

TEXAS DEPARTMENT OF WATER RESOURCES

REPORT 240

OCCURRENCE, QUALITY, AND QUANTITY OF GROUND WATER IN WILBARGER COUNTY, TEXAS

By

Robert D. Price, Geologist Texas Department of Water Resources

November 1979

TEXAS DEPARTMENT OF WATER RESOURCES

Harvey Davis, Executive Director

TEXAS WATER DEVELOPMENT BOARD

A. L. Black, Chairman Milton Potts George W. McCleskey John H. Garrett, Vice Chairman Glen E. Roney W. O. Bankston

TEXAS WATER COMMISSION

Felix McDonald, Chairman Dorsey B. Hardeman, Commissioner Joe R. Carroll, Commissioner

Authorization for use or reproduction of any original material contained in this publication, i.e., not obtained from other sources, is freely granted. The Department would appreciate acknowledgement.

> Published and distributed by the Texas Department of Water Resources Post Office Box 13087 Austin, Texas 78711

TABLE OF CONTENTS

																											Page
ABSTRACT								•				•	•	•	ł				~		÷			(*)	•	•	1
INTRODUCTION		•	ŕ	•	×		ſ	ŕ		·	;	•	•	•	•	·	×	×	•	٠	•	×	·	·	•	٠	3
Location	• •		÷	ð		e.	•	٠	•		÷	÷	÷	•	÷			•	•	•	÷	÷	•	×	•	1	3
Purpose and Scope .	. .	8	×	ň	÷		÷		÷			•	٠			•	÷	•	•	•		ł	•		•		3
Methods of Investigation	on .		•				•	•	•				•	•				•	*					•			3
Previous Investigations	;	•	•			•	•	•	r		•	•				·	1	•			·			•			4
Well-Numbering System	m.	·	•		ł							٠	•	•	•			•	·				÷	·		•	5
Acknowledgements .	•		•	÷	•	÷	÷	•	•	•	,	•	÷		•	i.		·	•	٠		·	·	ł	•	•	6
WILBARGER COUNTY GE	OGR	APH	łY			·		•				•		•	٠		·	•					•			(•)	6
Topography and Drain	age .	(a.)									•	·		•	(a)			*		·			×1	*	2		6
History			•		•	÷	÷	•	•	•	÷	•	•	•		·		g.	÷	•	•	÷		ł.	•		6
Population			•	,	•	•				•				•	•	•								•			7
Climate and Weather				*					•				×		(a)								·		×		7
Economy		÷			•	·	·	÷	•	÷				•	٠		÷		•	÷	•	÷	•	•	•	•	7
GEOLOGY AS RELATED T	TO TH	IE C	oco	CUI	R	EN	CE	OF	G	RC	U	١D	WA	A T E	ER	•							*				10
General Geology														a,												•	10
Geologic History			•	•					•												s.	192	×				10
Stratigraphy .			,					•	,		÷					÷		•									10
Structure									30			•	•	÷	×.		×			2		×				÷	21
Aquifers and Aquiclud	es .	2					•			•											. .						22
Pre-Permian Syst	ems																										22
Permian System																								•			22
Wichita Gr	oup											÷			a.										÷		22

	Page
Clear Fork Group	22
Pease River Group	23
Quaternary System	23
Seymour Formation	23
Terrace Deposits	23
Recent Alluvium	24
GROUND-WATER HYDROLOGY	24
General Principles of Occurrence	24
Hydrologic Cycle	24
Definition of Ground Water and Related Terms	24
Source and Occurrence of Ground Water	26
Recharge, Movement, and Discharge of Ground Water	26
Hydraulic Properties of the Aquifers	29
Fluctuations of Water Levels	37
	37
	20
	30
Haroness	42
lron	43
Sodium and Potassium	43
Carbonate and Bicarbonate	43
Sulfate	43
Chloride	44
Fluoride	44
Nitrate	45
Boron	46
Suitability for Drinking and Livestock Use	46

		Page
Suitability for Irrigation Use	e de com	47
Suitability for Industrial Use	al an ch	50
Treatment of Water	e e ce a	50
Historical Changes in Water Quality		50
WELL DEVELOPMENT	1,000	52
History of Well Development in Wilbarger County		52
Well Construction		54
Yields of Wells		54
Pump Types and Energy Sources		54
GROUND-WATER PUMPAGE AND UTILIZATION		55
Irrigation Pumpage		55
Municipal Pumpage		55
Public Water Supply—Vernon, Texas		55
Public Water Supply—Altus, Oklahoma		57
Rural Water Districts		57
Industrial Water Lise		57
Domestic and Livestock Lise		57
		57
		57
Seymour Formation and Quaternary Alluvium		57
Changes in Water Levels		57
Theoretical Effects of Pumpage	• •	65
Ground Water Available for Development	• •	77
Possible Areas of Future Development	• •	89
Permian Rocks	• •	90
Changes in Water Levels	* *	90
Availability of Ground Water for Future Development		90

Page
RODUCTION AND DISPOSAL OF OIL-FIELD BRINE
Areas, Methods, and Quantity of Disposal
Chemical Quality of Produced Brines
Produced Brine as a Potential Source of Ground-Water Contamination
THER GROUND-WATER PROBLEMS
Areas of Vegetative Kill and Possible Causes
Future Water-Level Declines Northeast of Odell 94
UMMARY AND CONCLUSIONS
EFERENCES

TABLES

1.	Geologic Units and Their Water-Bearing Properties	12
2.	Aquifer Coefficients of Storage and Transmissibility, and Well Specific Capacities and Yields	30
3.	Source and Significance of Dissolved-Mineral Constituents and Properties of Water	41
4.	Records of Water Wells, Springs, and Selected Test Holes	102
5.	Drillers' Logs of Water Wells and Selected Test Holes	159
6.	Drillers' Logs of Geophysical Shot Holes Used for Supplementary Data Control in the Lockett Area	189
7.	Drillers' Logs of Test Holes Used for Supplementary Data Control in the Odell-Fargo Area	196
8.	Chemical Analyses of Water from Wells and Springs	207
9.	Chemical Analyses of Oil-Field Brines	224
10.	Reported Oil-Field Brine Production and Disposal in 1961 and 1967	225
11.	Oil and Gas Tests Selected as Data-Control Points	229

FIGURES

1.	Map of Texas Showing Location of Wilbarger County	. 3	3
2.	Diagram of Well-Numbering System	. E	ō
3.	Graph of Annual Precipitation at Vernon, 1935-70	. 8	3

100 C		
Pa	n	0
ı a	ч	C

4.	Graphs Showing Average Monthly Precipitation, Lake-Surface Evaporation, and Temperature	9
5.	Geologic Map of Wilbarger County	13
6.	Geologic Section A-A'	15
7.	Geologic Section B-B'	17
8.	Geologic Section C-C'	19
9.	Map Showing Major Structural Features in North-Central Texas	21
10.	Diagram of the Hydrologic Cycle	25
11.	Idealized Cross Section Showing Drawdown Interference Between Two Pumping Wells	37
12.	Map Showing Chemical Quality of Water From Selected Wells	39
13.	Diagram Showing Classification of Seymour Formation Waters for Irrigation	49
14.	Diagram Showing Classification of Waters from the Quaternary Alluvium for Irrigation	49
15.	Diagram Showing Classification of Waters from the Permian Rocks for Irrigation	50
16.	Diagrams of Chemical Analyses of Ground Water and a Typical Oil-Field Brine	51
17.	Chart Showing Estimated Pumpage of Ground Water in Wilbarger County, 1943-70	56
18.	Map Showing Approximate Altitude of Water Levels in Wells in the Seymour Formation and Quaternary Alluvium in the Lockett Area, Fall of 1943	59
19.	Map Showing Approximate Altitude of Water Levels in Wells in the Seymour Formation and Quaternary Alluvium in the Lockett Area, Fall and Winter 1969-70	61
20.	Map Showing Approximate Altitude of Water Levels in Wells in the Seymour Formation and Quaternary Alluvium in the Lockett Area, Fall and Winter 1970-71	63
21.	Map Showing Approximate Altitude of Water Levels in Wells in the Seymour Formation in the Odell-Fargo Area, Summer of 1951	67
22.	Map Showing Approximate Altitude of Water Levels in Wells in the Seymour Formation and Quaternary Alluvium in the Odell-Fargo Area, Fall and Winter 1969-70	69
23.	Map Showing Approximate Altitude of Water Levels in Wells in the Seymour Formation and Quaternary Alluvium in the Odell-Fargo Area, Fall and Winter 1970-71	71
24.	Hydrographs Showing Seasonal Water-Level Fluctuations in Selected Wells in the Seymour Formation and Quaternary Alluvium, November 1969-January 1971	73
25.	Hydrographs Showing Water-Level Fluctuations in Observation Wells in the Seymour Formation, 1951-71	75

Page

26.	Graphs Showing Relation of Decline in Water Levels in the Seymour Formation to Time and Distance, for Various Transmissivities and Discharge Rates		78
27.	Graph Showing Relation of Decline in Water Levels in the Seymour Formation to Discharge Rate and Distance		79
28.	Map Showing Approximate Saturated Thickness of the Seymour Formation and Quaternary Alluvium in the Lockett Area, Fall and Winter 1970-71		81
29.	Map Showing Approximate Saturated Thickness of the Seymour Formation and Quaternary Alluvium in the Odell-Fargo Area, Fall and Winter 1970-71	٠	83
30.	Map Showing Approximate Altitude of the Base of the Seymour Formation-Quaternary Alluvium in the Lockett Area		85
31.	Map Showing Approximate Altitude of the Base of the Seymour Formation-Quaternary Alluvium in the Odell-Fargo Area	(#)	87
32.	Map Showing Location and Amounts of Reported 1961 and 1967 Brine Disposal, Vegetative-Kill Areas, and Apparently Contaminated Water Wells		91
33.	Photographs of Vegetative-Kill Areas	•	95
34.	Map Showing Location of Wells, Springs, and Selected Test Holes	. 2	31

OCCURRENCE, QUALITY, AND QUANTITY OF GROUND WATER IN WILBARGER COUNTY, TEXAS

ABSTRACT

Wilbarger County, 954 square miles in area, is located in extreme north-central Texas and entirely within the Osage section of the Central Lowlands physiographic province. The area lies within the Red River drainage basin with the Red River forming its north boundary and the Pease River dissecting the county and flowing northeast through the central part of the county. Vernon, the county seat, is the largest city with a 1970 population of 11,454. The climate of the area is a subhumid, warm-temperate, continental type. The mean annual rainfall at Vernon (1935-70) is 25.04 inches.

The water needs of the county are supplied almost entirely from ground water. The water-bearing units listed in their order of importance are: the Seymour Formation, Quaternary alluvium deposits, and the rocks of the Permian System. The Seymour Formation and Quaternary alluvium deposits are hydrologically connected and usually function as a single aquifer. The yields of the wells range from small to moderate. The quality of their ground waters ranges from fresh to very saline. Ground waters of the Clear Fork Group of Permian age are of small yields and are usually highly mineralized. The San Angelo Formation of Permian age reliably yields fresh to slightly saline ground water in small quantities. Ground water in Wilbarger County is used for municipal, irrigation, rural domestic, livestock, and industrial purposes. In 1970, about 6,000 acre-feet was pumped. Of this, about 4,000 acre-feet (65 percent) was for municipal supply; 2,000 acre-feet (33 percent) was for irrigation; 150 acre-feet (2 percent) for rural domestic and livestock use; and 9 acre-feet (less than 1 percent) for industrial purposes.

An estimated 266,000 acre-feet of ground water is in transient storage in the Seymour Formation in the Odell-Fargo area, and an additional 101,000 acre-feet is estimated to be in storage in this aquifer in the Lockett area. The estimated quantity of water available for annual withdrawal by wells in these areas is 5,000 acre-feet and 3,500 acre-feet, respectively. Large-scale development will reduce the streamflow of the region which is partly sustained by natural ground-water discharge.

The native ground water in the principal aquifer in the county, although very hard, is of good quality. Water from this aquifer is suitable for public supplies, irrigation, livestock, and limited industrial uses.

OCCURRENCE, QUALITY, AND QUANTITY OF GROUND WATER IN WILBARGER COUNTY, TEXAS

INTRODUCTION

Location

Wilbarger County, having an areal extent of approximately 954 square miles, is located in extreme north-central Texas (Figure 1). The north boundary, which is also the line between the States of Texas and Oklahoma, parallels the Red River (Figure 5). The county is bounded on the west by Foard and Hardeman Counties. Wichita County and Baylor County are located on the east and south, respectively. The county is located approximately between 98° 57' and 99° 28' west longitude and 33° 50' and 34° 28' north latitude. Vernon, the county seat, is centrally located within the county at the junction of U.S. Highways 70, 183, and 283, approximately 50 miles northwest of Wichita Falls, Texas.

Figure 1.-Map of Texas Showing Location of Wilbarger County

Purpose and Scope

The Texas Water Development Board recognizes the significance of ground water in the north-central Texas region and has conducted several investigations in order to meet a growing need for more accurate and detailed ground-water information in this area. This investigation is one of the studies within the subject region.

Several towns with municipal water supplies in north-central Texas are served by ground water or use wells on a standby basis. In addition to meeting municipal needs for water in the area, ground water is often the sole source supplying domestic, farm, and ranch needs.

Reports from the results of investigations in Archer, Baylor, Brown, Coleman, Jones, Montague, Shackelford, Stephens, Taylor, Throckmorton, and Young Counties have been or are being published by the Board.

The specific purpose of this study was to determine the occurrence, quality, and quantity of the ground-water resources of Wilbarger County. Special emphasis was placed on determining the sources of water suitable for municipal, industrial, irrigation, domestic, and livestock use. Areas and possible sources of present or potential ground-water contamination were delineated.

The scope of this project included the collection, compilation, and analysis of data pertaining to the distribution and quality of ground water in Wilbarger County, and the presentation of these data, results of analyses, and conclusions in report form.

Methods of Investigation

An inventory was made of all municipal, industrial, and irrigation wells, plus all springs, as well as a representative selection of domestic and livestock wells. A total of 973 wells, springs, and test holes were inventoried in the period September 1969 to June 1971 (Table 4). Water levels were measured in all wells where possible. Information was gathered, when available, on well depths, well construction, date drilled, driller, water-yielding formations, and water-production quantities. Surface elevations of all wells inventoried were determined from topographic maps and electric log well records.

Water samples were collected for chemical analysis from 464 selected wells, springs, or test holes during this study. These analyses, as well as 109 analyses performed by commercial or private laboratories, are listed in Table 8.

Surface and subsurface geologic data were collected and compiled, placing special emphasis on their relationship to ground water. To supplement the available data, in the period October 5-22, 1970, the Texas Water Development Board drilled 10 test holes to better determine the configuration of the base of the Seymour Formation northeast of Odell.

Additional data were collected and compiled on apparent and potential ground-water contamination, oil-field brine disposal, climate, and areas of ground-water recharge and discharge.

Previous Investigations

Prior to this investigation, several general geological reports relating to the area had been published and these are cited in the selected references.

Gordon (1913) conducted a regional reconnaissance investigation of the geology and underground waters of 13 counties in north-central Texas. A brief discussion of conditions in Wilbarger County is included in this water-supply paper.

Follett, Sundstrom, and White (1944) made a fairly detailed study of the ground-water resources in the vicinity of Vernon. Their report includes records of 221 wells and 161 chemical analyses of ground water. Also included is a brief description of the geology of the county and its relationship to the occurrence of ground water, and data on aquifer characteristics and pumpage.

Willis and Knowles (1953) conducted a very detailed investigation of the ground-water resources of the Odell sand hills in northern Wilbarger County. With financial assistance from the city of Vernon, 70 test

holes were drilled during that study to determine accurately the aquifer's character and thickness. Included in the report are records of 110 wells and 42 chemical analyses of water. Also presented is a discussion of the relationship of the geology to the occurrence of ground water, results of aquifer pumping tests, hydrologic maps, and estimates of the amount of ground water in storage.

In 1956, Follett compiled records of water-level measurements in Foard and Wilbarger Counties. This report includes historical water-level data on 76 observation wells in Wilbarger County, and hydrographs of 11 selected wells within the county.

Baker, Long, Reeves, and Wood (1963) completed a regional reconnaissance investigation of the ground-water resources of the Red River, Sulphur River, and Cypress Creek basins in Texas. Wilbarger County is located within the Red River basin.

An investigation of ground- and surface-water contamination near Harrold in Wilbarger County was made by Fink (1965), and Stearman (1960) conducted a reconnaissance investigation of alleged contamination of irrigation wells near Lockett in west-central Wilbarger County.

Two unpublished reports have been written concerning water-quality problems within the subject county. Davis in 1963 conducted a regional reconnaissance study of oil-field brine conditions in the Red River basin of Texas.¹ This report dealt primarily with natural pollution, such as salt springs, as well as the control of man-made pollution caused by industrial and municipal wastes. An investigation was made during 1968 on the nitrate content in ground water of the Seymour Formation in the Lockett area of Wilbarger County.² This study was made at the request of the Red River Authority of Texas.

Pertinent water-well data from all of the above reports have been selectively incorporated into the present report. These and the new well inventory data together comprise a large body of documentation for the areas of major water-well development in the county (Tables 4-8 and Figure 34).

¹ Davis, J. R., 1963, "Salinity alleviation study of oil-field brine conditions in the Red River basin of Texas." Unpublished, Texas Water Commission file report.

² Hill, Robert, 1968, "Miscellaneous paper on nitrate content in ground water of the Seymour Formation, in the Pease River Valley, Wilbarger County, Texas." Unpublished, Texas Water Commission file report.

Well-Numbering System

The system used in the numbering of wells and springs in this report is one developed and adopted by the Texas Water Development Board (Figure 2). It is based on latitude and longitude and is presently in use throughout the State. The system is based on the assignment of a seven-digit number to each well. The State is divided into quadrangles formed by degrees of latitude and longitude, and these are repeatedly subdivided into smaller quadrangles as follows:

1. The largest, 1-degree quadrangles, are each given a two-digit number from 01 to 89. Thus, the origin of the first two digits of a well number.

2. Each 1-degree quadrangle is further subdivided into $647\frac{1}{2}$ -minute quadrangles which are each assigned a two-digit number from 01 to 64. These two digits are the third and fourth digits of a well number.

3. Lastly, each 7½-minute quadrangle is subdivided into nine 2½-minute quadrangles which are numbered one to nine. This number is the fifth digit of the well number. Within these 2½-minute quadrangles, each well is assigned a two-digit number in sequence beginning with 01. These are the last two digits of the well number.

Figure 2.-Well-Numbering System

On the well-location map in this report (Figure 34), the 1-degree quadrangles are shown with large open-block numerals. The 7½-minute quadrangles are labeled in their northwest corners, and the last three digits of each well number are shown at the well site.

Acknowledgements

The author is indebted to the many landowners, farmers, water well drillers, oil operators, and municipal officials for permitting access to their wells, aiding in the collection of well data, and for granting permission to test their wells. Appreciation is also extended to the various governmental agencies, especially to Mr. Perry Barnes, manager, U.S. Department of Agriculture, Agricultural Stabilization and Conservation Service, Wilbarger County Committee; Mr. Norman Drake (deceased), former county agent, Wilbarger County; Messrs. Frank L. Dunkin and John Adams, U.S. Department of Agriculture, Soil Conservation Service; and representatives of the U.S. Geological Survey, the State Department of Highways and Public Transportation, and the State Health Department. Special recognition is extended to the Southwest Rural Electric Association, Incorporated, of Tipton, Oklahoma, for providing data pertinent to this study.

WILBARGER COUNTY GEOGRAPHY

Topography and Drainage

Wilbarger County is located entirely within the Osage section of the Central Lowlands physiographic province. Topographically, the county is an eastward-sloping plain with surface elevations ranging from 1,480 feet in the northwest to about 1,040 feet in the southeast.

The northern two-thirds of the county, dissected by the wide flat valleys of the Pease River and its tributaries, is dominantly gently rolling farm lands composed of sandy to moderately sandy soils, mixed soils, or bottomland soils. The southern one-third, as well as a small area immediately north of Vernon, has hilly topography with mainly shale- and clay-derived soils and is used mainly for ranching operations.

Two prominent eastward-facing escarpments which trend northeast are formed by Permian dolomite and limestone beds. One such escarpment is formed by the Merkel Dolomite Member of the Choza Formation which crops out in the northwest part of the county (Figure 5). A similar, but less prominent one is formed across the southeastern one-third of the county by the outcropping Lueders Formation.

Wilbarger County is located entirely within the Red River drainage basin. The northern two-thirds is drained by the Red River, its minor tributary Wanderers Creek, and the Pease River and its tributaries which flow northeastward into the Red River. The southern one-third of the county is drained by the eastward-flowing Beaver Creek and its tributaries which flow into the Wichita River in Wichita County.

Santa Rosa Lake, located on Beaver Creek in south-central Wilbarger County, is the only sizeable surface reservoir within the county. This lake is owned by the W. T. Waggoner estate, covers approximately 1,500 acres, and is used for oil-field operations, domestic water supply, and irrigation. The estimated total storage capacity of the lake is 11,570 acre-feet.

History

Wilbarger County, formed in 1858 from Bexar Territory, was named for Josiah and Mathias Wilbarger who were early-day Austin settlers.

Among the first and most distinguished pioneers of the area were Judge J. Doan, C. F. Doan, and W. B. Worsham. The R2 ranch, with headquarters at Big Spring (near the present Hillcrest Country Club in northwest Vernon), was established by Mr. Worsham in 1879. Cowboys in this section of Texas gathered at the ranch to receive news from their homes in the east. The Doan brothers, in the meantime, built a store in the northeast part of the county near the cattle trail which crossed the Red River into Indian Territory. This store was known as "Doan's Store" and the cattle crossing became known as "Doan's Crossing". Several hundred thousand head of cattle, on their way to northern markets, made this crossing between 1880 and 1890.

Rapid settlement of the area occurred following the establishment of a mail route from Seymour to Doan's Store, and on October 10, 1881, Wilbarger County was organized. Many of the early settlers to the county were from Arkansas, Georgia, North Carolina, Ohio, and Virginia.

Vernon, the county seat, was incorporated in 1889. Originally the name Eagle Flat was chosen as its name; however, it was changed when the Post Office Department objected. Oil was first discovered in Wilbarger County in 1908, and the first well was completed in November of that year.

Population

The 1970 federal census gave Wilbarger County a total population of 15,355. Vernon, the county seat, had an official population of 11,454. Statistics regarding other towns, communities, or cities were reported merely as Divisions and include the rural areas surrounding the area. The population of the county Divisions are as follows: Lockett, 1,742; Fargo-Odell, 1,082; and Harrold-Oklaunion, 1,079.

According to the 1960 population census, 68.4 percent was urban, 16.3 rural non-farm, and 15.3 percent rural farm. Data were not available to make a 1970 comparison.

The population density in 1970 was 16.1 persons per square mile compared to 18.6 in 1960.

Climate and Weather

The climate of Wilbarger County could be termed moderate More specifically, it has a subhumid, warm-temperate, continental type of climate. This is reflected by the records of precipitation, temperature, and evaporation within the area (Figures 3 and 4).

Records furnished by the U.S. Weather Service at Vernon, for the 36-year period from 1935 through 1970, are included in this report (Figure 3). A comparison of these data and other observations is as follows:

1. The mean annual rainfall at Vernon (1935-70) is 25.04 inches.

2. The maximum officially recorded yearly rainfall of 48.71 inches was recorded in 1941.

 The minimum officially recorded rainfall was 13.26 inches in 1956.

4. Available data at Vernon indicate that in the spring, May received the maximum average monthly rainfall which amounted to 4.53 inches, and in the fall, September with 2.81 inches had the greatest average monthly amount (Figure 4).

According to the Texas Almanac for 1970-71, the temperature at Vernon varies from a mean maximum of

98°F during July to a mean maximum of 29°F for January, with a mean annual temperature of about 68°F. For the period of record, the temperature range at Vernon is from a minimum of -7° F to a maximum of 119°F. The same source states that the approximate dates for the first and last killing frosts are November 7 and March 31, giving the county a growing season of 221 days.

Data for the period from 1940-65 compiled by Kane (1967) reflect that the average annual gross lake-surface evaporation depth in Wilbarger County is approximately 72 inches; however, the average net lake-surface evaporation depth is only about 48 inches (Figure 4).

Economy

The principal factors determining the economy of Wilbarger County, listed in their order of importance, are: the extraction of minerals, agriculture, and small industry.

The most important influence on the county's economy is the production of oil and gas. Since the initial discovery well in 1908, approximately 4,000 producing wells have been drilled on an estimated 600 leases scattered throughout the county. Over 212.9 million barrels of oil was produced from 1908 to 1973 (Texas Almanac for 1974-75). A total of 4.3 million barrels was produced in 1972. Natural gas liquids, sand and gravel, and limestone production make up the balance of the mineral extractions. The total value of all 1971 mineral production was approximately \$14.9 million.

Agriculture is the secondary source of income. Both farming and ranching play major roles. Based on information furnished by the Wilbarger County Building Committee for 1960, approximately 40.3 percent of the county's 610,560 acres was under cultivation and 59.7 percent was used in ranching operations. The principal crops grown were hay (mostly alfalfa), cotton, wheat, grain sorghums, oats, and guar. The value of all crops sold in 1968 was approximately \$7.6 million. In 1968, there were an estimated 45,000 head of cattle, 2,700 head of hogs, and 500 head of sheep in Wilbarger County. The total 1968 value for the sales of livestock and their products was approximately \$5.2 million.

Most of the small industries of the county are located in Vernon and they are mainly associated with agriculture. These include cotton gins, a guar mill, grain elevators, feed and seed establishments, cattle feedlots, a meat-packing plant, and shipping. Other small industries

- 8 -

are clothing, athletic supply, and mattress manufacturers and soft drink processors.

GEOLOGY AS RELATED TO THE OCCURRENCE OF GROUND WATER

General Geology

Geologic History

Geologically, the history of Wilbarger County is complicated in that the northern two-thirds of the county lies within the Hardeman (eastern Palo Duro) basin and the southern one-third is within the Baylor syncline. The two areas are separated by the Red River arch (Figure 9).

Much of the following information on geologic history is taken from Laing (1963).

During Cambrian time, structurally high areas existed in the vicinity of the present Red River arch (Figures 6, 7, and 8). Cambrian sediments were not deposited on the extremely high areas; however, Lower Ellenburger beds of Upper Cambrian age are present north and south of the arch.

Ordovician age rocks are known to have been laid down in Wilbarger County and to the north in Oklahoma. Slight fluctuation of the seas is evidenced by several disconformities in the Upper Ellenburger and a thinning of the Lower Simpson beds.

Silurian and Devonian age sediments are also known to have been deposited in areas to the north; however, it is not known if deposition occurred in Wilbarger County.

At the close of Devonian time, the Acadian orogeny caused retreat of the seas and the area was subjected to widespread erosion until early Mississippian time. This removed all of the Devonian, Silurian (if ever present), and much of the Ordovician sediments from the Wilbarger County area. Remnants of these units remain in other areas of the present Hardeman basin.

After the Acadian uplift, Mississippian seas advanced and deposited marine limestones and shales. The Mississippian period was followed by an erosional period which removed most of the Mississippian sediments from the Red River arch, while lower areas and areas to the north and south retained these sediments. Deposition was resumed with the advance of Morrowan seas and the area north of the Red River arch received sediments.

The Wichita orogeny, at the close of Morrow time, raised the Wichita Mountains and thus formed the Hardeman basin. The previously deposited Mississippian and Morrowan rocks were removed from the mountains during this period of erosion.

Following this, deposition was continued, with minor movements in the Wichita Mountains and the Red River arch, throughout Strawn and most of Canyon times.

The Arbuckle orogeny began during Canyon time and continued until late Cisco time when Pontotoc conglomerates were deposited to the north of Wilbarger County. This movement further depressed the associated basin. The Red River arch was buried during this time within the subject county. Subsidence continued throughout late Pennsylvanian and Permian times and sediments deposited onlapped the Wichita Mountains.

Final movement of the area was regional tilting of the Permian deposits, causing a slight elevating of the Wichita Mountains and subjecting the surface beds to erosion from that time until present. This movement established the regional dip on the Permian beds as it exists today.

During the Triassic and Jurassic periods, the area was emergent and there was a time of continental uplift and erosion.

In contrast to the two preceeding periods, the Cretaceous represents a time of advancement of the seas. During this time, there was a southeastward tilting of the Texas gulf coast region with the associated reversal of the drainage systems.

The previously deposited Cretaceous beds were then removed from Wilbarger County and surrounding areas during the Cenozoic Era.

The Larimide orogeny caused the Rocky Mountain region to be elevated during this time and this was the source area for material in the Ogallala Formation which was later reworked and deposited by streams as the Seymour Formation of Wilbarger County and surrounding areas.

Stratigraphy

Exposed at the surface and underlying Wilbarger County, rocks representing various geologic systems are present (Figures 5, 6, 7, and 8). The systems, listed in order from oldest to youngest, are: Precambrian, Cambrian, Ordovician, Mississippian, Pennsylvanian, Permian, and Quaternary. The general lithology of the various units, and their stratigraphic relationships are shown on the geologic sections (Figures 6, 7, and 8). These rocks are composed mainly of limestones, dolomites, shales, and clastics which, for the most part, were deposited in epicontinental seas of relative shallow depth. The sequence of deposition of rock types indicates that there were repeated transgressions and regressions of the seas. Since the pre-Permian rocks produce ground waters of a brine guality (total dissolved solids greater than 35,000 ppm), no further discussion will be made on these units. See Table 9 for the chemical character of brines in the various pre-Permian strata.

The oldest rocks exposed at the surface in Wilbarger County belong to three groups of the Permian System. Listed in order from oldest to youngest, they are: the Wichita, Clear Fork, and Pease River Groups. These units are overlain, throughout much of the county, by younger Quaternary deposits of the Seymour Formation or stream alluvium (Figure 5). The geologic formations and their water-bearing properties are summarized in Table 1, and their stratigraphic relationships and structural attitude are illustrated in Figures 6, 7, and 8.

At their maximum extent, shallow Permian seas were very widespread throughout Texas (Eardley, 1951, pl. 9). The seas extended from the southwest, out of Mexico, over the north-central Texas area including Wilbarger County, over all of West Texas and into the neighboring States of New Mexico and Oklahoma, and as far north as Kansas (Sellards et al., 1932, p. 185-186).

During the time in which the Wichita Group was deposited, a landmass was postulated to have been east and southeast of the Wilbarger County area. Dominately marine shales and shelf limestones were deposited in shallow seas covering areas immediately south of Wilbarger County. During this time, a delta apparently was forming in the vicinity of the Arbuckle and Wichita Mountains of Oklahoma. This caused a gradual northward change in the lithology of the Wichita Group with sandy sediments becoming more prominent in a limestone and a marginal marine red bed sequence (Stafford, 1960, p. 278). This condition existed just south of the Red River in the Wilbarger County area.

Deposition of the Clear Fork Group, composed of thin, poorly-developed limestones and dolomites, interbedded with red beds and, locally, anhydrite, suggests that the seas were becoming more restricted and the climate more arid. The Pease River Group, of Upper Permian age, is marked by an increase in nonmarine clastics at the beginning of its deposition. These clastics are postulated to be a deltaic deposit due to their cross-bedded and conglomeratic character. This increase in nonmarine clastics, accompanied by a marked erosional unconformity between the San Angelo Formation and the underlying Clear Fork Group, indicates a renewed uplift of the source area, believed to have been east of the north-central Texas area. Later deposition of thick beds of evaporites, interfingered with red beds, thin limestones, and dolomitic limestones, suggests a much more restricted sea and an even more arid climate.

Unconformably overlying the rocks of Permian age within Wilbarger County are semi-consolidated and unconsolidated deposits of clay, sand, and gravel of Quaternary age. These are the principal water-bearing beds of the area.

The geologic record between the Permian System and the Quaternary System is not recorded in the rock sequence of the subject area. However, Van Siclen (1957, p. 56-57), states that prior to Pleistocene time, the Wilbarger County and surrounding area was eroded to a nearly flat plain which had a gentle slope to the east. During this time, all sediments younger than Permian were removed.

In Pleistocene time, streams thought to have been well established for quite some time were depositing sediments over a large area of north-central Texas. These sediments are believed to have been transported from the west. They are referred to as the Seymour Formation and formed a near continuous sheet-type deposit over wide areas and probably covered most of the entire area of Wilbarger County at one time. Deposition of the sediments was thought to have been controlled by repeated cycles of terrestial alluviation and erosion caused principally by climatic changes associated with the advance and retreat of glacial ice sheets. These were located in the northern United States and in Canada (Van Siclen, 1957, p. 46-60).

Seymour deposits were subjected to erosion during Recent time and they now are present as scattered patches capping interstream areas. The existing valleys of major streams now contain unconsolidated alluvial deposits, probably of Pleistocene to Recent age, which were in part derived from the eroded Seymour Formation. Terrace deposits are found along both the Red River and Pease River. These remnants from earlier levels of the rivers consist of gravel, sand, and silt of a more recent origin than the Seymour Formation found at higher elevations. Ground water of poor quality is found in these deposits.

System	System Series Group		Formation	Approximate maximum thickness (feet)	Lithologic character	Water-bearing characteristics		
Quaternary			Alluvium	60	Alluvial cross-bedded gravel, sandstone, fine silt, and sandy clay occurring as erratic deposits in the stream valleys of the Red River, Pease River, and their major tributaries. Wind-blown deposits of fine sand, and alluvial terrace deposits of silt, sandstone, and gravel, are also present along these streams.	Yields fresh to very saline water in small to moderate quantities to wells mainly along rivers and their major tributaries.		
	Recent to Pleistocene		Seymour	112	Contains alluvial, fine-grained, white and light tan to red sand and silt; reddish-orange and gray clay; white to buff nodules of caliche (usually near surface). Lower portion of the formation is generally cross-bedded, interstratified lenses of orange clay, sand, and coarse gravels or conglomerates which are made up of well rounded pebbles of quartz, quartzite, igneous crystalline rocks, bone fragments, petrified wood, scattered water-worn Cretaceous fossils, and cobbles and pebbles of limestone. Volcanic ash is present in the outcrop north of Doans.	Yields fresh to very saline water (mostly fresh to slightly saline) in small to moderate quantities to wells in the northern two-thirds of the county.		
	Guadalupe	Pease River	San Angelo	210	Cross-bedded deltaic sandstone, red to greenish-gray to pink, usually well consolidated, medium-grained, sub-angular to well rounded, occurs near top of the formation; lower portion contains clay balls, sandstone as above interbedded with cherty conglomerate, gypsum nodules, streaks of "satin spar" gypsum, and red and green shale and clay.	Yields fresh to slightly saline water in small quantities to wells in the northwest part of the county.		
Permian			Choza		The persistent, blue to gray, Merkel Dolomite Member of the Choza Formation is present near the top of this group. The remainder of the group	Yields fresh to very saline water in small quantities to a few scattered wells in the east-central and west-central parts of the county		
		Clear Fork		1,350	consists of red to reddish-brown or gray gypsiferous shale, thin stringers of dolomite, anbydrite or gypsum and limestone and a few			
	Leonard		Arroyo		thin lentils of shaley sandstone.			
		Uueders Wichita and older formations		670	Massive to thin beds of blue, gray to buff, fossiliferous limestone interbedded with argillaceous limestone and black, gray to greenish-gray shale; grades into dolomite westward in the subsurface.	Not known to yield useable quality water to wells in Wilbarger County.		

Table 1.-Geologic Units and Their Water-Bearing Properties in Wilbarger County

Yield of wells: Small, less than 100 gpm (gallons per minute); moderate, 100-1,000 gpm; large, more than 1,000 gpm.

Quality of water as ppm (parts per million) dissolved solids: fresh, less than 1,000 ppm; slightly saline, 1,000 to 3,000 ppm; moderately saline, 3,000 to 10,000 ppm; very saline, 10,000 to 35,000 ppm; brine, greater than 35,000 ppm.

. 4

Figure 9.--Major Structural Features in North-Central Texas

Structure

The major subsurface structural features of Wilbarger County and vicinity include the Wichita Mountains of Oklahoma, the Red River arch, the Hardeman basin, and the Baylor syncline. The locations of these structural features are shown on Figure 9.

Wilbarger County is located mainly within the Hardeman basin. The Red River arch trends east-west across the south one-third of the county. A small part of the county south of the Red River arch lies within the Baylor syncline.

The Red River arch has existed since Cambrian time. Movement occurred several times until burial of the feature near the close of Cisco time.

Depressing of the Hardeman basin, at the close of Morrowan time, occurred coincident with the raising of the Wichita Mountains during the Wichita orogeny. The basin was further depressed by the Arbuckle orogeny during Canyon and Cisco time (Laing, 1963, p. 214).

The Baylor syncline was formed during early Pennsylvanian time contemporaneous with the Bend flexure (Farris et al., 1963, p. 12).

During Permian time, regional tilting, combined with filling of the Midland basin, formed the present dip on post-Atoka strata within north-central Texas (Figures 6, 7, and 8).

This west-northwest dip of approximately 25 feet per mile is reflected in the exposed Permian beds of Wilbarger County. The overlying surficial deposits which comprise the Seymour Formation and Quaternary alluvium generally slope very gently to the east-southeast at about 15 feet per mile.

Formations significant to the occurrence of usable quality ground water within Wilbarger County have not been appreciably affected by any of the major structural deformations other than tilting as described above.

Aquifers and Aquicludes

An aquifer is a permeable, water-bearing geologic formation, part of a formation, or group of formations (Meinzer, 1923, p. 30). An aquiclude is a relatively impermeable or an impermeable body of rock, which may contain water but is incapable of transmitting an appreciable quanity. The Permian rocks that crop out in Wilbarger County generally function as aquicludes, either yielding no water to wells or yielding only small amounts, while the Seymour Formation and Quaternary alluvium are more permeable and serve as aquifers.

The lithology, approximate thicknesses, and water-bearing properties of the geologic units are summarized in Table 1. Figure 5 shows the areal extent of the outcrops of the various units. The subsurface position, the thickness of the geologic units, and the lithology as indicated by electric logs of wells are further shown on Figures 6, 7, and 8.

Pre-Permian Systems

Ground water of fresh to moderately saline quality is not known to occur below the rocks of the Permian System within Wilbarger County. Since this report is concerned primarily with usable quality ground water, no detailed discussion will be made of the pre-Permian rock units. Table 9 indicates the chemical character of brines that are produced with oil from various zones, and the geologic sections (Figures 6, 7, and 8) show stratigraphic relationships of the older units for comparison and correlation with previous north-central Texas ground-water studies.

Permian System

There are three groups of this system represented within Wilbarger County and, listed from the oldest to the youngest, they are the Wichita, the Clear Fork, and the Pease River Groups.

Wichita Group

The oldest rocks exposed within the study area are formations of the upper part of the Wichita Group. The Lueders, which is the uppermost formation of this group, is also the best exposed in Wilbarger County, and is generally composed of three members, the Paint Rock Limestone, the Maybelle Limestone, and the Lake Kemp Limestone which is the youngest. The Lueders was originally described by Garrett et al. (1930), and consists of alternating thick beds of medium-light to light-gray limestones and blue, gray to greenish gray, and black shales (Stafford, 1960, p. 276).

The Wichita Group is about 670 feet thick in Wilbarger County (Table 1). The group crops out in the extreme southeastern corner of Wilbarger County (Figure 5), and its beds dip to the west-northwest at about 25 feet per mile.

Usable ground water is not known to occur in the Wichita Group in Wilbarger County. However, if usable quality water does exist, it most probably would be associated with local fracturing and solution channels very near the drainage systems in the outcrop of the Lueders Formation. Water would possibly be highly mineralized and well yields unreliable.

Clear Fork Group

Lying conformably upon the Wichita Group is the Clear Fork Group, composed of the Arroyo, Vale, and Choza Formations. These units crop out, or subcrop beneath surficial deposits of Quaternary age, in a belt approximately 24 miles wide, trending slightly northeast-southwest (Figure 5).

The represented thickness of the Clear Fork is approximately 1,350 feet. The beds dip west-northwest at approximately 25 feet per mile. They consist mainly of white to cream-colored, buff and brown, thin-bedded to shaley limestones, interbedded with marls and dolomite near the base. There is a gradation upward into red to reddish-brown or gray nonmarine shales and blue to gray dolomites (Farris et al., 1963, p. 19).

Water-bearing strata of the Clear Fork Group consists of fractured limestones and dolomites which are locally permeable (Table 1). These beds yield fresh to very saline waters in small quantities to a few wells within Wilbarger County.

Pease River Group

The Pease River is the youngest and uppermost group of the Permian System. Its formations, listed in ascending order are: the San Angelo, Flowerpot, Blaine, and Dog Creek. Within Wilbarger County, only the San Angelo is represented and it rests unconformably upon the Clear Fork Group (Figure 5). This formation was named by Cummins and Lerch (1891, p. 73-77, 321-325). The unit consists of a nonmarine series of cross-bedded deltaic sandstones, conglomerates of chert and quartz pebbles, and red to green shales (Table 1). The approximate thickness is 210 feet.

The San Angelo is exposed above the prominent escarpment formed by the underlying Merkel Dolomite Member of the Choza Formation in the northwest part of the county. It dips to the west-northwest at the rate of about 25 feet per mile. The formation is overlain by younger Quaternary age rocks throughout much of its extent in the county (Figure 5).

This formation is one of the more reliable minor sources of ground water and yields water in small quantities to wells in the extreme northwestern part of Wilbarger County (Tables 4 and 8, and Figure 34). The quality of water ranges from fresh to slightly saline. The downdip limit of usable quality water within the formation is unknown; however, water suitable for domestic and livestock use is known to be present as far west as the county line.

Quaternary System

Rocks of the Quaternary System occur as isolated patches covering an estimated 50 percent of the surface of Wilbarger County (Figure 5). They are separated from the underlying Permian beds by a marked erosional unconformity and generally slope very gently to the east-southeast (Figures 6, 7, and 8).

The rocks of this age, which include the Seymour Formation, stream terrace deposits, and flood-plain alluvium, contain most of the ground water in the county. The water quality ranges from fresh to very saline. Most of the water, however, is fresh to slightly saline. Well yields range from small to moderate (Tables 4 and 8 and Figure 34).

Seymour Formation

The Seymour Formation was named by Cummins (1893, p. 181-190). The unit generally caps the interstream areas or divides between the major streams and consists of alluvial deposits of clay, silt, sand, caliche, gravel, and conglomerate. The thickness of the formation varies from 0 to 112 feet.

The formation is the major ground-water source in Wilbarger County. Figure 5 shows the location and extent of the Seymour Formation within the investigated area. The quality of ground water found within the Seymour ranges from fresh to very saline. The well yields range from small to moderate (Table 2).

Although individual beds of the Seymour are discontinuous, except for isolated areas, a fairly consistant development of sand, gravel, and conglomerate is usually present near its base. This basal unit is best developed in the Odell-Fargo area in northern Wilbarger County and in the Lockett area in the west-central part of the county (Figure 5). Almost all of the higher yield wells in this formation derive their water from this basal zone.

The heterogeneous distribution of the various units of the Seymour Formation indicates that it was deposited by branching streams. This formation and the Ogallala Formation of the High Plains area of Texas are lithologically similar and are thought to have been deposited under similar environmental conditions. However, it was suggested by Gordon (1913, p. 30) that the source area for the Seymour was the Tertiary beds which outcrop along the Llano Estacado to the northwest rather than the uplift of the Rocky Mountains from which the Ogallala was derived.

It is believed by Van Siclen (1957, p. 47-60) that following the removal of all post-Permian sediments, Pleistocene streams deposited sediments, originating from the west, over a large area of north-central Texas. Deposition was thought to have been controlled by repeated cycles of terrestial alluviation and erosion caused by climatic changes associated with the advance and retreat of glacial ice sheets in the northern United States.

Terrace Deposits

The flood plains of both the Red River and Pease River are fairly wide, and remnants of previous river terraces are preserved to heights of approximately 50 feet above the present streams. These terrace deposits consist of clay, silt, sand, and gravel of Pleistocene to Recent origin. They are younger than the Seymour Formation, which is found at a higher level, and older than the sediments which cover the flood plains of the present river valleys. The thickness of the terrace deposits varies greatly due to the irregularity of the surface upon which they were deposited. In general, their thickness ranges from approximately 35 to 60 feet.

The areal extent of the terrace deposits is difficult to map and, therefore, they are combined with other Quaternary alluvium on the geologic map (Figure 5).

The area between the communities of Doans and Fargo, and between the eastern limit of the Seymour Formation (in the Odell-Fargo area) and the present flood plain of the Red River (east of Fargo), is thought to be occupied by terrace deposits. Extensive irrigation development is present in this locality.

These deposits, as well as the Recent flood-plain alluvium, yield fresh to very saline water to wells in small to moderate quantities.

Recent Alluvium

Within Wilbarger County, alluvial flood-plain deposits are present in a band approximately 1 to 2 miles wide along the Red River, the Pease River, and its tributaries (Figure 5). They are composed of silt, sand, and gravel and rest unconformably in contact with terrace deposits, the Seymour Formation, or underlying beds of Permian age.

It appears that these deposits were derived, for the most part, from terrace deposits or the Seymour Formation and were transported to their present position by existing streams. These sediments were erratically deposited and are very discontinuous. Porosities and permeabilities of the deposits vary greatly and, therefore, the yields of the wells also have a wide range.

The most favorable areas for ground-water development are in oxbows of former streambeds due to the presence of more permeable deposits. Small areas of irrigation have been developed on these alluvial deposits.

The Recent flood-plain alluvium and the older, terrace deposits are grouped together as Quaternary alluvium on the geologic map (Figure 5). The Quaternary alluvium provides a reliable source of ground water in Wilbarger County. The quality ranges from fresh to very saline and the waters are often high in sulfate and chloride content (Table 8). Yields of wells range from small to moderate.

GROUND-WATER HYDROLOGY

General Principles of Occurrence

The occurrence of ground water in north-central Texas as well as in Wilbarger County is erratic, the aquifers are limited and discontinuous, and the yields, in general, are small (less than 100 gpm) to moderate (100 to 1,000 gpm). Even though these conditions exist, the ground-water occurrences conform to the same fundamental principles as those in any other area.

Hydrologic Cycle

The water available for use by man-whether as rain, streamflow, water from wells, or spring discharge-is captured in transit, and after its use and reuse, is returned to the hydrologic cycle from which it came. This cycle is illustrated in Figure 10. Graphically, this figure shows the continuing movement of water from the oceans through evaporation to precipitation and its return, either directly or indirectly, to the ocean.

Definition of Ground Water and Related Terms

Ground water is that part of the returning water which has entered the subsurface and filled the void spaces of the porous rocks which are within the zone of saturation. The source of all fresh ground water is precipitation; however, only a small percentage of the precipitation actually becomes ground water.

As water moves downward under gravity through porous rocks, it first enters the *zone of areation*, an unsaturated zone in which the voids contain both air and water, and later it enters the *zone of saturation* where all of the pore spaces are filled with water. The upper surface of the zone of saturation is called the *water table*, and the water below the water table is termed ground water. Occasionally, water in its downward movement encounters impermeable beds above the normal water table and is trapped, forming what is referred to as a *perched water table*.

Water-table conditions exist where the upper surface of the zone of saturation is unconfined and is under atmospheric pressure. When water-bearing formations dip below non-porous beds in the subsurface, the water is under pressure and is confined. Waters under these conditions are said to be under artesian conditions.

Figure 10.-The Hydrologic Cycle

The water table commonly has essentially the same configuration as that of the regional topography but in subdued form. In a specified aquifer, elevations of the water table, measured in existing wells, can be used to determine the shape of the water table, the direction of ground-water movement, and the hydraulic gradient under which the ground water moves. By mapping the subsurface elevations of water levels in existing wells, one can also determine the direction of ground-water movement and the hydraulic gradient in an artesian aquifer. In contrast to that of water-table conditions, the surface actually mapped under artesian conditions is a pressure (piezometric) surface, or an imaginary surface representing the elevation to which the water rises when the confined aquifer is penetrated. If the piezometric surface of an artesian aguifer is higher than the land surface, water will flow to the surface from wells penetrating the aquifer.

The storage capacity of the pores of a water-bearing formation is important in calculating the amounts of water stored in an aquifer. A measure of the storage capacity is the *coefficient of storage*, which is the volume of water, per unit of surface area, that will be taken into, or released from, storage when the water

table or piezometric surface is raised or lowered by 1 foot (after Theis, 1938, p. 394). The term *specific yield* is used under water-table conditions and is defined as the ratio of the volume of water yielded to the volume of the aquifer which was dewatered (after Stearns, 1928, p. 144). Coefficients of storage in artesian aquifers are very small in comparison to those of water-table aquifers since artesian storage is dependent upon the elastic properties of the aquifer.

The field *coefficient of permeability* is the flow of water in gallons per day at the prevailing temperature through a cross section of 1 square foot of the aquifer under unit hydraulic gradient.

The coefficient of transmissivity is a measure of an aquifer's ability to transmit water and it is important in computing the amount of water available on a continuous basis. It is defined as the amount of water, in gallons per day, which will flow through a vertical column of aquifer 1 foot wide under a 45-degree slope or gradient (after Theis, 1938, p. 889-902). Given a known hydraulic gradient and the coefficient of transmissivity, one can calculate the amounts of water passing through specific portions of an aquifer. Through pumping of a test well and the use of repeated measurements of the water levels in the pumping well and nearby observation wells, the coefficients of storage and transmissivity for an aquifer can be determined. These coefficients are a measure of the aquifer's ability to store and transmit water and can be used to determine proper well spacing, the effects that a pumping well may have on another well, and to predict water-level drawdowns at various distances from a pumping well after a specified time of pumping at a given rate.

The yield in gallons per minute per foot of drawdown of water level is a well pumping at a constant rate is known as the *specific capacity* of a well. This measurement is another indication of the hydraulic characteristics of a water-bearing formation. Specific capacities must be used with caution since they are affected by methods of well completion and they change with the rate and the length of pumping.

Source and Occurrence of Ground Water

The source of ground water in Wilbarger County is precipitation; however, only a small portion of the precipitation which falls actually reaches the water table (Figure 10).

Water occurs and is stored in pores or voids between the rock particles. The two fundamental rock characteristics which are important in the occurrence of ground water are *porosity*, or the ratio of the volume of void space to the total rock volume expressed as a percentage, and *permeability*, which is the ability of a porous material to transmit water. The porosity of a rock is dependant upon the shape, size, sorting, and the amount of cementation of the grains. Clays, silts, and soils, which are fine-grained, commonly have high porosity ranging from 40 to 60 percent and are capable of storing large quantities of water; however, much of their water is not readily transmitted because of the small size of the voids and low permeabilities.

The upper portion of the Seymour Formation generally is composed of fine-grained, well cemented sediments, and contains much stored water but does not readily transmit this water. The basal part of the Seymour is usually composed of relatively uniform sands which may have porosities ranging from 30 to 40 percent and sands and gravels which commonly have porosities which range from 20 to 35 percent. The important difference between these materials and those generally found in the upper part of the Seymour is that the basal portion of the formation has greater permeability and is more capable of transmitting the water. It is for this reason that greater volumes of water are produced from the basal part of the formation.

The water is unconfined in the Seymour and is, therefore, said to be under water-table conditions. In most areas, the level of the water table is above the basal sands and gravels.

The source of ground water available to Quaternary alluvium deposits is mostly through direct precipitation; however, since the Seymour Formation is hydrologically connected with the Quaternary alluvium deposits in most areas of Wilbarger County, some of the ground water in the alluvium is derived by underflow from the Seymour. The ground water in the Quaternary alluvium deposits, as in the Seymour, is unconfined and under water-table conditions.

Ground water occurring locally in the pre-San Angelo Permian aquicludes is derived in part by infiltration of stream runoff, and by interformational leakage in those areas where Quaternary age deposits directly overlie the Permian rocks. The water occurring in the pre-San Angelo Permian aquicludes is believed to be confined to locally permeable zones containing fractures and solution channels at or near the outcrop, and the areas most favorable for well development are near existing drainage systems. The water found within these rocks is, for the most part, under artesian conditions.

Some of the ground water within the San Angelo Formation of Permian age is derived from precipitation falling on its limited outcrop area, and much of it is derived by interformational drainage from the Quaternary age rocks which overlie the formation over much of its extent in the northwest part of the county. The less highly mineralized waters within the San Angelo Formation are usually found near the east edge of its outcrop, although other, local areas near drainage systems may also contain better quality waters. Higher yield wells should be found in areas of locally higher permeabilities. The waters of this formation may be under either water-table or artesian conditions, as part of the formation dips beneath impermeable beds in the subsurface.

Recharge, Movement, and Discharge of Ground Water

Replenishment of water to an underground water-bearing unit, or recharge, is mainly by natural means. The controlling factors for recharge are the intensity and the amount of precipitation. Precipitation, in the form of rain, sleet or snow, and the seepage from lakes or streams on an aquifer's outcrop, aid in natural recharge. The rechargeability of an aquifer depends upon the type of topography, the amount and kind of vegetative cover, the condition of the soils, and the permeability of the rocks involved. Minor amounts of artificial recharge may be accomplished by running water over an aquifer's permeable outcrop or by pumping water into the water-bearing unit, through wells.

The source of all water in storage in the Seymour Formation, as well as the source of recharge to it, is direct precipitation on its outcrop area.

The rate of recharge to the Seymour is probably greatest in Wilbarger County within the Odell-Fargo and Lockett areas (Figure 5). Here the topography is gently rolling and much of the surface is composed of highly permeable sand which readily permits the water to infiltrate the soil zone and percolate to the water table.

In most of the other areas of Seymour occurrence, the surface is nearly flat, has been cleared of trees, and is in cultivation. Even though some of the soils are fairly tight, the farm practices of terracing, contour plowing, and deep plowing allow the soils to receive considerable precipitation which may percolate downward to the water table.

The actual amount of recharge to a ground-water zone resulting from the infiltration of precipitation can be calculated by using water-level records from several wells over a period of years and comparing the rises of water levels with the precipitation. Records of water levels in the Seymour Formation prior to irrigation pumpage within Wilbarger County are too few and too short to be used for reliable calculations of recharge; however, a tentative estimate can be made by comparing calculations of recharge made by Preston (1978) in Baylor County which borders Wilbarger County on the south. The Seymour Formation deposits of Wilbarger County are geologically similar to those of Baylor County; therefore, a direct comparison can be made giving a fairly reliable estimate. In Baylor County, the recharge to the Seymour Formation in 1969 was found to be about 10.2 percent of the year's precipitation. At Vernon, the mean annual rainfall (1935-70) is 25.04 inches, and 10.2 percent of this would be 2.55 inches or 0.21 foot per year.

Assuming an average recharge rate of 2.55 inches per unit area per year as representative of the Seymour Formation in Wilbarger County, the following volumes of water are estimated to be recharged to the major Seymour areas in the county:

	Approximate average annual
Area	recharge, in acre-feet
Odell-Fargo	15,000
Lockett	10,500
Total	25,500

It must be emphasized that the above estimates are based on conditions within Baylor County during 1969 only, and that the actual amount of recharge will vary from year to year according to the intensity and amount of rainfall.

Recharge to the Quaternary alluvium is mainly from precipitation; however, much recharge is derived also by underflow from the Seymour Formation where they are directly in contact. Additional recharge to the Quaternary alluvium takes place by the infiltration of stream runoff and floodwaters that result from precipitation upstream. Recharge from stream runoff is usually temporary since most of this recharge is bank storage only. These waters flow back into the streams after the runoff recedes. However, during flooding, the waters often cover the entire flood plain, and at this time considerable recharge takes place.

Recharge to the Permian water-bearing strata also is dependent on the rainfall. Much of the recharge is from the streams which cross their outcrop. Interformational leakage from the overlying Quaternary deposits provides additional recharge (Figure 5), and precipitation directly on the outcrop area provides some recharge. Information is 'lacking to determine the amounts of recharge.

The San Angelo Formation of Permian age is believed to derive some of its recharge from the overlying Seymour Formation in extreme northwest Wilbarger County.

The movement of ground water from areas of recharge to areas of discharge is generally very slow. The governing factors which determine the rate of movement are the permeability of the aquifer and the hydraulic gradient. With low permeability (for example, 10 gallons per day per square foot) and a very low gradient of much less than 1 degree, the rate of flow would be less than 1 foot per day. Under conditions of high permeability and gradient, field tests have indicated flow rates greater than 100 feet per day. Todd (1959, p. 53) states, however, that the normal range is from 5 feet per year to 5 feet per day. Artificial discharge through

pumping wells can alter the direction of movement and the natural rate of flow of ground water. In most areas of north-central Texas, ground-water movement is not constant in rate or direction. This is due to the wide variance in the lithology, extent, porosity, permeability, and structure of the water-bearing units.

The movement of ground water is down gradient, from the high to low elevations, at right angles to the contours which denote the configuration of the water table for a given aquifer. Ground-water movement is in general toward the major streams or their tributaries.

Ground-water movement within the Sevmour Formation in the Odell-Fargo area of northern Wilbarger County is dominated by two ground-water highs which are located in the central part of the area (Figure 23). Movement away from these highs is south and southeastward into Wildcat and Salt Creeks; eastward into Quaternary alluvium of the Red River; north, northwest, and northeastward into alluvium of the Red River; and also northwest into Wanderers Creek. Another ground-water high is located near the northwest county line within this same area. Movement away from this high is northward into Quaternary alluvium of the Red River and northeastward into Wanderers Creek. Some ground-water movement from the Seymour Formation is into areas of well withdrawal from the San Angelo Formation. The Seymour overlies this formation in northwest Wilbarger County.

Within the Lockett area of west-central Wilbarger County, ground-water movement in the Seymour Formation is dominated by a northeast-trending regional high, and movement is generally northwest or northward into Quaternary alluvium along the Pease River, and southeast or eastward from this regional high into Paradise Creek (Figure 20).

Along the Pease River and Paradise Creek, ground water moves through the Quaternary alluvium deposits into the drainage system, then downstream toward the Red River.

Within other, minor occurrences of the Seymour Formation between Vernon and the east line of the county, ground-water movement is mostly northerly into the Quaternary alluvium along the Pease River or its tributaries. Movement is then through these deposits downstream along the Pease River or the Red River east-southeastward out of the county. Minor movement in the Seymour is southerly into the drainage system of Beaver Creek.

Ground-water movement within the Permian strata is mainly down-dip toward pumping wells. Minor movement from the San Angelo Formation is eastward into the tributaries of the Pease River.

Discharge is the process by which water is continuously being removed from an aquifer. As in the case of recharge, the discharge of water from a water-bearing unit is also by natural and artificial means. Natural discharge occurs as flow from springs, effluent seepage, interformational leakage, transpiration by plants, and by evaporation. Artifically, water is discharged through wells by pumping.

Natural ground-water discharge from several areas of the Seymour Formation is evident by seeps or springs which flow from the formation near its outer edges. Some spring waters flow directly onto the surface of exposed Permian beds, where they may evaporate, while others infiltrate into the Quaternary alluvium deposits.

Discharge by effluent seepage is that water which flows out of the zone of saturation and into a stream whose surface is lower than the water table. If a stream or part of a stream receives water from the zone of saturation, it is said to be "effluent" with respect to ground water.

The Red River; its tributary, Wanderers Creek; the Pease River, its tributary Paradise Creek, and possibly others are, for the most part, effluent streams. Quaternary alluvium covers the flood plains of most of these streams, and effluent discharge from the alluvium contributes to their flow.

Normally, effluent streamflow can be measured and the data used to calculate recharge rates. However, due to drought conditions which caused streamflow capture by irrigators, this information could not be readily obtained during the period of study.

Where one aquifer is in contact with another, ground water can move from the one having the higher head into the one having a lower head. This has been referred to as interformational leakage. An undertermined amount of ground water is discharged into the Permian rocks where they subcrop beneath the Seymour Formation or Quaternary alluvium. This condition definitely exists in the Odell-Fargo area of northern Wilbarger County where the San Angelo Formation subcrops beneath the Seymour.

Transpiration is the process by which water is discharged into the atmosphere by growing plants. Water taken into plant roots may be obtained from the belt of soil moisture, from the zone of saturation, or from the capillary fringe. Calculation of the amount of transpiration for an area involves many varables which are difficult, if not impossible to measure. In areas where deep-rooted plants such as alfalfa are able to draw water directly from the zone of saturation, transpiration may be a major factor in the discharge of ground water.

If the water table is very near the land surface, ground water may be discharged into the air by evaporation. The main factor governing the rate of evaporation is the depth to the water table. Other factors are temperature, wind velocity, humidity, and type of soils. Since the water table within the study area is, for the most part, fairly deep, evaporation is probably small.

Pumpage is a form of artificial discharge. The actual amount of pumpage will be discussed in a later section of this report.

Even though the direction of ground-water movement and the areas of discharge are essentially as previously described, it should be pointed out that all of the streams are not perennial streams or those which are supported by ground-water discharge. Many of the tributaries of the major drainage system are wet-weather streams only. These streams do not receive ground-water flow because it is intercepted. Part of it is intercepted by vegetation which has extended its roots down to the water table. Additional water evaporates from seeps, springs, marshes, and from the streams themselves. Much of the natural discharge is also intercepted by pumpage.

In summary, the amount of water available on a long-term basis is limited by recharge. If recharge does not equal discharge the aquifer will be progressively drained. If recharge is greater than discharge, then water will be taken into storage and progressively fill the aquifer.

Based on the mean annual rainfall at Vernon, it is believed that approximately 25,500 acre-feet of ground water is available annually from the Seymour Formation in the Odell-Fargo and Lockett areas. This assumes that all of the natural discharge will be captured. Theoretically, essentially all of the natural discharge can be intercepted by pumping wells; however, this would reduce the flow of the streams as has been the case in some parts of the State.

Hydraulic Properties of the Aquifers

Aquifer tests on the Seymour Formation were previously conducted by the U.S. Geological Survey on six wells in Wilbarger County to determine the coefficients of storage and transmissibility. The results of these tests are shown on Table 2. The measured yields of the wells ranged from 93 to 430 gpm (gallons per minute).

The data in Table 2 were analyzed by one or more of the following methods: the non-equilibrium method (Theis, 1935, p. 519-524), the Cooper and Jacob straight-line method of approximation (Cooper and Jacob, 1946, p. 526-534), and the Theis recovery formula (Wenzel, 1942, p. 94-97). The thicknesses of the aquifers were determined by a study of drillers' logs.

The coefficients of storage for the Seymour Formation within Wilbarger County ranged from 0.014 to 0.23. Based on these figures, an average coefficient of storage of 0.14 was determined and later used to calculate the amount of water in storage.

The coefficients of transmissivity determined from pumped wells tapping the Seymour Formation in Wilbarger County ranged from 19,300 to 59,900 gpd/ft.

Only 11 specific capacity tests were run during the period of this study on wells yielding water from the Seymour Formation (Table 2). The specific capacities of these wells ranged from 5.3 to 40.8 gpm/ft. The U.S. Geological Survey had previously run specific capacity tests on six wells in the Seymour and these ranged from 4.4 to 142 gpm/ft.

Additional well performance tests were run on irrigation wells pumping from the Seymour, and the measured yields on these ranged from 35 to 295 gpm (Table 2).

Additional specific capacities of Seymour and Quaternary alluvium wells were reported by water well drillers and they are listed in Table 2. The specific capacities reported for 10 irrigation wells producing from the Quaternary alluvium ranged from 5.0 to 70.0 gpm/ft.

Wells producing from the Seymour Formation or Quaternary alluvium have various saturated thicknesses (Table 2). Wells near the center of the Odell-Fargo area usually have saturated thicknesses greater than 20 feet, as shown in Figure 29. The larger-yield wells have near, or in excess of, 60 feet of saturated thicknesses with a maximum thickness of 85 feet. Saturated thicknesses within the Lockett area range from 4 to 57 feet (Figure 28). Other occurrences of the Seymour Formation have lesser amounts of saturated thickness; however, data are inadequate to show the saturated thickness in these areas.

Well	Aquifer	Saturated thickness (feet)		Date test began	Specific capacity (gpm/ft)	Coefficient of storage	Coefficient of transmissivity (gpd/ft)	Yield (gpm)	Remarks
13-37-906	Seymour Formation	36.4	Apr.	29, 1967	9.4	-	-	205	Well performance test by driller, Layne-Western Company, Inc.
907	do	44.1		do	14.0	_	-	205	Do.
38-401	do	42.3	Apr.	2, 1967	15.0		-	205	Do.
402	do	45.2	Mar.	22, 1967	10.6		-	205	Do.
403	do	45.5	Apr.	5, 1967	15.1	—	-	205	Do.
404	do	26.6	Apr.	2, 1967	6.9	-	_	50	Do.
702	do	70.0	July	10, 1970	6.1	-	$\widetilde{=}$	274	Well performance test by Texas Water Develop- ment Board.
703	do	48.3	Apr.	18, 1967	7.7			172	Well performance test by driller, Layne-Western Company, Inc.
704	do	47.9	Apr.	17, 1967	13.7	-	-	205	Do.
705	do	57.5	Apr.	13, 1967	7.6	-		207	Do.
706	do	61.7	Apr.	15, 1967	7.4		-	205	Do.
707	do	45.7	Apr.	11, 1967	25.2		—	205	Do.
708	do	48.7	Apr.	19, 1967	11.8	÷	-	205	Do.
709	do	39.5	Apr.	9,1967	9.6		_	203	Do,
710	do	37.9	Mar.	29, 1967	11.1	-	-	205	Do.
711	do	65.0	July	23, 1969	8.1		_	100	Do.
712	do	70.2	July	16, 1969	6.4	-	—	175	Do.
45-507	do	-	July	14, 1970	-	-		37	Well performance test by Texas Water Develop- ment Board.
509	do	-	July	16, 1970	40.8		-	251	Do.
603	do	_		do	***	-		126	Do.
604	do	-	July	14, 1970	-	2 <u>00</u>	-	295	Do.
606	do	-	July	16, 1970	5.3	1	-	126	Do.
607	do	-	July	14, 1970			÷.,	188	Do.
609	do	37	Oct.	20, 1969	4.3		-	120	Well performance test by driller, Robert Dale.

Well	Aquifer	Saturated thickness (feet)	ł	Date test pegan	Specific capacity (gpm/ft)	Coefficient of storage	Coefficient of transmissivity (gpd/ft)	Yield (gpm)	Remarks
13-45-611	Seymour	63	July	16, 1955	10.3	_	_	380	Well performance test by driller, Robert Dale.
	Formation								-
616	do	40.5	June	6, 1955	6.5	-	-	265	Do.
622	do	38	Jan.	25, 1969	25.0		-	550	Do.
803	do		July	14, 1970	-	-	-	177	Well performance test by Texas Water Develop- ment Board.
804	do	-		do	-	-	-	172	Do.
807	do	-		do	-	-	-	90	Do.
46-108 109	do	-	July	23, 1970	-	-	-	217*	Do.
111 112	do	-		do	-	-		183*	Do.
114	do	67.6	July	10, 1970	6.1	-	-	274	Do.
121	do	-	July	16, 1970	-	-		137	Do.
122	do	-		do		-	-	137	Do.
123	do	-	July	21, 1970	6.0	-		220	Do.
124	do	33.4		do	12.4	_	<u></u>	221	Do.
128	do	21	Oct	14 1970	26.0			450	Well performance test by driller. Robert Dale
207	do	-	July	10, 1970	-	-	-	144	Well performance test by Texas Water Develop- ment Board.
210	do		July	21 1970	-	_	_	193	Do
210	do		huly	22, 1970				170	Do
214	40		July	23, 1970				140	50.
219	do	_	July	21, 1970	-	_		146	5.
220	do		July	23, 1970		-	-	178	Do.
221	do	-		do	-	- 272		178	Do.
228	do	-	July	10, 1970	10.3	-	(· · ·)	144	Do.
230	do	29	Apr.	14, 1967	12.5		-	250	Well performance test by driller, Robert Dale.
232	do	34	Dec.	1, 1970	8.9	Transie abity,	and Well-Specific	250	Do.
233	do	28	Apr.	28, 1971	4.0		-	100	Do.

Well	Aquifer	Saturated thickness (feet)	1	Date test began	Specific capacity (gpm/ft)	Coefficient of storage	Coefficient of transmissivity (gpd/ft)	Yield (gpm)	Remarks
13-46-401	Seymour Formation	73	Sept.	9, 1963	9.4	500 753	-	300	Well performance test by driller, D. L. McDonald.
402	do	71	June	13, 1953	7.3	and the second s	-	300	Do.
403	do	74.5	June	3, 1953	8.2		-	300	Do.
404	do	62		- 1953	5,5		-	210	Do.
405	do	83		do	10.0	10 Mar 10 Mar 10 Mar	-	300	Do.
406	do	76		do	7.7	-	-	300	Do.
407	do	74	May	24, 1953	12.3		-	320	Do.
408	do	77		1953	8.3	-	-	300	Do.
421	do	-	July	21, 1970	-		-	220	Well performance test by Texas Water Develop- ment Board.
422	do	-	July	16, 1970	-			266	Do.
428	do	-		do	-	-	-	132	Do.
430	do	57	June	13, 1967	6.0		-	250	Well performance test by driller, Robert Dale.
501	do	79		1953	6.1	-	-	300	Well performance test by driller, D. L. McDonald.
502	do	76		do	7.3	-	-	300	Do,
503	do	74	June	24, 1953	13.6	-	-	300	Do.
507	do	70 ±	Feb.	5, 1952	17.0		40,100	430	Aquifer test by U.S. Geological Survey.
511	do	61	Apr.	2, 1969	9.6		-	250	Well performance test by driller, McDonald Drilling Company, Inc.
512	do	58	Apr.	20, 1969	5.4		-	200	Do.
514	do	-	Aug.	5, 1970	-	-	***	94	Well performance test by Texas Water Develop- ment Board.
515	do	53.2	July	21, 1970	5.4	-		213	Do.
516	do	-		do	-	-	-	229	Do.
601	Quaternary alluvium	-	Mar.	3, 1960	40.0	-	-	603	Well performance test by driller, Robert Dale.
602	do	11 C 41 C		1956	53.6	CONCERNS.	The second second second second	750	Do

		Saturated thickness		Date test	Specific capacity	Coefficient of	Coefficient of transmissivity	Yield	
Well	Aquifer	(feet)	ł	began	(gpm/ft)	storage	(gpd/ft)	(gpm)	Remarks
13-46-605	Quaternary alluvium	-	June	6, 1967	29.2	-	-	350	Well performance test by driller, Robert Dale.
606	do	34	Mar.	12, 1969	62.5	$\tilde{\epsilon}$		500	Well performance test by driller, Lee Hopper.
616	do	43	Мау	29, 1971	11.7	-		350	Well performance test by driller, Robert Dale.
902	do	24	Jan.	21, 1971	30	100		30	Do.
54-516	do	15	Mar.	30, 1971	70.0	-		350	Do.
712	Seymour Formation	-	July	22, 1970	<u>ب</u>	-		110	Well performance test by Texas Water Develop- ment Board.
725	do	18	Aug.	28, 1970	6.9	-		125	Well performance test by driller, Robert Dale.
726	do	29	Jan.	10, 1967	43.8			350	Do.
727	do	27	Mar.	23, 1971	8.3	-	77	100	Do.
730	do	14	Apr.	4, 1971	5.5			60	Do.
731	do	14.4	May	13, 1971	10.0	ler.		140	Do.
804	do		Oct.	23, 1943	-	7112	<u>1919</u>	257	Well performance test by U.S. Geological Survey,
805	do		Oct.	12, 1943				411	Do.
806	do	<u></u>	Oct.	23, 1943	-	-		273	Do.
808	do	20 ±	Oct.	11, 1943	44.0	-	59,900	408	Aquifer test by U.S. Geological Survey.
817	do	-	Nov.	7, 1943	16.4	-	26,700	162	Do.
-	do	20-30		do	-	0.10	34,400	162	Observation well for aquifer test on well 13-54-817, above.
	do	20-30		do	8 <u>1</u> 7	.23	54,600	162	Do.
820	do	-		do		.014	19,700	162	Aquifer test by U.S. Geological Survey.
838	do	14.2	Apr.	3, 1969	25.0	1 2002	777	200	Well performance test by driller, Robert Dale.
839	do	12	Mar.	14, 1968	25.0		-	300	Do.
849	do	18	Feb.	18, 1970	8.3	1		125	Do.
903	do	20-30	Oct.	11, 1943	11.0		19,300	93	Aquifer test by U.S. Geological Survey.
906	Quaternary alluvium	14 - 16	June	21, 1965	5.0	Panananjivity.	and Verifician Specific	20	Well performance test by driller, Don Hopper.

Well	Aquifer	Saturated thickness (feet)	b	Date test began	Specific capacity (gpm/ft)	Coefficient of storage	Coefficient of transmissivity (gpd/ft)	Yield (gpm)	Remarks
13-61-334	Seymour Formation	13	Apr.	11, 1967	10.0	_	-	100	Well performance test by driller, Robert Dale.
336	do		July	9, 1970	-		-	56	Well performance test by Texas Water Develop- ment Board.
418	do		July	17, 1970	-	<u>1</u>	-	100	Do.
419	do		July	11, 1956	16.1		-	209	Well performance test by driller, Robert Dale.
425	do	-	July	17, 1970	-	-	-	63	Well performance test by Texas Water Develop- ment Board.
515 568}	do	-	July	22, 1970	-	-	-	86*	Do.
552 553	do	L ie	June	10, 1970		-	-	94*	Do.
562 563	do	-	July	22, 1970	-	-	—	91*	Do.
621	do	-	July	17, 1970	-	×.	-	81	Do.
623	do	-		do	-	-	-	119	Do.
639	do	-		do	-		-	139	Do.
648	do	9	Aug.	30, 1970	10		-	50	Well performance test by driller, Robert Dale.
702	do	-	July	21, 1960	142	-	-	384	Well performance test by U.S. Geological Survey.
703	do	33.5	May	5, 1955	29.2	-	-	350	Well performance test by driller, Robert Dale.
812	do	14.6	June	9, 1970	24.6	-	-	123	Well performance test by Texas Water Develop- ment Board.
824	do	23	Mar.	2, 1967	16.7	-	-	350	Well performance test by driller, Robert Dale.
829	do	18	Aug.	16, 1965	5.0	_	-	50	Well performance test by driller, Hopper Drilling Company.
830	do	-	June	10, 1970		-	-	177	Well performance test by Texas Water Develop- ment Board.
831	do	-	June	9, 1970	-	-	-	121	Do.
833	do	15	July	10, 1967	20.6		-	310	Well performance test by driller, Robert Dale.

- 34 -

A THE REPORT OF A DECK OF

Well	Aquifer	Saturated thickness (feet)	1 b	Date test egan	Specific capacity (gpm/ft)	Coefficient of storage	Coefficient of transmissivity (gpd/ft)	Yield (gpm)	Remarks
13-61-834	Seymour Formation		June	11, 1970	-	-		137	Well performance test by Texas Water Develop- ment Board.
835	do		July	22, 1970	-	-	-	136	Do.
836	do		June	11, 1970	-	—		180	Do.
841	do	24	Sept.	5, 1970	13.6	-	-	150	Do.
845	do	17	Mar.	25, 1968	3.3	=		50	Well performance test by driller, Robert Dale.
901	do	13	July	1, 1967	4.0		-	40	Do.
911	do		June	11, 1970	-	-	-	59	Well performance test by Texas Water Develop- ment Board.
62-155	do	12	July	28, 1970	3.9	-	-	35	Well performance test by driller, Robert Dale.
159	do	12.5	Apr.	15, 1971	6.7		-	600	Do,
220	do	19.5	July	22, 1970	16.6	-		202	Well performance test by Texas Water Develop- ment Board.
226	do	17	Apr.	22, 1969	16.1	÷		225	Well performance test by driller, Robert Dale.
234	do	21	May	6, 1970	8.6	-	_	120	Do.
236	do	12	Jan,	18, 1966	9.1	-	-	100	Do.
237	do	13	Jan.	30, 1966	15.0		-	150	Do.
245	do	8	Apr.	19, 1970	7.5	-	-	60	Do.
246	do	6.5	Apr.	27, 1967	16.7	_	-	100	Do.
302	Quaternary alluvium	11	June	18, 1965	7.5	-	-	30	Well performance test by driller, Don Hopper.
303	do	17	June	25, 1965	8.0		-	40	Do.
414	Seymour Formation	-	July	9, 1970	6.5	-	-	35	Well performance test by Texas Water Develop- ment Board.
425	do	-	July	29, 1970	-		-	212	Do.
427	do	12	Mar.	29, 1967	28.6			200	Well performance test by driller, Robert Dale.
428	do	9	May	16, 1967	19.5		-	175	Do.
433	do	13	June	26, 1970	13.6	Terrandicerer.	and along Space	150	Do.

Well	Aquifer	Saturated thickness (feet)	Date test began	Specific capacity (gpm/ft)	Coefficient of storage	Coefficient of transmissivity (gpd/ft)	Yield (gpm)	Remarks
	Seymour Formation		Nov. 14, 1951	4.4		19,600	165	Aquifer test by U.S. Geological Survey on test hole 63, 3 miles north-northwest of White City, location shown on Figure 31.
-	do	65 ±	do	-	0.02	21,000	165	Aquifer-test observation well located 100 feet north of test hole 63 mentioned above.
-	do	65 ±	do	-	.015	20,800	165	Aquifer-test observation well located 100 feet south of test hole 63 mentioned above.

the second second
Fluctuations of Water Levels

Locally, the depth to water in wells indicates the position of the water table under water-table conditions, or of the piezometric surface under artesian conditions. When there is an absence of withdrawal, or the influence due to pumping is nil, the depth-to-water measurement is termed a *static water level*. When the measurement is made in a pumping well, the water level is termed a *pumping level*. Changes in water levels reflect changes in the amount of ground water stored in a given aquifer. The changes may be on a local or on a regional basis. Regional changes over a long period of time reflect a change in the recharge-discharge relationship.

Often water-level fluctuations of a minor nature are reflections of earthquakes, tidal forces and, most commonly, changes in atmospheric pressure.

The most significant water-level changes are the result of heavy pumping. Depending on the reservoir

characteristics of an aquifer and the rates of withdrawal, cones of depression of various sizes are formed around the well bores of pumping wells. These cones are formed by the drawdown of the water table or the piezometric surface and are in the shape of an inverted cone having its apex at the pumped well (Figure 11, well A). These cones will expand until they encounter a source of replenishment equal to the discharge rate. If a cone does not encounter an adequate source of replenishment, it will continue to expand until it encounters the cone of depression of another pumping well, as is the case in highly developed irrigation areas, and may combine with it and form a large regional cone of depression in the piezometric surface or the water table.

CHEMICAL CHARACTER OF GROUND WATER

Only small amounts of mineral matter are present in precipitation, whether it is in the form of sleet, snow

Figure 11.-Idealized Cross Section Showing Drawdown Interference Between Two Pumping Wells

or rain. However, upon reaching the land surface, water dissolves minerals from the soils and rocks through which it moves and takes the mineral substances into solution, thus changing its chemical composition. This accounts for the wide differences in the chemical quality of ground water. In general, the concentration of dissolved solids increases with the depth of the aquifer.

In addition to natural factors, ground water is often subjected to contamination from various other sources that are connected with human activities. Contamination may result from the improper disposal of sewage or industrial wastes. It also may result from disposal of brine, which is produced with hydrocarbons, or by leakage from abandoned or producing oil wells.

The mineral concentrations indicated by 573 chemical analyses of water samples from wells and springs in the county are reported in Table 8. Wells which were sampled are widely scattered and the analyses should represent the full range in chemical quality that may be expected. The wells from which a water sample was collected are shown on the well-location map (Figure 34) by a bar over the well number.

Table 3, which is adapted from Doll and others (1963), lists the principal mineral constituents found in natural water and discusses their source, significance, and physical properties. Hem (1959) gives a detailed, technical discussion of water quality. The discussion which follows lists some of the more important quality factors in water and is primarily derived from these two sources.

Dissolved Solids

The dissolved-solids content of a water sample indicates the total quantity of dissolved mineral matter that is present. This is determined by evaporating a known quantity of water for 1 hour at 180° C and weighing the residue.

The dissolved-solids content is usually the main factor which limits or determines the use of water. Winslow and Kister (1956, p. 5) used an excellent and very applicable general classification of waters which is based on the dissolved-solids concentration in ppm (parts per million). The classification is as follows:

Description	Dissolved-solids conten (ppm)	
Fresh	Less than 1,000	
Slightly saline	1,000 to 3,000	
Moderately saline	3,000 to 10,000	
Very saline	10,000 to 35,000	
Brine	More than 35,000	

In recent years most laboratories have begun reporting analysis in mg/l (milligrams per liter) instead of ppm. These units, for practical purposes, are identical until the dissolved-solids concentration of natural water exceeds about 7,000 mg/l. The constituent concentrations in this report are given in mg/l, except for the oil-field brines for which chemical analyses were originally reported in ppm. Most of the analyses of ground water in this report are below 7,000 mg/l and therefore the units are interchangeable. For the more highly mineralized waters, a density correction would be necessary in conversion using the following formula:

Parts per million = $\frac{\text{milligrams per liter}}{\text{specific gravity of}}$ the water

The dissolved-solids content of ground water collected from the Seymour Formation of Wilbarger County ranged from 178 to 11,700 mg/l. Based on the Winslow and Kister classification, this water would be termed fresh to very saline.

Within the Odell-Fargo area, 89 percent of the samples collected were fresh water, containing less than 1,000 mg/l dissolved solids. There were 12 samples in this area which would be termed slightly saline. Only two samples (wells 13-46-507 and 617) were moderately saline and their dissolved-solids concentrations were 3,140 and 4,150 mg/l, respectively.

Seymour ground water in the Lockett area is of poorer quality than in the Odell-Fargo area. Of the wells sampled, 78 percent contained fresh water, 21 percent contained slightly saline water, and the water from well 13-61-701 was very saline, containing 11,700 mg/l dissolved solids.

In other areas of Seymour ground water, slightly over one-half of the sampled waters were fresh and the balance were slightly to moderately saline.

The range in concentration of dissolved solids in Quaternary alluvium ground water was from 345 (well 13-56-507) to 20,900 mg/l (well 13-57-402). Approximately 30 percent of the sampled waters were fresh, 53 percent were slightly to moderately saline, and the waters from three wells (13-62-527, 13-64-604, and 14-57-402) were very saline. The dissolved-solids concentrations of these waters were 16,100, 27,900, and 20,900 mg/l, respectively.

Ground-water samples from Permian rocks contained from 280 to 17,000 mg/l dissolved solids and would be classed as fresh to very saline.

Table 3.-Source and Significance of Dissolved-Mineral Constituents and Properties of Water (Adapted from Doll and others, 1963, p. 39-43)

Constituent		
or		
property	Source or cause	Significance
Silica (SiO ₂)	Dissolved from practically all rocks and soils, commonly less t h a n 3 0 mg / I H ig h concentrations, as much as 100 mg/l, generally occur in highly alkaline waters.	Forms hard scale in pipes and boilers. Carried over in steam of high pressure boilers to form deposits on blades of turbines. Inhibits deterioration of zeolite-type water softeners.
Iron (Fe)	Dissolved from practically all rocks and soils. May also be derived from iron pipes, pumps, and other equipment.	On exposure to air, iron in ground water oxidizes to reddish-brown precipitate. More than about 0.3 mg/l stains laundry and utensils reddish-brown. Objectionable for food processing, textile processing, beverages, ice manufacture, brewing, and other processes. U.S. Public Health Service (1962) drinking water standards state that iron should not exceed 0.3 mg/l. Larger quantities cause unpleasant taste and favor growth of iron bacteria.
Calcium (Ca) and Magnesium (Mg)	Dissolved from practically all soils and rocks, but especially from limestone, dolomite, and gypsum. Calcium and magnesium are found in large quantities in some brines. Magnesium is present in large quantities in sea water.	Cause most of the hardness and scale-forming properties of water; soap consuming (see hardness). Waters low in calcium and magnesium desired in electroplating, tanning, dyeing, and in textile manufacturing.
Sodium (Na) and Potassium (K)	Dissolved from practically all rocks and soils. Found also in oil-field brines, sea water, industrial brines, and sewage.	Large amounts, in combination with chloride, give a salty taste. Moderate quantities have little effect on the usefulness of water for most purposes. Sodium salts may cause foaming in steam boilers and a high sodium content may limit the use of water for irrigation.
Bicarbonate (HCO ₃) and Carbonate (CO ₃)	Action of carbon dioxide in water on carbonate rocks such as limestone and dolomite.	Bicarbonate and carbonate produce alkalinity. Bicarbonates of calcium and magnesium decompose in steam boilers and hot water facilities to form scale and release corrosive carbon dioxide gas. In combination with calcium and magnesium, cause carbonate hardness.
Sulfate (SO4)	Dissolved from rocks and soils containing gypsum, iron sulfides, and other sulfur compounds. Commonly present in some industrial wastes.	Sulfate in water containing calcium forms hard scale in steam boilers. In large amounts, sulfate in combination with other ions gives bitter taste to water. U.S. Public Health Service (1962) drinking water standards recommend that the sulfate content should not exceed 250 mg/l.
Chloride (Cl)	Dissolved from rocks and soils. Present in sewage and found in large amounts in oil-field brines, sea water, and industrial brines.	In large amounts in combination with sodium, gives salty taste to drinking water. In large quantities, increases the corrosiveness of water. U.S. Public Health Service (1962) drinking water standards recommend that the chloride content should not exceed 250 mg/l.
Fluoride (F)	Dissolved in small to minute quantities from most rocks and soils. Added to many waters by fluoridation of municipal supplies.	Fluoride in drinking water reduces the incidence of tooth decay when the water is consumed during the period of enamel calcification. However, it may cause mottling of the teeth, depending on the concentration of fluoride, the age of the child, amount of drinking water consumed, and susceptibility of the individual (Maier, 1950, p. 1120-1132).
Nitrate (NO ₃)	Decaying organic matter, sewage, fertilizers, and nitrates in soil.	Concentration much greater than the local average may suggest pollution. U.S. Public Health Service (1962) drinking water standards suggest a limit of 45 mg/l. Waters of high nitrate content have been reported to be the cause of methemoglobinemia (an often fatal disease in infants) and therefore should not be used in infant feeding (Maxcy, 1950, p. 271). Nitrate shown to be helpful in reducing inter-crystalline cracking of boiler steel. It encourages growth of algae and other organisms which produce undesirable tastes and odors.
Boron (B)	A minor constituent of rocks and of natural waters.	An excessive boron content will make water unsuitable for irrigation. Wilcox (1955, p. 11) indicated that a boron concentration of as much as 1.0 mg/l is permissible for irrigating sensitive crops; as much as 2.0 mg/l for semitolerant crops; and as much as 3.0 mg/l for tolerant crops. Crops sensitive to boron include most deciduous fruit and nut trees and navy beans; semitolerant crops include most small grains, potatoes and some other vegetables, and cotton; and tolerant crops include alfalfa, most root vegetables, and the date palm.

Table 3.-Source and Significance of Dissolved-Mineral Constituents and Properties of Water (Adapted from Doll and others, 1963, p. 39-43)-Continued

Constituent

Constituent			
or			
property	Source or cause	Signif	icance
Dissolved solids	Chiefly mineral constituents dissolved from rocks and soils.	U.S. Public Health Service (1 recommend that waters contain solids not be used if other, less r For many purposes the disso limitation on the use of water. based on dissolved-solids conter and Kister, 1956, p. 5): Waters of dissolved solids are conside slightly saline; 3,000 to 10,000 to 35,000 ppm, very saline; and	1962) drinking water standards ing more than 500 mg/l dissolved mineralized supplies are available. olved-solids content is a major A general classification of water tt, in ppm, is as follows (Winslow containing less than 1,000 ppm red fresh; 1,000 to 3,000 ppm ppm, moderately saline; 10,000 d more than 35,000 ppm, brine.
Hardness as CaCO ₃	In most waters nearly all the hardness is due to calcium and magnesium. All of the metallic cations other than the alkali metals also cause hardness.	Consumes soap before a lather bathtubs. Hard water forms sci pipes. Hardness equivalent to t called carbonate hardness. An called non-carbonate hardness. I are considered soft; 61 to 120 180 mg/l, hard; more than 180 m	will form. Deposits soap curd on ale in boilers, water heaters, and the bicarbonate and carbonate is y hardness in excess of this is Waters of hardness up to 60 mg/l mg/l, moderately hard; 121 to mg/l, very hard.
Sodium-adsorption ratio (SAR)	Sodium in water.	A ratio for soil extracts and irri relative activity of sodium ions (U.S. Salinity Laboratory Staff the following equation:	gation waters used to express the s in exchange reactions with soil , 1954, p. 72, 156). Defined by
		1	Na ⁺
		SAR =	· · · ·
		$\sqrt{\frac{Ca^{++}}{2}}$	+ + Mg ⁺⁺ 2
		where Na ⁺ , Ca ⁺⁺ , and Mg ⁺⁺ milliequivalents per liter (me/l) σ	represent the concentrations in of the respective ions.
Residual sodium carbonate (RSC)	Sodium and carbonate or bicarbonate in water.	As calcium and magnesium pred the relative proportion of soc (Eaton, 1950, p. 123-133). Def	cipitate as carbonates in the soil, dium in the water is increased fined by the following equation:
		$RSC = (CO_3 + HCC)$	03 ⁻) - (Ca ⁺⁺ + Mg ⁺⁺)
		where CO ₃ , HCO ₃ , Ca concentrations in milliequival respective ions.	$^{++},\ \text{and}\ \text{Mg}^{++}$ represent the lents per liter (me/l) of the
Specific conductance (micromhos at 25°C)	Mineral content of the water.	Indicates degree of mineraliza measure of the capacity of th current. Varies with concentrat the constituents.	tion. Specific conductance is a le water to conduct an electric tion and degree of ionization of
Hydrogen ion concentration (pH)	Acids, acid-generating salts, and free carbon dioxide lower the pH. Carbonates, bicarbonates, hydroxides, phosphates, silicates, and borates raise the pH.	A pH of 7.0 indicates neutrality 7.0 denote increasing alkalinity increasing acidity. pH is a n hydrogen ions. Corrosiveness o decreasing pH. However, exces attack metals.	of a solution. Values higher than ; values lower than 7.0 indicate neasure of the activity of the f water generally increases with ssively alkaline waters may also
1	Hardness	Hardness range (mg/l)	Class
The characteristic	of water known as hardness is	3 	
caused almost entirely b magnesium. Hard wate abundance whereas soft	by the compounds of calcium and er contains these compounds in water does not.	0 to 60 61 to 120 121 to 180 More than 180	Soft Moderately hard Hard Very hard
A classification, I	pased on the amount of calcium	In Wilbarger County.	97 percent of the waters

A classification, based on the amount of calcium carbonate or its equivalent that would be formed if the water were evaporated, was devised by the U.S. In Wilbarger County, 97 percent of the waters from the Seymour Formation were very hard; however, they ranged from moderately hard to very hard. The

Geological Survey and is listed in the following table:

hardness of water from this aquifer ranged from 91 to 4,380 mg/l.

As in the case of water from the Seymour, water from the Quaternary alluvium deposits is predominately very hard. The water in one sample was moderately hard, and two samples contained hard water. Hardness ranged from 96 to 16,000 mg/l.

All of the samples collected from Permian rocks were very hard water. The hardness ranged from 221 to 9,200 mg/l.

Iron

Iron in comparatively small amounts is present in most ground waters. It is derived primarily from the soils and sediments through which the water passes.

Upon exposure to air, water containing small amounts of iron leaves a reddish residue or stain. For this reason, ground waters having excessive amounts of iron (greater than 0.3 mg/l) are objectionable for some industrial and domestic uses.

There is very little difference in the iron content of ground water in the various Seymour Formation areas in Wilbarger County. Of 39 samples, 18 or 46 percent contained greater than the recommended upper limit; the iron content ranged from no detected amount (well 13-37-910) to 84 mg/l (well 13-46-515).

The iron content was determined on only one sample from the Quaternary alluvium deposits. Water from well 13-62-521 contained 0.4 mg/l which is above the recommended limit.

The iron content was not determined in water from the Permian rocks.

Sodium and Potassium

Sodium and potassium are alkali metals that are found in all natural waters; however, only sodium is generally found in significant quantities.

Sodium is the most abundant cation in sea water, where its average concentration is about 10,000 mg/l. For this reason, some ground waters that contain excessively high concentrations of sodium, associated with excessively high amounts of chloride, may have been altered by sea water. When these constituents are present in moderate quantities, they have little effect on the use of water for other than certain industrial uses. Water containing high concentrations of sodium salts may cause soil damage, and therefore, could be detrimental for irrigation use.

The sodium content ranged from 17 to 2,780 mg/l in water from the Seymour Formation, from 50 to 5,500 mg/l in water from the Quaternary alluvium deposits, and from 15 to 2,900 mg/l in water from Permian water-bearing units. The potassium content in these same waters ranged from 0.6 to 38 mg/l, less than 1 to 54 mg/l, and less than 1 to 14 mg/l, respectively.

Carbonate and Bicarbonate

Bicarbonate anions occur in natural waters as the result of dissolved carbon dioxide. Waters containing carbon dioxide dissolve limestones and dolomites when they come into contact with them. This releases carbonate which is changed to bicarbonate by part of the dissolved carbon dioxide. The bicarbonate concentration in water is in general a measure of its alkalinity.

High concentrations of sodium bicarbonate cause foaming in industrial boilers and may also be objectionable in irrigation waters.

Wilbarger County ground waters have a bicarbonate content which ranges from 0 to 880 mg/l in the Seymour Formation, from 83 to 851 mg/l in the Quaternary alluvium deposits, and from 229 to 640 mg/l in Permian water-bearing units.

Sulfate

Sulfate may be dissolved in water which passes through anhydrite or gypsum. It also may be derived from rocks, such as black shale, which contain the mineral pyrite. Within Wilbarger County, it would be derived from rocks of Permian age which characteristically contain anhydrite and gypsum.

Sulfate, in combination with high calcium and magnesium concentrations, contributes to the formation of boiler scale and usually increases the cost of water softening.

Approximately 91 percent of the water samples analyzed from the Seymour Formation contained less than the upper limit of 250 mg/l recommended for public supplies. The sulfate content of all samples ranged from 3 to 1,940 mg/l. Nine Seymour water samples contained sulfate concentrations in excess of 750 mg/l and those waters may have a laxative effect.

The range of sulfate content in waters collected from Quaternary alluvium deposits was from 9 to 1,670 mg/l. Thirty-three samples, or 49 percent, contained less than the recommended upper limit while approximately 23 percent contained sulfate in concentrations exceeding 750 mg/l.

The sulfate content of water from wells in the Permian water-bearing units ranged from 16 to 1,930 mg/l. Approximately 68 percent of the samples contained less than the recommended upper limit for sulfate. Water from only one well (13-63-201) would tend to have a laxative effect because of high sulfate content.

Chloride

Common table salt consists of chloride in combination with sodium. Both of these constituents are generally present in all ground waters and they are present in varying quantities in waters collected from wells in Wilbarger County. Chloride occurs as the most abundant ion found in sea water where its average content is about 19,000 mg/l. Normally, the regional chloride content of an aquifer is relatively low and, therefore, the presence of abnormally high amounts associated with high sodium is suggestive of possible contamination by salt water. This is generally derived from oil-field brines; however, some water-bearing units may contain naturally high chloride concentrations.

The usability of water for various purposes may be determined in part by the amount of chloride. Small amounts have little effect on the usefullness of water, but in concentrations of several hundred mg/l, in combination with sodium it gives water a salty taste and, therefore, is undesirable for domestic use. There are also limitations on this constituent in water which is used for industrial and irrigational purposes. These limitations will be discussed in a later section of this report.

The chloride content of ground water collected and analyzed from the Seymour Formation of Wilbarger County ranged from 2 to 7,100 mg/l. The following tabulation gives a more complete breakdown of the chloride content of the Seymour Formation waters:

Range in chloride content (mg/l)	Number of analyses	Percent of total analyses
0 to 250	379	78
251 to 500	61	13
501 to 1,000	27	6
Over 1,000	15	3

Approximately 90 percent of the analyzed Seymour samples within the Odell-Fargo area contained water with less than 250 mg/l, the suggested upper limit for chloride in drinking water (U.S. Public Health Service, 1962, p. 7 and 8). In the Lockett area, 74 percent of the samples were below the suggested upper limit, and 70 percent of the ground waters of other areas of the Seymour Formation were of acceptable quality.

Samples of water collected and analyzed from Quaternary alluvium deposits contained chloride concentrations which ranged from 13 to 17,800 mg/l. A more complete breakdown of the chloride content of waters from these deposits is as follows:

Range in chloride content (mg/l)	Number of analyses	Percent of total analyses
0 to 250	29	39
251 to 500	16	21
501 to 1,000	14	19
Over 1,000	16	21

Chloride concentration range of ground water from rocks of Permian age was from 8 to 10,700 mg/l. Of the analyzed samples, 69 percent contained less than the suggested upper limit for this constituent. Approximately 19 percent of the samples had a chloride content greater than 1,000 mg/l.

Fluoride

Fluoride, present in only small amounts in ground water, is derived mainly from fluorite and other fluoride-bearing minerals of igneous rocks. The principal effect of fluoride in drinking water is on the dental health of children. The constituent is beneficial or detrimental depending on the concentration. While small quantities are beneficial in lessening tooth decay, if waters containing too much fluoride are used by children up to 12 years of age over prolonged periods of time, it may contribute to a permanent dental defect known as fluorosis, or mottling of the teeth.

The fluoride concentrations recommended by the U.S. Public Health Service (1962, p. 7, 8) are based on

climatic factors that affect the amount of water consumed—for Wilbarger County the recommended lower limit is 0.7 mg/l, the optimum concentration is 0.8 mg/l, and the upper limit is 1.0 mg/l.

Within the Seymour Formation in Wilbarger County, the fluoride content ranged from 0.1 to 7.0 mg/l (Table 8). The average fluoride content of 423 samples collected from the Seymour Formation was 1.1 mg/l. A summary of fluoride content in the Seymour Formation samples analyzed is as follows:

Range in fluoride content (mg/l)	Number of analyses	Percent of total analyses
0 to 0.7	115	27
0.8 to 1.0	114	27
Over 1.0	194	46

The range in fluoride content from 67 samples collected from Quaternary alluvium deposits was from 0.3 to 4.3 mg/l. Approximately 49 percent of the samples contained less fluoride than the recommended upper limit.

Waters from the Permian rocks had a fluoride content which ranged from 0.4 to 2.4 mg/l, with 56 percent of the analyzed waters falling below the constituent's recommended upper limit.

Nitrate

The nitrate content of ground waters varies greatly and may be derived from several sources. In Wilbarger County, the ground water in the Seymour Formation, in particular, locally contains higher than normal nitrate concentrations.

The harmful effects of excessive nitrate will be discussed in a later part of this section. It should be kept in mind, however, that any water containing nitrate in excess of 45 mg/l is not recommended for human consumption (Table 3).

Nitrate concentrations within Seymour Formation ground waters ranged from less than 0.4 to 552 mg/l. The following tabulation gives a more complete breakdown of the nitrate content of these waters:

Range in nitrate content (mg/I)	Number of analyses	Percent of total analyses
0 to 45	266	59
45 to 100	164	36
101 to 220	22	5
Over 220	2	.5

The range in nitrate content varies among the areas of Seymour occurrence. In the Odell-Fargo area, 86 percent of the analyzed samples were below 45 mg/l, the recommended upper limit for public water supplies (U.S. Public Health Service, 1962). Within the Lockett area, only 47 percent of the sampled waters would be considered by this standard to be safe for drinking. In the other areas underlain by the Seymour Formation, approximately 51 percent of the waters analyzed would be considered safe for human consumption.

Adults can tolerate much more nitrate in drinking water than babies, but prolonged illness and even death can occur when the nitrate concentration is high enough and the water is consumed over a long enough period of time. Burden (1961) concluded that the average lethal dose for a 140-pound adult is between 80 and 300 milligrams of nitrate per kilogram (2.205 pounds) of body weight. Or in other words, death is most likely to occur when 80 to 300 mg/l of the body weight is nitrate. Burden (1961) recommended a maximum limit for nitrate in livestock water of 220 mg/l, and concluded that there should be concern for animals when the nitrate content reaches 100 mg/l.

There are several explanations for the high nitrate concentrations in ground water in the Seymour Formation. Within the Odell-Fargo and Lockett areas of Wilbarger County, the main crop grown is alfalfa. In the root zone of these plants, nitrogen-fixing bacteria take nitrogen from the soil air and fix it in the soil as nitrate. Alfalfa has been grown over much of the area since the late 1940's and this crop has contributed much nitrate to the soil. Through leaching, some of the nitrate may reach the zone of saturation.

In addition, much fertilization is necessary in this area for the optimum growth of alfalfa, the extensive use of fertilizers that contain nitrate may have added additional nitrate to the ground water as well as to the soils in the area of cultivation. Research to date has not been conclusive enough to fully evaluate the effects of fertilizers on ground water. The Texas A&M Water Resources Institute is conducting research on this subject in some counties of north-central Texas.

It has been suggested that the leaching of soil and humus in old mesquite groves which have been converted to farmlands is the cause of high nitrate content in ground water in certain broad areas of California (Huberty et al., 1945, p. 14-15). Another explanation for high nitrate is that it may be due to the leaching of nitrate from grasslands after they were put into cultivation. Nitrogen, bound in organic form, is believed to be highest in soils under grass vegetation and decreases rapidly when these lands are placed in cultivation. One or both of these explanations may be the cause of some of the high nitrate content in waters from the Seymour Formation, since much of the area was formerly in grassland or covered by mesquite groves.

Many of the well waters that contain excessive amounts of nitrate are possibly contaminated due to the effects of sewage from nearby septic tanks or animal wastes from barnyards. This would account not only for high concentrations of nitrate but would also be an explanation for part of the increase in chloride concentration as the two are associated (Hem, 1959, p. 18). It is felt that improper disposal of sewage from populated areas has added much nitrate to the ground water in some parts of the county. Also, a cattle feedlot operation north of the city of Vernon is thought to have contributed additional nitrate to the water in the Seymour Formation.

Determinations of nitrate content in 70 samples collected from Quaternary alluvium ground water are given in Table 8. A sample from well 13-64-609 contained more than the recommended upper limit of 45 mg/l, and that sample contained 90 mg/l. The lowest nitrate concentration in the alluvium ground water was less than 0.4 mg/l.

Permian age rocks contained ground waters having a range in nitrate content from less than 0.4 to 187 mg/l. A total of 12 (75 percent) out of 16 samples of these waters had less than the recommended upper limit for nitrate content.

Boron

Boron, necessary for crop growth, is not known to affect the use of water for purposes other than irrigation. Excessive amounts of boron are highly toxic to plants and render water unsuitable for irrigation. A boron concentration as high as 1.0 mg/l is permissible for irrigation of sensitive crops such as deciduous fruit and nut trees; as high as 2.0 mg/l for semi-tolerant crops such as most small grains, cotton, potatoes, and other vegetables; and as high as 3.0 mg/l for tolerant crops such as alfalfa and most root vegetables.

The boron content of 376 samples from selected wells in the Seymour Formation ranged from 0.1 to 3.2 mg/l. A tabulation of the boron content of Seymour Formation waters is as follows:

Range in boron content (mg/l)	Number of analyses	Percent of total analyses
0 to 0.4	290	77
0.5 to 1.0	71	19
1.1 to 2.0	12	3
2.1 to 3.0	1	.3
Over 3.0	2	.5

Samples collected from 66 wells yielding water from Quaternary alluvium deposits had a boron content ranging from 0.2 to 3.8 mg/l. Approximately 83 percent of these samples would be suitable for irrigating sensitive crops, 95 percent would be suitable for semi-tolerant crops, and 98 percent would be suitable for tolerant crops (alfalfa and most root vegetables). Only the water from well 13-62-302 would not be suitable for irrigation due to toxic effects and it had a boron content of 3.8 mg/l.

All but one of 13 analyzed water samples from the Permian rocks would be suitable for irrigating sensitive crops. The water from well 13-63-201 would be suitable only for tolerant crops since its boron content was 2.3 mg/l.

The main crops grown in Wilbarger County are cotton, grain sorghums, oats, wheat, alfalfa, and guar. Almost all of these crops can tolerate a boron content up to 3.0 mg/l. Therefore, most irrigation waters from the water-bearing formations of the county can be used without concern for toxicity due to boron.

Suitability for Drinking and Livestock Use

The degree and type of mineralization of ground water affect its suitability for municipal, livestock, irrigation, and industrial uses. Several criteria for water quality requirements have been developed through the years which serve as guidelines in determining the suitability of water for various uses. Subjects covered by the guidelines are bacterial content; physical characteristics, including color, taste, odor, turbidity, and temperature; and lastly, the chemical constituents. Economically, water-quality problems associated with the first two subjects can usually be alleviated. The neutralization or removal of most of the unwanted chemical constituents is usually difficult and often costly.

In 1962, the U.S. Public Health Service set forth recommended standards for drinking water to be used on interstate carriers and these were designed to protect the traveling public from digestive upsets. These standards are useful in evaluating public and domestic water supplies, even though they may not be directly applicable to Wilbarger County where some of the water exceeds the standards for some constituents. As set out in the standards, in a public water supply, the chemical constituents should not exceed the concentrations shown in the following table, except in those areas where more suitable supplies are not available:

Substance	Concentration (mg/l)
Chloride (CI)	250
Fluoride (F)	1.0*
Iron (Fe)	.3
Magnesium (Mg)	125
Manganese (Mn)	.05
Nitrate (NO ₃)	45
Sulfate (SO ₄)	250
Total dissolved solids (A dissolved-solids content as much as 1,000 mg/l may be permitted if less mineralized water is not available.)	500

*Upper limit based on the annual average maximum daily air temperature of 76.8°F for Wilbarger County. The recommended control limits of fluoride concentrations are: lower, 0.7; optimum, 0.8; and upper, 1.0 mg/l.

Many areas of north-central Texas do not have and cannot obtain municipal and domestic water supplies which meet the recommended standards; however, supplies which do not meet these standards have been used for long periods of time without any apparent ill effects to the user. It is not generally recommended that water used for drinking purposes contain more than a maximum of 2,000 mg/l dissolved solids; however, water containing somewhat higher mineral concentrations has been used where water of better quality was not available.

Water having concentrations of chemical constituents in excess of the U.S. Public Health Service's standards may be objectionable for many reasons. Brief explanations for these objections as well as the significance of each constituent are made in Table 3. More detailed discussions and the ranges in concentration of chemical constituents within the various water-bearing units of Wilbarger County can be found in preceding parts of this section.

Smith et al. (1942, p. 15) stated that some livestock have been known to survive on water containing much as 10,000 ppm dissolved solids, although water of considerably better quality is necessary for maximum growth and reproduction. Burden (1961) stated that there should be concern for livestock when the nitrate content of their drinking water is as great as 100 mg/l and he further recommended an upper limit of 220 mg/l for waters used for livestock consumption.

Suitability for Irrigation Use

The quality of irrigation waters is important to the results which can be expected from their use. The results, however, are greatly influenced by the climate, soils, management practices, crops grown, drainage, and the quantity of water available.

The primary factors which determine the quality of water used for irrigation are:

- the salinity hazard or the total salt concentration,
- (2) the sodium hazard or the proportion of sodium and its relationship to other cations,
- (3) the boron hazard or the concentration of boron or other toxic elements and under certain conditions,
- (4) the carbonate and bicarbonate ions hazard which is a consideration of the bicarbonate content in relationship to calcium and magnesium (U.S. Salinity Laboratory Staff, 1954, p. 69-82; Wilcox, 1955, p. 11-12; Lyerly and Longenecker, 1957, p. 13-15).

In most waters, the salt concentration is not high enough to impair or retard the growth of plants. It is the salt accumulation in the soil which causes saline conditions that are injurious to plants. However, as the salt concentration in irrigation waters increases, the salinity hazard or the tendency of salts to accumulate in the soil also increases.

The U.S. Salinity Laboratory Staff (1954, p. 69-82) designed the classification chart shown in Figure 13 which is an excellent guide in estimating the relative salinity hazard of irrigation waters. It is based in part on various salinity classes which are determined by the conductivity in micromhos per centimeter at 25°C which is shown on most chemical analyses (Table 8). The salinity-hazard classes are shown on the horizontal scale of Figure 13 and a discussion of them follows (Lyerly and Longenecker, 1957, p. 13-14):

(C1) Low-salinity water-can be used for irrigation of most crops on most soils and there is little or no soil salinity developed. Care must be exercised only in soils having extremely low permeability.

- (C2) Medium-salinity water-can be used if moderate leaching occurs. Plants with moderate salt tolerance can usually be grown without special salinity control practices.
- (C3) High-salinity water—cannot be used on soils with restricted drainage. If used, plants with good salt tolerance should be selected, adequate drainage should be provided, and special management for salinity control should be practiced.
- (C4) Very high-salinity water—not ordinarily suitable for irrigation. If used, the water must be applied in excess amounts to provide leaching and it must be used on permeable soils with adequate drainage. Crops must be highly salt tolerant.

Physical conditions of the soil are markedly affected by an increase in exchangeable sodium. For that reason it is necessary to consider the sodium hazard of irrigation water. Accumulations of sodium in the soil may be injurious to plants sensitive to sodium. The total salt concentration, as well as the sodium-adsorption ration (SAR), influence the sodium hazard, A high SAR is the cause of soil structure breakdown. Soils tend to form a hard crust and become impermeable to water and air movement. This usually results in crop damage, cultivation difficulties, and drainage problems (Hem, 1959, p. 247). Table 3 shows the equation for calculating the SAR, and Table 8 gives the SAR values which have been calculated for most of the water samples in Wilbarger County. Using these SAR values and the conductivity, the sodium hazard can be determined from Figure 13. The sodium-hazard classes as shown on the vertical scale of Figure 13 are as follows (Lyerly and Longenecker, 1957, p. 14-15):

- (S1) Low-sodium water—can be used on almost all soils with little danger of developing harmful levels of exchangeable sodium; the water could be injurious on certain soils to some stone-fruit trees and other sodium-sensitive crops.
- (S2) Medium-sodium water—recommended to be used on coarse-textured or organic soils having good permeability. In the absence of gypsum in the soil, this water will present an appreciable sodium hazard in fine-textured soils with high cation-exchange capacity under low-leaching conditions.
- (S3) High-sodium water-will require special management as it may produce harmful

levels of exchangeable sodium in most soils; however, this is not the case in gypsiferous soils. Organic additions, high leaching, and good drainage are needed.

(S4) Very high-sodium water-usually unsatisfactory for irrigation. Exceptions are at low and possibly medium salinity, where the solution of calcium from the soil or the use of gypsum or other additives may make the use of this water feasible.

Under most conditions, irrigation waters having a percent sodium (Table 8) of less than 60 and a low bicarbonate content are probably satisfactory. The sodium hazard becomes progressively greater as the percent sodium increases above 60.

Excessive boron content will render water unsuitable for irrigation. A previous section of this report discusses the sensitivity of various crops, the boron limits for these crops, as well as the boron ranges for the various aquifers of Wilbarger County. Table 8 lists the boron content, where determined, of waters sampled from various aquifers within the county.

Following irrigation, the soil dries and the soil solution becomes progressively more concentrated. This condition creates a tendency for the less soluble compounds to precipitate from solution. Both calcium and magnesium carbonate, being less soluble than sodium carbonate, may precipitate with drying. This precipitation results in an increase in the proportion of sodium in solution. The bicarbonate ion is the source of carbonate which makes the precipitation possible.

The conditions favoring precipitation and the extent to which calcium and magnesium carbonates will precipitate are not fully understood. However, waters containing 1.25-2.5 me/l (milliequivalents per liter) of residual sodium carbonate (RSC) are considered marginal and those containing greater than 2.5 me/l probably are unsafe for irrigation use. The equation for calculating RSC is contained in Table 3, and RSC values for ground waters in Wilbarger County are shown in Table 8.

A widely used system for determining the quality of irrigation waters is that shown in Figure 13 which is based on the salinity hazard as measured by the specific conductance and the sodium (alkali) hazard as measured by the SAR (U.S. Salinity Laboratory Staff, 1954, p. 69-82). Plots of representative Seymour Formation waters are shown on Figure 13. All but 40 of the 321 samples of Seymour ground water fall within salinity-hazard classes C2 and C3 and sodium-hazard

Figure 13.-Classification of Seymour Formation Waters for Irrigation

class S1. The importance of these classes has been discussed previously.

Of 344 Seymour samples for which percent sodium was calculated, 329 (96 percent) had a percent sodium of 60 or less and 15 samples had a percent sodium greater than 60.

Quaternary alluvium waters are plotted on Figure 14 to indicate their suitability for irrigation. All but two of the samples of Quaternary alluvium water fall within salinity-hazard classes C2, C3, and C4, and sodium-hazard classes S1 and S2. An additional six samples had a conductivity greater than 5,000 and consequently could not be plotted on the diagram.

Out of a total of 45 samples of Quaternary alluvium waters analyzed, 33 or 73 percent had a calculated percent sodium of 60 or less. Irrigation waters with a percent sodium of 60 or less and having a low bicarbonate content are usually satisfactory. When the percentage is greater than 60, the sodium hazard becomes progressively greater. A total of 12 samples of Quaternary alluvium waters had a percent sodium greater than 60.

Figure 14.–Classification of Waters From the Quaternary Alluvium for Irrigation

Plots of representative waters from Permian rocks are shown on Figure 15 to indicate their suitability for irrigation. All but three of the water samples shown fall within salinity-hazard class C3 and sodium-hazard class S1. An additional four samples had a conductivity greater than 5,000, thus preventing the plotting of these samples on the chart. These waters are not considered suitable for irrigational purposes. The rest of the waters are suitable for irrigational use under certain conditions.

Most of the waters from Permian rocks are classed as high salinity hazard (C3) waters and cannot be used on soils with restricted drainage. If used, plants with good salt tolerance should be selected, adequate drainage should be provided, and special management for salinity control should be practiced. The waters typically have a low sodium hazard and can be used with little danger of developing harmful levels of exchangeable sodium on almost all soils.

Out of a total of 16 samples of water from Permian rocks on which the percent sodium calculations were made, 14 or 87 percent had a percent sodium of 60 or less. Only the samples from wells 13-63-201 and 13-64-601 had a percent sodium greater than 60.

Figure 15.–Classification of Waters From the Permian Rocks for Irrigation

Suitability for Industrial Use

The water-quality requirements for an industrial water supply are determined by the type of industry. The main concern to many industries is that the water selected for its supply does not contain corrosive or scale-forming constituents. Both magnesium and calcium affect the hardness and are of a major concern in any water to be used in boilers. Excessive amounts of silica and iron cause scale deposits which reduce the efficiency of many industrial processes. The water quality must be rigidly controlled where the water is used in the processing of food, paper, or some chemical-process industries. Mineral impurities affect color, taste, odor, and turbidity; therefore, water with a high content of dissolved solids is usually avoided.

Treatment of Water

Water that does not meet the requirements of a municipal or industrial user commonly can be treated by various methods so that it will become usable. Treatment methods include softening, aeration, filtration, cooling, dilution or blending of poor and good quality waters, and the addition of chemicals. The limiting factor in treatment is economics. Each water may require different treatment and the treatment should be designed for that particular water. However, once treatment is established it probably will not have to be changed as the chemical characteristics of uncontaminated ground water remain fairly constant.

Historical Changes in Water Quality

The quality of water derived from the various formations in Wilbarger County varies greatly (Table 8 and Figure 12). Even with this exhibited wide range in quality, some of the waters sampled during this study appear to have been altered.

Both natural and artificial means contribute to the alteration of the chemical quality of ground water. Natural alteration occurs when water dissolves minerals from the rocks through which it percolates or over which it flows. In Wilbarger County natural alteration is evidenced by the locally high concentrations of sulfate which was derived from gypsum and anhydrite, as well as by the high concentrations of bicarbonate which was derived from dolomite and limestone. This is particularly true in the case of waters found in the rocks of Permian age. High sulfate concentrations are also common in water obtained from Quaternary alluvium wells. These deposits are often recharged by overflow waters of the Red and Pease Rivers which flow over beds of gypsum and anhydrite west of Wilbarger County.

Artificial alteration of ground-water quality may be by biological or chemical means. The positioning of wells near, or downslope from, septic tanks and livestock feedlots or barnyards may result in biological contamination. The presence of an abnormally high nitrate concentration in the water locally is usually suggestive of biological contamination.

Alteration of ground water by chemical means may be associated with the production of oil and gas, or may result from improperly constructed industrial waste-disposal wells. Produced brines as a potential source of ground-water contamination will be discussed in a later section of this report.

The locations of several wells and one spring which show evidence of contamination are shown on Figure 32. This illustration also shows several areas of vegetative-kill, which are apparently the result of discharge of oil-field brine onto the surface or overflow of brine from surface disposal pits.

Figure 16 contains a series of radial-pattern diagrams which illustrate the relative concentrations of

- 51 -

dissolved minerals in native ground water, in water from selected apparently contaminated wells, and in a typical oil-field brine which was produced with oil or gas at a nearby location. The percent of each major chemical constituent-calcium (Ca), magnesium (Mg), chloride (Cl), sodium (Na), potassium (K), sulfate (SO_4), and bicarbonate (HCO_3)-is plotted on radial coordinates and the plots connected. The shape of the patterns thus illustrates the similarities and differences between the chemical analyses. Although several indications of apparent contamination are still evident in Wilbarger County, efforts have been and are being made by the Texas Railroad Commission and the many petroleum operators to eliminate contamination of the surface water, soil, and ground water.

Changes in native-quality water have occurred in some areas underlain by the Seymour Formation.

Historical quality data, when present, are included in Table 8 to indicate the location and the amount of change which has occurred. A total of 43 wells sampled for chemical analysis in earlier investigations in 1943. 1949, 1951 through 1953, 1955, 1960, 1961, and 1967 were resampled during this investigation. Seven of the recent samples showed essentially no change in chemical quality, and 18 exhibited slight improvement in overall quality. Twelve samples showed only slight to moderate deterioration, and six exhibited significant worsening of quality (Table 8). Several wells are thought to have been altered due to the presence of oil-field brines as the ground water contained an abnormally high content of chloride and dissolved solids as well as sodium (Table 8 and Figure 16). The dissolved-solids and chloride content of apparently contaminated water from 23 wells and one spring are as follows:

Well	Dissolved solids (mg/l)	Chloride (mg/l)	Aquifer
13-45-304	2,360	1,390	Seymour Formation
46-118	1,320	700	Do.
128	1,070	530	Do.
427	1,230	640	Do.
507	1,370	650	Do.
55-101	4,270	1,440	Do.
401	3,850	1,160	Do.
402	4,740	1,890	Do.
403	4,960	1,950	Do.
404	6,200	2,040	Do.
56-501	2,540	1,510	Do.
61-104	7,300	2,970	Quaternary alluvium
105	5,750	3,150	Do.
337	6,900	2,680	Do.
701	11,700	7,100	Seymour Formation
62-302	4,320	1,550	Quaternary alluvium
527 (Spring)	16,100	10,400	Do.
63-201	6,700	2,150	Clear Fork Group
64-604	27,900	17,800	Quaternary alluvium
605	4,270	1,880	Clear Fork Group
14-49-702	3,410	1,610	Seymour Formation
57-101	17,000	10,700	Clear Fork Group
401	9,600	5,900	Quaternary alluvium
402	20,900	12,900	Do.

Many wells contain water in which the nitrate concentrations are greater than the upper limit recommended for drinking purposes (Table 8 and Figure 12). Most of these wells are in the Lockett area, and the probable causes of their high nitrate content have been previously discussed.

WELL DEVELOPMENT

History of Well Development in Wilbarger County

The earliest settlers of the county probably lived near springs and obtained their water supplies

from flows near the base of terrace or Seymour deposits along the Red or Pease Rivers. As the county became more populated, early domestic and livestock supplies were obtained from hand-dug wells, and later many sand-point wells were driven to tap the underlying deposits of sand and gravel. The oldest inventoried domestic well (13-61-201) was hand dug in 1897. The majority of the 188 domestic or livestock wells inventoried during this or previous studies were drilled. There was no set pattern to their development which has been irregularly spaced throughout the years.

In 1972, a total of 110 public supply wells were known and had been inventoried. Follett et al. (1944, p. 5) reported that the first county public water system was constructed in 1890, within the city of Vernon. This privately owned system, consisting of one 16-foot well, provided water to the business district and was abandoned in 1895. Vernon's first municipally owned waterworks was reported to have been started in 1909. This consisted of a manifold-type system of hand-driven sand points which tapped the Seymour Formation and was powered by a cylinder pump. This system was abandoned about 1923 after the development of a well field located about two miles northeast of Vernon near the site of the present municipal swimming pool.

Yields of "swimming pool" wells were low, and eventually these were replaced by several well fields located in or near the city of Vernon. The fields are known as the Old North Station (11 wells), South Pumping Station (5 wells), Schmoker (10 wells), and the Southwest Field (8 wells). These well fields were developed in the Seymour Formation from 1931 through 1949. Twenty-two of the 34 wells are still in use; however, they are used only at peak pumping periods during the summer months.

Seven municipal wells, located in the western part of Vernon and developed from 1926 through 1950, supplied water to that part of town. Only one of these wells (13-54-810) is still being used for municipal supply.

In the early 1940's when the Victory Airfield was in operation, the city of Vernon operated a 27-well field which was located approximately 5 miles south of town on Paradise Creek. These wells pumped from Quaternary alluvium deposits. Later these wells were used by the Vernon State Hospital, and they also provided water for the Waggoner Ranch for a short time.

The development of Vernon's Odell well field began in 1953 with the drilling of 12 municipal wells (Table 4 and Figure 34). Additional drilling in 1958, 1961, and 1969 brought the total well count to 15. Since the completion of this well field, it has provided all of the municipal supply for the city except at peak pumpage periods during the summer months when wells in the Vernon area are pumped.

The city of Vernon has purchased additional acreage 2½ miles north of the Odell well field and plans to develop wells there for municipal purposes.

The total number of public-supply wells being operated by the city of Vernon during the summer of 1971 was 38 and they were distributed as follows: Vernon area, 23 wells; Odell area, 15 wells. The Round Timber municipal well field, in the northern tip of the county, was initially developed during 1967 by the city of Altus, Oklahoma. At that time, 14 wells were completed. In 1969, two additional wells were drilled, making a total of 16 wells all of which are producing from the Seymour Formation.

The Red River Authority of Texas has recently installed a rural water system to provide water for the immediate area around Lockett. The Lockett water system is supplied by three municipal wells. Wells 13-61-619 and 620 were drilled during 1969 and well 13-61-648 was drilled in 1970.

In addition to the public supply wells previously discussed, four other wells are presently being used or have been used for municipal purposes. These are wells 13-45-204, 13-55-906, 13-61-647, and 13-64-602. These wells were developed during the period from 1930 to 1964. Water from well 13-45-204 is used as a municipal supply for the public school in Odell. Two wells are used at rural churches, and well 13-64-602 was formerly used at a restaurant and gas station.

The development and use of ground water for industrial purposes within Wilbarger County has been very limited. A total of 18 industrial wells which produce water from the Clear Fork Group, Seymour Formation, or Quaternary alluvium were inventoried during this investigation. The first recorded industrial well was drilled in 1914 (well 13-46-701); however, five of the wells inventoried were reported as "old" and several of these could have been dug or drilled prior to 1914. Well 13-61-715, drilled in 1965, was the most recently developed industrial well. The following tabulation reflects the development history of all the industrial wells:

	Number of industrial wells	Percent of
Year drilled	drilled	total
"Old" or before 1915	6	33.4
1916-50	4	22.2
1951-60	4	22.2
1961-71	4	22.2

Of these 18 industrial wells, water from 8 was used in the operation of cotton gins, 5 for the drilling of oil-field tests or in waterflood operations, 1 for an animal clinic, 2 for a service station, 1 for the Lockett fire department, and 1 well is pumped to lower the water level at a grain elevator.

Prior to 1943, the use of ground water for irrigation within Wilbarger County was conducted on a very small scale. Follett et al. (1944, p. 15-31) reported that there were probably not more than 24 irrigation wells in use prior to 1943, and several of these have since been destroyed. Most of the wells were located in the Rayland area of west-central Wilbarger County. The first recorded irrigation development in the Odell area was in 1943; however, most of the development began in the 1950's.

During this investigation, a total of 608 irrigation wells were inventoried. Of these, 537 were producing from the Seymour Formation, 70 were producing from Quaternary alluvium, and 1 was producing from the Clear Fork Group. A breakdown of the development of irrigation wells within the county is as follows:

	Number of irrigation wells	Percent
Year	drilled	of total
1943 or before	8	1.3
1944-50	6	1.0
1951-60	271	44.6
1961-70	317	52.1
1971	6	1.0

Of the 608 irrigation wells inventoried, 173 are located in the Odell-Fargo area and 435 are in the Lockett area.

Well Construction

Of the 925 wells developed in the Seymour Formation, Quaternary alluvium deposits, and the Permian rocks, a few were hand dug; however, most were drilled. Well depths range from 10 to 125 feet.

The majority of the dug wells are used for domestic or livestock purposes. They are generally about 3 to 4 feet in diameter and lined with native stone, brick, or concrete rings. The more recently drilled domestic and livestock wells are cased with small-diameter (5 to 18 inches) galvanized sheetmetal or steel casing. The galvanized metal casing is perforated opposite the water-bearing zones, and steel casing is generally torch-slotted.

Industrial, irrigation, and public supply wells are larger in diameter, 5 to 30 inches, and usually cased to the bottom. In most wells, the hole is reamed to 36 inches, and prior to the setting of the casing, a Layne shutter or Doerr well screen is set, or the casing is torch-slotted opposite the water-bearing zones. Following the setting of the casing on bottom, the hole outside the casing is then filled with small pea-sized gravel. The casing in public supply wells which have been in use for many years is generally not cemented, and surface casing was not installed. In more recently completed public supply wells, a large-diameter casing, 34-36 inches, is set to a maximum depth of 50 feet and cemented to the surface. The production casing is usually 10 to 13 inches in diameter and a well screen is installed opposite the water-bearing strata. In some instances, where centrifugal pumps are used, a sump or pit, 12 to 15 feet in depth, is constructed of concrete rings or a rectangular pit is walled with concrete. This is done to house the pump and reduce the height of lift.

Most of the wells are developed by pumping.

Yields of Wells

The measured yields of 6 test holes and public supply wells on which aquifer tests were previously conducted by the U.S. Geological Survey ranged from 93 to 430 gpm. These tests are listed in Table 2.

Performance tests were conducted during this study on 56 irrigation wells and yields ranged from 35 to 295 gpm (Table 2). This table also contains yield data on all types of wells on which reports were filed by well drillers. Yields ranging from 35 to 600 gpm were reported on wells pumping from the Seymour Formation. Wells deriving their water from Quaternary alluvium deposits were reported to yield from 20 to 750 gpm. One well completed in the Clear Fork Group was reported to yield 15 gpm.

Yields reported by well owners contacted are as follows: Seymour Formation, 3 to 800 gpm; Quaternary alluvium deposits, 10 to 1,000 gpm; and Permian rocks, 15 gpm to "strong".

Pump Types and Energy Sources

Most domestic and livestock wells in Wilbarger County are equipped with jet pumps with the next most popular type being the centrifugal pump. Other wells have submersible pumps. The windmills are equipped with cylinders. The power or energy source of these pumps is generally electricity with the size of the motors ranging from one-third to slightly over 1 horsepower. The ½-horsepower motor is the most common size in use.

Public supply and industrial wells are generally equipped with a vertical turbine-type pump. A few are submersible, jet, or centrifugal-type pumps. Of the wells presently in use in this category, all are powered by electricity with a 10-horsepower motor being the most common size. The motors range from 5 to 30 horsepower. Of the 608 irrigation wells presently in use which are not of the manifold type, 71 percent are equipped with vertical turbine pumps, 21 percent with centrifugal pumps, and 8 percent with submersible pumps. The principal power source is electricity with 82 percent of the pumps equipped with electric motors ranging in size from 2 to 50 horsepower. Eighty-three pumps are equipped with internal combustion engines which use liquified petroleum fuel.

The manifold irrigation systems presently in use are equipped with centrifugal pumps, and over 70 percent of these pumps are powered by electric motors which range in size from 1 to 40 horsepower. The remainder of the manifold systems are powered by butane or propane.

GROUND-WATER PUMPAGE AND UTILIZATION

Figure 17 graphically shows the estimated amounts of ground water pumped from the water-bearing units of Wilbarger County for irrigation, municipal, industrial, and domestic and livestock purposes. Methods used to obtain these estimates are described briefly below.

The quantity of ground water used for irrigation was estimated from power and yield tests. The following procedure was used to estimate this pumpage: (1) the annual number of kilowatt-hours supplied to the irrigated farms was obtained from the power companies and electrical cooperatives, (2) power and yield tests were conducted on selected irrigation wells to determine the average number of gallons produced per kilowatt-hour, (3) the average number of gallons produced per kilowatt-hour was multiplied by the total kilowatt-hours obtained from the power companies and electrical cooperatives to determine the approximate annual irrigation pumpage, and (4) additional pumpage was added to account for those irrigation wells powered by butane and propane fuels. In addition, data for some of the early years shown on Figure 17 were obtained from previous publications.

Data on the amounts of ground water used for municipal and for industrial purposes were compiled largely from the returns of mailed questionnaires, which have been sent by the Texas Water Development Board's staff annually to the various industries and municipalities.

Estimates of rural domestic and livestock ground-water usage were obtained by multiplying the average amount of water a person uses by the rural population, and multiplying the average amount of water each type of livestock animal uses by the population of each animal type. Rural population and animal census data for 1970 were furnished by the Wilbarger County Program Building Committee. The domestic and livestock ground-water usage is thought not to have varied greatly from year to year in the report area.

Irrigation Pumpage

During this investigation, 608 wells were inventoried which were producing or had produced water for irrigation in Wilbarger County. Tabulation of these wells by water-bearing units is: Seymour Formation, 537 wells; Quaternary alluvium deposits, 70 wells; and Clear Fork Group, 1 well. Pumpage from these irrigation wells represents about 33 percent of the total 1970 ground-water pumpage in the county.

Most of the water is applied by sprinkler systems to the various crops. The principal irrigated crop is alfalfa, followed by cotton and Coastal Bermuda grass.

Irrigation pumpage from all water-bearing zones is estimated at 17,000 acre-feet for the period 1943 through 1970. The 1970 irrigation pumpage is estimated at 2,000 acre-feet. Of this pumpage, 84 percent was obtained from the Seymour Formation, 15 percent from Quaternary alluvium deposits, and less than 1 percent from the Clear Fork Group.

Areas of irrigation pumpage from the Seymour Formation were mainly in the Odell-Fargo area and the Lockett area. Most of the Quaternary alluvium deposits irrigation pumpage was east of Fargo. Irrigation pumpage in other areas is very small and there are no large concentrations of wells.

Municipal Pumpage

During 1970, approximately 4,000 acre-feet or 65 percent of the total ground-water pumpage of Wilbarger County was for public supplies (Figure 17). The estimated pumpage for this use for the period from 1943 through 1970 was 53,000 acre-feet. Almost all of this pumpage was from the Seymour Formation.

Public Water Supply-Vernon, Texas

The city of Vernon is the largest consumer of ground water for municipal needs in Wilbarger County. The city's 1970 public supply pumpage from 38 active

- 56 -

wells was 2,900 acre-feet, and the estimated total pumpage from 1943 through 1970 was 47,000 acre-feet.

Public Water Supply-Altus, Oklahoma

Altus, Oklahoma is the second largest municipal consumer of ground water in Wilbarger County. This city secures most of its public supply from its 16-well Round Timber field located in the extreme northern part of the county (Figure 34). The 1970 pumpage from this field was 1,100 acre-feet, and the total pumpage from 1968 through 1970 was 3,900 acre-feet. This field produces from the Seymour Formation.

Rural Water Districts

As of 1972, there were four rural water districts in operation in Wilbarger County. These are the Harrold, Lockett, Northside, and Thirsty Water Supply Corporations. The city of Electra supplies water to the Harrold water system. The Lockett water system obtains water from 3 wells in the Lockett area developed in the Seymour Formation. The 1970 pumpage, as well as the total pumpage through 1970, was 33 acre-feet. The city of Vernon supplies water to the Northside water system, and this use is included with Vernon's total water use. The Thirsty water system supplied water to the Farmers Valley area and the water is pumped from 1 well located in Hardeman County.

Several privately owned, small capacity public supply wells were inventoried during the study. These systems collectively pumped an estimated 2 acre-feet in 1970 and have pumped about 1,800 acre-feet from 1943 through 1970.

Industrial Water Use

In 1970, an estimated 9 acre-feet of ground water was pumped in Wilbarger County for industrial uses (Figure 17). This is 0.2 of 1 percent of the total ground water pumped in 1970. During the period from 1943 through 1970, the total pumpage from 21 wells (16 inventoried during study and 5 known to have been destroyed) is estimated at 3,300 acre-feet.

Domestic and Livestock Use

A reliable estimate of rural ground-water usage for domestic and livestock purposes is difficult to make; however, the 1970 pumpage was about 150 acre-feet. Pumpage for the period from 1943 through 1970 is estimated to have been about 4,200 acre-feet.

AVAILABILITY OF GROUND WATER

Seymour Formation and Quaternary Alluvium

The principal aquifers in Wilbarger County are the Seymour Formation and the Quaternary alluvium deposits. These geologic units generally are in hydrologic contact with each other and may be considered to be a single hydrologic unit. Both units provide water for all uses. The Seymour Formation is the major source of water for public supply and irrigation uses.

The extent of these aquifers and their geologic characteristics are discussed in the geology section of this report. Table 1 lists the lithologic characteristics of the water-bearing units.

Changes in Water Levels

Historical water-level data in Wilbarger County are scarce prior to 1943; however, many older residents of the county report that prior to irrigation or public-supply development, there was a gradual rise in water levels. This is supported by data, presented in an early ground-water investigation by Follett et al. (1944, p. 9-10), for 9 wells in the Rayland area in northeast Foard County. From 1936 and to 1943 the average rise in water levels measured in these wells was 0.3 foot per year.

Between 1890 and 1895, the city of Vernon reportedly obtained a municipal supply from a shallow (16 feet) well which was located in the central part of the city. The water level in this area was less than 16 feet in depth during that period of time. On January 8, 1971, the water levels in wells near this original well were about 25 feet below land surface. This shows that in this area of heavy pumping there has been a substantial decline in water levels.

Figure 18 is a water-table map showing the water levels in the Seymour Formation and Quaternary alluvium in the Lockett area during the fall of 1943. Figures 19 and 20 are water-table maps for the area during the fall and winter of 1969-70 and 1970-71, respectively. The maximum measured decline in water level was 21.04 feet in well 13-61-534, from October 1943 to March 1970. The average decline in water levels within the Lockett area for the period from October

- PRE VER THE

A statistic View 5 - 2 - 2 - 2

1943 through January 1971 was 0.45 foot per year. These data exclude areas of formerly heavily pumped public supply wells near Vernon; these wells are used only during the summer months and water levels in the areas involved are generally rising due to recharge.

The configuration of the water table in the Seymour Formation in the Odell-Fargo area during the summer of 1951 is reflected on Figure 21. Figures 22 and 23 show the water levels for the Seymour Formation and Quaternary alluvium deposits during the fall and winter of 1969-70 and 1970-71, respectively. Data on these maps reflect that locally in areas of non-pumpage there may be slight rises in water levels reflecting recharge: however, within the subject area there was a general decline in water levels. The maximum measured decline was 29.12 feet in well 13-46-402, from January 1954 to January 1971. Including data in the city of Vernon's Odell well field, the average 1951-70 decline in water levels in the Odell-Fargo area was 0.94 foot per year. Within the Odell well field, 1970-71 water-level declines were generally about 1.5 feet; however, well 13-46-404 reflected a decline of 6.09 feet during that time.

The hydrographs shown on Figure 24 are records of Seymour Formation or Quaternary alluvium water-level fluctuations recorded monthly during the period of field investigation, from November 1969 through January 1971. Figure 25 contains long-term hydrographs of 22 observation wells in which water levels are measured annually. The hydrographs, in general, reflect noticeable changes in water levels which correspond to changes in rainfall and public supply or irrigation pumpage.

Peak water levels generally occur during January and June (Figure 24). The high water levels in January reflect rises during the fall and early winter when there is much less pumpage than in the irrigation season. The high water levels in June probably reflect increased rainfall during May, which is normally the month of highest rainfall (Figure 4). A general decline is reflected in water levels to a seasonal low in the growing season and hot summer months of July and August; the marked water-level declines during this period are caused primarily by irrigation pumpage.

In summary, water levels fluctuate in response to precipitation, cultivation practices, and pumpage. A change in water level indicates a change in the amount of water in storage. Water levels have generally declined in both the Lockett and Odell-Fargo areas of Wilbarger County with development of irrigation and public supply wells; therefore, the amount of ground water in storage has decreased. Ground-water data collected in the Lockett area during 1943 (Follett et al., 1944) were not sufficient to construct a reliable saturated thickness map of the Seymour Formation. Therefore, it was impossible to accurately calculate the amount of water in storage at that time. The total amount of ground water in storage as of January 1971 is calculated to have been approximately 101,000 acre-feet.

A conservative estimate of the amount of ground water in storage in 1952 in the Odell sand hills was 225,000 acre-feet within the 70 square miles investigated by Willis and Knowles (1953). This would have been an average of 3,200 acre-feet per square mile. During this investigation, the area underlain by the Seymour Formation was determined to be about 112 square miles. Using this area and 3,200 acre-feet per square mile as previously determined, there would have been on the order of 358,000 acre-feet of ground water in storage in the Seymour Formation in the Odell-Fargo area in 1952. By comparison, much more reliable data indicate that there was approximately 266,000 acre-feet of ground water in storage within the Seymour Formation in this area as of January 1971. The available data are not considered adequate to make calculations for the other areas of Seymour Formation or Quaternary alluvium deposits.

Theoretical Effects of Pumpage

Pumping wells can have widespread effects on water levels in an aquifer such as the Seymour Formation. Water levels in the immediate vicinity of the wells decline as water is removed from aquifer storage. The amount of decline is greatest at the pumped well and becomes progressively less with distance from the well, thus forming a "cone of depression" in the water table with the apex of the cone being at the pumped well (Figure 11).

Continued pumping removes more water from storage causing the cone of depression to expand. Expansion of the cone will continue until it intercepts some source of replenishment. This replenishment may be from a stream, from the percolation of precipitation from the surface, from another aquifer in contact with the pumped aquifer, or until the cone intercepts any source of replenishment that is adequate for the pumping rate.

Factors which determine the extent of the cone of depression are the aquifer's transmissivity and storage coefficients, the pumping rate, and the length of time the well is pumped.

Figure 26 shows the theoretical declines in the water table, derived from the non-equilibrium formula of Theis (1935), at various times and distances from a well pumping from the Seymour Formation at a constant rate. Most of the curves shown on Figure 26 are based on the aquifer characteristics determined by the U.S. Geological Survey from aquifer tests (Table 2). The upper set of curves, however, was constructed using assumed aquifer coefficients to illustrate the theoretical drawdowns in areas where the transmissivities and the pumping rates are likely to be less than in the tested areas.

Figure 26 shows that the greatest amount of drawdown occurs in the first few days of pumping and that the water levels are affected at relatively large distances from the pumping well. Under the conditions assumed in the lower set of curves on Figure 26, water levels are affected up to 1 mile in all directions from the pumping well after 30 days. The drawdown as shown on Figure 26 is directly proportional to the rate of pumping; therefore, the effects of different pumping rates can be determined. For example, if the assumed pumping rate is 400 gpm instead of 200 gpm the drawdown would be twice that indicated. Or, if the assumed pumping rate is only 100 gpm then the drawdown would only be one-half that indicated.

Figure 27 illustrates the theoretical drawdown that would occur at various distances from a pumped well after 1 day of pumping at various rates. Identical aquifer characteristics were used to construct this figure and the center set of curves on Figure 26.

The amount of interference that will theoretically occur between two or more pumping wells and the effects of well interference on water levels are shown by the distance-drawdown graphs of Figure 26. When wells that produce from the same water-bearing formation are too closely spaced, the cones of depression overlap and interference between wells is the result. When this condition exists, the pumping of one well lowers the water level in nearby wells. The drawdown at any point in the area of influence caused by the discharge of several wells is equal to the sum of the drawdown caused by each well. This is important in that wells spaced too closely will result in lower pumping levels and a decline in the yield of each well as it competes for water. Assume that two wells are spaced 100 feet apart, are each pumping 150 gpm, and that the aquifer characteristics at these wells are the same as those used to construct the center set of distance-drawdown graphs shown on Figure 26. The graphs show that after 4 days the drawdown in each well caused by its own pumping is 7.1 feet. The water level 100 feet away from a pumping well would be 1.9 feet. Thus, the total drawdown in

each well would be 7.1 feet caused by its own pumping plus the 1.9 feet of interference caused by the pumping of the other well, or 9.0 feet. From this it can be seen that the curves are useful to demonstrate the extent of the cone of depression, the effect of pumping on water levels with time, and also the effects of well spacing.

Basic assumptions were made in the construction of the graphs. It was assumed that all water pumped is withdrawn from storage. It was further assumed that the aquifer has infinite areal extent, is homogeneous and isotropic, and has a uniform thickness.

The assumed conditions of homogenity and infinite aquifer extent do not actually occur in nature. The Seymour of Wilbarger County has a limited extent, and consists of sand, gravel, and clay of varied permeability and porosity. The aquifer also varies from place to place in the amount of saturated thickness. Boundary conditions caused by the physical limits of the aquifer or by changes in its permeability and saturated thickness will result in greater drawdowns than those illustrated by the graphs.

The curves presented on Figures 26 and 27 are not applicable to all parts of the Seymour Formation and should, therefore, be used with caution except where aquifer characteristics are the same as those assumed in construction of the graphs. The graphs, however, are based on aquifer characteristics determined from actual aquifer tests. It is thought that the transmissivities used to construct these curves probably encompass the range of actual transmissivities which will be encountered in most of those areas in which the Seymour is productive.

Ground Water Available for Development

Several hydrologic and economic factors determine the amount of water available for development from the water-bearing units of Wilbarger County. The major hydrologic factors are the rate of recharge to the aquifer, the ability of the aquifer to transmit water, and the volume of water in storage. The main economic factors are the number and the cost of wells required to produce the maximum amount of water.

The amount of ground water in transient storage within an aquifer can be determined by the areal extent of the water-bearing unit, its saturated thickness, and its storage coefficient. Reliable calculations of the amount of ground water in storage within the Quaternary alluvium deposits of Wilbarger County are not possible due to the lack of data. Data are sufficient, however, to make fairly reliable calculations for the major areas of the Seymour Formation within the county.

- 78 -

Distance from Pumping Wen, in Peer

Figure 27.—Relation of Decline in Water Levels in the Seymour Formation to Discharge Rate and Distance

The Seymour Formation in Wilbarger County occurs as several isolated deposits (Figure 5). The largest and most important of these are located in the Odell-Fargo and Lockett areas. Both of these areas presently have irrigation and public supply developments. The Odell-Fargo area has the greatest saturated thickness and has the greatest potential for future development. Care should be given to the spacing of new wells, however, as the water levels are presently declining in areas where wells are concentrated. The Lockett area has been producing ground water for many years and several localities do not have sufficient saturated thickness for additional development; however, the southeast one-third of this area possibly still contains some areas suitable for future irrigation development.

Saturated thickness maps of the Odell-Fargo and Lockett areas (Figures 28 and 29) were prepared from information on the water-table maps of the Seymour Formation and Quaternary alluvium deposits for the fall and winter of 1970-71 (Figures 20 and 23) and two contour maps showing the base of the same geological units (Figures 30 and 31). The greatest saturated thickness in the Odell-Fargo area is about 5 miles northeast of the community of Odell where it reaches a maximum thickness of 85 feet. Several localities have greater than 50 feet of saturated thickness. In the Lockett area, the maximum saturated thickness is about 57 feet and it is located in the extreme southwestern part of the area.

The data derived from six aquifer tests conducted on wells pumping from the Seymour Formation indicated an average coefficient of storage of 14 percent. If the average coefficient of storage of 14 percent is representative, then about 266,000 acre-feet of water is theoretically available in transient storage in the Odell-Fargo area, as of 1971, in the Seymour Formation only. An estimated 101,000 acre-feet of ground water remains in storage in the formation within the Lockett area. Other areas underlain by the Seymour Formation contain lesser amounts of ground water in storage; however, data are not sufficient to assign meaningful storage values to them.

The amount of ground water that can be developed, is limited by the amount of recharge to the aquifer. During years of drought, discharge can exceed recharge with the deficit being pumped from storage. This condition can exist only temporarily, or until the supply in storage is exhausted. Fortunately droughts are

eventually interrupted by years in which precipitation is normal or above normal. During these periods, recharge normally exceeds discharge and ground water previously removed from storage is either partly or completely replaced.

Willis and Knowles (1953, p. 29) estimated that about 10,000 acre-feet of water per year was being discharged from seeps and springs around the edge of the Odell sand hills and by evapotranspiration. This was for a 70-square-mile area. The present study encompassed an area of about 112 square miles of Seymour extent and the natural discharge for this area would have been larger. Flow-net calculations indicate that the natural discharge for the greater area would be about 15,000 acre-feet per year. Willis and Knowles (1953, p. 29) further stated that their estimated natural discharge was approximately equal to the average annual recharge and was equivalent to about 2 inches per year over the entire area. As discussed earlier, average recharge to the Seymour Formation was estimated in the present study to be about 2.55 inches per year, which for the Odell-Fargo area amounts to about 15,000 acre-feet per year. During 1970, however, a dryer than average year, the recharge rate to the area was only about 10,000 acre-feet. Rainfall during 1970 was only 16.75 inches which is much less than the mean annual rainfall of 25.04 inches.

Using the same average recharge rate per unit area as used in the Odell-Fargo area, the average recharge in the Lockett area (slightly less than 78 square miles) would be about 10,500 acre-feet annually.

Theoretically, the amount of ground water available for development on a yearly basis is the average annual recharge. It would be impossible to intercept all of this water. To do this would require capture by wells of all natural discharge. Natural discharge, in part, supports vegetation growth and streamflow. It is possible to capture enough of this discharge during the summer months, however, to reduce all of the local streamflow.

The second largest use of water is for irrigation which is confined mainly to the spring and summer months. Municipal pumpage is year-round. Year-round pumping for irrigation is both uneconomical and unnecessary. During the fall and winter months, much natural discharge would not be captured.

With an average of 15,000 acre-feet per year recharged to the Odell-Fargo area, it seems reasonable to assume that one-third of this, or about 45 acre-feet per square mile (5,000 acre-feet) per year could be pumped without unduly lowering the water table if wells were adequately spaced and the individual areas were not

overdeveloped. The 1970 pumpage was approximately 4,800 acre-feet; however, the wells are closely spaced and there is local overdevelopment. The result is that much of the available water is not being obtained in some areas, and yet there is a decline in water levels over most of the irrigation and public supply pumpage areas.

Within the Lockett area, about 7,000 acre-feet is recharged during dry years with an average recharge rate of about 10,500 acre-feet annually. Assuming that capturing of one-third of the average annual recharge were possible, then about 3,500 acre-feet annually would not be an unrealistic withdrawal rate. This assumes that the irrigation areas would not be overdeveloped and that about 45 acre-feet per square mile per year would be withdrawn. This is not the case and, as a result, the northwestern two-thirds of the Lockett area is now nearing depletion as a source of water in the quantities needed for irrigation and public supply.

To dewater the Odell-Fargo and Lockett areas completely would be impractical because the yields of wells fall off rapidly as the saturated thickness of the aquifer is greatly reduced. This is presently happening in the Lockett area. Complete dewatering would also require constant, year-round pumpage. This is not economically feasible, nor is there a need for major pumpage during the fall and winter months except for municipal purposes.

Maximum development of water supplies from the Seymour Formation in Wilbarger County would require numerous low-capacity wells as is the case, at present, in the Lockett area. The saturated thickness is relatively thin over much of the area (Figures 28 and 29) and in these areas the formation will not produce large quantities of water from single wells. Only in the thickest saturated zones are wells expected to yield as much as 200 gpm.

Some of the areas of Seymour occurrence in Wilbarger County have a very small extent as well as very little saturated thickness. In such areas the aquifer may not be able to sustain withdrawals by wells during droughts of long duration.

Possible Areas of Future Development

The results of this investigation revealed that, as a general rule, the most desirable areas for development of Seymour ground-water supply coincide with those areas of greatest saturated thickness (Figures 28 and 29). In these areas, the basal sands and gravels that are thickest and most permeable are generally associated with the structural lows or "valleys" in the underlying Permian erosional surface upon which these sediments were deposited (Figures 30 and 31). It appears that the most promising areas of future development should normally be where the saturated thickness exceeds 30 feet. It should be pointed out that apparently reliable irrigation wells have been developed in areas having less than 30 feet of saturated thickness. In times of drought, excessive pumping may result in failure of wells in areas of little saturated thickness.

Within the Odell-Fargo area, there are several areas in which the saturated thickness is greater than 30 feet. The most favorable location lies approximately 5 miles northeast of Odell where the saturated thickness reaches a maximum of 85 feet. However, any additional development will further lower the water table.

The saturated thickness is 20 feet or less over most of the northwest two-thirds of the Lockett area, and this locality is near depletion for irrigational or public-supply uses. Several areas in the southeast one-third of the Lockett area have an indicated saturated thickness of 30 feet or more. Further development may be possible in these areas, but care should be used to locate new wells beyond the radius of influence of existing wells, and withdrawal rates should be limited to about 45 acre-feet per year per square mile to prevent a further lowering of the water table.

Permian Rocks

The Clear Fork Group and San Angelo Formation of the Pease River Group provide ground water mainly for domestic and livestock uses. The yields of wells are small and not generally dependable. The quality of the water ranges from fresh to very saline in the Clear Fork Group, and from fresh to slightly saline in the San Angelo Formation.

Table 1 lists the lithologic characteristics of these Permian water-bearing rocks, and additional discussion of them can be found in the geology section of this report.

Changes in Water Levels

Historical water-level data are available for only 2 wells that pump ground water from the Permian rocks, wells 13-64-603 and 14-57-101. Both of these produce from the Clear Fork Group. The water levels of each well were measured in July of 1964 and again in June of 1971. Well 13-64-603 exhibited a net rise of 3.68 feet and well 14-57-101 reflected a net decline of

0.61 foot during this period (Table 4 and Figure 34). Based on these few data, it appears that there are no significant declines in water levels and that in at least one case, there is local recharge to the water-bearing zone. It should be pointed out, however, that these are summer water levels and there may have been pumping prior to measurements.

Availability of Ground Water for Future Development

Areas of possible future development of ground water from the Clear Fork Group are most promising along the creeks which cross the outcrop (Figure 5). In general, wells drilled closest to the updip limits of the individual water-bearing beds could be expected to encounter the fresher quality water. The ground water, however, varies in quality from location to location. Most waters derived from the Clear Fork Group would be suitable only for livestock use. Any wells developed would be of questionable reliability, and their yields should vary but generally be less than 50 gpm.

Low-yield wells of fair reliability can probably be drilled in the San Angelo Formation in most of the area where it occurs.

PRODUCTION AND DISPOSAL OF OIL-FIELD BRINE

Areas, Methods, and Quantity of Disposal

In 1962 and again in 1968, the Railroad Commission of Texas, the Texas Water Quality Board (formerly the Texas Water Pollution Control Board), the Texas Water Commission (in 1962), and the Texas Water Development Board (in 1968) cooperated in the statewide collection and tabulation of information submitted by oil and gas operators concerning the 1961 and the 1967 oil-field brine production and the methods used for its disposal. A summary of these inventories, as they pertain to Wilbarger County, is presented in Table 10.

Figure 32 delineates the areas of brine disposal, and shows the quantities and methods of disposal, within Wilbarger County.

Areas of disposal, listed numerically 1 through 27 on Figure 32, were determined by outlining the areas of greatest concentration of producing oil and gas wells. No attempt is made in this presentation to separate individual oil or gas fields; however, care was taken not to include parts of a field in more than one area. Statistics on brine disposal for individual oil and gas fields for the years 1961 and 1967 are tabulated in Table 10 by area.

The methods of disposal are by injection into wells, disposal in surface pits, and miscellaneous methods. Waters listed as injected are those which are injected into the subsurface through the salt-water injection wells of a waterflood operation, through salt-water disposal wells, or those injected into a non-producing subsurface zone of a presently producing oil well. Waters listed under pits are those which are placed into open surface disposal pits. Miscellaneous disposal includes any other method, mainly through hauling by trucks to salt-water disposal wells or waterflood injection wells.

Table 10 shows that total brine production in the county increased from 1961 to 1967 but the total quantity of brine disposed of in surface pits decreased. As of January 1, 1968, disposal of brine into pits had been discontinued in areas 1 through 9, 11 through 13, and 15 through 21, and 23 through 27. Disposal into pits had been drastically reduced in areas 10 and 22. Pit disposal in area 14 was reduced by only about 21 percent. In areas 6 and 19, wells that produced brine in 1961 had been plugged by 1967. The alternate method of disposal, in most cases where pit disposal was reduced, has been by injection.

The total reported brine production in Wilbarger County in 1961 was 25,303,214 barrels compared to 35,650,538 barrels produced in 1967. The amount disposed of in pits during 1961 was 234,744 barrels or 0.9 percent of the total as compared to 15,315 barrels or 0.1 percent of the total in 1967. Disposal by injection into wells in 1961 was 24,857,606 barrels (98.2 percent) and in 1967 was 35,549,907 barrels (99.7 percent). Miscellaneous disposal in 1961 and 1967 was 210,864 barrels and 85,316 barrels, respectively. This was 0.9 percent of the total in 1961 and 0.2 percent of the total in 1967. For a comparison of the various methods of disposal by area and field for the years 1961 and 1967, see Figure 32 and Table 10.

Chemical Quality of Produced Brines

Table 9 is a tabulation of the chemical analyses of some oil-field brines in Wilbarger County, which were obtained by commercial sources (Laxson et al., 1960). These brines have, for the most part, the same ions present that are present in waters from wells used for municipal, industrial, irrigation, and livestock supplies. However, the calcium, magnesium, sodium, and chloride ions are present in much greater concentrations in the brines.

The concentration ranges for various ions in the tabulated brines are as follows:

lon	Concentration range (ppm)
Calcium (Ca)	11,000 to 22,398
Magnesium (Mg) Sodium (Na) Chloride (Cl)	1,850 to 3,040 49,420 to 60,370 103,950 to 134,200

Produced Brine as a Potential Source of Ground-Water Contamination

Ground water can be subjected to contamination from various sources, and one potential source of contamination is the improper disposal of oil-field brines. Prior to the advent of the statewide no-pit order promulgated by the Texas Railroad Commission, which became effective January 1, 1969, there was possibly considerable ground-water pollution caused by the disposal of brines in open, unlined surface disposal pits. Even though much of the water content of the brines in these pits evaporated, if soil conditions were conductive there was considerable percolation of the brines downward to the water table which resulted in contamination of the native ground water. Occasional overflow of brines from these surface pits may have contaminated surface waters. When brine mixes with native ground water, there is usually a marked increase in the ground water's content of chloride and sodium ions. Such an increase is reflected in the chemical analyses of some of the waters in Wilbarger County (Figure 16 and Table 8). Figure 32 depicts the location of several wells in Wilbarger County in which the ground-water supply is apparently contaminated.

Contamination may also result when there is leakage from old, abandoned and improperly plugged oil tests, or improperly cased producing oil wells. In cases such as these, the brines move up the bore hole of improperly plugged or cased wells into the shallow, fresh-water zones, due to both natural pressure and the pressure created by secondary recovery injection operations. The Texas Railroad Commission now has limited funds available for plugging abandoned oil and gas wells or tests which may be leaking brines to the surface or subsurface, or to require plugging of these holes by those responsible. Much work has been done by the Texas Railroad Commission and oil operators to alleviate contamination problems resulting from brine produced with oil and gas.

OTHER GROUND-WATER PROBLEMS

Areas of Vegetative Kill and Possible Causes

Vegetative-kill areas in Wilbarger County are probably the result of two distinct causes: those resulting from brine disposal by the oil and gas industry and those associated with natural seepage. Since drainage may be poor in the immediate vicinity of natural seeps, these areas may become waterlogged during times of much rainfall.

Vegetative-kill areas associated with brine disposal can result from brine being discharged directly onto the surface, overflow of surface disposal pits, and less obvious sources of brine such as improperly plugged oil tests and leaking producing oil wells or leaking pipelines. Figure 32 shows the location of most of the vegetative-kill areas in Wilbarger County. Photographs of typical kill areas which are the apparent result of brine disposal are shown on Figure 33. Fortunately, most of the brine-related kill areas occur where usable quality ground water is not known to have existed.

In areas where natural drainage is poor and where the water table is near the land surface, waterlogged areas may develop. Land which becomes waterlogged is of little value for agricultural use. Water-loving vegetation grows on these sites, and transpiration by this foliage and direct evaporation from the damp soil result in the loss of large quantities of water to the atmosphere. The soil of such areas, in time, becomes highly charged with the mineral residues from these waters and white spots will form on the land (Hem, 1959, p. 243). This condition is thought to exist in a few areas southeast of the community of White City and also south of Fargo. These seeps are located at or near the geological contact of the Seymour Formation or Quaternary alluvium deposits with the underlying beds.

Future Water-Level Declines Northeast of Odell

Geological data available prior to this investigation suggested that there may have been a former channel of the Red River in the area northeast of Odell (Willis and Knowles, 1953, p. 11). For this reason, the Texas Water Development Board drilled 10 test holes during the period October 5-22, 1970. These tests ranged in depth from 45 to 110 feet and they were selectively placed in an effort to locate this channel. Additional test-hole data were also secured from all available sources in an effort to further delineate the channel. Drillers' logs of these tests are presented in Table 5, and their locations are shown on Figure 34.

Data presented on Figure 31 reflect two and possibly more buried channels exist. However, test drilling to date has not revealed definite outlets from these channels to the river. Two marked lows at the base of the aquifer are shown on the subject map. One is an east-trending low located about three-fourths of a mile north of Farm Road 91. About 4 miles northeast of Odell, the feature reaches a minimum of about 1.270 feet above sea level. Its lowest known elevation is reached approximately 7 miles northeast of Odell where the elevation is 1,239 feet. Another structural low, trending northeast, is located 2¼ miles north of Farm Road 91. The lowest elevation is located about 4 miles northeast of Odell on the Mock Ranch. This is the location of the city of Altus well field. The elevation at the base of the aquifer in this area is 1,257 feet.

Because these lows at the base of the aquifer exist, it would be possible to sufficiently lower the water levels in these areas to reverse the directions of ground-water flow and draw in poorer quality water from the Red River and its associated flood-plain alluvium. Care should be taken so as not to reduce the water levels below the elevation at which the river is flowing or the elevation it reaches during flood stage. The present river elevation (1971) is approximately 1,285 feet above mean sea level at a point 2 miles north of Odell. If water levels in the aquifer decline below this level, the gradient of the water table will be reversed and very poor quality water from the river will enter the aquifer.

Water levels during the fall and winter of 1970-71 were at about 1,335 feet (4 miles northeast of Odell), and there is no danger of reversal of the water-table gradient for several years. It should be pointed out, however, that water levels are at present dropping at an average rate of about 0.94 foot per year in areas of irrigation. In the area of municipal pumpage southeast of Odell, the water levels are dropping about 1.5 feet per year. The water levels may drop more rapidly with development of the city of Vernon's planned new well field 2½ miles northeast of Odell.

SUMMARY AND CONCLUSIONS

The Seymour Formation is the most reliable source of usable quality ground water in Wilbarger County. This formation yields mostly fresh water; however, the quality ranges from fresh to very saline. The wells yield small to moderate quantities. The waters derived from the Seymour Formation are used for all purposes and it is the main public-supply source for the county.

A. Vegetative-kill area in creek 7 miles south of Vernon, within confines of an oil field and down gradient from a producing well. View is northwest.

B. Vegetative-kill area within oil field 7 miles south of Vernon. Partial cause is leaking pipeline shown in foreground. View is northeast.

Figure 33.-Views of Vegetative-Kill Areas

C. Vegetative-kill area in producing oil field 4 miles southeast of Harrold. Spillage is possibly from pipeline or producing oil well. View is north.

D. Grayback area, where hydrocarbons and salt water have spilled into drainageway. Many such vegetative-kill areas are present in this vicinity. View is southwest.

Figure 33.-Views of Vegetative-Kill Areas-Continued

Quaternary alluvium deposits, which are usually hydrologically connected with the Seymour, are the second most reliable ground-water source. Wells in these deposits yield small to moderate quantities of fresh to very saline water which is used for all purposes. The water pumped from the Quaternary alluvium is in many areas higher in mineral content than that of the Seymour Formation, and in these areas its use is limited to irrigation and livestock use.

Some of the rocks of Permian age also contain small supplies of ground water. The Clear Fork Group generally contains highly mineralized water suitable mainly for livestock purposes. The well yields are small and unpredictable. The San Angelo Formation reliably yields small quantities of fresh to slightly saline water which is used primarily for domestic and livestock purposes.

The Seymour Formation is a major water-supply source in two main areas. The Odell-Fargo area, located in the extreme northern part of the county, covers approximately 112 square miles. The Lockett area, which covers about 78 square miles, is located in the west-central part of the county.

Using a storage coefficient of 14 percent, there was estimated to be 266,000 acre-feet of ground water in transient storage in the Odell-Fargo area in 1971. Approximately 101,000 acre-feet was present in the Lockett area.

Based on 10.2 percent of the mean annual rainfall of 25.04 inches at Vernon, the average annual recharge to the Seymour Formation is estimated to be 2.55 inches or 0.21 foot. This would be 134 acre-feet per year per square mile, or 15,000 acre-feet for the Odell-Fargo area and 10,500 acre-feet for the Lockett area. These would also be the amounts of average annual natural discharge from the respective areas, providing there was no interception by pumping wells. It is not possible to intercept all of the natural discharge, however, and a more realistic figure of the quantity of water available for withdrawal by wells would be 45 acre-feet per year per square mile, or 5,000 acre-feet per year in the Odell-Fargo area and 3,500 acre-feet per year in the Lockett area. Many of the areas of irrigation and public-supply pumpage are overdeveloped, ground water is being withdrawn at a much faster rate, and as a result the amount of water in storage in these areas is being reduced. This results, locally, in declining water levels.

The average water-level decline for the period from 1951 through January 1971 in irrigation areas within the Odell-Fargo area was 0.94 foot per year. In areas of public-supply pumpage the water levels were dropping at about 1.5 feet per year during this same period. In the Lockett area, water levels in irrigation areas declined an average of 0.45 foot per year during the period from 1943 through January 1971.

During 1970, approximately 4,000 acre-feet or 65 percent of the total ground-water pumpage of Wilbarger County was for municipal supplies. The total estimated pumpage for this purpose for the period from 1943 through 1970 was 53,000 acre-feet. Almost all of this pumpage was from the Seymour Formation. The cities of Vernon, Texas and Altus, Oklahoma were the principal users.

Irrigation pumpage represented 33 percent of the total 1970 ground-water pumpage of the county. Total irrigation pumpage from all water-bearing zones during that year was 2,000 acre-feet; of this total, 84 percent was from the Seymour Formation, 15 percent from Quaternary alluvium deposits, and less than 1 percent from the Clear Fork Group. A conservative estimate of irrigation use for the period from 1943 through 1970 was 17,000 acre-feet.

In 1970, only about 9 acre-feet of ground water was used for industrial purposes. During the period from 1943 through 1970, an estimated 3,300 acre-feet was used for this purpose.

Livestock and domestic pumpage was estimated to have been about 150 acre-feet during 1970. Pumpage from 1943 through 1970 was conservatively estimated at 4,200 acre-feet.

Alteration of native-quality ground water in several wells in Wilbarger County has resulted, presumably, from the disposal of oil-field brines into unlined surface pits or from abandoned oil or gas tests which are leaking. Most contamination sources should have been eliminated by the Texas Railroad Commission's statewide no-pit order. However, since the effects of contamination may continue for long periods of time, it would be advisable to set up a program for periodic resampling of selected wells for chemical analysis, to check the amount and extent of the contamination.

In order to further evaluate the future effects of heavy irrigation and municipal pumpage from the various water-bearing zones, a network of 44 observation wells has been established in Wilbarger County, and water levels in these wells are planned to be measured and recorded annually by personnel of the Texas Water Development Board.

- Baker, E. T., Jr., Long, A. T., Jr., Reeves, R. D., and Wood, L. A., 1963, Reconnaissance investigation of the ground-water resources of the Red River, Sulphur River, and Cypress Creek basins, Texas: Texas Water Commission Bull. 6306, 127 p.
- Beede, J. W., and Christner, D. D., 1926, The San Angelo Formation, and the geology of Foard County: Univ. Texas Bull. 2607, 57 p.
- Beede, J. W., 1916, The geology of Runnels County: Univ. Texas Bull. 1816, 64 p.
- BJ Service, Inc., 1960, The chemical analyses of brines from some fields in North and West Texas: Am. Inst. Mining, Metall., and Petroleum Engineers.
- Brown, L. F., Jr., 1959, Problems of stratigraphic nomenclature and classification, upper Pennsylvanian, north-central Texas: Bull. Am. Assoc. Petroleum Geologists, v. 43, p. 2866-2871.
- Burden, E. H. W. J., 1961, The toxicology of nitrates, with particular reference to the potability of water supplies: The Analyst, Proc. Soc. Anal. Chem., v. 86, no. 1024, p. 429-433.
- Carr, J. T., Jr., 1967, The climate and physiography of Texas: Texas Water Devel. Board Rept. 53, 27 p.
- Cheney, M. G., 1929, Stratigraphic and structural studies in north-central Texas: Univ. Texas Bull. 2913, 29 p.
- Cheney, M. G., and Goss, L. F., 1952, Tectonics of central Texas: Bull. Am. Assoc. Petroleum Geologists, v. 36, pt. 2, p. 2237-2265.
- Cooper, H. H., Jr., and Jacob, C. E., 1946, A generalized graphical method for evaluating formation constants and summarizing well-field history: Am. Geophys. Union Trans., v. 27, no. 4, p. 526-534.
- Cummins, W. F., 1890, The Permian of Texas and its overlying beds: Texas Geol. Survey 1st Ann. Rept., p. 183-197.
- _____1893, Notes on the geology of northwest Texas: Texas Geol. Survey 4th Ann. Rept., pt. 1, p. 177-238.
- Cummins, W. F., and Lerch, O., 1891, Report on the geology of northwestern Texas: Texas Geol. Survey Ann. Rept. 2, p. 73-77, 321-325.

- Dallas Morning News, 1969, Texas almanac and state industrial guide, 1970-71; A. H. Belo Corp., 704 p.
- Doll, W. L., Meyer, G., and Archer, R. J., 1963, Water resources of West Virginia: West Virginia Dept. Nat. Resources, Div. Water Resources, 134 p.
- Eardley, A. J., 1951, Structural geology of North America: New York, Harper and Brothers, 624 p.
- Eaton, F. M., 1950, Significance of carbonates in irrigation waters: Sail Sci., v. 59, p. 123-133.
- Farris, J. R., and others, 1963, Field conference on the geology of west-central Texas: Hardin-Simmons Univ. Geol. Soc. Fourth Ann. Field Trip, 84 p.
- Fink, B. E., 1965, Investigation of ground- and surface-water contamination near Harrold, Wilbarger County, Texas: Texas Water Commission Rept. LD-0365, 22 p.
- Follett, C. R., 1956, Records of water-level measurements in Foard and Wilbarger Counties, Texas, 1936 to January 1956: Texas Board Water Engineers Bull. 5614, 30 p.
- Follett, C. R., Sundstrom, R. W., and White, W. N., 1944, Ground-water resources in the vicinity of Vernon, Texas: Texas Board Water Engineers duplicated rept., 46 p.
- Frye, J. C., Swineford, A., and Leonard, A. B., 1948, Correlation of Pleistocene deposits of the central Great Plains with the glacial section: Jour. Geology, v. 56, no. 6, p. 501-525.
- Garrett, M. M., Loyd, A. M., and Laskey, G. E., 1930, Geologic map of Baylor County, Texas: Univ. Texas Bur. Econ. Geology map.
- George, W. O., and Hastings, W. W., 1951, Nitrate in the ground water of Texas: Am. Geophys. Union Trans., v. 32, no. 3, p. 450-456.
- Gordon, C. H., 1913, Geology and underground waters of the Wichita region, north-central Texas: U.S. Geol. Survey Water-Supply Paper 317, 88 p.
- Gould, C. N., 1902, General geology of Oklahoma: Oklahoma Geol. Survey 2d Bienn. Rept., p. 17-74.

- Gould, C. N., 1906, The geology and water resources of the eastern portion of the Panhandle of Texas: U.S. Geol. Survey Water-Supply Paper 154, 64 p.
- Hem, J. D., 1959, Study and interpretation of the chemical characteristics of natural water: U.S. Geol. Survey Water-Supply Paper 1473, 269 p.
- Holmquest, H. J., Jr., 1955, Structural development of west-central Texas: Abilene Geol. Soc. Guidebook, p. 19-32.
- Huberty, M. R., Pillsbury, A. F., and Sokoloff, V. P., 1945, Hydrologic studies in Coachella Valley, California: California Univ., Coll. of Agriculture, Div. of Irrigation, prelim. rept., p. 14-15.
- Johnson, W. D., 1901, The High Plains and their utilization: U.S. Geol. Survey Ann. Rept. 21, pt. IVc, p. 601-741.
- Kane, J. W., 1967, Monthly reservoir evaporation rates for Texas, 1940 through 1965: Texas Water Devel. Board Rept. 64, 111 p., 7 pls.
- Laing, W. E., 1963, The Meramec trend—it points to SW Oklahoma: Oil and Gas Jour., July, p. 210-216.
- Laxson, Rowland, and others, 1960, Resistivities and chemical analyses of formation waters from the west-central Texas area: West Central Texas Section, Soc. Petroleum Engineers of Am. Inst. Mining, Metall., and Petroleum Engineers.
- Lyerly, P. J., and Longenecker, D. E., 1957, Salinity control in irrigation agriculture: Texas Agr. Expt. Sta. Bull. 876, 20 p.
- Maier, F. J., 1950, Fluoridation of public water supplies: Am. Water Works Assoc. Jour., v. 42, pt. 1, p. 1120-1132.
- Maxcy, K. F., 1950, Report on the relation of nitrate concentrations in well waters to the occurrence of methemoglobinemia: Natl. Research Council Bull. Sanitary Eng., p. 265, app. D.
- Meinzer, O. E., 1923, Outline of ground-water hydrology, with definitions: U.S. Geol. Survey Water-Supply Paper 494, p. 30.
- Preston, R. D., 1978, Occurrence and quality of ground water in Baylor County, Texas: Texas Water Devel. Board Rept. 218.

- Scofield, C. S., 1936, The salinity of irrigation water: Smithsonian Inst. Ann. Rept., 1935, p. 275-287.
- Sellards, E. H., Adkins, W. S., and Plummer, F. B., 1932, The geology of Texas, v. 1, Stratigraphy: Univ. Texas Bull. 3232, p. 98-186.
- Sidwell, Raymond, and Bronaugh, R. L., 1946, Volcanic sediments in north Texas: Jour. Sed. Petrology, v. 16, p. 15-18.
- Smith, O. M., Dott, R. H., and Warketin, E. C., 1942, The chemical analyses of the waters of Oklahoma: Oklahoma A&M Coll., Div. Eng. Pub. 52, v. 12, p. 15.
- Stafford, P. T., 1960, Stratigraphy of the Wichita Group in part of the Brazos River Valley, north Texas: U.S. Geol. Survey Bull. 1081-G, p. 261-280.
- Stearman, J. W., 1960, A reconnaissance investigation of alleged contamination of irrigation wells near Lockett, Wilbarger County, Texas: Texas Board Water Engineers duplicated rept. (Contamination Rept. 8), 3 p.
- Stearns, N. D., 1928, Laboratory tests on physical properties of water-bearing materials: U.S. Geol. Survey Water-Supply Paper 596 f, p. 144.
- Theis, C. V., 1935, The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using ground-water storage: Am. Geophys. Union Trans. 16th Ann. Meeting, pt. 2, p. 519-524.
- _____1938, The significance and nature of the cone of depression in ground-water bodies: Econ. Geology, v. 33, no. 8, p. 889-902.
- Todd, D. K., 1959, Ground-water hydrology: New York, John Wiley and Sons, Inc., 336 p.
- U.S. Public Health Service, 1962, Public Health Service drinking-water standards: Public Health Service Pub. 956, 61 p.
- U.S. Salinity Laboratory Staff, 1954, Diagnosis and improvement of saline and alkali soils: U.S. Dept. Agriculture Handb. 60, p. 69-83.
- Van Siclen, D. C., 1957, Cenozoic strata of the southwestern Osage Plains of Texas: Jour. Geology, v. 65, no. 1, p. 47-60.
Wenzel, L. K., 1942, Methods for determining permeability of water-bearing materials, with special reference to discharging-well methods: U.S. Geol. Survey Water-Supply Paper 887, 192 p.

- Wilcox, L. V., 1955, Classification and use of irrigation waters: U.S. Dept. Agriculture Circ. 969, 19 p.
- Willis, G. W., and Knowles, D. B., 1953, Ground-water resources of the Odell sand hills, Wilbarger County, Texas: Texas Board Water Engineers Bull. 5301, 54 p.
- Winslow, A. G., and Kisler, L. R., Jr., 1956, Saline-water resources of Texas: U.S. Geol. Survey Water-Supply Paper 1365, 105 p.
- Wrather, W. E., 1917, Notes on the Permian: Southwestern Assoc. Petroleum Geologists Bull. 1, p. 93-106.

 Water levels
 : Reported water levels are given to the nearest foot; measured water levels are given to the nearest tenth or hundredth of a foot.

 Method of lift and type of power:
 C, cylinder; E, electric; G, gasoline, butane, or natural gas; Cf, centrifugal; H, hand or hand pump; J, jet; N, none; R, reciprocating; Sub, submersible; T, turbine; W, windmill. Number indicates horsepower.

 Use of water
 : D, domestic; Ind, industrial; Irr, irrigation; N, none; P, public supply; S, livestock.

 Water-bearing unit
 : Qal, Quaternary alluvium; Qa, Seymour Formation; Pprsa, San Angelo Formation; Pcf, Clear Fork Group.

 Altitude of land surface
 : Altitudes were determined principally from U.S. Geological Survey topographic maps; a few altitudes were surveyed.

						Casi	ng			Wat	er level			
	Well	Owner	Driller	Date completed	Depth of well (ft)	Diam- eter (in.)	Depth (ft)	Water bearing unit	Altitude of land surface (ft)	Below land- surface datum (ft)	Date of measurement	Method of lift	Use of water	Remarks
3	* 1.3-37-701	Cecil Ayres			Spring		**	Qa	1,332	(+)	Feb. 20, 1970	Flows	N	Water flows from outcrop of Seymour Formation. Estimated flow greater than 50 gpm (gallons per minute).
	901	Mrs. A. F. Winston	M. Heydrick	1954	72			Qa	1,347	25.17 23.42 29.03	June 22, 1960 Jan. 17, 1963 Jan. 22, 1967	N	N	Destroyed. Former irrigation well, Yield reported 400 gpm. $\underline{4}j$
	902	do	Robert Dale	1967	73	14	73	Qs	1,347	30	July 10, 1967	т, е, 40	Irr	Yield reported 250 gpm, Well has been purchased by the city of Vernon for future public supply. $\underline{l}/$
3	* 903	do	do	1967	73	14	73	Qs	1,348	30.38 31.86 31.66	Dec. 17, 1969 Jan. 13, 1970 Jan. 7, 1971	т, Е, 10	Irr	Yield reported 250 gpm. Well has been purchased by the city of Vernon for future public supply. Well formerly pumped into well 13-37-902. $\frac{1}{24}\frac{4}{24}$
	* 904	Kenneth R. Neel	do	1966	67	14	67	Qa	1,348	24.30	Jan. 29, 1970	т, е, 20	Irr	Yield reported 350 gpm. 1/
1	* 905	do		1.1	Spring		-	Qs	1,298	(+)	do	Flows	N	Water seeps from contact of Seymour Formation.
	906	City of Altus, Oklahoma	Layne Western Co.	1967	72	34 12	12 72	Qa	1,360	34	Apr. 29, 1967	т, Е, 7-1/2	р	<u>¥</u> 2j
l	907	do	do	1967	75	34 12	12 75	Qs	1,350	29	do	T, E, 7-1/2	Р	<u>1</u> /2/
	908	do	do	1969	48	5	48	Qs	1,360	36	Apr. 1969	N	N	Used by city of Altus as an observation well.
	* 909	do	do	1964	80	1-1/4	80	Qs	1,350	30 33	July 1965 Sept. 16, 1968	N	N	Used by city of Altus as an observation well, $\underline{l} \underline{j}$
	w 910	do	do	1964	38	5	38	Qa	1,292	11 10	July 1965 Sept. 16, 1968	N	N	Do.
	911	City of Vernon	Texas Water Development Board	1970	60			Qs	1,348	21.1	Oct. 22, 1970	N	N	Test hole. <u>1</u> 3
	912	do	do	1970	72			Qs	1,347	24.8	do	N	N	Do.
13	* 913	Charles Tallant	do	1970	55	**		Qs	1,338	16.98	Nov. 3, 1970	N	N	Do.
	38-401	City of Altus, Oklahoma	Layne-Western Co.	1967	77	34 12	12 77	Qa	1,320	33	Apr. 2, 1967	т, Е, 7-1/2	Р	<u>)</u> <u>3</u>
	402	do	do	1967	82	34 12	12 82	Qa	1,320	36	Mar. 22, 1967	T, E, 7-1/2	Р	<u>¥</u> 2
	403	do	do	1967	87	34 12	12 87	Qs	1,319	40	Apr. 5, 1967	T, E, 7-1/2	Р	<u>1</u> /2/
	404	do	do	1967	58	34 12	12 58	Qa	1,305	29	Apr. 2, 1967	т, _Е ,	Р	<u>¥</u> 21
	405	do	do	1964	70	1-1/4	70	Qs	1,310	33 33	July 1965 Sept. 16, 1968	N	N	Used by city of Altus as an observation well. $\underline{J}\!\!/$

-											_						_	-	_						
	Rennarks	Well 9 of Bull. 5301. \underline{g}_{1} Well A-9 of Bull. 5614, \underline{g}_{1}	\overline{n}	<i>h h</i>	<i>y 2</i>	<u>y</u> <u>y</u>	<u>9</u> 2	<u>7</u> 7	<u>7</u> 7	<u>y</u> 2	<u>77</u> 27	<u>17</u> 21	\overline{M}	Used by city of Altus as an observation well, $\underline{\underline{y}}$	bo.	bo.	Tent hole. \underline{Y}	Do.	Do.	Do.	Do.	Do.	Do,	Do.	
	Use of water	D, S	Irr	d	a	Ы	đ	Б	d	đ	d	d	đ	N	z	z	2	z	N	N	z	N	z	z	
	Method of lift	J, E	T, E, 30	T, E, 7-1/2	T, E, 7-1/2	т, Е,	т, Е, 5	T, E, 15	T, E, 7-1/2	т, Е,	т, Е, 5	T, E, 7-1/2	T, E, 7-1/2	N	N	z	N	z	N	И	z	z	N	z	
er level	Date of measurement	Feb. 2, 1952 Jan. 7, 1954 Jan. 14, 1965 Jan. 13, 1970 Jan. 7, 1971	Mar. 26, 1967 Jan. 29, 1970 July 10, 1970	Apr. 18, 1967	Apr. 17, 1967	Apr. 13, 1967	Apr. 15, 1967	Apr. 11, 1967	Apr. 19, 1967	Apr. 9, 1967	Mar. 29, 1967	July 23, 1969	July 16, 1969	July 1965 Sept. 16, 1968	July 1965 Sept. 16, 1968	July 1965 Sept. 16, 1968	ł	;	ł	;	;	-	ł	1	
Wat	Below land- surface datum (ft)	24.20 26.85 21.08 29.60 34.40	31 30.06 38.97	17	22	21.	24	24	29	35	37	25	22	30 32	40 42	19 20	ł	:	ł	ł	ł	1	ł	ł	
	Altitude of land surface (ft)	1, 372	1, 372	1,340	1,350	1,349	1, 345	1,310	1, 315	1, 335	1,340	1,356	1, 355	1,359	1, 323	1,299	1, 365	1,364	1,364	1,361	1,370	1, 372	1,367	1, 375	
	Water bearing unit	Qs	Qs	Qs	Qs	ds	ds	Qs	Qs	Qs	qa	Qs	Qs	ds	qs	Qs	Qs	qs	Qs	Qs	qs	Qs	Qs	Qs	
au	Depth (ft)	112	114	12 67	12 72	12 80	12 88	12	12 80	12 76	12	12 90	12 93	70	90	60	1	ł	:	ŝ	ł	i	:	Ē	
Cast	Diam- eter (in.)	2	14	34 12	34 12	34 12	34 12	34 12	34 12	34 12	36 12	34 12	34 12	1-1/4	1-1/4	1-1/4	:	;	ł	3	1	1	;	ł	
	Depth of well (ft)	112	114	67	72	80	88	72	80	76	17	90	93	70	06	60	69	73	69	72	101	89	85	66	
	Date completed	1949	1967	1967	1967	1967	1967	1967	1967	1967	1967	1969	1969	1964	1964	1964	1966	1966	1967	1967	1966	1966	1967	1967	
	Driller	W. E. Turner	Robert Dale	Layne-Western Co.	op	do	do	do	qo	op	do	do	do	op	do	op	Robert Dale	do	do	op	do	do	do	da	
	Owner	Mcs. Elwyn Bingham	op	City of Altus, Oklahoma	άo	do	do	đo	άo	do	do	do	do	do	do	qo	Mrs. Elwin Bingham	do	do	do	do	qo	Frank McDougal	do	
	Well	13-38-701	702	703	204	7.05	706	707	708	60.4	710	111	712	713	714	715	716	111	718	719	720	721	722	723	
L		*	*									_								-					

BitDescDe	411						Cast	30			Wat	er leve	1			
(3-10) (a)		Well	Owner	Driller	Date completed	Depth of well (ft)	Diam- eter (in.)	Depth (ft)	Water bearing unit	Altitude of land surface (ft)	Below land- surface datum (ft)	Di	tte of surement	Method of Lift	Use of water	Remarks
U.K. Futureti L.K. Functione Total L.M. Busteria Total L.M. Busteria L.M. Busteria <thl.m. busteria<="" th=""> <thl.m. busteria<="" th=""></thl.m.></thl.m.>		13-38-724	Frank McDougal	Robert Dale	1967	104	4	ł	qa	1, 369	1		:	z	z	Test hole. \underline{y}
(3) (3) <td></td> <td>801</td> <td>W. S. Fitzgerald</td> <td>W. E. Tutner</td> <td>1</td> <td>113</td> <td>o</td> <td>113</td> <td>Qs.</td> <td>1,368</td> <td>28.99 31.84 33.94 35.51</td> <td>Feb. Jan. Feb. Jan.</td> <td>1, 1952 14, 1957 14, 1965 14, 1970 7, 1971</td> <td>л, в</td> <td>D, S</td> <td>Well 12 of Bull, 5301, \underline{G} Well B-12 of Bull, 5614, \underline{G}</td>		801	W. S. Fitzgerald	W. E. Tutner	1	113	o	113	Qs.	1,368	28.99 31.84 33.94 35.51	Feb. Jan. Feb. Jan.	1, 1952 14, 1957 14, 1965 14, 1970 7, 1971	л, в	D, S	Well 12 of Bull, 5301, \underline{G} Well B-12 of Bull, 5614, \underline{G}
		802	Jake C. Riggins	Robert Dale	1969	81	14	81	Qs	1, 328	21.47	Jan.	27, 1970	T, E, 20	Irr	Yield reported 350 gpm, \underline{y}
00 0.0. 0.0. 0.0 <td></td> <td>803</td> <td>W. Neal Fitzgerald</td> <td>Texas Water Development Board</td> <td>1970</td> <td>110</td> <td>;</td> <td>1</td> <td>őa</td> <td>1,366</td> <td>23,34</td> <td>Nov.</td> <td>2, 1970</td> <td>N</td> <td>z</td> <td>Test hole. \underline{y}</td>		803	W. Neal Fitzgerald	Texas Water Development Board	1970	110	;	1	őa	1,366	23,34	Nov.	2, 1970	N	z	Test hole. \underline{y}
00 1. h. bit kit Inter the bit 0.04 0.04 0.0 1.0 <td< td=""><td></td><td>804</td><td>do.</td><td>do.</td><td>1970</td><td>45</td><td>T.</td><td>3</td><td>QB</td><td>1,371</td><td>20.8</td><td>Oct.</td><td>22, 1970</td><td>z</td><td>z</td><td>Do.</td></td<>		804	do.	do.	1970	45	T.	3	QB	1,371	20.8	Oct.	22, 1970	z	z	Do.
		805	J. R. Watts	Robert Dale	1954	86	14	86	Qs	1,328	45	June	11, 1971	T, E, 25	Irr	Water reported from sand and gravel with base at 86 feet. Yield reported 350 gpm.
		806	do	do	1966	70	14	70	Qs	1, 329	45		op	T, E, 10	Irr	Yield reported 300 gpm. Water reported from sand and gravel. This well pumps into well 13-38-805.
		807	do	op	1969	59	14	59	Qu	1,310	24.94		op	z	N	Unused irrigation well, Mater reported from sand and gravel with base at 58 feet.
67-18 Gaton K, luynen 00 133 136 Period 13, 13 14, 10 10, 0 13, 13 14, 0 16, 0 13, 13 17, 13, 13 17, 0 17, 0 16, 0 17, 0 13, 13 16, 0 17, 0 13, 13 16, 0 1, 13 16, 0 1, 13 16, 0 1, 13 16, 0 1, 13 16, 0 1, 13 16, 0 1, 13 16, 0 1, 13 16, 0 1, 13 16, 0<		808	op	:	*	Spring	1	1	qs	1,300	(+)		op	Flows	N	1
10 low , yrea 0 130 53 6 137 3.6.1 reb. 3.190 j. r 5.3 deter reported from and and gravel. 10. ke, ital intengen 00 133 17 \sim <td< td=""><td></td><td>45-102</td><td>Gordon K. Haynes</td><td>op</td><td>1951</td><td>60</td><td>14</td><td>99</td><td>Qs</td><td>1,388</td><td>31.65</td><td>Feb.</td><td>17, 1970 1, 1971</td><td>T, G, 100</td><td>Irr</td><td>Yield reported 150 gpm, Mater reported from 10 to 12 feet of sand and gravel.</td></td<>		45-102	Gordon K. Haynes	op	1951	60	14	99	Qs	1,388	31.65	Feb.	17, 1970 1, 1971	T, G, 100	Irr	Yield reported 150 gpm, Mater reported from 10 to 12 feet of sand and gravel.
10. Re. fal herrer 0 193 17 \sim		103	John W. Ayres	do	1950	45	9	45	qs	1,370	35.61	Feb.	20, 1970	Ј, Е	D, S	Water reported from sand and gravel.
		104	Mrs. Ida Berngen	op	1955	17	ł	ŝ	qs	1,371	;		;	z	N	Destroyed. Formerly a three-well manifold system used for irrigation.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		105	do	do	1957	62	14	62	Qs	1,367	13.62 22.84 23.33	Apr. Feb.	21, 1960 4, 1970 1, 1971	т, с, 50	Irr	Yield reported 800 gpm.
202light lape5365361,33221,61 \mathbb{F} \mathbb{B}		201	J. W. Collins	op	1957	64	14	9	Qs	1, 331	13 19.17 19.66	Mar. Feb.	4, 1959 5, 1970 1, 1971	T, G, 30	ltr	Yield reported 560 gpm. Water reported from sand and gravel with base at 63 feet.
203Robert DaleW. E. Turner84784Qa1,351NNInued domentic well.204Chilitoche IndependentB. B. Thrash1924806901,35340June11, 1971 J_2 P205Chilitoche IndependentB. B. Thrash19248061,35340June11, 1971 J_2 P205Chilitoche IndependentB. B. Thrash19226061,3423340 J_1 PP301Chilitochedo19226061467Qu1,34627.80Jun.29, 1970 T_1 FInd301Kenneth R. Neel1965671467Qu1,34627.80Jun.29, 1970 T_1 FIn302Fred S. Hannado19338816136620.39Feb.13, 1370NNNNNN302Fred S. Hannado193388161, 36820.39Feb.13, 1370NNNNNN303Fred S. Hannado193388161, 36820.39Feb.13, 1370NNNNN303Fred S. Hannado193388161, 36820.43Feb.13, 13		2 0 2	Hugh Rape	1	* *	55	9	55	Qs	1,352	21.61	Feb.	18, 1970 2, 1971	л, Е	D, S	Water reported from sand and gravel.
20kChilicorte IndopendentB. B. Thrash195480680Qa1,35340Jure11, 1971 2 , B P $$ 205Chickasha Cottondo195260600 $1, 1342$ 35do $1, 1, E$ IndUsed at a cotton gin. Yield reported strong.205Chickasha Cottondo1953600 $1, 1342$ 35do $1, 1, E$ Ind301Kenneth R. NeelRobert Dale1965671467Qa $1, 346$ 27,800 $3, E$ $20, 1970$ $7, E$ Irr302Fred S. Hannado1953881688Qa $1, 368$ 20,593Feb. 5, 1970NNN302Fred S. Hannado1953881688Qa $1, 368$ 20,593Feb. 5, 1970NNNN302Fred S. Hannado1953881688 $0, 1, 368$ 20,593Feb. 5, 1970NNNN303Fred S. Hannado19538816 $1, 368$ 20,433Jan. 7, 1971NNNNN303Fred S. Hannado19538816 $1, 368$ 20,433Jan. 7, 1970NNNNNN		203	Robert Dale	W. E. Turner	1	84	7	84	ds	1,351	1		r t	z	z	Unused domestic well. Well 28 of Bull, 5301. 6
203 Ghickanha Cotton do 1932 60 6 60 Qa 1,342 35 do 1, 1 , 1 , 1 , 1 , 1 , 1 , 1 ,		204	Chillicothe Independent School District	8. B. Thrash	1954	80	9	80	Qs	1, 353	40	June	11, 1971	J, E,	D4	1
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		205	Chickasha Cotton 041 Co.	do	1952	60	9	60	Qs	1, 342	35		do	J, E, 1	Ind	Used at a cotton gin. Yield reported strong.
302 Fred S. Hanna do 1953 88 16 88 Qa 1,368 20,59 Feb. 5, 1970 N N Unused irrigation well: Yield reported 400 gpm. $20,43$ Feb. 13, 1970 N W Water reported from sand and gravel. \underline{y}		301	Kenneth R, Neel	Robert Dale	1965	67	14	67	Qs	1,346	27.80	Jan.	29, 1970	T, E, 20	Irr	1
		302	Ered S. Hanna	op	1953	88	16	88	da o	1, 368	20.59 20.43 22.47	Feb. Jan.	5, 1970 13, 1970 7, 1971	z	м	Unused irrigation well, Yield reported 400 gpm. Water reported from sand and gravel, $\underline{\underline{U}}$

						Casi	ng			Wat	er level			
	Well	Owner	Driller	Date completed	Depth of well (ft)	Diam- eter (in.)	Depth (ft)	Water bearing unit	Altitude of land surface (ft)	Below land- surface datum (ft)	Date of measurement	Method of lift	Use of water	Remarks
	13-45-303	Fred S. Hanna	Robert Dale	1960	88	14	88	Qs	1,367	20,91	Feb. 5, 1970	т, е, зо	Irr	Water reported from sand and gravel at 69 to 86 feet with red beds at 86 feet.
*	304	do	do	1954	88	14	88	Qs	1,368	21.02	do	т, Е, 7-1/2	Irr	Water reported from sand and gravel at 69 to 86 feet with red beds at 86 feet. Yield reported 280 gpm. This well pumps into well 13-45-303.
ŧ	305	do	do	1962	78	6	78	Qs	1,371	20.84	do	J, E	S	Water reported from sand and gravel,
×	306	Mrs. Florence Fain			29	6	29	Qs	1,367	11.9 19.30	July 18, 1951 Feb. 18, 1970	N	N	Unused domestic and stock well. Well 23 of Bull. 5301. &
*	307	Charles Tallant		22	65	6	65	Qs	1,360	32.49	Oct. 22, 1970	C, W	S	Water reported from sand and gravel.
Ŵ	308	do	Texas Water Development Board	1970	62	5	62	Qs	1,340	17.21	do	N	N	Test hole to be used as a stock well. $\frac{1}{2}$
	309	do	do	1970	90			Qs	1,362	+-		N	N	Test hole. 1/ 3/
*	310	do	do	1970	60	***		Qs	1,340	17.75	Nov. 3, 1970	N	N	Do.
.*	311	Charles R. Tallant	Robert Dale	1970	90	6	90	Qs	1,370	23.50	do	J, E, 1/2	S	Water reported from aand and gravel with base at 90 feet.
	312	Mrs. J. W. Brock	do	1970	58	6	58	Qs	1,367	19 21.40	Dec. 18, 1970 Feb. 2, 1971	J, E, 1/2	D	У
*	402	Mary Touchstone Estate	do	1958	63	14	63	Qs	1,352	13.78 15.91 14.41 14.84	May 11, 1960 May 8, 1965 Jan. 13, 1970 Jan. 7, 1971	N	N	Unused irrigation well. Water reported from sand and gravel. $\underline{\mathcal{U}}$
*	403	Benjamin H. Smith, Jr.	Lee Hopper	1967	68	14	68	Qs	1,350	13.22 14.55	Feb. 11, 1970 Feb. 1, 1971	T, G, 230	Irr	Yield reported 750 gpm. Water reported from sand and gravel at 63 to 66 feet. Red beds reported at 66 feet.
*	404	George Moffitt	Robert Dale	1955	45	12	45	Qs	1,362	15.17	June 9, 1971	J, E, 1/2	D	**
	406	Mary Touchstone Estate	do	1957	63	12	63	Qs	1,353	12.98 14.05	May 11, 1960 Dec. 3, 1969	т, е, 45	Irr	Water reported from sand and gravel with base at approximately 61 feet.
	501	Sutton Estate	Robert Dale	1958	74	14	74	Qs	1,349	14 20.68 21.49	Apr. 2, 1958 Feb. 11, 1970 Feb. 1, 1971	T, G, 260	Irr	Yield reported 600 gpm. Water reported from sand and gravel.
*	502	Allen R. Knight	do	1958	66	14	66	Qs	1,334	13 11,91	Feb. 30, 1958 Feb. 4, 1970	T, G, 30	Irr	Yield reported 550 gpm.
*	503	Mrs. Myrtle J. Collins	do	1956	52	14	52	Qs	1,339	5.00 5.93	May 11, 1960 Dec. 4, 1969	т, е, 25	Irr	Yield reported 300 gpm. Water reported from sand and gravel at 29 to 51 feet. Red beds reported at 51 feet.
*	504	do	L. E. Stamps	1955	60	14	60	Qa	1,354	16.04 19.27 15.15 20.25 22.06	Jan. 9, 1956 Jan. 14, 1957 Jan. 17, 1963 Jan. 13, 1970 Jan. 7, 1971	N	N	Unused irrigation well. Yield reported 75 gpm. Water reported from sand and gravel. $4/$
	505	do	do	1954	50	14	50	Qs	1,340	5.70	Dec. 4, 1969	т, е, 5	Irr	Yield reported 200 gpm. Water reported from sand and gravel at 29 to 49 feet. Red beds reported at 49 feet.
	506	do	Robert Dale	1960	60	14	60	Qs	1,332	3.67 8.70 10.30	May 11, 1960 Dec. 3, 1969 Feb. 1, 1971	т, Е,	Irr	Yield reported 250 gpm. <u>1</u> /

See footnotes at end of table.

- 105 -

_		0 0	om with				base	base 2/											
	Remarks	Water reported from sand and gravel at 30 and from sand with some gravel at 55 to 6 feet. $\underline{2}$	Yield reported 200 gpm. Water reported fr sand and gravel at 30 feet and from sand some gravel at 55 to 60 feet.	Water reported from sand and gravel, $\underline{2}$	Well 56 of Bull. 5301. § Well C-56 of Bull. 5614. <u>J</u>	Demiroyed irrigation well. 4 Well 55 of Bull. 5301. 6 Well C-55 of Bull. 5614. 7	Water reported from sand and gravel with at 66 feet. $\underline{2}[\underline{4}]$ Well C-55a of Bull. 5614. $\underline{2}]$	Mater reported from sand and gravel with at 66 feet. Red beds reported at 66 feet.	I	Water reported from sand and gravel. $\underline{2}$	57	Unused domestic well. Well 57 of Bull. 5301. 6	<i>y</i>	1	尼石	Well 88 of Bull. 5301. 69	Yield reported 175 gpm.	Yield reported 250 gpm.	
	Use of water	Irr	Irr	Irr	D	z	Irr	Irr	Irr	Irr	Irr	z	Itr	Irr	Irr	۵	Irr	Irr	
	Method of lift	T, E, 7-1/2	T, E, 7-1/2	Sub, E, 20	cf, E, 5	N	T, E, 30	T, E, 50	Т, С	T, E, 30	T, E, 30	J, E, 1/2	т, Е, 15	T, E, 25	T, C, 50	J, E, 1/2	T, E, 20	T, E, 20	
	te of urement	11, 1960 3, 1969	11, 1960 4, 1969	18, 1970 1, 1971	27, 1951 18, 1951 8, 1955 29, 1970	27, 1951 9, 1952 8, 1953 8, 1953	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30, 1960 29, 1970	8, 1951 18, 1960 18, 1960 14, 1970 7, 1971	14, 1970	29, 1970	op	9, 1969 4, 1970 1, 1971	4, 1970	20, 1955 4, 1970	18, 1951 4, 1970	do	do	
OL TEVE	Da	May Dec.	May Dec.	Feb.	Feb. July Jan.	Feb. Jan.	Jan. Jan. Jan. Jan.	Sept. Jan.	Jan. Feb. Jan. Jan.	Jan.	Jan.		Sept. Feb.	Feb.	July Feb.	July Feb.			
1 Part	Below land- surface datum (ft)	16.90 23.55	12.39	22.81	12.20 12.52 16.97 28.43	18.33 19.99 21.78 23.10	21.65 21.43 27.57 35.53 39.91	13.20 26.34	25.91 28.59 33.69 40.16 42.18	30 33,70	24.87	36.93	31 29.77 33.61	29,02	30 40.32	25.39	25.51	24.09	
	Altitude of land surface (ft)	1,363	1, 365	1,380	1, 394	1,400	1, 399	1,390	1,410	1,398	1,385	1,391	1, 392	1, 395	1,422	1,412	1,390	1,400	
	Water bearing unit	Qs	Qs	Qs	Qs	Qs.	qs	ős	Qs	Qs	Qs	Qs	Qs	Qs	ds.	qs	Qs	Qu	ì
ng .	Depth (ft)	61	19	37	59	1	70	67	50	99	69	65	52	72	96	51	70	70	
Casi	Diam- eter (in.)	14	16	16	ġ	ł	16	14	16	16	14	8	14	14	14	9	14	14	
	Depth of well (ft)	61	19	37	59	65	70	67	50	99	69	65	73	72	96	51	70	70	
	Date completed	1957	1957	1962	1950	1950	1952	1959	1954	1968	1965	1	1969	1963	1955	;	1965	1965	
	Driller	B. B. Thrash	do	Robert Dale	Bill Turner	op	*	Robert Dale	Bill Turner	Robert Dale	do	:	Robert Dale	do	do	1	Robert Dale	do	
	Owner	Mrs. Myrtle J. Collins	op	Ntra. M. J. Moore	Mrs. L. E. McConnell	op	qo	W. R. Moore, Jr.	Mrs. L. E. McConnell	op	W. R. Moore, Jr.	Mrs. L. E. McConnell	Bert Presley	qo	H. Leroy Conner	Bert Presley	E. H. Worley	đ	end of table.
	Well	13-45-507	508	509	109 4	602	603	* 604	605	* 606	* 607	* 608	609	* 610	611.	* 612	613	* 614	e footnotes at
_				*				1		5	2	100		-					Se

	Remarks	Yield reported 200 gpm.	Unused irrigation well. $\underline{y} \; \underline{z} y$	Unused stock well. Original depth reported 67 feet; sanded up to 33 feet. Water reported from sand and gravial at 59 to 66 feet. Red beds reported at 66 feet. Well 31 of Bull. 5301. §	Yield reported 300 gpm. Water reported from sand and gravel.	Yield reported 400 gpm.	Yield reported 300 gpm.	Yield reported 550 gpm. \underline{y}	$\overline{n}\overline{z}$:	Yield reported 400 gpm. Mater reported from sand and gravel at 50 to 74 feet. Red bodn reported at 74 feet.	Yield reported 400 gpm. Mater reported from sand and gravel at 30 to 74 feet. Red beds reported at 74 feet.	:	Water reported from sand and gravel.	Five-vell manifold system with all wells the same depth, completed the same, and pumped with a common pump and motor, Yield reported 80 gpm. Mater reported from gravel.	Unused irrigation well, Yield reported 340 gpm but fell off rapidly, Water reported from sand and gravel.	Yield reported 250 gpm. Water reported from sand and gravel at 33 to 60 feet. Rod beds reported at 60 feet.	2/	Water reported from sand and gravel, $\underline{2}j$	
	Use of water	lrr	z	z	Irr	Irr	Itr	Itr	Irr	ŋ	Irr	Irr	D	D, S	S, Itr	z	Irr	Itr	Irr	
	Method of Hff	T, E, 15	z	N	т, с	T, G, 30	T, G, 30	T, E, 30	T, E, 30	cf, E,	т, Е, 30	T, E, 30	J, E, 3/4	J, E, 1/2	cf, c	z	T, E, 10	T, E, 10	T, E, 10	
	te of urement	4, 1970 1, 1971	6, 1955 11, 1970 1, 1971	$\begin{matrix} 18, & 1951 \\ 17, & 1970 \\ 1, & 1971 \end{matrix}$	18, 1970	11, 1970	do	do	25, 1969 11, 1970 2, 1971	:	11, 1970	11, 1970	9, 1971	18, 1970	9, 1971	17, 1956 18, 1970	4, 1969	16, 1969	17, 1955 16, 1969	
er leve	Da	Feb.	June Feb.	July Feb.	Feb.	Feb.			Jan. Feb.		Feb.	Feb.	June	Feb.	June	Aug. Feb.	Dec.	Dec.	May Dec.	
Wate	Below land- surface datum (ft)	40.68 34.98	29 37.32 38.80	13.3 19.26 20.30	48,34	36,16	34,08	26.56	24 25.32 29.50	:	34 37 . 39	36 36.42	15	25.48	10	17 22.33	43.21	26.12	26 23.99	
	Altitude of land surface (ft)	1,405	1,421	1, 378	1,419	1,405	1,401	1, 396	1, 395	1,401	1,404	1,400	1,362	1,360	1,370	1,380	1,399	1,386	1, 384	
	Water bearing unit	Qs	Qs	Qs	ds	Qs	Qs	qs	Qs	Qs	Qs	Qs	Pprsa	ds	Pprsa	Qs	Qs	QB	Qs	
00	0 Depth (ft)	70	20	1	67	72	72	65	54	57	75	75	50	50	30	30	19	51	45	
Cast	Diam- eter (in.)	14	14	9	14	14	14	14	14	9	14	14	7	9	7	14	16	16	16	
	Depth of well (ft)	70	70	33	16	72	72	65	66	57	75	75	50	50	30	40	61	51	45	
	Date	1967	1955	1936	1961	1963	1969	1968	1969	1958	1968	1968	1967	1950	1967	1956	1955	1954	1955	
	Driller	Robert Dale	do	Bill Turner	Robert Dale	do	op	do	đo	do	qo	do	Vernon Pump Service	Robert Dale	Lee Hopper	Robert Dale	L. E. Stamps	Robert Dale	do	
	Owner	E. H. Worley	Benjamin H. Smith, Jr.	Nelson Johnston	c. c. Lamb	Ray C. Morgan	do	op	op	Leon Morgan	Warren King	qp	Marvin Sherman	John W. Ayres	Marvin Sherman	John W. Ayres	W. C. Dunn	A. S. Tooley	do	
	Well	13-45-615	616	617	618	619	620	621	622	623	624	625	101	702	703	801	802	803	804	
L		*	*	*						*	*		*	*	*		*	*	*	

				_								_						and the second
	Remarks	Yield reported 200 gpm. Water reported from sand and gravel.	Water reported from sand and gravel.	Water reported from sand and gravel, $\underline{2}$	Vield reported 300 gpm. Water reported from sand and gravel.	Unused irrigation well. Yield reported 150 gpm. Water reported from sand and gravel.	Yield reported 25 gpm.	Yield reported 25 gpm. Water reported from 8 feet of sand and gravel.	Yield reported 25 gpm. Water reported from 5 feet of sand and gravel.	Yield reported strong. Water reported from "broken shale".	Yield reported 245 gpm. Water reported from 24 feet of sand and gravel with base at 60 feet. Red beds reported at 60 feet.	Vield reported weak. Water reported from 2 to 3 feet of sand and gravel.	Dug well. Yield reported strong. Water reported from clay.	Yield less than 1 gpm. Water seeps from well-cemented coarse gravel and friable sand.	Yield reported weak, Water reported from sand and gravel.	Yield reported 400 gpm. Mater reported from saud and gavent at 65 to 85 feet. Well has been purchased by the city of Vernon for a future public supply source.	Yield reported 300 gpm. Mater reported from 11 feet of basal gravel. Well has been purchased by the city of Vernon for a future public supply source.	Yield reported 300 gpm. Water reported from monthy and with some gravel, Well has been purchased by the city of Vernon for a future public supply source. \underline{g}
	Use of water	Irr	Q	Irr	Irr	z	D, S, Irr	Irr	Irr	D, S	Itr	s2	D, S	z	D, S	Irr	Irr	Itr
	Method of lift	т, Е, 20	J, E, 1/3	T, E, 10	T, E, 10	z	cf, E,	cf, E,	cf, E, 2	J, E, 1/2	T, G	м, с	R, E, 1/3	Flows	J, E, 1/2	т, Е, 30	т, Е, 30	с Ч
level	Date of measurement	Dec. 4, 1969	do	Dec. 16, 1969	do	Dec. 16, 1969 Jan. 13, 1970 Jan. 7, 1971	Feb. 17, 1970 Feb. 1, 1971	Feb. 17, 1970	op	op	Feb. 20, 1970 Feb. 1, 1971	Feb. 18, 1970 Feb. 1, 1971	June 9, 1971	Sept. 30, 1970	Nov. 19, 1970	Dec. 16, 1969	Jan. 4, 1958 June 22, 1960 Jan. 17, 1963 Dec. 16, 1969	Jan. 7, 1956 Peb. 12, 1961 Pac. 16, 1969 Jan. 7, 1970 Jan. 7, 1971
Water	Below land- surface datum (ft)	41.59	33.76	24,91	33,04	32.31 36.24 37.35	37.86 37.18	38,09	39,99	21.04	38,27 38,83	5.02	17.85	(+)	16.46	22,21	12.20 14.88 11.05 22.11	13,27 2,03 20,25 20,13 20,86 20,86
	Altitude of land surface (ft)	1,400	1,391	1, 384	1, 389	1,389	1, 395	1,406	1,406	1,419	1,391	1,383	1,420	1, 315	1, 335	1,358	1,358	1, 357
	Water bearing unit	Qs	ds	Qs	Qs	Qs	qs	Qs	Qs	Pprsa	$Q_{\rm S}$	Qs	Pprsa	qs	Qs	Qs	Qs	Qs.
ng	Depth (ft)	61	45	52	97	44	50	52	55	07	61	50	ž S	i E	40	86	82	84
Casi	Diam- eter (in.)	16	9	16	16	16	14	16	14	9	14	ø	\$	ł	8	14	14	16
	Depth of well (ft)	61	45	52	95	44	50	52	55	40	61	50	35	Spring	40	86	82	84
	Date completed	1966	1962	1953	1954	1960	1959	1957	1963	1956	1956	:	ł	1	;	1960	1957	1955
	Driller	Robert Dale	do	op	op	op	op	L. E. Stamps	Lee Hopper	Robert Dale	;	:	:	;	:	Robert Dale	John Kale	Mc. Myatt
	Owner	W. C. Dunn	do	A. S. Tooley	đo	op	Walter H. Obenhaus	qo	do	op	John W. Ayres	op	Bessy W. Clancy Estate	State of Texas	M. K. Berry	Mrs. A. F. Winston	do	÷
	Well	13-45-805	806	807	808	809	810	811	812	813	814	815	816	106	902	46-101	102	103
					*		*	*		*	_	*	*	₹.	*		*	

- 108 -

	Renarks	Yield reported 500 gpm. Water reported from 18 feet of basal gravel. Well has been purchased by the city of Vernon for a future public supply source. $\hat{4}$	Yield reported 600 gpm. Water reported from 30 feet of basal gravel. Well has been purchased by the city of Vernon for a future public supply source.	Vield reported 600 gpm, Water reported from 20 feet of basal gravel, Well has been purchased by the city of Vernon for a future public supply source. \underline{q}	Unused domestic and stock well. Well 38 of Bull. 5301. $\vec{6}$ Well A-38 of Bull. 5614. \vec{J}	Well pumps into well 13-46-109. $\underline{2}$	Water reported from sand and gravel at 43 to 55 feet. Red beds reported at 55 feet. Well 13-46-108 pumps into this well. 2/	Unused irrigation well. Yield reported 300 gpm. Water reported from sand and gravel at 59 to 71 feet. Red beds reported at 71 feet.	Water reported from sand and gravel at 65 to 77 feet. Red Beds reported at 77 feet. Well 13-46-112 pumps into this well. 2/	Water reported from sand and gravel at 65 to 77 feet. Red beds reported at 77 feet. This well pumps into well 13-46-111. \underline{y}	Unused irrigation well. Yield reported 275 gpm. Water reported from sand and gravel.	<i>ह</i> त	Yield reported 150 gpm.	Yield reported 100 gpm. Water reported from sand and gravel at 71 to 76 feet. Red beds reported at 76 feet.	Yield reported 200 gpm, \underline{y}	Yield reported 300 gpm. Water reported from
	Use of water	Itr	Itr	Irr	и	Irr	Irr	N	Irr	Irr	N	Irr	Irr	Irr	Itr	Irr
	Method of lift	т, с	т, Е, 30	т, Е, 40	c, w	Sub, E, 5	т, Е, 20	N	т, Е, 25	Sub, E, 5	N	т, Е, 30	т, Е, 10	т, Е, 20	T, E, 5	T, E,
er level	Date of measurement	Jan. 7, 1956 June 22, 1960 Jan. 18, 1966 Jan. 22, 1967 Dec. 16, 1966 Jan. 7, 1971 Jan. 7, 1971	Jan. 4, 1958 June 22, 1960 Feb. 22, 1962 Jan. 17, 1963 Jan. 16, 1969	Jan. 7, 1956 Jan. 17, 1965 Jan. 22, 1967 Dec. 16, 1969 Jan. 13, 1970 Jan. 7, 1971	July 19, 1951 Jan. 8, 1955 Jan. 7, 1956 Jan. 14, 1957 Jan. 17, 1963	Jan. 27, 1970 Feb. 2, 1971	Jan. 27, 1970	qo	qo	op	op	Dec. 24, 1967 Jan. 29, 1970 Feb. 3, 1971	Jan. 29, 1970	Feb. 4, 1970 Feb. 2, 1971	May 1969 Feb. 4, 1970	do
Wat	Below land- surface datum (ft)	12.22 14.41 6.80 14.95 19.32 18.92 15.25	6.50 11.02 6.93 5.02 16.84	12.98 9.75 20.14 19.38 19.77 20.24	19.45 23.29 22.07 24.19 21.97	21.51 24.12	16,84	32.39	32.42	33.46	35	33 29.01 33.14	26.14	36.84 39.49	37 37 . 85	33.61
	Altitude of land surface (ft)	1,356	1,360	1, 366	1, 388	1,380	1,370	1, 385	1, 390	1, 392	1, 388	1, 372	1, 359	1,411	1,410	1,400
	Water bearing unit	Qs.	Qs	Qs	Qs	Qs	Qs	Qs	Qs	Qs	Qs	Qs	Qs	Qs	Qs	qs
ing	Depth (ft)	84	89	92	33	58	56	72	78	78	78	108	68	78	80	83
Cas	Diam- eter (in.)	16	14	16	æ	14	14	14	14	14	14	14	14	14	14	14
	Depth of well (ft)	84	89	92	33	58	56	72	78	78	78	108	68	78	80	83
	Date completed	1955	1957	1955	E.	1967	1966	1965	1965	1965	1969	1967	1965	1964	1969	1968
	Driller	John Kale	θ	ę	F	Lee Hopper	do	qo	Jim Rae	Lee Hopper	Robert Dale	qo	qo	do	qo	do
	Owner	Mrs. A. F. Winston	op	ор D	I. W. Boyd	Jake C. Riggins	op	qo	op	do	op	Mrs. Elwyn Bingham	Kenneth R. Neel	W. C. Bellar	do	Summer Estate
	Well	13-46-104	105	106	107	108	109	110	111	112	113	114	115	116	711	118
						*				*		*	*	*		*

See footnotes at end of table.

Yield reported 300 gpm. Water reported from 8 feet of sand and gravel with base at 81 feet. Red beds reported at 81 feet.

т, Е, 15

*

- 109 -

Г				1		Casi	ng			Wat	er level			
	Well	Owner	Driller	Date completed	Depth of well (ft)	Diam- eter (in.)	Depth (ft)	Water bearing unit	Altitude of land surface (ft)	Below land- surface datum (ft)	Date of measurement	Method of lift	Use of water	Remarks
	13-46-119	Mrs. J. B. North	Jim Rae	1965	66	14	66	Qs	1,390	32.91	Feb. 4, 1970	т, е, 7-1/2	Irr	Yield reported 200 gpm. Water reported from sand and gravel at 54 to 66 feet. Red beds reported at 66 feet.
*	120	do	Robert Dale	1963	66	14	66	Qa	1,388	23.61	do	т, е, 25	Irr	Yield reported 200 gpm. Water reported from sand and gravel at 62 to 65 feet. Red beds reported at 65 feet.
tt.	121	Summer Estate	do	1957	64	14	64	Qıs	1,381	33.50	Jan. 30, 1970	т, е, 30	Irr	Water reported from sand and gravel at 50 to 63 feet. Red beds reported at 63 feet. $\underline{2}$
	122	do	do	1968	88	14	88	Qs	1,382	31.45	do	т, Е, 30	Irr	Water reported from sand and gravel at 74 to 87 feet. Red beds reported at 87 feet. 2^{\prime}
*	123	Mrs. M. E. Forester	do	1965	66	14	66	Qs	1,386	16 19.57	1965 Feb. 3, 1970	т, е, 25	Irr	Water reported from sand and gravel at 52 to 65 feet, Red beds reported at 65 feet, $\underline{2}$
*	124	do	do	1962	62	14	62	Qs	1,386	23 28.56 32.75	1962 Feb. 3, 1970 Feb. 2, 1971	т, е, 30	Irr	<u>7</u> 3
	125	City of Vernon	do	1968	95	14	95	Qa	1,365	30 29.00	Dec. 30, 1968 Sept. 17, 1970	N	N	Unused irrigation well, planned for future use as a public supply source, $\underline{y} \not \underline{z} / \not \underline{y}$
Ŵ	126	do	Texas Water Development Board	1970	105			Qs	1.370	29.4	Oct. 22, 1970	N	N	Test hole. <u>y</u> y
*	127	Grady E. Bingham	do	1970	87		•••	Qs	1,368	21.37	Nov. 2, 1970	N	N	Do.
#	128	G. K. Martin	Robert Dale	1970	64	14	64	Qs	1,391	27.61	Nov. 10, 1970	т, е, 20	Irr	<u>1</u> / <u>2</u> /
	130	Mrs. Elwyn Bingham	do	1966	81	**		Qs	1,367			N	N	Test hole. y
Ł	131	Charles Tallant	do	1968	69			Qs	1,362			N	N	Do.
*	201	W. S. Fitzgerald	B. B. Thrash	1957	100	18	100	Qs	1,363	20.28 21.99 23.64	Apr. 4, 1960 Feb. 5, 1970 Jan. 7, 1971	Т, б	Irr	Yield reported 350 gpm.
	202	Cleve Hamilton			25			Qs	1,362	16.88 20.95 18.24 20.29 16.20 16.20	Feb. 1, 1952 Jan. 7, 1954 Jan. 7, 1956 Jan. 14, 1957 Jan. 4, 1958 Jan. 17, 1963	N	N	Abandoned stock well. Well 40 of Bull. 5301, 69 Well B-40 of Bull. 5614, 7/
*	203	T. R. Olive Estate	Robert Dale	1957	52	14	52	Qs	1,359	23.97 31.01 31.83	Apr. 6, 1960 Jan. 30, 1970 Feb. 2, 1971	т, Е, 15	Irr	Yield reported 202 gpm, Water reported from sand and gravel with base at 51 feet. Red beds reported at 51 feet.
	204	do	do	1957	52	14	52	Qs	1,361	26.75 32.76	Apr. 6, 1960 Jan. 30, 1970	т, Е, 15	Irr	Yield reported 202 gpm, Water reported from sand and gravel with base at 51 feet, Red beds reported at 51 feet.
	205	R. H. Newson	do	1956	70	14	70	Qa	1,372	28.26 29.92 37.72 38.38 38.99	Jan. 4, 1958 Jan. 14, 1964 Jan. 18, 1966 Jan. 14, 1970 Jan. 7, 1971	т, е, 20	Irr	Yield reported 318 gpm. Water reported from sand and gravel at 28 to 70 feet. Red beds reported at 70 feet. $\underline{4}$
*	206	do	Bill Turner	1948	86	8	86	Qs	1,377	30.7 29.48 31.80 39.70	Aug. 8, 1951 Jan. 8, 1953 Jan. 14, 1957 Feb. 20, 1970	J, E, 1/2	D, S	Water reported from sand and gravel. Well 74 of Bull. 5301, <u>6</u> Well B-74 of Bull. 5614. <u>7</u>

See footnotes at end of table.

- 110 -

						Casi	ng		1	Wat	er level	1	-	
	Well	Owner	Driller	Date completed	Depth of well (ft)	Diam- eter (in.)	Depth (ft)	Water bearing unit	Altitude of land surface (ft)	Below land- surface datum (ft)	Date of measurement	Method of lift	Use of water	Remark ₈
*	13-46-207	Grady W. Stowe	Robert Dale	1956	56	14	56	Qs	1,371	19.48 31.64	Apr. 4, 1960 Feb. 3, 1970	т, Е, 20	Irr	Red beds reported at 54 feet. $2/$
	208	Sumner Estate	do	1956	59	14	59	Qs	1,376	18.13 33.65	Apr. 4, 1960 Feb. 4, 1970	т, е, 30	Irr	Yield reported 450 gpm. Water reported from sand and gravel at 44 to 57 feet. Red beds reported at 57 feet.
*	209	Leonard L. Woodard	do	1955	68	16	68	Qs	1,372	18.60 20.50 26.80 34.52 37.65	Jan. 7, 1956 Feb. 18, 1960 Jan. 18, 1966 Jan. 14, 1970 Jan. 7, 1971	т, Е, 25	Irr	Yield reported 700 gpm. 4
*	210	Jake C. Riggins	Loyd Stamps	1956	81	14	81	Qa	1,388	30.21 44.88 47.17	Apr. 4, 1960 Jan. 27, 1970 Feb. 2, 1971	Sub, E, 25	Irr	Mater reported from sand and gravel at 65 to 80 feet. Red beds reported at 80 feet, $2\!/$
	211	R. H. Newsom	Robert Dale	1964	73	14	73	Qs	1,373	34.89	Jan. 14, 1970	т, Е, 20	Irr	Yield reported 300 gpm. Water reported from sand and gravel.
*	212	Jake C. Riggins	do	1969	79	14	79	Qa	1,331	23.78 25.52	Jan. 27, 1970 Feb. 2, 1971	N	N	Unused irrigation well. Yield reported 200 gpm. <u>J</u>
*	213	do	**		Spring			Qs	1,290	(+)	Jan. 27, 1970	Flows	S	Estimated flow 30 gpm.
*	214	C. M. Clarkson	Jim Rae	1965	64	14	64	Qs	1,364	23.74	do	т, е, 15	Irr	Water reported from sand and gravel at 43 to 63 feet. Red beds reported at 63 feet. $\underline{2}$
Ŵ	215	Jake C. Riggins	Lee Hopper	1966	62	12	62	Qs	1,370	26.59 28.41	do Feb. 2, 1971	т, е, 10	Irr	Yield reported 250 gpm. Water reported from sand and gravel at 49 to 61 feet. Red beds reported at 61 feet.
	216	do	Jim Rae	1965	55	14	55	Qa	1,373	27.21	Jan. 27, 1970	т, е, 15	Irr	Yield reported 300 gpm. Water reported from mand and gravel at 43.5 to 53.5 feet. Red beds reported at 53.5 feet.
	217	do	Robert Dale	1966	60	14	60	Qs	1,381	27	do	T, E, 7-1/2	Irr	Yield reported 300 gpm. 1/
*	218	do	do	1960	62	14	62	Qs	1,379	34.78 37.57	do Feb. 2, 1971	т, е, 30	Irr	Yield reported 600 gpm. Water reported from sand and gravel at 39 to 61 feet. Red beds reported at 61 feet.
*	219	do	do	1966	98	14	98	Qв	1,396	56.01	Jan, 27, 1970	т, е, 20	Irr	Well originally 100 feet deep, plugged back to 98 feet. Water reported from sand and gravel at 85 to 100 feet. Red beds reported at 100 feet. $\underline{2}/$
	220	do	do	1964	82	14	82	Qs	1,385	44.40	Jan. 29, 1970	т, Е, 25	Irr	Water reported from sand and gravel, Red beds reported at 81 feet, $2\prime$
	221	do	do	1964	80	14	80	Qs	1,379	45	Jan. 27, 1970	т, Е, 25	Irr	Water reported from sand and gravel. Red beds reported at 79 feet. $2\!/$
	222	do	do	1966	94	14	94	Qs	1,392	49.34	do	т, е, 25	Irr	Yield reported 400 gpm. Water reported from sand and gravel at 85 to 95 feet. Red beds reported at 95 feet.
	223	do	Lee Hopper	1967	82	14	82	Qs	1,384	45	do	N	N	Unused irrigation well. Water reported from sand and gravel at 73 to 81 feet. Red beds reported at 81 feet.
*	224	Sumner Estate	Robert Dale	1965	67	14	67	Qs	1,388	53.14	Feb. 5, 1970	т, Е, 25	Irr	Yield reported 400 gpm. <u>y</u>

 11 Owner -46-225 Summer Estate 226 William S. Fit 227 do 228 Grady W. Stowe 229 Leomard L. Woo 	czgerald	Driller	Date completed	Depth of well	Diam- eter	Pearly	Water bearing	Altitude of land	Below land-	Da	te of	Method	Use	
 46-225 Summer Estate 226 William S. Fit 227 do 228 Grady W. Stowe 229 Leonard L. Woo 	czgerald			(ft)	(in.)	(ft)	unit	Suriace (ft)	datum (ft)	meas	urement	of lift	of water	Kenarks
226 William S. Fit 227 do 228 Grady W. Stowe 229 Leonard L. Woo	zgerald	Robert Dale	1965	65	14	65	QB	1,379	24.26	Feb.	5, 1970	т, Е, 20	Irr	Yield reported 300 gpm. Water reported at 58 to 65 feet. Red beds reported at 65 feet.
227 do 228 Grady W. Stowe 229 Leonard L. Woo		Bill Turner	ł	65	9	65	4s	1,358	;		;	CE, E, 1/2	D, S	
228 Grady W. Stowe 229 Leonard L. Woo		B. B. Thrash	1955	06	9	90	qa	1,358	24,48	Feb.	5, 1970	J, E, 1/2	D, S	3
229 Leonard L. Woo		Robert Dale	1969	11	14	11	Qs	1,371	35 34.93	Mar. Feb.	30, 1969 3, 1970	T, E, 20	Irr	Red beds reported at 69 feet. 2/
	odward	do	1962	70	14	20	Qs	1,374	36.45		do	T, E, 20	Irr	Yield reported 200 gpm, Mater reported from sand and gravel at 60 to 69 feet, Red beds reported at 69 feet.
230 Sunner Estate		qo	1967	68	12	66	Qs	1,379	33 36.44	Apr. Feb.	14, 1967 4, 1970	T, E, 7-1/2	Irr	<i>B</i> 2
231 North Side Hig	gh School	:	1958	100	1	I.	Qs	1,364	3		:	r	s	Formerly an industrial well used at the now abandoned missile base.
232 Summer Estate		Robert Dale	1970	80	14	80	Qu	1, 379	43	Dec.	1, 1970	T, E,	Irr	<u>1</u> 7 <u>2</u> 7
233 Bill Graf		op	1971	90	14	06	Q6	1, 396	59	Apr.	28, 1971	ł	Irr	<u>7</u> 2
234 William S. Fit	czgerald	B. B. Thrash	1957	93	;	;	Q6	1,362	22	Feb.	1957	N	N	Test hole. \underline{y}
235 do		op	1957	105	;	;	qa	1,366	19		do	z	N	Do.
236 do		do	1957	1.03	1	;	qs	1,364	20		op	z	N	Do.
237 do		do	1957	100	1	1	Qв	1,359	1		:	z	N	Do.
301 Jake C. Riggin	18	-	;	Spring	:	;	qs	1,285	(+)	Jan.	27, 1970	Flows	N	1
302 T. R. Olive Es	state	Robert Dale	1962	78	14	78	Qs	1,364	32.16	Jan. Feb.	30, 1970 2, 1971	T, G, 50	ltr	Water reported from sand and gravel at 48 to 76 feet. Red beds reported at 76 feet.
303 Troy A. Chapma	ų	1	ł	Spring	1	:	qs	1,280	(+)	Nov.	6, 1970	Flows	N	Flows from base of cross-bedded Permian sandstone; water is believed derived by leakage from the Seymour Formation into the sandstone.
304 Ross Estate		1	1	Spring	1	1	ds.	1,290	(+)	Nov.	10, 1976	FLOWS	N	Spring no. 77 of Bull. 5301. §
305 do		W. T. Roland	1942	15	9	15	Qs	1,245	:		;	J, E, 1/3	q	Hand augered.
306 Joe Emmett		ł	ŀ	23	1	;	QB	1,290	18.63	June	17, 1971	J, E, 1/3	Q	Dug well.
307 J. R. Watts		Robert Dale	1967	09	9	09	Qs	1,370	45	June	11, 1967	J, E, 1/2	D	Vield reported strong.
401. City of Vernon	8	D. L. McDonald	1953	110	24 10	40	Qs	1,408	32 31.56 33.21 32.41 33.01	Jan. Jan. Jan.	1951 6, 1954 8, 1955 8, 1956 4, 1958	N	z	Unused public supply well, caved, \underline{M} \underline{Z} well C-127 of Sull, 5614, \overline{T}

-		1							
	Remarks	Unused public well. Yield reported 190 gpm. $\underline{Y}\underline{Y}\underline{Y}$ Well C-110 of Bull. 5614, \overline{T}	Yield reported 110 gpm. \underline{y} \underline{y} Well C-118 of Bull. 5614. \underline{y}	Yield reported 210 gpm , $\underline{\underline{y}}$ $\underline{\underline{y}}$ $\underline{\underline{y}}$ Well C-119 of Bull, 3614, $\overline{\underline{y}}$	Yield reported 200 $\mathrm{Bpm},\underline{y}\underline{2}$ Well C-126 of Bull, $5614,\overline{3}$	Yield reported 260 gpm. $\underline{y}, \underline{y}$ Well C-120 of Bull. 3614. \underline{y}	Well C-121 of Bull. 5614. $M2\!/3$	Well C-120 of Buil, 5614. <u>M</u> Z J	Well 66 of Bull. 5514. <i>¥</i> J Well C-66 of Bull. 5514. <i>¥</i> J
	Use of water	z	2	<u>0.</u>	~	a	Ω.	۵.	D, S
	Method of Lift	2	T, E, 20	T, E, 20	T, E, 20	т, Е, 20	т, _Е , 20	T, E, 20	J, E, 1/2
evel	Date of measurement	m. 8, 1953 m. 6, 1954 m. 14, 1957 m. 14, 1957 m. 17, 1958 m. 16, 1969 m. 14, 1970 m. 7, 1971	1953 m. 6, 1954 m. 9, 1956 m. 14, 1957 m. 14, 1958 m. 15, 1958 m. 15, 1978 m. 2, 1971	ur. 6, 1953 m. 8, 1956 m. 4, 1958 m. 17, 1958 m. 14, 1958 m. 14, 1970 m. 8, 1971	m. 6, 1954 m. 14, 1954 ab. 22, 1967 m. 17, 1963 m. 13, 1963 m. 13, 1970 ab. 2, 1971	m. 6, 1953 m. 9, 1956 ab. 22, 1962 m. 17, 1963 m. 13, 1970	m. 6, 1953 m. 6, 1956 m. 9, 1956 m. 17, 1958 m. 13, 1970 m. 13, 1970	m. 6, 1953 m. 6, 1954 m. 29, 1958 m. 29, 1960 m. 14, 1970 m. 14, 1970 m. 3, 1971	11y 19, 1951 m. 8, 1956 m. 14, 1957 se. 3, 1969 m. 13, 1970 m. 8, 1971 m. 8, 1971
Water	Below land- surface datum (ft)	24,68 Ja 24,68 Ja 28,05 Ja 26,02 Ja 26,02 Ja 48,03 Ja 55,30 Ja 55,30 Ja	16 17,52 21,00 22,10 25,10 10 22,35 39,64 41,96 Fr	20 15,82 19,27 19,23 19,23 1,69 1, 43,78 1,	17 15,15 27,44 25,52 19,30 37,91 42,22 Fr	14 13.76 16.34 21.78 21.78 18.26 33.81 33.81	16 15,55 18,93 18,95 18,93 18,95 18,95 36,10 41,80 F	8 11.78 12.28 15.25 13.34 13.34 13.34 13.34 7 7 7 7	10.7 19.28 1.1.26.73 1.776 10.33.96 10.33.96 11.42.85
	Altitude of land surface (ft)	1,410	1,404	1, 395	1,400	1, 392	1, 392	1,384	1, 391
	Water bearing unit	Qs	Qs	Qs	Qs	Qs	Q s	s o	sČ
ou	Depth (ft)	100	43 95	50 87	50	40 97	42 95	44 90	95
Cas	Diam- eter (in.)	24	24	24 10	24 10	24 10	24 10	24	¢
	Depth of well (ft)	100	56	16	105	26	95	06	105
	Date completed	1953	1953	1953	1953	1953	1953	1953	6491
	Driller	D. L. McDonald	ę	ç	ę	ço	ę	e e	Bill Turner
	Owner	City of Vernon	op	op	op	op	op	ęp	Fred J. Halencak
	Well	13-46-402	604	404	405	406	407	408	409
L				-					

					Cast	Bu			Wate	r level				
Well	Owner	Driller	Date completed	Depth of well (ft)	Diam- eter (in.)	Depth (ft)	Water bearing unit	Altitude of land surface (ft)	Below land- surface datum (ft)	Dat	e of rement	Method of Iift	Use of water	Remarks
13-46-410	Mrs. N. L. Goodwin	Robert Dale	1956	60	14	60	qs	1,411	19.65 40	Sept. Feb.	30, 1960 11, 1970	Т, б	z	Unused irrigation well. Yield reported 165 gpm. Water reported from sand and gravel with base at 59 feet. Red beds reported at 59 feet.
411	J. R. White Estate	qo	1959	46	12	46	Qs	1,419	17.29 26.77	Sept. Feb.	30, 1960 11, 1970	Т, С	Irr	Yield reported 75 gpm. Mater reported from sand and gravel with base at 45 feet. Red beds reported at 45 feet.
412	do	qo	1960	46	12	46	Qs	1,418	26.48 27.32	Feb.	11, 1970 2, 1971	T, G	Irr	Do.
413	City of Vernon	Layne-Arkansas	1961	102	24 13	50 96	Qs	1,413	55.23 56.28	Jan. Feb.	14, 1970 2, 1971	T, E, 30	P 4	Yield reported 300 gpm, \underline{y}
414	op	do	1961	107	24 13	51 103	Qs	1,408	70.31	Jan. Feb.	15, 1970 2, 1971	T, E, 30	D.	Do.
* 415	op	Herman Winters	1958	112	26 13	50 113	QB	1,427	69.20 70.72	Jan. Feb.	15, 1970 2, 1971	T, E, 30	d	Do.
416	op	do	1958	105	26 13	50 103	Qs	1,424	33 51.13 53.76	Mar. Dec. Feb.	4, 1958 12, 1969 2, 1971	T, E, 30	a.,	Do.
* 417	Jake C. Riggins	Robert Dale	1965	98	14	98	Qu	1,400	35.14	Jan.	27, 1970	т, Е, 30	Irr	Yield reported 500 gpm. Water reported from and and gravel at 71 to 97 feet. Red beds reported at 97 feet.
418	op	do	1968	16	14	16	Qs	1,402	38.81	3.94	do	т, Е, 20	lrr	Yield reported 400 gpm. \underline{y}
* 419	Summer Estate	qo	1968	86	14	86	Qs	1,413	49.00	Feb.	5, 1970	T, E, 25	Irr	Yield reported 300 gpm. Water reported from and and gravel at 74 to 84 feet. Red beds reported at 84 feet.
420	op	do	1954	88	16	88 88	Qs	1,411	24.30	Jan. Feb.	4, 1958 5, 1970	T, G, 65	Irr	Yield reported 200 gpm. Water reported from sand and gravel.
* 421	op	do	1964	06	1.4	06	Q8	1, 385	36.50	Feb.	5, 1970 2, 1971	т, Е, 30	Irr	Water reported from sand and gravel. $\underline{2}$
422	Roy D. Wilson, Jr.	do	1964	89	14	68	qs	1,384	30.54	Jan.	30, 1970	т, Е, 25	Irr	Water reported from sand and gravel at 84 to 88 feet. Red beds reported at 88 feet. $\underline{2}$
* 423	J. R. White Estate	01in 011 Company	1947	49	80	49	da	1,420	36.82 37.60	Feb.	11, 1970 2, 1971	J, E, 1/2	sa.	Yield reported 70 gpm. Water reported from sand and gravel at 28 to 49 feet. Red beds reported at 49 feet.
* 424	C. C. Lamb	-	ł	98	9	98	Qs	1,418	46.92	Feb.	18, 1970	J, E, 1/2	Q	Water reported from sand and gravel.
425	Ray C. Morgan	Robert Dale	1966	11	14	11	Qs	1,400	32.81	Feb.	11, 1970	Τ, G, 30	Irr	Yield reported 400 gpm.
* 426	Leon Morgan	Bill Turner	1950	70	Q,	70	Qs	1,402	41.14		op	z	N	Dnuwed domestic and stock well. Originally a dug well. Well 33 of Bull. 3301. §
* 427	Summer Estate	Robert Dale	1970	11	14	11	da V	1,390	34.64	Nov.	10, 1970	z	Irr	Yield measured 370 gpm. Water reported from sand and gravel at 58 to 69 feet. Red beds reported at 69 feet. Pump on order when well was inventoried.

-		1		_	_								
	Remarka	17	Yield reported 750 gpm. Mater reported from sand and gravel. Well 13-46-430 pumps into this well.	<u> </u>	Test hole. \underline{y}	Yield reported 200 gpm, $\underline{y},\underline{y},\underline{y}$ Well D-123 of Bull, 5614, \overline{y}	Well D-124 of Buil, 5614, <i>J 2 J</i>	Well D-125 of Buil. 5614. J 2 J	Unused public supply well. $\underline{\mathcal{G}}$ Well 70 of Bull. 5901. $\underline{\mathcal{G}}$ Well D-70 of Bull. 5614. $\underline{\mathcal{T}}$	Well D-70m of Bull, 5614, $\underline{4},\underline{7}$	Former observation well, Mater reported from sand and gravel at 83 to 102 feet. Red beds reported at 107 feet. $\underline{4}$ Well 71 of Bull, 5914. $\underline{2}$ Well D-71 of Bull, 5614. $\underline{2}$	Yiald reported 600 gpm. \underline{y} \underline{z} Well 72 of Bull. 530L \underline{g} Well D-72 of Bull. 5614. \underline{y}	Unused stock well, $\frac{4}{3}$ Well 81 of Bull, 5301. <u>6</u> Well D-81 of Bull, 5614. <u>7</u>
	Use of water	Irr	Irr	Irr	N	a	а.	a.	z	65	z	Irr	z
	Method of 11ft	T, E, 15	т, Е, 30	T, E, 10	N	T, E, 20	T, E, 20	т, Е, 20	z	с, и	N	T, G, 50	3
-	ar tevel Date of measurement	Feb. 11, 1970	:	June 13, 1967	:	Jan. 6, 1953 Jan. 6, 1954 Jan. 8, 1955 Jan. 14, 1957 Feb. 22, 1962 Jan. 13, 1970	Jan. 6, 1953 Jan. 6, 1954 Jan. 9, 1956 Jan. 14, 1957 Jan. 4, 1958 Pec. 12, 1968 Feb. 3, 1971	Jan. 6, 1953 Jan. 6, 1954 Jan. 9, 1956 Jan. 17, 1958 Dec. 12, 1963 Feb. 3, 1971	Feb. 1, 1952 Jan. 9, 1956 Jan. 14, 1965 Jan. 13, 1970 Jan. 7, 1971	Feb. 1, 1952 Jan. 14, 1957 Jan. 14, 1964 Jan. 13, 1970 Jan. 7, 1971	Jan. 31, 1952 Jan. 8, 1953 Jan. 27, 1970	Jan. 31, 1952 Jan. 8, 1953 Jan. 8, 1956 Jan. 27, 1970	Aug. 16, 1951 Jan. 14, 1957 Jan. 17, 1963 Jan. 17, 1963 Jan. 7, 1971
1000	Below Land- surface datum (ft)	38.81	1	38	1	19 20.87 24.35 27.88 24.62 27.40 42.70	21 23.03 25.95 29.65 43.30 49.55	33 32.94 35.95 37.35 51.75 55.54	42.14 47.02 51.82 57.60 68.29	42.5 35.78 34.85 45.95 54.71	27.50 23.11 38.34	21.77 23.14 25.20 37.75	40.50 46.17 44.89 51.62 53.79
	Altitude of land surface (ft)	1,400	1, 399	1,400	1,400	1, 395	1, 394	1,400	1,409	1,408	1, 385	1, 384	1,390
	Water bearing unit	Qs	Qs	Qs	QB	Qa	Qs	Qs	Qs	qs	Qs	Qs	Qs
Ī	18 Depth (ft)	91	100	66	;	42 103	50	50 112	120	120	103	92	94
	Cash Diam- eter (in.)	12	14	14	ł	24 10	24 10	24	9	ø	9	18	٥
	Depth of well (ft)	91	100	66	102	103	102	112	120	120	103	92	76
	Date completed	1966	1965	1967	1958	1953	1953	1953	1951	1	1951	1951	ĩ
	Driller	Lee Hopper	Robert Dale	do	1	D. L. McDonald	qo	đo	W. E. Turner	D. L. McDonald	Bill Turner	do	1
	Owner	Mrs. F. B. Elliott	Bert Dockery	do	City of Vernon	qo	qo	ę	op	qo	Jake C. Riggins	qo	Bill Dodson
	Well	13-46-428	429	430	432	201	502	5 03	504	505	506	507	508
				*		*		*	*		*	*	*

_											_				_			-	
	Remarks	Unusod stock well. 4/ Well 93 of Bull. 5301. $\underline{9}$ Well D-93 of Bull. 5614. $\underline{\gamma}$	Destroyed. Formerly a dug stock well.	\bar{n} \bar{n}	\overline{R} \overline{S}	Yield reported greater than 20 gpm. Water reported from sand and gravel. Red beds reported at 105 feet.	Water reported from sand and gravel. $\underline{2}$	<u>17</u> 27	Water reported from sand and gravel at 80 to 92 feet. Red beds reported at 92 feet. $\underline{2}$	Weill had been recently pumped when water level was measured on June 10, 1971. Water is used to irrigate football field and lawn at Northaide Independent School. Water reported from sand and some gavel. Weill 97 of Bull. 5301. §	Test hole. \underline{Y}	Do.	Water reported from gravel at 42 to 60 feet. Red beds reported at 60 feet, $\underline{2}$	Yield reported 500 gpm. Water reported from sand and gravel. $\underline{2}$	Unused Irrigation well. Yield reported 450 gpm. Water reported from gravel at 31 to 49 feet.	Yield reported 580 gpm.	17.57	<u>7</u> 2	Yield reported weak. Water reported from sand or gravel at 28 and 47 feet. Rad beds reported at 58 feet.
	Use of water	z	z	d	a	D, S	Irr	Irr	Irr	Irr	2	z	ltr	Irr	z	Irr	Irr, S	Itr	Q
	Method of lift	C, N	z	T, E, 20	T, E, 20	Ј, Е	T, E, 7-1/2	т, Е, 25	T, E, 25	Sub, E, 1-1/2	z	N	T, G, 60	т, Е, 30	z	T, G, 40	T, E, 40	Т, В	J, E, 1/2
1	ate of surement	2, 1952 4, 1958 21, 1968 13, 1970 7, 1971	16, 1951 8, 1953 7, 1954 8, 1955	12, 1969 3, 1971	20, 1969 12, 1969 3, 1971	17, 1969	27, 1970 2, 1971	27, 1970 2, 1971	5, 1970	18, 1951 10, 1971	4	{	31, 1960 4, 1970	1, 1956 31, 1960 5, 1970	31, 1960 11, 1970	3, 1960 11, 1970	6, 1967 4, 1970	12, 1969 4, 1970 7, 1971	4, 1970
er leve	Dunea	Feb. Jan. Jan.	Aug. Jan. Jan.	Apr. Dec. Feb.	Apr. Dec. Feb.	Dec.	Jan. Feb.	Jan. Feb.	Feb.	June			Mar. Nov.	Aug. Mar. Nov.	Mar. Nov.	Mar. Nov.	June Nov.	Mar. Nov. Jan.	Nov.
Wat	Below land- surface datum (ft)	35.56 39.38 45.25 45.16 45.93	11.84 15.35 14.34 15.13	50 52.62 61.32	36.32 36.32 37.27	43.00	39.25 39.54	40.11 38.44	43.80	14.94 28.32	1	1	26.82 35.17	11 9.25 18.32	11.78 21.48	4.02 10.48	16 12.02	18 15.38 15.45	20.95
	Altitude of land surface (ft)	1,418	1,299	1, 397	1, 393	1,390	1,409	1, 385	1, 395	1,360	1, 385	1,440	1,217	1, 195	1,201	1,184	1,198	1,207	1, 272
	Water bearing unit	Qs.	Qs	Qs	Qs	Qa	QB	Qs	qs	Qs	Qs	qs	Qa1	Qal	Qal	Qal	Qa1	Qal	Q8
Bu	Depth (ft)	65	;	54 115	36 101	105	65	95	94	50	1	i.	19	47	15	40	45	54	58
Cast	Diam- eter (in.)	Q	1	20 13	20 13	9	10	14	14	14	1	3	14	14	14	14	14	14	12
	Depth of well (ft)	65	16	116	101	105	65	56	\$16	50	96	125	61	47	15	40	45	54	58
	Date completed	ĵ	Í	1969	1969	1966	1963	1968	1969	1943	161	1958	1957	1956	1956	1956	1967	1969	1950
	Driller	1	1	McDonald Drilling Company, Inc.	do	Carl Bradford	Jim Rae	Robert Dale	qo	Carl Bradford	Robert Dale	:	Robert Dale	do	M. L. Nyatt	Robert Dale	do	Lee Hopper	Bill Lantz
	Owner	Anderson Estate	qo	City of Vernon	op	Bill Dodson	Donald Riggins	Jake C. Riggins	Summer Estate	B. Goodpanture	Jake C. Riggins	City of Vernon	Cathern Pierce	Troy A. Chapman	op	M. K. Berry	E. Howard Heath	op	Winburn Smith
	Well	13-46-509	510	511	512	513	514	515	516	512	518	519	601	602	603	604	605	606	607
			*			*	*	*	*	*			*	*	*	*	*		*

L						Conto	-			Wate	av lava	-			
	Well	Owner	Driller	Date completed	Depth of well (ft)	Diam- eter (in.)	bepth (ft)	Water bearing unit	Altitude of land surface (ft)	Below land- surface datum (ft)	Da	urement	Method of lift	Use of water	Remarks
*	13-46-608	Horace B. Coffee	1	1940	26	1	£.	Qs	1,245	14.65	Nov.	4, 1970	Z	z	Dug domestic well, unused. Mater reported from sand and some gravel at approximately 16 feet.
*	609	Cathern Pierce	:	F	31	8	t	Qs	1,224	21.34 25.87	July Nov.	8, 1951 4, 1970	J, E, 1/3	Q	Dug well. Well 100 of Bull. 5301. &
*	610	Troy A. Chapman	Robert Dale	1965	44	14	44	Qa1	1,192	15.30	Nov. Jan.	5, 1970 7, 1971	T, E, 30	Irr	Yield reported 1,000 gpm. Water reported from coarse and and small gravel. Red beds reported at 43 feet.
*	611	op	op	1965	55	14	55	Qal	1,196	19, 13	Nov.	5, 1970	T, E, 30	Irr	Yield reported 756 gpm. Mater reported from contee sand and small gravel. Red beds reported at 54 feet.
	612	op	qp	1968	46	14	46	Qal	1,190	14.97		op	T, C, 30	Irr	Yield reported 450 gpm. \underline{y}
*	613	do	op	1968	61	14	19	Qal	1,202	27.15		op	T, E, 30	Irr	Yield reported 400 gpm. \underline{y}
*	614	do	do	1968	55	16	55	Qal	1, 197	17.04 16.09	Jan.	do 7, 1971	т, Е, 30	Irr	Yield reported 450 gpm. Water reported from contee sand and small gravel. Red beds reported at 54 feet.
*	615	do	qo	1969	63	14	63	Qal	1,209	23.55	Nov.	5, 1970	T, E, 15	Irr	Yield reported 300 gpm. $\underline{l}l$
-	616	Cathern Pierce	op	1971	63	14	63	Qa1	1,213	34.24	June.	17, 1971	T, G, 79	Itr	<u>1</u> /2
*	617	Fargo Gin	1	ł	24	2-1/2		Qs	1,250	12.97		qo	N	Ν	Unused industrial well. Dug well to 14 feet. Caved from 14 to 24 feet. Yield reported strong.
	101	J. R. White Gin	1	1914	28	ł	1	Pcf	1,360	16.24	Feb.	17, 1970	J, E, 1/2	Ind	Dug well. Yield reported weak. Water reported from "birds-eye clay".
*	702.	op	1	ł	28	ł	Ŧ	Pcf	1, 359	16		op	Sub, E, 1/2	Ind	Dug well. Yield reported weak. Water reported from "birds-eye clay".
*	801	Jake C. Riggins	Lee Hopper	1965	50	φ	50	Qs	1,400	33.76	Jan.	27, 1970	J, E, 1/2	D, S	Yield reported 75 gpm. Water reported from sand and gravel at 36 to 49 feet. Red beds reported at 49 feet.
	802	op	Bill Turner	1	57	9	57	Qs	1,405	38.2 40.04	July Jan.	19, 1951 29, 1970	J, E, 1	a	Yield reported 100 gpm. Well 106 of Bull. 5301. §
*	106	G. C. Crisp	ŧ	1936	32	ł	:	Qs	1,225	18	June	17, 1971	J, E. 1/2	Q	Dug well.
	902	Clyde Crisp	Robert Dale	1261	38	ŝ	38	Qal	1, 189	12	Jan.	21, 1971	1	co.	<i>E R</i>
	47-101	Ross Estate	op	1956	50	14	50	Qa1	1,208	8,36 10,88	June Nov.	21, 1960 10, 1970	Τ, Ε	Irr	Yield reported 500 gpm.
*	102	Jack Slappey	Myatt Brothers	1952	40	9	40	Qal	1,206	5,12	June Nov.	21, 1960 6, 1970	cf, E, 15	Itr	Yield reported 400 gpm. Four-well manifold system with all holes the same depth and completed the same, and pumped by a common pump and motor.
*	103	Ray C. Morgan	N. L. Nyate	1969	44	14	44	Qal	1,208	8.03	Feb.	12, 1970	т, с, 30	Irr	Yield reported 500 gpm. Water reported from sand and gravel at 36 to 44 feet. Red beds reported at 44 feet.
See	footnotes at	t end of table.													

- 117 -

_																
	Remarks	Unused irrigation well. Yield reported 750 gpm. Marer reported from and and gravel at 40 to 52 feet. Red beds reported at 52 feet.	Driven sandpoint. Yield reported good. Water reported from sand and gravel.	Yield reported greater than 300 gpm. Two-well manifold system with both holes the same depth pand completed the same, pumped by a common pump and motor, \underline{y}	Vield reported 500 gpm. Three-well manifold system with the holis ranging in depth from 66 to 48 feet and completed the same, pumped by a common pump and motor.	Yield reported 450 gpm. Four-well manifold system with All holes the same depth and andlered the same, pumped by a common pump and morcor.	Yield reported 600 gpm. Four-well manifold system with two holes cased with 6-inch and two blacks cased with 8-inch casing, All holes are completed the same and pumped with a common pump and motor.	Destroyed. Formerly a three-well manifold system used for irrigation; yield reported 350 gpm.	Yield reported 450 gpm. 1/	Mater reported from coarse sand and gravel with base at 40 feet. Red beds reported at 40 feet.	Vield reported 800 gpm. Equipment being installed. Water reported from sand and gravel at 10 to 38 feet. Red beds reported at 38 feet.	Yield reported 800 gpm. Equipment being installed, Water reported from sand and gravel at 10.5 to 38 feet, Red beds reported at 38 feet,	Yield reported 600 gpm. Four-well manifold system with all holes the same depth and completed the same, pumped by a common pump and motor.	Yield reported 700 gpm. Four-well manifold system with all holes the same depth and completed the same, pumped by a common pump and motor.	Yield reported 500 gpm. Four-well manifold system with all holes the same depth and completed the same, pumped by a common pump and motor.	
	Use of water	z	D, S	Irr	Itr	Iter	Itr	z	Ire	P	Irr	Irr	Itr	Irr	ltr	
	Method of 11 ft	T, -, 30	J. E. 1/3	cf, E, 15	Cf, G	cf. E. 25	cr, E, 25	z	T, G, 40	J, E, 1/2	т, -	τ.	Cf, E, 25	cf, E, 25	cf, E. 25	
level	Date of measurement	eb, 12, 1970	ov. 6, 1970	qo	ov. 10, 1970	eb. 1959 une 10, 1971	pr. 1947 une 10, 1971	ar. 31, 1960	ov. 4, 1970	op	do	op	une 10, 1971	op	qo	
Water	Below land- surface datum (ft)	7.45	7	8,03	10 N	2 8	28 4 U	ε v	7.54	8, 71	10.61	11.12	8	ø	æ	
	Altitude of land surface (ft)	1,208	1,199	1,202	1,203	1,194	1,191	1,188	1, 199	1,202	1,180	1,185	1,194	1,189	1,188	
	Water bearing unit	Qal	Qal	Qal	Qal	Qal	Qal	Qal	Qa1	Qa1	Qa.I	Qa1	Qa1	Qa1	Qal	
00	bepth (ft)	52	15	17	48	42	42	1	45	40	38	38	41	42	31	
Cast	Diam- eter (in.)	14	6	٥	çe.	Q	68	1	14	٥	14	14	ø	9	٥	
	Depth of well (ft)	52	15	41	46-48	42	42	31	45	40	38	38	14	42	31	
	Date completed	1970		1967	1965	1959	1947	1954	1970	1968	0261	1970	1967	1969	1967	
	Driller	M. L. Myatt	Royce Eiland	Robert Dale	q	do	Bill Lance and Robert Dale	1	Robert Dale	do	M. L. Nyatt	qo	Robert Dale	Lee Hopper	Robert Dale	
	Owner	Ray C. Morgan	Royce Eiland	ob	Ross Estate	Johnson and Ekern	đô	R. J. Adams	Fred McLaughlin	do	Mrs. N. D. Williamson	do	Johnson and Bleern	ę	op	
	Well	13 47-104	105	106	107	401	402	403	707	405	406	407	408	607	410	
L			英							4	*	4F	۶.	4	*	

- 118 -

ututh ututh <thututh< th=""> ututh ututh</thututh<>	Г															-	-		
Molt Mone Derive Derive <thderive< th=""></thderive<>		Remarks	Yield reported 600 gpm, Four-well manifold system with all holes the same depth and completed the same, pumped by a common pump and motor.	Yield reported 650 gpm. Water reported from gravel at 9 to 39 feet, Red beds reported at 39 feet, $\underline{4}$	Yield reported 300 gpm. Two-well manifold system with both holes the same depth and completed the same, pumped by a common pump and motor.	Yield reported 160 gpm, Water reported from sand and gravel at 8 to 35 feet, Red beds reported at 35 feet.	Destroyed. Formerly, a two-well manifold system used for irrigation, with yield reported 700 gpm.	Yield reported 700 gpm, \underline{y}	Yield reported 300 gpm, Two-well manifold system with both holes the same depth and completed the same, pumped by a common pump and motor, \underline{y}	Driven sandpoint. Water reported from sand and gravel.	Yield reported 400 gpm. Mater reported from sand and gravel at 12 to 42 feet. Red beds at 42 feet.	Yield reported 560 gpm. Four-well manifold system with all holes the mame depth and completed the same, pumped by a common pump and motor.	Unused stock well. Water reported from sand and gravel.	Yield reported 300 gpm, Pour-well manifold system with all holes the same depth and completed the same, pumped by a common pump and motor.	Yield reported 85 gpm. Water reported from sand and gravel.	Unused domestic well, Water reported from sand and gravel.	Not used for human consumption.	Flows from gravel at base of the San Angelo Formation. Yield estimated greater than 5 gpm.	Yield reported strong.
with one and and </td <td></td> <td>Use of water</td> <td>Irr</td> <td>ЦЦ</td> <td>Itr</td> <td>S, TET</td> <td>z</td> <td>Irr</td> <td>Itt</td> <td>D3</td> <td>Irr</td> <td>Irr</td> <td>z</td> <td>Irr</td> <td>Irr</td> <td>z</td> <td>a</td> <td>:</td> <td>D, S</td>		Use of water	Irr	ЦЦ	Itr	S, TET	z	Irr	Itt	D3	Irr	Irr	z	Irr	Irr	z	a	:	D, S
with one bit is one bit is one one <th< td=""><td></td><td>Method of lift</td><td>Cf. E. 25</td><td>Т, с</td><td>cf. G</td><td>cf. G</td><td>z</td><td>T, G, 60</td><td>Cf. 6</td><td>с, и</td><td>д, с</td><td>cf, E, 20</td><td>z</td><td>cf. E. 15</td><td>cf, E, 5</td><td>J, - 1/3</td><td>J, E, 3/4</td><td>Flows</td><td>J, E, 1/2</td></th<>		Method of lift	Cf. E. 25	Т, с	cf. G	cf. G	z	T, G, 60	Cf. 6	с, и	д, с	cf, E, 20	z	cf. E. 15	cf, E, 5	J, - 1/3	J, E, 3/4	Flows	J, E, 1/2
with beam and the set and the se		te of urement	10, 1971	10, 1970 7, 1971	10, 1970	4, 1970	5, 1970	op	6, 1970	:	11, 1970	op	op	op	op	op	10, 1971	3, 1970	9, 1971
walt beam beam <t< td=""><td>aval ava</td><td>Da</td><td>June</td><td>Nov. Jan.</td><td>Nov.</td><td>Nov.</td><td>Nov.</td><td></td><td>Nov.</td><td></td><td>Nov.</td><td></td><td></td><td></td><td></td><td></td><td>June</td><td>Nov.</td><td>June</td></t<>	aval ava	Da	June	Nov. Jan.	Nov.	Nov.	Nov.		Nov.		Nov.						June	Nov.	June
Molti Dome Territate Data one of the completed Data of the completed	Va r	Below land- surface datum (ft)	8	9.85	8.00	9.40	10	9.94	7.39	*	14*50	7.48	7.68	7.81	7.51	9,27	10.30	(+)	20,12
Mol1 Done Terline Deptided Deptide Deptid Deptid <thdeptid< th=""></thdeptid<>		Altitude of land surface (ft)	1,184	1,178	1,183	1,179	1,177	1,176	1,179	1,190	1,179	1,177	1,176	1,177	1,178	1,179	1,171	1,450	1,449
Mot1 Doner Terllaer Inter compteted with Depth with Depth <td></td> <td>Water bearing unit</td> <td>Qa1</td> <td>Qal</td> <td>Qa1</td> <td>Qa1</td> <td>Qal</td> <td>Qa1</td> <td>Qa.1</td> <td>Qa1</td> <td>Qa1</td> <td>Qal</td> <td>Qal</td> <td>Qa1</td> <td>Qal</td> <td>Qal</td> <td>Qal</td> <td>Pprsa</td> <td>Pprsa</td>		Water bearing unit	Qa1	Qal	Qa1	Qa1	Qal	Qa1	Qa.1	Qa1	Qa1	Qal	Qal	Qa1	Qal	Qal	Qal	Pprsa	Pprsa
Mot1DenerDrillerDenerDrillerDenerDrillerDenerDrillerDenerDenerDrillerDene		Depth (ft)	42	40	39	35	ł.	35	35	16	32	28	28	28	28	29	29	;	45
MeII Domer Driller Durft Durft <t< td=""><td>Daal</td><td>Diam- eter (in.)</td><td>ġ.</td><td>14</td><td>9</td><td>12</td><td>:</td><td>16</td><td>ę</td><td>52</td><td>18 14</td><td>9</td><td>9</td><td>9</td><td>9</td><td>9</td><td>5</td><td>1</td><td>2</td></t<>	Daal	Diam- eter (in.)	ġ.	14	9	12	:	16	ę	52	18 14	9	9	9	9	9	5	1	2
WeIl Owner Driller Duplied WeIl Owner Doner Duplied 11-4/7-411 Johnson and Stern Robert Dale 1967 * 701 J. G. Farkter Lee Hopper 1964 * 703 J. G. Farkter Lee Hopper 1964 * 703 J. G. Farkter Lee Hopper 1964 * 703 Horace H. Goffee N. F. Lantz 1965 * 703 John D. Alosandrer 4.0 1965 * 703 John D. Alosandrer *. L. Moat 1965 * 703 John D. Alosandrer *. L. Moat 1965 * 703 John P. Alosandrer *. L. Moat 1966 * 703 John P. Alosandrer *. L. Moat 1966 * 704 John P. Alosandrer *. L. Moat 1966 * 703 John P. Alosandrer *. L. Moat *. L * 704 Bobert Dale 1964 *		Depth of well (ft)	42	40	39	35	38	35	35	16	42	28	28	28	28	29	32	Spring	45
Well Domer Detiller 1J-47-411 Johnson and Rieern Robert: baile 1J-47-411 Johnson and Rieern Robert: baile * 703 J. G. Farker Lee Hopper. * 703 Horace H. Coffee M. F. Lantz * 703 Horace H. Coffee M. F. Lantz * 703 John D. Alexander M. F. Lantz * 704 M. F. Lantz * 704 M. F. Lantz * 704 M. E. Lantz * 703 Lee A. Robertson Robert bale * 711		Date completed	1967	1964	1964	1965	1962	1970	1964	i.	1964	1968	1965	1965	1970	1970	1965	÷	1968
Mell Owner Hell Johnson and Ekern * 701 J. G. Parker * 702 Johnson and Ekern * 703 Horace h. Coffee * 703 John D. Alexander * 703 John D. Alexander * 704 John D. Alexander * 703 James Sullivan * 703 James Sullivan * 704 James Sullivan * 709 Lee A. Roberson * 710 do * 711 do * 712 do * 713 do * 714 Kiley Thomas * 53-108 J. F. Calvert * 109 J. F. Calvert		Driller	Robert Dale	Lee Hopper	op	W. F. Lantz	1	M. L. Myatt	Robert Dale	:	Robert Dale	ę	qo	op	do	op	op	1	Carl Bradford
Me11 13-47-4111 * 701 * 703 * 704 * 703 * 704 * 703 * 704 * 704		Owner	Johnson and Ekern	J. C. Parker	do	Horace B. Coffee	John D. Alexander	do	James Sullivan	qo	Charles S. White	Lee A. Roberson	do	qo	do	do	Wiley Thomas	J. F. Calvert	Lomie Ross
* * * * * * * * * * * *		Well	11-47-411	102	702	203	704	705	706	707	708	209	710	711	712	713	714	53-108	109
	L		1221	*	*	26		4		*	*		4		*	() ()	*	*	÷

- 119 -

						Casi	Bu		Γ	Wate	ir leve				
Well		Owner	Driller	Date completed	Depth of well (ft)	Diam- eter (in.)	Depth (ft)	Water bearing unit	Altitude of land surface (ft)	Below land- surface datum (ft)	Da meas	te of urement	Method of lift	Use of water	Remarks
13-53-	110 F	flynn Estate		1924	15	Q	15	Pprsa	1,414	11.53	June	9, 1971	J. E. 1/2	D	Yield reported strong.
	402 1	luke Graf	ł	;	26	1	ŧ	Pcf	1,368	25,48	Nov.	3, 1970	J. E. 1/3	s	Dug well.
	501 W	N. L. Quisenberry	W. L. Quisenberry et al.	1961	13	1	÷	Qal	1,320	10.87		do	z	z	Dug well. Unused domestic well. Water reported from fine gravel.
	502 0	Cleve E. Pursley	1	;	12	4	:	Qal	1,329	8.74		op	z	z	Dug well, Unused industrial well, Formerly supplied water for the Farmers Valley Gin. Mater reported from sand and gravel.
	503	do	1	;	24	;	1	Pcf	1, 325	12.58	.vov.	6, 1970	J, E. 1/3	s, D	Dug well. Yield reported weak.
54-	501 6	City of Vernon	Cap Huddlenton	1	50	1	\$1	Qs	1, 199	3.74 8.31 10.83 11.26 11.26 12.37 8.00 3.88	Oct. Feb. Jan. Jan. Jan. Dec.	14, 1943 9, 1952 7, 1955 8, 1955 8, 1955 15, 1955 3, 1958 3, 1958 117, 1962 10, 1969	z	×	Dug well. Unused public supply well, last used in 1900. Use the transmission of Verson rept. \underline{y} well C-150 of Bull, 5614. \underline{y}
	502	do	do	5	16	8	t.	qs	1,199	3.78 7.68 4	Oct. Feb.	14, 1943 27, 1951 10, 1969	т, Е, з	Ē.	Dug well. Well now used only occasionally to fill the city swimming pool.
	503	op	do	;	16	1	1	Qs	1,199	3.21 6.84	Oct. Feb. Dec.	14, 1943 27, 1951 10, 1969	z	26	Dug well. Unused public supply well, last used in 1939.
	504	op	op	31/	18		t.	Qs	1,199	3.24 6.23	Oct. Feb. Dec.	17, 1943 9, 1952 10, 1969	z	z	. Do.
	505	đo	do	1	18	Ť	1	Qs	1,199	$\frac{2.87}{4}$	Oct. Dec.	17, 1943 10, 1969	N	z	Do.
	506	do	do	:	18	:	ŧ	Qu	1,199	2,82 4	Oct. Dec.	17, 1943 10, 1969	z	z	bo,
	507	do	do	:	18	:	;	Qs.	1,199	3.03	Oct. Dec.	17, 1943 10, 1969	т, Е.	d	Dug well. Well now used only occasionally to fill the eity swimming pool.
	508	do	do	4	18	1	(†)	Qs	I, 199	2.79	Oct. Dec.	14, 1943 10, 1969	z	N	Dug well. Unused public supply well, last used in 1939.
	509	do	qo	t	18	ţ.	;	Qs	1,199	2.74 4	Oct. Dec.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	z	z	bo.
	510	do	1	:	Spring	:	:	Qa	1,196	(+)	Dec.	10, 1969	Flows	N	Flows northward from approximately the base of the Seymour Formation.
	8 115	Benjamín H. Smith, Jr.	Robert Dale	9961	28	5	28	Qa1	1, 191	9	Feb.	12, 1970	сғ, с, 26	Ire	Vield reported 90 gpm, Mater reported from and and gravia at 17 to 27 feet, Red beds reported at 27 feet, Four-well manifold system with all holes the same depth and completed the same, pumped by a common pump and motor.

_															100	
	Remarka	Yield reported 400 gpm, Six-well manifold system with all holes the same depth and completed the same, pumped by a common pump and motor.	Vield reported 600 gpm. Four-well manifold system with all holtes the same depth and completed the same, pumped by a common pump and motor.	Yield reported 700 gpm. Four-well manifold system with all holes the same depth and completed the same, pumped by a common pump and motor.	Yield reported 80 gpm. Mater reported from sand and gravel at 19 to 29 feet. Red heds reported at 29 feet. Five-wall manifold wystem with all holas the same depth and completed the same, pumped by a common pump and motor.	Originally a five-well manifold system drilled in 1968. System was rederilled by R. Dule in 1971 and only four holes were redrilled with all holes being the same depth and completed the same, pumped by a common pump and motor, $\underline{y} \ge 1$	Yield ruported 160 gpm, Mater reported from gravel from 33 to 53 feet, Red bedn reported at 53 feet.	Yield reported 400 gpm, Mater reported from sand and gravel with base at 53 feet.	3	Water reported from and and gravel at 15 to 42 feet. Red beds reported at 42 feet. Weil 109 of Vernon rept. §	Well 110 of Vernon rept. S	Yield reported 100 gpm. This well and well 13-54-707 were in a two-well manifold system until Feb. 1970; wells are now pumped separately.	Yield reported 100 gpm. This well and well 13-54-706 were in a two-well manifold system until Feb. 1970; wells are now pumped separately.	Yield reported 100 gpm. Water reported from sand and gravel at 33 to 41 feet. Red beds reported at 41 feet.	Yield reported 103 gpm, Whiter reported from sand and gravel at 27 to 35 feet, Red beds reported at 35 feet.	Destroyed Irrigation manifold system. Now sanded up. Yield reported 200 gpm. Water reported from sand and gravel at 21 to 32 feet. Red beds reported at 32 feet.
	Use of water	Irr	ltr	Irr	ltr	ltr	Itr	Irr	Itr	Itr	D, S	Irr	Irr	Irr	Irr	z
	Method of lift	Cf, E, 25	cf, E, 25	cf, E, 25	cf, G, 26	Gf, E, 40	1, E, 10	T, E, 30	T, G, 30	T, G, 20	Cf, E, 1/3	cf, E. 2	cf. E.	т. Е. 15	T, E, 10	Cf. E, 30
r level	Date of measurement	June 10, 1971	op	op	Feb. 12, 1970	Mar. 30, 1971 June 22, 1971	July 8, 1960 Dec. 2, 1970	July 8, 1960 Dec. 2, 1970	Mar. 10, 1970	do	Nov. 2, 1943	Mar. 24, 1970	do	da	op	:
Wate	Below land- surface datum (ft)	12	12	12	7,01	12,11.67	18.74 28.15	19.96 25.44	14.99	18, 55	10.79	21.58	22.29	28.19	22.07	1
	Altitude of land surface (ft)	1,197	1,199	1,195	1,197	1,190	1,246	1,247	1,235	1,234	1,236	1,242	1,241	1,250	1.250	1,241
	Water bearing unit	Qa1	Qal	Qul	Qal	Qal	Qs	qs	Q8	Qs	Qs	Qs	Q8	ős	Qs	Qs
ne.	Depth (ft)	31	31	31	30	29	55	55	99	42	14	15 35	15 35	41	35	33
Casi	Diam- eter (in.)	9	ç	9	.o	رد.	10	14	14	12	4	48 16	48 16	14	14	8
	Depth of well (ft)	31	31	11	30	29	55	55	64	42	14	35	35	41	35	33
	Date completed	1967	1967	1969	1968	1968	1960	1958	1960	before 1943	:	1958	1958	1953	1959	1960
	Driller	Robert Dale	do	Lee Hopper	do	Lee Hopper and Robert Dale	L. E. Stamps	do	Robert Dale	1	I	L. E. Stamps	op	Robert Dale	do	L. E. Stamps
	Owner	Johnson and Ekern	do	qo	Benjamin H. Smith. Jr.	Hillerøst Country Club	Mrs. Cota King	do	Donna Moore	do	op	Willie Kieschnik, Jr.	do	Donna Moore	Willie Kieschnick, Sr.	ę
	Well	13-54-512	513	514	515	516	102	702	703	204	705	706	707	708	602	210
L		4	4		*	5	4	4			4		44			

_			_		_					_	_	_			_					_		_
	Remarks	Yield reported 30 gpm. Mater reported at 29 to 35 feet, Red beds reported at 36 feet,	Water reported from and and gravel at 12.5 to 45 feet. Red bels reported at 45 feet. Well 13-54-713 pumps into this well. $\underline{2}$	Yield reported 75 gpm, Water reported from suid and gravel at 27 to 38 feet, Red beds reported at 38 feet, This well pumps into well 13-54-712.	Yield reported 65 gpm, Water reported from sand and gravel.	Yield reported 290 gpm, Water reported from sand and gravel.	Yield reported 345 gpm. \underline{y}	Yield reported 160 gpm. Water reported from sand and gravel.	The water-level measurement shown was obtained while well was pumping. Yield reported 400 gpm. \underline{y}	Yield reported 25 gpm, Mater reported from sand and gravel at 17 to 40 feet. Red beds reported at 40 feet.	Yield reported 25 gpm, Water reported from sand and gravel.	Yield reported 20 gpm. Water reported from sand and gravel. Well 13-54-722 pumps into this well.	Yield reported 10 gpm, Water reported from sand and gravel. This well pumps into well 13-54-721.	Yield reported weak, Water reported from sand and gravel.	Unused irrigation well. Yield reported 25 gpm. Water reported from sand and gravel.	<u>4</u> 2	<u>1</u> /2	<i>h</i> 2 <i>F</i> .	1	r	17 F	
	Use of water	20	Irr	Irr	Irr	Irr	Irr	Irr	Itr	Itr	Irr	Irr	Irr	D, S	N	Irr	Irr	lrr	Irr	Q	Itr	
	Method of 11ft	Sub, E, 3/4	T, E, 15	T, E, 10	Т, Е,	T, E, 20	т, Е, 15	T, E, 10	т, Е, 25	T, E, 10	cf, E, 5	T, E, 10	cf, E, 3	J, E, 1/3	т, -	Sub, E,	T, E, 15	T, E	Sub, E	J, E, 1/3	sub, E, 1	
r level	Date of measurement	Mar. 24, 1970	do	do	Apr. 3, 1970	do	do	do	July 29, 1970	Dec. 9, 1970	do	do	do	do	do	Aug. 28, 1970	Jan. 10, 1967	Mar. 23, 1971	*	Apr. 11, 1967	Apr. 4, 1971	
Wate	Below land- surface datum (ft)	28,93	27,58	26,29	24.81	20,38	25.87	24.35	49.49	27,33	31.64	32.69	37,40	28	24.89	27	18	27	1	24.5	29	
	Altitude of land surface (ft)	1,250	1,249	1,248	1,251	1,242	1,250	1,254	1,248	1,244	1,250	1,250	1,250	1,250	1,238	1,251	1,242	1,255	1,258	1,237	1,255	
	Water bearing unit	Qs	Qs	Qs	Qs	qs	QB	Qs	Qs	Qs	Qs	Qs	Qs	Qs	Qs	qs	Qs	Qs	qs	QS	Qs	
ing	Depth (ft)	37	46	39	38	40	54	38	56	42	42	42	42	42	14	52	21	58	40	45	46	
Cas	Diam- eter (in.)	ę	14	14	14	16	14	14	14	14	14	14	14	9	14	14	14	14	9	9	14	
	Depth of well (ft)	37	46	39	38	40	54	38	56	42	42	42	42	42	41	52	15	58	40	45	46	
	Date completed	1969	1963	1956	1956	1960	1968	1966	1967	1962	1956	1964	1965	1965	1959	1970	1967	1971	1969	1965	1971	
	Driller	Robert Dale	op	L. E. Stamps	do	Jîm Rae	Robert Dale	do	do	op	L. E. Stamps	Robert Dale	do	do	L. E. Stamps	Robert Dale	do	do	Lee Hopper	1	Robert Dale	
	Owner	Willie Kieschnick, Jr.	Wille Kieschnick, Sr.	do	Albert G. Graf	do	Curtis A. Graf	Albert C. Graf	Joe Frank Lowe	Otto J. Obenhaus, Jr.	op	op	do	qp	Mrs. Jack Orr	Dr. J. P. Eaton	Maurice Oliver	Frank Kock	do	Myrtle Welch	Albert C. Graf	
	Well	13-54-711	712	617	714	715	716	717	218	612	720	721	722	723	724	725	726	727	728	729	730	
-		*	*		*	*	*	*	2	*	5	*	*	*	_	_		_		*	_	

- 122 -

nued	
NolesConti	
Test	
Selected	
and	
Springs,	
Wells,	
Water	
of	
4Records	
Table	

-											
	Remarks	<u>J</u> , <u>2</u>	Yield reported 225 gpm. Water reported from sand and gravel. Well G-330 of Bull. 5614. J	Unused public supply well, capped with comment. Yield reported 300 gpm. Mater reported from and gravel. Well G-329 of Bull, $\beta_0(4, 2)$	Yield reported 225 gpm, Water reported from sand and gravel.	Yield reported 257 gpm. Water reported from sand and gravel at 22 to 41 feet. Red beds reported at 41 feet. Well G-146 of Vermon rept. \tilde{y} Well G-146 of Vermon rept. \tilde{y}	Yield reported 300 gpm. Water reported from sand and gravel at 22 to 41 feet, Well 145 of Vernon rept. § Well G-145 of Bull, 5614, $\underline{\gamma}$	Yield reported 150 gpm. Water reported from sand and gravel at 22 to 41 feet. Red beds reported at 41 feet. Well 143 of Vernon rept. \underline{y} Well G-143 of Bull, 5614, \overline{y}	Yield reported 165 gpm. Water reported from sand and gravel.	Yield reported 225 gpm. Water reported from sand and gravel. 2: Well G-328 of Bull. 5614.]/	
	Use of water	Irr	Δ.	z	24	Ċ.	<u>c.</u>	e.	۵.	α.	
	Method of lift	Т, Е	т, ₅ е,	N	т, в,	T, E, 5	т, в. 15	T, E,	т, Е,	т, _{Е,}	
er level	Date of measurement	May 13, 1971	 May 17, 1949 Jan. 9, 1952 Jan. 8, 1955 Jan. 8, 1955 Jan. 15, 1956 Jan. 29, 1960 Jan. 29, 1960 Dec. 10, 1963 Dec. 10, 1963 	May 17, 1949 Feb. 27, 1951 Jan. 7, 1953 Jan. 6, 1956 Jan. 8, 1955	May 17, 1949 Jan. 8, 1956 Jan. 15, 1957 Jan. 25, 1953 Jan. 29, 1960 Dec. 9, 1960 Feb. 5, 1971	Apr. 11, 1941 Nov. 10, 1943 Jan. 6, 1954 Jan. 29, 1957 Jan. 29, 1960 Dec. 9, 1969 Feb. 5, 1971	Apr. 11, 1941 Oct. 11, 1943 Jan. 6, 1954 Jan. 15, 1957 Jan. 18, 1963 Dec. 10, 1963 Feb. 5, 1971	Apr. 11, 1941 Oct. 23, 1943 Feb. 9, 1952 Jan. 18, 1963 Jan. 18, 1963 Dec. 10, 1969 Feb. 5, 1971	Jan. 8, 1956 Jan. 15, 1957 Jan. 5, 1958 Jan. 18, 1963 Dec. 10, 1969	May 17, 1949 Feb. 9, 1952 Jan. 6, 1954 Jan. 15, 1957 Feb. 5, 1971	
Wat	Below land- surface datum (ft)	25	32 29.70 24.36 21.65 17.31 16.34 15.72 18.33 18.33 20.03	31.97 30.97 31.77 31.77 28.57	27 26.49 23.65 18.92 17.81 21.27 21.39	22 20.47 31.98 24.26 17.79 20.16 20.91	22 18.73 32.36 22.76 16.70 20.73 22.97	22 16.43 31.40 24.93 15.43 24.56 24.56	27.03 22.60 17.73 16.59 30.06	31 32.92 33.23 24.18 17.12 20.67	
	Altitude of land surface (ft)	1,246	1,231	1,230	1,229	1,230	1,231	1,232	1, 231	1,231	
	Water bearing unit	Qs	Q8	Śs	Qs	Qs	Q8	Śs	Qs	Qs.	
Bu	Depth (ft)	42	42	38	44	42	45	17	45	14	
Casi	Diam- eter (in.)	14	18	18	18	18	18	18	18	18	
	Depth of well (ft)	42	42	38	44	42	45	41	45	41	
	Date completed	161	1948	1939	1947	1940	1939	1940	1947	1946	
	Driller	Robert Dale	Bill Turner	H. E. Reed	qp	ê	Tom Chance and H. E. Reed	H. E. Reed	Bill Turner	H. E. Reed	
	Owner	Arthur Schultz	City of Vernon	đo	ę	op	ę	ġ	ę	Ŷ	
	Well	13-54-731	801	802	803	804	805	806	807	808	
						4	*	#		*	

- 123 -

	Remarks	Yield reported 150 gpm, Water reported from sand and gravel.	Well G-325 of Bull, 3614. 4 2	Unused public supply well. Yield reported 117 gpm. Well G-326 of Bull, 3614, 7/	Former public supply well. Yield reported 65 gpm. Well G-327 of Bull, 5614, $\gamma_{\rm J}$	Unused public supply well, capped with cement. Yield reported 225 gpm. Well G-324 of Bull, 5614 , $\overline{\gamma}$	Destroyed public supply well. Yield reported 81 gpm. Well G-323 of Bull, 5614, γ	Destroyed public supply well. Yield reported 117 gpm. well G-322 of Bull, 5614, $\vec{\gamma}$	Destroyed public supply well. Well 160 of Vermon rept. \hat{y}_{1} well G-160 of Bull. 5614. \hat{y}_{1}	Destroyed public supply well. Yield reported 150 gpm. J 2 Well 163 of Vermon rept. $\mathcal{G}_{\rm V}$ Well G-163 of Bull, 5614. γ	Yield reported 150 gpm. Well 164 of Vermon rept. 5 Well G-164 of Bull, 5614, 7
	Use of water	4	a.	z	٩	z	z	z	z	z	D
	Method of 11 ft	т, ₅	T, E, 10	z	J, E, 1/3	N	z	z	z	ż	т, к,
	vel Date of asurement	8, 1956 15, 1957 5, 1958 29, 1960 18, 1960 18, 1963	27, 1951 6, 1954 18, 1963 18, 1963 18, 1966 21, 1967 13, 1970 8, 1971	17, 1949 27, 1951 6, 1954 15, 1957 15, 1957 30, 1961 10, 1969	17, 1949 15, 1957 4, 1958 30, 1961	17, 1949 27, 1951 7, 1953 6, 1954	17, 1949 27, 1951 8, 1953 8, 1953 8, 1955 15, 1957 18, 1963	17, 1949 27, 1951 8, 1953 6, 1954	27, 1951 6, 1954 8, 1955 15, 1957 29, 1960 18, 1963	11, 1941 27, 1951 8, 1953 8, 1956 15, 1957 15, 1957	30, 1943 27, 1951 6, 1954 15, 1957 15, 1957 18, 1963 13, 1970 5, 1971
	Ter le	Jan Jan Jan Jan Dec	Feb Jan Jan Jan Jan	May Peb Jan Jan Dec.	May Jan Jan Dec	May Feb Jan Jan	May Feb Jan Jan Jan	May Feb Jan Jan	Feb Jan Jan Jan Jan	Apr Feb Jan Jan Jan	Oct Jan Jan Jan Feb
	Ma Below land- surface datum (ft)	24,78 22,54 18,31 16,8 16,00 20	27.01 32.42 17.46 19.32 20.60 19.70 20.88	31 24,99 32,12 25,53 17,50 24,	31 25.08 21.45 18.34 24.04	30 24.25 28.26 29.74	26 31.26 31.75 31.75 27.75 19.09	30 31.00 31.22 31.71	32,92 33,25 32,05 28,44 28,44 18,99	27.93 33.14 33.27 29.00 27.40 18.39	27.10 32.68 34.53 27.42 16.72 20.91 19.57
	Altitude of land surface (ft)	1,232	1,227	1,224	1,224	1,221	1,215	1,214	1,213	1,216	1,217
	Water bearing unit	Qs	Q_{5}	Qs	4a Ga	Qn	Qn	Qs	Qn	Qa	Q_S
	ng Depth (ft)	45	45	41	43	17	1	1	;	:	44
	Cast Diam- eter (in.)	18	1.8	18	18	18	8	1	-12	:	18
	Depth of well (ft)	45	45	41	43	41	44	43	40	95	77
	Date completed	1947	1950	1946	1946	1948	1948	1926	1925	1926	1925
	Driller	Bill Turner	ę	H. E. Reed	do	Bill Turner	ę	Layne-Texas Co.	op	do	op
	Owner	Gity of Vernon	qo	op	do	qo	qo	qo	do	do	op
	Mell	13-54-809	810	811	812	813	814	815	816	817	818
1			*							*	

Table $\dot{\alpha}_{\star^{\star}}\text{--Records}$ of Water Wells, Springs, and Selected Test Holes--Continued

_										
	Remarks	Yield reported 175 kpm. Well 165 of Vermon rept. \hat{g} well G-165 of Bull, 5614. \hat{T}_{i}	Destroyed public supply well. Yield reported 98 gpm. $\underline{2}$ Well G-321 of Bull, 3614. $\underline{\gamma}$	Yield reported 180 gpm. Water reported from sand and gravel at 22 to 44 feet. Well 166 of Vernon rept. $\tilde{3}$ Well G-166 of Bull, 3614 , $\tilde{\gamma}$	Former public supply well for city of Vernon. Tield reported 150 gpm. Mater reported from and and gravel at 22 to 43 feet. Well 167 of Wernon rept. \hat{S} Weil G-167 of Bull, 5614, \hat{Z}	Yield reported 225 gpm. Water reported from sand and gravel. Well G-332 of Bull, 5614 , $\underline{\gamma}$	Yield reported 100 gpm. Well G-333 of Bull, 5614, $\underline{\gamma}$	Unused public supply well, Yield reported 100 gpm. Water reported from sand and gravel. \underline{g} Well G-331 of Bull, 5614, $\overline{\eta}$	Yield reported 300 gpm, Mater reported from sand and gravel,	Do.
	Use of water	<u>а</u>	z	D.,	a	G.a	£.	N	d	Ω.
	Method of lift	T, <i>E</i> ,	z	т, ₅ Е,	J, E	т, ^в ,	т. в. 5	z	T, E, 7-1/2	T, E, 7-1/2
or level	Date of measurement	Apr. 11, 1941 Feb. 27, 1951 Jan. 8, 1953 Jan. 8, 1955 Jan. 15, 1955 Dat. 15, 1957 Feb. 5, 1971	May 17, 1949 Feb. 27, 1951 Jan. 8, 1956 Jan. 15, 1957 Jan. 29, 1960 Jan. 18, 1963	Apr. 11, 1941 Nov. 12, 1943 Feb. 27, 1951 Jan. 8, 1956 Jan. 30, 1961 Dec. 10, 1969 Feb. 5, 1971	Apr. 11, 1941 Oct. 14, 1943 Jan. 8, 1953 Dec. 10, 1969	May 17, 1949 Jan. 6, 1954 Jan. 8, 1955 Jan. 8, 1953 Jan. 18, 1953 Par. 10, 1963 Peb. 4, 1971	Jan. 6, 1954 Jan. 8, 1955 Jan. 15, 1957 Jan. 5, 1958 Jan. 18, 1963 Dec. 10, 1969	Feb. 27, 1951 Jan. 6, 1954 Jan. 18, 1963 Jan. 14, 1965 Jan. 11, 1959 Jan. 13, 1970 Jan. 8, 1971	May 17, 1949 Jan. 15, 1957 Jan. 5, 1958 Jan. 18, 1963 Dec. 10, 1969	May 17, 1949 Jan. 8, 1956 Jan. 2, 1958 Jan. 29, 1960 Jan. 18, 1963 Dec. 9, 1963 Feb. 4, 1971
Wat	Below land- surface datum (ft)	27, 91 33,55 34,18 32,00 27,58 20,09 20,67	28 35.21 30.04 28.52 22.10 19.37	22 29.24 36.73 32.83 23.83 23.39 23.39	28.51 25.73 33.63 20	26 34,92 32.06 29.14 27.43 33.51	35.93 33.44 32.27 31.61 28.17 33	29.93 33.47 25.53 28.60 31.22 30.67	26 28.93 28.55 25.21 31.07	26 29,82 28,48 26,19 25,50 31,02 31,50
ľ	Altitude of land surface (ft)	1,218	1,214	1,218	1,220	1,252	1,253	1,251	1,251	1, 253
	Water bearing unit	da Qa	Ś	Qs	Qs	ds.	Qs	da	Qs	s - S
Bu	Depth (ft)	46	1	46	43	44	40	40	46	45
Cast	Diam- eter (in.)	18	1	18	18	18	18	1/2 18	18	18
	Depth of well (ft)	4.6	43	46	43	44	40	40	46	45
	Date completed	1925	1945	1926	1933	1947	1945	1945	1946	1947
	Driller	Layne-Texas Co.	H. E. Reed	Layne-Texas Co.	qo	H. E. Reed	City of Vernon	do	Bill Turner	op
	Owner	City of Vernon	ор р	đo	Burke Estate	City of Vernon	ob	g	do	ġ
	Well	13-54-819	820	821	822	823	824	825	826	827
L		*		*	æ				*	

	Remarks	Yield reported 225 gpm, Mater reported from sand and gravel.	Vield reported 200 Rpm, Water reported from sand and gravel.	Yield reported 150 gpm. Mater reported from sand and gravel. Well G-334 of Bull. 5614. J	Dug well, Water reported from sand and gravel at 20 to 42 feet. Rud beds reported at 42 feet. Well 133 of Vernon rapt. §	Dug well. Water reported from sand and gravel at 20 to 42 feet. Rud beds reported at 42 feet. Well 114 of Vernon rept. \tilde{S}	Unused irrigation manifold system. Yield reported weak. There are 12 wells in the system, all the same deph and completed the same, pumped by a common pump and motor. Mater reported from sand and gravel.	Former public supply well, capped with cament. Yield reported 65 gpm. Well 154 of Vernon rept. 3/	Dug well, Unused irrigation well. Yield reported 200 gpm. Water reported from sand and gravel. \dot{y} Well 144 of Vernon rept. \ddot{y}	ł.	Vield reported 200 gpm.	<u>1/2</u> /	12	Water reported from sand and gravel at 20 to 31 feet. Red beda reported at 31 feet.
	Use of water	۵.	c.,	a.	D, Irr	D, ltr	и	z	и	Irr	Irr	Irr	Irr	Itr
	Method of lift	т, к,	т, Е, 3	т, ^в ,	J, E,	J, E,	cf, c	z	z	Cf, E	T, E, 25	T, E, 10	T, E, 15	T, E, 7-1/2
	te of urement	17, 1949 15, 1957 29, 1960 30, 1961 18, 1963 9, 1963	27, 1951 15, 1951 15, 1957 29, 1960 18, 1963 10, 1963	9, 1952 8, 1955 8, 1956 8, 1957 15, 1957 9, 1960 9, 1971	2, 1943 28, 1951 7, 1955 3, 1958 17, 1963 22, 1971	2, 1943 10, 1952 7, 1956 3, 1958 25, 1958 22, 1971	16, 1970	17, 1949	11, 1941 12, 1943 10, 1969 13, 1970 8, 1971	10, 1969	19, 1970	3, 1969 19, 1970	14, 1968 19, 1970	5, 1970
ar leve	Da	May Jan. Jan. Jan. Dec.	May Feb. Jan. Jan. Dec.	Feb. Jan. Jan. Jan. Pec.	Nov. Feb. Jan. June	Nov. Feb. Jan. May June	Apr.	May	Apr. Oct. Jan. Jan.	Dec.	Feb.	Apr. Feb.	Mar. Feb.	Mar.
Wate	Below land- surface datum (ft)	26 25,35 21,84 22,70 21,72 22,72	26 27.63 28.17 24.97 25.70 31	22.96 24.40 22.50 24.10 19.90 30.90 30.52	17.29 22.48 23.14 17.49 20.40 29	17.42 23.20 21.29 17.74 19.19 26.60	26	30	22.25 16.50 19.90 20.72 21.10	20.70	26.67	28 28,01	28 26,82	21.05
	Altitude of land surface (ft)	1,252	1,251	1,254	1,241	1,242	1,258	1,220	1,232	1,232	1, 251	1,252	1,252	1,234
	Water bearing unit	38	Qa	Qa	Qs	Qa	Qs	ds	Qa	Qs	Qn	Qs	Qs	Qs
Bu	Depth (ft)	38	41	41	ł	6	29	77	ł	41	45	46	47	32
Cant	Diam- eter (in.)	18	18	18	i -	120	8	18	ł	14	16	14	14	14
	Depth of well (ft)	8	41	41	43	38	29	44	28	41	45	46	47	32
	Date completed	1947	1946	1949	:	i	1958	1927	1938	1966	1969	1969	1968	1955
	Driller	H. E. Reed	Ŷ	Bill Turner	Tom Chance	op	Robert Dale	Layne-Texas Co.	Tom Chance	Robert Dale	Lee Hopper	Robert Dale	do	L. E. Stamps
	Owner	City of Vernon	op	ę	R. L. More, Jr.	do	Martha Wilhelm	City of Vernon	op	Fred Schmoker	Mrs. F. B. Elliott	do	Harold Star	Curtis R. Renfro
	Well	13-54-828	829	830	831	832	813	834	835	836	837	838	839	840
		*		*		*		*		_	*			*

441 $\overline{0}$ or $$	_										_				_					
with with </td <td></td> <td>Remarks</td> <td></td> <td>Mater reported from sand and gravel at 20 to 31 feet, Red beds reported at 31 feet.</td> <td>bo.</td> <td>bo.</td> <td>Unused irrigation well. Mater reported from sand and gravel at 20 to 31 feet, Red beds reported at 31 feet.</td> <td>Yield reported greater than 75 gpm. Water reported from sand and gravel.</td> <td>Yield reported 150 gpm. Water reported from and many tervitibase at 42 feet. Former public supply well for the city of Vernon. Well 152 of Vernon rept. \underline{S}</td> <td>Vield reported 150 gpm. Water reported from sand and gravel. This well pumps into well 13-54-848.</td> <td>Vield reported greater than 50 gpm. Former public supply well for city of Vernon, \underline{y} Well 153 of Vernon rept. \underline{S}</td> <td>\overline{h} \overline{z}</td> <td>Water reported from gravel.</td> <td>One well of four-well collector system.</td> <td>Do.</td> <td>Do.</td> <td>Yield reported 25 gpm. One well of a four-well collector system. \underline{J}</td> <td>:</td> <td>Viald reported 98 gpm. Water reported from and manual graves representing the form will 173 of Well 5614. \vec{y} Well G-173 of Bull. 5614. \vec{y}</td> <td>Destroyed public supply well. Yield reported 11/3 gpm. Water reported from sand and gravel at 25.10 48 feet. Well 174 of Vernon rept. \underline{y} Well G-174 of Bull. 5614. \underline{y}</td>		Remarks		Mater reported from sand and gravel at 20 to 31 feet, Red beds reported at 31 feet.	bo.	bo.	Unused irrigation well. Mater reported from sand and gravel at 20 to 31 feet, Red beds reported at 31 feet.	Yield reported greater than 75 gpm. Water reported from sand and gravel.	Yield reported 150 gpm. Water reported from and many tervitibase at 42 feet. Former public supply well for the city of Vernon. Well 152 of Vernon rept. \underline{S}	Vield reported 150 gpm. Water reported from sand and gravel. This well pumps into well 13-54-848.	Vield reported greater than 50 gpm. Former public supply well for city of Vernon, \underline{y} Well 153 of Vernon rept. \underline{S}	\overline{h} \overline{z}	Water reported from gravel.	One well of four-well collector system.	Do.	Do.	Yield reported 25 gpm. One well of a four-well collector system. \underline{J}	:	Viald reported 98 gpm. Water reported from and manual graves representing the form will 173 of Well 5614. \vec{y} Well G-173 of Bull. 5614. \vec{y}	Destroyed public supply well. Yield reported 11/3 gpm. Water reported from sand and gravel at 25.10 48 feet. Well 174 of Vernon rept. \underline{y} Well G-174 of Bull. 5614. \underline{y}
with bit model (1) model (1) <t< td=""><td></td><td>Use</td><td>water</td><td>Irr</td><td>ltr</td><td>Irr</td><td>z</td><td>Irr</td><td>Itr</td><td>Irr</td><td>Itr</td><td>Itr</td><td>Irr</td><td>Irr</td><td>Irr</td><td>Irr</td><td>Irr</td><td>Irr</td><td>a.</td><td>z</td></t<>		Use	water	Irr	ltr	Irr	z	Irr	Itr	Irr	Itr	Itr	Irr	Irr	Irr	Irr	Irr	Irr	a.	z
with bit metric bit metric b		Method	lift	T, E, 7-1/2	T, E, 7-1/2	T, E, 7-1/2	z	T, E, 10	т, Е, 5	T, E,	т, Е,	Sub, E, 10	T, E, 15	1	ŧ	;	Cf, E, 2	T, E, 10	т, _Е ,	z
with the metric (2) metric (2) <thmetric (2) metric (2) metric (2</thmetric 	Level	Date of measurement		Mar. 5, 1970	do	op	do	Apr. 16, 1970	Nov. 1, 1943 Dec. 9, 1970	op	1929 1943 Dec. 9, 1970	Feb. 14, 1970	1969	1	t	ţ	Mar. 5, 1970	1	Apr. 11, 1941 Oct. 13, 1943 Jan. 8, 1955 Jan. 29, 1960 Jan. 18, 1963 Jec. 10, 1969	Apr. 1941 Occ. 14, 1943 Feb. 27, 1951 Ann. 7, 1953 Jan. 29, 1960 Jan. 29, 1960
w11 Contrat Definition Definition Contrat Contra Contrat Contrat	Water	Below land- surface	datum (ft)	22.94	20.61	19.94	20,80	25.89	18.46 20.15	20.17	16 20 20,78	17	18	1	;	1	25	1	25 28.47 29.52 25.52 25.98 25 25	25 32.26 32.30 41.20 37.86 29.29
will Desire Desire <thdesire< th=""> Desire <thdesire< th=""> <thdesire< th=""></thdesire<></thdesire<></thdesire<>		Altitude of land	(ft)	1,236	1,234	1,237	1,238	1,252	1,221	1, 221	1,222	1,224	1,234	1.259	1,260	1,261	1,264	1,220	1,232	1,230
Mail Description Description Constrain Constrain <t< td=""><td></td><td>Water</td><td>unit</td><td>QB</td><td>Qs</td><td>Qs</td><td>Qs</td><td>Qs</td><td>Q_B</td><td>Qs</td><td>Qa</td><td>Qs</td><td>QB</td><td>Qs</td><td>Qв</td><td>Qs</td><td>Qs</td><td>Qs</td><td>Qs</td><td>ďs</td></t<>		Water	unit	QB	Qs	Qs	Qs	Qs	Q_B	Qs	Qa	Qs	QB	Qs	Qв	Qs	Qs	Qs	Qs	ďs
401Ome:Dutie $entialentia$	au	Depth	(ft)	32	32	32	32	32	42	45	94	48	47	1	t	1	33	42	57	4 8
well Dener Derifier Derifier <thderifier< th=""> <thderifier< th=""> <thderif< td=""><td>Cast</td><td>Diam-</td><td>(in.)</td><td>14</td><td>14</td><td>14</td><td>14</td><td>16</td><td>18</td><td>14</td><td>18</td><td>1.4</td><td>14</td><td>ł</td><td>3</td><td>;</td><td>14</td><td>14</td><td>18</td><td>T8</td></thderif<></thderifier<></thderifier<>	Cast	Diam-	(in.)	14	14	14	14	16	18	14	18	1.4	14	ł	3	;	14	14	18	T8
Koll Omer Drifter Date * 13-54-601 Curtia R. Renfro 1, F. Stampa 1955 * 902 do do 1955 * 963 do do 1955 * 963 do do 1955 * 963 do do 1955 * 864 do do 1955 * 863 J. H. Fletti et al. Lough lifeothera 1955 * 863 J. H. Fletti et al. Lough lifeothera 1955 * 864 do do 1955 * 864 do 1955 1956 * 864 do 1956 1956 1956 * 864 do Robert bate 1956 1956 * 864 do Robert bate 1956 1956 * 864 do Robert bate 1956 1956 *		Depth of	(LE	32	32	32	32	32	42	45	46	48	47	35	35	40	33	42	57	48
Wall Omer Driller Wall Omer Driller * 13-54-841 Curtis R. Renfro 1 E. Stampa * 842 do do * 843 Curtis R. Renfro 1 E. Stampa * 843 do do * 843 do foo * 844 foo do * 844 foo foo * 844 foo foo		Date	5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.5.	1955	1955	1955	1955	1955	1928	1965	1926	1970	1956	1969	1969	1969	1970	1951	1935	1931
Well Owner % 13-54-841 Curtis R. Renfro % 13-54-841 Curtis R. Renfro % 842 do % 843 do % 845 Martha Wilhelm % 845 Martha Wilhelm % 846 do % 843 do % 853 do % 901 City of Vernon 902 do do % Martica do		Driller		L. E. Stamps	do	do	op	Robert Dale	Lough Brothers	Robert Dale	Layne-Texas Co.	Robert Dale	1	Lee Hopper	do	op	Robert Dale	do	H. E. Reed	ę
Well * 13-54-641 * 13-54-641 * 842 * 844 * 845 * 845 * 845 * 845 * 845 * 845 * 845 * 845 * 845 * 845 * 845 * 845 * 845 * 845 * 845 * 845 * 845 * 853 * 855 855 855 855 902 902 902		Owner		Curtis R. Renfro	do	do	op	Martha Wilhelm	J. H. Pettit et al.	qo	op	Wilbarger County Hospital	Texas Department of Mental Health and Mental Retardation	Frank Kock	do	do	do	Kampgrounds of America	City of Vernon	°p
* * * * * *		[Lel]		13-54-841	842	843	844	845	846	847	848	849	850	851	852	853	854	855	106	902
	L			*	*	4		*		_	*		*	_				_		

	Rémariks	Yield reported 160 gpm. Water reported from and and gravel at 25 to 48 feet. $\underline{2},\underline{4}$ Well 171 of Vernon rept. $\underline{3}$ Well G-171 of Buil, 5614. $\underline{7}$	Yield reported 180 gpu. Water reported from sand and gravel. Well 172 of Vernon rept. S_1 Well G-172 of Bull, 5614. $\overline{\eta}$	Yield reported 200 gpm. Water reported from and and gravel. $4_{\rm c}$ 0.14, $3_{\rm c}$ well G-320 of Bull, 5614, $3_{\rm c}$	Unused irrigation well. $\underline{Y},\underline{Z}$	Yield reported 100 gpm. This is one well of a two-well collector system. $\underline{\mathcal{Y}}$	Do.	Vield reported 50 gpm. Four-well manifold system with all holes the same depth and completed the same, pumped by a common pump and motor.	÷	Yield reported weak.	Dub well, Yield reported strong.	Dug well. Yield reported good.	Dug well. Yield reported strong.	Yield reported 600 gpm. Water reported from said and gravel. Four-well amaifold system with all holes the same depth and completed the same, pumped by a common pump and motor.	Meld reported 600 gpm. Six-well manifold system with all holes the same depth and completed the same, pumped by a common pump and motor.
	Use of water	ñ.	۵.	Δ.	z	Irr	Irr	Irr	α	Irr	D, S	D, S	s	Irr	Itr
	Method of 11ft	ш н	T, E, 5	т, _Е , 5	N	т, Е, 5	т, Е,	Cf, E, 1	J, E, 3/4	J, E, 1/2	J. E. 3/4	J. E. 1/2	J, E, 1/2	cf, E, 20	CE, E. 25
r level	Date of measurement	Apr. 11, 1941 Acr. 11, 1943 Jan. 8, 1953 Jan. 15, 1964 Jan. 15, 1964 Jan. 13, 1964 Jan. 13, 1969 Jan. 13, 1970 Jan. 8, 1971	Apr. 11. 1941 0ct. 14. 1943 Feb. 10. 1952 Jan. 8, 1956 Jan. 29, 1960 Dec. 10, 1969	 May 17, 1949 Peb. 27, 1951 Jan. 28, 1955 Jan. 29, 1960 Jan. 15, 1964 Jan. 13, 1964 Jan. 13, 1970 Feb. 5, 1971 	June 21, 1965 July 31, 1970	Mar. 30, 1969	Mar. 31, 1969	June 15, 1971	do	June 10, 1971	op	qo	June 15, 1971	1966	4 1
Wate	Below land- surface datum (ft)	25 28.21 36.54 28.97 28.97 24.19 24.19 24.14 24.14	25 29,52 38,91 35,28 27,27 25	32 36,55 37,62 26,84 24,84 24,58 25,76 25,76 25,87	11 15.00	15	20	54.5	11.87	32.24	25.10	21.94	14.29	œ :	1
	Altitude of land surface (ft)	1,224	1,229	1,229	1,210	1, 202	1,210	1, 185	1,192	1,250	1,220	1,190	1,169	1,230	1, 220
	Water bearing unit	ó	Qs	6°	Qs	Ğв	Qs	Qa1	Qal	Qs	Qs	Qs	Qal	Qs	s O
ne	Depth (ft)	69	55	53	25	35	43	20	20	50	1	:	25	25	06
Casi	Diam- eter (fn.)	18	18	18	Q	14	14	9	9	5	8	ŧ.	36	9	¢
	Depth of well (ft)	49	55	53	25	35	43	20	20	50	38	25	25	25	30
	Date completed	1691	1932	1946	1965	1969	1969	1963	;	1942	1912	1940	t	1966	1967
	Driller	H. E. Reed	đa	Gity of Vernon	Don Hopper	Robert Dale	op	Lee Hopper	L. E. Stamps	E. B. Schur	Dan Magness.	P. F. Thomas	1	Robert Dale	Lee Nopper
	Owner	Gity of Vernon	ę	ę	Dr. James J. Muirhead	Dr. J. J. Slaugenhop	do	Dr. J. D. Hoover	do	E. B. Schur	J. B. Halford	Vera Hendrix	Charles V. Schur	Johnson and Ekern	o g
	Well	13-54-903	706	506	906	206	908	606	910	55-101	102	103	107	402	604
		*	*	*	*			#	+	*	*	*	*	*	*

Γ						1. mil			-										-		
	Remarks	Yield reported 700 gpm. Mater reported from sand and gravel. Four-well manifold system with all holes the same depth and completed the same.	Yield reported 200 gpm. This well and 13-55-502 are on a munifold system and pumped by a common pump and motor.	Vield reported 180 gpm. This well and 13-55-501 are on a manifold system and pumped by a common pump and motor.	1	linused domestic well. Vield reported weak. Wate reported from and and gravel, Red bods reporte at $47~{\rm feet}$.	Hand-driven mandpoint. Yield reported good. Water reported from soud at 22 to 26 feet. Well 195 of Vernom rept. §	Vield reported good. Water reported from sand and gravel at 21 to 23 feet.	Dug well.	Yield reported 45 gpm. Water reported from sand and gravel.	1	Water reported from sand and gravel below 26 feet. Well 196 of Vernon rept. 5	Dug well. Yield reported strong. Well 198 of Vernon rept. 5	Plows from contact of Seymour Formation. Yield estimated 3 gpm.	Vield reported fair.	bug well. Yield reported good.	Yield reported 50 gpm, Water reported from 6 to 8 feet of sand and gravel.		Vield reported good. Well 194 of Vernon rept. <u>3</u>	Unused domeatic well. Water reported from sand. Well 192 of Vernon rept. $\tilde{\mathcal{Y}}$	Dug well. Yield reported weak, Mater reported from and at 61.5 to 63 feet, Red beds reported at 63 feet.
	Use of water	Irr	trr	lt.	z	z	52	S, D	D	Irr	52	D, 5	д	65	a	a	Ind	s	a	z	D, S
	Method of lift	cf, G, 40	Of, G	cť, c	Flows	J, E, 1/3	c, <i>u</i>	J, E, 1/2	J, E, 1/3	cf, E, 3	с, ы	J, E, 3/4	J, E, 1/3	PLOWE	J, E, 1/3	J, E, 1/3	J, E, 3/4	Sub, E	J. E, 1/2	z	J, E, 1/3
evel	Date of seasurement	:	b. 5, 1970	op	op	op	:	c. 1, 1970	do	ne 16, 1971	do	v. 4, 1943 ne 24, 1971	ne 23, 1971	do	do	c. 1, 1970	ne 23, 1971	*	v. 3, 1943 2. 1, 1970	v. 3, 1943 ac 24, 1971	c. 4, 1970
Water I	E		Fel					Dec		Jui		Nov	Jut			Dec	Jur		Dec	NoN	Dec
	Below Land- surface datum (ft)	Å.	8,56	8.59	(+)	35.84	1	13.79	29,99	19.12	16.64	18,20 20	22,71	(+)	20	33	14.54	;	3.59	13.30	63
	Altitude of land surface (ft)	1,223	1,142	1, 143	1,140	1,224	1,187	1,170	1,187	1,170	1,222	1,180	1,172	1,150	1.162	1,192	1,198	1, 181	1,180	1,205	1,200
	Water bearing unit	ds	QaI	Qal	Qal	Qs	άs	Qs	Qs	Q8	qs	Qs	Qs	qs	Qs	Qs	qs	Qs	Qs	Qs	Qs
112	Depth (ft)	11	21	22	ţ	48	28	23	1	25	60	;	ł	î.	25	1	30	35	1	15	1
Casi	Diam- eter (in.)	9	9	ç	:	9	-	9	1	12	9	1	ł.	:	Ģ	48	9	80	1	60	ł
	Depth of well (ft)	31	21	22	Spring	48	28	23	35	25	60	38	26	Spring	25	38	30	35	24	15	65
	Date completed	1969	1963	1963	;	1957	1910	1970	;	1966	1	1942	1	1	1969	1	1961	1960	8.6	÷	1942
	Driller	Lee Nopper	Robert Dale	qo		L. E. Stamps	ţ.	Dea Millspaugh	:	Lee Hopper	**	A. E. Janek	Mr. Vanick	;	Carl Bradford	1	i.	Robert Dale	:	I	1
	Owner	Johnson and Ekern	Wilbert A. Kleschnick	op	do	op	J. A. Dixon Estate	qo	do	Leroy Robratschk	A. A. Hingst	A. C. Borger	Earl J. King	do	Mrs. H. Y. Pitts	Earl Graf	M. L. Sharp	Johnson and Ekern	J. A. Dixon Estate	Mrs. W. S. Bourland	Clarence C. Freeling
	Well	13-55-404	105	502	503	504	505	506	202	508	509	510	109	602	603	102	702	703	801	802	56-401
		4	*		4	4	作	作.	*	4	*	*	4	4	*	*	*	*	*	*	ŧ

						Casi	ng			Wat	er level	1		
	Well	Owner	Driller	Date completed	Depth of well (ft)	Diam- eter (in.)	Depth (ft)	Water bearing unit	Altitude of land surface (ft)	Below land- surface datum (ft)	Date of measurement	Method of lift	Use of water	Remarks
\$	13-56-402	Mrs. W. H. Gfeller		1936	26			Qa	1,223	21.36	June 24, 1971	J, E, 1/3	D, S	Dug well. Yield reported fair. Water reported from gravel.
Ŵ	403	Jimmy Koontz	Pat Waggoner	1964	86	8	86	Qs	1,221	67.55	June 23, 1971	Sub, E, 1/2	D, S	Yield reported greater than 100 gpm.
Ŵ	501	M. A. Gillis	Amarillo Drilling & Septic Co.	1970	55	18	55	Qa	1,194	33.84	Dec. 3, 1970	N	D, S	Well being completed in Dec. 1970, Water reported from sand and gravel at 31 to 52 feet. Red beds reported at 52 feet.
*	502	do		1945	65	23		Qa	1,191	34	do	J, E, 1/2	D, S	Dug well. Yield reported strong.
Ŵ	503	E. L. Gooch	244	1959	62			Qıs	1,201	30	do	J, E, 1/3	D	Yield reported strong, Water reported from sand and gravel at 35 to 60 feet, Red beds reported at 60 feet,
*	504	Clarence C. Freeling	**	**	28	2	28	Qal	1,120	8	Dec. 4, 1970	Cf, E, 1/3	S	Driven sandpoint. Water reported from sand and gravel.
	505	do	Robert Dale	1960	28	6	28	Qal	1,119	8.13	do	Cf, E, 20	Irr	Yield reported 400 gpm. Water reported at 7 to 28 feet, Red beds reported at 28 feet, Six-well manifold system with all holes the same depth and completed the same, pumped by a common pump and motor.
Ŵ	506	Bobby Gene Arnold	Carl Bradford	1966	65	5	65	Qs	1,200	48.73	Dec. 10, 1970	J, E, 1/3	D, S	Yield reported strong. Water reported from sand and gravel.
*	507	R. B. Arnold Estate	Lee Hopper	1968	26	5	26	Qa l	1,118	5.61	do	Cf, G	Irr	Yield reported 400 gpm. Water reported from aand and gravel at 4 to 24 feet. Red beds reported at 24 feet. Five-well manifold system with all holes the same depth and completed the same, pumped by a common pump and motor.
Ŵ	601	E. L. Kieschnick	Anton Vonic	1951	32	**		Qs	1,166	(e.e.)		J, E, 1/3	D, S	Dug well. Yield reported good.
rke (602	Leonard R. Payton	<u></u>	-	Spring	1		Qa	1,130	(+)	Dec. 10, 1970	Flows	S	Flows from Seymour Formation.
*	603	Toney Mayer		**	25	11	100	Qs	1,145	13.28	June 23, 1971	J, E, 1/2	D, S	Yield reported weak.
*	701	Charles Tirey	Lee Hopper	1964	37	12	37	Qs	1,240	26.09 25.08 25.13 25.09	Nov. 20, 1969 Dec. 16, 1969 Jan. 13, 1970 Feb. 12, 1971	N	Ν	Unused domestic well, Yield reported good, Water reported from sand and gravel at 19.5 to 39.5 feet. Red beds reported at 39.5 feet. Δy
4	702	H. J. Shelnutt		**	33	***	**	Qs	1,235	31,60	June 25, 1971	Cf, E, 1/3	D, S	Dug well. Yield reported strong.
	801	Mrs. John Carmichael		**	34	**	••	Qs	1,191	24.71 26.02 26.06 25.59	Nov. 20, 1969 Dec. 16, 1969 Jan. 13, 1970 Jan. 7, 1971	Ċ, E	S	Dug well, Yield reported weak, Ay
-	802	do	H. K. McCracken	1966	36	30	36	Qs	1,191	23,65	Nov. 20, 1969	J, E, 1/2	D	Yield reported fair. Water reported from sand and gravel at 17 to 24 feet. Red beds reported at 24 feet.
*	803	Mrs. J. R. Kubala	Amarillo Drilling and Septic Co.	1968	38	24	38	Qs	1,232	23.33	June 25, 1971	J, E, 3/4	D	Yield reported strong, Water reported from sand with base at 36 feet. Red beds reported at 36 feet.
*	804	W. B. Houtchens	do	1965	25	36	25	Qs	1,176	16	June 24, 1971	J, E, 1/2	D, S	Yield reported strong.

See footnotes at end of table.

Sec.

Table 4 Records o	f Water 1	Vells,	Springs,	and Selected	Test	HolesContinued	
-------------------	-----------	--------	----------	--------------	------	----------------	--

						Casi	.ng			Wa t	er level			
	Well	Owner	Driller	Date completed	Depth of well (ft)	Diam- eter (in.)	Depth (ft)	Water bearing unit	Altitude of land surface (ft)	Below land- surface datum (ft)	Date of measurement	Method of lift	Use of water	Remarks
*	13-56-805	Elliott Producers Gin		1958	24		~	Qs	1,198	14,70	June 23, 1971	J, E, 1/3	Inđ, D	Dug well. Yield reported strong,
*	806	Mrs. G. C. Schuman	Amarillo Drilling and Septic Co.	1966	26	36	26	Qs	1,204	14,40	do	J, E, 1∕3	D	Yield reported strong.
*	901	Leslie Moore	do	1966	29	30	29	Qs	1,155	11.39	Dec. 3, 1970	Cf, E, 2	Irr	Yield reported 75 gpm. Water reported from sand and gravel at 11 to 26 feet. Red beds reported at 26 feet, One of five wells on a collector system. $\underline{4j}$
	902	do	đo	1970	26	18 16	10 26	Qa	1,160	11,21	do	N	N	Unused irrigation well. Yield reported 50 gpm. Water reported from sand and gravel at 10 to 22 feet. Red beds reported at 22 feet. One of five wells on a collector system.
*	903	do	do	1966	29	24	29	Qs	1,160	12.90 12.60	do Jan, 7, 1971	Cf, E, 2	Irr	Yield reported 50 gpm. Water reported from sand and gravel at 12.5 to 25.5 feet. Red beds reported at 25.5 feet. One of five wells on a collector system.
	904	do	do	1966	29	24	29	Qs	1,164	14.1	Dec. 3, 1970	Cf, E, 2	Irr	Yield reported 50 gpm. Water reported from sand and gravel at 12 to 25 feet. Red beds reported at 25 feet. One of five wells in a collector system.
*	905	do	do	1969	29	24	29	Qa	1,165	17,58	do	N	Ν	Unused irrigation well. Yield reported 50 gpm. Water reported from sand and gravel at 11.7 to 24.7 feet. Red beds reported at 24.7 feet. One of five wells on a collector system.
*	906	Immanuel Luthern Church	Erwin Schoppa	1935	30	1270	100	Qs	1,226	18.35	June 25, 1971	J, E, 1/3	D, P	Dug well. Yield reported strong. Water not used for human consumption.
*	907	Albert Jokel	Albert Jokel	1931	35	**	(9.6)	Qs	1,189	12.90	June 24, 1971	Cf, E, 1	D, S	Dug well, Yield reported weak,
*	908	Leon Raschke			20			Qs	1,209	17	June 23, 1971	J, E	D, S	Dug well. Yield reported weak.
*e	909	Albert Lowke		1956	20	1222	1221	Qs	1,210	15,74	June 24, 1971	J, E, 1/2	D, S	Dug well. Yield reported good.
*	61-101	Leon G. Lehman	Robert Dale	1968	31	14	31	Qs	1,261	17.35	Apr. 8, 1970	Cf, G, 25	Irr	Yield reported 150 to 175 gpm. Water reported from sand and gravel.
	102	Edward L. Lehman, Jr.	do	1960	30	8	30	Qal	1,258	10	Apr. 1, 1970	Cf, E, 15	Irr	Yield reported 100 gpm. This well, 13-61-103, and 13-61-104 are on a manifold system and are pumped by a common pump and motor.
	103	do	do	1960	30	8	30	Qal.	1,258	9,94	do	Cf, E, 15	Irr	Yield reported 100 gpm. This well, 13-61-102, and 13-61-104 are on a manifold system and are pumped by a common pump and motor.
*	104	do	Pat Waggoner	1958	30	13	30	Qa1	1,258	10	do	Cf, E, 15	Irr	Yield reported 150 gpm. This well, 13-61-102, and 13-61-103 are on a manifold system and are pumped by a common pump and motor. 1/
*	105	Leon G. Lehman	L. E. Stamps	1957	38	16	38	Qal	1,259	13.65	Apr. 8, 1970	N	N	Unused irrigation well. Yield reported greater than 175 gpm. Water reported from sand and gravel.
ste	106	do	Robert Dale	1965	25	6	25	Qs	1,275	17.14	do	J, E, 1/2	D	Water reported from sand and gravel.

Г				-														e.	н
	Remarks	Dug well, Unused domentic and stock well, dry in July 1970. Mater reported from and and gravel with base at 21 feet. Red beds at 21 Mell 16 of Varnon rept. \underline{X}	Yield reported 75 to 100 gpm. Water reported from sand and gravel. This well and three other are on a collector system.	ł	Yield reported 200 gpm. This well and 13-61-205 are on a manifold system and are pumped by a common pump and motor. \underline{y}	Vield reported 200 gpm, This well and 13-61-204 are on a manifold system and are pumped by a common pump and motor.	Yield reported 100 gpm. \underline{y}	Yield reported 50 gpm. Water reported from sand and gravel.	Do.	Yield reported 50 gpm. Water reported from and and gravel. Thia well, 13.61-210, and 13-61-551 are on a manifold system and are pumped by a common pump and motor.	Yield reported 50 gpm, Water reported from mand and gravel. This well, 13.61-209, and 13-61-551 are on a manifold mystem and are pumped by a common pump and motor.	Water reported from sand and gravel.	Test Hole. \underline{y}	Yield reported 150 gpm. One of four wells on a collector system, $\underline{d}\underline{d}$	Yield reported 80 gpm, One of four wells on a collector system,	Yield reported 100 to 150 gpm. Water reported from sand and gravel.	Yield reported 200 gpm. Water reported from sand and gravel.	Yield reported 90 gpm. Water reported from sand and gravel. One of four wells on a collect system.	Yield reported 125 gpm. Water reported from sand and gravel. One of four wells on a collect system.
	Use of water	ż	Itr	Irr	Irr	Irr	Irr	52	62	Itr	Itr	۵	N	S, Itr	Irr	Irr	Irr	Irr	Irr
	Method of 11ft	с, W	т, ^{в,}	т, Е, 15	Cf, E, 20	cf, E, 20	Cf, E, 10	J, E, 3/4	J, E, 3/4	Cf, E, 20	Cf, E, 20	J, E, 1/2	N	т, ₅	cf, E,	T, E, 7-1/2	T, G, 32	τ, ε, 5	Sub, E,
rel.	late of asurement	27, 1943 16, 1957 23, 1962 17, 1963	19, 1969	;	12, 1967 1, 1970 3, 1971	1, 1970	op	op	op	do	do	1	1	11, 1970 8, 1971	12, 1970 8, 1971	19, 1969	op	3, 1970	op
er lev	i a	Oct. Jan. Feb.	Nov.		Apr. Apr. Feb.	Apr.								Dec.	Jan.	Nov.		Apr.	
Wat	Below land- surface datum (ft)	19 10.16 16.76 17.80 17.80	27.03	ł	16.70 10.38 11.05	11,14	12.89	13,30	10.02	12.22	13, 19	;	;	29.42 29.64	28.76 31.56	31.65	27.90	29.34	29.67
	Altitude of land surface (ft)	1,269	1,271	1, 281	1,256	1, 255	1,259	1,253	1,251	1,260	1,260	1,269	1,270	1,268	1,272	1,269	1,271	1,262	1,260
	Water bearing unit	Qa	Qs	Qs	Qal	Qal	Qa1	Qa1	Qal	Qs	Qs	бa	Qs	Qs	бa	Qs	Qs	Qu	Qu
8	Depth (ft)	1	46	50	30	30	30	30	30	32	32	39	ŧ	41	39	40	01	38	40
Castn	Diam- eter (in.)	;	14	16	14	8	80	9	9	16	14	12	Ē	14	14	14	14	16	16
	Depth of well (ft)	21	46	50	32	30	30	30	30	32	32	39	36	41	39	40	40	38	40
	Date completed	1.897	1961	1966	1958	1960	1964	1964	1964	1956	1956	1	1951	1955	1957	1961	1961	1961	1960
	Driller	Houston Waggoner	Robert Dale		L. E. Stamps	Robert Dale	op	Carl Bradford	do	Pat Waggoner	L. E. Stamps	ł	ł	L. E. Stamps	op	Robert Dale	op	Jim Rae	L. E. Stamps
	Owner	C. Glenn Cato	E. A. Woolf	T. J. McGill Estate	Edward L. Lehman, Jr.	op	op	qo	qo	op	ę	C. Glenn Cato	:	E. A. Woolf	Glenn Cato	E. A. Woolf	do	Albert C. Graf	op
	Well	13-61-201	202	203	204	205	206	207	208	209	210	211	212	301	302	303	304	305	306
L		*		*	*		4	*		*	*	*		*				*	

		P.				Casi	ng	1		Wat	ter level			
We	11	Owner	Driller	Date completed	Depth of well (ft)	Diam- eter (in.)	Depth (ft)	Water bearing unit	Altitude of land surface (ft)	Below land- surface datum (ft)	Date of measurement	Method of lift	Use of water	Remarks
13-	61-307	Albert C. Graf	Robert Dale	1965	36	14	36	Qs	1,255	26.88	Apr. 3, 1970	т, е, 5	Irr	Yield reported 70 gpm. Water reported from sand and gravel. One of four wells on a collector system.
	308	do	do	1964	37	14	37	Qs	1,255	28.69	do	CÉ, E, 2	Irr	Yield reported 60 gpm. Water reported from sand and gravel. One of four wells on a collector system.
	309	do	do	1965	40	14	40	Qs	1,265	28.44	do	т, е, 15	Irr	Yield reported 110 gpm. Water reported from sand and gravel, Well 13-61-310 pumps into this well.
*	310	do	do	1964	42	14	42	Qs	1,265	28,56	do	Sub, E, 2	Irr	Yield reported 90 gpm. Water reported from sand and gravel. This well pumps into 13-61-309.
	311	do	do	1965	37	14	37	Qs	1,252	19.62 24.47	Apr. 8, 1970 Feb. 3, 1971	N	N	Unused irrigation well. Yield reported 70 gpm. Water reported from sand and gravel.
	312	do	do	1965	37	14	37	Qs	1,256	25.62	Apr. 8, 1970	N	N	Do.
*	313	Curtis A. Graf	do	1963	41	14	41	Qs	1,264	28.17	Apr. 3, 1970	т, е, 5	Irr	Yield reported 100 gpm. Water reported from sand and gravel. One of four wells on a collector system.
	314	do	do	1964	41	14	41	Qa	1,265	27.73 28.53	do Feb. 3, 1971	Cf, E, 2	Irr	Yield reported 50 gpm. Water reported from sand and gravel. One of four wells on a collector system.
	315	do	do	1965	39	16	39	Qs	1,266	27.35	Apr. 3, 1970	Cf, E, 2	Irr	Yield reported 100 gpm. Water reported from sand and gravel. One of four wells on a collector system.
*	316	do	do	1965	41	14	41	Qs	1,265	27,02	do	т, е, З	Irr	Yield reported 75 gpm. Water reported from sand and gravel. One of four wells on a collector system.
*	317	Herbert K. Haseloff	do	1955	48	14	48	Qs	1,268	29,42	Apr. 9, 1970	т, е, 25	Irr	Yield reported 110 gpm. Water reported from sand and gravel. Well 13-61-318 pumps into this well.
	318	do	do	1955	48	14	48	Qs	1,268	29.12	do	т, е, 5	Irr	Yield reported 110 gpm. Water reported from sand and gravel. This well pumps into well 13-61-317.
*	319	A. J. Lambert	L. E. Stamps	1955	42	16	42	Qa	1,267		**	т, е, 5	Irr	Yield reported greater than 50 gpm, Water reported from sand and gravel. One of four wells on a collector system.
*	320	do	do	1956	42	16	42	Qa	1,268	**		т, е, 5	Irr	Do.
	321	do	Robert Dale	1961	42	14	42	Qs	1,267	34,80	June 10, 1970	Cf, E, 2	Irr	Water level measured during pumping, Yield reported greater than 50 gpm. Water reported from sand and gravel. One of four wells on a collector system.
*	322	do	do	1969	44	14	44	Qa	1,265	27	Apr. 2, 1969	т, е, 5	Irr	Yield reported greater than 50 gpm. One of four wells on a collector system, $\underline{1}^{\prime}_{j}$
	323	Mrs. C. H. Cato	do	1953	26	6	26	Qa1	1,239	14.61	July 2, 1970	Cf, E, 15	N	Unused irrigation four-well manifold system with all holes the same depth and completed the same, pumped by a common pump and motor. Yield reported 520 gpm. $\underline{1}/$
w	324	Fagan Miller	do	1956	31	8	31	Qs	1,235	••	-	CÉ, E, 10	Irr	Yield reported 80 gpm. Four-well manifold system with all holes the same depth and completed the same, pumped by a common pump and motor.

_																	1.2	
	Remarks	Yield reported 125 gpm. Four-well manifold system with all holes the same depth and completed the same, pumped by a common pump and motor. Water reported from sand and gravel.	Yield reported 100 gpm. Three-well manifold system with all holds the assame depth and completed the same, pumped by a common pump and motor. Water reported from aand and gravel.	Yield reported 125 gpm. Mater reported from saud and gravel. One of five wells on a manifold system.	Water level measured during pumping. Yield reported 150 gpm. Mater reported from sand and gravel. One of five wells on a manifold system.	Water level measured during pumping. Yield reported 175 gpm. Water reported from sand and gravel. One of five wells on a manifold system.	Mater level measured during pumping. Yield reported 200 gpm. Mater reported from sand and gravel. One of five wells on a manifold system.	Mater level measured during pumping. Yield reported 225 gpm. Mater reported from sand and gravel. One of five wells on a manifold system.	Yield reported weak, Water reported from sand and gravel. One of four wells on a manifold system.	Yield reported 100 gpm. One of four wells on a manifold system. \underline{J}_{i}	The July 2, 1970 water level was measured during pumping. One of four wells on a manifold system. \underline{y} \underline{y}	Yield reported fair, Mater reported from sand and gravel.	Water reported from sand and gravel at 27 to 37 feet, Red beds reported at 37 feet, $\underline{2}$	Yield reported 330 gpm. Four-well manifold system with all holes the same depth and completed the same, pumped by a common pump and motor. Water reported from sand and gravel at 10 to 21 feet. Red beds reported at 21 feet.	Yield reported 50 gpm, Water reported from and and gravel. One of four wells on a collector system.	Water Level measured during pumping. Yield reported 50 gpm. Mater reported from sand and gravel. One of four wells on a collector system.	po.	Do.
	Use of water	Irr	Itr	Irr	Irr	Itr	Irr	Irr	Irr	Irr	Irr	D, S	Irr	Irr	Irr	Itr	Irr	Itr
	Method of lift	cf, E, 15	cf, E, 5	Cf, E, 3	cf, ^g ,	Cf, E, 2	cf, E.	GF, E,	T, E,	т, в,	Gf, E, 2	J, E, 1/3	T, E, 15	Cf, E, 20	cf, E, 2	Cf, E,	cf, E, 2	cf, E, 2
1	ate of surement	I	8, 1971	3, 1971	2, 1970	qo	ор	op	op	11, 1967	do 2, 1970	op	3, 1971	2, 1970	4, 1971	2, 1970	op	op
er leve	De		June	Feb.	July					Apr.	July		Feb.	July	Feb.	Dec.		
Wat	Below land- surface datum (ft)	ı	20,09	29.51	28.80	26.66	33.01	33.77	31.53	24.00	25 32.36	31	27,20	8.23	23,51	31.06	25.44	24,48
	Altitude of land surface (ft)	1,230	1,250	1,267	1,267	1,267	1,266	1,266	1,266	1,267	1,268	1, 269	1,263	1,228	1,287	1,287	1,287	1,287
	Water bearing unit	Qal	Qu	Qs	Qs	Qu	Q8	Qs	Qu	Qu	Qs	Qa	Qн	Qal	Qa	Qs	Qa	qs
ne	Depth (ft)	27	27	43	45	47	64	51	43	43	44	36	39	24	34	34	34	34
Casi	Diam- eter (in.)	80	9	18	18	18	18	18	18	18	14	9	14	9	16	14	14	14
	Depth of well (ft)	27	27	43	45	47	49	51	43	43	44	36	39	24	34	34	34	34
	Date completed	1956	1965	1967	1967	1966	1966	1966	1967	1967	1.967	1940's	1966	1969	1960	1960	1960	1960
	Driller	Robert Dale	do	op	do	op	op	do	do	qo	do		Robert Dale	op	L. E. Stamps	op	op	op
	Owner	Pagan Miller	J. W. Jackson, Jr.	E. C. Michels	do	do	do	do	C. Glenn Cato	do	qp	Carl A. Rumage	do	qo	James B. Janga	do	do	do
	Well	13-61-325	326	327	328	329	330	331	332	333	334	335	336	337	338	339	34.0	341
L		*	*			*				*	*	*	*	*				*

	Remarks	Yield reported 150 gpm. Three-well manifold system with all holes the same depth and completed the stame, pumped by a common pump and motor. Water reported from sand and gravel.	Test hole, \underline{y}	00.	Do.	Mater reported from sand and gravel. This well, 13-61-427, and 13-01-428 are a three-well manifold system, pumped by a common pump and motor. Mield for system reported 350 gpm.	Yield reported at 150 gpm.	Unused irrigation well. Yield reported 40 gpm. This well and 150-4419 are two-well manifold system, pumped by a common pump and motor. \underline{y} well 4 of Contamination Rept. 8.9	Unused irrigation well. The July 29, 1960 water level was meanured during pumping. Yatid reported 120 gpm, Mater reported at 16 to 47 feet. Red beds reported at 47 feet.	Water reported from sand and gravel at 15 to 38 feet. Red beds reported at 38 feet. $\underline{2}$	Unused irrigation well. Yield reported 40 gpm. This well and 13-61-415 are a two-well munifold system, pumped by a common pump and motor, $\underline{J},\underline{Z}$	Yield reported very weak, Water reported from and and gravel. This well and 13-61-421 are a two-well manifold system, pumped by a common pump and morer.	Vield reported very weak, Mater reported from and and gravel. This well and 13-61-420 are a two-well manifold system, pumped by a common pump and motor.	Yield reported 300 gpm. Water reported from sand and gravel, \underline{d}	The July 29, 1960 water level was messured during pumping. Yield reported 150 gpm. Water reported from sand and gravel.	Unused irrigation well, Yield reported 60 gpm. Water reported from sand and gravel.	<u>y 2</u>
	Use of water	Irr	N	N	z	Irr	Irr	z	z	Irr	z	Irr, S	Irr, S	Itr	Irr	z	Irr
	Method of 11.ft	cr, E, 7-1/2	z	z	z	cf, c	cf, G, 25	cf, c, 32	T, .	Т, с	cf, G, 40	Cf, G	Cf, G	T, E. 15	T, G, 40	т, б	т, в, 7-1/2
r level	Date of measurement	June 8, 1971	8.8	1	ł	Apr. 8, 1970	do	May 22, 1956 June 3, 1970	July 29, 1960 July 15, 1970	July 18, 1956 Mar. 26, 1970	July 11, 1956 Mar. 10, 1960 July 14, 1960 June 3, 1970	Nov. 14, 1969	op	Nov. 18, 1969 Dec. 15, 1969 Jan. 12, 1970 Jan. 8, 1971	July 29, 1960 Nov. 18, 1969	July 15, 1970	Mar. 26, 1968 Mar. 26, 1970 Feb. 3, 1971
Wate	Below land- surface datum (ft)	17.27	ł	;	;	17.91	17.78	22 27.3	36.98 26.44	15 31.18 24.69	22 21,89 21,72 27,28	17.08	15.12	33.68 32.82 32.02 27.99	53.00 39.66	27.35	27 25,29 25,11
	Altitude of land surface (ft)	1,238	1,284	1,272	1,263	1,277	1,260	1, 323	1,297	1,301	1,325	1,258	1,258	1,308	1,310	1,297	1,298
	Water bearing unit	Qs	Qs	qs	Qs	Qs	Qs	QB	Qs	Qs	Q8	Qs	Qs	Qs	Qs	Qs	Qs
i no	Depth (ft)	31	ł	;	ł	30	31	36	49	42	34	28	27	56	67	42	39 51
Cae	Diam- eter (in.)	14	ţ	1	1	16	16	16	14	14	16	13	12	16	14	14	18 14
	Depth of well (ft)	31	37	36	25	30	31	36	49	42	35	28	27	56	67	42	51
	Date completed	1963	1951	1951	1951	1955	1956	1956	1959	1955	1956	1956	1956	1958	1955	1955	1968
	Driller	L. E. Stamps and Robert Dale	-	:	1	Pat Waggoner	op	Robert Dale	L. E. Stamps	do	Robert Dale	L. E. Stamps	qo	do	op	do	Robert Dale
	Owner	J. W. Jackson, Jr.	2 F	Â.	*	Leon G. Lehman	do	Tom R. Locke	Sam Judd, Jr.	Henry W. Karcher	Tom R. Locke	E. A. Woolf	do	C. A. Schmoker	op	Mrs. Carl Schultz	Henry W. Karcher
	Well	* 13-61-342	343	344	345	413	414	* 415	417	418	419	* 420	421	* 422	423	424	* 425

											_							
	Remarks	Yield reported greater than 150 gpm. Water reported from sand and gravel.	Mater reported from sand and gravel. This well, 1.061-428, and 1.3-0-4.13 are a three-well annifold System, pumped by a common pump and motor. Yield of system reported 350 gpm.	Mater reported from sand and gravel. This well, 1.96:4.27, and 1.3-6.4.41 are a threavell manifold System, pumped by a common pump and motor. Yield of system reported 350 gpm.	Yield reported weak. Water reported from 12 feet of clayery basal gravel. One of six wells on a manifold system.	Unused irrigation well.	Yield reported 235 gpm, Mater reported from sand and gravel with base at 54 feet,	Dug domestic and stock well, destroyed.	Yield reported 50 gpm. Water reported from mand and gravel at 41 to 50 feet. Red bedm reported at 50 feet.	Vield reported 600 gpm. J	This well pumps into 13-61-203.	Unused irrigation manifold system with four wells of name depth and completed the name, pumped by a common pump and macor. Yiteli reported 100 gpm. Mater reported from basal gravel at 20 to 32 feet. Red beds reported at 32 feet.	Yield reported 250 gpm. \underline{y}	Yield reported 300 gpm. Water reported from sand and gravel.	Vield reported 200 gpm. \underline{Y}	Yield reported 80 gpm. One of four wells on a collector system.	Yield reported 135 gpm. Mater reported from sand and gravel.	
	Use of water	ltr	Irr	Lrr	Itr	z	Irr	z	Irr	Irr	D, Irr	z	Irr	Irr	ltr	Irr	Itr	
	Method of lift	CE, E, 10	cf, G	GE, G	Sub, E, 3; Cf, E, 5	Τ, G	T, G, 32	z	cf, E,	Τ, G	Sub, E, 2	Cf, G	T, G, 35	T, E, 15	т, Е, 5	(2 pumps) Cf, E, 1/2	т, _{Е,} 10	
	e of rement	8, 1970 3, 1971	8, 1970 3, 1971	8, 1970	22, 1960 2, 1970	1	22, 1960 3, 1970	29, 1943 10, 1952 7, 1955 16, 1957 17, 1963	3, 1958 10, 1970	-	4, 1970	2, 1970	15, 1955 24, 1970	12, 1960 9, 1970	28, 1956 9, 1970	14, 1960 10, 1970	6, 1956 16, 1957 3, 1958 3, 1958 25, 1960 14, 1969	
er level	Dat	Apr. Feb.	Apr. Feb.	Apr.	July Apr.		July June	Oct. Feb. Jan. Jan.	Jan. Mar.		Mar.	June	Jan. Mar.	July Mar.	Peb. Mar.	July Apr.	Jan. Jan. May Nov.	
Mate	Below land- surface datum (ft)	20,07 20,92	17.90	17.91	24.25 28.33	1	21.90 31.55	13.01 16.70 20.14 21.48 23.37	17.38 32.94	1	32,03	23	17 24.09	18.84	15 25,32	22.74 28.62	16.10 17.79 15.60 16.86 24.25	
	Altitude of land surface (ft)	1,268	1,278	1,277	1,293	1,294	1, 288	1,288	1,291	1,285	1,284	1, 304	1, 305	1,307	1,308	1, 316	1, 314	
	Water bearing unit	Qs	6 B	QB	Qs	qa	Qs	Qs	Qs	Qs	Qs	Qs	qs	Qs	ġв	Qs	Qs	
ng	Depth (ft)	28	31	30	43	39	56	1	15	54	97	33	38	38	40	24 37	29	
Cast	Diam- eter (in.)	14	16	16	14	14	14	1	14	16	16	2	16	16	16	30 14	16	ł.
	Depth of well (ft)	28	31	30	43	39	56	20	51	54	46	33	38	38	017	37	29	
	Date compléted	1965	1955	1955	1958	1955	1956	1912	1966	1955	1956	1956	1955	1955	1956	1959	1955	
Driller		Robert Dale	Pat Waggoner	do	Jim Rae	Robert Dale	L. E. Stamps	1	Robert Dale	op	do	do	qo	do	qo	L. E. Stamps	e e	
	Омпет	Leon G. Lehman	op	qo	Edward L. Lehman, Jr.	Edgar Schoppa	Emma Schulz	Willie Kieschnick	qo	T. J. McGill Estate	op	J. F. Shivers	Clois R. Cobb	T. J. McGill Estate	do	Bill Smith	C, A. Schmoker	
	Well	13-61-426	427	428	105	502	503	504	505	506	502	508	509	510	511	512	513	
L		*		*	*	_	*	4	_	*	*	_		4	*		5	-
Table 4 .- - Records of Water Wells, Springs, and Selected Test Holes -- Continued

Г										1344				-		-	-	-		
	Remarks	Yield reported 80 gpm. Water reported from sand and gravel. One of two wells on a manifold system.	Vield reported 50 gpm. J Well 5 of Contamination Rept. 8. 9. This well pumps into well 13-61-568.	Yield reported 50 gpm. This well pumps into 13-61-567.	Yield reported 75 gpm. Water reported from sand and gravel with base at 40 feet.	Yield reported 240 gpm. Mater reported from sand and gravel with base at 49 feet. Well 13-61-519 pumps into this well.	Vield reported 200 gpm. This well pumps into 13-61-518.	Water reported from sand and gravel.	Yield reported 50 gpm. Water reported from same and gravel at 22 to 34 feet. This well pumps into 13-61-513.	Yield reported 35 gpm. Water reported from sand and gravel. This well pumps into 13-61-513.	**	Yield reported weak, Mater reported from sand and gravel at 23 to 35 feet, Red beds reported at 35 feet.	Unused irrigation well, Yield reported weak. Water reported from and and gravel at 20 to 31 feet, Red beds reported at 31 feet.	Unused irrigation well. Yield reported weak, Mater reported from sand and gravel at 22 to 31 feet, Red beds reported at 31 feet,	Mater reported from sand and gravel at 25 to 36 feet. Red beds reported at 36 feet.	Yield reported 500 gpm. Water reported from sand and gravel at 18 to 33 feet. Red beds reported at 33 feet.	Wield reported 500 gpm, Water reported from sand and gravel.	Yield reported 75 gpm.	Water reported from sand and gravel.	ł
	Use of water	ltr	ltr	Irr	Irr	Irr	Irr	Q	Irr	Irr	D, 5	A	z	z	D, S	۵	Irr	Itr	Irr	Irr
	Method of 11ft	(2 pumps) Cf, E, 1/2	Sub, E, 2	Cf, E, 5	т. с	T, E, 20	т, в,	J, E. 1/2	cf, Ľ,	cf. E.	J, E,	т, с	т,	z	J, E,	J, E, 3/4	T, C, 50	Sub, E, 2	T, E, 15	cr, ₈ , 3
	te of rement	14, 1960 10, 1970	15, 1960 3, 1970	qo	18, 1960 27, 1970	12, 1960 24, 1970	12, 1960 24, 1970	14, 1969	do 3, 1971	14, 1969	1968 4, 1970	9, 1970	op	qo	1	9, 1970	15, 1960 9, 1970	do 4, 1971	9, 1970	op
er level	Da meas	July Apr.	July June		July Mar.	July Mar.	July Mar.	Nov.	Feb.	Nov.	Mar.	Mar.				Mar.	Sept. Mar.	Feb.	Mar.	
Wat	Below land- surface datum (ft)	19.71 24.59	20.27 27.50	28.14	17.45 24.78	30,09	21.69 32.81	27.10	28.19 27.42	25.02	33 31.52	26.88	23, 53	28.31	1	27.10	17 26.71	30.63 30.33	26,78	28,13
	Altitude of land surface (ft)	1, 315	1,319	1,320	1,316	1,318	1, 319	1,314	1,315	1, 313	1,289	1,282	1,283	1,283	1,281	1, 306	1, 307	1, 314	1, 309	L, 308
	Water bearing unit	Qs	Qs	Qs	qs	Qs	Qs	08	Qs	Qs	Qu	Qs	Qa	Qa	Ś	Qs	0s	дв	Q5	Qs
Ing	Depth (ft)	16 37	36	39	07	50	50	36	36	30	1	35	32	32	37	34	38	35	31	31
Cas	Diam- eter (in.)	30 14	14	14	14	14	14	ę	13	14	9	14	14	24 12	ę	48 6	14	14	14	14
	Depth of well (ft)	37	36	39	40	50	50	36	36	30	ł	35	32	32	37	34	38	35	31	31
	Date completed	1958	1955	1957	1959	1959	1959	1955	1965	1969	ł	1961	1959	1963	1955	1969	1959	1965	1950	1965
	Driller	L. E. Stamps	op	Robert Dale	qo	L. E. Stamps	qo	do	Robert Dale	qo	*	Robert Dale	op	do	Pat Waggoner	Robert Dale	ар	op	qo	ср
	Owner	Bill Smith	Homer W. Custer	Dan R. Nowlin	Walter Gaebler	W. Claude Bildstein	do	C. A. Schmoker	op	do	T. J. McGill Estate	John Lingnau	op	op	do	Alvin Lingnau	M. E. Lingnau	T. J. McGill Estate	đo	ср
	5	-61-514	515	516	517	518	519	520	52.1	522	523	524	525	526	527	528	529	530	531	532
	Wel	13																		

Table 4 .-- Records of Water Wells, Springs, and Selected Test Holes--Continued

_		_														-			1.1	1849 T. J.
	Remarks	Destroyed trrigation well.	Well 86 of Vernon rept. B	Yield reported 75 gpm, Water reported from and and gravel at 41 to 50 feet. Red beds reported at 50 feet. Well 13-61-505 pumps into this well.	Yield reported 100 gpm. Mater reported from sand and gravel at 36 to 42 feet. Red beds reported at 42 feet.	Yield reported 75 gpm. Water reported from sand and gravel at 42 to 57 feet. Red beds reported at 57 feet.	Yield reported 170 gpm. Water reported from sand and gravel at 22 to 40 feet. Red beds reported at 40 feet.	1	The measured water level (38.34 feet) was obtained during pumping.	1	The measured water level (33.87 feet) was obtained during pumping.	1	Yield reported weak. Water reported from 12 feet of clayey basal gravel. One of six wells on a collector system. One of five wells on a manifold system, pumped by a common pump and motor.	Do.	Do.	Do.	Yield reported 30 gpm. One of six wells on a collector system.	Water reported from sand and gravel.	Yield reported 50 gpm. Water reported from sand and gravel.	Yield reported 50 gpm. This well, 13-61-209, and 13-61-210 are on a three-well manifold system, pumped by a common pump and motor. Water reported from sand and gravel.
	Use of water	N	s	Irr	Irr	D, S	Irr	Irr	Irr	Irr	lrr	Irr	Irr	Irr	Irr	Irr	Itr	D, S	Q	Irr
	Method of lift	z	и, с, Ј, Е	T, E, 10	T, G, 15	cf, E, 1/3	T, G, 30	I, E, 10	cf, E, 3	Sub, E, 1-1/2	cf, E, 1-1/2	Sub, E, 3	cf, E, 5	cf, E,	cf, Ľ,	cf, E,	Sub, E, 1/2	J, E, 1/2	J, E, 1/2	Cf, E, 20
1	ite of jurement	ł	28, 1943 9, 1970	10, 1970	op	do 3, 1971	24, 1970	do 3, 1971	24, 1970 do	op	do	op	2, 1970	op	op	do	do 3, 1971	1, 1970	do	12, 1967 1, 1970
er leve	De		Oct. Mar.	Mar.		Feb.	Mar.	Feb.	Mar.				Apr.				Feb.	Apr.		Apr.
Wat	Below land- surface datum (ft)	:	10.14 31.18	33.01	32.13	35.33	27.39	30 28.14	30 38.34	30	30 33.87	30	28	28	28	28	26.30 25.14	26	26.40	12.7
	Altitude of land surface (ft)	1,314	1, 305	1,291	1,287	1,288	1,308	1,281	1,281	1,281	1,280	1,280	1,293	1,293	1,292	1,291	1,290	1,280	1,279	1,260
	Water bearing unit	Qa	QB	Qs	Qs	Qs	Qs	Qs	Qs	Qs	Qs	Qa	qs	Qs	Qs	Qs	Qa	qs	QB	Qs
Bu	Depth (ft)	1	t	51	43	58	41	45	45	45	45	45	64	43	43	43	43	40	40	32
Cast	Diam- eter (in.)	1	;	14	14	9	14	14	16	14	14	14	8	ę	9	80	14	9	9	16
	Depth of well (ft).	28	35	51	43	58	41	45	45	45	45	45	43	43	43	43	43	40	07	32
	Date completed	1955	ł	1956	1958	1964	1963	1960	1965	1963	1964	1964	1959	1959	1959	1959	1963	1958	1964	1956
	Driller	Robert Dale	1	L. E. Stamps	op	Robert Dale	qo	L. E. Stamps	op	do	Robert Dale	qo	op	op	op	qo	qo	L. E. Stamps	Robert Dale	L. E. Stamps
	Owner	T. J. McGill Estate	op	Willie Kieschnick	op	qo	Clois R. Cobb	Edward K. Obenhaus	do	đo	op	do	Edward L. Lehman, Jr.	qo	do	qo	qo	qo	do	do
	Well	13-61-533	534	535	536	537	538	539	540	541	542	543	544	545	546	547	548	549	550	551
			*	*		*		*			*							*		*

Table 4_\star--Records of Water Wells, Springs, and Selected Test Holes--Continued

69		nd gravel with base ted at 42 feet. 27	rid gravel with base ted at 42 feet. $\underline{2}$	ind gravel with base ted at 42 feet, $\underline{2}$	ind gravel with base ted at 42 feet, $\underline{2}$ (ter reported from the reported from	iid gravel with base ted at 42 feet. 2 ter reported from iter reported from er reported from and	ind gravel with base ted at 42 feet, 2 ter reported from ter reported from and La on a collector ils on a collector	ind gravel with base ted at 42 feet. $2j$ ter reported from ter reported from and ls on a collector ill on a collector the on a collector ills on a collector	id gravel with base ted at 42 feet. 2 ter reported from ter reported from and is on a collector er reported from sand ils on a collector ils on a collector ter ported from sand ils on a collector is reported from sand	ind gravel with base ted at 42 feet. $2j$ ter reported from ter reported from and ls on a collector ill on a collector reported from sand dils on a collector ter reported from sand sils on a collector ill on a collector ill on a collector ill on a collector	ind gravel with base ted at 42 feet. 2 ter reported from ter reported from and a on a collector ls on a collector ils on a collector ils on a collector ils on a collector er reported from and alls on a collector er reported from and oils on a collector er reported from and	ind gravel with base ted at 42 feet. 2 ter reported from ter reported from and ls on a collector reported from sand ill on a collector reported from sand ills on a collector er reported from sand ills on a collector er reported from sand to a collector ills on a collector	ind gravel with base ted at 42 feet. 2 ter reported from ter reported from and ls on a collector reported from sand ils on a collector reported from sand ils on a collector reported from sand cle on a collector reported from sand ils on a collector set reported from sand the well. 2 this well. 2	ind gravel with base ted at 42 feet, 2 ter reported from ter reported from and ls on a collector er reported from and ill on a collector reported from and ills on a collector reported from and ills on a collector this well. 2 this well. 2 this well. 2	ind gravel with base ted at 42 feet. 2 ter reported from ter reported from and ls on a collector ter reported from sand ils on a collector ils on a collector ils on a collector treported from sand ils on a collector treported from sand the vell. 2 this well. 2 this well. 2 the reported from	ind gravel with base ted at 42 feet. 2 ter reported from ter reported from and ls on a collector reported from and ill on a collector reported from and ills on a collector reported from and ills on a collector treported from and ills on a collector this well. 2 this well. 2 this well. 2 the reported from	ind gravel with base ted at 42 feet. 2 ter reported from ter reported from and ls on a collector er reported from sand ils on a collector reported from sand ils on a collector reported from sand ils on a collector from sand ils on a collector this well. 2 this well. 2 this well. 2 the reported from ter reported from	ind gravel with base ted at 42 feet. 2 ter reported from ter reported from and ls on a collector er reported from and ill on a collector reported from and ills on a collector reported from and the on a collector from sand the sollector the reported from and the vell. 2 this well. 2 this well. 2 this well. 2 this well. 2 this well. 2 this well. 2	ind gravel with base ted at 42 feet. 2 ter reported from ter reported from and ls on a collector reported from sand ill on a collector reported from sand clls on a collector reported from sand that and cle solution the solution that and the solution this well. 2 this well. 2	ind gravel with base ted at 42 feet. 2 ter reported from ter reported from and ls on a collector ills on a collector reported from and ills on a collector ills on a collector reported from and ills on a collector ills on a collector this well. 2 this well. 2 this well. 2 iter reported from iter reported from iter vells on a of five wells on a	ind gravel with base ted at 42 feet. 2 ter reported from ter reported from and ls on a collector er reported from and ils on a collector ills on a collector reported from and clean a collector reported from and ils on a collector reported from and ils well. 2 this well. 2 this well. 2 this well. 2 this well. 2 this well. 2 this well. 2 of five wells on a of five wells on a of five wells on a
Remarks		Water reported from sand and at 42 feet. Red beds report	Water reported from sand and at 42 feet. Red buds report	Water reported from sand and at 42 feet. Red beds report. <u>2</u> Yield reported 275 gpm. Wat sand and gravel.	Water reported from sand and at 42 feet. Red bads report 2/ Yield reported 275 gpm, Wat sand and gravel. Yield reported 140 gpm, Wat sand and gravel.	Water reported from sand and ar 42 feet. Red beds reports 2 Yield reported 275 3pm, Mat- sand and gravel. Mater Yield reported 140 gpm, Water Yield reported 40 gpm, Water System.	Water reported from sand and ar 42 feet. Red beds reported 2 Yield reported 275 gpm, Mate and and gravel. Mate Yield reported 140 gpm, Mate and and gravel. One of two well system. Yield reported 80 gpm, Wate and gravel. One of five well system.	Water reported from sand and at 42 feet. Red beds reported 29 Yield reported 275 gpm, Wat. Sand and gravel. Waten Wield reported 40 gpm, Waten and gravel. One of two well system. Yield reported 40 gpm, Waten and gravel. One of five well system.	Water reported from sand and at 42 feet. Red beds reports 2 Yield reported 275 gpm, Mat and and gravel. Wat Yield reported 40 gpm, Waten and gravel. One of two wells system. Yield reported 80 gpm, Water and gravel. One of five well system. Yield reported 40 gpm. Water and gravel. One of five well system.	Water reported from sand and at 42 feet, Red beds reported 23 Yield reported 275 gpm, Wat. Sand and gravel. Waten water and gravel. Waten and gravel. One of two well system. Yield reported 40 gpm, Water and gravel. One of five well system. Yield reported weak, Water system. Yield reported 40 gpm, Water system. Yield reported 40 gpm, Water and gravel. One of five well system.	<pre>Water reported from sand and at 42 feet. Red beds reported 23 Yield reported 275 gpm, Mat wat wat and gravel. Mat Yield reported 40 gpm, Waten and gravel. One of two wells system. Yield reported 80 gpm, Water and gravel. One of five well system. Yield reported 40 gpm, Water and gravel. One of five well system. Yield reported 40 gpm, Water and gravel. One of five well system. Yield reported 40 gpm, Water and gravel. One of five well gystem. Yield reported 40 gpm, Water and gravel. One of five well gystem. Yield reported 40 gpm, Water and gravel. One of five well gystem. Yield reported 40 gpm, Water and gravel. An of five well gystem. Yield reported 50 gpm, Waten and gravel at 17 to 31 feet at 31 feet.</pre>	Water reported from mand and at 42 feet, Red beds reported 29 Yield reported 275 gpm, Wat- sand and gravel. Water wated reported 40 gpm, Water and gravel. One of five well system. Yield reported 40 gpm, Water and gravel. One of five well system. Yield reported weak, Water and gravel. One of five well system. Yield reported 40 gpm, Water and gravel. One of five well system. Yield reported 40 gpm, Water and gravel. One of five well system. Yield reported 40 gpm, Water and gravel. One of five well system. Yield reported 40 gpm, Water and gravel. One of five well system. Yield reported 40 gpm, Water and gravel. One of five well system.	Water reported from mand and at 42 feet. Red beds reported Yield reported 275 gpm, Mat. Yield reported 140 gpm, Mat. Wield reported 140 gpm, Mat. Sand and gravel. Mat. Yield reported 40 gpm, Water and gravel. One of five well system. Yield reported 40 gpm, Water and gravel. One of five well system. Yield reported 40 gpm, Water and gravel. One of five well system. Yield reported 40 gpm, Water and gravel. One of five well after and gravel. One of five well system. Yield reported 40 gpm. Water and gravel. One of five well after and gravel. One of five well system. Yield reported 40 gpm. Water aft gravel. One of five well after and gravel. One of five well system. Yield reported 50 gpm. Water aft 31 feet. This well pumps into 13-61- Well 13-61-562 pumps into ti	 Water reported from sand and and act 2 feet. Red beds reported 275 gpm, Mattand and gravel. Yield reported 200 gpm, Materand gravel. Yield reported 40 gpm, Materand gravel. One of five welly system. Yield reported wak, Water and gravel. One of five welly system. Yield reported wak, Water and gravel. One of five welly system. Yield reported wak. Water and gravel. One of five welly system. Yield reported solw. Water and gravel. One of five well agreet. Yield reported wak. Water and gravel. One of five well agreet. Yield reported 40 gpm. Water and gravel. One of five well agreet. Yield reported 50 gpm. Water and gravel. One of five well gystem. Mater and gravel. One of five well agreet. Yield reported 50 gpm. Water and gravel. Yield reported 50 gpm. Water and gravel. Yield reported 50 gpm. Water and gravel. 	 Water reported from sand and art 42 feet. Red beds reported zero. Yield reported 275 gpm, Matesand and gravel. Matesand and gravel. Matesand and gravel. One of two wells system. Yield reported 40 gpm, Water and gravel. One of five wells system. Yield reported wak, Water and gravel. One of five wells system. Yield reported wak, Water and gravel. One of five wells system. Yield reported 40 gpm, Water and gravel. One of five well system. Yield reported 40 gpm, Water and gravel. One of five well system. Yield reported 40 gpm, Water and gravel. One of five well system. Yield reported 50 gpm, Water and gravel. One of five well gystem. Yield reported 50 gpm, Wate and gravel. I (17 to 31 feet. Well 13-61-562 pumps into 13-61-Well arborted 125 gpm, Wat sand and gravel. 	Water reported from mand and at 42 feet, Red beds reported 29 Yield reported 275 gpm, Mat. Sand and gravel. Mat. Wield reported 40 gpm, Mater and gravel. One of five well system. Yield reported 80 gpm, Water and gravel. One of five well system. Yield reported we Mater and gravel. One of five well system. Yield reported 40 gpm, Water and gravel. One of five well system. Yield reported 40 gpm, Mater and gravel. One of five well system. Yield reported 40 gpm, Mater and gravel. One of five well system. Yield reported 40 gpm, Mater and gravel. The 0 J1 feet. This well pumps into 13-01- Well 13-61-562 pumps into 1 Well 13-61-562 pumps into 1 Yield reported 250 gpm, Mate and gravel. Yield reported 250 gpm, Mater and gravel. Yield reported 250 gpm, Mater and gravel. Nater and gravel. Do.	 Water reported from mand and and tech. Red beds reported 275 gpm. Mat. Yield reported 275 gpm. Mat. Yield reported 200 gpm. Mat. Yield reported 40 gpm. Water and gravel. One of two wells Yield reported 80 gpm. Water and gravel. One of five wells Yield reported 40 gpm. Water and gravel. One of five wells Yield reported 40 gpm. Water and gravel. One of five wells Yield reported 40 gpm. Water and gravel. One of five wells Yield reported 40 gpm. Water and gravel. One of five wells Yield reported 40 gpm. Water and gravel. One of five wells Yield reported 50 gpm. Mater and gravel. One of five wells Yield reported 50 gpm. Mater and gravel. In to 13-61- Yield reported 20 gpm. Mater and gravel. Is and and gravel. Yield reported 20 gpm. Mater and gravel. Yield reported 20 gpm. Mater and area and gravel. Yield reported 150 gpm. Mater and gravel. Yield reported 20 gpm. Mater and gravel. Yield reported 150 gpm. Mater and area and gravel. Yield reported 150 gpm. Mater and gravel. Yield reported 150 gpm. Mater and area and area gravel. 	 Hater reported from mand and and at 42 feet. Red beds reported 275 gpm, Matter and and gravel. Yield reported 20, gpm, Matter and gravel. Yield reported 40 gpm, Matter and gravel. One of five welly system. Yield reported wak, Water and gravel. One of five welly system. Yield reported wak, Water and gravel. One of five well system. Yield reported 40 gpm, Water and gravel. One of five well gravel. One of five well gravel. One of five well gratem. Yield reported 40 gpm, Water and gravel. One of five well gratem. Yield reported 40 gpm, Water and gravel. One of five well gratem. Yield reported 50 gpm, Water and gravel. One of five well gratem. Yield reported 50 gpm, Water and gravel. One of five well gratem. Yield reported 50 gpm, Water and gravel. One of five well gratem. Yield reported 50 gpm, Water and gravel. Yield reported 10 gpm, Water and gravel. Well 13-61-562 pumps into the granel and gravel. Yield reported 125 gpm, Water and and gravel. Yield reported 130 gpm, Water and gravel. Yield reported 150 gpm, Water and and gravel. Yield reported 150 gpm, Water and and gravel. 	 Hater reported from sind and art 42 feet. Red beds reported zeroticated reported 275 gpm, Matter and gravel. Yield reported 20, gpm, Matter and gravel. One of two wells system. Yield reported 40 gpm, Water and gravel. One of five wells system. Yield reported wak, Mater and gravel. One of five wells system. Yield reported wak, Mater and gravel. One of five wells system. Yield reported 40 gpm, Mater and gravel. One of five well system. Yield reported 40 gpm, Mater and gravel. One of five well system. Yield reported 40 gpm, Mater and gravel. One of five well system. Yield reported 50 gpm, Mater and gravel. One of five well and gravel. This well pumps into 13-61-62 pumps into 13-61-61-515 pumps into 13-61-61-515 pumps into 15-61-61-515 pumps into	 Mater reported from grand and and treported 275 gpm. Mat. Yield reported 275 gpm. Mat. Yield reported 40 gpm. Mat. Yield reported 40 gpm. Mater and gravel. Yield reported 40 gpm. Water and gravel. One of five well. Yield reported 60 gpm. Water and gravel. One of five well. Yield reported 40 gpm. Mater and gravel. One of five well. Yield reported 40 gpm. Mater and gravel. One of five well. Yield reported 50 gpm. Mater and gravel. One of five well. Yield reported 50 gpm. Mater and gravel. One of five well. Yield reported 50 gpm. Mater and gravel. One of five well. Yield reported 50 gpm. Mater and gravel. Mell 13-61-562 pumps into 13-61-14. Well 13-61-552 pumps into 14. Well 13-61-552 pumps into 14. Yield reported 256 gpm. Mell Yield reported 256 gpm. Mell Yield reported 256 gpm. Mell Yield reported 256 gpm. Well Yield reported 256 gpm. Well 	 Mater reported from mand and and treported 275 gpm. Mat. Yield reported 275 gpm. Mat. Yield reported 200 gpm. Mat. Yield reported 40 gpm. Mater Yield reported 40 gpm. Mater Mater and gravel. One of two wells Yield reported 80 gpm. Mater Mater and gravel. One of five well System. Yield reported 40 gpm. Mater Mater and gravel. One of five well System. Yield reported 40 gpm. Mater Mater and gravel. One of five well System. Yield reported 40 gpm. Mater Mater and gravel. One of five well System. Yield reported 40 gpm. Mater Mater and gravel. One of five well System. Mater and gravel. Mater and and gravel.
Use of water		Irr	Irr Irr	Irr Irr	ler ler ler ler	Iter Iter Iter Iter Iter	Irr Irr Irr Irr Irr	Irr Irr Irr Irr Irr Irr Irr	III III III III III III III	Irr Irr Irr Irr Irr Irr Irr Irr	LICT LICT LICT LICT LICT LICT LICT LICT	Irr Irr Irr Irr Irr Irr Irr Irr	Irr Irr Irr Irr Irr Irr Irr Irr Irr Irr	Itr Itr Itr Itr Itr Itr Itr Itr Itr Itr	Irr Irr Irr Irr Irr Irr Irr Irr Irr Irr	Int Int Int Int Int Int Int Int Int Int	Irr Irr Irr Irr Irr Irr Irr Irr Irr Irr	Itr Itr Itr Itr Itr Itr Itr Itr Itr Itr	Itr Itr Itr Itr Itr Itr Itr Itr Itr Itr	ни ни ни ни ни ни ни ни ни ни ни ни ни н	Irr Irr Irr Irr Irr Irr Irr Irr Irr Irr
Method of 11.ft	1	T, E,	T, E, 10 T, E, 10	T, E, 10 T, E, T, G	Т, с. 10 10 10 1, с. т, с	T, E, T, E, T, G T, G T, G (k, k, 1/2	1, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	T, 6, T, 6, T, 6 T, 6 T, 6 T, 6 T, 6 T,	T, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	T, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	T, E, T, E, T, C T, C T, C T, C T, C T, Z C, E, C, E, C, E, C, E, C, E, C, E, C, E,	T, E, T, E, T, G T, G T, G T, G T, E, C, E, C, E, C, E, C, E, C, E, T, Z, C, E, T, Z, C, E, T, Z, C, E, T, G C, E, T, G C, T, G C, C, G C, C, C, G C, C, C C, C C, C C, C, C C, C, C C,	T, E, T, E, T, G T, G T, G T, G T, Z C, E, L/2 C, E, L/2 C, E, L/2 C, E, T, Z C, E, T, Z C, E, T, G C, E, C, E, C	T, 6, T, 6, T, 6 T, 6 T, 6 T, 6 L/2 Cf, 8, Cf, 8, Cf, 8, Cf, 8, Cf, 8, Cf, 8, Cf, 8, T/2 T, 7, Cf, 8, T/2 Cf, 8, T/2 Cf, 8, T/2 Cf, 8, T/2 Cf, 8, T, 6 Cf, 8, T, 6 Cf, 8, T, 6 Cf, 8, Cf, 7, Cf, 7, Cf	T, E, T, G T, G T, G T, G T, G T, G T, C C, E, C,	T, E, T, C, T, C, T, C, T, C, T, C, T, C, T, Z, T, Z, T, Z, T, Z, T, Z, T, E, T, E, T, E, T, E, T, E, T, E, T, E, T, E, T, C, T, Z, T, C, T, C, C, T, Z, C, T, C, C, T, Z, C, T, C, C, T, Z, C, T, Z, C,	T, G, T, C, T, Z, C, C, Z, Z, C, C, Z, Z, C, C, Z, Z, C, C, Z, Z, Z, C, Z,	T ₁₀ E, T ₁₀ E, T ₁₀ E, T ₁₀ E, T ₁₁₂ C, T ₁₂ C, T ₁₃ C,	T, B, C,	T, E, T, E, T, C T, C T, C T, C T, C T, C T, Z T, Z C, E, E, C, Z, E, C, Z, E, T, E, T, E, T, E, T, E, T, E, C, Z, Z, E, C, Z, Z, E, C, Z,	T, G, T, Z, G, T,
	July 17, 1960 Mar. 27, 1970		db	do Apr. 8, 1970	do Apr., 8, 1970 do	do Apr. 8, 1970 do Apr. 10, 1970	do Apr. 8, 1970 do Apr. 10, 1970 do	do Apr. 8, 1970 do Apr. 10, 1970 do do	do Apr. 8, 1970 do do do do do	do Apr. 8, 1970 do do do do do do	do Apr. 8, 1970 do do do do do do do 2, 1970	do Apr. 8, 1970 do do do do do do June 2, 1970 do	do Apr. 8, 1970 do do do do do June 2, 1970 June 2, 1970 do June 2, 1970	do Apr. 8, 1970 do do do do do do do do do do Jume 2, 1970 Jume 2, 1970 Jume 3, 1970 Jume 3, 1970	do Apr. 8, 1970 do do do do do do do do do June 2, 1970 do June 2, 1970 do June 3, 1970 June 3, 1970	do Apr. 8, 1970 do do do do do do do June 2, 1970 June 2, 1970 June 3, 1970 June 3, 1970 June 3, 1970 do	Apr. 8, 1970 do do d	Apr. 8, 1970 do do d	Apr. 8, 1970 do do d	Apr. 8, 1970 do do d	Apr. 8, 1970 do do d
datum (ft)	21.61		32.10	32.10	32.10 22.25 25.17	32,10 22,25 25,17 25,17 24,58	32.10 22.25 25.17 24.58 24.58 28.48	32.10 22.25 25.17 24.58 24.58 28.48 28.48	32,10 25,17 25,17 24,58 28,48 28,48 28,54 28,54	32.10 22.25 25.17 24.58 28.48 28.54 28.54 26.28 26.28 26.28	32.10 22.25 25.17 24.58 28.48 28.48 28.54 28.28 26.28 26.28 27.69 10	32.10 22.25 25.17 24.58 28.48 28.48 28.54 26.28 26.28 26.28 20.50	32.10 22.25 25.17 25.17 24.58 28.48 28.54 28.54 26.28 26.28 26.28 20.50 10 10 20.50	32.10 22.25 25.17 24.58 24.58 28.48 28.48 28.48 26.28 26.28 26.28 26.28 20.50 10 10 10 21.54 28.71 32.51 54.51 232.15	32.10 22.25 24.58 24.58 28.48 28.48 28.59 20.50 10 10 10 10 21.50 28.71 32.15 32.15	32.10 22.25 24.58 24.58 28.48 28.48 28.54 26.28 26.28 26.28 26.28 26.28 26.28 26.28 20.50 30.82 32.49	32.10 22.25 24.58 24.58 28.48 28.54 28.56 26.28 26.28 26.28 26.28 20.50 10 10 10 30.80 30.82 32.49	32.10 22.25 25.17 25.17 24.58 28.48 28.48 28.48 26.28 26.28 26.28 20.50 10 10 10 10 10 10 10 21.54 28.51 51.54 28.51 20.69 21.54 28.54 20.50 200	32.10 22.25 25.17 25.17 24.58 28.48 28.48 28.54 20.50 10 10 10 10 30.82 21.56 30.82 31.49 32.45 32.45 25.17 32.47 32.17	32.10 22.25 25.17 25.17 24.58 28.48 28.48 28.54 20.50 30.50 30.82 32.49 32.15 32.49 32.49 25.17 26 32.47 32.45 28.71 26 25.17 26	32.10 22.25 24.58 24.58 28.48 28.48 28.46 28.46 20.50 10 10 10 20.50 30.82 32.45 30.82 32.45 21.55 30.82 32.45 25.17 26 32.40 26.00
(ft)	1, 321	Contraction of the	1,322	1, 322 1, 284	1, 322 1, 284 1, 299	1,322 1,284 1,299 1,315	1, 322 1, 284 1, 299 1, 315 1, 316 1, 316	1, 322 1, 284 1, 299 1, 315 1, 316 1, 317	1, 322 1, 284 1, 299 1, 315 1, 316 1, 317 1, 317 1, 317	1, 322 1, 284 1, 215 1, 315 1, 316 1, 317 1, 317 1, 319	1, 322 1, 284 1, 299 1, 315 1, 316 1, 317 1, 317 1, 319 1, 305	1, 322 1, 284 1, 215 1, 316 1, 316 1, 317 1, 319 1, 305 1, 319	1, 322 1, 284 1, 215 1, 315 1, 315 1, 315 1, 317 1, 319 1, 305 1, 319 1, 320	1, 322 1, 284 1, 215 1, 315 1, 316 1, 317 1, 319 1, 305 1, 319 1, 320 1, 319	1, 322 1, 284 1, 215 1, 316 1, 317 1, 317 1, 317 1, 319 1, 319 1, 318 1, 318	1, 322 1, 284 1, 215 1, 316 1, 316 1, 317 1, 319 1, 319 1, 318 1, 318 1, 318	1, 322 1, 284 1, 284 1, 315 1, 315 1, 315 1, 319 1, 320 1, 318 1, 318 1, 318 1, 318 1, 318	1, 322 1, 284 1, 289 1, 315 1, 315 1, 317 1, 319 1, 319 1, 319 1, 319 1, 318 1, 318 1, 318 1, 318 1, 318 1, 318	1, 322 1, 284 1, 286 1, 315 1, 316 1, 317 1, 319 1, 319 1, 319 1, 318 1, 318 1, 318 1, 318 1, 318 1, 318 1, 318 1, 318 1, 318 1, 318	1, 322 1, 284 1, 286 1, 315 1, 316 1, 317 1, 319 1, 319 1, 319 1, 318 1, 318 1, 318 1, 318 1, 318 1, 318 1, 318 1, 318 1, 318 1, 318	1, 322 1, 284 1, 284 1, 315 1, 316 1, 317 1, 319 1, 319 1, 318 1, 318 1, 318 1, 318 1, 318 1, 318 1, 318 1, 318 1, 318
hearing unit	QB		Qs	Qs Qs	$Q_{\rm S}$ $Q_{\rm S}$	රු දු දු දු	S S S S	Q Q Q Q Q	ර ර ර ර ර ර	2 2 2 2 2 2 2 2 2 2 2 3 2 3 3 3 3 3 3 3	29 28 28 29 20 20 20 20 20 20 20 20 20 20 20 20 20	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	28 28 28 28 28 28 28 28 28 28 28 28 28 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	රිම පිරි කියි. ප්රී ක්ෂී ක්ෂී ක්ෂී ක්ෂී ක්ෂී ක්ෂී ක්ෂී ක්ෂී ක්ෂී ක්ෂී ක්ෂී ක්ෂී ක්ෂී	28 28 28 28 28 28 28 28 28 28 28 28 28 2		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 6 6 6 6 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7
ter Depth in.) (ft)	43	1221	54	54 38	54 38 51	54 38 51 39	54 51 39 39 37 37	54 318 324 374 376 376 376 376	54 318 319 316 316 316 316 316 316	54 319 324 37 37 39 39 39	54 51 39 37 39 39 39 39 39 39 39	54 318 324 33 39 39 39 39 39 39	54 318 324 337 339 339 339 339 339 339	54 318 324 337 33 33 33 33 33 33 33 33 33 33 33 33	54 318 37 37 39 39 39 39 39 39 39 39 39 39 39 39 39	54 31 32 33 33 33 33 33 33 33 33 33 33 33 33	54 31 324 337 339 339 339 339 339 339 339 339 339	54 37 37 39 39 39 39 50 50 50 50 50 50 50 50 50 50 50 50 50	54 37 37 39 39 39 39 50 50 50 39 39 39 39	54 318 324 325 339 339 339 339 339 339 339 339 339 33	54 31 32 32 33 33 33 33 33 33 33 33 33 33 33
of Di well et (ft) (3	43 14		54 14	54 14 38 16	54 16 38 16 51 14	54 14 38 16 51 14 39 12	54 14 38 16 51 14 14 39 12 37 48 16	54 14 38 16 51 14 39 12 39 12 48 16 16 16 16 16 16 16 16 16 16 16 16 16	54 14 38 16 51 14 39 12 39 12 16 48 37 48 16 16 16 39 12	54 14 38 16 51 14 39 12 39 12 16 48 48 16 16 16 39 12 39 12 39 12	54 14 38 16 51 14 37 14 37 48 37 48 37 48 39 12 39 16	54 14 38 16 51 14 37 48 37 48 16 16 37 48 16 16 39 12 39 12 39 12 39 12 39 12 39 12	54 14 38 16 31 14 32 12 37 48 37 48 37 48 37 48 37 48 37 48 37 48 37 48 37 48 37 48 39 16 32 6 39 16 39 16 39 16 39 12 39 12 39 12 39 12 39 14 39 16 39 16 39 16	54 14 38 16 31 14 37 48 37 48 39 12 39 12 39 12 39 12 39 12 39 12 39 12 39 12 39 12 39 12 39 12 39 12 39 12 39 12 39 12 39 12 39 14 39 16 39 16 39 16 30 16 30 16 30 16	54 14 38 16 39 16 37 48 37 48 37 48 39 12 39 12 39 12 39 12 39 12 39 12 39 12 39 12 39 12 39 12 39 12 39 12 39 12 39 12 39 12 39 14 39 16 30 16 30 16 30 16 30 16 30 14	54 14 38 16 31 16 32 12 33 48 37 48 39 12 39 12 39 12 39 12 39 12 39 12 39 12 39 12 39 12 39 12 30 14 30 16 30 16 30 14 30 16 30 16 30 16 30 16 30 16 30 16 30 16 30 14 50 14	54 14 38 16 39 16 37 48 37 48 37 48 37 48 39 12 39 12 39 12 39 12 39 12 39 12 39 12 39 12 39 12 39 14 39 16 30 16 30 14 30 14 30 14 30 14 30 14 30 14 30 14 30 14	54 14 31 16 31 16 31 14 37 48 37 48 37 48 39 12 39 12 39 12 39 12 39 12 39 12 39 12 39 12 39 12 39 14 30 14 30 14 30 14 30 14 30 14 30 14 30 14 30 14 30 14 30 14 30 14	54 14 38 16 39 16 37 48 37 48 39 12 39 12 39 12 39 14 39 12 39 12 39 12 39 12 39 12 39 12 39 12 30 12 31 14 32 14 33 14 30 14 30 14 30 14 30 14 30 14 30 14 31 14 32 14	54 14 31 16 31 16 31 12 32 12 33 12 34 12 35 12 39 12 39 12 39 12 39 12 39 12 39 12 39 12 39 14 30 14 30 14 30 14 30 14 30 14 30 14 30 14 30 14 30 14 31 14 32 14 33 14 34 14 35 14 36 14 37 14	54 14 38 16 39 16 31 12 32 12 33 12 34 12 35 12 39 12 39 12 39 12 39 12 39 12 39 12 39 12 30 14 30 14 30 14 30 14 30 14 30 14 30 14 30 14 30 14 31 14 32 14 33 14 34 14 35 14 36 14 37 16 38 16 39 16 31 16 32 <
Date completed	1960		1965	1965 1958	1965 1958 1965	1965 1965 1965	1965 1958 1965 1965 1961	1965 1958 1965 1965 1961	1965 1958 1965 1961 1961 1961	1965 1958 1965 1961 1961 1965 1965	1965 1958 1965 1961 1961 1965 1965 1953	1965 1958 1965 1961 1961 1965 1965 1959 1959	1965 1958 1965 1961 1961 1965 1965 1959 1950 1961	1965 1958 1965 1961 1961 1965 1965 1961 1961	1965 1958 1965 1961 1961 1961 1961 1961 1961	1965 1958 1965 1961 1961 1965 1965 1960 1961 1961 1961	1965 1958 1961 1961 1961 1965 1965 1961 1961 1961	1965 1958 1965 1961 1961 1965 1965 1961 1961 1961	1965 1958 1965 1961 1961 1965 1965 1961 1961 1961	1965 1958 1965 1965 1961 1961 1961 1961 1961 1963 1963 1963	1965 1958 1965 1965 1961 1965 1965 1966 1961 1961
briller	Robert Dale	4	Gn	do do	05 09 09	do do Carl Bradford	do do Carl Bradford Robert Dale	do do Carl Bradford Robert Dale do	do do Carl Bradford Robert Dale do do Carl Bradford	do do Carl Bradford Robert Dale do Carl Bradford	do do Carl Bradford Robert Dale do Carl Bradford do Robert Dale	do do Carl Bradford Robert Dale do Carl Bradford do Robert Dale do	do do Carl Bradford Robert Dale do do Robert Dale do do	do do Carl Bradford Robert Dale do do do do do do	do do Carl Bradford Robert Dale Carl Bradford do do do do do do	do do Carl Bradford Robert Dale do do do do do do do do	do do Carl Bradford Robert Dale Ao do do do do do do do do do	do do Carl Bradford Robert Dale Robert Dale do do do do do do	do do darl Bradford Robert Dale Carl Bradford do do do do do do do do do	do do do Carl Bradford Robert Dale Robert Dale do do do do do do do do do	do do Carl Bradford Robert Dale Robert Dale do do do do do do do do do do
Owner	Mrs. Minnie Beasley		qo	do Leon G. Lehman	do Leon G. Lehuman Martin M. Schulz	do Leon G. Lehman Martin M. Schulz Bill Smith	do Leon G. Lehman Martin H. Schulz Bill Smith do	do Leon G. Lehuman Martin M. Schulz Bill Smith do do	do Leon G. Lehuman Martin N. Schulz Bill Smith do do do	do Leon G. Lehuman Martin M. Schulz Bill Smith do do do do	do Leon G. Lehuman Martin M. Schulz Bill Smith do do do do do J. F. Shivers	do Leon G. Lehuman Martin M. Schulz Bill Smith do do do do J. F. Shivers Dan R. Nowiin	do Leon G. Lehuman Martin M. Schulz Bill Smith do do do do J. F. Shivers Dan R. Nowilin do	do Leon G. Lehuman Martin N. Schulz Bill Smith do do do J. F. Shivera Dan R. Nowiin Ban R. Nowiin Robert M. Gaebler	do Leon G. Lehman Martin M. Schulz Bill Smith do do do do do ban R. Nowlin Ban R. Nowlin do do	do Leon G. Lehuman Martin M. Schulz Bill Smith do do do do Ban R. Nowilin Dan R. Nowilin do do do do	do Leon G. Lehuman Martin M. Schulz Martin M. Schulz do do do do ban R. Nowilin Robert M. Gaebler do do San R. Nowilin Ban R. Nowilin	do Leon G. Lehman Martin M. Schulz Bill Smith do do do do do Robert M. Gaebler do ban R. Nowlin Ban R. Nowlin Momer W. Custer	do Leon G. Lehman Martin M. Schulz Bill Smith do do do do do Ban R. Nowiln Ban R. Nowiln Homer M. Custer Homer W. Custer do	do Leon G. Lehuman Martin M. Schulz Martin M. Schulz Bill Smith do do do do do do Ban R. Nowiin Homer W. Custer Homer W. Custer do do	do Leon G. Lehuman Martin M. Schulz Martin M. Schulz Bill Smith do do do do do do ban R. Nowilin Dan R. Nowilin Homer W. Cuater Homer W. Cuater do do do do do
	-552 1		553	553 554 1	553 554 1 555 h	553 554 L 555 b 555 b	553 254 L 555 P 556 B 256 B	553 554 L 555 M 555 Z 2556 Z 2558 558	553 554 L 555 M 555 8 558 558 558 558	553 1 1 554 1 555 8 556 558 558 558 550	553 254 L 555 M 555 2 558 2 558 2 558 2 558 2 558 2 560 1	553 1 1 554 1 555 8 555 8 558 8 555 8 558 8 555 8 558 8 555 8 556 8 566 8 556	553 1 L 556 N 555 8 559 559 559 550 560 561 563 7	553 254 L 555 M 555 8 553 553 553 563 563 1 563 1	553 254 L 555 N 555 N 555 N 555 N 560 N 563 N 563 N 563 N 565 N 563 N	553 254 L 555 M 555 8 558 8 558 8 558 8 558 8 561 2 563 8 564 8 565 8 565 8 565 8 565 8 565 8 566 8	553 254 L 1 555 8 555 8 556 8 560 2 560 2 563 8 563 8 563 8 563 8 563 1 565 1 565 1 566 1 566 1 1	553 254 L 255 8 255 8 255 8 255 8 256 8 256 1 2 2 563 8 563 8 563 8 563 8 563 8 563 8 563 1 566 1 568 8 568	553 254 L 255 8 355 8 555 8 558 8 558 8 558 8 564 8 564 8 564 8 565 8 564 8 565 1 565 1 565 1 566 1 1 565 1 568 1	553 254 L 255 M 255 M 255 M 255 M 258 M 258 M 256 M 260 M 200 M 20	553 554 L 554 L 555 8 555 8 555 8 555 8 560 8 560 8 563 8 565 8 565 8 565 8 565 8 565 8 565 8 565 8 565 8 565 8 566 1 566 1 566 1 566 1 566 1 567 1 568 8 568 8 558 8 568 8 56

Table $\dot{q}_{\star^{\star^{-}}} Records of Water Wells, Springs, and Selected Test Holes--Continued$

_																	
	R emark s	Yield reported 75 gpm. One of five wells on a collector system.	Vield reported 30 gpm, One of five wells on a collector system.	Vield reported 75 gpm. Water reported from tight gravel with clay layers at 23 to 53 feet, Red beds reported at 53 feet.	Yield reported 165 gpm. Water reported from loose gravel at 48 to 33 feet. Red beds reported at 53 feet.	Yield reported 150 gpm. Mater reported from tight gravel with clay layers at 19 to 55 feet, Red beds at 55 feet.	Unused irrigation well.	Yield reported 125 gpm. Water reported from sand and gravel at 26 to 40 feet. Red beda reported at 40 feet. Well 13-61-579 pumps into this well.	Yield reported 100 gpm. Water reported from and and gravel at 10 to 40 feet. Red beda reported at 40 feet. This well pumps into 13-61-578.	Unused irrigation well. Yield reported less than 75 gam. After reported from sand and gravel at 24 to 44 feet. Red beds reported at 44 feet. This well formerly pumped into 13-61-581.	Unused itrigation well. Yiald reported 75 gpm. Macer reported from and and gravia at 24 to 48 feet. Red beda reported at 48 feet. Well 13-61-580 formerly pumped into this well.	Unused public supply well.	Yield reported 50 gpm. A	Yield reported 75 gpm, 4	Unused irrigation well. Well F-68a of Bull, 5614. 7	Unused irrigation well.	Yield reported 200 gpm. Water reported from sand and gravel.
	Use of water	Irr	Irr	Irr	Irr	Irr	z	Irr	Itr	z	Z	N	Irr	Irr	z	N	Irr
	Method of 11ft	cf, E, 1-1/2	CF, E, 1/2	T, G, 30	T, G, 58	T, E, 10	т, Е, 15	T, E, 10	Sub, E, 5	z	Т, -	J, E	Т, Е, Э	Т, с	z	z	т, ^{Е,} 20
tevel	Date of sagurement	e 3, 1970	qo	e 4, 1970	do	do	y 30, 1970	1968	:	e 8, 1971	op	:	. 6, 1956 . 17, 1963 . 18, 1963 . 12, 1970 . 8, 1971	7, 1954 3, 1958 14, 1958 12, 1970 8, 1971	. 7, 1954 . 16, 1957 . 3, 1958	y 11, 1960 e 18, 1971	, 18, 1958 y 11, 1960 . 26, 1970
er le	Ĕ	Jun		Jun			Jul Feb			unf			Jan Jan Jan Jan	Jan Jan Jan Jan	Jan Jan Jan	Jul	Jut Jut Mar
Wat	Below land- surface datum (ft)	24,30	24,58	31,63	32.51	30.59	29.18 30.83	30	ł	31.98	32.52	:	28.61 26.92 32.09 29.41 32.40	30.45 27.70 35.02 34.15	31.50 32.04 31.20	26.00 34.61	17 16.25 29
	Altitude of land surface (ft)	1,318	1, 318	1,288	1,288	1,284	1,318	1, 318	1, 318	1, 315	1, 316	1, 314	1, 300	1,299	1, 302	1, 302	1,297
	Water bearing unit	ds	Q_S	Qs	Qs	QB	Qs	Qs	Qs	Qs	Qs	Qs	Qs	Qs	Qs	Qs	Qs
	epth (ft)	32	15 32	54	54	56	40	43	44	44	48	;	40	07	53	45	40
Casing	Diam- eter D (in.)	14	30 14	14	14	14	14	16	8	18	18	ţ	14	14	14	14	14
	epth of well (ft)	32	32	54	54	56	40	43	44	44	48	:	40	40	53	45	07
-	ed											-					
	Date	1961	1960	1958	1959	1965	1	1964	1968	1966	1966	ł	1955	1953	1953	1959	1958
	Driller	Robert Dale	do	L. E. Stamps	do	Robert Dale	ł	Jim Rae	Lee Hopper	Robert Dale	đo	;	L. E. Stamps	op	1	L. E. Stamps	Robert Dale
	Owner	Homer W. Custer	op	Mrs. E. P. Streit	do	do	T. J. McG111 Estate	Martha Graf	ęş	0. G. Hamilton	ę	Lockett High School	E. A. Woolf	ę	Mrs. John Kretschmer	do	Mrs. M. V. McNairy
	We11	13-61-572	573	574	575	576	577	578	579	580	581	582	109	602	603	6.04	605
			*	_		4	_	*	*	*		*			_		

- 140 -

Table 4 .- - Records of Water Wells, Springs, and Selected Test Holes -- Continued

41 41<																				-	
With build Control (1) Math build Math b		Remarks	The water level measured on Mar. 26, 1970 (31.99 feet) was obstained during pumping. Yield reported 100 gpm. Marer reported from sand and gravel with base at Å2 feet. Red beds reported at Å2 feet.	Yield reported 300 gpm. Water reported from sand and gravel.	Owner hand-dug well to 28 feet. W. E. Turner and Robert Dale deepened well to 46 feet. Yield reported 140 gpm. rept. §	Vield reported 260 gpm, Water reported from and and gravel.	Yield reported 110 gpm. Water reported from 10 feet of water sand. This well pumps into 13-61-627.	Originally a dug well. Well 17 of Vernon rept. $\underline{5}$	Vield reported 100 gpm.	Do.	Vield reported 40 gpm. $\underline{1}_{j}$	Yield reported 75 gpm. Water reported from 6 to 8 feet of mand and gravel. Well 13-61-616 pumps into this well.	Yield reported 50 gpm. Mater reported from 6 to 8 feet of mand and gravel. This well pumps into 13-61-615.	Y(eld reported 150 gpm, Water reported from sund and gravel.	The measured water level (35.92 feet) was obtained during pumping, Yield reported 75 gpm. Mater reported from sand and gravel at 22 to 43 feet, Red beds reported at 43 feet.	Vield reported 40 gpm. $\underline{1}$	Do.	尼石	Unused irrigation well. Water reported from sand and gravel.	Water reported from sand and gravel. $\underline{2}$	
bit Due Due <thdue< th=""> <thdue< th=""> <thdue< th=""></thdue<></thdue<></thdue<>		Use of water	Itr	Itre	Itr	Irr	ltr	۵	Irr	ltr	Irr	ltr	Irr	Irr	Irr	đ	d	Irr	N	Irr	
M11 Ome Utility Multi current curren		Method of Lift	cf, E,	T, G, 30	T, E, 10	T, E, 15	T, E, 10	cf, E, 1/3	cf, E,	T, E, 10	cf, E,	T, G	T, E, 10	т, Е,	cf, E, 2	T, E,	т, Е,	T, E, 10	2	T, E, 10	
Mol1 Owner Incluse Inc	· level	Date of measurement	July 11, 1960 Mar. 26, 1970 do	July 12, 1960 Apr. 16, 1970 Feb. 4, 1971	Oct. 28, 1943 July 12, 1960 Apr. 16, 1970	July 13, 1960 Apr. 16, 1970	July 13, 1960	Oct. 29, 1943 Mar. 4, 1970	Mar. 24, 1970	qo	June 29, 1966 Mar. 24, 1970	Mar. 26, 1970	op	ab	do	Apr. 10, 1969	ab	Mar. 23, 1959 Apr. 16, 1970	op	do Feb. 4, 1971	
Mol1 Mone Builtier Builtier Dues Dues <thdues< th=""> <thdues< th=""> Dues</thdues<></thdues<>	Waten	Below Land- surface datum (ft)	16.35 29 31,98	20.74 29.29 29.65	11.87 24.50 32.11	24.26 32.35	20.99	15.40	29,82	28,81	31 29.84	29	29,16	29	27 35.92	29	29	15 26.12	25.59	26.22 26.98	
Wall Dense Derifie Derifie <thderifie< th=""> <thderifie< th=""> <thderifi< td=""><td></td><td>Altitude of land surface (ft)</td><td>1, 297</td><td>1,308</td><td>1,313</td><td>1, 312</td><td>1,308</td><td>1,294</td><td>1,316</td><td>1,317</td><td>1, 317</td><td>1,297</td><td>1,296</td><td>1,298</td><td>1,296</td><td>1,301</td><td>1,300</td><td>1, 305</td><td>1,305</td><td>1,307</td><td></td></thderifi<></thderifie<></thderifie<>		Altitude of land surface (ft)	1, 297	1,308	1,313	1, 312	1,308	1,294	1,316	1,317	1, 317	1,297	1,296	1,298	1,296	1,301	1,300	1, 305	1,305	1,307	
Mol1 Const Drillet Depth Depth <t< td=""><td></td><td>Water bearing unit</td><td>Qs</td><td>Qa</td><td>QB</td><td>Q8</td><td>Qa</td><td>Q8</td><td>da</td><td>Qu</td><td>Qu:</td><td>Qa</td><td>Qa</td><td>Qu</td><td>Qs</td><td>Qu</td><td>da Ø</td><td>Qs</td><td>Qa</td><td>Qs</td><td></td></t<>		Water bearing unit	Qs	Qa	QB	Q8	Qa	Q8	da	Qu	Qu:	Qa	Qa	Qu	Qs	Qu	da Ø	Qs	Qa	Qs	
No.11 Domet Dutiliate Dutiliat Dutiliat Dutiliat	ng	Depth (ft)	43	48	46	51	43	30	51	51	51	36	01	44	44	25 50	25 50	40	36	42	
Joil Dome Durilite Durility Dur	Casi	Diam- eter (in.)	14	14	18	16	16	4	14	14	14	14	14	14	14	16 9	16 9	14	12	14	
Well Domen Durillar Durillar Durillar Durillar 13-61-600 Keu, N. V. Nchkirry Robert Dule 1936 * 607 E. H. Richis, Jr. Jin Rue 1936 * 607 E. H. Richis, Jr. Jin Rue 1936 * 607 Rui Schoppa, and No.E. Turner,		Depth of well (ft)	64	48	46	51	43	30	51	51	51	36	40	44	44	50	50	40	36	42	
MeIl Oomer Diffler 1J-61-600 Mra. M. V. McBairy Robert Date 1J-61-600 Mra. M. V. McBairy Robert Date e007 E. H. Richie, Jr. Jin Rae e007 Karl Schopsi, and Mustr Date Mobert Date e 607 Faul Schopsi, and Mustr Date Mobert Date e 609 Faul Schopsi, and Mustr Date Mobert Date e 610 Inoner Baseloff do e 611 T. J. McGill Estate e 612 Edward K. Obenhaue Bobert Date e 613 do do do e 613 Hen, M. V. McBairy Robert Date do e 613 do do do e 613 Lut, N. V. McBairy Robert Date e		Date completed	1958	1956	1940	1956	1959	1930	1967	1961	1966	1960	1959	1968	1968	1969	1969	1960	1948	1963	
Mell Owner Mell Owner 13-61-606 Mrs. M. V. McMairy * 607 E. H. Richie, Jr. * 608 Karl Schoppa, Jad * 609 Paul Schoppa, Jad * 609 Paul Schoppa, Jad * 610 Robert Dale * 610 Robert Dale * 610 Robert Dale * 611 T. J. McGill Estate * 612 Edward K. Obenhaus * 613 do * 614 do * 615 Bethal T. Juvenal * 616 do * 613 do * 614 do * 615 Bethal T. Juvenal * 616 do * 613 do * 614 do * 613 do * 613 do * 614 do * 621 Ed A. Haseloff * 622 do * 623 do * 623 do * 623 do		Driller	Robert Dale	Jim Rae	Karl Schoppa, W. E. Turner, and Robert Dale	L. E. Stamps	op	1	Robert Dale	do	do	L. E. Scampa	do	Robert Dale	op	E. B. Dyer Drilling Co.	do	Robert Dale	L. E. Stamps	Robert Dale	
Well 13-61-606 * 607 * 607 * 607 * 610 * 611 * 612 * 613 * 614 * 615 * 616 * 617 * 618 * 619 * 612 * 613 * 614 * 615 * 616 * 623 * 623 * 623 * 624		Owner	Mrs. M. V. McNairy	E. H. Richie, Jr.	Karl Schoppa, W. E. Turner, and Robert Dale	Paul Schoppa	Homer Haseloff	T. J. McGill Estate	Edward K. Obenhaus	op	do	Bethal T. Juvenal	qo	Mrs. M. V. McNairy	op	Lockett Water District	qo	Ed A. Haseloff	do	do	and of rahla
a a a a a a a a a a a a a a a a a a a		Well	13-61-606	607	608	609	610	119	612	613	614	615	616	617	618	619	620	621	622	623	ACCOUNTED AT
					*	×	*	*		#		*		*	8			*	÷	*	Cap fo

- 141 -

Table 4 .-- Records of Water Wells, Springs, and Selected Test Holes--Continued

_																						1
	Remarka	Unused irrigation well. Yield reported 30 gpm. \underline{y}	Unused industrial well. Yield reported 50 gpm.	Yield reported 50 gpm.	The June 9, 1970 water level was measured during pumping. Yield reported 110 gpm. Water reported from 12 feet of sand.	Destroyed irrigation well, Yield reported 100 gpm.	Unused irrigation well.	Do.	Do.	bo.	Do.	bo.	bo.	Measured vater level (28.23 feet) was obtained during pumping. Yield reported 65 gpm. Water reported from gand and gravel. One of two vells on a collector system.	Mensured water level (28.84 fast) was obtained during pumping.Yteid reported 65 gpm. Mater reported from sand and gravel. One of two wells on a collector system	Unused irrigation manifold system. Four wells of same depth and completed the same, pumped by a common pump and motor. Yield of system reported less than 100 gpm. Water reported from sand and gravel.	Water reported from sand and gravel, $\underline{2} \underline{i}$	Water reported from sand and gravel. Well 13-61-641 pumps into this well.	Yield reported 150 gpm. Mater reported from sand and gravel. This well pumps into well 13-61-640.	Unused irrigation well. Yield reported 125 gpm. Water reported from sand and gravel.	Yield reported 50 gpm. Mater reported from sand and gravel. Well 13-61-644 pumps into this well.	
	Use of water	N	z	Ind	Irr	z	z	z	z	N	z	z	z	Irr	Irr	z	Irr	Irr	Irr	z	Itr	
	Method of 11ft	z	cf, E, 1/2	Cf, E, 3/4	cf, E, 3	z	N	N	N	N	N	N	z	cf, E,	cť, ľ,	z	т, Е, 20	т, _Е , 15	cf, E, 3	cf, E,	т, к, 15	
r level	Date of measurement	June 4, 1970 Feb. 4, 1971	:	1	June 9, 1970	1	1	June 10, 1970	op	do	do	do	do	July 2, 1970 do	do	op	July 3, 1970 Feb. 4, 1971	July 3, 1970	Feb. 4, 1971	July 3, 1970	ï	
Wate	Below land- surface datum (ft)	16 29.14 30.74	:	ţ	23.40	:	;	26.64	25,18	25.76	25.60	25.22	24.92	24 28.23	24 28.84	24	30.54 28.64	30	29,25	29,04	;	
	Altitude of land surface (ft)	1, 317	1,295	1, 295	1, 308	1, 310	1,294	1,294	1,293	1,291	1,291	1,291	1,291	1,289	1,289	1,289	1,301	1,307	1,307	1,307	1,287	
	Water bearing unit	Qs	Qs	Qs	Qu	Qs	qe	Qs	Qs	Qs	Qs	Qs	Qs	qs	Qs	Qu	QB	Qs	Qa	Qs	Qs	
au	Depth (ft)	37	ł	;	43	1	;	ł	;	ţ	ł	ł	;	34	34	16	43	45	45	46	34	
Cast	Diam- eter (in.)	14	9	9	14	;	7	7	7	7	7	7	7	14	14	8	14	16	14	14	14	
	Depth of well (ft)	37	:	:	43	37	4	4	;	ł	1	1	:	34	34	16	43	45	45	46	34	
	Date	1955	1968	1960	1959	1953	1953	1953	1953	1953	1953	1953	1953	1959	1959	1956	1958	1962	1965	1960	1959	
	Driller	Robert Dale	Carl Bradford	Robert Dale	L. E. Stamps	Robert Dale	:	1	1	1	1	;	:	L. E. Stamps	Loyd E. Stamps	do	Robert Dale	L. E. Stamps	Robert Dale	L. E. Stamps	op	
	Owner	Eddie Schoppa	Karl Karcher	op	Homer Mageloff	Hattie Haseloff	Lily Mae Allred	do	do	op	do	do	op	Jennie L. Foerster	op	E. A. Woolf	Myrtle Darsey	do	do	op	Mrs. V. H. Weekley	
	Well	13-61-624	625	626	627	628	629	630	631	632	633	634	635	636	637	638	639	640	641	642	643	
L			*	÷				÷\$.							*		*	¥	_	*		

Table 4.--Records of Water Wells, Springs, and Selected Test Holes--Continued

Γ			p		pt		*udt					land		sand	sand ed sand sand	sand ed sand ed	sand ed ed ed	ed de ed ed	ed ad
	Remarks	Yield reported 50 gpm. Mater reported from sand and gravel. This well pumps into well 13-61-643.	Yield reported weak. Water reported from an and gravel at 16 to 20 feet. Well 18 of Vernon rept. $\tilde{\mathcal{G}}$	Unused industrial well.	Yield reported weak. Water reported from sa and gravel.	<u>1</u> 2 <u>1</u>	Unused irrigation well. Yield reported 420 Well 1 of Contamination Rept. 8. $\underline{3}$	Yield reported 300 gpm, Water reported from sand and gravel at 22 to 50 feet. Well 3 of Contamination Rept. 8, 'g	Yield reported 300 gpm . \underline{J}	Yield reported 250 gpm.	Yield reported 150 gpm.	Yield reported strong. Water reported from and gravel,	Yfeld reported 300 gpm. <u>Y</u>	Vield reported 300 gpm. Water reported from and gravel at 28 to 52 feet. Red beds repor at 32 feet.	Vield reported 300 gpm. Water reported from and gravel at 28 to 52 feet. Red beds repor at 52 feet. Vield reported 150 gpm. Water reported from and gravel at 22 to 46 feet. Red beds repor at 46 feet.	Yield reported 300 gpm. Water reported from and gravel at 28 to 52 feet. Red beds repor at 52 feet. Yield reported 150 gpm. Water reported from and gravel at 22 to 46 feet. Red beds repor at 46 feet.	<pre>Yield reported 300 gpm. Water reported from md grvvel at 28 to 52 feet. Red beds report at 32 feet. Yield reported 150 gpm. Water reported from and gravel at 22 to 46 feet. Red beds report at 46 feet. Yield reported 150 gpm. One well of an unused irrigation two-well manifold system. Yield of system reported 3 gpm. Both wells pumped by a common pump and motor. Well 6 of Contamination Rept. 8. g</pre>	<pre>Yield reported 300 gpm. Water reported from and grevel at 28 to 52 feet. Red beds report at 22 feet. Yield reported 150 gpm. Water reported from and grevel at 22 to 46 feet. Ned beds report at 46 feet. Yield reported 150 gpm.</pre> One well of an unused irrigation two-well manifold system Yield of system reported 3 gpm. Both wells pumped by a common pump and motor. Well 6 of Contamination Rept. 8. 9 On manifold system with well 13-61-711.	<pre>Yield reported 300 gpm. Mater reported from and grevel at 28 to 52 feet. Red beds report at 32 feet. Yield reported 150 gpm. Mater reported from and grevel at 22 to 46 feet. Red beds report at 46 feet. Yield reported 150 gpm. One well of an unused irrigation two-well gam. Both wells pumped by a common pump and motor. Well 6 of Contamination Rept. 8. 3 On manifold system with well 13-61-711. Mater quality observation well. Water report from stud gravel.</pre>
	Use of water	Irr	D, S	N	a	đ	Ν	Irr	ltr	Itr	Irr	Q	Irr	Irr	Irr Irr	Irr Irr	Lrr Irr N	LIFF LIFF N N	Lirr Lirr N N
	Method of lift	cf, E,	CÉ, E	Ν	J, E, 1/2	Sub, E, 2	N	T, G, 40	T, E, 30	T, E, 15	т, Е, 5	J, E, 3/4	T, E, 20	т, Е, 25	т, Е, 25 т, Е, 10	T, E, 25 T, E, 10 T, G,	T, E, 25 10 10 40 Cf, G	T, E, 25 25 10 10 40 6, 0 Cf, 0	T, E, 25 1, E, 1, C, 4, C, Cf, C Cf, C
100	Date of asurement	. 2, 1970	. 29, 1943	125, 1971	do	. 29, 1970	y 7, 1960 9, 1971	7 21, 1960 4, 1970	5, 1955 9, 1960 9, 1970 3, 1971	y 18, 1960 . 24, 1970	do	e 2, 1970	y 24, 1968 0 3, 1970 3, 1971	y 21, 1960 e 3, 1970	z1, 1960 a 3, 1970 do	r 21, 1960 a 3, 1970 do do	(21, 1960) (3, 1970) do do do (3, 1970) (1970) (3, 1971)	(21, 1960) (3, 1970) (40) (40) (5, 1970) (5, 1970) (5, 1971) (5, 1971) (6, 1950) (10, 1959) (10, 1959) (10, 1950) (10, 1959) (10, 1950) (10, 10	, 21, 1960 do do 3, 1970 , 10, 1960 , 1971 , 33, 1971 , 1971 , 1972 , 1971 , 1970 , 1971 , 1970 , 1971 , 1970 , 1971 , 1970 , 1971 , 1970 , 1971 , 1971 , 1970 , 1971 , 19
	не	Dec.	Oct.	June		Aug.	June	Mar. July June	May July June Feb.	Mar.		June	Jul June Feb.	Jun	June June	June	Juny June Mar. Peb.	Juny Jume Juny Pebb Jum	June Mar. Pablar Pablar Pablar Jum
	Below land- surface datum (ft)	24.45	16	32.66	28.01	30	19.42 30.98	19.39 19.73 30.43	20 23.26 35.13 35.10	18.15 26.30	28.27	30	31 33.66 31.92	24.48 30.25	24,48 30,25 33,92	24.48 30.25 33.92 35.53	24.48 30.25 35.53 35.53 28.71 28.71	24,48 30,25 33,53 35,53 28,64 28,64 28,64 28,71 18 28,71 18 20,75	24,48 30,25 33,92 35,53 35,53 28,64 28,71 28,71 28,71 28,71 28,71 28,71 28,71 28,71 28,71 33,90
	Altitude of land surface (ft)	1,288	1,298	1,319	1,309	1,298	1,336	1, 335	1, 338	1, 328	1, 329	1, 333	1, 342	1,346	1,346 1,327	1,346 1,327 1,327	1, 346 1, 327 1, 328 1, 328	1, 346 1, 327 1, 327 1, 328 1, 328	1, 346 1, 327 1, 327 1, 328 1, 328 1, 334
	Water bearing unit	Qs	Qs	Qu	Qs	QB	$Q_{\mathbf{S}}$	Qs	Qs	Qs	Qs	Qs	Qs	QB	Qs Qs	Qs Qs	$Q_{\rm S}$ $Q_{\rm S}$ $Q_{\rm S}$	Qa Qa Qa Qa	ά α α α α α α α α α α α α α α α α α α α
	Depth (ft)		207	40	37	45	50	50	54	40	40	50	56	52	52 46	52 46 48	52 46 38 38	52 46 48 38 38 15	52 46 48 38 38 38 38 38 38 42
of of sources	Diam- ster (in.)	14	1	9	9	14	16	16	14	14	14	9	14	16	16 16	16 16 14	16 14 14	16 14 14 84 14	16 14 14 14 14 14 7
	Depth of well (ft)	34	207	40	37	45	50	50	54	40	40	50	56	52	52 46	52 46 48	52 46 36	52 46 36 38	52 46 48 36 36 38 42
	Date completed	1959	1920	ł	1964	1970	1955	1956	1955	1966	1968	1967	1968	 1956	1956	1956 1965 1965	1956 1965 1965 1959	1956 1965 1965 1959	1956 1965 1959 1959 1959
	Driller	L. E. Stamps	\$:	Robert Dale	op	L. E. Stamps	op	Robert Dale	do	do	do	do	L. E. Stamps	L. E. Stamps Jim Rae	L. E. Stamps Jim Rae do	L. E. Stamps Jim Rae do Robert Dale	L. E. Stamps Jim Rae do Robert Dale do	L. E. Stamps Jim Rae do Robert Dale do do
	Owner	Mrs. V. H. Weekley	do	Five-in-One Gin	Zion Lutheran Church	Lockett Water District	Jeff Matysek	Charlie Joe Matysek	frank Granot	Edward K. Obenhaus	qo	Henry L. Williams	Ollver C. Holland	do	do Tom R. Locke	do Tom R. Locke do	do Tom R. Locke do Mrs. Velma C. Harvel	do Tom R. Locke do Mrs. Velma C. Harvel do	do Tom R. Locke do Mrs. Velma C. Harvel do do
	Well	13-61-644	645	646	647	64.8	701	702	703	704	705	706	707	708	708	709 710	709 710 711	708 710 711 712	709 709 711 711 712 712
			*	*	*		*	4	*	*		*		*	÷ ÷	* *	* * *	* * *	* * *

- 143 -

Table A.--Records of Water Wells, Springs, and Selected Test Holes--Continued

	Renarka	Unused industrial well. Formarly used as water source in an oil-field water flooding operation.	Well 2 of Contamination Rept. 8. ${\mathscr G}$	Destroyed industrial well. Pormerly used as varies aroavee during development of an oil field. Well 7 of Vermon ropt. $\hat{g}_{\rm I}$ Well 7 of Contamination Nept. 8. g	Dug domentic and stock well, destroyed. Mater reported from sand and gravel at 10 to 18 feet. Well 92 of Vernon rept. 3	Unused irrigation well. Yield reported 45 gpm. Water reported from mand and gravel at 32 to 38 feet, Red beds reported at 38 feet.	Yield reported 50 gpm. Water reported from sand and gravel.	Unused irrigation well, Yield reported 100 gpm. Water reported from sand and gravel at 36 to 42 feet, Red beds reported at 42 feet.	Yield reported 138 gpm. Water reported from sand and gravel with base at 42 feet. Red beds Well 8 of Contamination Rept. 8. g	Yield reported 350 gpm. Water reported from sand and gravel at 34 to 46 feet. Red beds reported at 46 feet.	Dug domestic and stock well, destroyed. Mater reported from sand. Red beds reported at 28 feet. Well 80 of Verwon rept. 3/	Yield reported 400 gpm. Mater reported from sand and gravel at 27 to 46 feet. Red beds reported at 46 feet.	Yield reported 600 gpm. Mater reported from sand and gravel. Well 13-61-823 pumps into this well.	Yield reported 530 gpm. Water reported from sand and gravel.	Mater reported from sand and gravel with base at 34 feet. Rob beds reported at 34 feet. One of five wells on a collector system. System yield reported 200 gpm.	RB	Water reported from sand and gravel, $\underline{\mathcal{Y}}$	
	Use of water	z	Q	z	N	z	Irr	N	Irr	Irr	N	Irr	Irr	Irr	Irr	Irr	D, S	
	Method of 11ft	z	J, E, 1/3	z	N	z	T, G, 18	ц, с	T, E, 15	T, E, 25	N	Т, Е, 30	T, E, 30	Т, с	ct, E, 1	T, E, 15	J, E, 1/3	
	te of urement	9, 1971	do	21, 1943 9, 1960	25, 1943 10, 1952 9, 1953	12, 1960	do 10, 1970	12, 1960 10, 1970	17, 1955 1, 1960	18, 1959 9, 1970 4, 1971	22, 1943 26, 1951 10, 1952	12, 1960 2, 1970	28, 1956 2, 1970	28, 1960 18, 1960 2, 1970	18, 1960 10, 1970	18, 1969 3, 1971	18, 1969 15, 1969 12, 1970 8, 1971	
er level	Da neas	June		Oct. Mar.	Jan. Feb. Jan.	July	Mar.	July Mar.	May June	Apr. July June Feb.	Oct. Feb.	July June	Feb.	Mar. July Dec.	July Apr.	Nov. Feb.	Nov. Dec. Jan.	
Wat	Below Land- surface datum (ft)	30.44	31	4.1 19.94	10.74 13.20 17.14	20.27	19.41 29.34	19.98 29.5	19 19,56	21 19.35 31.73 31.39	8.81 12.45 14.95	19.85 33.65	17 28,10	16 16.85 29.98	14.80 22.81	31.72 33.41	15.12 15.07 15.24 16.27	
	Altitude of land surface (ft)	1, 337	1, 335	1, 337	1, 331	1,330	1, 324	1, 323	1, 323	1, 322	1,320	1, 326	1, 330	1, 337	1,328	1, 326	1, 318	
	Water bearing unit	Qs	Qs	Qs	Qs	Qu	qs	da	QB	Qs	Qa	Qs	Qs	Qs	ő	Qs	da	
ng	Depth (ft)	40	50	1	:	47	51	46	44	47	1	47	50	44	34	51	34	
Cast	Diam- eter (in.)	2	9	l.	;	14	16	14	14	14	ł	18	14	12	14	14	9	
	Depth of well (ft)	40	50	30	18	47	51	97	44	47	28	47	50	114	34	51	34	
	Date completed	1965	1959	1943	1943	1956	1956	1959	1955	1959	1936	1952	1956	1959	1956	1966	1951	
	Driller	Robert Dale	:	Tom Chance	Albert Vanek	L. E. Stamps	do	do	Robert Dale	op	L. V. Parkhill	H. L. Myatt	L. E. Stamps	Robert Dale	L. E. Stamps	Robert Dale	do	
	Owner	Medders Petroleum Co.	Jeff Matyaek	Emma Main	F. E. Nerlin	Schmoker Estate	do	op	Peggy Harris	Mary Ann Lanigan	E. G. Boman	J. F. Shivers	Dr. Dan R. Nowlin et al.	T. S. Haney	Bill Smith	Walter E. Foerster, Jr.	ęp	
	Well	13-61-715	716	717	801	802	803	804	805	806	807	808	808	810	811	812	813	
		*	*	*	*				*		*	*	*			*	*	

		Remarks	Yield reported 150 gpm. Water reported from sand and gravel at 39 to 47 feet. Red beds reported at 47 feet.	Yield reported 400 gpm. Wells 13-61-816 and 817 pump into this well.	Yield reported 25 to 30 gpm. This well pumps into 13-61-815.	Yield reported 250 gpm. This well pumps into 13-61-815.	The measured water level (24,00 feet) was obtained during pumping, Yield reported 100 gpm.		Yield reported strong. Water reported from sand and gravel.	Yield reported 200 gpm. Water reported from sand and gravel.	Yield reported 225 gpm. Water reported from sand and gravel.	Yield reported 300 gpm. This well pumps into 13-61-809.	<u>7</u> 2	Mater reported from sand and gravel with base at 34 feet, Red beds reported at 34 feet. One of five wells on a collector system.	Do.	Do.	Do.	Unused irrigation well, $\underline{1}/\underline{2}$	Water reported from sand and gravel. $\underline{2}/$	Do.	Yield reported 350 gpm. Mater reported from sand and gravel at 41 to 48 feet, Red beds reported at 48 feet.	Yield reported 300 gpm. $\underline{J}\underline{2}$	\overline{R}
	8	Use of water	Irr	Irr	Irr	Irr	Irr	Irr	D, S	Irr	Irr	Irr	Irr	Irr	Irr	Irr	Irr	N	Irr	Irr	Irr	Irr	Irr
	8 9 3	Method of lift	T, G, 45	T, G, 35	cf, E,	т, Е,	cf, E,	T, E, 10	J, Е, 1/2	т, Е, 20	Τ, Ε, 20	T, E, 10	Sub, E, 10	cf, E, 1	cf, E,	cf, E, 1	cf, E, 1	Ν	T, E, 25	T, E, 15	T, E, 10	т, ^{Е,}	т, Е, 15
r level	2 2 2 2	Date of measurement	Mar. 10, 1970	Mar. 24, 1970	do	do	do do	qo	Apr. 2, 1970	do	op	Apr. 12, 1967 Apr. 2, 1970 Feb. 3, 1971	Mar. 2, 1967	Apr. 10, 1970 Feb. 4, 1971	op	do	do	Aug. 16, 1965	ì	July 13, 1960	June 2, 1970 Feb. 4, 1971	July 10, 1967 June 2, 1970	Feb. 27, 1967 June 2, 1970
Wate	Below	Land- surface datum (ft)	33,01	32.26	32.2	30.50	28 34,00	34	45,82	30,85	32.81	27.5 28.72 31.49	31	22.55 24.70	22.86	22.74	23.18	22	I	18.52	31.24 32.38	32 33 . 84	30 33
	Altitude	of land surface (ft)	1,327	1,331	1, 332	1, 333	1, 332	1,336	1,340	1,328	l, 329	1, 331	1,331	1,329	1, 329	1,328	1, 328	1,328	1,325	1,322	1,324	1,326	1,330
	5	Water bearing unit	Qs	Qs	Qs	0s	Qs	Qs	Qs	qs	ds	Qs	Qs	qs	Qs	Qs	Qs	qs	ds	Qs	Qs	Qs	Qs
00	0	Depth (ft)	48	55	55	55	45	45	60	52	52	54	59	36	34	34	34	40	47	49	53	53	57
Cast		Diam- eter (in.)	14	16	12	14	14	14	9	14	14	14	14	16	16	14	16	12	14	14	14	14	14
	Depth	of well (ft)	48	55	55	55	45	45	60	52	52	54	59	36	34	34	34	41	47	65	53	53	57
	E 33	Date completed	1964	1966	1966	1968	1967	1966	1967	1968	1968	1967	1967	1956	1956	1956	1956	1965	1958	1957	1967	1967	1967
		Driller	Robert Dale	a	ł	Robert Dale	do	op	Carl Bradford	Robert Dale	do	qo	do	L. E. Stamps	op	do	qo	Hopper Drilling Co.	Robert Dale	op	do	do	op
		Owner	Schmoker Estate	Edward K. Obenhaus	do	do	Thomas M. Lanigan, Jr.	qo	Cleve Ryan	Edward L. Lehman, Jr.	do	Dr. Dan R. Nowlin	Walter T. Gaebler	Bill Smith	op	qo	do	do	Peggy Harris	Mary Ann Lanigan	J. F. Shivers	do	Hub Colley et al.
		Well	13-61-814	815	816	817	818	819	820	821	822	823	824	825	826	827	828	829	830	831	832	833	834
						*		*	*	*		*	*	*					*	*	*		*

Table 4 .-- Records of Water Wells, Springs, and Selected Test Holes--Continued

- 145 -

Table 4 .-- Records of Water Wells, Springs, and Selected Test Holes -- Continued

_					-					_												
	Remarks	Mater reported from approximately 20 feet of sand and gravel. $\underline{\mathcal{Y}}$	<i>E T</i>	Yield reported 450 gpm, Water reported from sand and gravel.	Yield reported strong.	Yield reported 150 gpm, One of two wells on a collector system, \underline{y}	Vield reported 250 gpm. Water reported from sand and gravel. One of two wells on a collector system.	<u>7</u> 7	Water reported from sand and gravel,	Yield reported 500 gpm, Water reported from gravel at 36 to 52 feet, Red beds reported at 52 feet.	Yield reported 450 gpm. Mater reported at 34 to 39 feet. Red beds reported at 39 feet.	<i>H</i> 2	Yield reported good, Water reported from sand and gravel at 24 to 34 feet. Red beds reported at 34 feet.	Water reported from red rock.	<i>17 17</i>	Yield reported 75 to 80 gpm. This well pumps into 13-61-905.	Yield reported 65 gpm, This well pumps into 13-61-905	Yield reported 150 to 175 gpm. This well pumps into 13-61-905.	Yield reported 100 to 125 gpm. Wells 13-61-902, 903, and 904 pump into this well.	Yield reported 100 gpm. This well pumps into 13-61-908.	Yield reported 45 gpm. This well pumps into 13-61-908.	Yield reported 150 gpm. Wells 13-61-906, 907, 909, and 910 pump into this well.
	Use of water	Irr	Irr	Irr	ŋ	Irr	Itr	Irr	s	Irr	Irr	Irr	D, S	Q	Q	Itr	Irr	Irr	Irr	Itr	Irr	Irr
	Method of 11ft	T, E, 15	т, Е, 20	Т, с	J, E, 3/4	т, Е,	т, Е,	T, E, 10	T, E, 20	т, с	T, E, 15	Sub, E, 3/4	J, E, 1/2	J, E, 1/2	J, E, 1/2; Cf, E, 2	cf, E,	т, Е, З	т, Е, 3	T, E, 10	т, ^к ,	Sub, E, 1-1/2	T, E, 10
1	te of urement	2, 1970	10, 1968	1958 2, 1970	11, 1970	29, 1968	16, 1968	3, 1970 2, 1970	2 1	9, 1971	op	25, 1968	9, 1971	10, 1971	6, 1967 24, 1970	do 4, 1971	24, 1970	op	do	do	do	op
er leve	Da	June	Sept.	June	June	Aug.	May	Sept. Dec.		June		Mar.	June	June	July Mar.	Feb.	Mar.					
Wat	Below land- surface datum (ft)	33	33	17 29.02	33	26	26	30.34.10	ł	37	27	34	14	8	31,30,90	28.82 30.01	29.58	32.14	30.95	32.27	33.27	34.81
	Altitude of land surface (ft)	1,335	1,330	1,335	1,330	1, 331	1, 332	1, 331	1,328	1, 336	1,334	1,335	1, 325	1,305	1,330	1,322	1, 322	1,322	1, 323	1, 324	1, 325	1, 326
	Water bearing unit	Qs	Qs	Qs	Qs	Qs	Qs	Qs	Qs	Qs	Qs	Qu	Qa	QB	Qs	Qs	Qs	Qs	Qs	Qs	Qs	68
8	Depth (ft)	54	59	51	54	45	95	58	65	52	39	53	:	24	47	45	47	48	47	48	49	49
Castr	Diam- eter (in.)	14	14	16	9	14	14	14	14	14	14	9	1	9	14	14	14	14	14	14	9	14
	Depth of well (ft)	54	59	51	54	45	46	58	65	52	39	53	35	24	47	45	47	48	47	48	49	49
	Date	1957	1968	1958	1963	1968	1968	1970	1964	1963	1965	1968	1961	1964	1967	1966	1963	1963	1961	1964	1966	1963
	Driller	L. E. Stamps	Robert Dale	L. E. Stamps	do	Robert Dale	op	do	do	do	ab	do	Pat Waggoner	Robert Dale	qo	op	op	do	do	do	op	op
	Owner	Hub Colley et al.	op	Henry L. Williams	Hub Colley et al.	C. Glenn Cato	qo	Edward L. Lehman, Jr.	W. T. Waggoner Estate	Alfred C. Matysek	do	Arthur Piper	H. R. Box	Ernest Bergt	Edward K. Obenhaus	do	op	do	do	do	do	op
	Well	13-61-835	836	837	838	839	840	841	842	843	844	845	846	847	106	902	503	904	506	906	206	908
		*	*	*	*	*				*	*	_	*	*	*			*	-		2	

	Remarka	Yield reported 40 gpm. This well pumps into 13-61-908.	Do.	Water reported from sand and gravel. 2β	Yield reported 175 gpm. Water reported from sand and gravel with buse at 45 feet, Red beds reported at 45 feet.	Dug well. Yield reported weak.	Yield reported 100 gpm. Mater reported from sand and gravel. One of four wells on a collector system.	Yield reported 400 gpm. $\underline{\underline{4}}$	Unused irrigation well. Yield reported weak. Mater reported from sand and 3 or 4 feet of gravel.	Unused [rrigation well. Yield reported weak. Water reported from mostly said with base at 36 feet.	<i>h</i>	Yield reported 40 gpm. Mater reported from 5 to 6 feet of and and gravel.	Yield reported 40 gpm. Water reported from sand and gravel.	Yield reported 70 gpm. Water reported from sand and gravel. One of two wells on a collector system.	Yield reported 70 gpm. Water reported from sand and gravel. One of three wells on a collector system.	Destroyed demestic and stock well. Well 27 of Vernon rept. $\underline{\mathcal{G}}$
	Use of water	Irr	Itr	Irr	Irr, S	s	Irr	Irr	Z	И	Irr	Irr	Irr	Irr	Irr	z
	Method of 11ft	Sub, E, 2-1/2	Sub, E, 2-1/2	T, E, 7-1/2	T, E, 20	J, Е, 1/2	т, Е,	T, E, 15	T, E, 10	Sub, E, 1-1/2	cf, E,	сf, E,	cf, E, 1	cf, E, 3	of, E,	z
e latel	Date of measurement	Mar. 24, 1970	do	:	July 3, 1970 Feb. 4, 1971	June 25, 1971	Mar. 12, 1959 Apr. 3, 1970	Jan. 7, 1955 Jan. 2, 1958 Jan. 15, 1964 Jan. 12, 1970 Jan. 8, 1971	July 27, 1960 Apr. 9, 1970	July 27, 1960 Apr. 9, 1970	Jan. 7, 1956 Feb. 23, 1962 Jan. 15, 1964 Jan. 20, 1966 Jan. 20, 1966 Jan. 15, 1969 Jan. 12, 1969 Jan. 12, 1970	Jan. 7, 1956 Jan. 15, 1957 May 26, 1960 Feb. 22, 1962 Jan. 17, 1963 Nov. 13, 1969 Jan. 12, 1963	Jan. 7, 1956 Jan. 15, 1957 Feb. 22, 1962 Nov. 13, 1969	May 13, 1960 July 29, 1970	op	Oct. 29, 1943
Mara	Below Balow land- surface datum (ft)	37.61	38,71	3	31.52 31.78	19.47	16 23.94	17.11 14.58 19.30 26.84 28.75	31.80 22.42	32,90 23,28	20.50 18.00 20.40 25.03 28.23 29.85 25.30	20.73 22.28 18.97 18.27 18.40 26.39 26.39	20.46 21.98 17.99 26.08	15.86 31.46	33,39	14.9
	Altitude of land surface (ft)	1, 328	1, 330	1, 323	1, 322	1,271	1,245	1,248	1,250	1,248	1,268	1, 265	1,263	1,264	1,262	1,271
	Water bearing unit	Qs	Qs	Qs	Qs	0s	qs	Qs	Qs	Qs	Qs	Q5	qs	Qs	QB	Q8
	Depth (ft)	50	50	77	47	¥.	07	47	37	37	29	27	28	39	38	ł
0.000	Diam- ater (in.)	9	14	14	16	ł	14	16	14	14	16	16	16	14	14	ł
	Depth of well (ft)	50	50	44	47	34	40	47	37	37	29	27	28	39	38	20
	Date completed	1966	1966	1963	1963	ł	1959	1954	1957	1957	1955	1955	1955	1957	1957	:
	Driller	Robert Dale	do	do	đo	4	Robert Dale	:	L. E. Stamps	db	Robert Dale	do	ęp	L. E. Stamps	do	:
	Owner	Edward K. Obenhaus	do	Henry Teague	Jack Carter	Henry C. Streft	Curtis A. Graf	Willie Kleschnick, Jr.	Edgar N. Schoppa	op	G. A. Schmoker	do	do	Joe Frank Lowe	qo	W. F. McKee
	Well	13-61-909	610	911	912	913	62-101	102	103	104	105	106	107	108	109	110
L			*	*	*	*	*	*				*				

Table 4 .- .- Records of Water Wells, Springs, and Selected Test Holes -- Continued

- 147 -

Table 4 .-- Records of Water Wells, Springs, and Selected Test Holes--Continued

-															
	Remarks	Destroyed domestic well. Well 26 of Vernon rept. 5	Destroyed domestic and stock well, Red bads reported at 38 feet. Well 25 of Vernon rept. \vec{y}	Unused irrigation well.	Vield reported 150 gpm. Water reported from sand and gravel.	Yield reported 230 gpm. Mater reported from sand and gravel at 34 to 43 feet. $\underline{q}_{\rm i}$	Yield reported 150 gpm.	Unused domestic and stock well, \underline{g} Well A2 of Vernon rept. \underline{g} Well R=42 of Bull, 5614, $\underline{\gamma}$	Destroyed irrigation two-well manifold system. Water reported from and with base at 32 feet. Red beds reported at 32 feet.	Unused irrigation well, filled with sand. Mater reported from sand and gravel. Red beds reported will $r-286$ of Bull, 5614 , $2j$	Destroyed irtigation well, mever used. Well F-28d of Bull. 5614. $\overline{\gamma}$	Unused irrigation well. Yield reported 150 gpm. $\underline{4}$	Yield reported 40 gpm. Water reported from sand and gravel, $\underline{\psi}$	Well is used by city of Lockett Fire Department. Yield reported 250 gpm.	Yield reported 110 gpm. Water reported from sand and gravel. This well pumps into 13-62-125.
	Use of water	z	z	z	lrr	Irr	Irr	Z	2	z	z	z	Irr	Ind	Irr
	Method of 11ft	z	z	N	т, с, 50	T, G, 50	T, E, 15	z	z	T, G	z	T, G, 50	cf, E, L	T, E, 25	т, в, Э
1	tte of turement	29, 1943 26, 1951 7, 1954 15, 1954 2, 1957 2, 1958	29, 1943 7, 1955 7, 1956 2, 1958	7, 1954 7, 1956 2, 1958	31, 1960 14, 1969	7, 1954 15, 1957 2, 1958 23, 1962 18, 1966 20, 1968 12, 1970 8, 1971	18, 1958 31, 1960 9, 1970	19, 1943 7, 1955 17, 1953 12, 1970 8, 1971	28, 1951	do 7, 1955 31, 1960	7, 1955	15, 1958 17, 1969 12, 1970 8, 1971	13, 1969 15, 1969 12, 1970 8, 1971	18, 1969	17, 1969
er leve	Da	Oct. Feb. Jan. Jan.	Oct. Jan. Jan.	Jan. Jan.	May Nov.	Jan. Jan. Feb. Jan. Jan.	Feb. May Apr.	Oct. Jan. Jan. Jan.	Feb.	Jan. May	Jan.	Oct. Nov. Jan.	Nov. Dec. Jan.	Nov.	Nov.
Wat	Below land- surface datum (ft)	14.69 19.16 19.67 19.44 17.46	14.83 20.02 19.90 17.70	24.74 23.96 21.61	16.30 23.49	28.25 29.05 24.15 25.58 30.72 31.79 31.50 31.98	11 13.25 20,56	10.71 18.44 11.82 22.42 23.18	13.42	14.34 17.21 13.48	19.61	13 25.44 25.30	21.81 21.80 21.65 22.84	26.24	25.66
	Altitude of land surface (ft)	1,271	1,271	l, 282	1,279	1,284	1,277	1,282	1,277	1,283	1,284	1,287	1,266	1,291	1,284
	Mater bearing unit	Qs	Qs	Qs	QB	Qs	Qs	qs	ds	da	Qa	Qs	Qs	Qs	Qs
01	bepth (ft)	;	14 18	40	36	47	37	1		35	\$	33	28	40	34
Cast	Diam- eter (in.)	:	1	16	16	18	14	1	8	16	T	16	16	16	14
	Depth of well (ft)	24	58	40	36	47	37	32	34	35	37	33	28	40	34
	Date completed	1	3	1953	1953	1953	1958	1902	1951	1951	1954	1958	1966	1962	1948
	Driller	Tom Chance	op	:	Robert Dale	op	qo	1	W. E. Turner	qp	Robert Dale	op	ср р	do	Fred Turner
	Owner	W. F. Makee	qo	Lockett Seed Co.	P. S. Lockett Estate	op	Karl Haseloff	Arnold H. Kiesling	Karl Haseloff	op	Hattle Haseloff	F. S. Lockett Estate	C. A. Schmoker	Lockett Seed Co.	do
	Well	13-62-111	112	113	114	115	116	117	118	119	120	121	122	123	k 124
L			-		100			-				_			-

- 148 -

Table 4.--Records of Water Wells, Springs, and Selected Test Holes--Continued

	1	÷.			2	pg	pı		P		-	7		Ð		72	7	
	Renarks	Vield reported 240 gpm. Water reported from na and gravel, Well 13-62-124 pumps into this wel	Yield reported 100 gpa. One of four wells on a collector system. 1	Dug industrial well, unused. Red beds reported at 38 feet. Well 30 of Vernon rept. 5	Yield reported 200 gpm. Mater reported from an and gravel at 34 to 45 feet. Red beds reported at 45 feet.	Vield reported 100 gpm. Mater reported from an mid gravel. One of four wells on a collector system.	Yield reported 100 gpm. Water reported from an and gravel. One of four wells on a collector system.	Unused irrigation well. Yield reported weak. Water reported from sand and gravel.	Vield reported 150 gpm. Mater reported from an and gravel.	Vield reported 70 gpm. F	Y) eld reported 50 gpm. 1	Four-well munifold rystem with all wells the man depth and complete the same, pumped by a common pump and marker. Yield for yestem report. 110 gpm. Water reported from sam and gravet.	Yield reported 25 to 80 gpm. 1	Four-well manifold nyatem with all wells the some depth and completed the same, pumped by a common pump and motor. Yield for system report 310 ppm.	Whiter reported from sand and gravel with base at 44 feet. Red beds reported at 44 feet.	Vield reputted 130 gpm. Noter reported from an analysize of the starts of the free. Red beds reputted at 2.5 free. One of four wells on a collector system.	Yield reported 150 gpm. Mater reported from and and grevel stih base at 42 feet. Red bels reported at 42 feet. One of four wells on a collector system.	Unused irrigation well. Yield reported 150 gmm. Water reported from sand and garvel at 15 to 39 fost. Red bods reported at 39 feet.
	Use of water	ltr	Inc	N	Ire	Irr	μ	N	Ire	Iter	li'r.	lter	int'	14 14	1.1.1	l r y	lirr	z
	Method of lift	т. Е.	ct. E. 2	N	т. с. 35	т. Е.	<u>т</u> . Е.	T. E. 10	T. E. 15	cf. E. 2-1/2	5ub, E, 2	Cf. G	Sub. E. 3.	cf, G. 100	Sub_{2} E.	1, E,	T, E,	z
-	te of urement	4	21, 1966 3, 1970 3, 1971	18, 1969	24. 1970	3, 1970	3. 1970	9, 1970	do	ţ.	1	9. 1970	ž	1	1954	1956	10, 1957	op
er leve	Da		Jan. Apr. Feb.	Nov.	Mar.	. vpr.	. Apr.	Apr.				Apr.				June	June	
Wat	Below land- surface datum (ft)	:	21 23.10 26.04	37	24.29	23.35	23,62	24.37	21	:	1	21.11	:	4 9	26	138	13 28	28.02
	Altitude of land surface (ft)	1,285	1,250	1,291	1,246	1.247	1,250	1,248	h.277	1,254	1,255	1,280	1,251	1,281	1.260	L.257	1.256	1,255
	Water bearing unit	QB	Q8	ds	Qs	QB	Q8	qu	ďs	Q8	da	őa	Qs Q	02	sQ	Qs.	Qs	dis
ng	Depth (ft)	34	42	:	46	45	6.9	37	38	44	48	37	50	33	52	46	42	39
Casi	Diam- eter (in.)	14	1.4	:	14	14	14	14	16	14	18	16	14	2	16	14	16	14
	Depth of well (ft)	34	42	38	46	45	43	37	38	44	48	37	50	33	52	97	42	66
	Date completed	1957	1966	i.	1956	1957	1966	1963	1955	1969	1967	1950	1964	1960	1954	1956	1957	1959
	Driller	L. E. Stamps	Robert Dale	Tom Chance	L. E. Stamps	qo	Robert Dale	do	do	do	do	L. E. Stamps	Robert Dale	đo	L. E. Stamps	qo	qo	Robert Dale
	Owner	Lockett Seed Co.	Curtis A. Graf	Lockett Seed Co.	Gody Austin	Curtis A. Graf	do	Edgar N. Schoppa	Karl Haseloff	Robert Dale	do	Ed A. Haseloff	Robert Dale	Hattle Haseloff	A. J. Lambert	go	op	op
	Well	13-62-125	126	127	128	129	130	151	132	133	134	135	136	761	138	139	140	141
		*										4		_	8	*	¥	*

- 149 -

Holes-+Continued
Test
Selected
and
Springs,
Wells,
Water
of
Table 4Records

						Castr	3			Wate	r leve					_
	Well	Owner	Driller	Date completed	Depth of well (fc)	Diam- eter (in.)	Depth (ft)	Warer bearing unit	Altitude of land surface (ft)	Below Land- surface datum (ft)	Da meas	te of urement	Method of lift	Use of water	Remarks.	
+	13-62-142	A. J. Lambert	Robert Dale	1968	45	14	45	Qs	1,253	24 28	Mar. June	15, 1968 10, 1970	т, Е,	Irr	Vield reported 100 gpm. One of four wells on a collector system. \underline{l}_{i}	
*	143	qo	do	1968	45	14	45	Qs	1,252	24 28	Mar. June	15, 1968 10, 1970	т, Е, 3	Itr	Yield reported 150 gpm. One of four wells on a collector system. $\underline{\underline{y}}$	
4	144	do	Bill Turner	1939	29		29	Qs	1,276	11.78 22.99 23.87	Nov. June Feb.	1, 1943 10, 1970 3, 1971	N	z	Unused domestic well. Originally a dug well; has been reworked. Well 31 of Vernon rept, <u>9</u>	
	145	do	L. E. Stamps	1955	20	:	;	qs	1,266	•		1	z	z	Test hole. \underline{U}	
	146	do	op	1955	24	;	ł	Qs	1,252	;		;	z	z	Do.	
	147	J. E. Lockett	Robert Dale	1962	39	14	39	Qs	1,289	16	Mar.	10, 1962	Τ, G	Irr	Water reported from sand and gravel with base at 38 feet. Red beds reported at 38 feet.	
*	148	Mrs. C. H. Cato	da	1955	34	14	34	Qs	1,290	28, 54	July	3, 1970	GE,	N	Unused irrigation well. Water reported from sand and gravel.	
*	149	Charles H. Graf	ap	1963	28	14	28	Qn	1,268	i.		:	T, E, 15	Irr	Vield reported 175 gpm. Mater reported from und and gravel at 23 to 31 feet. Red beds reported at 31 feet.	
*	150	do	do	1968	0.4	14	40	Qs	1,276	24	June	28, 1968	T, E, 7-1/2	Itr	Yield reported 100 gpm. $\underline{1}$	
	151	do	do .	1968	37	14	37	Qs	1,275	23		do	T, E, 7-1/2	Irr	Yield reported 50 gpm.	
4	152	Joe Frank Love	ą	1962	38	18	38	Qs	1,265	34.14 25.30	July Feb.	29, 1970 4, 1971	cf. E, 5	lrr	The July 29, 1970 water level was meanured during pumping, Yield reported 70 gpm. Mater reported from aand and gravel. One of three wells on a collector system.	
*	153	Dr. James J. Muirhead	Lee Hopper	1966	42	12	42	Qs	1,278	23.53	Sept.	22, 1970	T, E, 10	Irr	Yield reported 200 gpm. Water reported from sand and gravel.	
	1.54	James Sullivan	Robert Dale	1959	34	ø	34	$Q_{\rm S}$	1,269	i L		:	z	z	Unused irrigation manifold system, containing four wells of same depth and completed the same which were pumped by a common pump and motor,	
	155	do	op	1970	36	14	39	qs	1,270	23 24.57	July Nov.	27, 1970 12, 1970	Sub, E, 3/4	Irr	J/ 2/	
	156	F. S. Lockett Estate	Bill Turner	1957	15	16	15	qs	1.287	32,70	Nov.	17, 1969	z	25	Unused irrigation well. Yield reported weak. Water reported from sand and gravel.	
N.	157	Hunter Hopson	-	1961	44	œ	44	68	1,291	35.9	Apr.	11, 1967	Л, Е	q	i.	
*	158	H. & S. Dehydrating Plant	:	1955	36	1	1	Qu	1,281	27.0		op	J, B	Q	Dug well.	
	159	Gody Austin	Robert Dale	1971	47	16	47	Qa	1,248	32	. rdv.	15, 1971	Sub, E, 1	Irr	\overline{K}	
*	160	C. A. Schmoker	:	1951	35	÷	3	Qs	1,262	š.		ł	Τ, Ε	a	1	
*	201	Johnny Fluhmann	Robert Dale	1959	54	14	43	Qei	1,265	20.34 32.34	May June	13, 1960 15, 1971	T, E, 10	Irr	Yield reported 50 gpm. Water reported from sand and gravel.	
4	202	Frank E. Lowe	L. E. Stamps	1959	42	14	42	Qs	1,264	19.82 34.63 30.34	May July Feb.	13, 1960 29, 1970 4, 1971	т, Е,	Irr	Mater reported from gravel at 27 to 41 feet. This well pumps into 13-62-227.	
99	ootnotes at	t end of table.														

					Cast	ng			Matu	er leve	1			
Well	Owner	Driller	Date completed	Depth of well (ft)	Diam- eter (in.)	Depth (ft)	Water bearing unit	Altitude of land surface (ft)	Below Land- surface datum (ft)	D. mea.	ite of jurement	Method of lift	Use of water	Remarks
* 13-62-203	Frank Kaluza	1	1926	27	36	2.7	da G	1.263	11,63 22,58 20,40 23,12 18,50 20,57	Oct. Jan. Jan. Jan.	18, 1943 7, 1954 7, 1954 15, 1957 15, 1957 2, 1958 17, 1963	z	z	Dug domestic and stock well, unused, Well 123 of Vermon rept. § Well 6-123 of Bull, 5616, γ
2.04	9	1	1926	22	ł.	3	ds.	1,262	12.00 21.90 18.10 20.47	Oct. Jan. Jan.	18, 1943 7, 1955 2, 1958 17, 1963	с, и	2	Dug domestic and stock well, unused, Well 124 of Warmon rupt, $\tilde{\beta}$ Well G-124 of Bull, 5614 , $\tilde{\gamma}$
205	L. K. Stamps	L. E. Stamps	1957	3.0	12	39	Qs	1,256	20.04	May June	5, 1960 15, 1971	T, G, 30	Irr	Vield reported 120 gpm, <u>1</u>
206	L. D. Lemon	qo	1959	20	2	20	Qs Q	L,253	11,38	Mar.	24, 1970	2	z	Unused irrigation well, One of two wells formerly on a manifold system. Vield of the system reported 75 gpm. Mater reported from sand and gravel at 14 to 19 feet. Red budg reported at 19 feet.
* 207	Frank E. Lowe	do	1958	4.1	14	41	4s	1.264	15.14	May	13, 1960	т, с. 60	Irr	Water reported from Seymour Formation at 21 to 40 feet. Red beds reported at 40 feet. Well 13-62-228 pumps into this well.
* 208	Ernest P. Streit	do	1960	29	80	29	ds.	1.265	;		3	CE, E, 2	Itr	Three-well manifold wystem with all holes the same depth and completed the same, pumped by a common pump and anoter. Yield for system reported 50 gmm, where reported from sand and gravel with hase at 27.5 feet. Three of five wells on a collector gatem.
209	Dr. James J. Muithead	L. E. Scamps	1956	4.0	14	40	Qs	1,277	9.79 22.01	May Sept.	31, 1960 22, 1970	T, -	z	Unused irrigation well. Yield reported 500 gpm. Water reported from sand and gravel at 25 to 39 feet.
* 210	Marshall Nixon	I	1927	07	1	:	da	1,270	7,55	Oct.	20, 1943	z	z	Destroyed grock well. Mater level was measured during pumping. Water reported from sand and gravel at 35 to 40 feet.
* 211	đa	I	1961	40	¢	0.4	Qs.	1,270	25.82 25.51 25.28 26.36	Nov. Dec. Jan.	21, 1969 15, 1969 12, 1970 8, 1971	J, E, 1/3	us.	41
212	qq	Robert Dale	1965	41	14	41	Qs	1,267	21.58	Nov.	21, 1969	T, G	lrr	Yield reported 350 gpm. Mater reported from sand and gravel at approximately 30 to 40 feet.
213	op	do	1961	4.1	14	41	qs	1,264	25.10		do	τ, c, 32	Irr	Yield reported 100 gpm. Mater reported from sand and gravel at 30 to 40 feet. Well 13-62-214 pumps into this well.
* 214	do	Jim Rae	1964	41	14	19	qs	1,265	27.42		do	cf, E, 2	Irr	Yield reported 80 gpm. Water reported from sand and gravel. This well pumps into well 13-62-213.
* 215	Henry S. Ramsey	Robert Dale	1959	30	9	30	Qs	1,235	12.45		do	J. E. 1/2	D, S	Mater reported from alluvial material with base at 28 feet.
216	qo	Lee Hopper	1969	28	ų	28	ő	1,237	11.30 11.01 11.02 15.14	Dec. Jan.	do 15, 1969 12, 1970 8, 1971	z	N	Unused stock well. Water reported from small gravel. $\underline{\underline{u}}$

Table 4 ... - Records of Water Wells, Springs, and Selected Test Holes - - Continued

- 151 -

Table 4 .- - Records of Water Wells, Springs, and Selected Test Holes -- Continued

u_{1}^{1} matrix constraint (1) matrix matrix (1) upper matrix (1) upper matrix (1) upper matrix (1) upper matrix (1) matrix matrix (1) matrix (1) 1,128 21,17 40 10	Casing	Casing	Casing	Casing	Casing	Casing	35				Wate	er leve	1	T		
0 $1,36$ $21,70$ $Mor.$ $21,190$ M_0 <	Well Owner Driller Date Def Diam- Driller completed will eter Depth (ft) (in.)	Owner Driller Date Depth Diate Diam- briller completed will eter Depth (ft) (ft.)	Driller Date Depth Diate Diam- completed vell eter Depth (ft.) (ft.)	Date Depth of Diam- of Diam- completed well eter Depth (ft) (fn.) (ft)	Depth of Diam- well eter Depth (ft) (in.) (ft)	Diam- eter (in.) (ft)	Depth (ft)		Mater bearing unit	Altitude of land surface (ft)	Below land- surface datum (ft)	Da	iurement	Method of 11ft	Use of water	Remarks
	13-62-217 h. D. Lemon Robert Dale 1965 41 14 41	L. D. Lemon Robert Dale 1965 41 14 41	Robert Dale 1965 41 14 41	1965 41 14 41	41 14 41	14 41	41		qs	1,254	21.70	Mar.	24, 1970	т, с, 40	Irr	Vield reported 150 gpm, Mater reported from sand and gravel at 31 to 40 feet. Red beds reported at 40 feet.
0 $1,276$ $21,73$ 40 $(1,2)$ $1,26$ $21,13$ $10,$	218 do L. E. Stampa 1960 33 16 33	do L. E. Stampa 1960 33 16 33	L. E. Stampa 1960 33 16 33	1960 33 16 33	33 16 33	16 33	33		Qs	1,250	14.74		op	z	z	Unused irrigation well, One of two wells former on ammitoid system view or vield for system reported 5 gpm. Mater reported from and gravel at to 19 feet, Ned beds reported at 19 feet.
	219 Mrs. Carrie May Oliver Robert Dale 1956 36 14 3	Nrs. Carrie May Oliver Robert Dale 1956 36 14 3	Robert Dale 1956 36 14 3	1956 36 14 3	36 14 3	14 3	10	9	Qs	1,276	21.73		do	cf, _,	N	Unused irrigation well.
0 $1,220$ $23,19$ $July$ $24,191$ $July$ 5 $Vield reported fait. Mater reported from and argo motion. 0 J_126 23,19 Feh. 4,1911 July 5 Vield reported fait. Mater reported from and and gravel. 0 J_126 21,20 July 24,1970 Tul S Vield reported fait. Mater reported from and and gravel. 0 J_126 Z_1390 T_n T_n T_n Vield reported fait. Nater reported from and and gravel. 0 July Z_11300 T_n Z_n Vield reported fait. Nater reported from and and gravel. 0 July Z_11300 T_n T_n Tuld reported 100 gam. Nater reported from and and gravel. 0 July Z_2,1300 T_n Tuld reported 100 gam. Nater reported from and and gravel. 0 July $	220 Norman Drake do 1967 44 14	Norman Drake do 1967 44 14	do 1967 44 14	1967 44 14	44 14 	14		36	qs	1,265	20 19.50	Feb. Mar.	14, 1967 24, 1970	T, E, 10	Itr	<i>\alpha \bar{h}</i>
0: $1,263$ $28,17$ 40 $1,13$ 5 114 reported 75 gps, Water reported from and und growth. $0:$ $1,266$ $23,79$ $60, 4, 9, 191$ $1,75$ 3 114 reported $15, 15, 25$ 29 refer. $0:$ $1,266$ $21,39$ $60, 4, 9, 191$ $1,75$ $31, 25, 192$ 117 $11,264$ $11,264$ $21, 25$ $21, 29$ </td <td>221 Charles H. Graf 28 6</td> <td>Charles H. Graf 28 6</td> <td> 28 6</td> <td> 28 6</td> <td>28 6</td> <td>9</td> <td></td> <td>28</td> <td>Qs</td> <td>1,270</td> <td>23,91</td> <td>July</td> <td>28, 1970</td> <td>J, E, 1/2</td> <td>Ω</td> <td>Yield reported fair, Water reported from sand and gravel.</td>	221 Charles H. Graf 28 6	Charles H. Graf 28 6	28 6	28 6	28 6	9		28	Qs	1,270	23,91	July	28, 1970	J, E, 1/2	Ω	Yield reported fair, Water reported from sand and gravel.
(0) $1,26i$ $23,79$ $(e_b, -\frac{1}{4}, 0)$ $1,2$ $1,26i$ $27,70$ $(e_b, -\frac{1}{4}, 0)$ $1,2$ $1,26i$ 1.2	222 do Robert Dale 1964 30 6	do Robert Dale 1964 30 6	Robert Dale 1964 30 6	1964 30 6	30 6	9		30	ŚČ	1,268	28,17		do	J, E, 1/3	sa	Yield reported 75 gpm, Water reported from sand and gravel at 25 to 29 feet. Red beds at 29 fee
0c $1,26i$ $$ c	223 Ernest P. Streit L. E. Stamps 1962 29 6	Ernest P. Streit L. E. Stamps 1962 29 6	L. E. Stamps 1962 29 6	1962 29 6	29 6	Ŷ		29	ős	1,264	23.79 27.70	Feb.	do 4, 1971	J, E, 1/2	62	Yield reported fair. Water reported from sand and gravel.
0i $1,361$ $28,39$ $July$ $28,1970$ $Cf.$ $Trel Trel a reported 10 gam, Water reported from and averation a collector system. 0i 1,264 28 July 29,1970 Trel Trel a Trel a<$	224 do do 1960 30 8	do do 1960 30 8	do 1960 30 8	1960 30 8	30	æ		30	Qs	1,264	1		:	cr, E, 2	Irr	Vield reported 50 gpm, Mater reported from sand and gravel with base at 27.5 feet. One of five wells on a collector system.
0 1.260 28 0 rr. 23 1 r Tre July 29, 1970 water level shown may be and lists well. 32 that recently and recently and lists well. 32 that recently and recently and lists well. 32 31 25 112 the list of lists well. 32 the reported from and lists well. 32 the list of lists lists well. 32 the list of lists lists well. 32 the list of lists lists well. 32 the list lists lists well. 32 the list lists lists well. 32 the lists lists well. 32 the list lists lists well. 32 the list lists lists well. 32 the lists lists lists well. 32 the lists	225 do Robert Dale 1964 34 14	do Robert Dale 1964 34 14	Robert Dale 1964 34 14	1966 36 14	34 14	14		7 5	da	1,261	28,39	July	28, 1970	Cf. E. 2	ltr	Yield reported 30 gpm. Water reported from sand and gravel. One of five wells on a collector system.
Q6 1,266 31.08 do C1, 5, 1, 3, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 2, 5, 3, 3, 3, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,	226 Frank E. Lowe do 1969 48 14	Frank E. Lowe do 1969 48 14	do 1969 48 14	1969 48 14	48 14	14		48	QB	1,264	28 18.50	Apr. July	22, 1969 29, 1970	т, Е, 25	Irr	The July 29, 1970 water level shown may be anomalous as wells $13\cdot62\cdot202$ and 227 had recent pumped into this well, $\underline{U},\underline{2}$
0_{0} $1,264$ \cdots $T, G,$ $Tr, G,$ T	227 do do 1961 4.5 14	do do 1961 45 14	do 1961 45 14	1961 45 14	45 14	14		5	qs	1,264	32.08		do	cr, E. 3	Irr	Yield reported 150 gpm, Water reported from sam and gravel, This well pumps into 13-62-226.
$0e$ 1,276 20 Mar. 3, 1960 56 , $1r$ $1r$ y $0a$ $1,277$ 22.17 $4o$ $8bb$, E_{1} $1r$ $3ub$, E_{2} $3ub$	228 do L. K. Stampa 1966 41 14	do L. E. Stampa 1966 41 14	L. E. Stampa 1966 41 14	1966 41 14	41 14	14		15	Qu	1,264	2.8		ţ.	T, G, 30	Irr	Yield reported 200 gpm, Water reported from sam and gravel. This well pumps into well 13-62-207
Qs 1,277 22.17 do Sub, E, $7_{-1/2}$ Irr Water reported from sand and gravel. Qs 1,277 21.11 do Sub, E, $1/2$ Irr What reported from sand and gravel. Qs 1,278 20.0 Mar. 3, 1966 Sub, E, $1/2$ Irr Weid reported 250 gam, Water reported from sand Qs 1,278 20.0 Mar. 3, 1966 Sub, E, $1/2$ Irr y_2 Qs 1,276 22.99 Mar. 3, 1966 Sub, E, $1/2$ N Marer reported from sand and gravel. Qs 1,276 22.99 Mar. 2, 1970 T, E, $1/2$ N Marer reported from sand and gravel. Qs 1,276 22.94 Mar. 2, 1970 T, E, $1/2$ N Mater reported from sand and gravel. Qs 1,266 23 Mary 2, 1970 T, E, $1/2$ N Mater reported from sand and gravel. Qs 1,266 23.44 Dec. 11, 1970 T, Er Herl 13-62-234. Y Qs 1,281 23.45 Jan. 18, 1966 Gt, E, $1/2$ The Jane 8, 1971 water level weil. Y^2 Qs 1,281 23.94 <	229 Dr. Jamea J. Multhead Hopper Drilling Co. 1966 42 12	Dr. James J. Multhead Hopper Drilling Co. 1966 42 12	Hopper Drilling Co. 1966 42 12	1966 42 12	42 12	12		42	Q5	1,276	20 22,34	Mar. Sept.	3, 1966 22, 1970	Sub, E, 5	IFF	α_{1}
Qa 1.273 21.11 do Sub, E, 7-1/2 Irr Vield reported 250 gpm, Water reported from sand and gravel. Qa 1.278 20 Mar. 3, 1966 Sub, E, 5 Irr $\underline{y} \underline{z}$ Qa 1,276 22.140 Mar. 3, 1966 Sub, E, 5 Irr $\underline{y} \underline{z}$ Qa 1,276 22.99 May 2, 1970 $\overline{y} E_{s}$ D Water reported from sand and gravel. Qa 1,266 23 May 2, 1970 $\overline{y} E_{s}$ D Water reported from sand and gravel. Qa 1,266 23 May 2, 1970 $\overline{y} E_{s}$ D Water reported from sand and gravel. Qa 1,266 23 May 2, 1970 $\overline{y} E_{s}$ Irr Water reported from sand and gravel. Qa 1,266 23 May 2, 1970 $\overline{y} E_{s}$ Irr Water reported from sand and $\overline{y} E_{s} E_{s} E_{s} E_{s}$ Qa 1,267 22 do $\overline{z} E_{s}$ Irr This well pumps into 13-62-234. $\underline{y} E_{s}$ Qa 1,283 31.086 $\overline{z} E_{s}$	230 do do 1967 42 8	do do 1967 42 8	do 1967 42 8	1967 42 8	42 8	80		42	$Q_{\rm S}$	1,277	22.77		do	Sub, E, 7-1/2	Irr	Water reported from sand and gravel.
Qs $1,278$ 20 Mar: 3, 1966 505 , 5 , 5 , 5 $1rr$ $\underline{y} \ge$ Qs $1,276$ $2r,40$ $8ept. 22, 1970$ J_1 , E_1 D Mater reported from and and gravel. Qs $1,276$ 22.99 do J_1 , E_1 D Mater reported from and and gravel. Qs $1,266$ 23 May $2,1970$ T_1 , E_1 D Qs $1,266$ 23 May $2,1970$ T_1 , E_1 D Qs $1,267$ 22 do C_1 , E_1 D T_1 is well 13-62-234. \underline{Y} Qs $1,267$ 22 do C_1^2 , E_1 D T_1 is well D D Qs $1,281$ 21 J D D D D D Qs $1,281$ D	231 do do 1966 42 12	do do 1966 42 12	do 1966 42 12	1966 42 12	42 12	12		42	Qs	1,277	21,11		do	Sub, E, 7-1/2	Irr	Yield reported 250 gpm, Water reported from same and gravel.
Q8 1,276 22.99 do J, E, bit D Water reported from sand and gravel. Q8 1,266 23 May 2, 1970 T_i E, bit Fr Well 13-62-235 pumps finto this well. $Y \cong Y$ Q8 1,266 23 May 2, 1970 T_i E, bit Fr Well 13-62-235 pumps finto this well. $Y \cong Y$ Q8 1,267 22 do C_i E, bit Fire Weil 13-62-234. Y Q8 1,267 22 do C_i E, bit Fire Weil 13-62-234. Y Q8 1,281 21 Jan. 18, 1966 $CI, E,$ Fire The June 8, 1971 water level was measured during Q8 1,281 21.0 June 8, 1991 2 The June 8, 1971 water level was measured during	232 do do 1966 42 10	do do 1966 42 10	do 1966 42 10	1966 42 10	42 10	10		42	Qs	1,278	20 21,40	Mar. Sept.	3, 1966 22, 1970	Sub, E,	Irr	\tilde{R}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	233 do Lee Ropper 1966 42 6 2	do Lee Noper 1966 42 6 2	Lee Ropper 1966 42 6 4	1966 42 6 4	42 6 2	9	4	2	qa	1,276	22.99		do	J, E, 1/2	۵	Water reported from sand and gravel.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	234 Marshall Nixon Robert Dale 1970 47 14	Marshall Nixon Robert Dale 1970 47 14	Robert Dale 1970 47 14	1970 47 14	47 14	14		1.7	Qs	1,266	23 23.44	May Dec.	2 , 1970 11, 1970	T, E, 15	Irr	Well 13-62-235 pumps into this well, \underline{y} 2
Qs 1,281 21 Jan. 18, 1966 Cf, E, Irr The June 8, 1971 water level was measured during 32.94 June 8, 1971 2 2 pumpting, This well pumps into 11-62-237. J/Z	235 do do 1970 45 14 7	do do 1970 45 14 1	do 1970 45 14 /	1970 45 14 /	45 14 /	14	1	2	Qs	1,267	22		do	cf, E, 2	Irr	This well pumps into 13-62-234. \underline{y}
	236 Robert E. Matus Robert Dale 1966 37 14	Robert E. Matus Robert Dale 1966 37 14	Robert Dale 1966 37 14	1966 37 14	37 14	14		37	qa	1,281	21 32.94	Jan. June	18, 1966 8, 1971	Cf, E,	Itr	The June 8, 1971 water level was measured during pumping. This well pumps into 13-62-237, $\underline{y},\underline{y}$

Table $\dot{\mu}, \cdot \cdot \cdot Records$ of Water Wells, Springs, and Selected Test Holes--Continued

-																				_
	Remarks	Well 13-62-236 pumps into this well, $\underline{p}\ \underline{2}/$	Yield reported weak, Mater reported from sand and gravel.	Warer reported from and and gravel.	Yield reported greater than 100 gpm. Water reported from and gravel.	Yield reported 150 gpm. Mater reported from and and gravel, Well 13-62-242 pumps into this well.	Yield reported 100 gpm. This well pumps into 13-62-241. $J_{\rm c}$	Yield reported weak. Mater reported from and and gravel with hase at 34 feet, Red beds reported at 34 feet.	Water reported from sand and gravel.	17 37	花石	Dug domestic and stock wall, unuseu, \underline{g} well 126 of Vermon rept. \underline{g} Well G-126 of Bull, 5615, \overline{g}	Unused trrigation well, $\underline{Y},\underline{2}$	12 K	Yield reported 45 to 50 gpm.	Yield reported 120 gpm. Mater reported from and and gravel with buse at 39 or 40 feet. Well 13-62-431 pumps into this well.	Yield reported 235 gpm, Water reported from 15 feet of sand and gravel.	Vield reported 200 gpm. Water reported from sand and gravel at 28 to 38 feet, Red beds reported at 38 feet,	Unused irrigation well. Yield reported 30 gpm. Mater reported from sand and gravel at 32 to 36 feet, Red beds reported at 36 feet.	
	Use of water	Irr	.00	Irr	ler	Irr	Irr	۵	Ω	۵	ltr	z	N	Irr, D	Itr	ltr	ltr	Irr	R	1
	Method of 11ft	T, E, 10	J, E, 1/2	л, Е, 1	cf. E.	T, E, 15	cf, Ľ,	$\frac{J_{*}}{1/2}$	J, E. 1/2	Sub, E, 3/4	cf, E,	z	z	1, E, 1/2	1, 6, 15	т, Е, 15	Τ, G	T, G, 40	z	
level	Date of measurement	Jan. 30, 1966	1	4	ł	I	1966	June 15, 1971	op	NPr. 16, 1970	pr. 27, 1967	bet. 19, 1943 eb. 28, 1951 lan. 7, 1954 lan. 15, 1957 lan. 14, 1957 lan. 12, 1965 lan. 12, 1970 lan. 8, 1971	June 18, 1965 July 31, 1970	June 25, 1965 July 31, 1970	4ay 18, 1960 June 10, 1970	July 11, 1960 July 3, 1970	July 18, 1960 June 10, 1970	<pre>1057 1019 18, 1950 401. 11, 1970</pre>	lay 16, 1960 Jar. 11, 1970	
Water	Below land- surface datum (ft)	23	4 X	1	ł	1	29	31,54	28	29	26	8,30 5,00 9,62 9,62 10,85 10,08 7,71 7,71	9 12.74	12 13,32	16 . 92 24	16.50 26.67	29.20 27	12 10,98 22,77	25.34	
	Altitude of land surface (ft)	1,282	1,264	1,266	1,266	1,266	1,265	1,266	1,256	1,264	1,259	1,213	1,200	1,200	1,293	1,294	1,289	1,288	1, 288	
	Water bearing unit	Qs	4s	Q.6	Qs	Qs	Qs	Qs	Qs	Qs	QB	s Č	Qa1	Qa1	Qs	ďs	Qs	дв	qs	
ing	Depth (ft)	39	27	30	30	95	46	44	:	41	35	1	20	29	39	15	39	40	38	
Cas	Diam- eter (in.)	14	9	9	16	14	16	9	:	14	14	4	30	89	14	14	14	14	14	
	Depth of well (ft)	39	27	30	30	95	94	44	39	41	35	71	20	29	39	41	39	40	38	
	Date completed	1966	1959	1963	1965	1964	1966	£961	1	1970	1967	:	1965	1965	1957	1958	1957	1957	1956	
	Driller	Robert Dule	L. E. Stamps	Robert Dale	do	op	do	Pat Waggoner	:	Robert Dale	do	1	Don Hopper	do	L. E. Stampa	do	do	op	do	
	Owner	Robert E. Matus	Bradford Nancock	do	do	do	do	Johnny Fluhmann	L. E. Stamps	Curtis Schwarts	Frank Kock	Jumes Sullivan	Dr. James J. Muirhead	do	A. W. Lowe	C. Glenn Cato	J. R. Lockett	F. W. Schmoker	ęp	
	Well	13-62-237	238	239	240	241	242	243	244	245	246	301	302	303	105	402	607	404	405	
			*	_		8		9	2		_	2	4		1		*	_		

Table 4 .-- Records of Water Wells, Springs, and Selected Test Holes -- Continued

-						Castr	B			Wate	r level					_
	Well	Owner	Driller	Date completed	Depth of well (ft)	Diam- eter (in.)	Depth (ft)	Water bearing unit	Altitude of land surface (ft)	Below land- surface datum (ft)	Da	e of rement	Method of lift	Use of water	Remarks	
	* 13-62-406	F. W. Schmoker	L. E. Stamps	1956	38	14	38	Qs	1, 289	24.43	Mar.	11, 1970	и	z	Unused irrigation well. Yield reported 30 gpm. Mater reported from sand and gravel at 26 to 37 feet.	
	407	do	op	1957	43	14	43	Qs	1,292	26,55	Mar. Feb.	10, 1970 4, 1971	т, Е, З	ltr	Yield reported 50 gpm. Water reported from sand and gravel at 31 to 42 feet, Red beds reported at 42 feet. This well pumps into 13-62-417.	_
	4.08	qo	do	1957	43	12	43	QB	1,293	16.12 26.60	May Mar.	16, 1960	т, Е, З	Irr	Yield reported 50 gpm. Water reported from sand and gravel at 31 to 42 feet. Red beds reported at 42 feet. This well pumps into 13-62-417.	
	* 409	do	Robert Dale	1954	42	12	42	Qs	1, 289	12.35 22.93	May Mar.	16, 1960 10, 1970	Τ, Ε, 3	Irr	Yield reported 50 gpm. Mater reported from and and gravel at 90 to 41 feet. Red buds reported at 41 feet. One of four wells on a collector system.	
	410	do	L. E. Stamps	1958	42	14	42	Qs	1,290	12.62	May Mar.	16, 1960 10, 1970	т, _{Е,}	Itr	Yield reported 20 gpm. Mater reported from and and gavel at 30 to 41 feet. Red bods reported at 41 feet. One of four wells on a collector system.	
	114	op	Robert Dale	1954	07	16	40	Qa	1,291	13.50 23.48	May Nar.	16, 1960 10, 1970	т, Е,	Irr	Yield reported 20 gpm. Mater reported from and and gravel at 24 to 40 feet. Red beds reported at 40 feet. One of four wells on a collector system.	
-	412	do	do	1954	39	16	39	58	1, 291	13.59 23.21 24.36	May Mar. Feb.	16, 1960 10, 1970 4, 1971	т, Е,	Irr	Vield reported 50 gpm. Mater reported from mand and gavel at 23 to 38 feet, Red beds reported at 38 feet. One of four wells on a collector system.	
	* 413	Roy C. Hofmann	ęp	1957	40	14	40	sõ	1,298	16 15.02 25.99 28.53	Mar. Muy Apr. Feb.	16, 1957 17, 1960 9, 1970 4, 1971	T, E, 15	Irr	Mater reported from sand and gravel with base at 39 feet.	
	* 414	August F. Schwarz	L. E. Stamps	1956	41	14	14	da	1,296	12.98 22.72 23.24	May Apr. Feb.	17, 1960 9, 1970 4, 1971	T, E, 10	ltr	Water reported from 8 feet of basal gravel. Red beds reported at 38 feet. $\underline{2}$	
	* 415	William C. Haseloff	Tom Chance	1	30	3	1	Qs	1,269	22.97 20.68 20.67 22.16	Nov. Dec. Jan.	18, 1969 15, 1969 12, 1970 8, 1971	N	z	Dug domestic well, unused. Yield reported very weak, Water reported at 17 and 25 feet, $\underline{\psi}$	
	* 416	do	Robert Dale	1961	30	9	30	Qal	1,256	13.37	Nov.	18, 1969	J, E,	D, S	Yield reported 30 gpm. Water reported at 9, 17, and 25 feet.	
	417	F. W. Schmoker	op	1966	46	16	46	da	1,294	26.41	Mar.	10, 1970	T, G, 27	Irr	Vield reported 30 gpm. Mater reported from and and gravel at 42.5 to 45 feet. Red beds reported at 45 feet. Wells 13-62-407 and 408 pump into this well.	
-	* 418	op	L. E. Stamps	1956	39	14	39	Qs	1,289	20.94 28.66	Mar. Feb.	11, 1970 4, 1971	N	z	Unused freigation well. Yield reported 200 gpm. Matér reported from sand and gravel at 33 to 38 feet, Red beds reported at 38 feet.	
	419	op	Robert Dale	1961	39	16	39	Qs	1,290	26.48	Mar.	10, 1970	T, G, 27	Irr	Yield reported 75 gpm. Water reported from and and gravel at 32 to 38 feet. Red beds reported at 38 feet. Well 13-62-420 pumps into this well.	1.000
	420	ę	qo	1961	39	16	39	Qs	1,289	24,38		op	T, G, 27	Itr	Vield reported 30 gpm. Mater reported from partially commented sand and gravel at 32 to 38 feet. Red beds reported at 38 feet. This well pumps into 13-62-419.	1914
50	a footnotes a	t end of table.														

Table 4. -- Records of Water Wells, Springs, and Selected Test Holes -- Continued

14.1 · · · · · · · · · · · · · · · · · · ·	_			_	-		_		_		-	_							_				and the second second
M1 Mote Mate		Remarks	Unused public supply well. Dug well. Formerly used at Victory Airfield and by Vernon State Hospital.	bo.	bo.	Do.	Do.	bo.	bo.	bo.	Do.	Do.	Unused public supply and industrial well, Dug well, Formerly used as a water supply for devolpoment of an oil field. Later used as a public supply well for the Maggoner Ranch. Well 51 of Vernon rept. §	Dug well. Formerly used as a water supply for devicements of an oil field. Later used as a public supply well for the Maggomer Ranch. Well 50 of Vernon rept. §	Unused public supply and industrial well. Dug well. Formerly used as a water supply for development of an oil field. Later used as a public supply well for the Maggoner Ranch. Well 48 of Vernon rept. §	Unused public supply well, Dug well, Formerly used at Victory Airfield and by Vernon State Hospital.	Do.	Do.	Do.	Do.	Flows from sand. Estimated flow 10 gpm.	Yiald reported 100 gpm, Water reported from gravel with base at 28 feet. Red beds reported at 28 feet. One well of a two-well manifold system which is pumped by a common pump and moror.	Yield reported 100 gpm, Water reported from a gravel with base at 27 feet. Red beis reported ar 27 feet. One well of a two-well manifold system which is pumped by a common pump and motor.
Holic Control Control <th< td=""><td></td><td>Use of water</td><td>z</td><td>N</td><td>N</td><td>z</td><td>N</td><td>z</td><td>z</td><td>z</td><td>N</td><td>z</td><td>z</td><td>٥</td><td>z</td><td>z</td><td>N</td><td>Ν</td><td>N</td><td>z</td><td>z</td><td>Irr</td><td>Itr</td></th<>		Use of water	z	N	N	z	N	z	z	z	N	z	z	٥	z	z	N	Ν	N	z	z	Irr	Itr
Hold Determ Determ <thdeterm< th=""> Determ <thdeterm< td="" th<=""><td></td><td>Method of lift</td><td>N</td><td>z</td><td>z</td><td>N</td><td>N</td><td>N</td><td>z</td><td>N</td><td>N</td><td>N</td><td>z</td><td>Cf, E, 10; J, E, 1-1/2</td><td>z</td><td>z</td><td>N</td><td>N</td><td>N</td><td>N</td><td>Flows</td><td>cf, E, 10</td><td>cf, E, 10</td></thdeterm<></thdeterm<>		Method of lift	N	z	z	N	N	N	z	N	N	N	z	Cf, E, 10; J, E, 1-1/2	z	z	N	N	N	N	Flows	cf, E, 10	cf, E, 10
Holi Deter Deter <th< td=""><td>r level</td><td>Date of measurement</td><td>Jan. 26, 1970</td><td>op</td><td>do</td><td>do</td><td>qo</td><td>op</td><td>do</td><td>op</td><td>op</td><td>op</td><td>Oct. 30, 1943</td><td>Jan. 26, 1970</td><td>Oct. 30, 1943 Jan. 26, 1970</td><td>do</td><td>do</td><td>do</td><td>do</td><td>do Feb. 4, 1971</td><td>:</td><td>July 30, 1970</td><td>db</td></th<>	r level	Date of measurement	Jan. 26, 1970	op	do	do	qo	op	do	op	op	op	Oct. 30, 1943	Jan. 26, 1970	Oct. 30, 1943 Jan. 26, 1970	do	do	do	do	do Feb. 4, 1971	:	July 30, 1970	db
Hall Dente Dentine Dentine <thdentine< th=""> <thdentine< th=""> <thdenti< td=""><td>Wate</td><td>Below land- surface datum (ft)</td><td>1.54</td><td>2,55</td><td>0.80</td><td>2</td><td>1.98</td><td>2,25</td><td>3.86</td><td>2</td><td>3.76</td><td>5.04</td><td>9,89</td><td>13,90</td><td>13.68</td><td>2,68</td><td>2,32</td><td>3.03</td><td>1.10</td><td>2,00 3,90</td><td>(+)</td><td>23,75</td><td>19.08</td></thdenti<></thdentine<></thdentine<>	Wate	Below land- surface datum (ft)	1.54	2,55	0.80	2	1.98	2,25	3.86	2	3.76	5.04	9,89	13,90	13.68	2,68	2,32	3.03	1.10	2,00 3,90	(+)	23,75	19.08
Molta Denset Derilier Derilier <thderilier< th=""> <thderilier< th=""> <thde< td=""><td></td><td>Altitude of land surface (ft)</td><td>1,223</td><td>1,223</td><td>1,224</td><td>1,224</td><td>1,225</td><td>1,224</td><td>1,225</td><td>1,226</td><td>1,225</td><td>1,226</td><td>1,224</td><td>1,223</td><td>1,220</td><td>1,221</td><td>1,222</td><td>1,220</td><td>1,221</td><td>1,218</td><td>1,220</td><td>1,232</td><td>1,231</td></thde<></thderilier<></thderilier<>		Altitude of land surface (ft)	1,223	1,223	1,224	1,224	1,225	1,224	1,225	1,226	1,225	1,226	1,224	1,223	1,220	1,221	1,222	1,220	1,221	1,218	1,220	1,232	1,231
ikit Depth Activity Depth Activity Depth Activity Depth Activity Depth Depth <td></td> <td>Water bearing unit</td> <td>qal</td> <td>Qal</td> <td>Qa.l.</td> <td>Qa.1</td> <td>Qal</td> <td>Qa.1</td> <td>Qal</td> <td>QaI</td> <td>Qal</td> <td>Qal</td> <td>qa1</td> <td>Qal</td> <td>Qa.1</td> <td>Qa1</td> <td>Qal</td> <td>Qal</td> <td>Qa1</td> <td>Qal</td> <td>Qal</td> <td>Qal</td> <td>qal</td>		Water bearing unit	qal	Qal	Qa.l.	Qa.1	Qal	Qa.1	Qal	QaI	Qal	Qal	qa1	Qal	Qa.1	Qa1	Qal	Qal	Qa1	Qal	Qal	Qal	qal
Motion Denter Denter Dettilate Denter Dentilate Denter Denter <thdenter< th=""> <thdenter< th=""> <thdent< td=""><td>Bu</td><td>Depth (ft)</td><td>21</td><td>21</td><td>21</td><td>21</td><td>21</td><td>21</td><td>22</td><td>ł</td><td>21</td><td>21</td><td>19</td><td>10</td><td>18</td><td>21</td><td>21</td><td>17</td><td>21</td><td>19</td><td>1</td><td>32</td><td>31</td></thdent<></thdenter<></thdenter<>	Bu	Depth (ft)	21	21	21	21	21	21	22	ł	21	21	19	10	18	21	21	17	21	19	1	32	31
Wet1 Owner Det Litar Dep for tital Dep for tital 13-62-309 Innery 5. Rameoy 1960° 21 13-62-309 Innery 5. Rameoy 1960° 21 310 do - 1960° 21 311 do - 1960° 21 312 do - 1960° 21 313 do - 1960° 21 314 do - 1960° 21 315 do - - 1960° 21 316 do - - 1960° 21 40 - - - 1960° 21 40 - - - 1960° 21 22 do - - 1960° 21 32 do - - 1960° 21 40 - - - 1960° 21 32 -	Casi	Diam- eter (in.)	9	9	9	9	9	9	9	1	9	9	50	50	50	9	9	9	9	6	1	10	10
Weil Dener Driller Durkler Weil Onner Driller January 13-62-303 Henry S. Ramery 1360's January 13-62-303 Henry S. Ramery - 1360's 13-62-303 Henry S. Ramery - 1360's 13-62-303 Henry S. Ramery - 1360's 13-62-304 Henry S. Ramery - 1360's 13-62 - - 1360's 13-10 - - 1360's 13-10 - - 1360's 13-11 -		Depth of well (ft)	21	21	21	21	21	21	22	21	21	21	19	10	18	21	21	17	21	19	Spring	32	31
Weil Owner Duritier 13-62-509 Renry S. Ramsey - 511 Benry S. Ramsey - 512 do - 513 do - 514 do - 513 do - 514 do - 515 do - 516 do - 6 do - 518 do - 6 do - 519 do - 6 do - 519 do - 6 do - 520 do - 521 do - 522 do - - 6 do - - 7 - - - - 523 do - - - 7 - - - <td></td> <td>Date completed</td> <td>8,0%1</td> <td>1940'a</td> <td>1940's</td> <td>1940' 8</td> <td>1940's</td> <td>1940'8</td> <td>1940' 5</td> <td>1940's</td> <td>1940' 8</td> <td>1940' 8</td> <td>1922</td> <td>1922</td> <td>1922</td> <td>1940's</td> <td>1940' 8</td> <td>1940's</td> <td>1940's</td> <td>1940's</td> <td>;</td> <td>1965</td> <td>1965</td>		Date completed	8,0%1	1940'a	1940's	1940' 8	1940's	1940'8	1940' 5	1940's	1940' 8	1940' 8	1922	1922	1922	1940's	1940' 8	1940's	1940's	1940's	;	1965	1965
Weil Owner Neil Owner 13-62-509 Henry S. Ranneey 511 do 512 do 513 do 514 do 513 do 514 do 515 do 514 do 515 do 516 do 517 do 518 do 519 do 519 do 519 do 520 do 521 do 522 do 523 do 524 do 523 do 523 do 523 do 523 do 529		Driller	J	ł	:	I	;	1	1	**	1	1	I	1	1	1	1	:	:	;	1	Lee Nopper	qo
Mell 13-62-509 511 512 513 513 514 515 516 518 518 518 518 518 518 518 518		Owner	Henry S. Ramsey	do	do	do	do	do	do	do	do	do	ęp	op	op	op	do	do	qo	do	A. G. Graf	ę	op
		Well	13-62-509	510	211	512	513	514	* 515	516	517	518	519	520	* 521	522	523	524	525	* 526	* 527	* 528	529

Table 4 .-- Records of Water Wells, Springs, and Selected Test Holes -- Continued

Table 4.--Records of Water Wells, Springs, and Selected Test Holes--Continued

Table 4.--Records of Water Wells, Springs, and Selected Test Holes--Continued

				Cast	Bu			Mar	1 10 A					_
	Driller	Date completed	Depth of well (ft)	Diam- eter (in.)	Depth (ft)	Water bearing unit	Altitude of land surface (ft)	Below Land- surface datum (ft)	Da пеан	te of urement	Method of 11ft	Use of water	Remarka	
	Amarillo Drilling & Septic Co.	1967	38	30	38	Qs	1,104	24,86	Dec.	3, 1970	ct, E, 15	Irr	Yield reported 125 gpm. Water reported from sand and gravel at 18 to 35 feet. Red bods reported at 35 feet.	
	op	1970	36	18	36	ďa	1,105	19.40		qp	Т, С	Irr	Yield reported 125 gpm. Water reported from sand and gravel with base at 34 feet. Red beds reported at 34 feet.	_
90	Howard Goodnight	1950	35	:	;	Q8	1,134	28.45	June	24, 1971	Cf, E, 1/3	D, S	Dug well. Yield reported weak.	
	Robert Dale	1969	33	9	33	Qs	1,118	17.02		op	J, E, 1/3	D	Yield reported good. Water reported from sand and gravel.	
ty	1	ł	22	ł	1	qs	1,138	11.20	June	23, 1971	z	z	Dug stock well, unused.	
rms	1	1961	40	14	40	Qs	1,102	24.07 24.29	Dec. Jan.	3, 1970	sub, E, 3	D, S, Irr	Yield reported 90 gpm. Mater reported from sand and gravel at 18 to 38 feet. Red beds reported at 38 feet. $\underline{4}$	
	ł	ł	Spring	:	}	Qs	1,100	(+)		1	Flows	z	Flows from contact of Seymour Formation, Yield estimated 10 gpm.	_
y Estate	1	ŧ,	20	1	1	Pcf	1,202	12.8 12.19	July June	7, 1964 24, 1971	z	z	Dug well. Unused domestic and stock well. Well 4 of Rept. LD-0365. By	
ш	:	before 1940	15	1	;	Qa1	1,187	2.25	July	7, 1964	z	z	Dug well, Destroyed domestic and stock well. Well 1 of Rept. LD-0365. 8	-
	ł	before 1930	;	1	4	Qa1	1, 181	1		1	z	N	Dug well. Reported was flowing on July 7, 1964. Destroyed stock well. Well 2 of Rept. LD-0365. g	_
jouthhall	Pat Waggoner	1954	36	14	36	qal	1,283	6.30 5.84	July June	18, 1960	N	N	One well of an unused irrigation two-well mani- fold system, formerly pumped by a common pump and motor. Water reported from and and gravel.	
	qo	1954	32	14	32	Qa1	1,283	5.55 5.84	July June	18, 1960 9, 1971	X	N	Formerly used on irrigation manifold system with well 21-05-201, Water reported from sand and gravel at 11 to 29 feet, Red beds reported at 29 feet.	
r Estate	do	1956	20	ŧ	1	Qal	1,279	15		1956	N	z	Destroyed stock well. Yield reported 125 gpm. Water reported from gravel at 16 to 20 feet. Water reported unfit for human consumption.	
	1	1936	20	ł	+	Qal	1,255	15		1936	z	Z	Destroyed domestic well. Yield reported 10 to 15 gpm. Water reported from alluvium with base at 20 feet.	

Production of Marks, see Table 5. 20 For results of pupping rests, meanered Fields, and specific capacities of wolls, see Table 2. 20 For results of pupping rests, meanered Fields, and specific capacities of wolls, see Table 2. 20 Electric logs in files of Taxas Mater Development Board, Anstin, Texas Mater Development Board, Austin, Texas, 1944. 20 Observation well; historical water-level measurements in files of Texas Mater Development Board, Austin, Texas, 1944. 20 Taxas Board of Mater Engineers Bullectin 5301, Ground-Mater Resources in the Michils, Milbarger County, Texas, 1953. 20 Taxas Board of Mater Engineers Bullectin 5504, <u>Records of Mater-Level Masurements in Ford and Wilbarger County, Texas, 1955.</u> 20 Taxas Board of Mater Engineers Bullectin 5504, <u>Records of Mater-Level Masurements in Ford and Wilbarger County, Texas, 1955.</u> 20 Taxas Board of Mater Engineers Bullectin 5504, <u>Records of Mater-Level Masurements in Ford and Wilbarger County, Texas, 1956.</u> 20 Taxas Board of Mater Engineers Bullectin 5604, <u>Records of Mater-Level Masurements in Ford and Wilbarger County, Texas, 1956.</u> 20 Taxas Board of Mater Engineers Bullectin 5604, <u>Records of Mater-Level Masurements in Ford and Wilbarger County, Texas, 1956.</u> 20 Taxas Board of Mater Engineers Data Mater Resources of Mater-Level Masurements in Ford and Wilbarger County, Texas, 1956. 20 Taxas Mater County, Texas, 1960.

Medium to coarse sand and few gravel	8
Red bed	3
Well 13-37-903	
Owner: Mrs. A. F. Wins Driller: Robert Dale	ton
Soil and sandy clay	19
Fine sand	19
Fine to medium sand	4
Fine sand	6
Pack sand	7
Fine to medium water sand	7
Medium to coarse sand and few gravel	7
Cemented sand and gravel	.5
Red bed	3.5

Well 13-37-904

	Owner: Kenneth R. Neel		
	Diffier. Robert Dale		
Soil and clay		10	
Fine sand		45	

Fine sand	45
Medium to coarse sand and few gravel	10
Red bed	2

Well 13-37-906

Owner: City of Altus, Oklahoma Driller: Layne-Western Co.

Fine sand	20
Clay	29
Medium to fine sand and gravel	13
Fine to coarse sand and gravel	10
Red shale	-

Thickness	
(feet)	

Well 13-37-902

Owner: Mrs. A. F. Winston Driller: Robert Dale

Soil and clay

Fine sand

Pack sand

Fine to medium sand

(feet)

73

69.5

73

20

Depth

		Owner: City of Altus, Ok Driller: Layne-Wester	lahoma n Co.
18	18	Fine to medium red sand	16
30	48	Clayey fine red sand	12
6	54	Slightly clayey fine to medium sand	7
8	62	Fine to coarse sand and gravel	40
8	70	Red shale	_

Well 13-37-909

Owner: City of Altus, Oklahoma Driller: Layne-Western Co.

Well 13-37-907

Thickness

(feet)

16

12

7

40

Depth

(feet)

16

28

35

75 75

Fine to medium red clayey sand	20	20
Fine to medium coarse red sand	24	44
Hard streak	2	46
Fine to coarse sand and fine gravel, tan	14	60
Fine to coarse sand and fine to medium coarse gravel, tan	13	73
Red bed (water from 63 to 73 feet)	7	80

Well 13-37-910

Owner: City of Altus, Oklahoma Driller: Layne-Western Co.

Fine to medium red sand	5	5
Gray and red clay	з	8
Fine to medium tan sand	2	10
Fine to coarse tan sand	5	15
Fine to coarse sand and fine to coarse gravel, tan	5	20
Fine to coarse sand and gravel, tan	5	25
Coarse sand and gravel with some very coarse gravel, tan	6	31
Hard streak	1	32
Red bed	6	38

Well 13-37-911

Owner: City of Vern	ion	
Driller: Texas Water Developr	nent Board	
Soil, sandy, light brown to tan, very		
fine grained	2.5	2.5
Sand, light brown to tan, fine grained	16	18.5

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
Well 13-37-911-Cont	inued		Well 13-37-912-Conti	inued	
Clayey sand, dark brown, medium- grained, with streaks of white well-			Clayey sand, as above, with gravel granules and pebbles to 50 mm	2	59
cemented sand Unknown lithology	3	21.5	Gravely sand, tan, coarse-grained, granules and pebbles, up to 60 mm	11	70
Sand, white to tan, medium- to	4.5	30	Shale, red, blocky	3	73
Clayey sand, red, very fine-grained	15	45	·		
Sand, tan, coarse- to very coarse-	5	50	Well 13-37-913 Owner: Charles Ta	illant	
	5	50	Driller: Texas Water Develop	ment Board	
colored	6	56	Soil, sandy, light brown to tan, medium-grained	5	5
Shale, red and gray	2	58	Sand, tan, medium- to coarse-grained,		
Sand, red, medium-grained, (Permian?)	2	60	some gravel granules to 4 mm	5	10
Well 13-37-912			Clayey sand, light orange, medium- grained, clay, light orange	5	15
Owner: City of Vern Driller: Texas Water Develop	ion		Sandy clay, light orange, with sand, very fine- to medium-grained	15	30
Soil, sandy, light tan, very fine-grained	2	2	Clayey sand, tan to light orange, fine-grained, isolated gravels,		
Sand, tan, fine- to medium-grained	8.5	10.5	variously colored, granules to 4 mm	10	40
Sand, tan, medium-grained, with red clay streaks	5.5	16	Sand, tan, coarse-grained	5	45
Sand, tan, fine- to medium-grained with gray shale streak	1	17	Gravel, white, red, orange, fine, mainly quartz, some limestone and dolomite, granules to 4 mm	5	50
Sand, tan, fine- to medium-grained	4	21	Shale, red and gray, blocky	5	55
Sand, tan, fine- to medium-grained, with dark brown clay specks	4	25			
Sand, tan, fine- to medium-grained	4	29	Well 13-38-401		
Sand, as above, with white to gray			Driller: Layne-Wester	klahoma m Co.	
shaley sand streaks, tight	1	30	Fine sand	7	7
Sand, tan, fine- to medium-grained	6	36	Fine sand with clay	28	35
Clayey sand, tan to red, fine-grained	8	44	Sandy clay	2	37
Clay, red, semi-blocky	1	45	Fine to coarse sand	8	45
Sand, tan, medium-grained, with few granules and pebbles of gravel			Clay	1	46
to 12 mm	5	50	Fine to coarse sand and gravel	8	54
Sand, tan, medium- to coarse- grained, with few chunks of			Cemented sand and gravel	2	56
red clay	1	51	Fine to coarse sand and gravel	21	77
Sand, as above, with scattered gravel granules and pebbles to 7 mm	2	53	Shale	-	77
Sand, tan, medium- to coarse- grained	1	54	Well 13-38-402		
Clayey sand, tan, medium- to coarse- grained, with red clay	3	57	Owner: City of Altus, O Driller: Layne-Wester	klahoma rn Co.	

Britter Edyn	e vestern eo.	
Sandy silt and clay	15	15
Cemented sand	17	32

	Thickness (feet)	Depth (feet)		Thickness (feet)
Well 13-38-402-Co	ntinued		Well 13-38-405-C	Continued
Clay	2	34	Red sandstone and some shale	8
Fine to coarse sand	23	57	Red sandstone (very hard)	4
Clay	5	62		
Medium to coarse sand and gravel	20	82	Well 13-38-7	702
Red shale	_	82	Owner: Mrs. Elwyr Driller: Rober	n Bingham t Dale
W-II 12 20 40	2		Soil	3
Well 13-38-40	3		Gray clay	11
Owner: City of Altus, Driller: Layne-West	Oklahoma ern Co.		Fine sand, red	20
Sandy silt and clay	37	37	Clay, red	5
Fine to coarse sand	22.5	59.5	Fine sand, red	15
Sandy clay	8.5	68	Clay	10
Fine to coarse sand and gravel	8	76	Fine sand, red	4
Cemented sand and gravel	6	82	Pack sand and sandrock	28
Medium to coarse sand and gravel	5	87	Medium sand and few gravel	11
Red shale	-	87	Gravel	2

 Red bed

Well 13-38-404

Owner: City of Altus, Oklahom Driller: Layne-Western Co.		
Fine sand	20	
Fine to medium sand and gravel	10	
Sandy red clay	4	
Fine to coarse sand and gravel	11	
Sandy gray clay	5	
Medium to coarse sand and gravel with red clay lenses	8	
Red shale	-	

Well 13-38-405

---- i

Driller: Layne-Western Co.	
Fine to medium red clayey sand	29
Red clay	3
Fine to coarse sand, tan with cemented streaks	8
Fine to coarse sand and fine gravel, tan	8
Sandy red bed	10

d, red	4
d and sandrock	28
sand and few gravel	11
	2
	5

Depth

(feet)

Well 13-38-703

Owner: City of Altus, Oklahoma Driller: Layne-Western Co. Fine to medium red sand Clayey fine to medium sand Clayey fine red sand White clay Fine to coarse sand with fine gravel, tan Red shale

Well 13-38-704

Owner: City of Altus, Oklahoma Driller: Layne-Western Co.

Fine to medium red sand	10	10
Clayey red sand	9	19
Fine to coarse red sand	23	42
Clayey fine sand	6	48
Fine to coarse sand and fine gravel	24	72
Red shale	_	72

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
Well 13-38-70	5		Well 13-38-709-Co	ntinued	
Owner: City of Altus, Driller: Layne-West	Oklahoma ern Co.		Cemented sand and gravel	2	52
Fine to medium red sand	6	6	Medium to coarse sand and gravel	20	72
Fine clayey tan sand	50	56	Cemented sand and very coarse gravel	4	76
Fine to coarse tan sand	24	80	Red shale	-	76
Red shale	-	80			
			Well 13-38-71	0	
Well 13-38-70	6		Owner: City of Altus, Driller: Layne-West	Oklahoma ern Co.	
Owner: City of Altus, Driller: Layne-West	Oklahoma ern Co.		Loose fine sand	8	8
Fine to medium sand	10	10	Sandy clay	12	20
Clayey fine to medium tan sand	27	37	Fine to medium sand, fine gravel	40	60
Sandy gray clay	20	57	Gray clay	2	62
Fine to coarse tan sand	10	67	Cemented sand and gravel	8	70
Red clay	1	68	Fine to coarse sand and gravel	7	77
Fine to coarse sand and gravel, tan	20	88	Red shale	-	77
Red shale	-	88			
			Well 13-38-71	1	
Well 13-38-70	7		Owner: City of Altus, Driller: Layne-West	Oklahoma tern Co.	
Owner: City of Altus, Driller: Layne-West	Oklahoma ern Co.		Sandy soil	2	2
Sandy clay	20	20	Sandy gray clay	14	16
Fine to coarse sand and gravel	22	42	Fine to coarse sand	9	25
Clay	1	43	Brown and red clay	35	60

Well 13-38-708

29

72

72

7

50

Fine to coarse sand

Red shale

Coarse sand and gravel

Red shale

Fine to coarse sand and gravel

Owner:	City of	Altus,	Okianoma
Drill	er: Layr	ne-West	ern Co.

Dune sand	6	6
Sandy clay	29	35
Fine to medium sand and gravel	45	80
Red shale	-	80

Well 13-38-709

Owner: City of Altus, Driller: Layne-Wes	Oklahoma tern Co.
Loose fine sand	7
Fine to coarse sand and gravel	43

Well 13-38-712
Owner: City of Altus, Oklahoma
Driller: Layne-Western Co.

20

9.5

80

89.5

89.5

Sandy soil	з	3
Gray clay	4	7
Fine red sand	6	13
Brown clay	9	22
Fine sand	4	26
Red clay	6	32
Fine sand	20	52
Gray clay	5	57

Depth

21

25 40 41

55

65

73 85

90

20 27 28

	(feet)	(feet)
Well 13-38-712-C	ontinued	
Medium to coarse sand	22	79
Fine sand	4	83
Coarse gravel	9.5	92.5
Red shale	-	92.5

Thickness

Well 13-38-713

Owner: City of Altus, Oklahoma Driller: Layne-Western Co.	
Fine to medium red sand	10
Fine to medium tan to red sand	11
Fine to medium red sand	11
Very sandy red clay	3
Fine to medium red sand	9
Very sandy gray to tan clay	11
Fine to coarse tan sand	7
Hard streak	1
Red bed	7

Well 13-38-714

Owner: City of Altus, O Driller: Layne-Wester	klahoma n Co.
Fine to medium clayey sand, red	21
Fine to medium sand, tan	4
Fine to medium clayey sand, red	15
Hard cemented streak	1
Fine to coarse tan sand	14
Fine to coarse sand and some fine gravel with cemented streaks	10
Fine to coarse sand and fine tan gravel with cemented streaks	8
Red shaley sandstone	12
Red bed	5

Well 13-38-715

Owner: City of Altus, Okla Driller: Layne-Western (homa Co.
Fine to medium clayey sand	20
Fine to coarse sand and fine gravel, tan	7
Hard cemented streak	1

Well 12 20 715 0		
Well 13-38-715-Cont	inued	
Fine to coarse tan sand with some		
cemented streaks	17	45
Hard cemented fine to coarse sand		
and gravel, tan	10	55
Red bed	5	60

Depth

(feet)

Thickness

(feet)

Well 13-38-716

Owner: Mrs. Elwyn Bingham Driller: Robert Dale

Soil	5	5
Clay	9	14
Fine sand	5	19
Clay	13	32
Fine sand	14	46
Fine sand, clay layers	10	56
Sand rock	2	58
Fine water sand	4	62
Cemented sand and gravel	1	63
Fine sand	4	67
Sand rock	1	68
Red bed	1	69

Well 13-38-717

Owner: Mrs. E Driller: F	Elwyn Bingham Robert Dale	
Top soil	3	3
Clay	12	15
Fine sand	5	20
Clay	15	35
Fine sand	10	45
Pack sand	10	55
Sand rock	1	56
Fine sand	4	60
Medium sand	2	62
Clay	10	72
Red bed	1	73

Thickness Depth (feet) (feet)

Well 13-38-718

Owner: Mrs. Elwyn Bingham Driller: Robert Dale

Top soil	25	25
Fine sand and clay layers	20	45
Fine sand	11	56
Cemented sand and gravel	3	59
Sand rock and clay	4	63
Red bed	6	69

Well 13-38-719

Owner: Mrs. Elwyn Bingham Driller: Robert Dale

Unknown lithology	52	52
Fine water sand	7	59
Clay layers	12	71
Red bed	1	72

Well 13-38-720

Driller: Robert Dale	9	
Soil	3	3
Sandy clay	13	16
Fine sand	21	37
Clay	9	46
Fine sand	20	66
Sand rock	1	67
Fine sand	3	70
Clay	1	71
Fine to medium sand	10	81
Medium to coarse sand and few gravel	5	86
Cemented sand and gravel	0.5	86.5
Fine to medium sand	2.5	89
Sand rock	0.5	89.5
Medium to coarse sand and gravel	0.5	90
Fine sand	4	94
Coarse sand and gravel	6	100
Red bed	1	101

Well 13-38-721

Owner: Mrs. Elwyn Bingham Driller: Robert Dale

Soil	3	3
Sandy clay	16	19
Fine sand	16	35
Clay	13	48
Pack sand and clay layers	14	62
Fine water sand	6	68
Clay	1	69
Fine water sand	9	78
Fine to medium sand	6	84
Cemented sand and gravel	0.5	84.5
Medium to coarse sand and gravel	3.5	88
Red bed	1	89

Well 13-38-722

Owner: Frank McDougal Driller: Robert Dale

Fine sand	18	18
Fine sand and clay layers	9	27
Fine water sand and clay layers	22	49
Clay	10	59
Fine sand	8	67
Sand rock	11.5	78.5
Fine sand	5.5	84
Red bed	1	85

Well 13-38-723

Owner: Frank McDougal Driller: Robert Dale

Fine sand and clay layers	27	27
Unknown lithology	51	78
Fine water sand	6	84
Sand rock	1	85
Fine sand	1	86
Sand rock	0.5	86.5
Fine to medium sand	3.5	90

Depth

Thickness

(feet)

(feet)

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)	
Well 13-38-723-Con	tinued		Well 13-38-803-Cont	tinued		
sànd and gravel,	3	02	Sand, orange, fine- to medium-grained	3	22.5	
d gravel	1	55	Sandy clay, orange, blocky, with			
u graver	1	94	orange sand, fine- to medium- grained, tight	3	25.5	
ind and gravel	4	98	Sand, red to orange, fine-grained	4	29.5	
	1	99	Sand, as above, slightly clayey	4	33.5	
Well 13-38-724			Sand, light-gray to light tan, medium-grained	9	42.5	
Owner: Frank McDo	ougal		Sand, light orange, tan to light buff, very fine- to fine-grained	12	54.5	
v	25	25	Shaley sand, light red to pink, very			
*	20	25	fine-grained	3	57.5	
lavers	12	37	Caliche, white, finely crystalline, pin- point porosity	1	58.5	
101013	23	00	Sand, white, very fine- to medium-			
Lucia in	2	68	grained, well-cemented	4.5	63	
layers d rock layers	14	82	Clayey sand, pink, very fine- to fine-grained, with clay, light			
	6	93	orange	7	70	
/	10	103	Caliche, white, finely crystalline, slightly porous with clayey sand,	10	- 20-1	
	1	104	Sand, tan and red to orange, coarse- to very coarse-grained, with few	10	80	
Well 13.38.802			granules and pebbles 4 to 15 mm	7	87	
Owner: Jake C. Rigg Driller: Robert Da	gins		Sand, tan, coarse- to very coarse- grained	8	95	
	26	26	Sand, as above, with granules of gravel to 4 mm	5	100	
	22	48	Clayey sand, light orange, fine-			
layers	10	58	up to 3 mm	4	104	
nd	4	62	Shale, red, blocky	3	107	
	1	63	Clayey sand, red, fine-grained, (Permian?)	2	110	
	8	71		5	110	
gravel	0.5	71.5	Well 13-38-804			
and and few gravel	4.5	76	Owner: W. Neal Fitzge	erald		
	5	81	Driller: Texas Water Developr	ment Board		
			Soil, sandy, light brown, fine-grained	5	5	
Well 13-38-803			Sand, light tan, fine- to medium- grained	3.5	8.5	
Owner: W. Neal Fitzg Texas Water Develop	erald ment Board		Clayey sand, tan, very fine- to fine- grained, few rust colored streaks	3	11.5	
own, fine- to	3	3	Sand, rust and tan mottled, fine- to	5	11.5	
medium-grained	12	15	medium-grained	12.5	24	
fine-grained	4 5	10 5	Clayey sand, light red to tan, fine- grained, with red clay	1	2E	
, me granneu	4.0	19.0			20	

Medium to coarse sand and gravel,	
tight	3
Cemented sand and gravel	1
Fine to medium sand and gravel	
with clay layers	4
Red bed	1

M

Owner Dril

Unknown lithology	25
Fine sand	12
Fine sand and clay layers	29
Sand rock	2
Fine sand and clay layers	14
Fine sand with sand rock layers	5
Fine water sand	6
Unknown lithology	10
Red bed	1

W

	Driller: Robert Dale	e
Soil and sandy clay		26
Clay		22
Fine sand with clay la	ayers	10
Fine to medium sand		4
Sand rock		1
Pack sand		8
Cemented sand and g	ravel	0.5
Medium to coarse san	d and few gravel	4.5
Red bed		5

We

Owner: Driller: Texas V

Soil, sandy, light brown, fine- to		
medium-grained	3	
Sand, light orange, medium-grained	12	
Clayey sand, orange, fine-grained	4.5	

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
Well 13-38-804-Continued			Well 13-45-309-Con	tinued	
Sand, rust, fine- to medium grained	14	39	Sand, light orange, fine- to medium-		
Shale, red, blocky	6	45	grained, with orange shale streaks	30	70
Well 13-45-308			Sand, light orange and white, very coarse-grained, with gravel pebbles 4 to 10 mm	6	76
Owner: Charles Tal Driller: Texas Water Develop	lant ment Board		Shale, red and gray, blocky	10	86
Soil, sandy, white to tan, fine- grained	2	2	fine- to medium-grained, with red clay streaks	4	90
Sand, tan, fine-grained	3	5			
Sand as above with red clay		ů.	Well 13-45-310		
streaks	1.5	6.5	Owner: Charles Tall Driller: Texas Water Develop	lant oment Board	
Sand, as above, with caliche nodules	1	7.5	Soil, sandy, brown, medium-grained	5	5
Sand, tan fine-grained	15.5	23	Clayey sand, tan, very fine- to medium-	15	20
Sand, orange, very fine-grained, with clay and dolomite and lime- stone particles, fine grained	2	25	Sand, white to light gray, fine-grained, cemented with caliche	5	20
Sand, orange, fine- to medium- grained	8	33	Sandy caliche, white to tan, finely crystalline, with sand, as above	5	30
Sand, tan to orange, medium- to coarse-grained, with fine gravel to 4 mm	4	37	Clayey sand, light red to orange, fine-grained, with orange clay	10	40
Sand, tan to orange, fine-grained, with clay layers	4	41	Sand, tan, very coarse-grained, few gravel granules of dolomite and limestone to 2 mm	5	45
Sand, tan to orange, coarse- grained, fine gravel 2 to 4 mm	6	47	Sand, as above, with few gravel granules to 4 mm	5	50
Sand and gravel, as above, with orange clay streaks	2	49	Gravel, various colored quartz, lime- stone and dolomite granules and pebbles 1 to 20 mm, with sand		
very coarse-grained, with small gravels 2 to 4 mm	2	51	as above	5	55
Gravel, various colored, pebbles	_	_	Shale, red and gray, blocky	5	60
26 to 50 mm	3	54	Well 13-45-312		
Shale, red and gray	6	60	Owner: Mrs. L.W. P.	rock	
Gravel, various colors, fine (2- 4 mm), well-cemented (Permian?)	2	62	Driller: Robert Da	ale	
			Soil and loose clay	54	54
Well 13-45-309			Medium sand	2	56
Owner: Charles Tall Driller: Texas Water Develop	ant ment Board		Red bed	2	58
Soil, sandy, brown, fine-grained	5	5	Well 13-45-506		
Sand, as above, with dark brown shale streaks	5	10	Owner: Sam H. Too Driller: Robert Da	bley	
Sand, light tan to white fine- to			Soil and clay	27	27
caliche and dark brown shale	20	30	Fine sand	11	38
Sand, white, fine- to medium- grained, well cemented	10	40	Medium to coarse sand and few gravel	11	49

Depth

(feet)

57 60

16

45

58

62

68

73

Thickness

(feet)

Thickness	Depth
(feet)	(feet)

Well 13-45-506-Cont	inued
Coarse sand and gravel	8
Red bed	З
Well 13-45-609	
Owner: Bert Presie Driller: Robert Da	ey le
Top soil and clay	16
Sand	29
Medium to coarse sand and gravel	13
Fine to medium sand	4
Medium to coarse sand and gravel	6
Red bed	5

Well 13-45-611

Owner: H. Leroy Conner Driller: Robert Dale		
Sandy soil	3	
Sandy clay	32	
Fine sand	30	
Fine sand and small gravel	10	
Sand and gravel	18	
Red bed	2.5	

Well 13-45-616

Owner: Benjami Driller: Ro	n H. Smith, Jr. bert Dale
Sandy soil	3
Sandy shale	15
Fine red sand	6
Clay	3
Fine sand silt	8
Fine water sand	12
Sugar sand	13
Sand rock	2
Fine water sand	5.5
Coarse sand and gravel	1.5
Red bed	1

Well 13-45-621

Owner: Ray C. Driller: Rober	Morgan t Dale	
Soil and clay	23	23
Fine sand	6	29
Medium to coarse sand with clay layers	9	38
Clay	6	44
Fine sand	5	49
Medium to coarse sand and few gravel	12	61
Red bed	4	65

Well 13-45-622

Owner: Ray C. Morgan Driller: Robert Dale

Soil	4	4
Clay	17	21
Fine sand	11	32
Fine sand with clay layers	9	41
Fine to medium sand	7	48
Medium sand and few gravel	5	53
Coarse sand and gravel	9	62
Red bed	2	64

Well 13-46-114

Owner: Mrs. Elwyn Bingham Driller: Robert Dale

Soil	4	4
Clay	24	28
Pack sand	38	66
Clay	2	68
Fine sand, red	10	78
Fine sand	11	89
Sand rock, hard	1	90
Medium to coarse sand and few gravel	1	91
Coarse sand and gravel	14	105
Red bed	2	107

Sand rock, hard

Red bed

		4			
	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
Well 13-46-11	7		Well 13-46-126		
Owner: W. C. B Driller: Robert	ellar Dale		Owner: City of Ver Driller: Texas Water Develop	non ment Board	
Soil and sandy clay	30	30	Soil, sandy, light brown very fine-		
Clay	5	35	grained	2.5	2.5
Fine sand with clay layers	19	54	Sand, light brown, fine- to medium- grained	39	41.5
Fine to medium sand	4	58	Sand, light orange, fine-grained, with		
Fine sand and clay layers	6	64	clay streaks	4	45.5
Medium to coarse sand	10	74	Sand, light orange, fine-grained	6	51.5
Medium to coarse sand and few gravel	2	76	Sand, light tan, medium- to coarse- grained	4	55.5
Red bed	4	80	Sand, light orange, coarse- to very coarse-grained, with gravel 2 to 12 mm	12	67.5
Well 13-46-12	4		Gravel, various colored, pebbles 6 to 12 mm, with sand as above	2	69.5
Owner: Mrs. M. E. F Driller: Robert	orester Dale	4	Sand, light orange, coarse- to very coarse-grained, with gravel 6 to 12 mm	4	73.5
Top soil	4	4	Gravel, various colored, with pebbles		
Sandy clay	14	18	up to 27 mm, with sand as above, and water worn bi-valve fossils	6.5	80
Fine sand	19	37	Gravel various colored grapules	1000.000	
Medium to fine water sand	4	41	2 to 4 mm, with thin light red	5	85
Fine sand with clay layers	5	46		5	00
Pack sand	5	51	various colored granules of gravel	-	
Soft sand rock	4	55	2 to 4 mm	5	90
Medium to coarse sand and gravel	7	62	Gravel, various colored, with granules and pebbles 2 to 24 mm, with sand,		
Red bed	-	62	orange, very coarse grained, and clay balls	3	93
Well 13-46-12	5		Gravel, various colored, granules, pebbles and cobbles 2 to 65 mm, with sand, orange, very coarse-		
Owner: City of V	ernon Dale		grained	6	99
Soil and candy clay	22	22	Shale, red, blocky	4	103
Fine send and clay layers	16	38	Sand, dark red and various colored, very coarse-grained (Permian?)	2	105
Fine sand with 6 inches to 1 foot					
sand rock layers, hard	18	56	Well 13-46-127		
Fine water sand and clay layers	3	59	59 Owner: Grady E. Bingham		
Fine water sand	15	74	Driller: Texas Water Develop	ment Board	
Medium to coarse sand and few		70	Soil, sandy, light brown, fine-grained	3.5	3.5
gravei	4	78	Sand, light tan, fine-grained	2.5	6
Medium to coarse sand	8	80	Clayey sand, light tan, fine-grained	4	10
Medium to coarse sand and few gravel	8	94	Sand, light tan to white, fine- grained	4	14

Sand, as above, with dark brown clay layers

4

18

95

95

1

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
Well 13-46-127-Co	ntinued		Well 13-46-13	0	
Sand, tan to orange, medium-grained	4	22	Owner: Mrs. Elwyn E	3ingham	
Sand, as above, with tight clayey sand layers	7	29	Top soil	4	4
Sandy clay, orange, with gray sand,			Sandy clay	8	12
fine-grained, tight	3	32	Fine sand	2	14
Clayey sand, light orange, fine-grained	1	33	Clay	5	19
Clay, orange	3	36	Fine sand	7	26
Sandy clay, orange, fine-grained	1	37	Clav	8	24
Sand, red to dark orange, fine-grained	4	41	Ciay Sector	0	34
Sand, as above, with orange clay streaks	1	42	Fine sand	8	42
Sand light tan medium-grained	4	46		2	43
	4	40	Fine sand with clay layers	3	46
grained, with iron nodules	3	49	Clay	7	53
Sand, tan, medium-grained	8	57	Sand rock	0.5	53.5
Sand, tan, medium- to coarse-			Fine sand	12.5	66
grained, with gravel granules to 4 mm	1	58	Fine to medium sand	2	68
Sand, tan, medium- to coarse-			Medium coarse sand and few gravel	6	74
grained	8	66	Fine sand	2	76
Sand, tan, medium- to coarse-			Medium to coarse sand and few		
pebbles 2 to 20 mm	14	80	gravel	4	80
Gravel, various colored, with pebbles		211	Red bed	1	81
4 to 35 mm	3	83			
Sand, tan, coarse-grained, with gravel pebbles to 40 mm	2	85	Well 13-46-131		
Shale, red, blocky	2	87	Owner: Charles Tallant Driller: Robert Dale		
			Fine sand	14	14
Well 13-46-12	3		Clav	8	22
Owner: G. K. Ma	rtin		Fina cond	6	22
Driller: Robert D	ale		Fine send with clevilevers	10	20
Soil and clay	9	9	Fine sand with clay layers	10	30
Fine sand	19	28	Fine water sand	17	55
Fine sand and clay layers	7	35	Six-inch sand rock layers	5	60
Clay	4	39	Fine sand	0.5	60.5
Sand rock	3	42	Medium to poor sand	3.5	64
Fine sand	3	45	Coarse sand and gravel	2	66
Fine to medium (sand?)	5	50	Red bed	3	69
Medium to coarse (sand?)	3	53			
Medium to coarse sand and gravel	7	60	Well 13-46-212	2	
Red bed	4	64	Owner: Jake C. Ri	ggins	
The Dec	4	04	Driller: Robert L	vale .	
			Soll and sandy clay	38	38

-

Clay

56

18

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
Well 13-46-212-Cc	ontinued		Well 13-46-230-C	ontinued	
Fine sand	12	68	Sand rock	1	50
Medium to coarse sand	8	76	Medium sand	4	54
Red bed	3	79	Coarse sand	2	56
			Coarse sand and small gravel	6	62
Well 13-46-2	17		Red bed	6	68
Owner: Jake C. F Driller: Robert	liggins Dale		M-11 10 40 4	22	
Soil	3	3	vveii 13-46-2	232	
Sandy clay	24	27	Owner: Sumner Driller: Rober	r Estate t Dale	
Fine sand	8	35	Top soil	3	3
Fine to medium sand, hard	7	42	Sandy clay	21	24
Sand rock, hard	2	44	Fine sand and clay layers	26	50
Medium sand and gravel	4	48	Sand rock	2	52
Coarse sand and small gravel	6	54	Fine sand	13	65
Sand rock	5	59	Fine to medium sand and few	10	77
Red bed	1	60	gravel	12	//
			Red bed	3	80
Well 13-46-23	24			22	
Owner: Sumner Estate Driller: Robert Dale			Owner: Bill	Graf	
Soil and clay	17	17	Driller: Rober	t Dale	
Fine sand with clay layers	21	38	Soil	5	5
			Fine sand with clay layers	67	72
layers	9	47	Sand rock	3	75

50

51

55

64

67

Clay

gravel

Red bed

Fine to medium sand and few

5
1
4

2

9

3

Well 13-46-230

Pack sand

Pack sand

Red bed

Sand rock, hard

Medium to coarse sand and gravel

Owner: Driller:	Sumner Estate : Robert Dale		
Soil	3	3	
Clay	14	17	
Fine sand	17	34	
Pack sand	5	39	
Medium sand	5	44	
Fine sand	5	49	

Well 13-46-234

7

5

3

82

87

90

Owner: William S. Fitzgerald Driller: B. B. Thrash

Top soil and quicksand, fine, white	20	20
Unknown lithology	10	30
Red clay	8	38
Blue caliche	6	44
Red and blue clay	11	55
Sand rock	20	75
Water-bearing blue and gray clay	5	80

	Thickness (feet)	Depth (feet)		Thickness (feet)
Well 13-46-234-	-Continued		Well 13-46-236-	-Continued
Water-bearing caliche	2	82	Sand rock	10
Fine gravel and sand	3	85	Clay balls	4
Gravel, average 3/8 to 1/4 inch diameter	8	93	Gravel	2
Red bed	-	93	Sand rock, trace gravel	4
			Water sand, some gravel	33
Well 13-46	6-235		Red bed	-
Owner: William S Driller: B. B.	. Fitzgerald Thrash		Well 13-4	6-237
Top soil and quicksand	22	22	Owner: William Driller: B. B	S. Fitzgerald
Unknown lithology	3	25	Tre cell and evidenced	
Red clay	7	32	Top son and quicksand	26
Caliche	4	36	Unknown lithology	1
Unknown lithology	1	37	Blue clay	10
Sand rock	3	40	Fine sand	5
Red sand rock, some clay	2	42	Water-bearing sand and clay	15
Sand rock and sand	15	57	Blue clay	1
Dive clev and selicities	15	57	Sand rock	4
	1	56	Sand	10
Red clay	3	61	Coarse sand	28
Red and blue clay	4	65	Red bed	
Water-bearing clay	3	68		
Sand rock	5	73	Well 13-46	6-401
Through hard rock	10	83	Owner: City	of Vernon
Gravel	2	85	Driller: D. L. I	McDonald
Gravel and sand rock	10	95	Unknown lithology	8

Well 13-46-236

-

Red clay and sand

Sandstone

Coarse sand and fine gravel

Sand, gravel, and clay balls

Clay with streaks of sand and gravel

Red clay (water from 40 to 105 feet)

Owner: William S. Fitzgeral	d
Driller: B. B. Thrash	
Top soil and quicksand	25

Unknown lithology	5
Red caliche	4
Blue caliche, soft	4
Blue clay	2
Sand rock	8
Water clay	2

Sand rock

Red bed

Well 13-46-402

Depth

(feet)

Owner: City of Vernon Driller: D. L. McDonald					
Top sand and clay streaks	20	20			
Soft sand	20	40			
Sand and fine gravel	20	60			

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
W-U 12 40 402 - 0	d		Well 12 46 406 . Com	فأستنعط	
Wen 13-46-402-Conti	nuea		Weil 13-40-400-C01	unded	
Sand, gravel, and clay balls	35	95	Sand and fine gravel	20	70
Red bed (water from 20 to 95 feet)	5	100	Sand, fine gravel, and clay balls	20	90
			Red bed	7	97
Well 13-46-403					
Owner: City of Ven Driller: D. L. McDon	non nald		Well 13-46-407		
Sand and clay streaks	10	10	Owner: City of Ve Driller: D. L. McDo	nald	
Sandy clay	10	20	Top sand and clay	10	10
Sand and clay streaks	20	40	Sandy clay	10	20
Sand and clay balls	10	50	Sand and clay streaks	30	50
Sand, gravel, and clay balls	40	90	Coarse sand and fine gravel	20	70
Red bed	5	95	Sand, gravel, and clay balls	20	90
			Red clay (water from 20 to 90 feet)	5	95
Well 13-46-404					
Owner: City of Vernon Driller: D. L. McDonald			Well 13-46-408		
Top sand and clay	10	10	Owner: City of Ve Driller: D. L. McDo	rnon onald	
Sand and clay	20	30	Sand and clay streaks	20	20
Sand	40	70	Sand and clay balls	40	60
Sand and gravel	12	82	Sand and clay balls, hard	10	70
Red clay (water from 30 to 82 feet)	9	91	Cemented sand and gravel	1	71
			Sand, fine gravel, and clay balls	14	85
Well 13-46-405			Red clay	5	90
Owner: City of Vern Driller: D. L. McDon	ion ald				
Top sand and clay	10	10	Well 13-46-413		
Sand and clay	30	40	Owner: City of Ve Driller: Layne-Arka	insas	
Sand	20	60	Red sand	12	12
Sand, gravel, and clay balls	30	90	Sand and clay	6	18
Sand and red clay	10	100	Sand	1	19
Red clay	5	105	Muddy sand and clay	15	34
			Sand	7	41
Well 13-46-406			Sand and clay	8	49
Owner: City of Vern Driller: D. L. McDon	ald		Sand	2	51
Top sand and clay streaks	10	10	Sand and clay	4	55
Sand and sandy clay streaks	10	20	Sand	2	57
Sandy clay	10	30	Sand, gravel and clay	3	60

50

20

Sand and sandy clay streaks

Fine sand

68

8
		Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
	Well 13-46-413–Conti	nued		Well 13-46-4	16	
Coarse sand		8	76	Owner: City of	Vernon	
Coarse sand and gr	avel	18	94	Driller: Herman V	Winters	
Clay and gravel		2	96	Sandy clay	15	15
Red bed		6	102	Fine sand with clay streaks	19	34
				Fine to medium sand	27	61
	Well 13-46-414			Clay streaks	3	64
	Owner: City of Vern	on		Sand, medium	9	73
	Driller: Layne-Arkan	sas		Sand, medium to fair	12	85
Red sand		9	9	Coarse sand and gravel	13	98
Sandy clay		8	17	Coarse sand and gravel with clay		
Red sand		5	22	balls	2.5	100.5
Red sandy clay		38	60	Red bed	4.5	105
Sand		7	67			
Sand, cored		1	68	Well 13-46-4	18	
Sand, dirty		9	77	Owner: Jake C. I Driller: Robert	Riggins Dale	
Sand, cut good		3	80	Soil	4	4
Sand, cored		2	82	Sandy clay	14	18
Sand, good		1	83	Fine sand	4	22
Coarse gravel		7	90	Clay	2	24
Sand, cored		1	91	Fine sand	13	37
Sand and fine grave	el	12	103	Clay and rock	1	38
Red bed		4	107	Fine sand	10	48
				Fine sand with clay layers	8	56
	Well 13-46-415			Sand rock	1	57
	Owner: City of Vern Driller: Herman Wint	on ers		Fine and medium sand and few gravel	16	73
Sand		9	9	Sand rock	з	76
Clay		4	13	Fine and medium sand and gravel		
Sand, packed		14	27	with cemented layers	14	90
Sandy clay		17	44	Red bed	1	91
Sand, fine		21	65	Well 12 46 4	20	
Fine to medium sand		12	77	weii 13-46-4	30	
Medium to fair san	d and gravel	3	80	Owner: Bert Do Driller: Robert	Dale	
Good to extra good	d coarse sand			Soil	4	4
and gravel (clay st 112 feet)	treaks IU9 to	32	112	Clay	18	22
Red bed		1	113	Fine sand	9	31

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
Well 13-46-430	0-Continued		Well 13-46-502	2	
Silt sand	20	51	Owner: City of Ve Driller: D. L. McD	ernon onald	
Clay	5	56		_	
Fine sand	6	62	l op sand	5	5
Pack sand	3	65	Red sand and clay streaks	15	20
Fine sand	9	74	Sand and clay streaks	10	30
Fine to medium sand	4	78	Sand and fine gravel	10	40
Medium to coarse sand	8	86	Sand, gravel, and clay balls	57	97
Madium to company and and four			Red clay (water from 20 to 97 feet)	5	102
gravel	6	92			
Coarse sand and gravel	3	95	Well 13-46-503	3	
Red bed	4	99	Owner: City of Ve Driller: D. L. McDo	rnon onald	
Well 13-4	46-432		Sand	10	10
			Red clayey sand	10	20
Drille	r: -		Red sandy clay	20	40
Silty sand	22	22	Red clayey sand	10	50
Clay	9	31	Sand, gravel, and clay balls	57	107
Sand with clay streaks	17	48	Red bed (water from 50 to 107 feet)	5	112
Sand, fine to medium	13	61			
Sand, medium to fair	13	74	Well 13-46-507		
Sand, medium to good	24	98	Owner: Jake C. Ri Driller: Bill Turr	ggins ner	
Red bed	4	102	Soil	3	3
			Cond and fine to spanne assimut	0	10
Well 13-4	46-501		Sand, red, the- to coarse-grained	Э	12
Owner: City	of Vernon McDonald		Sand, yellow, fine- to coarse- grained	3	15
Driner, D. L.			Sand, brown, fine- to coarse-grain	15	30

Top sand	4	4
Clayey sand	16	20
Blue sandy clay	10	30
Soft sand	10	4(
Sand and clay balls	10	50
Sand, gravel, and clay balls	26	76
Sand rock	1	77
Sand, gravel, and clay balls	21	98
Red clay (water from 30 to 98 feet)	5	103

- 174 -

Sandy, white, fine- to very coarse-

Sand, white and pink, fine- to coarse-grained, hard

Sand, white, fine- to very coarsegrained, and layers of hard sand

Gravel, pebbles, and medium- to

very coarse-grained sand

20

10

19

3

8

2

50

60

79

82

90

92

grained

Sand, hard, white

Shale, hard, red

Thickness (feet) Depth (feet)

94

101

51

54 72

73 90

Well 13-46-511

Owner: City of Ve Driller: McDonald Drig	Owner: City of Vernon Driller: McDonald Drlg. Co., Inc.		
Loose sand	12		
Clay and sand	34		
Sand, clay streaks	31		
Sand	10		
Sand, gravel, clay streaks	20		
Sand, a little clay	4		
Red clay	5		

Well 13-46-512

Owner: City of \ Driller: McDonald Dr	/ernon lg. Co., Inc.
Top soil and clay	4
Clay	16
Clay, streaks of sand rock	13
Clay, sand streaks	4
Sand, clay streaks	17
Clay	6
Sand and clay	5
Sand, some gravel, clay streaks	12
Sand, gravel, and clay streaks	17
Red clay	7

Well 13-46-515

Owner:	Jake C	. Riggins
Driller	: Robe	rt Dale

Sandy medium loam	4
Sand soil	4
Sandy clay	20
Fine sand and clay layers	10
Fine to medium water sand	8
Sand rock	1
Fine to medium sand (pack)	4
Clay	3
Fine sand	18
Pack sand	1
Medium to coarse sand and gravel	17

Well 13-46-515-Cont	inued	
Medium to coarse sand and more		
gravel	4	94
Red bed	1	95
Well 13-46-518		
Owner: Jake C. Rigg Driller: Robert Da	gins Ile	
Top soil	3	3
Clay	18	21
Fine sand with clay	17	38
Fine to medium white sand	4	42
Pack sand	4	46
Fine to medium white sand	11.5	57.5
Medium to coarse sand and gravel	5.5	63
Fine sand	5	68
Sand rock	0.5	68.5
Fine sand	17.5	86
Fine to medium sand	4	90
Medium to coarse sand	5	95
Red bed	1	96

Thickness

(feet)

Depth

(feet)

Well 13-46-519

Owner: City of Vernon Driller: -

Sand	14	14
Sandy clay	14	28
Sand, packed	6	34
Clay	14	48
Clay, medium to hard	19	67
Sandy clay	5	72
Sand, firm to medium	47.5	119.5
Red bed	5.5	125

Well 13-46-605

Owner: E. Howard Heath Driller: Robert Dale

Soil	4	4
Clay	12	16

Depth

(feet)

Well 13-46-605-	-Continued	
Fine to medium sand	18	34
Coarse sand and gravel	6	40
Red bed	5	45

Thickness

(feet)

Well 13-46-606

Owner: E. Howard Driller: Lee Ho	d Heath pper	
Top soil sand	5	5
Fine sand, loose	23	28
Coarse sand	10	38
Coarse sand, loose	7	45
Coarse sand and gravel, loose	7	52
Red bed	2	54

Well 13-46-612

Owner: Troy A. Chapman Driller: Robert Dale

Soil and clay	6	6
Fine sand	2	8
Clay	4	12
Fine sand and clay layers	9	21
Clay	5	26
Fine sand and clay layers	8	34
Fine to medium sand and few gravel	4	38
Mostly gravel	4	42
Red beds	4	46

Well 13-46-613

Owner: Troy A. Chapman Driller: Robert Dale

Soil and clay	13	13
Fine sand and clay layers	8	21
"Rotten" clay	10	31
Fine sand	7	38
Medium to coarse sand and small gravel	16	54
Coarse sand and gravel	3	57
Red beds	4	61

Well 13-46-615

Thickness

(feet)

Depth

(feet)

Owner: Troy A. Chap Driller: Robert Da	man le	
Top soil and clay	14	14
Fine sand and clay layers	4	18
Riverbed clay	16	34
Fine to medium sand and clay layers	8	42
Medium to coarse sand and few gravel	6	48
Fine to medium sand and few gravel	6	54
Medium to coarse sand and few gravel	5	59
Red bed	4	63

Well 13-46-616

Owner: Cathern Pierce Driller: Robert Dale

Soil	4	4
Clay	12	16
Sand rock	5	21
Fine sand and clay layers	37	58
Medium to coarse sand and few gravel	2	60
Red bed	3	63

Well 13-46-902

Owner: Clyde Crisp Driller: Robert Dale

Soil and clay	8	8
Fine sand	22	30
Coarse sand and gravel	6	36
Red bed	2	38

Well 13-47-106

Owner: Royce Eiland Driller: Robert Dale

Soil	2	2
Fine to medium coarse sand and gravel	37	39
Red bed	2	41

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
Well 13-47-404			Well 13-54-716	6	
Owner: Fred McLau Driller: Robert Da	ghlin 1e		Owner: Curtis A. Driller: Robert E	Graf Dale	
Soil and clay	6	6	Soil	3	з
Sand	4	10	Soil and clay	15	18
Clay	5	15	Fine sand	20	38
Fine sand	10	25	Medium to coarse sand and few	3	41
Medium to coarse sand and few gravel	5	30	Fine sand	2	43
Medium to coarse sand and			Medium to coarse sand and gravel	8	51
small gravel	11	41	Red bed	3	54
Red bed	4	45			
Well 12 47 705			Well 13-54-718	В	
Owner: John D. Alexa	ander		Owner: Joe Frank Driller: Robert D	Lowe Dale	
Driller: M. L. Mya	e e	6	Top soil and clay	8	8
Sou	0	10	River sand	42	50
Pine sand, water at 10 feet	4	25	Coarse sand and gravel	6	56
	10	25	Red beds	-	56
Coarse sand and good graver, water	10	35			
Red Deas		00	Well 13-54-72	5	
Well 13-47-706			Owner: Dr. J. P. E Driller: Robert D	aton Dale	
Owner: James Sulli Driller: Robert Da	van ale		Top soil	4	4
Soil and clay	4	4	Clay	14	18
Fine sand	14	18	Fine sand	6	24
Medium sand	4	22	Fine sand with clay layers	1	25
Medium to coarse sand	6	28	Sand rock	7	32
Medium to coarse sand and gravel	7	35	Fine to medium sand	6	38
Red bed	-	35	Fine sand and few gravel	2	40
			Coarse sand and gravel	2	42
Well 13-54-516			Clay	1	43
Owner: Hillcrest Count	ry Club		Coarse sand and gravel	2	45
Driller: Robert Da	le		Red bed	7	52
Sandy soil	2	2			
Fine sand	18	20	Well 13-54-726	6	
Medium to coarse sand and gravel	7	27	Owner: Maurice O Driller: Robert D	lliver Dale	
Red bed	2	29	Soil	3	3
			Clay	14	17

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
Well 13-54-726-	-Continued		Well 13-54-817-Cor	ntinued	
Gravel	3	20	Coarse-grained sand	6	16
Clay	20	40	Rock	0.5	16.5
Coarse sand and gravel	7	47	Fine-grained sand	1	17.5
Red bed	4	51	Shale	0.5	18
			Sandy shale	2	20
Well 13-54	4-727		White sand	8	28
Owner: Fran Driller: Robe	k Kock ert Dale		Rock	1	29
Soil	4	4	Silty sand	5	34
Clav	20	24	Fine sand, boulders, and clay	5	39
Very fine red sand	30	54			
Red had	4	58	Well 13-54-83	В	
neu beu	-	55	Owner: Mrs. F. B. Driller: Robert D	Elliott Dale	
Well 13-54	4-730		Soil and clay	18	18
Owner: Alber Driller: Rob	rt C. Graf ert Dale		Medium and coarse sand	4	22
Soil	4	4	Clay	3	25
Sandy clay	21	25	Coarse sand and clay layers	3	28
Clav	5	30	Medium to coarse sand and gravel	14	42
Fine sand	3	33	Red bed	4	46
Fine to medium sand with few	5	00			
gravel	10	43	Well 13-54-83	9	
Red bed	3	46	Owner: Harold S Driller: Robert D	Star Dale	
Well 13-54	4-731		Soil	3	З
Owner: Arth	ir Schultz		Sandy clay	17	20
Driller: Rob	ert Dale		Fine sand	3	23
Soil	з	3	Coarse sand and small gravel	5	28
Clay	5	8	Clay	1	29
Sandy clay	10	18	Medium to coarse sand and gravel	11	40
Fine sand	4	22	Red bed(?)	5	45
Fine to medium sand	10	32			
Medium to coarse sand and few gravel	7	39	Well 13-54-84	В	
Red bed	3	42	Owner: J. H. Pettit, Driller: Layne-Texa	et al. as Co.	
			Soil	16	16
Well 13-54	4-817		Sand and gravel	6	22
Owner: City o Driller: Lavne-	of Vernon Texas Co.		Clay	0.5	22.5
Soil	2	2	Sand and gravel	22.5	45
Silty sand	8	10	Clay(red beds)	1	46
	5				

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
Well 13-54-84	9		Well 13-54-908-Co	ontinued	
Owner: Wilbarger Coun	ty Hospital		Fine to medium sand	1	33
Soil and clay	17	17	Medium to coarse sand and few gravel	6	39
Fine sand	6	23	Red bed	4	43
Fine sand with clay layers (6 inches)	5	28			
Fine to medium sand, few gravel	7	35	Well 13-61-10	04	
Red bed	13	48	Owner: Edward L. L Driller: Pat Wag	ehman, Jr. goner	
			Soil	10	10
Well 13-54-85	4		Sand	8	18
Owner: Frank K Driller: Robert	ock Dale		Unknown lithology	4	22
Top soil and clay	18	18	Gravel	8	30
Medium to coarse sand	2	20	Red bed	_	30
Coarse sand and gravel	10	30			
Red bed	3	33	Well 13-61-20	04	
			Owner: Edward L. L Driller: L. E. St	ehman, Jr. amps	
Well 13-54-90	06		Top soil	6	6
Owner: Dr. James J. Driller: Don Ho	Muirhead oper		Dirty sand	5	11
Top soil, sand and clay	10	10	Fine water sand	8	19
Joint clay	10	20	Coarse water sand and gravel	10	29
River sand	5	25	Red bed	1	30
Red bed	-	25			
			Well 13-61-20	06	
Well 13-54-90	7		Owner: Edward L. Le Driller: Robert	ehman, Jr. Dale	
Owner: Dr. J. J. Slau Driller: Robert	igenhop Dale		Top soil	5	5
Soil and clay	17	17	Sand	3	8
Fine to medium sand	3	20	Clay	5	13
Medium to coarse sand and few	-	07	Sand, water	12.5	25.5
gravel	2	27	Gravel	4.5	30
Coarse sand and gravel	3	30	Red bed	-	30
Red beds	5	35			
Well 13-54-90	8		Well 13-61-21	12	
Owner: Dr. J. J. Slau	igenhop		Owner: Driller:		
Driller: Robert [Dale		Fine sand	10	10
Soil and clay	23	23	Sandy, clay	3	13
Soft clay and fine sand	2	25	Coarse sand	5	18
Soft clay with gravel layers 6 to 18 inches thick	7	32	Coarse sand and gravel	1	19

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
Well 13-61-212-0	Continued		Well 13-61-3	334	
Coarse sand	9	28	Owner: C. Glen	in Cato	
Gravel	3	31	Driller: Rober	t Dale	2
Shale and sand	з	34	Soli	3	3
Red bed	2	36	Clay, red and gray	19	22
			Fine sand	11	34
Well 13-61	-322		Medium sand and few gravel	4	38
Owner: A. J. L Driller: Robe	_ambert ert Dale		Red bed	6	44
Soil and clay	16	16			
Fine sand with clay layers	15	31	Well 13-61-3	343	
Fine to medium sand	2	33	Owner: -	-:	
Fine to medium to coarse sand and few gravel	7	40	Fine sand	- 18	18
Red bed	4	44	Coarse sand	10	28
			Pea gravel, coarse sand	4	32
Well 13-61	-323		Gravel	2	34
Owner: Mrs. C. Driller: Robe	H. Cato ert Dale		Shale and sand	1	35
Soil and subsoil	5	5	Red bed	2	37
Clay	6	11			
Fine sand with clay layers	4	15	Well 13-61-3	344	
Coarse to medium sand with clay	0	24	Owner: – Driller: –	-	
layers	9	24	Fine sand	7	7
Red Deds	2	20	Sandy clay	12	19
Well 13-61	-333		Coarse sand	12	31
Owner: C. Gle	nn Cato		Pea gravel	2	33
Driller: Robe	ert Dale		Red shale and coarse sand	1	34
Top soil and unknown lithology	16	16	Red bed	2	36
Coarse sand and gravel	12	28			
Fine to medium sand	4	32	Well 13-61-3	345	
Medium to coarse sand and few gravel	2	34	Owner: – Driller: –	- -	
Fine sand and few gravel	4	38	Fine sand	11	11
Medium to coarse sand and few gravel	4	42	Sandy clay	1	12
Sand rock	0.5	42.5	Coarse sand	9	21
Red bed	0.5	43	Pea gravel	2	23
			Red bed	2	25

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
Well 13-61-415	i)		Well 13-61-509-	-Continued	
Owner: Tom R. Lo	ocke		Sand and gravel	20	35
Soil	3	3	Red bed	3	38
Soft red clay	11	14			
Fine sand, white	13	27	Well 13-61	-511	
Sand and small gravel	3	30	Owner: T. J. Mo Driller: Rob	Gill Estate ert Dale	
Gravel, loose	5	35	Soil	2.5	2.5
Red bed	1	36	Sandy soil	7.5	10
			Fine sand	5	15
Well 13-61-419)		Water sand and gravel	15	30
Owner: Tom R. L Driller: Robert D	ocke Jale		Gravel	8	38
Soil	3	3	Red bed	2	40
Sandy clay	15	18	Well 13-61	-515	
Coarse sand and large gravel, clean	15	33	Owner: Homer	W. Custer	
Red bed(?)	2	35	Driller: L. E.	Stamps	
			Rock sand	4	4
Well 13-61-425	i i		Clay	16	20
Owner: Henry W. Ka	archer		Sand, gravel, dirty	6	26
Driller: Robert D	ale		Good gravel	4	30
Soil and sandy clay	15	15	Small gravel	5	35
Medium sand and fine gravel with clay layers 4 to 6 inches	20	35	Red bed	1	36
Coarse sand and gravel	10	45	Well 13-61	-614	
Red bed	5	50	Owner: Edward H	<. Obenhaus	
Well 13-61-506	i		Soil	3	3
Owner: T. J. McGill	Estate		Clav	25	28
Driller: Robert D	ale		Fine red sand	13	41
Top soil	18	18	Medium sand	1	42
Good coarse white sand and coarse gravel	36	54	Medium to coarse sand	3	45
Red bed		54	Red bed	5	50
Well 13-61-509			Well 13-61	-619	
Gwner: Clois R. C Driller: Robert D	obb ale		Owner: Lockett W Driller: E. B. Dye	later District r Drilling Co.	
Top soil	5	5	Sand and clay, half and half	25	25
Clay	10	15	Fairly coarse sand and few gravel	18	43
			Red bed	7	50

	Thickness (feet)	Depth (feet)		Thickness (feet)
Well 13-61-6	20		Well 13-61-703	
Owner: Lockett Wa Driller: E. B. Dyer D	ter District Drilling Co.		Owner: Frank Gran Driller: Robert Da	not ile
Sand and clay, half and half	25	25	Top soil	3
Fairly coarse sand and few gravel	18	43	Fine sand and clay	11
Red bed	7	50	Clay	4
			Fine water sand	9
Well 13-61-6	21		Tight dirty sand and gravel	5
Owner: Ed. A. H Driller: L. E. St	aseloff amps		Coarse sand and gravel	18
Soil	5	5	Coarse sand, clean and loose	3.5
Sandy clay and clay	4	9	Red bed	-
Sand	5	14		
Gravel	5	19	Well 13-61-707	
Clay	2	21	Owner: Oliver C. Hol Driller: Robert Da	land ale
Clay, sand, and tight sand	18	39	Soil and clay	15

40

1

Well 13-61-624

Red bed

Owner: Eddie Schoppa Driller: Robert Dale

Top soil	2	2
Caliche	6	8
Fine sand, mixed caliche layers	6	14
Sand and gravel	12	26
Pea gravel	11	37
Red bed	-	37

Well 13-61-648

Owner: Red River Authority of Texas Driller: Robert Dale

Soil and clay	16	16
Fine sand	2	18
Clay	1	19
Fine sand	5	24
Fine sand and clay layers	8	32
Medium and coarse sand, few gravel, with clay layers	7	39
Red bed	6	45

Top soil	3	3
Fine sand and clay	11	14
Clay	4	18
Fine water sand	9	27
Tight dirty sand and gravel	5	32
Coarse sand and gravel	18	50
Coarse sand, clean and loose	3.5	53.5
Red bed	—	53.5

Depth

(feet)

Soil and clay	15	15
Fine sand	11	26
Clay	1	27
Fine to medium sand	4	31
Coarse sand and gravel	5	36
Clay with cemented sand and gravel layers	2	38
Coarse sand and gravel	14	52
Red bed	4	56

Well 13-61-812

Owner: Walter E. Foerster, Jr. Driller: Robert Dale

Soil and clay	17	17
Fine sand	9	26
Clay	1	27
Fine sand	6	33
Medium to coarse sand and gravel	8	41
Coarse sand and gravel	6	47
Red bed	4	51

Well 13-61-824

	Gaebler Dale		
Soil		3	3
Sandy clay		24	27

Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
ued		Well 13-61-8	336	
3	30	Owner: Hub Coll	ley, et al.	
11	41	Coll and alou	rt Dale	-
7	48	Son and clay	22	22
6	54	Medium to coarse sand and few	4	20
3	57	gravel	7	33
5	57	Coarse sand and gravel	3	36 -
		Coarse sand and more gravel	4	40
		Coarse sand and lot of gravel	14	54
Co.		Red bed	5	59
10	10			
10	20	Well 13-61-6	839	
10	30	Owner: C. Gler Driller: Rober	nn Cato rt Dale	
10	40	Top soil and clay	19	19
1	41	Fine to medium sand	3	22
		Pack sand	4	26
		Medium to coarse sand and few gravel	3	29
		Fine to medium sand with clay		
3	3	layers	5	34
15	18	Medium to coarse sand and few gravel	6	40
10	28	Red bed	5	45
13	41			
7	48	Well 13-61-	841	
5	53	Owner: Edward L. I Driller: Rober	Lehman, Jr. 't Dale	
		Top soil and clay	16	16
al.		Fine sand	12	28
3	3	Sand rock	2	30
16	19	Fine to medium sand	6	36
8	27	Clay	2	38
4	31	Fine sand	10	48
3	34	Medium to coarse sand and few gravel	6	54
13	47	Red bed	4	58
1	48			
4	52	Well 13-61-	845	
5	57	Owner: Arthu Driller: Bobe	r Piper rt Dale	
		Soil	4	4
		Clay	17	21
	- 1	83 -		

Well 13-61-824-Continued			
Clay	3		
Fine sand and clay layers	11		
Medium sand	7		
Medium and coarse sand and few gravel	6		
Red bed	3		

Well 13-61-829

Owner: Bil Driller: Hopper	l Smith Drilling Co.
Top soil	10
Red clay and sand	10
Blue clay and sand	10
Sand and gravel	10
Red bed	1

Well 13-61-833

Owner: J. F. Shivers Driller: Robert Dale

Soil	3
Clay	15
Fine sand with clay layers	10
Medium to coarse sand	13
Coarse sand and few gravel	7
Red bed	5

Well 13-61-834

Owner: Hub Colley, et al. Driller: Robert Dale	
Sandy soil	3
Sandy clay	16
Fine sand with clay layers	8
Fine to medium sand	4
Medium sand	3
Medium to coarse sand and small gravel	13
Clay	1
Coarse sand and gravel	4
Red bed	5

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
Well 13-61-845-Cont	inued		Well 13-62-134Cor	ntinued	
Fine red sand	20	41	Fine to medium sand	3	45
Medium to coarse sand with clay layers	3	44	Medium to coarse sand and few gravel	5	50
Coarse sand and gravel	7	51	Red bed	3	53
Red bed	2	53			
			Well 13-62-13	6	
Well 13-61-901			Owner: Robert I	Dale	
Owner: Edward K. Ob Driller: Bobert Da	enhaus Je		Soil	4	4
Soil	4	4	Blue clay	4	8
Clav	14	18	Sandy clay	7	15
Sand	2	20	Medium to coarse sand	9	24
Clay	11	31	Fine to medium sand	14	38
Fine sand	13	44	Coarse sand	4	42
Red bed	3	47	Coarse sand and few gravel	6	48
			Red bed	2	50
Well 13-62-126					
Owner: Curtis A. G	raf		Well 13-62-14	2	
Soil and clay	18	18	Owner: A. J. Lan Driller: Robert I	nbert Dale	
Fine to medium to coarse sand and			Top soil	14	14
very few gravel	19	37	Dry sand	12	26
Red bed	5	42	Fine sand	2	28
Well 13-62-133			Fine red sand	6	34
Owner: Robert Da	le		Medium coarse sand, a little tight	5	39
Driller: Robert Da	le		Clay and cement, tight gravel	1	40
Sand and sandy clay	19	19	Good gravel	4	44
Fine sand	11	30	Red bed	1	45
Fine, medium, and some coarse sand	12	42			
Red bed	2	44	Well 13-62-14	3	
Well 13-62-134			Owner: A. J. Lar Driller: Robert [nbert Dale	
Owner: Robert Da	le		Top soil and clay	13	13
Driller: Robert Da	le		Coarse sand and gravel	3	16
Soil	3	3	Clay	4	20
Blue clay	3	6	Very fine sand	4	24
Sandy clay	9	15	Red fine sand	2	26
Medium to sandy gravel	11	26	White fine sand	8	34
Red sand	16	42	Fine to medium sand and few gravel	4	38

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
Well 13-62-143-Cont	tinued		Well 13-62-159		
Coarse sand and gravel	3	41	Owner: Cody Austin		
Red bed	4	45	Driller: Robert Dale	ŀ	
			Soil	6	6
Well 13-62-145			Sandy clay	15	21
Owner: A. J. Lami	pert		Fine sand	10	31
Driller: L. E. Stan	nps		Fine to medium sand	13	44
Top soil	2	2	Red bed	3	47
Caliche	5	7			
Sugar sand	6	13	Well 13-62-205		
Water sand	2	15	Owner: L. E. Stamp Driller: L. E. Stamp	s	
Tight gravel	5	20	Sand and shale	30	30
Red bed	-	20	Sand and gravel water	7	37
			Red hed	2	30
Well 13-62-146				2	35
Owner: A. J. Lamb Driller: L. E. Stan	nps		Well 13-62-220		
Top soil	3	3	Owner: Norman Dra	ce	
Caliche	4	7	Driller: Robert Dal		
Dry water sand	5	12	Soil	4	4
Sandy clay	3	15	Clay	13	17
Water sand	5	20	Fine sand	9	26
Red bed	4	24	Medium to coarse sand	5	31
			Coarse sand and large gravel	8	39
Well 13-62-150			Red bed	3	42
Owner: Charles H. (Driller: Robert D	Graf ale		Well 13-62-226		
Unknown lithology	28	28	Owner: Frank E. Lov	ve	
Good bright gravel	7	35	Driller: Robert Dale		
Red bed	5	40	Son	4	4
			Clay	18	22
Well 13-62-155			Fine sand	10	32
Owner: James Sull Driller: Robert Da	ivan ale		Coarse sand and gravel	7	39
Soil and clay	16	16	Coorce and and around	2	41
Sandy clay	9	25	Coarse sand and graver	4	40
Sand rock	1	26	neu Dea	ک	48
Fine to medium sand with a few			Well 13-62-229		
gravel	9	35	Owner: Dr. James J. Mul	rhead	
Red bed	4	39	Driller: Hopper Drilling	Co.	
			Top soil	3	3
			Sand and soil	7	10

Sand and soil

Thickness	Depth
(feet)	(feet)

Well 13-62-229-Continued

Sand and clay	8	18	
Water sand	10	28	
Water sand	5	33	
Gravel	8	41	
Red bed	1	42	

Well 13-62-232

Owner: Dr. James J. Muirhead Driller: Hopper Drilling Co.

Top soil	4	4
Sandy clay	6	10
Sandy clay	10	20
Water sand	11	31
Gravel	10	41
Red bed	1	42

Well 13-62-234

Owner: Marshal Nixon Driller: Robert Dale

Soil and clay	12	12
Sandy clay	11	23
Fine sand with clay layers	8	31
Fine to medium sand	10	41
Coarse sand and gravel	3	44
Red bed	3	47

Well 13-62-235

Owner: Marshal Nixon Driller: Robert Dale

Soil and sandy clay	24	24
Fine to medium sand	9	33
Medium to coarse sand	3	36
Medium to coarse sand and gravel	5	41
Red bed	4	45

Well 13-62-236

Owner: R	obert	E. Matus
Driller:	Robe	rt Dale

Soil	3
Clay	14

Well 13-62-236-Co	ontinued	
Fine sand	6	23
Sand rock, hard	2	25
Fine to medium sand and very few gravel	8	33
Red bed	4	37

Thickness

(feet)

Depth

(feet)

Well 13-62-237

Owner: Robert E. Matus Driller: Robert Dale

Soil	3	3
Clay	13	16
Sandy clay	6	22
Fine to medium sand	9	31
Medium to coarse sand	3	34
Coarse gravel	2	36
Red bed	3	39

Well 13-62-242

Owner: Bradford Hancock Driller: Robert Dale

Soil	3	3
Sandy clay	24	27
Fine to medium sand	6	33
Medium to coarse sand and few gravel, with 4 to 6 inch tight layers	11	44
Red beds	2	46

Well 13-62-245

Owner: Curtis Schwearts Driller: Robert Dale

Soil and clay	16	16
Fine sand	9	25
Fine to medium sand	5	30
Fine to medium sand and few gravel	7	37
Red bed	4	41

Well 13-62-246

3		Owner: Frank Kock Driller: Robert Dale	
17	Soil	4	4
	Clay	12	16
-	186 -		

Medium coarse sand and trace

gravel

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
Well 13-62-246-Con	tinued		Well 13-62-423-Cor	ntinued	
Fine to medium sand	14	30	Cemented sand and gravel	0.5	33.5
Coarse sand and large gravel	2	32	Medium coarse sand and gravel		
Red bed	З	35	with layers clay	2.5	36
			Coarse sand and gravel	2	38
Well 13-62-302	2		Medium coarse sand and gravel	0.5	38.5
Owner: Dr. James J. M Driller: Don Hop	luirhead per		Coarse sand and gravel	2.5	41 47
Top soil and clay	10	10			
Joint clay	10	20	Well 13-62-424	4	
Red bed	-	20	Owner: Roy C. Ho Driller: Robert [ffmann Dale	
Well 13-62-303	2		Soil and clay	18	18
Owner: Dr. James J. M	uirbead		Fine to medium sand	14	32
Driller: Don Hop	per		Sand rock, hard	2	34
Top soil and sand	10	10	Fine to medium sand	8	42
Red clay	10	20	Medium to coarse sand and gravel	8	50
Yellow clay and gravel	9	29	Cemented sand and gravel	1	51
Red bed	-	29	Coarse sand and boulders	4	55
			Red bed	5	60
Well 13-62-422	2				
Owner: Albert C. Driller: Robert D	Graf Dale		Well 13-62-42	7	
Top soil and sand, clay	4	4	Driller: Robert I	Dale	
Clay	23	27	Soil	3	3
Fine sand with clay layers	4	31	Clay	13	16
Coarse sand, small gravel	3	34	Clay with fine sand layers	6	22
Clay	1	35	Medium sand	6	28
Coarse sand, small gravel, little clay	5	40	Medium to coarse sand and gravel	12	40
Cemented sand and gravel	1	41	Red bed	3	43
Medium coarse sand, small gravel	1	42			
Coarse sand and gravel	4	46	Well 13-62-42	8	
Red bed	1	47	Owner: J. E. Loc Driller: Robert [kett Dale	
Well 13-62-423	3		Soil	4	4
Owner: Albert C.	Graf		Clay, sandy	14	18
Driller: Robert D	lale		Fine to medium sand	11	29
Top soil	15	15	Medium sand with clay layers	7	36
Clay	15	30	Coarse sand and gravel	1	37

41

1

33

3

Red bed

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
Well 12 62 423			W-U 40 00 700 0		
Well 13-02-433			Well 13-62-702-0	ontinued	
Owner: C. Glenn C Driller: Robert Da	ato ale		Creek wash with clay layers	13	27
Soil	4	4	Red bed	2	29
Gray clay	13	17	W-U 10 CO 1	200	
Fine to medium sand red	11	28	Well 13-62-7	/03	
			Owner: Lee A. R	oberson	
Clay	5	33	Driller: Rober	t Dale	
Coarse sand and gravel	7	40	Soil	4	4
Red bed	4	44	Clay	8	12
			Creek wash with clay layers	14	26
Well 13-62-702			Red bed	2	28
Owner: Lee A. Robe Driller: Robert De	ale				
Soil	4	4			
Clay	10	14			

Data from files of U.S. Geological Survey. See Figure 30 for location of these geophysical shot holes.

		Thickness (feet)	Depth (feet)			Thickness (feet)	Depth (feet)
	Shot Hole 2				Shot Hole 15		
	Altitude 1,312 feet				Altitude 1,311 feet		
Sandy clay		12	12	Sand		17	17
Sand		6	18	Sand and gravel		28	45
Gravel		7	25	Shale		25	70
Shale		27	52				
					Shot Hole 21		
	Shot Hole 3				Altitude 1,307 feet		
	Altitude 1,321 feet			Sandy clay		26	26
Sandy clay		17	17	Sand		9	35
Sand and gravel		12	29	Sand and gravel		8	43
Shale		21	50	Shale		17	60
	Shot Hole 4				Shot Hole 27		
	Altitude 1,324 feet				Altitude 1,294 feet		
Sand		30	30	Sandy clay		16	16
Gravel and sand		22	52	Sand and gravel		25	41
Shale		3	55	Shale		29	70
	Shot Hole 10				Shot Hole 34		
	Altitude 1,312 feet				Altitude 1,291 feet		
Sandy clay		21	21	Sandy clay		14	14
Gravel and sand		20	41	Sand and gravel		21	35
Shale		30	71	Shale		35	70
	Shot Hole 14				Shot Hole 97		
	Altitude 1,300 feet				Altitude 1,237 feet		
Sandy clay		22	22	Sandy clay		21	21
Sand and gravel		14	36	Gravel and sand		7	28
Shale		24	60	Shale		12	40

		Thickness (feet)	Depth (feet)			Thickness (feet)	Depth (feet)
	Shot Hole 102				Shot Hole 121		
	Altitude 1,293 fee	t			Altitude 1,303 fee	t	
Sandy clay		14	14	Sandy clay		11	11
Sand		4	18	Sand and gravel		17	28
Shale		32	50	Shale		42	70
	Shot Hole 103				Shot Hole 122		
	Altitude 1,316 fee	t			Altitude 1,304 fee	t	
Sand and clay		25	25	Sandy clay		20	20
Sand and gravel		10	35	Sand and gravel		23	43
Shale		15	50	Shale		27	70
	Shot Hole 104				Shot Hole 128		
	Altitude 1,319 fee	t			Altitude 1,298 fee	t	
Sandy clay		8	8	Sand		30	30
Sand and gravel		11	19	Sand and gravel		20	50
Shale		31	30	Shale		20	70
	Shot Hole 109				Shot Hole 133		
	Altitude 1,319 feet	t			Altitude 1,298 feet	t	
Sandy clay		18	18	Sand		29	29
Sand and gravel		26	44	Sand and gravel		13	42
Shale		26	70	Shale		28	70
	Shot Hole 110				Shot Hole 202		
	Altitude 1,305 feet	t			Altitude 1,313 feet	t	
Sandy clay		16	16	Sandy clay		17	17
Sand and gravel		28	44	Gravel		12	29
Shale		26	70	Shale		32	61
	Shot Hole 115				Shot Hole 203		
	Altitude 1,309 feet	t			Altitude 1,325 feet		
Sandy clay		24	24	Sand		25	25
Sand and gravel		14	38	Gravel		15	40
Shale		52	90	Shale		30	70

		Thickness (feet)	Depth (feet)			Thickness (feet)	Depth (feet)
					And Intervention		
	Shot Hole 210				Shot Hole 315		
	Altitude 1,313 feet				Altitude 1,306 feet		
Sandy clay		12	12	Sandy clay and gravel		46	46
Sand and gravel		21	33	Shale		44	90
Shale		37	70				
					Shot Hole 403		
	Shot Hole 215				Altitude 1,309 feet		
	Altitude 1,306 feet			Sand and gravel		38	38
Sandy clay		14	14	Shale		52	90
Sand and gravel		27	41				
Shale		29	70		Shot Hole 790		
					Altitude 1,230 feet		
	Shot Hole 222			Sand		25	25
	Altitude 1,299 feet			Shale		25	50
Sand		28	28				-127
Sand and gravel		17	45		Shot Hole 802		
Shale		25	70		Altitude 1,286 feet		
				Sandy clay		13	13
	Shot Hole 233			Sand and gravel		6	19
	Altitude 1,286 feet			Shale		31	50
Sandy clay		29	29				
Shale		41	70		Shot Hole 803		
					Altitude 1,314 feet		
	Shot Hole 234			Sand		23	23
	Altitude 1,289 feet			Gravel		5	28
Sandy clay		12	12	Shale		5	33
Sand and gravel		29	41				
Shale		29	70		Shot Hole 804		
					Altitude 1,318 feet		
	Shot Hole 310			Sandy clay		14	14
	Altitude 1,305 feet			Sand		10	24
Sand and gravel		39	39	Sand and gravel		12	36
Shale		51	90	Shale		14	50

		Thickness (feet)	Depth (feet)			Thickness (feet)	Depth (feet)
	Shot Hole 808				Shot Hole 897		
	Altitude 1,322 feet				Altitude 1,253 feet		
Sandy clay		26	26	Sandy shale		20	20
Sand and gravel		17	43	Shale		50	70
Shale		17	60				
					Shot Hole 902		
	Shot Hole 809				Altitude 1,300 feet	t l	
	Altitude 1,317 feet			Sandy clay		15	15
Sandy clay		9	9	Gravel		12	27
Sand and gravel		30	39	Shale		24	51
Shale		31	70				
					Shot Hole 903		
	Shot Hole 810A				Altitude 1,318 feet	1	
	Altitude 1,315 feet			Sand		30	30
Sand and gravel		38	38	Gravel		10	40
Shale		52	90	Shale		10	50
	Shot Hole 815				Shot Hole 904		
	Altitude 1,305 feet				Altitude 1,321 feet		
Sandy clay		24	24	Sandy clay		21	21
Sand and gravel		24	38	Sand	+	6	27
Shale		33	70	Gravel and sand		16	43
				Shale		10	53
	Shot Hole 821						
	Altitude 1,301 feet				Shot Hole 909		
Sandy clay		16	16		Altitude 1,325 feet		
Sand and gravel		25	41	Sandy clay		21	21
Shale		29	70	Sand and gravel		24	45
				Shale		25	70
	Shot Hole 833						
	Altitude 1,301 feet				Shot Hole 915		
Sandy clay		29	29		Altitude 1,309 feet		
Sand and gravel		15	44	Sandy clay		26	26
Shale		26	70	Sand and gravel		14	40

Shale

30

		Thickness (feet)	Depth (feet)			Thickness (feet)	Depth (feet)
	Shot Hole 921				Shot Hole 1015		
	Altitude 1,305 fee	t			Altitude 1,308 feet		
Sandy clay		26	26	Sand		40	40
Sand and gravel		15	41	Shale		30	70
Shale		29	70				
					Shot Hole 1027		
	Shot Hole 922				Altitude 1,296 feet		
	Altitude 1,304 fee	t		Sandy clay		11	11
Sandy clay		24	24	Sand and gravel		27	38
Sand and gravel		19	43	Shale		32	70
Shale		27	70				
					Shot Hole 1033		
	Shot Hole 933				Altitude 1,294 feet		
	Altitude 1,295 feet	t		Sandy clay		18	18
Sand		20	20	Sand		11	29
Sand		13	33	Shale		41	70
Shale		37	70				
					Shot Hole 1034		
	Shot Hole 997				Altitude 1,291 feet		
	Altitude 1,239 feet	t		Sandy clay		24	24
Sandy clay		13	13	Sand and gravel		15	39
Shale		57	70	Shale		31	70
	Shot Hole 1002				Shot Hole 1102		
	Altitude 1,311 feet	t			Altitude 1,314 feet		
Sandy clay		19	19	Sandy clay		17	17
Gravel		12	31	Sand and gravel		16	33
Shale		29	60	Shale		18	51
	Shot Hole 1010				Shot Hole 1110		
	Altitude 1,313 feet	t.			Altitude 1,246 feet		
Sandy clay		18	18	Sandy shale		20	20
Gravel and sand		26	44	Shale		40	60
Shale		26	70				

		Thickness (feet)	Depth (feet)			Thickness (feet)	Depth (feet)
	Shot Hole 1111				Shot Hole 1215		
	Altitude 1,277 fee	t			Altitude 1,307 fee	et	
Sandy clay		35	35	Sand and gravel		40	40
Shale		35	70	Shale		50	90
	Shot Hole 1112				Shot Hole 1303		
	Altitude 1,287 fee	t			Altitude 1,315 fee	et	
Sand		35	35	Sand and gravel		39	39
Sand and gravel		11	46	Shale		51	90
Shale		24	70				
	Shot Hole 1115				Shot Hole 1403		
					Altitude 1,315 fee	et	
	Altitude 1,303 fee	t		Sand and gravel		34	34
Sandy clay		13	13	Shale		56	90
Sand and gravel		30	43				
Shale		27	70		Shot Hole 1410		
	Shot Hole 1133				Altitude 1,308 fee	et	
				Sand and gravel		38	38
	Altitude 1,281 fee	t		Shale		52	90
Sandy clay		38	38				
Shale		32	70		Shot Hole 1415		
	Shot Hole 1134				Altitude 1,309 fee	t	
				Sand		10	10
	Altitude 1,288 fee	t		Clay		18	28
Sandy clay		13	13	Sand and gravel		15	43
Sand and gravel		23	36	Shale		47	90
Shale		34	70				
	Shot Hole 1210				Shot Hole 8110		
				147	Altitude 1,253 feet	t	
	Altitude 1,310 fee	t.		Sand		28	28
Sandy clay		21	21	Shale		32	60
Sand and gravel		17	38				
Shale		52	90				

		Thickness (feet)	Depth (feet)			Thickness (feet)	Depth (feet)
	Shot Hole 8111				Shot Hole 9112		
	Altitude 1,279 feet	i.			Altitude 1,284 feet		
Sandy clay		37	37	Sandy clay		34	34
Shale		33	70	Sand and gravel		11	45
				Shale		25	70
	Shot Hole 8112						
	Altitude 1,284 feet	i.			Shot Hole 10,112		
Sandy clay		29	29		Altitude 1,282 feet	1	
Sand and gravel		12	41	Sandy clay		41	41
Shale		29	70	Shale		29	70
	Shot Hole 9110				Shot Hole 11,112		
	Altitude 1,244 feet				Altitude 1,270 feet	:	
Sandy shale		18	18	Sand		28	28
Shale		42	60	Shale		42	70
	Shot Hole 9111						
	Altitude 1,270 feet						
Sandy shale		30	30				
Shale		40	70				

Data are from Texas Board of Water Engineers Bulletin 5301 (Willis and Knowles, 1953), except that land-surface altitudes are determined from U.S. Geological Survey topographic maps. See Figures 21 and 31 for location of these test holes.

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
Test Hole 2			Test Hole 5-Contin	ued	
Altitude 1,344 fe Owner: Mrs. John M	et linarik		Sand, very coarse-grained, granules 2 to 4 mm, and pebbles 5 to 10 mm 13		71
Sand, fine- to medium-grained	38	38	Shale, hard, gray and red	1	72
Clay, sandy	2	40			
Caliche, hard, sandy	8	48	Test Hole 6		
Shale, hard, red, silty, and hard red shale	3	51	Altitude 1,349 fer Owner: Wilbarger Co	et ounty	
			Sand, fine- to medium-grained	15	15
Test Hole 3			Sand, medium- to very coarse-grained	41	56
Altitude 1,363 fe Owner: State of Te	et exas		Sand, very coarse-grained, granules 2 to 4 mm, and pebbles 5 to 10 mm	9	65
Sand, fine- to medium-grained	12	12	Shale, hard, red	1	66
Sand, medium- to very coarse-grained	17	29			
Shale, hard, red and gray	14	43	Test Hole 7		
			Altitude 1,360 fee	et	
Test Hole 4			Owner: Wilbarger Co	ounty	
Altitude 1.365 fe	et		Sand, fine- to coarse-grained	24	24
Owner: Wilbarger Co	ounty		Caliche, hard, white and yellow	16	40
Sand, fine- to medium-grained	24	24	Sand, coarse- to very coarse-grained	2	42
Clay, sandy, red and white	14	38	Clay, sandy, gray	2	44
Sand, medium- to coarse-grained	26	64	Caliche, hard, sandy	4	48
Sand, fine- to medium-grained, and clay	10	74	Sand, coarse- to very coarse-grained, granules 2 to 4 mm, and pebbles 5 to 10 mm	24	72
Sand, coarse- to very coarse-grained, granules 2 to 4 mm, and pebbles 5 to 10 mm	18	92	Shale, hard, red	1	73
Sand, very coarse-grained, and granules 2 to 4 mm	10	102	Test Hole 8		
Gravel, pebbles 2 to 20 mm, and very coarse-grained sand	4	106	Altitude 1,368 fee Owner: Wilbarger Co	et unty	
Shale, hard, red	1	107	Sand, fine- to medium-grained,	82	82
Test Hole 5			Sand, very coarse-grained, granules	1912	
			2 to 4 mm, and pebbles 4 to 12 mm	5	87
Owner: J. F. Wats	et		Shale, hard, red	5	92
Sand, fine- to medium-grained	40	40	Test Hole 10		
Caliche, hard, sandy	3	43	Altitude 1 376 for	et	
Sand, medium- to very coarse-grained	15	58	Owner: State of Te	xas	
			Sand, fine- to medium-grained	67	67

Caliche, hard, sandy

78

Dee ...

	THICKNESS	Depth	
	(feet)	(feet)	
Test Hole 10-Cont	inued		Test Hole 1
Sand, very coarse-grained, granules 2 to 4 mm, pebbles 5 to 10 mm	8	86	Altitude 1,319 Owner: Wilbarger
Gravel, pebbles 5 to 15 mm, and granules 2 to 4 mm	5	91	Sand, fine- to coarse-grained
Shale, hard, red	1	92	Clay, sandy white
			Caliche, sandy
Test Hole 11			Clay, sandy, brown
Altitude 1,363 fe	et		Sand, medium- to very coarse-grained
Owner: State of T	exas		Gravel granules 2 to 4 mm pebbles
Sand, fine- to coarse-grained	32	32	5 to 10 mm, and very coarse-grained sand
Clay, sandy, red and white	10	42	Sandstone, hard, red
Sand, fine- to coarse-grained	10	52	
Sand, fine- to medium-grained	10	62	Test Hole 18
Clay, sandy, red and white	12	74	Altitude 1,349
Sand, fine- to medium-grained	6	80	Owner: State of
Sand, coarse- to very coarse-grained	7	87	Sand, fine- to coarse-grained
Gravel, very coarse-grained, sand,			Clay, sandy, white and gray
to 15 mm	5	92	Sand, fine- to medium-grained
Sand, coarse- to very coarse-grained,	10		Caliche, hard, sandy, and sandy clay
granules 2 to 4 mm	18	110	Sand, medium- to very coarse-orained
Gravel, granules 2 to 4 mm, pebbles			and granules 2 to 4 mm
sand	5	115	Sand, coarse- to very coarse-grained, granules 2 to 4 mm and pebbles 5 to
Shale, hard, red	2	117	6 mm
			Sandstone, hard, red

Thiskness

Test Hole 13

Altitude 1,331 feet Owner: C. D. Watts et al.

Sand, fine- to medium-grained	16
Clay, sandy	10
Sand, fine- to coarse-grained	20
Clay, sandy, red	25
Sand, medium- to very coarse-grained	16
Gravel, pebbles 5 to 12 mm, granules 2 to 4 mm, and very coarse-grained sand	5
Sand, coarse- to very coarse-grained	6
Gravel, granules 2 to 4 mm, pebbles 5 to 10 mm, and very coarse-grained sand	5
Shale, red	1

7

Thickness

(feet)

Depth

(feet)

6	Owner: Wilbarger Cou	inty	
1	Sand, fine- to coarse-grained	13	13
2	Clay, sandy white	3	16
	Caliche, sandy	5	21
	Clay, sandy, brown	22	43
	Sand, medium- to very coarse-grained	13	56
	Gravel, granules 2 to 4 mm, pebbles 5 to 10 mm, and very coarse-grained		
2	sand	6	62
2	Sandstone, hard, red	8	70
2			
2	Test Hole 18		
4	Altitude 1 349 feet		
C	Owner: State of Tex	as	
7	Sand, fine- to coarse-grained	18	18
	Clay, sandy, white and gray	14	32
2	Sand, fine- to medium-grained	11	43
	Caliche, hard, sandy, and sandy clay	13	56
0	Sand, medium- to very coarse-grained, and granules 2 to 4 mm	14	70
5	Sand, coarse- to very coarse-grained, granules 2 to 4 mm, and pebbles 5 to		
7	6 mm	3	73
	Conditions hard red		74

Test Hole 19

Sand, fine- to medium-grained, and		
clay, sandy	68	
Gravel, granules 2 to 4 mm, pebbles		
5 to 10 mm, and very coarse-grained	d	
sand	3	
Shale, hard, red	1	

Altitude 1,367 feet Owner: State of Texas

18

20

Sand, fine- to medium-grained	18	
Caliche, hard, sandy	2	

92 98

103

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
Test Hole 21-Cont	tinued		Test Hole 26-Cont	inued	
Clay, sandy, white	2	22	Sand, medium- to coarse-grained	4	45
Sand, fine- to medium-grained	6	28	Clay, sandy, brown	2	47
Gravel, granules 2 to 4 mm, and pebbles 5 to 20 mm	2	30	Sand, medium- to coarse-grained	12	59
Shale, hard, red	7	37	Sand, coarse- to very coarse-grained, and granules 2 to 4 mm	4	63
			Shale, hard, red	1	64
Test Hole 22					
Altitude 1,362 f Owner: State of T	eet Texas		Test Hole 29		
			Altitude 1,372 fo	eet	
Sand, fine- to medium-grained	8	8	owner: State of T	6743	
Caliche, hard, sandy	5	13	Sand, fine- to medium-grained	48	48
Sand, fine- to medium-grained	7	20	Clay, brown, silty and sandy	14	62
Clay, sandy	5	25	Clay, gray	8	70
Shale, hard, red	1	26	Clay, brown, silty	5	75
Test Hole 24			Gravel, pebbles 5 to 20 mm, granules 2 to 4 mm, and very coarse-grained sand	6	81
			Shale, hard, red	1	82
Altitude 1,369 fe Owner: State of T	eet exas				
Sand, fine- to medium-grained	76	76	Test Hole 32		
Gravel, pebbles 5 to 10 mm, granules			Altitude 1,375 fe	eet	
2 to 4 mm, and very coarse-grained			Owner: Wilbarger C	ounty	
sand	10	80	Sand, fine- to medium-grained, fossils	5	5
Gravel, pebbles 5 to 25 mm, and granules 2 to 4 mm	6	92	Caliche, sandy	30	35
Shale, hard, red, silty	1	93	Sand, hard, red, fine- to medium- grained	17	52
Test Hole 25			Sand, medium- to coarse-grained, fossils	15	67
Altitude 1,368 fr Owner: Wilbarger C	eet County		Shale, hard, red	1	68
Sand, fine- to medium-grained	32	32	Test Hole 34		
Sand, medium- to very coarse-grained	24	56	Altitude 1 392 fr	eet	
Gravel, pebbles 5 to 10 mm, and			Owner: Wilbarger C	ounty	
granules 2 to 4 mm	1	57			

Test Hole 26

Shale, hard, red

Altitude 1,352 feet Owner: State of Texas

Sand, fine- to medium-grained	39	39
Clay, sandy, brown	2	41

58

1

Sand, fine- to medium-grained

Sand, fine- to medium-grained

Sand, fine- to medium-grained

Clay, white and red, sandy

Clay, white and red, sandy

Clay, gray, sandy

6

4

2

7

3

8

6

10

12

19

22

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
Test Hole 34–Conti	nued		Test Hole 39–Contir	nued	
Sand, fine- to coarse-grained, and			Caliche and clay, sandy	10	39
granules 2 to 4 mm	2	32	Gravel, granules 2 to 4 mm, pebbles		
Shale, hard, red	1	33	5 to 20 mm, and very coarse-grained sand	8	47
Test Hole 35			Shale, hard, red	1	48
Altitude 1,377 fe Owner: Wilbarger Co	et		Test Hole 41		
			Altitude 1,360 fee	et	
Sand, fine- to medium-grained	41	41	Owner: State of Te	xas	
Sand, medium- to very coarse-grained, and granules 2 to 4 mm	11	52	Sand, fine- to medium-grained, and	10	1.24
Shale, hard, red	1	53	sandy clay	18	18
			Clay, red and white sandy	14	32
Test Hole 36			Sand, coarse- to very coarse-grained	6	38
Albitude 1 200 feet			Gravel, granules 2 to 4 mm, pebbles		
Owner: W. F. Shel	ton		sand	9	47
Sand, fine- to medium-grained	13	13	Sahle, red, sandy	5	52
Clay, brown and gray	7	20			
Sand, fine- to medium-grained	9	29	Test Høle 43		
Clay, red, silty	8	37	Altitude 1,328 feet		
Clay, white and yellow, sandy	12	49	Owner. Gieve Hanni	LOIT	
Sand, medium- to coarse-grained	7	56	Soil	3	3
Sand, coarse- to very coarse-grained.			Clay, sandy	7	10
granules 2 to 4 mm, and pebbles	2	59	Caliche, sandy	2	12
	2	50	Sand, fine-grained	2	14
Shale, hard, red	1	59	Sandstone, and shale, hard, red	3	17
T					
Test Hole 37			Test Hole 46		
Altitude 1,388 fe	et		Altitude 1 266 for		
Owner: Wilbarger Co	unty		Owner: Wilbarger Co	unty	
Sand, fine- to medium-grained	54	54	Sand, fine- to medium-grained	22	22
Sand, fine- to medium-grained cemented with red clay, hard	13	67	Sand, medium- to very coarse-grained,	20	50
Caliche, hard, sandy	4	71		20	50
Shale, hard, red	3	74	2 to 4 mm, and coarse- to very coarse-grained sand	9	59
Test Hole 39			Shale, hard, red	1	60

Altitude 1,367 feet Owner: Wilbarger County

Sand, fine- to medium-grained	5	5
Clay, brown and gray, sandy	24	29

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
Test Hole 47			Test Hole 50		
Altitude 1,360 fe Owner: Wilbarger Co	et ounty		Altitude 1,390 fe Owner: Wilbarger C	eet ounty	
Sand, fine- to very coarse-grained	32	32	Sand, fine- to coarse-grained	40	40
Sand, medium- to very coarse-grained, granules 2 to 4 mm	13	45	Sand, coarse- to very coarse-grained	9	49
Gravel, pebbles 5 to 10 mm, granules 2 to 4 mm, coarse- to very coarse- grained sand	15	60	Gravel, granules 2 to 4 mm, very coarse-grained sand, and pebbles 5 to 6 mm	3	52
Gravel, pebbles 5 to 25 mm, granules			Sand, coarse- to very coarse-grained	10	62
2 to 4 mm	5	65	Sand, very coarse-grained, and granules 2 to 4 mm	4	66
Shale, hard, red	7	72	Gravel, very coarse-grained sand, granules 2 to 4 mm	4	66
Test Hole 48			Gravel, very coarse-grained sand, granules 2 to 4 mm, and pebbles		70
Altitude 1,370 fee Owner: State of Te	et exas		S to 10 mm	4	70
Sand, fine- to medium-grained	7	7	Shale, hard, red	4	71
Clay, red and gray, sandy	6	13	Test Hole 51		
Caliche, hard, sandy	6	19	Altitude 1 390 fe	et	
Sand, fine- to coarse-grained	5	24	Owner: Wilbarger Co	ounty	
Clay, red	2	26	Sand, fine- to medium-grained	12	12
Sand, coarse- to very coarse-grained	13	39	Sand, coarse- to very coarse-grained	51	63
Sandstone cemented with red clay	3	42	Gravel, granules 2 to 4 mm, pebbles		
Sand, medium- to very coarse-grained	8	50	sand	11	74
Caliche	1	51	Shale, hard, red	1	75
Gravel, pebbles 5 to 25 mm, granules 2 to 4 mm	16	67	Test Hole 52		
Shale, hard, red	1	68	1011101002		
Test Hele 40			Altitude 1,408 fe Owner: J. O. Hen	eet nry	
Test Hole 49			Sand, fine- to medium-grained	15	15
Altitude 1,360 fe	et		Clay, white and red, sandy	5	20
Sand, fine-grained and clay, sandy	25	25	Sand, medium- to very coarse-grained, and granules 2 to 4 mm	42	62
Caliche, sandy	5	30	Shale, hard, red	1	63
Sandstone and sandy shale, hard, red and gray	15	45	Test Hole 54		
			Altitude 1,411 fe	et	

Owner: Wilbarger County

Sand, fine- to medium-grained	50	50
Caliche, sandy, soft	10	60

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
Test Hole 54–Conti	nued		Test Hole 61		
Sand, coarse- to very coarse-grained	10	70	Altitude 1,411 f	eet	
Gravel, granules 2 to 4 mm, and			Owner: Wilbarger C	ounty	
pebbles 5 to 10 mm	8	78	Sand, fine- to medium-grained	20	20
Shale, hard, red	1	79	Clay, red, sandy	19	39
			Sand, very coarse-grained, granules		
Test Hole 58			2 to 4 mm, and pebbles 5 to 8 mm	19	58
Altitude 1,400 fe	et		Gravel, pebbles 5 to 13 mm, and very coarse-grained sand	8	66
Owner: Wilbarger Co	bunty		Gravel, pebbles 8 to 20 mm	10	76
Sand, fine- to medium-grained	27	27	Shale, hard, red	1	77
Clay, white and red, sandy	25	52			
Gravel, pebbles 5 to 12 mm, and very coarse-grained sand	15	67	Test Hole 62		
Shale, hard, red	1	68	Altitude 1,420 fe	eet	
			Owner: Wilbarger C	ounty	
Test Hole 59			Sand, fine- to medium-grained	24	24
Altitude 1.388 fe	et		Clay, red, sandy	4	28
Owner: State of T	exas		Sand, coarse-grained	18	46
Sand, fine- to medium-grained	24	24	Sand, very coarse-grained, granules	40	86
Clay, red, sandy	3	27	Gravel pabbles 9 to 20 mm	-0	00
Caliche, hard, sandy	3	30	Graver, peoples o to 20 mm	0	92
Sand, coarse- to very coarse-grained,			granules 2 to 4 mm	6	98
granules 2 to 4 mm, and pebbles 5 to 8 mm	16	46	Gravel, pebbles 5 to 10 mm	7	105
Gravel, pebbles 5 to 25 mm, granules 2 to 4 mm	4	50	Shale, hard, red	1	106
Shale bard red	1	51			
0.000, 10.0, 100	<i>.</i>	0.	Test Hole 63		
Test Hole 60			Altitude 1,410 fe	eet	
			Owner: Leon Bro	oks	
Altitude 1,388 fe Owner: State of Te	et exas		Soil	3	3
Cand find to medium grained	25	25	Sand, red, fine-grained	12	15
	25	25	Sand, blue, fine-grained	5	20
granules 2 to 4 mm, and pebbles			Sand, red and blue, fine-grained	5	25
5 to 8 mm	9	34	Sand, red, fine-grained	5	30
Gravel, pebbles 6 to 12 mm, and very coarse-grained sand	3	37	Sand, red, and caliche	5	35
Sand, very coarse-grained	4	41	Sand, red, coarse-grained, and clay	5	40
Gravel, pebbles 5 to 25 mm, granules			Sand, red, fine-grained	5	45
2 to 4 mm	10	51	Sand, white, coarse-grained	10	55
Shale, hard, red	1	52			

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
Test Hole 63–Cont	inued		Test Hole 67–Conti	nued	
Sand, white, coarse-grained, fine- grained gravel, and clay	5	60	Sand, medium- to very coarse-grained, granules 2 to 4 mm, and pebbles		
Sand, white, coarse-grained and fine-			5 to 10 mm	19	65
grained gravel	15	75	Caliche and clay, sandy	18	83
Sand, red, yellow and blue, coarse- grained, and fine-grained gravel	7	82	Gravel, pebbles 5 to 25 mm, granules 2 to 4 mm, and very coarse-grained	22	105
Shale, red	1	83	Shale, hard, red	4	109
Test Hole 64			Test Hole 72		
Altitude 1,399 fo	eet				
Owner: Wilbarger C	ounty		Altitude 1,385 fe Owner: Mrs V K M	et cCaleb	
Sand, fine- to medium-grained	30	30	owner: wis, v. K. W	coures	
Gravel, granules 2 to 4 mm, pebbles			Soil	3	3
5 to 15 mm, and very coarse-	5	35	Sand, red, fine- to coarse-grained	9	12
	22	69	Sand, yellow, fine- to coarse-grained	3	15
Sand, very coarse-grained	33	00	Sand, brown, fine- to coarse-grained	15	30
Sand, very coarse-grained, granules 2 to 4 mm, and pebbles 5 to 8 mm	22	90	Sand, white, fine- to very coarse- grained, and granules 2 to 4 mm	20	50
Shale, hard, red	2	92	Sand, white and pink, fine- to coarse- grained, hard	10	60
Test Hole 65			Sand, white, fine- to very coarse- grained, granules 2 to 4 mm, and		
Altitude 1,394 fe	eet		layers of hard sand	19	79
Owner: Wilbarger C	ounty		Sand, hard, white	3	82
Sand, fine- to coarse-grained, and sandy clay	62	62	Gravel, granules 2 to 4 mm, pebbles 5 to 40 mm, and medium- to very coarse-grained sand	8	90
Gravel, granules 2 to 4 mm, pebbles 5 to 20 mm, and very coarse-grained sand	16	78	Shale, hard, red	2	92
Sand yory coarse grained	0	96			
	0	00	Test Hole 73		
5 to 20 mm, and very coarse-grained			Altitude 1 384 fe	et	
sand	4	90	Owner: State of Te	exas	
Shale, hard, red	2	92	Sand, fine- to medium-grained	20	20
Test Hole 67			Clay, white, silty	28	48
Test Hole 07			Sand, coarse- to very coarse-grained,		
Altitude 1,398 fe	eet		granules 2 to 4 mm	39	87
Owner: wilbarger C	ounty		Gravel, pebbles 5 to 15 mm, granules 2 to 4 mm	4	91
Sand, fine- to medium-grained	18	18	Shale, hard, red	1	92
Clay, sandy	5	23			
Sand, fine- to very coarse-grained	7	30			

43

46

13

3

Clay, sandy

Caliche, hard, sandy

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)
Test Hole 75			Test Hole 80-Continu	ued	
Altitude 1.370 feet			Gravel, pebbles 5 to 15 mm, granules		
Owner: Wilbarger Co	ounty		2 to 4 mm, and very coarse-grained sand	6	112
Sand, fine- to medium-grained	30	30	Shale, hard, red	1.00	113
Sand, coarse- to very coarse-grained, granules 2 to 4 mm	36	66	Test Hole 92		
Gravel, pebbles 5 to 15 mm, and	4	70	Test Hole 62		
granules 2 to 4 mm	4	70	Altitude 1,420 feet	t	
Sand, coarse- to very coarse-grained, and granules 2 to 4 mm	6	76	Owner: Wilbarger Cou	inty	
Crevel pobbles 5 to 15 mm secondes			Sand, fine- to medium-grained	25	25
2 to 4 mm	8	84	Clay, sandy, brown	18	43
Shale, hard, red	2	86	Sand, medium- to coarse-grained	15	58
			Sand, coarse- to very coarse-grained,		
Test Hole 76			granules 2 to 4 mm, pebbles 5 to 6 mm	8	66
Altitude 1,315 fe	et		Sand, coarse- to very coarse-grained	16	82
Owner: Wilbarger Co	unty		Shale hard red	1	83
Sand, fine- to medium-grained	4	4			00
Clay, black peat	4	8	Test Hole 83		
Clay, gray	6	14	Altitude 1 200 feet		
Sand, coarse- to very coarse-grained	1	15	Owner: Wilbarger Cou	nty	
Shale, hard, red	1	16	Sand, fine- to medium-grained	52	52
			Sand, coarse- to very coarse-grained,		
Test Hole 80			and granules 2 to 4 mm	7	59
Altitude 1,395 fe	et		Gravel, granules 2 to 4 mm, and pebbles 5 to 20 mm	2	61
Owner: State of Te	xas		Shale hard red	2	64
Sand, fine- to medium-grained	23	23	Share, hard, red	3	04
Clay, sandy	9	32	Test Hole 85		
Sand, fine- to coarse-grained	5	37	Altitude 1 200 fact		
Clay, red, silty, and sandy	14	51	Owner: Wilbarger Cou	nty	
Sand, coarse- to very coarse-grained, and granules 2 to 4 mm	19	70	Sand, fine- to medium-grained	7	7
Clay, red, silty	2	72	Clay, gray and red, sandy	20	27
Sand, very coarse-grained, granules			Sand, medium- to coarse-grained	31	58
2 to 4 mm	6	78	Clay, red, sandy	3	61
Gravel, granules 2 to 4 mm, pebbles 5 to 8 mm, and very coarse-grained			Sand, medium- to very coarse-grained	5	66
sand	3	81	Sand, very coarse-grained and granules	22	00
Clay, red	1	82	2 to 4 mm	22	88
Sand, medium- to very coarse-grained	24	106	Gravel, pebbles 8 to 20 mm, granules 2 to 4 mm, and very coarse-grained	_	
			sand	5	93
			Shale, hard, red	1	94

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)				
Test Hole 86			Test Hole 90						
Altitude 1,421 fee Owner: Wilbarger Co	et unty		Altitude 1,422 feet Owner: Wilharger County						
		22							
Sand, fine- to medium-grained	12	12	Sand, fine- to medium-grained	20	20				
Clay, red, sandy	45	57	Clay, red, sandy	5	25				
Sand, medium- to very coarse-grained	22	79	Sand, fine- to medium-grained, hard	12	37				
Sand, coarse- to very coarse-grained,			Clay, red, sandy	9	46				
granules 2 to 4 mm, and pebbles 5 to 10 mm	7	86	Sand, coarse- to very coarse-grained	24	70				
Gravel, pebbles 5 to 12 mm, graunules 2 to 4 mm	9	95	Sand, very coarse-grained, granules 2 to 4 mm, and pebbles 5 to 10 mm	5	75				
Sand, very coarse-grained	10	105	Shale, hard, red	1	76				
Gravel, pebbles 5 to 25 mm, granules 2 to 4 mm	4	109	Test Hole 91						
Shale, hard, red	1	110							
			Altitude 1,412 fe	et					
Test Hole 87			Owner: Wilbarger Co	unty					
			Sand, fine- to medium-grained	33	33				
Altitude 1,423 fee	et		Sand medium- to very coarse-grained	19	52				
Owner: Wilbarger Co	unty								
Sand, fine- to medium-grained	35	35	Clay, red, sandy	2	54				
			Sand, coarse- to very coarse-grained,						
Clay, red, sandy	9	44	granules 2 to 4 mm, and pebbles	6	60				
Sand, fine- to coarse-grained	39	83	5 10 5 1111	0					
Gravel nebbles 5 to 10 mm granules			Gravel, pebbles 8 to 20 mm, granules						
2 to 4 mm, and very coarse-			sand	3	63				
grained sand	18	101			~ ~				
Sandstone	4	105	Shale, hard, red	1	64				
Shale, hard, red	1	106	Test Hole 92						
Test Hole 89			Altitude 1,405 fe	et					

Altitude 1,416 feet Owner: State of Texas

Sand, fine- to medium-grained	10	10
Clay, red and gray, sandy	11	21
Sand, fine- to coarse-grained	14	35
Sand, coarse- to very coarse-grained, granules 2 to 4 mm, and pebbles		
5 to 8 mm	6	41
Shale, hard, red	1	42

Owner: Wilbarger County

Sand, fine- to medium-grained	12	12
Clay, sandy, and fine-grained sand	40	52
Sand, coarse- to very coarse-grained	3	55
Gravel, granules 2 to 4 mm, pebbles 5 to 20 mm, and very coarse-grained sand	10	65
Shale, hard, red	7	72

	Thickness Depth (feet) (feet)			Thickness (feet)	Depth (feet)					
Test Hole 94			Test Hole 101							
			Altitude 1,317 fee	et						
Altitude 1,399 fee	t		Owner: State of Te	xas						
Owner: Wilbarger Co	unty									
			Sand, fine- to medium-grained, and	10						
Sand, fine- to medium-grained, and	20	20	sandy clay	10	10					
layers of sallay clay	20	20	Shale, hard, red	5	15					
Caliche, sandy	4	32								
Sand, fine- to medium-grained	9	41	Test Hole 103							
Cond control to your ensure stated										
granules 2 to 4 mm and pebbles			Altitude 1 270 fee	.+						
5 to 12 mm	15	56	Owner: Wilherger Co							
			Owner. Witbarger Co	unity						
Sand, coarse- to very coarse-grained	3	59	Sand fine to coarse grained	20	20					
0	2		Sand, me to coarse-gramed	20	20					
Clay, red, sandy	3	62	Sand, coarse- to very coarse-grained,							
Gravel, granules 2 to 4 mm, pebbles 5 to			granules 2 to 4 mm, and pebbles							
20 mm, and very coarse-grained sand	7	69	5 to 10 mm	5	25					
			Chalo hard rod	1	20					
Shale, hard, red	1	70	Share, hard, red		20					
Test Hole 95			Test Hole 104							
Altitude 1,380 fee	t									
Owner: State of Te:	xas		Owner: Wilbarger Col	unty						
Sand, fine- to medium-grained	10	10	Sand, fine- to medium-grained	10	10					

Clay, gray and red, sandy

50

59

60

12 13

Sand, fine- to medium-grained	10
Sand, coarse- to very coarse-grained, and granules 2 to 4 mm	40
Gravel, pebbles 5 to 15 mm, and granules 2 to 4 mm	9
Shale, hard, red	1

Test Hole 98

Altit	tude 1,328 feet
Owner:	Wilbarger County

Sand,	fine- to medium-grained	12
Shale.	hard, red	1

Test Hole 99

Altitude 1,261 feet Owner: Wilbarger County

Sand, fine- to very coarse-grained	10
Clay, red, sandy	8
Sand, fine- to medium-grained	7
Shale, hard, red	1

Gravel, granules 2 to 4 mm, pebbles 5 to 15 mm, and very coarse-grained sand 13 45 Sand, very coarse-grained 2 47 Shale, hard, red 5 52

22

32

Test Hole 105

Altitude 1,411 Owner: Wilbarger (feet County	
Sand, fine- to medium-grained	28	
Sand, fine- to medium-grained, and		
thin layers of caliche	10	
Clay, soft red	4	
Sand, coarse- to very coarse-grained		
and granules 2 to 4 mm	8	
Gravel, granules 2 to 4 mm, and		
pebbles 5 to 6 mm	8	
Shale, hard, red	5	

	Thickness (feet)	Depth (feet)		Thickness (feet)	Depth (feet)				
Test Hole 10	7	Test Hole 109							
Altitude 1,415 Owner: Wilbarger (feet County	Altitude 1,411 feet Owner: Wilbarger County							
Sand, fine- to medium-grained	6	6	Sand, fine- to medium-grained	15	15				
Clay, sandy	8	14	Clay, red, sandy	5	20				
Sand, medium-grained, and clay	8	22	Caliche, hard, sandy	5	25				
Clay, red, sandy	14	36	Sand, medium- to very coarse-grained	5	30				
Sand, fine- to medium-grained, and	10	19	Caliche, hard, sandy	3	33				
Shale, hard, red	1	49	Shale, hard, red	1	34				

Table 8. -- Chemical Analyses of Water From Wells and Springs

(Analyses are in milligrams per liter except percent sodium, specific conductance, pH, SAR, and RSC.)

Water-Bearing Unit: Qal, Quaternary alluvium; Qs, Seymour Formation; Pprsa, San Angelo Formation; Pcf, Clear Fork Group. Analyses performed by Texas Department of Health except where indicated by footnote.

	Well	Water- bearing unit	Depth of well (ft)	Date of collection	Silica (SiO ₂)	Iron (Fe)	Cal- cium (Ca)	Magne- sium (Mg)	Sodium (Na)	Potas- sium (K)	Bicar- bonate (HCO ₃)	Sul- fate (S04)	Chlo- ride (Cl)	Fluo- ride (F)	Ni- trate (NO ₃)	Boron (B)	Dis- solved solids	Hard- ness as CaCO ₃	Per- cent so- dium	Sodium adsorp- tion ratio (SAR)	Residual sodium carbon- ate (RSC)	Specific conduct- ance (Micromhos at 25° C)	pH
				1	1	· · · · · ·			Seymon	ar Forma	tion and (Quaternar	y Alluviu	m									
1	3-37-701	Qs	Spring	Feb. 20, 1970	6	-	65	29	25	1	334	41	9	0.8	5	0.1	346	283	16.2	0.65	0.00	575	7.8
	903	Qs	73	Dec. 17, 1969	17	4.6	52	18	21	< 1	234	21	7	.6	25	.1	279	201	18.6	.65	.00	441	7.7
	904	Qs	67	Jan. 29, 1970	17		48	26	28	< 1	260	27	15	.6	27	.1	317	225	21.2	.81	.00	515	7.7
	905	Qs	Spring	do	24	ंगनः	70	31	51	5	378	47	32	.8	5.3	.1	452	303	26.9	1.28	.15	715	7.8
Ц	909	Qs	80	July 12, 1964	17.2	.60	59	18	39	144	280	37	20	.3	32	322	266	244	**		2.71	17.71	7.42
у	910	Qs	38	July 8, 1964	12	.00	82	12	62	122	344	28	45	.1	10		372	2 5 2	1.77				7.40
	913	Qs	55	Nov. 3, 1970	24		41	36	54	< 1	348	40	10	.9	29	.2	406	251	31.7	1.47	.69	630	7.6
21	38-701	Qs	112	Apr. 11, 1951 Jan. 29, 1970	20		74 64	19 18	* 14 17	< 1	254 248	24 19	41 26	.7	2.8 12	.1	332 299	262 232	11 14.1	. 50	.00	556 496	7.7
	702	Qs	114	July 10, 1970	21		71	16	23	< 1	253	19	13	.7	46	.2	334	242	16.8	.63	.00	534	7.5
3	801	Qs	113	Aug. 17, 1951	22	1.00	74	20	* 14		2 5 9	32	34		5		365	266	10	20	22	578	8.1
	803	Qs	110	Nov. 2, 1970	18	1.000	71	13	44	< 1	283	45	15	.5	29	.1	375	233	29.1	1.25	.00	587	7.8
	805	Qs	86	June 11, 1971	21		71	18	27	< 1	260	33	33	.4	17	.1	348	251				555	7.4
	808	Qs	Spring	do	28		78	21	24	< 1	311	30	23	.4	8	.2	365	284			×	570	7.5
	45-102	Qs	60	Feb. 17, 1970	16		96	24	35	< 1	248	134	15	1.0	70	.1	510	340	18.2	.82	.00	740	7.6
	103	Qs	45	Feb. 20, 1970	18		67	21	21	1	275	38	9	.5	26	.1	337	255	15.4	. 58	.00	527	8.0
	202	Qs	55	Feb. 18, 1970	18	0.7	56	27	25	2	262	41	6	. 8	40	.2	345	250	17.9	.69	.00	542	7.5
21	203	Qs	84	Apr. 11, 1951		1.5-0	82	31	* 75	**	331	85	88	122	13	-	566	332	33		77	941	
	204	Qa	80	June 11, 1971	22		71	25	57	< 1	303	63	45	.5	28	.2	461	278				705	7.8
	205	Qs	60	do	19	Exe.	70	31	49	4	284	68	65	.4	11	.3	457	302				732	7.6
	301	Qs	67	Jan. 29, 1970	19		50	25	30	3	271	27	16	.6	23	.1	327	230	21.9	.85	.00	515	8.1
	304	Qs	88	Feb. 5, 1970	21		458	151	183	6	206	24	1,390	.5	22	.5	2,360	1,770	18.4	1.90	.00	3,750	7.3
	305	Qs	78	do	24	1.22	70	22	32	2	294	32	18	.7	39	.1	385	267	20.6	.85	.00	602	7.5
	306	Qs	29	Feb. 18, 1970	40	1.1424	81	26	23	3	270	27	42	.6	61	.2	437	311	14.1	. 58	.00	673	7.8
	307	Qs	65	Oct. 22, 1970	20	1.144	62	20	27	< 1	289	21	12	.8	26	.1	331	239	19.8	.76	.00	525	7.6
	308	Qs	62	do	19		58	21	41	< 1	293	26	17	.6	40	.1	367	233	27.8	1.17	.14	577	7.8
	310	Qs	60	Nov. 3, 1970	20	22	71	39	26	2	293	50	51	.6	35	.2	439	339	14.3	.61	.00	714	7.2
	311	Qs	90	do	19	.16	77	16	22	< 1	250	30	13	.4	63	.1	363	260	15.7	.60	.00	567	7.7
	402	Qs	63	Dec. 3, 1969	1		129	151	413	5	46	990	530	. 7	< .4	1.2	2,240	940	48.8	5.85	.00	3,110	7.0
	403	Qs	68	Feb. 11, 1970	18	(77)	227	101	207	3	338	740	247	1.4	27	.8	1,740	980	31.4	2.87	.00	2,300	7.6
	404	Qs	45	June 9, 1971	19		71	45	117	< 1	420	108	94	1.4	37	.4	700	362				1,085	7.3
	502	Qs	66	Feb. 4, 1970	21		79	28	59	2	305	70	67	.5	30	.3	510	312	29.2	1.46	.00	803	7.6

See footnotes at end of table.

Table 8.--Chemical Analyses of Water From Wells and Springs--Continued

Well		Water- bearing unit	Depth of well (ft)	Date of collection	Silica (SiO ₂)	Iron (Fe)	Cal- cium (Ca)	Magne- sium (Mg)	Sodium (Na)	Potas- sium (K)	Bicar- bonate (HCO ₃)	Sul- fate (SO ₄)	Chlo- ride (Cl)	Fluo- ride (F)	Ni- trate (NO ₃)	Boron (B)	Dis- solved solids	Hard- ness as CaCO3	Per- cent so- dium	Sodium adsorp- tion ratio (SAR)	Residual sodium carbon- ate (RSC)	Specific conduct- ance (Micromhos at 25° C)	рН
			r					Sey	mour For	nation	and Quater	nary Allu	viumCon	tinued			'						
13-45-503		Qn	52	Dec. 3, 1969	18		77	31	91	< 1	378	86	64	0.8	25	0.3	580	320	38.3	2.22	0.00	917	7.6
	504	Qa	60	Dec. 4, 1969	21		54	42	143	< 1	467	95	93	2.0	< .4	.4	680	307	50.3	3.54	1.52	1,099	7.4
	507	Qs	61	Dec. 3, 1969	18		47	23	105	< 1	392	52	28	1.3	28	.4	495	213	51.8	3.13	2.16	770	8.2
	509	Qa	37	Feb. 18, 1970	21		76	32	35	2	329	36	24	.9	31	.2	420	320	19.4	.86	.00	718	7.1
24	601	Qa	59	Jan. 20, 1959 Jan. 29, 1970	 19	**	75 73	21 19	* 30	 4	291 250	30 31	17 17	.6	55 68	 .1	396 382	274 260	19 18.4	.73	.00	609 575	7.6
	604	Qa	67	dø	18	**	67	19	33	1	281	32	15	.7	42	.2	366	243	22.6	. 91	.00	572	7.6
	606	Qs	66	do	18		59	18	18	1	220	22	10	.6	53	.1	308	220	15.3	. 53	.00	466	7.8
	607	Qs	69	Jan. 29, 1970	16	4.2	53	18	24	< 1	240	22	9	. 7	25	.1	286	206	20.0	. 72	.00	463	7.7
3	608	Qa	65	Aug. 13, 1951 Jan. 29, 1970	19 10		68 48	20 21	* 18 26	5	248 206	29 36	16 17		30 43	· .1	373 308	252 205	10 21,3	.78	.00	593 482	7.8
	610	Qa	72	Feb. 4, 1970	39		27	12	49	27	277	10	11	.4	< .4	.1	311	120	47.1	1.95	2.15	450	7.6
	612	Qa	51	do	7	÷	52	16	26	3	244	20	7	.8	23	.1	275	195	22.2	.79	.10	445	7.8
	614	Qa	70	do	18		65	17	26	1	256	28	7	.4	43	,1	331	231	19.7	.74	.00	532	7.6
	615	Qs	70	do	9	**	32	12	23	< 1	168	20	6	.4	11	.1	196	128	28.1	.88	.20	343	8.1
	616	Qa	70	Feb. 11, 1970	14		37	7	19	< 1	187	4	4	. 7	< .4	.1	178	121	25.5	.75	. 64	293	7.1
	617	Qs	33	Feb. 17, 1970	7	**	29	9	29	7	172	< 4	21	.3	8.3	.4	195	108	37.3	1.23	. 67	346	7.3
	623	Qa	57	Feb. 11, 1970	20		94	27	39	2	309	27	75	.5	42	.1	479	344	19.9	. 92	.00	802	7.4
	624	Qa	75	do	17	-	50	13	20	2	193	24	9	.5	33	.1	264	179	20.0	.67	.00	414	7.7
	702	Qs	50	Feb. 18, 1970	21		46	27	54	2	298	42	23	1.1	24	.3	388	225	34.4	1.57	.42	608	8.4
4	802	Qa	61	Apr. 5, 1960 Dec. 4, 1969	17	. 30	34 74	32 33	40 55		366 370	14 52	28 30	7	41.5	.3	514 487		27.2	1.34	.00	780 770	8.2
	803	Qs	51	Apr. 15, 1970	21		63	22	29	< 1	295	28	12	.6	29	.2	350	249	20.5	.81	.00	559	7.5
	804	Qs	45	do	22	1.4	62	21	33	< 1	284	32	12	.7	37	.1	360	242	22.7	. 91	.00	555	7.5
	808	Qa	46	Dec. 16, 1969	20	- 22	73	19	40	1	338	36	19	1.1	< .4	.2	375	260	25.0	1.07	. 34	674	7.2
	810	Qa	50	Feb. 17, 1970	19	**	64	30	45	2	32.5	51	19	1.0	33	.8	424	283	25.6	1.16	.00	663	7.9
	811	Qs	52	do	19		51	27	26	2	273	24	6	.8	44	.2	334	239	19.0	.72	.00	520	8.2
	815	Qs	50	Fab. 18, 1970	18		77	32	35	1	309	42	44	.6	40	. 2	442	325	19.1	.85	.00	728	7.7
	901	Qs	Spring	Sept. 30, 1970	1	**	205	93	308	5	171	1,270	88	1.5	< .4	2.7	2,060	900	42.7	4.47	.00	2,460	7.0
	902	Qs	40	Nov. 19, 1970	15		79	38	61	< 1	310	128	36	1.0	62	.6	570	352	27.5	1.42	.00	857	8.1
	46-102	Qa	82	Dec. 16, 1969	20	.65	64	22	26	1	256	30	28	.6	29	.2	347	253	18.2	.70	.00	555	7.6
	108	Qa	58	Jan. 27, 1970	15	**	56	21	25	1	232	24	9	.7	68	.1	334	224	19.5	.72	.00	502	7.5
	112	Qs	78	do	10		47	15	23	4	212	20	11	.5	20	.1	255	177	22.4	.77	.00	410	7.4
	114	Qu	108	July 10, 1970	21		67	16	23	< 1	253	23	15	.8	30	.2	320	234	17.5	.65	.00	514	7.3
	115	Qs	68	Jan. 29, 1970	22	**	49	31	25	3	266	22	8	.9	64	.1	356	249	18.0	.69	.00	536	8.0

See footnotes at end of table.

- 208 -
| | | Magne-
sfum
(Mg)
Seymo | (Na) siu
(K)
ir Formation | m bonate
(HCO3)
and Quatern | fate
(SO4)
ary Alluviu | (C1) ride r
(C1) nContinu | (F) (NO
ed | (B) (B) | solids | ness
as
CaCO ₃ | Per-
adu
so-
dium (S | orp- sodi
on carb
tio at
AR) (RS | um conduct
an-
(Micromhu
at 25° (| PH DB |
|----------|----|---------------------------------|---------------------------------|-----------------------------------|------------------------------|------------------------------|---------------|------------|--------|---------------------------------|-------------------------------|---|--|-------|
| | 65 | 14 | 24 2 | 212 | 39 | 17 0 | •5 39 | 0.1 | 324 | 220 | 19.4 0. | .71 0.0 | 0 20 | 5 7.5 |
| 17 | ŝ | 42 | 252 4 | 163 | 22 | 700 | .6 27 | .2 | 1,320 | 610 | 47.3 4. | . 44. | 0 2,270 | 2.2 |
| 63 | | 51 | 21 4 | 242 | 24 | 17 | .7 20 | 7 | 302 | 219 | 17.4 | .62 .0 | 0 47 | 2.7.2 |
| 64 | | 18 | 22 1 | 262 | 21 | 07
[] | .5 25 | ; ; | 316 | 107 | 20.2 | 68.
67 | 0 581 | |
| 25 | | 20 | 26 2 | 294 | 32 | 23 | .5 30 | 6. | 380 | 279 | 16.7 | 67 .0 | 0 605 | 2.6 |
| 17 | - | 18 | 68 < 1 | 196 | 88 | 35 | .5 147 | 1. | 550 | 268 | 35.7 1. | . 18. | 0 19: | 1.6 |
| 35 | | 10 | 121 < 1 | 349 | 83 | 14 | .8 7 | 1. | 463 | 129 | 67.1 4. | .63 3.1 | 4 71: | 2.7 |
| 87 | | 18 | 288 1 | 182 | 14 | 530 | .6 22 | .2 | 1,070 | 292 | 68.2 7. | .32 .0 | 0 1,900 | 7.5 |
| 81 | | 16 | 23 < 1 | 277 | 25 | 31 | • 6 16 | •2 | 352 | 269 | 15.5 | . 09. | 0 570 | 2.2 |
| 68 | | 23 | 44 2 | 326 | 28 | 33 | .8 16 | .2 | 382 | 264 | 26.5 1. | .17 .0 | 6 632 | 2.6 |
| | | 26 | 60 2 | 278
278 | | - 46
66 | .3 13 | : : | 510 | 304 | 29.9 | 50 .0 | 0 833 | 3 7.5 |
| 121 | | * | 107 | 330 | 67 | 98 | : | ŝ | 759 | 1 | 1 | 1 | : | 8.6 |
| 70 | | 21 | 35 1 | 279 | 35 | 33 | .5 27 | °! | 378 | 261 | 22.8 | . 95 .0 | 0 620 | 7.8 |
| 17 | | 20 | 31 2 | 301 | 30 | 21 | .7 39 | • 2 | 387 | 274 | . 6.91 | 82 .0 | 0 610 | 5.7 0 |
| 40 | | 24 | 50 1 | 256 | 15 | 43 | v 4. | 4 .1 | 329 | 198 | 35.6 1. | .56 .2 | 4 588 | 3 7.8 |
| 67 | | 46 | 65 4 | 448 | 63 | 45 | v
9. | 4 .2 | 520 | 359 | 28.2 1. | . 64 | 7 823 | 8.0 |
| 65 | | 16 | 30 2 | 264 | 22 | 14 1 | .2 37 | .2 | 337 | 229 | 22.0 | .0 | 0 535 | 7.9 |
| 20 | | 19 | 24 2 | 266 | 24 | 21 1 | .2 31 | .2 | 342 | 252 | 17.0 | .65 .0 | 0 548 | 3 7.6 |
| 65 | | 17 | 31 2 | 257 | 28 | 1 61 | .8 31 | •2 | 340 | 231 | 22.5 | 88 .0 | 0 537 | 7.7 |
| 60 | | 21 | 42 2 | 256 | 40 | 40 | .4 18 | . 3 | 362 | 236 | 27.8 1. | .0 | 583 | 7.4 |
| 73 | | 24 | 62 3 | 284 | 55 | 86 | • 3 6 | .7 .3 | 467 | 280 | 32.5 1. | 61 .0 | 0 772 | 1.7 |
| 78 | | 20 | 46 2 | 318 | 44 | 29 | .7 31 | .2 | 427 | 275 | 26.9 1. | 22 .0 | 0 670 | 7.7 |
| 75 | | 24 | 29 2 | 315 | 27 | 10 | .8 67 | •2 | 410 | 288 | 18.2 . | 75 .0 | 0 625 | 7.6 |
| 72 | | 23 | 41 2 | 273 | 42 | 49 | .4 37 | ŋ | 416 | 275 | 24.5 1. | 07 .00 | 680 | 7.5 |
| 61 | | 40 | 77 2 | 417 | 15 | 53 1 | .2 15 | ε. | 520 | 316 | 34.7 1. | 89 .53 | 849 | 7.9 |
| 153 | | 64 | 103 3 | 880 | 26 | 76 1 | 2 × | 4.4 | 970 | 710 | 24.1 1. | 68 .28 | 1.490 | 7.4 |
| 62
72 | | 35 # | 37 | 334
350 | 39
40 | 41 - 28 | - 10
6 27 | -3 | 421 | 298
294 | 24.6 1. | .00 | 692 | 7.3 |
| 62 | | 46 | 125 < 1 | 468 | 92 | 79 2 | .1 30 | .6 | 690 | 345 | 44.2 2. | 94 .79 | 1,084 | 7.7 |
| 68 | | 43 | 66 < 1 | 465 | 53 | 21 1 | .0 21 | е. | 530 | 348 | 1 | - | 802 | 7.8 |
| 48 | | 37 | 61 < 1 | 316 | 52 | 24 | .9 62 | .2 | 459 | 274 | r
F | 1
1 | 705 | 7.5 |
| 99 | | 10 | 32 1 | 268 | 2.5 | 20 | .6 37 | 1. | 352 | 241 | 22.1 | 88 .00 | 560 | 7.4 |

w	e11	Water- bearing unit	Depth of well (ft)	Dico	ate of llection	Silica (SiO ₂)	Iron (Fe)	Cal- cium (Ca)	Magne- sium (Mg)	Sodium (Na)	Potas- sium (K)	Bicar- bonate (HCO ₃)	Sul- fate (SO ₄)	Chlo- ride (Cl)	Fluo- ride (F)	Ni- trate (NO ₃)	Boron (B)	Dis- solved solids	Hard- ness as CaCO ₃	Per- cent so- dium	Sodium adsorp- tion ratio (SAR)	Residual sodium carbon- ate (RSC)	Specific conduct- ance (Micromhos at 25° C)	рН
									Sey	mour Form	nation a	and Quaters	nary Allu	viumCon	tinued									
3 13-	46-409	Qa	95 105	Aug. Dec.	7, 195 3, 196	26 9 19		70 67	28 22	* 61 57	2	311 307	62 50	68 39	0.4	8.5 25.5	0.3	470 433	290 257	31 32.6	1.55	0.00	840 691	7.5 8.0
	415	Qa	113	Dec.	12, 196	20	< 0.02	59	14	23	< 1	222	24	13	.3	34	.1	296	207	19.3	.69	.00	475	7.6
	417	Qs	98	Jan.	27, 197	15	7.8	57	24	52	2	282	49	43	.2	14	.2	395	241	31.7	1.44	.00	642	7.8
	419	Qs	86	Feb.	5, 197	18	**	58	21	32	2	271	31	18	.2	27	.2	340	233	23.1	, 92	.00	545	7.8
	421	Qs	90		do	20		81	19	45	3	336	38	22	.5	34	.2	428	280	25.8	1.17	.00	680	7.7
	423	Qa	49	Feb.	11, 197	17	**	78	16	26	2	262	27	12	.5	74	.1	382	260	17.9	.70	.00	580	7.5
	424	Qs	98	Feb.	18, 197	21		59	11	20	2	233	16	2	.2	33	.1	279	191	18.2	.62	.00	422	7.6
2/	426	Qa	70	Apr. Feb.	11, 195 11, 197	2		74 16	21 9	* 14 40	3	265 98	30 12	24 50	.2	< 25.4	.1	350 180	271 76	10 53,3	1.98	.09	619 343	7.3
	427	Qs	71	Nov.	6, 197	23	**	169	41	225	2	171	21	640	.7	21	.1	1,230	590	45.4	4.03	.00	2,190	7.3
	430	Qs	99	June	16, 197	21		65	20	37	< 1	288	30	14	.4	42	.2	371	246	-			570	7.6
	501	Qs	103	Dec.	12, 196	9 14	.06	67	18	35	1	293	27	11	.6	38.5	.2	357	242	23.8	.97	.00	565	8.0
у	503	Qa	107	July	28, 196	16		66	17	* 40		265	31	30	.5	35		374	234	27			606	6.9
33	504	Qa	120	Feb.	8, 195	1				**		66		159	***		ine.	2.8					760	7.2
33	506	Qs	103	Jan.	do 27, 197	0 < 1		27	9	66	38	75 620	 5	146 37	.1	<,4	.1	560	107	57.4	2.78	8.01	728 1,090	7.7
ગ્રો છે. ગ્રે છે	507	Qa	92	Feb. Feb. Aug.	2, 195 7, 195 19, 197	2 29 30 1 25		378 332 128	83 73 22	* 692 * 666 354		246 176 273	50 53 36	1,780 1,680 650	 .4	17 15 18	 -4	3,140 2,940 1,370	1,280 1,130 414	54 56			5,860 5,530 2,370	7.5 7.5 7.1
3	508	Qs	94	Aug.	16, 195	4.3		19	7.2	± 45	-	98	3	62		5		209	77	56			376	7.8
¥	510	Qa	16		do				27.			358		14		144			276				693	7.7
	513	Qu	105	Dec.	17, 196	17		69	19	29	1	264	33	21	.8	40	.1	360	250	20.3	.80	.00	568	7.5
	514	Qs	65	Jan.	27, 197	20	1.7	75	15	32	2	290	30	9	.7	37	.4	364	249	21.7	.87	.00	570	7.2
	515	Qs	95		do	5	84	30	9	126	4	198	34	138	.4	35	.1	447	115	70.5	5.11	.95	785	7.7
	516	Qa	94	Feb.	5, 197	20		67	20	44	3	281	36	32	.4	37	.2	397	251	27.6	1.21	.00	638	7.5
4	517	Qn	50	Apr. June	5, 196 10, 197	19		112 75	0 19	26 42	< 1	317 296	19 25	11 34	8	44	.2	509 405	268	••	**		760 640	3.6 7.9
	601	Qa1	61	June	17, 197	19		63	34	130	< 1	401	119	66	1.4	41	.7	670	300				1,000	7.8
	602	Qa1	47	Nov.	5, 197	15		165	80	430	2	404	740	419	1.1	< .4	.7	2,050	740	55.8	6.87	.00	2,820	7.6
	603	Qal	51	Nov.	10, 197	14		97	49	148	< 1	336	130	242	1.0	22	.7	870	444	42.0	3.06	.00	1,440	7.6
	604	Qa1	40	Nov.	11, 197	21		202	114	382	< 1	387	468	700	1.0	14	.9	2,090	970	46.1	5.33	.00	3,120	7.5
	605	Qa1	45	Nov.	4, 197	15	**	78	44	190	2	530	170	133	1.0	< .4	.6	890	378	52.3	4.26	7.13	1,400	7.9
	607	Qa	58		dø	16		58	29	79	< 1	336	82	24	1.7	54	.6	510	265	39.2	2.10	.20	777	7.6
	608	Qs	26		do	23	**	108	63	315	< 1	570	344	255	1.7	50	1.1	1,440	530	56.4	5.95	.80	2,090	7.6
	609	Qs	31	June	do 17, 197	17 15		130 322	52 78	242 343	< 1 < 1	426 295	347 1,030	1.90 394	1.7 1.5	90 45	.8 1.3	1,280 2,370	540 1,130	49.5	4.54	.00	1,850 2,900	7.2

See footnotes at end of table.

A 1993 IL DOCUMENT PARAMETERS INCOME

- 210 -

			-		_		_	_		_	_	_	_	-	_			_	_	_	-				_			-						
Bd		7.5	7.3	8.3	7.9	7.8	7.4	7.6	7.8	7.2	7.4	7.2	7.8	7.2	7.6	7.7	7.8	7.6	7.1	7.2	8.0	7.8	7.5	7.7	7.9	7.8	7.7	7.4	7.3	7.6	;	7.6	7.4	7.6
Specific conduct- ance (Micromhos at 25° C)		2,550	2,150	1,032	1,840	216	4,680	580	518	800	5, 990	3,840	106	3,170	1,340	2,550	2,200	2,090	2,190	683	1,570	2,050	2,430	2,740	796	1,320	610	3, 500	3,430	2,340	1	665	8,002	5,230
Residual sodium carbon- ate (RSC)		00.00	.00	.93	.00	1.63	ł	.00	;		.00	.00	.67	.00	.00	:	:	:	00.	00.	00.	.00	00.	.00	.85	.00	.48	1	.00	.00	1	1.17	:	;
Sodium F adsorp- tion ratio (SAR)		4.13	4.42	3.37	5.64	3.62	:	.87	1	2.48	12.46	6.43	2.55	5.30	5.28	1	ł	ł	10.87	1.73	5.60	7.59	8.52	7.63	7.43	4.39	2.53	;	5.47	3.00	;	1.85	1	:
Per- cent so- dium		42.5	47.3	49.4	57.5	54.3	ł	21.7	÷	44.8	62.9	49.2	42.9	47.4	61.9	ł	1	ł	77.3	37.7	60.7	66.2	66.5	9*09	79.2	55.8	50.6	1	44.5	32.2	;	38.4	1	:
Hard- ness as CaCO ₃		780	610	300	436	233	2,140	246	228		1,350	1,100	289	860	265	680	650	580	254	205	327	376	463	610	96	303	152	900	1,170	1,000	:	222	2,470	1,760
Dis- solved solids		1,520	1,320	670	1,220	590	4,150	381	334	897	4,410	2,620	560	1,880	800	1,790	1,520	1,400	1,420	396	1,010	1,400	1,700	1, 890	540	810	349	2,600	2,570	1,780	1	403	6,500	4,100
Boron (B)		0.5	.6	• 5	9.	.5	3.2	.1	r.	19	1.2	.4	.4	.4	• 5	9	. 6	.4	.4	.2	е.	.6	.6	1.0	.2	е.	.2	1.5	1.5	1.4	1	.3	.7	1.3
N1- trate (NO ₃)		2	20	31	4. 4.	33	35	65	39	3.5	×. 4.	3.5	4. >	×. ^4	4. ×	<. ×4	×. *	× .4	4.5	5.5	ŝ	4. >	4. >	×.	4. >	7	3.5	9	4.5	6	;	×. ×	×. ×	4. ×
Fluo- ride (F)	nued	0.8	9	.8	1.3	1.2	1.4	• 5	4.	; 9.	6.	.8	.8	• 5	9.	1.1	.8	1.0	.7	.7	1.0	1.0	1.2	.00	6.	.8	1.6	1.1	6*	1.8	;	.7	1.0	1.1
Chlo- ride (C1)	umConti	690	476	82	213	55	680	15	15	133	1,570	970	83	1,000	226	495	379	363	387	98	227	280	350	463	174	215	74	560	439	259	40	30	2,500	1,280
Sul- fate (SO4)	ry Alluvi	130	96	92	370	93	1,940	27	26	37 42	1,110	580	68	204	183	485	425	372	483	51	236	560	540	650	84	129	35	890	950	190	32	45	1,530	1,220
Bicar- bonate (HCO ₃)	Quaterna	316	471	422	421	383	318	260	250	439 314	365	306	393	83	224	360	368	340	112	176	351	195	410	305	168	305	215	510	680	333	376	342	415	409
otas- sium (K)	pue uo	٦	22	1	2	1	9	'n		10	7	25	1	m	1	m	е	5	9	12	n	ŝ	4	2	-	2	-	e	12	-	;	12	80	2
Sodium Po (Na)	r Formati	265 <	250	134 <	271	127 <	550	31	29 <	104 87	1,050	490	100	358	198 <	370	278	269	399	57	233	339	422	434	167 <	176	72 <	580	430	217 <	;	63	1,350	760
fagne- s stum (Mg)	Seymou	85	65	38	53	26	136	15	15	38	100	70	31	111	45	52	52	48	40	15	29	47	39	88	13	20	15	107	141	123	;	23	158	135
cal- ctum (Ca)	-	172	137	57	87	50	630	74	99	30	376	324	64	163	31	187	174	154	37	57	83	72	121	101	16	88	35	184	235	197	1	50	730	480
Iron (Fe)		į.	1	1	;	ŧ	;	;	;	::	÷	÷	;	;	:	- <u>8</u> 1	i.	;	1	;	r.	1	Ē	;	;	1	;	i.	I.	ï	į	1	1	1
111ca S102)		19	20	26	12	11	15	20	21	1 00	19	8	17	1	1	22	23	22	2	12	19	٦	24	10	-	18	9	21	21	16	;	11	20	20
Date of collection		lov. 5, 1970	op	op	do	op	une 17, 1971	an. 27, 1970	une 17, 1971	lay 7, 1955 lov. 6, 1970	eb. 12, 1970	lov. 6, 1970	ov. 4, 1970	do	op	une 10, 1971	do	do	ov. 10, 1970	op	ov. 4, 1970	ov. 5, 1970	ov. 6, 1970	ov. 11, 1970	op	do	op	une 10, 1971	ov. 3, 1970	do	ct. 14, 1943	ec. 10, 1969	une 10, 1971	do
Depth of well (ft)		4.4	55	19	55	63	24	50	32	05	44	15 1	40 1	38	38	41	42	31	40	39	35 1	35 h	16 1	42 8	28	28	29	32 3	13 1	12	20 6	Spring D	31 T	31
Water- bearing unit		Qa1	Qal	Qal	Qal	Qa1	Qs	Qs	Qs	Qal	Qal	Qal	Qal	Qal	Qal	Qal	Qa1	Qal	Qal	Qal	Qal	Qal	Qal	Qal	Qal	Qal	Qal	Qal	Qal	Qal	Qu	Qs	Qal	Qal
Well		13-46-610	119	613	614	615	617	801	106	47-102	103	105	405	406	407	408	605	410	101	702	703	705	207	708	710	712	213	714	53-501	502	54-501	510	512	513
	_									10																					2U			

See footnotes at end of table.

													_																	
Hd		7.6	7.2	7.3	8.0	7.7	7.6	7.8	7.6	7.7	7.6	7.6	7.2	7.4	7.4	7.5	7.7	7.6	7.6	7.7	: 1	1	7.6	7.3	:	(1	1	+	:	7.8
opection conduct- ance (Micromhos at 25°.C)		076	3,000	610	722	695	1,088	878	1,071	710	1,210	619	784	705	1,062	1,085	963	1,114	1.250	 575 690	1 1	Ţ		824	*	1.540	4	1	:	711 660
sodium carbon- ate (RSC)		0,00	;	.72	.00	.10	.00	.00	.00	:00	.00	.15	•00	.00	.00	00.	00*	.00	:	: : 00:	11	;	11	.00	ł	: 00	1	4	3	: 00.
adsorp- tion ratio (SAR)		1.18	ţ.	1.83	1.14	1.8	2.41	2.40	2.53	1.44	1.86	1.69	16.	1.59	2.04	2.17	2.35	1,93	3	1.13	: :	;	1.1	1.60	1	1.56	;	:	1	1.6
Per- cent so- dium		22.2	:	38.8	24.7	36.3	38.8	41.5	40.3	30.1	29.4	35.6	19.3	32.8	33.8	35.5	39.4	31.8	;		::	;	::	30.8	;	23.5	;	:	1	33 31.3
Hard- ness as CaCO ₃		426	1,010	209	303	244	364	288	352	295 277	497	233	367	265	398	388	32.6	430	412	312 265 295	318 382	303	314	323	384	360	396	310	245	246 251
Dis- solved solids		630	2,310	383	459	442	690	570	680	510	790	428	495	457	680	680	610	740	830	555 364 432	561 641	504	534	520	659	602 990	672	431	430	411
Boron (B)		0.5	1.2	.2	i.	.2	.4	.3	e.	.2	.3	.2	.3	• 3	.4	4.	.4	•5	1		: :	1	1 1	:	;	- 4.	;	;	1	: *:
N1- trate (NO ₃)		< 0.4	< .4	26	57	39	20	70	63	100 78	60	56	41	68	56	11	58	117	141	87 48 31	68 52	;	62 78	60	122	76 176	168	64	62	58 47
Fluo- ride (F)	penu	2.6	1.8	1.2	.6	1.4	1.5	1.7	1.5	1.1	1.1	1.6	1.0	1.3	1.1	1.4	1.5	1.6	1.3	1.6 1.1 1.4		÷	1.3	1.2	1.1	1.3	ŝ	1.1	1.1	.9
Chio- ride (Cl)	mConti	54	396	24	41	39	118	15	115	32 24	119	27	31	25	102	46	68	78	92	49 19 26	73 129	45	53 35	40	63	58 169	74	36	36	40
Sul- fate (SO4)	y Alluviu	212	026	38	45	60 50	56	76	74	43	110	43	36	44	78	76	63	06	116	53 30 36	59 88	51	57 49	52	66	59 137	67	37	37	36
Bicar- bonate (HCO ₃)	Quaternal	292	643	299	294	376 304	344	343	361	312 331	447	293	409	304	399	395	398	409	105	333 281 357	326 317	303	336 344	376	324	306 373	314	305	275	282 294
otas- sium (K)	fon and	5	e	1 >	- v	15	1 >	r v	< 1	: -	2	1 >	1	1	1 >	1	1	1	;		11	;	1 1	:	;	:	;	;	;	
odium I (Na)	r Format	56	418	- 19	46		106	- 76	109	55	95	- 23	40	- 65	93	. 86	98	92	125	75 31 45	78 91	62	67 49	99	78	46 92	64	39	55	56
-autor S	Seymou	68	61	53	30		8	39	1	53	69	4	37	63	9	1	9	52	54	*	* *	* 85	12	9	* 61	* 0.7	* 9	12 14	5	410
THO THO			1		-		1								7	1	2			2010	4 4		614	4	4	4.0	4		2	55
Cal cfu (Ca		10(20	40	7	1.00	9	5	1	29	101	50	8(56	8/	1	29	8	76	886	80	56	6.6	63	73	128	83	72	57	39 55
Iron (Fe)		;	1	1	3	1.1	ł	;	1	1.1	1	;	ţ,	1	4	:	1	1	s.	0.04	11	1	.16	.64	.02	.05	ł	1	1.3	.01
St11ce (S102)		12	16	17	23	24	16	20	20	22	26	20	22	23	23	21	21	20	24	27 12 20	11	;	29 21	80	20	23 19	:	ł	65	25 19
of		, 1970	, 1971	, 1970		, 1943	, 1970			, 1967				, 1970	, 1970				, 1967	, 1943 , 1967 , 1969	, 1941	, 1943	, 1949	, 1969	, 1941	, 1963	, 1943	, 1943	, 1949	, 1961
Collec		b. 12	ne 22	c. 2	do	v. 22 r. 10	r. 24	do	do	r. 1	do	do	do	1y 29	c. 9	op	op	op	r. 11	t. 23 t. 13 c. 9	==	t. 23	ne 8 r. 13		r. 11	t. 11 c. 9	t. 11	r. 11	9 90	. 30 9
	-	Pe	Ju	De		No Ma	Ma			Ap				Ju	De			-	Ap	0c Ap De	Ap	00	Ap	De	γb	De	00	Ap	Ja	Ja
Depth of well (ft)		30	29	55	55	14	35	37	46	38	40	54	38	56	42	42	42	42	45	41 42	15	17	41	45	42	44 46	43	43	95	38
Water- bearing unit		Qal	Qal	Qs	Qs	Qs	Qs	Qs	Qs	Qs	Qs	qs	Qs	Qs	Qs	0s	Qs	Qs	Qs	ő	Qs	Qs	Qs	Qs	Qs	Qs	Qs	Qs	Qs	Qs
		-515	516	701	702	705	707	111	712	714	215	716	117	718	612	720	721	723	729	804	805	806	808	810	817	819	821	822	826	828
e11		-54																												

	_	_		_							_				_		_								1						
Hd		7.6	7.8	1	10.5	7.7	7.6	7.5	7.8	7.3	7.2	7.5	ł	ţ	13	7.5	7.5	7,0	7.6	7.4	7.7	7.7	7.6	7.5	7.4	7.3	- 3	7.7	7.5		7.8
Specific conduct - ance (Micromhos at 25° C)		797	695	1	464	778	768	793	635	747	1,130	1,020	1	ł	: :	829 884 845	3,510	1,550	1,120	5,650	1,270	2,720	4,920	6,300	6, 500	8,005	1	3,820	1,970	1,350	988
Residual sodium carbon- ate (RSC)		0.00	11		1.18	.00	.00	.00	.00	.00	.00	ł.	1	:	; ;		.50	a e	;	1	÷	1	£	ł	;	ł	1	.00	00.	2.57	2.36
Sodium adsorp- tion ratio (SAR)		1.74	11	1	8.10	1.61	1.57	1.17	1.27	1.22		ł	:	1	: ;		12.34	ł	ł	1	ł	1	;	÷	;	:	ł	16.35	9.58	4.84	4.08
Per- cent so- dium		33.9	: :	t	90.8	31.8	31.7	24.1	28.7	25.4	25.1	3 5	ł	1	11	28 28.1	72.0	:	;	1	ť	1	;	Î	1	ŝ	1	79.2	74.1	56.6	57.0
Hard- ness as CaCO3		286	287	388	17	296	288	340	252	318	406	392	349	356	310 285	318 347 339	580	311	347	1,540	197	1,010	1,360	1,860	2,050	2,480	:	462	282	345	238
Dis- solved solids		500	459	685	328	510	498	500	406	489	722 730	660	607	679	547	431 560 540	2,430	016	730	4,270	840	1,940	3,850	4,740	4,960	6,200	3,436	2,760	1,330	900	630
Boron (B)		0.2	: 5	1	1.	.2	.2	•2	•2	.2		.4	:	;	11	112	2.9			3.1	1.2	.7	1.6	• 6	.7	· 6	*	1.0	•5	16.	.8
NI- trate (NO ₃)		60	49	134	v.	73	78	53	48	62	116 77	95	110	127	100 62	50 50	A.	×.	27	2.6	30	4	37	5	4. V	4	1	26	14	- 15	61
Fluo- ride (F)	funed	1.2	; **	:	9.	1.1	1.1	6.	6.	1.0	1.3	1.2	1.3	;	1.0	9 1.2	1.4	8.	1.4	6.	1.5	.00	1.1	.8	6.		ł	1.1	5	2.1	1.4
Chlo- ride (C1)	umCont	19	33	69	35	47	38	43	24	32	81 71	80	65	88	53	57 60 61	650	288	92	1,440	83	530	1,160	1,890	1,950	2,840	760	640	327	176 84	43
Sul- fate (SO ₄)	ry Alluvi	52	35 53	62	36	60	56	52	36	37	91 100	69	09	69	49 51	56 61	550	126	101	1,230	236	530	1,070	1,000	1,060	950	1,070	930	378	260 158	81
Bicar- bonate (HCO ₃)	Quaterna	290	306 311	375	0	309	300	351	296	361	375 453	450	324	325	294	324 364 345	730	329	483	194	378	451	471	339	404	378	472	390	277	581 510	434
Potas- sium (K)	ton and	1 >	17	1	18	ч	1 >	~	1 >	1 >	: -	- v	ł	1	11	9°	2	1 >	1 >	ъ	1 >	1	3	7	7	6	;	1 >	6	15	2
Sodium (Na)	r Format	68	54	95	11	63	19	50	46	50	97 75	92	75	96	63 53	58 64 61	680	225	141	930	227	309	820	066	066	1,280	792	810	370	207	145
	Seymou		- 2	*	-	9	5	22	2	- 30	*	6	*	* 1	**	000	*	10	-	-	6		-	\$	5	9	*	-			_
- Mag st (M)		28	- 2	5	V	6	5	4	5	3	49	4	3	3	n a		6	4 (5	13	1	12	9	12	13	15		5	2	1.0	'n
Cal ctu (Ca		68	1.5	1		55	63	9	š	9	88	76	54	82	72	72 78 82	26	25	25	366	48	203	445	540	600	730	ŝ.	100	69	14	44
) (Fe)		0.88	1.1	;	ł	1	t T	;	ł	Ť	.04	3	.02	5	: 1	.01	à	1	:	:		ž	1	1	1	1	*	ł	;	14	ł
Silic (Si0 ₂		9 20	1 23	1	0 78	0 21	22	22	22	0 26	3 20 0 24	1 25	3 20	1	11	1 27 7 25 9 21	0 13	1 8	23	1 16	13	16	1 22	1 19	22	23	1	9	n	12	13
e of ection		9, 196	22, 194	2, 194	19, 197	5, 197	op	op	qo	16, 197	2, 194	22, 197	30, 194	13, 194	11, 194	30, 196 13, 196 9, 196	31, 1970	15, 197	op	10, 197	op	op	15, 197	10, 197	op	op	15, 1950	5, 1970	op	3, 1943	op
Dat coll		Dec.	Nov. June	Nov.	Feb.	Mar.		0.57		Apr.	Nov. Dec.	June	Oct.	Oct.	Apr. Oct.	Jan. Apr. Dec.	July	June		June			June	June			Aug.	Feb.		Nov. Dec.	
Depth of well (ft)		14	38	44	4.5	32	32	32	32	32	46	47	84	48	48	53	25	20	20	50	38	25	25	25	30	31	21	Spring	48	28	23
Water- bearing unit		Qs	qs	Qs	Qs	Qs	Qs	QB	Qs	Qs	Qs	qs	Qs	Qs	Qs	Qs	Qal	Qal	Qal	Qs	Qs	Qs	Qal	Qs	дв	Qs	Qal	Qa1	Qs	Qs	QB
114		54-830	832	834	837	840	148	842	843	845	848	850	106	903	506	905	906	606	016	101-55	102	103	401	402	403	404	201	503	504	505	506
3		13-																		-											

See footnotes at end of table.

ЫН		7.7	7.6	7.5		7.7	7.9	7.6	7.4	7.2	7.6		i	7.8	7.3	7.2	7.0	7.6	7.7	7.3	7.6	7.1	8.0	7.9	7.7	7.6	7.6	7.5	7.4	7.5	7.5	7.5	7.9
conduct - ance (Micromhos at 25° C)		756	1,990	3,530	834	209	705	974	1,840	682	1,370	1,008	;	818	929	965	4,320	1,080	1,640	2,120	800	580	607	575	770	1,024	1,600	2,685	1,026	4,070	1,006	1,194	1,950
sodium carbon- ate (RSC)		1.62	I	:	11	ł	11	ł	.00	ł	;	2.33	ł	1.51)	;	.00	4.04	1.55	00.	2.24	.30	.11	1.90	ł	1.43	1	.70	1	ł	1	1	3.58
adsorp- tion ratio (SAR)		2.73	1	. 4.4	11	ł	1.1	8	3.79	2 A	1	3.67	:	3.65	ł	;	8.69	6.02	7.42	5.63	4.48	2.28	1.32	2.45	ł	3.67	ł	10.45	;	1	;	;	8.62
Per- cent so- dium		47.8	ľ	¢	: :	;	: :	ł	44.0	1	ł	52.0	;	56.5	;	ł	58.8	68.9	69.6	54.5	64.5	47.5	30.0	48.7	ł	53.1	1	71.7	;	:	:	;	70.5
Hard- ness as CaCO ₃		223	444	860	236	272	278	337	580	277	530	287	;	198	364	223	930	184	263	560	152	160	239	167	211	263	459	425	264	790	330	342	326
Dis- solved solids		485	1,290	2,400		438	452	620	1,170	449	016	670	ł	570	580	620	2,540	700	1,050	1,430	500	345	390	372	496	640	1,030	1,760	660	2,850	630	690	1.280
Boron (B)		0.5	8.	6.	1 5	4.	4.	• •	.6	.2	.7	1.4	ł	-4	е,	e.	.2	٠.7	s.	. 7	.2	.2	.2	.2	ŝ	ł	5.	1	4*	1.6	.4	4.	1.1
N1- trate (NO ₃)		56	7	47		42	49	46	20	95	67	36	ł	130	65	24	×. ^	57	50	×.	18	17	74	37	41	15.5	62	32	42	20	23	62	77
Fluo- ride (F)	Inued	1.4	1.2	1.0		1.1		1.5	1.0	.8	6.	2.0	t	1.3	.8	.8	1.0	1.6	1.2	1.4	.6	ŗ.	1,0	1.0	1.2	1.2	1.5	1.2	6.	1.7	1.1	1.8	3.0
chlo- ride (C1)	umCont	18	400	850	40	27	52 28	44	327	23	128	100 40	96	23	87	90	1,510	64	200	319	54	99	S	7	24	93	250	967	107	860	98	84	110
Sul- fate (SO4)	y Alluvi	50	282	540	70	44	60	69	224	37	120	110	135	53	17	113	57	73	208	371	79	49	30	27	46	84	154	342	72	520	75	64	102
Bicar- bonate (HCO3)	Quaternar	371	310	293	367 354	342	398 333	473	390	281	540	520 492	396	333	299	325	124	471	415	451	322	214	298	320	389	407	404	560	379	740	395	426	620
otas- sium (K)	ton and	-	1 2	1	17	1	t đ	1	1 ;	1	1	: -	;	1.2	1 :	1	ы	1	1 :	5	1 2	1	1 ;	T	-	3	-	ł	1	1	2	1	
Sodium (Na)	r Format	- 76	296 -	530 <	110	19		107	210 <	47	124 <	143	;	118 <	66 <	141	019	188	276 <	305	127 <	99	47 <	73 <	107 <	137	196	496	142 <	760 <	106	126	358
Magne- sium (Mg)	Seymou	29	15	101	33	45		55	85	34	62	 38	4	25	43	22	108	20	24	43	13	14	36	18	27	26	57	99	25	117	39	45	48
cfum (Ca)		42	94	176	- 66	35	35	44	66	54	111	52	3	38	75	53	194	40	99	151	40	41	36	38	07	63	90	66	64	125	68	63	63
(Fe)		;	4	:	;;;	;	: :	3	Ŧ	£	ţ	; ;	;	1	;	ţ	;	;	:	4	;	:	1	1	1	1	3	I.	:	1	1	:	;
Silica (Si0 ₂)		13	13	13		14	12	14	91	19	30		1	13	17	15	1	19	20	15	14	4	14	14	19	15	17	16	61	35	23	23	17
lection		1, 1970	16, 1971	do	4, 1943 24, 1971	23, 1971	4, 1943 23, 1971	do	1, 1970	23, 1971	10, 1971	3, 1943 1, 1970	3, 1943	4, 1970	24, 1971	23, 1971	3, 1970	do	do	4, 1970	10, 1970	do	do	op	23, 1971	20, 1969	25, 1971.	20, 1969	25, 1971	24, 1971	23, 1971	do	3. 1970
col		Dec.	June		Nov. June	June	Nov.		Dec.	June	June	Nov. Dec.	Nov.	Dec.	June	June	Dec.			Dec.	Dec.				June	Nov.	June	Nov.	June	June	June		Dec.
Depth of well (ft)		35	25	60	38	26	Spring	25	38	30	35	24	15	65	26	86	55	65	62	28	65	26	32	Spring	25	37	33	36	38	25	24	26	29
Water- bearing unit		Qs	Qs	Qa	Qs	Qs	Qs	Qs	qa	Qa	qu	Qa	Qs	Qa	Qs	qu	Qu.	Qs	qa	Qal	qe	Qa1	Qu	Qs	Q_B	Qu	9.6	qs	Qu	Qs	ди	qs	08
Well		3-55-507	508	509	510	109	602	603	701	702	703	801	802	56-401	402	403	201	502	503	504	506	207	109	602	603	102	702	802	803	804	805	806	106
		1			म		A)					eri	ēη																				

						_						_				_																			
Hd		7.8	8.6	7.4	7.9	7.8	7.8	7.7	7.3	7.6	7.5	ł	7.6	7.3	7.4	7.8	8.0	7.8	7.8	7.5	7.7	7.3	7.3	7.6	7.5	7.5	7.6	7.4	7.5	7.6	7.6	7.7	7.7	7.8	
Specific conduct- ance (Micromhos at 25° C)		1,930	1,650	2,000	1,810	1,390	2,530	;	8,790	8,420	2,250	I	1,490	3,830	3,760	3,400	1,910	1,380	1,260	069	789	669	655	645	1,470	1,380	1,470	768	4,200	1,370	1,240	1,470	1,540	2,040	
esidual sodium carbon- ate (RSC)		5.83	10,46	ł	1	ţ	ł	00.	00.	.00	00.	ł	.00	1 00,	00.	00.	.00	.00	.00	.12	00.	.00	60.	00.	00.	.00	.00	Đ	ł	1	00.	.00	00.	•00	
Sodium F adsorp- tion ratio (SAR)		10.64	17.61	3	3		t	4.07	15.04	28.07	3.44	1	1.83	8.77	6.36	60.09	3.94	2.05	1.92	1.59	2.01	1.26	1.43	1.06	2.05	2.17	1.76	1	ł	ţ	1.78	1.69	1.64	2.50	
Per- cent 80- dium		77.2	90.2	3	3	£	Ē	47.6	60.6	83.5	38.3	F	27.7	48.4	48.6	47.1	45.1	31.6	30.9	33.6	37.5	27.3	31.3	24.2	30.2	32.2	26.9	1	1	3	29.1	26.0	24.9	30.9	
Hard- ness as CaCO ₃		247	16	690	328	303	382	500	2,380	760	770	1	570	1,330 2,180	1,130	1,170	580	491	463	248	280	279	246	274	560	520	570	268	1,550	500	469	580	610	780	
Dis- solved solids		1,270	1,070	1,270	1,260	890	1,660	1,130	7,300	5,750	1,490	ł	880	2,570	2,630	2,700	1,230	810	730	423	520	418	412	408	880	860	870	496	3,240	860	740	860	890	1,330	
Boron (B)		1.2	1.9	9.	8.	.4	6.	.4	1.3	٠.7	.4	i.	.3		.8	1.6	.6	.4	1	. 2	.3	• 2	.2	• 2	.4	е.	۶.	е.	9.	•2	.3	1.4	е.	.3	
N1- trate (NO ₃)		65	43	134	270	68	41	77	<. ^4	e	121	Ę	24	 8 4. 	e	4.	80	50	31	42	63	31	15	54	31	47	60	70	×. ^	16	48	39	49	220	
Fluo- ride (F)	fnued	4.0	7.0	1.7	2.3	3.8	2.7	.9	1.9	• 3	1.0	Ě	.7	1.9 2.1	1.2	2.6	1.1	1.1	1.0	1.3	1.7	1.6	1.3	1.2	6.	6.	1.2	1.2	2.1	1.6	1.2	1.1	1.4	1.5	
Chlo- ride (C1)	umCont	207	115	309	167	157	210	283	2,970	3,150	436	67	261	820 2,140	1,000	405	334	225	222	35	69	27	27	28	256	214	257	40	1,020	148	190	2.58	288	365	
Sul- fate (SO4)	r fuult vi	189	105	140	163	117	232	205	1,670	21	287	68	105	680 1,150	740	1,210	197	103	65	31	36	30	27	26	84	85	85	53	730	101	76	86	72	133	
Bicar- bonate (HCO ₃)	Quaterna	660	710	498	459	423	510	344	204	840	316	418	351	453 93	54	447	366	296	304	310	320	333	305	299	382	406	317	306	510	570	318	354	331	362	
otas- sium (K)	ion and		1		1 2	1	e	1	7	54	II .	1	2	1	4	2	-	1	E	2	2	2	61	1	-	: 1	F,	H	4	1	1.	1 2	1	-	
Sodium I (Na)	ir Format	384	386	200	308	211	478	209	1,690	1,780	220 *	1	100	046	493	478	217	104 ×	95	58	77	48	52	05	112 <	114 <	> 96	75 <	520	137 <	89 <	64	93	161 <	
Magne- stum (Mg)	Seymon	36	13	86	14	37	43	55	169	141	94	ļ	58	183 260	149	156	77	57	63	26	32	29	26	28	65	58	70	33	196	74	21	74	74	107	
Cal- cium (Ca)		39	14	133	63	61	82	109	680	74	153	ŝ	130	230 444	208	210	104	103	82	56	59	63	55	63	118	113	113	52	295	80	103	111	123	135	
Iron (Fe)		;	£	2	ł	X X	3	t 1	ł	ł	a 1	3	4	11	ł	ţ	3	ġ	4	l.	ł	ł	ł	1	J	Ę	i i	1	ł	I	;	E.	I	ł	
Silica (Si0 ₂)		16	14	25	17	24	22	18	15	~	22	ł	26	19 5	2	15	40	25	24	20	22	22	21	21	28	26	27	22	23	22	25	25	27	28	
Date of ollection		. 3, 1970	do	e 25, 1971	e 24, 1971	e 23, 1971	e 24, 1971	. 8, 1970	. 1, 1970	. 8, 1970	do	. 27, 1943	. 4, 1970	. 12, 1967 . 1, 1970	op	do	do	y 10, 1970	. 19, 1969	. 3, 1970	do	do	op	. 10, 1970	e 10, 1970	do	do	e 17, 1971	do	e 8, 1971	y 2, 1970	do	do	do	
0		Dec		Jun	Jun	Jun	unſ	Apr	Apr	Apr		Oct	Маг	Apr Apr				Jul	Nov	Apr				Apr	Jun			Jun		Jun	Jul		-	_	
Deptt of well (ft)		29	28	30	35	20	20	31	30	38	25	21	50	32	30	30	32	39	41	38	42	41	41	48	42	42	44	31	27	27	47	43	44	36	
Water- bearing unit		Qs	Qs	Qs	qs	Qs	QB	Qs	Qal	Qal	qs	qs	qs	Qa1	Qa1	Qa1	ds	Qs	Qs	qs	qs	Qs	Qs	Qs	Qs	qs	Qs	QB	Qa1	Qs	qs	Qs	Qs	Qs	end of table.
Well		13-56-903	506	906	206	908	606	61-101	104	105	106	201	203	204	206	207	209	211	301	305	310	313	316	317	319	320	322	324	32.5	326	329	333	334	335	e footnotes at
																												_					_		Sec

Well	1	Water- bearing unit	Depth of well (ft)	Date of collection	Silica (SiO ₂)	Iron (Fe)	Cal- cium (Ca)	Magne- sium (Mg)	Sodium (Na)	Potas- sium (K)	Bicar- bonate (HCO ₃)	Sul- fate (SO ₄)	Chlo- ríde (Cl)	Fluo- ride (F)	Ni- trate (NO ₃)	Boron (B)	Dis- solved solids	Hard- ness as CaCO ₃	Per- cent so- dfum	Sodium adsorp- tion ratio (SAR)	Residual sodium carbon- ate (RSC)	Specific conduct- ance (Micromhos at 25° C)	рН
								Seym	our Forma	tion a	d Quatern	ary Alluv	umCont	inued									
13-61-	-336	Qs	39	July 2, 1970	25		107	72	108	< 1	379	84	233	1.6	80	0.5	900	560	29.4	1.98	0.00	1,490	7.5
	337	Qa1	24	July 9, 1970	21		650	168	1,560	8	397	1,610	2,680	1.9	< .4	1.0	6,900	2,310	59.4	14.07	.00	8,890	7.4
	341	Qs	34	Dec. 2, 1970	24		107	49	115	< 1	375	77	208	. 9	37	.2	800	471	34.7	2.30	.00	1,330	7.8
	342	Qa1	31	June 8, 1971	17		153	106	268	4	464	446	399	2.0	< .4	.7	1,620	820				2,390	7.8
	415	Qs	36	Mar. 10, 1960 June 3, 1970	31		109	55	 167	2	474 540		194 193	1.0	64	.4		344 500	42.1	3.25	.00	1,520 1,550	7.4
	420	Qs	28	Nov. 14, 1969	18	• •	72	45	98		389	112	64	1.4	56	4.4	660	363	37.0	2.24	.00	1,010	7.7
	422	Qs	56	Nov. 18, 1969	20	0,58	69	34	155	1	432	108	109	2.4	33.5	.5	740	314	51.8	3.81	.80	1,173	7.6
	425	Qa	51	Mar. 26, 1970	20	••	76	42	115	1	355	94	130	1.0	71	.3	720	362	40.9	2.63	.00	1,100	7.6
0	426	Qs	28	Apr. 8, 1970	22		135	60	230	1	328	247	369	.9	50	.5	1,280	580	46.1	4.13	.00	2,030	7.6
	428	Qs	30	do	22		90	37	136	1	376	96	125	.8	88	.3	780	378	43.9	3.04	.00	1,220	7.7
	501	Qs	43	Apr. 2, 1970	31	**	94	51	118	< 1	381	85	191	1.0	28	.3	790	443	36.8	2.45	.00	1,290	7.7
	503	Qs	56	June 3, 1970	23	**	109	52	127	< 1	338	111	228	.8	45	.4	860	488	36.1	2.50	.00	1,440	7.4
¥	504	Qa	20	Oct. 29, 1943					**	-	388	110	219		1.		**						
	506	Qs	54	Mar. 4, 1970	26	••	141	52	138	2	354	113	314	.7	24	.3	990	570	34.6	2.52	.00	1,650	7.5
	507	Qs	46	do	22		119	58	86	2	290	96	256	.8	29	.2	810	540	25.8	1.61	.00	1,360	7.5
	510	Qs	38	Mar. 6, 1970	26		148	67	205	5	407	173	391	.9	30	.4	1,250	640	40.9	3,51	.00	2,000	7.4
	511	Qs	40	do	25	* 8	142	66	200	3	400	155	384	.8	32	.4	1,210	630	41.0	3.48	.00	1,930	7.4
	513	Qs	29	Nov. 14, 1969	29	**	83	36	99	-	398	60	79	.6	84.5	88	670	355	37.8	2.29	.00	1,025	7.4
	514	Qs	37	Apr. 10, 1970	19	**	74	25	112	3	383	47	96	.9	48	.3	610	288	45.9	2.88	. 52	985	7.5
44 89	515	Qs	36	Mar. 24, 1955 Sept. 4, 1959 Mar. 10, 1960 June 3, 1970	 28 29		138 253 158 180	136 89 94	* 160 422 * 280 311	 1	430 447 441 530	85 307 214 225	164 1,009 540 540	.8	 27 9	.7	989 2,574 1,550 1,730	760 835	44 44.7	4.68	 . 00	2,750 2,650	7.7 7.2 7.4
	517	Qa	40	June 9, 1970	27		129	57	175	< 1	420	131	296	.8	28	.4	1,050	560	40.6	3.22	.00	1,730	7.2
	518	Qs	50	Mar. 24, 1970	27		151	58	235	2	417	• 206	405	.8	28	.5	1,320	620	45.2	4.10	.00	2,060	7.2
	520	Qs	36	Nov. 14, 1969	25		80	43	83		368	65	85	.5	92	++	660	378	32.4	1.86	.00	1,013	7.7
	523	Qs	Call Mr.	Mar. 4, 1970	25	**	111	45	132	2	283	122	250	. 9	40	.3	870	462	38.3	2.67	,00	1,450	7.7
1	527	Qa	37	Mar. 9, 1970	24	++	88	50	83	1	327	84	152	. 9	37	.3	680	426	29.7	1.75	.00	1,110	7.5
	528	Qs	34	do	25	**	208	94	184	3	326	208	570	.7	36	.4	1,490	910	30.6	2.65	.00	2,360	7.4
	529	Qs	38	do June 8, 1971	25 25	••	188 176	89 90	147 150	< 2 1	355 322	139 136	500 474	.7	< .4 42	.4	1,270 1,250	840 810	27.7	2.21	.00	2,110 2,170	7.4 7.5
	531	Qs	31	Mar. 6, 1970	26	••	153	67	138	4	338	117	368	. 6	37	.6	1,080	660	31.3	2.33	.00	1,761	7.5
	534	Qa	35	Oct. 28, 1943 Mar. 9, 1970	22		132	55	218	3	372 375	150 187	262 351	.8	37	.4	1,190	560	46.1	4.03	.00	1.880	7.5
	535	Qa	51	Mar. 10, 1970	25	< .02	114	40	154	1	373	128	207	.6	67	.3	920	451	42.6	3.15	.00	1,480	7.6

See footnotes at end of table.

- 216 -

Table 8.--Chemical Analyses of Water From Wells and Springs--Continued

Well	Water- bearing unit	Depth of well (ft)	Date of collection	Silica (SiO ₂)	Iron (Fe)	Cal- cium (Ca)	Magne- sium (Mg)	Sodium (Na)	Potas- sium (K)	Bicar- bonate (HCO ₃)	Sul- fate (SO ₄)	Chlo- ride (Cl)	Fluo- ride (F)	Ni- trate (NO ₃)	Boron (B)	Dis- solved solids	Hard- ness as CaCO ₃	Per- cent so- dium	Sodium adsorp- tion ratio (SAR)	Residual sodium carbon- ate (RSC)	Specific conduct- ance (Micromhos at 25° C)	pH
							Seym	our Forma	t ition an	nd Quatern	ary Alluv	ium≁-Cont	inued									
13-61-53	Qs	58	Mar. 10, 1970	23		151	53	196	3	386	155	359	0.6	42	0.3	1,170	600	41.6	3.48	0.00	1,880	7.4
53	Qs	45	Mar. 24, 1970	19		91	52	90	1	317	106	164	1.1	42	.4	720	441	30.8	1.87	.00	1,160	7.8
54	Qs	45	do	19	12225	108	61	123	1	343	142	240	1.1	39	.5	900	520	34.0	2.34	.00	1,450	7.5
54	Qs	40	Apr. 12, 1967 Apr. 1, 1970	20 24	10.0.0. (2.0.)	96 115	58 65	125 137	< 1	355 382	97 117	226 245	$1.3 \\ 1.1$	63 60	.5	860 950	478 560	34.9	2.52	.00	1,450 1,570	7.6 7.6
55	Qs	32	Apr. 12, 1967	20	200	85	63	150		346	131	232	1.3	63		920	470	1441			1,550	7.5
55	Qs	54	Mar. 27, 1970	33		115	43	208	< 1	397	122	266	1.0	88	.4	1,070	467	49.2	4.18	.00	1,700	7.2
55	Qs	38	Apr. 8, 1970	27	**	107	47	176	20	455	141	213	Ι.Ο	80	.4	1,040	462	45.3	3,56	.00	1,590	7.5
55.	Qs	51	do	25	11220	98	49	121	2	433	88	168	1.1	42	.4	810	448	36.9	2.48	.00	1,300	7.6
55	Qs	37	Apr. 10, 1970	36	1.00	132	49	179	< 1	329	91	344	1.0	94	.4	1,090	530	42.2	3.37	.00	1,750	7.5
56	Qs	39	do	2.5	10.775	110	49	148	3	378	96	240	1.0	43	.3	900	476	40.4	2,96	.00	1,500	7.6
56	Qs	32	June 2, 1970	25		97	42	184	< 1	412	114	218	. 8	35	.4	920	415	49.2	3.94	.00	1,510	7.5
56	Qs	39	do	27		140	55	193	2	484	133	294	.7	28	.4	1,110	580	42.1	3.50	.00	1,770	7.5
564	Qs	50	June 3, 1970	25	-	114	42	205	< 1	393	108	296	.8	39	.4	1,020	459	49.3	4.16	.00	1,700	7.3
56	Qa	50	do	24	12:27	119	43	205	< 1	392	140	297	.9	34	.4	1,060	475	48.4	4.09	.00	1,730	7.7
56	Qa	39	do	28	**	213	73	330	2	531	236	550	.7	74	.6	1,770	840	46.2	4.97	.00	2,670	7.5
<u>8</u> 57	Qa	32	Aug. 12, 1960 June 2, 1970	27	-	90 101	43 41	117 134		357 426	118 85	171 164	1.5	43	.3	896 810	 422	 41.3	2.89	.00	1,290	7.7
57	Qs	56	June 4, 1970	23		100	47	95	< 1	309	97	169	1.0	58	.4	740	445	31.7	1.96	.00	1,200	7.3
57	Qs	43	July 30, 1970	28		91	39	133	< 1	416	77	152	1.1	49	.4	780	388	42.8	2.95	.00	1,220	7.5
57	Qs	44	do	2.9		92	37	126	< 1	416	76	141	1.2	48	.4	760	381	41.9	2.81	.00	1,160	7.4
58	Qs	44	June 8, 1971	15	1220	97	52	92	< 1	260	51	271	.6	15	.3	720	454	(mm)			1,250	7.6
58	Qa	629	Apr. 12, 1967	25	**	186	87	324	125	451	260	610	1.1	14	1.4.4	1,730	820	**			2,850	7.2
60	Qa	46	July 20, 1953 Apr. 16, 1970	25		56 140	46 43	* 94 133	2	287 378	48 113	178 264	.7	20	.3	660 930	530	38.5 35.5	2.53	.00	 1,530	8.0 7.4
60	Qs	51	do	30		101	36	85	2	316	75	145	.7	39	.2	670	400	31.5	1.84	.00	1,090	7.4
610	Qs	43	June 9, 1970	28		103	46	82	< 1	316	69	170	1.0	61	.2	720	446	28.5	1.69	.00	1,163	7.5
<u>3</u> 61	Qa	30	Oct. 10, 1943 Mar. 4, 1970	24		128	47	109	ĩ	318 295	100 102	158 244	.8	88	.3	890	 510	31.7	2.10	.00	1,450	7.7
61	Qa	51	Mar. 24, 1970	24		136	40	154	1	346	150	291	.6	13	.4	980	500	39.9	2.98	.00	1,560	7.3
61	Qs	36	Mar. 26, 1970	21	1777.1	65	28	47	1	290	34	40	1.3	64	.2	444	280	26.8	1.23	.00	740	7.6
61	Qs	44	do	22		66	29	57	< 1	300	38	41	1.1	84	.2	486	285	30.4	1.47	.00	745	7.6
61	Qs	44	do	22		68	33	63	< 1	307	52	55	1.1	81	.2	530	306	31.1	1.58	.00	806	7.6
62	Qs	40	Apr. 16, 1970	25	1440	80	36	52	< 1	367	34	61	.8	41	.2	510	347	24.6	1.21	.00	826	7.6
62	Qs	36	do	26		105	42	64	2	305	58	168	.7	28	.2	640	435	24.3	1.34	.00	1,067	7.5

See footnotes at end of table.

and first in Concerns, different of particle work particle and gline Trans second

		_			_				_	_		_											-						
ht .		7.5	7.4	7.4	7.5	7.9	7.5	7.4	7.5	7.8	7.4	7.5	7.5	6.9	7.7	8.3	7.4	7.6	7.7	7.6	7.5	7.5	7.9	7.9	7.8	7.0		1	8.2
conduct- ance (Micromhos at 25° C)		853	762	965	729	956	206	1,650	1,024	1,165	936	1,760	658	 9,470 > 12,000	 967 1,750	1,196	1,780	1,400	1,040	1,700	1,390	1,830	2,310	1,250	1,250	 4,450 1,690	ł	1	2,050 3,150
sodium carbon- ate (RSC)		0.00	00.	.00	00.	00.	00*	00.	.00	.00	11	:	ł	:::	1111	.84	.00	.42	1.65	.00	00*		ł	:	;	1:1	1	ŧ	
adsorp- tion ratio (SAR)		1.03	.85	1.08	1.50	1.91	1.70	1.93	2.34	1.73	11	1	;	12	: e : :	4.90	3.64	4.27	3.44	5.08	3.39	3.04	1	:	ł	111	;	1	5.6
Per- cent so- dium		21.5	18.4	21.0	31.3	33.8	31.7	27.8	39.2	28.9	11	1	1	1 28 1	1 1 20 1	60.5	43.5	52.8	50.4	55.5	45.3	45.2	÷	:	;	:::	t	÷.	39.7
Hard- ness as CaCO ₃		353	360	416	2.72	349	335	620	331	454	353	710	260	 2,090 4,380	256	257	560	365	288	415	419	456 340	510	428	316	 1,310 487	346	3	385
Dis- solved solids		530	480	570	448	610	560	940	610	710		1,210	424	$ \begin{array}{c} 1,964 \\ 5,380 \\ 11,700 \end{array} $	805 571 682 1,080	760	1,130	880	660	1,090	860		1,440	810	740	1,903	718	1	1,080 2,080
Boron (B)		0.1	.2	•2	٦.	.3	.3	е.	• 2	.2	::	.2	.2	112	1119	.4	4.	••	.3	• 2	.3		ψ.	.3	г.		ţ	1	15
N1- trate (N0 ₃)		06	41	41	49	75	55	27	11	36	43	53	46		1 1 1 84	19	75	27	29	27	64		32	57	×. ^4	1 1	112	:	12
ride (F)	panu	0.8	.7		.8	1.6	1.3	6.	.7	1.2	5	×,	.4			1.6	1.7	1.6	1.7	1.5	1.3	1.4	1.1	1.6	1.4	1.6	2.1	3	: **
colo- ride (Cl)	umCont	66	37	102	48	86	89	322	151	167	38 124	269	29	3,080 7,100	91 70 83 330	144	302	163	79	216	157	268 94	560	126	192	769 1,220 278	96	74	365 750
sut- fate (SO4)	ry Alluvin	33	26	26	14	39	43	69	81	72	24 45	309	33	129 158 174	63 58 72 104	130	109	123	99	196	78	 72	153	106	14	130 124	92	44	175 344
bonate (HCO ₃)	Quaterna	253	388	377	296	372	321	368	289	351	287 292	337	305	418 368 238	440 426 347 409	365	466	471	451	500	481	477 510	338	450	489	410 401 462	164	467	278 473
stum (K)	ton and	- V	1	F.	1	1	E V	1	1		11	m	1	112	1110	2	2	1	1	2	1.	10	2	ы	4	5	:	1	2
(Na)	r Format	44	37	51	57	82 <	72	111	• 86	85 <	63	141	52 <	356 1,250 2,780	110 120 89 204	181	198	188	134	238	159 <		336	127	170	319 204	139	ţ	253
	Seymou	4	2	2	1	0	9	2	6	20	1.0	9	-	*	*	-	5	0		-		i.e.	10	•		0.1.0	*		*
stu Stu (Mg		ñ	ŝ	5	m	40	ñ	1	ň	45	14	99	2	101 242 371	2223	4	9	40	34	15	49	41	66	49	36	105	43	;	55 89
ctum (Ca)		85	16	105	58	75	42	132	68	102	72	174	70	159 440 1,140	62 48 55 103	25	120	80	59	83	86		95	06	67	165	68	1	64 297
(Fe)		1	ł	ł	:	:	1	ł	ł	ł	1.)	ł	ł	:::	1111	ł	1	;	ł	ł	1	13	ţ	¥.	ţ	:::	1.0	;	1.1
(S102)		24	23	24	16	25	27	27	16	24	27	24	23	29	11	28	27	27	29	29	30	27	27	25	20	22	24	;	24 29
lon		1970	1970	1970	1970	1970	1970			1970	1943	1971		1959 1960 1971	1959 1960 1960 1971	1970	1970	1970	1970			1960	161			1959 1960 1971	1943	1943	1955
llect		16,	8,	9,	10,	2,	з,	op	qo	2,	29, 12,	25,	op	10, 9,	6, 28, 4,	,6	24,	2,	3,	op	op	30,	6	qo	op	17, 10,	21,	25,	28.
0		Apr.	June	June	June	July	July			Dec.	Oct. Apr.	June		Aug. Mar. June	Aug. Mar. July June	June	Mar.	June	June			Mar. July	June			Aug. Mar. June	Oct.	Oct.	Nov. June
of well (ft)		42	ţ	ŧ	;	34	43	45	91	34	20	40	37	50	20	54	40	50	56	52	46	36	42	29	40	50	30	18	44
earing unit		Qs	Qs	Qs	Qs	Qs	Qs	Qa	Qs	Qu	Qu	Qs	Qs	de.	Qs	Qs	Qs	Qs	Qs	Qs	Qs	Qs	Qs	Qs	Qs	Qs	Qs	qs	Qs
4																					~	-						-	1.12
le11 b		-61-623	625	626	630	637	639	640	642	643	645	646	647	101	702	703	704	206	707	708	202	112	713	114	715	716	717	801	805

Well	bearing	of well (ft)	00	ollectio	u (SI)	02)	(Fe)	ctum (Ca)	stum (Mg)	(Na)	stum (K)	bucar- bonate (HCO ₃)	$fate (SO_4)$	ride (C1)	ride (F)	trate (NO ₃)	Boron (B)	DIS- solved solids	ness as CaCO ₃	Per- cent so- dium	tion tatio (SAR)	sodium carbon- ate (RSC)	conduct - ance (Micromhos at 25° C)	Hq
									Seymo	ur Forma	tion and	d Quaterna	ry Alluv	LumCont	Inued									
13-61-807	Qs	28	Oct.	22, 1	- 676	:	1	;	ł	3	;	334	120	287	1	;	Å.	ł	t	8.	÷	i.	ł	1
<u>4</u> 808	Qs	47	May June	14, 1 2, 1	953 - 970 3	17	1.1	186 92	79 44	* 460 254	1 =	51.2 530	293	550 255	0.9		0.5	2,115 1,110	410	56.0	5.46	0.42	1,700	7.8
808	Qs	50	Apr.	1, 1	970 2.	4	1	76	48	118	e	381	60	179	1.5	37	.4.	730	387	39.9	2.61	.00	1,200	7.8
812	Qs	51	Nov.	18, 1	969 2.	5	ţ	69	45	305	ł	540	195	257	1.1	13.5	4	1,170	360	64.9	7.00	1.71	1,845	7.9
813	Qs	34		op	2.	4	1	117	56	141	;	307	55	348	.8	26.5	1	920	52.0	36.9	2.68	.00	1,640	7.4
817	Qs	55	Mar.	24, 1	970	9	:	95	64	351	7	530	121	540	1.3	×.	\$	1,460	500	60.3	6.82	.00	2,410	7.3
818	Qs	45	_	op	2	8	1	147	105	590	4	510	580	770	1.8	12	6.	2,490	800	61.7	9.11	.00	3,450	7.4
820	Qs	60	Apr.	2, 1	970 21	9		113	51	351	4	510	238	415	6.	21	ŝ	1,470	165	60.9	6.90	.00	2,300	7.6
821	Q8	52	June	2, 1	970 2	6	:	112	63	244	2	540	203	268	1.0	48	ŝ	1,240	540	49.6	4.57	.00	1,910	7.4
823	Qs	54	Apr.	12, 1	967 21 970 21	99	::	76 51	49 28	228 159	1	495 464	157 83	200	1.5	18 20	: 4.	1,000	394 241	59.0	4.46	2.78	1,600	7.5
824	Q.6	59	Mar.	27, 1	970 2	6	1	168	103	220	4	467	121	570	1.1	17	.4	1,460	840	36.1	3.29	.00	2,410	7.5
825	Q18	36	Apr.	10, 1	970 2.	5	:	66	36	104	6	421	84	137	1.1	1.5	.2	700	393	36.4	2.27	.00	1,126	7.5
830	Qs	47	June	2, 1	970 21	80	,	169	96	324	2	540	296	540	1.1	21	.7	1,740	820	46.3	4.93	.00	2,650	7.6
831	Qa	49		op	21	8		190	26	284	2	479	192	610	6.	6	9.	1,650	870	41.4	4.17	.00	2,670	7.3
832	QB	53		qo		s,	;	26	44	296	e	530	19	324	.4	×.	.4	980	245	72.5	8.24	3.82	1,730	7.5
834	QB	57		op	3.			126	78	291	н	520	177	437	1.1	20	1.	1,420	079	49.9	5.02	.00	2,300	7.6
835	Qa	54		qo	2		:	77	44	375	н	560	238	324	1.0	17	9.	1, 380	373	68.6	8.45	1.72	2,120	7.7
836	Qs	59		qo	2	6	1	105	54	323	н	530	218	352	1.2	25	9.	1,370	487	59.1	6.37	.00	2,130	8.1
837	Qa	51		op	3	-	÷	137	88	362	e	530	302	500	1.2	29	.7	1,710	210	52.7	5.92	.00	2,650	7.6
838	Qs	54	June	11, 1	970 21	8		100	63	229	2	520	149	2.90	1.2	31	.5	1,150	510	49.4	4.41	.00	1,770	7.5
839	Qs	45	July	22, 1	970 31	-	:	90	42	221	۲ ہ	487	172	199	1.1	46	.4	1,040	396	54.8	4.83	.07	1,640	7.7
843	Qs	52	June	9, 1	6 116		:	128	74	253	1 >	510	237	368	1.1	21	• 5	1,360	630	1	1	;	2,080	7.6
844	Qs	39		op	m		:	120	16	413	H	540	323	580	1.2	15	9.	1,840	670	ŧ	÷	8	2,770	7.8
846	Qs	35		op	24	4	:	72	47	176	1 >	540	136	113		32	4.	870	372	ł	ŧ	×	1,300	7.7
847	Qs	24		op	21	-		64	37	118	1 >	470	85	39	.8	42	4.	640	312	;	1	:	196	8.0
106	Qs	47	Mar.	24, 1	970 2			236	107	269	3	333	349	710	1.1	38	.7	1,900	1,030	36.2	3.65	.00	2,850	7.2
904	Qs	48		qo	3	-		112	94	158	2	390	167	224	1.0	30	۳.	960	469	42,3	3.17	.00	1,500	7.4
206	Qu	67		qo	26	. 9	1	156	62	176	2	336	206	380	1.0	24	۶.	1,200	640	37.2	3.01	.00	1,870	7.5
910	QB	50		op	2.	5		139	45	99	2	293	68	240	1.1	20	.2	750	530	21.2	1.24	.00	1,250	7.3
116	Qs	44	June	2, 1	970 32		1	165	68	276		407	234	487	1.0	43	s.	1, 510	069	46.4	4.57	.00	2,380	7.4
912	Qs	47	July	3, 1	970 3:	5		70	53	268	r v	362	210	327	1.1	23	.5	1,170	390	59.9	5.89	.00	1,870	7.2
913	Qa	34	June	25, 15	11 116		,	87	134	520	1 >	700	455	520	2.3	190	.7	2.270	770	:			0 0 0	0

										_														_	_	-	_							
μd		7.6	8.0	7.7	1	8.0	7.4	7.5	5	;	7.6	7.6	7.6	7.7	7.5	7.2	7.4	7.6	7.6	7.4	7.5	7.5	7.8	7.4	7.4	7.5	8.0	7.5	7.6	7.8	7.2	7.4	1	7.4
Specific conduct- ance (Micromhos at 25° C)		1,300	1,055	719	E	1,080	960	1,067		961	839	1,190	798	1,060	1,048	1,004	1,041	1,023	1,115	975	984	835	595	607	613	654	1,090	950	1,010	716	751	795	1	658
esidual sodium carbon- ate (RSC)		1.09	.00	.00	ł	;	.00	.00	.19	1	1	00.	.00	•00	.00	.00	.00	.00	.17	•00	.00	.00	00.	•00	.00	.00	.00	;	1	;	ţ	.00	1	.00
Sodium R adsorp- tion ratio (SAR)		3.06	2.28	1.36		1.5	1.63	2.08	1.79	1	1	2,13	2.08	2.17	2.43	2.37	2.31	2.70	3.30	1.81	2.21	1.39	1.05	.95	1,10	. 99	2.33	T	1	;	:	1.53	1	1.13
Per- cent so- dium		42.8	37.4	28,8	1	29.8	29.5	34.4	34.8	34	1	33.8	39.0	35.9	39.2	39.3	37.6	42.6	47.8	32.1	37,5	27.4	25.1	22.6	25.6	22.9	37.6	;	:	£	;	30.3	1	25.4
Hard- ness as CaCO ₃		418	363	285	3	ł	380	393	281	324	281	436	265	374	355	334	369	331	325	365	340	340	243	262	258	277	376	342	344	233	309	311	;	276
Dis- solved solids		780	650	462	t	689	630	670		586	506	800	520	670	690	590	700	640	700	650	620	550	367	384	392	410	690	690	710	530	485	510	1	422
Boron (B)		0.6	• 3	1	1	ł.	ţ	.4.	11	1	.26	1	.2	.4	4.	4.	٠.5	.4	.4.	е.	۰.	.2	.2	.2	•2	.2	с.	4	ł	ł	.1	с.	;	.2
NI- trate (NO ₃)		< 0.4	29	60	1	4	98	60	30	75	58	178.5	88	92	80	6.5	9.2	39	54	119	60	100	70	49	44	42	99	95	130	33	82	58	1	49
Fluo- ride (F)	panu	1.3	1.3	1.2	t	ŧ	2.5	1.3	: 8.)	1.2	1.4	1.6	1.1	1.2	1.6	1.2	1.2	1.3	1.1	1.1	1.1	1.1	1.0	6.	6.	1.1	1.2	1.5	1.2	1.3	1.4	1	1.4
Chlo- ride (G1)	umCon t	176	111	37	183	64	64	84	125 50	68	64	92	37	110	92	85	64	94	106	68	85	32	29	26	25	39	119	43	53	36	32	65	90	27
Sul- fate (SO ₄)	y Alluvia	16	67	17	210	67	69	60	68 48	55	50	93	46	99	88	65	100	69	75	60	19	39	24	26	29	38	67	56	48	50	34	44	44	36
Sicar- bonate (HCO ₃)	Quaternar	580	384	306	402	372	356	445	189 354	341	326	350	32.1	340	362	403	104	397	905	331	364	365	265	277	289	281	368	32.3	306	277	323	340	328	306
)tas- Hum (K)	on and	2	-	1	1	1	Ŧ	2	 	1	2.1	1	1	1	1	1		-	1	-	1	1	1	1	1	1	1	1	1	1	8	-	1	-
odium P. (Na)	Format1	144	100 <	53	ł	64	73	95	69	78	74	102	78 <	96	105 <	100 <	102 <	113 <	137 <	> 62	> 46	59 <	37 <	35 <	> 17	38 <	104 <	58	63	54	50	62 <	ţ	43 <
gne- S (g)	Seymour	55	44	27	1	8 *	39	17	13	35 *	31	90	28	44	0	37	94	36	36	55	32	35	5	30	56	63	12	36	1	3	36	36	:	=
1 - Ma um a) (a		5	5	60	1	4	88	6	1 12	2	5	2	0	1	2	e	3	5	0	6	5	8	6	9		5	6	-	0	-	5	9		0
Ca Ca		~	-		-	Ħ	8	~			0	5	9	-	~	~	-	-	2	~	80	~	.n.	5	9	11	80	08 7	40 6	04 5	9	9		9
ca Iro 2) (Fe	_	1	1	1	*	:	1	1	: :	1	:	1	1	:	ł	:	1	1	1	1	1	ł	1	:	1	1	ł	0			1	1	:	1
Sili (SiO		0 24	0 22	9 24	5		9 21	0 24	9 21		5 28	9 22	0 25	0 22	24	23	24	23	22	23	27	0 22	0 24	25	0 23	0 118	0 25			3	1 24	0 23	3	0 25
e of ection		3, 197	24, 197	13, 196	29, 196	1, 196	18, 196	10, 197	19, 194	10, 195	28, 195	18, 196	9, 197	10, 197	op	op	do	do	do	op	do	3, 197	28, 197	do	29, 197	22, 197	12, 197	8, 196	20, 196	do	15, 197	29, 197	18, 194	29, 197
Dat coll		Apr.	Mar.	Nov.	Oct.	Apr.	Nov.	Apr.	Oct. Nov.	Apr.	Nov.	Nov.	Apr.	June								July	July		July	Sept.	Nov.	Feb.	Feb.		June	July	Oct.	July
Depth of well (ft)		40	47	27	58	36	47	37	32	35	34	34	37	52	46	42	39	45	45	29	39	34	28	40	38	42	39	44	36	35	43	42	27	41
Water- bearing unit		Qs	Qs	qs	Qs	Qs	Qs	Qs	Qs	Qs	Qs	Qs	Qs	Qs	Qs	Qs	Qs	Qs	Qs	Qs	Qs	φs	Qs	Qs	Qs	Qs	Qs	Qs	Qs	Qs	Qs	Qs	Qs	Qs
Well		13-62-101	102	106	112	114	115	116	117	119	124	125	135	138	139	140	141	142	143	144	147	148	149	150	152	153	155	157	158	160	201	202	203	207
					91	4			91	ला	<u>s</u> ul																						57	

		1.1																																
Hď		7.4	Ē	7.4	7.4	7.3	7.2	7.7	7.5	7.5	7.6	7.9	7.6	7.9	7.4	7.7	7.5	7.6	1.7	7.7	7.5	7.5	7.4	7.6	7.7	7.4	7.8	7.5	7.5	7.6	7.5	7.5	7.5	7.5
conduct- ance (Micromhos at 25° C)		698	£	619	192	696	189	619	778	675	726	740	742	610	783	736	715	827		6,040	699	978	145	562	570	984	1,190	969	667	834	800	773	705	702
sodium carbon- ate (RSC)		00.00	:	.33	.00	.30	1.77	00,	•00	.00	.00	.00	.00	ţ	9	;	*	;	3.22	.00	.00	.00	90*	.38	.30	.00	1.09	.58	.64	. 58	.22	.00	.00	.00
adsorp- tion ratio (SAR)		0.97	;	1.70	1.64	1.27	2.62	1.16	1.12	.88	1.37	1.47	1.09	1	đ.	ŧ	1	4.5	2.90	18.55	1.16	2.02	.73	1.40	1.10	1.81	2.96	1.74	1.77	2+58	2.26	2.12	1.10	.90
Per- cent so- dium		21.7	ł	36.7	32.8	27.0	49.2	26.6	23.4	20.3	28.9	30.4	23.7	:	1	ł	ł	ł	48.5	75.6	25.9	34.9	19.2	32.7	26.5	32.1	42.6	35.3	36.7	44.9	41.5	40.4	24.0	20.3
Hard- ness as CaCO ₃		303	ł	215	284	294	184	254	333	301	285	285	308	258	336	281	311	318	236	890	277	353	235	209	234	365	398	253	235	251	254	243	304	315
Dis- solved solids		439	1	383	477	431	381	389	167	434	470	464	472	380	167	481	457	530	510	4,320	429	610	322	350	355	640	770	423	423	530	530	487	460	452
Boron (B)		0.2	ł	ł	ł	1	.3	.2	.2	.2	.2	с.	.2	.1	.4	.3	.2	4.	. 9	3.8	.1	e.	-	.2	.2	.2	ł	;	.2	.3	•.3		.1	.2
N1- trate (NO ₃)		67	i	28.5	40	18.5	8	37	67	48	76	99	74	23	11	38	67	81	1 >	44	64	43	8.3	25	31	93	25.5	29	29	58	96	69	54	70
Fluo- ride (F)	Inued	0.9	ł	1.7	1.6	.8	.7	1.6	.8	1.0	1.2	1.0	6.	6.	1.2	1.3	1.0	1.0	1.4	1.6	1.0	1.1	• 5	1.9	1.2	1.1	6.	1.0	1.0	1.0	1.1	1.1	1.0	1.1
Chlo- ride (C1)	umCont	34	63	26	55	22	52	27	40	39	32	15	45	45	28	51	31	58	48 27	1,550	25	81	27	18	12	78	75	29	21	55	15	51	26	30
Sul- fate (SO4)	ry Alluvi	34	48	31	49	14	7	36	44	25	42	43	56	26	36	643	36	41	64 38	810	30	65	13	30	23	55	108	33	47	15	40	58	35	29
Bicar- bonate (HCO3)	Quaterna	315	342	282	311	377	332	289	348	323	298	307	257	275	458	338	317	317	425 484	770	301	378	290	278	304	378	550	344	326	340	323	278	348	314
Sotas- sium (K)	ion and	- V	;	Ţ	ŕ	ť	9	1 >	1 >	1 >	1 >	1 >	< 1	< 1	1 >	1 >	< 1	< 1	18	1 >	1 >	< 1	S	1	< 1	r v	:	;	1	< 1	2	1 >	< 1	I V
Sod1um (Na)	ir Format	39	;	57	64	50	82	42	47	35	53	57	44	39	64	67	14	63	102	1,280	44	87	26	47	39	62	136	63	63	- 176	83	- 10	44	37
Magne- stum (Mg)	Seymo	29	;	23	33	36	20	31	29	29	29	30	26	22	43	32	34	35	30	172	27	36	16	61	22	39	46	33	21	22	22	23	27	29
cium cium (Ca)		73	1	47	60	58	40	51	85	73	67	64	81	68	63	60	68	70	45	416	67	81	68	53	57	83	84	47	09	99	65	59	77	78
Iron (Fe)		ŗ	ŧ	ţ.	:	÷	;	< 0.02	:	ţ	:	;	;	:	÷	1	:	;	1.1	;	1	1	:	1	1	;	1	:	;	:	ł	;	3	;
\$11fca (\$10 ₂)		25	1	19	21	19	7	21 <	25	25	23	21	19	21	20	23	23	23	12	11	23	26	15	18	21	22	20	19	20	20	19	13	25	24
Date of collection	12020255	y 28, 1970	. 20, 1943	. 21, 1969	. 20, 1969	. 21, 1969	. 24, 1970	do	y 28, 1970	do	op	t. 22, 1970	op	ie 8, 1971	e 15, 1971	do	do	op	. 19, 1943 . 13, 1969	y 31, 1970	e 10, 1970	op	. 11, 1970	. 9, 1970	. 9, 1970	do	. 18, 1969	do	. 11, 1970	do	. 3, 1970	. 9, 1970	op	e 10, 1970
с 4		Inc	Oct	Nov	Nov	Nov	Mar	-	Jul		-	Sep	-	Jun	Jun	-	-	-	0ct Nov	Jul	Jun		Mar	Mar	Apr		Nov		Mar		Apr	Apr	-	Jun
Dept of well (ft)	1010	29	40	40	15	30	33	44	28	30	29	42	42	37	27	95	44	39	14	20	39	39	38	42	07	19	30	30	39	42	47	60	40	35
Water- bearing unit		Q8	Qs	qs	Qs	Qs.	Qs	Qs	Q_B	Qs	Qs	QB	Qs	Qs	qs	Qs	Qs	Qs	Qs	Qal	Qs	qs	qs	Qs	Qs	Qs	QB	Qal	Qs	Qs	Q8	Qs	Qs	Qs
-		52-208	210	211	214	215	218	220	221	222	223	230	233	236	238	241	243	244	301	302	401	403	406	607	413	414	415	416	418	421	423	424	425	426

щ	1	4.	9.	.4	9.	.6	4	.7	6.	,	8.	8.			.6	4.	0.	.7	4.	.6	0.	.6	6.	s.	8.	9.	5	9.	6.	0		6	-	-
fict - ict - e mhos • C)		970 7	7 867	894 7	935 7	7 7		650 7	835 7	1	7 0/7	9 000	930 7	,	176 7	128 7	800 7	010 7	640 7	734 7	000 7	734 7	7 262	697 7.	050 7	310 7	008 7.	660 7.	690 7.	000 7.	000 7.	020 7.	ŕ	
Condu condu anc (Mtcro at 25							1			1		>12,	З,	1	1,	1,	з,	6,	З,		>12,				1,	1,	s,	1,	1,	>12,	>12,	З,	ł	
Residual sodium carbon- ate (RSC)		00.00	.00	.00	•00	;	;	.80	1.37	}	.02	.00	.00	ł	:	5.26	1	1	;	;	;	1.81	.00	.00	;	1	:	.00	.00	;	;	1		
Sodium R idsorp- tion ratio (SAR)		1.26	1.41	1.84	2.01	;	ł	1.31	2.30	1	1.17	12.24	4.11	;	;	7.81	;	;	:	1	:	3.11	.83	1.35	a a	;	1	3.56	4.65	;	ł	;		
Per- cent so- d1um		23.5	28.4	33.7	35.5	;	ł	28.4	40.6	ł	24.2	39.1	35.6	1	1	76.4	1	ŀ	}	;	1	52.8	17.9	28.9	;	;	;	43.7	52.4	;	t	ł		
Hard- ness as CaCO ₃		419	314	328	334	247	ţ	231	283	266	338	9,100	1,380	656	153	145	780	1,470	1,070	324	6,000	193	364	276	180	386	1,180	530	444	4,100	6,600	590		
Dis- solved		640	500	560	590	484	f	393	510	500	461	16, 100	2,280	2,080	760	710	2,460	4,520	2,520	414	1 006 / 2	473	482	437	680	850	3,410	1,030	1,030	9,600	006 '03	2,000		
Boron (B)		0.2	.2	.3	.3	1	ţ	1	4.	;	е.	6.	.8	:	1.0	1.	.6	1.6	8.	;	1	.3	4.	.2	.5	.4	.6	5.	5.	1	1	1.3		
N1- trate (N0 ₃)		104	64	42	56	73	1	11	11	20	4.	4	21	50	2	20	4. 3	104	552		4	56	48	60	43	42	4 4	39	4	4	4.	9		
Fluo- ride (F)	ped	0.9	1.3	1.1	1.2	1.3	;	1.1	1.3	1.7	ø.	· 8.	1.8	Î	4.3	3.3	1.2 <	1.7	4.0	æ.	1.0 <	9.	s.	.4	1.6	6.	4.	1.1	.7	.7	æ,	3.8		
Chlo- ride (C1)	Contin	40	48	65	72	38	770	16	44	643	05	0,400	1,240	610	68	49	1,050	1,520	670	13	7,800	26	09	40	72	145	1,610	241	260	5,900	2,900	620		
ul- ate SO4)	Alluvium	57	50	47	52	51	600	31	52	54	47	9 1	56	418	107	100	424	,120	321	16	270 1	45	39	35	89	123	372	131	123	27	67 1	605		
tr- S ste f 03) (ernary	-							-									1	-		-										-			-
- Bica bona (HCC	nd Quat	420	311	383	375	301	851	381	428	395	414	383	355	566	550	498	220	451	340	451	192	345	337	296	447	470	379	510	540	295	234	464		
Potas stum (K)	ation a	3	< 1	1 >	۲ ۷	ł	1	1	ч V	1	v	۲ ۷	r v	ł	1 ×	< 1	1 V	۲ ۷	1 >	ł	1	۲ ۷	۲ ۷	1 >	ч V	٦ ٧	s	< 1	1 V	ł	l	ri V		
Sodium (Na)	ur Form	59	57	17	85	72	8	50	89	* 90	50	2,680	351	* 526	240	216	620	1,090	197	40	4,510	66	36	52	184	164	830	188	225	2,120	5, 500	530		
Magne- stum (Mg)	Seymo	42	33	37	37	26	;	40	40	39	97	, 160	207	105	24	23	107	210	163	37	,880	25	49	34	29	53	131	79	62	409	464	100		
Cal- cfum (Ca)		98	71	71	73	56	÷	43	47	42	09	, 710	212	90	21	21	137	241	159	69	3,300	35	64	55	25	67	257	80	75	970	,860	70		
Iron (Fe)		:	1	1	1	1	;	ł	1	0,40	Ŧ	1	I.	1	ł	1	;	1	I	;	;	1	;	1	;	Ŧ	;	;	:	;	;	1		
Silica (Si0 ₂)		24	25	27	27	19	÷	14	15	13	13	30	17	;	14	14	11	13	23	16	20	16	19	15	16	23	22	20	16	16	15	16		
of tion		1970	1970			1967	1943	1970		1943	1970	1970		1943	1971	1970	161	1701	1971	1964		1970			1971		1971	1970		1964		1971		
Date collec		une 10	uly 3,	op	op	pr. 12,	ct. 20	an. 26,	op	ct. 30	an. 26	uly 30,	do	ket. 9,	une 22,	ov. 11,	une 23,	une 24,	une 25,	uly 8,	op	ec. 3,	op	op	une 24,	op	une 23,	ec. 3,	op	uly 7,	do	une 9,		
Depth of well (ft)		42 3	41 3	45	44	38 A	11 0	22 3	10	18 0	L9 J	Spring J	32	23 6	28 3	29 N	20 3	26 3	36 J	22 3	27	30 D	38	36	35 .1	33	22 3	40 D	Spring	15 J	1	32 3		
Water- bearing unit		qu	Qs	qu	qa	Qs	Qul	Qal	Qal	Qal	Qal	Qa1	Qa1	Qal	Qal	Qal	Qal	Qs	Qs	Qal	Qal	Qu	Qa	Qu	Qu	Qn	Qa	Qs	Qa	Qal	Qal	Qal		
Well		13-62-428	431	432	433	434	502	515	520	521	526	527	528	530	101	702	63-301	302	64-301	602	604	14-49-401	402	403	404	101	702	801	802	57-401	402	21-05-202		

See footnotes at end of table.

Well	Water- bearing unit	Depth of well (ft)	Doo	ate of llectic	51 (51	11ca 102)	(Fe)	ctum (Ca)	stum (Mg)	(Na)	sium (K)	bonate (HCO ₃)	fate (SO4)	ride (C1)	ride (F)	trate (NO ₃)	(8)	solids	ness as CaCO ₃	cent so- dium	tion ratio (SAR)	carbon- ate (RSC)	ance (Micromhos at 25° C)	ЪЯ
												Permian	Rocks											
-45-701	Pprea	50	June	9, 1	126	23	;	19	46	127	1	384	169	67	2.2	38	0.6	720	343	44.6	2.99	0.00	1,080	7.6
203	Ppraa	30		op		29	;	81	64	117	1	482	221	15	1.8	17	۲.	820	466	35.2	2,35	•00	1,198	7.5
813	Pprsa	40	Feb.	17, 1	970	16	:	128	68	192	4	290	128	452	.6	14	.8	1,150	600	40.9	3,40	°00,	1,940	7.5
816	Pprsa	35	June	9, 1	126	16	;	59	25	38	< 1	267	39	18	.7	50	.2	377	251	24.6	1.04	• 00	588	7.8
46-702	Pcf	28	Feb.	17, 1	970	18	;	96	34	48	< 1	362	47	45	.6	95	4.	560	381	21.6	1.08	.00	864	8.0
53-108	Pprsa	Spring	Nov.	3, 1	970	20	;	65	55	68	1 >	468	100	32	6.	12	s.	580	390	27.6	1.50	.00	898	8.2
109	Ppres	45	June	9, 1	116	25	;	54	21	15	1 >	250	16	8	1.0	17	.1	280	221	12.8	1.49	•00	444	7.5
110	Pprea	15		op		21	;	41	60	89	< 1	483	61	23	2.3	50	.6	580	347	35.8	2.08	66.	894	7.8
402	Pcf	26	Nov.	3, 1	970	17	;	153	81	129	1 >	371	419	160	.8	13	1.	1,160	710	28.2	2.10	.00	1,660	7.4
503	Pcf	24	Nov.	6, 1	970	17	;	103	80	56	1 >	339	374	85	1.5	1.8	s.	0%6	590	25.7	1.68	.00	1,330	7.3
63-201	Pcf	30	June	24, 1	126	17	;	325	278	1,650	1 >	383	1,930	2,150	2.0	187	2.3	6,700	1,960	64.7	16.19	•00	8,230	7.5
64-601	Pcf	20	June	23, 1	116	17	1	96	78	510	1 >	640	452	469	1.1	32	6.	1,970	560	66.4	9.34	.00	2,870	7.5
603	Pcf	14	July June	8, 1 23, 1	964	24 20	11	93 96	40 34	56		560	24 50	38	. 4	v v		570	395	22.5	1.99	1.26	964 872	7.5
605	Paf	15	July	8, 1	964	22	ł	380	339	650	l.	500	750	1,880	1.0	v	1	4,270	2,340	37.7	5.85	.00	6,750	7.3
101-12	Pcf	20	July	7, 1	964	34	5	,000	1,020	2,900	}	229	171	10,700	2.4	v	1	17,000	9,200	40.6	1.31	1.92	>12,000	6.8

2 Analysis by U.S. Goorgaal Survey. 3 Analysis by U.S. Goorgaal Survey. 4 Analysis by U.S. Goorgaal Survey. 5 Contains no bromade and no iodide. 9 Contains 5: mg/1 brownide and no iodide. 9 Analysis by Texam Agricultural Experiment Station. * Concentration includes both sodium (Na) and potassium (K).

Table 9.-Chemical Analyses of Oil-Field Brines

(Analyses are in parts per million except pH.)

After Rowland Laxson et al., 1960, Resistivities and chemical analyses of formation waters from the west-central Texas area: West Central Texas Section of the Society of Petroleum Engineers of A.I.M.E.

Producing zone	Field ¹	Average well depth (feet)	Calcium (Ca)	Magnesium (Mg)	Sodium (Na)	Bicarbonate (HCO ₃)	Sulfate (SO ₄)	Chloride (Cl)	pH
			PEF	RMIAN SYST	EM				
Permian	Consolidated	-	12,545	2,069	54,800	0	231	112,495	6.7
			PENNSY	LVANIAN S	YSTEM				
Cisco	King	1,466	12,410	2,734	60,370	179	241	122,700	6.7
Do.	East Castle- berry	2,888	13,330	1,996	52,830	27	314	110,750	4.4
Do.	Fargo	3,280- 3,330	16,450	2,174	55,795	17	137	121,350	4.1
Canyon	Rock Crossing	3,000	13,295	2,279	50,500	39	334	107,900	6.6
Do.	Harrold	3,200	12,840	1,850	49,420	56	394	103,950	5.7
Strawn	Consolidated	3,750	17,400	2,600	54,100	11	233	121,650	·6.6
Do.	Fargo	5,200	11,000	1,961	51,500	0	402	104,350	3.2
Caddo	Consolidated	4,000	18,275	2,765	55,700	15	117	126,150	6.6
Do.	Harrold	4,200	20,005	3,040	53,450	25	137	126,600	4.5
Bend	National	4,478	22,398	2,987	55,800	0	115	134,200	3.5
			MISSIS	SIPPIAN SYS	STEM				
Mississippian Lime	Bugscuffle	6,000	15,905	2,644	57,300	101	124	124,200	6.5
Mississippian Conglomerate	do	6,300	16,620	1,914	59,150	56	69	126,700	6.3
			ORDO	VICIAN SYS	TEM				
Ellenburger	Rock Crossing	3,800	16,995	2,381	55,550	8	269	122,400	4.1
Do.	Potts	4,993	16,130	2,351	55,610	13	276	120,800	6.9
Do.	Oʻdell	6,453	17,225	2,836	56,070	52	247	125,000	8.0

¹Oil and gas fields as assigned by the Railroad Commission of Texas.

Table 10.-Reported Oil-Field Brine Production and Disposal in 1961 and 1967,

(Quantities reported in barrels)

		Brine pro	duction	Disposal	into pits	Injection i	nto wells	Miscellaneo	us disposal
Area ¹	Field ²	1961	1967	1961	1967	1961	1967	1961	1967
1	Odell	70,203	18,980	0	0	70,203	18,980	0	0
	Odell Ellenburger	43,579	7,665	0	0	43,579	7,665	0	0
	Odell, West (Chappel)	0	33,441	0	0	0	33,441	0	0
	Odell, West (Ellenburger)	0	136,175	0	0	0	136,175	0	0
	Area Total	113,782	196,261	0	0	113,782	196,261	0	0
2	Fargo	126,071	0	50	0	125,841	0	180	0
	Fargo (Canyon 3900')	0	8,863	0	0	0	8,863	0	0
	Fargo (Canyon 4200')	0	60,862	0	0	0	60,862	0	0
	Fargo (Canyon 4400')	0	7,379	0	0	0	7,379	0	0
	Fargo (Cisco 3200')	0	43,754	0	0	0	43,754	0	0
	Fargo (Cisco 3700')	97,437	53,962	0	0	97,437	53,962	0	0
	Fargo, West (Strawn Conglomerate)	12,555	0	0	0	11,443	0	1,112	0
	Sumner (Mississippi)	0	730	0	0	0	730	0	0
	Sumner (Strawn)	0	730	0	0	0	730	0	0
	west Fargo		4,728	0	0	0	4,728	0	0
	Area Total	236,063	181,008	50	0	234,721	181,008	1,292	0
3	Schmoker (Conglomerate)	55,150	239,400	200	0	54,950	239,400	0	0
	Area Total	55,150	239,400	200	0	54,950	239,400	0	0
4	County Regular	1,030	2,160	0	0	1,030	2,160	0	0
	Area Total	1,030	2,160	0	0	1,030	2,160	0	0
5	Tolbert	70,750	14,600	70,750	0	0	14,600	0	0
	Area Total	70,750	14,600	70,750	0	0	14,600	0	0
6	Bugscuffle (Strawn)	1,309	0	0	0	1,309	0	0	0
	Area Total	1,309	0	0	0	1,309	0	0	0
7	Main (Canvon)	182,500	298,000	0	0	182 500	298 000	0	0
	Main (2600' Sand)	6,205	4.300	0	0	6,205	4,300	0	0
	Area Total	188,705	302,300	0	0	188,705	302,300	0	0
8	Lockett	0	3,650	0	0	0	3,650	0	0
	Lockett (Cisco)	0	10,950	0	0	0	10,950	0	0
	County Regular	17,000	0	0	0	17,000	0	0	0
	Area Total	17,000	14,600	0	0	17,000	14,600	0	0
9	Blackman (1400' Sand)	730	0	0	0	0	0	730	0
	Blackman (1600' Sand)	3,650	5,475	0	0	3,650	5,475	0	0
	King	2,555	27,375	0	0	2,555	27,375	0	0

Toble 10 - Photor of Christold Write Predvetlage wer Stational Inc 1961 and 1967 - Galding

		Brine pr	oduction	Disposal	into pits	Injection	into wells	Miscellane	ous disposal
Area ¹	Field ²	1961	1967	1961	1967	1961	1967	1961	1967
	King, North (1600' Sand)	155,125	126,290	0	0	155,125	126,290	0	0
	Streit (Lower Dyson) County Regular	18,250 8,760	72,367 61,685	0 1,460	0	18,250 7,300	72,367 61,685	0	0
	Area Total	189,070	293,192	1,460	0	186,880	293,192	730	0
10	Wolfson-1700'	10,950	ο	0	0	10,950	0	0	0
	County Regular	3,709,040	1,794,653	3,890	45	3,705,150	1,794,608	0	0
	Area Total	3,719,990	1,794,653	3,890	45	3,716,100	1,794,608	0	0
11	Castleberry, East (Cisco)	24,645	273,013	0	0	24,645	273,013	0	0
	Zacaweista (Cisco "AA") County Regular	7,300 336,317	130.640	27,400	0	100.375	130.640	208.542	0
	Area Total	368,262	403,653	27,400	0	132,320	403,653	208,542	0
12	W. C. (Castleberry)	41,850	0	0	0	41,850	0	0	0
	W. C., East (Canyon Sand)	10,950	36,500	0	õ	10,950	36,500	0	0
	County Regular	0	118,280	0	0	0	118,280	0	0
	Area Total	52,800	154,780	0	0	52,800	154,780	0	0
13	National (Caddo)	7,300	0	0	0	7,300	0	0	0
	National (Canyon Lime)	54,750	47,450	0	0	54,750	47,450	0	0
	Area Total	22,200	21,900	0	0	21,900		300	0
	Area Total	64,250	69,350	U	U	63,950	69,350	300	U
14	K-D (2000' Canyon Sand)	18,250	0	0	0	18,250	0	0	0
	Pounds (Dyson Upper)	1,825	87 150	0	0	1,825	87 150	0	0
	County Regular	595,320	549,065	13,795	10,950	581,525	538,115	õ	0
	Area Total	681,865	636,215	13,795	10,950	668,070	625,265	0	0
15	Sauder-Dyson	109,125	322,000	0	0	109,125	322,000	0	0
	County Regular	537,157	554,235	13,687	0	523,470	554,235	0	0
	Area Total	646,282	876,235	13,687	0	632,595	876,235	0	0
16	County Regular	773,405	760,030	0	0	773,405	757,150	0	2,880
	Area Total	773,405	760,030	0	0	773,405	757,150	0	2,880
17	Cullum (1900' Gunsite)	15,000	73,390	0	0	15,000	73,390	0	0
	Electra (Ellenburger)	6,570	0	0	0	6,570	0	0	0
	County Begular	25,185	4 516 401	6 845	0	25,185	4 515 345	0	1 056
	Area Total	830,795	4,589,791	6,845	0	823,950	4,588,735	0	1,056
18	S and K (Caddo)	618	67 525	618	0	0	67.525	0	0
	County Regular	27,090	73,000	1,500	0	25,590	36,500	0	36,500
	Area Total	27 708	140 525	2 118		25 590	104 025	0	36 500

Table 10.-Reported Oil-Field Brine Production and Disposal in 1961 and 1967-Continued

		Brine pr	oduction	Disposal i	into pits	Injection	into wells	Miscellaneo	us disposal
Area ¹	Field ²	1961	1967	1961	1967	1961	1967	1961	1967
19	County Regular	7,300	0	7,300	0	0	0	0	0
	Area Total	7,300	0	7,300	0	0	0	0	0
20	Dill, East (Dyson)	3,600	0	0	0	3,600	0	0	0
	County Regular	39,775	24,090	4,775	0	35,000	24,090	0	0
	Area Total	43,375	24,090	4,775	0	38,600	24,090	0	0
21	Zacaweista (Ellenburger)	15,500	0	15,500	0	0	0	0	0
	County Regular	469,116	1,937,936	0	0	469,116	1,937,936	0	0
	Area Total	484,616	1,937,936	15,500	0	469,116	1,937,936	0	0
22	D-K (Upper Dyson)	54,750	0	0	0	54,750	0	0	0
	Dubann (2430' Sand)	200,750	0	0	0	200,750	0	0	0
	Grayback (Ellenburger)	3,698,943	850,873	2,800	0	3,696,143	850,873	0	0
	Grayback (Strawn)	8,030	0	0	0	8,030	0	0	0
	Grayback, East (Strawn)	0	93,597	0	0	0	93,597	0	0
	Grayback, Southeast (Strawn)	5,948	4,745	548	0	5,400	4,745	0	0
	Rock Crossing (Canyon Lime)	467,200	161,312	0	0	467,200	161,312	0	0
	Rock Crossing (Ellenburger)	500,901	0	0	0	500,901	0	0	0
	Waggoner Milham (Cisco Sand)	45,075	1,246,895	0	0	45,075	1,246,895	0	0
	Wood-Milham	0	3,650	0	0	0	3,650	0	0
	Wood-Milham (Cisco)	672,695	1,822,080	0	0	672,695	1,822,080	0	0
	County Regular	6,243,447	15,861,570	32,826	4,320	6,210,621	15,813,450	0	43,800
	Area Total	11,897,739	20,044,722	36,174	4,320	11,861,565	19,996,602	0	43,800
23	Baker Properties-Cambron (Dyson Sand)	23,500	3,600	0	0	23,500	3,600	0	0
	Buck Baker (2400' Sand)	13,500	7,300	0	0	13,500	7,300	0	0
	Dublin-Kiel (1900' Dyson Sand)	26,380	88,000	0	0	26,380	88,000	0	0
	Grayback, East (Milham)	69,350	377,750	0	0	69,350	377,750	0	0
	Kiel (Dyson)	109,500	0	0	0	109,500	0	0	0
	L. P. (Milham)	2,520	0	0	0	2,520	0	0	0
	Modine (Milham)	18,000	0	0	0	18,000	0	0	0
	Wilson (Milham)	23,725	21,900	0	0	23,725	21,900	0	0
	County Regular	3,624,919	1,815,346	9,300	0	3,615,619	1,815,346	0	0
	Area Total	3,911,394	2,313,896	9,300	0	3,902,094	2,313,896	0	0
24	H-W (Caddo)	25,550	0	0	0	25,550	0	0	0
	Paradise (Caddo)	191,600	227,090	3,650	0	187,950	227,090	0	0
	County Regular	14,312	0	0	0	14,312	0	0	0
	Area Total	231,462	227,090	3,650	0	227,812	227,090	0	0
25	TT (Ellenburger)	21,170	7,200	0	0	21,170	7,200	0	0
	Area Total	21,170	7,200	0	0	21,170	7,200	0	0

Table 10.-Reported Oil-Field Brine Production and Disposal in 1961 and 1967-Continued

[ab1], 10. Reported Old-Field Street Production and Damous In 1983 and 1957. Control

		Brine pr	oduction	Disposal	into pits	Injection	into wells	Miscellaneo	us disposal
Area ¹	Field ²	1961	1967	1961	1967	1961	1967	1961	1967
26	K and S (Dyson)	9,125	255 500	0	0	9,125	255 500	0	0
	Area Total	233,600	255,500	0	0	233,600	255,500	0	0
27	Ancell (Ellenburger) Billie Joe (Caddo)	52,195 47,200	0	0	0	52,195 47,200	0	0	0
	Billie Joe (Palo Pinto) Consolidated Pool	192 92,480	0 74,941	0 17,850	0	192 74,630	0 74,941	0	0
	Potts (Ellenburger) County Regular	60,000 162,275	21,600 74,810	0	0	60,000 162,275	21,600 73,730	0	0 1,080
	Area Total	414,342	171,351	17,850	0	396,492	170,271	0	1,080
	County Total	25,303,214	35,650,538	234,744	15,315	24,857,606	35,549,907	210,864	85,316
	Percent of Total	100%	100%	0.9%	0.1%	98.2%	99.7%	0.9%	0.2%

Table 10.-Reported Oil-Field Brine Production and Disposal in 1961 and 1967-Continued

¹ Area as shown in Figure 32.
 ² Oil and gas fields as assigned by the Railroad Commission of Texas.

Mall	0	Lease name and operator's	0	
vven	Operator	weit number	County	Survey location
13-37-914	Sunray MidContinent Oil	C. F. Mock No. 2	Wilbarger	Section 21, Block 11, H&TCRR Survey, A-142
44-603	Humble Oil	Dodson No. 1	Hardeman	NE/4 Section 49, Block 10, H&TCRR Survey, A-44
45-405	Humble Oil	Ray McClintock No. 1	Wilbarger	SE/4 Section 22, Block 10, H&TCRR Survey, A-910
46-129	Tom B. Medders	C. H. Riggins No. 1	do	NW/4 Section 14, Block 11, H&TCRR Survey, A-809
431	Bolin Oil and Humphrey Oil	Goodwin No. 1	do	NW/4 Section 11, Block 15, H&TCRR Survey, A-454
54-401	Pan American Petroleum Company	W. L. Hammonds No. 1	do	SE/4 Section 1, Block 16, H&TCRR Survey, A-399
55-405	Blackwood and Nichols	Claude Ayres No. 1	do	Section 26, Block 12, H&TCRR Survey, A-656
61-583	Texaco Inc. (formerly Bolin Oil, et al.)	Lillie Cobb No. 1	do	NW/4 Section 10, Block 9, H&TCRR Survey, A-1038
718	B. B. Burke	Cato No. 1	Foard	SW/4 Section 20, Block 8, H&TCRR Survey
914	Fain and McGaha	Streit No. 1	Wilbarger	SW/4 Section 7, Block 9, H&TCRR Survey
64-101	The Texas Company	H. F. Hauser No. 1	do	Wm. Alston Survey, A-571
14-49-703	British American	F. L. Kirt No. 1	do	Tract 103, Waggoner Colony Subdivision
901	Fain and McGaha	Powell and Vanderwoude No. 1	Wichita	Tract 239, Waggoner Colony Subdivision
20-09-101	Cox Drilling Company	Ancell No. 2	Wilbarger	SE/4 Section 3, Block 7, H&TCRR Survey
21-05-601	Continental Oil Company	W. T. Waggoner Est. No. 1	do	NW/4 Section 39, Block 1, H&TCRR Survey, A-47
06-301	Socony Mobil	W. T. Waggoner Est. No. 1-A	do	SE/4 Section 23, Block 2, H&TCRR Survey, A-138
07-601	Fain and McGaha	Waggoner No. 1-D	do	NW/4 Section 11, Block 4, H&TCRR Survey, A-91
08-701	The Texas Company	Waggoner Est. No. 1	do	SW/4 Section 2, Block 17, H&TCRR Survey, A-1597
14-101	H. H. and R. Operating Account	W. T. Waggoner Est. No. 1	do	NW/4 Section 33, Block 1, H&TCRR Survey, A-52
21-301	Pure Oil Company	W. T. Waggoner Est. No. 1-A	Baylor	NW/4 Section 156, Block A, BBB&CRR Survey, A-1408

Table 11.-Oil and Gas Tests Selected as Data-Control Points in Wilbarger County and Adjacent Areas

