TEXAS WATER DEVELOPMENT BOARD

REPORT 130

RECONNAISSANCE OF THE CHEMICAL QUALITY OF SURFACE WATERS OF THE COASTAL BASINS OF TEXAS

By

J. F. Blakey and H. L. Kunze United States Geological Survey

Prepared by the U.S. Geological Survey in cooperation with the Texas Water Development Board

June 1971

TEXAS WATER DEVELOPMENT BOARD

W. E. Tinsley, Chairman Robert B. Gilmore Milton T. Potts Marvin Shurbet, Vice Chairman John H. McCoy Carl Illig

Harry P. Burleigh, Executive Director

Authorization for use or reproduction of any material contained in this publication, i.e., not obtained from other sources, is freely granted without the necessity of securing permission therefor. The Board would appreciate acknowledgement of the source of original material so utilized.

Published and distributed by the Texas Water Development Board Post Office Box 13087 Austin, Texas 78711

TABLE OF CONTENTS

Page

	1000
ABSTRACT	1
INTRODUCTION	3
GENERAL DESCRIPTION OF THE COASTAL BASINS	3
RELATION OF WATER QUALITY TO USE	4
FACTORS AFFECTING CHEMICAL QUALITY OF WATER	10
NECHES-TRINITY COASTAL BASIN	12
TRINITY-SAN JACINTO COASTAL BASIN	12
SAN JACINTO-BRAZOS COASTAL BASIN	19
BRAZOS-COLORADO COASTAL BASIN	19
COLORADO-LAVACA COASTAL BASIN	25
LAVACA-GUADALUPE COASTAL BASIN	25
SAN ANTONIO-NUECES COASTAL BASIN	31
NUECES-RIO GRANDE COASTAL BASIN	31
SUMMARY OF CHEMICAL CHARACTERISTICS OF WATERS OF THE COASTAL BASINS	40
CONCLUSIONS	45
SELECTED REFERENCES	47

TABLES

1.	Source and Significance of Dissolved Mineral Constituents and Properties of Water	9
2.	Chemical Analyses of Streams in the Neches-Trinity Coastal Basin	18
3.	Chemical Analyses of a Stream in the Trinity-San Jacinto Coastal Basin	21
4.	Chemical Analyses of Streams in the San Jacinto-Brazos Coastal Basin	23
5.	Chemical Analyses of Streams in the Brazos-Colorado Coastal Basin	27
6.	Chemical Analyses of Streams in the Colorado-Lavaca Coastal Basin	30
7.	Chemical Analyses of Streams in the Lavaca-Guadalupe Coastal Basin	33
8.	Summary of Chemical Analyses at the Daily Station in the San Antonio-Nueces Coastal Basin	35

TABLE OF CONTENTS (Cont'd.)

•

٥.

٤,

e

		Page
9.	Chemical Analyses of Streams in the San Antonio-Nueces Coastal Basin for Locations Other Than Daily Station	36
10.	Chemical Analyses of Streams in the Nueces-Rio Grande Coastal Basin	42
	FIGURES	
1.	Index Map Showing Drainage Basins in Texas	4
2.	Geologic Map	5
3.	Map Showing Precipitation and Moisture Regions and Graphs Showing Precipitation	7
4.	Diagram for Classification of Irrigation Waters	11
5.	Generalized Map Showing Location of Irrigated Areas	13
6.	Generalized Map Showing Location of Oil Fields	15
7.	Map Showing Chemical-Quality Data-Collection Sites in the Neches-Trinity Coastal Basin	17
8.	Map Showing Chemical-Quality Data-Collection Site in the Trinity-San Jacinto Coastal Basin	20
9.	Map Showing Chemical-Quality Data-Collection Sites in the San Jacinto-Brazos Coastal Basin	22
10.	Map Showing Chemical-Quality Data-Collection Sites in the Brazos-Colorado Coastal Basin	26
11.	Map Showing Chemical-Quality Data-Collection Sites in the Colorado-Lavaca Coastal Basin	29
12.	Map Showing Chemical-Quality Data-Collection Sites in the Lavaca-Guadalupe Coastal Basin	32
13.	Map Showing Chemical-Quality Data-Collection Sites in the San Antonio-Nueces Coastal Basin	34
14.	Map Showing Chemical-Quality Data-Collection Sites in the Nueces-Rio Grande Coastal Basin	41
15.	Graph Showing Range Between Maximum and Minimum Values for Dissolved Solids, Hardness, and Chloride Observed in Surface Waters of the Coastal Basins	45

RECONNAISSANCE OF THE CHEMICAL QUALITY OF SURFACE WATERS OF THE COASTAL BASINS OF TEXAS

ABSTRACT

The eight coastal basins in Texas have a combined drainage area of more than 19,000 square miles and include all of the 370 miles of the coast except for a few miles across the mouths of the major rivers. Most of the coastal region is a smooth, featureless, depositional plain with altitudes generally less than 200 feet above mean sea level.

An abundance of water for municipal supply, industrial use, irrigation, and transportation has resulted in a diversified and expanding economy in the coastal basins. In addition to the local ground-water and surface-water supplies, large volumes of surface water are imported to the coastal basins from adjacent river basins. Imported water is moved through a network of canals to irrigated fields and industrial sites. With oil production scattered throughout the region, oil-refining and petrochemical plants are a major part of the industrial activities. The major industrial centers and seaports of the coastal basins include Beaumont, Port Arthur, Galveston, Texas City, and Corpus Christi.

The activities of man are affecting the chemical quality of surface waters in the coastal basins. Low flows in many of the streams are being degraded to some degree by oil field and other industrial wastes and by irrigation-return flows. However, runoff from the generally abundant precipitation along the Texas coast dilutes or flushes out these wastes in most of the coastal streams.

Surface waters of the coastal basins are generally of good chemical quality, and in streams receiving little or no man-made wastes, the dissolved-solids concentrations are generally less than 250 milligrams per liter. Recent regulations of the Railroad Commission of Texas should reduce the amount of oil-field brines reaching surface-water courses.

RECONNAISSANCE OF THE CHEMICAL QUALITY OF SURFACE WATERS OF THE COASTAL BASINS OF TEXAS

INTRODUCTION

A network of daily chemical-quality stations on principal streams in Texas is operated by the U.S. Geological Survey in cooperation with the Texas Water Development Board and with federal and local agencies. However, this network has not been adequate to inventory completely the chemical quality of surface waters of the State. To supplement the information being obtained by the network, a cooperative statewide reconnaissance by the U.S. Geological Survey and the Texas Water Development Board was begun in September 1961. Samples for chemical analysis were collected periodically at numerous sites throughout Texas so that some water-quality information would be available for locations where water-development projects are likely to be built. These data aid in the delineation of areas having water-quality problems and in the identification of probable sources of pollution, thus indicating areas in which more detailed investigations are needed.

The State has been divided into 15 river and 8 coastal basins, with the name of each river basin being the name of the main river which the basin topographically encloses and the name of each coastal basin being the combined names of the two main rivers between which the coastal basin lies. Coastal basins are defined so as to include the areas of coastal plains, peninsulas, and islands that lie adjacent to and between the main river basins (Texas Board of Water Engineers, 1961, p. 29). The chemical quality of surface waters in each basin is being studied, and a series of reports summarizing the results of the study is being prepared by the U.S. Geological Survey in cooperation with the Texas Water Development Board. (See list of references for previous reports).

The purpose of this report is to present available data and interpretations on the quality of surface waters to aid in the proper development, management, and use of water resources of the Texas coastal basins. In this study, the following factors were considered: The nature and concentrations of mineral constituents in solution; the geologic, hydrologic, and cultural influences that determine the water quality; and the suitability of the water for municipal supply, industrial use, and irrigation.

GENERAL DESCRIPTION OF THE COASTAL BASINS

The eight coastal basins include an area of more than 19,000 square miles along the Texas Gulf Coast (Figure 1). Except for a few miles across the mouths of the major rivers, the 370 miles of Texas coast is within these basins. The drainage areas of some of the coastal basins extend inland more than a hundred miles.

All of the coastal basins are in the West Gulf Coastal Plain physiographic section of the Coastal Plain province. Topographically, the area is generally a smooth, featureless, depositional plain. The altitude of most of the region is less than 200 feet above mean sea level except along the interior boundary of the Nueces-Rio Grande coastal basin, where the altitude reaches 900 feet.

The geology of the Gulf Coast region of Texas has been described by Wood, Gabrysch, and Marvin (1963). Sedimentary deposits range in age from Miocene to Holocene (Figure 2). Holocene deposits form the coastline and successively older beds crop out toward the interior. Alluvium, beach sands, and terrace deposits of Holocene age and the Beaumont Clay and Lissie Formation of Pleistocene age dominate the surface geology of the coastal basins. Older formations ranging in age from Miocene to Pliocene(?) are exposed in small areas in the headwaters of the Brazos-Colorado and San Antonio-Nueces coastal basins and in the western part of the Nueces-Rio Grande coastal basin. Widespread eolian deposits cover a 2,800-square-mile area in the center of the Nueces-Rio Grande coastal basin.

The climate along the Texas Gulf Coast varies greatly from east to west. The average annual precipitation decreases from about 56 inches near the Texas-Louisiana line to less than 20 inches in the southwestern part of the Nueces-Rio Grande coastal basin (Figure 3). According to Thornthwaite's classification (1952, p. 32), the coastal area is divided into regions of moisturesurplus and moisture-deficiency by a line through the Lavaca-Guadalupe coastal basin. The climatic type and moisture deficiency-surplus index for the coastal basins are shown on Figure 3.

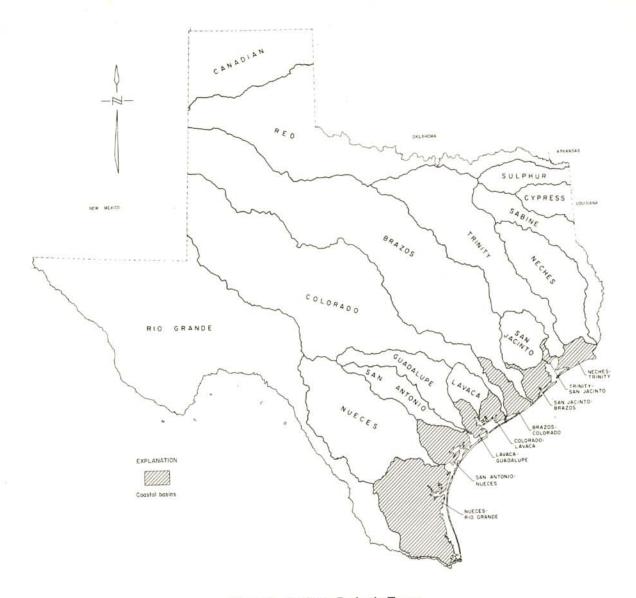


Figure 1.-Drainage Basins in Texas

The Texas Gulf Coast generally has mild winters and hot summers. Daily-minimum temperatures are seldom less than $32^{\circ}F(0^{\circ}C)$ during the winter; and during the summer, daily-maximum temperatures greater than $90^{\circ}F(32^{\circ}C)$ are common. Carr (1967, p. 19) reports average annual mean air temperatures (1931-60) from $69^{\circ}F(20.5^{\circ}C)$ along the Texas-Louisiana line to $74^{\circ}F(23.3^{\circ}C)$ in south Texas near the Rio Grande.

The general availability of water along the Texas Gulf Coast is the principal factor in the economic development of the coastal basins. Water for municipal supply, industrial use, irrigation, and transportation has resulted in a diversified and expanding economy. Sources of water supplies, quantity and quality of water, and principal products are discussed for each coastal basin in later sections of this report.

RELATION OF WATER QUALITY TO USE

The quality of water, as well as quantity of water, should be considered for any water use. All natural waters contain mineral constituents dissolved from rocks and minerals of the earth's crust. The commonly determined constituents and properties and their source and significance are given in Table 1.

To aid in determining the extent to which chemical quality limits the suitability of water for irrigation, the U.S. Salinity Laboratory Staff (1954, p. 69) has prepared a system for classifying irrigation waters in terms of salinity and sodium hazards. A diagram was formulated which uses sodium-adsorption ratio (SAR) and specific conductance in classifying

Table 1.-Source and Significance of Dissolved-Mineral Constituents and Properties of Water

CONSTITUENT OR PROPERTY	SOURCE OR CAUSE	SIGNIFICANCE
Silica (SiO ₂)	Dissolved from practically all rocks and soils, commonly less than 30 mg/l. High concentra- tions, as much as 100 mg/l, gener- ally occur in highly alkaline waters.	Forms hard scale in pipes and boilers. Carried over in steam of high pressure boilers to form deposits on blades of turbines. Inhibits deterioration of zeolite-type water softeners.
lron (Fe)	Dissolved from practically all rocks and soils. May also be derived from iron pipes, pumps, and other equipment. More than 1 or 2 mg/l of iron in surface waters generally indicates acid wastes from mine drainage or other sources.	On exposure to air, iron in ground water oxidizes to reddish- brown precipitate. More than about 0.3 mg/lstains laundry and utensils reddish-brown. Objectionable for food processing, tex- tile processing, beverages, ice manufacture, brewing, and other processes. U.S. Public Health Service (1962) drinking-water standards state that iron should not exceed 0.3 mg/l, Larger quantities cause unpleasant taste and favor growth of iron bacteria.
Calcium (Ca) and magnesium (Mg)	Dissolved from practically all soils and rocks, but especially from limestone, dolomite, and gypsum. Calcium and magnesium are found in large quantities in some brines. Magnesium is present in large quantities in sea water.	Cause most of the hardness and scale-forming properties of water; soap consuming (see hardness). Waters low in calcium and magnesium desired in electroplating, tanning, dyeing, and in textile manufacturing.
Sodium (Na) and potassium (K)	Dissolved from practically all rocks and soils. Found also in ancient brines, sea water, indus- trial brines, and sewage.	Large amounts, in combination with chloride, give a salty taste. Moderate quantities have little effect on the usefulness of water for most purposes. Sodium salts may cause foaming in steam boilers and a high sodium content may limit the use of water for irrigation.
Bicarbonate (HCO ₃) and carbonate (CO ₃)	Action of carbon dioxide in water on carbonate rocks such as lime- stone and dolomite.	Bicarbonate and carbonate produce alkalinity. Bicarbonates of calcium and magnesium decompose in steam boilers and hot water facilities to form scale and release corrosive carbon dioxide gas. In combination with calcium and magnesium, cause carbon- ate hardness.
Sulfate (SO ₄)	Dissolved from rocks and soils containing gypsum, iron sulfides, and other sulfur compounds. Commonly present in mine waters and in some industrial wastes.	Sulfate in water containing calcium forms hard scale in steam boilers. In large amounts, sulfate in combination with other ions gives bitter taste to water. Some calcium sulfate is considered beneficial in the brewing process. U.S. Public Health Service (1962) drinking-water standards recommend that the sulfate content should not exceed 250 mg/l.
Chloride (Cl)	Dissolved from rocks and soils. Present in sewage and found in large amounts in ancient brines, sea water, and industrial brines.	In large amounts in combination with sodium, gives salty taste to drinking water. In large quantities, increases the corrosiveness of water. U.S. Public Health Service (1962) drinking-water stan- dards recommend that the chloride content should not exceed 250 mg/l.
Fluoride (F)	Dissolved in small to minute quantities from most rocks and soils. Added to many waters by fluoridation of municipal sup- plies.	Fluoride in drinking water reduces the incidence of tooth decay when the water is consumed during the period of enamel calcification. However, it may cause mottling of the teeth, depending on the concentration of fluoride, the age of the child, amount of drinking water consumed, and susceptibility of the individual. (Maler, 1950)
Nitrate (NO ₃)	Decaying organic matter, sewage, fertilizers, and nitrates in soil.	Concentration much greater than the local average may suggest pollution. U.S. Public Health Service (1962) drinking-water standards suggest a limit of 45 mg/l. Waters of high nitrate content have been reported to be the cause of methemoglo- binemia (an often fatal disease in infants) and therefore should not be used in infant feeding. Nitrate has been shown to be helpful in reducing inter-crystalline cracking of boiler steel. It encourages growth of algee and other organisms which produce undesirable tastes and odors.
Dissolved solids	Chiefly mineral constituents dis- solved from rocks and soils. Includes some water of crystalli- zation.	U.S. Public Health Service (1962) drinking-water standards recommend that waters containing more than 500 mg/l dissolved solids not be used if other less mineralized supplies are available. Waters containing more than 1000 mg/l dissolved solids are unsuitable for many purposes.
Hardness as CaCO ₃	In most waters nearly all the hardness is due to calcium and magnesium. All the metallic cations other than the alkali metals also cause hardness.	Consumes soap before a lather will form, Deposits soap curd on bathtubs. Hard water forms scale in boilers, water heaters, and pipes. Hardness equivalent to the bicarbonate and carbonate is called carbonate hardness. Any hardness in excess of this is called non-carbonate hardness. Waters of hardness as much as 60 ppm are considered soft; 61 to 120 mg/l, moderately hard; 121 to 180 mg/l, hard; more than 180 mg/l, very hard.
Specific conductance (micromhos at 25 ⁰ C)	Mineral content of the water.	Indicates degree of mineralization. Specific conductance is a measure of the capacity of the water to conduct an electric current. Varies with concentration and degree of ionization of the constituents.
Hydrogen ion concentration (pH)	Acids, acid-generating salts, and free carbon dioxide lower the pH. Carbonates, bicarbonates, hydrox- ides, and phosphates, silicates, and borates raise the pH.	A pH of 7.0 indicates neutrality of a solution. Values higher than 7.0 denote increasing alkalinity; values lower than 7.0 indicate increasing acidity, pH is a measure of the activity of the hydrogen ions. Corrosiveness of water generally increases with decreasing pH. However, excessively alkaline waters may also attack metals.

1

irrigation waters. SAR expresses the relative activity of sodium ions in exchange reactions with the soil. This ratio is expressed by the equation:

$$SAR = \frac{Na^{+}}{\sqrt{\frac{Ca^{++} + Mg^{++}}{2}}}$$

where concentrations of the ions are in milliequivalents per liter. The U.S. Salinity Laboratory Staff stated that this classification should be used only for general guidance, because other factors such as soil type, climate, types of crops, and toxic elements in water also affect the suitability of water for irrigation.

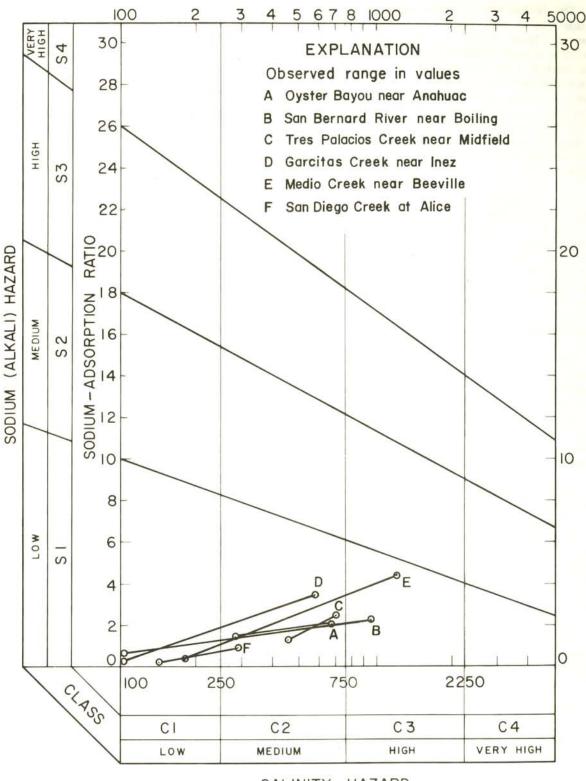
The diagram is reproduced in modified form as Figure 4. The observed ranges in SAR and specific conductance for six sites in the coastal basins are plotted on the diagram. The chemical quality of surface waters at these sites is affected to some degree by irrigationreturn flows and other activities of man, but sites on streams highly degraded by industrial wastes were not included because these waters could not be used for irrigation.

FACTORS AFFECTING CHEMICAL QUALITY OF WATER

All waters from natural sources contain dissolved minerals, but the chemical character and concentrations of dissolved constituents in surface waters may fluctuate widely in response to differences in environment. The most important factors that affect the chemical quality of surface waters are geology, patterns and characteristics of streamflow, and the activities of man.

In streams unaffected by man's activities, the geologic environment determines to a large extent the kinds and amounts of dissolved constituents. All rocks and soils contain soluble materials, but the amount of minerals available for solution is decreased by leaching. Therefore, rocks and soils in areas of high rainfall usually are well leached and yield water of low mineralization; whereas rocks and soils in arid regions are poorly leached and often yield large quantities of minerals to circulating waters.

The mean annual precipitation exceeds 25 inches along the Texas Gulf Coast, except in the western half of the Nueces-Rio Grande coastal basin; consequently, many of the more soluble minerals have been leached from the surface rocks and soils. The western half of the Nueces-Rio Grande coastal basin has a poorly defined drainage network that has little or no sustained dryweather flows. Runoff during periods of heavy precipitation is rapidly lost by infiltration and evaporation. Because of the short time in contact with surface rocks and soils, the surface water in this area is generally low in dissolved solids, but the limited and undependable quantities are of little significance as a water supply.


The patterns and characteristics of streamflow usually affect the chemical character of water in streams. In most streams where the flow is not regulated by upstream impoundments the concentration of dissolved constituents varies inversely with the water discharge. The concentration usually is minimum during floods when most of the water is surface runoff that has been in contact with the rocks and soils for a short time. Conversely, the concentration is maximum during lowflow periods when the flow is sustained by ground-water effluent that has been in contact with the rocks and soils for a sufficient time to dissolve more of their soluble minerals. This general relationship is true for coastal streams.

Activities of man have generally degraded the chemical quality of surface water in the coastal basins. Depletion of flow by diversion and consumptive use, irrigation-return flows that include ground water and water that has been imported from other surface-water sources, and municipal and industrial wastes contribute to the degradation of chemical quality of coastal streams. As shown on Figure 5, there are heavily irrigated areas in all the coastal basins. Irrigation supplies include ground water and both local and imported surface water. Surface-water supplies are moved across the basins in numerous canals. Thus, irrigation-return flows reaching a stream may be derived from three different sources.

Oil is produced in all the coastal basins (Figure 6), and many of the coastal streams are affected to some degree by oil-field brines. The Railroad Commission of Texas, Oil and Gas Division, Order Number 20-56,841 states, in part, that effective January 1, 1969, use of salt-water disposal pits for storage and evaporation of oil-field brines and discharge of oil-field brines into surface-drainage water courses is prohibited. Before January 1, 1969, some coastal streams were used for conveyance of oil-field brines to the bays. For example, in the San Antonio-Nueces coastal basin, the dissolvedsolids concentration of the Mission River at Refugio has exceeded 70,000 mg/l (milligrams per liter).

Much of the industrial and municipal wastes enters the coastal streams in the lower reaches along the coast-principal areas include Beaumont-Port Arthur, Baytown, Galveston-Texas City, and Corpus Christi. However, numerous small towns and industrial operations are scattered throughout the coastal basins and their wastes are altering the quality of water in many streams and reaches of streams.

Data on the chemical quality of surface water and related data on hydrology are presented and discussed for each coastal basin in the following sections of this report. SPECIFIC CONDUCTANCE, IN MICROMHOS AT 25°C

SALINITY HAZARD

Figure 4 Classification of Irrigation Waters

NECHES-TRINITY COASTAL BASIN

The Neches-Trinity coastal basin, which has a drainage area of 769 square miles is in the southeast corner of Texas (Figure 1). This nearly flat area (maximum altitude is about 50 feet above mean sea level) receives, from east to west, 55 to 44 inches of precipitation per year on the average and is frequently flooded. As shown by the average monthly precipitation at Beaumont (Figure 3), the precipitation in the basin is fairly well distributed throughout the year, with March and October generally having the minimum monthly accumulations. The maximum annual precipitation at Beaumont (1931-68) was 87 inches in 1949.

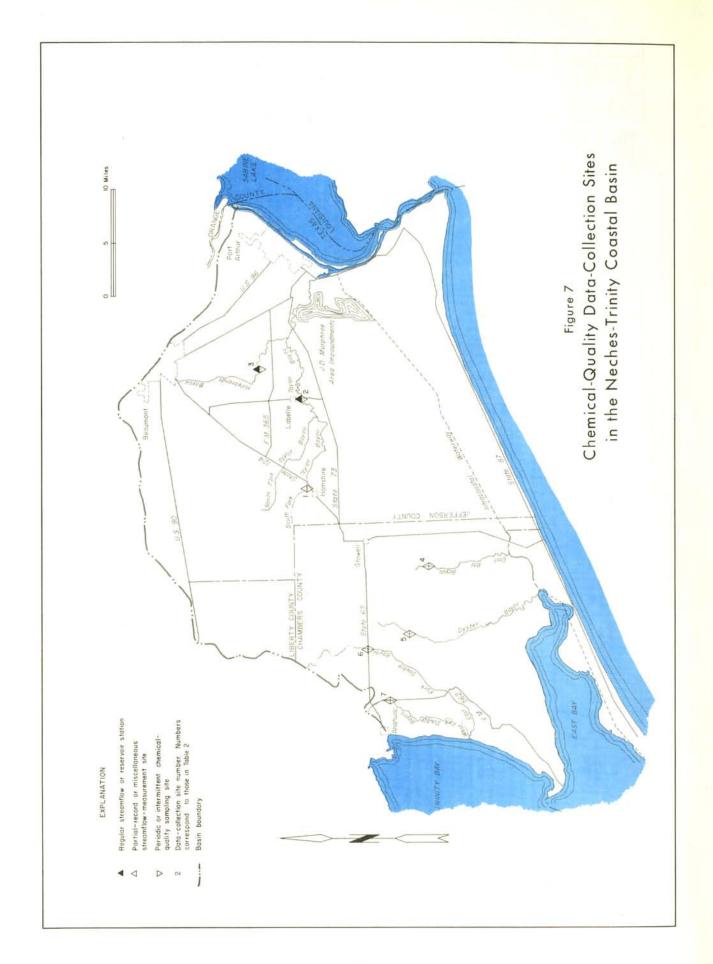
The principal streams in the basin are Taylor Bayou, East Bay Bayou, Oyster Bayou, and East Fork and West Fork Double Bayous (Figure 7). Numerous small tributaries, many of them unnamed, feed the principal streams. The Neches-Trinity coastal basin has no major water-supply reservoirs. J. D. Murphree Area Impoundments, a 32,000 acre-foot group of shallow impoundments on Big Hill Bayou, is owned and operated by the Texas Parks and Wildlife Department for wildlife management purposes.

The natural drainage network has been altered by a maze of canals used to distribute irrigation waters imported from the Neches and Trinity River basins. In 1964, about 260,000 acre-feet of surface water was imported to irrigate 104,000 acres of rice (Gillett and Janca, 1965, p. 36). In addition to rice production, cattle ranching, dairying, poultry, and truck crops contribute to the agricultural economy.

Oil is produced in many areas of the basin (Figure 6), and the eastern part of the basin in the Beaumont-Port Arthur area is a highly developed industrial complex that includes several large refineries and petrochemical plants. Most of the water for municipal and industrial uses is imported from the Neches River. However, ground water is used by the petroleum industry as a source of supply for secondary oil-recovery operations in the western part of the basin.

Chemical-quality data collected in the Neches-Trinity coastal basin are given in Table 2, and the seven data-collection sites are shown on Figure 7. Dissolvedsolids concentrations were generally low in all streams at the times of sampling. Taylor Bayou near LaBelle (site 2) and Hillebrandt Bayou near Lovell Lake (site 3) were sampled during a period of high runoff, and the dissolved-solids concentrations were 113 and 94 mg/l, respectively. Concentrations of dissolved constituents in these streams probably increase during low-flow periods.

East Bay Bayou at Farm Road 1941 near Stowell (site 4), sampled during periods of low to medium flows, had a range in dissolved-solids concentrations from 115 to 841 mg/l. The variation in dissolved-solids, chloride, and nitrate concentrations indicates that agricultural and industrial wastes are sometimes reaching the stream. Samples collected from Oyster Bayou near Anahuac (site 5), East Fork Double Bayou near Anahuac (site 6), and West Fork Double Bayou near Anahuac (site 7) show less variation in dissolved constituents than samples from East Bay Bayou, but all these streams are probably being degraded to some degree by man's activities.


Limited sampling at the seven sites indicates that the surface waters of the Neches-Trinity coastal basin are generally low in dissolved solids and are of good to excellent chemical quality. However, streams and reaches of streams are being affected by man's activities, and by occasional sea-water flooding of coastal areas at high tides. The greatest degradation of water quality is probably occurring in the industrialized eastern part of of the basin. The abundant precipitation in this humid area has leached out most of the naturally occurring soluble minerals from the rocks and soils, and to a considerable degree, has diluted and flushed out the wastes from man's activities.

TRINITY-SAN JACINTO COASTAL BASIN

The Trinity-San Jacinto coastal basin, which has a drainage area of 247 square miles, is the smallest of the eight coastal basins (Figure 1). The maximum altitude is about 100 feet above mean sea level; some areas are frequently flooded. Average annual precipitation exceeds 48 inches. The annual and average monthly precipitation data (1931-68) for the city of Houston, adjacent to the Trinity-San Jacinto coastal basin on the east, are representative of the precipitation patterns of the basin (Figure 3). Precipitation is distributed fairly well throughout the year, with the monthly maximum usually occurring in July and the minimum in March. The maximum annual precipitation (1931-68) for Houston was 69 inches in 1946.

The Cedar Bayou watershed includes 204 of the 247 square miles in the Trinity-San Jacinto coastal basin (Figure 8). As in the Neches-Trinity coastal basin, numerous canals are used to distribute water imported from the adjacent major streams. Highlands Reservoir, a 5,580 acre-foot impoundment, is the only major surface-water development in the basin. This off-channel reservoir is maintained by importing water from the San Jacinto River. Water stored temporarily in the reservoir is released into the canal system for irrigation, municipal supply, and industrial use.

In 1964, about 31,000 acre-feet of water was used to irrigate about 13,000 acres of rice and pasture—18,000 acre-feet was imported from the Trinity and San Jacinto River basins and 13,000 acre-feet was from local ground-water supplies (Gillett and Janca, 1965, p. 37). Irrigated areas are shown on Figure 5. In addition to rice production, beef cattle, dairying, poultry, and truck crops contribute to the agricultural economy.

- 17 -

Table 2.--Chemical analyses of streams in the Neches-Trinity coastal basin

sorp-(micro- tion mhos at ratio 25°C) 549	sorp-tion tion ratio	Borp-(micro- titon mbos at 25°C) 1.5 217 8. 1.5 217 8.	Borp-(micro- titon mbos at 25°C) 1.5 217 8. 1.5 192 9. 1.6 192 9. 1.1 199 6.	Borp-(micro- tion mbos at ratio Sologe ratio 25°C) 1.5 25°C) 1.5 100 5.49 5.49 1.5 100 5.8 1490 1.6 5.17 1.6 5.45 1.1 1.45 1.1 5.43 1.1 5.43 1.1 5.43 1.1 5.43 1.1 5.43 1.1 5.43 1.1 5.43 1.1 5.43	Sorp-(micro- tution mbos at ratio 549 549 549 1.5 217 1.5 217 1.5 192 1.6 512 1.92 199 1.93 1100 5.1 193 1.1 199 1.2 338 1.3 585 1.4 585 1.3 589 1.4 271	Borp-(micro- ition miles at ratio S49 11.5 25°C) 11.5 11.7 11.5 1100 5.8 1490 11.6 512 11.6 512 11.9 543 11.9 543 11.9 543 11.9 543 11.9 543 11.9 543 11.9 543 11.9 543 11.9 543 11.9 543 11.1 1999 11.3 549 11.4 571 11.4 571 11.4 571 11.4 271 11.4 575 11.4 525 11.4 525 11.4 525 11.4 525 11.4 525	Borp-(micro- ition mbos at ratio 55.6() 1.5 25.6() 1.5 1.5 1.5 192 1.6 145 1.1 1490 1.6 512 1.1 1445 1.1 1490 1.1 1490 1.1 1490 1.1 1490 1.1 149 1.1 199 1.1 199 1.1 199 1.1 199 1.1 199 1.1 199 1.1 199 1.1 199 1.1 199 1.1 199 1.1 199 1.1 199 1.1 199 1.1 199 1.1 198 1.1 198 1.1 198 1.1 198 1.1 198 1.1 198	Borp-(micro- tition miles at ratio 55.6() 1.5 1.5 17 1.5 1.5 192 1.5 192 1100 1.5 192 1100 1.5 192 1101 1.6 1.5 192 1.1 543 1100 1.1 543 1101 1.1 543 1101 1.1 543 1101 1.1 543 1101 1.1 543 1101 1.1 543 1101 1.2 1366 12.4 1.3 543 11.1 1.4 572 12.4 1.4 572 12.4 1.4 573 12.4 1.4 573 12.4 2.4 1.4 575 1.4 573 2.4 1.4 573 5.4 2.4 643 2.4 1.4 573 </th
sium ate	ate 26	26 26 15	26 26 ate 15 15 15 15 26 20 26 20 26 20 26 20 26 20 20 20 20 20 20 20 20 20 20 20 20 20	26 26 ate ate ate ate 26 26 26 26 26 26 26 26 26 26 26 26 26	bon- ate 115 116 116 118 114	bon- 26 26 116 116 116 116 116 117 270 <	bon- 115 15 16 116 116 116 110 110 110 111 111 111 111 111 111 111 111 111 111 111 111	bon- bon- ate 26 115 15 116 115 118 118 119 116 110 110 110 111 114 114 117 114 118 884 873 366 559 579 564 884 117 114 118 114 117 117 117 117
	113	113	113 94 618 841 251 251 251 115	113 94 811 251 251 115 306 115 391	113 94 618 841 251 346 115 346 115 249 249 153	113 94 94 841 841 305 115 391 391 153 259 153 256 153 256 153 256 153 256 153 256 153 256 153 256 153 256 153 256 155 256 256 256 256 256 256 256 256 256 2	113 94 94 818 841 115 115 391 346 115 346 115 346 153 361 153 361 153 361 153 361 153 361 153 254 361 153 261 272 201 202 202 202 202 202 202 202 202 20	113 94 618 618 841 115 391 115 306 115 306 115 306 115 303 361 15 303 361 15 303 361 15 303 361 15 303 361 15 305 15 30 15 20 15 30 15 20 15 20 20 20 20 20 20 20 20 20 20 20 20 20
	0,6 E	0. 1.	0. 1. 0. 0. 11. 1.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 I I I I I I I I I I I I I I I I I I I	
	0.2 ELL LAKE	0. SLL LA 0. NEAR	0. SLL LA 0. NEAR	0. SLL LA 0. 0. 0.	0.0 SLL LA 0.0 NEAR UAC 0.0	0 2LL LA 0 0 0 0 0 0 0 0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.
	33 NEAR LOVELL	33 NEAR LOVE 29 OAD 1941	33 iEAR LOVE 29 29 20 210 210 222 322 322 322 322 322 322 322 322 32	33 (EAR LOVE 29 29 29 29 22 20 222 22 22 22 22 22 22 22 22 22 22	33 IEAR LOVE 29 34D 1941 322 322 322 322 322 322 322 322 322 32	33 IEAR LOVE 29 34D 1941 210 322 352 352 352 352 377 77 77 75 75 75 37 75 37 75 37 75 86 37 86 88 88 88 88 88 88 88 88 88 88 88 88	33 IEAR LOVE 29 34D 1941 210 322 352 352 366 70 22 22 22 70 22 22 70 70 71 77 77 77 77 77 77 77 76 86 86 86 88 80 80 NO	33 (EAR LOVE 29 34D 1941 210 22 352 352 352 352 352 362 77 77 77 77 77 77 77 77 77 77 77 77 77
27	BAYOU	BAYOU 16 FARM R	BAYOU 16 FARM R 128 121 121 121 35 54 54 24	BAYOU 16 FARM R 121 121 121 37 357 357 357 357 357 357 357 357 357	BAYOU 16 FARM R 128 57 55 54 55 54 54 68 68 68 68 68 68 68 68 68 68 68 68 118 11	BAYOU 16 FARM R 128 57 53 55 54 68 68 68 68 68 68 68 68 68 68 68 68 68	BAYOO 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BAYOU IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII
18 3	HILLEBRANDT	ILLEBRANDT 14 6 Y BAYOU AT	LEBRAN 14 BAYOU BAYOU 113 172 131 157 114 114 114	LEBRAN 14 BAYOU BAYOU 113 172 172 172 172 172 172 172 172 172 172	LEBRAN 14 14 14 13 172 172 172 172 173 174 114 157 0YSTE 0YSTE 0YSTE 65 65	LEBRAN 14 14 14 172 772 772 772 772 172 172 172 172 172	LEBRAN 14 14 13 172 172 131 14 0YSTE 0YSTE 0YSTE 131 144 144 144 144 144 148 65 65 65 65 65 65 65 65 136 100 100 100 100 136 137 138 138 138 138 138 138 138 138 138 138	LEBRAN 14 14 14 172 172 172 172 172 178 0YSTE 0YSTE 0YSTE 65 56 61 61 61 61 61 61 61 61 61 61 61 61 61
00	з.	3. EAST B	23 3. 21 21 144 213 33 33 52 18	23 3. 21 144 213 33 33 33 52 15 166 66	23 21 21 21 21 21 21 21 45 213 45 213 45 213 45 213 45 213 45 213 45 213 45 213 45 21 21 21 21 21 21 21 21 21 21	23 3. 21 21 21 21 213 213 213 213 213 213 213	23 3. 21 21 21 23 23 33 23 33 23 33 33 53 53 53 55 66 66 66 66 66 66 66 66 66 66 7. 8 7. 8	23 21 21 21 21 21 21 21 21 21 21
	2.7	2.7 2.1	2.7 2.1 15 14 6.6 7.0 2.7 2.7	2.7 2.1 15 146 646 7.2 2.7 2.7 2.5	2.7 2.1 14 6.6 7.5 7.0 2.7 7.0 2.7 7.0 3.1	2.7 2.1 2.1 2.1 1.5 1.5 1.5 7.0 2.42 7.0 3.11 3.11 3.11 3.11 5.48 3.11	2.7 2.1 2.7 2.1 2.7 2.5 5.4 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7 2.7	2.7 2.7 2.1 2.1 2.1
	14	1	14 59 52 52 52 52 52 52 52 52 52 52 53 53 54 54 55 55 50 55 50 55 50 56 50 56 56 56 56 56 56 56 56 56 56 56 56 56	14 11 14 259 559 559 550 550 550 550 550 550 550 5	14 14 146 166 166 166 166 166 166 166 16	14 11 11 11 16 53 53 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 55 42 33 33 33 42 55 55 55	14 14 14 14 14 14 14 14 14 14 14 14 14 1	14 11 <th11< th=""> 11 11 11<!--</td--></th11<>
0	0.2	0.1		0.1	0.1 0.1 0.1 0.1 0.1 0.1 0.1 1 0.1 1 0.1 1 0.1 1 0.1 1 0.1 1 0.1 1 0.2 0.1 0.2 0.1 0.2 0.2 0.2 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1	0.2 0.1 0.1 12 12 12 13 13 13 13 13 13 13 13 13 13 13 13 13	0.2 0.1 122 122 122 13 13 13 13 13 13 13 13 13 13 13 13 13
	5210		73 60 29 29 29 29	1-000000 mi	1-000000 00000-4	500000	5210 7780 7780 3.259 4.55 4.53 11.6 111.6 111.6 111.6 111.6 15.56 15.56 15.56 15.56	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	9, 1968	9, 1968	9, 1968 9, 1968 15, 1967 25, 1968 103 103 203	9, 1968 9, 1968 15, 1967 13. 13. 13. 15, 1967 15, 1967	9, 1968 9, 1968 25, 1967 13 17 17 13 14 17 17		9, 1968 9, 1968 25, 1967 13 13 17 17 15, 1967 15, 1967 15, 1967 17	9, 1968 9, 1968 25, 1967 13, 1967 13, 1967 13, 1967 15, 1967 15, 1967 15, 1967 17, 1968 13, 1967 15, 1967 15, 1967 17, 1968 13, 1967 13, 1967 14, 1967 14, 1967 15, 1967 17, 10, 1967 17, 1967 1

+

4

0

.

Oil is produced in many areas in the basin (Figure 6), and oil and related petroleum products represent a major part of the industrial activities. The Baytown area, located on the Houston Ship Channel and Galveston Bay, is the urban and industrial center of the basin.

Chemical analyses of samples from Cedar Bayou near Mont Belvieu (site 1) show water of good quality at this station (Table 3). However, during lowflow periods, irrigation-return flows and industrial wastes are probably degrading the quality of surface waters in some areas. Municipal and industrial discharges from the Baytown area enter the Galveston Bay system. The natural dissolved-solids concentration of runoff in the basin is probably less than 250 mg/l.

SAN JACINTO-BRAZOS COASTAL BASIN

The San Jacinto-Brazos coastal basin, which drains an area of 1,440 square miles, is bounded on the east by Galveston Bay, on the west by the Brazos River basin, and on the north by the San Jacinto River basin (Figure 1). Some areas are frequently flooded because the maximum altitude in the basin is about 100 feet and much of the basin is less than 50 feet above mean sea level. In addition to flooding throughout the basin from local storm runoff, lowlands along the coast and in the Galveston Bay area are inundated by high tides. The western side of the basin is subjected to flooding by overflow waters from the Brazos River. Precipitation in the basin averages 44-48 inches per year-monthly, seasonal, and yearly precipitation patterns are shown by records for the city of Houston (Figure 3).

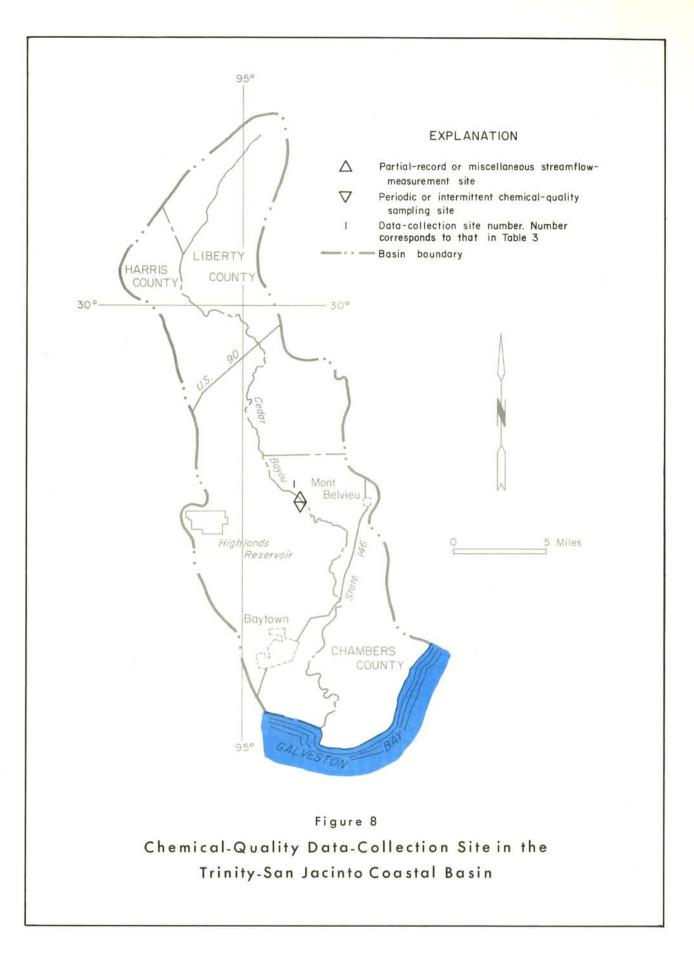
The principal streams in the basin are Clear Creek, Oyster Creek, and Dickinson, Halls, Mustang, Chocolate, and Bastrop Bayous (Figure 9). Clear Creek drains much of the northern part of the basin and discharges into Galveston Bay near Seabrook. The watersheds of the five major bayous include most of the central and southeastern drainage areas of the basin. Dickinson Bayou flows into Galveston Bay north of Texas City, and the other four bayous flow into the West Bay system. Oyster Creek drains a 247-square-mile strip that parallels the Brazos River along the western edge of the basin. Oyster Creek discharges into Oyster Bay.

William Harris Reservoir, a 12,000 acre-foot impoundment, is located immediately adjacent to the basin, between the Brazos River and Oyster Creek. This off-channel reservoir serves for temproary storage of water diverted from the Brazos River. Water from the reservoir is released to Oyster Creek and then to a canal system for distribution to various industrial plants.

More than 150,000 acre-feet of surface water, mostly imported from the Brazos River, and about 14,000 acre-feet of ground water was used to irrigate 70,000 acres of rice and pasture in 1964 (Gillett and Janca, 1965, p. 37). Irrigated areas are shown on Figure 5. Oil is produced in many areas of the basin (Figure 6), and oil and related petroleum products represent a large part of the industrial economy. The eastern part of the basin along Galveston Bay is a populous, highly industrialized area and shipping center.

Chemical analyses of streams in the San Jacinto-Brazos coastal basin are shown on Table 4. Water-quality data collected at nine sites in the basin (Figure 9) in 1967-68 show waters of generally good to excellent chemical quality. The dissolved-solids concentration did not exceed 1,000 mg/l in any of the samples collected. However, irrigation-return flows and municipal and industrial wastes probably have some effect on the water quality in all streams. Nitrate concentrations exceeded 10 mg/l at five sites during low flow. The maximum concentration of 77 mg/l was observed in Flores Bayou near Danbury (site 8).

All sampling sites are far enough upstream to be above normal tide effects. The ranges in water discharge at the time of sampling provide water-quality data that are generally representative of the range in concentrations of dissolved constituents at these sites. The lower reaches of the principal drainage systems are affected by tides, and tidal action compounds the effects of municipal and industrial wastes and irrigation-return flows on water quality, particularly in the urban areas along Galveston Bay.

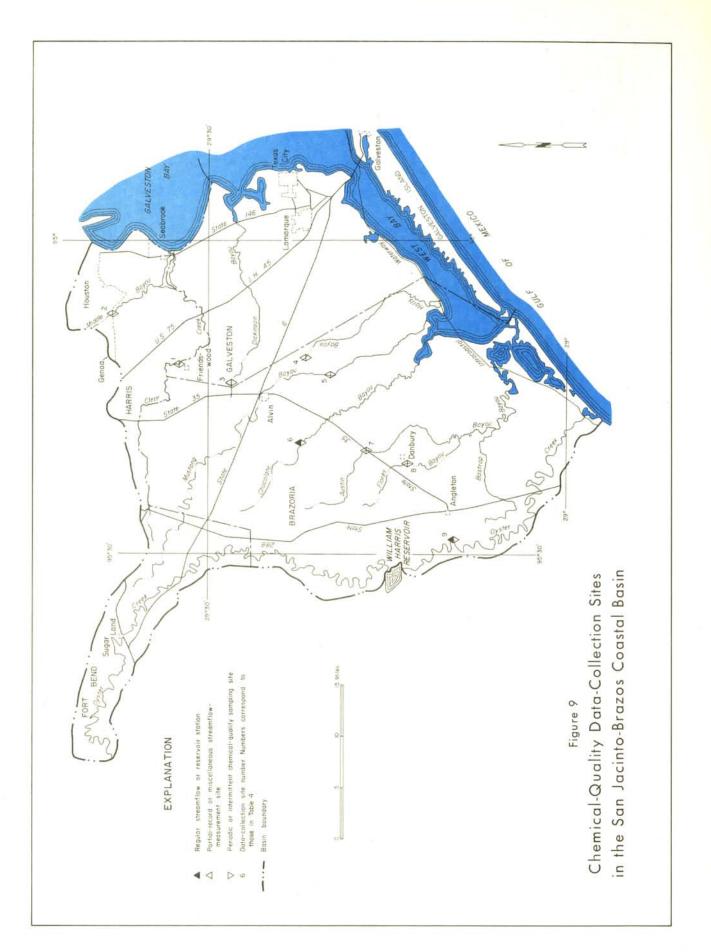

BRAZOS-COLORADO COASTAL BASIN

The Brazos-Colorado coastal basin, which has a drainage area of 1,850 square miles, lies between the Brazos and Colorado River basins as a long narrow band extending about 100 miles inland from the coast (Figure 1). Although the maximum altitude exceeds 400 feet above mean sea level in the headwaters of the basin, altitudes in much of the lower part of the basin are less than 50 feet. The lower basin is subjected to overflows from the Brazos River on the east and the Colorado River on the west, and the coastal areas are occasionally inundated by high tides.

Precipitation in the basin averages 40-44 inches per year. Monthly, seasonal, and yearly precipitation patterns are approximated by records for the city of Houston (Figure 3).

The San Bernard River (Figure 10), which has a drainage area of about 1,000 square miles, is the only large stream in the basin. The Brazos-Colorado coastal basin has no major reservoirs. Some off-channel storage has been developed together with a canal system for distribution of water imported from the Colorado River.

In 1964, about 50,000 acres of rice and pasture was irrigated in the basin with 130,000 acre-feet of surface water, mostly from the Colorado River, and 32,000 acre-feet of ground water (Gillett and Janca, 1965, p. 38). Irrigated areas are shown on Figure 5.



								Bi-							solved s		Hard as Ca		S0-	Specific con-	-
Date of collection	Discharge (cfs)	Silica (SiQ _g)	Iron (Fe)	Cal- cium (Ca)	Mag- ne- sium (Mg)	Sodium (Na)	Po- tas- sium (K)	car- bon- ate (HCO ₃)	Car- bon- ate (CO ₃)	Sulfate (SO4)	Chloride (Cl)		Ni- trate (NO ₃)	Milli- grams per liter (mg/l)	Tons per acre- foot	Tons per day	Cal- cium, Mag- ne- sium	Non- car- bon- ate	sorp-	ance (micro-	pH
							1. CI	EDAR B.	AYOU N	EAR MON	T BELVIEU										
Dec. 15, 1967 Jar. 25, 1968 Jay 13	53.8	4.4 .0 12		39 29 24	$4.8 \\ 3.1 \\ 2.9$	94 47 64		81 70 60	6 10 0	39 20 15	144 65 101	0.4	0.3 .2 2.6	 372 209 252			117 85 72	40 11 23	3.8 2.2 3.3	692 384 468	886

Table 3.--Chemical analyses of stream in the Trinity-San Jacinto coastal basin

- -

(Results in milligrams per liter except as indicated)

- 22 -

Table 4.--Chemical analyses of streams in the San Jacinto-Brazos coastal basin

(Results in milligrams per lifer except as indicated)

Date of collection 30, 1967		_						BIL	-						Dis (ra	Dissolved Bolids (calculated)	olids ed)	Hard as C:	Hardness as CaCO ₃	-s:	Specific con-	-
00	Discharge ((cfs)	Silica I (SiO ₂) (Iron (Fe)	Cal- clum (Ca)	Mag- ne- sium (Mg)	Sodium (Na) s	Po- tas- slum (K) (J		Car- bon- S ate ((CO ₃)	Sulfate (SO ₄)	Chloride (CI)	Fluo- ride (F)	NI- trate (NO3)	Bo- (B)	Milli- grams per liter (mg/l)	Tons per acre- foot	Tons per day	Cal- cium, Mag- ne- stum	Non- car- bon-	ad- ad- Borp- tion ratio	58	PH
2							1.	CLEAR (CREEK	NEAR FR	FRIENDSWOOD	e		ĺ								
30.								100	0	20	170		a		265			135	6	5.6		7.7
-	1.25	2.0			11 9	101		40	0.0	20	32	1.5	11		136			68	35	1.0		6.7
	04.0	0						1	1	45	104		1		1			1 1	10			1
May 16.	22.5	41		23	6.4	35		1177	00	18 28	51	4 00	2.0		311			160	14	1.9	540	7.4
		14																				
							2	MIDDLE	LE BAYOU	OU NEAR	R GENOA											
				10	0 6	606		533	60	31	98	1.00	6.7		542			38	0	14		1.6
ec. 6, 1967	11.27	11		24	0.0	61		100	0	14	17	2	4.6		145			84	24	6.0	256	9.6
an. 23, 1905	61 E	8.		22	18	111		272	17	30	82	57	9.2		490			216	00			2 1 3
May 21	2.65 14	14		59	15	106		360	00	27	96	4.4	34		605			156	c	9.9	-	7.4
ug. 10	00+1	e4					3	DICKINSON		10	NEAR ALVIN	4										
															010			000	0.4	1.12		2 4
ec. 6, 1967	0.18	9.1		99	25	90		224	00	15	143	1.0	0.0		810			44	11	1.2	149	1.0
nn. 22, 1968	280			19	18.0	61		236	0	99	56	4	0.		436			226	32	2		8.0
May 16	12.4			41	11	56		132	0	53	72	8.	2.4		315			148	40	2.(7.5
							4	. HALLS		BAYOU NEAR	R ALVIN											
106 1068	1.66	14		16	4.8	7.8		66	0	8.0	8.6	0.4	1.2		93			60	9	0.	154	7.9
10. 22, 1300		8.4		48	11			209	0	16	30	.6	1.8		248			165	C	1.0		7.8
May 16	.84	14		28	5.9	11		119	0	. 6	12	.4	1.4		132			94	C			7.2
							ŝ,	MUSTANG		BAYOU NE/	NEAR ALVIN											
10 1027	2 50	15		58	1	192		252	0	70	222	1.8	13		707			190	0		-	7.6
an. 27 1968	393	2 00		17	3.5	26		52	0	7.6	42	9.	2.4		134			22	14			2.0
ar. 27	11.9	4.6		73	11	219		158	00	20	382	4.	e		964			227	84		-	1 00
May 16	6.36	12		30	5.0	44		274	00	27	242	4 10	1.6		899			277	52	3.8	1220	1.5
- 22							6.	CHOCOLATE		BAYOU N	BAYOU NEAR ALVIN	N										
eb. 7. 1968	18	16		52	8.5	56		115	0	26	111		11		338			164		-	1	- 1
uly 23	85.0	12		46	11	35		179	0	28	42	40	8		263			164	13	2.1	472	
uly 25	114	20		20	6.9	89		121	0.0	9.6	114	2 4	1.4 8		374			200				10.1
Aug. 13 Sept. 4	1.20	24		58	16	72		192	00	62	101	20	. 4		428			210		2		7.
6							7.	AUSTIN	IN BAYOU	OU NEAR	ANBURY											
100 E 1067	0 32	6.4		14	28	152		283	0	42	250	0.7	0		693			300	68	3.5	-	7.6
Jan. 22, 1968	741	6.8		11	2.6	13		38	0	16	11				84			38	1-10	6.0		0.1
lar. 27	8.98	2.8		59		78		151	0	25	120	÷.	010		425			FOZ	12			0.1
ay 16	41.4	15		36	8.2	37		1174	00	37	46	0.4	210		364			207	64			

- 23 -

1

Table 4 .-- Chemical analyses of streams in the San Jacinto-Brazos coastal basin -- continued

0	bH - t		1					7.5			1 . 1	
Specific con-	duct- ance (micro- mhos at 25°C)		1570	•				567				
s'	ad- ad- Borp- tion ratio		11	9	1.8	2.7	10	1.5		8.1	0	0
acO ₃	Non- car- bon-		0	9	40	7	C	36		20	11	24
Hardness as CaCO,	Cal- cium, Mag- ne- sium		144	34	174	197	40	188		162	83	203
Mace Bi-	Tons per day											
	Tons per acre- foot											
Dis	Milli- grams per liter (mg/l)		947	64	.33 9.6 50.1 2.0 0.3 9.2 8.4 .0 2.2 64 34 .22 8.5 56 14 87 155 0 54 66 33 332 174 .22 8.5 56 14 87 232 0 44 96 1.3 14 435 197 .4 12 54 13 46 185 0 31 73 .4 .9 66 40 .4 12 54 13 46 185 0 31 73 .4 .8 321 189 .4 12 54 13 46 185 0 31 73 .4 .8 321 188 .4 12 73 .4 .8 321 188 .6 57 8.0 54 .8 321 188	322	135	375				
	Bo- (B)											
	NI- trate (NO3)		17	2	3	14		00			4.2	
8	Fluo- ride t (F) ((12	0.	.6	1.3	4.	.4		0.5	.2	5
	Chloride (Cl)	DANBURY	188	8.4	69	96	5.5	73	ANGLETON	72	19	83
	Sulfate (SO4)	FLORES BAYOU NEAR	30	9.2	52	44	4.6	31	SEK NEAR	60	14	61
Care	bon- ate (CO ₃)	ES BAN	0	0	0	0	0	0	ER CRF	0	0	0
B1-	bon- bon- ate HCO ₃)	FLOR	534	35	165	232	49	185	OYSTI	138	88	181
_	tas- stum (K)	8.							9.			
	Sodium (Na)		314	8.0	54	87	6.6	46		54	16	59
Mag-	ne- sium (Mg)		16	2.6	12	14	2.5	13		8.0	4.5	10
ī	cau- clum (Ca)		31	9.5	20	26	12	54		52	26	65
	Iron (Fe)											
	Silica (SiO ₂)		16	7.0	9.6	8.5	9.8	12		6.0	8.5	4.7
	Discharge (cfs)									140	1090	$13, \ldots, 117$ 4.7 65 10 59 181 0 61 83 $.3$ 2.6 375 203 54 1.8 667
lata	collection		1967		* * * * * * * * * *					1967		
.IE	col		Nov. 28,	. 22 .	. 11.	24	e 26.			. 28,	. 23.	$13, \ldots, 117$ 4.7 65 10 59 181 0 61 83 $.3$ 2.6 375 203 54 1.8 667
			NON	Jan	Apr	May	unf	Aug		Nov.	Jan	Mar

(Results in milligrams per liter except as indicated)

4

4

Although oil is produced in many parts of the basin, the major oil fields are in the lower half of the basin (Figure 6). The production of oil and related products, rice processing, and meat packing are the principal industries. Bay City is the major industrial and commercial center, but various small industries are scattered throughout the basin.

Chemical analyses of streams indicate that runoff throughout the basin is generally of good to excellent quality (Table 5). Limited data from five sites (Figure 10) on the San Bernard River indicate that high to moderate flows usually contain less than 250 mg/l dissolved solids, and that high flows in the upper part of the river often contain less than 100 mg/l dissolved solids. However, irrigation-return flows and oil-field brines are probably degrading the chemical quality of the river throughout its reach.

Samples collected over a wide range in water discharge at San Bernard River near Boling (site 4) ranged in dissolved-solids concentrations from 51 to 552 mg/l. Concentrations of dissolved constituents, especially sodium and chloride, increase between Boling and the next downstream site near Newgulf (site 5). Samples collected near Boling on November 29 and near Newgulf on November 30, 1967, show dissolved-solids concentrations of 429 and 1,170 mg/l, respectively.

Small streams in the lower part of the basin contain water low in dissolved solids during high flows, but low flows in some of the streams show the effects of oil-field brines. A sample collected during low flow in Cedar Lake Creek near Cedar Lane (site 7) contained 3,170 mg/l dissolved solids. Cottonwood Creek near Bay City (site 10) receives municipal and industrial wastes from Bay City and probably has high organic and nutrient concentrations at low flow. A sample collected on November 29, 1967, had a nitrate concentration of 66 mg/l. Other small streams and reaches of streams in the basin are probably being affected locally by irrigation-return flows and municipal and industrial wastes. Nondegraded surface waters in the basin probably contain less than 250 mg/l dissolved solids.

COLORADO-LAVACA COASTAL BASIN

The Colorado-Lavaca coastal basin, which has a drainage area of about 940 square miles, is located near the center of the Texas Gulf Coast (Figure 1). The maximum altitude is about 100 feet above mean sea level. Annual precipitation varies from about 41 inches in the east to about 38 inches in the west (Figure 3). Precipitation in the basin is fairly well distributed throughout the year, with May and September generally having the maximum monthly accumulations (Figure 3). The maximum annual precipitation at Edna for the period 1931-68 was 59.95 inches in 1941.

The principal streams in the basin are Tres Palacios and Carancahua Creeks (Figure 11). There are no major reservoirs in the basin. Drainage is poor, and flooding occurs during periods of heavy rainfall. Lowlands near the coast are frequently inundated by high tides.

Much of the industrial economy is based on petroleum and related products. Oil fields are located in many parts of the basin (Figure 6).

In 1964, about 176,000 acre-feet of water was used to irrigate about 47,000 acres of rice and pasture (Gillett and Janca, 1965, p. 39). More than half of this water was surface water, most of which was imported from the Colorado River basin. Principal irrigated areas are shown on Figure 5.

Chemical-quality data collected in the Colorado-Lavaca coastal basin are given in Table 6, and the data-collection sites are shown on Figure 11. The dissolved-solids concentrations were less than 500 mg/l in all streams at the times of sampling, indicating that surface waters of the Colorado-Lavaca coastal basin are generally of good to excellent quality. However, some streams or reaches of streams in the basin may be affected locally by industrial and municipal wastes and irrigation-return flows.

LAVACA-GUADALUPE COASTAL BASIN

The Lavaca-Guadalupe coastal basin is located in the central part of the Texas coastal area (Figure 1). The basin, which heads about 60 miles inland at an altitude of about 200 feet, contains an area of about 998 square miles. Precipitation, which averages from 36 to 38 inches per year, decreases from east to west (Figure 3). Precipitation is fairly well distributed throughout the year with May and September generally having the maximum monthly accumulations (Figure 3). The minimum monthly precipitation at Edna was 0.00 inches during several months, and the maximum was 14.38 inches in June 1960.

The principal streams in the basin are Arenosa, Garcitas, and Placedo Creeks (Figure 12). There are no major reservoirs in the basin; however, Garcitas Reservoir has been proposed (Figure 12).

The economy in the Lavaca-Guadalupe coastal basin is supported by agriculture, oil production, recreation, and seafood processing. In 1964, about 18,000 acres (Figure 5) was irrigated with about 53,000 acre-feet of surface and ground water (Gillett and Janca, 1965, p.39). Most of the surface water is imported from the Guadalupe River basin. Smaller amounts are supplied by Garcitas Creek or imported from the Lavaca River basin.

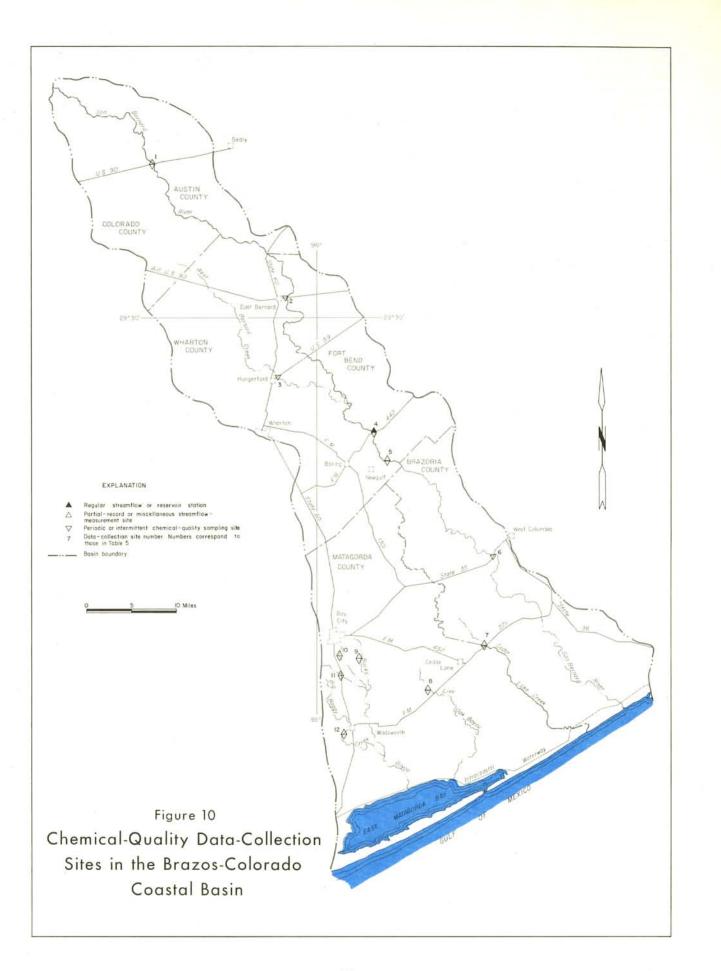


Table 5.---Chemical analyses of streams in the Brazos-Colorado coastal basin

(Results in milligrams per liter except as indicated)

									B1-							Dist (ca	Dissolved solids (calculated)	d)	Hard as C	Hardness as CaCO,	\$;	Specific con-	-11
5	Date of collection	Discharge (cfs)	Silica (SiQ ₂)	Iron (Fe)	Cal- ctum (Ca)	Mag- ne- stum (Mg)	Sodium (Na)	Po- tas- stum (K)	car- bon- ate (HCO ₃)	bon- ate (CO ₃)	Sulfate (SO4)	Chloride (Cl)	Eluo- ríde (F)	NI- trate (NO3)	Bo- ron (B)	Milli- grams per liter (mg/l)	Tons per acre- foot	Tons per day	Cal- cium, Mag- ne- sium	Non- car- bon-	ad- sorp- tion ratio	<u><u><u></u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>	Hd
								1.	SAN B	BERNARD	RIVER	NEAR SEALY	TLY										
Mar. 17	939	a5	15		0.6	0 2.4	26		25	0	7.0	43	0.1	1.0		116			32	12	2.0	209	7.2
								2. SAN	N BERNARD	1.00	RIVER AT	EAST BER	BERNARD										
Apr. 25	, 1959		11		11	2.8	9.8	0.5	41	0	5.4	14	0.2	1.2		76			39	5	9.7	135	5.4
								3. WE	WEST BER	BERNARD C	CREEK AT	T HUNGERFORD	ORD										
Apr. 25	1959		14		20	4.3	23		107	0	4.4	17	0.2	0.2		136			68	0	1.2	244	6.3
								4. S	SAN BER	BERNARD R	1.0.00	NEAR BOLING	5										
h1 14	1949	1	16		94	1	67		349	0	22	120	1	0		b552			333	47	1.6	996	
ent. 14	4. 1961	11500	8.0		11		6.1	4.5	40	00	9.8	6.0	0.3			68			36	3	.4	63	9
01. 29			16		11				249	0	14		.4			429			234	30	2.0	273	00 1
an. 24	1, 1968		7.2		8.2		5.4		27	0	6.4	4.0	1.0	4 0		52			30	-	F	86	- 4
an. 26			L. L		9.9				30	00	9.0		Na	N		10			113	D.F	1.4	396	01
eb. 13	13		8.6		50		19		80	00	12	27	6.6	+ 01		138			80	15	6.	253	-
Aug. 9	*********	260	17		41	10	32		152	00	16	48	6.	1.2		241			143	19	1.2	432	7.2
ept. 1		nee	00		ne									•									
								5. SAN	N BERNARD	10.2	RIVER NEA	AR NEWGULF	H										
an. 14	t. 1949				102	26	155		354	0	30	268	1	0		b825			362	72		1460	
ov. 30	. 1967				110	23	300		236	0 0	16	530	0.4			1170			369	176	6.8	2140	
Sept. 1	. 11	540	30		32	7.2	31		116	00	12	47	1.0	. 80		218			109	14	1.3	372	7.1
							.9	SAN B	BERNARD	RIVER	NEAR	WEST COLU	COLUMBIA										
Jan. 14 July 17	1, 1949		14		80 66	27 14	95		384 80	00	8.0 21	138 99		0.0		b583			310 180	0	2.3	1070	7.7
							7	CEL	CEDAR LAKE	E CREEK	SK NEAR	CEDAR	LANE										
iov. 28	Nov. 28, 1967		8.9		272	48			328	0	84	1720		0.4		3170			876	607	13	5680 382	7.6
tay 17.			10		33	4.3	11		115	0	1.8		1.0	-		138			100	90	10	249	1-1
June 26			8.2		22	3.0			62	0		3.6	8	- 1		81			29	200		146	-1
Aug. 7. Sept. 4		13.6	6.4		28	4.2	168		225	00	268	318	1.1	- 12		174			87	34	1.4	324	-1-
								8. LI	LIVE OAK	BAYOU	NEAR	CEDAR LANE	YE										
Iay 17,	1968		13		22	4.7	9.0		80	0	7.6	11	1.1	10		110			74	6	0.5	189	1.7
June 20	June 26	30.0	5 11 5 11		202	1.4	32.0		196	000	22.0	46	, oʻ -	4 17 0		272			182	22	200	494	6.1
sept.	L'evenue a statut		10		00	13	30		261	0	07	00	1.1			FT0			011	0.7	٠	1.70	

Table 5.--Chemical analyses of streams in the Brazos-Colorado coastal basin--continued

	_						B1-	_						n e	Dissoived solids (calculated)	d)	Hardness as CaCO,	CO3	\$	Specific con-	- 11
schar (cfs)	ge	Silica Iron (SiO ₂) (Fe)	e) (Ca)	 I- Mag- im sium a) (Mg) 	- Sodium) (Na)	n tas- sium (K)	5	bon- ate (CO3)	Sulfate (SO4)	Chloride (C1)		Fluo- NI- ride trate (P) (NO3)	Bo- (B)	<pre>Milli- grams grams per liter (mg/1)</pre>	Tons per acre- foot	Tons per day	Cal- cium, Mag- ne- stum	Non- car- bon-	dium ad- Borp- Hon ratio	duct- ance (micro- mhos at 25°C)	Hq
			-			5	9. BU(CKS BAY	OU NEAR	BUCKS BAYOU NEAR BAY CITY	Å										
0	00 09 6		6.d	96	166		1944	0	0.6	170	2 0	0		212			000	0		0001	1
1-				2.4	201	j	100		152	666				111			007	0	F - F	1400	0.1
24.0	11 0		26				84	0	20	17	0.1			150			00	16	1	248	7 4
138			22				00		11	14	1.0			130			26	T a		216	-1-
15.4	4 17	F	60	17	52		232		35	74	1.0	- 5		370			220	30	1.5	649	2.5
						10.	COT	COTTONWOOD		CREEK NEAR BAY CITY	CITY										
2.			63				284		20		5.8	66		645			218	0	4.5	1110	5
81.2	2 13	-	19	3.9	9 12		70	0	8.4	14	-	5.0		109			63	9	1.7	185	7.3
4.		1	1			1	1	1	28		-	1		1			1	ł	ł	1110	1
21.5		~	28	6.0	0 35		121		13		1.9	12		205			95	0	1.6	355	7.5
62.	7 20	~	5				87		8.8		<u>с</u>			128			61	8	.5	209	2
ź	8.63 16		2				234		23		2.2			410			192	0	2.4	713	2
						11.	LIVE	OAK	SLOUGH	SLOUGH NEAR BAY CITY	CITY										
78.3	3 12		19	3.6	6 6.5	S.	69	0	5.2	9.4	4 0.1	1.2		16			62	9	0.4	157	7.3
-		1	1			1	1	3	26	46				-			1	;	ł	482	1
00	54	4	+				126		26	26				200			143	24	2.	358	00
47T	00	10	25	2.0	11 2		107	0 0	11	12		1.1		143			101	5		245	D - 1
							•		2	2				1.10			011	5	-	POL	-
						12		G BOGG	CREEK	BIG BOGGY CREEK NEAR WADSWORTH	SWORTH										
1.	1.52 7	7.0	11	11 3.8	8 9.1	1	38		10		0.1			76			43	12	0.6	142	7.
211		.3	4			6	30	0	5.0	5.		1.4		50			25	C	. 6	87	6.9
		ł		1		1	1		15					1			1	;	1	240	1
10.8	8 16		18		6 10		20		7.0					105			64	9	0	621	10
135		10	16			2	58		4.6					87			56	00		145	-1
20.6		~	46				170		22		6.	.2		254			172	33	6.	465	7.3
	. 58	1		-		1	-		1	31				1			1	;	1	286	1

.

4

.

(Results in milligrams per liter except as indicated)

- 28 -

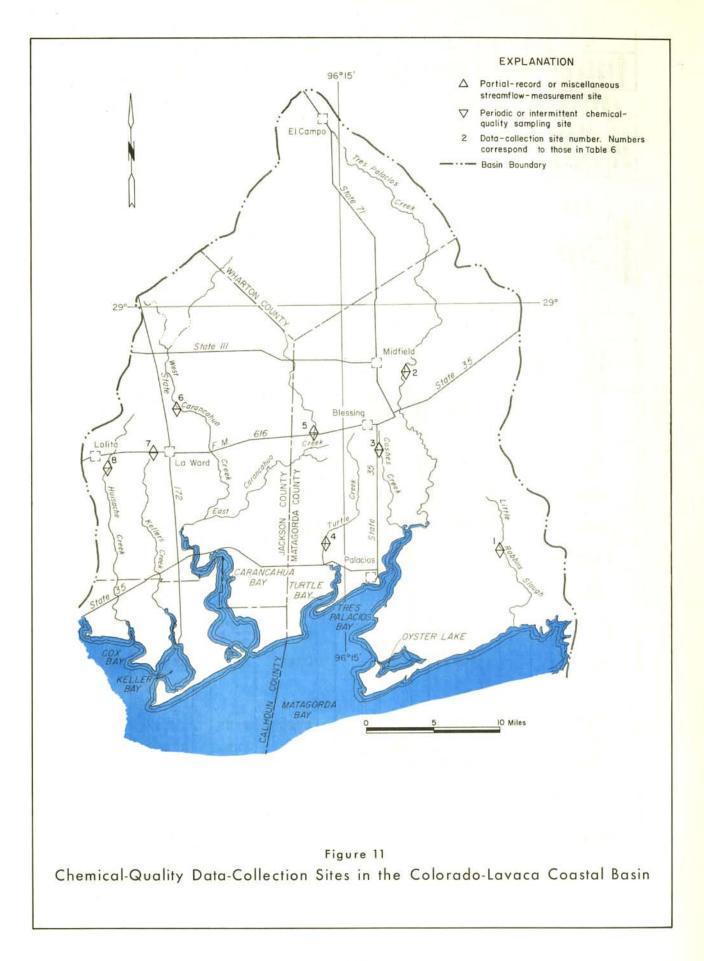


Table 6.--Chemical analyses of streams in the Colorado-Lavaca coastal basin

ŝ				(Mar		,	Bl-							Dis	Dissolved solids (calculated)	lids (ba	Haro as C	Hardness as CaCO,	-95	Specific	0
Date of collection	Discharge (cfs)	Silica (SiO ₂)	Iron (Fe)	ctum (Ca)	mag- ne- sium (Mg)	Sodium (Na)	Fo- tas- stum (K)	car- bon- ate (HCO ₃)	bon- ate (CO ₃)	Sulfate (SO4)	Chloride (Cl)	Fluo- ride t (F) (NI- trate (NO3)	Bo- (B)	Milli- grams per liter (mg/l)	Tons per acre- foot	Tons per day	Cal- cfum, Mag- ne- stum	Non- car- bon-	dium ad- sorp- tion ratio	duct- ance (micro- mhos at 25°C)	pH t
							1. 11	TTLE B	OBBIN	S SLOUGH	LITTLE ROBBINS SLOUGH NEAR MATAGORDA	TAGORI	E.									
Mar. 13, 1969	0.69 a 20										202 70		1.8								1940	
							2.	TRES	PALACIOS	CIOS CREEK	NEAR	MIDFIELD	TD									
Sept. 12, 1967	38.1	40		48	15	09	5+0	247	00	12	72	0.6	0.8		374			182	o	1.9	615	2
ay 2		16		42	11	35		167	00	15	113	0.0	3.0		253			150	16	2.7	701	7.8
July 24 Mar. 13, 1969	24.2	19		44	12	40		182	°	15	56 96	4.1	4.6		276			159	10	1.4	493	5
							3	. CAS	HES CI	REEK NEA	CASHES CREEK NEAR BLESSING	NG										
Mar. 13, 1969	1.21										1											
	4.68										104		1.8								745	
							4	TUR	TLE CF	TURTLE CREEK NEAR	R PALACIOS	SC									100 Minute	
Mar. 12, 1969	0.57										81		0.0								506	
											66										629	
							5. EA	ST CAR	ANCAHL	IA CREEK	EAST CARANCAHUA CREEK NEAR BLESSING	ESSING	25									
Sept. 12, 1967 Feb. 6, 1968	12.0	46		43	12	101	5.0	285	00	12	115	0.8	0.5		482			186	0		800	1-1
May 21	36.2	20		28	8.6	38		133	0		46	. प	. 00		218			105	0	1.6	38.7	1.5
	0.01	70		20	10	95		140	•	9.6	45	4	.4		222			116	•		387	2.
							6. W	EST CA	RANCAH	WEST CARANCAHUA CREEK	K NEAR LAWARD	WARD										
Sept. 12, 1967	11.0	50		02	19	19	7.4	284	00	13	113	0.5	0.8		481			252	20	1.8	798	7.
av 91 1300	10.1	0.6		20	0.0 8	200		121	0 0		50	4 0	1.2		211			105	9	1.6	388	-1
July 24	61.1	20		30	7.0	21		115	00	6.5	34				176			104	0 6	x 6.	306	7.3
							7	KEL	KELLERS C	CREEK NEAR	AR LaWARD											
Sept. 13, 1967	0.32	67		40	13		6.4	223	0	5.2	43	0.5	0.5		329			154	c	1.5	480	5
eb. 6, 1968	11.	9. 61		18	4.0	9.5		01	3	4.4	10	e .	2.		84			19	c	. 5	165	001
July 24	09.	13		21	4.6	21		86	00	2.4	24	4.4	1.8		146			11	00	8	244	7.5
							8	IUH .	HUISACHE	CREEK N	NEAR LOLITA	LA										
Sept. 13, 1967	0.05	15		34	7.6	124	6.5	211	0	21		-	.6.2		455			116	0	5.0	835	7.
July 24.	1.33	12		16	4.2	12		28	0 0	1.0	. 01	9. 1	1.4 a		100			56	0 0	1 00	170	7.0

-

- 30 -

Chemical-quality data collected in the Lavaca-Guadalupe coastal basin are given in Table 7, and the data-collection sites are shown on Figure 12. Dissolvedsolids concentrations in Garcitas Creek near Inez (site 1) ranged from 37 to 342 mg/l, and concentrations in Arenosa Creek near Inez (site 2) ranged from 26 to 553 mg/l. If the flows of Garcitas and Arenosa Creeks are impounded in the proposed Garcitas Reservoir, the water should be of excellent quality, with dissolvedsolids concentrations less than 250 mg/l.

Limited data show that dissolved-solids concentrations have ranged from 457 to 1,570 mg/l in Placedo Creek near Placedo (site 3), and low flows in East Coloma Creek near Port Lavaca (site 5) and West Coloma Creek near Seadrift (site 6) contained dissolvedsolids concentrations of 4,700 mg/l and 3,920 mg/l, respectively. High concentration of dissolved solids and chloride indicate that these three streams are being degraded by oil-field wastes. Two low-flow samples from Chocolate Bayou near Port Lavaca (site 4) had dissolved-solids concentrations of 200 and 117 mg/l, showing that water in this stream is of excellent quality.

Available data for streams in the Lavaca-Guadalupe coastal basin indicate that streams in the upper part of the basin contain water of very good quality. Some streams and reaches of streams in the lower part are being degraded by man's activities.

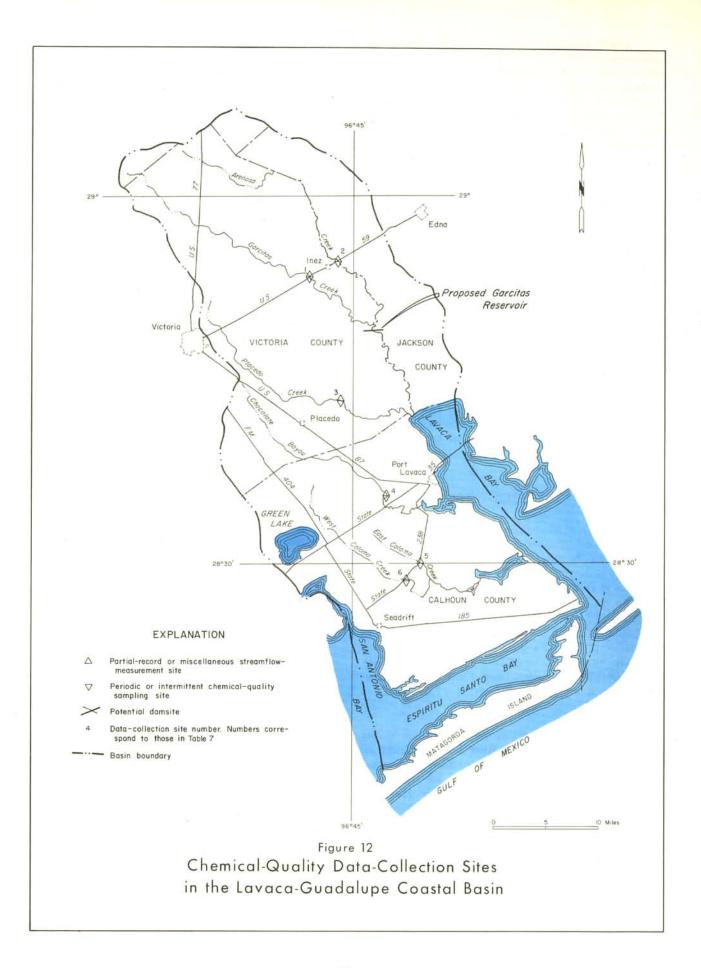
SAN ANTONIO-NUECES COASTAL BASIN

The San Antonio-Nueces coastal basin, which has a drainage area of 2,650 square miles, lies between the San Antonio and Nueces River basins (Figure 1). The maximum altitude of the basin is about 500 feet above mean sea level, but much of the area is at altitudes less than 100 feet. Annual precipitation ranges from about 36 inches in the east to 28 inches in the west (Figure 3). The precipitation is fairly well distributed throughout the year, with May and September generally having the maximum monthly accumulations (Figure 3). Precipitation at Beeville has ranged from a low of 0.00 inches during several months to a high of 22.62 inches in September 1967.

The principal streams in the San Antonio-Nueces coastal basin are the Mission River and its tributaries, Blanco and Medio Creeks, the Aransas River, and Chiltipin Creek (Figure 13). There are no major reservoirs in the basin. Natural drainage is poor, and occasional heavy rains flood large areas near the coast.

Agriculture, oil production, commercial fishing, and recreation support the local economy. Fewer acres are irrigated in this basin than in any of the other coastal basins. In 1964, 16,000 acres was irrigated with about 7,600 acre-feet of ground water (Gillett and Janca, 1965, p. 40). Irrigated areas are shown on Figure 5. Oil is produced in many areas, but the large oil fields are in the lower part of the basin (Figure 6). Chemical-quality data collected in the San Antonio-Nueces coastal basin are given in Tables 8 and 9, and the data-collection sites are shown on Figure 13. Dissolved-solids concentrations were less than 200 mg/l in Salt Creek near Refugio (site 2), in Copano Creek near Refugio (site 3), and in Melon Creek near Refugio (site 9) at all times of sampling. Artesian Creek near Tivoli (site 1) had dissolved-solids concentrations ranging from 131 to 261 mg/l. Water-quality data collected over a wide range in discharge show that the water in these streams is of excellent quality.

Blanco Creek near Refugio (site 4), Medio Creek near Beeville (site 5), and Medio Creek near Refugio (site 6) contained water varying from excellent to marginal in chemical quality. However, even during periods of very low flow, the water of these streams usually has dissolved-solids concentrations less than 500 mg/l.

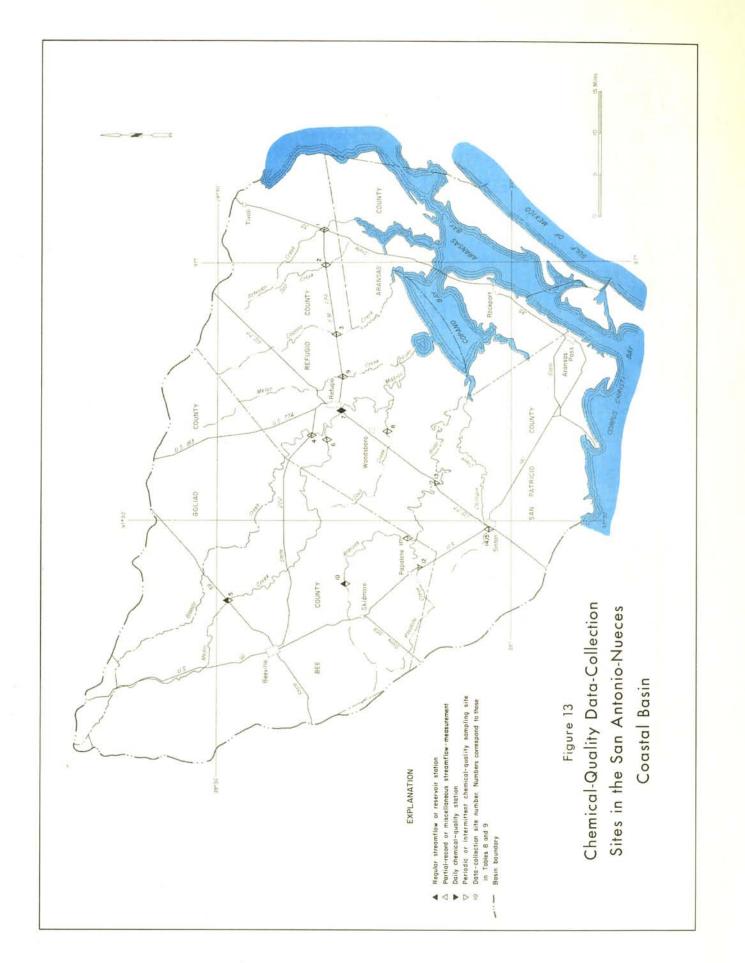

The quality of water in the Aransas River watershed is being degraded by drainage from oil fields, and low flows frequently contain dissolved solids in excess of 1,000 mg/l. However, moderate to high flows in the Aransas River near Skidmore (site 10) usually contain less than 500 mg/l dissolved solids. Dissolved-solids concentrations in Chiltipin Creek, which is highly degraded by oil-field brines, have exceeded 60,000 mg/l.

Dissolved-solids concentrations in the Mission River at Refugio for the period 1962-68 have ranged from a minimum of 80 mg/l during May 5-7, 1966, to a maximum of 70,100 mg/l during August 1-10, 13-30, 1963 (Table 8). Weighted-average dissolved-solids concentration for this 7-year period was 984 mg/l. The Mission River and Chiltipin Creek have been used for the conveyance of oil-field brines to Copano Bay. Although the Railroad Commission prohibited this practice beginning January 1, 1969, the effects of residual brines may appear for many years.

The chemical quality of water in the San Antonio-Nueces coastal basin varies from excellent to extremely poor. Tributary streams to the Mission and Aransas Rivers contain water of excellent chemical quality. However, man's activities have frequently degraded the Mission and Aransas Rivers and Chiltipin Creek to the extent that the quality of water in these streams ranges from good to extremely poor, depending on the amount and source of streamflow.

NUECES-RIO GRANDE COASTAL BASIN

The Nueces-Rio Grande coastal basin, the largest of the coastal basins, has an area of more than 10,400 square miles in the southernmost section of the Texas coastal region (Figure 1). Annual precipitation in this semiarid basin ranges from about 30 inches in the northeast to about 20 inches in the southwest (Figure 3). Rainfall is fairly well distributed throughout the year, with May and September generally having the maximum monthly accumulations (see average monthly



											except a					solved alculat		Hard as Ca		So-	Specific	
Date of collection	Discharge (cfs)	Silica (SiQ ₂)	Iron (Fe)	Cal- cium (Ca)	Mag- ne- sium (Mg)	Sodium (Na)	Po- tas- sium (K)	Bi- car- bon- ate (HCO ₃)	Car- bon- ate (CO ₃)	Sulfate (SO4)	Chloride (C1)		Ni- trate (NO3)	Bo- ron (B)	Milli- grams per liter (mg/1)	Tons per acre- foot	Tons per day	Cal- cium, Mag- ne- sium	Non- car- bon- ate	dium ad- sorp- tion ratio	con- duct- ance (micro- mhos at 25°C)	рĦ
							1	GAF	CITAS	CREEK N	EAR INEZ			_								_
Apr. 20, 1965 May 21 Nov. 15 Jan. 26, 1966 May 11	43.3 7.65 38.4 37.2	17 8.6		32 15 21 7.2	7.8 2.3 3.8 1.8	72 15 15 8.6	2.5	154 66 87 32 90	0 0 0	23 4.2 5.6 6.2 11	83 14 15 9.2	0.5	0.2 .5 1.5 .2 .2		300 97 122 60			112 47 68 25 77	0 0 0 3 13	3.0 1.9 .8 .7 1.1	549 157 206 97 204 536	7. 7. 6. 6. 7.
June 17 Oct. 25, 1967 Nov. 21 Dec. 28 Jan. 31, 1968 Apr. 9	6.79 1.81 .31 14.8 3.83	17 19 16		64 54 49 58 42 66	8.3 5.5 4.8 8.0 4.8 8.2	36 24 26 35 47	2 · 1 2 · 4 	220 164 152 171 135 206	000000000000000000000000000000000000000	32 32 23 47 43	44 29 35 45 27 60	.4 .3 .3 .3 .3	.8 .3 .1 .4		318 252 230 296 342			194 157 142 178 125 198	23 17 38 14 29	.8 .9 1.1 1.5	410 397 501 368 579	7. 7. 7. 7.
May 13 June 21 July 24				$\begin{array}{c} 7.8\\ 14\\ 64 \end{array}$	1.5 2.5 6.6	1.9 8.7 25		29 54 206	000	.6 4.8 30	2.9 9.6 29	. 1 . 2 . 3	$1.3 \\ 1.0 \\ .4$		37 78 282			26 45 187	2 1 18	- 2 - 6 - 8	67 134 465	6. 6. 7.
							:	2. ARI	NOSA	CREEK NI	EAR INEZ											
Oct. 27, 1960 Sept. 13, 1961 Apr. 21, 1965 Junc 29 Nov. 15 Jan. 26, 1966 Mar. 9 May 11. Dec. 7 Oct. 25, 1967 Nov. 21. Dec. 28 Jan. 1, 1968 Apr. 1. June 21. June 21. June 21. Juny 24 Mar. 12, 1969 July 22.	$\begin{array}{c} 40.1\\ 4.24\\ 12.4\\ 12.4\\ 40.0\\ .82\\ 91.7\\ .01\\ 12.6\\ .93\\ .13\\\\ .875\\ 2860\\ 3.06\\ 18.5\\ 6.30\end{array}$	$\begin{array}{c} 7.9\\ 13\\ 24\\ 96\\ 7.0\\ 15\\ 16\\ 38\\ 26\\ 21\\ 29\\ 17\\ 4.6\\ 12\\ 25\\ \end{array}$		3.2 6.1 27 34 16 7.7 46 13 84 47 72 22 58 5.0 13 39 	$\begin{array}{c} 1.3\\ 1.4\\ 7.0\\ 9.0\\ 2.5\\ 18\\ 6.4\\ 9.9\\ 15\\ 4.7\\ 14\\ 1.5\\ 3.8\\ 9.8\\ 9\\\\\\\\\\\\\\\\\\\\$	2.3 6.7 52 60 20 9.9 47 10 95 40 62 96 	1.7 3.4 	16 30 127 168 88 39 200 58 438 138 210 322 98 294 24 68 196 	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 2.4 22 11 7.2 8.6 3.8 3.6 5.6 5.2 4.0 	$\begin{array}{r} 4.0\\ 8.2\\ 57\\ 73\\ 18\\ 10\\ 64\\ 11\\ 84\\ 49\\ 81\\ 128\\ 29\\ 121\\ 3.7\\ 23\\ 78\\ 64\\ 146\end{array}$	$\begin{array}{c} 0.1 \\ .1 \\ .5 \\ .4 \\ .3 \\ .2 \\ .4 \\ .4 \\ .4 \\ .4 \\ .4 \\ .1 \\ .2 \\ .3 \\ \\ \end{array}$	$\begin{array}{c} 0.2 \\ .0 \\ 1.8 \\ .8 \\ .2 \\ 1.0 \\ .2 \\ 1.8 \\ .7 \\ .7 \\ .7 \\ .5 \\ 1.0 \\ 1.3 \\ .7 \\ 1.7 \\ .6 \end{array}$		26 51 242 295 120 70 288 90 553 229 330 503 503 32 116 327 			13 21 96 122 62 31 152 284 43 284 96 158 241 74 202 19 48 138 	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	$\begin{array}{c} 0.3 \\ .6 \\ 2.3 \\ 2.4 \\ 1.1 \\ .8 \\ 1.7 \\ .7 \\ 2.5 \\ 1.4 \\ 2.7 \\ 3.5 \\ 1.4 \\ 2.5 \\ \\ \end{array}$	40 78 436 524 220 116 523 141 925 385 588 887 305 588 895 60 203 577 482 932	6. 6. 6. 6. 7. 6. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.
							3	. PLA	CEDO C	REEK NE	AR PLACED	C										
Sept. 13, 1967 Feb. 6, 1968 May 21 July 25	1.11 8.89	18		71 150 61 194	$ \begin{array}{c} 11 \\ 22 \\ 8.7 \\ 28 \end{array} $	226 271 97 360	6.8	229 129 273	0 0 0	12 36 13 26	385 585 197 800	20	3.3		839 1200 457 1570			222 464 188 599	60 277 82 376	$6.6 \\ 5.5 \\ 3.1 \\ 6.4$	1530 2270 876 2900	7.1 7.1 7.1 7.1
Sept. 13, 1967	1.97	34		30	4.5	25	4.		O	0.4	A PORT LA	0.6	1.5		200			94	1	1.1	321	7.3
May 22, 1968				20	3.3	12		72	0	1.2	19	. 2			117			63	4	. 7	198	6.8
Mar. 12, 1969	0.20	:					5. E	AST CO	LOMA (CREEK NE	AR PORT L	AVACA	0.2		a4700					_	8640	_
July 23											92		.4								714	
10 100							6.	WEST C	DLOMA	CREEK N	EAR SEADR	IFT	1.6		a3920						7210	
Mar. 12, 1969 July 23		0									102		.2		10520						771	

Table 7. -- Chemical analyses of streams in the Lavaca-Guadalupe coastal basin

-

a Estimated.

- 34 -

Table 8.--Summary of chemical analyses at daily station on stream in San Antonio-Nueces coastal basin

(Analyses listed as maximum	and minimum were classif	ied on the basis of th	ne values for dissolved solids only.
Values of other constituen	ts may not be extremes.	Results in milligrams	s per liter except as indicated.)

									Bi-								alculat		Hard as Ca		So-	Specific	a
	Date of collection		Silica (SiQ ₂)		Cal- cium (Ca)	Mag- ne- sium (Mg)	Sodium (Na)	Po- tas- sium (K)	car- bon- ate (HCO ₃)	Car- bon- ate (CO ₃)	Sulfate (SO4)	Chloride (Cl)	ride	Ni- trate (NO ₃)		Milli- grams per liter (mg/l)	Tons per acre- foot	Tons per day	Cal- cium, Mag- ne- sium	Non- car- bon- ate	dium ad- sorp- tion ratio	ance (micro-	pH
								7.	MISS	ION R	IVER AT	REFUGIO										_	
Minimum, Ju	1962 ug. 11-31, 1962 une 2-4 verage	$\begin{array}{r}1.9\\2213\\41.9\end{array}$	35 26 27		1480 26 139	205 2.0 18	17100 32 1010		187 94 118	0 0 0	22 3.6 7.9	29500 42 1940		1		48600 181 3330	66.0 .25 4.53	241 1080 377	4520 73 418	4370 0 324	1.6		7.7
Minimum, No		1.0 395 10.6	45		1970 312	331 	24900 3410	I	$141 \\ 52 \\ 120$	000	4.9 2.8 9.6	42800 151 5810				70100 324 9690	95.3 .44 13.1	181 346 277	6280 60 979	6160 18 882	134 45	80500 724 13300	7.2
Minimum, Ji	1964 ov. 1-7, 1963 uly 20, 1964 verage	3.3 769 13.9	27 12 16		1780 18 246	$256 \\ 2.7 \\ 41$	21600 72 2730		60	0 0 0	9.3 .0 7.8	$37000 \\ 114 \\ 4700$	0.2			60700 251 7800	82.6 .34 10.6	541 521 299	5500 56 783	5360 7 695	4.2	72500 482 11300	7.2
Minimum, Fe	1965 ec. 1-7, 1964 eb. 17-18, 1965 verage	$\begin{smallmatrix}&1.7\\2435\\45.7\end{smallmatrix}$	29 13 13		1780 30 91	377 2.5 16	22300 28 772		102	0000	13 4.2 6.5	$38500 \\ 41 \\ 1320$		1000		63100 170 2270	85.8 .23 3.09	290 1120 286	6000 85 281	5810 1 189	12 1.3 7.0		8.0
Minimum, Ma	1966 oct. 1-17, 19, 1965 lay 5-7, 1966 verage	2.0 5743 126	21 8.2 11	2	1330 15 57	206 1.4 7.6		100 5 3.8 		0 0 0	11 .2 5.2	27000 12 658	. 1	2.5	Ē.	44600 80 1170	60.6 .11 1.60	$241 \\ 1240 \\ 399$	4150 43 174	4020 0 101	20 .6		7.2
Minimum, M.	1967 July 1-20, 1967 Jay 21 verage	1.3 1730 647	34 5.5 20	5	1540 17 52	221 1.8 5.0		100 4.8 5.6		0 0 0	$15 \\ 5.4 \\ 6.9$	30300 82 153	0.1	1.8		49300 192 409	67.0 .26 .56	173 897 721	4770 50 150	4660 8 21	106 3.0 2.2		
Minimum, M	1968 ppr. 1-30, 1968 lay 12-13	$\begin{array}{r}15.4\\8420\\203\end{array}$	34 9.1 17	1	255 22 71	48 2.0 9.6		4	the loss line in	0000	39 . 8 12	4600 10 547		15 5.6		7630 95 1010	10.4 .13 1.37	317 2160 554	834 63 216	13	- 4	- 13500 167 1889	7.0

- 35 -

Table 9 .--- Chemical analyses of streams in the San Antonio-Nueces coastal basin for locations other than daily station

								Bl-							D1550	Dissolved solids (calculated)	d)	Hard as C	Hardness as CaCO ₃	\$:	Specific con-	0
1. ARTSIAN CRERK KRA TYOLI 120 45 31 5 4 146 0 17 45 20 210 200 103 3.67 31 3.7 14 0 17 9 0.5 10 20 103 3.67 31 2.5 10 2.7 10 0.2 0 10	Date of collection	Discharge (cfs)	Silica (SiQ ₂)	Cal- cium (Ca)	mag- ne- sium (Mg)			car- bon- ate (HCO ₃)	bon- ate (CO.)	Sulfate (SO4)	Chloride (Cl)		NI- trate (NO3)		1.00	Cons per cre-	Tons per day	Cal- cfum, Mag- ne- stum	Non- car- bon-	ad- sorp- tion ratio	<u>.</u>	pH
							1.	ARTE	SIAN (REEK NE	AR TIVOL	I										
	11 1007		40	06		10		1.40		10		<	0 0		000			112	0	1.1	205	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	eb. 7, 1968		12	36		23		148	0	37			2.4		261			108	00	5.5	449	- 1-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	lay 22		30	30				108	0 0	1.1					131			86	0 0	en e	204	2.1
2. SALT CRERK NEW REPUCTO 8.41 3.6 5.41 3.6 0.4 8.2 0.41 1.5 1.66 7.7 1.11 3.5 5.41 3.6 0.2 1.66 0.44 8.2 0.41 1.5 1.66 0.74 8.2 0.41 1.5 1.76 1.76 5.812 3.5 4.2 1.0 5.2 2.3 0.51 1.76 1.76 1.76 1.72 3.8 1.61 6.6 5.2 2.3 0.51 1.76 1.7			10	5		1.7		1.71		53	01	2.	2		701			-	>		00.7	-
							53	SAL		IK NEAR	REFUGIO											
	11 1007	14 0	10	10	4 9	10		100		V V	0		4		150			22			100	t
	eb. 7 1968	11.0	3.2	35	2.4	23		130	00	5.4	32.2		2.8		121			110		1.0	328	- 1-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	lay 22	18.1	1	ľ	1			72	0	12	1		1		1			56	0	1	164	6.8
3. CORNO CRERK NEAR REFUGIO $1, 1, 105, \dots, 20, 8, 32, 8, 12, 2, 16, 1, 15, 0, 17, 196, \dots, 15, 0, 17, 196, \dots, 15, 0, 17, 15, 0, 17, 15, 0, 17, 15, 0, 17, 15, 0, 17, 15, 0, 17, 15, 0, 17, 15, 0, 17, 15, 0, 17, 15, 0, 17, 15, 0, 17, 15, 0, 17, 15, 0, 10, 12, 12, 13, 12, 12, 13, 13, 12, 13, 13, 12, 13, 13, 13, 13, 13, 13, 13, 13, 13, 13$	uly 25	0.89	53	10				89	•	×	6-1		1.5		93			53		9	140	1
							3	COF.		IEEK NEA		0										
	ept. 14, 1967		35	12	2.6	21	6.1	99	0	5.2	23	0.5			139			41	0	1.4	204	1
	eb. 7, 1968		8.2	16	3.8	43		73	0	24	43	.2			177			56	0	2.5	314	8
4. BLANCO CREEK NEAR REFUGIO 4. BLANCO CREEK NEAR REFUGIO 1.09 35 78 16 84	ay 22		1	12	2.7			51	00	6.6	41	17	2.0		104			34	- 0	1.2	215	9.9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			8				4					0							5			3
	ct. 24. 1961			78	16	84		291	0	32	121	0.5	0.0		510			260	22	2.3	857	
	an. 3. 1962			16	18	106	1	324	0	45	166	-	0.	-10	661			316	200	2.6	1090	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	an. 30			92	21	127	I	326	0	55	194	4.	0.	G	1700			324	56	3.1	1180	7.3
$ \begin{bmatrix} 13.7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 & 7 &$	pr. 3			60	20 2	129	1	240	0 0	10	197	4.4	0.0	(4)	1637			247	20		1060	
	ct. 31.			52	13	62		184	00	30	122	1 1	00	1 4 1 5	422			183	32	10.0	122	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	an. 9, 1963			59	9.4	54	1	212	0	20	76	.4	0.		341			186	12		606	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ar. 21		29	19	21	131	ł	240	0 0	000	200	4.0	0.0	CH.	1631			246	00	9.0	1070	- 1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	eb. 26, 1964		11.0	18	1.7	12		09	0	5.4	15	4 4	4 40		68			22	- 02		121	9
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ay 6		13	64	Ц	80	1	242	0	21	111	3	0		419			204	Ð	2.4	758	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	uly 20		21	45	1	85	ł	186	0 0	30	101	4.0	0.0		387			158	17 0		689	- 1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ar. 23		21	1 8	1.2	86		308	00	34	145	1 4	1		101			280	27	2.5	956	- 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	uly 2		26	68	10		ł	260	0	17	72		5		378			210	C		650	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	an. 26, 1966		9.7	13			3.1	147	0 0	5.2	0.6		5		12			40	00	5	123	0 1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ar. b		n C	40			9.9	177	0 0	6	5.6				102			021	NC	0.1	001	- 1-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	lay 9.	266	23	40			8.6	146	0	10	0.0				160			III	0	10	261	1.0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	lay 13		22	42		40	3.6	258	0	18	09	010			359			222	1		622	~ 1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10V. 21		23	104	10	181	2 0	500	0 0	30	187				560			326	92		0101	- 1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	av 17		28	21	12	102	10	218	00	38	138	. 9			181			180	- 01	- 1	837	-1-
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	fuly 26		36	70		124	4.2	240	0	44	198	1.0			613			248	25	1.10	1060	2
60.7 34 89 11 47 3.6 281 0 23 76 .2 .1 4.22 267 267 9.40 32 34 13 67 .2 .1 4.22 267 267 8.04 32 34 13 67 .2 .1 344 138 8.04 32 92 16 98 274 0 34 138 8.04 32 172 .3 .0 344 138	Nug. 30		16	40		12	3.8	143	0	3.4	15	.2			165			113	0	5	271	14
$\mathbb{R}^{1,1}$ R	oct. 6		100	68	19	47	3.6	281	0 0	53	100	0,0			422			267	36		720	- 1
	an. 10, 1200	8.04	32	626	16	86		274	0 0	39.	172	3 03			585			296	00	2 10	1020	
38.9 229 0 77 213		38.9	1	1	1	-	1	229	0	1	22	1						213	26	- 1	647	-1

- 36 -

Table 9, --Chemical analyses of streams in the San Antonio-Nueces coastal basin for locations other than daily station -- continued

÷

1

1

6

9	pH		1	01-				7.4												10	1.1	-	10	- 1-	9	- 0	-10	9	- 1-	9		0.00	-	10	-		0.1	-	1.2	7.8
Specific con-	duct- ance (micro- mhos at 25°C)		1220	398	188	472	248	348	360	265	611	10101	1030	1250	1160	1170	439	1160			0.0.0										1030					Contra I				
-8	ad- sorp- tion ratio		4.2	2.2	9.	1.3	1.2	1.1	1.1	1.5	1.1	0.0	3.4	3.8	100		1.9	ł		0.5	3.7	2.6	51	200	1.8	1.9	4.1		0.5	1.0	9.0	10.1	2.0	2.4	1.1	3.4	9.0	2.6	1.2	-
CO3	Non- car- bon-		44	00	0	0 0	0	0	nc	24	14	80	138	186	282	169	00	ł		0	60	40	12	24	2	10	40	c	18 0	0	41	-	12	0 0	00	24	19	8	35	104
Hardness as CaCO,	Cal- ctum, Mag- ne- stum		250	111	67	145	13	118	81	192	231	256	234	274	159	252	109	273		66	324	236	202	210	166	179	264	34	220	84	295	44	210	33	162	294	310	134	204	291
ed)	Tons per day																																							
Dissolved solids (calculated)	Tons per acre- foot																																							
Dis (c	Milli- grams per liter (mg/l)		644	a144	104	263	144	199	190	351	367	514	596	718	000	200	242	I		100	a766	a505	411	141	318	342	681	53	463	149	580	64	409	106	267	681	388	342	341	;
	Bo- ron (B)																																							
	N1- trate (NO3)		2.4	6.9												0.1	2.2	1									0.01	.2	20	-	C1 C									
	Fluo- ride (F)		0.4	- e	4	C1 C	i ei	2		9 02	4.0	NO	10		10	2	.2	1		0.2	4.	- 10	5.	n u	5	e.		1.	1.4		ei.	* 0	.3	10		.3	ci n	0.0	.1	1
	Chloride (Cl)	MEDIO CREEK NEAR BEEVILLE	250	5.5	7.8	52	27	25	42 2 G	84	55	148	209	268	101	256	56	230	REFUGIO	14	238	148	105	235	78	84	235	2.2	145	27	1100	1.9	103	2 0	46	198	244	101	61	188
	Sulfate (SO4)	EK NEAR	24	3.4	4.6	8.4	0.7	8.2	29 8	14	19	90	94	120	- 00	200	24	ł	MEDIO CREEK NEAR	0.6	51	25	25	46	13	20	38.0	9.	29	4.4	26	0.9	23	2 4	11	42	49	21	27	
	bon- ate (CO ₃)	O CRE	0	00	0	0	00	0	00	00	0	00	0	0	0 0	0 0	00	0	IO CRE	0	00	00	0	00	0	0	0 0	0	00	0	00	00	0	0 0	00	0	00	00	0	0
BI-	car- bon- ate (HCO ₃)	MEDI	250	142	88	188	194	160	63	205	265	915	118	107	160	EUT	123	222		81	323	239	232	288	194	200	274	48	205	107	310	252	241	52	194	330	295	154	206	228
	stum (K)	ŝ	1	5.2	1	ł		1	6.6	1.0	7.6	4-1		1	E	1		ł	6.	1	l		1	1	1	1	-	3.8	11	1	1	1	4.1	4.3	2.0	4.4	2.6	6.4	5.8	1
	Sodium (Na)		154	5.8	=	42	41	27	36	47.5	37	16	118	146		130	45	1			152										104									
;	mag- stum (Mg)		17	1.5	2.4	2.2	2.0	3.8	2.7	5.4	6.4	11 0	17	21	6.0	11	3.5	1		2.6	23	16	12	24	10	9.6	20.1	1.0	13	2.8	61	19 9	11	10	7.2	20	24	8.4	7.2	18
	cal- ctum (Ca)		72	42	23	52	42	4	28	989	82	122	99	75	24	20	38	1		22	65	89	61	40 a	20	26	13	12	30 u 10 00	29	87	14	99	12	200	85	10.0	104	70	87
	Iron (Fe)																																							
	Silica (SiO ₂)		3.4	7.0	9.5	13	11 9.8	14	2.2	22	27	32	100	34	1	12	13	1		9.7	33	25	19	52	17	16	26	6.4	13	8.6	23	82	14	10	17	37	30	50		
	Mean Discharge ((cfs)		;	2650	.10	448	2.68	21.5	.22	79.2	55.4	23.8	5.22	2.23	4.74	1.32	11.4	2.14		I	b1	10.1	1.12	19.	.02	.92	19.4 b.20	242	b.4	7.26	.96 23	15.43	.85	1740	248	.43	.50	h.06	147	
	Date of collection			2, 1962	1	22, 1965	22	Feb. 19	15, 1966	25. 1967	26	5		13.	25, 1968	23		11		14. 1961	Jan. 30, 1962	31	9, 1963	21		18	26, 1964	20.	. 24		Mar. 23	1				21	Mar. 10, 1967	26		
			Mav 3.	June 2	Nov. 1.	Jan.	Jan.	Feb.	Feb.	Sent.	Sept.	Oct.	Nov.	Dec.	Jan.	Feb.	June	July		Sept.	Jan.	Apr.	Jan.	Mar.	Oct.	Dec.	Feb.	July	Sept	Feb.	Mar.	July	Mar.	May	May	Nov.	Mar.	May	Oct.	Jan.

See footnotes at end of table.

				-				B1-							Dist (cn	Dissolved solids (calculated)	(p)	Hardness as CaCO,	aco,	\$	Specific con-	-11
Date of collection	Discharge (cfs)	Silica I (SiQ _a) ((Fe)	Cal- Ca) (Ca)	Mag- ne- sium (Mg)	Sodium (Na)	Po- tas- (K)		bon- ate (CO3)	Sulfate (SO4)	Chloride (C1)	e ride (F)	NI- trate (NO ₃)	Bo- (B)	Milli- grams per liter (mg/l)	Tons per acre- foot	Tons per day	Cal- cfum, Mag- ne-	Non- car- bon-	dium ad- sorp- tion ratio	duct- ance (micro- mhos at 25°C)	Hd
							8.	SUOS	CREEK		NEAR WOODSBORO											
Sept. 15, 1967 Feb. 7, 1968 May 22. July 26.	1.26 .12 16.4 2.73	$^{2.1}_{17}$		25 200 28 48	3.8 70 7.9	14 553 24 46	6.8	89 250 95 150	0000	5.8 179 10 18	25 1130 36 77	0.4	1.2 4.3 1.5	errill	147 2280 169 290			787 89 152	582 11 30	0.7 8.6 1.1 1.6	239 2440 292 518	7.2
							9.	MELON	N CREEK	NEAR	REFUGIO											
Sept. 24, 1967 Feb. 7, 1968 May 22	10.2 4.94 96.8 34.8	22 10 14		22 25 10	2.23	21 33 12	4.6	98 107 42 60	0000	0.8 9.6 .8	25 36 17 17	0.4 11	2.40		149 173 79			68 80 34 46	0000	1.1 1.6 .9	244 311 144 163	7.2 6.9 6.7 6.7
							10.	ARAN	SAS RI	VER NEA	ARANSAS RIVER NEAR SKIDMORE	DRE										
Nov. 28, 1961 Jan. 3, 1962	0.30	9.8 4.4		25 25	6.4 8.4	518 431 511		564 462 490	14	33	508 415 500	2.0	1.5		1160			868	000	23	2440	0.7 8.3
	1.56	16		49	9.9	161	I	344	0	15	188				a675			150		6.8	1110	10
1963	b.7	8.1		36	10.0	124	1	218	00	15	132				429			112		5.1	792	1-1
	30.54	3.0		1E	4.5	62	1	182	0 0	90.9	52				261			96		21 8	2100	i a
Dec. 18.	2.17	8.0		23	9.0	64	1	148	00	8.9	52		5.5		232			63		3.4	430	
1904	201	8.8		20	2.0	22		060	0 0	3.6	200		0.0		121			285		1.3	1200	- 15
	130	9.4		21	2.8	57	I	131	0	7.6	15		. 61		213			64		3.1	377	50
	20.8	12		19	4.0	109	11	172	00	11 9.4	104		1.0		346			64		6.9	565	-12
	b. 08	8		32	0.8	405	1	484	0	40	392	1.1	10.1		1120			113		17	1950	-
	5.11	16		30		2115		236	00	1.8	102		0 01		393			40	0 0	1.5	723	
	451	6.4		34	2.0	16	1	129	0	5.4	10	57	2.2		139			63	0	E .	255	1
	51.8	13.6		23	3.0	13	11	111	00	13.6	96		20 10		121			76	0 0	5.3	506	- 0
1966	.80	10		32	4.6		6.7	247	0	22	150	7	12		516			66	0	6.8	626	-
Non Alleria	3.37	010		23	5.4		8.9	336	0 0	26	290				824			80	00	14	1530	1-1
	24.8	11		20	1.5		4.6	603	00	0.7	28	1.1			120			100	00	1.7	269	- 10
	5430	19		22	1.5		4.4	89	0	4.0	12				123			61	0	.8	202	.9
	397	9.1		29	1.8	N a	0.9	107	0 0	9.0	4.0				112			80	00	00	201	10
	259	11		24	1.7	0 0	2.2	96	0	2.8	10.0				105			19	00		221	- 1-
1967	.93	2.7		18	5.9		13	508	0	30	460				1260			70	0	24	2250	æ
	.67	2.2		18	7.5		16	604	0 0	38	543				1490			76	0 0	28	2670	
	3.64	21		20	1.1		17	614	00	40	550	3.5			1520			62	00	27	2670	
	1.65	11		22	2.4		6.4	98	0	3.2	14				122			65	0	8.	207	-
	1.81	16		32	2.6		6.1	145	0	3.0	23				187			16	0	1.4	307	-1
	0.00	18		200	2 2		0.9	178	10	10.10	77				247			108	0 0	1.9	420	- 0
	0.10	DG DG		40	200		0.0	017	- 0	0.11	182				242			101	0 0		1150	-13
	17.6	00		47	4.4		2 2	208	00	11	22				340			136		9.6	288	x
20	6.06	28		73	8.2	189		382	0	23	204				714			216	00	9.0	1230	-
1968	1.89	I		57	9.6	1	ł	534	0	ł	455				1			182	0	1	2230	4.
25	3.21	1		1	1	ł	1	264	0 0	1	215	1			Ţ			128	0	1	1160	- 1
		1		11	ł	i	-	432	D	;	382				-			101	0	1	1900	6.7
								00	c		1.1							2 2	4		000	t

See footnotes at end of table.

Table 9. -- Chemical analyses of streams in the San Antonio-Nueces coastal basin for locations other than daily station -- continued

- 38 -

Table 9, --- chemical analyses of streams in the San Antonio-Nueces coastal basin for locations other than daily station -- continued

1

6.9 6.6 6.9 6.9 0.004466 7.5 7.1 Hd Specific con-duct-ance (micro-mhos at 25°C) 2080 8320 720 173 88600 79900 14300 58900 553 2560 65100 43900 11900 6700 67700 67700 81300 56300 56300 56300 56300 28 3.4 .8 So-dlum ad-sorp-tion ratio 4.5 2.0 12 6810 6730 7310 7210 971 916 6050 5950 -uoN car-bon-0 31 0 Hardness as CaCO, 332 Cal-clum, Mag-ne-stum 516 238 5600 56 Tons per day Dissolved solids (calculated) Tons per acre-foot Milli-grams per liter (mg/l) 1410 43500 ---38300 56300 35400 a4890 374 104 325 62800 1160 Boindicated) 2.0 SEWAGE RELEASE AT SINTON CHILTIPIN CREEK ABOVE SEWAGE RELEASE AT SINTON NI-trate (NO3) 0.3 2.5 1.2 0.2 0.2 0.4 0.3 Fluo-ride (F) PAPALOTE CREEK NEAR SKIDMORE SE ARANSAS RIVER NEAR PAPALOTE ARANSAS RIVER NEAR SINTON Chloride (CI) except 805 26400 5350 5350 24000 25200 23200 34200 34200 21400 21400 26400 2710 146 10 38500 41500 5080 32200 532 20 140 176 185 142 8.8 liter 42 16 4.6 Sulfate (SO.4) 6.4 264 74 BELOW Der' Car-bon-ate (CO.) 00 0 000 0000 0000000000 milligrams CHILTIPIN CREEK B1-car-bon-ate (HCO₃) 225 313 125 104 126 68 118 74 169 70 70 70 71 70 70 70 70 70 70 72 70 174 174 174 173 230 2230 2230 H. 12. 13. Po-tas-stum (K) 11 11 92 (Results Sodium (Na) 1570 89 13 469 15000 ---13200 19500 12300 21400 25 229 15. 14. 39.2 9.5 Mag-ne-sium (Mg) 346 382 48 9 2160 2300 310 Cal-cfum (Ca) 80 56 1530 1080 325 325 1440 1440 11400 11950 11950 11950 11520 176 40 18 131 Iron (Fe) Residue upon evaporation at 180°C. Estimated. Silica (SiQ_a) 18 255 119 119 119 119 119 32 30 12 2.5.0 2.5.0 4.61 4.41 4.41 3.02 3.43 3.673.15 24.13.080.07 Discharge ((Sept. 18, 1967... Feb. 7, 1968.... May 22. July 26. 4. 1961... 8, 1967... May 1942..... Mar. 14, 1959.... Sept. 14, 1961... 1961. Date of collection 1969. 1959. Sept. 14. 1 Sept. 18, 1 Feb. 7, 196 May 22. 11, 26. 11, 26. 11, 26. 11, 26. 11, 26. 11, 26. 11, 26. 11, 26. 11, 26. 11, 27. 12 28. May 3. Nov. Jan. n .n

- 39 -

precipitation data for Falfurrias, Figure 3). During the 1931-68 period, precipitation at Falfurrias ranged from a low of 0.00 inches during several months to a high of 32.78 inches in September 1967, when Hurricane Beulah caused abnormally high rainfall.

Streamflow in the natural waterways is almost entirely dependent on the quantity and intensity of local rainfall. Therefore, flow in these streams is erratic and intermittent. The drainage network is generally poorly defined. The principal streams are Petronila, San Fernando, Santa Gertrudis, and Los Olmos Creeks in the northern part of the basin, which drains to Baffin Bay; and the Arroyo Colorado in the southern part of the basin (Figure 14).

Surface-storage reservoirs in the basin include Lake Alice, Delta Lake, and Tranquitas, Valley Acres, and Loma Alta Reservoirs. Lake Alice, on Chiltipin Creek, provides storage for municipal water supply for the city of Alice. Natural inflow to the reservoir is supplemented by water imported from Lake Corpus Christi in the adjacent Nueces River basin. Tranquitas Reservoir on Tranquitas Creek provides water supplies for the King Ranch. Valley Acres and Loma Alta Reservoirs and Delta Lake are off-channel reservoirs used for temporary storage of the irrigation water pumped from the Rio Grande.

The natural drainage network in the southern part of the basin has been altered by canals that distribute irrigation water imported from the Rio Grande. Some ground water is used to supplement the surface supply. In 1964, about 873,000 acre-feet of surface and ground water was used to irrigate 753,000 acres of cotton, vegetables, citrus, flax, and grain sorghums (Gillett and Janca, 1965, p. 37). Irrigated areas are shown on Figure 5.

The economy of the area is based on petroleum, agriculture, and food processing. Oil fields, oil refineries, and petrochemical plants are scattered throughout the basin, but the heaviest concentration is in the Corpus Christi area.

Chemical-quality data collected in the Nueces-Rio Grande coastal basin are given in Table 10, and the data-collection sites are shown on Figure 14.

Dissolved-solids concentrations were low in Petronila Creek near Driscoll (site 1), San Diego Creek at Alice (site 2), Lake Alice at Alice (site 3), and Los Olmos Creek near Falfurrias (site 8), at all times of sampling. However, data on Petronila and Los Olmos Creeks are very limited. San Diego Creek at Alice was sampled over a wide range of discharge, and dissolved solids ranged from a low of 84 mg/l to a high of 174 mg/l.

Dissolved-solids concentrations in San Fernando Creek at Alice (site 4) ranged from 100 to 1,600 mg/l. The higher concentrations occurred when the flow consisted principally of sewage effluent from the city of Alice; flood runoff contained less than 250 mg/l dissolved solids. Downstream at Kingsville (site 5) the salinity of low flows increased, but the quality of flood runoff remained excellent. The range of dissolved-solids concentrations was from 146 to 2,730 mg/l.

Santa Gertrudis Creek near Kingsville (site 6) was sampled only during low-flow periods, and dissolvedsolids concentrations ranged from 1,740 to 28,400 mg/l. This salinity may be partly due to oil-field activities. However, shallow ground water in the area is reported to be very saline (Oral communication, E. T. Baker, 1970), and the salinity of the stream may be the result of the conditions which produce the saline ground water.

One analysis of water from the Arroyo Colorado near Mercedes (site 10) shows a dissolved-solids concentration of 3,800 mg/l. Four analyses of water from the Arroyo Colorado at Harlingen (site 11) show dissolvedsolids concentrations less than 300 mg/l. However, samples for the latter were collected from the flood flows caused by Hurricane Beulah, and the analyses are not considered to be representative of the quality of water in the Arroyo Colorado during normal flow. Except for occasional flood flows, the flow of the Arroyo Colorado is due largely to municipal and industrial waste effluents and irrigation-return flows of water originally imported from the Rio Grande.

Available data indicate that the surface waters of the northern part of the basin are generally of good chemical quality. However, reaches of some streams are being degraded by man's activities. The flow regimen in the southern part of the basin is virtually man-made, and natural conditions do not exist.

SUMMARY OF CHEMICAL CHARACTERISTICS OF WATERS OF THE COASTAL BASINS

The chemical quality of surface waters of the coastal basins is generally good. Moderate to high rainfall and well-leached soils along much of the Gulf Coast provide runoff that is low in dissolved constituents. The variations in water quality of the coastal basins are shown in Figure 15. The minimums observed for dissolved solids, hardness, and chloride in each coastal basin show that runoff can be of excellent quality. The maximums observed for these three parameters in each coastal basin are an indication of the effects of man's activities on water quality.

The natural quality of streamflow is difficult to define in the coastal basins. Large volumes of water imported from adjacent river basins are moved across most of the coastal basins through a maze of canals to irrigated fields and industrial sites. Oil-field and other industrial wastes and irrigation-return flows have altered

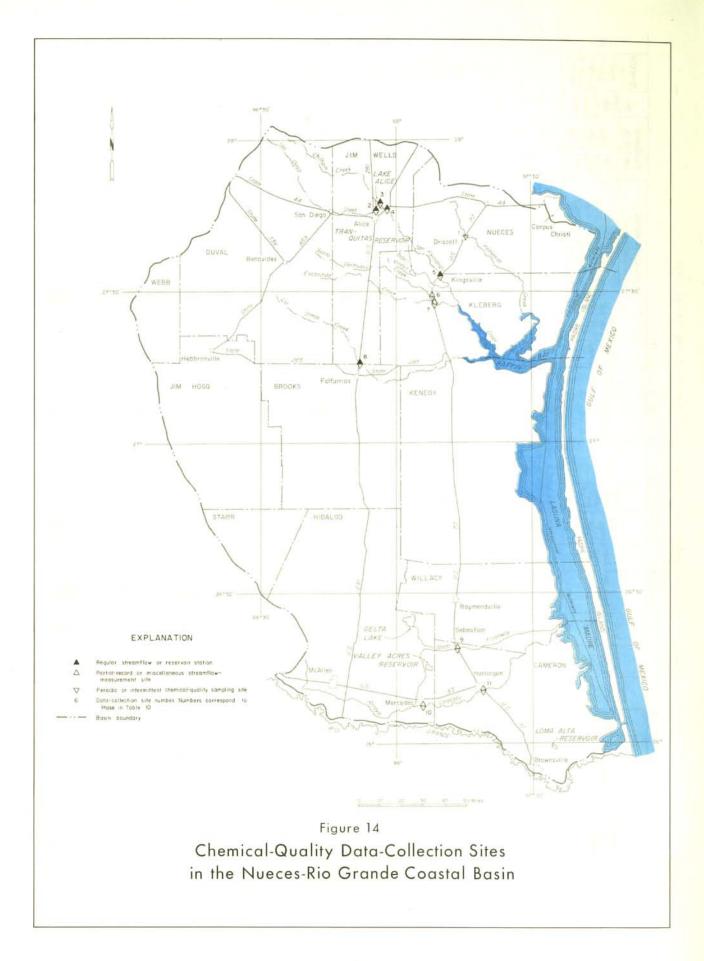


Table 10. ---Chemical analyses of streams in the Nueces-Rio Grande coastal basin

	Hd		6.7			6.6	6.6	7.0	1.2	:	6.9	6.9	7.2		6.3	6.8		0.1	7.4	1.7	9.8	4.4					7.1	1	7.2	1.1	1.1	6.5	6.6	0.0 9	9.9	6.5	6.7	2.1	0
Specific con-	duct- ance (micro- mhos at 25°C)		580		1911	203	163	216	290	272	264	254	246	232	157	140	227	302	221	168	209	6CT		323	265	366	407 489		2330	0650	0007	237	386	329	202	238	167	2620	
	ad- sorp-(1 tion n ratio		2.4			0.3	2	9.	s .	1	I	I	10	. 4	2			1 .		7.	-00	0.		0.7	0,00	7				2		3					c) u		
	Non- car- bon-		0		2	00	0	0	0 0		0	0	00	00	0	00	00	0 0	00	0.0	000	-		0	00	0	c 0						0	00	00	0	00	-	
Hardness as CaCO ₃	Cal- cium, Mag- ne- sium		140		17COLD	85	59	62	121	1	115	108	102	26	99	64	11	133	103	16	68	6.0		124	112	162	149		161	CQ1	169	100	157	147	117	86	72	175	
olids (ba	Tons per day																																						
(calculated)	Tons per acre- foot																																						
UIBE (ca	Milli- grams per liter (mg/l)		323		1000	117	94	122	162	1	ł	1	17.4	132	16	26	16		125	89	126	10		179	108	206	242 291		1350	1560	1600	b150	b238	b202	166	b148	129	1530	
	Bo- ron (B)																																						
	N1- trate (NO ₂)		0.2		1. 340	1.0	1.2	8	5.4	ł	ł	ł	10 0	0.0	.2	0.5	2.2	1	5.5	0.0	, n o	0.7		0.2	1 00	1.5	1.0		1.8	2.20	1 61	3.8	1.8	0.1	2.3	2.0	80 10	0	
	Fluo- ride (F)	T	0.3		1	0.2	2	1.0	1 1	ł	ł	1	10	4			0	10	201	ci c		?		0.3	2	7	4.0	10	0.7	4.0			5					2.4	1
	Chloride (Cl)	NEAR DRISCOLI	88	ALICE		6.3	3.6	10	4.5	1					2.1						10.0	- I	ALICE		6.6		33	AT ALICE	408	448	460	4.0	12	0 U	11	5.0	6.1	478	
	Sulfate (SO4)	CREEK NEAR	9.2	CREEK AT		5.8	4.0	œ •	4	1	ł	1		6.6	4.8	20 12 17 12	4.	4.0	10	ci -	- 1	- 1	ALICE AT A	10	0.5	3.6	16 26	O CREEK	162	198	197	4.8	11	6.4	10	4.8	4.0	147	
			0	DIEGO		00	0	0 0	00	1	0	0	0 0	0	0	0 0	0	0 0	00	00	000	>	LAKE AL	00	00	0	00	FERNANDO	0.0	00	0	0	0	0 0	0	0	00	0	
	car- bon- ate (HCO ₃)	PETRONILA	181	SAN		80	83	108	166	1	150	143	158	125	88	82	06	102	129	100	112	00	3. Lu	161	16	210	216	SAN FI	488	600	628	127	205	147	139	126	94	570	
Do	stum (K)	1. P		2.		4.9	8.6	1	11	ł	I	1	1						6.1	5.5	8.1			ł	8.2	16	9.1	4.	1		1	6.3	ł	6.7	;	6.9	7.1	ł	
	Sodium (Na)		66			5.3 2.3	3.8	12		1	ł	1	181	10	3.1	3.0	2.4	1 4	3.4		10 H	0.0		18			35		454	532	554	5.9	20	6.8	13	6.2	3.9	518	
Mag	ne- sium (Mg)		4.2			2.0	1.6	5.5	1.2	ł	ľ	ł	10 8	2.4	1.5	2 10	2.0	1 0	2.0	1.4	5.3	2.4		3.01	2.6	6.1	5.4		16	18	18	2.6	2.7	2.2	3.0	2.7	1.7	17	
	cal- ctum (Ca)		49			31	21	28	40	ł	ł	1	42	35	24	27	25	100	38	28	32	24		44	23	55	50		38	10	38	36	22	43	42	35	33	42	
	Iron (Fe)																																						
-	Silica (SiQ _s)		17			9.1	8.6	51	-				1	8.6	6.5	8.2	9.1	1 0	6.1	9.1	8.3	2.5			1 00.00		17		25	27	25	11	16	12	13		11.4	11	
	Discharge ((cfs)					4.30	38.7	a.23	346	106	54.5	40.0	30.1	400	83.9						93.8								15	16.	.95	631	332	265	77.3	340	2130	. 56	100
	Date of of collection		14, 1961			, 1964	4	0	5	5				0, 1965	1		1966	1967	21	21	Sept. 29			13, 1965	1966		Jan. 3, 1967		Sept. 13, 1961		0, 1962						10	7	
	ō		Sept.			July 5 July 5	July 1	Aug. 1	Aug. 2	Mar. 3	Mar. 3	Anr. 1	lay 2,	lay 2.	Sept.	Sept.	Sept.	10 fm		ipril	lav 3.	ug. 1	Jan. 3		Sept.	Dec. 4	Jan. 1	June 1	June 1	June 1	June 2	June 3	Sept.	Det. 1					

See footnotes at end of table.

1

.

4

- 42 -

Table 10,---Chemical analyses of streams in the Nueces-Rio Grande coastal basin--continued

¢

1

(Results in milligrams per liter except as indicated)

	Q	See Stiltc. 23 17 23 17 23 17 23 17 23 17 23 17 21 13 21 23 33 22 12 12 13 94 14 14 89 16 14 14 15 12 16 14 17 15 18 16 13 14 14 14		Cal- Cal (Ca) (Ca) (Ca) (Ca) (Ca) (Ca) (Ca) (Ca)	mag- ne- sium (Mg)		The second second													-000	con-
a. Sity FERNING CREEK AT KINGSVILLE 1. Sity 10 10 10 11 10 10 11 10 10 11 10 10 11 10 10		1112 1115 1115 1115 1115 1115 1115 1115		36 36 56 56 56 56 56 56 56 56 56 56 56 56 56				ate HCO ₃)			100		Strategy and the second s	N I V	1.10	Tons per day	Cal- ctum, Mag- ne- stum	A A A A A A A A A A A A A A A A A A A	dium ad- sorp- tion ratio	duct- ance (micro- mhos at 25°C)	
		12 15 15 15 15 15 15 15 15 15 15 15 15 15		36 80 64 64 64 65 64 65 65 64 72 33 1 86 66 72 86 66 72 86 66 72 80 70 72 72 80 72 80 72 80 72 80 72 80 72 80 72 80 72 80 70 70 70 70 70 70 70 70 70 70 70 70 70								TLE									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		12 15 15 15 15 15 15 15 15 15 15 15 15 15	<u></u>	72 66 72 72 72 72 72 72 72 72 72	7 6	300		950		17.4	010	000	-	0101			100				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		15 15 15 16 114 114 115 115	~~	78 62 64 56 56 31 31 196 42 42 42 42 42 42 42 42 42 42 42 42 42	34	748	;	362		269	740	1.1	2 10	2390			340	13	0 0	0017	0 0
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		15 15 15 15 15 15 15 15 15 15 15 15 15 1	~~	72 64 65 64 64 31 31 31 48 48 48 48 48 48 48 48 48 48 48 48 48	34	666	;	361		462	710	1.1	.2	2150			334	38	16	3520	9
		9. 114 115 115 115	~~	62 64 64 31 31 31 48 48 48 48 48 48 48 48 48 48 48 48 48	18	705	:	502		275	768	1.2	1.0	2100			254	C	19	3530	1
		112 112 112 112 112 112 112 112 112 112	~	64 56 31 30 31 48 48 42 48 42 48 42 42 42 66 30 56 56 57 56 56 56 56 56 56 56 56 56 56 56 56 56	20	062	1	432		314	900	1.2	10	2310			237	0	22	3850	-
		05 17 12 14 89 16 15 5 12		56 31 30 31 30 31 30 48 42 42 42 42 30 30 56 66 30 30 31 30 31 30 31 30 31 30 31 30 31 30 31 30 31 30 31 30 31 31 31 31 31 31 31 31 31 31 31 31 31	19	LLL	1	437		326	870	1.2	0.	2270			238	0	22	3900	-
$ \begin{bmatrix} 170 & 12 \\ 170 & 14 \\ 170 & 15 \\ 170 & 15 \\ 180 & 15 \\ 180 & 15 \\ 180 & 11 \\ 190 & 11 \\ 190 & 11 \\ 190 & 11 \\ 190 & 11 \\ 180 & 11 \\ 190 & 11 \\ 110 & 11 \\ 110 & 11 \\ 110 & 110 \\ 190 & 120 \\ 110 & 110 \\ 190 & 120 \\ 110 & 110 \\ 190 & 110 $		12 14 14 89 16 15 5 12		31 30 31 31 48 42 42 42 30 66 66 66	19	270		368		128	260		2.0	934			218	0		1630	
$ \begin{bmatrix} 170 & 14 & 30 & 3.7 & 82 & - 147 & 0 & 31 & 55 & 4 & 2 & 233 & 233 & 341 & 30 & 23 & 471 & 30 & 31 & 453 & 13 & 471 & 30 & 31 & 453 & 13 & 471 & 30 & 31 & 453 & 13 & 471 & 30 & 31 &$		14 14 89 16 15 5 12		30 31 196 196 48 42 42 30 66 66 72	3.5	17	-	126			10	;	0.0	146			00	0		1001	
$ \begin{bmatrix} 170 & 1 & 31 & 4, 5 & 32 & -146 & 0 & 28 & 42 & -5 & 366 & -346 & 0 & 368 & -346 & -36$		89 16 15 5 12		31 196 48 42 42 42 66 66	3.7	62		147			09	4	6	263			200		*	107	
		89 16 15 5 12		196 48 42 42 30 66 72	4.5	52		146		28	40	V	10	PPC			000		۰	TOF	
		15 15 12		42 42 30 66 66 72	0.5	746		420		040	200		d n	557			96	0.00		125	
		5 12		42 30 42 66 72	0	000		001		110	020	1	n .	2130			584	231		4010	-
$ \begin{bmatrix} 1400.3 & 11 & 12 & 23 & 31 & 13 & 127 & 0 & 32 & 93 & 13 & 22 & 341 & 136 & 22 & 39 & 33 & 25 & 341 & 316 & 2 & 24 & 906 & 6 & 10110 & 35 & 353 & 356 & 367 & 367 & 368 & 366 & 400 & 110 & 37 & 356 & 366 & 400 & 110 & 366 & 366 & 400 & 366 & 366 & 400 & 366 & 366 & 400 & 366 & 366 & 400 & 366 & 366 & 400 & 366 & 366 & 400 & 366 & 366 & 400 & 366 & 366 & 400 & 366 & 366 & 400 & 366 & 366 & 400 & 366 & 366 & 400 & 366 & 366 & 400 & 366 & 366 & 366 & 400 & 366 & $		21 0		42 30 66 72	0.0			701		90	99		4.0	366			144	20		650	2.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$				42 30 66 72	1.0	0		121				3	2.2	341			126	22		606	9
		11		30 66 72	3.1	11		160				-	3.0	1691			118	0	4	302	6.9
		16		72	3.1	63		218		15	22	80.	3.0	267			88	C	0.00	439	1
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		14		72	14	138		190		110	195		5.0	645			666	88	P. 1-1	0111	t
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		8 19			10	188		306		661	105	0	0	322			4444	00	-	6111	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		68 45		Obl	18	406		156		000	100			0000			077	0.00		0671	01
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		13 20		CFI		001		000		040	005	1+2	- · ·	1820			548	420		2770	-
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		20		051		610		007		9/0	011	1	. 5	2360			427	209	14	3690	9.9
7.33 14 40 6.4 56 192 0 28 40 1.7 2.0 282 126 0 2.3 147 2.5 4.5 1.7 2.0 1.7 2.0 2.5 1.7 2.0 1.7 2.0 1.7 2.0 1.7 2.0 1.7 2.0 1.7 2.0 2.7 1.7 2.0 2.2 1.7 2.0 2.7 1.7 2.0 2.2 1.7 2.0 2.7 1.7 2.0 2.7 1.7 2.0 2.7 1.7 0.6 2.7 1.7 2.0 2.7 1.7 2.0 2.7 1.7 2.0 2.7 1.7 2.0 2.7 1.7 2.0 2.7 1.7 2.0 2.7 1.7 2.7 2.7 1.7 2.7 1.7 2.7 2.7 1.7 2.7 2.7 2.7 2.7 2.7				99		1		652	0	ł	482	1	1	!			190	0	1	2900	7.
6. SANTA CERTRUDIS CREEK NEAR KINGSVILLE 0.01 15 400 251 2790 273 0 1470 500 1820 27 14700 1.01 15 410 265 2890 234 0 1470 4566 2180 1220 27 14700 1.02 15 410 265 2890 237 0 1470 4750 0.6 101000 2180 1220 27 14700 1.02 15 410 265 2890 237 0 1580 4730 0.6 101000 2180 1220 27 14700 1.01 14 11 13 79 732 0 1580 4730 0.6 101000 2160 1340 280 2170 056 1.01 14 11 11 17 73 2 10 1590 0.6 110000 2160 1340 280 11400 7 1.01 14 11 11 17 73 7 11 131 79 73 2 16 124 0 1080 1350 1090 7 1090 7 1.05 17 315 216 161 20 288 730 3.0 179 739 1990 7 129 739 1990 7 1.05 17 315 216 170 280 2890 130 170 280 1990 7 129 739 1990 7 129 739 1990 7 129 739 1990 7 129 739 1990 7 129 739 1990 7 129 739 1990 7 129 739 129 739 1990 7 <		-		40		99	1	192	0	28	40	1.7	2.0	282			126	0		475	1
B. SATA GERTRIDIS CRER NAR KINGSVILLE 0.01 15 400 251 14700 7 0.01 15 400 251 2700 257 14700 7 0.01 15 400 251 2700 257 14700 7 0.02 15 400 251 2700 257 14700 7 0.02 15 10540 1750 0.540 1570 1750 271 2030 287 2710 271400 7 0.01 15 1730 0 1540 1750 0.1570 1740 7 2100 21140 7 271400 7 271400 7 271400 7 271400 7 27160 271400 7 27100 271400 7 27100 271400 7 27100 271400 7 27100 27100 27100 27100 7 27100 7 27100 7 27100 2710 27100																					
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$.9	SANTA	GERTR			AR KINGS	VILLE									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	61	01 15			251	2790	;	257	-		4500		1	OGRA			0000	1000	20	1 4000	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10.0000000	05 16			263	2000	1	VIC.	• •		0021			00001			0002	0791	17	14300	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		03 15			2002	0000		206	1.0		0011		:	10100			0817	0761	17	14700	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	962	51 60			100	0200		000			0011		1	DOTOT			0192	2060	97	15200	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					1.07	0107		017	•		1000		1	10200			2160			14800	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0404040404040	TO						64T			0290		1				2640			17400	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		F7			ne	811		207			925		0.2	2710			525			3740	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	204	CT CO			424	3880		228			6850		1	13800			3340			00261	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		007 24			925	1960		400			14200		-	28400			6920	6720	-	39600	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	967	14 11			61	732		124			1250		3.0	0690			610				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	A REAL PROPERTY OF	0 24			52	415		161			730		0 0	0721						LIGOF	
-73 348 240 1900 -7 714 0 120 310 -1 1800 1550 -10800 71 668 443 3010 -7 312 0 1670 5050 -1 1700 1750 71 -16800 71 668 -44 3010 -7 280 0 -7 2600 -1 16700 71 7 -68 -7 -780 0610 000 -16700 71 -16900 71 7 -68 -7 -780 06170 5050 -1 10700 2570 2310 -16900 71 61 -7 8149 556 -7 140 0160 0.4 4.5 2070 01920 210 7170 7170 71700 716 712 712 712 712 712 712 712 712 712 712 712 712 712 712		95 17			216	1760		040					2.1	OLUT			170	595	R. 1	3020	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		1 00				0001		252			nete		1	0609			1750	1550	;	10800	7.7
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					01.7	DEET		517	-		3400		-	7240			1860	1630	-	11700	7.6
68 .43 468 368 280 2450 16900 7 61 5400 2680 2450 16900 7 61 5400 2680 2450 16900 7 61 28 371 140 0 160 1090 0.4 4.5 2070 1020 972 5.0 3790 6. 61 28.6 148 49 5.56 141 .2 1.8 216 0 233 12 102 972 5.0 373 7. 62 28.6 132 12 12 21 20 570 15 21 20 570 57 7. 63 35 55 0 31 21 2 2 2 2 7 2 2 2		41 3.5	•		344	3010		312	-		5050		;	10700			2570	2310	;	16500	7.6
7. ESCONDIDO CREEK AT KINGSVILLE 9.8 300 65 371 140 0 160 1090 0.4 4.5 2070 1020 9.2 5.0 3790 6. 9.8 300 65 371 140 0 160 0.4 4.5 2070 1020 9.2 5.0 3790 6. 83.5 15 26 5.5 33 12 120 0 3490 571 394 10 3490 6. 83.5 15 26 5.1 73 7.2 216 0 3490 571 394 10 3490 6. 83.6 14 9 12 102 0 349 7. 349 7. 20.6 15 23 12 102 0 31 21 20 349 7. 210 238 13 12 102 0 31 21 20 349 7. 373 7. 323		43	-		368	ł		280	0	1	5400		1	1			2680	2450	;	16900	1 8
7. ESCONDID CREEK AT KINGSVILLE 7. ESCONDID CREEK AT KINGSVILLE 7. ESCONDID CREEK AT KINGSVILLE 7. 9.8 300 65 371 140 0 160 1090 0.4 4.5 2070 1020 902 5.0 3790 6 83.5 15 32 6 7.7 33 12 102 0 31 41 .2 1.8 216 871 394 10 3490 7 28.6 15 3.6 7.7 530 13 122 0 31 41 .2 1.8 216 871 394 10 3490 7 23.6 15 3.7 12 102 0 31 41 .2 1.8 216 871 394 10 340 7 23.6 15 3.7 31 22 0 31 12 2 0 31 12 2.0 513 7 23.6 1.7 2.7 215 0 316 1720 1.8 3640 1130 10 6100 7 23.6 1.7 2.7 2.7 217 0 252 0 286 980 2.7 2.7 2170 1132 12 0 5100 7 112																		1			
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$								SCONDI		AT	INGSVILL	su									
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					1.00																
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$					65	371		140		160	1090		4.5	2070			1020	902	5.0	3790	6.5
83.5 15 26 5.5 33 12 102 0 31 41 12 1.8 216 91		8			49	556		216		522	750		0.	2130			571	204	10	UDVC	6 6
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		5 15			10	33		109		10	11		0	010			100			DELC	- 1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$					1 1			100		10	1 1		0.1	210				4	1.5	373	2.3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		CT 0			1.1	00		123		43	20		2.2	297				21	2.0	513	7.6
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		03 4.9			68	467		2.52		286	080		1 6	0216				100		00000	
112 -1 120 121 -120 120		32 5.4			1.61	839		115		ala	UGLI		0.1	OV96				100	A.0.	3180	
112 490 188 274 0 2560 2560 2600 1770 8720 7 112 78 0 81 116 52 467 7					100.	000		117		OTC	DZ JT		1.0	0100				1140	10	6100	C . L
		I nt	ų.		188	1		214	0		2560	1	ł	1				1770	1	8729	7.5
			1	i.	1	1		78	0	1	81	1	1	1				52	1	467	7.0

Table 10. -- Chemical analyses of streams in the Nueces-Rio Grande coastal basin -- continued

							Bi-	-											50-	Specific	
Discharge (cfs)	Silica (SiQ ₂)	Iron (Fe)	Cal- cium (Ca)	ne- sium (Mg)	Sodium (Na)	tas-	car- bon- ate (HCO ₃)	bon-	Sulfate (SO ₄)	Chloride (Cl)	ride	trate	ron	Milli- grams per liter (mg/1)	Tons per acre- foot	Tons per day	Cal- cium, Mag- ne- sium	bon-	ad- sorp- tion	duct- ance (micro-	
						8.	LOS OL	MOS CH	EEK NEAL	R FALFURR	IAS										
6030 13.8			11 28	$\begin{array}{c} 1 \cdot 4 \\ 4 \cdot 2 \end{array}$	2.0 52			0	0.8 30	2.3 67				53 256			33 87	0 1	$\begin{array}{c} 0.2\\ 2.4 \end{array}$	87 447	6.9 7.0
						9.	NORTH	FLOOI	WAY NEAR	R SEBASTI	AN										
59100	11		42	5.0	29	3.6	112	0	61	24	0.3	2.8		234			125	34	1.1	383	7.6
						10	. ARR	OYO CO	LORADO	NEAR MERC	EDES										
	36		342	119	832		293	0	956 1120	1350 1520		17		3800			1340	1100	9.9	5740 6580	7.5
						11.	ARRO	YO COL	ORADO AT	T HARLING	EN										
55200 54800 50000	9.7 9.4 9.3		43 46	5.7 6.0 6.4	33 31 30			000	69 68 76	26 25 23	. 3	4.2		250 252 265			131 139 151	36 41	1.3	414 417 436	7.7
	(cfs) 6030 13.8 59100 55200 54800	(cfs) (Cfs) 6030 6.0 13.8 13 59100 11 36 55200 9.7 54800 9.4	6030 6.0 13.8 13 59100 11 36 55200 9.7 54800 9.4	Discharge (cfs) Silica (SiQ _q) Iron (Fe) cium (Ca) 6030 6.0 11 13.8 13 28 59100 11 42 36 342 55200 9.7 43 54800 9.4 46	Discharge (cfs) Silica (SiQ _q) Iron (Fe) cium (Ca) ne- sium (Mg) 6030 6.0 11 1.4 13.8 13 28 4.2 59100 11 42 5.0 36 342 119 55200 9.7 43 5.7 54800 9.4 46 6.0	Discharge (cfs) Suica (SiQ _g) Iron (Fe) Cium (Ca) ne- sium (Mg) Sodium (Na) 6030 6.0 11 1.4 2.0 13.8 13 28 4.2 52 59100 11 42 5.0 29 36 342 119 832 55200 9.7 43 5.7 33 54800 9.4 46 6.0 31	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Discharge (cfs) Silica (SlQg) Iron (Fe) Cal- cium (Ca) Mag- ne- sium (Mg) Sodium (Na) Po- sium (Na) car- bon- sium (K) 6030 6.0 11 1.4 2.0 5.3 46 6030 6.0 11 1.4 2.0 5.3 46 13.8 13 28 4.2 52 8.8 105 9. NORTH 59100 11 42 5.0 29 3.6 112 10. ARR0 36 342 119 832 293 11. ARR0 55200 9.7 43 5.7 33 3.4 115 54800 9.4 46 6.0 31 3.4 120	$\begin{array}{c ccccc} \begin{tabular}{ ccccc ccccc cccccccccccccccccccccccc$	$\begin{array}{c c} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$

.

*

30

(Results in milligrams per liter except as indicated)

.

2

a Estimated. b Residue on evaporation at 180°C.

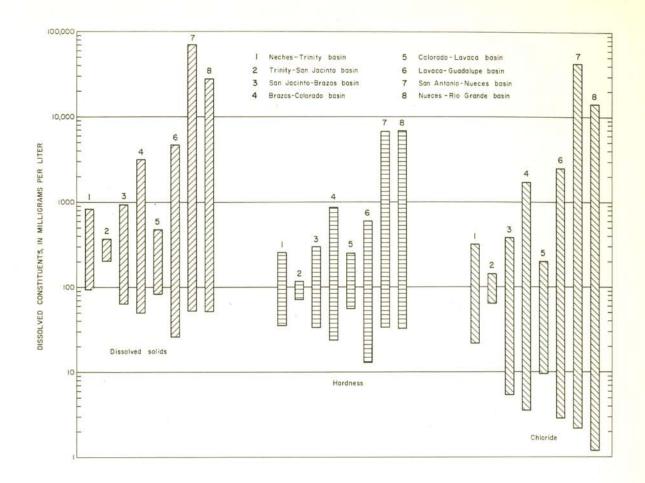


Figure 15.–Range Between Maximum and Minimum Values for Dissolved Solids, Hardness, and Chloride Observed in Surface Waters of the Coastal Basins

the natural quality of water of most of the streams. Municipal wastes are also degrading the quality of water of some streams. Therefore, the quality of low to moderate streamflows is probably more the result of man's activities than natural streamflow characteristics or geology.

Except for streams in the urban and industrial areas and streams receiving large amounts of oil-field wastes, the quality of runoff should meet requirements for municipal supply, irrigation, and most industrial uses most of the time. The minimum dissolved-solids and chloride concentrations in all the coastal basins are well below the recommended limits (500 mg/l dissolved solids and 250 mg/l chloride) of the U.S. Public Health Service (1962, p. 7) for municipal supply (Figure 15).

CONCLUSIONS

Water for municipal supply, industrial use, irrigation, and transportation has resulted in a diversified and expanding economy in the coastal basins. Water pollution will be a problem of increasing importance in areas of rapid urban and industrial development, especially along the coast where the tides act as a natural barrier to the movement and dilution of wastes. Because of the widespread use of agricultural chemicals, additional studies are needed to learn their effects on the quality of the water of the coastal streams.

Compliance with Order Number 20-56,841 of the Railroad Commission of Texas, which prohibits the use of salt-water disposal pits and the discharge of oil-field brines to surface-water drainage courses, as of January 1, 1969, should improve the quality of water in coastal streams that have been receiving oil-field wastes; but the effects of residual brines from past brine-disposal practices may remain for years.

Runoff from the generally abundant precipitation along the Gulf Coast will continue to flush out and dilute the wastes resulting from man's activities. Additional studies are needed, particularly in the drainage areas of the urban and industrial centers and in tidal reaches of the streams, to determine types and concentrations of wastes and their effects on Texas coastal waters.

- Carr, J. T., Jr., 1967, The climate and physiography of Texas: Texas Water Devel. Board Rept. 53, 27 p., 8 figs.
- Darton, N. H., Stephenson, L. W., and Gardner, Julia, 1937, Geologic map of Texas: U.S. Geol. Survey.
- Dowell, C. L., and Breeding, S. D., 1967, Dams and reservoirs in Texas, historical and discriptive information: Texas Water Devel. Board Rept. 48, 267 p., 1 pl.
- Gillett, P. T., and Janca, I. G., 1965, Inventory of Texas irrigation, 1958 and 1964: Texas Water Comm. Bull. 6515, 317 p., 6 pls.
- Hughes, L. S., and Leifeste, D. K., 1964, Reconnaissance of the chemical quality of surface waters of the Sabine River basin, Texas and Louisiana: U.S. Geol. Survey Water-Supply Paper 1809-H, 71 p., 1 pl., 14 figs.
- _____1965, Reconnaissance of the chemical quality of surface waters of the Neches River basin, Texas: U.S. Geol. Survey Water-Supply Paper 1839-A, 63 p., 4 pls., 9 figs.
- Hughes, L. S., and Rawson, Jack, 1966, Reconnaissance of the chemical quality of surface waters of the San Jacinto River basin, Texas: Texas Water Devel. Board Rept. 13, 45 p., 11 figs., 2 pls.
- Kunze, H. L., 1969, Reconnaissance of the chemical quality of surface waters of the Lavaca River basin, Texas: Texas Water Devel. Board Rept. 92, 23 p., 9 figs.
- Kunze, H. L., and Lee, J. N., 1968, Reconnaissance of the chemical quality of surface waters of the Canadian River basin, Texas: Texas Water Devel. Board Rept. 86, 29 p., 9 figs.
- Leifeste, D. K., 1968, Reconnaissance of the chemical quality of surface waters of the Sulphur River and Cypress Creek basins, Texas: Texas Water Devel. Board Rept. 87, 34 p., 13 figs.
- Leifeste, D. K., Blakey, J. F., and Hughes, L. S., 1971, Reconnaissance of the chemical quality of surface waters of the Red River basin, Texas: Texas Water Devel. Board Rept. 129, 69 p., 14 figs.
- Leifeste, D. K., and Hughes, L. S., 1967, Reconnaissance of the chemical quality of surface waters of the Trinity River basin, Texas: Texas Water Devel. Board Rept. 67, 65 p., 12 figs.
- Leifeste, D. K., and Lansford, M. W., 1968, Reconnaissance of the chemical quality of surface waters of the

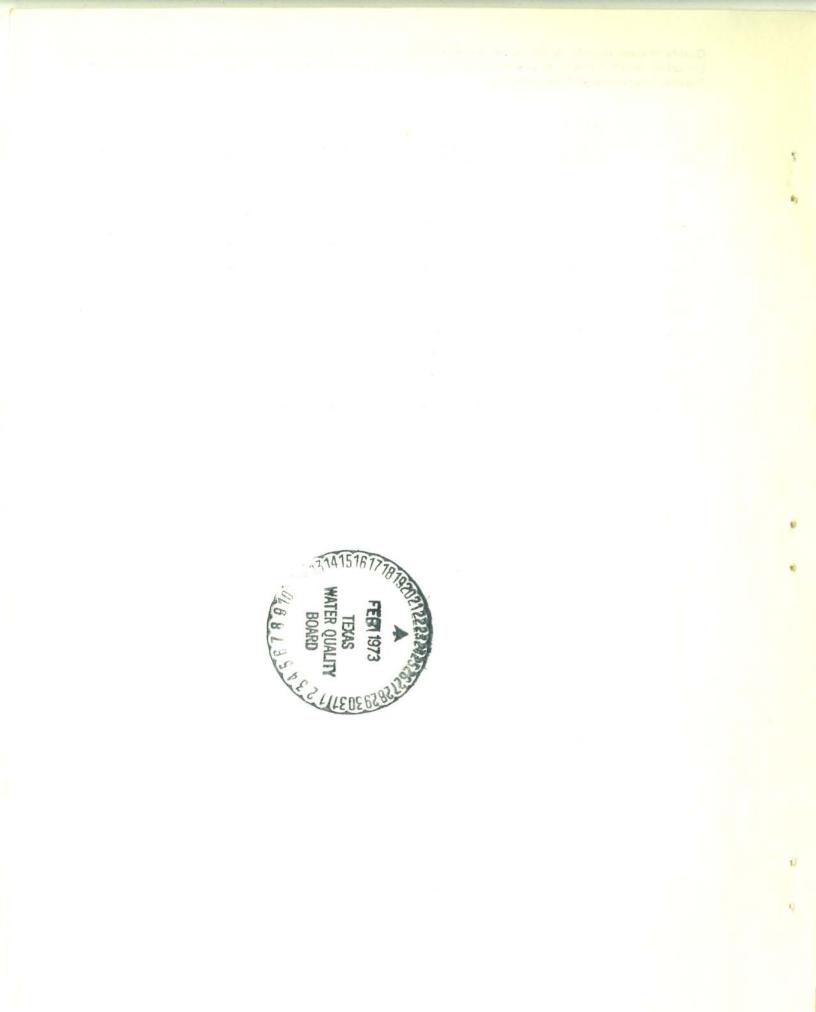
Colorado River basin, Texas: Texas Water Devel. Board Rept. 71, 82 p., 13 figs.

- Maier, F. J., 1950, Flouridation of public water supplies: Jour. Am. Water Works Assoc., v. 42, pt. 1, p. 1120-1132.
- Rawson, Jack, 1967, Study and interpretation of chemical quality of surface waters in the Brazos River basin, Texas: Texas Water Devel. Board Rept. 55, 113 p., 10 figs.
- _____1968, Reconnaissance of the chemical quality of surface waters of the Guadalupe River basin, Texas: Texas Water Devel. Board Rept. 88, 38 p., 11 figs.
- _____1969, Reconnaissance of chemical quality of surface waters of the San Antonio River basin, Texas: Texas Water Devel. Board Rept. 93, 26 p., 9 figs.
- Texas Board of Water Engineers, 1958, Compilation of surface water records in Texas through September 1967: Texas Board of Water Engineers Bull. 5807A, 503 p., 4 pls.
- _____1961, A plan for meeting the 1980 water requirements for Texas: Texas Board of Water Engineers, 198 p., 25 pls.
- Thornthwaite, C. W., 1952, Evapotranspiration in the hydrologic cycle, *in* the physical and economic foundation of natural resources, v. II, The physical basis of water supply and its principle uses: U.S. Cong., House of Representatives, Committee on Interior and Insular Affairs, p. 25-35.
- U.S. Geological Survey, 1960, Compilation of records of surface waters of the United States through September 1950, Part 8, Western Gulf of Mexico basins: U.S. Geol. Survey Water-Supply Paper 1312, 633 p., 2 figs., 1 pl.
- _____1961, Surface water records of Texas, 1961, U.S. Geol. Survey open-file rept.
- _____1962, Surface water records of Texas, 1962, U.S. Geol. Survey open-file rept.
- _____1963, Surface water records of Texas, 1963, U.S. Geol. Survey open-file rept.
- —____1964a, Compilation of records of surface waters of the United States, October 1950 to September 1960, Part 8, Western Gulf of Mexico basins: U.S. Geol. Survey Water-Supply Paper 1732, 574 p., 2 figs., 1 pl.
- ____1964b, Surface water records of Texas, 1964: U.S. Geol. Survey open-file rept.

- U.S. Geological Survey, 1964c, Water quality records in Texas, 1964: U.S. Geol. Survey open-file rept.
- _____1965a, Water resources data for Texas, 1965, Part 1, Surface water records: U.S. Geol. Survey open-file rept.
- 1965b, Water resources data for Texas, 1965, Part
 2, Water quality records: U.S. Geol. Survey open-file rept.
- ____1966a, Water resources data for Texas, 1966, Part 1, Surface water records: U.S. Geol. Survey open-file rept.
- 1966b, Water resources data for Texas, 1966, Part
 2, Water quality records: U.S. Geol. Survey open-file rept.
- 1967a, Water resources data for Texas, 1967, Part 1, Surface water records: U.S. Geol. Survey open-file rept.

U.S. Geological Survey, 1967b, Water resources data for Texas, 1967, Part 2, Water quality records: U.S. Geol. Survey open-file rept.

____1968, Water resources data for Texas, 1968, Part 1, Surface water records: U.S. Geol. Survey open-file rept.


- U.S. Public Health Service, 1962, Drinking water standards, 1962: U.S. Public Health Service Pub. 956, 61 p.
- U.S. Salinity Laboratory Staff, 1954, Diagnosis and improvement of saline and alkali soils: U.S. Dept. of Agr. Handb. 60, 160 p.
- Vlissides, S. D., 1964, Oil and gas investigations: U.S. Geol. Survey Map OM-214.
- Wood, L. A., Gabrysch, R. K., and Marvin, Richard, 1963, Reconnaissance investigation of the groundwater resources of the Gulf Coast region, Texas: Texas Water Comm. Bull. 6305, 114 p., 18 figs., 15 pls.

Quality-of-water records for the coastal basins are published in the following Texas Water Development Board reports (including reports formerly published by the Texas Water Commission and Texas Board of Water Engineers) and U.S. Geological Survey Water-Supply Papers:

	U.S.G.S. WATER-	A		U.S.G.S. WATER-	
WATER	SUPPLY	T.W.D.B.	WATER	SUPPLY	T.W.D.B.
YEAR	PAPER NO.	REPORT NO.	YEAR	PAPER NO.	REPORT NO.
1942-45	-	* 1938-45	1955	1402	* 1955
1946	1050	• 1946	1956	1452	Bull. 5905
1947	1102	• 1947	1957	1522	Bull. 5915
1948	1133	• 1948	1958	1573	Bull. 6104
1949	1163	• 1949	1959	1644	Bull. 6205
1950	1188	• 1950	1960	1744	Bull. 6215
1951	1199	• 1951	1961	1884	Bull. 6304
1952	1252	• 1952	1962	1944	Bull. 6501
1953	1292	• 1953	1963	1950	Rept. 7
1954	1352	• 1954			

* "Chemical Composition of Texas Surface Waters" was designated only by water year from 1938 through 1955.

