91
6.	Drillers' Logs of Selected Water Wells, Oil and Gas Tests, and Stratigraphic Tests	116
7.	Chemical Analyses of Water From Selected Wells, Springs, and Test Holes	131
8.	Reported Oil-Field Brine Production and Disposal, 1961-1967	142
9.	Chemical Analyses of Oil-Field Brines	146
10.	Oil and Gas Tests Selected as Data-Control Points in Callahan County and Adjacent Areas	148
	FIGURES	
1.	Map of Texas Showing Location of Callahan County	
2.	Diagram of Well-Numbering System	5
3.	Graphs of Annual Precipitation at Baird, Cross Plains, and Putnam, Callahan County	7
4.	Graphs Showing Average Monthly Precipitation at Putnam, and Average Monthly Lake-Surface Evaporation in Callahan County	

		Page
5.	Generalized Geologic Map of Callahan County	
6.	Major Structural Features in North-Central Texas	
7.	Hydrologic Cycle	18
8.	Idealized Cross Section Showing Drawdown Interference Between Two Pumping Wells	21
9.	Concentrations of Selected Chemical Constituents in Water From Selected Wells Pumping From Various Water- Bearing Units	
10.	Diagram for the Classification of Irrigation Waters	36
11.	Graph Showing Estimated Pumpage of Ground Water in Callahan County, 1954-78	43
12.	Map Showing Approximate Altitude of the Base of the Antlers Formation	49
13.	Map Showing Approximate Altitude of Water Levels in Wells in the Antlers Formation, Fall and Winter 1970-71	53
14.	Map Showing Approximate Altitude of Water Levels in Wells in the Antlers Formation, Winter 1940	55
15.	Hydrographs Showing Water-Level Fluctuations in Observation Wells in the Antlers Formation, 1940-75	58
16.	Seasonal Water-Level Fluctuations in Observation Wells in the Antlers Formation and Monthly Precipitation at Baird, September 1969-January 1972	59
17.	Diagram for the Classification of Antlers Formation Waters Used for Irrigation	64
18.	Diagrams of Chemical Analyses of Ground Water and Typical Oil Field Brines	66
19.	Map Showing Approximate Saturated Thickness of the Antlers	71

		Page
20.	Diagram for the Classification of Waters From Recent Alluvium and Permian Rocks Used For	
	Irrigation	76
21.	Map Showing Locations and Amounts of Reported 1961 and 1967 Brine Production, Known Salt-Water Disposal Wells,	
	and Apparently Contaminated Water Wells	81
22.	Map Showing Location of Selected Wells, Springs, Test Holes,	
	and Oil and Gas Tests	151
23.	Geologic Section A-A'	153
24.	Geologic Section B-B'	155
25.	Geologic Section C-C'	157

OCCURRENCE, QUALITY, AND AVAILABILITY OF GROUND WATER IN CALLAHAN COUNTY, TEXAS

INTRODUCTION

Location and Extent

Callahan County is located in west-central Texas between 99°05' and 99°37' west longitude and 32°05' and 32°31' north latitude. It is bordered on the north by Shackelford and Jones Counties, on the west by Taylor County, on the east by Eastland County, and on the south by Coleman and Brown Counties (Figure 1). The county has an areal extent of approximately 856 square miles (2,220 km²). The county seat of government is Baird which is located in the north central part of the county along Interstate Highway 20.

Figure 1.-Location of Callahan County

Purpose and Scope

The general purpose of the study was to determine the occurrence, quality, and, to the extent possible, the quantity of the ground-water resources of the county; and to determine the sources of water suitable for domestic, livestock, public supply, and irrigation uses. The general scope of the study was the collection, compilation, and analysis of data pertaining to the distribution and quality of ground water in Callahan County.

Field work on this study was conducted by Thomas W. Sieh from September 1, 1970 through January 8, 1972, under the general direction of Charles R. Baskin, P.E., Director, Data and Engineering Services Division; Dr. Tommy R. Knowles, P.E., Chief, Data Collec-

tion and Evaluation Section; Richard C. Peckham, former Director, Ground Water Division; Bernard B. Baker and Robert L. Bluntzer, former Assistant Directors in charge of Availability Programs; and under the direct supervision of William B. Klemt, Loyd E. Walker, and Robert D. Price, Geologists.

Methods of Investigation

An inventory was made of all municipal, industrial, and irrigation wells; all springs; and a representative inventory of domestic and livestock wells. A total of 497 wells, springs, and test holes were inventoried during this study (Table 5). Water levels were measured in all wells where possible. Information was gathered, when available, on well depths, well construction, date drilled, driller, water-yielding zones, and water-production quantities. Surface elevations of all wells inventoried were determined from topographic maps and electric log well records. Water samples were collected for chemical analysis from 270 selected wells, springs, or test holes during this study. These analyses, as well as 67 analyses performed by commercial or private laboratories, are listed in Table 7. Surface and subsurface geologic data were collected and compiled, placing special emphasis on their relationship to ground water. Additional data were collected and compiled on apparent and potential contamination, oil-field brine disposal, climate, and areas of recharge and discharge. Data were tabulated, analyzed, and the necessary illustrations were prepared for coherent presentation in a report.

Previous Investigations

Several regional reports that include this area have been published prior to this investigation. They are cited in the Selected References.

W. O. George (1940a) collected data on 216 wells, 7 springs, drillers' logs of 11 wells, and 167 water samples for chemical analysis.

A memorandum by W. O. George (1940b) gave information on the occurrence and quality of ground water in the vicinity of the City of Baird.

Cronin and others (1963) of the United States Geological Survey, in cooperation with the Texas Water Commission, conducted a reconnaissance investigation of the ground-water resources of the Brazos River basin.

In 1967, the Texas Water Development Board in cooperation with the United States Geological Survey prepared a reconnaissance investigation of the ground-water resources of the Colorado River basin (Mount and others, 1967).

The Texas Water Development Board also prepared a regional report on the ground-water resources of a part of central Texas which covers part of the study area (Klemt and others, 1975).

Well-Numbering System

The system used in numbering the wells and springs in this report was developed and is used statewide by the Texas Department of Water Resources. It was designed so as to identify each individual well or spring and also to designate its geographical location within the state.

A well number consists of a two-letter county prefix followed by a seven-digit number. The numbers are derived from the system of division and subdivision of the state into quadrangles of

degrees and minutes of latitude and longitude (Figure 2). Each largest quadrangle has an assigned two-digit number from 01 to 89 for identification. This largest division, the one-degree quadrangle, is then subdivided into sixty-four $7\frac{1}{2}$ -minute quadrangles which are further subdivided into nine $2\frac{1}{2}$ -minute quadrangles. Thus, the first two digits in the well number identify the one-degree quadrangle, the third and fourth digits the $7\frac{1}{2}$ -minute quadrangle, and the fifth digit the $2\frac{1}{2}$ -minute quadrangle. The sixth and seventh digits identify the individual well or spring within the $2\frac{1}{2}$ -minute quadrangle.

The two-letter prefix for Callahan County is BX, and the county falls within the one-degree quadrangle numbered 30.

Acknowledgements

Appreciation is expressed to the many landowners, farmers, water well drillers, city, county, and federal officials, and oil operators who assisted in the collection of data for this report by allowing access to lands and furnishing information from files. Grateful acknowledgement is extended to the Taylor Electric Co-op, Inc. and the Soil Conservation Service of the U.S. Department of Agriculture.

Conversion From English To Metric Units

For those readers interested in using the International System (SI) of units, the metric equivalents of English units of measurements are given in parentheses in the text. The English units used in this report may be converted to metric units by the following conversion factors:

From English units	Multiply by	To obtain metric units
acres	0.4047	square hectometers (hm²)
acre-feet (acre-ft)	0.001233	cubic hectometers (hm³)
barrel, 42 gallons (bbl)	0.1590	cubic meters (m³)
cubic feet per second (ft³/s)	0.02832	cubic meters per second (m³/s)
feet (ft)	0.3048	meters (m)
feet per mile (ft/mi)	0.189	meters per kilometer (m/km)
gallons (gal)	3.785	liters (I)
gallons per minute (gal/min)	0.06309	liters per second (I/s)

From English units	Multiply by	To obtain metric units	
gallons per minute per foot [(gal/min)/ft]	0.207	liters per second per meter [(I/s)/m]	bebis o-ana
gallons per day per foot [(gal/d)/ft]	12.418	liters per day per meter [(I/d)/m]	
gallons per day per square foot [(gal/d)/ft²]	40.74	liters per day per square meter [(I/d)/m²]	
horsepower, electric (hp)	746	watt (W)	
inches (in)	2.54	centimeters (cm)	
miles (mi)	1.609	kilometers (km)	
million gallons per day (million gal/d)	3.785	million liters per day (million I/d)	
square miles (mi²)	2.590	square kilometers (km²)	

To convert degrees Fahrenheit to degrees Celsius use the following formula:

°C = (°F-32) (0.556)

GEOGRAPHIC SETTING

Topography and Drainage

Callahan County is located on the boundary between the Central Lowland and the Great Plains Provinces (Carr, 1967, p. 3). The county is divided in half from northwest to southeast by these two physical divisions, with the north part of the county being located in the Osage Section of the Central Lowland Province and the southern one-half being located in the Central Texas Section of the Great Plains Province.

The county has rolling topography from the northeastern to the south central parts with the remainder being relatively level or gently rolling. There are several prominent physiographic features in the county. One is the Callahan Divide which generally separates the county along a line from the northwest to the southeast, and the others are several prominent buttes located in the southeast part of the county. The altitude of the land surface ranges from 1,500 to 2,100 feet (457 to 640 m) above mean sea level.

Callahan County lies within two major drainage systems; the Brazos River basin, which covers the northeast part, and the Colorado River basin, which covers the southwest. Major tributaries in the county are Battle, Deep, and Hubbard Creeks in the Brazos River basin and Pecan Bayou and Greenbriar Creek in the Colorado River basin.

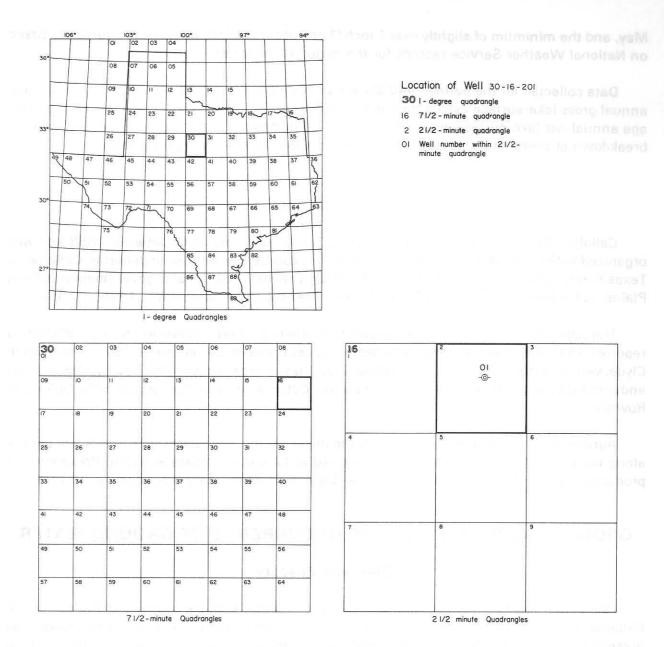


Figure 2.—Well-Numbering System

Climate

The climate of Callahan County is subhumid. The average annual free-air temperature for the period 1931-60 is about 65 °F or 18 °C (Carr, 1967, p. 4). The average minimum temperature for January, the coldest month, is about 33 °F (1 °C). The average maximum temperature for July and August, the warmest months, is 96 °F or 36 °C (Dallas Morning News, 1979, p. 269).

During the period from 1911 through 1974, the average annual precipitation at Putnam was 24.5 inches (or 62.3 cm Figure 3). During the same time interval, the maximum annual precipitation was 39.3 inches (99.8 cm) recorded in 1957, and the minimum was 11.8 inches (30.0 cm) in 1956. The average maximum monthly precipitation of slightly less than 4 inches (10 cm) occurs in

May, and the minimum of slightly over 1 inch (3 cm) occurs in February. These figures are based on National Weather Service records for the period of record at Putnam.

Data collected for the period 1940-65 and compiled by Kane (1967) reflect that the average annual gross lake-surface evaporation is approximately 79 inches (201 cm); however, the average annual net lake-surface evaporation is only 56 inches (142 cm). Figure 4 shows a monthly breakdown of these data and compares it with the average monthly precipitation.

History, Population, and Economy

Callahan County was created from Bexar, Travis, and Bosque Counties in 1858 and was organized with the present boundaries in 1877. The county was named for James H. Callahan, a Texas Ranger (Dallas Morning News, 1979, p. 269). The first county seat of government was Belle Plains, but it later was moved to Baird (Texas State Historical Association, 1976, p. 135).

The population of the county increased from a few pioneer citizens in the mid-1800's to a reported 16,000 in 1924 and had declined to an estimated 9,238 people in 1978. The town of Clyde, with an estimated population of about 2,000, is the largest town in the county. Other towns and communities are Baird, Cross Plains, Putnam, Cottonwood, Pueblo, Denton, Eula, Oplin, and Rowden.

Agribusiness is the principal contributor to the economy. The raising of livestock and poultry along with peanuts, grains, and cotton is valued at 12 million dollars annually. Presently, the production of oil, gas, and stone contributes 3.8 million dollars to the economy each year.

GEOLOGY AS RELATED TO THE OCCURRENCE OF GROUND WATER

Geologic History

Rocks representing various geologic systems underlie and are exposed at the surface of Callahan County (Figures 5, 23, 24, and 25). Listed in ascending order, those systems known to be present in the subsurface are the Precambrian, Cambrian, Ordovician, Mississippian, and the Pennsylvanian. Those represented on the surface, listed from the oldest to the youngest, are the Permian, Cretaceous, and the Quaternary Systems (Figure 5). Description of the hydrologic units and their water-bearing characteristics are given in Table 1. The general lithology of all of the various rock units and their stratigraphic relationship are shown on the above referenced cross-sections. These rocks are composed mainly of limestone, dolomite, shale, and clastics which, for the most part, were deposited in epicontinental seas of relative shallow depth. The sequence of rock types indicates that during their deposition there were repeated transgressions and regressions of the seas.

Geologic data suggest that deposition of sediments during late Cambrian through Mississippian times occurred in broad, relatively shallow seas in this area. There is an absence of some Cambrian and Ordovician, all Silurian and Devonian rocks, and some Mississippian beds. This is due either to nondeposition or removal by erosion and is ample evidence of the repeated advance and retreat of the seas during this vast time period (Taylor, 1978).

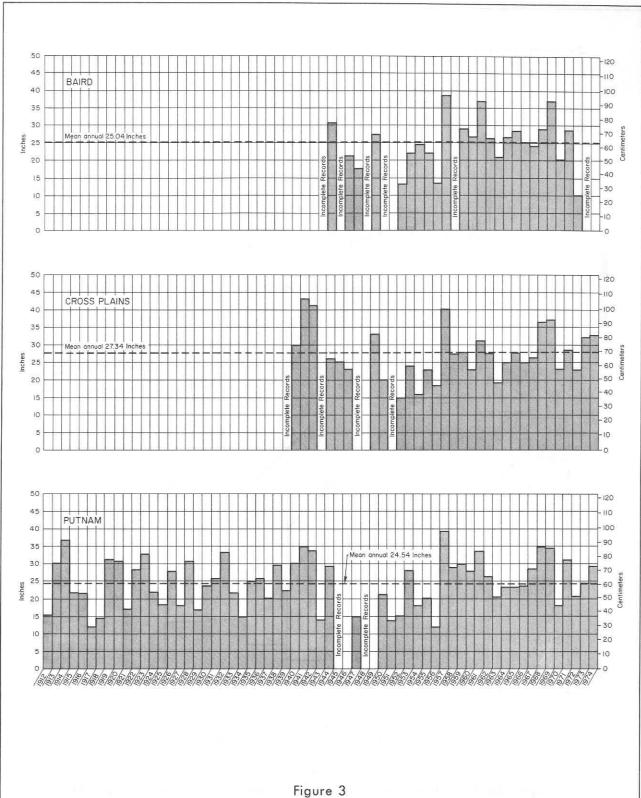
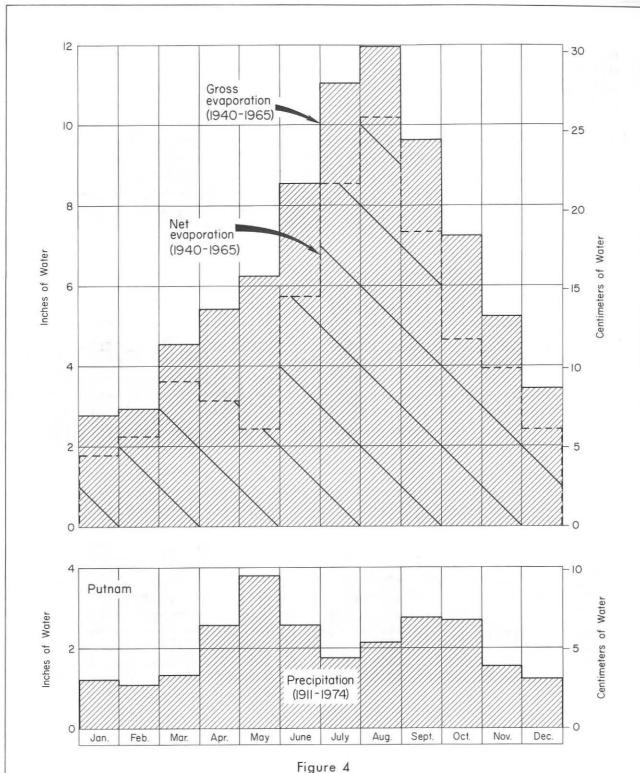



Figure 3

Annual Precipitation at Baird, Cross Plains, and Putnam, Callahan County

(From Records of U.S. Weather Service)

Average Monthly Precipitation at Putnam, and Average Monthly
Lake-Surface Evaporation in Callahan County
(From Records of U.S. Weather Service, and Kane, 1967)

During late Mississippian or early Pennsylvanian times, epeirogenic movement had begun. Early Pennsylvanian deposits show evidence of shifting environmental conditions with apparently continuous deposition. Evidence points to sea-level changes and subsequent widespread erosion toward the end of early Pennsylvanian time. A general subsidence began during this time and continued, with some minor interruptions, through Permian time. The thick sequences of Middle and Upper Pennsylvanian and Permian deposits found in the Callahan County area are evidence of this. A westward recession of the seas occurred in this area toward the end of the Permian.

Triassic and Jurassic deposits are absent in Callahan County; however, structural and stratigraphic evidence indicates that land tilting and drainage changed by late Jurassic time from a previously westerly or northwesterly direction to a southerly or southeasterly direction. Regional tilt and drainage in this area has remained in this direction since that time.

Early Cretaceous seas advanced from the southeast across the unevenly eroded Permian surface of Callahan County, and the Antlers Formation, which is the marginal or shoreward facies of the Trinity Group, was deposited. As the sea transgressed farther landward, the offshore, or seaward, sediments of the Fredericksburg Group were deposited in the county. Late Cretaceous seas probably also covered this area; however, rocks deposited by them have since been removed by erosion (Taylor, 1978).

Unconformably overlying the rocks of Cretaceous and Permian age throughout Callahan County are semiconsolidated and unconsolidated deposits of clay, sand, and gravel of Quaternary age.

Gravel deposits of probable Pleistocene age form a thin mantle covering scattered parts of extreme northwestern Callahan County (Figure 5). These deposits, some as lag gravel and some with a calcareous cement, are believed to have been laid down as a continuous sheet across the area primarily northwest of the county. They were controlled by terrestrial alluviation and erosion caused by repeated climatic changes associated with the advance and retreat of the great glaciers to the north during this period of time (Van Siclen, 1957). Much of these sediments have since been removed from the area by stream erosion so that today only isolated remnants of the once near-continuous sheet are found capping the low, gently rolling hills (Taylor, 1978).

Recent alluvial deposits are found along the flood plains of many of the main drainage tributaries throughout Callahan County. These sediments were probably derived from Cretaceous rocks along the Callahan Divide (Figure 5). Additionally, much material of the alluvium undoubtedly was derived from the older Pleistocene gravels and from dissected beds of Permian age.

Structure

Major subsurface structural features of central and north-central Texas are shown on Figure 6. Callahan County is located on the west flank of the Bend Flexure which probably had its beginning in late Pennsylvanian or early Permian times as a result of westward land subsidence and regional tilting. Movement continued throughout the Permian and probably into early Mesozoic time. Regional dip of the Permian strata is to the west-northwest at about 40 feet per mile (7.6 m/km). The beds crop out in irregular belts having a north-south trend and becoming successively younger from east to west across the county.

Table 1.—Geologic Units and Their Water-Bearing Properties

SYSTEM	SERIES OR GROUP	FORMATION	APPROXIMATE THICKNESS (feet)	LITHOLOGIC CHARACTER	WATER-BEARING CHARACTERISTICS
Quaternary	Recent and Pleistocene	Alluvium	0-30	Surficial floodplain and terrace Alluvium of Pleistocene to Recent age along the streams; consists of gravel, caliche, sand, silt, and clay.	Yields small quantities of fresh to moderate saline water.
——— Uncor	formity —			Edwards is gray to near white, dense to finely crystalline, thin to thick-bedded limestone with thin irregular layers and nodules of dark bluishgray chert, fossiliferous.	Not known to yield water to wells in the studerea.
	Fredericksburg	Edwards, Comanche Peak, and Walnut	0-80	Comanche Peak is gray, thin to irregular, wavy- bedded, fossiliferous limestone with thin inter- bedded claystone, light brown to gray.	
Cretaceous				Walnut is an impure limestone and claystone interbedded, white to light gray to brown, some thin semi-crystalline limestone lenses occur locally with megafossils.	
, llaco	Trinity	Antiers	0-185	Upper part cream to near white, very fine to fine-grained sandstone interbedded with claystone, brown to purplish pink, blocky, sandy, and locally calcareous. Middle part claystone as described above. Lower part sandstone as above with conglomerate interbedded. Conglomerate consists of pebbles of chert and quartz with local green clay casts, with some that are argillaceous, sandy, reddish brown and gray.	Yields small to moderate quantities of fresh very saline water.
Permian	offormity—		375-2,040	Units consist mainly of alternating limestone and shale beds, with the upper part containing thicker limestone beds than the lower part. Limestones are generally gray to brown, fine to coarsely crystalline and usually fossiliferous. Shales are of various colors and blocky to fissile. Also present, primarily in the lower part, are some gray to brown, fine to mediumgrained sandstones, siltstones, mudstones, conglomerates and thin coal beds.	Yields small quantities of fresh to brine wate
Pre-Permian		_			Not known to yield water of usable quality

Yield of wells: small, less than 100 gal/min (gallons per minute) and moderate, 100-1,000 gal/min.

Quality of water as mg/l or ppm (milligrams per liter or parts per million) dissolved solids: fresh, less than 1,000 mg/l or ppm; slightly saline, 1,000 to 3,000 mg/l or ppm; moderately saline, 3,000 to 10,000 mg/l or ppm; very saline, 10,000 to 35,000 ppm; and brine, greater than 35,000 ppm.

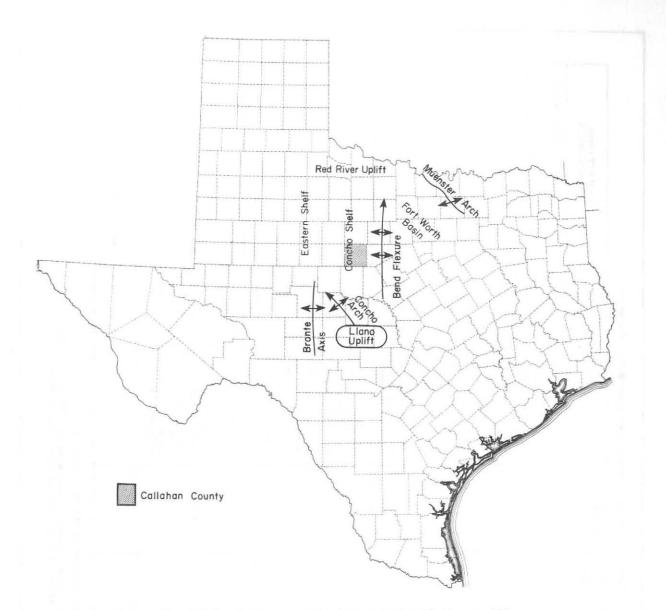


Figure 6.—Major Structural Features in North-Central Texas

Cretaceous deposits of Callahan County overlie the Permian with a marked unconformity caused by post-Permian, pre-Cretaceous uplift, erosion, and tilting to the south and east. According to Farris and others (1963), regional dip on these strata is to the southeast at rates up to 25 feet per mile (4.7 m/km).

Quaternary deposits rest unconformably on Permian rocks and generally assume an attitude equivalent in rate and direction to local topography.

Hydrologic units significant to the occurrence of usable-quality ground water in Callahan County have not been affected appreciably by any of the major structural deformations other than by tilting as previously described.

Stratigraphy of the Water-Bearing Units

In the description of the water-bearing properties of geologic units, the yields of wells are described as follows:

Description	Yield (gallons per minute)
Small	Less than 100
Moderate	100 to 1,000
Large	More than 1,000

In general, the chemical quality of the water is classified according to the dissolved-solids content (Winslow and Kister, 1956, p. 5). A table listing these classifications is found in the chemical quality criteria section of this report.

Pre-Permian Systems

Pre-Permian rocks known to underlie Callahan County are briefly described as follows. Precambrian rocks are composed principally of granite with lesser amounts of schist and gneiss. Mostly dolomitic limestones with some sandstones are present in the Cambrian System. Ordovician and thin Mississippian sediments consist mainly of dolomite, dolomitic limestone, and limestone, with some shale and chert. Rocks of Pennsylvanian age are composed of limestones with some sands, and thick sequences of shales (Figures 23, 24, and 25). Since pre-Permian rocks produce ground waters of a brine quality (dissolved solids greater than 35,000 parts per million), no further discussion will be made of these units. See Table 8 for data on the chemical quality of water in these rocks.

Permian System

The oldest rocks exposed at the surface in Callahan County are of Permian age and are members of the Pueblo Formation which crop out in the extreme eastern part of the county. The youngest Permian rocks are members of the Lueders Formation and are present in extreme northwest Callahan County (Bureau of Economic Geology, 1972). Since many controversies exist within this geologic interval relating to boundaries as well as the names of the systems, series, groups, formations, and members of the formations, this entire interval will be referred to as "Permian rocks undifferentiated" and will be considered as a single hydrologic unit in this report. This is possible since only minor amounts of potable ground water are present in these rocks.

Lithologically, these geologic units consist mainly of alternating limestone and shale beds, with the upper part containing thicker limestone beds than the lower part. Limestones are generally gray to brown, fine to coarsely crystalline, and usually fossiliferous. The shales are of various colors and are blocky to fissile. Some gray to brown, fine- to medium-grained sandstones

are present mostly in the lower part. This interval also contains siltstones, mudstones, conglomerates, and thin beds of coal. Individual units of the Permian System crop out in belts of varying widths trending generally in a northeast-southwest direction.

The represented thickness of Permian strata varies from about 375 feet (114 m) at the east line of the county to approximately 2,040 feet (622 m) at the county's west edge. Individual beds dip west-northwest at approximately 40 feet per mile (7.6 m/km).

Minor accumulations of ground water in this hydrologic unit are directly dependent upon the amount of local fracturing and solution channels. For this reason, the unit is not a reliable aquifer. Most wells producing from this unit have small yields and are situated at or near the updip edge of the individual formation or member's outcrop where zones of permeability are locally present. The water-bearing parts of the aquifer are thought to be very limited, occurring near the creeks or drainageways which cross the outcrop of the individual formations or members.

Cretaceous System

The Cretaceous System is represented in Callahan County by the Trinity Group and the overlying Fredericksburg Group. The estimated combined maximum thickness of the two groups is about 265 feet (81 m).

Trinity Group

Within Callahan County, the Trinity Group consists entirely of the Antlers Formation which is the lateral equivalent of the Twin Mountains (Travis Peak of central Texas) and Paluxy Formations present in the Cretaceous System east of Callahan County. In that area, the Glen Rose Formation is present and separates the Antlers into its equivalents. In Callahan County, the Glen Rose Formation is absent and the Twin Mountains and Paluxy Formations coalesce to form the Antlers Formation. In some areas of Callahan County, an upper perched water zone is present in the Antlers. This zone is not hydrologically connected with the lower saturated portion of the Antlers which is the principal aquifer of the county. This water is probably in the Paluxy equivalent.

Within Callahan County, the upper part of the Trinity Group consists of sandstone interbedded with claystone. The lower part of the Antlers contains sandstone interbedded with conglomerate. The outcrop of the Trinity forms the lower slopes of the mesas and buttes of the Callahan Divide located in western and southeastern Callahan County (Figure 5). Data assembled during this study indicate that the maximum thickness of the Antlers is about 185 feet (56.4 m).

Rocks of this age contain most of the usable ground water in Callahan County. The water quality ranges from fresh to very saline; most of the water, however, is slightly saline (Table 7 and Figure 22). Well yields range from small to moderate.

Fredericksburg Group

The Fredericksburg Group is represented by, in ascending order, the Walnut Formation, Comanche Peak Limestone, and the Edwards Limestone. These geologic units form the mesas

and buttes which rise above the surrounding land surface in an east to west direction through central Callahan County, and their outcrop defines the approximate location of the Callahan Divide. The Walnut is composed of impure limestone and claystone that is interbedded. The limestone is light gray to brown, semicrystalline lenses which locally contain megafossils. The Comanche Peak Limestone consists of gray, thin to irregular wavy-bedded, fossiliferous limestone. The unit is interbedded with light brown to gray claystone. The Edwards Limestone is gray to near-white, dense to finely crystalline, thick to thin bedded, and fossiliferous. Locally it may contain thin irregular layers and nodules of dark bluish-gray chert (Bureau of Economic Geology, 1972). During the course of this investigation, no evidence was found that suggested the Fredericksburg Group contains usable ground water. The combined thickness of these beds in Callahan County is about 80 feet (24 m).

Quaternary System

The Quaternary System is represented in Callahan County by the Pleistocene and Recent Series. Surficial deposits consisting of sand, gravel, silt, and clay are present north of the Callahan Divide near the Taylor-Callahan County line (Figure 5). These deposits are found in the interstream areas and are possible remnants of older alluvial terraces of Pleistocene age. They rest unconformably on Permian strata and are probably less than 10 feet (3 m) thick. These sediments are not known to contain usable quality water in Callahan County. In addition, more significant deposits of Recent alluvium, which represent the younger Recent Series, are also present within the county.

Recent Alluvium

Alluvial deposits composed of fine sand, silt, clay, and gravel occur in the floodplains of and bordering many of the streambeds of the county. These stream deposits are believed to have been derived from older Pleistocene sediments and from Cretaceous and Permian rocks. The thickness of the alluvium is believed to be no greater than 30 feet (9 m).

The geologic map (Figure 5) outlines the principal deposits of Recent alluvium. Alluvium is also present along numerous tributaries of these streams but is not shown on the geologic map in all cases. Water is produced from the Recent alluvium typically by shallow, dug wells.

Recent alluvium wells usually provide a fairly reliable source of ground water in Callahan County. Water quality ranges from fresh to moderately saline. Yields to wells are small.

GROUND WATER HYDROLOGY

General Principles of Occurrence

In north-central Texas, as well as in Callahan County, the occurrence of ground water is erratic, the aquifers are limited and discontinuous, and well yields are usually small (less than 100 gal/min or 6.31 l/s). A few wells have moderate yields (100 to 1,000 gal/min or 6.31 to 63.1 l/s). Even though these conditions exist, the occurrence of ground water conforms to the same fundamental principles as those in any other area.

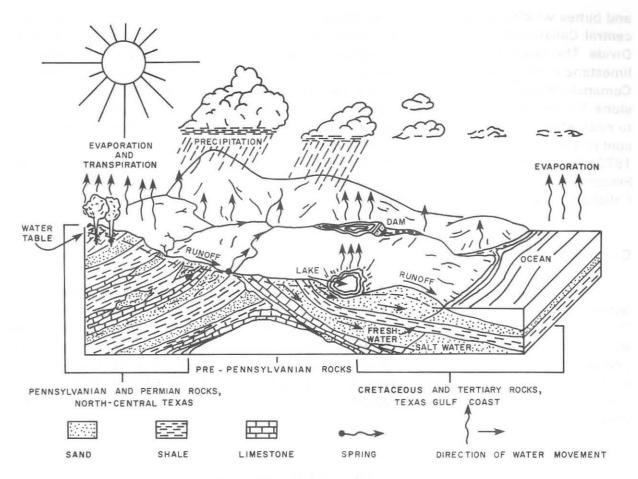


Figure 7.—Hydrologic Cycle

Hydrologic Cycle

Water available for use by man—whether as rain, stream flow, water from wells, or stream discharge—is captured in transit, and after its use, is returned to the hydrologic cycle from which it came. This cycle is illustrated in Figure 7. Graphically, this figure shows the continuing movement of water from the oceans through evaporation to precipitation and its return, either directly or indirectly, to the ocean.

Definition of Ground Water and Related Terms

Ground water is that part of the returning water which has entered the subsurface and filled the void spaces of the porous rocks which are within the zone of saturation. The source of all fresh ground water is precipitation; however, only a small percentage of the precipitation actually becomes ground water.

As water moves downward under the influence of gravity through porous rocks, it first enters the zone of aeration or unsaturated voids containing both air and water. Later it enters the zone of saturation where all of the pore spaces are filled with water. The upper surface of the zone of saturation is called the water table, and the water below the water table is called ground water. Occasionally, water in its downward movement encounters impermeable beds above the normal water table, and it is trapped, forming what is referred to as a perched water table.

An aquifer is a formation, group of formations, or part of a formation that is water bearing (Meinzer, 1923, p. 30). An aquiclude is a formation (or unit) which, although porous and capable of absorbing water slowly, will not transmit it fast enough to furnish an appreciable supply for a well or spring (DeWiest, 1965, p. 133-134).

Water-table conditions exist where the upper surface of the zone of saturation is unconfined and is under atmospheric pressure. When water-bearing units (aquifers or aquicludes) dip below nonporous beds in the subsurface, the water is under pressure and is confined. Waters under these conditions are said to be under artesian conditions.

Source and Occurrence of Ground Water

Precipitation is the main source of ground water to the aquifers and aquicludes of Callahan County, however, only a small portion of the precipitation actually reaches the water table (Figure 7).

Water occurs and is stored in pores or voids between the rock particles. The two fundamental rock characteristics which are important in the occurrence of ground water are *porosity*, or the ratio of the volume of void space to the total rock volume expressed as a percentage, and *permeability*, which is the ability of a porous material to transmit water. The porosity of a rock is dependent upon the shape, size, sorting, and the amount of cementation of the grains. Clays, silts, and soils which are fine-grained sediments, commonly have high porosity, however, they do not readily transmit water because of the small size of the voids and low permeabilities. Because of their high porosities which range from 40 to 60 percent, the fine-grained sediments are capable of storing large quantities of water.

In aquifers containing sands and gravels which are relatively unconsolidated, ground water occurs in the spaces between the individual particles. In aquifers such as limestones, dolomites, and other more compact and well-cemented rocks, ground water occurs mainly in fractures and cracks caused by force of earth movement or in spaces dissolved by the action of water. Such spaces are known as vugs, caverns, or channels (Taylor, 1978, p. 16).

Recharge, Discharge, and Movement

Replenishment of water to an underground water-bearing formation, or *recharge*, is mainly by natural means. A major controlling factor for recharge is the frequency and the amount of precipitation. Also, seepage from lakes or streams on an aquifer's outcrop aid in natural recharge. The rechargeability of an aquifer depends upon the topography and the amount and kind of vegetative cover on the outcropping rocks, the condition of the soils, and the permeability of the rocks involved. Minor amounts of artificial recharge may be accomplished by running water over an aquifer's permeable outcrop or by pumping water into the water-bearing unit through wells. If recharge does not equal discharge, over a long period of time, the aquifer will be progressively drained. If recharge is greater than discharge, then water will be taken into storage and will progressively fill the aquifer.

Discharge is the process by which water is removed from an aquifer. As in the case of recharge, the discharge of water from a water-bearing unit is also by natural and artificial means.

Natural discharge occurs as flow from springs, effluent seepage, interformational leakage, transpiration by plants, and by evaporation. Artificially, water is discharged through wells by pumping.

The movement of ground water is generally very slow and is from areas of recharge to areas of discharge. The governing factors which determine the rate of movement are the permeability of the aquifer and the hydraulic gradient. With low permeabilities (10 gallons per day per square foot or 407 liters per day per square meter) and a very low gradient of much less than 1 degree, the rate of flow would be less than 1 foot per day (0.305 m/d). Under ideal conditions of high permeabilities and gradient, field tests have reported velocities of greater than 100 feet per day (31 m/d). Todd (1959, p. 53) states, however, that the normal range is from 5 feet per year to 5 feet per day (1.52 m/yr to 1.52 m/d). Artificial discharge through pumping wells can alter the direction of movement and the velocity of the natural flow of ground water. In most areas of north-central Texas, ground-water movement is not constant in rate or direction. This is due to the wide variance in the lithology, extent, porosity, permeability, and structure of the water-bearing units.

Water-Level Fluctuations

Locally, measurements of the depth to water in wells indicate the position of the water table under water-table conditions, or of the potentiometric surface under artesian conditions. When there is no withdrawal, or the influence of pumping is negligible, the measurement is termed a static water level. When the measurement is made in a pumping well, the water level is termed a pumping level. For water-table aquifers, changes in water levels reflect changes in the groundwater storage. The changes may be on a local or regional basis. Regional changes over a long period of time reflect a change in the recharge-discharge relationship. Often water-level fluctuations of a minor nature are reflections of earthquakes, tidal forces, and changes in atmospheric pressure.

The most significant changes are the result of heavy pumping. Depending on the reservoir characteristics of an aquifer and the rate of withdrawal, various sizes of *cones of depression* are formed around the well bores of pumping wells. These cones are formed by the drawdown of the water table or the potentiometric surface and are in the shape of an inverted cone having its apex at the pumped well (Figure 8, well A). These cones will expand until they encounter a recharge source equal to the discharge rate. If the cone does not encounter a recharge source, it will continue to expand until it encounters the cone of depression of another pumping well, as is the case in highly developed irrigation areas, and may combine with it and form a large, regional cone of depression in the potentiometric surface or the water table (Figure 8, wells A and B).

Hydraulic Properties of Aquifers

The ability of an aquifer to transmit and store water determines the capacity of that aquifer to yield water to wells. These parameters are determined by the porosities and permeabilities of sediments which make up the aquifer. Variations of these parameters, which are dependent on the rock composition, cause the differences in capacities within a single aquifer and between different aquifers. The following definitions are of major importance to the discussion of hydraulic properties of aquifers.

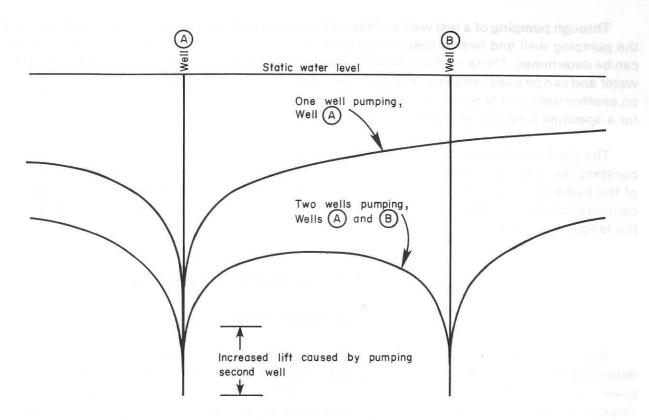


Figure 8.—Idealized Cross Section Showing Drawdown Interference Between Two Pumping Wells

The field *coefficient of permeability* is the flow of water, in gallons per day, at the prevailing temperature through a cross section of 1 square foot of the aquifer under unit hydraulic gradient.

A measure of an aquifer's ability to release water is the *coefficient of transmissibility*, and it is important in computing the amount of water available on a continuous basis. It is defined as the amount of water, in gallons per day, which will flow through a vertical column of aquifer 1 foot wide under a 45-degree slope or gradient (Theis, 1938, p. 889-902).

At a given place in a given direction, the *hydraulic gradient* of a water-bearing unit, is the rate of change of pressure head per unit distance at that place and in that direction (Meinzer, 1923, p. 38). Given a known hydraulic gradient and the coefficient of transmissibility, the amounts of water passing through specific portions of an aquifer can be calculated.

The storage capacity of the pores of a water-bearing unit is important in the calculation of the amounts of water stored in an aquifer. This storage capacity is called the *coefficient of storage* and is the volume of water, per unit of surface area, that will be taken into, or released from storage when the potentiometric surface is raised or lowered by 1 foot (Theis, 1938, p. 394). The term *specific yield* is used when water-table conditions exist, and it is defined as the ratio of the volume of water yielded, to the volume of the aquifer which was dewatered (Stearns, 1927, p. 144). Coefficients of storage in artesian aquifers are very small in comparison to specific yields of water-table aquifers since artesian storage is dependent upon the elastic properties of the aquifer.

Through pumping of a test well and the use of repeated measurements of the water levels in the pumping well and nearby observation wells, the coefficients of storage and transmissibility can be determined. These coefficients are a measure of the aquifer's ability to transmit and store water and can be used to determine proper well spacing, the effects that a pumping well may have on another well, and to predict water-level drawdowns at various distances from a pumping well for a specified time and at a given pumping rate.

The yield in gallons per minute per foot of drawdown of the water level in a well pumping at a constant rate is known as the *specific capacity* of a well. This measurement is another indication of the hydraulic characteristics of a water-bearing unit. Specific capacities must be used with caution since they are affected by methods of well completion, and they change with the rate and the length of pumping.

CHEMICAL QUALITY OF GROUND WATER

General Chemical Quality

Both the constituents and concentrations of dissolved minerals carried in ground water are determined mainly by the types of soil and rocks through which the water percolates. The solvent power of water dissolves some of the minerals from the surrounding rocks as water moves through its environment. Concentration of the various dissolved mineral constituents depends upon the mineral solubility in the water-bearing unit, the length of time the water is in contact with the rock, and the concentration of carbon dioxide present within the water. Therefore, the chemical character of ground water mirrors the general mineral composition of the earth through which it has passed. Usually, dissolved mineral concentrations increase with depth and temperature. The source and significance of dissolved-mineral constituents and properties of water are summarized in Table 2 which has been modified from Doll and others (1963, p. 39-43).

The suitability of ground water for municipal, industrial, irrigation, and other uses is determined by the amount and type of minerals present in the water. Several criteria for water-quality requirements have been developed through the years which serve as guidelines in determining the suitability of water for various uses. Subjects covered by the guidelines are bacterial content; physical characteristics, including color, taste, odor, turbidity, and temperature; and the chemical constituents. Water-quality problems associated with the first two subjects can usually be alleviated economically. The neutralization or removal of most of the unwanted chemical constituents is usually difficult and often very costly.

Usually the main factor which limits or determines the use of ground water is the total dissolved-solids content. An excellent, and very applicable, general classification of waters based on the dissolved-solids concentration in parts per million (ppm) was developed by Winslow and Kister (1956). This classification is as follows:

Description	Dissolved-Solids Content (ppm)
Fresh	Less than 1,000
Slightly saline	1,000 to 3,000

Description	(ppm)		
Moderately saline	3,000 to 10,000		
Very saline	10,000 to 35,000		
Brine	More than 35,000		

Discolund Colida Conta

In recent years, most laboratories have begun reporting analyses in milligrams per liter (mg/l) instead of ppm. These units, for practical purposes, are identical unless the dissolved-solids concentration of water reaches or exceeds 7,000 units (ppm or mg/l). The concentrations of chemical constituents reported in this report, other than for oil-field brines (Table 8), are in mg/l. Most of the chemical concentrations are below 7,000 mg/l and, therefore, the units are interchangeable. For the more highly mineralized waters, a density correction should be made using the following formula:

A total of 337 chemical analyses of water from selected wells and springs in Callahan County is given in Table 7. The locations of these wells are shown on Figure 22, with wells from which samples were taken being identified by a bar over the well numbers. Concentrations of dissolved solids, sulfates, chlorides, and nitrates from samples collected from selected wells and springs are shown on Figure 9.

Public Supply

As the first step in establishing national standards for drinking water quality under the provisions of the Safe Drinking Water Act of 1974, the U.S. Environmental Protection Agency (EPA) issued drinking water regulations on December 10, 1975. These standards apply, selectively, to all types of public water systems of Texas and the regulations became effective June 1977. Responsibility for enforcement of these standards was assumed by the Texas Department of Health on July 1, 1977. Minor revision of the standards became effective on November 30, 1977.

As defined by the Texas Department of Health, municipal systems are classified as follows:

- A "public water system" is any system for the delivery to the public of piped water for human consumption, providing such a system has four or more service connections or regularly serves at least 25 individuals daily at least 60 days out of the year.
- A "community water system" is any system which serves at least four or more service connections or regularly serves 25 permanent type residents for at least 180 days per year.

Table 2.—Source, Significance, and Concentration of Dissolved-Mineral Constituents and Properties of Water

(Adapted from Doll and others, 1963, p. 39-43)

Only analyses which were representative of native ground water were used. Analyses are in milligrams per liter except percent sodium, specific conductance, pH, and SAR.

Constituent	Source or Cause	Significance
Property		-
Silica (SiO2)	Dissolved from practically all rocks and soils, commonly less than 30 mg/l. High concentrations, as much as 100 mg/l, generally occur in highly alkaline waters.	Forms hard scale in pipes and boilers. Carried over in steam of high pressure boilers to form deposits on blades of turbines. Inhibits deterioration of zeolite-type water softeners.
Iron (Fe)	Dissolved from practically all rocks and soils. May also be derived from iron pipes, pumps, and other equipment.	On exposure to air, iron in ground water oxidizes to reddish-brown precipitate. More than about 0.3 mg/l stain laundry and utensils reddish-brown. Objectionable for food processing, textile processing, beverages, ice manufacture, brewing, and other processes. Texas Department of Health (1977) drinking water standards state that iron should not exceed 0.3 mg/l. Larger quantities cause unpleasant taste and favor growth of iron bacteria.
Calcium (Ca) and Magnesium (Mg)	Dissolved from practically all soils and rocks, but especially from lime-stone, dolomite, and gypsum. Calcium and magnesium are found in large quantities in some brines. Magnesium is present in large quantities in sea water.	Cause most of the hardness and scale-forming properties of water; soap consuming (see hardness). Waters low in calcium and magnesium desired in electroplating, tanning, dyeing, and in textile manufacturing.
Sodium (Na) and Potassium (K)	Dissolved from practically all rocks and soils. Found also in oil-field brines, sea water, industrial brines, and sewage.	Large amounts, in combination with chloride, give a salty taste. Moderate quantities have little effect on the usefulness of water for most purposes. Sodium salts may cause foaming in steam boilers and a high sodium content may limit the use of water for irrigation.
Bicarbonate (HCO3) and Carbonate (CO3)	Action of carbon dioxide in water on carbonate rocks such as limestone and dolomite.	Bicarbonate and carbonate produce alkalinity. Bicarbonates of calcium and magnesium decompose in steam boilers and hot water facilities to form scale and release corrosive carbon-dioxide gas. In combination with calcium and magnesium, cause carbonate hardness.
Sulfate (SO4)	Dissolved from rocks and soils con- taining gypsum, iron sulfides, and other sulfur compounds. Commonly present in some industrial wastes.	Sulfate in water containing calcium forms hard scale in steam boilers. In large amounts, sulfate in combination with other ions gives bitter taste to water. Texas Department of Health (1977) drinking water standards recommend that the sulfate content should not exceed 300 mg/l.
Chloride (CI)	Dissolved from rocks and soils. Present in sewage and found in large amounts in oil-field brines, sea water, and industrial brines.	In large amounts in combination with sodium, gives salty taste to drinking water. In large quantities, increases the corrosiveness of water. Texas Department of Health (1977) drinking water standards recommend that the chloride content should not exceed 300 mg/l.
Fluoride (F)	Dissolved in small to minute quanti- ties from most rocks and soils. Added to many waters by fluoridation of municipal supplies.	Fluoride in drinking water reduces the incidence of tooth decay when the water is consumed during the period of enamel calcification. However, it may cause mottling of the teeth, depending on the concentration of fluoride, the age of the child, amount of drinking water consumed, and susceptibility of the individual (Maier, 1950, p. 1120-1132).
Nitrate (NO3) or Nitrate (as N)	Decaying organic matter, sewage, fertilizers, and nitrates in soil.	Concentration much greater than the local average may suggest pollution. Texas Department of Health (1977) drinking water standards suggest a limit of 45 mg/l (as NO3) or 10 mg/l (as N). Waters of high nitrate content have been reported to be the cause of methemoglobinemia (an often fatal disease in infants) and therefore should not be used in infant feeding (Maxcy, 1950, p. 271). Nitrate shown to be helpful in reducing inter-crystalline cracking of boiler steel. It encourages growth of algae and other organisms which produce undesirable tastes and odors.
Boron (B)	A minor constituent of rocks and of natural waters.	An excessive boron content will make water unsuitable for irrigation. Wilcox (1955, p. 11) indicated that a boron concentration of as much as 1.0 mg/l is permissible for irrigating sensitive crops; as much as 2.0 mg/l for semitolerant crops; and as much as 3.0 mg/l for tolerant crops. Crops sensitive to boron include most deciduous fruit and nut trees and navy beans; semitolerant crops include most small grains, potatoes and some other vegetables, and cotton; and tolerant crops include alfalfa, most root vegetables, and the date palm.

most root vegetables, and the date palm.

Table 2.—Source, Significance, and Onesser attaced District
Mineral Constituents and Properties of Allere Scalings

_		2		-	50V 1986
R	ange	in	Concentrations	by	Aquifer

Range in Concentrations by Aquifer						
Antlers Formation	Recent Alluvium	Permian Rocks Undifferentiated				
	17 — 27	8 — 22				
		-				
13 — 435 2 — 234	130 — 356 30 — 130	39 — 358 4 — 142				
3 — 650 < 1 — 32	89 — 690 < 1 — 12	7 - 276 < 1 - 5				
30 — 840	349 — 476	143 — 434				
	< 10 — 304	6 — 990				
2 — 1,050	28 — 1,700	11 — 840				
	.3 — 1.2	.1 — 2.0				
< .4 — 135		< .4 — 480				
< .1 - 2.2	.3 — .7	.2 — .5				

Table 2.—Source, Significance, and Concentration of Dissolved-Mineral Constituents and Properties of Water—Continued

Constituent	Source or Cause	Significance
Property Dissolved solids	Chiefly mineral constituents dissolved from rocks and soils.	Texas Department of Health (1977) drinking water standards recommend that waters containing more than 1,000 mg/l dissolved solids not be used if other less mineralized supplies are available. For many purposes the dissolved-solids content is a major limitation on the use of water. A general classification of water based on dissolved-solids content, in mg/l, is as follows (Winslow and Kister, 1956, p. 5): Waters containing less than 1,000 mg/l of dissolved solids are considered fresh; 1,000 to 3,000 mg/l, slightly saline; 3,000 to 10,000 mg/l, moderately saline; 10,000 to 35,000 mg/l, very saline; and more than 35,000 mg/l, brine.
Hardness as CaCO3	In most waters nearly all the hardness is due to calcium and magnesium. All of the metallic cations other than the alkali metals also cause hardness.	Consumes soap before a lather will form. Deposits soap curd on bathtubs. Hard water forms scale in boilers, water heaters, and pipes. Hardness equivalent to the bicarbonate and carbonate is called carbonate hardness. Any hardness in excess of this is called non-carbonate hardness. Waters of hardness up to 60 mg/l are considered soft; 61 to 120 mg/l, moderately hard; 121 to 180 mg/l, hard; more than 180 mg/l, very hard.
Percent Sodium (% Na)	Sodium in water.	A ratio (using milliequivalents per liter) of the sodium ions to the total sodium, calcium, and magnesium ions. A sodium percentage exceeding 60 percent is a warning of a sodium hazard. Continued irrigation with this type of water will impair the tilth and permeability of the soil.
Sodium-adsorption ratio (SAR)	Sodium in water.	A ratio for soil extracts and irrigation waters used to express the relative activity of sodium ions in exchange reactions with soil (U.S. Salinity Laboratory Staff, 1954, p. 72, 156). Defined by the following equation:
		$SAR = \frac{Na^{+}}{\sqrt{\frac{Ca^{++} + Mg^{++}}{2}}},$
		where Na +; Ca ++ , and Mg ++ represent the concentrations in milli- equivalents per liter (me/l) of the respective ions.
Residual sodium carbonate (RSC)	Sodium and carbonate or bicarbonate in water.	As calcium and magnesium precipitate as carbonates in the soil, the relative proportion of sodium in the water is increased (Eaton, 1950, p. 123-133). Defined by the following equation:
		$RSC = (CO_3^{-} + HCO_3^{-}) - (Ca^{++} + Mg^{++})$
		where CO3 , HCO3 , Ca ++ , and Mg ++ represent the concentrations in milliequivalents per liter (me/I) of the respective ions.
Specific conductance (micromhos at 25°C)	Mineral content of the water.	Indicates degree of mineralization. Specific conductance is a measure of the capacity of the water to conduct an electric current. Varies with concentration and degree of ionization of the constituents.
Hydrogen ion concentration (pH)	Acids, acid-generating salts, and free carbon dioxide lower the pH. Carbonates, bicarbonates, hydroxides, phosphates, silicates, and borates raise the pH.	A pH of 7.0 indicates neutrality of a solution. Values higher than 7.0 denote increasing alkalinity; values lower than 7.0 indicate increasing acidity. pH is a measure of the activity of the hydrogen ions. Corrosiveness of water generally increases with decreasing pH. However, exceptively alkaling waters may also attack metals. The Texas Department

cessively alkaline waters may also attack metals. The Texas Department

of Health (1977) recommends a pH greater than 7.

borates raise the pH.

Range in Concentrations by Aquifer					
Antiers Formation	Recent Alluvium	Permian Rocks Undifferentiated			
134 — 2,874	370 — 3,363	149 — 2,265			
92 — 1,650	293 — 1,420	116 — 1,190			
2.8 — 73.3	50 — 58.4	3.7 — 57.6			
.0 — 17.7	4.7 — 8.4	.1 — 4.2			
.0 — 1.8	.0 — 0.	.0 — 1.2			
224 — 3,480	1,095 — 5,200	270 — 3,150			
6.0 — 8.3	7.3 — 7.8	7.3 — 8.2			
	710	7.0			

3. A "non-community water system" is any public water system which is not a community water system.

Standards which relate to public supplies are of two types: (1) primary and (2) secondary. Primary standards are devoted to constituents and regulations affecting the health of consumers. Secondary standards are those which deal with the esthetic qualities of drinking water. Contaminants for which secondary maximum contaminant levels are set in these standards do not have a direct impact on the health of the consumers, but their presence in excessive quantities may discourage the use of the water.

Primary Standards

Primary standards for dissolved minerals apply to community water systems and are as follows:

Contaminant	Maximum concentration (mg / I)
Arsenic (As)	0.05
Barium (Ba)	1.0
Cadmium (Cd)	.010
Chromium (Cr ⁶)	.05
Lead (Pb)	.05
Mercury (Hg)	.002
Selenium (Se)	.01
Silver (Ag)	.05
Nitrate (as NO ₃)	45
Nitrate (as N)	10

At the time this report was compiled, analyses were not available for the trace metals as shown above. Except for nitrate content, none of the above contaminant levels for toxic minerals applies to non-community water systems. The maximum of 10 mg/l nitrate as N (about 45 mg/l nitrate as NO₃) applies to community and non-community systems alike.

Maximum fluoride concentrations are applicable to community water systems and they vary with the annual average of the maximum daily air temperature at the location of the system. The following table gives the maximum permissible limits for fluoride based on ranges in the annual average maximum daily air temperature:

Temperature (°F)	Temperature (°C)	Maximum concentration (mg/l)
63.9 - 70.6	17.7 - 21.4	1.8
70.7 - 79.2	21.5 - 26.2	1.6
79.3 - 90.5	26.3 - 32.5	1.4

The annual average maximum daily air temperature within Callahan County varies from 76.2 to 78.2 °F (24.6 to 25.7 °C), therefore, the maximum permissible limit for fluoride for community water systems located within the county would be 1.6 mg/l.

Maximum contaminant limits for organic chemicals are enforced; however, they are applicable only to community water systems. These cover the chlorinated hydrocarbons and chlorophenoxys (Texas Department of Health, 1977, p. 3).

Maximum levels for coliform bacteria, as specified by the Texas Department of Health in 1977, apply to community and non-community water systems. The limits specified are basically the same as in the 1962 Public Health Service Standards which have been widely adopted in most states.

In addition to the previously stated requirements, there are also stringent rules regarding general sampling and the frequency of sampling which apply to all public water systems. Additionally, community water systems are subject to rigid radiological sampling and analytical requirements (Texas Department of Health, 1977, p. 12-15).

Secondary Standards

Recommended secondary standards applicable to all public water systems are given in the following table:

Constituent	Maximum level		
Chloride (CI)	300	mg/l	
Color	15	color units	
Copper (Cu)	1.0	mg/I	

Constituent	Maximum level		
Corrosivity		non-corrosive	
Foaming agents	0.53	mg/I	
Hydrogen sulfide (H ₂ S)	.05	mg/I	
Iron (Fe)	.3	mg/I	
Manganese (Mn)	.05	mg/I	
Odor	3	Threshold Odor Number	
рН	>7.0		
Sulfate (SO ₄)	300	mg/l	
Dissolved solids	1,000	mg/I	
Zinc (Zn)	5.0	mg/I	

The above secondary standards are recommended limits, except for water systems which are not in existence as of the effective date of these standards. For water systems which are constructed after the effective date, no source of supply which does not meet the recommended secondary standards may be used without written approval by the Texas Department of Health. The determining factor will be whether there is an alternate source of supply of acceptable chemical quality available to the area to be served.

After July 1, 1977, for all instances in which drinking water does not meet the recommended limits and is accepted for use by the Texas Department of Health, such acceptance is valid only until such time as water of acceptable chemical quality can be made available at reasonable cost to the area in question from an alternate source. At such time, either the water which was previously accepted would have to be treated to lower the constituents to acceptable levels, or water would have to be secured from the alternate source.

Domestic and Livestock

Ideally, ground waters used for rural domestic purposes should be as free of contaminants as those used for municipal purposes; however, this is not always economically possible. At present, there are no controls placed on private domestic or livestock wells. In general, the chemical constituents of waters used for domestic purposes should not exceed the concentrations shown in the following table, except in those areas where more suitable supplies are not available (Texas Department of Health, 1977).

Substance	Concentration (mg/l)
Chloride (CI)	300
Fluoride (F)	1.6*
Iron (Fe)	.3
Manganese (Mn)	.05
Nitrate (as N)	10
Nitrate (as NO ₃)	45
Sulfate (SO ₄)	300
Dissolved solids	1,000

^{*}Maximum recommended fluoride limit based on annual average of maximum daily air temperature range of 76.2 to 78.2 °F (24.6 to 25.7 °C).

Many areas of north-central Texas do not have and cannot obtain domestic water supplies which meet the recommended standards; however, supplies which do not meet these standards have been used for long periods of time without any apparent ill effects to the user. It is not generally recommended that water used for drinking purposes contain more than a maximum of 2,000 mg/l dissolved solids; however, water containing somewhat higher mineral concentrations has been used where water of better quality was not available.

Water having concentrations of chemical constituents in excess of the Texas Health Department's standards may be objectionable for numerous reasons. Brief explanations for these objections, representative ranges in concentration of chemical constituents within the various water-bearing units of Callahan County, as well as the significance of each constituent are presented in Table 2. More detailed discussions of the water quality of the individual aquifers can be found in later sections of this publication.

Generally, water used for livestock purposes is subject to the same quality limitations as those relating to drinking water for humans; however, the tolerance limits of the various chemical constituents as well as dissolved-solids concentration may be considerably higher for livestock than that which is considered satisfactory for human consumption. The type of animal, the kind of soluble salts, and the respective amount of soluble salts determine the tolerance limits (Heller, 1933, p. 22). In the western United States, cattle may tolerate drinking water containing nearly 10,000 mg/l dissolved solids providing these waters contain mostly sodium and chloride (Hem, 1970, p. 324). Waters containing high concentrations of sulfate are usually considered undesirable for livestock use. Many investigators recommend an upper limit of dissolved solids near 5,000 mg/l as necessary for maximum growth and reproduction. Hem (1970, p. 324) cited a publication of the Department of Agriculture of the state of Western Australia as recommending the following maximum upper limits for dissolved-solids concentration in livestock water:

Animal	concentration (mg/l)	
Poultry	2,860	
Hogs	4,290	
Horses	6,435	
Cattle (dairy)	7,150	
Cattle (beef)	10,000	
Sheep (adult)	12,900	

Burden (1961) stated that there should be concern for livestock when the nitrate content of their drinking water is as great as 100 mg/l and he further recommended an upper limit of 220 mg/l for waters used for livestock consumption.

Irrigation

The quality of irrigation waters is important in that it determines the results which can be expected from their use. The results, however, are also greatly influenced by the climate, soils, management practices, crops grown, drainage, and the quantity of water applied.

According to the U.S. Salinity Laboratory Staff (1954), the primary factors which determine the quality of water used for irrigation are: (1) the total salt concentration as indicated by the specific conductance; (2) the proportion of sodium and its relationship to other cations (percent sodium); (3) the concentration of boron or other toxic elements; and (4) under certain conditions, the carbonate and bicarbonate content in relationship to concentration of calcium and magnesium. These factors are termed: the salinity, sodium, boron, and the carbonate and bicarbonate ion hazards, respectively (U.S. Salinity Laboratory Staff, 1954, p. 69-82; Wilcox, 1955, p. 11-12; Lyerly and Longenecker, 1957, p. 13-15).

In most waters, the salt concentration is not high enough to impair or retard the growth of plants. It is the salt accumulation in the soil which causes saline conditions that are injurious to plants. However, as the salt concentration in irrigation waters increases, the salinity hazard or the tendency of salts to accumulate in the soil also increases. A field measure used to give an indication of the salt concentration in irrigation water is specific conductance. Using this specific conductance, the U.S. Salinity Laboratory Staff (1954, p. 69-82) designed the classification chart shown in Figure 10 which is an excellent guide in estimating the relative salinity hazard of irrigation waters. It is based in part on various salinity classes which are determined by the conductivity in micromhos per centimeter at 25 °C (or specific conductance in micromhos at 25 °C shown on most chemical analyses in Tables 2 and 7). The salinity-hazard classes (C1, C2, C3, and C4) are shown on the horizontal scale of Figure 10 and a discussion of them is given in Table 3.

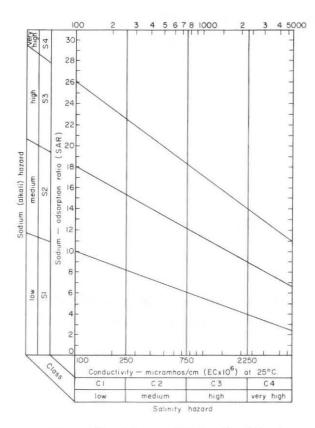
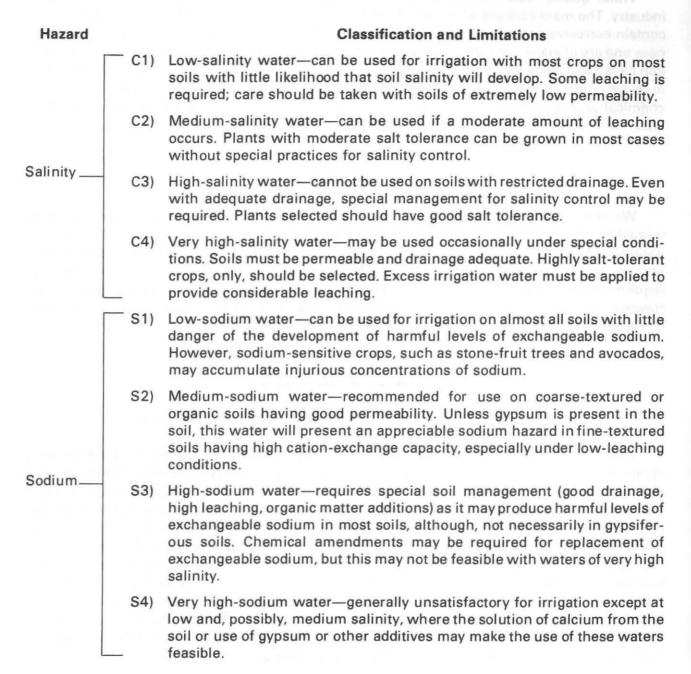


Figure 10.—Diagram for the Classification of Irrigation Waters


Physical conditions of the soil are markedly affected by an increase in exchangeable sodium. For that reason, it is necessary to consider the sodium hazard of irrigation water. Accumulations of sodium in the soil may be injurious to plants sensitive to sodium. The total salt concentration, as well as the sodiumadsorption ratio (SAR), influence the sodium hazard. A high SAR is the cause of soil structure breakdown. Soils tend to form a hard crust and become impermeable to water and air movement. This usually results in crop damage, cultivation difficulties, and drainage problems (Hem, 1959, p. 247). Table 2 shows the equation for calculating the SAR, and Table 7 gives the SAR values which have been calculated for most of the water samples in Callahan County. Using these SAR values and the conductivity, the sodium hazard can be determined from Figure 10. The sodium-hazard classes (S1, S2, S3, and S4) are shown on the vertical scale of Figure 10. A discussion of these classes is also given in Table 3. Under most conditions, irrigation waters containing a percent sodium of less than 60 (Table 7) and a low

bicarbonate content are probably satisfactory. The sodium hazard becomes progressively greater as the percent sodium increases above 60.

Excessive boron content will render water unsuitable for irrigation. Table 2 discusses the sensitivity of various crops, the boron limits for these crops, as well as the boron ranges for the various aquifers of Callahan County. Table 7 lists the boron content, where determined, of waters sampled from various aquifers within the county.

Following irrigation, the soil dries and the soil solution becomes progressively more concentrated. This condition creates a tendency for the less soluble compounds to precipitate from solution. Both calcium and magnesium carbonate, being less soluble than sodium carbonate, may precipitate with drying. This precipitation results in an increase in the proportion of sodium in solution. The bicarbonate ion is the source of carbonate which makes the precipitation possible. Conditions favoring precipitation and the extent to which calcium and magnesium carbonates will precipitate are not fully understood. However, waters containing 1.25 to 2.5 me/l (milliequivalents per liter) of residual sodium carbonate (RSC) are considered marginal and those containing greater than 2.5 me/l probably are unsafe for irrigation use. The equation for calculating RSC is given in Table 2, and RSC values for ground waters in Callahan County are shown in Table 7.

Table 3.—Water-Use Limitations of Salinity and Sodium Hazard—Classified Irrigation Waters Shown in Figures 10, 17, and 20 (After Lyerly and Longenecker, 1957, p. 13-15)

Industrial

Water-quality requirements for an industrial water supply are determined by the type of industry. The main concern to many industries is that the water selected for its supply does not contain corrosive or scale-forming constituents. Both magnesium and calcium affect the hardness and are of major concern in any water to be used in boilers. Excessive amounts of silica and iron cause scale deposits which reduce the efficiency of many industrial processes. Water quality must be rigidly controlled where the water is used in the processing of food, paper, and some chemical-process industries. Mineral impurities affect color, taste, odor, and turbidity; therefore, water with a high content of dissolved solids is usually avoided.

Treatment

Water that does not meet the requirements of a municipal or industrial user commonly can be treated by various methods so that it will become usable. Treatment methods include softening, aeration, filtration, desalination, cooling, dilution or blending of poor and good quality waters, and the addition of chemicals. The limiting factor in treatment is economics. Each water may require different treatment and the treatment should be designed for that particular water. However, once treatment is established it probably will not have to be changed as the chemical characteristics of uncontaminated ground water remain fairly constant.

WELL DEVELOPMENT

History of Well Development in Callahan County

The earliest inhabitants of Callahan County probably settled near springs where they could obtain water supplies from ground-water flows which issued principally from the Cretaceous Antlers Formation. These springs were usually located at or near the outer limits of the outcrop of the water-bearing unit. Several of these springs still flow and were located during this investigation. Other springs flowed from alluvial deposits in the floodplains of the small streams that originate within the county. Additionally, a limited number of springs flowed from some of the more permeable Permian hydrologic units. As the county became more populated, early domestic and livestock supplies were obtained from hand-dug wells. Later, many sand-point wells were probably driven to tap the underlying deposits of Antlers or alluvial sands and gravels. The oldest inventoried domestic well (30-46-201) was hand dug in 1870. Most of the dug wells located during this investigation were completed before 1940. The majority of the 51 domestic or livestock wells, inventoried during this and previous studies, were drilled.

By 1972, a total of 61 public suppy wells were located and had been inventoried. Data presented by George (1940a) suggests that the first county public water system was developed about 1918 and was located in the northeast part of the City of Cross Plains. This system was known as the "settling basin" and originally consisted of seven 25-foot (8 m) wells. These wells produced from the Antlers Formation, were of low yield, and could be pumped for only about 3 hours before the water levels reached the base of the aquifer. After a water-level recovery period, the wells could then be pumped again. Five of these wells are no longer in use.

In addition to the above wells, the City of Cross Plains drilled 28 more wells which are concentrated in three principal areas located approximately 1 mile (1.6 km) east, 1¼ miles (2.0 km) northeast, and 2 miles (3.2 km) northeast of town, respectively. These wells, which also pump from the Antlers, were drilled during the period 1926-64.

Beginning in 1927, the City of Baird started development of its Shady Hill Golf Course well field which is located approximately 3 miles (4.8 km) west of town. These wells pumped from the Cretaceous Antlers aquifer. Development in this field continued through 1939 with a total of nine wells being drilled. Use of this well field was discontinued in August 1949 when the city began using surface water from Lake Baird which is owned by Callahan County Water Conservation and Improvement District Number One. This lake is located on Mexia Creek approximately 2½ miles (4.0 km) southeast of the city. Three of the original wells (30-37-804, 811, and 812) are presently being used as irrigation wells, and the remainder are maintained for emergency use.

Twenty-one public supply wells were drilled by the City of Clyde during the period from about 1939 through 1965. These wells pumped from the Antlers aquifer. They are located throughout the city (Table 7 and Figure 22). Almost all of the wells were in use as of January 1972, at the time that the field inventory was completed for this study; however, during 1972 the city changed to a surface-water supply secured from Lake Clyde, which is located 6 miles (9.6 km) south of the city on North Prong Pecan Bayou. The city wells are now used as a supplemental source of water.

During 1960 and 1961, three 123-foot (37 m) low yield public supply wells were drilled 2 miles (3.2 km) northwest of the community of Denton in west-central Callahan County. These wells furnished municipal water for the Denton Valley Missile Site which was maintained by the U.S. Air Force at Dyess Air Force Base in Abilene. These wells were sold when the facility was deactivated in February 1965.

The development and use of ground water for industrial purposes in the county has been very limited. Six industrial wells, all of which produce from the Antlers Formation, were inventoried during this investigation. The first reported industrial well (30-44-506) was drilled in 1920; however, one was reported as "old" and might have been drilled prior to that date. Four wells were drilled during the period 1961-70.

Of the six industrial wells, water from four wells supplied water for turkey, hog, and cattle feedlots; one for waterflood operations; and one was formerly used by a plumbing firm.

Prior to 1951, the practice of using ground water for irrigation within Callahan County was conducted on a very small scale. Data collected by George (1940a) indicate that there were probably not more than five irrigation wells in the county at that time. Two were used to irrigate gardens and they probably would not presently be classed as irrigation wells. The first recorded irrigation development was by the City of Baird in 1927 (wells 30-37-811 and 812); however, most of the development began in the 1960's.

During this investigation, 153 irrigation wells were inventoried, all of which were producing from the Cretaceous Antlers Formation. A breakdown of the development of irrigation wells within the county is as follows:

Year	Number of irrigation wells drilled	Percent of total
Unknown and 1950 or before	7	4.6
1951 - 1960	12	7.8
1961 - 1970	112	73.2
After 1970	22	14.4

Of the 153 irrigation wells inventoried 95 (62 percent) are located in the Clyde-Oplin area of western Callahan County.

Well Construction

Of 473 wells developed in the Antlers Formation, Quaternary alluvium deposits, and Permian rocks, 108 were hand dug. Most of the others were drilled. Well depths range from 5 to 275 feet (2 to 84 m).

Almost all dug wells are used for domestic or livestock purposes. Generally, most of these wells are from 2.5 to 4 feet (0.8 to 1.2 m) in diameter, although the range is from 1.5 to 14 feet (0.5 to 4 m). The dug wells are lined with bricks, native stone, or concrete rings. More recently drilled domestic and livestock wells are cased with small-diameter (5 to 13 inches or 13 to 33 centimeters) galvanized sheetmetal, steel, or plastic casing. The galvanized metal and plastic casing is perforated opposite the water-bearing zones, and the steel casing is generally torch-slotted.

Industrial, irrigation, and public supply wells usually have diameters of 5 to 24 inches (13 to 61 cm), and recently drilled wells are normally cased to bottom. In most wells, the hole is reamed to 36 inches (91 cm), and prior to the setting of the casing, the casing is torch-slotted opposite the water-bearing zones. Following the setting of the casing on bottom, the hole outside the casing is then filled with small gravel. Only three public-supply wells (30-44-801, 802, and 803) have been developed with casing cemented from the top of the aquifer to the surface and well screens installed opposite the water-bearing zone. Most of the drilled wells are developed by pumping. Many of the older public supply wells of the cities of Baird, Clyde, and Cross Plains are large diameter hand-dug wells which are lined with brick. These wells range in diameter from about 3 to 19 feet (1 to 6 m).

Yields of Wells

During the course of this and previous studies, no lengthy individual well pump tests were run. However, performance tests were conducted during this investigation on 10 irrigation wells which were pumping from the Antlers Formation. Yields on these wells ranged from 9.9 to 70 gal/min (0.62 to 4.4 l/s). These tests are listed in Table 4. This table also contains well yield data on all types of wells on which reliable reports were supplied by well drillers. Yields ranging from 4 to 70 gal/min (0.25 to 4.4 l/s) were reported on wells pumping from the Antlers Formation.

10

re

bd

et

e, 8

10

er

is

3).

S,

S

ct

1/2

et -).

1,

by

5 d

ty

5;

S

in

id

Yields reported by well owners contacted during this study are as follows: Antlers Formation, 1 to 185 gal/min (0.06 to 12 l/s); Quaternary alluvium deposits, "weak" to 5 gal/min (0.32 l/s); and Permian rocks, 1 to 5 gal/min (0.06 to 0.32 l/s) to "strong".

Pump Types and Energy Sources

Most domestic and livestock wells in the county are equipped with jet pumps. Other pump types in common use are centrifugal and submersible. Some windmills are still used to pump water for domestic and livestock purposes. The power or energy source for pumps is generally electricity with the size of the motors ranging from 1/3 to slightly over 2 horsepower (246 to 1,490 W). The 1/3-horsepower (246 W) motor is the most common size in use.

Public supply and industrial wells are generally equipped with submersible and jet pumps. A few wells have turbine-type pumps. Of the wells presently in use in these categories, all are powered by electricity. The motors range from 1/3 to 5 horsepower (246 to 3,730 W) with motors of 1 horsepower (746 W) or less as the most common size.

Of the 153 irrigation wells inventoried, 75 percent are equipped with submersible pumps. Others use jet, turbine, and centrifugal type pumps. The principal power source is electricity with 86 percent of the pumps being equipped with electric motors ranging in size from 1/3 to 10 horsepower (246 to 7,460 W). One well pump was powered by an internal combustion engine.

As a result of low yields in most irrigation wells within the county, water from one to eight wells may be pumped into a surface reservoir. Water collected in this manner is then pumped through sprinkler systems by use of centrifugal pumps, usually powered by electric motors which range from 5 to 25 horsepower (3,730 to 18,600 W). One irrigation system was powered by a farm tractor.

GROUND-WATER PUMPAGE AND UTILIZATION

Figure 11 graphically illustrates the estimated ground-water pumpage from the water-bearing units of Callahan County. Estimates shown were provided to the authors by personnel of the Water Requirements and Uses Section of the Planning and Development Division of the Department. During 1978, approximately 1,900 acre-feet (2.34 hm³) of ground water was pumped within the county for all uses. This pumpage was used for irrigation, municipal, industrial, and domestic and livestock purposes.

enton Valley Missile Site Water Supply

A three-well field (wells 30-44-801, 802, and 803) was developed as a municipal supply for the Denton Valley Missile Site during 1960 and 1961. This well field was located 2 miles (3.2 km) or three three community of Denton and was maintained by the U.S. Air Force at Dyess Air price Base in Abilene. This installation was deactivated in February 1965. During 1964, 9.2 cre-feet (0.011 hm³) was pumped for municipal use by this facility. The total reported groundater pumpage during the period the missile site was used was slightly more than 28 acre-feet 1.035 hm³). All of this pumpage was from the Antlers Formation.

Industrial Water Use

Pumpage of ground water for industrial purposes within Callahan County is difficult to stimate. Four of the six wells classed as industrial are located at a commercial turkey farm or a vestock feed lot. Pumpage for these concerns is included with livestock water uses. Well D-44-709 was used in an oilfield water-flood operation and had an estimated annual pumpage is 2.4 acre-feet (0.003 hm³). Industrial pumpage for well 30-37-823 is believed to have been assignificant since the well was used by a plumbing firm for only a very short period of time. Total adustrial pumpage during 1978 is believed to have been only about 0.2 percent of the total county umpage.

Domestic and Livestock Use

A total of 251 domestic and livestock wells and 25 springs which produce or have produced rater from the water-bearing units of Callahan County were inventoried during this study. Imost all of these wells or springs derive their water from the Antlers Formation.

Reliable estimates of rural ground-water usage for domestic and livestock purposes are ifficult to determine; however, water use for these purposes is believed to comprise slightly less can 38 percent of the total county pumpage and is therefore significant. Estimates of pumpage or 1978 for domestic supply are slightly over 500 acre-feet (0.617 hm³) and for livestock supply cout 200 acre-feet (0.247 hm³). The estimated total ground-water pumpage from domestic and vestock wells for the period 1955-78 is about 11,100 acre-feet (13.69 hm³) and 4,300 acre-feet (3.30 hm³), respectively (Figure 11).

AVAILABILITY AND QUALITY OF GROUND WATER

Primary Aquifer

rinity Group—Antlers Formation

The primary aquifer in Callahan County is the Antlers Formation of the Trinity Group. This primation provided ground water to 94 percent (451 wells and 14 springs) of the 497 wells and prings inventoried during this study. Waters produced from this aquifer were used for all purposes.

Extent of the Aguifer

Cretaceous rocks of the Fredericksburg and Trinity Groups are located primarily in a band lying east-west through the central and southeast part of Callahan County (Figure 5). Erosion has separated their outcrop into two areas, one in the Clyde-Oplin area and one in the Cross Plains area. These erosional remnants are part of a number of outliers of Cretaceous rocks present in Callahan, Coleman, Nolan, Runnels, and Taylor Counties which are commonly referred to as the Callahan Divide. These outliers were once part of a system of Cretaceous rocks which covered all of these counties and the entire area south to the Llano Uplift (Taylor, 1978). Cretaceous rocks in Callahan County cover approximately 280 square miles (725 km²) or about 33 percent of the surface area of the county. About 155 square miles (401 km²) of the total outcrop area is located in the Cross Plains area.

Geologic Characteristics

Within Callahan County, the Antlers Formation in its upper part consists of cream to near white, very fine to fine-grained sandstone interbedded with claystone which is brown to purplish pink, blocky, sandy, and locally calcareous. The middle part of the Antlers is also composed of a claystone as previously described. The lower part of the Antlers also contains sandstone but has conglomerate interbedded. The conglomerate consists of pebbles of chert and quartz with local green clay casts (Bureau of Economic Geology, 1972). The Antlers Formation is believed to attain a maximum thickness of about 185 feet (56.4 m) within the county. A marked erosional unconformatory separates the underlying Permian beds from the Antlers Formation which, from a large regional perspective, dips very gently to the southeast at an estimated 25 feet per mile or 7.6 meters per kilometer (Figures 12, 23, 24, and 25).

Figure 12 is a map which depicts the base of the Antlers Formation and attempts to reproduce the old erosional surface upon which Antlers sediments were deposited. The indicated topography, in general, is slightly hilly to rolling with a maximum relief of about 30 feet (9.1 m). The structural lows delineate the old stream patterns which were in existence at the time that the Antlers was deposited. For the most part, pre-Cretaceous streams were flowing from northwest to southeast, and much of the irrigation development appears to correlate with the structural lows which should contain the most permeable and thickest sediments in the Antlers (Figures 12 and 22).

When used in conjunction with a topographic map, Figure 12 can also be used to estimate the depth of possible water wells drilled for ground water in the Antlers Formation. The elevation of the land surface is first estimated from a topographic map at the desired location of a water well. The elevation of the base of the Antlers at the proposed well site is then determined from Figure 12. The value as determined from Figure 12 subtracted from the estimated surface elevation of the subject well will give an approximate depth to the "red beds" or Permian rocks.

Ground-Water Source, Occurrence, and Movement

The primary source of ground water to the Antlers is precipitation falling on its outcrop area or indirectly as seepage from streamflow. Additionally, minor amounts of ground water may be

Credits

Very Control

Very Control

Co

derived from interformational drainage from rocks of Fredericksburg age which may locally overlie the Antlers and contain limited amounts of ground water. Only a small portion of the precipitation which falls, however, actually reaches the water table (Figure 7).

Usable amounts of ground water occur over most of the two outcrop areas of the Antlers Formation (Figure 5). The ground water within the Antlers occurs in the spaces between the individual particles of sand, gravel, and clay. Except in areas where the Fredericksburg Group overlies the Antlers Formation, ground water in the Antlers Formation is found primarily in the basal sands and gravels where permeabilities are usually greater. In two known areas, one northeast of the community of Rowden and the other just north and west of the community of Denton, perched ground water is known to exist in the upper part of the Antlers Formation. In these areas, there are two separate water levels present.

The upper surface of the water table is unconfined in almost all areas of the Antlers and therefore is said to be under water-table conditions. In most areas, the water table is a short distance above the basal sand and gravel.

Movement of ground water is down gradient, from the high to low elevations, at right angles to the contours which denote the configuration of the water table. Ground-water movement is, in general, toward the major streams or their tributaries.

In the Clyde-Oplin area dominant ground-water movement is to the northeast, east, and southeast. Movement is also to the northwest and, locally, to the north and south away from the ground-water highs and toward the surface drainage system.

In the Cross Plains area, dominant ground-water movement is southeast and south. Additionally, some movement is northward into the tributaries of streams which drain that area (Figures 13 and 14).

Changes in Water Levels

A comparison of the water-table maps for the winter of 1940 (Figure 14) and for the winter of 1970-71 (Figure 13) shows water-level rises over almost all of the Clyde-Oplin area and the Cross Plains area. In the Clyde-Oplin area, rises during the period ranged from 0.0 to 11.5 feet (0.0 to 3.51 m) in spring 30-44-404 and well 30-36-602. A slight decline of 1.3 feet (0.40m) was recorded during this period in well 30-52-905. Since the area is one of very limited pumpage, one of the water levels may not have been at static level when measured. In the Cross Plains area, water levels rose from 0.02 foot (0.006 m) in well 30-54-303 to 9.1 feet (2.8 m) in well 30-63-201. Locally, four wells 30-45-902, 30-46-702, 30-53-301, and 30-54-801 reflected declines of 2.1 (0.64), 1.2 (0.37), 1.8 (0.55), and 9.7 feet (3.00 m), respectively. The decline in well 30-54-801 could have been caused by measurement on a pumping level either in 1940 or on the recent measurement. The reasons for the minor declines in the other three wells are unknown.

The hydrographs shown in Figure 15 are records of Antlers Formation water levels from 1940 through 1975. The hydrograph of well 30-55-502 is for the period 1966-75. The two wells with long records both show a general upward trend in water levels with time. Figure 16 compares seasonal water-level fluctuations in observation wells during the period September 1969 to

derived from contract and advantage

January 1972 with precipitation at Baird. The hydrographs generally reflect water-level declines due to pumpage and water-level increases following increased rainfall. Additionally, precipitation records (Figure 3) and pumpage changes (Figure 11) are also reflected on the hydrographs of Figure 15, suggesting a quick response to outside influences.

Clearing of much of the water-consuming vegetation (phreatophytes); improved farming practices of terracing, contour plowing, and deep plowing; and general increase in rainfall since 1957 have all possibly been contributing factors to the general rise in water levels.

Recharge and Discharge

The source of all water in storage in the Antlers Formation, as well as the source of recharge, is direct precipitation on its outcrop area. Recharge varies, regionally, with the volume and frequency of precipitation. Other determining factors of recharge are the local permeability of the surface or the nature of the soil mantle, the topography, and the kind and amount of vegetative cover.

Recharge to the Antlers Formation is probably greatest within the county in the areas of outcrop which are composed of loose, friable sand. These areas are highly permeable and usually permit water to infiltrate the soil zone and percolate to the water table. When these localities contain thick cover of oak and mesquite trees, much water is lost during the spring, summer, and fall due to evapotranspiration as the trees derive their needed moisture from the saturated zone. Some of the remaining soils on the Antlers outcrop are fairly tight. However, in areas where the surface is nearly flat and the trees have been cleared, these soils are generally in cultivation. Here, the farming practices of terracing, contour plowing, and deep plowing enable the soils to catch and retain considerable precipitation, allowing some of it to percolate downward to the water table.

Natural recharge rates and quantities are extremely difficult to determine and the reliability of the estimates is often questionable. Data collected during this investigation were not sufficient to determine a reliable estimate of recharge for the Antlers Formation. Therefore, recharge rates developed by Department staff to evaluate the main Trinity Group aquifer of the North-Central Texas area and the Edwards Plateau area near the Llano Uplift were used to estimate the recharge to the Antlers (Texas Water Development Board, 1977).

Within the Brazos, Trinity, and Red River drainage basins, the annual effective recharge to the Trinity Group aquifer was determined, for the most part, using the trough method. Utilizing this method, the transmission capacity of the aquifer was calculated by assuming that water levels were lowered along a line approximately parallel to the outcrop trend and to the top of the aquifer where the top was 400 feet below the land surface. Using these limitations and provided that sufficient water is available from precipitation, it was determined that approximately 1.5 percent of the average annual precipitation falling on the outcrop (effective recharge) can be transmitted through the Trinity Group aquifer to supply the assumed withdrawals on a sustained basis (Price, 1979).

Within and west of the main aquifer in the Brazos, Trinity, and Red River basins, as well as in the Colorado River basin, are outliers of surficial deposits of sand, gravel, and limestone which also contain usable quality ground water. These aquifers are also considered a part of the Trinity

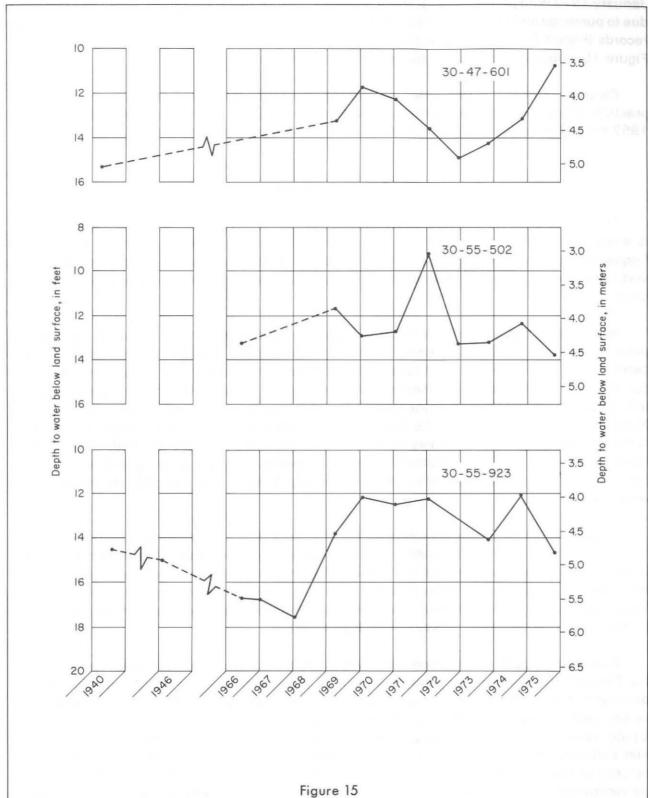


Figure 15
Water-Level Fluctuations in Observation Wells in the Antlers Formation, 1940-75

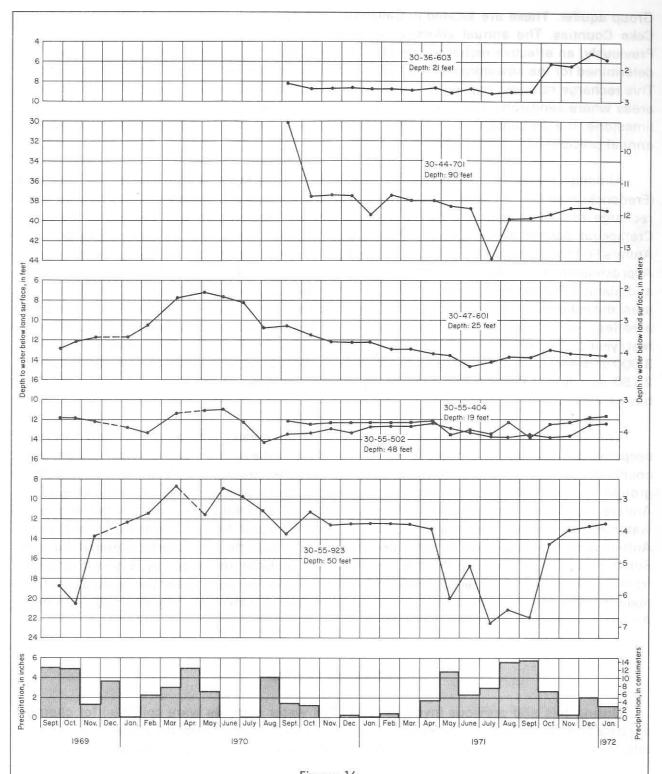


Figure 16
Seasonal Water-Level Fluctuations in Observation Wells in the Antlers Formation and Monthly Precipitation at Baird, September 1969-January 1972
(Precipitation Data From Records of U.S. Weather Service)

Group aquifer. These are located in Callahan, Coleman, Taylor, Runnels, Nolan, Mitchell, and Coke Counties. The annual effective recharge for these areas was determined as follows. Previously, an effective recharge rate of 1.58 percent of the average annual precipitation was determined for the limestones of the Concho, San Saba, and north Llano River drainage basins. This recharge rate was applied to those areas where the Antlers was overlain by limestone. In areas where sandstone was present in the outcrop and was generally less permeable than the limestone, the percentage for effective recharge was reduced to 1.5 percent of the average annual precipitation (Muller and Price, 1979).

Although there are minor areas in which the Antlers Formation is overlain by limestone (Fredericksburg Group) within Callahan County, these areas are considered insignificant and a recharge rate of 1.5 percent of the average annual precipitation was applied to the entire Cretaceous outcrop area (Figure 5). Using these data, the total annual effective recharge to the Antlers Formation within Callahan County was estimated to be about 5,400 acre-feet (6.66 hm³). Approximately 1,500 acre-feet/year (1.85 hm³/yr) of this is available in the Brazos River basin and about 3,900 acre-feet/year (4.81 hm³/yr) in the Colorado River basin. In the Clyde-Oplin area, the estimated annual effective recharge is about 2,400 acre-feet (2.96 hm³) with about 640 acre-feet/year (0.789 hm³/yr) being available in the Brazos River basin and about 1,760 acre-feet/year (2.17 hm³/yr) available in the Colorado River basin. In the Cross Plains area, about 3,000 acre-feet (3.70 hm³) is available annually as effective recharge with approximately 850 and 2,150 acre-feet (1.05 and 2.65 hm³) being available annually in the Brazos and Colorado River basins, respectively.

Within Callahan County, natural discharge of ground water is through the many springs or seeps which flow into the tributaries of streams which make up the major drainage system of the county (Figure 5). Most of these streams are wet-weather streams only. Some springs discharge ground water directly into the numerous livestock tanks which surround the outcrop of the Antlers Formation (Figure 5). Ground water discharge is in the same direction as the ground-water movement described in a previous section of this report. Some natural discharge from the Antlers is most probably lost to the underlying Permian beds through interformational drainage. Some alluvial deposits along the major streams are probably recharged by waters discharging from the Antlers. The numerous wells located on the principal outcrops of the Antlers constitute many points of artificial discharge. The amount of ground water naturally discharging from the Antlers is unknown.

Chemical Quality

During this and previous investigations, 308 water samples were collected for chemical analysis from wells, springs, and test holes yielding ground water from the Antlers Formation. A tabulation of these analyses is shown in Table 7 with their locations shown on Figure 22.

For the most part, ground waters derived from the Antlers are of good chemical quality. The majority of samples collected from the aquifer were low in dissolved solids. However, based on the range in dissolved solids, the water would be classed as fresh to very saline. Analyses indicate wide variations in the range of principal chemical constituents in the water. Usually, ground waters obtained from this aquifer contained excessive hardness and, locally, some were high in dissolved iron content. Chloride, sulfate, fluoride, and nitrate concentrations were within recom-

mended limits in the majority of the samples. Additionally, most ground water was suitable for the irrigation of all crops normally grown within the county.

Dissolved-solids contents of fresh to very saline ground waters collected from the Antlers ranged from 134 to 16,923 mg/l. The following table shows a breakdown of the various ranges of dissolved solids.

Range in dissolved solids (mg/l)	Number of analyses	Percent of total analyses
500 or less	139	45
501 to 1,000	110	36
1,001 to 2,000	47	15
2,001 to 3,000	7	2
over 3,000	5	2

Eighty-one percent of the samples collected contained less than 1,000 mg/l dissolved solids and 17 percent contained water which ranged from 1,001 to 3,000 mg/l dissolved solids which would be termed slightly saline in quality. Up to 1,000 mg/l dissolved-solids content is permitted for public supplies (Texas Department of Health, 1977). This is also the suggested upper limit for domestic use; however, waters with higher dissolved-solids content than this have been used for extended periods of time without any apparent ill effects. Normally, ground waters containing greater than 2,000 mg/l are not recommended for drinking purposes.

Concentration ranges of the principal chemical constituents, exclusive of obviously contaminated waters, found in ground waters of the Antlers Formation are as follows:

Constituent	nt Range (mg/l)		(mg/l)
Iron	0.0	O to	4.8
Calcium	13	to	435
Magnesium	2	to	234
Sodium	3	to	650
Potassium	< 1	to	32

Constituent	Range (mg/l)
Bicarbonate	30 to 840
Sulfate	3 to 560
Chloride	2 to 1,050
Fluoride	< .1 to 5.3
Nitrate	< .4 to 135

It is apparent from these ranges that the quality of Antlers ground water is fairly variable. However, the waters are usually of much better quality than the quality of water found in younger Recent alluvium or older Permian rocks (Table 7).

Ground waters collected from the Antlers Formation had total hardness values ranging from 89 to 6,510 mg/l. Three samples (1 percent) contained 61 to 120 mg/l and, therefore, would be classed as moderately hard. Eight samples (3 percent) ranged from 121 to 180 mg/l and are classified as hard water. The remainder of the samples, or 96 percent of the total, are classified as very hard water.

Iron in comparatively small amounts is derived primarily from the soils and sediments through which the water passes. Upon exposure to air, water containing only a small amount of iron leaves a reddish residue or stain. For this reason, ground waters containing excessive amounts of iron (greater than 0.3 mg/l) are objectionable for domestic and some industrial uses. The iron content was determined on 15 samples collected from the Antlers and ranged from 0.00 to 4.8 mg/l. A total of 13 samples, or 87 percent, contained iron within the recommended limits.

When either chloride or sulfate concentrations are present in amounts above the recommended upper limit of 300 mg/l, ground waters taste either "salty" or "gyppy", respectively. Chloride concentration of Antlers ground water ranged from 2 to 10,500 mg/l with 88 percent of 308 samples collected containing less than the recommended upper limit. The range in sulfate content was from 3 to 1,450 mg/l. Ninety-four percent of the 308 samples analyzed contained less than the recommended upper limit.

Fluoride content of ground waters collected from the Antlers Formation ranged from less than 0.1 to 5.3 mg/l. Based on an annual average maximum daily air temperature within the county, which varies from 76.2 to 78.2 $^{\circ}$ F (24.6 to 25.7 $^{\circ}$ C), the maximum recommended upper limit for fluoride would be 1.6 mg/l. A total of 271 of 305 samples collected (92 percent) contained less than the recommended upper limit.

Consumption of ground water containing excessive nitrate can have harmful effects on both humans and livestock. Adult humans can tolerate much more nitrate in drinking water than babies, but prolonged illness and even death can occur when the nitrate concentration is high enough and the water is consumed over a long enough period of time. Burden (1961) concluded that the average lethal dose for a 140-pound adult is between 80 and 300 milligrams of nitrate per

kilogram (2.205 pounds) of body weight. Maximum recommended limits for nitrate for humans is an upper limit of 45 mg/l, and the upper limit for livestock water is 220 mg/l; however, there should be concern for animals when the nitrate content reaches 100 mg/l (Texas Department of Health, 1977 and Burden, 1961).

Out of a total of 308 Antlers water samples collected, 28 samples or 9 percent contained nitrate in excess of the recommended upper limit of 45 mg/l (Table 7). The nitrate content in all of the samples ranged from less than 0.4 to 1,050 mg/l.

Many of the well waters that contain excessive amounts of nitrate are possibly contaminated due to the effects of sewage from nearby septic tanks or animal wastes from barnyards. This would account not only for high concentrations of nitrate but would also be an explanation for part of the increase in chloride concentration as the two are associated (Hem, 1959, p. 118).

Boron, necessary for crop growth, is not known to affect the use of water for purposes other than irrigation. Excessive amounts of boron are highly toxic to plants and render water unsuitable for irrigation. A boron concentration as high as 1.0 mg/l is permissible for irrigation of sensitive crops such as deciduous fruit and nut trees; as high as 2.0 mg/l for semi-tolerant crops such as most small grains, cotton, potatoes, and other vegetables; and as high as 3.0 mg/l for tolerant crops such as alfalfa and most root vegetables. The boron content of 204 samples from selected wells in the Antlers Formation ranged from 0.04 to 2.2 mg/l. A tabulation of the boron content of Antlers waters follows:

Range in boron content (mg/l)	Number of analyses	Percent of total analyses
0 to 1.0	202	99
1.1 to 2.0	1	.5
2.1 to 3.0	1	.5
over 3.0	0	0

Main crops grown in Callahan County are peanuts, small grains, and pecans. Pecans are a sensitive crop and can tolerate a boron content up to 1.0 mg/l. Grains are semi-tolerant crops and can stand boron content up to 2.0 mg/l. Peanuts are classed as a tolerant crop and they can stand a boron content up to 3.0 mg/l. Therefore, most irrigation waters pumped from the Antlers Formation can be used without concern for toxicity due to boron.

A widely used system for determining the quality of irrigation waters is shown in Figure 10 and is based on the salinity hazard as measured by the specific conductance and the sodium (alkali) hazard as measured by the SAR (U.S. Salinity Laboratory Staff, 1954, p. 69 - 82). Plots of

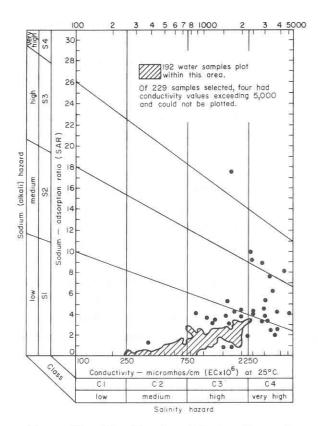


Figure 17.—Classification of Antlers Formation
Water Used for Irrigation

representative Antlers Formation waters are shown on Figure 17. All but 39 of the 229 samples of Antlers ground water fall within salinity-hazard classes C2 and C3 and sodium-hazard class S1. The importance of these classes is shown in Table 3.

Of 300 Antlers samples for which percent sodium was calculated, 296 (99 percent) had a percent sodium of 60 or less and 4 samples had a percent sodium greater than 60. Irrigation waters with a percent sodium of 60 or less and a low bicarbonate content are usually satisfactory. When the percentage is greater than 60, the sodium hazard becomes progressively greater.

Following irrigation, the soil dries and the soil solution becomes progressively more concentrated. This condition creates a tendency for the less soluble compounds to precipitate from solution. Both calcium and magnesium carbonate, being less soluble than sodium carbonate, may precipitate with drying. This precipitation results in an increase in the pro-

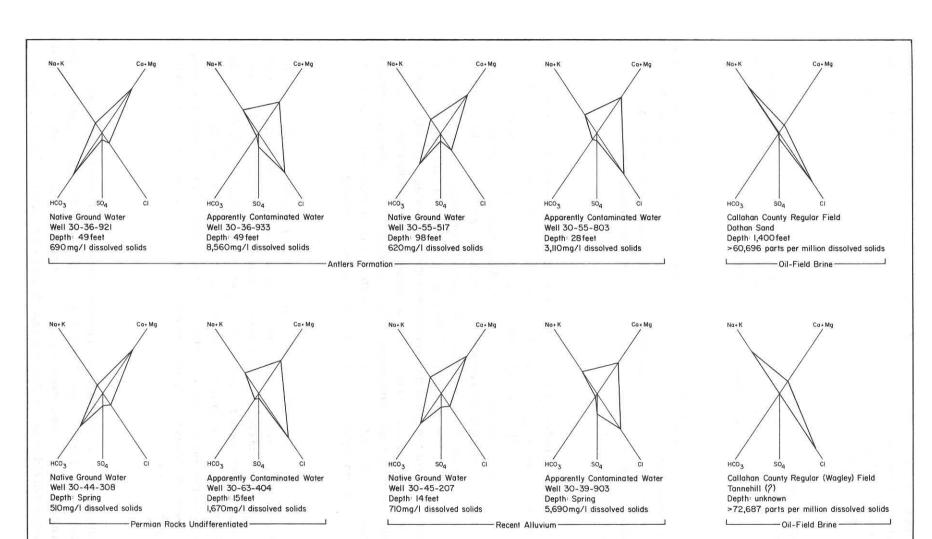
portion of sodium in solution. The bicarbonate ion is the source of carbonate which makes the precipitation possible. Conditions favoring precipitation and the extent to which calcium and magnesium carbonates will precipitate are not fully understood. However, waters containing 1.25 to 2.5 me/l (milliequivalents per liter) of residual sodium carbonate (RSC) are considered marginal and those containing greater than 2.5 me/l probably are unsafe for irrigation use. The equation for calculating RSC is contained in Table 2, and RSC values for ground waters in Callahan County are shown in Table 7. A total of 293 samples out of 302 considered or 97 percent contained less than 1.25 me/l and, therefore, almost all of the sampled wells pumping from the Antlers produce waters which are satisfactory for irrigation insofar as the RSC is concerned.

Historical Changes in Water Quality

The quality of water derived from the Antlers in Callahan County, as well as from other water-bearing units, varies greatly (Table 7 and Figure 9). Even with this exhibited wide range in quality, some of the waters sampled during this study appear to have been altered. Both natural and artificial means contribute to the alteration of the chemical quality of ground water.

Natural alteration occurs when water dissolves minerals from the rocks through which it percolates or over which it flows. In Callahan County natural alteration is evidenced by locally high concentrations of calcium and magnesium. Many wells also yield water extremely high in bicarbonate. These constituents are probably derived from dolomites and limestones which are

present in rocks of Cretaceous age within the county. Ground waters found in Permian undifferentiated and Quaternary or Recent alluvium also contain high concentrations of the above constituents which suggests that much of the waters found in these aquifers may have been derived from the Antlers Formation.


Artificial alteration of ground-water quality may be by biological or chemical means. The positioning of wells near, or downslope from, septic tanks and livestock feedlots or barnyards may result in biological contamination. The presence of an abnormally high nitrate concentration in the water locally is usually suggestive of biological contamination.

Alteration of ground water by chemical means may be associated with the production of oil and gas, or may result from improperly constructed industrial waste-disposal wells. Produced brines as a potential source of ground-water contamination will be discussed in a later section of this report. The locations of several wells and springs which show evidence of possible brine contamination are shown on Figure 21.

Figure 18 contains a series of radial-pattern diagrams which illustrate the relative concentrations of dissolved minerals in native ground water, in water from selected apparently contaminated wells, and in a typical oil-field brine which was produced with oil or gas at a nearby location. The percent of each major chemical constituent—calcium (Ca), magnesium (Mg), chloride (Cl), sodium (Na), potassium (K), sulfate (SO4), and bicarbonate (HCO3)—is plotted on radial coordinates and the plots connected. The shape of the patterns thus illustrates the similarities and differences between the chemical analyses. The similarity of the plots on native ground water should be noted. This suggests that much of the ground water present in the minor aquifers may have been derived from discharge from the Antlers Formation. Although several indications of apparent contamination are still evident in Callahan County, efforts have been and are being made by the Texas Railroad Commission and the many petroleum operators to eliminate contamination of the surface water, soil, and ground water by oil-field brines and hydrocarbons.

Changes in native-quality water have occurred in some areas underlain by the Antlers Formation. Historical quality data, when present, are included in Table 7 to indicate the location and the amount of change which has occurred. A total of 52 wells or springs sampled for chemical analysis in earlier investigations were resampled during this investigation. Forty-four of these derived their ground waters from the Antlers. Considering only the Antlers samples, 16 of the recent samples showed essentially no change in chemical quality, and 16 exhibited improvement in overall quality. Nine samples showed only slight to moderate deterioration, and three exhibited significant worsening of quality.

Many wells contain water in which the nitrate concentrations are greater than the upper limit recommended for drinking purposes (Table 7 and Figure 22). Several Antlers wells are also thought to have been altered due to the presence of oil-field brines as the ground water contained an abnormally high content of chloride and dissolved solids, as well as sodium (Table 7, Figures 18

0 10 20 30 40 50 Percent

Scale
Distance along each axis shows
concentration of the ion (in
milliequivalents per liter)
expressed as a percentage of
the total concentration of
dissolved solids.

Figure 18

Diagrams of Chemical Analyses of Ground Water and Typical Oil-Field Brines

and 22). The dissolved solids, chloride, and nitrate content of apparently contaminated water from 35 wells and 3 springs producing from the Antlers are as follows:

Well	_ D	issolved solids (mg/l)	Chloride (mg/l)	Nitrate (mg/l)
30-36-603		688	89	84
611		1,511	371	284
810		2,250	860	14
933		8,560	3,910	< .4
37-406		1,326	196	446
509 (Sprir	ng)	16,923	10,500	< .4
705		1,895	620	12
740 (Sprir	ng)	1,481	580	< .4
815		1,084	281	135
44-102		2,034	830	85
205		2,056	1,050	31
301		671	67	104
401		693	76	104
503		1,146	246	227
504 (Sprir	ng)	1,969	550	1.5
601		2,210	1,020	18
702		721	99	52
903		1,667	420	< 20
45-901		1,776	730	< .4
46-703		359	37	62
801		2,717	970	1,050

Well	D	issolved solids (mg/l)	Chloride (mg/l)	Nitrate (mg/l)
30-47-701		904	130	242
52-702		1,222	373	113
902		2,361	940	39
54-102		2,873	1,050	< .4
204		2,109	600	121
605		482	58	108
611		2,287	930	3.5
55-302		652	45	189
801		1,225	236	311
803		3,105	1,490	< .4
804		1,090	264	80
806		4,097	1,690	22
927		733	69	168
63-311		2,656	890	32
312		734	132	144
313		771	100	183
607		1,902	800	12

Ground Water Available for Development

Several hydrologic and economic factors determine the amount of water available for development from the Antlers Formation in the county. The major hydrologic factors are the volume of water in storage, the rate of recharge to the aquifer, and the ability of the aquifer to transmit water. The main economic factors are the number and cost of wells required to produce the maximum amount of water.

The amount of water in storage within the Antlers Formation is determined by the aerial extent of the water-bearing unit, its saturated thickness, and its porosity.

As has been previously stated, the Antlers Formation occurs within the county as two separate deposits which are located in the Clyde-Oplin and Cross Plains areas (Figure 5). These two developments currently support irrigation and municipal pumpage and have potential for limited additional development.

In order to evaluate the future availability of Antlers ground water in Callahan County, a saturated thickness map (Figure 19) was prepared from information shown on the water-table map of the Antlers Formation for the winter of 1970-71 (Figure 13) and the contour map of the base of the Antlers Formation (Figure 12). The total volume of saturated deposits in both the Clyde-Oplin and the Cross Plains areas was computed to be about 4.18 million acre-feet (5,155 hm³) with about 1.36 million (1,675) and 2.82 million acre-feet (3,479 hm³) being present in the Clyde-Oplin and Cross Plains areas, respectively. The greatest saturated thickness is present in the Cross Plains area where it reaches an estimated 90 feet (27 m) in an area about 3 miles (4.8 km) northeast of the community of Rowden (Figure 19). There are several other localities in the Cross Plains area where the Antlers has saturated thicknesses which reach or exceed 50 feet (15 m). Within the Clyde-Oplin area, saturated thicknesses are much less. Over most of the area, they are usually on the order of 40 feet (12 m) or less. An exception to this is in an area west-southwest of the community of Denton and near the Taylor County line where the saturated thickness reaches a maximum of about 75 feet (23 m).

Hydrologic and physical properties of the rocks and soils of the Antlers Formation in Callahan County were estimated using stratigraphic tests and drillers' logs compiled for this study together with data derived from previous ground-water studies relating to the Antlers and the Trinity Group. These data indicated that the average specific yield (coefficient of storage since the aquifer is under water-table conditions) of the Antlers is about 20 percent. If this average specific yield is representative, then only about 836,100 acre-feet (1,031 hm³) is theoretically available from storage in both areas of Antlers outcrop within the county. About 271,800 acre-feet (335 hm³) is available in the Clyde-Oplin area and about 564,300 acre-feet (696 hm³) is available in the Cross Plains area. To dewater these areas completely would be impractical because the yields of wells fall off rapidly as the saturated thickness of the aquifer is greatly reduced. It also would require constant year-round pumpage. This is not economically feasible, nor is there a need for the water during the fall and winter months. Therefore, if it becomes necessary to dewater the aquifer, the realistic amount which can be recovered from storage is approximately 75 percent of the amount available from storage or about 627,100 acre-feet (773.2 hm³) in the outcrop areas of the Antlers within the county. This would amount to about 203,800 acre-feet (251.3 hm³) in the Clyde-Oplin area and about 423,300 acre-feet (521.9 hm³) in the Cross Plains area.

The amount of water that can theoretically be developed annually is limited by the amount of effective recharge to the aquifer. During years of drought, discharge can exceed recharge with the deficit being pumped from storage. This condition can exist only temporarily, or until the supply in storage is exhausted. Fortunately droughts are eventually interrupted by years in which precipitation is normal or above normal. During periods in which recharge exceeds discharge, ground water previously removed from storage is partly or completely replaced.

As discussed in a previous section of this report, the total annual effective recharge to the Antlers in Callahan County was estimated to be about 5,400 acre-feet per year (6.66 hm³/yr). Theoretically, this amount would be available annually for development by wells. However, it would be impractical to intercept all of this water. To do this would require capture by wells of all

acparate du communication de la communication

natural discharge. Natural discharge, in part, supports vegetation growth and streamflow. It is possible to capture enough of this discharge during the summer months, however, to reduce all of local streamflow.

The largest use of ground water in Callahan County is for irrigation (Figure 11), which is confined mainly to the spring and summer months. Year-round pumping for this purpose is both uneconomical and unnecessary. During the fall and winter months much natural discharge would not be captured. However, it does not seem unreasonable to assume that half of the annual effective recharge to an aquifer can be economically captured on an annual basis. If this assumption is correct, then approximately 2,700 acre-feet (3.33 hm³) could be economically captured annually by pumping wells. In 1978, an estimated 1,900 acre-feet (2.34 hm³) was pumped for all uses within the county. Thus, approximately 800 acre-feet per year (0.986 hm³/yr) of additional ground water could be realistically developed from the Antlers Formation within the county.

Even though additional amounts of water could be developed from the Antlers in Callahan County under conditions existing at the time of this study, maximum development would require numerous low-capacity wells. The saturated part of the formation is relatively thin over much of the area (Figure 19), and in these areas, the formation will not produce large quantities of water from single wells. Only in the areas of thickest saturation should wells be expected to produce larger volumes.

Many areas of the Antlers have a very limited areal extent as well as very little saturated thickness. This is especially true in the northern part of the Clyde-Oplin area. During prolonged drought with reduced recharge and declining water levels due to the inability of the aquifer to transmit large volumes of water, well yields may decline and, if the drought is of very long duration, wells may fail. This would normally be expected to occur first in the areas with less saturated thickness (Figure 19).

Possible Areas of Future Development

Generally, the most desirable areas for development of ground-water supply from the Antlers coincide with those areas of greatest saturated thickness (Figure 19). In these areas, the basal sands and gravels which are thickest and most permeable are generally associated with the structural lows or "valleys" in the erosional surface upon which the Antlers was deposited (Figure 12). The most promising areas for future irrigation or municipal development are generally those in which the saturated thickness exceeds 30 feet (9 m), although reliable irrigation wells have been developed in areas having less than this amount. In times of drought, excessive pumping may result in failure of wells having a thin saturated thickness. Within Callahan County, the Cross Plains area has greater possibilities for future irrigation or municipal development since greater saturated thicknesses are present. Locations in the Clyde-Oplin area could be selectively chosen, however.

Therefore, when selecting sites for future irrigation or municipal wells, Figures 22 and 19 should be used to select areas of greater saturated thickness and limited well development. Less care is required for selecting sites for domestic and livestock wells, but it is advisable to drill through the entire section of the Antlers Formation at a location having the greatest saturated thickness.

Other Water-Bearing Units

In addition to the primary aquifer, minor amounts of ground water also occur in Permian rocks and in Recent alluvium of Quaternary age.

The amounts of ground water used from these hydrologic units, as well as that available for possible future development, is considered to be small and insignificant. Well yields are also of questionable reliability. Ground water derived from these sources is known to be used for domestic or livestock purposes only.

Permian Rocks Undifferentiated

As previously stated, hydrologic units yielding only minor amounts of ground water from this system were collectively considered to be producing from the Permian rocks undifferentiated aquifer. The geologic characteristics of this aquifer are discussed in a previous section entitled "Geology as Related to the Occurrence of Ground Water."

Only 14 wells and 3 springs which yielded water from this hydrologic unit were inventoried during this study. These amounted to about 3 percent of the total number of wells and springs inventoried (Table 7 and Figure 22).

Extent of the Aquifer

Permian rocks crop out over most of the surface area of Callahan County (Figure 5). Two separate outcrops of the Cretaceous Antlers Formation cover a fairly extensive area of the Permian. Additionally, insignificant deposits of Recent alluvium, found along the tributaries of the major drainage system, also cover small areas of its surface. Individual members of the aquifer which dip west-northwest at approximately 40 feet per mile (7.6 m/km), crop out in belts of various widths trending in a northeast-southwest direction (Figures 23, 24, and 25).

Ground-Water Source, Occurrence, and Movement

Ground water found in Permian rocks is derived mainly by the infiltration of stream runoff, precipitation on the outcrop, and by limited interformational leakage from water-bearing deposits of Quaternary and Cretaceous age which overlie the individual limestone units. Precipitation is probably the major source of ground water found in the few sandstone members.

Occurrences of ground water in this hydrologic unit are believed to be confined to local zones of permeability in fractures and solution channels at or near the outcrop. The areas most favorable for well development are near the major streams and their tributaries.

Water present in Permian rocks is generally thought to be under water-table conditions. However, in some remote cases, there may be ground water under artesian conditions. The movement of ground water within the aquifer is downdip and toward discharge areas. Natural discharge areas are unknown. Several domestic and livestock wells are pumping from this aquifer and some movement is toward these areas of discharge.

Changes in Water Levels

Limited historical data are available on the Permian rocks undifferentiated aquifer concerning water-level fluctuations. However, six wells completed in various members of the hydrologic unit were measured in the spring and fall of 1940 and again in the spring of 1971. Five wells exhibited a net rise in water level during this period, ranging from 2.57 feet (0.78 m) in well 30-61-201 to 16.37 feet (4.99 m) in well 30-46-401. This was an average annual rise in water level of 0.08 foot (0.02 m) and 0.54 foot (0.16 m), respectively. One well (30-54-403) reflected a net decline in water level of 3.26 feet (0.99 m) or 0.11 foot per year (0.03 m/yr) during this same period (Table 5).

Recharge and Discharge

Recharge to the Permian rocks undifferentiated aquifer is dependent on rainfall. Much of the recharge is from streams which cross the aquifer's individual units. Interformational leakage from Cretaceous and Quaternary deposits overlying the Permian rocks provides additional recharge. Precipitation falling directly on the very limited outcrop of the individual units of the aquifer provides some recharge. Information is lacking to provide an estimate of the amount of recharge; however, it has exceeded discharge as reflected by the net rise in water levels since 1940 in five of six wells (Table 5).

Only two areas of natural discharge from this aquifer are known. These are springs 30-44-308 and 30-53-101 which were flowing an estimated 1 and 8 gal/min (0.063 and 0.505 l/s), respectively. Undoubtedly, there are other unknown areas of natural discharge. Artificial discharge is through the limited number of wells which pump from the aquifer.

Chemical Quality

Twenty-one representative samples of ground water from Permian rocks were collected for chemical analysis during this and previous investigations. These samples were collected from 13 selected wells, 1 test hole, and 3 springs located within the county. Only limited amounts of ground water are available from the individual members which make up this hydrologic unit. The water quality is variable, and the wells are scattered throughout the county. The dissolved-solids content of the samples ranged from 149 to 39,500 mg/l and the waters are classed as fresh to brine. The following table shows the number of analyses within certain ranges of dissolved-solids content:

Range in dissolved- solids (mg/l)	Number of analyses	Percent of total analyses	
500 or less	7	33	
501 to 1,000	7	33	

Range in dissolved- solids (mg/l)	Number of analyses	Percent of total analyses	
1,001 to 2,000	5	24	
2,001 to 3,000	1	5	
over 3,000	1	5	

Variations in the chemical quality are reflected in the concentrations of some of the principal chemical constituents found in the samples. Sulfate concentrations ranged from 6 to 3,960 mg/l and chloride from 11 to 21,900 mg/l. In both cases, 81 percent of the samples contained less

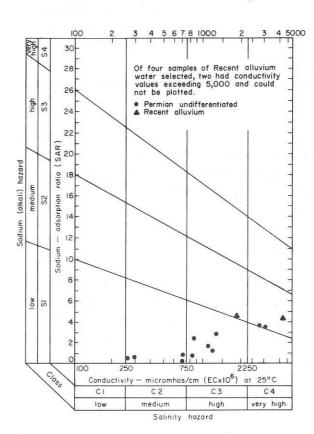


Figure 20.—Classification of Water From Recent Alluvium and Permian Rocks Used for Irrigation

than 300 mg/l. Fluoride content ranged from 0.1 to 2.0 mg/l with 95 percent of the samples being below the recommended upper limit of 1.6 mg/l. Nitrate ranged from less than 0.4 to 480 mg/l with 38 percent of the samples containing above the maximum recommended value of 45 mg/l. Total hardness ranged from 116 to 15,600 mg/l, and 95 percent of the samples contained ground waters which were classed as very hard. For concentrations of the above constituents in individual wells, as well as other constituents, consult Table 7.

Even though the quantity of ground water in Permian beds is believed to be inadequate for irrigation purposes, the water is of suitable quality for such use. Figure 20 gives the classes of the waters, Table 3 describes the classes and restrictions, and Table 2 contains other chemical parameters used to determine the suitability of ground waters for irrigation.

Recent Alluvium

The Recent alluvium of Quaternary age is a fairly reliable source of minor amounts of

ground water for domestic and livestock purposes. The alluvial deposits are found in the floodplains of the major tributaries of streams which make up the surface drainage system of Callahan County. The "Geology as Related to the Occurrence of Ground Water" section of this report discusses the geologic characteristics and extent of the aquifer.

A total of eight wells and three springs, or about 2 percent of the wells and springs which were inventoried during this study, produced ground water from this aquifer.

Ground-Water Source, Occurrence, and Movement

The source of the ground water is precipitation that falls directly on the alluvium outcrop and discharge from other water-bearing units into the alluvial deposits along the streams. Principal occurrences of ground-water supplies in the alluvial deposits are usually found near the major streams. Movement of the ground water found in Recent alluvium is usually toward the main stream channel where it is discharged.

Changes in Water Levels

Generally, water-level fluctuations within the Recent alluvium vary greatly with rainfall and with the rise and fall of water in the streams. During periods of runoff following rainfall, a temporary rise in the water level occurs due to seepage from the stream into the aquifer. However, when the runoff has passed, the water level in the stream is again below that in the aquifer and the water flows back into the stream.

A total of five wells provided historical data regarding possible water-level changes in the Recent alluvium. These were measured during the spring and fall of 1940 and again in the winter of 1970 and the spring of 1971. Four of the wells exhibited a net rise in water level during this period, ranging from 0.85 foot (0.26 m) in well 30-47-906 to 4.60 feet (1.40 m) in well 30-63-209. The average annual rise in water level in these wells was 0.03 foot (0.01 m) and 0.15 foot (0.05 m), respectively. Well 30-63-103 reflected a net decline in water level of 2.12 feet (0.65 m) or 0.07 foot per year (0.02 m/yr) during this same period (Table 5).

Recharge and Discharge

Recharge to the Recent alluvium is partly from stream runoff and flooding which results from precipitation upstream. Recharging from stream runoff is usually temporary since most of this recharge is bank storage only and the water flows back into the streams after the runoff recedes. However, during flooding, water often covers the entire floodplain, and at this time considerable recharge takes place. Much recharge also is received by seepage from the Antlers Formation which occasionally is in direct contact with the Recent alluvium (Figure 5). Data are not available to estimate the amount of annual effective recharge.

Natural discharge from the Recent alluvium is directly into the main channels of the tributaries of the major streams within the county. Three Recent alluvium springs were located and inventoried during this investigation. Many areas of natural discharge were undoubtedly not located; however, the three springs had estimated flows of 3 (0.189), 5 (0.315), and 10 gal/min (0.631 l/s). The limited number of wells which pump from the Recent alluvium provide artificial discharge from the aquifer.

Chemical Quality

Eight wells and three springs were located which produce or have produced water of usable quality from the Recent alluvium in Callahan County. Eight water samples were collected during

this or previous studies on four wells and two springs. The results of these analyses are tabulated in Table 7.

Water from wells or springs deriving their water from Recent alluvium is of much poorer quality than that found in other water-bearing units of the county. The range in the dissolved-solids content of water collected during this and previous studies was from 370 to 9,200 mg/l. These waters would be classed as fresh to moderately saline. Only 25 percent of the samples contained 1,000 mg/l or less. The number of samples falling within various ranges are shown as follows:

Range in dissolved- solids (mg/l)	Number of analyses	Percent of total analyses
500 or less	1	12.5
501 to 1,000	1	12.5
1,001 to 2,000	1	12.5
2,001 to 3,000	2	25
over 3,000	3	37.5

Ranges in concentration of the major chemical constituents which follow reflect the wide variations in the chemical quality of Recent alluvium ground waters:

Constituent	Range (mg/l)	
Calcium	130 to 1,150	
Magnesium	30 to 497	
Sodium	89 to 1,810	
Bicarbonate	194 to 476	
Sulfate	< 10 to 1,450	
Chloride	28 to 5,700	
Fluoride	.3 to 1.7	
Nitrate	< .4 to 136	
Total hardness	293 to 4,270	

The quality of Recent alluvium ground waters can be generally summarized as follows. Thirty-eight percent of the samples contained greater than 300 mg/l sulfate and 62 percent contained greater than 300 mg/l chloride. These samples would have "gyppy" or "salty" tastes, respectively. Fourteen percent of the samples contained both fluoride and nitrate above the recommended limits of 1.6 and 45 mg/l, respectively. Water from all of the samples would be classed as very hard.

Chemical analyses of four water samples collected from wells developed in the Recent alluvium were available for use in determining its suitability for irrigation; however, only two samples were within the limits of salinity and sodium hazards shown on Figure 20. These two samples fall within salinity hazard classes C3 and C4 and sodium hazard class S2. The importance of these classes is shown on Table 3. The Recent alluvium does not contain sufficient volumes of ground water to permit large-scale irrigation.

SURFACE-CASING RECOMMENDATIONS FOR WATER-QUALITY PROTECTION

The Texas Department of Water Resources provides recommendations to oil and gas operators and the Railroad Commission of Texas concerning the depth to which usable quality ground water should be protected in drilling for oil and gas. The authority for participation by the Department in this surface-casing program is derived from rules promulgated by the Railroad Commission under authority given that agency by statutes dealing with the regulation of drilling and production activities of the petroleum industry.

Statewide Rule 13 of the Railroad Commission of Texas requires that operators obtain a letter from the Texas Department of Water Resources recommending the depth to which fresh-water strata should be protected when drilling for oil or gas if the lease or area is not covered by field rules or lease recommendations. The Railroad Commission's Rule 8 requires that all fresh-water strata be protected in drilling, plugging, or production activities.

In carrying out its duties under Rule 13, the Texas Department of Water Resources maintains technical data files, upon which to base fresh-water protection recommendations in all areas of the State, and for preparing these recommendations for operators contemplating drilling oil or gas tests. The depth to which ground water of usable quality should be protected, which is recommended in a given area, is based on all pertinent information available to the surface-casing program staff at the time the recommendation is given. Recommended depths in any one area may, therefore, be revised from time to time as additional subsurface information becomes available.

Known depths of wells producing usable water, or depths of wells which formerly produced water of usable quality, such as domestic, municipal, industrial, livestock, or irrigation wells, are of primary importance in determining the depth of usable water. Electric or gamma-ray neutron logs run on oil and gas tests are used in many areas to determine the depth to the base of usable quality ground water. Surface elevation is given special consideration when a recommendation is given in an area that has moderate to high surface relief, as is common to portions of Callahan County. This consideration is imperative when the slope of the land surface does not conform to

the dip of the underlying rocks because of the danger that poor quality water will cause contamination of surface and ground water by moving along the dip of the beds to fresh-water zones or to points of discharge in stream channels. This information is interpreted in the light of available knowledge of the geology and ground-water hydrology available in the area involved.

PRODUCTION AND DISPOSAL OF OIL-FIELD BRINE

Areas of Disposal, Disposal Methods, and Quantities

In 1962, and again in 1968, the Railroad Commission of Texas and the Texas Department of Water Resources or its predecessor agencies cooperated in the statewide collection and tabulation of information submitted by oil and gas operators concerning the 1961 and 1967 oil-field brine production and the methods used for its disposal. Figure 21 delineates the areas of disposal, quantities of brine disposal, and methods of disposal within the county. The areas of disposal, listed numerically 1 through 27 on Figure 21, were determined by outlining the areas of greatest concentration of producing oil and gas wells. No attempt is made to separate the individual oil or gas fields; however, care was taken not to include parts of a field in more than one area. Statistics on brine disposal for individual oil and gas fields for the years 1961 and 1967 are tabulated in Table 8 by area.

Brine is disposed by injection, surface pits, or miscellaneous methods. Waters disposed by injection are placed into the subsurface through the salt-water injection wells of a waterflood operation, through salt-water disposal wells, or those injected into a non-producing subsurface zone of a presently producing oil well. Waters listed under pits are those which are placed into open surface disposal pits. Waters listed under miscellaneous disposal are those which are disposed of by any other method, mainly through hauling by trucks to salt-water disposal or waterflood injection wells in other areas.

As of January 1, 1968, disposal of brine into pits had been discontinued in areas 1 through 5, 7, 8, 10 through 15, 17, 18, 20 through 24, 26, and 27. Disposal into pits had been drastically reduced in all other areas except areas 16 and 19 where considerable amounts were still being disposed of by this method (Table 8).

The alternate method of disposal, in most cases, has been by injection. A comparison of the volume and methods of disposal in 1961 and 1967 shows that total brine production in the county has increased but the total quantity of brine disposal in surface pits has decreased (Table 8). The total brine production in Callahan County in 1961 was about 5.52 million barrels (887,700 m³) compared to over 8.74 million barrels (1.39 million m³) produced in 1967. The amount disposed of in pits during 1961 was about 237,500 barrels (37,760 m³) or 4.30 percent of the total as compared to almost 13,500 barrels (2,146 m³) or 0.15 percent of the total in 1967. Disposal by injection into wells in 1961 was about 5.28 million barrels (839,600 m³) or 95.67 percent and in 1967 was about 8.73 million barrels (1.39 million m³) or 99.84 percent. Miscellaneous disposal in 1961 and 1967 was 1,664 barrels (264.6 m³) and 183 barrels (29.1 m³), respectively. This was 0.03 percent of the total in 1961 and 0.01 percent of the total in 1967. For a comparison of the various methods of disposal, area by area and field by field, for 1961 and 1967 consult Figure 21 and Table 8.

Chemical Quality of Produced Brines

Table 9 is a tabulation of the chemical analyses of some oil-field brines in Callahan County. The brines have, for the most part, the same ions present that are present in water from wells used for municipal, industrial, irrigation, and livestock supplies. However, the calcium, chloride, magnesium, and sodium ions are present in much greater concentrations in the brines. The content of dissolved solids is also much higher in the brines, ranging from 60,500 to 195,000 ppm. The concentrations of various ions in the tabulated brines range as follows:

Calcium (Ca)	1,700 to 15,100 ppm
Chloride (CI)	33,800 to 109,000 ppm
Magnesium (Mg)	352 to 2,856 ppm
Sodium (Na)	20,010 to 49,400 ppm

Produced Brine as a Potential Source of Ground-Water Contamination

Ground water is often subjected to contamination from various sources, and a major potential source of contamination is the improper disposal of oil-field brines. Prior to the advent of the statewide no-pit order, instigated by the Texas Railroad Commission, and which became effective on January 1, 1969, there was possibly considerable ground-water pollution caused by the disposal of produced brines in open, unlined surface-disposal pits. Even though much evaporation took place in these pits, if soil conditions were conducive, there was considerable percolation or seepage of these brines downward, to the water table, resulting in the contamination of the native ground water. Occasional overflow of brines from these surface pits may also have contaminated surface waters. When these brines mix with native ground water, there is usually a marked increase in the concentrations of chloride and sodium ions in the ground water. These increases are reflected in the analyses of some of the waters in Callahan County (Table 7). Figure 21 depicts the location of wells in Callahan County which are apparently contaminated.

Contamination may also result when there is leakage from old, abandoned and improperly plugged oil tests, or from improperly cased producing oil wells. In cases such as these, the brines may move up the bore holes of improperly plugged or cased wells into the shallow fresh-water zones, due to both natural pressure in the brine-producing formations and the pressure created by secondary recovery injection operations. The Texas Railroad Commission now has limited funds available for plugging abandoned oil and gas wells or tests which may be leaking brines to the surface or subsurface. Much work has been done by the Texas Railroad Commission and oil operators to alleviate contamination problems resulting from brine produced with oil and gas.

SUMMARY AND CONCLUSIONS

Within Callahan County, the primary aquifer is the Antlers Formation of Cretaceous age. Its major development covers an area of approximately 280 square miles (725 km²) which is located

in the western and southwestern parts of the county (Figure 5). This water-bearing unit yields small to moderate quantities of usable-quality ground water which generally varies from fresh to slightly saline. However, in local areas, moderate to very saline ground waters were also located (Table 7). A total of 94 percent of all wells and springs inventoried during this study derived their ground waters from this aquifer.

Some individual members and formations of Permian age, collectively called the Permian rocks undifferentiated aquifer, also contain small supplies of ground water. Well yields from these zones are of questionable reliability. The quality of ground water collected from this aquifer ranges from fresh to brine. These waters are used for domestic and livestock purposes only.

Surficial Quaternary floodplain and terrace deposits (Recent alluvium aquifer), found along streams and their tributaries, also provide small quantities of fresh to moderately saline ground waters. These waters are also used for domestic and livestock purposes only.

During 1978, approximately 1,900 acre-feet (2.34 hm³) of ground water was pumped for all uses from the various aquifers. More than 95 percent of this is estimated to have been derived from the Antlers aquifer. Only minor amounts of pumpage, used for domestic and livestock purposes, were derived from other aquifers. Pumpage for irrigation and municipal purposes (100 percent from the Antlers) accounted for about 52 and 10 percent, respectively. Practically all domestic and livestock withdrawals were also from the Antlers water-bearing unit. Pumpage for these two categories amounted to an estimated 38 percent of the total while that for industrial purposes accounted for only 0.2 percent. Almost all of this was also from the Antlers Formation.

Based on an estimated recharge rate of 1.5 percent of the average annual precipitation of 25.64 inches (65.13 cm) for all the stations within the county, the annual effective recharge to the Antlers Formation was calculated to be about 5,400 acre-feet (6.66 hm³). Of this, about 2,400 acre-feet (2.96 hm³) is considered to be available in the Clyde-Oplin area and about 3,000 acre-feet (3.70 hm³) in the Cross Plains area.

Using a storage coefficient of 20 percent, 836,100 acre-feet (1,031 hm³) of ground water was estimated to be in transient storage within the Cretaceous Antlers Formation in Callahan County. Of this amount, 271,800 acre-feet (335 hm³) and about 564,300 acre-feet (696 hm³) are available in the Clyde-Oplin and Cross Plains areas, respectively. If 75 percent of these amounts are considered to be economically recoverable, then about 203,800 acre-feet (251.3 hm³) and 423,300 acre-feet (521.9 hm³) can be withdrawn from these same areas.

Since only insignificant amounts of ground water are available from the Permian rocks undifferentiated and Recent alluvium aquifers, no attempt was made to estimate the annual effective recharge or the amount of ground water in storage for either of these water-bearing units.

Water-level data collected on all three of the aquifers in the county indicate that, in general, there was a rise in water levels in all three water-bearing units for the period from the winter of 1940 through the winter of 1970-71. Measurements in the Antlers aquifer indicated that water levels experienced net rises in the Clyde-Oplin area from 0.0 to 11.5 feet (0.0 to 3.51 m). In the Cross Plains area, Antlers water levels show net rises ranging from 0.02 foot (0.006 m) to 9.1 feet

(2.8 m). Water-levels in the Permian rocks exhibited net rises during the same period, ranging from 2.57 feet (0.78 m) to 16.37 feet (4.99 m). Historical water-level data relating to the Recent alluvium during the subject period also indicated net water-level rises ranging from 0.85 foot (0.26 m) to 4.60 feet (1.40 m).

Chemical analyses of water samples of this and previous investigations indicate that, for the most part, ground waters derived from the Antlers aquifer are of good quality. In the majority of the samples, dissolved solids were low. Usually, the samples contained excessive hardness, and locally, some waters were high in dissolved iron content. The content of the chemical constituents of chloride, sulfate, fluoride, and nitrate, in the majority of the samples, were within recommended limits. Additionally, ground waters were suitable for irrigation of all crops normally grown within the county. Generally, ground waters derived from Permian rocks and Recent alluvium are suitable for domestic and livestock uses.

Alteration of native-quality ground water in several wells in Callahan County has resulted, presumably, from the disposal of oil-field brines into unlined surface pits or from abandoned oil or gas tests which are leaking. In some cases, there has also been alteration of native-quality ground water by excess nitrate in areas where wells have been located improperly with respect to septic tanks or animal barn-yards. Care should be exercised in the future to properly locate wells with respect to these potential sources of pollution. Most brine contamination sources are thought to have been eliminated by the statewide no-pit order issued by the Railroad Commission of Texas. However, since contamination in ground water may continue for long periods of time after the sources are removed, it would be advisable to set up a program for periodic resampling of selected wells to check the amounts and extent of the contamination.

In order to further evaluate the future effects of irrigation or municipal pumpage from the Antlers aquifer, a network of observation wells should be established in Callahan County in which water levels are to be measured and recorded annually by personnel of the Texas Department of Water Resources. Some water level observation wells are presently measured; however, coverage is considered inadequate.

SELECTED REFERENCES

- Abilene Geological Society Guidebook, 1955, Study of the lower Permian and upper Pennsylvanian rocks in the Brazos and Colorado River valleys of west central Texas, together with a preliminary report on the structural development of west central Texas.
- BJ Services, Inc., 1960, The chemical analyses of brines from some fields in north and west Texas: Am. Inst. Mining, Metall., and Petroleum Engineers, 17 p.
- Boone, P. A., 1968, Stratigraphy of the basal Trinity (lower Cretaceous) sands of central Texas: Baylor Univ., Baylor Geol. Studies Bull. 15, 64 p.
- Brown, L. F., Jr., 1959, Problems of stratigraphic nomenclature and classification, upper Pennsylvanian, north central Texas: Am. Assoc. Petroleum Geologists, v. 43, p. 2866-2871.
- Bruin, J., and Hudson, H. E., Jr., 1961, Selected method for pumping test analysis: Illinois State Water Survey Rept. 25, 54 p.
- Burden, E. H. W. J., 1961, The toxicology of nitrates, with particular reference to the potability of water supplies: The Analyst, Proc. of the Soc. Anal. for Chem., v. 86, no. 1024, p. 429-433.
- Bureau of Economic Geology, 1972, Geologic Atlas of Texas, Abilene sheet: Univ. Texas at Austin, Bur. Econ. Geology map.
- Carr, J. T., Jr., 1967, The climate and physiography of Texas: Texas Water Devel. Board Rept. 53, 27 p.
- Cheney, M. G., 1929, Stratigraphic and structural studies in north-central Texas: Univ. Texas Bull. 2913, 29 p.
- _____1940, Geology of north-central Texas: Bull. Am. Assoc. Petroleum Geologists, v. 24, no. 1, p. 65-118.
- Cheney, M. G., and Goss, L. F., 1952, Tectonics of central Texas: Am. Assoc. Petroleum Geologists Bull., v. 36, no. 12, p. 2237-2265.
- Cronin, J. G., Follett, C. R., Shafer, G. H., and Rettman, P. L., 1963, Reconnaissance investigation of the ground-water resources of the Brazos River basin, Texas: Texas Water Comm. Bull. 6310, 163 p.
- Cummins, W. F., 1890, The Permian of Texas and its overlying beds: Texas Geol. Survey 1st Ann. Rept., p. 183-197.
- _____1893, Notes on the geology of northwest Texas: Texas Geol. Survey 4th Ann. Rept., pt. 1, p. 177-238.
- Cummins, W. F., and Lerch, O., 1891, Report on the geology of northwestern Texas: Texas Geol. Survey Ann. Rept. 2, p. 73-77, 321-325.

- Dallas Morning News, 1979, Texas almanac and state industrial guide, 1980-1981: A. H. Belo Corp., 704 p.
- Davis, D. A., 1938, Records of wells, drillers' logs, water analyses, and map showing location of wells in Brown County, Texas: Texas Board Water Engineers duplicated rept., 25 p.
- DeWiest, R. J. M., 1965, Geohydrology: New York, John Wiley and Sons, Inc., p. 133-134.
- Doll, W. L., Meyer, G., and Archer, R. J., 1963, Water resources of West Virginia: West Virginia Dept. Nat. Resources, Div. Water Resources, 134 p.
- Eardley, A. J., 1951, Structural geology of North America: New York, Harper and Brothers, 624 p.
- Eaton, F. M., 1950, Significance of carbonates in irrigation waters: Soil Sci., v. 59, p. 123-133.
- Farris, J. R., and others, 1963, Field conference on the geology of west-central Texas: Hardin-Simmons Univ. Geol. Soc. Fourth Ann. Field Trip, 84 p.
- Fisher, W. L., and Rodda, P. U., 1966, Nomenclature revision of basal Cretaceous rocks between the Colorado and Red Rivers, Texas: Univ. Texas, Bur. Econ. Geology Rept. of Inv. 58, 20 p.
- _____1967, Lower Cretaceous sands of Texas, stratigraphy and resources: Univ. Texas, Bur. Econ. Geology Rept. of Inv. 59, 116 p.
- Frye, J. C., Swineford, A., and Leonard, A. B., 1948, Correlation of Pleistocene deposits of the central Great Plains with the glacial section: Jour. Geology, v. 56, no. 6, p. 501-525.
- George, W. O., 1940a, Callahan County, Texas Records of wells and springs, drillers' logs, water analyses, and map showing locations of wells and springs: Texas Board Water Engineers duplicated rept., 44 p.
- _____1940b, Memorandum on the ground-water conditions in the vicinity of Baird, Texas: Texas Board Water Engineers duplicated rept., 30 p.
- George, W. O., and Hastings, W. W., 1951, Nitrate in the ground water of Texas: Am. Geophys. Union Trans., v. 32, no. 3, p. 450-456.
- Gordon, C. H., 1913, Geology and underground waters of the Wichita region, north-central Texas: U.S. Geol. Survey Water-Supply Paper 317, 88 p.
- Hayward, O. T., and Brown, L. F., Jr., 1967, Comanchean (Cretaceous) rocks of central Texas: Soc. of Econ. Paleontologists and Mineralogists, the Permian Basin section, Pub. 67-8, p. 31-48.
- Heller, V. G., 1933, The effect of saline and alkaline waters on domestic animals: Oklahoma Agr. and Mech. Coll. Expt. Sta. Bull. 217, 23 p.
- Hem, J. D., 1959, Study and interpretation of the chemical characteristics of natural water: U. S. Geol. Survey Water-Supply Paper 1473, 1st ed., 269 p.

- Hem, J. D., 1970, Study and interpretation of the chemical characteristics of natural water: U.S. Geol. Survey Water-Supply Paper 1473, 2nd ed., 363 p.
- Holmquest, H. J., Jr., 1955, Structural development of west-central Texas: Abilene Geol. Soc. Guidebook, 1932 p.
- Imlay, R. W., 1944, Correlation of lower Cretaceous formations of the Coastal Plain of Texas, Louisiana, and Arkansas: U. S. Geol. Survey, Oil and Gas Inv. Prelim. chart no. 3.
- Johnson, E. E., 1966, Ground water and wells: Edward E. Johnson, Inc., 440 p.
- Jones, T. S., 1953, Stratigraphy of the Permian basin of West Texas: West Texas Geol. Soc., 63 p.
- Kane, J. W., 1967, Monthly reservoir evaporation rates for Texas, 1940 through 1965: Texas Water Devel. Board Rept. 64, 111 p.
- Klemt, W. B., Perkins, R. D., and Alvarez, H. J., 1975, Ground-water resources of part of central Texas with emphasis on the Antlers and Travis Peak Formations: Texas Water Devel. Board Rept. 195, v. 1 and 2, 594 p.
- Laxson, Roland, and others, 1960, Resistivities and chemical analyses of formation waters from the west-central Texas area: West Central Texas Section Soc. Petroleum Engineers of Am. Inst. Mining, Metall., and Petroleum Engineers, 21 p.
- Lee, W., Nickell, C. O., Williams, J. S., and Henbest, L. G., 1938, Stratigraphic and paleontologic studies of the Pennsylvanian and Permian rocks in north-central Texas: Univ. Texas Pub. 3801, 247 p.
- Loehr, R. C., 1969, Animal wastes—A national problem: Jour. Sanitary Eng. Div. of A.S.C.E., v. 95, no. SA2 (Apr.), p. 189-221.
- Lohman, S. W., 1972, Ground-water hydraulics: U. S. Geol. Survey Prof. Paper 708, 70 p.
- Lozo, F. E., and Stricklin, F. L., Jr., 1956, Stratigraphic notes on the outcrop basal Cretaceous, central Texas: Trans. Gulf Coast Assoc. Geol. Soc., v. 6, p. 67-78.
- Lyerly, P. J., and Longenecker, D. E., 1957, Salinity control in irrigation agriculture: Texas Agr. Expt. Sta. Bull. 876, 20 p.
- Maier, F. J., 1950, Fluoridation of public water supplies: Am. Water Works Assoc. Jour., v. 42, pt. 1, p. 1120-1132.
- Maxcy, K. F., 1950, Report on the relation of nitrate concentrations in well waters to the occurrence of methemoglobinemia: Natl. Research Council Bull. Sanitary Eng. and Envir., p. 265, app. D.
- Meinzer, O. E., 1923, Outline of ground-water hydrology, with definitions: U. S. Geol. Survey Water-Supply Paper 494, 71 p.

- Morris, D. A., and Johnson, A. I., 1967, Summary of hydrologic and physical properties of rock and soil materials, as analyzed by the hydrologic laboratory of the U. S. Geological Survey 1948-60: U. S. Geol. Survey Water-Supply Paper 1839-D, p. D36-D37.
- Mount, J. R., Rayner, F. A., Shamburger, V. M., Jr., Peckham, R. C., and Osborne, F. L., Jr., 1967, Reconnaissance investigation of the ground-water resources of the Colorado River basin, Texas: Texas Water Devel. Board Rept. 51, 107 p.
- Muller, D. A., and Price, R. D., 1979, Ground-water availability in Texas Estimates and projections through 2030: Texas Dept. Water Resources Rept. 238, 77 p.
- Myer, B. N., 1969, Compilation of results of aquifer tests in Texas: Texas Water Devel. Board Rept. 98, p. 6-7.
- Preston, R. D., 1969, Occurrence and quality of ground water in Shackelford County, Texas: Texas Water Devel. Board Rept. 100, 68 p.
- Price, R. D., 1978, The occurrence, quality, and availability of ground water in Jones County, Texas: Texas Dept. Water Resources Rept. 215, 236 p.
- _____1979, An evaluation of the present and future municipal and industrial ground-water resources in the West Central Texas area: Unpublished data in files of Texas Dept. Water Resources.
- Sellards, E. H., Adkins, W. S., and Plummer, F. B., 1932, The geology of Texas, v. 1, Stratigraphy: Univ. Texas Bull. 3232, 1007 p.
- Stafford, P. T., 1958, Stratigraphy of the Wichita Group in part of the Brazos River valley, north Texas: U. S. Geol. Survey Bull. 1081-G, p. 261-280.
- _____1960, Geology of the Cross Plains quadrangle, Brown, Callahan, Coleman, and Eastland Counties, Texas: U. S. Geol. Survey Bull. 1096-B, 72 p.
- Stearns, N. D., 1927, Laboratory tests on physical properties of water-bearing materials: U. S. Geol. Survey Water-Supply Paper 596f, p. 144.
- Sundstrom, R. W., Broadhurst, W. L., and Dwyer, Mrs. B. C., 1947, Public water supplies in central and north-central Texas: Texas Board Water Engineers duplicated rept., 237 p.
- Taylor, H. D., 1978, The occurrence and quality of ground water in Taylor County, Texas: Texas Dept. Water Resources Rept. 224, 135 p.
- Texas Department of Health, 1977, Drinking water standards governing drinking water quality and reporting requirements for public water supply systems, Adapted by the Texas Board of Health July 1, 1977, Revised November 30, 1977: Texas Dept. Health, Div. of Water Hygiene duplicated rept., 17 p.
- Texas State Historical Association, 1976, The handbook of Texas, A supplement: Texas State Historical Association, Austin, v. III, 1145 p.

- Texas Water Development Board, 1977, Continuing water resources planning and development for Texas: Texas Water Devel. Board planning rept. (Draft), v. 1 and 2, 1043 p.
- Theis, C. V., 1935, The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground-water storage: Am. Geophys. Union Trans., pt. 2, p. 519-524.
- _____1938, The significance and nature of the cone of depression in ground-water bodies: Econ. Geology, v. 33, no. 8, p. 889-902.
- Thompson, D. R., 1967, Occurrence and quality of ground water in Brown County, Texas: Texas Water Devel. Board Rept. 46, 143 p.
- Todd, D. K., 1959, Ground-water hydrology: New York, John Wiley and Sons, Inc., 336 p.
- U. S. Public Health Service, 1962, Public Health Service drinking-water standards: Public Health Service Pub. 956, 61 p.
- U. S. Salinity Laboratory Staff, 1954, Diagnosis and improvement of saline and alkali soils: U. S. Dept. Agriculture Handb. 60, p. 69-83.
- Van Siclen, D. C., 1957, Cenozoic strata of the southwestern Osage Plains of Texas: Jour. Geology, v. 65, no. 1, p. 47-60.
- Walker, L. E., 1967, Occurrence and quality of ground water in Coleman County, Texas: Texas Water Devel. Board Rept. 57, 102 p.
- Walton, W. C., 1962, Selected analytical methods for well and aquifer evaluation: Illinois State Water Survey Bull. 49, 81 p., 4 pls.
- Wilcox, L. V., 1955, Classification and use of irrigation waters: U. S. Dept. Agriculture Circ. 969, 19 p.
- Winslow, A. G., Doyel, W. W., and Gaum, C. H., 1954, Ground-water resources of Jones County, Texas: Texas Board Water Engineers Bull. 5418, 29 p.
- Winslow, A. G., and Kister, L. R., Jr., 1956, Saline-water resources of Texas: U. S. Geol. Survey Water-Supply Paper 1365, 105 p.

Table 5. -- Records of Selected Wells, Springs, and Test Holes

All wells are drilled unless otherwise noted in remarks column.

Water-bearing unit: (Qal.) Quaternary or Recent Alluvium; Kea, Antlers Formation; P. Permian rocks undifferentiated.

Rethod of lift and type of power: B, bucket or bailer; C, cylinder; Cf, centriugal; E, electric; C, gasoline, butane or disease magine; B, thand or hand pump; J, jet; N, none; B, reciprocating; Sub, submersible; T, turbine; W, windmill.

Number indicates horsepower.

D, domesic; In, indistrial; Irr, irrigation; P, public supply; S, livestock; N, none.

Altitude of land surface was determined from topographic maps, or was surveyed.

		_	50										_				75		_
	Remarks	Dug well. Salt water reported to leak into well following rain.	Dug well, Well 60 in Callahan County report. $\underline{\mathcal{Y}}$	Dug well. Reported to be a strong supply. Well 204 in Callahan County report. Ψ	Dug well. Water coming from cracks in limestone	Estimated flow rate 10 gal/min. Mater is from alluvium in contact with Permian Limestone. Spring has been dug out to accomodate pump.	Estimated flow rate 2 gal/min. Water seeps from Antlers sand.	Dug well, Well 81 in Callahan County report. 9	Dug well. Reported yield 5 gal/min. Sand and gravel reported from 10 to 25 feet.	Dug well. Well 66 in Callahan County report. 4	Dug well. Flows about 6 months during the year	Dug well. Well 77 in Callahan County report. 9	Dug well. Observation well. Well 75 in Callahan County report, y	Dug well. Reported yield 20 gal/min. Red beds reported at 57 feet.	Reported yield 8 gal/min. Red beds reported at 55 feet. Abandoned irrigation well.	Reported yield 25 gal/min. Red beds reported at 60 feet. Unused irrigation well.	Reported yield 12 gal/min. Abandoned irrigation well.	Reported yield 25 gal/min. Well reported to be completed into upper sand member. Unused irrigation well.	
	Use of water	D, S	z	D, S	sa	p, s	93	sa	s, o	z	p, s	z	z	s 'a	z	z	z	z	
	Method of 11ft	з, к	z	J, E 1/3	С, Б	J, E 1/2	Flows	с, и	С, W	z	Cf, G	z	д, в	Sub, E 3/4	z	J, E 3/4	z	Sub, E	
Water level	Date of measurement	Mar. 30, 1971	Mar. 2, 1940 Mar. 5, 1971	Aug. 2, 1940 Mar. 16, 1971	Mar. 5, 1971	Mar. 8, 1971	Sept. 8, 1970	Feb. 15, 1940 Dec. 10, 1970	op	Feb. 22, 1940 Mar. 5, 1971	Sept. 8, 1970 Jan. 14, 1971	July 31, 1940 Sept. 8, 1970 Jan. 14, 1971	July 31, 1940 Sept. 8, 1970 Oct. 15, 1970 Jan. 8, 1972	Nov. 4, 1970	op	op	op	op	100000000000000000000000000000000000000
Water	Below land- surface datum (ft)	7.25	11.51	22.81	17.60	€	£	30.47	11.72	17.18	1,30	11.48 2.30 0.00	12.89 8.15 8.71 5.89	37.30	30	42.80	37.12	32.82	Ī
	Altitude of land surface (ft)	1,747	1,810	1,405	1,775	1,760	2,000	2,025	2,020	1,925	2,000	2,000	2,010	2,024	2,026	2,035	2,030	2,018	Ī
	Water bearing unit	Qal	Qal	g ₄	£4	Qal	Kca	Kea	Kca	p _e	Kca	Kca	Kca	Kca	Kca	Kca	Kca	Kes	Ī
ng	Depth (ft)	:	1	1	;	:	Ĺ	1	1	;	1	Î	1	1	55	09	95	20	Ē
Casing	Diam- eter (in.)	1	1	;	1	1	1	;	;	1	1	1	1	1	10	10	10	'n	
	Depth of well (ft)	18	15	31	21	Spring	Spring	35	25	30	Spring	13	21	22	55	09	26	20	4
	Date completed	1	1	i.	1930	1	:	1934	1940	;	ŀ	1925	;	1	1957	1957	1957	1962	
	Driller	1	1	;	;	4	:	1	;	;	1	-	1	:	Jack Leonard	op	op	Robert Higgins	
	Owner	T. C. Miller	J. M. Morrisett	Worley Jones	Dr. John L. Estes	Ralph McAdams	Hiram Gook	Mrs. Homer Kennard	Wallace Johnson	A. E. Dyer	Hfram Cook	op	Jack Glemmer	Ira Ackers	op	op	Q	op	
	Well	30-28-703	803	31-910	36-101	102	301	302	303	201	109	602	603	709	909	909	209	809	
		*	*	*		*	*	*	*	*	*	*	*	*	*				

See footnotes at end of table.

Table 5. -- Records of Selected Wells, Springs, and Test Holes -- Continued

					Casing	38			Wat	Water level	1				
			Data	Depth	Diam		No.	Altitude	Below land-	Ď	Date of	Mathod	IIaa		
Owner	er.	Driller	completed	well (ft)	The same of	Depth (ft)	200	surface (ft)	surface datum (ft)	шева	measurement	of lift	of	Remarks	
Ira Ackers		Robert Higgins	1962	65	10	65	Kca	2,022	30.89	Nov.	4, 1970	7, E	×	Reported yield 50 gal/min. Casing slotted from 43 to 55 feet. Red beds reported at 55 feet. Unused irrigation well.	
op		Jack Leonard	1957	53	80	53	Kca	2,020	23.13		op	J, E 3/4	×	Reported yield 12 gal/min. Unused irrigation well.	
J. B. Eaton		R. L. McKelvy	1970	36	S	36	Кса	2,021	21.21	Dec. June	10, 1970 15, 1971	Sub, E 1/2	Irr	Measured yield 9.9 gal/min. Casing slotted from 20 to 35 feet. Red clay at 31 feet. $2/3$	
op		op	1964	07	9	07	Kca	2,020	21.88	Dec.	10, 1970	Sub, E 1/3	Q	Estimated yield 10 gal/min. Casing slotted from 20 to 40 feet. Well completed in white sand and gravel.	
F. L. Dugan		F. L. Dugan	1960	25	Ē	Į	Кса	2,014	14.30	Feb.	25, 1971	J, E 1/2	D, S	Dug well. Limestone at 24 feet. ${\cal Z}$	
op		1	ŀ	Spring	ì		Kca	2,000	€		op	Flows	co	Estimated flow rate 5 gal/min. Water reported from sand and gravel in contact with Permian limestone.	
Roy L. Martin	tn,	Jack Leonard	1966	36	10	36	Kca	2,020	23.25	Apr.	6, 1971	Sub, E 1/2	Irr	Red beds reported at 36 feet.	
op		op	1966	35	10	35	Kca	2,020	23.01		op	Sub, E	Irr	ŧ	
Paul Shankes	8 0	Bob Havens	1946	18	Ī	ľ	Kca	2,010	10.51 11.32 9.84	Sept. Oct. Jan.	8, 1970 15, 1970 8, 1972	C, E 3/4	D, S	Dug well. Water gravel reported at approximately 13 feet. Observation well. \underline{y}	
C. W. Armstrong	rong	ı	old	20	Ĩ	ı	Kca	1,993	15.44	Feb. Dec.	22, 1940 9, 1970	J, E 1/3	Ω	Dug well. Weak well. Supplies only enough water for house use. Well 114 in Callahan County report. $\underline{\mathcal{Y}}$	
C. B. Kniffen	en	R. L. McKelvy	1970	64	2	49	Kca	2,022	20.40		op	Sub, E	Irr	Measured yield 35 gal/min. Casing slotted from 30 to 63 feet. Yellow clay at 62 feet, $2/3$	
op		Jack Leonard	1969	99	10	79	Kca	2,020	25.10 30.18	June	do 15, 1971	Sub, E	Irr	Measured yield 35 gal/min. Yellow clay reported at 64 feet. $\underline{\mathcal{Y}}$	
op		R. L. McKelvy	1970	29	5	67	Kca	2,023	27.02	Dec.	9, 1970	Z	N	Measured yield 11.6 gal/min. Casing slotted from 40 to 66 feet. Yellow clay at 63 feet. Unused irrigation well, \overline{g}	
Harold Mauldin	din	L. E. Hayhurst	1968	20	8	42	Кса	2,020	24, 21,59	Oct.	28, 1968 18, 1971	Z	z	Reported yield 20 gal/min. Casing slotted from 24 to 28 and 38 to 42 feet. Unused irrigation well, $2/3$	
op		Howard Kniffen	1967	20	80	20	Кса	2,019	17.78	5	op	z	z	Reported yield 25 gal/min. Yellow clay reported at 50 feet. Unused irrigation well.	
W. E. McCallum	1um	I	1937	16	ŀ	Į.	Kca	1,975	15.00	Aug. Mar.	1, 1940 5, 1971	С, W	D, S	Dug well. Water coming from gravel and clay. Strong supply in wet weather. Well 109 in Callahan County report. $\underline{\Psi}$	
Wallace W. Henry	Henry	R. L. McKelvy	1965	32	6	32	Ксв	2.010	18.55	Mar.	17, 1971	Sub, E 1/2	D, S	Estimated yield 10 gal/min. Casing perforated from 22 to 31 feet. Yellow clay at 29 feet. 2	
Edwin Huddelston	lston	Jack Leonard	1963	40	7	04	Kea	2,010	14.68	Mar.	30, 1971	J, E 1/3	D, S	Red beds reported at 40 feet, Water reported to be very corrosive.	
City of Clyde	ap	ŀ	I	25	;	ł	Кса	2,010	19.00	Oct.	5, 1959	T, E	p4	Reported yield 75 gal/min.	
Dr. J. E. P	Dr. J. E. Mikeska, Jr.	R. L. McKelvy	1965	55	9	55	Kca	2,020	20.12	Sept.	10, 1970	Sub, E 3/4	Irr	Reported yield 23 gal/min.	

See footnotes at end of table.

Table 5.--Records of Selected Wells, Springs, and Test Holes--Continued

_																							
	Remarks		Reported yield 40 gal/min.	Reported yield 30 gal/min. Yellow clay and lime at 50 feet.	Reported yield 40 gal/min, Casing slotted from 14 to 35 feet. Red beds at 38 feet.	Reported yield 70 gal/min. Red beds reported at 35 feet.	Reported yield 70 gal/min. Red beds reported at 32 feet.	Reported yield 80 gal/min. Screened from 8 to 32 feet. Blue shale at 32 feet.	Reported yield 80 gal/min, Screened from 8 to 32 feet. Water sand from 24 to 32 feet, \underline{g}	Reported yield 25 gal/min. Casing slotted from 30 to 55 feet.	Reported yield 22 gal/min. Red beds reported at 55 feet.	Reported yield 35 to 40 gal/min. Sand and gravel from 40 to 53 feet. Red beds reported at 53 feet.	Reported yield 30 gal/min. Sand and gravel from 34 to 55 feet. Casing slotted from 30 to 58 feet. $\underline{2}{\rm J}$	Reported yield 25 to 30 gal/min. Casing slotted from 25 to 52 feet. Yellow clay at 47 feet.	Reported yield 35 to 40 gal/min.	Reported yield 25 to 30 gal/min. Red beds reported at 55 feet.	Reported yield 35 gal/min. Casing slotted from 34 to 60 feet, $\underline{2}$	Reported yield 25 to 30 gal/min. Casing slotted from 30 to 58 feet. Red beds at 58 feet.	Reported yield 20 gal/min.	Do.	Reported yield 10 to 15 gal/min. Red beds reported at 49 feet.	Reported yield 25 to 30 gal/min. Water reported from two sands. Upper sand reported very weak supply.	Reported yield 15 to 20 gal/min. Casing slotted from ground level to 46 feet. Pump being replaced.
	Use	water	Irr	Irr	ss.	Irr	Irr	Irr	Irr	D, Irr	Irr	Irr	Irr	Irr	Irr, D	Irr	Irr	Irr	Irr	Irr	Irr, S	Irr	Irr
	Method	1116	Sub, E 3/4	Sub, E	J, E	Sub, E	Sub, E	Sub, E	Sub, E	Sub, E 1/2	Sub, E 3/4	Sub, E	Sub, E 3/4	Sub, E 3/4	Sub, E	Sub, E 3/4	Sub, E	Sub, E 3/4	Sub, E 1/2	Sub, E 1/2	Sub, E 1/3	Sub, E 3/4	z
Water level	Date of measurement		Sept. 10, 1970 Jan. 13, 1971	Sept. 10, 1970	Nov. 13, 1970	op	op	op	op	Nov. 18, 1970	op	do do 00t. 9, 1974	Nov. 18, 1970 Oct. 9, 1974	Nov. 18, 1970	op	op	op	op	Dec. 1, 1970	op	op	op g	op
Water	Below land- surface	(ft)	27.34	25.37	12.92	8.02	8.15	7.10	8.80	21.42	10,32	16.90	17.71	14.81	19.50	12.53	19.82	19.30	n	11	10	10	9.42
	Altitude of land surface	(ft)	2,021	2,025	2,000	1,999	2,004	1,986	1,987	2,020	2,012	2,017	2,018	2,016	2,015	2,010	2,017	2,017	2,012	2,012	2,012	2,011	2,009
	. 60	unit	Kca	Кса	Kea	Кса	Kca	Kca	Kea	Ken	Kca	Kca	Кса	Kca	Kea	Kca	Kca	Kea	Ксв	Kca	Kca	Kea	Kca
8	pth	(rt)	55	22	35	35	35	32	32	55	55	55	28	52	26	55	09	28	20	64	65	47	97
Casing		(Ju.)	9	9	80	80	80	80	80	ıs	9	9	9	7	7	9	2	9	2	'n	Ŋ	10	80
	of well	(HE)	55	57	35	35	35	32	32	55	55	55	58	52	26	55	09	58	20	67	69	47	94
	Date		1967	1967	1960	1970	1970	1965	1966	1968	1968	1968	1968	1966	1954	1968	1967	1968	1966	1966	1966	1965	1964
	Driller		R. L. McKelvy	op op	Howard Kniffen	Jack Leonard	op	Merle Bales	op	R. L. McKelvy	op	ę	op	op	Bill Varner	R. L. McKelvy	op	op	Jack Leonard	op	op	L. E. Hayhurst	Howard Kniffen
	Owner		Dr. J. E. Mikeska, Jr.	op	C. E. Hicks	Jerald Ball	op	Dick Antilley	op	Seth Holden	op	o p	o p	op	op	op	op	op	Dale Wilson	op	op	op	op
	We11		30-36-903	906	908	906	206	806	606	910	911	912	913	914	915	916	917	918	616	920	921	922	923
									220	1020													

See footnotes at end of table.

Table 5. -- Records of Selected Wells, Springs, and Test Holes -- Continued

					Casing	36			Wate	Water level				
			Date	Depth	Diam-		Water	Altitude	Below land-	Dac	Date of	Method	Use	
Well	Owner	Driller	completed	well (ft)	eter (in.)	Depth (ft)	bearing	surface (ft)	surface datum (ft)	meası	measurement	of lift	of	Remarks
30-36-924	Dale Wilson	Jack Leonard	1966	94	'n	99	Ксв	2,009	10	Dec.	1, 1970	Sub, E 3/4	Irr	Reported yield 25 to 30 gal/min.
925	op	Howard Kniffen	1965	94	100	946	Kca	2,010	8.0		op	J, E	Irr	Reported yield 30 to 35 gal/min. Casing slotted from 31 to 46 feet.
926	op	C. B. Kniffen	1965	99	80	94	Kca	2,009	9.20		op	Sub, E	Itr	Reported yield 35 gal/min.
92.7	7 Ray H. Walker	Ed L. Chapman	1965	30	25	21	Kca, P	1,991	15.41	Dec.	4, 1970	z	z	Water reported from sand and gravel from 8 to 21 feet and limestone from 28 to 28.5 feet. Ubused irrigation well. Open hole from 20 to 30 feet. 3
928	3 Ed Moore	R. L. McKelvy	1969	47	5	47	Kca	2,001	15.21		op	Sub, E	Irr	Measured yield 15.2 gal/min. Casing slotted from 20 to 47 feet. Yellow clay at 47 feet. $2\sqrt{3}$
929	op	L. E. Hayhurst	1970	55	8	55	Kca	1,996	12.92		op	J, E 1-1/2	Irr	Measured yield 10 gal/min. 3
930	op o	op	1970	53	so.	53	Kca	1,991	9.90	Aug.	30, 1970 4, 1970	J, E 1/2	D, IFF	Reported yield 20 gal/min. Casing slotted from 6 to 20 and 37 to 53 feet. Yellow clay at 53 feet. $\mathcal Z$
931	George Sewell	R. L. McKelvy	1968	53	8	53	Kca	2,034	41.75	Jan.	25, 1971	Sub, E 1/3	D, S	Reported yield 5 to 10 gal/min. Slotted from 35 to 53 feet, $2d$
932	E. Q. Echols	E. Q. Echols	1955	18	;	1	Kca	2,000	7.05	Apr.	6, 1971	J, E 3/4	D, S	Dug well. Water reported from sand and clay from 0 to 4 feet.
933	T. W. McKoy	L. E. Hayhurst	1971	64	S	64	Kea	2,025	27.50	Apr.	12, 1971	J, E 1/3	D, S	Slotted from 19 to 49 feet, Water reported to have become salty soon after well completed.
934	t O. C. Garner, Jr.	R. L. McKelvy	1965	20	9	20	Kca	2,030	28.21	Mar.	1, 1971	J, E	Q	Reported yield 11 gal/min. Slotted from 30 to 50 feet. Yellow clay at 47 feet. $\underline{\mathcal{Y}}$
37-101	Mrs. Homer Kennard	:	1934	21	1	1	Kca	2,011	7.50	Dec.	10, 1970	J, E 1/2	s , o	Dug well. Reported to be strong supply. Limestone reported at 21 feet.
102	2 Elizabeth Dugan Estate	1	1920	29	:	1	Kca	2,020	22.15	Feb.	25, 1971	о, м	Ω	Dug well. Water sand and gravel reported from 24 to 29 feet.
104	Frankie Darnell	R. L. McKelvy	1964	84	80	48	Kca	2,012	21.65	Dec.	4, 1970	z	z	Slotted from 28 to 48 feet. Sand and gravel reported from 39 to 46 feet. Unused frefgation well. \underline{y}
402	W. T. Haraway	Howard Kniffen	1958	37	9	37	Kca	1,997	13.70	Jan.	25, 1971	J, E	D, S	Sand and gravel reported from 8 to 37 feet.
403	3 W. H. Walker	R. L. McKelvy	1965	33	9	33	Kca	1,985	17.37		op	η, π 1	D, S	Reported yield 10 gal/min. Slotted from 20 to 33 feet. $\underline{\underline{y}}$
707	op	i.	1	Spring	1	1	Kea	1,962	£		op	Flows	62	Estimated flow rate 10 gal/min. Reported 5 to 6 feet of sand which is in contact with Permian clays.
405	A. D. Ash	W. D. Clark	1966	20	1	20	Kca	2,022	34.44	Feb.	2, 1971	J, E 1/2	D, S	Reported yield 20 to 25 gal/min. Perforated from 28 to 50 feet. Sand and gravel reported from 37 to 50 feet. \underline{y}
406	6 Mrs. A. C. Klepper	:	1940	23	:	;	Kea	2,022	21.91	July Feb.	31, 1940 25, 1971	J, E	so.	Dug well. Water reported from sand at 18 to 22 feet. Well 79 in Callahan County report. 9
501	1 Lee Hickerson	1	1918	13	1	1	Kca	1,928	3.35	July Dec.	31, 1940 4, 1970	cf, G	52	Dug well. Water reported from sand and gravel the base of which is at 13 feet. Well 85 in Callehan County report. 4

See footnotes at end of table.

Table 5.--Records of Selected Wells, Springs, and Test Holes--Continued

L						Casing				Wate	Water level				
	Well	Owner	Driller	Date	Depth of well (ft)	Diam- eter (in.)	apth (ft)	Water bearing unit	Altitude of land surface (ft)	Below land- surface datum (ft)	Dat	Date of measurement	Method of lift	Use of water	Remarks
	30-37-502	Lee Hickerson	# ; # ;	ŧ	Spring	Ē	;	Kea	1,921	€	Dec.	4, 1970	Flows	03	Estimated flow rate 2 gal/min. Water from sand and conglomerate in contact with Permian limestone. Spring 86 in Callahan Gounty report. 49
	503	Roy Phemister	L. E. Hayburst	1968	26	'n	26	Kca	1,956	10,11	Oct. Jan.	6, 1968 26, 1971	z	z	Estimated yield 15 gal/min. Perforated from 10 to 26 feet, Yellow clay at 26 feet, Unused irrigation well, 3
	50%	op	op	1968	18	10	18	Kca	1,952	8.90	Sept.	28, 1968 27, 1971	×	z	Estimated yield 10 gal/min. Perforated from 8 to 18 feet. Gravel reported from 8 to 11 feet. Unused irrigation well.
	505	op	op	1968	24	S	24	Kea	1,955	10 8.77	Sept. Jan.	24, 1968 26, 1971	N	z	Estimated yield 12 gal/min. Perforated from 10 to 24 feet. Yellow clay at 22 feet. Unused frrigation well. 3
	905	op	op	1968	43	in	43	Kca	1,955	7.5	Sept.	28, 1968	z	z	Estimated yield 12 gal/min. Perforated from 8 to 42 feet. Vallow lime at 35 feet. Unused irrigation well. \underline{y}
*	507	Oscar Brown	R. L. McKelvy	1965	07	9	04	Kca	1,990	22.05	Feb.	2, 1971	Sub, E 1/3	D, S	Estimated yield 28 gal/min. Slotted from 30 to 40 feet. Z
	508	ор	op	1967	35	15	35	Kea	1,984	18.83		op	Sub, E 1/2	Irr	Reported yield 20 gal/min, Slotted from 25 to 35 feet.
*	509	S. L. Canada	:	ŧ	Spring	1	1	Kca	1,940	€	Feb.	25, 1971	Flows	z	Estimated flow rate 1 gal/min. Mater from gravel which is in contact with Permian clays. Located in large vegetative kill area.
	510	op	S. L. Canada	1960	20	1	i.	Kca	1,948	9.70		op	J, E	Ω	Dug well. Reported yield 5 to 10 gal/min. Water sand reported from 12 to 20 feet, Red clay reported at 20 feet.
	511	Jack T. Kidd	R. L. McKelvy	1969	35	00	35	Kca	1,973	14.21	Mar.	28, 1971	J, E	SS	Casing slotted from 23 to 35 feet, Yellow clay at 31 feet, $\underline{2}$
	701	City of Clyde	1	1939	45	1	1	Kca	1,992	19 15.67 16.80	Oct. Nov. Oct.	5, 1959 6, 1970 9, 1974	Sub, E 3/4	ē.	Dug well. Reported yield 35 gal/min. Well pumped only during summer.
*	702	op		1947	41	í	1	Кса	1,989	19 15.01 14.47	Oct. Nov. Oct.	5, 1970 6, 1970 9, 1974	Sub, E	ē.	Dug well, Reported yield 50 gal/min. This well is the best municipal supply well in Clyde.
-	703	op	I	1952	26	į	;	Kea	1,994	19	Oct.	5, 1959	I, E	P, D	Dug well. Reported yield 75 gal/min.
4:	704	op	:	1956	90	00	20	Kca	1,998	17	Nov.	6, 1970	Sub, E	p.	Reported yield 20 gal/min.
*	705	E, A. Connel, Jr.	:	1	29	1	1	Kca	1,983	22.97	Sept.	9, 1970 8, 1972	N	N	Dug well, <u>J</u>
	206	Dr. J. E. Mikeska, Jr.	R. L. McKelvy	1966	37	9	37	Kca	1,985	23	May	3, 1966	z	z	Well destroyed, Sand and gravel reported from 23 to 37 feet, Former public supply well.
	707	Eddie Konczak	op	1965	47	7	47	Ken	1,996	20.80	Nov.	4, 1970	Sub, E 3/4	Irr, D	Reported yield 35 gal/min. Slotted from 20 to 47 feet. $\underline{2}$
*	708	op	op	1964	54	00	54	Kca	1,998	22		op	Sub, E 3/4	Irr, D	Reported yield 35 gal/min. Perforated from 16 to 54 feet.
	709	op	op	1968	51	7	51	Кев	1,998	21.50	Nov.	4, 1970	z	Z	Reported yield 35 gal/min. Slotted from 25 to 51 feet. Yellow clay at 48 feet. Unused irrigation well.
See	2 footnotes at	See footnotes at end of table.													

Table 5. -- Records of Selected Wells, Springs, and Test Holes -- Continued

					Casing	ng		-	Hear	HALDL LEVEL	1	-		
Owner	H	Driller	Date	Depth of well (ft)	Diam- eter (in.)	Depth (ft)	Water bearing unit	Altitude of land surface (ft)	Below land- surface datum (ft)	Date of measurement		Method of lift w	Use of water	Remarks
Harold Holden	u s	R. L. McKelvy	1968	57	7	57	Kca	1,997	19.30	Nov. 6, 1	1970 Sub,	p2)	Irr	Measured yield 26 gal/min. Perforated from 25 to 57 feet, y
op		op	1968	55	9	55	Kca	1,992	16.45	op	Sub,	PI	Irr	Measured yield 26 gal/min. Red beds reported at 52 feet. $\underline{\mathcal{Z}}$
op		op	1968	53	7	53	Кса	1,994	17.90	op	Sub,	ы	Irr	Reported yteld 40 gal/min. Sand and gravel from 25 to 53 feet.
op		op	1	54	9	54	Kca	1,994	17.80	op	Sub,	M	Irr	Reported yield 40 gal/min. Red beds reported at 52 feet.
City of Clyde	de	op	1965	55	∞	55	Кса	1,998	18.17	op	Sub,	ω ·	24	Reported yield 40 to 50 gal/min. Slotted from 25 to 54 feet, \underline{y}
op		op	1965	55	00	55	Kca	1,995	18	op	Sub, 3/4	3 th	D4	Reported yield 15 to 20 gal/min. Slotted from 26 to 55 feet. Temperature 62°F. 2
op		Merle Bales	1961	50	9	20	Кса	1,994	18	op	Т,	ы	p.,	Reported yield 20 gal/min. Used only during drouth.
op		op	1961	20	S	20	Kca	1,994	1.8	op	H, E	ы	p.	Do.
op		J. M. Rea	1954	41	1	;	Кса	1,996	21	op	H	ы	D.	Dug well, Reported yield 30 gal/min.
op		Howard Kniffen	1960	20	9	20	Kca	1,997	20.00	qo	Sub, 3/4	H .4	O.	Reported yield 20 gal/min.
op		op	1960	20	9	20	Ксв	1,995	17.60	op	Sub, 3/4	H .4	D ₄	Reported yield 25 gal/min.
op		A. L. Varner	1963	57	==	20	Kca	1,991	13.32	ор	Sub, 3/4	E 4	g ₄	Reported yield 15 to 20 gal/min. Sand and gravel from 14 to 50 feet.
op		op	1963	20	80	41	Kca	1,992	13.68	op	Sub, 3/4	H .4	p.	Reported yield 15 to 20 gal/min. Sand and gravel 10 to 40 feet, $\underline{2}J$
op		R. L. McKelvy	1967	45	80	45	Kca	1,996	17	op	Sub,	я	d	Reported yield 15 to 20 gal/min.
op		ŀ	1939	26	;	1	Kca	1,992	19	Oct. 5, 1 Nov. 6, 1	1959 Sub, 1970 3/4	EI.	ь, р	Dug well, Reported yield 35 gal/min. Well 94 in Callahan County report. $\underline{\mathcal{Y}}$
op		R. L. McKelvy	1960	45	20	45	Kca	1,987	15.01	op	Sub, 3/4	12 · 27	D.s	Reported yield 17 gal/min.
op		op	1964	20	90	20	Kea	1,987	15.42	op	Sub, 3/4	т. 4	g _a	Reported yield 30 to 40 gal/min.
op		op	1963	50	©	20	Kea	1,992	17.01	op	Sub,	E .	ci.	Reported yield 45 gal/min.
op		op	1965	57	80	57	Kca	1,997	17.30	ор	Sub,	E	p4	Reported yield 40 to 50 gal/min. Slotted from 28 to 56 feet, Yellow clay at 52 feet, $\underline{2}$
op		op	1965	55	80	55	Kca	1,997	21.10	op	Sub, 3/4	H 4	G ₄	Reported yield 15 to 20 gal/min. Red beds reported at 52 feet.
Joe L. Jones	_	op	1967	64	in.	64	Kea	1,995	16.40	Nov. 18, 1970	970 Sub,	pi	Irr	Reported yield 30 gal/min. Stotted from 32 to 49 feet, Yellow clay at 47 feet. Temperature $63^\circ\mathrm{F}_\mathrm{F}$, \underline{y}_f

See footnotes at end of table.

Table 5 .- - Records of Selected Wells, Springs, and Test Holes -- Continued

Γ			ton	1on rom	rom rom	from from to at	from to to to to	from trom at to	from trom at to	rom ion	rom rom at at 4,4	to o to	from at tr.	to to to to to to to	ton to	to t	to t	to t	to t
	Remarks	Reported yield 20 gal/min. Slotted from 31 to 44 feet. Red beds at 42 feet. Unused irrigation well. $\underline{\gamma}$	gal/min. Sand and gravel from	Reported yield 40 gal/min. Slotted from 90 to 112 feet. Shale and rock from 112 to 125 feet.	Red clay	Estimated yield 30 gal/min. Slotted from 30 to 61 feet.	Reported yield 20 gal/min. Slotted from 12 to 43 feet. Red clay at 40 feet. $2/3$	Perforated at 30 to 61 feet. Sand and gravel from 42 to 55 feet. $\underline{\mathcal{Z}}$	yield 30 gal/min. Sand from 12 to 24 35 to 47 feet. 2	Estimated flow rate 100 to 200 gal/min.	32 gal/min. Well completed into	Reported yield 15 gal/min. Screened from 23 t 43 feet. Formerly public supply for missile site, \underline{Z}	100	43 feet, Formerly public supply for missile site.	44.3 feet, Formerly public supply for missile site. Estimated flow rate 2 gal/min, Water flowing from and which is in contest with Permian limestone. Well 53 in Callahan County report.	45 feet. Formerly public supply for missile site. Estimated flow rate 2 gal/min. Water flowing from sand which is in contact with Permian limestone. Well 53 in Callahan County report. Dog well vith coment walls which are 10 by 54 feet. Reported yield 25 gal/min. Well 1 in Callahan County report. If	443 feet. Formerly public supply for missile state. Estimated flow rate 2 gal/min. Water flowing from sand which is in contact with Permian limestone. Well 53 in Gallahan County report. 4 gal, seet. Reported yield 25 gal/min. Well 1 in Gallahan County report. 1 gal with are 10 by 54 feet. Reported yield 25 gal/min. Well 1 in Gallahan County report. 1 gal which are 15 by 35 feet. Clay and shale from 36 to 55 feet. Standby public supply. Last used in 1949, Well 2 in Gallahan County report. 4	43 feet. Formerly public supply for missile site. Estimated flow rate 2 gal/min. Water flowing from sand which is in contact with Permian limestone. Well 53 in Callahan County report. Dog well with cement walls which are 10 by 54 feet. Reported yield 25 gal/min. Well 1 in Callahan County report. If which are 15 by 35 feet. Clay and shale from 36 to 55 feet. Stan by public supply. Last used in 1949. Well 2 in Callahan County report. July Dog well. Reported yield 10 gal/min. Stand-by public supply. Last used in 1949. Well 2 in Callahan County report. Gallahan County report. Gallahan County report was in 1949. Well 4 in Callahan County report and Well 8 in Public Hater Supplies report. July Well 4 in Public Hater Supplies report.	site. Formerly public supply for missile site. Estimated flow rate 2 gal/min. Water flowing from sand which is in contact with Permian limestone. Well 53 in Callahan County report. Dog well with cement walls which are 10 by 54 feet. Reported yield 25 gal/min. Well 1 in Callahan County report. If we have 15 by 35 feet. Stan Feet. Cay and shalf from 56 to 55 feet. Stan by public supply. Last used in 1949. Well 2 in Callahan County report. If used in 1949. Well 2 in Callahan County report. If we can be considered yield 10 gal/min. Stand-by public supply. Last used in 1949. Well 4 in Callahan County report. If we well. Reported yield 15 gal/min. Stand-by public supply. Last used in 1949. Well 4 in Gallahan County report and Well 8 in Public Bublic supply. Last used in 1949. Well 5 in Callahan County amort was in 1949. Well 5 in Callahan County and Public Water Supplies
		Reported yield 20 44 feet. Red beds well. 2	Reported yield 30 65 to 82 feet, 2	Reported yield 40 112 feet. Shale an	Casing slotted from 10 to 40 feet. 30 feet, Former public supply well	Estimated yield 30 gal/min. Slot 61 feet. Yellow clay at 61 feet.	Reported yield 20 43 feet. Red clay	Perforated at 30 t from 42 to 55 feet	Reported yield 30 feet and 35 to 47	Estimated flow rat	Measured yield 32 Permian clay.	Reported yield 15 43 feet. Formerly site, 2	Estimated vield 15	43 feet, Formerly site.	43 feet, Formerly site. Estimated flow rat from sand which is limestone, Well 53	43 feet. Formerly site. Estimated flow rat from sand which is from sand which is from sand with sit from sand with sit bug well with sorted yea Callaian County re	43 feet. Formerly site. Estimated flow rat from sand which it itnessone. Well 55 bug well with ceme feet. Reported yie callahan County re Dug well with ceme feet. Glay man feet. Glay man feet. Glay man feet Glay and by public supply, Callahan County re Callahan County re	43 feet, Formerly published. Estimated flow rate 2; from sand which is in limestone. Well 53 in limestone. Well 53 in long well with cement we feet. Reported yield 2 Callahan County report. Dug well with cement we by public supply, Lest uss Callahan County report. Dug well. Reported yiel public supply, Lest uss Callahan County report. Well well. Reported yiel public supply, Lest uss Callahan County report. Water Supplies report.	43 feet. Formerly site. Estimated flow rat from sand which is limestone. Well 55 bug well with ceme feet. Reported yid calculation County re. Dug well with ceme feet. Clay and sha bug well. Reported public supply. Las Callahan County re. Bug well. Reported public supply. Las Callahan County re Water Supplies rep bug well. Reported public supply. Las Callahan County re Water Supplies rep bug well. Reported public supply. Las Callahan County re Water Supplies rep bug well. Reported public supply. Las Callahan County as Water Supplies rep bug well. Reported public supply. Las Callahan Gounty an reports. A B
	Use of water	Z	Q	Irr	×	Irr	Irr	60	Д	N	D, Irr	Irr	Irr		on	S Int	o H z	o H N N	o H z z z
	Method of lift	cf, c	J, E	1, E	z	Sub, E 3/4	Sub, E 3/4	Sub, E 1/2	J, E 1/2	i,	Sub, E	Sub, E 3/4	Sub, E 3/4		Flows	Flows Sub, E	Flows Sub, E 2 N N	Flows Sub, E 2 N N N	Flows Sub, E
	Date of measurement	4, 1970	9, 1970	qo	18, 1971	25, 1971	20, 1970 26, 1971	2, 1971	30, 1971	6, 1971	15, 1971	18, 1960 28, 1961	26, 1971		20, 1939 9, 1970 14, 1971	20, 9, 14,	20, 9, 114, 117, 19,	20, 9, 11, 11, 19, 9,	20, 9, 114, 119, 9, 19, 19, 119,
Water level	Dat	Dec.	Dec.		Jan.	Jan.	July Jan.	Feb.	Mar.	Apr.	June	Nov.	Jan.		Sept. Oct. Nov.	Sept. Oct. Nov. Apr.	Sept. Nov. Apr. Apr. Apr. Oct.	Sept. Nov. Nov. Nov. Nov. Oct. Nov. Nov.	Sept. Nov. Nov. Nov. Oct. Nov. Apr. Apr. Nov.
MAL	Below land- surface datum (ft)	19,90	90	77.84	5.80	26,74	13	32,50	16.26	£	15.26	26.40	27.02	(4)	EŒ€	10.36	(+) (+) (+) (+) (+) (-) (-) (-) (-) (-) (-) (-) (-) (-) (-	(+) (+) (+) 10.36 6.93 24 15.20 18.21 29.52	(+) (+) (+) 10.36 6.93 24 115.20 18.21 29.52 19.28
	Altitude of land surface (ft)	1,980	2,030	2,042	1,955	2,006	1,992	1,995	1,990	1,930	1,995	1,957	1,957	1,910		1,944	1,944	1,944	1,944
	Water bearing unit	Кся	Kca	Kca	Kca	Kea	Kca	Kca	Kca	Kca	Kca	Кса	Kca	Kest		Кса	Kea	Кса Кса	Kca Kca
ne	Depth (ft)	44	06	125	40	19	43	61	20	1	20	23	63	1		;	1 1	1 1	1 1 1
Casing	Diam- eter (in.)	7	2	6	9	80	S	9	10	-	80	13	13	:		1	1 1	1 1	1 1 1
	Depth of well (ft)	77	06	125	07	61	43	61	20	Spring	20	63	63	Spring		22	N 10	55 55 49	22 55 49 39
	Date	1965	1967	1963	1965	1967	1970	1968	1961	:	1964	1960	1960	:		1930	1930	1930	1930
	Driller	R. L. McKelvy	op	A. L. Varner	R. L. McKelvy	op	L. E. Hayhurst	R. L. McKelvy	ор		Jack Leonard	Jack R. Barnes	ор	1		÷	Works Projects Administration	Works Projects Administration	Works Projects Administration
	Owner	Charles Bailey	Glen Grosby	John L. Estes, Jr.	Ralph Ramerez	L. O. Mitchell	Clyde Church of Christ	Glen Curtisa	Boyd Briscoe	Callahan County	A. L. Varner	Baird City Schools	op	T. P. R. R. Company		City of Baird	City of Baird do	City of Baird do do	Gity of Baird do do
	We11	30-37-732	733	734	735	736	737	738	739	740	741	801	802	803		804	804	804	804
	38	30																	

See footnotes at end of table.

Table 5.--Records of Selected Wells, Springs, and Test Holes--Continued

					Casing	38			Wate	Water level				
Well	Owner	Driller	Date	Depth of well (ft)	Diam- eter (in.)	Depth (ft)	Water bearing unit	Altitude of land surface (ft)	Below land- surface datum (ft)	Da	Date of measurement	Method of lift	Use of water	Remarks
30-37-809	Gity of Baird	ŧ	1927	43	:	;	Kca	1,972	36.60	Apr.	17, 1940	z	×	Dug well. Reported yield 35 gal/min. Well will not pump at this rate very long. Stand-by public supply. Last used in 1949. Well 8 in Callahan County report.
810	op	Works Projects Administration	1939	36	1	i	Kca	1,971	37.28 20	Aug.	23, 1940 19, 1970	z	z	Dug well. Reported yield 20 gal/min. Well completed into clay at 36 feet. Stand-by public supply. Last used in 1949. Well 9 in Callahan County report. 4
811	op	£	1927	43	1	;	Kea	1,966	36.85 17.60 21.38	Apr. Nov.	17, 1940 19, 1970 9, 1974	T19-00-0	Irr	Dug well. Reported yield 35 gal/min. Red beds reported at 40 feet, last used as public supply in 1949. Well 10 in Callahan County report, $\frac{d}{2}$
812	op	ı	1927	777	1	1	Kca	1,969	34.08	Apr.	19, 1940 19, 1970	Sub, E	Irr	Dug well. Reported yield 35 gal/min. Red beds reported at 40 feet. Last used as public supply in 1949. Well 11 in Callahan County report. \mathcal{G}
813	John L. Estes, Jr.	Merle Bales	1960	125	9	125	Kca	2,040	76.22	Dec.	9, 1970	Sub, E	Irr, S	Reported yield 20 gal/min.
814	op	A. L. Varner	1963	150	90	150	Kcs	2,060	97.26		op	Sub, E	S, Irr	Reported yield 40 gal/min. Slotted 96 to 130 feet. \underline{g}
815	Glen Rocky	*	;	26	;	ŧ	Kea	1,955	17.51	Jan.	18, 1971	J, E 1/3	D	Dug well. Temperature 62°F.
816	op	Glen Rocky	1961	28	:		Kca	1,958	13,50		op	Cf, E 3/4	Irr	Dug well, Reported yield 7 to 8 gal/min. Sand and gravel reported from 10 to 28 feet.
817	op	Jack Leonard	1961	45	24	10	Кса	1,961	17.62	Oct.	do 9, 1974	Sub, E 1/3	Irr	Reported yield 8 to 10 gal/min. Slotted from 25 to 45 feet.
818	op	R. L. McKelvy	1967	45	ιn.	45	Kca	1,950	16	Jan.	18, 1971	J, E	Irr	Measured yield 9.6 gal/min. Slotted from 30 to 45 feet. 3
819	op	Jack Leonard	1962	41	24	15	Кса	1,967	19.70		op	Sub, E 1/3	Irr	Reported yield 8 gal/min. Slotted from 17 to 41 Feet.
820	op	Howard Kniffen	1961	32	7	32	Kca	1,957	11.51		op	Sub, E 1/3	Irr	Measured yield 9.6 gal/min. Slotted from 17 to 32 feet. Red clay reported at 32 feet. 3
821	op	Jack Leonard	1961	32	24	32	Кса	1,957	12,69	Oct.	do 9, 1974	Sub, E 1/3	Irr	Measured yield 8.4 gal/min. Slotted from 17 to 32 feet.
822	op	op	1961	32	24	32	Kca	1,957	12.50	Jan.	18, 1971 15, 1971	J, E	Irr	Do.
823	Jack Flores	R. L. McKelvy	1965	73	۰,0	73	Кса	2,002	45.04	Jan.	25, 1971	Sub, E 1/2	z	Casing slotted from 50 to 73 feet, Yellow clay at 73 feet. Abandoned industrial well.
824	Don E. Boles	L. E. Hayhurst	1968	27	5	27	Kca	1,968	14, 13,70	Dec.	8, 1968 25, 1971	Sub, E 1/2	D, S	Reported yield 10 gal/min. Perforated from 13 to 27 feet, $2/3$
825	S. O. Tucker	R. L. McKelvy	1965	75	1	;	Кса	1,936	18	Sept.	1965	×	×	Test was not completed, Water in sand and gravel at 18 to 20 feet. No water below 20 feet, \underline{y}
826	Bobby Kennedy	1	1	18	f	1	Kca	1,940	11.80	Apr.	6, 1971	J, E 1/3	ρ, 5	Dug well. Red clay reported at 18 feet.
827	City of Baird	Works Projects Administration	1940	34	:	1	Kca	1,940	26.0	Feb.	29, 1940	Z	N	Abandoned test well. Well 24 in Callahan County report, $\underline{\mathcal{Y}}\underline{\mathcal{Y}}$
39-903	John P. Mask	1	;	Spring	:	1	Qal	1,540	€	Apr.	12, 1971	Flows	×	Estimated flow rate 3 gal/min. Reported to be a salt water seep, which started flowing in spring of 1971. Water flowing from 1 to 2 feet of gravel.
10 to														

See footnotes at end of table.

Table 5. -- Records of Selected Wells, Springs, and Test Holes -- Continued

_	_																					
		Remarks	Reported yield 8 gal/min, Red beds reported at 36 feet, Water reported from sand and gravel.	Dug well, Reported yield 5 gal/min. Sand and gravel 26 to 28 feet,	Dug well. Estimated yield 18 gal/min. Water reported from sand at 15 to 30 feet. $\underline{2}$	Dug well. Water reported from sand. Red beds reported at about 30 feet.	Reported yield 10 gal/min. Slotted from 10 to 50 feet. Sand and gravel reported from 10 to 15 feet.	Dug well. Reported yield 10 gal/min. Water sand reported from 18 to 24 feet,	Dug well. Sand and gravel reported from 20 to 30 feet.	Dug well. Pack sand with gravel reported at 16 to 28 feet.	Reported yield 15 gal/min. Perforated from 20 to 38 feet. $ \underline{y} \underline{y}$	Dug well. Water reported from sand and gravel. Red beds reported at 28 feet.	Dug well. Very weak supply. Water reported from sand at 12 to 15 feet. Limestone at 15 feet. Well 119 in Callahan County report. $\mathcal Y$	Measured yield 70 gal/min. Sand and gravel from 13 to 35 feet. Reported to be best well in the area. \underline{y}	Reported yield 20 gal/min. Screened from 10 to 32 feet. Blue shale reported at 32 feet.	Reported yield 60 gal/min. Slotted from 14 to 38 feet, Could not complete into Permian because of sand caving.	Reported yield 90 gal/min. Slotted from 18 to 43 feet. Red clay at 42 feet. 2	Estimated flow 1 gal/min. Seep 1s 15 feet below ground level. Water reported from white clay.	Reported yield 5 gal/min. Slotted from 40 to 58 feet, $\underline{\mathcal{Y}}$	Reported yield 4 gal/min. Casing perforated from 35 to 53 feet. $2\!\!/\!\!/ 3\!\!/$	Reported yield 20 gal/min, Water reported from two sands at 25 and 70 feet.	Water seeping from sand at undetermined rate. Spring located at contact of Permian rocks and Antler sands. Well 402 in Callahan County report. 4
	Use	of	D, S	D, S	g,	p, s	D, S	D, S	s, d	p, s	D, S	D, S	Q	Irr	D, S	Irr, S	Irr	80	D, S	p, s	D, S	60
	Method	of 11ft	J, E	J, E 1/4	J, E	J, E	J, E 1/2	J, E	J, E	J, E	J, E	J, E	J, E	Sub, E	J, E	n. n	T, E	Flows	J, E 1/2	G, W	J, E	Flows
	Date of	measurement	5, 1971	17, 1971	11, 1971 9, 1974	2, 1971	25, 1971	4, 1971	5, 1971	17, 1971	15, 1968 2, 1970	op	2, 1940 2, 1970	6, 1970	13, 1970	op	op	17, 1970	6, 1971	5, 1968 8, 1971	5, 1971	1, 1940 5, 1971
Warer Level	Dat	measu	Feb.	Mar.	Jan. Oct.	Feb.	Feb.	Mar.	Mar.	Mar.	Oct.		Mar. Nov.	Nov.	Nov. 1			Nov. 1	Jan.	July Jan.	Feb.	Aug. Feb.
WALE	Below land-	surface datum (ft)	24,80	18.80	8.42	12.98	6,10	8,80	15.80	11.56	23	11.45	27.60	6.72	11.72	9.25	7.02	£	38.59	35,55	7.97	€€
	Altitude	surface (ft)	2,005	1,978	1,960	2,006	1,980	1,960	2,005	1,984	1,988	1,985	1,976	1,982	1,990	1,986	1,982	1,960	2,006	2,010	2,010	1,970
	Water	bearing	Kca	Kca	Ксв	Ken	Ксв	Kca	Kca	Kea	Kea	Kca	Kca	Кса	Kca	Кев	Kca	£4	Kca	Kca	Kca	Kea
ng ng		Depth (ft)	36	;	:	:	20	:	1	1	38	:	1	35	32	40	43	1	58	26	77	:
Casing	Diam-	eter (in.)	11	:	:	;	Mr.	;	1	1	9	:	*	7	80	80	89	1	9	9	5	į
	Depth	well (ft)	36	28	26	30	90	24	30	28	38	28	32	35	32	07	43	Spring	58	95	7.7	Spring
	Date	completed	1960	1924	1937	1945	1966	1930	1910	1891	1968	1923	1929	1969	1960	1965	1956	1970	1965	1968	1962	}
		Driller	Jack Leonard	1	Eula Public School Trustees	í	Jack Leonard	ı	:	Smith	L. E. Hayhurst	Hilton Tarrant	ı	R. L. McKelvy	Howard Kniffen	Merle Bales	Bridwell Oil Co.	C. E. Campbell	R. L. McKelvy	L. E. Hayhurst	Jean McCarrell	1
		Owner	N. H. Stephensen	Mrs. R. G. Edwards	Eula Public School	C. M. Hobbs	Loyd Barr	Bill Farely	Don E. Bennett	Lee Smith	Frank Blalock	Lyndon Key	C. W. Hinds	Harold Holden	Dick Antilley	C. E. Micks	op	C. E. Campbell	Jack J. Hill	Doyle Lenz	Holley Ivey	W. E. Garter
		Well	30-44-101	102	201	202	203		205	206	301	302	303	304	305		307		401		403	404
		- 1																				

See footnotes at end of table.

Table 5. -- Records of Selected Wells, Springs, and Test Holes -- Continue

Use Of Remarks water
C, W
ar. 1, 1971
11.20 Mar. (+) Mar.
1, 908
p Qa1
30
9
30 Spring
1963
L. E. Hayhurst
Fryin Welch
+

See footnotes at end of table

Table 5.--Records of Selected Wells, Springs, and Test Holes--Continued

_																					
	Remarks	Reported yield 10 gal/min. Perforated at 30 and 51 feet. \underline{y}	Sand and gravel at 18 to 31 feet and sand 34 to 40 feet, \underline{y}	Water reported seeping from sand in contact with a fossiliferous limestone.	Dug well. Limestone at 17 feet.	Reported yield 12 gal/min. Reported to pump 50 barrels a day to supply water-flood operation.	Yield reported at 25 gal/min. Sand and gravel reported at 70 to 85 feet. 3	Messured yield 7 gal/min. Screened from 84 to 103 feet, Formerly public supply for Denton Missile site.	Measured yield 7 gal/min. Screened from 84 to 103 feet, Formerly public supply for Denton Missile site.	Measured yield 7 gal/min. Screened from 84 to 103 feet. Formerly public supply for Denton Missile site, $\underline{2}$	Reported yield 20 gal/min. Slotted from 30 to 45 feet and 90 to 150 feet. \underline{g}	Estimated yield 15 gal/min. Slotted 20 to 46 feet. Purple and white clay at 40 to 50 feet. $2\!\!/\!\!/ 3$	Estimated yield 15 gal/min. Perforated 50 to 90 feet. Yellow clay at 91 feet. $2/3$	Estimated yield 10 gal/min. Screened from 16 to 41 feet. $\mathcal{\underline{Y}}$	Reported yield 40 gal/min. Sand and gravel from 47 to 60 feet. $2/3$	Estimated yield 10 gal/min. Slotted from 40 to 60 feet, Red beds at 61 feet. 2	Dug well. Reported yield 10 gal/min. Water reported to be coming from strata of sand and gravel. Red beds reported at 76 feet.	Estimated yield 5 gal/min, Perforated 8 to 20 feet. Sand and gravel from 8 to 13 feet. 2	Reported yield 30 to 40 gal/min. Sand and gravel reported from 80 to 105 feet. Red beds reported at 105 feet.	Dug well which has not been used in 20 years, Well 413 in Callahan County report. 4	Reported from 45 to 55 feet,
	Use of water	Q	to.	υs	z	Ind	Irr	to	sa.	z	ss	Irr	D, S	02	Irr	so	Q	p, s	D, S	z	Ind
	Method of lift	я 'г	Sub, E	Flows	×	Sub, E	Sub, E	J, E 3/4	J, E 3/4	и	Sub, E 1/2	J, E	J, E	J, E 1/2	Sub, E 1-1/2	J, E 1/2	J, E	J, E 1/3	Sub, E	z	J, E 3/4
	Date of measurement	13, 1968 5, 1971	7, 1964	19, 1971	op	21, 1971	15, 1973 10, 1974	28, 1960	do 7, 1971	op	4, 1967 8, 1971	2, 1968 11, 1971	25, 1969 11, 1971	11, 1969	17, 1971	16, 1968 1, 1971	op	11, 1969	16, 1971	30, 1940 4, 1971	4, 1970
Water level	Dat	Aug. Feb.	Mar. Feb.	Mar.		Aug.	May Oct.	Oct.	Jan.		Oct. Jan.	May Jan.	Feb.	Nov.	Feb.	May Mar.		July Jan.	Feb.	Apr.	Nov.
	Below land- surface datum (ft)	30	18,20	€	15.09	80	74	84	73.00	62.38	35 26.70	13.56	50 49.72	19.20	23.70	39.30	30,30	10,30	75.85	6.52	22.65
	Altitude of land surface (ft)	2,015	2,038	1,990	2,002	:	2,060	2,095	2,092	2,084	2,120	2,025	2,075	1,990	2,040	2,065	2,040	1,978	1,990	1,960	1,978
	Water bearing unit	Кса	Kca	Kca	Kca	Kea	Кся	Kca	Kca	Kea	Kca	Кса	Kea	Kca	Kea	Kca	Kea	Kca	Kea	Kea	Кса
Bu	Depth (ft)	51	45	:	1	150	106	84 123	84	84 123	153	94	06	41	09	09	1 1	20	105	Į	55
Casing	Diam- eter (in.)	50	80	:	:	9	S	13	13	13	00	9	'n	5	9	9	i.	5	50	ŀ	9
	Depth of well (ft)	51	57	Spring	17	150	106	123	123	123	153	949	06	41	09	09	76	20	105	13	55
	Date	1968	1964	1	;	1	1973	1961	1960	1961	1967	1968	1969	1969	1963	1968	1962	1969	1957	1921	1962
	Driller	L. E. Hayhurst	A. L. Varner	1	1	:	L. E. Hayhurst	Jack R. Barnes	op	op	Robert Higgins	L. E. Hayhurst	op	op	J. D. McCarrell	L. E. Hayhurst	Jack Leonard	L. E. Hayhurst	Lester King	1	Howard Kniffen
	Owner	Annie Mosier	Burt Northcutt, Jr.	J. D. Crawford	op	Marvin Lewis	Jim Culpepper	Michael B. Williams	op	op	Jimmy Partin, III	Casto Smith	L. H. Lilly	Herman Scott	A. E. Robertson	J. C. Tucker	John Loven	W. E. Connel	M. C. Gulledge	A. E. Kendrick	Mel Green
	Well	30-44-705	902	707	708	602	710	801	802	803	804	805	806	807	808	808	810	106	902		45-101
		*					*				*				4		ė			a	

See footnotes at end of table.

Table 5. -- Records of Selected Wells, Springs, and Test Holes -- Continued

Secondary Seco						Casing	ng			Wat	Water level	-			
Dec. 0. Regente, Jr. Recent Battern 1966 42 7 42 62 1,990 1,573 16.7 19	We11	Owner	Driller	Date	Depth of well (ft)	Diam- eter (in.)	Depth (ft)		Altitude of land surface (ft)	Below land- surface datum (ft)	D _k	urement	Method of 11ft		Remarks
Dr. Reperty Jr. 8, L. NeKeltyy 1966 42 7 42 Kea 1,980 21,9 Res. 1,980 21,9 Res. 1,980 21,9 Res. 1,980 25,1 Res. 1,980 25,1 Res. 1,980 25,1 Res. 1,980	30-45-102		Howard Kniffen	1966	09	9	09	Kca	1,973	22,30	Nov.		3,4		
1966 1966 1967 1968 1968 1968 1968 1968 1968 1968 1968 1969	103		R. L. McKelvy	1966	42	7	42	Kca	1,980	21	Dec.		Sub,	Irr	Estimated yield 27 gal/min. Perforated from 25 to 42 feet. Sandy clay at 38 feet. 2
do do do do 1966 61 7 61 Kea 1,988 25.02 60.0 60.0 60.0 8.0 Kea 1,980 25.02 7.02 7.00 80.0 80.0 8.0 Kea 1,980 25.02 7.02 7.00 80.0 80.0 80.0 80.0 80.0 80.0 80.0	104		do	1966	52	7	52	Kea	1,983	22.60	Dec.		Sub,	Irr	Estimated yield 40 gal/min, Perforated from 27 to 52 feet, Sandy clay at 44 feet, 3
House Hous	105		op	1966	61	7	19	Kca	1,988	25.02		op		Irr	Estimated yield 32 gal/min, Perforated from 32 to 61 feet. Red clay at 55 feet.
Dr. N. W. Evens de 1964 48 6 48 Kea 1,950 79 2,1971 1,75	106		do	1961	20	7	20	Kca	1,982	22.12		op		Irr	Reported yield 27 gal/min. Perforated from 25 to 50 feet.
Archite Nichola	107		op	1964	87	9	84	Kca	1,965	32.82	Feb.		1,1/2	50	Reported yield 20 to 30 gal/min. Slotted from 30 to 48 feet, Blue shale at 45 feet, 2
R. L. Grigge, Jr. 1935 31 Kea 1,930 Reb. 7, 1940 N N N R. L. Grigge, Jr. 1890 34 Kea 1,940 14,32 19,90 Neb. 7, 1910 N <	108		:	t I	Spring	1	*	Ked	1,940	€	Mar.		c,		Estimated flow rate 2 gal/min. Water flowing from Antlers sand at contact with Permian limestone.
R. L. Griggs, Jr. 1890 34 Kea 1,940 14.22 do 1,12 b, 8 b, 8 W. T. Barnes L. E. Hayburer 1970 46 5 46 Kea 1,948 20.30 Feb. 2, 1971 1/12 D, 8 Wayne Hilcher R. L. McKelvy 1962 20 8 20 Kea 1,946 5.22 Feb. 25, 1971 1/12 D Elmer Crossland L. E. Bayburer 1970 44 5 44 Kea 1,955 20.60 Sept. 18, 1970 1/15 D Archie Michols 1930 14 Qal 1,872 8.50 Mar. 30, 1971 1/1 D Eliak Cilliam 24 6 24 Kea 1,890 Mar. 30, 1971 1/1 D C, 0 S Bill Varies 23 23 Mar. 30, 1971 1/1 S W S	201		í	1935	31	:	;	Kca	1,932	19.00	Feb.			z	Dug well. Well completed into clay. Well 127 in Callahan County report. $\underline{\mathcal{Y}}$
W. T. Barnes L. E. Hayburet 1970 46 5 46 Kca 1,946 5.52 Feb. 2, 1971 340, E D Hayne Hilcher R. L. McKelvy 1962 20 Kca 1,946 5.52 Feb. 25, 1971 1,72 D Archie Michola L. E. Hayburet 1970 44 5 44 Kca 1,946 5.22 Feb. 25, 1971 1,72 D Archie Michola Archie Michola 1924 14 41 1,892 16.19 Sept. 0, 1971 Cf. 0 5 B111 Varner 24 6 24 Kca 1,892 16.19 Sept. 0, 1970 Cf. 0 8 B111 Varner 23 Kca 1,892 16.19 Sept. 22, 1970 K 8 B111 Varner	202		:	1890	34	1	1	Кса	1,940	14.32		op	J, E		Dug well. Estimated yield 10 gal/min. Red clay at 34 feet.
State Crossland L. E. Hayhuret 1970 44 5 44 Kea 1,955 20,600 Apr. 6,1970 1,75 17/2 1,75 17/2 1,75 19/2 1,75 17/2 1,75	203		L. E. Hayhurst	1970	947	S	949	Kca	1,958	20,30	Feb.		Sub, 1/2	Q	Estimated yield I gal/min. Slotted from 18 to 46 feet. $\underline{2}$
Elmer Crossland L. E. Hayhurst 1970 44 5 44 Kgs 1,955 20.60 Apr. 6, 1971 1,13 Archie Wichols Archie Kichols 1934 14 (qs1 1,872 8.50 Mar. 30, 1971 1,13 Dr. J. E. Mikesla, Jr. 24 6 24 Kgs 1,892 16.19 Sept. 10, 1970 N N Elisk Gilliam 23 Kgs 1,892 16.19 Sept. 22, 1970 C, W S Bill Varner Spring Kgs 1,892 16.19 Sept. 22, 1970 C, W S Abaggite Walker 1870 40 P 1,601 20.90 Mar. 16, 1971 1,72 Sp. 5 Jim Hatchett 1876 65 P 1,813 34.37 Sept. 5, 1940 N N Claude Flores P 1,813 34.37 Sept. 5, 1940 N N Abaggite Walker P 1,813 34.37 Sept. 5, 1940 N N Abaggite Walker P 1,813 34.37 Sept. 5, 1940 N N Abaggite Walker P 1,813 34.37 Sept. 5, 1940 N N Abaggite Walker P P P P P P P P	205		R. L. McKelvy	1962	20	80	20	Kea	1,946	5.52	Feb.		J,	Q	Reported yield 5 gal/min. Yellow clay at 20 feet.
Archite Nichols Archite Nichols 1934 14 0, 0al 1,872 8.50 Mar. 30, 1971 Gf, G S S S S S S S S S S S S S S S S S S	206		L. E. Hayhurst	1970	777	50	44	Kca	1,955	20,20	Sept.	18,	1,	Ω	Estimated yield 1 gal/min. Sand from 5 to 25 feet. Slotted from 20 to 44 feet.
Dr. J. E. Mikeska, Jr. 24 6 24 Kca 1,892 16.19 Sept. 10, 1970 N N 23 Kca 1,890 10.49 Sept. 2, 1970 C, W S Spring Rca 1,890 10.49 Sept. 2, 1970 C, W S Spring Rca 1,890 10.49 Sept. 2, 1970 C, W S Spring Rca 1,875 (4) Apr. 28, 1971 Flows S 1870 40 P 1,601 20.90 Mar. 16, 1971 J, E D, S 1876 65 P 1,813 34.37 Sept. 5, 1940 N N Ruide Flores P 1,813 34.37 Sept. 5, 1940 N N Ruide Flores P 1,813 34.37 Sept. 5, 1940 N N Ruide Flores P 1,813 34.37 Sept. 5, 1940 N N Ruide Flores P 1,813 34.37 Sept. 5, 1940 N N Ruide Flores P 1,813 34.37 Sept. 5, 1940 N N Ruide Flores P 1,813 34.37 Sept. 5, 1940 N N Ruide Flores P 1,813 Sept. 5, 1940 N N Ruide Flores P Ruide Flores	207		Archie Nichols	1934	17		}	Qa1	1,872	8.50	Mar.		Cf,	tū	Reported yield 5 gal/min. Sand and gravel reported from 12 to 14 feet.
Elisk Gilliam 23 Kca 1,890 10.49 Sapt. 5, 1940 C. W S Bill Varner Spring Kca 1,875 (+) Apr. 28, 1971 Flows S do Jack Leonard 1967 42 5 42 Kca 1,908 30 do 1/2 Maggie Walker 1870 40 P 1,601 20.90 Mar. 16, 1971 J, E D, S Jim Hatchett 1900 27 P 1,813 34.37 Sept. 5, 1940 N N Claude Flores P 1,813 34.37 Sept. 5, 1940 N N Claude Flores P 1,813 34.37 Sept. 5, 1940 N N Claude Flores P 1,813 18.00 Mar. 5, 1971 N N	106			ŧ	24	9	24	Кса	1,892	16.19	Sept.	10,		N	Cased dug well.
Maggie Walker	902		1	;	23	1	1	Kca	1,890	10.49	Sept.	5,	ο,	03	Dug well. Reported yield 10 gal/min. Well 417 in Callahan County report. $\underline{\mathcal{Y}}$
do Jack Leonard 1967 42 5 42 Kca 1,908 30 do Sub, E S 1/2 1/2	903		1	4	Spring	1	1	Kca	1,875	£	Apr.	28, 1971		so	Estimated flow rate 5 to 20 gal/min. Reported to flow year round. Water flows from sand in contact with Permian clay.
Jim Hatchett 1876 40 P 1,601 20.90 Mar. 16, 1971 J, E D, S Jim Hatchett 1900 27 P 1,595 16.12 Sept. 5, 1940 N N Claude Flores 1876 65 P 1.813 34.37 Sept. 5, 1971 N N	906		Jack Leonard	1961	77	5	42	Kca	1,908	30		op	Sub, E 1/2	to	Reported yield 15 gal/min. Slotted from 30 to 42 feet, $\underline{2}$
Jim Harchett 1900 27 P 1,595 16.12 Sept. 5, 1940 N N 1.26 Nar. 24, 1971 Claude Flores P 1.813 34.37 Sept. 5, 1971 N N 18.00 Nar. 5, 1971	46-201		1	1870	07	1	1	Δ,	1,601	20,90	Mar.		1,72		Reported yield 5 gal/min. Gracked clatern used as well for 50 years. Water reported from clay and linestone.
Claude Flores 1876 65 P 1.813 34.37 Sept. 5, 1940 N N N 18.00 Nar. 5, 1971	202		;	1900	27	;	1	d	1,595	16.12	Sept.	24,		z	Dug well. Well 209 in Callahan County report. 4
	401		1	1876	65	Ĺ	1	d.	1,813	34.37	Sept.	5,5,		z	Dug well, Reported to be strong supply, Water reported from limestone and shale at unknown depths. Well 133 in Callahan County report.

See footnotes at end of table,

Table 5.--Records of Selected Wells, Springs, and Test Holes--Continued

				T		Cas	ing			Wa	ter level			
	Well	Owner	Driller	Date completed	Depth of well (ft)	Diam- eter (in.)	Depth (ft)	Water bearing unit	Altitude of land surface (ft)	Below land- surface datum (ft)	Date of measurement	Method of lift	Use of water	Remarks
	30-46-501	Robert Eubanks	A. L. Varner	1971	40			P	1,604	8.00	May 6, 1971	N	N	Water reported from a sandy shale at 20 to 25 feet. Water is extremely saline. Abandoned teshole. \underline{g}
	701	Dr. J. E. Mikeska, Jr.	R. L. McKelvy	1965	53	9	53	Kca	1,915	22.98 23.50 23.80	Mar. 24, 1970 Sept. 10, 1970 Nov. 12, 1973	c, w	S	Estimated yield 5 gal/min. Slotted from 25 to 53 feet. 1
	702	Morgan Stokes			91	**		Kea	1,970	76.10 77.30	Sept. 5, 1940 Sept. 22, 1970	J, E 1/3	N	Dug well. Well 303 in Callahan County report.
	703	C. M. Eller, Sr.	R. L. McKelvy	1965	76	6	76	Kca	1,940	50 45	1965 Oct. 14, 1970	Sub, E 3/4	Irr, D	Measured yield 12 gal/min. Perforated from 40 75 feet. 2
	704	do	do	1968	75	8	75	Kca	1,945	47.05	do	C, W	D	Reported yield 12 gal/min.
	705	Charles M. Eller, Jr.	do	1966	70	9	70	Кса	1,915	26	do	c, w	S	Estimated yield 15 gal/min. Slotted from 48 to 72 feet. Yellow clay at 65 feet. 2
2	706	Andy Myers	**	1920	20	**	**	Kca	1,892	12.92	do	Cf, E 1/3	D, S	Dug well. Sand and gravel at 10 to 20 feet. Red clay at 20 feet.
	707	Dave Pillars	A. L. Varner	1964	75	7	75	Kea	1,910	25.70	do	Sub, E	N	Water sand from 31 to 52 feet. Red shale 52 to 61 feet. Unused irrigation well.
	708	do	R. L. McKelvy	1965	48	5	48	Kca	1,913	24.53	do	Cf, E 1/2	S	Slotted from 20 to 48 feet. Water sand and grafrom 26 to 32 feet. 2
	801	W. O. Wyile			17	**		Kca	1,848	9.25 7.34	Sept. 5, 1940 Mar. 5, 1971	N	N	Dug well. Water from sand and gravel. Well 30 in Callahan County report. 4
	902	County of Callahan	**	**	Spring	••		Kca	1,966	(+) (+)	Mar. 21, 1940 Sept. 23, 1970	Flows	N	Estimated flow 35 gal/min. Water from white sand in contact with blue clay. Temperature 68 Well 308 in Callahan County report. $\underline{\mathcal{Y}}$
	903	Bob Beckham	A. L. Varner	1965	266	6	265	Кса	2,070	234.1	Jan. 13, 1971	C, W	S	Reported yield 2 to 5 gal/min. Water sand from 245 to 265 feet. \underline{y}
0	47-601	E. R. Battle	Fred Sprawls	1920	25		***	Kca	1,783	15.31 13.29 13.15	Mar. 19, 1940 Mar. 5, 1969 May 7, 1974	J, E 1/3	D, S	Dug well. Well 316 in Callahan County report. 1
	602	Raymond Sprawls	A. L. Varner	1970	34	7	32	Kca	1,772	16 14.83	July 1970 Jan. 14, 1971	Sub, E 1/2	Irr	Reported yield 35 gal/min. Slotted from 15 to 25 feet. Red beds reported at 28 feet.
۲	603	do	do	1970	30	7	30	Kca	1,772	16 15.03	July 1970 Jan. 14, 1971	Sub, E 1-1/2	Irr	Reported yield 25 gal/min. Slotted from 15 to 25 feet. Red clay at 25 to 41 feet. Well completed to 30 feet. 2
e:	604	do	do		23	**	***	Kca	1,772	14 15.44	Sept. 17, 1970 Jan. 14, 1971	Sub, E 1-1/2	Irr, D, S	Dug well. Measured yield 60 gal/min. Ten feet of water sand present in well.
bi-	605	W. W. Scott	J. W. Huff	1964	19			Kca	1,767	12.67	Oct. 6, 1970	C, E	D, S	Dug well. Water sand from 13 to 19 feet. Temperature 69°F.
	606	G. A. Reece	R. L. McKelvy	1966	45	6	45	Kca	1,787	18.52	do	J, E	D, S	Pack sand from 23 to 35 feet. 2
	701	Weldon Gary	***		45			Kca	1,855	29.94	Sept. 21, 1970	c, w	s	Dug well. Open hole from 4 to 45 feet.
	702	do		**	Spring			Kca	1,800	(+)	do	Flows	S	Estimated flow rate 30 gal/min. Water flowing from fine to coarse grained sand which is in contact with a Permian limestone.
r	703	Loyd Gary	A. L. Varner	1951	118	5	118	Kca	1,900	66.78	do	c, w	D, S	Blue shale reported at 80 feet.

See footnotes at end of table.

Table 5. -- Records of Selected Wells, Springs, and Test Holes -- Continued

-				125	ç	15.4				2		90		from		-			30		-	
	Remarks	Reported yield 5 gal/min, Temperature 69°F.	Red beds reported at 114 feet. Well 309 in Callahan County report. $\underline{\mathcal{Y}}$	Dug well. Well 310 in Callahan County report. $\underline{\mathcal{Y}}$	Reported yield 65 gal/min. Water sand from 27 t 50 feet.	Reported yield 100 gal/min. Water sand from 27 to 50 feet.	Reported yield 100 gal/min.	Reported yield 65 gal/min. Water sand from 27 to 50 feet. Slotted 20 to 60 feet.	Dug well. Yield reported to be strong. Pack sand from 8 to 21 feet.	Dug well. Well 315 in Callahan County report, $\underline{\mathcal{Y}}$	Dug well.	Slotted from 12 to 33 feet. Red beds from 33 to 35 feet.	Dug well. Reported yield 5 to 10 gal/min.	Dug well. Red bed reported at 55 feet, Water fr sand and gravel.	Reported yield 12 gal/min. Slotted 87 to 120 feet. Black shale at 120 feet. \underline{g}	Reported yield 14 gal/min. Slotted 87 to 110 feet. Black shale at 110 feet.	Well has been destroyed. Sand and gravel 20 to 35 feet. Yellow clay at 35 feet. $\underline{\mathcal{Y}}$	Water coming from sand and gravel, Water reported to have become salty this summer. Several vegetative-kill areas located above well.	Reported yield 15 gal/min. Slotted from 20 to 3 feet and 100 to 120 feet. Upper sand formation has very little water. Originally drilled to 135 feet. $2/3$	Dug well. Reported yield 5 gal/min. Water reported from sand and gravel at 35 to 50 feet.	Estimated yield 5 gal/min. Casing slotted from 8 to 17 feet, Yellow lime at 14 to 18 feet, \underline{g}	Dug well. Open hole at 14 to 16 feet. Limestone at 16 feet.
	Use of water	Q	ω	p, s	Irr	Irr	Irr	Irr	D, S	N	D, S	s	S	S	Irr	D, Irr	N	Q	D, S	s ,	Д	D, S
	Method of lift	Sub, E 3/4	α, α	C, W	Sub, E 1-1/2	Sub, E 1-1/2	Sub, E 1-1/2	Sub, E 1-1/2	J, E	С, И	в, н	J, E 1/2	н	J, E	Sub, E 3/4	Sub, E	z	J, E 1/3	Sub, E 3/4	С, И	J, E	Sub, E 1/2
10000	Date of measurement	Oct. 1, 1970	Oct. 7, 1970	Aug. 2, 1940 Oct. 1, 1970	Sept. 24, 1970	Sept. 23, 1970	op op	op	Oct. 1, 1970	Mar. 19, 1940 Oct. 1, 1970	op	Oct. 6, 1970	op	Mar. 15, 1971	Dec. 3, 1970	op	Sept. 25, 1962 Dec. 3, 1970	op	July 29, 1969 Feb. 8, 1971	Mar. 1, 1971	Dec. 8, 1970 Mar. 1, 1971	Mar. 19, 1971
	Below land- surface datum (ft)	85,31	100.65	10.77	36.02	33.90	32.68	32.19	11.79	10.45	5.95	8.85	9.50	34.00	85,62	82.39	20.00	8.71	20,07	33.10	9.80	13.90
1	Altitude of land surface (ft)	1,907	1,933	1,810	1,798	1,798	1,798	1,798	1,765	1,764	1,766	1,776	1,745	1,810	2,090	2,085	2,020	1,970	2,100	2,040	1,998	1,995
	Water bearing unit	Кса	Kea	Kca	Kca	Kea	Kca	Kea	Kca	Qal	Kca	Ксв	Kca	Kca	Kca	Kca	Кса	Kca	Kca	Кса	Kca	Kea
20	Depth (ft)	134	114	1	20	20	20	09	Ě	ŧ	į	33	E	;	121	110	;	16	130	1	17	I
Castus	Diam- eter (in.)	9	9	1	12	12	12	12	1	£	1	80	1	1	9	9	1	9	5	1	5	1
	Depth of well (ft)	134	114	18	20	20	20	09	21	16	18	33	17	55	121	110	36	16	130	20	17	16
	Date	1966	1	1	1966	1966	1966	1968	1950	1935	1	1966	1918	1955	1949	1950	1962	1955	1969	1920	1970	1
	Driller c	Lester King	1	3	Jack Leonard	op	op	op	:	1	1	Vernon Phillips	Morris L. Morgan, Sr.	1	C. W. Carter	op	Jack Leonard	P. A. Kirk	L. E. Hayhurst	1	L. E. Hayhurst	ı
	Owner	LaReata Ranch	op	op	Jerry Dehlinger	op	op	op	Dwight Black	S. A. Black estate	Foy Jobe	J. L. Marinelli	Morris L. Morgan	D. L. Sessions	C. W. Carter	op	op	Gordon Hass	S. O. Barton	R. D. Whitford	C. W. Barnard	Leroy Crawford
	Well	30-47-704	705	108	106	902	903	706	908	906	206	806	48-402	202	52-101	102	103	104	105	901	107	201
	1		100									-	>		w.			20				*

See footnotes at end of table.

Table 5.--Records of Selected Wells, Springs, and Test Holes--Continued

											% pu	-57 pm	an pu	37) Pag		nud 14	4) bu 85	20 00 35 and	25 6 80 mg	41 pag 55 6 60	and and 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		Remarks	Formerly public supply for Oplin Missile site. Reported yield 8 Ral/min. Screened from 82 to 112 feet. Shale at 105 feet. \underline{y}	Formerly public supply for Oplin Missile site. Reported yield 8 gal/min. Screened from 82 to 112 feet.	Formerly public supply for Oplin Missile site. Reported yield 8 gal/min, Screened from 82 to 112 feet.	bug well, j	Dug well. Well 437 in Callahan County report.	Water reported coming from a seep at 40 feet and water sand from 80 to 100 feet.	Reported yield 8 gal/min. Water reported from seep at 45 feet. Water sand reported at 70 to 88 feet.	Estimated yield 5 gal/min. Gasing slotted 7 to 16 feet. $2\mid \underline{y}\mid \underline{y}$	Dug well. Sand reported at 11 to 16 feet. Well 434 in Callahan County report. $\underline{\mathcal{Y}}$	Dug well, Water coming from sand and gravel at unknown depth.	Reported yield 5 gal/min. Slotted from 47 to 70 feet. Red beds at 62 feet. 2/3	Estimated yield 6 gal/min. Slotted from 15 to feet. Lime from 22 to 37 feet. 2	Estimated yield 2 gal/min. Perforated 15 to 20 feet. Yellow clay at 22 feet. 2	Dug well. Reported yield 5 gal/min, No water reported below 33 feet. Well 431 in Gallahan County report. §	Reported yield 4 gal/min. Slotted from 40 to 5 feet. Originally drilled to 65 feet. 3 3	Perforated from 12 to 20 feet. Water coming from sand and gravel. $\underline{\mathcal{Y}}$	Reported yield 3 gal/min. Slotted 33 to 65 feet. 2	Estimated yield 8 gal/min. Perforated 14 to 20 feet. Sand and gravel reported from 14 to 22	completed at 30 feet. Unused irrigation well.
	Ilas	of	Irr	Irr	Irr	×	D, S	D, S	D, S	ss	z	D, S	co	co	z	D, S	О	z	623	×	
	Merhod	of 11ft	Sub, E	Sub, E	Sub, E	Ж	J, E	J, E	c, w	J, E	z	J, E 1/3	G, W	J, E	z	J, E 1/3	Э, Е	С, W	J, E	J, E 1/2	
Water level	Date of	measurement	June 24, 1961	do Jan. 11, 1971	Jan. 7, 1971	Sept. 9, 1970 Jan. 8, 1972	Apr. 30, 1940 Jan. 8, 1971	Mar. 1, 1971	op	Sept. 26, 1970 Feb. 5, 1971	Sept. 6, 1940 Jan. 6, 1971	op	op	Mar. 24, 1969 Dec. 3, 1970	Nov. 20, 1970 Feb. 16, 1971	Apr. 30, 1940 Mar. 1, 1971	Mar. 14, 1971	Dec. 17, 1970 Jan. 8, 1972	Apr. 4, 1969 Jan. 6, 1971	Apr. 7, 1965 Jan. 6, 1971	
Water	Below land-	surface datum (ft)	52	82 76	82	12.03	16.82	72.14	60.80	10.00	11.01	29.49	42,33	15.41	16	27.97	43	14.15	33.00	8.50	
r	Altitude	surface (ft)	2,080	2,104	2,100	2,000	2,030	2,080	2,090	1,993	2,005	2,025	2,052	2,023	2,004	2,035	2,052	1,978	2,009	1,978	
		bearing sunit	Кса	Кса	Kea	Kca	Kca	Kea	Kca	Kca	Kca	Kca	Kca	Kca	Kca	Kca	Kca	Кса	Kca	Kca	
8	Γ	Depth (ft)	82	82	82	1	;	101	06	16	:	:	07	37	20	:	59	20	65	30	
Casing	Diam.		13	13	13	1	;	9	9	5	;	:	5	60	5	ŀ	5	9	٠,	6	
	Depth		112	112	112	19	32	101	06	16	15	69	70	37	20	35	59	20	65	30	
	Date	completed	1960	1960	1960	1	:	1950	1950	1970	1924	ţ	1970	1969	1970	1940	1971	1965	1969	1965	
		Driller	Jack Barnes	op p	op	ï	;	Rogers	op	L. E. Hayhurst		:	L. E. Hayhurst	op	op	1	L. E. Hayhurst	Repps Guitar, Jr.	L. E. Hayhurst	Repps B. Guttar, Jr.	
		Owner	Stella Johnson	op	op	Ola Roberts	Walter Preston	John Armor	Roy Armor	Ira Crawford	Luther McGrea	Lowell Johnson	op	Guy Williams	Leon Barr	Stella Yost	Alvin Cox	Carl Dunlap	Guy Williams	Carl Dunlap	
		Well	30-52-401	402	603	404	405	907	407	201	101	702	703	108	802	803	80%	106	902	606	
		-	30				15	- 2						120					27	2	

See footnotes at end of table.

Table 5. -- Records of Selected Wells, Springs, and Test Holes -- Continued

_																							
	Remarks	Dug well. Open hole from 4 to 37 feet. Well 430 in Callahan County report. $\underline{i}\underline{j}$	Water sand reported at 20 to 45 feet.	Spring which has been dug out to 8 feet. Estimated flow rate 8 gal/min.	Dug well, Open hole from 3 to 8 feet, Well 418 in Callahan Gounty report, $\underline{\mathcal{Y}}$	Estimated yield 1 gal/min. Reported to flow year round.	Reported yield 60 gal/min. Slotted from 30 to 45 and 86 to 88 feet. Test originally drilled to 90 feet. Temperature 69 $^{\circ} F$, \underline{y}	Reported yield 10 gal/min. Sand from 2 to 31 feet. Well completed in sand.	Reported yield 6 gal/min. Perforated from 50 to 70 feet. Mater sand from 49 to 56 feet. $\underline{\mathcal{Z}}$	Reported yield 16 gal/min. Water sand from 45 to 70 feet.	Reported yield 10 gal/min. Perforated from 62 to 102 feet. $2J$	Dug well. Reported yield 10 gal/min.	Dug well. Reported yield 2 gal/min. Well 302 in Callahan County report. 4	Dug well, Reported yield 5 gal/min. Water reported from sand and gravel.	Estimated flow at 5 to 10 gal/min. Water reported flowing from a fine, white sand.	Reported yield 3 gal/min. Water sands reported at 60 and 90 feet. Red beds reported at 100 feet.	Reported potential yield 75 gal/min. Completed in upper part of Antlers sand.	Reported potential yield 75 gal/min. Upper water sand reported from 200 to 220 feet.	Estimated yield 4 gal/min. Temperature 66°F.	Water reported from 99 to 119 feet, Well 327 in Callahan County report. 4	Estimated yield 5 to 6 gal/min. Casing reported collasped from 110 to 120 feet.	Sand reported from 152 to 184 feet, Slotted from 163 to 184 feet,	Well reported completed in sand and gravel 90 to 120 feet,
	Use of water	so.	sa	Д	z	ıs	ss	D, S	D, S	Q	Q	ss	z	D, S	S	p, s	t/a	62	D, S	z	D, S	s	so
	Method of lift	д, с	C, W	Flows, J, E 1/2	z	Flows	1, G	J, E	J, E 1/3	Sub, E 1/2	Sub, E 1/2	J, E 1/2	с, и	cf, E	Flows	J, E	С, И	α, α	Sub, E 1/3	z	C, W	C, W	c, w
Water level	Date of measurement	Sept. 6, 1940 Mar. 19, 1971	op	op	Sept. 5, 1940 Sept. 22, 1970	Mar. 25, 1971	Sept. 22, 1970	op	op	Oct. 7, 1970	Oct. 14, 1970	Jan. 13, 1971	Mar. 21, 1940 Oct. 9, 1970	Oct. 13, 1970	op	Oct. 14, 1970	Mar. 11, 1971	op	Mar. 6, 1969 Jan. 12, 1971	Apr. 4, 1940 Sept. 21, 1970	Sept. 23, 1970	Mar. 11, 1971	op
Water	Below land- surface datum (ft)	31.34	7.81	(÷)	2.88	£	30.22	7.82	46.53	50.18	62.28	13.44	21.03	12.52	£	50.40	173.50	135.00	31.53	87.22	54.40	135.30	74.09
	Altitude of land surface (ft)	1,997	1,958	1,840	1,878	1,670	1,920	1,880	1,905	1,944	1,951	1,887	1,910	1,900	1,887	1,935	2,138	2,111	2,005	1,919	1,910	1,994	2,048
	Water bearing unit	Kca	Kca	e,	Kea	g _e	Kca	Kea	Kea	Kea	Kca	Kca	Kea	Kcs	Kea	Kca	Kca	Kca	Kca	Ксв	Kca	Kca	Кса
80	ipth (ft)	:	45	1	:	;	88	31	02	70	102	1	1	1	;	120	160	220	190	119	120	186	120
Casing	Diam- eter (in.)	ŀ	9	1	:	:	80	80	9	9	9	;	1	1	1	9	S	9	S	5	9	9	4
	Depth of well (ft)	37	45	Spring	7	Spring	88	31	70	70	102	30	23	56	Spring	120	200	220	190	119	120	186	120
	Date		1952	1950	ī	1	1966	1969	1970	1966	1970	1916	:	1946	;	1961	1937	;	1950	1939	ŀ	1936	1928
	Driller	ı	Mury Bales	1	1	1	Lester King	op	W. D. Clark	R. L. McKelvy	Dick Marrow	ï	1	1	:	R. L. McKelvy	Bill Varner	Bud Goble	Cecil Gobel	William Varner	Murdock	Bud Goble	William Varner
	Owner	J. O. Williams	Mrs. Clint McIntyre	Henry Seale	Alton Hornsby	Hall Ranch	Robert McClain	ор	H. J. Gibbs	Bob Dye	Russell H. Dye	John F. Downs	W. M. Price	qo	op	W. L. Lawrence	Bob Beckham	op	Caldwell Ranch	Ray Fairecloth	A. A. Holley	Bob Beckham	op
	Well	30-52-905	906	53-101	301	106	54-101	102	103	104	105	106	201	202	203	204	206	207	302	303	304	305	306
	:5	9						ė.		2		2		2					Te.	2	20		

See footnotes at end of table,

Table 5.--Records of Selected Wells, Springs, and Test Holes--Continued

						Casi	ng.			Wat	er level			
	Well	Owner	Driller	Date completed	Depth of well (ft)	Diam- eter (in.)	Depth (ft)	Water bearing unit	Altitude of land surface (ft)	Below land- surface datum (ft)	Date of measurement	Method of lift	Use of water	Remarks
ŵ	30-54-307	Bob Beckham	William Varner	1947	56	8	56	Kca	1,985	20.47	Mar. 11, 1971	Sub, E 1/2	s	Well completed in upper sand unit.
*	401	Weldon Gary	Jake Childers	1955	60	6	60	Kea	1,876	5.26 5.51	Sept. 18, 1970 Jan. 12, 1971	J, E 1	D, S	Water reported from sand at 5 to 20 feet.
*	402	Olin English	**	1920	16	**		Kca	1,882	11.54 11.10	Sept. 5, 1940 Mar. 9, 1971	c, w	D, S	Dug well. Yield reported to be strong. Well 366 in Callshan County report. 4
*	403	Walter B. Black, Jr.	••	1917	12			P	1,855	3.89 7.15	Sept. 5, 1940 Mar. 9, 1971	J, Е 1/2	D, S	Dug well. Reported strong supply. Water reporte from fractures in limestone. Well 367 in Cal- lahan County report. 4
k	501	Elizabeth Burks	Curtis Alford	1955	123	6	123	Kca	1,925	83.10	Oct. 7, 1970	J, E 3/4	D, S	Reported yield 10 gal/min. Sand and gravel reported from 99 to 101 feet.
	502	Lee Caldwell	Merle Bales	1964	78	8	78	Kca	1,897	56 51.61	1964 Mar. 15, 1971	c, w	S	Reported yield 5 gal/min. Slotted from 58 to 73 feet. 2/
*	601	J. C. Childers	J. C. Childers	1964	38	13	10	Kca	1,840	20.40	Sept. 4, 1970 Jan. 8, 1972	J, E 1/2	D	Reported yield 8 gal/min. Open hole from 10 to 28 feet. 1/2
*	602	do	(##.)		Spring	122		Kca	1,815	(+) (+)	do Jan. 12, 1971	Flows	S	Estimated flow rate 5 gal/min. Water coming from aand in contact with Permian clay.
w	603	John I. Crawley	J. E. Woods	1955	70	6	70	Kca	1,870	35.10	Sept. 23, 1970	J, E 3/4	D, S	Reported yield 10 gal/min. Twenty-five feet of water sand reported.
*	604	do	W. D. Clark	1969	70	6	70	Kca	1,882	30.60	do	Sub, E 1/2	Irr	Reported yield 12 gal/min. Water sands reported at 24 to 30 feet and 57 to 64 feet. 2
#	605	Glen Wooten		1945	60	6	60	Kca	1,845	25	Oct. 9, 1970	J, E 1/2	D	Reported yield 15 gel/min. Ten feet of water sand reported.
	606	do	Jake Dallas	1964	94	8	94	Kea	1,873	46.70	Oct. 7, 1970	W, C	S	Reported potential yield 100 gal/min. Water sand and gravel reported from 48 to 80 feet. 2
	607	do		1920	55	6	55	Kca	1,986	32.86	do	W, c	S	Reported to be a weak well. Well completed in upper sand member.
N.	608	do	**	1900	65	188		Kca	1,875	47.55	do	w, c	S	Dug well. Temperature 69°F.
	609	do	Jake Dallas	1964	85	8	85	Kcs	1,866	33.60	do	N	N	Reported potential yield 80 gal/min. Blue clay reported at 83 feet.
	610	do	**	1920	155	6	150	Kca	1,965	98.80	do	W, C	S	Well completed in upper sand member.
k	611	Edgar Albricht	Eddie Woods	1964	90	6	90	Kca	1,890	47.66	Feb. 17, 1971	C, E	D, S	Reported yield 10 gal/min. Bad water reported at 45 to 50 feet.
*	612	do	do	1970	100	6	100	Kca	1,900	74.55	do	c, w	s	Reported yield 9 gal/min. Water reported from lower water sand. Upper sand cemented off 45 to 52 feet. 2
W	613	J. O. Williams	Stephen Fortune		65	5	65	Kca		28.28	Oct. 10, 1974	Sub, E	Irr	Reported yield 75 gal/min.
	614	do	do	1971	70	5	70	Kca		30 33.95	July 16, 1971 Oct. 10, 1974	Sub, E	Irr	Reported yield 20 gal/min.
Wr.	801	Mrs. Fred Heyser	••		15			Kca	1,759	2.93 12.60	Apr. 16, 1940 Mar. 9, 1971	N	N	Old dug well filled with debris. Well 364 in Callahan County report. 4
₩.	901	O. M. Holland	**		40	6	40	Kca	1,822	14.42 14.30	Sept. 15, 1970 Jan. 12, 1971	J, E	D	Reported strong supply.

See footnotes at end of table.

Table 5. -- Records of Selected Wells, Springs, and Test Holes -- Continued

					Casing	gu			Wate	Water level			
Well	Owner	Driller	Date completed	Depth of well (ft)	Diam- eter (in,)	Depth (ft)	Water bearing unit	Altitude of land surface (ft)	Below land- surface datum (ft)	Date of measurement	Method of lift	Use of water	Remarks
30-54-902	Dr. R. H. Tull	J. G. Childers	1964	28	٠	28	Кса	1,805	10.17	1964 Jan. 12, 1971	of, E	Irr	Reported yield 60 gal/min. Perforated from 13 to 28 feet. Red beds reported at 28 feet. Tempereture 69'F. \underline{y}
55-101	H. H. Chaney	W. D. Clark	1964	100	9	100	Kca	1,880	61.02	Sept. 18, 1970	J, E 1/3	Q	Estimated yield 100 gal/min. Red beds reported at 100 feet.
102	op	Neal Dillard	1964	82	80	82	Кся	1,874	55.48	op	J, E 1/2	co.	Yield reported at 100 gal/min. Red beds reported at 85 feet. Former irrigation well.
103	Emmit Price	Nardyke	1905	84	'n	84	Кса	1,885	63.28	Apr. 4, 1940 Sept. 21, 1970	J, E 1/3	D, S	Reported yield 5 gal/min. Well 326 in Callahan County report, $\underline{\mathcal{Y}}$
104	Red Duncan	W. D. Clark	1971	110	6	110	Kca	1,893	74.90	Mar. 11, 1971	Sub, E	D, S	Reported yield 30 gal/min. Sand and gravel reported from 100 to 110 feet. Red beds reported at 110 feet. \underline{g}
105	A. L. Varner	A. L. Varner	1967	218	2	218	Kca	1,970	155.14	Mar. 24, 1971	Sub, E	ss	Reported to have been pumped at 100 gal/min for 4 hours. Water sand and gravel at 150 to 180 feet. 2
106	J. T. Howard	do	1965	125	7	125	Kca	1,870	52.87	op	Sub, E 1/2	D, S	Reported yield 12 gal/min. Slotted from 63 to 95 feet, $\underline{\mathcal{I}}$
107	Dayton McInnis	W. D. Clark	1974	92	9	92	Kca	1,895	55.82	Oct. 8, 1974	Sub, E	Irr	Pack sand with gravel 53 to 84 feet.
108	op	op	1974	92	9	92	Kca	1,895	58.15	op	Sub, E	Irr	Sand and gravel 36 to 82 feet.
201	N. G. Wilcoxen	Cecil Gobel	1954	88	6	80	Kca	1,842	35	Sept. 15, 1970	C, W	D, S	Open hole from 80 to 88 feet.
202	Edwin & Everett Wilcoxen	;	3	175	7	175	Kca	1,880	77.65	do Jan. 14, 1971	z	Z	Well 311 in Callahan County report. 4
203	Charles Sowell	Lester P. King	1966	131	7	131	Kca	1,875	02	Sept. 15, 1970	Sub, E	Irr	Reported yield 185 gal/min. Slotted from 85 to 115 feet.
204	op	A. L. Varner	1966	135	80	135	Kca	1,865	65	op	Sub, E	Irr	Reported yield 100 gal/min. Water sand from 74 to 117 feet.
205	op	op	1966	95	7	95	Kca	1,857	09	op	Sub, E	Irr	Reported yield 100 gal/min. Water sand from 60 to 88 feet.
206	op	op	1966	105	7	105	Кса	1,853	55	op	Sub, E	Irr	Reported yield 100 gal/min. Water sand from 60 to 95 feet. Red beds at 95 feet. $\underline{2}$
207	op	ор	1966	130	60	130	Kca	1,877	74	op	Sub, E	Irr, D	Reported yield 100 gal/min. Water sand from 24 to 105 feet.
208	Mrs. M. R. Lovell	Eddie Woods	1964	09	9	09	Kca	1,850	33.30	Sept. 18, 1970 Jan. 13, 1971	J, E 1/3	Д	Reported yield 5 gal/min. Yellow clay at 60 feet.
209	W. D. Clark	W. D. Clark	1967	09	9	09	Kca	1,827	21.50	Sept. 21, 1970	Sub, E 3/4	D, S	Reported yield 18 gal/min. Slotted from 30 to 60 feet. Red beds at 60 feet.
210	op p	op	1967	28	2	28	Kca	1,825	18.12	op	z	z	Reported yield 20 gal/min. Slotted from 28 to 58 feet, Unused irrigation well.
211	op	op	1967	58	5	28	Kca	1,825	18.72	op	×	z	Reported yield 20 gal/min. Unused irrigation well.
212	op	op	1967	09	10	09	Kca	1,824	19.62	op	Sub, E 1-1/2	Irr	Reported yield 100 gal/min. Red beds reported at 60 feet.
213	op	op	1967	67	9	67	Kca	1,824	19	op	Sub, E 3/4	Irr	Reported yield 30 gal/min. Perforated from 37 to 60 feet, $\underline{\mathcal{I}}$

See footnotes at end of table

Table 5.--Records of Selected Wells, Springs, and Test Holes--Continued

					Casing	Bu			Wat	Maret Teas	e]	1	_		
	Owner	Driller	Date	Depth of well (ft)	Diam- eter (in.)	Depth (ft)	Water bearing unit	Altitude of land surface (ft)	Below land- surface datum (ft)	mea	Date of measurement		Method of lift	Use of water	Remarks
30-55-214	W. D. Clark	W. D. Clark	1967	58	80	58	Kca	1,824	18.66	Sept.	21,	1970 s	Sub, E 1-1/2	Irr	Reported yield 100 gal/min. Slotted from 37 to 67 feet.
215	Jack Smith	Cecil Gobel	1954	150	€0	150	Kea	1,880	70	Sept	Sept. 17, 1	1970	3, 8	D, S	Reported yield 60 gal/min. Red beds reported at 150 feet.
216	op	Jake Childers	1964	155	7	155	Kca	1,870	64.22	Sept. Jan.	18,	1970 S	Sub, E	Irr	Reported yield 185 gal/min. $2y$
217	J. N. Mabett	Curtis Alford	1963	30	10	30	Kca	1,801	16.17	Oct.	19,	1970	с, и	co	Reported yield 10 gal/min. Perforated from 20 to 30 feet. \underline{y}
218	N. A. Yarbough	A. L. Varner	1966	75	œ	75	Kca	1,815	16		op		T, E	Irr	Reported yield 185 gal/min.
219	A. L. Varner	op	1970	135	7	135	Kca	1,890	92	Mar.	24,	1761	Sub, E 1/2	so.	Measured yield 25 gal/min. Water sand and gravel 89 to 115 feet.
220	op	op	1970	135	n	135	Кся	1,890	72.74	June	do 15,	1971	z	z	Test pumped by driller at 132 gal/min for 48 hours. Water sand and gravel at 89 to 115 feet. Unused irrigation well.
221	Leonard Mosely	op	1761	100	9	100	Kca	1,940	30	July	20,	1971	J, E	so	Slotted from 50 to 90 feet. 2μ
302	Mrs. J. T. Hewes	ī	1900	06	9	06	Kca	1,837	45.10	Sept.	24,	1970	J, E	D, S	Reported yield 5 gal/min. Slotted from 50 to 90 feet. Red clay reported at 90 feet.
303	Nathan Foster	;	}	130	4	130	Kca	1,855	81.80		op		g, W	co	Well casing reported to have caved at 100 feet. Well 318 in Gallahan Gounty report. 9
304	Dr. A. J. Pope	:	;	80	æ 49	980	Kca	1,935	56.29	Oct.	19,	1970	м,	sa	Well 319 in Callahan County report. 9
305	Mrs. W. T. McClure	Thate	1963	275	97	173	Kca	2,020	241.80	Mar.	11,	1971	z	z	Reported yield 120 gal/min. Slotted from 220 to 275 feet. Unused public supply well.
306	qo	;	:	160	9	160	Kca	2,000	124.50	Mar.	15,	1761	C, W	ss	Reported yield 8 gal/min. Reported to be completed in upper sand member.
307	Nathan Foster	Kit Carson	1964	132	'n	132	Kca	1,919	51.71	Aug.	24,	1964	с, и	ss.	Reported yield 5 gal/min. Well completed in upper sand member. 2
308	Marcus A. Tatom	Vernon Phillips	1971	112	8	112	Kca	1,855	70	Mar.	22,	1761	Sub, E	Irr	Estimated yield 80 gal/min. Water sand reported at 83 to 112 feet. Test originally drilled to 117 feet.
309	Robert Brashear	Lester King	1971	100	80	100	Kca	1,840	48.50	May July	6,	1971 S	Sub, E	Irr	Measured yield 44 gal/min. Slotted from 53 to 93 feet. \underline{y}
310	op	op	1971	100	1	100	Kca	1	90.95	Oct.	8,	1974 S	Sub, E	Irr	Water from sand and gravel 55 to 89 feet. 3
311	op	op	1971	86	7	86	Kca	1	50,30		qo	SS .	Sub, E	Irr	Water sand 53 to 83 feet.
401	Claude C. Joy	Gobel	1952	80	9	80	Kca	1,833	22.47	Sept.	10,	1970	ς, π	D, S	Perforated from 25 to 80 feet, Water reported at 25 feet,
402	op	W. D. Clark	1967	80	œ	80	Kca	1,847	31.05	Sept.	10, 14,	1970 S	Sub, E 1-1/2	z	Red beds reported at 80 feet. Unused irrigation well.
403	op	Jack Leonard	1967	80	œ	80	Kea	1,860	32 50.32	Sept.	10,	1970 S	Sub, E	Irr	Reported yield 90 gal/min.
404	op	W. D. Clark	1967	80	89	80	Kca	1,865	32 60.16	Sept.	10,	1970 s	Sub, E	Trr.	Do.

ee footnotes at end of table

Table 5. -- Records of Selected Wells, Springs, and Test Holes -- Continued

						Casing	ng			Wate	Water level	11			
Well		Owner	Driller	Date	Depth of well (ft)	Diam- eter (in.)	epth (ft)	Water bearing unit	Altitude of land surface (ft)	Below land- surface datum (ft)	D. mea.	Date of measurement	Method of 11ft	Use of water	Remarks
* 30-55-405		Claude C. Joy	W. D. Clark	1967	80	8	80	Kca	1,851	32 52.60	Sept. Jan.	10,	1970 Sub, E	Irr	Reported yield 90 gal/min.
*	907	Dan L. Childress	Glen Vaughn	1955	30	9	30	Кса	1,798	10,30	Oct.	1, 19	1970 J, E	Q	Reported yield 12 gal/min. Slotted from 22 to 30 feet. Blue clay at 24 feet. \underline{y}
*	407	O. O. Sandifer	Eddie Woods	1965	30	9	30	Kca	1,810	14.79		op	J, E	D, S	Reported yield 12 gal/min. Water sand from 14 to 30 feet. Blue clay from 30 to 34 feet.
*	807	J. B. Green	Jake Dallas	1961	40	7	07	Kca	1,768	14.58	Mar.	9, 19	1971 J, E	D, S	Reported yield 10 gal/min. Perforated from 24 to 33 feet. 2
	607	C. M. Kinnard	W. D. Clark	1965	58	7	58	Kca	1,840	23.16	Mar.	11, 19	1971 J, E 1/3	sq.	Measured yield 4 gal/min. Slotted from 50 to 60 feet. 2
	201	W. W. Robinson	Ě	1915	16	ŀ	E	Kca	1,800	13.0	Mar.	8, 19	N 0961	z	Water sand from 13 to 16 feet. Dug well now destroyed.
	502	W. A. G111	Lester King	1966	48	9	48	Kca	1,801	13.84 12.76 12.30	Apr. Jan. Nov.	29, 19 14, 19 7, 19	1966 Sub, E 1971 1974	Ω	Perforated from 32 to 40 feet, $y_i y_j$
*	503	C. J. Bush	Norkey	1927	108	9	108	Kca	1,855	77.51 78.45 77.76	Mar. Sept.	29, 4, 7,	1966 Sub, E 1970 1974	s	Perforated from 73 to 108 feet, \mathcal{Y}
*	504	Lester Bush	Murdock	E	16	9	16	Kca	1,850	64.58	Jan.	do 12, 19	Sub, E 1971 1/2	D, S	Perforated from 56 to 91 feet. Temperature 72°F.
	505	Glen E. Winfrey	W. D. Clark	1969	75	8	7.5	Кса	1,801	30,59	Jan.	13, 19	1971 Sub, E	Irr	Reported yield 75 gal/min. Perforated from 35 to 75 feet.
	206	op	op	1969	85	80	85	Kca	1,840	39,30		op	Sub, E	Irr	Reported yield 75 gal/min. Perforated from 45 to 85 feet.
*	207	op	op	1969	65	8	65	Kca	1,800	21.81		op	Sub, E 1/2	Irr	Reported yield 30 gal/min. Perforated from 25 to 65 feet. Temperature 70°F.
	208	op	op	1969	85	80	82	Kca	1,832	40.51	Jan.	14, 19	1974 Sub, E	Irr	Reported yield 50 gal/min. Perforated 45 to 85 feet. Water reported from sand and gravel at 60 to 75 feet.
*	509	ор	op	1969	86	80	86	Kca	1,845	58.22	Jan. Oct.	13,	1971 Sub, E	Irr	Reported yield 100 gal/min. Perforated from 58 to 98 feet.
	510	op	ор	1969	83	80	83	Кса	1,830	51,78	Jan.	13, 19	1971 Sub, E 1/2	Irr	Measured yield 20 gal/min. Perforated from 43 to 83 feet.
	511	op	op	1969	73	00	73	Kca	1,827	43.14		op	Sub, E	Irr	Measured yield 24 gal/min. Perforated from 33 to 73 feet.
*	512	op	Morrow	1970	66	80	66	Kca	1,840	50.10		op	Sub, E	Irr	Measured yield 48 gal/min. Perforated from 59 to 99 feet.
	513	op	op	1970	86	80	86	Kca	1,838	57.11	Sept.	11,	1970 Sub, E	Irr	Reported yield 65 gal/min. Perforated from 56 to 96 feet.
*	514	op	W. D. Clark	1969	85	9	85	Kca	1,830	41.62	Sept.	11,	1970 J, E 1971 1/2	Ω	Reported yield 35 gal/min.
*	515	Richard Smith	R. L. McKelvy	1965	35	9	35	Kca	1,777	7.76	Sept.	17, 12,	1970 J, E 1971 1/3	D, S	Reported yield 5 gal/min. Slotted from 17 to 35 feet. Blue shale at 29 feet. $\underline{2}$
*	516	Norman Coffey	J. E. Woods	1967	31	9	31	Kca	1,815	15.08	Sept.	23,	1970 J, E	Q	Sand and clay reported from 0 to 30 feet.
		a transfer of the													

See footnotes at end of tab

Table 5, -- Records of Selected Wells, Springs, and Test Holes -- Continued

								_															
	Remarks	Reported strong well. Mater sand reported at 60 to 85 feet. $\underline{\mathcal{Y}}$	Screened from 16 to 24 feet, Blue shale at 20 feet, \underline{y}	Former school supply, Well 320 in Callahan County report, $\underline{\mathcal{Y}}$	Reported strong well. Red beds reported at 70 feet.	Water reported from sand and gravel.	Red clay reported at 130 feet.	Reported yield 12 gal/min. Slotted from 112 to 122 feet. Red ghale at 122 feet. $\underline{2}$	Measured yield 53 gal/min. Slotted from 40 to 80 feet, Water and and gravel reported from 42 to 74 feet, $2/3$:	Originally drilled for an observation well. Slotted 42 to 83 feet, $\underline{2}$	Originally drilled for an observation well. Slotted 40 to 82 feet.	Perforated from 20 to 40 feet, \underline{y}_i	Water sand reported from 65 to 72 feet. Red beds reported at 72 feet.	Reported yield 5 gal/min. Slotted from 18 to 46 feet. Sand and gravel from 12 to 23 ft.	Estimated flow rate 15 gal/min. Water flowing from sand and gravel in contact with limestone. Estimated yield 2 gal/min.	Slotted from 22 to 29 feet, Red clay at 29 feet, $\underline{2}$		Dug well. Open hole in very tight pack sand from 4 to 50 feet.	Dug well. Pack sand from 7 to 15 feet.	Dug well. Water coming from two sands starting at 16 feet.	Reported yield 1 gal/min. Slotted from 35 to 65 feet. Water coming from seep at 35 to 37 feet.	Dug well. Temperature 63°F.
	Use of water	D, S	ss	ss	ss.	D, S	s 'a	p, s	Irr	Irr	z	z	D, S	Q	D, S	os	z	Irr	D, S	D, S	Q	Q	D, S
	Method of lift	, r H	Sub, E 1/3	o, w	м , о	J, E	Ξ, r	Sub, E 3/4	Sub, E	Sub, E	z	z	J, E	J, E	ŀ	Flows	z	Sub, E	J, E	J, E	ш	J, E	3, E
level	Date of measurement	Oct. 15, 1970	Apr. 30, 1966 Mar. 9, 1971	Aug. 2, 1940 Oct. 19, 1970	op	op	op	Маг. 15, 1971	Мау 6, 1971	Oct. 6, 1971	Sept. 16, 1971 Oct. 6, 1971	Sept. 16, 1971 Oct. 6, 1971	Mar. 24, 1970	Oct. 1, 1970	Nov. 28, 1970 Feb. 16, 1971	op	Mar. 9, 1971	Oct. 8, 1974	Sept. 18, 1970	Oct. 27, 1970	op	op	Mar. 25, 1971
Water level	Below land- surface datum (ft)		12 A ₁ 2.10 M	95.41 Au	30.65	63.90	95.30	111.30 M	40.50 M	38.15 0	46.79 Si	42.94 St	18.32 M	0 50.09	18 N 12.67 F	£	27.15 M	27.20	39.00	7.62 0	14.23	29.62	8.60 M
	Altitude of land surface (ft)	1,835	1,748	1,855	1,865	1,830	1,867	1,870	1,818	1,810	1,815	1,818	1,805	1,855	1,807	1,787	1,788	1	1,797	1,745	1,733	1,740	1,709
	Water bearing unit	Кса	Kca	Кса	Kca	Kca	Кса	Kca	Kea	Kca	Kca	Ксв	Kca	Кся	Kca	Kca	Кса	Kca	Kca	Kca	Kca	Kca	Кса
81	Depth (ft)	86	24	110	70	120	180	130	83	82	83	82	45	90	95	1	20	20	ţ	;	1	65	1
Casing	Diam- eter (in.)	9	6	9	100	9	5	2	80	7	7	4	^	50	S	1	S.	5	:	:	:	œ	ł
	Depth of well (ft)	86	54	110	70	120	180	130	83	82	83	82	45	06	949	Spring	20	20	20	15	28	99	17
	Date	1965	1966	:	1951	1951	1969	1971	1971	1971	1971	1971	1966	1961	1970	;	1971	1971	į	1965	1930	1961	į
	Driller	A. L. Varner	Jack Leonard	ŧ	Woods	op	Dale Taylor	Lester King	op	op	Texas Department of Water Resources	op	Lester King	J. E. Woods	L. E. Hayhurst	ī	W. D. Clark	Stephen Fortune	ı	Fred F. Davis	1	Jake Dallas	1
	Owner	Mrs. Bryan Bennett	Troy Lamb	Mike Cunningham	Mrs. W. T. McClure	qo	op	Arvin Brasher	S. E. Page	op	qo	op	Howard Gox	Kenneth Poller	Kenneth Whithurst	op .	Oran Bains, Jr.	G. W. Childers	M. F. Dill	Fred F. Davis	G. B. Booth	Sam Ingram	Douglas Ingram
	Well	30-55-517	518	602	603	909	909	209	809	609	610	611	702	703	704	705	902	708	801	802	803	804	805
	1	ē																					

See footnotes at end of table.

Table 5. -- Records of Selected Wells, Springs, and Test Noles -- Continued

_																					
	Remarks	Dug well. Reported yield 3 gal/min, Water re- cently became very saline and unusable.	Reported yield 6 gal/min.	Reported yield 6 gal/min. Red beds reported at 60 feet.	Reported yield 6 gal/min.	Reported yield 10 gal/min. Slotted from 40 to 55 feet.	Reported yield 35 gal/min. Slotted from 40 to 55 feet.	Reported yield 10 gal/min.	Reported yield 5 gal/min. Slotted from 40 to 55 feet. Standby source.	Reported yield 15 gal/min.	Reported yield 8 gal/min. Slotted from 40 to 55 feet. Red beds reported at 65 feet.	Reported yield 10 gal/min. Slotted from 40 to 55 feet.	Reported yield 10 gal/min. Red beds reported at 65 feet.	Reported yield 6 gal/min. Perforated 28 to 48 feet. Unused public supply well. Well 342 in Gallahan County report. 4	Reported yield 10 gal/min. Slotted from 40 to 60 feet. Red shale at 60 feet. $\underline{\mathcal{Z}}$	Reported yield 10 gal/min. Water sand and gravel reported at 40 to 60 feet.	Reported yield 10 gal/min. Slotted from 40 to 60 feet.	Reported yield 10 gal/min. Red shale reported at 65 feet.	Reported yield 35 gal/min. Red beds reported at 70 feet.	Dug well. Lined with brick from 35 feet to surface. Open his from 35 to 50 feet. Well 338 in callahan County report and Well 2 in Public Water Supplies report. $4\sqrt{5}$	Perforated casing set below water level. Unused public supply well. Well 339 in Callahan Gounty report. \hat{g}
	Use of water	Q	£.	ů,	p.	Ωų	ος α.	Ω4	ĝ,	p4	Ω4	d	ы	z	D4	ß.	p ₄	£,	e,	2.	z
	Method of 11ft	J, E	J, E	J, E	Sub, E	J, E	Sub, E 3/4	J, 1	z	Sub, E	J, E 1-1/2	J, E 1-1/2	Sub, E 1/2	z	Sub, E 1/2	Sub, E 3/4	Sub, E 1/2	Sub, E 1/2	Sub, E 1/2	J, E 1-1/2	J, E
evel	Date of measurement	r. 25, 1971	t. 5, 1959 t. 21, 1970	t. 5, 1959 t. 21, 1970	t. 5, 1959 t. 21, 1970 t. 7, 1974	t. 5, 1959 t. 21, 1970	t. 5, 1959 t. 21, 1970	t. 5, 1959 t. 21, 1970	t. 5, 1959 t. 21, 1970	op	op	op	op	Sept. 4, 1940 Oct. 21, 1970	op	op	op	op	3, 1969	op	op
Water level	E	Mar.	Oct.	Oct.	Oct.	Oct.	Oct.	Oct.	Oct.					Sep					Mar.		
33	Below land- surface datum (ft)	15.60	30	30 47.05	30 49.32 46.46	30 47.60	30	30	30	21	21,44	21	36.86	30 22.81	16.99	18.05	12	18,50	17.41	28,90	28,10
	Altitude of land surface (ft)	1,761	1,778	1,780	1,781	1,774	1,767	1,760	1,756	1,755	1,760	1,760	1,765	1,762	1,750	1,750	1,748	1,748	1,748	1,764	1,764
	Water bearing unit	Kca	Kea	Кса	Kca	Kca	Kca	Kca	Кса	Kca	Кса	Kca	Kea	Kca	Kea	Ken	Kca	Kea	Kea	Kca	Kca
89	Depth (ft)		09	09	09	09	09	09	65	65	65	9	70	48	20	70	0/	70	70	1	67
Casing	Diam- eter (in.)	;	7	9	80	9	9	7	7	7	7	7	7	10	7	^	7	7	7	;	80
	Depth of well (ft)	20	09	09	09	09	09	09	65	65	59	59	20	48	20	70	70	70	70	20	64
	Date	1930	1950	1950	1950	1950	1950	1950	1950	1950	1950	1950	1964	1940	1964	1964	1964	1964	1964	1926	1926
	Driller	1	;	;	1	1	I	ξ	1	Jake Dallas	1	1	Jake Dallas	E. E. Thate	Jake Dallas	op	op	op	op	I	;
	Owner	Lilly MacMilian	City of Cross Plains	do	op	op	op	op	op	op	op	op	op	op	op	op	op	op	op	op	op
	Well	30-55-806	106	905	903	906	905	906	406	806	606	910	911	912	913	914	915	916	917	918	919
		6															į.				

See footnotes at end of table.

Table 5.--Records of Selected Wells, Springs, and Test Holes--Continued

						Casi	ng			Wa	ter level			
	Well	Owner	Driller	Date completed	Depth of well (ft)	Diam- eter (in.)	Depth (ft)	Water bearing unit	Altitude of land surface (ft)	Below land- surface datum (ft)	Date of measurement	Method of lift	Use of water	Remarks
30	0-55-920	City of Cross Plains	City of Cross Plains	1938	44			Kca	1,764	30.90 27.50 29.05	Sept. 4, 1940 Oct. 21, 1970 Oct. 7, 1974	N	N	Dug well. Reported yield 10 gal/min. Open hol- from 30 to 44 feet. Unused public supply well. Well 340 in Callahan County report. 4
ę.	921	do	Ben Welch	1926	48	8	48	Kca	1,763	21	Oct. 21, 1970	J, E 1-1/2	N	Reported yield 10 gal/min. Water sand reported at 23 to 45 feet. Unused public supply well. Well 341 in Callahan County report. 4
ē	922	do	E. E. Thate	1940	47	8 10	27 47	Kca	1,758	22.44	do	J, E 1-1/2	P	Reported yield 10 gal/min. Sand reported from 29 to 47 feet. Well 336 in Callahan County report. 4
10	923	do	- 3	8.5	50	97.71		Kca	1,747	15 30 16.73 16.68 12.56 12.09	Feb. 1946 Oct. 5, 1959 Apr. 29, 1966 Nov. 29, 1966 Nov. 16, 1970 Nov. 7, 1974	Ј, Е 2	P	Dug well. Reported yield 15 gal/min. 1/
б	924	do	941	***	50	(44)	**	Kca	1,745	30 12.21	Oct. 5, 1959 Oct. 21, 1970	J, E 1/2	P	Dug well. Reported yield 15 gal/min.
to	925	Harvey Wilcoxen	Lester King	1970	85	8	85	Kca	1,761	24.21	Oct. 19, 1970	Sub, E	Irr	Reported yield 4 gal/min. Slotted from 30 to feet. 2
	926	do	do	1970	85	8	85	Кса	1,766	35	do	Sub, E	Irr	Reported yield 40 gal/min. Slotted from 30 to 70 feet.
f-	927	Thomas E. Buck	Parker Baum	1964	40	3	40	Kca	1,775	15.45	do	Cf, E 1/3	D, S	Reported yield 3 gal/min. Water reported from sand and gravel at 20 to 40 feet.
ŧ ⁿ	928	Morris Thomas	Lester King	1970	60	8	60	Кса	1,746	17.34	do	Ј, Е 1/2	D	Reported yield 10 gal/min. Slotted from 30 to 50 feet. $\underline{2}$
	931	Ben Odom	Eddie Woods	1968	30	6	30	Kca	1,766	16.71	Mar. 25, 1971	Н, В	D	Water sand reported from 25 to 30 feet.
	932	O. B. Evanson	Jake Dallas	1971	60	8	60	Kca	1,780	28.60	do	J, E 1-1/2	S	Red beds reported at 60 feet.
	933	Dick Vestal	Lester King	1970	50	5	50	Kca	1,781	40	June 29, 1971	Sub, E	Irr	Measured yield 27 gal/min.
	56-413	W. R. Erwin		1940	25	THE RES	149	Kca	1,780	14.25	Oct. 27, 1970	c, w	D, S	Dug well. Water sand from 20 to 25 feet.
	702	Glenn Winfrey	W. D. Clark	1973	56	5	56	Kca	1,753	13.19	Oct. 7, 1974	Sub, E	Irr	Owner's well no. 1. Sand and gravel 12 to 52 feet.
	703	do	do	1973	50	5	50	Kca	1,753	10.50	do	Sub, E	Irr	Owner's well no. 2.
	704	do	do	1973	56	5	56	Kca	1,754	14.24	do	Sub, E	Irr	Owner's well no. 3.
	705	do	do	1973	51	5	51	Кса	1,756	15.30	do	Sub, E	Irr	Owner's well no. 4.
	706	do	do	1974	57	5	57	Kca	1,758	15.73	do	Sub, E	Irr	Owner's well no. 5.
	707	do	do	1974	62	5	62	Kca	1,760	19.80	do	Sub, E	Irr	Owner's well no. 6.
	61-201	Oran Baines	W. C. Baines	1917	27		22	P	1,770	14.27 11.70	Sept. 6, 1940 Mar. 19, 1971	N	N	Dug well. Reported yield 5 gal/min. Water reported from fractures in limestone. Well 421 callahan County report. 4
	63-101	L. M. Hodges	Lester King	1967	55	5	55	Kca	1,758	12.07	Feb. 15, 1971	J, E 1/3	D, S	Sand reported 12 to 35 feet. 2

See footnotes at end of table.

Table 5. -- Records of Selected Wells, Springs, and Test Holes -- Continued

						Casing	18			Wat	Water level	e.l				
	Well	Owner	Driller	Date	Depth of well (ft)	Diam- eter (in.)	Depth (ft)	Water bearing unit	Altitude of land surface (ft)	Below land- surface datum (ft)	mea	Date of measurement	Method of 11ft		Use of water	Remarks
	30-63-102	P. B. Long	1	;	13	;	:	Qal	1,675	8.64	Sept.	4, 1940	ů,	2	z	Dug well, Unused livestock supply, Well 357 in
	103	Mary Hattle Long	ı	1	12	1	1	Qal	1,665	6.82	Sept.	17,	71 N		z	Dug well. Reported weak supply. Well 358 in Callahan County report. 4
4	201	James Hickman	1	1934	28	1		Kcs	1,751	22.20	Sept.	. 4, 1940 13, 1970	ď	3	50	Dug well. Yield reported at 4 gal/min. Open hole from 12 to 28 feet, Well 356 in Callahan Gounty report. $\underline{\Psi}$
*	202	J. O. Freeman	3	;	150	9	150	p.	1,719	130	Jan.	13, 1971	c, 1/2	D,	es .	Reported yield 1 gal/min. Water reported from a limestone.
*	203	Alford Franke	E. D. Schfard	1934	06	80	09	D4	1,670	53.88	Feb.	15, 1971	c,	G D,	ss.	Water reported from 11mestone from 55 to 90 feet.
	204	Gross Plains Riding Club	Vernon Phillips	1958	30	9	30	Qal	1,682	7.74	Feb.	17, 1971	1,3		D.	Water reported from sand and gravel.
*	205	Traves Sanders	M. E. Howell	1930	13	ŀ	1	Kca	1,735	7.40		op	٦,	24	S	Dug well. Water reported from sand. Red beds reported at 13 feet.
	208	Mrs. R. B. Belyeu	I	1930	16	1	t t	Kea	1,711	9.30	Mar.	15, 1971	N 12		z	Dug well. Reported to be strong supply. Water reported from sand, Water has odor,
*	209	Clyde Kelly	ı	1	17	1	1	Qa1	1,668	14.00	Apr. Mar.	4, 1940 15, 1971	71 71		z	Dug well. City dump located 100 yards north and up slope from this well. Well 349 in Callahan County report. $\underline{\mathcal{Y}}$
	303	City of Cross Plains	i:	1945	62	80	62	Ксв	1,771	30	Oct.	5, 1959 21, 1970	٦,	12 12	a.	Reported yield 4 gal/min. Standby municipal source.
÷	304	op	:	1945	20	80	20	Kca	1,776	30	Oct.	5, 1959 21, 1970	x s	tel.	25	Do.
	305	do	:	1941	19	80	19	Kca	1,772	30	Oct.	5, 1959 21, 1970	3/4		d	Reported yield 15 gal/min. Red beds reported at 60 feet. Used only during summer months.
	306	op	Ē	1941	99	80	99	Kea	1,768	36.72	Oct.	5, 1959	2,5	pl pl	Ω,	Reported yield 4 gal/min. Used during summer months and for emergencies.
	307	op	Jake Dallas	1963	20	7	02	Kca	1,773	43		op	Sub, E 1/2		p.	Reported yield 15 gal/min. Slotted at 4,5 to 60 feet, Pumped continuously.
*	308	op	op	1963	7.0	7	70	Kes	1,773	77		op	Sub, E 3/4		g.,	Reported yield 8 gal/min. Water sand reported from 45 to 60 feet. Well pumped continuously.
*	309	Dale Grawford	Curtis Alford	1962	80	NO	80	Kea	1,772	44.70	Mar. Jan.	3, 1969	J, 1/2	**	Ω	Perforated from 50 to 70 feet.
	310	Fred Wilson	op	1963	63	9	. 69	Kca	1,761	36.79 27.17 25.98	Sept. Oct. Jan.	. 4, 1970 15, 1970 8, 1972	'n	ы	z	Perforated from 51 to 63 feet, \mathcal{Y}
*	311	Dan Applin	Jake Dallas	1965	04	2	07	Kca	1,732	23.01	Oct.	13, 1970	1,7	E D,	E0.	Reported strong supply. Two water sands reported.
*	312	C. M. Garrett	op	1966	84	8	87	Kca	1,680	21.80	Q.	op	Sub, E 1/2	E D,	ss .	Reported very strong supply.
*	313	op	T. C. Thorn	1890	09	9	09	Kea	1,682	24.09	Sept.	. 4, 1940 13, 1970	70 J, E		×	Pormerly supplied large poultry farm. Well 351 in Callahan County report. 4
*	314	H. R. Miner	Jack Leonard	1970	62	9	62	Kca	1,735	30	Oct.	27, 1970	70 Sub, E		р	Reported yield 6 gal/min.
See	footnotes at	See footnotes at end of table.														

Table 5. -- Records of Selected Wells, Springs, and Test Holes -- Continued

					Casing	Bu			Wat	Water level	1.			
Well	Owner	Driller	Date	Depth of well (ft)	Diam- eter (in.)	Depth (ft)	Water bearing unit	Altitude of land surface (ft)	Below land- surface datum (ft)	nea.	Date of measurement	Method of lift	Use of water	Remarks
30-63-315	H. R. Miner	ť	1951	72	9	72	Kca	1,730	29.27	Oct.	Oct. 27, 1970	м '2	S	Reported yield 10 gal/min. Red beds at 60 feet.
316	Mrs. Ed Long	:	1904	19	£	ŧ	Kca	1,685	10.07	Apr.	4, 1940 27, 1970	G, W	D, S	Dug well. Open hole from 6 to 19 feet, Well 350 in Callahan County report, $\underline{\mathcal{Y}}$
317	Oral Joy	Parker Baum	1955	28	9	28	Qal	1,651	21.90	Mar.	15, 1971	J, E	D, S	Reported yield 5 gal/min. Clay, sand and gravel reported from 0 to 28 feet. Red beds reported at 28 feet.
318	Red Grider	Eddie Woods	1964	35	8	35	Kea	1,735	26.60	June	3, 1971	C, W	S	1
707	G. L. Klutz	E E		1.5	Ė	-	d	1,705	12.50	Mar.	25, 1971	z	z	Dug well.
409	J. H. Balkum	ť	1920	25	;	1	Kcs	1,701	13.82	Oct.	Oct. 13, 1970	J, E	Q	Dug well. Open hole from 16 to 25 feet.

* For chemical analysis of water, see Table 7.

y Observation well.-for water-loved hydrographs on selected wells, see Figures 15 and 16.

g For drillers' log of well, see Table 6.

y For drillers' log of well, see Table 6.

y For results of pumping tests, yields, and specific capacities of wells, see Table 2.

y foorge, W. O., 1940, Callahm Gonny Twass-Records of wells and springs, drillers' logs, water analyses, and map showing locations of wells and springs; Texas Board Mater Engineers duplicated report.

y Sundstrom, R. M., and others, 1947, Public water supplies in central and north-central Texas Board Water Engineers duplicated report.

Table 6.—Drillers' Logs of Selected Water Wells, Oil and Gas Tests, and Stratigraphic Tests

	Thickness (feet)	Depth (feet)		Thicknes (feet)	Depth (feet)
Wel	30-36-611		,	Well 30-36-809	
	er: J. B. Eaton r: R. L. McKelvy			er: Wallace W. Henry iller: R. L. McKelvy	
Brown sand	3	3	Brown sand with gravel	4	4
Red clay	11	14	Red clay	1	5
Sand and gravel (dry)	7	21	Red sand (medium)	6	11
Sand and gravel (water)	10	31	Red sand with water show	3	14
Red clay	3	34	Red sand with very		
Yellow clay	2	36	small gravel (dry)	5	19
Yellow lime	_	36	Red sand (fine) with water	5	24
Mod	20.26.642		White sand with small gravel (water producing)	5	29
	30-36-613		Yellow clay	2	31
	er: F. L. Dugan er: F. L. Dugan		Yellow lime	1	32
Top soil, clay	4	4			
Sand and red clay	11	15		N-II 20 26 000	
Water sand and gravel	9	24		Well 30-36-909	
Limestone	_	24		wner: Dick Antilley Driller: Murl Bales	
			Red clay	8	8
	30-36-803		Water sand	14	22
	r: C. B. Kniffen : R. L. McKelvy		Conglomerate	2	24
Brown sandy clay	5	5	Water sand and gravel	8	32
Mixed sandy shale	26	31	Blue shale	3	35
Red sand	14	45			
Sand and large gravel	17	62	,	N-II 20 20 040	
Yellow clay	2	64		Well 30-36-913 wner: Seth Holden	
				iller: R. L. McKelvy	
	30-36-806		Top sand	3	3
	Harold Mauldin L. E. Hayhurst		Red subsoil	1	4
Sand	1	1	Pack sand	19	23
Red clay	5	6	Red clay	11	34
Gravel	9	15	Sand and gravel	21	55
Sand	3	18	Yellow clay	3	58
Gravel	3	21	Yellow lime	1-1	58
Sand	2	23			
Purple clay	1	24	v	Vell 30-36-917	
Sand and gravel	4	28		wner: Seth Holden	
Purple clay	10	38		iller: R. L. KcKelvy	
Sand and gravel (water)	4	42	Sandy top	1	1
Purple and white clay	1	43	Red shale	4	5
Conglomerate rock	2	45	Brown sand	17	22
White clay	2	47	Red shale	12	34
Conglomerate rock	1	48	Sand and gravel	24	58
Sandstone	5	53	Yellow clay and lime	2	60
Lime	3	56			

		Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
	Well 30-36-927			Well 30-37-401-	-Continued	
	Owner: Ray H. Walke			Brown sand	13	39
192	Driller: Ed L. Chapma			Sand and gravel (water)	7	46
Sand		5	5	Yellow clay	1	47
Caliche		3	8	Yellow rock	1	48
Sand		12	20			
Sand and gravel		2	21	WHO I THE REST		
Clay (gray)		7	28	Well 30-37		
Limestone		1	29	Owner: W. H. Driller: R. L. M		
Red clay		1	30	Sand	5	5
	Well 30-36-928			Yellow clay	7	12
	Owner: Ed Moore			Red clay	6	18
	Driller: R. L. McKelvy	,		Sand	8	26
Brown sand		8	8	Sand and gravel	7	33
Caliche		5	13	Lime	100.40	33
Pack sand		13	26	Line		00
Sand and large gravel		21	47			
Yellow clay		_	47	Well 30-37	7-405	
	Well 30-36-931			Owner: A. D Driller: W. D		
	Owner: George Sewe	II		Sand	3	3
	Driller: R. L. McKelvy	,		Red clay	21	24
Top sand		5	5	Gray clay	13	37
Red clay		4	9	Pack sand	11	48
Pack sand		22	31	Loose lime gravel	2	50
Brown sand		11	42	Red bed	4	54
Sand and gravel		11	53	Rock	1	55
Red clay		-	53			
	Well 30-36-934			Well_ 30-37	7-506	
200	Owner: O. C. Garner, J Driller: R. L. McKelvy			Owner: Roy Pr Driller: L. E. H		
Brown sand		4	4	Topsoil	1	1
Yellow clay		2	6	Brown clay	3	4
Brown sand		26	32	White clay	6	10
Sand and gravel (water	er)	15	47	Sand	5	15
Yellow clay		3	50	White clay	3	18
	Well 30-37-401			Sand and gravel	3	21
	Owner: Frankie Darne	11		White clay	4	25
	Driller: R. L. McKelvy			Yellow and white clay	5	30
Brown sand		6	6	Sandrock	5	35
Red clay		3	9	Yellow lime with layered clay	7	42
Brown sand		12	21	Red clay	4	46
Yellow clay		5	26	Blue shale	4	50

		Thickness (feet)	Depth (feet)			Thickness (feet)	Depth (feet)
	Well 30-37-507			We	all 30-37-715—Contin	nued	
	Owner: Oscar Brow			Sand and large gravel	(water)	8	36
	Driller: R. L. McKelv	У		Soft limestone		1	37
Sand, brown		32	32	Sand and gravel		14	51
Sand and gravel (wat	er)	8	40	Red clay		4	55
Yellow clay		3	43				
Lime		_	43		Well 30-37-722		
	Well 30-37-511				Owner: City of Clyde Driller: A. L. Varner		
	Owner: Jack T. Kido Driller; R. L. McKelv			Soil		7	7
Cond	Driller, R. L. Mickely	y 2	2	Caliche		3	10
Sand		4	6	Sand and gravel		8	18
Sandy				Rock		1	19
Red shale		5	11	Sand and gravel		21	40
Sand rock		6	17	Clay		10	50
Red sand (water)		6	23				
Sand and gravel		8	31		Well 30-37-728		
Yellow clay		4	35		Owner: City of Clyde Driller: R. L. McKelv		
Yellow lime		_	35	Topsoil		5	5
	Well 30-37-707			Caliche		2	7
	Owner: Eddie Koncz	ak		White pack sand		9	16
	Driller; R. L. McKely			Soft limestone		1	17
Top sand		2	2	Brown sand		8	25
Red sand		2	4	Sand and gravel (water	er)	12	37
Brown sand		18	22	Soft limestone		2	39
Water formation		2	24	Sand and gravel (water	er)	13	52
Sand with rock layers	S	16	40	Yellow clay		5	57
Water formation (larg	ge gravel)	6	46				
Red bed		1	47		Well 30-37-730		
	Well 30-37-714				Owner: Joe L. Jones Driller: R. L. McKelvy		
	Owner: City of Clyd	в		White sand		6	6
	Driller: R. L. McKelv	У		Mixed clay		11	17
Topsoil, black		6	6	Pack sand		15	32
Brown sand		11	17	Sand and gravel		15	47
Sand and gravel (dry)	K.	7	24	Yellow clay		2	49
Sand and gravel (wat	er)	29	53				
					Well 30-37-732		
	Well 30-37-715 Owner: City of Clyd	в			Owner: Charles Baile Driller: R. L. McKelvy		
	Driller: R. L. McKelv			Sand		2	2
Topsoil, black		8	8	Red clay		2	4
White sand		3	11	Yellow clay		8	12
Brown sand		11	22	Rock		1	13
Sand and gravel (wat	er show)	6	28	Brown sand		2	15

		Thickness (feet)	Depth (feet)		Thickne (feet)	
	Well 30-37-732—Contin	nued		v	Vell 30-37-739	
Rock		2	17		vner: Boyd Briscoe	
Brown sand		14	31		iller: R. L. McKelvy	
Water formation	(large gravel)	11	42	Brown sand	4	4
Red bed		2	44	Yellow clay		6
				Red sandy shale	6	12
	Well 30-37-733			Brown sand	12	24
	Owner: Glen Crosby Driller: R. L. McKelv			Red clay	11	35
Top sand		4	4	Red sand	12	47
Pack sand, clay		10	14	Yellow clay and lime	3	50
Pack sand, white	1	51	65			
Sand and gravel		17	82			
Sandy shale		8	90	V	Vell 30-37-801	
cana, anaic	Well 30-37-735				er: Baird City Schools ller: Jack R. Barnes	
	NOTE AND ADDRESS.			Soil and clay	5	5
	Owner: Ralph Ramere Driller: R. L. McKelv			Clay with sandstone	18	23
Topsoil, black		5	5	Conglomerate with breaks	7	30
Caliche		8	13	Conglomerate, tight	15	45
Brown rock		4	17	Hard limestone	18	63
Sand and gravel		4	21			
Yellow clay		6	27	v	Vell 30-37-814	
Water formation		3	30	Own	er: John L. Estes, Jr.	
Red clay		10	40		riller: A. L. Varner	
				Sand	1	1
	Well 30-37-737			Clay	18	19
	Owner: Clyde Church of (Driller: L. E. Hayhurs			Lime	1	20
Soil	Dillior. L. L. Hayridia	2	2	Shale	35	55
Caliche		13	15	Sand	7	62
Sand and gravel		25	40	Shale	22	84
Red clay		5	45	Sand	12	96
ned clay		٠	40	Sand and gravel	34	130
	Well 30-37-738			Rock	9	139
	Owner: Glen Curtiss Driller: R. L. McKelv			Shale	11	150
Brown sand		3	3	100	Vell 30-37-824	
Clay		2	5		vner: Don E. Boles	
Brown sand		25	30		ller: L. E. Hayhurst	
Yellow clay		6	36	Sand	1	are salin
White sand		6	42	Red clay	3	4
White sand and	gravel	5	47	Sand	11	15
Sand and gravel	(water)	8	55	Sand and gravel (water)	11	26
Yellow clay		6	61	Yellow clay	9	35

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
Well 30-37-82	5		Well 30-	44-301—Continued	
Owner: S. D. Tuck			Yellow clay and rock	1	28
Driller: R. L. McKe		90.00	Sand and gravel	10	38
Brown sand	18	18	Yellow clay	2	40
Sand and gravel (seep)	2	20			
Red and yellow clay	16	36	W	ell 30-44-304	
Yellow lime with blue streaks	29	65		er: Harold Holden er: R. L. McKelvy	
Blue shale	10	75	Topsoil	3	3
	_		Red clay	10	13
Well 30-37-82			Sand and gravel (large)	22	35
Owner: City of Ba Driller: Works Projects Adr				CORREL CORNERS MAJOR MARKETON	
Red clay	1	1		ell 30-44-307	
Sandy yellow clay	6	7		vner: C. E. Hicks Bridwell Oil Company	
Yellow sand	4	11	Red clay with some sand	14	14
White sand	2	13	Sand and gravel	28	42
Small gravel	1	14	Red clay	1	43
White chalk and sand	1	15	riod city	**	43
Sandy yellow clay	1	16	w	ell 30-44-401	
Red sand and small gravel	1	17	Ow	ner: Jack J. Hill	
Red and yellow sand	2	19	Drill	er: R. L. McKelvy	
Red sand and gravel (water)	6	25	Top soil	1	1
Coarse water gravel	5	30	Caliche	14	15
Rock	4	34	Sand and gravel with lime shells	29	44
TIOCK .	- 		Sandstone	1	45
Well 30-44-20	ı		Sandstone	A	1/2
Owner: Eula Public S Driller: School Trus			Sand and gravel (water)	12	46 58
Clay and caliche	12	12	Red bed	=	58
Sand and clay	3	15	344		
Sand	10	25		ell 30-44-402	
Water sand	5	30		rner: Doyle Lenz er: L. E. Hayhurst	
Well 30-44-30	i		Sand	1	1
Owner: Frank Blate			Red clay	1	2
Driller: L. E. Hayhu			Caliche	12	14
Sand	1	1	Sand	7	21
Red clay	6	7	Conglomerate rock	5	26
Sand	6	13	Sand	9	35
White clay	1	14	Purple and white clay	5	40
Sand	5	19	Sand and gravel	5	45
Gravel	5	24	Sand rock	1 1	46
White clay	2	26	Sand and gravel	3	49
Conglomerate	1	27	Red clay	7	56

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
Well 30-44-501			Well 30-44-704		
Owner: E. F. Beyer Driller: L. E. Hayhurs			Owner: Earle Zimmer Driller: L. E. Hayhurs		
Sand	2	2	Topsoil	2	2
Red and white clay	5	7	Caliche	13	15
Purple and white clay	23	30	Pack sand	5	20
Sand	19	49	White and red clay, sandy	33	53
	5	54	Black lime rock	1	54
White clay			Red clay	4	58
Sand and gravel (water)	26	80	White sandy clay	4	62
Red bed	_	80		3	65
Well 30-44-502			Red clay Pack sand	23	
Owner: C. E. Campbo	ell				88
Driller: C. E. Campbe			Sand rock	14	102
Topsoil, black	5	5	Red clay	5	107
Red clay	10	15	Sand and gravel (water)	18	125
Water sand (white, sugar)	7	22	Red clay	3	128
Red bed	_	22	Sand and gravel (water)	7	135
			Red clay	3	138
Well 30-44-507			Well 30-44-705		
Owner: Winfrod Gard Driller: L. E. Hayhur	st		Owner: Annie Mosie Driller: L. E. Hayhurs		
Sand	7	7	Topsoil	1	1
Red clay	1	8	Red clay	2	3
Sand and gravel	16	24	Sand	5	8
Yellow clay	10	34	Purple and white clay	10	18
Well 30-44-702			Sand	16	34
Owner: Tommy Smit	h.		Purple clay	3	37
Driller: L. E. Hayhurs			Sand and gravel (water)	7	44
Topsoil	2	2	Red clay	4	48
Red clay	5	7	Sand rock		
Sand	8	15		1	49
Red clay	4	19	Sand	1	50
Sand (water)	7	26	Purple clay	2	52
Red clay	4	30	Limestone	1	53
Yellow clay	5	35	Purple and white clay	4	57
	1.70	55.57	Limestone	1	58
Well 30-44-703			Purple and white clay	17	75
Owner: Frank D. Chra Driller: L. E. Hayhurs			Well 30-44-706		
Caliche	6	6	Owner: Burt Northcutt, Driller: A. L. Varner	Jr.	
Red clay	20	26	Soil	10	10
Sandstone	13	39			10
Sandy clay	11	50	Sandy Sand and water areas	8	18
Sand and gravel (water)	16	66	Sand and water gravel	13	31
Yellow lime	4	70	Clay	3	34

	Ti	rickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
v	Vell 30-44-706—Continue	ed		Well 30	0-44-806	
Sand		6	40		L. H. Lilly	
Rock		13	53		E. Hayhurst	
	W. II 00 44 000			Sand	1	1
	Well 30-44-803			Red clay	4	5
	Owner: Michael B. William Driller: Jack R. Barnes	is		Sandstone	3	8
Topsoil		4	4	Purple and white clay	26 3	34
Sticky clay		21	25	Sandstone	18	37
Clay and caliche		25	50	Pack sand	2	55 57
Sandy clay		8	58	Conglomerate rock	17	74
Sand and clay		11	69	Sandstone		
Sand and gravel		15	84	Conglomerate rock	2	76
Hard sand		2	86	Sand (water)	15	91
Sand		17	103	Yellow clay	1	92
Sand and lime shale	i	20	123	Well 30	0-44-807	
	Well 30-44-804				erman Scott E. Hayhurst	
	Owner: Jimmy Partin, III			Red clay	6	6
	Driller: Robert Higgins			Sand	8	14
Soil		1	1	Sand and gravel	16	30
Caliche		3	4	Gravel and clay	7	37
Lime		4	8	Purple and white clay	4	41
Sandy clay		22	30	Lime	1	42
Sand (water)		5	35			
Sandstone		33	68	Well 30	0-44-808	
Lime rock		2	70		E. Robertson	
Sandy clay		40	110		C. McCarrell	
Clay		20	130	Topsoil	1	1
Rock lime		2	132	Red clay	9	10
Water sand and gra	vel	2	134	White sand	18	28
Basin clay		19	153	Red clay	6	34
				Sand rock	13	47
	Well 30-44-805			Sand and gravel	13	60
	Owner: Casto Smith Driller: L. E. Hayhurst			Red bed clay	1	61
Topsoil		1	- 1		0-44-809	
Red clay		3	4		. C. Tucker	
White sandy clay		10	14		E. Hayhurst	1
Sand and gravel		8	22	Topsoil Red slav	2	3
Sand rock		2	24	Red clay	21	24
Sand		5	29	Pack sand		
Sand rock		1	30	Red clay	13	37
Sand and gravel		10	40	Sand rock Pack sand	1	38 44
					6	44

		Thickness (feet)	Depth (feet)		Thickne (feet)	ss Depth (feet)
	Well 30-44-809—Cont	inued			Well 30-45-904	
Sand rock		1	56		Owner: Bill Varner	
Sand and grav	el (water)	5	61		Driller: Jack Leonard	
Red bed		_	61	Topsoil	4	4
				Clay	22	26
	Well 30-44-901			Sandy clay	7	33
	Owner: W. E. Conn Driller: L. E. Hayhur			Sand and gravel	7	40
Topsoil	Dillier. L. C. Hayridi	2	2	Blue shale	2	42
White clay		6	8			
CARGO CONTRACTOR OF	al (septor)	5	13			
Sand and grav Yellow !ime	ei (water)	3	16		Well 30-46-501	
		4		C	Owner: Robert Eubanks Driller: A. L. Varner	
Yellow clay		4	20	Soil	5	5
	Well 30-45-103			Blue shale	15	20
	Owner: D. C. Rogers,	Jr.		Sandy shale (salt water)		25
	Driller: R. L. McKely	Ŋ		Blue shale	15	40
Top sand		4	4	Dide Strate	15	tona 8
Yellow clay		3	7		Well 30-46-703	
Pack sand		19	26			
Sand and grav	el	12	38		Owner: C. N. Eller, Sr. Driller: R. L. McKelvy	
Sandy clay		2	40	Brown sand	10	10
Yellow clay		2	42	Pack sand	15	25
				Light sandstone	25	50
	Well 30-45-107			White sand and gravel		
	Owner: Dr. E. W. Eva Driller: R. L. McKelv			with water	20	70
Top sand	Di mor, II. E. Morton	2	2	Red bed	2	72
Clay		2	4	Red sand	2	74
Brown sand		24	28	Red bed	2	76
Water formatio	in (dru)	5	33			
		8	41		Well 30-46-705	
Sand and grave	ei (water)	-	45	Ow	ner: Charles M. Eller, Jr.	
Yellow clay		4			Driller: R. L. McKelvy	
Blue shale		3	48	Surface and clay	8	8
Rock		_	48	Pack sand	14	22
	Well 30-45-203			Sand and gravel	3	25
	Owner: W. T. Barne	s		Pack sand	10	35
	Driller: L. E. Hayhurs			Sand and gravel	10	45
Sand		1	1	Sand and clay	5	50
Brown clay		1	2	Fine sand	2	52
Sand		24	26	Clay and gravel	5	57
Yellow clay		5	31	Fine sand	8	65
Lime		18	49	Yellow clay red bed	5	70

		Thickness (feet)	Depth (feet)		Т	hickness (feet)	Depth (feet)
	Well 30-46-708				Well 30-46-906 ¹		
	Owner: Dave Pillars Driller: R. L. McKelvy				Owner: T. W. Eastham Priller: A. R. McElreath, Jr	r.	
Brown sand		3	3	Soil		5	5
Yellow sand		2	5	Yellow clay		7	12
Brown sand		9	14	Yellow gravel		13	25
White sand		1	15	Red clay		22	47
Sandy shale		11	26	Red bed		11	58
White sand with	gravel	6	32	Yellow clay		2	60
Red bed		16	48				
	and the second				Well 30-47-603		
	Well 30-46-903 Owner: Bob Beckham			C	wner: Raymond Sprawle Driller: A. L. Varner	S	
	Driller: A. L. Varner			Topsoil		2	2
Soil		4	4	Clay		8	10
Rock		56	60	Sandy and sand rock		5	15
Shells and shale	•	20	80	Water sand and gravel		10	25
Sand		15	95	Red clay		16	41
Red rock		115	210				
Sand		25	235		Well 30-47-606		
Clay		10	245		Owner: G. A. Reece Driller: R. L. McKelvy		
Sand (water)		20	265	Topsoil and pack sand	,	18	18
Clay		1	266	Water sand		5	23
				Pack sand		12	35
	Well 30-46-9041			Clay		7	42
	Owner: C. M. Caldwel Driller: Star Oil Compar			Red bed		3	45
Surface rock		22	22				
Shale and rock s	streaks	13	35		Well 30-47-908		
Hard sandy shale	е	65	100		Owner: J. L. Marinelli		
Yellow shale		30	130		Driller: Vernon Phillips		
Sandy shale		40	170	Sand		8	8
Red shale		20	190	Gray clay		4	12
Gravel		45	235	Sand and gravel		21	33
Red shale		60	295	Red bed		2	35
	Well 30-46-9051				Well 30-52-101		
	Owner: Edgar Smith Driller: Ike Drilling Comp	any			Owner: C. W. Carter Driller: C. W. Carter		
Soil		1	1	Lime, caliche		38	38
Caliche		24	25	Sand and gravel (little	water)	2	40
Gravel		10	35	Limestone (little or no	water)	40	80
Lime		3	38	Sand and gravel		40	120
Brown shale		37	75	Black shale		1	121

		Thickness (feet)	Depth (feet)			Thickness (feet)	Depth (feet)
	Well 30-52-103				Well 30-52-501		
	Owner: C. W. Carter Driller: Jack Leonard				Owner: Ira Crawford Driller: L. E. Hayhurst		
Black topsoil		3	3	Topsoil		1	1
Red clay		13	16	Red clay		3	4
Yellow clay		4	20	Sand		10	14
Red water sand		3	23	Purple and white class	Y	2	16
Sand and gravel		12	35	Yellow clay		2	18
Yellow clay		1	36				
	10.00						
	Well 30-52-105				Well 30-52-703		
	Owner: S. O. Barton Driller: L. E. Hayhurs	t			Owner: Lowell Johnson Driller: L. E. Hayhurst		
Topsoil		1	1	Caliche		7	7
Purple and white clay		20	21	Purple and white clar	y	40	47
Sand (water)		9	30	Pack sand		15	62
Purple and white clay		24	54	Red bed		8	70
Sand rock		3	57				
Purple and white clay		41	98				
Pack sand		5	103		Well 30-52-801		
Sand and gravel (water	r)	15	118		Owner: Guy Williams		
Red clay		2	120		Driller: L. E. Hayhurst		un train
Purple and white clay		15	135	Sand		1	1977
	Well 30-52-107			Red clay		4	5
	Owner: C. W. Barnar	d		Sand		16	21
	Driller: L. E. Hayhurs			Sandstone		1	22
Sand		1	1	Lime		15	37
Red clay		5	6				
Sand		2	8		Well 30-52-802		
Sand and gravel		6	14		Owner: Leon Barr		
Yellow lime		4	18		Driller: L. E. Hayhurst		
	Well 30-52-401			Topsoil		1	1,
	Owner: Stella Johnso	_		Red clay		7	8
	Driller: Jack Barnes			Sand		11	19
Soil and caliche		10	10	Yellow clay		3	22
Red shale and limeroc	k	10	20				
Red and gray shale		15	35		Well 30-52-804		
Red shale		20	55		Owner: Alvin Cox		
Sand shale		5	60		Driller: L. E. Hayhurst		
Red shale and lime		25	85	Caliche		2	2
Sand and clay		5	90	Clay		14	16
Sand		15	105	Pack sand		39	55
Shale		5	110	Purple and white clay	<i>r</i>	9	64
Brown clay and limero	ck	5	115	Lime		1	65

	1	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
	Well 30-52-902			Well 30-54-10	05—Continued	
	Owner: Guy Williams			Sand	5	50
	Driller: L. E. Hayhurst			Red clay	5	55
Topsoil		1	1	White sand	10	65
Red clay		24	25	Water sand	5	70
Pack sand		14	39	Lime	5	75
Purple and white clay		32	71	Red bed clay	5	80
	Well 30-52-903			Lime with hard streak	22	102
Dri	Owner: Carl Dunlap ller: Repps B. Guitar,	Jr.		Well 30-	54-205¹	
Sand and clay		14	14	Owner: C. M Driller: Roxanana Pe		
Sand and fine gravel		8	22	and C. O	7 I 1 1 7 1 4 4 4 1 1 1 1 1 1 1 1 1 1 1 1 1	
Rock limestone		7	29	Surface	3	3
Red and blue clay		21	50	Lime	33	36
				Sandy shale	30	66
	Well 30-54-101			Broken lime	10	76
0	wner: Robert McClain Driller: Lester King			Sand rock	8	84
Sail	Diffier. Lester King	2	2	Yellow clay	21	105
Soil Sand		28	30	Sand and gravel	5	110
Water sand		10	40	Yellow clay	30	140
terra symptom on make				Lime	10	150
Red (shale?)		10	50	Pink shale	15	165
Lime		8	58 63	Red rock	28	193
Red shale		17	80	Gray lime	7	200
Lime		3	83	Broken lime	16	216
Blue shale		5	88	Sand rock	9	225
Lime		2		Sand rock cave	22	247
Blue shale		2	90	Red bed	7	254
	Well 30-54-103			Brown shale	76	330
	Owner: H. J. Gibbs Driller: W. D. Clark					
Soil		5	5	Well 30-	54-3081	
Sand		25	30	Owner: C. M Driller: Broderi		
Clay and sand		19	49	Soil	5	5
Water sand		7	56	Yellow clay	15	20
Blue shale		14	70	Sand (fresh water sand)	30	50
				Gray shale	30	80
	Well 30-54-105			Red bed	15	95
C	Owner: Russell H. Dye Driller: Dick Marrow			Sand, sandy shale	73	168
Sandy topsoil	Sion Mariow	2	2	Red bed	32	200
Caliche		6	8	Red shale	10	210
Sandrock and sand		27	35	Blue shale	30	240
Red clay		10	45	Lime shale	15	255
		10	40	Line on the		200

		Thickness (feet)	Depth (feet)			Thickness (feet)	Depth (feet)
	Well 30-54-3091				Well 30-54-606		
	Owner: — Caldwell Driller: C. B. Edgar				Owner: Glen Wooten Driller: Jake Dallas		
Yellow clay and fine				Sand and caliche		48	48
sand mix		120	120	Water sand and gravel		32	80
Pink clay and fine sand	i	40	160	Red clay		4	84
Pink shale and fine sand mix		20	180		Well 30-54-612		
Coarse orange and clear Trinity conglomerate	ar basal	35	15		Owner: Edgar Albrich Driller: Eddie Woods	t	
Yellow and pink plastic	shale			Clay and sand		45	45
and conglomerate		10	225	Sand (seep)		7	52 .
Red plastic shale		5	230	Clay		28	80
	Well 30-54-502			Water (sand and gravel)		20	100
	Owner: Lee Caldwell			Red bed		2	102
	Driller: Murl Bales			Red Ded		2	102
Topsoil and clay		15	15		Well 30-54-902		
Pack sand		15	30		Owner: Dr. R. H. Tull		
Water sand (dry)		6	36		Driller: J. C. Childers		
Pack sand		22	58	Topsoil		2	2
Gravel (water)		15	73	Sandy shale		18	20
Red clay		5	78	Sand and gravel		8	28
				Red bed		-	28
	Well 30-54-601				Well 30-55-104		
	Owner: J. C. Childers Driller: J. C. Childers				Owner: Red Duncan Driller: W. D. Clark		
Soil		2	2	Clay and sand		20	20
Sandy shale		20	22	Pack sand		70	90
Pack sand		6	28	Clay		10	100
Blue shale		10	38	Gravel and sand		10	110
	Well 30-54-604			Red bed		-	110
	Owner: John T. Crawle	э			Well 30-55-105		
	Driller: W. D. Clark				Owner: A. L. Varner		
Surface		2	2		Driller: A. L. Varner		
Caliche		8	10	Soil		5	5
Rock		1	11	Caliche		10	15
Red bed		9	20	Sandy shale		50	65
White clay		4	24	Clay		5	70
Sand and gravel		6	30	Sandy shale		80	150
White clay		6	36	Water sand and gravel		35	185
Rock		1	37	Yellow clay		10	195
White sandy clay		20	57	Lime		3	198
Sand and fine gravel		7	64	Clay		2	200
Clay		6	70	Shale and clay		18	218

		Thickness (feet)	Depth (feet)			Thickness (feet)	Depth (feet)
	Well 30-55-106				Well 30-55-221		
	Owner: J. T. Howard Driller: A. L. Varner				Owner: Leonard Mose Driller: A. L. Varner	ly	
Sand		3	3	Soil		5	5
Red clay		7	10	Sandy shale		30	35
Yellow clay		40	50	Clay		15	50
Pack sand		13	63	Water sand (water)		40	90
Water sand		30	93	Red shale		10	100
Red clay		32	125				
					Well 30-55-307		
	Well 30-55-206				Owner: Nathan Foster Driller: Kit Carson	r.	
	Owner: Charles Sowe Driller: A. L. Varner	11		Soil		5	5
Topsoil	Dimon 7 % E. Vario	5	5	Sand rock		5	10
Sand rock		10	15	Sand		10	20
Sand (water seep)		5	20	Yellow clay		15	35
Sandy shale and sand		40	60	Hard sand		25	60
Water sand		35	95	Water sand		10	70
Red mixed and blue sh	ale	20	105	Red shale		10	80
ned mixed and brac sin		20	100	Water sand		10	90
	Well 30-55-213			Red shale, sandy		10	100
	Owner: W. D. Clark			Blue shale		10	110
	Driller: W. D. Clark			Water sand		20	130
Sand and clay		13	13	Red sand (red bed)		2	132
Sand		5	18		W. II 20 FF 200		
Red bed		2	20		Well 30-55-309		
Sand and gravel		40	60		Owner: Robert Brashea Driller: Lester King	ar	
Red bed		7	67	Soil		2	2
	Well 30-55-216			Sandy shale		53	55
	Owner: Jack Smith			Water sand		20	75
	Driller: J. C. Childers			Sand and gravel (wa	ter)	14	9
Soil		2	2	Red shale		11	100
Clay		3	5		Well 30-55-406		
Sandy clay		25	30		Owner: Dan L. Childen		
Sand (water)		5	35		Driller: Glen Vaughn	3	
Sand and gravel		115	150	Sand		6	6
Red bed		5	155	Red clay		6	12
	Well 30-55-217			Sandstone		4	16
	Owner: J. N. Nisbett			Water sand		8	24
	Driller: Curtis Alford			Blue clay		6	30
Soil		2	2		Well 30-55-408		
Clay		4	6		Owner: J. B. Green		
Gray sandy		14	20		Driller: Jake Dallas		
Water sand		10	30	Clay		15	15
Lime		1	31	White sand		2	17

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
Well 30-55-408-Co	ntinued		Well 30-55-	518	
Yellow clay	7	24	Owner: Troy L	amb	
Gravel and sand	6	30	Driller: Jack Lee	onard	
Red bed	10	40	Sandy clay	12	12
			Sand and gravel	8	20
Well 30-55-40			Blue shale	4	24
Owner: C. M. Kinn Driller: W. D. Cla			Well 30-55-6	307	
Surface	5	5	Owner: Arvin Br Driller: Lester		
Sand	8	13	Topsoil	2	2
Blue clay	6	19	White shale	51	53
Sand and gravel	12	31	Lime	2	55
Light blue clay	7	38	Yellow shale	3	58
Pack sand with some sand	8	46	Red clay	17	75
Blue clay	2	48	0(0)000000000000	15	90
Pack sand	8	56	Sand (dry) White shale	10	100
Clay	2	58		5	100
Rock	1	59	Red shale	153	(0.70,000)
Red bed	1	60	Water sand	17	122 130
W-II 20 EE E0	2		Red shale	0	130
Well 30-55-50			Well 30-55-6	808	
Owner: W. A. G Driller: Jake Dall			Owner: S. E. F		
Soil	2	2	Driller: Lester		- Land
Pack sand	18	20	Topsoil	2	2
Sand (water)	20	40	Sandy shale	40	42
Shale	8	48	Water sand and gravel	32	74
			Red shale	11	85
Well 30-55-51	5		Well 30-55-6	10	
Owner: Richard Sr Driller: R. L. McKe			Owner: S. E. P Driller: Texas Department of	D and the contract of the cont	s
Brown sand	3	3	Sand, brown, topsoil	5	5
Yellow clay	2	5	Sand, reddish, fine grained,		A CONTRACTOR
_	9	14	with gray sand streaks	9	14
Sand with gravel	6	20	Sand, dark red, fine grained, with gray-white		
Brown sand	9	29	clay streaks	18	32
Blue shale	6	35	Sand, gray, medium grained, and gravel, small with oc-	22	04
Well 30-55-51	7		casional white-gray clay streak	32	64
Owner: Mrs. Bryan B Driller: A. L. Varn			Clay, green, sandy Sand, gray, fine-medium-	2	66
Soil	5	5	grained, gray, and gravel with green clay stringers	10	76
Clay	25	30	Clay, brown, sandy with		
Pack sand	30	60	sand and gravel streaks	3	79
Water sand	25	85	Clay, brown to green with		
Red bed	13	98	green shale and red to brown sandstone streaks	4.5	83.5

	Thickness (feet)	Depth (feet)			Thickness (feet)	Depth (feet)
Well 30-55-702				Well 30-55-928		
Owner: Howard Cox Driller: Lester King				Owner: Morris Thoma Driller: Lester King	is	
Soil	3	3	Soil		3	3
Sandy shale	17	20	Red shale		7	30
Water sand	10	30	Water sand		15	45
Red shale	15	45	Red shale		15	60
				Well 30-55-930 ¹		
				Owner: W. R. Erwin		
Well 30-55-704			Driller: H	umble Oil and Refinin	g Company	
Owner: Kenneth Whithu Driller: L. E. Hayhurst			Clay		4	4
Sand	1	1	Gray clay		26	30
Sand and gravel	9	10	Red clay		25	55
White clay	2	12	White clay		20	75
Sand and gravel	11	23	Red rock		20	95
White clay	5	28	Sand		5	100
Red shale	20	48	Gray shale		5	105
Tion of the control o		10	Red rock		20	125
			Gray shale		15	140
Well 30-55-706			Lime		15	155
Owner: Oran Bains, Jr Driller: W. D. Clark	7.		Red rock	Well 30-63-101	15	170
Clay and sand	22	22				
Sand and gravel	7	29		Owner: L. M. Hodges Driller: Lester King	•	
Red clay with yellow clay	31	60	Caliche-clay		12	12
			Sand		23	35
			Red shale		25	60
Well 30-55-913			Blue shale		5	65
Owner: City of Cross Pla Driller: Jake Dallas	ins			Well 30-63-306		
Caliche and gravel	15	15	0	wner: City of Cross Pla Driller: —	ains	
Yellow sandy clay	25	40	Soil	Dimer. —	5	5
Sand with some gravel	20	60	Fine white sand		61	66
Red shale	10	70	Red bed		01	66
			ned bed		_	00
Well 30-55-925				Well 30-63-314 Owner: H. R. Miner		
Owner: Harvey Wilcoxe	n			Driller: Jack Leonard	i	
Driller: Lester King			Caliche and sand		30	30
Soil	5	5	Water sand, white		10	40
Pack sand	25	30	Clay with some sand		10	50
Water sand	40	70	Sand and clay		11	61
Red shale	15	85	Red bed		1	62

¹ Partial drillers' log from an oil or gas test.

Table 7. -- Chemical Analyses of Water Erom Selected Wells, Springs, and Test Holes

(Analyses are in milligrams per liter except percent sodium, specific conductance, pH, SAR, and RSC.)

Water-bearing unit: Qal, Quaternary or Recent alluvium; Kca, Antlers Formation; P, Permian rocks undifferentiated.

Analyses made in 1939 and 1940 were by chemists employed on Work Projects Administration Project 10443. Other analyses performed by Texas Department of Health except where indicated by footnote.

Well	Aquifer	Depth of well (ft)	Date of collection	Silica (SiO ₂)	Iron (Fe)	Cal- cium (Ca)	Magne- sium (Mg)	Sod- ium (Na)	Potas- sium (K)	Bicar- bonate (HCO ₃)	Sul- fate (SO ₄)	Chlo- ride (C1)	Fluo- ride (F)	Ni- trate (NO ₃)	Boron (B)	Dis- solved solids	Total hard- ness as CaCO3	Specific conduct- ance (micromhos at 25°C)	рН	Per- cent sod- ium	Sodium adsorp- tion ratio (SAR)	- sodiu carbo
30-28-703	Qal	18	Mar. 30, 1971	21		139	53	260	< 1	349	304	200	1.2	126	0.5	1 267	F70	1.000	7.0			
803	177,150	15	-0.00 to -0.							37.000	1.52.10	280	1.2	136	0.5	1,367	570	1,980	7.8	50.0	4.7	0.0
803	Qa1		Mar. 2, 1940			1 150				***	43	28		< 20		370	293		7.7	7.7		
31-910	Qa1 P	15 31	Mar. 5, 1971			1,150	337	1,810	7	194	114	5,700	.4	< .4	.2	9,200	19	11,900	7.2		200	
910	P		Aug. 2, 1940	2000		186	38	127*		275	138	237	.4	240		1,101	623			30.8	2.2	.0
36-102		31	Mar. 16, 1971	17		358	65	276	2	242	348	600	.6	480	.4	2,265		3,150	7.4	34.0	3.5	.0
	Qa1	Spring	Mar. 8, 1971	11		432	138	-7100	< 1	200	222	1,530	.7	11		2,862	1,650	4,490	7.6	35.6	4.4	.0
301	Kca	Spring	Sept. 8, 1970			13	14	386		670	188	133	5.2	< .4		1,088	89	1,700	8.2	90.3	17.7	9.1
302 302	Kca	35	Feb. 15, 1940			36	12	6*		134	1.6	17		< 20		172	137			8.6	.2	.0
302	Kca	35 35	Dec. 10, 1970			74	6	.5	7	246	< 4	4	.1	28	.1	272	211	420	7.5	4.7	.1	.0
303	Kca	25	July 25, 1978			76	11	8		247	3	14		37		292	234	467	7.0	6.9	.2	.0
501	Kca P		Dec. 10, 1970			79	9	96	< 1	400	74	21	1.6	9	.5	506	235	765	8.1	47.0	2.7	1.8
		30	Feb. 22, 1940			170	142	271*		378	244	660	2.0	120		1,794				36.9	3.7	. (
601	Kca	Spring	Sept. 8, 1970			76	22	94	< 1	373	122	45	1.5	< .4	.4	576	282	879	7.5	42.1	2.4	.5
602	Kca	13	July 31, 1940			82	29	121*		378	138	89		< 20		664	323			44.8	2.9	.0
602	1535.00	13	Sept. 8, 1970			75	40	141	< 1	488	148	77	2.1	2.5	.6	754	351	1,169	7.6	46.5	3.2	. 5
603	Kca	21	July 31, 1940			286	53	53*		214	101	176		645		1,419	933	5 W W 1	**	11.0	.7	. (
604	Kea	21	Sept. 8, 1970			123	23	1000	< 1	301	120	89	.5	84	.2	688	403	1,091	7.4	30.4	1.7	.0
	Kca	57	Nov. 4, 1970			166	23	104	< 1	407	100	179	1.1	45	.2	837	510	1,360	7.2	30.7	2.0	.0
611	Kca	36	Dec. 10, 1970			309	40	140	3	397	150	371	.5	284	.3	1,511	940	2,250	7.1	24.5	1.9	.0
612	Kca	40	do	19		277	29	205	2	488	210	439	.5	15	.2	1,436	810	2,230	7.4	35.4	3.1	.0
801	Kea	18	Sept. 8, 1970			120	19		< 1	231	103	229	1.0	22	.3	747	380	1,270	7.4	40.2	2.6	.0
802 802	Kea	20	Feb. 22, 1940			85	10	40*		293	26	33		36		374	256			25.6	1.0	.0
803	Kca	64	Dec. 9, 1970	19		149	17	70	< 1	331	74	158	.8	20	.2	673	441	1,098	7.5	25.6	1.4	.0
	-		do	1.55		99	12	577-5	< 1	257	29	80	.3	8	.2	406	295	679	7.2	18.9	.8	.0
806	Kca	50	Jan. 18, 1971	8		39	7	1000	< 1	162	4	7	.2	< .4	.1	157	127	278	7.5	15.8	.4	.1
808	Kca	30	Aug. 1, 1940			127	86	191*		378	494	188				1,271	674			38.3	3.2	.0
809	Kca	32	Mar. 17, 1971	29		58	7	6	< 1	177	12	15	.4	4.4	.1	219	174	345	7.5	6.9	.1	.0
809	Kea	32	July 25, 1978	35		56	6	8		177	16	14	.4	1.7	***	224	167	341	7.6	9.6	.2	.0
810	Kca	40	Mar. 30, 1971	35		267	34	510	2	340	360	860	1.1	14	.6	2,250	810	3,380	7.4	57.8	7.8	.0

Table 7 .-- Chemical Analyses of Water From Selected Wells, Springs, and Test Holes -- Continued

28.6 1.9	21.1			2.8			1.4	
28.6		1.9	1.9	2.8	3.6	5.6	7.	50
						* *	Н	s.
	56.7	28.6	28.6	37.0	34.8	p. 4.0	26.5	12.4
7.	4.9	7.3	7.3	7.7	7.2	7.,	7.4	7.4
1,460	12,000	1,460	1,460	1,740	2.840	0,040	958	824
580	6,510 >	580	580	019	1.050	1,030	395	366
968	16,923	896	896	1,133	1.895	630	620	501
4.	;	4.	4.	4.	6	2 0	. 7	.1
37	4.	37	37	52	12	7 27	45	15
	8.	1.4	1.4	1.1	57	? -	1.1	4.
191	10,500	191	191	268	620	0.70	19	81
	145	135	135	220	374	4/5	20 1	27
436	64	436	436	361	437	777	044	360
-	6	1	-	2	2	, -		2
106	, 920			164	258			26
	432 3	29	29	32	48	2 0	2 .	16
183	, 890	183	183	190	341	129	627	133
	1	1	1	:	;		:	1
33	N	33	33	26	25	3.5	2 2	54
0261	1761	0261	0261		0261	020	0/61	1968
6,	25,	6,	6	op			,	21, 1968
Fov.	Feb.	Fov.	, vo.		Sept	Now	Nov.	July
41	Spring	41	41	20	29	75	, i	27
Kca	Kca	Kca	Kca	Kca	Kea	Koa	NCA.	Kea
25	509	702	702	704	705	708	00/	710
	Spring Feb. 25, 1971 2 1,890 432 3,920 9 49 145 10,500 .8 < .4 16,923			41 Kov. 6, 1970 33 183 29 106 <1 436 135 191 1.4 37 .4 896	41 Eov. 6, 1970 33 183 29 106 <1 436 135 191 1.4 37 ,4 896 50 do 26 190 32 164 2 361 220 268 1.1 52 ,4 1,133	41 Cov. 6, 1970 33 183 29 106 <1 436 135 191 1.4 37 .4 896 50 do 26 190 32 164 2 361 220 268 1.1 52 .4 1,133	41 Cov. 6, 1970 33 183 29 106 <1 436 135 191 1.4 37 .4 896 50 do 26 190 32 164 2 361 220 268 1.1 52 .4 1,133 29 Sept. 9, 1970 25 341 48 258 2 437 374 620 .5 12 .3 1,895	41 Eov. 6, 1970 33 183 29 106 <1 436 135 191 1.4 37 .4 896 50 do 26 190 32 164 2 361 220 266 1.1 52 .4 1,133 29 Sept. 9, 1970 25 341 48 258 2 437 374 620 .5 12 .3 1,895 54 Nov. 4, 1970 35 129 18 66 <1 440 48 61 1.1 45 .2 620

See footnotes at end of tal

Table 7 .-- Chemical Analyses of Water From Selected Wells, Springs, and Test Holes -- Continued

			_																	_													
Residual sodium carbon- ate (RSC)	0.0	0.	0.	0.	0.	1.5	0.	0.	0,	0.	;	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	۳.
Sodium adsorp- tion ratio (SAR)	1.0	1.9	1.4	2,3	2.3	1.9	5.4	1.1	1.5	9.5	í	3.0	2.3	5.	٧.	6.	5.	6.	9.	1.7	6.	6.	7.7	6.	3.5	4.4	1.4	5.1	2.5	1.6	60	4.7	2.7
Per- cent sod- ium	20.8	27.2	23.6	34.1	28.8	32.5	58.7	22.8	26.8	6.69	1	43.0	41.0	1.91	13.3	23.2	13.2	25.8	14.2	25.6	21.4	19.4	41.5	21.2	34.0	45.9	29.0	48.7	25.5	28.3	18.2	57.5	45.2
Н	7.3	7.4	;	7.3	7.6	7.3	6.9	7.4	9.7	7.3	7.5	9.9	7.7	1	7.6	7.3	7.3	7.1	7.5	7.4	7.7	6.7	7.5	8.3	7.5	7.5	7.5	7.3	7.2	7.2	7.4	;	0.8
Specific conduct- ance (micromhos at 25°C)	938	1,600	;	;	1,980	1,054	1,770	806	1,200	2,400	773	į.	871	1	710	654	654	483	717	1,680	816	662	7,080	638	3,130	2,360	815	2,540	3,440	1,045	830	1	918
Total hard- ness as CaCO ₃	414	059	515	764	830	416	354	351	795	358	398	398	280	228	341	269	320	187	341	089	333	353	2,940	290	1,160	069	336	730	1,380	412	382	313	281
Dis- solved solids	568	1,010	740	887	1,343	999	926	498	695	1,481	685	816	550	304	432	393	415	293	434	1,084	478	488	5,691	413	2,034	1,501	539	1,701	2,056	671	525	884	592
Boron (B)	0.1	ε.	:	;	.2	ε.	.1	.2	.2	1.	.1	:	.2	;	ε,	.2	.2	.1	.3	.1	.1	7.	00	.3	5.	€.	.2	5.	1	.1	.2	;	4.
Ni- trate (NO ₃)	9	13	36	56	14	7.	4.	13	4·	4.	13	05	3.5	< 20	4. >	2.5	۷.	1	7	135	8	1.5	9	4.3	85	26	12	110	31	104	31	132	23
Fluo- ride (F)	0.7	1.0	6.	9.	1.1	9.	.1	7.	.2	5.	6.	5.	5.	5.	.7	9.	.2	9.	.3	s.	7.	4.	1.7	1.1	e0.	6.	1.6	2.5	5.	1.0	1.4	3.1	3.2
Chlo- ride (Cl)	98	248	119	162	369	99	471	54	239	580	42	169	98	37	45	61	26	40	57	281	124	98	2,240	33	830	530	35	520	1,050	29	5.1	165	69
Sul- fate (SO ₄)	47	140	100	123	235	34	4 4	30	45	220	56	126	98	36	55	40	20	24	20	191	87	44	1,450	87	270	213	73	281	57	62	74	130	88
Bicar- bonate (HCO ₃)	403	470	451	478	472	009	279	412	303	244	418	358	327	220	329	268	387	211	356	272	237	321	314	328	243	320	400	343	331	386	343	311	366
Potas- sium (K)	1	1	:	11	2	1	4	-	6	15	1	1	2	1	-	1	5	1	7	1	-	1	2	1	-	-1	1	7	1	1	7	:	
Sod-Person	50 < 1	111 < 1	73*	121 1	154	92	235	84	78	403 1	26 <	138*	92	20%	24 <	37 <	23	30 < 1	26 < 1	107 <	42 <	39 ×	096	36	274 < 1	268 < 1	63 < 1	319 < 1	218	75 ^	39 <	195*	107 <
Magne- sium (Mg)	21	31	24	28	43	174	32	12	20	44	22	24	18	12	13	10	6	6	6	575	17	14	497	16	22	35	17	38	72	22	23	30	32
cfum (Ca)	131	207	166	152	260	143	89	121	151	7.1	122	120	83	7.1	115	06	114	09	122	198	901	118	358	06	370	217	901	230	435	129	114	92	09
Iron (Fe)	1	ł	;	0.02	;	1	;	:	1	1	1	00.	1	1	1	1	1	1	ŀ	1	ï	;	1	1	1	į	Î	ì	1	1	;	1	î
(\$10 ₂)	19	27	i.	28	33	20	7	16	10	27	31	23	16	1	16	19	27	24	17	23	20	27	22	23	27	23	34	31	30	2.1	22	1	29
Date of Si collection (8	6, 1970	op	21, 1939	5, 1946	6, 1970	18, 1970	4, 1970	9, 1970	25, 1971	6, 1971	15, 1971	11, 1961	26, 1971	20, 1939	9, 1970	19, 1970	qo	qo	9, 1970	18, 1971	op	25, 1971	12, 1971	5, 1971	17, 1971	11, 1971	2, 1971	4, 1971	5, 1971	2, 1970	op	2, 1940	2, 1970
Date colle	Nov.	p	Sept. 2	Feb.	Nov.	Nov. 1	Dec.	Dec.	Jan. 2	Apr.	June 1	Aug. 1	Jan. 2	Sept. 2	Oct.	Nov. 1	P	Ð	Dec.	Jan. 1	Ð	Jan. 2	Apr. L	Feb.	Mar. 1	Jan. 1	Feb.	Mar.	Mar.	Nov.	Ü	Mar.	Nov.
Depth of well (ft)	55	55	26 8	26 F	26	67	1 545	06	61	Spring	20	63 A	63	Spring	Spring	22 N	39	44	150		28		81					24 N	30		28		32 N
Aquifer	Kca	Kca	Kca	Kca	Kca	Kea	Kea	Kca	Kca	Kca	Kca	Kea	Kca	Kça	Kca	Kca	Kca	Kea	Kca	Kea	Кса	Kca	Qa1	Kca	Kca	Kca	Kca	Kca	Kca	Kca	Kca	Kca	Кса
Well	30-37-714	715	724	724	724	730	732	733	736	240	741	801	802	803	803	804	807	812	814	815	816	824	39-903	44-101	102	201	202	204	205	301	302	303	303

See footnotes at end of table,

Table 7.--Chemical Analyses of Water From Selected Wells, Springs, and Test Holes--Continued

Well	Aquifer	Depth of well (ft)	Date of collection	Silica (SiO ₂)	Iron (Fe)	Cal- cium (Ca)	Magne- sium (Mg)	Sod- ium (Na)	Potas- sium (K)	Bicar- bonate (HCO ₃)	Sul- fate (SO ₄)	Chlo- ride (Cl)	Fluo- ride (F)	Ni- trate (NO ₃)	Boron (B)	Dis- solved solids	Total hard- ness as CaCO3	Specific conduct- ance (micromhos at 25°C)	рН	Per- cent sod- ium	Sodium adsorp- tion ratio (SAR)	
30-44-304	Kca	35	Nov. 6, 1970	26	< 0.02	104	20	61	< 1	321	63	86	1.1	25	0.2	545	341	877	7.4	27.9	1.4	0.0
305	Kca	32	Nov. 13, 1970	33		79	15	94	< 1	401	49	51	1.8	1.5	.2	522	258	808	7.4	44.0	2.5	1.3
307	Kca	43	do	31		119	28	70	< 1	425	48	107	1.5	9	.3	623	411	1,000	7.4	26.9	1.5	.0
308	P	Spring	Nov. 17, 1970	20	3,55,50	130	14	34	< 1	344	74	67	1	< .4	.2	510	384	812	7.3	16.2	.7	.0
401	Kca	58	Jan. 6, 1971	18		137	9	86	< 1	346	91	76	. 6	104	.3	693	378	1,036	7.6	33.0	1.9	.0
402	Kca	56	Jan. 8, 1971	15	744	105	8	12	< 1	300	23	28	.3	8	.1	347	297	565	8.0	8.1	.3	.0
403	Kca	77	Feb. 5, 1971	20	122	77	9	4	< 1	260	10	5	.2	3.5	.2	257	229	418	7.3	3.6	.1	.0
404	Kca	Spring	Aug. 1, 1940			106	21	58*		348	76	81	.6	< 20	100	533	353	(mm)		26.4	1.3	.0
404	Kca	Spring	May 10, 1971	13		67	48	233	2	484	163	200	3.5	< .4	.6	968	364	1,520	8.1	58.0	5.3	.6
501	Kca	80	Nov. 2, 1970	13	1000	126	12	36	< 1	399	24	62	.5	< .4	,1	471	367	784	7.2	17.7	.8	.0
502	Kca	22	Nov. 17, 1970	45	5876	91	30	13	< 1	409	19	9	2.3	5.5	.1	417	349	637	7.4	7.4	.3	.0
503	Kca	42	Jan. 11, 1971	16	**	246	18	114	< 1	384	89	246	.7	227	.3	1,146	690	1,740	7.3	26.5	1.8	.0
504	Kca	Spring	do	4		114	69	496	< 1	349	560	550	1.8	1.5	.4	1,969	570	2,910	7.6	65.5	9.0	.0
505	Kca	30	Feb. 5, 1971	35		95	24	50	< 1	433	47	25	1	1.5	.2	492	337	742	8.1	24.4	1.1	.3
506	Kca	25	do	28		136	29	72	3	464	66	104	.8	21	.1	688	459	1,088	7.4	25.3	1.4	.0
601	Kca	14	Feb. 21, 1940	221		81	24	142*		348	177	75		40		710	300		22	50.7	3.5	.0
601	Kca	14	Jan. 11, 1971	18	:##:	244	58	493	< 1	364	178	1,020	1.1	18	.4	2,210	850	3,520	7.5	55.8	7.3	. (
701	Kca	90	Sept. 9, 1970	10		208	19	97	< 1	282	31	378	.2	9	.2	892	600	1,600	7.5	26.1	1.7	
702	Kca	35	Jan. 6, 1971	23		150	30	63	6	427	88	99	.6	52	.1	721	496	1,134	7.4	21.3	1.2	.0
703	Kca	66	Jan. 8, 1971	9		111	6	12	< 1	303	19	38	.3	< .4	.1	345	300	581	7.5	7.9	.3	.0
704	Kca	131	Feb. 5, 1971	15	77	139	11	11	< 1	365	58	32	.5	< .4	.1	447	392	714	7.4	5.7	.2	.0
705	Kca	51	do	14	10.00	90	11	29	< 1	306	24	35	.6	3	.1	358	272	598	7.5	18.9	.7	.0
710	Kca	106	Oct. 10, 1974	14		119	9	12	5	332	19	37	.4	15	22	388	334	652	7.5	7.2	.2	.0
710	Kca	106	July 24, 1978	15		111	10	20		298	27	51	.2	17		397	318	635	7.7	12.0	.4	
802	Kca	123	Aug. 11, 1961	14		98	17	35	1.2	386	19	38	.7	3.0	. 04	415	314	723	7.6	19.4	.8	.0
802	Kca	123	Jan. 7, 1971	14		103	24	39	< 1	394	25	54	. 7	11	.1	465	357	766	7.9	19.2	.8	.0
802	Kca	123	July 25, 1978	7	355	40	20	91	:==:	124	56	163	.3	< ,4	(##)	438	182	734	8.2	52.1	2.9	.0
804	Kca	153	Jan. 8, 1971	14	(88)	113	15	6	< 1	383	15	15	.2	4.5	. 2	372	343	602	7.9	3.6	.1	.0
806	Kca	90	Jan. 11, 1971	15		173	25	53	< 1	359	72	188	.4	3.0	.1	707	540	1,164	7.9	17.7	.9	.0
807	Кса	41	Feb. 8, 1971	21		56	7	9	< 1	200	12	5	.2	1.5	.1	211	170	341	7.6	10.3	.3	.0
808	Kca	60	Feb. 17, 1971	21		125	13	55	< 1	384	43	86	.7	< .4	.2	534	366	867	7.4	24.6	1.2	.0
810	Kca	76	Mar. 1, 1971	17		196	34	141	< 1	560	112	249	.6	15	.4	1,041	630	1,650	7.2	32.7	2.4	.0
902	Kca	105	Feb. 16, 1971	10		47	49	413	6	467	439	266	2.6	< ,4	1.3	1,463	318	2,180	7.6	73.3	10.0	1.2
												-		1500								

Table 7 .-- Chemical Analyses of Water From Selected Wells, Springs, and Test Holes -- Continued

an c	284	50	15		-	-	92		-	-		22		57				6		-	-	_		_	_	_		_	-	_		-	
Residual sodium carbon- ate (RSC)	0.0	0.	۰.	0,	°.	0.	0.	;	٥.	°.	0.	0.	0.	0.	°.	0.	ł	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	1,1	1.4	1.7	
Sodium adsorp- tion ratio (SAR)	6.1	2.7	1.6	1.7	1.8	9.	1.5	1	5.7	1.2	2.7	1.6	1.8	2.2	9.	£.	I	ε.	6.	2.0	80	9.	.,	3.8	4.	.2	5.	3.9	4.3	4.1	4.0	3.8	
Per- cent sod- tum	54.9	36.6	31.6	29.5	32.3	15.5	31.1	1	50.5	23.0	37.9	28.7	23.9	24.3	12.3	14.7	1	15.5	28.7	34.2	22.8	16.7	14.9	29.5	10.8	4.9	11.4	41.7	52.7	54.7	55.2	54.7	
Н	;	7.3	7.4	1	7.6	7.1	7.6	7.3	7.1	;	7.3	7.9	1	7.4	7.7	6.7	9*9	6.8	6.1	0.9	1	7.2	7.5	;	;	9.7	9.7	;	7.4	7.4	7.4	9.7	
Specific conduct- ance (micromhos at 25°C)	:	1,690	865	:	1,022	655	704	1,095	3, 140	:	1,440	1,150	i	2,410	1,260	270	12,000	224	486	1,260	1	579	899	1	1	807	840	ŀ	1,550	1,250	1,085	1,038	
Total hard- ness as CaCO ₃	633	580	320	415	389	294	279	944	800	455	985	420	826	1,190	260	116	15,600	92	152	377	206	249	415	2,127	288	445	077	785	388	301	268	251	
Dis- solved solids	1,667	1,054	533	653	655	395	454	710	1,776	249	887	999	1,397	2,029	836	149	39,500	134	256	670	306	359	563	2,717	351	508	571	1,491	980	759	658	624	
Boron (B) s	1	0.2	.2	1	4.	۲.	4.	۳.	;	1	•2	4.	:	1	1	1	4.	• 1	1	1	1	.2	-2	:	1	.2	.1	1	:	:	;	;	
N1- trate (NO ₃)	< 20	32	16	20	17	4.	1.5	4.	4.	20	4.	1.5	165	208	172	4.	4.	۸.	4.	4.	20	62	1.5	,050	< 20	4.	4.	20	0.07	39.0	5.0	11	
Fluo- ride t	1.8	9.	.7	;	9.	2.	1.1	ø.	1.1	1.4	1.3	9.	9.	6.	9.	.2	1.2	٠.	.2	٠.	٠,	.3	9.	.6 1,	7.	φ.	٥.	v :	6.	6.	1.0	6.	
Chlo- F ride r (Cl)	420	262	83	110	86	73	47	104	730	170	194	267	102	157	98	11	21,900	21 <	113	327 <	88	37	68	026	15	39	30	290	214	136	109	96	1
	6	4	09	75	72	43	53	2	7	82	98	94		0	10	9		80	25	83	25	19	87	**	32	1.8	60	5	66	87	78	89	÷
Sul- fate (SO ₄)	459	144				4	×1	125	٧			7	653	066	218		3,960		2		2	-	7	707		_	188	135	5.		1	9	- 5
Bicar- bonate (HCO ₃)	384	458	336	433	432	246	339	432	820	318	240	205	153	189	209	143	348	88	35	30	140	218	395	445	329	492	318	445	455	432	417	414	
Potas- sium (K)	;	2	1 7	;	1 >	1 >	1 >	c 1	ŀ	1	2	1 7	ŀ	1	ī	;	45	1 7	į.	;	ŧ	1 7	4	1	ł	v 1	v 1	1	;	1	;	1	1
Sod- fum (Na)	354*	155	99	*08	85	25	58	89	374	63*	137	78	119*	175	36	6	8,900	60	28	06	28*	23	34	403	16*	14	56	257*	198	165	152	140	į
Magne- sium (Mg)	94	30	12	16	14	12	14	30	98	45	43	28	74	120	23	4	2,640	4	10	26	6	80	17	205	12	17	31	9	31	25	24	20	1
Cal- cfum (Ca)	178	184	108	140	132	98	88	130	178	110	124	122	209	278	186	39	1,900	31	44	108	89	98	139	513	95	150	125	206	104	78	89	89	
(Fe)	:	1	1	1	1	0.02	1	1	;	1	1	1	1	1	i	I	;	;	1	1	1	1	1	1	1	;	1	1	1	1	;	:	7
Silica (SiO ₂)	:	20	19	;	23	22 <	54	17	;	1	34	20	;	80	12	10	22	18	19	21	;	16	36	;	;	27	13	;	40	16	91	17	ī
	30, 1940	4, 1970	17, 1970	1940	1970	2, 1971	25, 1971	30, 1971	1970	1940	22, 1970	16, 1971	5, 1940	1971	9, 1974	25, 1978	1971	10, 1970	12, 1973	1978	1940	1970		5, 1940	21, 1940	23, 1970	1971	19, 1940	5, 1969	8, 1972	8, 1974	1978	
Date of collection	30,	4,	17,	7,	1,	2,	25,	30,	10,	5,		16,	5,	5,	6	25,	6,		12,	24,	5,	14,	op		21,		13, 1971	19,	5,	8,	8,	24,	
col	Apr.	Nov.	Nov.	Feb.	Dec.	Feb.	Feb.	Mar.	Sept.	Sept.	Sept.	Mar.	Sept.	Mar.	Oct.	July	May	Sept.	Nov.	Mar.	Sept.	Oct.		Sept.	Mar.	Sept.	Jan.	Mar.	Mar.	Dec.	Oct.	Mar.	
Depth of well (ft)	13	55	19	31	34	949	20	14	24	23	23	07	65	65	99	99	40	53	53			92	20	17	Spring	Spring	266	25	25	25	25	25	
Aquifer	Kca	Kca	Kca	Kca	Kca	Kca	Kca	Qal	Kca	Kca	Kca	Q ₄	g ₄	p4	p _e	p _e	d	Kca	Kca	Kca	Kca	Kca	Kca	Kca	Kca	Kca	Kca	Kca	Kca	Kca	Kca	Kca	
Well	30-44-903	45-101	105	201	202	203	205	207	106	902	902	46-201	401	401	401	401	501	701	701	701	702	703	902	801	905	805	903	47-601	601	109	109	109	

See footnotes at end of table.

Table 7 .-- Chemical Analyses of Water From Selected Wells, Springs, and Test Holes -- Continued

													_	_																		
Residual sodium carbon- ate (RSC)	0.	0.	0.	0.	0.	0.	0.	0.	0.	;	0.	0.	1.1	0.	0.	0.	1	.2	.2	0.	0.	0.	0.	0.	0.	0,	0.	0.	0.	0.	1.7	0.
Sodium adsorp- tion ratio (SAR)	1.9	2.4	.5	3.9	۰.	3.1	9.	.2	.3	;	60	.7	1.2	.7	9.	9.	:	1.2	€0	۴.	4.	7.7	.2	0.	4.	1,3	.3	4.	.2	4.	1.6	2.0
cent sod- fum	31.3	36.1	13.3	45.5	13.8	9.04	14.5	7.2	7.6	1	25.5	6.61	28.0	16.0	16.6	13.7	1	28.4	21.8	9,1	11.1	6.44	6.4	2.8	12.5	23.5	8.4	8.6	9.9	11.8	34.3	29.1
н	7.4	7.4	7.4	7.3	7.4	7.7	7.5	7.4	7.7	ľ	1	7.7	7.4	7.7	1	7.5	7.5	7.1	7.4	9.7	8.0	9.7	7.2	7.6	7.2	7.4	1	7.6	7.8	7.7	7.4	:
Specific conduct- ance (micromhos at 25°C)	1,176	1,320	580	1,950	1,340	1,590	177	618	587	-	1	200	099	775	:	692	1,610	969	537	629	615	056,9	760	408	589	1,150	;	728	539	049	799	1
hard- hard- ness (r	457	494	282	570	630	520	382	334	326	295	155	218	264	366	262	384	910	265	228	323	313	2,280	420	231	284	210	285	378	306	323	255	595
Dis- solved solids	757	836	366	1,208	906	626	477	365	365	358	224	313	414	485	328	474	1,020	399	331	375	371	4,582	474	252	338	722	330	451	337	384	420	953
Boron (B)	0,1	-5	.2	.2	.2	٥.	.1	.2	;	ŧ	:	.2	.1	.2	1	.2	.2	:	;	1.	.2	ε.	.2	.2	.19	.2	;	.2	1	.2	.2	:
Ni- trate (NO ₃)	27.0	1.5	80	15	242	3.5	23	4.	1.6	< 20	< 20	1.5	17	5.5	< 20	7. >	8.3	10	8.0	10	7	4.	28	2.5	3.0	11	50	4.	2.9	7.3	4.	50
Fluo- ride (F)	1.2	1.2	5.	80	5.	1.6	4.	.7	9.	۲.	6.	9.	6.	9.	!	9.	00	5.	5.	£.	4.	1.2 <	.2	.1	9.	1.0	.1	ν,	.3	4.	1.1	2.4
Chlo- ride (Cl)	111	168	16	356	130	232	37	23	30	20	32	26	15	95	18	777	212	65	31	33	32	2,740	32	2	20	107	18	94	12	36	12	150
Sul- fate (SO ₄)	73	11	23	133	69	129	27	17	28	35	118	26	22	23	18	25	95	4	10	23	20	84	31	11	19	85	15	38	12	27	24	233
Bicar- bonate (HCO ₃)	510	520	329	200	353	520	421	377	341	348	159	257	389	905	317	431	520	336 <	292	337	344	289	405	266	335	510	329	376	352	340	418	445
Potas- Bi sium bo (K) (F	2.0	_		_	_		_			_	_	_	_			_	_	-		_	_	_	_	_	_	_		_	_	_	_	
	97 5	123 8	20 2	9 2	46 2	991	30 2	12 < 1	16	25*	24*	25 2	5 84	32 2	24*	28 2	3 4	- 87	56	15 < 1	18 < 1	0 < 1	10 < 1	3 < 1	19 3.8	72 4	12*	19 61	10	20 < 1	1 > 19	112*
Sod- 1um (Na)		12	- 5	219	4	16	6	-	-	2	2	2	4	E1	2	2	123	4	2	_	<i>a</i>	850	-			7		-	_	7	9	7
Magne- sium (Mg)	26	24	12	31	31	62	19	30	33	17	60	10	14	26	19	28	32	24	12	21	21	193	11	4	29	20	16	15	15	25	16	32
cfum (Ca)	140	146	93	177	199	107	122	84	92	06	87	70	82	103	74	101	190	99	7.1	95	16	290	149	85	99	120	88	127	96	88	75	185
(Fe)	1	1	1	1	1	ł	;	1	;	;	;	1	1	;	1	;	;	1	1	1	< 0.02	!	;	:	*00	1	1	1	1	1	:	;
Silica (S10 ₂)	26	38	30	58	11	17	10	12	13	:	;	26	19	38	1	27	56	17	56	11	12	91	13	13	12	22	1	20	14	12	24	:
Date of collection	Sept. 17, 1970	op	Oct. 6, 1970	op	Sept. 21, 1970	op	op	Oct. 1, 1970	July 26, 1978	Aug. 2, 1940	op	Oct. 1, 1970	Sept. 24, 1970	Oct. 1, 1970	Mar. 19, 1940	Oct. 1, 1970	Oct. 6, 1970	op	Oct. 8, 1974	Dec. 3, 1970	op	op	Feb. 8, 1971	Mar. 19, 1971	June 24, 1961	Sept. 9, 1970	Apr. 30, 1940	Jan. 8, 1971	July 24, 1978	Mar. 1, 1971	Feb. 5, 1971	Sept. 6, 1940
	Se		0		Se			90	15	Au		0	S	0	Z.	0	00		0	De			Pe	M	7.0	Se	Ap	Ja	35	M.	Fe	Se
Depth of well (ft)	30	23	19	45	45	Spring	118	134	134	114	18	18	20	21	16	16	33	17	17	121	110	16	130	16	112	19	32	32	32	101	16	15
Aquifer	Kca	Kca	Kca	Kca	Kca	Kca	Kca	Kca	Kca	Kca	Kca	Kca	Kca	Kca	Qa1	Qa1	Kca	Kca	Kca	Kca	Кса	Kca	Kca	Kca	Kca	Kca	Kca	Kca	Kca	Kca	Kca	Kca
Well	30-47-603	909	909	909	701	702	703	704	704	705	801	801	106	908	906	906	806	48-402	402	52-101	102	104	105	201	401	404	405	405	405	904	501	701

See footnotes at end of table.

Table 7. -- Chemical Analyses of Water From Selected Wells, Springs, and Test Holes -- Continued

Well	Aquifer	Depth of well (ft)	Date of collection	Silica (SiO ₂)	Iron (Fe)	Cal- cium (Ca)	Magne- sium (Mg)	Sod- ium (Na)	Potas- sium (K)	Bicar- bonate (HCO ₃)	Sul- fate (SO ₄)	Chlo- ride (Cl)	Fluo- ride (F)	Ni- trate (NO ₃)	Boron (B)	Dis- solved solids	Total hard- ness as CaCO ₃	Specific conduct- ance (micromhos at 25°C)	pН	Per- cent sod- ium	Sodium adsorp- tion ratio (SAR)	- sodiu carbo
30-52-701	Kca	15	Jan. 6, 1971	31	22	173	48	176	< 1	455	159	324	5.1	< 0.4	0.2	1,141	630	1,790	7.7	37.8	3.0	0.0
702	Kca	49	do	16		260	44	106	< 1	323	150	373	.8	113	.2	1,222	830	1,950	7.6	21.7	1.6	
801	Kca	37	Dec. 3, 1970	19	4.8	95	10	7	5	329	13	10	.3	< .4	.1	321	280	510	7.6	5.1	.1	
803	Kca	35	Apr. 30, 1940			50	20	12*		220	28	16	< 20			254	207	-		11.2	.3	
803	Kca	35	May 10, 1971	14	122	90	21	32	2	336	23	52	.7	2	.2	402	312	674	7.6	18.2	.7	
902	Kca	65	Jan. 6, 1971	13		388	165	205	3	322	449	940	1.1	39	.3	2,361	1,650	3,570	7.7	21.3	2.1	
903	Kca	30	do	24		88	50	185	< 1	450	216	164	3.8	13	.2	966	1975	1,490	7.8	48.5	3.9	
905	Kca	37	Sept. 6, 1940			142	13	19*	-	293	35	108	.3	25	1991	486	408			9.2	.4	
53-101	P	Spring	Mar. 19, 1971	12		143	10	7	< 1	434	22	22	.1	< .4	.2	431	399	705	7.3	3.7	.1	
301	Kca	7	Sept. 5, 1940			90	10	35*		311	25	42	.2	< 20		375	266	100		22.3	.9	
301	Kca	7	Sept. 22, 1970	16		79	7	14	< 1	264	13	16	.2	3.5	see.	279	226	462	7.4	11.8	.4	١.
901	P	Spring	Mar. 25, 1971	14		88	29	36	2	338	54	57	.6	6	.2	452	340	740	7.6	18.7	.8	1
54-101	Kca	88	Sept. 22, 1970	11		72	12	47	2	275	25	57	.4	< .4	.1	362	227	616	7.7	30.6	1.3	
102	Kca	31	do	21	**	72	234	650	< 1	840	425	1,050	5.3	< .4	2.2	2,873	1,140	4,410	7.5	55.3	8.3	
103	Kca	70	do	21	**	104	11	19	2	304	27	31	.2	24	.1	388	307	634	7.1	11.9	.4	
104	Kca	70	Oct. 7, 1970	13	.52	163	18	123	< 1	477	76	187	.6	19	.3	835	381	1,370	7.5	35.7	2.4	
106	Kca	30	Jan. 13, 1971	29		97	19	12	< 1	376	19	8	.8	5	.2	375	321	583	7.8	7.5	.2	
202	Kca	26	Oct. 13, 1970	30		68	7	9	3	243	12	10	.3	< .4	.1	259	199	404	7.4	8.8	.2	
204	Kca	120	Oct. 14, 1970	17		336	66	309	2	550	387	600	.5	121	.4	2,109	1,110	3,070	7.4	37.7	4.0	
206	Kca	200	Mar. 11, 1971	12		92	22	5	< 1	360	18	9	.2	< .4	.2	336	322	556	7.5	3.3	.1	
302	Kca	190	Mar. 6, 1969	27		309	10	15	2	322	30	104	.3	539	ian:	1,194	810	1,600	7.1	3.9	.2	
302	Kca	190	Oct. 8, 1974	12		174	6	8		372	19	48	.2	116	**	566	462	875	7.6	3.7	.1	١.
302	Kca	190	July 26, 1978	12		118	7.	5	199.90	349	11	13	.2	24	1887	361	326	561	7.4	3.3	.1	
303	Kca	119	Apr. 4, 1940	7.7		108	20	24*	***	390	36	33		< 20		432	352	>		12.9	.5	
304	Kca	120	Sept. 23, 1970	13		111	19	16	< 1	345	38	41	.3	17	.2	426	357	703	7.8	8.9	.3	
304	Kca	120	Oct. 8, 1974	14		100	15	16	and the	306	38	32	.4	2.1	75.0	367	311	600	7.7	10.1	.3	
307	Kca	56	June 5, 1971	14		116	10	5	< 1	379	11	9	.1	< .4	.1	352	332	570	7.7	3.2	.1	200
401	Kca	60	Sept. 18, 1970	7		59	20	37	32	259	< 4	97	.3	1.5	.1	385	230	690	7.5	22.9	1.0	
401	Kca	60	Oct. 10, 1974	19		126	37	130	201	460	136	169	.9	< .4	~~	844	466	1,350	7.7	37.7	2.6	
401	Kca	60	July 26, 1978	20		110	39	176		511	125	176	1.4	< .4		899	436	1,240	7.5	46.8	3.6	
402	Kca	16	Sept. 4, 1940			130	56	255*	(M.M.)	647	144	300	1.9	< 20		1,225	554	120/5511		50.0	4.7	
402	Kca	16	Mar. 9, 1971	22	**	109	29	88	4	287	99	184	.9	< .4	.2	677	394	1,125	7.6	32.6	1.9	.0

Table 7. -- Chemical Analyses of Water From Selected Wells, Springs, and Test Holes--Continued

Well	Aquifer	Depth of well (ft)		Silica (SiO ₂)	Iron (Fe)	Cal- cium (Ca)	Magne- sium (Mg)	Sod- ium (Na)	Potas- sium (K)	Bicar- bonate (HCO ₃)	Sul- fate (SO ₄)	Chlo- ride (Cl)	Fluo- ride (F)	N1- trate (NO ₃)	Boron (B)	Dis- solved solids	Total hard- ness as CaCO ₃	Specific conduct- ance (micromhos at 25°C)	рН	Per- cent sod- ium	Sodium adsorp- tion ratio (SAR)	ca ca
30-54-403	p	12	Sept. 4, 1940			97	14	34*		323	35	18	0.7			410	200					
403	P	12	Mar. 9, 1971	14	**	105	13	23	< 1	316	38	23	0,7	55 32	0.3	412 405	299			19.8	0.8	
403	P	12	July 26, 1978	15		102	10	20		318	25	20	.7	20	0.3	121.704	316 295	645	7.7	13.6	.5	
501	Kea	123	Oct. 7, 1970	12		96	21	17	< 1	331	38	27	.7	28		369	2000	574	7.5	12.8	.5	1
601	Kca	38	Sept. 4, 1970	12	-	109	30	22	< 1	379	53	47	.4	6	.2	403 466	395	645 760	7.5	10.1	.4	1
602	Kca	Spring	do	22		85	105	182		510	262	251	1.7	< .4		1,159	650		7.5	38.1	.4	
603	Kca	70	Sept. 23, 1970	13		116	11	16	< 1	375	19	20	.2	21	.2	401	338	1,800			3.1	
604	Kca	70	do	13		85	15	14	2	325	13	16	.2	1	.1	319	273	653 530	7.5	9.4	.3	
605	Kca	60	Oct. 9, 1970	20		113	18	16	< 1	240	30	58	.3	108	.1	482	358	761	7.4	9.9 8.9	.3	
608	Kca	65	Oct. 7, 1970	17		131	110	59	7	620	123	189	1.0	21	.6	963	780	1,580	7.5	14.0	.9	
611	Kca	90	Feb. 17, 1971	16		290	200	250	3	550	323	930	.8	3.5	.3	2,287	1,550	3,480	7.1	26.0	2.7	
612	Kca	100	do	12	- 22	100	26	32	< 1	395	52	34	.4	1.5	.1	453	359	728	7.9	16.3	.7	
613	Kca	65	Oct. 10, 1974	13		102	12	16		333	17	21	.4	9.0		354	302	590	7.7	10.3	.3	
613	Kca	65	July 26, 1978	14		95	12	13		340	14	14	.3	5.3		334	288	542	7.9	9.0	.3	ı
801	Kca	15	Apr. 16, 1940			100	57	328*		445	497	220	2.1	< 20		1,442	23.25			59.6	6.4	1
901	Kca	40	Sept. 15, 1970	15		118	52	63	2	530	42	113	.6	8	.2	674	510	1,134	7.2	21.1	1.2	
902	Kca	28	do	30	**	85	36	72	2	484	44	57	1.7	< .4	.1	566	362	895	7.7	30.1	1.6	
55-101	Kca	100	Sept. 18, 1970	11		65	21	39	5	310	25	45	.3	< .4	.1	364	250	612	7.8	25.0	1.0	
102	Kca	85	do	10		75	25	38	2	357	23	44	.3	1	.1	393	291	667	7.5	22.0	.9	1
103	Kca	84	Apr. 4, 1940							354	39	56		< 20		433						
103	Kca	84	Sept. 21, 1970	15		93	13	27	1	343	26	30	.3	< .4	.1	374	288	617	7.3	17.0	.6	
201	Kca	88	Sept. 15, 1970	11	***	112	23	16	< 1	348	92	19	.3	1.0	.1	446	374	692	7.4	8.5	.3	
202	Kca	175	Aug. 2, 1940			96	14	13		323	35	18		< 20		354	299			8.7	.3	
206	Kca	105	Sept. 15, 1970	16		99	22	28	< 1	331	37	44	.3	24	.2	434	339	720	7.4	15.2	.6	l
207	Kca	130	do	12		92	19	22	< 1	322	24	28	.3	23	.1	379	308	635	7.5	13.4	.5	
208	Kca	60	Sept. 18, 1970	11	**	79	25	41	2	334	32	49	.7	24	.2	428	302	705	7.4	22.8	1.0	
209	Kca	60	Sept. 21, 1970	12		101	26	42	2	388	32	71	.4	3.5	.2	480	360	802	7.5	20.2	. 9	
212	Kca	60	do	12	**	102	24	46		345	65	72	.5	6		497	355	823	7.3	22.1	1.0	
215	Kca	150	Sept. 17, 1970	15		114	17	24	2	338	27	56	.3	21	.1	442	355	737	7.3	12.8	.5	
217	Kca	30	Oct. 19, 1970	11		212	68	188	< 1	481	499	195	.8	24	.3	1,435	810	2,000	7.6	33.5	2.8	
219	Kca	135	Mar. 24, 1971	13		69	9	31	2	237	24	36	.4	2	.2	303	209	500	7.7	24.1	.9	
302	Kca	90	Sept. 24, 1970	16		158	16	26	< 1	327	40	45	.3	189	.2	652	461	959	7.5	10.9	.5	

Residual sodium carbon-ate (RSC) Sodium adsorp-tion ratio (SAR) 1 0.5 Per-36.7 19.8 37.2 38.4 13.6 17.7 9.8 7.5 11.5 29.1 20.5 21.8 16.7 18.6 18.5 18.0 19.2 18.1 26.5 16.1 4.4 18.5 18.1 9.7 9.7 27.6 Hd 950 657 571 782 694 744 910 910 617 762 --690 690 600 600 718 669 659 669 679 681 668 668 375 580 385 Total hard-ness as CaCO3 ,548 Dis-solved solids (B) Ni-trate (NO₃) 8. 4. 5. 6. 5. .8 fluo-Chlo-ride (Cl) Sul-fate (SO4) Potas-sium (K) Sodstum (Ng) Cal-Iron (Fe) Silica (S10₂) 1940 1940 1970 1971 1974 1978 1972 1978 1970 1970 1970 1970 1971 1970 1761 1970 1974 0267 Date of collection 1974 26, 6 . 17, 1, 26, 4, 11, do *0 23, 15, 19, op op July Nov.
Yar. Oct. Oct. Oct. Depth c well (ft) 30-55-303 Well

Table 7 .-- Chemical Analyses of Water From Selected Wells, Springs, and Test Holes -- Continued

Table 7. -- Chemical Analyses of Water From Selected Wells, Springs, and Test Holes -- Continued

Residual sodium carbon- ate (RSC)	0.0	0.	0.	0.	0.	0.	0.	0.	0.	0.	0.	9.	1	.2	0.	0.	0.	9.	0.	0.	5.	0.	0.	0.	0.	0.	0.	0.	1.0	.5	0.	1.2	0.
Sodium Residual adsorp- sodium tion carbon- ratio ate (SAR) (RSC)	1.1	1.0	4.1	3.4	2.1	5.1	2.5	6.	.2	3.2	6.	2.2	1	2.8	3,3	2.4	2.5	1.0	1.6	1.6	1.9	1.0	6.	2.4	2.7	1.	6.	1.2	1.2	2.6	.5	4.2	2.4
Per- cent sod- fum	16.2	22.1	32.9	42.2	30.3	34.8	36.7	19.2	6.6	39.4	21.0	40.8	1	45.0	40.4	33.8	35.3	22.9	23.7	27.7	34.9	25.6	17.1	37.4	40.4	16.6	19.9	21.5	27.5	40.1	10.7	9.75	41.6
Hd	7.3	7.5	7.2	7.8	7.6	7.4	7.2	:	7.6	7.3	7.4	1	7.0	;	;	:	1	7.6	7.2	7.5	7.0	7.4	4.6	8.1	9.7	9.7	;	7.5	7.6	:	7.5	7.7	8.2
Specific conduct- ance (micromhos at 25°C)	1,810	845	4,750	1,740	1,560	5,570	1,460	1	260	1,960	675	1	1	;	1	ì	1	240	1,780	1,015	1	260	1,098	1,200	1,250	705	:	1,190	699	1	865	1,089	844
Total hard- ness as (caco ₃	820	367	1,840	540	610	2,320	481	423	120	630	296	280	300	387	109	296	531	329	710	445	300	218	510	425	426	341	367	530	272	380	429	243	305
Dis- solved	1,225	536	3,105	1,090	959	4,097	856	557	145	1,151	408	511	533	734	1,120	966	890	456	1,084	069	531	311	733	772	162	428	964	754	436	999	541	629	577
Boron (B)	0.3	.2	i	:	.2	7.	.1	1	7.	٤.	1	1	:	1	ï	1	i	.2	1	:	;	1.	.2	£.	1	1	£	.3	ε.	1	.2	4.	
Ni- trate (NO ₃)	311	10	4.	80	4·	22	12	< 20	1.0	11	3.5	21	15	23	< 20	24	20	1.5	35	21	15	1.5	168	37	56	23.0	22	20	10	;	2.5	2.3	9.
Fluo- ride (F)	0.7	1.1	4.	6.	5.	60	4.	6.	4.	1.1	1.3	9.	4.	۲.	9.	٠.	4.	.7	9.	е.	7.	9.	1.1	1.4	2.1	٠.	60	.7	6.	1.0	• .	.5	4.
Chlo- ride (Cl)	236	99	1,490	264	274	1,690	265	96	23	476	36	99	57	110	270	250	210	28	312	150	57	51	69	142	134	29	949	123	15	120	79	140	82
Sul- fate (SO ₄)	106	87	311	130	89	089	62	39	6	39	22	51	84	68	140	117	70	54	107	65	87	59	99	69	85	17	98	101	27	51	45	42	98
Bicar- S bonate f (HCO ₃) (334	395	420	484	473	240	392	607	110	367	349	378	403	488	267	767	531	055	442	398	403	229	392	6449	495	399	348	427	394	200	432	377	371
		61	4	7	7	*1	01	7	-	63	61	61	-	4	٠,	7	-	4	4		7	- 5	63	4	7	6	, F1	7	e1	×1	4	e.	
Potas- sium (K)	74 8	8 2		8	1 3	0	9 2	*95	6 < 1	8 4 1	36	*88	76 6.2	129*	187*	140#	133*	45 < 1	2	78	9 92	5	8 v	7 < 1	2	31	45*	67 < 1	49 7	117*	4 4	4 2	-
Sod- fum (Na)	7	87	413	184	121	570	129	4		188	6	**	7	12	18	14	13	4	102	7	7	35	48	117	132	6	4	9	4	11	24	154	100
Magne- sium (Mg)	30	21	118	99	31	144	24	21	2	35	14	16	13	19	26	26	25	12	35	1.8	13	19	32	17	38	26	28	35	17	33	16	29	28
Cal- cfum (Ca)	279	112	240	107	190	069	153	134	777	194	95	85	66	124	198	196	171	112	228	148	66	26	150	142	107	93	101	155	81	86	146	20	9/
Iron (Fe)	;	1	1	;	:	;	:	1	1	;	90.0	;	.03	1	1	1	1	1	1	;	.03	;	:	1	1	1	;	;	:	ŧ	:	;	1
Silica (SiO ₂)	16	36	56	13	18	27	16	1	2	26	29	1	19	1	1	1	ï	16	84	31	19	4	15	25	24	13	;	12	36	:	27	17	22
Date of collection	Sept. 18, 1970	Oct. 27, 1970	op	op	Mar. 25, 1971	op	Oct. 21, 1970	Sept. 4, 1940	Oct. 21, 1970	op	Mar. 3, 1969	Sept. 4, 1940	Feb. 5, 1946	op	op	op	op	Oct. 21, 1970	Dec. 8, 1972	July 26, 1978	Feb. 5, 1946	Oct. 19, 1970	op	op	Oct. 27, 1970	Oct. 7, 1974	Sept. 6, 1940	Mar. 19, 1971	Feb. 15, 1971	Sept. 4, 1940	Oct. 13, 1970	Jan. 13, 1971	July 26, 1978
Depth of well (ft)	20	115	28	65	17	20	09	87	87	70	70	20	20	67	77	87	47	47	20	20	20	85	07	09	25	20	27	27	55	28	28	150	150
Aquifer	Kea	Kca	Kca	Kca	Kca	Kca	Kea	Kca	Kca	Kca	Kca	Kca	Kca	Kea	Kca	Kca	Kca	Kca	Kca	Kca	Kca	Kca	Kca	Ксв	Kca	Kca	g ₄	Д	Kca	Kca	Kca	ы	p4
Well	30-55-801	802	803	908	808	806	902	912	912	915	917	918	918	919	920	921	922	922	923	923	924	925	927	928	56-413	703	61-201	201	63-101	201	201	202	202
													7								7												

See footnotes at end of table.

¥

* Concentration includes both sodium (Na) and potassium (K).

^{1/2} Analysis by U.S. Geological Survey.

Table 8.—Reported Oil-Field Brine Production and Disposal, 1961 and 1967

(Quantities reported in barrels)

		Brine pro	Brine production		Disposal into pits		Injection into wells		Miscellaneous disposal	
Area ¹	Field ²	1961	1967	1961	1967	1961	1967	1961	1967	
1	Box (Palo Pinto)	213,681	821,480	o	0	213,681	821,480	0	0	
	Elmdale (Palo Pinto)	152,400	133,285	О	0	152,400	133,285	0	0	
	County regular	137,880	105,078	0	0	137,880	105,078	0	0	
	Area Total	503,961	1,059,843	0	o	503,961	1,059,843	О	0	
2	Dyer (Flippen)	12,775	0	0	0	12,775	0	0	0	
	Dyer (Moran)	0	2,190	О	o	0	2,190	0	0	
	Dyer (Strawn)	161,801	88,620	0	0	161,801	88,620	0	0	
	Morrisett	27,445	0	0	0	27,445	0	0	0	
	Morrisett (Tannehill, lower)	124,885	0	730	0	124,155	0	0	0	
	Morrisett (Tannehill, upper)	5,475	0	0	0	5,475	0	0	0	
	Morrisett, West (Tannehill, upper)	548	0	548	0	O	0	0	0	
	St. Patrick (Hope)	81,700	200,750	О	0	81,700	200,750	0	0	
	Seidel (Tannehill, upper)	18,250	0	o	o	18,250	0	O	0	
	Three Acres (Flippen)	84,437	999,420	437	0	84,000	999,420	0	0	
	Three Acres, South (Gardner)	0	100	O	0	0	100	0	0	
	County regular	108,520	686,366	1,560	0	106,960	686,366	0	0	
	Area Total	625,836	1,977,446	3,275	o	622,561	1,977,446	o	0	
3	County regular	0	19,750	0	0	0	19,750	0	0	
	Area Total	0	19,750	0	О	0	19,750	О	0	
4	Dykes (Cook)	10,904	35,525	904	o	10,000	35,525	o	0	
	County regular	547	1,460	0	0	547	1,460	0	0	
	Area Total	11,451	36,985	904	0	10,547	36,985	0	0	
5	Clunder (Bluff Creek)	15,000	73,000	0	0	15,000	73,000	0	0	
	Colonel (Fry Sand)	31,673	1,095	0	0	31,673	1,095	o	0	
	Herr-King (Cross Cut)	60,000	1,137,728	0	0	60,000	1,137,728	0	0	
	IX (Conglomerate)	547	186,385	187	0	360	186,385	o	0	
	Red Horse (Hope)	108,000	0	0	0	108,000	o	o	0	
	Red Horse (Moran)	189,515	108,949	3,000	0	186,515	108,949	0	0	
	County regular	48,670	582,331	19,220	0	29,450	582,331	0	0	
	Area Total	453,405	2,089,488	22,407	0	430,998	2,089,488	o	0	

Table 8.—Reported Oil-Field Brine Production and Disposal, 1961 and 1967—Continued

		Brine production		Disposal into pits		Injection into wells		Miscellaneous disposal	
Area ¹	Field ²	1961	1967	1961	1967	1961	1967	1961	1967
6	Wagley (Tannehill Sand)	274,019	91,262	0	0	274,019	91,262	0	
	County regular	30,771	26,097	350	4	30,421	25,910	0	18
	Area Total	304,790	117,359	350	4	304,440	117,172	О	183
7	Finely (Moran)	26,696	21,900	o	0	26,696	21,900	0	
	Giddens (1,100' Cisco and 1,900' Sand)	1,660	422,932	1,660	0	0	422,932	0	9
	Hendrick (Morris Sand)	0	41,975	0	0	0	41,975	0	
	Mikapam	365	365	365	0	0	365	0	
	County regular	14,020	20,000	2,190	0	11,830	20,000	0	
	Area Total	42,741	507,172	4,215	0	38,526	507,172	0	9
8	Perkins (Caddo)	730	2,160	730	0	0	2,160	0	9
	Suttle (Palo Pinto Sand)	8	0	8	0	0	0	0	
	County regular	30,505	144,788	4,042	0	26,463	144,788	O	
	Area Total	31,243	146,948	4,780	0	26,463	146,948	О	
9	County regular	755	802	755	72	0	730	0	
	Area Total	755	802	755	72	0	730	0	
10	Putnam, South (Duffer Lime)	4	730	0	0	0	730	4	
	County regular	13,855	115,705	350	0	13,505	115,705	0	
	Area Total	13,859	116,435	350	0	13,505	116,435	4	9
11	Speed-Findley (Cross Plains)	183	0	183	0	0	o	О	
	County regular	365	518	0	0	365	518	0	
	Area Total	548	518	183	0	365	518	0	
12	County regular	3,000	7,300	0	0	3,000	7,300	0	
	Area Total	3,000	7,300	0	0	3,000	7,300	o	
13	EGN (King)	725	750	725	О	0	750	o	
	Lord & Shell (Tannehill)	1,095	O	1,095	0	0	О	o	
	Myers (Upper Hope)	301,125	0	0	0	301,125	0	0	
	Area Total	302,945	750	1,820	0	301,125	750	0	

Table 8.—Reported Oil-Field Brine Production and Disposal, 1961 and 1967—Continued

		Brine pro	Brine production		Disposal into pits		Injection into wells		Miscellaneous disposal	
Area¹	Field ²	1961	1967	1961	1967	1961	1967	1961	1967	
14	McCurdy-Blair (Mississippi)	5,400	35,010	O	0	5,400	35,010	0	0	
	McCurdy-Blair, East (Mississippi)	0	12,750	0	0	O	12,750	O	0	
	County regular	0	4,015	0	0	0	4,015	o	0	
	Area Total	5,400	51,775	0	0	5,400	51,775	О	0	
15	Brock (Cook)	279,703	72,000	0	0	279,703	72,000	0	0	
	Area Total	279,703	72,000	0	0	279,703	72,000	О	0	
16	Eula, Northwest (Cook)	19,700	33,833	0	0	19,700	33,833	0	0	
	H & H (Cook) Field Unit	25,550	0	0	О	25,550	0	O	0	
	Olga (Upper Cook)	2,910	484	1,600	484	1,310	0	0	0	
	County regular	1,721	157	0	157	1,721	0	0	0	
	Area Total	49,881	34,474	1,600	641	48,281	33,833	0	0	
17	J. K. Wadley	736	0	736	О	O	0	О	0	
	County regular	0	42,093	0	0	0	42,093	0	0	
	Area Total	736	42,093	736	0	0	42,093	О	0	
18	Inman (Flippen Sand)	18,365	67,150	365	0	18,000	67,150	0	0	
	County regular	0	13,028	0	0	0	13,028	0	0	
	Area Total	18,365	80,178	365	0	18,000	80,178	0	0	
19	Denton	20,085	12,775	540	12,775	19,545	0	0	0	
	Milliorn	2,760	9,490	2,760	O	0	9,490	0	0	
	Whitehead (Hope Sand)	335	7,300	335	0	0	7,300	0	0	
	County regular	46,176	83,782	551	0	45,625	83,782	0	0	
	Area Total	69,356	113,347	4,186	12,775	65,170	100,572	0	0	
20	Marge (Jennings Sand)	1,550	9,125	1,550	0	0	9,125	0	0	
	Marge E (4040)	0	3,650	0	0	0	3,650	0	0	
	Area Total	1,550	12,775	1,550	0	0	12,775	О	0	
21	Scranton	13,225	4,300	13,225	0	0	4,300	0	0	
	Area Total	13,225	4,300	13,225	0	0	4,300	0	0	

Table 8.—Reported Oil-Field Brine Production and Disposal, 1961 and 1967—Continued

		Brine pro	Brine production		Disposal into pits		Injection into wells		Miscellaneous disposal	
Area ¹	Field ²	1961	1967	1961	1967	1961	1967	1961	1967	
22	Barnes (Cook Lime)	4,500	О	4,500	0	0	o	o	0	
	Barnes (Cook Sand)	28,720	5,500	28,000	О	720	5,500	0	0	
	Dumont (Cook)	4,800	12,775	4,800	0	0	12,775	0	0	
	Loven Ranch	3,012	0	0	o	3,012	О	О	0	
	County regular	2,905	15,780	1,825	0	1,080	15,780	0	0	
	Area Total	43,937	34,055	39,125	0	4,812	34,055	0	0	
23	Oplin, S. E. (Ellenburger)	28,000	0	0	0	28,000	0	0	0	
	Area Total	28,000	0	0	0	28,000	0	0	0	
24	County regular	0	15,060	0	0	0	15,060	0	0	
	Area Total	o	15,060	0	0	0	15,060	0	0	
25	A. C. Scott (Cross Plains)	274,175	523,775	18,900	o	255,275	523,775	0	0	
	A. C. Scott, N.W. (Cross Plains)	22,250	0	22,250	o	0	0	0	0	
	Am-Hard (Cross Plains)	36,750	0	250	0	36,500	0	0	0	
	Gregory-Fortune (Cross Plains)	42,520	0	545	o	41,975	o	o	0	
	Lucky Strike (Cross Plains)	2,555	0	0	0	2,555	0	0	0	
	McGraw (Cross Plains)	97,381	1,066	390	3	96,991	1,063	0	0	
	McKinney (Cross Plains)	73,232	20,410	232	0	73,000	20,410	О	0	
	War Kirk (Cross Plains)	37,065	O	1,065	0	36,000	0	0	0	
	County regular	750	4,000	750	0	0	4,000	0	0	
	Area Total	586,678	549,251	44,382	3	542,296	549,248	0	0	
26	County regular	765,280	1,645,600	8,345	0	755,570	1,645,600	1,365	0	
	Area Total	765,280	1,645,600	8,345	0	755,570	1,645,600	1,365	0	
27	County regular	93	4,782	93	0	0	4,782	0	0	
	Area Total	93	4,782	93	0	0	4,782	0	0	
_	County regular, Unlocated Total	1,363,198	o	84,843	0	1,278,060	0	295	0	
	County Total	5,519,936	8,740,486	237,489	13,495	5,280,783	8,726,808	1,664	183	
	Percent of Total	100	100	4.30	0.15	95.67	99.84	0.03	0.01	
								100000	2.01	

¹ Areas shown on Figure 21.

² Oil or gas fields as assigned by the Railroad Commission of Texas.

Table 9.—Chemical Analyses of Oil-Field Brines

(Analyses are in parts per million except pH)

Producing zone	Field¹	Average well depth (feet)	Area shown on Figure 21	Calcium (Ca)	Magne- sium (Mg)	Sodium (Na)	Bicarbonate (HCO3)	Sulfate (SO4)	Chloride (CI)	Dissolved solids	рН
					Permian Syst	tem					
Dothan Sand ²	Elmdale	3,350	1	12,059	1,088	 2	66	730	52,800	147,300	6.1
do ²	Regular	1,400	_	1,992	635	20,300	259	3,710	33,800	_	7.4
Tannehill ^{2 3}	Morrisett	1,609	2	4,159	1,417	28,530	99	6	55,400	_	7.0
do ²	do	1,623	2	4,128	1,256	27,320	139	6	52,950	_	7.1
do ⁴	Red Horse	1,407	5	5,360	1,099	30,785	83	7	60,100	_	7.0
do ⁴	Three Acres	_	2	5,720	1,370	34,100	80	655	66,300	119,800	6.5
do ⁴	S. E. Clyde	1,312	14	6,520	2,106	25,402	105	680	71,800		6.8
do ⁴	N. of Baird	_	5	4,750	1,120	27,000	300	0	53,300	92,500	6.3
do ⁴	Wagley	_	8	3,673	1,384	21,180	21	19	44,050	_	5.3
do ⁴	do	_	8	3,812	1,359	22,280	257	43	44,320	_	6.5
U.Tannehill ⁴	Regular	_	-	5,860	1,090	34,600	85	0	66,900	112,000	6.2
L.Tannehill ⁴	do	_		5,360	1,120	34,800	85	0	66,400	112,000	6.7
Flippen ⁴	Wildcat	1,763	_	4,390	1,070	29,400	95	340	50,000	85,000	6.8
do ⁴	Three Acres	1,682	2	7,310	1,660	38,000	146	0	76,200	132,800	6.2
Cook Sand ⁴	Brock	_	15	4,993	1,333	39,445	78	0	73,500	120,000	7.4
do ⁴	Regular	_	-	5,750	1,440	35,290	85	0	69,100	124,800	6.0
				Р	ennsylvanian :	System					
King ³	Morrisett	1,956	2	7,793	1,780	33,270	94	92	70,100	-	6.8
Home Creek ⁴	Brock (Cook Sand) and Eula Lower Hope	-	15	3,354	1,143	32,499	312	275	59,000	96,000	6.7
do ⁴	do	-	15	2,189	820	32,586	124	40	60,000	95,817	7.2
Winchell ⁴	Elmdale	-	1	2,960	1,000	30,750	528	750	54,700	94,500	6.0
Palo Pinto ⁴	Box	3,300	1	11,680	2,041	20,010	117	148	81,650	97,649	-
do ⁴	Regular	_		3,280	1,500	32,600	150	0	60,500	100,800	7.3
Cross Plains ⁴	Baum	-	26	4,800	1,205	32,100	70	740	60,980	105,150	6.0
do ⁴	Cross Plains (McKinney)	1,530	25	3,920	2,350	31,000	124	45	60,500	97,900	6.25

See footnotes at end of table.

rance of the breaking the committee of the control of the control

Table 9.—Chemical Analyses of Oil-Field Brines—Continued

Producing zone	Field ¹	Average well depth (feet)	Area shown on Figure 21	Calcium (Ca)	Magne- sium (Mg)	Sodium (Na)	Bicarbonate (HCO3)	Sulfate (SO ₄)	Chloride (CI)	Dissolved solids	рН
				Pennsylv	anian System-	-Continued					
Cross Cut ⁴	Herr-King	2,580	5	9,324	2,889	36,650	195	189	79,430	_	6.0
Cisco Sand³	Regular	_	_	5,120	1,170	30,400	150	120	60,200	102,800	6.6
Moran Sand ⁴	Herr-King	2,350	5	8,787	1,518	32,030	66	329	69,085	111,815	6.15
do ^{2 4}	Red Horse	2,680	5	10,880	1,941	39,648	93	69	85,550	_	6.5
do ^{2 4}	do	2,700	5	10,085	1,586	36,295	72	110	78,370	_	5.8
ry Sand ⁴	1.5 SE Eula	-	19	2,930	775	30,000	180	2,730	51,700	91,200	7.0
J. Fry³	_	-	_	5,800	870	-	220	122	61,370	108,800	6.0
J. Fry³	-	_	_	4,300	600	-	292	78	41,245	83,000	6.3
ry Sand ⁴	Regular	-	_	5,960	1,395	34,240	110	36	67,400	118,300	5.9
ennings Sand ⁴	Silver Valley	-	_	15,100	2,160	49,400	290	85	109,000	195,000	6.4
ake ²	Red Horse	4,190	Б	4,625	706	16,420	47	337	35,200	_	5.2
do ⁴	Speed Findley	3,800	8	13,355	2,723	43,661	109	85	98,759	_	6.7
Bend ⁴	IX Conglomerate	4,356	5	12,360	2,856	37,330	15	145	95,000	147,700	4.75
Conglomerate4	do	4,362	5	10,560	2,180	32,400	66	175	74,900	_	5.3
					Ordovician Sys	tem					
Ellenburger ³	Red Horse	4,442	5	2,288	1,388	22,944	480	1,592	42,034	71,280	7.03
do ⁴	do	4,396	5	3,240	1,685	22,000	392	1,855	43,300	_	6.6
do ⁴	do	4,460	5	2,318	564	23,110	60	1,064	39,300	_	6.8
do ⁴	Three Acres	-	2	2,200	554	25,100	393	1,250	43,000	75,300	7.7
do^2	Red Horse	4,410	5	2,200	400	23,040	81	1,390	39,520	· — :	7.8
do ²	Hatchett	4,420	12	6,890	1,752	21,200	50	359	49,700	1-1	6.8
do ²	Red Horse	4,442	5	2,735	733	22,260	121	1,685	40,020	_	5.8
do ⁴	Oplin	3,875	22	2,100	352	24,900	312	474	42,600	_	7.1
Ellenburger4	Oplin SE	4,190	23	1,700	690	22,500	483	1,400	38,500	60,500	7.58

Oil and gas fields as assigned by the Railroad Commission of Texas.

²Analyses obtained from BJ Service, Inc., 1960.

³Analyses obtained from data accompanying Railroad Commission of Texas' 1967 Salt Water Production and Disposal Questionnaires.

⁴Analyses obtained from Laxson and others, 1960.

Table 10.— Oil and Gas Tests Selected as Data-Control Points in Callahan County and Adjacent Areas

(For location of wells, see Figure 22.)

Well	Operator	Lease name and operators well number	Survey and section number	County	Type of log	Elevation of measuring point	Remarks
30-27-623	Rock Hill Oil Company	D. M. Myatt No. 1	Blind Asylum Lands No. 1	Jones	Electric	1,680	Log on Jones County geological cross section B-B'.
28-802	Hovgard and Fitzgerald	R. D. Damewood No. 1	Section 90, Block 13, T and P RR Company	Callahan	Electric	1,922	-
29-601	E. H. R. Sabens	Green No. A-1	Section 71, Block 13, T and P RR Company	Shackelford	Electric	1,628	Log on Shackelford County geological cross section B-B'.
37-201	A. G. Hill	Maggie Hardy No. 2	Section 24, ET RR Company	Callahan	Electric	1,847	_
38-401	William D. Austin	Synder No. A-1	Section 142, BBB and C RR Company	do	Electric	1,738	_
601	E. L. Finely	E. L. Finely No. 1	Section 68, B. O. A.	do	Drillers'	1,473	A total of 36 feet of Alluvium was encountered in this test.
901	Miami Operating Company, Incorporated	N. L. Finely No. 1	Section 73, B.O.H.	do	Electric	1,506	_
39-901	West Central Drilling Company	W. A. Ramsey No. 1	Section 2277, TE and L RR Company	do	Electric	1,526	, —
40-801	Intex Oil Company	A. J. Pippen No. 1	Section 3182, TE and L RR Company	Eastland	Electric	1,652	_
45-204	Copaz Oil and Gas Corporation	Jones No. 1	No. 336, Victoria County School Land	Callahan	Electric	1,965	_
801	Humble Oil and Refining Company	L. J. McFarlane No. 1	Jesse Youngblood No. 248	do	Electric	1,763	=
46-901	Frank Ausanka Trustee and Ab-Tex Drilling Company	C. M. Caldwell No. 2	Section 12, Block 5, SP RR Company	do	Electric	2,152	Base of Antlers Formation at 1,795 feet above sea level, and 357 feet of Cretaceous sediments were encountered in the test.
904	Star Oil Company	C. M. Caldwell No. 1	Section 12, Block 5, SP RR Company	do	Drillers' and Electric	2,058	Base of Antlers Formation at 1,823 feet above sea level. A total of 235 feet of Cretaceous sediments were encountered in the test.
905	lke Drilling Company	Edgar Smith No. 1	Section 9, Block 5, SP RR Company	do	Drillers'	1,809	Base of Antlers Formation at 1,790 feet above sea level, and 35 feet of Cretaceous sediments were encountered in the test.
906	A. R. McElreath, Jr.	T. W. Eastham No. 1	Section 9, Block 5, SP RR Company	do	Drillers'	1,854	Base of Antiers Formation at 1,829 feet above sea level, A total of 25 feet of Cretaceous sediments were encountered in the test.
51-603	Robinson-Puckett, Inc.	Addie Bishop Pfleuger No. 1	Section 18, Block 6, SP RR Company Survey	Taylor	Electric and Sample	2,284	-
52-601	Anderson-Pritchard Oil Corporation	Tom Windham No. 1	George Hancock Section 369	Callahan	Electric and Sample	1,958	-
53-601	Warren-Bradshaw Exploration Company	Ludie H. Owen No. 1	A-275, George Massengale	do	Electric	1,695	-
54-205	Roxananna Petroleum Corporation and C. O. Moore	C. M. Caldwell No. 3	Section 15, Block 5, SP RR Company	do	Drillers'	2,017	Base of Antlers Formation at 1,824 feet above sea level, and 247 feet of Cretaceous sediments were encountered in the test.
208	Woodson Production Company and Ernestine Callahan	C. M. Caldwell No. 1	Section 14, Block 5, SP RR Company	do	Electric	1,996	Base of Antlers Formation at 1,859 feet above sea level. A total of 137 feet of Cretaceous sediments were encountered in the test.
301	Star Oil Company	C. M. Caldwell No. A-1	Geo Click	do	Electric	2,043	Base of Antlers Formation at 1,798 feet above sea level, and 245 feet of Cretaceous sediments were encountered in the test.
308	Broderick and Calvert	C. M. Caldwell No. 1	Section 15, Block 15, SP RR Company	do	Drillers'	1,993	Base of Antiers Formation at 1,825 feet above sea level. Fresh water reported from 50 to 80 feet.
							A total of 168 feet of Cretaceous sediments were encountered in the test.

Table 10.— Oil and Gas Tests Selected as Data-Control Points in Callahan County and Adjacent Areas—Continued

	Lease name and operators	Survey and		Type	Elevation of measuring	
Operator	well number	section number	County	log	point	Remarks
C. B. Edgar	Caldwell No. 1-SWD	Section 13, Block 5, SP RR Company	Callahan	Electric	2,043	Base of Antiers Formation at 1,826 feet above sea level, and 217 feet of Cretaceous sediments were encountered in the test.
Sunray Oil Company	C. E. Aspin No. 1	Gabriel Padillo	do	Electric	2,000	Base of Antiers Formation at 1,725 feet above sea level. A total of 275 feet of Cretaceous sediments were encountered in the test.
Irvin Producing Company and Western Natural Gas	Ben Lester No. 1	Jesse Dyson No. 751	do	Electric	1,799	-
Harding Brothers	Cornelouis No. 1	George M. Vigal No. 798	do	Electric	1,801	=
Drilling and Exploration Company, Incorporated	Baum-Swafford No. A-1	do	do	Electric	1,802	-
Casper Drilling Company	Wright No. 1	Section 751, Jesse Dyson	do	Electric	1,763	_
Humble Oil and Refining Company	W. R. Erwin No. 1	do	do	Drillers'	1,804	Base of Antiers Formation at 1,704 feet above sea level, and 100 feet of Cretaceous sediments were encountered in the test.
Hovgard and Fitzgerald	C. M. Morse No. 1	Section 138, GH and H RR	do	Electric	1,885	—
Coronet Oil Company	Morris No. 66-2	Section 66, GH and H	Coleman	Electric	1,752	-
Henshaw Brothers	Alexander and Plumley No. 1	Section 20, Block 2, ET RR	Eastland	Electric	1,697	-
	C. B. Edgar Sunray Oil Company Irvin Producing Company and Western Natural Gas Harding Brothers Drilling and Exploration Company, Incorporated Casper Drilling Company Humble Oil and Refining Company Hovgard and Fitzgerald Coronet Oil Company	Operator Ope	Operator Well number Survey and section number C. B. Edgar Caldwell No. 1-SWD Section 13, Block 5, SP RR Company Sunray Oil Company C. E. Aspin No. 1 Gabriel Padillo Irvin Producing Company and Western Natural Gas Harding Brothers Cornelouis No. 1 George M. Vigal No. 798 Drilling and Exploration Company, Incorporated Baum-Swafford No. A-1 do Casper Drilling Company Wright No. 1 Section 751, Jesse Dyson Humble Oil and Refining Company W. R. Erwin No. 1 Section 138, GH and H RR Coronet Oil Company Morris No. 66-2 Section 66, GH and H	Operator Well number Survey and section number County C. B. Edgar Caldwell No. 1-SWD Section 13, Block 5, SP RR Company Callahan Sunray Oil Company C. E. Aspin No. 1 Gabriel Padillo do Irvin Producing Company and Western Natural Gas Harding Brothers Cornelouis No. 1 George M. Vigal No. 798 do Drilling and Exploration Company, Incorporated Baum-Swafford No. A-1 do do Casper Drilling Company Wright No. 1 Section 751, Jesse Dyson do Humble Oil and Refining Company W. R. Erwin No. 1 Section 138, GH and H RR do Coronet Oil Company Morris No. 66-2 Section 66, GH and H Coleman	Operators well number Survey and section number County log C. B. Edgar Caldwell No. 1-SWD Section 13, Block 5, SP RR Company Callahan Electric Sunray Oil Company C. E. Aspin No. 1 Gabriel Padillo do Electric Irvin Producing Company and Western Natural Gas Harding Brothers Cornelouis No. 1 George M. Vigal No. 798 do Electric Drilling and Exploration Company, Incorporated Baum-Swafford No. A-1 Casper Drilling Company Wright No. 1 Section 751, Jesse Dyson do Electric Casper Drilling Company Wright No. 1 Section 751, Jesse Dyson do Drillers' Hovgard and Fitzgerald C. M. Morse No. 1 Section 138, GH and H RR do Electric Coronet Oil Company Morris No. 66-2 Section 66, GH and H Coleman Electric	Operators well number Survey and section number County log measuring point C. B. Edgar Caldwell No. 1-SWD Section 13, Block 5, SP RR Company Callehan Electric 2,043 Sunray Oil Company C. E. Aspin No. 1 Gabriel Padillo do Electric 2,000 Irvin Producing Company and Western Ben Lester No. 1 Jesse Dyson No. 751 do Electric 1,799 Natural Gas Cornelouis No. 1 George M. Vigal No. 798 do Electric 1,801 Drilling and Exploration Company, Incorporated Baum-Swafford No. A-1 do do Electric 1,802 Casper Drilling Company Wright No. 1 Section 751, Jesse Dyson do Electric 1,763 Humble Oil and Refining Company W. R. Erwin No. 1 Section 138, GH and H RR do Electric 1,885 Cornet Oil Company Morris No. 66-2 Section 66, GH and H Coleman Electric 1,752

to the first form of Many Selfscholl god Englishmen