TEXAS WATER DEVELOPMENT BOARD

Report 110

DIVISION FILE COPY
DO NOT REMOVE FROM REPORTS DIVISION FILES.
printing
Completed on: 3.31.70
No. Copies 1185
Initial: <u>\$2,514.39</u>
JIK

GROUND-WATER CONDITIONS IN ANGELINA AND NACOGDOCHES COUNTIES, TEXAS

MARCH 1970

TEXAS WATER DEVELOPMENT BOARD

REPORT 110

GROUND-WATER CONDITIONS IN ANGELINA AND NACOGDOCHES COUNTIES, TEXAS

By

William F. Guyton & Associates Consulting Ground-Water Hydrologists Austin-Houston, Texas

> Prepared for Texas Water Development Board

TEXAS WATER DEVELOPMENT BOARD

Marvin Shurbet, Chairman Robert B. Gilmore Milton T. Potts Searcy Bracewell, Vice Chairman John H. McCoy W. E. Tinsley

Howard B. Boswell, Executive Director

Authorization for use or reproduction of any material contained in this publication, *i.e.*, not obtained from other sources, is freely granted without the necessity of securing permission therefor. The Board would appreciate acknowledgement of the source of original material so utilized.

Published and distributed by the Texas Water Development Board Post Office Box 12386 Austin, Texas 78711

TABLE OF CONTENTS

	Page
ABSTRACT	1
INTRODUCTION	3
Purpose	3
Scope	3
Location	4
Population	4
Climate	4
Previous Investigations	4
Well-Numbering System	5
Acknowledgements	5
INVENTORY OF WATER WELLS	8
ELECTRIC LOGS	9
GEOLOGY AS RELATED TO THE OCCURRENCE OF GROUND WATER	9
General Stratigraphy and Structure	9
Principal Water-Bearing Formations	11
Wilcox Group	11
Carrizo Sand	11
Sparta Sand	12
Yegua Formation	12
Other Formations	12
Midway Group	12
Reklaw Formation	12
Queen City Sand	13
Weches Formation	13
Cook Mountain Formation	13

	Page
Jackson Group	13
Catahoula Formation	13
Alluvium	13
RECHARGE, MOVEMENT, AND NATURAL DISCHARGE OF GROUND WATER	14
WELL CONSTRUCTION AND DISTRIBUTION	15
CHEMICAL QUALITY OF GROUND WATER	16
Wilcox Group	17
Carrizo Sand	18
Sparta Sand	18
Yegua Formation	19
Other Formations	19
Surface Water	19
TEMPERATURE OF GROUND WATER	20
OIL AND GAS FIELDS	20
Locations	20
Surface Casing	20
Plugging of Abandoned Test Holes and Wells	22
Disposal of Salt Water	22
PUMPAGE AND WATER LEVELS IN WELLS	22
Pumpage	22
Water Levels in Wells	23
Carrizo Sand	23
Yegua Formation	· 27
RESULTS OF PUMPING TESTS	27
Specific Capacities of Wells	27
Coefficients of Transmissibility, Permeability, and Storage	27
INTERFERENCE BETWEEN WELLS AND LONG-TERM DRAWDOWNS OF WATER LEVELS	29
Carrizo Sand	34
POSSIBLE BRACKISH WATER ENCROACHMENT	36

Page

AVAILABILITY OF GROUND WATER	36
Yields of Individual Wells	37
Wilcox Group	37
Carrizo Sand	37
Sparta Sand	37
Yegua Formation	37
Individual Well-Field Yields	42
Wilcox Group	42
Carrizo Sand	44
Sparta Sand	44
Yegua Formation	44
Total Availability of Ground Water Within Angelina and Nacogdoches Counties	44
Wilcox Group	49
Carrizo Sand	49
Sparta Sand	50
Yegua Formation	50
MOST FAVORABLE AREAS FOR GROUND-WATER DEVELOPMENT	50
Wilcox Group	50
Carrizo Sand	50
Sparta Sand	50
Yegua Formation	50
TEST DRILLING	55
OBSERVATION PROGRAM	56
PRINCIPAL CONCLUSIONS AND RECOMMENDATIONS	56
BIBLIOGRAPHY	· 59

TABLES

1.	Well Numbers Used by Cromack (1937) or White et al (1941) and Corresponding Numbers Used in This Report	6
2.	Stratigraphic Units and Their Water-Bearing Properties in Angelina and Nacogdoches Counties \ldots .	10

		Page
3.	Specific Capacities of Wells in Angelina and Nacogdoches Counties	30
4.	Results of Pumping Tests in Angelina and Nacogdoches Counties	32
5.	Actual and Computed Declines of Water Levels in Carrizo Wells in Angelina and Nacogdoches Counties	35
6.	Estimated Total Amount of Ground Water Available in Angelina and Nacogdoches Counties	48
7.	Records of Wells and Springs in Angelina County	61
8.	Records of Wells and Springs in Nacogdoches County	72
9.	Drillers' Logs of Representative Wells in Angelina County	86
10.	Drillers' Logs of Representative Wells in Nacogdoches County	94
11.	Results of Chemical Analyses of Water From Wells in Angelina County	101
12.	Results of Chemical Analyses of Water From Wells in Nacogdoches County	110

FIGURES

1.	Location of Angelina and Nacogdoches Counties	4
2.	Temperature and Precipitation at Nacogdoches	5
3.	Well-Numbering System	8
4.	Diagrammatic Sketch Showing Recharge and Drawdown in Typical Artesian Sand	14
5.	Construction of Production Well	15
6.	Temperature of Ground Water	20
7.	Locations of Oil and Gas Fields	21
8.	Pumpage of Ground Water in Angelina and Nacogdoches Counties	23
9.	Areal Distribution of Major Pumpage of Ground Water in 1968	24
10.	Pumpage and Water Levels for Carrizo Sand, 1934-68	25
11.	Example of Pumping Test of Production Well	28
12.	Example of Interference Test	29
13.	Computed Drawdown of Water Levels Caused by Pumping	34
14.	Estimated Maximum Individual Well Yields-Wilcox Group	38
15.	Estimated Maximum Individual Well YieldsCarrizo Sand	39
16.	Estimated Maximum Individual Well YieldsSparta Sand	40
17.	Estimated Maximum Individual Well Yields-Yegua Formation	41

		Page
18.	Estimated Individual Well-Field YieldsWilcox Group	43
19.	Estimated Individual Well-Field YieldsCarrizo Sand	45
20.	Estimated Individual Well-Field YieldsSparta Sand	46
21.	Estimated Individual Well-Field YieldsYegua Formation	47
22.	More Favorable Areas for Development—Wilcox Group	51
23.	More Favorable Areas for Additional Development–Carrizo Sand	52
24.	More Favorable Areas for Development—Sparta Sand	53
25.	More Favorable Area for Additional Development—Yegua Formation	54
26.	Sketch Showing Procedure for Water Sampling From Test Hole	56
27.	Locations of Wells and Springs in Angelina and Nacogdoches Counties	127
28.	Geologic Мар	12 9
29 .	Geologic Section A-A'	131
30.	Geologic Section B-B'	133
31.	Geologic Section C-C'	135
32.	Geologic Section D-D'	137
33.	Depth and Altitude of Top of Wilcox Group	139
34.	Sand Thickness in Wilcox Group	141
35.	Depth and Altitude of Top of Carrizo Sand	143
36.	Thickness of Carrizo Sand	145
37.	Depth and Altitude of Top of Sparta Sand	147
38.	Thickness of Sparta Sand	149
39.	Depth and Altitude of Top of Yegua Formation	151
40.	Sand Thickness in Yegua Formation	153
41.	Surface-Water Flow Measurements	155
42.	Dissolved-Solids Content of Water From Wilcox Group and Yegua Formation	157
43.	Dissolved-Solids Content of Water From Carrizo Sand	159
44.	Dissolved-Solids Content of Water From Sparta Sand	161
45.	Dissolved-Solids Content of Water From Reklaw Formation, Queen City Sand, Weches Formation, Cook Mountain Formation, Jack Group, and Alluvium	163

Page

46.	Altitudes of Water Levels in Wells, 1968-69	165
47.	Results of Pumping Tests	167

GROUND-WATER CONDITIONS IN ANGELINA AND NACOGDOCHES COUNTIES, TEXAS

ABSTRACT

Angelina and Nacogdoches Counties are in the rolling hills, piney woods portion of East Texas. The population of Angelina County in 1967 was estimated at about 47,000 and of Nacogdoches County, about 31,000. Major cities are Lufkin and Nacogdoches.

The geologic formations which constitute the principal aquifers are the Carrizo Sand, Wilcox Group, Yegua Formation, and Sparta Sand. Of these the Carrizo is by far the most productive.

Each of the formations crops out in the area and dips to the south. Recharge is received by the aquifers from precipitation and streamflow on the outcrops. Because the aquifers are full to overflowing, most of the recharge is rejected in the outcrops as evapotranspiration and seepage in the stream valleys. For each aquifer, the principal factor controlling the amount of water which can be obtained from wells is the ability of the aquifer to transmit water from its recharge area to points of withdrawal.

Fresh water exists in the Carrizo Sand over an area extending from its outcrop in northeastern Nacogdoches County to a line running generally from west to east through the northern part of Lufkin. The maximum depth of occurrence of fresh water in this formation is about 1,500 feet. The Carrizo Sand has been extensively developed by large well fields belonging to the cities of Lufkin and Nacogdoches and Southland Paper Mills. Total pumpage from Carrizo wells in 1968 is estimated at 26.7 million gallons per day. Yields of individual wells range from a few gallons per minute to nearly 1,500 gallons per minute, depending on location and type of construction. The pumpage from the large well fields has drawn the static water levels in Carrizo wells down nearly 500 feet near the center of pumping. The estimated total supply available from Carrizo wells under practical conditions, without causing the failure of some of the present well fields and drying up portions of the aquifer, is 32 million gallons per day. Thus, the estimated supply available for additional development is only about 5 million gallons per day. This estimate is based on the assumption that there will be no interference as a result of increased pumping outside of Angelina and Nacogdoches Counties.

Fresh water occurs in the Wilcox Group over an area covering all of northern Nacogdoches County and extending southward to a line running generally from west to east between Lufkin and the Angelina River. The maximum depth of occurrence of fresh water in the Wilcox is about 1,700 feet. Much of the Wilcox water, though fresh, is considerably more mineralized than the water in the overlying Carrizo Sand. Pumpage from the Wilcox Group was only 0.5 million gallons per day in 1968. The estimated potential yield of the Wilcox sands to wells is 8 million gallons per day. The estimated maximum yield of an individual well ranges from zero to 500 gallons per minute, and the estimated maximum yield of an individual well field ranges from zero to 5 million gallons per day, depending on location. The best location for additional development is believed to be in eastern Nacogdoches County.

Fresh water occurs in the Yegua Formation over an area lying between the northern edge of its outcrop north of Lufkin and a line passing generally from west to east across Angelina County between Huntington and Diboll. The maximum depth of occurrence of fresh water in the Yegua is about 1,150 feet. The quality of the fresh water in the Yegua varies considerably from place to place in an unpredictable manner. Estimated pumpage from the Yegua Formation in 1968 was 2.8 million gallons per day. Much of this pumpage was in the vicinity of Diboll. The static water level in at least one well at Diboll has declined nearly 300 feet as a result of pumping. The estimated potential yield from wells in the Yegua Formation is 7 million gallons per day. Depending on location, the estimated maximum yield of an individual well ranges from zero to 500 gallons per minute, and the estimated maximum yield of an individual well field ranges from zero to 3 million gallons per day.

Fresh water occurs throughout the outcrop of the Sparta Sand in southern Nacogdoches County and northwestern Angelina County, and downdip in two relatively small localities on the west and east sides of the two-county area. The maximum depth of occurrence of fresh water in the Sparta Sand is about 750 feet. Estimated pumpage in 1968 from the Sparta Sand was only 0.1 million gallons per day. The estimated potential yield of this sand to wells is 7 million gallons per day. Depending on location, the estimated maximum yield of an individual well ranges from zero to 500 gallons per minute, and estimated maximum yield of an individual well field ranges from zero to 4 million gallons per day.

No evidence has been found of any serious contamination of ground water from oil-field brines. There is some possibility of future encroachment of brackish water in the Carrizo and Yegua Formations toward the southernmost centers of pumping, but it should be many years before any such encroachment becomes a serious problem.

When maximum supplies of water are desired, or developments are in areas of borderline quantity or quality, test drilling programs and the use of pilot production wells are recommended. A thorough continuing program of observation of pumpage, water levels, and chemical quality is recommended for the Carrizo and Yegua aquifers, with partial coverage for the Wilcox and Sparta aquifers until they become more fully developed.

GROUND-WATER CONDITIONS IN ANGELINA AND NACOGDOCHES COUNTIES, TEXAS

INTRODUCTION

Purpose

The purpose of this report is to describe the occurrence, availability, and quality of the ground-water resources of Angelina and Nacogdoches Counties. The report is particularly concerned with sources of moderate to large supplies of water suitable for public supply, industrial, and irrigation uses. Data have also been included, however, which will benefit persons desiring smaller supplies for domestic and livestock use.

It is believed that the report will be helpful as a guide in developing and obtaining the maximum benefits from the available ground-water supplies. In addition, the report is designed to provide information for use by regulatory agencies in protecting the fresh ground water from contamination.

Scope

This investigation has included, insofar as practicable with available data, a complete evaluation of the ground-water resources of each of the aquifers in the two counties. The geology of the water-bearing formations has been studied, together with the quality of water in each formation. A quantitative evaluation has been made of the water available for development from each principal aquifer.

The first phase of the investigation was to compile and study all available reports and records on the ground-water resources of the area. In addition to obtaining reports by the U.S. Geological Survey, the Texas Water Development Board, and others, this work included compilation and analysis of voluminous unpublished records on water wells and oil tests, primarily from the files of the Texas Water Development Board, the U.S. Geological Survey, and this firm.

A new inventory was then made in the field to locate and obtain additional data where necessary on all wells which have been drilled for municipal, industrial, and irrigation purposes, and representative wells used for domestic and livestock supplies. Information on the various wells was obtained from well owners, drillers, and consultants. For each well a determination was made of the formation supplying its water, as indicated by available well records, the geologic map (Bureau of Economic Geology, 1968), and nearby well logs. Depth to water measurements were made in wells where this was practicable, and water samples were taken from numerous wells for chemical analyses. Pumping tests to determine the hydraulic characteristics of the waterbearing formations were made of nearly all wells for which satisfactory tests could be obtained and which had not previously been tested.

Additional electric logs of water wells and test holes and oil tests were obtained to supplement the logs already in the files of the Texas Water Development Board and this firm. Every available log was obtained except in areas where logs are closely spaced in oil fields.

Records of total pumpage were obtained from major ground-water users as well as from the Texas Water Development Board's files. Records of past water levels in wells were obtained from the Texas Water Development Board and U.S. Geological Survey files and from well owners, drillers, and consultants.

All of the available information on the geology and hydrology of the ground-water resources has been analyzed, and the results have been tabulated and/or plotted on maps, cross sections, and graphs and are presented in this report.

The character, thickness, and depth of the waterbearing formations are described, and estimates have been made of the quantities of water which can be developed from each of the principal water-bearing formations, and the amounts of water which can be obtained from individual wells and well fields.

The construction and operating characteristics of existing wells are presented, and records are given to illustrate the relationship between pumpage and water levels. Rainfall, streamflow, natural recharge, and natural discharge are described and discussed in the context of their relationship to the available ground-water resources.

The chemical quality of water in each formation is discussed and presented by means of chemical analyses of water from wells. In addition, interpretations of electric logs have been made to present estimates of the quality of water in each principal water-bearing formation in areas where chemical analyses of water from wells are not available. A review has been made of possible contamination problems, and the results of this review are discussed.

Finally, recommendations have been made with respect to a continuing observation program on pumpage, water-level fluctuations, and quality of water and on methods for further investigation, especially test drilling, to determine optimum locations and yields of new wells and well fields.

The detailed records on which this report is based have been placed on file with the Texas Water Development Board. These include especially the well schedules on the individual wells and the drillers' and electric logs. Tables 7 and 8 give the most important information on all of the wells, but the well schedules for some of the wells give additional information which may be of help in particular problems. All of the drillers' and electric logs are identified in Tables 7 and 8 and their locations are shown on Figure 27, but because of space limitations the only electric logs which are actually presented in the report are those in the cross sections in Figures 29, 30, 31, and 32, and the only drillers' logs presented in the report are the representative logs included in Tables 9 and 10.

Location

The location of Angelina and Nacogdoches Counties is shown on Figure 1. These counties are in the rolling hills, piney woods of East Texas. The principal streams are the Angelina River, which separates the two counties, and the Neches River, which flows along the southwestern side of Angelina County. Sam Rayburn Reservoir on the Angelina River covers portions of eastern Angelina County and southeastern Nacogdoches County (Figure 27).

Population

According to the Texas Almanac, the population of Angelina County in 1967 was about 47,000, and the population in 1960 was 39,814. The major city is Lufkin, with an estimated population in 1967 of about 20,300. The largest other towns and their estimated populations in 1967 are Dibol1, 3,300; Herty (a suburb of Lufkin), 1,400; Huntington, 1,100; Keltys (a suburb of Lufkin), 1,100; Zavalla, 900; and Pollok, 400.

The estimated population in 1967 of Nacogdoches County, according to the Texas Almanac, was about 31,000, and the population in 1960 was 28,046. The major city is Nacogdoches, with an estimated population in 1967 of about 16,100. The largest other towns in

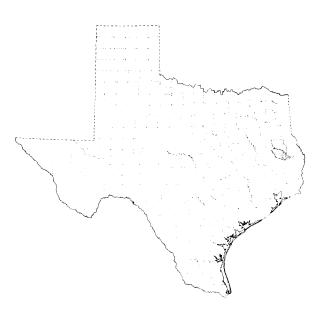


Figure 1.-Location of Angelina and Nacogdoches Counties

Nacogdoches County and their estimated populations in 1967 are Garrison, 1,000; Cushing, 600; Chireno, 500; and Appleby, 300.

Climate

The annual precipitation at Nacogdoches from 1921 through 1968, inclusive, is shown on Figure 2. Normal precipitation (1931-60) is about 48 inches per year. Figure 2 also shows the average monthly precipitation and the average monthly temperature at Nacogdoches. Average annual temperature is about 66 degrees Fahrenheit.

The average precipitation at Lufkin is about the same as at Nacogdoches, and the average temperature is a fraction of a degree warmer.

Previous Investigations

The first reasonably complete study of groundwater resources of this area was made by White, Sayre, and Heuser during the period 1937-40. The results of their investigation were published in 1941 as U.S. Geological Survey Water-Supply Paper 849-A, entitled "Geology and Ground-Water Resources of the Lufkin Area, Texas." Just prior to that investigation, in 1936 and 1937, G. H. Cromack made a thorough inventory of water wells and springs in Nacogdoches County. His inventory was published as a mimeographed report by the Texas Board of Water Engineers in 1937.

In 1941, the U.S. Geological Survey established an office at Lufkin to make additional studies of ground water in the area, with particular reference to the

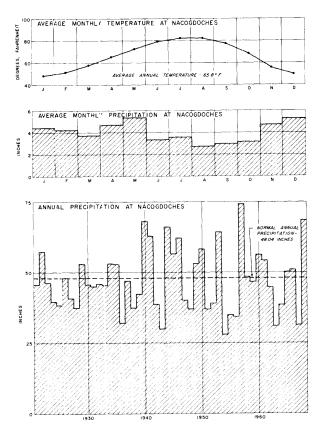


Figure 2.--Temperature and Precipitation at Nacogdoches

availability of water from the Carrizo Sand for industrial purposes. During 1942 and 1943, quantitative studies were made of both the Carrizo Sand and the Sparta Sand. These studies were based in part on test holes drilled by Southland Paper Mills and on pumping tests of production wells belonging to Southland Paper Mills.

Since 1943, various consulting studies have been made in the area, the more general ones being for Southland Paper Mills and the city of Nacogdoches. Also, a reconnaissance investigation of the principal aquifers in the Neches River basin, which includes Angelina and Nacogdoches Counties, was made by the Texas Water Commission and reported on by Baker and others (1963). In addition, Southland Paper Mills, the U.S. Geological Survey, and the Texas Water Development Board have maintained a program of observation of water levels in wells. Nearly all of the observation wells are screened in the Carrizo Sand.

A bibliography is included at the end of the text of this report. This bibliography lists the principal reports available on the geology and ground-water resources of Angelina and Nacogdoches Counties and adjoining counties.

Well-Numbering System

The well-numbering system (Figure 3) used in this report is one adopted by the Texas Water Development Board for use throughout the State and is based on latitude and longitude. Under this system, each well is assigned a seven-digit number and a two-letter county designation prefix. Each 1-degree guadrangle in or overlapping into the State is given a two-digit number from 01 to 89. These are the first two digits of a well number. Each 1-degree guadrangle is further divided into sixty-four 71/2-minute quadrangles which are each assigned a two-digit number from 01 to 64. These two digits constitute the third and fourth digits of a well number. Finally, each 71/2-minute quadrangle is subdivided into nine 21/2-minute guadrangles which are numbered 1 to 9 (fifth digit). Within these 21/2-minute quadrangles, each well is assigned a two-digit number beginning with 01 (the last two digits).

Angelina and Nacogdoches Counties are entirely within 1-degree quadrangle number 37. The 7½-minute quadrangles in these counties are shown on the well location map, Figure 27. For reasons of space, the 2½-minute quadrangles are not gridded or numbered. However, their notation occurs as the first digit of the three-digit number beside each well location.

In this report, each seven-digit well number has a two-letter prefix to identify the county in which the well is located. The prefix for Angelina County is AD, and for Nacogdoches County it is TX. For convenience each complete well number is dashed as follows: AD-37-44-801. In this number, the "AD" is the county prefix; the "37" is the 1-degree quadrangle number; the "44" is the 7½-minute quadrangle number; and the "801" is the 2½-minute quadrangle number (8) and the well designation number (01). Well AD-37-44-801 is in the town of Huntington in Angelina County.

This numbering system is different from that used by White, Sayre, and Heuser (1941) and Cromack (1937). Table 1 is a list of the wells and springs listed both in this report and in those reports, and gives the corresponding well numbers.

Acknowledgements

Many persons, agencies, and companies contributed data for this investigation and made wells available for testing. Particular appreciation is expressed to the following: Texas Water Development Board; U.S. Geological Survey; the cities of Nacogdoches, Lufkin, Garrison, and Huntington; Southland Paper Mills; Southern Pine Lumber Company; Layne Texas Company, Drilling Contractor; Texas Water Wells, Drilling Contractor; C. C. Innerarity, Drilling Contractor; Roy Luebner, Drilling Contractor; and K. G. Johnson, Consulting Engineer.

ANGELINA COUNTY							
Old Number	New Number	Old Number	New Number	Old Number	New Number	Old Number	New Number
3	AD- 37- 33- 304	50	AD-37-43-101	80	AD-37-43-402	126	AD-37-51-505
4	37-33-306	52	37-42-305	85	37-43-302	128	37-51-801
5	37-34-401	53	37-42-303	92	37-44-903	131	37-51-902
13	37-34-402	54	37-42-306	93	37-44-902	132	37-51-901
14	37-34-506	56	37-34-901	94	37-44-803	133	37-51-301
17	37-34-602	57	37-34-803	97	37-44-702	136	37-52-203
19	37-35-406	58	37-34-804	100	37-44-401	145	37-52-801
20	37-35-405	59	37-34-805	103	37-43-602	147	37-61-101
21	37-35-407	64	37-42-101	106	37-43-502	150	37-61-203
39	37-35-710	68	37-42-401	107	37-43-505	152	37-53-402
43	37-35-706	69	37-42-504	108	37-43-506	153	37-53-102
45	37-35-707	70	37-42-503	111	37-43-803	158	37-45-803
46	37-35-711	74	37-42-703	114	37-51-102	159	37-53 - 602
47	37-35-712	75	37-42-702	120	37-50-602	161	37-53-903
49	37-35-713	77	37-42 - 505	125	37-51-404		
			NACO	JOCHES COUNTY			
5	TX-37-09-501	48	TX-37-11-806	83	TX-37-13-701	127	TX-37-19-902
6	37-09 - 603	50	37-11-905	84	37-21-101	128	37-19-903
7	37-09-602	51	37-11-902	85	37-21-201	131	37-19-303
9	37-09-902	52	37-11-903	86	37-21-202	132	37-19-502
12	37-17-202	54	37-11-805	87	37-21-203	134	37-19-501
14	37-18-103	55	37-11-402	88	37-21-504	135	37-19-102
15	37-10-702	56	37-11-502	89	37-21-402	140	37-19-801
16	37-10-701	57	37-11-501	90	37-21-401	145	37-19-701
17	37-10-404	60	37-12-502	93	37-21-503	146	37-19-702
18	37-10-402	61	37-11-904	94	37-21-803	147	37-19-403
19	37-10-501	62	37-12-701	95	37-21-902	148	37-19-402
20	37-10-405	63	37-12-803	96	37-29-301	149	37-19-101
21	37-10-803	64	37-12-702	97	37-21-802	150	37-18-303
23	37-10-802	66	37-12-802	98	37-21-702	151	37-18-302
24	37-18-205	67	37-20-201	101	37-20-903	152	37-18-501
25	37-18-203	68	37-20-301	108	37-20-601	153	37-18-601
26	37-18-304	69	37-12-906	110	37-20-104	155	37-18-903
27	37-10-904	70	37-12-501	111	37-20-102	156	37-18-901
31	37-10-604	71	37-12-602	113	37-19-302	158	37-18-802
33	37-10-502	72	37-12-601	113-A	37-19-601	159	37-18-703
34	37-10-301	73	37-12-301	114	37-20-402	160	37-18-402
35	37-11-403	75	37-13-406	116	37-19-905	161	37-17-606
36	37-11-702	76	37-13-403	118	37-20-705	162	37-18-403
37	37-11-703	76- A	37-13-405	120	37-27 - 305	163	37-18-204
39	37-11-704	77	37-13-101	120-A	37-27-306	164	37-18-404
43	37-11-705	80	37-13-704	121	37-27 - 302	165	37-18-102
45	37-19-201	81	37-13-802	122	37-27-301	166	37-17-304
46	37-19-202	82	37-13-801	125	37-19-802	167	37-17-605

Old Number	New Number	Old Number	New Number	Old Number	New Number	Old Number	New Number
168	TX-37-17-603	191	IX- 3 7-26-902	241	TX-37-29-602	275	TX-37-36-206
169	37-17-303	194	37-27-102	242	37-29-303	278	37-28-701
170	37-17-602	195	37-27-203	244	37-30-502	283	37-26-806
171	37-17-604	198	37-27-501	245	37-30-402	285	37-26-805
172	37-17-802	199	37-27-502	246	37-30-703	290	37-35-106
273	37-17-903	203	37-27-307	247	37-30-702	295	37-35-311
1.74	37-17-904	206	37-27-308	257	37-38-201	297	37-36-603
175	37-17-905	207	37-27-309	258	37-38-101	298	37-36-302
178	37-25-301	219	37-27-602	259	37-37-301	299	37-36-601
179	37-25-601	226	37-28 - 305	260	37-29-902	300	37-36-602
181	37-26-102	228	37-28-306	261	37-29-903	305	37-37-802
182	37-26-101	230	37-28-603	271	37-36-301	310	37-38-801
184	37-26-403	236	37-29-203	272	37-28-903	311	37-38-701
185	37-26-402	237	37-29-502	273	37-28-802	312	37-38-702
187	37-26-502	238	37-29 - 503	274	37-28-804	314	37-46-402

NACOGDOCHES COUNTY -- Continued

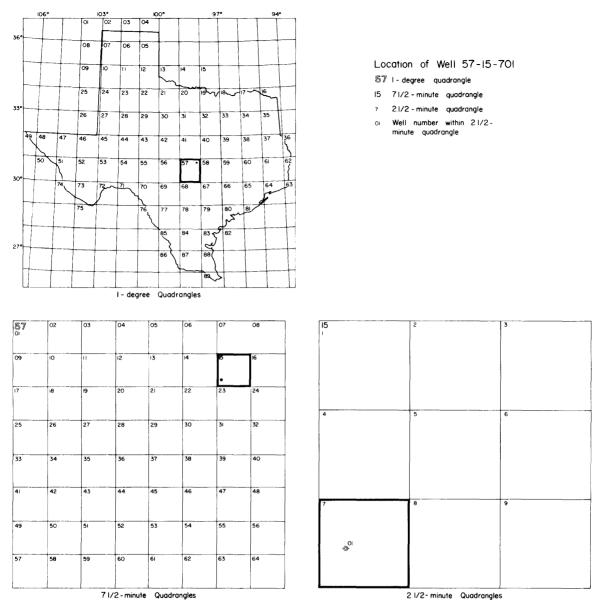


Figure 3.-Well-Numbering System

Grateful appreciation is also expressed to Mr. Hubert Guyod, Logging Consultant, Houston, Texas, for his assistance in estimating the quality of water in the principal water-bearing formations from electric logs.

INVENTORY OF WATER WELLS

As part of this investigation, an inventory was made of all existing municipal, industrial, and irrigation water wells, representative domestic and livestock wells, and major springs. In addition, records were obtained on important test holes and, insofar as possible, on previous large wells which have been abandoned and destroyed. The locations of the wells and springs are given on Figure 27 and information concerning each is listed in Tables 7 and 8.

Insofar as possible, the records obtained by White, Sayre, and Heuser and published in 1941 and those obtained by Cromack and published in 1937 have been preserved in this report. Only wells, test holes, and springs which could definitely be located on the county road maps prepared by the Texas Highway Department, however, are listed in Tables 7 and 8 and shown on Figure 27. Some could not be located because the maps used in the earlier reports were partially inaccurate or because the wells have long since been abandoned and destroyed. Special care has been taken, though, to insure that no data have been omitted from the report which would significantly affect the description of the waterbearing formations and the conclusions regarding them. Where necessary, the records on the old wells have been brought up to date.

Results of an inventory by the Texas Water Commission between 1959 and 1961, which was made as a part of the "Reconnaissance Investigation of the Ground-Water Resources of the Neches River Basin" (Baker and others, 1963), were also used in this inventory and, where necessary, brought up to date. In addition to the use which was made of the existing inventories, records were obtained from drillers' reports on file with the Texas Water Development Board, from Southland Paper Mills, the cities of Lufkin and Nacogdoches, well drillers, and consultants, and by field contacts with owners.

Representative drillers' logs of wells are presented in Tables 9 and 10. Additional drillers' logs are on file with the Texas Water Development Board. The wells for which the drillers' logs are available are identified in Tables 7 and 8.

ELECTRIC LOGS

One hundred and ninety-four electric logs of oil tests, water wells, and test holes are identified in Tables 7 and 8 and are on file with the Texas Water Development Board. In addition, about 14 electric logs in surrounding counties were used in this study. The electric logs are particularly important because of the detailed information they give on the subsurface stratigraphy of the formations and on the quality of water where actual chemical analyses are not available. The locations of the oil test logs were obtained from records of the Texas Water Development Board, from ownership maps, and from descriptions of locations on the logs.

GEOLOGY AS RELATED TO THE OCCURRENCE OF GROUND WATER

General Stratigraphy and Structure

In Angelina and Nacodgoches Counties, the rocks of importance in defining the occurrence of fresh ground water consist of a thick sequence of sands and clays, largely of Eocene age. Included are deposits of continental, deltaic, and shallow marine origin. The geologic units referred to include, from oldest to youngest: the Midway Group, Wilcox Group, Carrizo Sand, Reklaw Formation, Queen City Sand, Weches Formation, Sparta Sand, Cook Mountain Formation, Yegua Formation, Caddell Formation, Wellborn Formation, and Manning Formation, all of Eocene age; the Whitsett Formation of Eocene or Oligocene age; the Catahoula Formation of Miocene age; and terrace and floodplain deposits of Pleistocene and Recent age. The Caddell, Wellborn, Manning, and Whitsett Formations are collectively termed the Jackson Group in this report. All of these units yield some water to wells in either Angelina or Nacogdoches Counties, or both, with the exception of the Midway and Catahoula, in which no wells are known to be completed.

Table 2 summarizes the thickness, composition, and water-bearing properties of the formations. Figures 29, 30, 31, and 32 are cross sections showing the general altitude, depth, thickness, extent, and electric log character of all the geologic units, as well as the general water quality in the Wilcox, Carrizo, Sparta, and Yegua units.

Angelina and Nacogdoches Counties are about equidistant between the center of the Sabine uplift to the northeast, the axis of the East Texas embayment to the west, and the central part of the Gulf Coastal Plain proper to the south. In northeastern Nacogdoches County, the outcrop patterns trend northwest-southeast, with the dip being to the southwest. In southern Angelina County, the outcrop patterns trend nearly east-west, with the dip being to the south. The rate of dip of the formations in northern Nacogdoches County is typically about 50 feet per mile. The rate increases southward, until in southern Angelina County the formations dip at a rate of about 150 feet per mile. Due to the dip, the depth to a formation increases southward.

Several small faults have been mapped in Nacogdoches and Angelina Counties. Two are shown on Figure 28. In the report by White, Sayre, and Heuser (1941) several others are reported. Of the faults known, all appear to have only small displacement. Accordingly, it is not believed that faulting within Angelina and Nacogdoches Counties is particularly significant with respect to the occurrence or areal movement of ground water within the counties. As discussed later, however, faulting in the Mount Enterprise zone in Rusk and Cherokee Counties to the north and northwest of Nacogdoches County has a substantial effect on drawdown of water levels in wells in the Carrizo Sand, and that which will be caused in wells in the Wilcox Group.

Figure 28 shows the surface extent of each of the units cropping out in Angelina and Nacogdoches Counties. The map was prepared directly from the Geologic Atlas of Texas, Palestine Sheet, prepared and published in 1968 by the Bureau of Economic Geology, University of Texas. The oldest unit that crops out in the area is the Wilcox Group, exposed at the surface in northern and northeastern Nacogdoches County, Southward, successively younger rocks occur at the surface inasmuch as the regional dip of the formations to the south is at a greater rate than the general slope of the land surface to the south.

Table 2.--Stratigraphic Units and Their Water-Bearing Properties in Angelina and Nacogdoches Counties

Stratigraphic Unit	Approximate Range in Thickness (feet)	Approximate Thickness at Nacogdoches (feet)	Approximate Thickness at Lufkin (feet)	Composition	General Water-Bearing Properties
Alluviun	0- 30	0	0	Sand, silt, and clay, with some gravel.	Locally yields small quantities of fresh water to widely scattered shallow dug wells.
Catahoula Formation	<u>2</u> /	0	0	Send with some clay.	Yields no water to wells.
Jackson Group 1/	0-1,000	0	0	Mostly clay and silt.	Yields small quantities of fresh to brackish water.
Yegus Formation	0-1,050	0	150-400	Mostly thin-bedded sand, silt, and clay.	Yields small to moderate quanti- ties of fresh to brackish water.
Cook Mountain Formation	0-500	0	410	Mostly clay.	Yields small quantities of fresh to brackish water in outcrop area.
Sparta Sand	0- 290	0- 70	200	Interbedded sand and clay.	Yields small to moderate quantities of fresh water in and near outcrop area.
Weches Formation	0-240	140	150	Mostly clay.	Yields small quantities of fresh to brackish water in outcrop area.
Queen City Sand	0-130	60	50	Interbedded sand and clay. Sands feather out to south and east.	Yields small quantities of fresh water, mostly in outcrop area.
Reklaw Formation	0-290	200	250	Clay and silt, typically having a basal sand.	Yields small quantities of fresh to brackish water.
Carrizo Send	0-170	90	120	Massive sand.	Yields moderate to large quantities of fresh water.
Wilcox Group	950-3,300	2,500	<u>2</u> /	Interbedded sand, silt, and clay.	Yields small to moderate quanti- ties of fresh water.
Midway Group	2/	<u>2</u> /	<u>2</u> /	Mostly clay.	Yields no water to wells .

1/ Includes Whitsett Formation of Eocene or Oligocene age and Manning, Wellborn, and Caddell Formations of Eocene age.
2/ Not determined.

Principal Water-Bearing Formations

The most important water-bearing units in Angelina and Nacogdoches Counties from a present or potential development standpoint are the Wilcox Group, Carrizo Sand, Sparta Sand, and Yegua Formation. Of the four the Carrizo is the most prolific aquifer.

Wilcox Group

The Wilcox Group underlies all of Angelina and Nacogdoches Counties and is exposed at the surface in parts of northern and northeastern Nacogdoches County, as well as in adjoining areas in Rusk and Shelby Counties. It consists mainly of thin beds of sand, silt, and clay, with minor amounts of lignite. The sands are typically gray, fine grained, and silty. The Wilcox commonly shows a very broken pattern on electric logs due to its generally thin-bedded character. Individual beds within the Wilcox Group generally cannot be correlated from well to well, due to lateral changes in character and thickness. In some local areas, however, predominately sandy zones within the Wilcox or predominately clayey zones do appear to correlate from well to well.

Figure 33 shows the depth to the top of the Wilcox Group, based on electric logs, as well as the altitude of the top of the Wilcox. The thickness of the Wilcox is about 900 to 1,000 feet in extreme northeastern Nacogdoches County. The Wilcox thickens both to the west and to the south. In southwestern Nacogdoches County the total thickness of the Wilcox is more than 2,000 feet, while in southern Angelina County the Wilcox exceeds 3,300 feet in thickness.

Not all of the Wilcox contains fresh water, and in parts of the report area it contains only brackish or salt water. Figure 29 illustrates the general distribution of fresh, brackish, and salt water within the Wilcox Group in a north-south direction across Nacogdoches and Angelina Counties. The thickest fresh water sections or zones within the Wilcox occur in the northern part of Nacogdoches County. The thickest sections of brackish water within the Wilcox Group occur in central and southern Nacogdoches County. In about the southern half of Angelina County, only salt water occurs in the Wilcox Group.

Figure 34 shows the thicknesses of the Wilcox Group containing fresh and brackish water. The thicknesses are based on interpretations of electric logs. Also shown on Figure 34 are the net sand thicknesses occurring within the fresh water and brackish water zones of the Wilcox Group.

From the data given on Figures 33 and 34, the elevation of the base of the fresh water zone within the Wilcox can be determined. This is done by subtracting the thickness of the Wilcox Group containing fresh

water from the elevation of the top of the Wilcox. Similarly, by subtracting both the thickness of the Wilcox containing fresh water and the thickness of the underlying part of the Wilcox containing brackish water from the elevation of the top of the Wilcox, the elevation of the base of the brackish water in the Wilcox can be determined.

Water wells tapping the Wilcox consist mostly of shallow dug wells in the Wilcox outcrop area and moderately deep drilled wells both in and just downdip from the Wilcox outcrop, all of which are of small capacity and are used mostly for domestic and livestock purposes. A few wells of moderate capacity draw water from the Wilcox at Garrison and at other localities in northern Nacogdoches County. Also, a few Carrizo wells include some screen in upper Wilcox sands immediately underlying the Carrizo.

Carrizo Sand

The Carrizo Sand is the most important waterbearing unit in Angelina and Nacogdoches Counties. It supplies all the water used by the cities of Lufkin and Nacogdoches and many smaller users, and most of the water used by Southland Paper Mills.

The Carrizo directly overlies the Wilcox Group and crops out immediately south of the Wilcox outcrop in a band 1 to 8 miles wide trending northwest-southeast across northeastern Nacogdoches County.

The Carrizo is usually reddish in color and cross-bedded in surface exposures. The color is due to iron oxide. In wells, the Carrizo is typically found to be a white, massive, fine- to medium-grained quartz sand, normally containing a few clay lenses. It is not usual for a significant part of the formation to be clay; however, in a few localities this occurs.

The Carrizo is rather uniform in composition and also in its character on electric logs. It is normally distinguished on electric logs from the overlying Reklaw and the underlying Wilcox by markedly higher resistivity. In localities where little or no resistivity differences exist between the Carrizo and either sands of the Reklaw or Wilcox, and formation samples are not available, picking the upper or lower contacts of the Carrizo is arbitrary. This tends to be the case for the Reklaw-Carrizo contact in parts of northern Nacogdoches County, for the Carrizo-Wilcox contact at scattered locations throughout the report area, and for both the Reklaw-Carrizo contact and the Carrizo-Wilcox contact in about the southern half of Angelina County.

Figure 35 shows the depth to the top of the Carrizo Sand and the altitude of the top of the Carrizo. Figure 36 shows the total thickness of the Carrizo Sand as well as the net sand thickness within the formation. The thickness of the Carrizo ranges from 20 to 170 feet, from the data on Figure 36.

Sparta Sand

The Sparta Sand underlies southern Nacogdoches County and all of Angelina County. It is exposed at the surface in a belt trending nearly east-west across the central part of the report area. Its outcrop ranges in width from about 2 to 15 miles. The Sparta Sand consists mostly of very fine to fine-grained quartz sand, clay, and silty clay. It has some lignitic beds. Typically, about half of the formation is sand. In local areas, individual sand zones within the Sparta can be correlated from well to well; however, on an areal basis such is not the case.

The depth to and altitude of the top of the Sparta Sand are shown on Figure 37. Figure 38 shows the total thickness of the Sparta Sand, as well as the net sand thickness within the Sparta.

Present development within the Sparta consists of numerous shallow small-capacity wells in its outcrop area and a few moderately deep, drilled wells of small capacity, mostly located in northwestern Angelina County and in southeastern Nacogdoches County. In 1942 and 1943, several moderate capacity test wells were drilled by Southland Paper Mills in southern Nacogdoches County, but were not subsequently used except for water-level observations.

Yegua Formation

The Yegua Formation occurs in Angelina County and the southeastern tip of Nacogdoches County. It crops out in a belt about 9 to 15 miles wide trending east-west. The Yegua is composed mainly of thin alternating beds of sand, silt, and clay. It exhibits a very broken character on electric logs due to its typically very thin-bedded nature. The upper part of the Yegua generally contains more clay and silt and fewer and thinner beds of sand than the lower part. Most of the sand beds are composed of fine-grained quartz sand. Some of the sand zones appear to correlate locally, but none is directly correlated over large distances.

Figure 39 shows the depth to the top of the Yegua Formation, as well as the altitude of the top of the Yegua. The depth to the base of the Yegua Formation is given on Figure 40. The total thickness of the Yegua increases southward across its outcrop area. The thickness is about 500 feet in the central part of the outcrop area and about 900 to 1,000 feet along the southern edge of the outcrop area. In that part of southern Angelina County where the full thickness of the formation is present, the Yegua is believed to average about 1,000 feet in thickness.

Not all the Yegua Formation contains fresh water, and in parts of the area the Yegua appears to contain only brackish and salt water. Figures 29 and 30 portray in cross-section form the general occurrence of fresh, brackish, and salt water within the Yegua. The available electric logs indicate that in parts of the report area zones containing fresh water interfinger with zones containing brackish water. The net sand thicknesses occurring within the various quality zones, as estimated from the available electric logs, are shown on Figure 40. The total net sand thicknesses within the Yegua are typically quite small, ranging from about 70 to 130 feet for the entire formation.

Many small- to moderate-capacity wells, both shallow and deep, have been constructed in the Yegua in central and southern Angelina County.

Other Formations

Midway Group

The Midway Group occurs only in the subsurface in this area, underlying the Wilcox Group throughout Angelina and Nacogdoches Counties. The Midway consists almost entirely of clay and silt and is considered essentially impermeable. No water wells are known that tap the Midway in the two counties.

Reklaw Formation

The Reklaw Formation overlies the Carrizo Sand. The Reklaw reaches a known maximum thickness of 290 feet but typically is slightly over 200 feet in thickness on well logs showing its full thickness.

From outcrops Stenzel (1938) divided the formation into two members, with the Marguez Shale being the upper part and the Newby Sand being the lower part. In Angelina and Nacogdoches Counties, the upper part of the Reklaw is principally clay, with the lower 20 to 80 feet of the formation generally being a silty, glauconitic, fine-grained quartz sand. Distinguishing the sands of the lower part of the Reklaw from those of the underlying Carrizo is not always easy. From drillers' logs it is frequently impossible to make the distinction, and always the distinction can be more readily made from formation samples than from electric logs. It is considered important to distinguish between the basal Reklaw sands and the Carrizo sands inasmuch as the Reklaw is probably much less permeable and is generally believed to contain more mineralized water than the underlying Carrizo in the area where the Carrizo water is fresh.

Numerous shallow wells yielding small supplies exist on the outcrop of the Reklaw Formation. South of its outcrop area only a few wells tap the Reklaw Formation. Of the wells that do, all draw water from the basal sand and are of relatively small capacity.

Queen City Sand

The Queen City Sand overlies the Reklaw Formation and consists mostly of alternating beds of very fine to fine-grained quartz sand and clay. The Queen City Sand crops out in an irregular belt extending across most of Nacogdoches County.

At the surface the formation is thickest in western Nacogdoches County and thins eastward. In western Nacogdoches County, it attains a thickness of 100 to possibly 130 feet and consists of approximately half sand. In central and east-central Nacogdoches County, the Queen City is about 50 feet thick and is about one-third sand. Farther east it is even thinner and is essentially all clay. No Queen City sands are recognizable on electric logs southeast of a line trending northeastsouthwest through Lufkin. Where sands are not present, it is not possible to distinguish the clays of the Queen City from the clays of the overlying and underlying formations. The changes in character and thickness of the Queen City are illustrated on the geologic sections, Figures 29, 31, and 32.

Numerous shallow wells yielding small supplies exist on the outcrop of the Queen City. Only a few wells, all of small capacity, tap the formation downdip from its outcrop area.

Weches Formation

The Weches Formation overlies the Queen City Sand and consists principally of clays and silts with some fine-grained sands. In well logs where its full thickness is present, it ranges in thickness from about 110 to 240 feet. In its outcrop area the Weches yields water to shallow dug wells, but no wells are known to tap the Weches downdip from its outcrop area.

Cook Mountain Formation

The Cook Mountain Formation overlies the Sparta Sand and underlies the Yegua Formation. It crops out in a band about 3 to 7 miles wide extending across the central part of the report area. On well logs where its full thickness is present, it ranges in thickness from about 380 to 500 feet, averaging slightly over 400 feet. It consists mostly of clay, but contains a few thin beds of sand, sandy clay, and marly clay. Some shallow wells exist in the outcrop area of the Cook Mountain Formation and yield small supplies of water. Only a few wells tap the formation downdip from its outcrop area.

Jackson Group

As used in this report, the Jackson Group refers to all of the rocks occurring above the Yegua Formation and below the Catahoula Formation. Included are rocks mapped on the surface as the Caddell, Wellborn, Manning, and Whitsett Formations (Bureau of Economic Geology, 1968). Individually, these formations are not readily recognizable in the subsurface of Angelina County from the few well logs available. For this reason, and also because they are relatively unimportant from a ground-water standpoint, they are herein lumped under the name "Jackson Group."

The outcrop of the Jackson in southern Angelina County occurs in a belt up to 14 miles in width trending mostly east-west. The Jackson dips to the south at from 100 to 150 feet per mile. On logs the Jackson appears principally as clay, with only occasional thin sand beds consisting of fine- to medium-grained quartz sand.

The thickness of the Jackson Group is shown on Figure 39, the map showing the depth to the top of the Yegua Formation. On Figure 39 the depth to the top of the Yegua Formation represents the thickness of the Jackson Group at all locations where data are available. Near the middle of the Jackson outcrop belt the thickness of the Jackson is approximately 500 feet. It is estimated that where the full thickness of the Jackson exists in southeastern Angelina County its thickness is about 1,000 feet.

The Jackson furnishes water to a few shallow dug wells and to a few moderately deep, drilled wells. The general lack of sand in the Jackson, however, essentially renders the formation valueless except as a source for very small supplies.

Catahoula Formation

The Catahoula Formation consists mostly of sand and is an important water-bearing unit in counties south of Angelina County. The occurrence of the Catahoula within Angelina County, however, is limited to a few thin outcrops, mostly forming the tops of hills in extreme southeastern Angelina County along the Angelina-Jasper County line. No wells which tap the Catahoula Formation are known to exist in Angelina County.

Alluvium

Terrace and floodplain deposits occur along the major stream valleys in Angelina and Nacogdoches Counties. The deposits are quite restricted in extent and consist of sand, silt, and clay, with some gravel. It is believed that they attain a maximum thickness of approximately 30 feet. A very few shallow dug wells at widely scattered locations obtain water from the alluvium.

RECHARGE, MOVEMENT, AND NATURAL DISCHARGE OF GROUND WATER

The water-bearing formations in this area receive recharge in their outcrops from precipitation and streamflow. Most of this recharge is rejected because the formations are full, and the water spills out of them into the stream valleys crossing the outcrops, where it is discharged by seepage or evapotranspiration. Some of the recharge, however, moves down the dips of the formations. Under natural conditions, prior to pumping, a very small amount moves generally down the dip of a formation for many miles, and along the way slowly seeps upward through confining beds and finally is discharged at the land surface through seeps and/or evapotranspiration.

Pumping from a well changes the pattern of flow nearby so that water moves into the well from all directions. Figure 4 is a diagrammatic sketch showing recharge from precipitation and streams and the position of the piezometric surface, both prior to pumping and during pumping. A gentle slope of the piezometric surface down the dip of the formation is shown prior to pumping, with a cone of depression sloping toward the well from both updip and downdip during pumping. The direction of movement is shown toward the well from both directions during pumping.

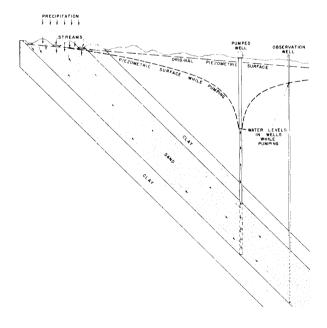


Figure 4.—Diagrammatic Sketch Showing Recharge and Drawdown in Typical Artesian Sand

Any water which is pumped from wells must be balanced by a reduction in natural discharge, an increase in the amount of recharge which is not rejected, or withdrawal of water from storage, or a combination of these. Thus, to have a perennial supply which does not continue to withdraw water from storage and eventually dry up the formation, the pumpage must be balanced by an equal amount of recharge diverted to the wells. The two major quantitative factors which limit the amount of ground water which can be obtained on a perennial basis, therefore, are the recharge available for interception by pumping and the rate at which water can flow from the recharge area to the wells.

Angelina and Nacogdoches Counties are in an area of high precipitation, and the aquifers are principally artesian and are comprised of sand. In situations of this type, it is very rare to have a shortage of recharge. Nearly always, the limiting factor in the amount of water available is the transmissibility of the formation. The transmissibility controls the amount of head loss, or drawdown of piezometric surface, which will result from pumping wells as they draw water from the recharge area. Almost always there is a surplus of available recharge and the formations continue to reject recharge in their outcrop areas by returning it to the surface or atmosphere through seepage or evapotranspiration in the major valleys.

In these two counties, the water table in the outcrop of every aquifer is above the base level of the major streams crossing the outcrop, and its position appears to be controlled by the elevations of the stream valleys. The water table is highest in the divide areas, sloping away from the divides toward the deeper valleys, where most of the evapotranspiration and seepage takes place. The water table also slopes in the direction of the dip of the formation, so that some of the water entering the outcrop can move into and through the artesian portion of the aquifer, to be discharged downdip by natural discharge or by wells.

The major streams in and adjacent to Angelina and Nacogdoches Counties are shown on Figure 41. Also given on this figure are summaries of available records of streamflow. All of the streams vary widely in flow between dry and wet periods. During very dry periods there is little base flow in any of the streams. This means that at these times only a very small part of the recharge rejected from the water-bearing formations actually is rejected as seepage into streams. Instead, by far the greatest part of the rejected recharge at these times is evapotranspiration where the water tables are shallow in and near the stream valleys.

Also shown on Figure 41 is the average annual runoff for the drainage basin above each gaging station. These figures range from about 5 to 12 inches per year out of a total precipitation of some 40 to 50 inches. Thus, about 35 to 40 inches of the precipitation is (1) consumed by evapotranspiration immediately after it falls on the ground, (2) enters the outcrops of the water-bearing formations and then is discharged back to the surface and/or atmosphere in the stream valleys, or (3) moves down the dip of the formations.

It is next to impossible, with any reasonable amount of investigation, to measure the total available

recharge directly because of the stratification of the formations in their outcrops, the difficulty in obtaining average values for infiltration rates, and the difficulty of obtaining average values for evapotranspiration from the water table. About the only way reliable measurements of the total available recharge can be obtained in an area of this kind is to actually overpump the formation and then determine how much shortage occurs. When this is done, the water table is lowered below the reach of plants throughout the outcrop area, including the stream valleys, and measurements are made of the continuing rate of decline of water level with continued pumping. In Angelina and Nacogdoches Counties, the water tables are now much too high to consider any such analysis, and it appears certain that, with the exception of the Carrizo Sand, they can never be lowered to the point of salvaging all rejected recharge under any practicable arrangement of wells and well yields. In other words, the abilities of the aquifers to transmit water from recharge areas to wells is much more of a limiting factor than the availability of recharge to the formations.

The same also is probably true with respect to the Carrizo Sand, although not as certain. The Carrizo Sand has the greatest transmissibility of any of the formations in the area, and thus can transmit water more readily from recharge areas to wells. The present amount of pumpage from the Carrizo in Angelina and Nacogdoches Counties which is considered to originate from the Carrizo outcrop is about 24 million gallons per day, and the estimated total availability of water from the Carrizo alone in these counties (not considering recharge as a limiting factor) is about 29 million gallons per day. The outcrop area available to supply this water is about 230 square miles; and for all of the water to come from the outcrop on a sustained basis would require an annual interception of recharge equivalent to about 2.6 inches of water over the outcrop area. This is only about 7 percent of the 35 to 40 inches of precipitation which does not run off; and it is considered likely that it is available because of the loose sandy nature of the Carrizo outcrop. The 2.6 inches is, however, higher than the available recharge in a few other areas in the humid part of the United States, as determined by actual measurements.

At present the water table in the outcrop of the Carrizo in places is as much as 50 feet above the stream valleys cutting through the outcrop. Measurements of water levels in wells near the outcrop indicate that the water table in part of the outcrop is declining at a rate of about 2 feet per year at present. This decline is necessary to salvage some of the recharge now being rejected into the stream valleys. Whether the decline will stop before all possible recharge is salvaged and the water table drops below the stream valleys is not known, although it is believed that it probably will. It will be many years, though, before the final outcome has been measured, and if there is any continuing decline of water levels after that it is sure to be at a very slow rate. Because of these considerations, the availability of recharge is not at this time considered to be a limiting factor for any ground-water development in Angelina and Nacogdoches Counties, including the Carrizo Sand as well as the other formations.

WELL CONSTRUCTION AND DISTRIBUTION

The types of water well construction and the distribution of wells in Angelina and Nacogdoches Counties may be determined from a study of Tables 7 and 8 and Figure 27. Except for the shallow dug wells, all of the wells are cased and have screen or slotted pipe opposite the sands from which they draw water. The larger municipal and industrial wells are gravel packed as illustrated by the drawing of the well belonging to the city of Nacogdoches on Figure 5. Smaller wells are usually not gravel packed. The largest wells belong to Southland Paper Mills and have 20-inch surface casing and 14-inch screen and liner. Small domestic wells may be as little as 2 inches in diameter.

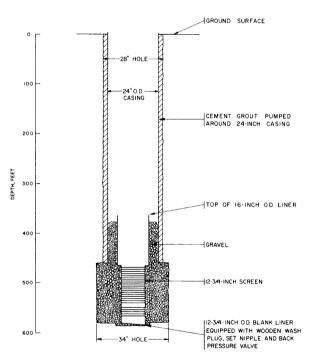


Figure 5.-Construction of Production Well

In recent years a distinctly different pattern of well use and source of supply has occurred in many of the smaller communities and much of the rural area of Angelina and Nacogdoches Counties. Rural water-supply corporations stemming from a program of the U.S. Department of Agriculture's Farmers Home Administration have been formed. They distribute water over wide areas. Twelve water-supply corporations, obtaining their supplies from wells, exist in Nacogdoches County. There are ten in Angelina County. Within the areas they serve, most of the private wells formerly supplying domestic and livestock requirements have been abandoned. Where these rural water systems exist, those users requiring smaller supplies most readily change from private wells. The users most likely to continue using private wells typically include the ones needing the larger supplies, such as dairies and broiler farms.

Fifty-four wells are listed in Tables 7 and 8 as drawing exclusively from the Wilcox Group. Of these, nine were constructed for municipal purposes and four for industrial purposes. There are no irrigation wells in the Wilcox. The deepest Wilcox well is an observation well 1,261 feet in depth. The deepest well drilled for water supply is 630 feet deep. The wells are reported to yield up to 195 gallons per minute. Most of the Wilcox wells are located in northeastern Nacogdoches County, generally northeast of a line passing through Cushing and Chireno.

One hundred and fifty-two wells are listed for the Carrizo Sand. These include a few wells which also are screened in sands of the Reklaw Formation which immediately overlie the Carrizo or sands of the Wilcox Group which immediately underlie the Carrizo. Of the 152 wells, 34 were constructed for municipal or other public supplies, 23 were constructed for industrial supplies, and 6 were constructed for irrigation purposes. All but two of the municipal wells and eight of the industrial wells were in use in 1968. Three of the six irrigation wells have been abandoned, and very little use is made of the others. The largest yielding wells in the two counties are in the Carrizo Sand and belong to Southland Paper Mills and the cities of Lufkin and Nacogdoches. Yields of these wells range up to 1,350 gallons per minute. Carrizo wells are as deep as 1,410 feet, with most of the larger wells having depths ranging from about 500 to 900 feet in Nacogdoches County and from about 900 to 1,300 feet in Angelina County. Most of the larger wells are located between Lufkin and Nacogdoches, and most of the small-capacity wells are north of State Highway 21, which traverses Nacogdoches County in a northwest-southeast direction, passing through Douglass, Nacogdoches, and Chireno.

There are 27 wells listed in Table 8 as drawing from the Reklaw Formation. One was constructed for industrial purposes and the remainder for domestic and livestock purposes. There are no public supply or irrigation wells in this formation. The wells are mostly shallow, dug wells, but a few range up to 552 feet deep. The greatest yield reported is 40 gallons per minute. The wells are generally in the northern and central parts of Nacogdoches County.

Thirty-nine wells are shown for the Queen City Sand, including one well which produced from the Queen City until it was deepened. Five are drilled wells, as much as 523 feet in depth, and the rest are dug wells. Most Queen City wells are domestic and livestock wells located west, northwest, and north of Nacogdoches. The formation which occurs above the Queen City Sand, the Weches, is mostly clay. Shallow large-diameter wells have been constructed in the Weches to obtain water for domestic and livestock use. Of the 18 wells listed for the Weches, most are located north and west of Nacogdoches, although three are northwest of Chireno.

Sixty-seven wells are shown for the Sparta Sand, mostly in southern Nacogdoches County and northern Angelina County. These wells range in depth to about 500 feet and in yield to about 300 gallons per minute. One well is used for public supply. The remainder were either constructed as test wells or for domestic and livestock purposes.

Wells in the Cook Mountain Formation are presently used solely for domestic and livestock purposes and are mostly shallow. The total number of Cook Mountain wells listed is 19, and the deepest well is 190 feet. The Cook Mountain wells are located in a narrow east-west strip, generally on the outcrop, passing just north of Lufkin. In some places, particularly east of Lufkin, the wells in the Cook Mountain have very small yields or brackish water, and homeowners have found it desirable to use cisterns.

The Yegua Formation is one of the more widespread formations in the area and supports many small to moderate size wells. Tables 7 and 8 show 27 public-supply wells, 10 industrial wells, and one irrigation well for the Yegua. Also listed are 64 domestic and livestock wells and one test well, making a total of 103 wells shown for the Yegua. The Yegua wells range in depth up to 920 feet and in yield to more than 500 gallons per minute. Except for four wells in the southeast corner of Nacogdoches County, the Yegua wells are all located in Angelina County, generally between an east-west line just north of Lufkin and another east-west line passing through Diboll and Zavalla.

Eighteen wells are shown for the Jackson Group. Three of the wells are for public supply and the rest are used for domestic and livestock purposes. Water is difficult to develop from the Jackson Group, and a fairly large number of homeowners in the southern portion of Angelina County, where the aquifer occurs, use cisterns. The Jackson wells range in depth to 366 feet. The largest reported yield, 15 gallons per minute, is for a publicsupply well.

CHEMICAL QUALITY OF GROUND WATER

Available chemical analyses of water from wells listed in Tables 7 and 8 are given in Tables 11 and 12. Some of these analyses were made as part of this investigation; some were made in connection with earlier investigations; and some were provided by well owners and others who had them made for special purposes. In addition to the analyses listed in Tables 11 and 12, the dissolved-solids contents of water from various wells are given for the different water-bearing formations in Figures 42, 43, 44, and 45. For the sake of completeness, some of the figures for dissolved solids in these illustrations have been estimated from partial analyses. These illustrations also show the dissolved solids for some wells which were inventoried in previous investigation, and therefore are not included in Tables 7, 8, 11, and 12. For these wells, the approximate locations, as determined from maps in the earlier reports, are given along with the dissolved solids as reported by or estimated from the analyses in those reports.

In addition to sampling and analyzing water from selected wells and compiling all previous analyses, the quality of the ground water has been studied by means of electric logs made in water and oil wells and test holes. The available electric logs are listed in Tables 7 and 8, and their locations are shown on Figure 27. Where the logs are reasonably suitable for interpretation, the quality of the water shown by them to occur in the Wilcox Group, Carrizo Sand, Sparta Sand, and Yegua Formation has been designated as "fresh," "brackish," or "salty." The term "fresh" as used here denotes water of less than 1,000 parts per million dissolved solids. The term "brackish" means water with 1,000 to 3,000 parts per million dissolved solids, and the term "salty" denotes water having more than 3,000 parts per million dissolved solids. These interpretations were made with the help of Mr. Hubert Guyod, Logging Consultant, of Houston, Texas. Partly because of the basic limitations of electric logs, and partly because the original logs were made under a variety of conditions and with various types of equipment and because much of the data necessary for careful control of quality of water interpretations is lacking, the interpretations are considered to be approximations, generally having a possible range of error up to about 30 percent. Where chemical analyses of water are not available from wells and test holes the interpretations of the electric logs have been used to define the fresh, brackish, and salty water. These interpretations are given on Figures 34, 36, 38, 40, 42, 43, and 44.

Some fresh water can be obtained from every formation in Angelina and Nacogdoches Counties. The freshest water normally is obtained from very shallow wells in and near the outcrops. Either in or downdip from the outcrops, all the formations, however, also contain more highly mineralized water. The water normally becomes more highly mineralized with depth and with distance downdip from the outcrop, or source of recharge. At some distance downdip each formation contains only salty water. The formations which contain fresh water the greatest distances downdip are those with the greatest transmissibilities and the best hydraulic continuity. Those which contain brackish and salty water in most places are those which are generally the poorest producers of ground water and in which the sands are the most disconnected, providing for the least flushing action from recharge.

Wilcox Group

The Wilcox Group ranges in thickness from about 950 feet to more than 3,300 feet in Nacogdoches and Angelina Counties. In the northern part of Nacogdoches County, the sands in over 1,000 feet of the upper part of the Wilcox Group contain fresh water, and the sands in the underlying portion of the Wilcox contain brackish water (Figures 33 and 34). Downdip to the south the thickness of Wilcox containing feesh water becomes less, and the thickness of that portion containing brackish water becomes greater. South of a generally east-west trending line passing between Lufkin and the Angelina River, the electric logs indicate that no sands in the Wilcox contain fresh water. Similarly, electric logs indicate that south of a line trending approximately east-west south of Huntington, all of the Wilcox contains salty water.

Few Wilcox wells exist southwest of a line running approximately from Cushing to Chireno, and most water wells in the Wilcox penetrate only the upper sands, although water samples have been taken from test holes in deeper portions of the Wilcox in a few places. Accordingly, most of the available analyses of water from Wilcox wells show relatively fresh water (Figure 42). From the standpoint of obtaining the best quality of water, however, the designation "fresh" is partly misleading with respect to most of the thicknesses shown on Figure 34 as containing less than 1,000 parts per million dissolved solids. Most of this water appears to range from 500 to 1,000 parts per million dissolved solids, with the largest part probably nearer 1,000 parts per million. In contrast, the water which the city of Nacogdoches obtains from the Carrizo sands is in the order of 200 parts per million dissolved solids. Thus, although fresh from the standpoint of maximum limits, much of the water in that section of the Wilcox designated as fresh is actually considerably more mineralized than the water from the Carrizo which most people use in this area.

In a few places in the outcrop of the Wilcox, water from dug wells is very highly mineralized. These are anomalous situations, however, and do not represent the quality of the water generally in the outcrop of the Wilcox. It is believed that the water quality from these wells is due to very local conditions which have no significant bearing on the quality of water in the Wilcox as a whole.

Normally, the hardness of the water in the deep fresh water Wilcox wells is quite low, generally being less than 20 parts per million. In shallower wells it may be low or high, ranging in some wells to over 200 parts per million. A few wells in the Wilcox show high iron contents, the amounts ranging up to several parts per million. The analyses for most wells, however, show low iron contents. Generally the wells with the high iron contents are nearer the outcrop, although some of the wells and test holes downdip also show high iron contents.

The pattern of occurrence of iron in the water from Wilcox wells, as well as from other water-bearing formations in the area, is difficult to establish from available data. This is because of the relative ease of obtaining false samples with respect to iron. Very small amounts of turbidity in water, such as from drilling mud where the samples were taken from test holes, are known to give false iron results. Also, most of the water samples collected during this study were obtained from small-diameter drilled wells from which it was only possible to sample from pressure tanks. The same is believed to be true for many of the previous analyses available on smaller capacity wells in the area. For such samples it is impossible to exclude the effects of corrosion from water standing in steel well casings or pressure tanks. In addition, samples of water from pressure tanks or other storage tanks or from dug wells may show iron contents too low because of prior precipitation of the iron. For these reasons many of the iron contents reported in Tables 11 and 12 are suspect and are not considered strictly applicable to the natural waters.

Carrizo Sand

The Carrizo Sand contains water of excellent chemical quality throughout most of Nacogdoches County and the northernmost 8 miles of Angelina County. The formation tends to be a continuous, massively bedded sand, and the quality of water is very consistent from one place to the next, as well as from top to bottom in the formation.

Figure 43 shows the dissolved-solids content of water from wells and test holes in the Carrizo Sand. The dissolved solids range from less than 100 parts per million in the outcrop area to about 200 parts per million in the city of Nacogdoches and to about 300 parts per million in the Southland Paper Mills Old Well Field in Angelina County. Figure 43 shows two lines, one indicating the approximate southern limit of water containing less than 1,000 parts per million dissolved solids and the other the approximate southern limit of water containing less than 3,000 parts per million dissolved solids. Beginning about 2 to 3 miles north of the 1,000 parts per million line and going southward, the water in the Carrizo becomes more than 500 parts per million in dissolved solids. Thus, the zone of transition from very fresh to brackish water is relatively narrow. One of the city of Lufkin wells is in this zone of transition. The next zone, within which the water changes from about 1,000 parts per million to over 3,000 parts per million in dissolved solids, is about 6 miles in width.

The hardness of the fresh Carrizo water is low everywhere south of Nacogdoches, generally being less than 20 parts per million. North of Nacogdoches toward the outcrop the hardness is somewhat spotty, ranging up to 150 parts per million.

At Nacogdoches there is an iron problem in water from the old city wells north of the center of the city. In water from the newer wells south of the city, however, the iron is low. It is also low in water from the Southland Paper Mills wells, both in the Poe Field and in the Old Field, and for the most part in water from the city of Lufkin wells. In wells west, east, and north of Nacogdoches, iron contents of water from most wells are higher than the 0.3 part per million upper limit recommended for domestic water supplies, the amounts ranging up to several parts per million or more in some wells. The city of Nacogdoches has an iron removal system for the water from its northern wells, as do some other users who have water high in iron content.

Sparta Sand

The Sparta Sand contains water which is quite fresh in its outcrop. Downdip from its outcrop the Sparta contains fresh water for several miles along both the western and eastern edges of its area of occurrence in these counties. In the middle part of the Angelina-Nacogdoches County area where the Sparta exists, however, the aquifer is highly mineralized essentially everywhere downdip from its outcrop (Figures 37 and 44). The middle portion is approximately where the Angelina River runs along the southern edge of the outcrop, and it appears probable that this is a discharge area for the Sparta Sand from both the north and the south. In other words, it appears that in both the western and eastern parts of the area water moves downdip in the Sparta from the outcrop. From there it probably moves laterally toward the center of Angelina County and thence northward toward the Angelina River where it is discharged. Along this stretch of the river, on the northern side, most of the water in the Sparta moves directly to the river valley and is discharged. This pattern of movement would cause the water to be fresh farther downdip along both the western and eastern sides of the area and to be brackish and salty in the central part of the area south of the Angelina River.

In the area where the water in the Sparta changes from fresh to salty, there is stratification of the water in the aquifer, with part of the sand containing brackish water, part fresh water, and part salty water. In some places the fresh water is on top and in some places on the bottom of the aquifer. This situation is shown by symbols on Figure 44.

As in the Wilcox and Carrizo aquifers, the water from the Sparta appears to contain varying amounts of hardness and iron. The hardness of the fresh water, as shown by the analyses, ranges from 2 to 150 parts per million, and the iron ranges from less than 0.02 to several parts per million or more. Insofar as can be determined from the records available, there does not seem to be any relationship between depths of wells and the hardness and iron.

Yegua Formation

Based on the available records, the Yegua contains fresh water essentially at all depths between the northern edge of its outcrop and about 2 or 3 miles north of the southern edge of its outcrop (Figures 17, 21, 39, 40, and 42). South of this line for about 1 to 4 miles some of the water is fresh and some brackish. From there southward, the records indicate no water containing less than 1,000 parts per million dissolved solids, and some of the water is salty. Farther south, essentially all of the water in the Yegua becomes salty.

A number of shallow wells in the Yegua outcrop area show water that is somewhat more mineralized than 1,000 parts per million dissolved solids and is classed in the brackish category. These are, however, in a small minority and are not reflected in the general quality of the water downdip.

As shown by Figure 42, the quality of the water within the fresh-water section ranges widely from place to place and from one depth to another. In this section the mineralization ranges from less than 100 parts per million dissolved solids to the fresh-water limit of 1,000 parts per million. The causes are undoubtedly related to lenticularity of the Yegua deposits and the degree of flushing which has occurred. The pattern, however, has not been worked out.

Hardness is generally low to moderate, but some wells show hardness of fresh water ranging to over 300 parts per million. Likewise, iron content is generally low to moderate, but water from some wells ranges up to several parts per million.

Other Formations

Figure 45 shows dissolved-solids contents for water from wells in the Reklaw Formation, Queen City Sand, Weches Formation, Cook Mountain Formation, Jackson Group, and alluvium. These formations are all relatively weak producers of ground water.

Analyses are available for the Reklaw from wells and test holes ranging in depth from a few feet to 767 feet. While most are for wells in the outcrop area, analyses are available at six locations downdip. Some wells in the outcrop area contain highly mineralized water, but most of the wells in the outcrop produce relatively fresh water. At the six locations downdip, at depths ranging from 308 to 767 feet, the dissolved-solids content for the lower part of the Reklaw ranges from 530 to 740 parts per million. The lower part of the Reklaw, though not a high yielding aquifer, appears to be hydraulically connected with the Carrizo Sand and, therefore, contains relatively fresh water to considerable depths. Generally, the water in the lower Reklaw is more mineralized than that in the Carrizo. It appears that wherever the Reklaw contains fresh water, the underlying Carrizo also contains as fresh or fresher water.

Analyses are available for Queen City wells ranging in depth from a few feet to as much as 523 feet. The dissolved-solids content of the water from these wells ranges from very low to nearly 3,000 parts per million for one well in northern Angelina County. The Queen City is a weak aquifer in Angelina and Nacogdoches Counties, and wherever it exists and contains fresh water, the underlying Carrizo also exists and contains fresh water. Thus, users desiring more than very small supplies would normally make no effort to develop them from the Queen City.

The Weches Fromation is essentially clay, and nearly all the wells in it are dug in the outcrop. The water from these wells is generally fresh, but in a few places is quite highly mineralized.

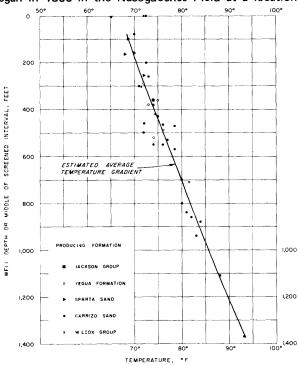
The Cook Mountain Formation overlies the Sparta Sand and supplies water to shallow dug wells and a few relatively shallow drilled wells. The water in the shallow Cook Mountain wells is generally fresh, although some of it is highly mineralized. The formation is a very poor aquifer.

In most of the southern part of Angelina County, the Jackson Group contains the only sands from which fresh ground-water supplies can be obtained. The few sands in the Jackson are very thin and lenticular, however, and it is difficult to develop a supply of more than a few gallons per minute. Most wells in the Jackson are relatively shallow, and the available analyses indicate a range in quality of water from less than 100 to more than 1,400 parts per million dissolved solids.

A few very shallow wells draw water from the thin alluvium which exists in places along the streams in Angelina and Nacogdoches Counties. This water is generally quite fresh, but the supplies are very small.

Surface Water

Records of chemical quality of surface water are available at a few places in Angelina and Nacogdoches Counties. Most of these are for the Angelina River, Attoyac Bayou, and Bayou La Nana near Nacogdoches, but miscellaneous analyses are available for several other streams. All of the available analyses show fresh water, and most of the water is very fresh.


TEMPERATURE OF GROUND WATER

The temperatures of water produced by three springs and 35 wells of various depths in various formations in Angelina and Nacogdoches Counties are shown on Figure 6. The data are coded by formation. Temperatures measured during the present study, as well as temperatures reported by previous investigators, are plotted against either well depth or, if known, the depth to the middle of the interval screened in the well. Most of the temperature information available is on wells tapping the Carrizo Sand. Only a few measurements are available for wells tapping the Carrizo Sand. Only a few measurements are available for wells tapping other formations, especially wells which are very deep. This is due to both the scarcity of deeper wells in the other formations and to reluctance in measuring and reporting temperatures on small-capacity deep wells because they tend to be falsely low due to cooling of the water on its way to the surface.

From the data shown on Figure 6, the estimated average temperature gradient in the area is about 2° F per hundred feet of depth. The water temperature from a depth of 200 feet averages about 70° F, from 700 feet about 80° F, and from 1,200 feet about 90° F.

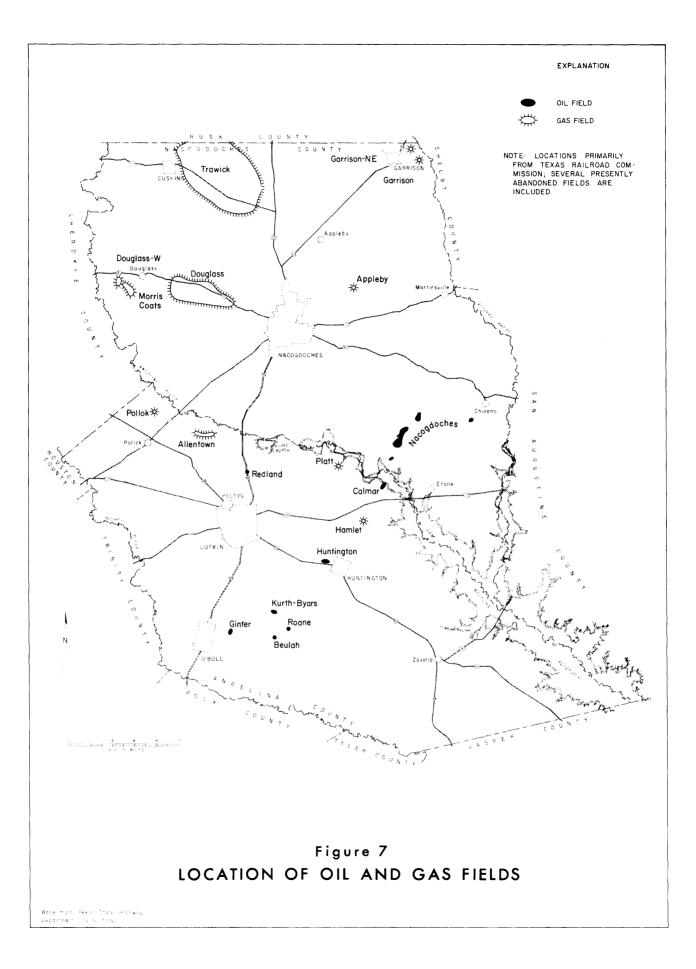
OIL AND GAS FIELDS

Locations

The first oil production in the State of Texas began in 1866 in the Nacogdoches Field at a location

Figure 6.-Temperature of Ground Water

called Oil Springs. The oil was from various zones within the Sparta Sand and the Weches and Queen City Formations at depths ranging from the surface to 400 feet. Today several of the original wells still flow a very small amount of oil, and the oil springs that led to the discovery of the field still flow minor amounts.


The total amount of oil and gas production in Angelina and Nacogdoches Counties has been relatively limited. Figure 7 shows the locations of all known oil and gas fields, both present and past. Of those shown, only the Trawick, Douglass, Douglass West, Morris Coats, Garrison, and Garrison Northeast in Nacogdoches County, and the Allentown in Angelina County are producing at present. The other fields are either nonproducing or abandoned.

Surface Casing

An Act of the Texas Legislature in 1899 requires that oil and gas wells be cased to prevent all water from above from penetrating the oil and gas bearing rock. Later Acts of 1919, 1931, 1932, and 1935 gave broad powers to the Railroad Commission of Texas to prevent oil and natural gas and water from escaping from the strata in which they are found into other strata.

The Railroad Commission first handled the determination of the amount of surface casing that should be set in a well. Subsequently, the Texas Board of Water Engineers and its successor the Texas Water Commission, and in recent years the Texas Water Development Board, have made recommendations concerning the protection of water considered to be of usable quality. The protection can be by means of surface casing or one of several of the cementing techniques available to the oil and gas industry. Protection of usable water means more than simply protection of fresh water. Water with dissolved-solids concentrations up to at least 3,000 parts per million is recommended for protection by the Water Development Board. Water with higher mineral concentrations is recommended for protection if it is being used for beneficial purposes.

Some of the earliest requirements for surface casing in Angelina and Nacogdoches Counties probably were not adequate for protection of the ground-water supplies. The recommendations made in recent years, however, appear entirely adequate to protect ground water of 3,000 parts per million dissolved solids or less. At least by the middle 1950's, the recommendations were generally for protection down to the base of the Wilcox in Nacogdoches County and most of the northern half of Angelina County. In the southern half of Angelina County, the recommendations were generally to the base of the Yegua Formation. Beginning in the early 1960's, an effort was begun to gather more information so that better recommendations could be

given. Recommendations are now given to a depth and not a stratigraphic reference; and in some areas zones for protection are given, together with depths for cement plugs if the hole is abandoned.

Two fields in Angelina and Nacogdoches Counties have depth of fresh water protection included in the field rules set out by the Railroad Commission of Texas. For the Allentown Gas Field in Angelina County (which is currently comprised of four producing gas wells), the field rule states that the surface casing shall be set and cemented at a depth not less than 1,500 feet below the surface of the ground and that the amount of surface casing to be set shall be adequate to protect all fresh water sands. The 1,500-foot requirement is not deep enough, however, and when asked, the Texas Water Development Board has recommended protection to the base of the Wilcox at about 3,300 feet in this area.

The other field rule outlining fresh-water protection is for the Trawick Field in Nacogdoches County. Here surface casing is required to the base of the Wilcox Group plus 100 feet, with an estimated range in depth of 1,600 to 2,100 feet, which appears to be entirely adequate.

Plugging of Abandoned Test Holes and Wells

In recent years the plugging of abandoned test holes and wells has been supervised by the Railroad Commission of Texas, and so far as known, all such holes are adequately plugged. Undoubtedly, some of the old tests and wells were not carefully plugged, but no indication of contamination of ground-water supplies from improper plugging was found during this study.

Disposal of Salt Water

Originally all water produced from oil and gas wells was probably disposed of on the surface, either by placing it into surface drainage or into pits. At present, however, the Railroad Commission rules prohibit the use of all types of surface disposal. This field investigation has shown no evidence of surface disposal being used at this time.

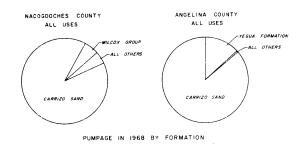
The amount of salt water which has been produced in the two counties is relatively small. In 1961, an inventory was made of the salt water produced in the oil and gas fields of Texas. The inventory listed the following information on the fields in Angelina and Nacogdoches Counties. The Allentown Field, Angelina County, produced 327 barrels of salt water in 1961 and all was disposed of in surface pits. The Kurth-Byars Field produced 4.380 barrels of salt water that year and all was disposed of in pits. In Nacogdoches County, the Douglass Field produced 6,276 barrels of salt water, with 5,028 barrels to pits and 1,248 barrels to an injection well. The Trawick Field had a salt-water production of 23,340 barrels in 1961, all disposed of by injection. At present no pits are in use in the Allentown Field; the Kurth-Byars Field is abandoned; and all salt water produced in the Douglass and Trawick Fields is disposed of by injection wells. The Morris Coats and Douglass West Fields also are using injection well systems for disposal. For the Garrison and Garrison Northeast Fields, no indication of salt-water production was found, and there were no salt-water pits in use.

Only minor amounts of surface contamination were found in any of the oil and gas fields, and there are no indications that the ground water in the vicinity of any of these fields has been seriously contaminated. None of the analyses of water from wells which have been compiled indicates contamination from oil-field brines.

PUMPAGE AND WATER LEVELS IN WELLS

Pumpage

In 1968, ground-water pumpage in the area totalled an estimated 34,400 acre-feet and averaged 30.7 million gallons per day. The breakdown by use was:


	ANGELINA COUNTY		NACODGOCHES COUNTY	
USE	MILLION GALLONS PER DAY	ACRE-FEET PER YEAR	MILLION GALLONS PER DAY	ACRE-FEET PER YEAR
Public Supply	5.0	5,600	3.6	4,000
Industrial	15.6	17,500	3.6	4,000
Irrigation	0	0	0	0
Rural domestic and livestock	1.3	1,500	1.6	1,800
	21.9	24,600	8.8	9,800

Pumpage of Ground Water in 1968

The amounts of pumpage for public supply and industrial use are principally from the annual pumpage inventory conducted by the Texas Water Development Board, supplemented with data from the major users. Pumpage for irrigation use during 1968, as in prior years, was essentially nonexistent except for a very small amount, mostly for supplemental watering of cemeteries and golf courses. The pumpage for rural domestic and livestock purposes has been estimated based on conditions observed during the present study.

A breakdown of the 1968 pumpage in each county by formation is shown on Figure 8, and listed for the major formations in Table 6. Of the slightly less than 9 million gallons per day of pumpage occurring in Nacogdoches County, almost 8 million gallons per day is from the Carrizo Sand. The remainder is about half from the Wilcox Group, with the rest being from all the other formations yielding water in Nacogdoches County. On the average, nearly 22 million gallons per day is pumped in Angelina County, of which nearly 19 million gallons per day comes from the Carrizo with most of the remaining 3 million gallons per day being produced from the Yegua Formation.

The areal distribution of the major pumpage in the area is shown on Figure 9. Included are all users pumping an average daily amount of 50,000 gallons or more. The largest single user in the area is Southland Paper Mills, which obtains most of its water supply from

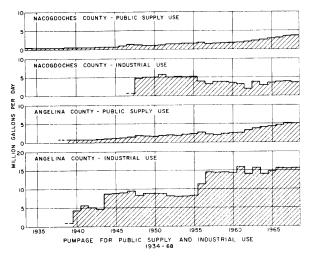
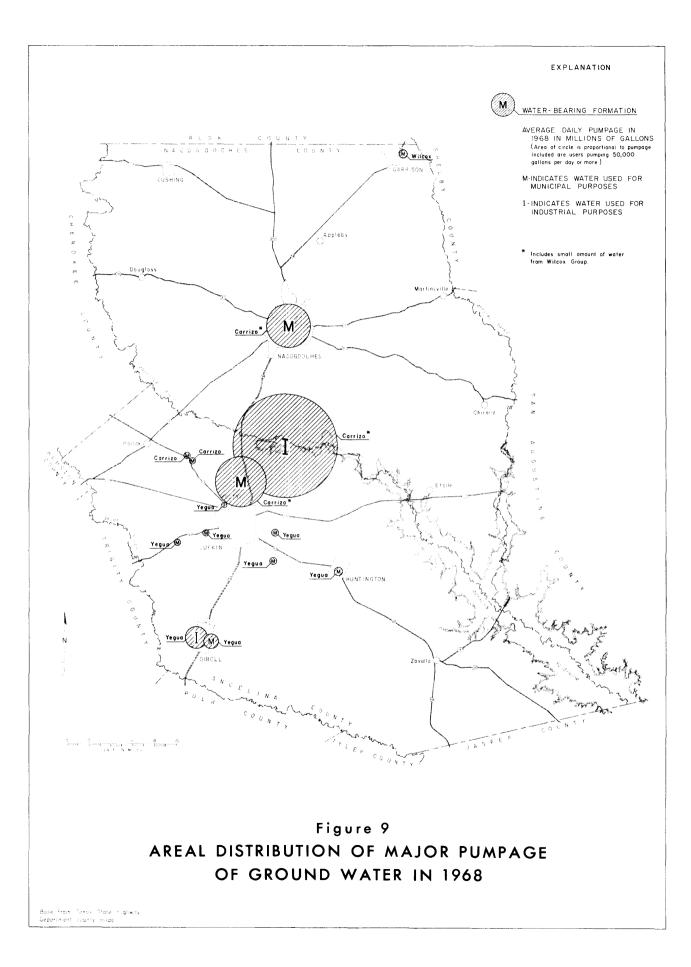


Figure 8.—Pumpage of Ground Water in Angelina and Nacogdoches Counties

two well fields in the Carrizo Sand. One field is in northern Angelina County, and the other is in the adjoining portion of southern Nacogdoches County. The next largest users include the cities of Lufkin and Nacogdoches. Both obtain their supplies entirely from the Carrizo. Next to these Carrizo fields, the largest concentration of pumpage is at Diboll, where the city of Diboll and Southern Pine Lumber Company pump about 1.3 million gallons per day from the Yegua Formation. Other users in the two-county area include the smaller cities and towns, a few industries, and numerous relatively new water-supply corporations furnishing water to rural communities and areas.

Water Levels in Wells


Altitudes of water levels in representative wells in 1968 and 1969 are shown on Figure 46. Representative water levels in wells are also listed in Tables 7 and 8.

As a result of pumping from Carrizo wells, the piezometric surface for the Carrizo Sand, as represented by water levels in wells, has been drawn down into an area-wide cone of depression. Corresponding drawdowns have developed in the piezometric surfaces for those Reklaw sands and uppermost Wilcox sands which are hydraulically connected to the Carrizo. Water levels also have been drawn down in some Yegua wells as a result of pumping from that formation. No large or regional draw-downs are noticeable in wells in any of the other formations.

Carrizo Sand

Periodic measurements have been made by the U.S. Geological Survey, the Texas Water Development Board, and Southland Paper Mills of water levels in some Carrizo wells, beginning in the late 1930's. It was then that the city of Lufkin began to draw its municipal supply from the Carrizo Sand and Southland Paper Mills started operating its Carrizo wells.

Since 1939, water levels in Carrizo wells have been drawn down throughout the area as a result of the increased pumping from the Carrizo. Drawdowns of static levels have ranged to nearly 500 feet, depending on proximity of the observation wells to the centers of pumping. In general the declines are less going northward from the Southland Paper Mills well fields toward the outcrop. The declines have been least in the outcrop area, where they have ranged from zero to about 20 or 25 feet. Static water levels now range from more than 200 feet below sea level in the center of the Southland Paper Mills Old Well Field to more than 300 feet above sea level in the outcrop area of the Carrizo. Figure 10 shows graphs of the pumpage from the Carrizo and of water levels in observation wells in various localities.

Yegua Formation

Pumpage from the Yegua Formation has resulted in local cones of depression at Diboll and at Huntington. Because of the lenticular nature of the sands in the Yegua Formation and the lack of observation wells, it is not known how far these cones of depression have spread. The water level at Huntington is deeper than appears reasonable for the pumpage at Huntington, and there appears to be some possibility that part of the decline there has been caused by the pumping at Diboll. Data are not available, though, to permit an analysis of the actual pumpage-water level relationships.

RESULTS OF PUMPING TESTS

Results of pumping tests to determine specific capacities of wells and the transmissibility and storage coefficients of the principal aquifers are given in Tables 3 and 4. Graphs of two examples of such tests are shown on Figures 11 and 12.

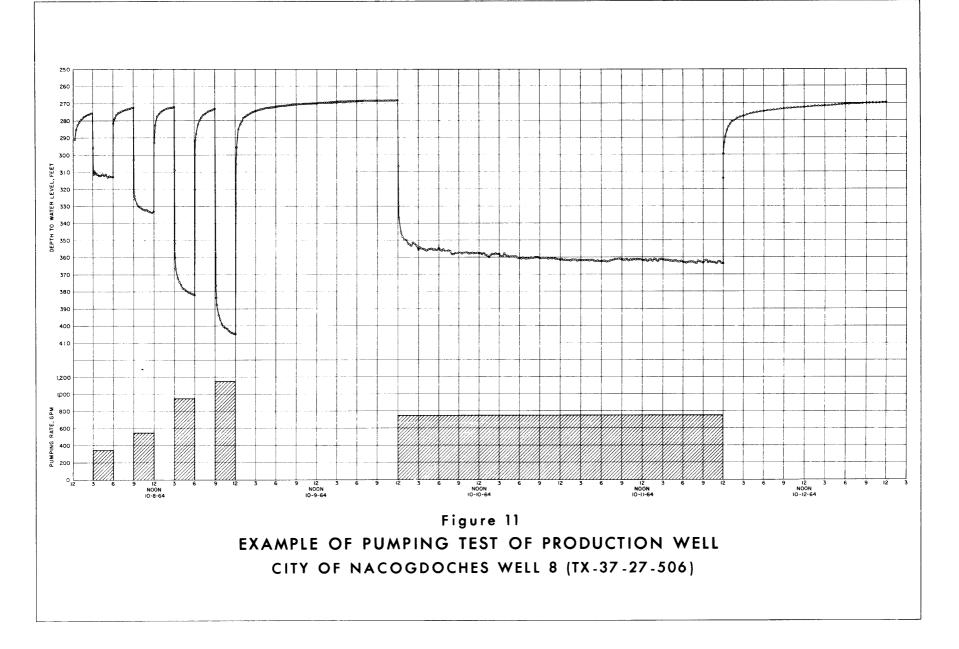
A pumping test is essentially a process of measuring the effect on the water level in one or more wells caused by a given change in rate of pumping. The results of the pumping test are used in determining how much water can be pumped under given conditions on a long-term basis.

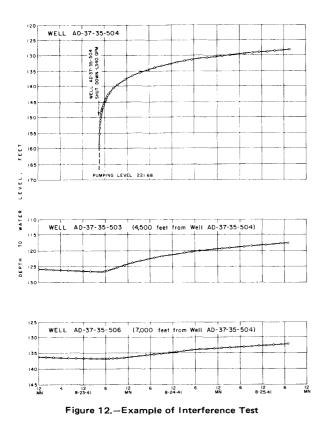
Specific Capacities of Wells

The specific capacity of a well is a measure of the amount of water that the well will produce with a given amount of drawdown of water level within the well itself in a relatively short period of time. Its units are gallons per minute per foot of drawdown. The specific capacity of a well is affected partly by the hydraulic characteristics of the formation from which it obatins its water supply and partly by the type of construction and efficiency of construction of the well itself.

Specific capacities measured for the larger wells in the Wilcox Group in this area range from 1.0 to 3.6 gallons per minute per foot of drawdown (Table 3). For the Carrizo Sand they range from 4.4 to 23.2 gallons per minute per foot of drawdown. For the Sparta Sand they range from 0.5 to 7.5 gallons per minute per foot of drawdown, and for the Yegua Formation they range from 0.9 to 9.0 gallons per minute per foot of drawdown.

Coefficients of Transmissibility, Permeability, and Storage


Table 4 lists coefficients of transmissibility and storage determined from pumping tests of wells in the four principal aquifers in Angelina and Nacogdoches Counties. The coefficient of transmissibility is a measure of the amount of water that will move through an aquifer under a unit hydraulic gradient. It is expressed in gallons per day per foot of width of the formation. From the coefficient of transmissibility and the thickness of sand at the pumped well, the field coefficient of permeability may be determined. This is equal to the transmissibility divided by the thickness of sand and is expressed in gallons per day per square foot of crosssectional area through which the water moves.


The coefficient of storage, which is obtained from a pumping test when one or more separate observation wells are used, is a measure of how much water is given up from storage when the piezometric surface is lowered. It is dimensionless and is equal to the number of cubic feet of water which is released in each column of the aquifer with a base of one square foot when the piezometric surface is lowered one foot. In an unconfined aquifer (under water-table conditions), the coefficient of storage is essentially equal to the effective porosity of the water-bearing formation and may be as large as 0.3. In a confined aquifer (under artesian conditions), the coefficient of storage is very much smaller (usually less than 0.001) and is controlled by the compressibility of the aquifer, the compressibility of water, the compressibility of clay bodies interbedded with and adjacent to the aquifer, and leakage from adjacent beds.

If a pumping test is made on a well which completely penetrates the aquifer, the coefficient of transmissibility computed from the test represents the entire aquifer. If not, it usually represents only a portion of the aquifer, and the transmissibility for the entire aquifer must be estimated from the permeability of the sand, as determined from the pumping test, and thicknesses of sand determined from logs of other wells which completely penetrate the aquifer. None of the individual pumping tests made in the Wilcox Group, Sparta Sand, or Yegua Formation was on wells which completely penetrated the aquifer, but most of the Carrizo tests were on completely penetrating wells.

The permeability of the sand determined from tests of wells in the Wilcox Group ranges from 20 to 100 gallons per day per square foot and averages about 45 gallons per day per square foot. Recorded permeabilities for the Carrizo Sand range from 99 to 336 gallons per day per square foot, and the transmissibility of the Carrizo normally ranges from about 14,000 to 36,000 gallons per day per foot. Permeabilities reported for the Sparta Sand range from 22 to 632 gallons per day per square foot. Permeabilities of sands in the Yegua Formation, as determined from the tests, range from 37 to 160 gallons per day per square foot.

The areal distribution of the pumping tests and the average coefficients recorded in the various localities are shown on Figure 47.

INTERFERENCE BETWEEN WELLS AND LONG-TERM DRAWDOWNS OF WATER LEVELS

Under natural conditions and prior to pumping from wells, an aquifer is in a state of approximate dynamic equilibrium. Over a climatic cycle, the natural recharge is balanced by the natural discharge, and except for temporary fluctuations the piezometric surface of the aquifer, as represented by water levels in wells, remains stable.

When a well is pumped, a cone of depression is created in the piezometric surface around the well to cause water to flow from the aquifer into the well. In the Angelina-Nacogdoches County area, the cone of depression continues to grow in all directions until it reaches the outcrop area and causes additional water to flow from the outcrop to the well essentially at the same rate at which it is pumped. At first the water from the outcrop is drawn from storage, and the water table in the outcrop slowly declines. This causes rejected recharge to be salvaged, eventually in an amount equal to the pumpage. At that time the piezometric surface again becomes stabilized, and no further decline of water levels in wells is caused by the pumping (Figure 4).

The depth and rate of growth of the cone of depression in the piezometric surface is controlled by the coefficient of transmissibility and the coefficient of storage of the aquifer. If these coefficients are known, the Theis nonequilibrium formula may be used, with time and distance as variables, to compute the cone of depression at any time after pumping begins.

After equilibrium conditions are reached, the extent and shape of the cone of depression in the peizometric surface are controlled only by the coefficient of transmissibility and the geometry of the boundaries of the aquifer, and the coefficient of storage is no longer a factor. In other words, the coefficient of storage assists in controlling the time at which equilibrium conditions are reached, but does not control the final amount of drawdown and the final shape of the cone of depression.

In making calculations of drawdowns, the outcrop (source of recharge) is considered as a line source, and a fault which completely displaces a formation is considered as a line barrier. In the calculations, the effects of both are handled mathematically by image wells, the locations of which are determined by the positions of the outcrop and/or barrier.

Cones of depression created by individual wells overlap, and under artesian conditions they are additive. This means that the effect of pumping two or more separate wells may be determined by computing the effect of each and adding them together.

Figure 13 is comprised of graphs made by means of the Theis nonequilibrium formula, showing the drawdown of water level (piezometric surface) at different times after pumping begins, assuming a pumping rate of 500 gallons per minute, a coefficient of transmissibility of 10,000 gallons per day per foot, a coefficient of storage of 0.00005, and a distance to line source (outcrop) of 15 miles. Graphs are presented of the drawdown after pumping 1 day, after pumping 1 month, and after equilibrium conditions are reached. The drawdowns shown here are proportional to the pumping rate. If the pumping rate were 1,000 gallons per minute instead of 500 gallons per minute, the drawdown would be twice as much as shown by the graph. At equilibrium the drawdown is inversely proportional to the coefficient of transmissibility, and if the coefficient of transmissibility were 20,000 gallons per day per foot instead of 10,000 gallons per day per foot. the drawdown would be one-half as much. This relationship also would apply for periods prior to equilibrium if both the coefficient of transmissibility and the coefficient of storage were changed by the same percentage from the coefficients used for the graphs.

The position of the line source determines the drawdown at equilibrium, along with the transmissibility coefficient and the pumping rate. If the line source were closer to the pumped well than 15 miles as shown, the drawdown at equilibrium would be less. If it were farther, the drawdown at equilibrium would be greater.

Well No.	Well Owner	Pumping Rate (gpm)	Effective Time' <u>l</u> / (hours)	Specific Capacity (gpm/ft)
	YEGUA FORMATION			
AD-37-42-201	Lencewood Water Supply Corp.	38		0.9
AD-37-42-301	Owens-Illinois No. 4	226	1/2	5.1
AD-37-42-302	Owens-Illinois No. 5	119	1/2	5.6
AD-37-42-602	Hudson Water Supply Corp.	200	1	2.3
AD-37-43-501	Angelina Water Supply Corp.	201		2.3
AD-37-43-503	Fuller Springs Water District No. 1	90	1	1.6
AD-37-44-801	City of Huntington No. 7	200	l	2.3
AD-37-44-802	Four Way Water Supply Corp.	180	1/2	1.5
AD-37-50-302	Burke Water Supply Corp. No. 1	157		2.6
AD- 37-50-303	Burke Water Supply Corp. No. 2	95		1.3
AD- 37- 50- 605	Southern Pine Lumber Co. No. 4	225	1/2	3.6
AD- 37- 50- 606	City of Diboll No. 2	310	1/2	1.7
AD-37-50-901	City of Diboll No. 1	400	l	9.0
AD-37-51-201	Natural Gas Pipeline Co. of America No. 1	150	1/2	1.2
AD-37-51-202	Natural Gas Pipeline Co. of America No. 2	116	1/2	2.1
AD- 37- 51- 504	Beulah Water Supply Corp.	60	l	2.8
	SPARTA SAND			
TX-37-35-104	Southland Paper Mills	200	24	7.5
TX-37-35-204	Southland Paper Mills	75	48	1.1
TX-37-35-207	Southland Paper Mills	90	24	.5
TX-37-35- 308	Southland Paper Mills	300	24	3.3
TX-37-36-107	Southland Paper Mills	260	1	3.1
	CARRIZO SAND			
TX-37-09-502	Sacul Water Supply Corp.	75		4.4
TX-37-17-607	Douglass Water Supply Corp.	80		4.4 7.2
:::x-37-19-401	Lilly Grove Water Supply Corp.	150		6.5
IX-37-27-201	City of Nacogdoches No. 5	790	2	9.5
TX-37-27-303	City of Nacogdoches No. 3	565	2	8.8
TX-37-27-304 ^{2/}	City of Nacogdoches No. 4	530	2	12.3
TX-37-27-504	City of Nacogdoches No. 6	810	2	7.5
TX-37-27-5052/	City of Nacogdoches No. 7	705	2	8.1
T X-37-27-506 ²	City of Nacogdoches No. 8	752	2	9.0
TX-37- 27-802	City of Nacogdoches No. 9	805	2	15.1
T X-37-30-701	Chireno Water Supply Corp.	62	2	.6
AD- 37- 34- 504	Central W. C. I. D.	150		9.4
AD- 37- 34- 505	Lufkin State School No. 2	303		13.8
TX-37-35-301	Southland Paper Mills	633	l	7.6
TX- 37- 35- 302	Southland Paper Mills	979	l	17.8
IX-37-35-303 <i>_2</i> /	Southland Paper Mills	887	1	15.1
AD-37-35-401	Southland Paper Mills	1,120	1	16.1

Table 3.--Specific Capacities of Wells in Angelina and Nacogdoches Counties

For footnotes see end of table.

Table 3.--Specific Capacities of Wells in Angelina and Nacogdoches Counties--Continued

Well No.	Well Owner	Pumping Rate (gpm)	Effective Time (hours)	Specific Capacity (gpm/ft)
	CARRIZO SAND	(Continued)		
AD-37-35-402	Southland Paper Mills	1,200	24	13.0
AD- 37- 35- 403	Southland Paper Mills	1,200	24	22.5
AD- 37- 35- 408	City of Lufkin No. 9	1,209	1/2	23.2
AD- 37- 35- 502	Southland Paper Mills	1,100	l	22.4
AD-37-35-503	Southland Paper Mills	1,120	l	21.5
AD- 37- 35- 504	Southland Paper Mills	1,110	l	20.5
AD- 57- 35- 505	Southland Paper Mills	1,130	l	19.7
AD-37-35-601	Southland Paper Mills	1,080	l	15.6
AD-37-35-602	Southland Paper Mills	1,200	24	17.0
TX-37-35-603	Southland Paper Mills	608	l	20.3
AD- 37- 35- 605	Southland Paper Mills	1,200	24	16.8
AD-37-35-701	City of Lufkin No. 5	900		9.7
AD- 37- 35- 703	City of Lufkin No. 7	1,000	4	10.1
AD- 37- 35- 705	City of Lufkin No. 3	996		14.2
AD- 37- 35- 708	City of Lufkin No. 8	1,040	1/2	14.4
AD- 37- 35- 709	Redland Water Supply Corp.	130	1/2	6.2
TX-37-36-102	Southland Paper Mills	920	1/2	7.6
AD-37-42-304	Woodlawn Water Supply Corp.	143		7.1
	WILCOX GROUP			
TX-37-10-403	City of Cushing No. 2	104		1.0
TX-37-11-901	Caro Water Supply Corp.	85	l	1.6
TX-37-13-401	City of Garrison No. 1	110		1.0
TX-37-13-402	City of Garrison No. 2	100	1/2	1.0
TX-37-13-404	City of Garrison No. 3	195	1/2	3.6
TX-37-20-103	Appleby Water Supply Corp.	100	1/2	2.0

 $\frac{1}{2'}$ Where no effective time is given, the exact time is unknown and may range from a few minutes to one day. $\frac{2}{2'}$ Well also screens part of Wilcox Group.

	Table 4	-Results	of Pumping Te	sts in Angel:	ina and Nacog	doches Counties		
Pumped Well	Observation Well	Pumping Rate (gpm)	Length of Test	Alignment of Deta	Sand Thickness at Pumped Well	Coefficient of Transmissibility (gpd/ft)	Coefficient of Storage	Field Coefficient of Permeability <u>1</u> / (gpd/ft ²)
			YEGUA F	ORMATION				
AD-37-13-503		90	2 hours	Good	80	6,000		75
AD-37-44-801		200	4 hours	Good	1002/	4,000		40
AD- 37-50-303		95	1 hour	Fair	402/	3,000		75
AD-37-50-603		720	2 hours	Fair	1002/	16,0003/		160
AD-37-50-605		225	1/2 hour	Fair	70 ² /	2,600		37
AD-37-50-606		310	1/2 hour	Fair	60	8,600		143
AD-37-50-901		400	3 hours	Fair	100	10,000		100
AD-37-51-202		170	l hour	Good	302/	3,500		117
AD-37-51-504		60	2 hours	Good	40	4,800		120
			SPARI	'A SAND				
TX-37-35-104	TX-37-35-105	200	l day		92 ² /	44,700	0.00038	486
TX-37-35-104	TX-37-35-105	300	f days		92 ^{2/}	58,100	.00047	632
TX-37-35-204	11-51-59-109	75	2 days		85 ^{2/}	2,200	:00047	26
TX-37-35-204	TX- 37- 35- 205	75	2 days		852/	4,200	.00026	49
TX-37-35-207	IN-51-55-205		l day		452/	1,000	.00020	22
TX-37-35-207	TX-37-35-203		l day		4 <i>5</i> 2/	1,000		22
TX-37-35-308	IN-51-55-205	300	3 days	Fair	+, 602/	8,800		147
TX-37-36-107		125	6 days	1811	35 ^{2/}	11,000		314
TX-37-36-107	TX-37-36-108	125	6 days		352/	11,000	.00017	314
	51 50				5,-	,		52.
			CARRIZ	O SAND				
TX-37-27-201		768	4 hours	Good	80	14,100		176
TX-37-27-201		790	2 hours	Good	80	15,200		190
TX-37-27-303		755	2 hours	Good	100	17,500		175
тх-37-27-3044/		910	2 hours	Good	90	19,700		219
TX-37-27-304 ^{4/}	TX-37-27-201	980	14 hours	Good	90	17,800	.00007	197
TX-37-27-504		655	2 days	Good	80	7,900		99
TX-37-27-5054/		705	2 days	Good	110	12,800		116
TX-37-27-506 ^{4/}		752	2 days	Good	95	17,000		179
TX-37-27-802		805	l day	Fair	135	38,000		282
TX-37-30-701		70	2 hours	Fair	50	500		
AD-37-34-902		1,230	4 hours	Fair	120	29,000		264
TX-37-35-302	TX-37-35-301	1,400	12 hours		120	33,100	.00016	276
TX-37- 35 -3 02	TX-37-35-301	1,400	3 days	Good	120	35,600	.00013	296
TX-37-35-302	TX-37-35-303 ^{4/}	1,400	12 hours	Good	120	25,300	.00013	210
TX- 37- 35 - 302	TX-37-35-3104/	1,400	12 hours	Good	120	23,200	.00013	193
TX-37-35-3034/	TX-37-35-301	1,400	12 hours	Good	130	30,400	.00014	234
TX- 37- 35- 303 ^{4/}	TX-37-35-3104/	1,400	12 hours	Good	130	25,100	.00013	193
AD-37-35-401 and AD-37-35-502 and AD-37-35-503 and	AD- 37- 35- 504 and AD- 37- 35- 506		6 days			32,300		

AD-37-35-503 and AD-37-35-601

For fcotnotes see end of table.

1

	lable 4Resul	ts of rump	ing rests in A	ingerina and		countiescontinue	a	
Pumped Well	Observation Well	Pumping Rate (gpm)	Length of Test	Alignment of Data	Sand Thickness at Pumped Well	Coefficient of Transmissibility (gpd/ft)	Coefficient of Storage	Field Coefficient of Permeability <u>1</u> / (gpd/ft ²)
			CARRIZO SAND	(Continued)				
AD-37-35-4Cl and AD-37-35-503 and AD-37-35-504	AD- 37- 35- 502 and AD- 37- 35- 506		14 days			31,800		
AD- 37- 35-401 and AD- 37- 35- 503 and AD- 37- 35- 504	AD-37-35-501 and AD-37-35-601		14 days			32,300		
AD- 37- 35-401 and AD- 37- 35-503 and AD- 37- 35-504	AD-37-35-502 and AD-37-35-601		14 days 14 days			32,600 32,600		
AD-37-35-402		1,200	2 days	Good	100	26,200		262
AD- 37- 35-403		1,200	2 days	Good	140	32,000		228
AD- 37- 35- 502			2 days		130	33,400		256
AD-37-35-502	AD-37-35-503		5 days		130	31,400	0.00014	242
AD-37-35-502	AD-37-35-506		5 days		130	32,200	.00016	248
AD-37-35-502	AD-37-35-503 and AD-37-35-506		5 days		130	36,000		277
AD-37-35-503			2 days		130	32,800		252
AD- 37- 35- 503	AD-37-35-502		2 days		130	34,100	.00015	262
AD- 37- 35- 503	AD-37-35-504		4 days		130	32,600	.00014	250
AD- 37- 35- 503	AD-37-35-506		4 days		130	33,500	.00014	258
AD- 37- 35- 503	AD- 37- 35- 504 and AD- 37- 35- 506		4 days		130	35,400		272
AD- 37- 35- 504			3 d a ys		130	31,200		240
AD- 37- 35- 504	AD- 37- 35- 503		3 d ays		130	30,800	.00012	237
AD-37-35-504	AD- 37- 35- 506		3 d ays		130	30,600	.00012	235
AD- 37- 35- 501-	AD - 37 - 35- 503 and AD- 37- 35- 506		3 d ays		130	31,500		242
AD-37-35-505		1,200	2 days	Good	80	22,200		278
AD- 37- 35- 505	AD-37-35-602	1,200	2 days	Good	80	26,900	.00014	336
AD-37-35-602		1,200	2 days	Good	100	28,000		280
AD-37-35-6C2	AD-37-35-605	1,200	2 days	Good	100	30,600	.00013	306
TX-37-35-603 ^{4/}	TX-37-35-310 ^{4/}	1,500	12 hours	Good	180	36,800	.00027	204
AD- 37 - 35- 605		1,200	2 days	Good	100	28,000		280
AD- 37- 35- 703		1,000	4 hours	Good	120	26,800		220
AD- 37- 36- 403		75	2 hours	Good	60	17,800		297
			WILCOX	GROUP				
TX-37-10-403		110	2 hours	Good	55	1,100		20
TX-37-11-901		85	2 hours	Good	50	2,500		50
TX-37-13-402		123	2 hours	Good	30	1,100		37
TX-37-13-402	TX-37-13-401	123	2 hours	Good	30	1,100	.00068	37
TX-37-13-404		180	2 hours	Good	58 ^{2/}	5,800		100
TX-37-20-103		100	1/2 hour	Fair	80 ² /	2,400		30
4n- J- 20- 10J		200	~,			_,		

<u>1</u>/ Based on sand thickness, or length of screen if sand thickness not available.
 <u>2</u>/ Length of screen.
 <u>3</u>/ Average of two or more tests.
 <u>4</u>/ Well also screens part of the Wilcox Group.

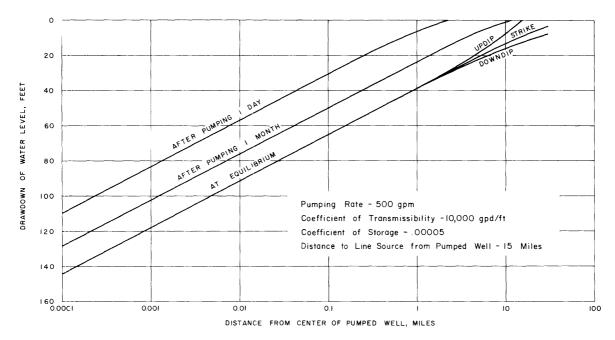


Figure 13.-Computed Drawdown of Water Levels Caused by Pumping

Drawdowns are shown on Figure 13 for distances from the center of the pumped well ranging from 0.0001 mile to 30 miles. The distance of 0.0001 mile is approximately one-half foot, representing the radius of a well about 12 inches in diameter. The drawdown shown at this distance is the theoretical drawdown in a 100 percent efficient well of that diameter.

For an aquifer such as the Carrizo Sand, which is rather uniform in thickness and character, the average coefficient of transmissibility determined from pumping tests can be applied directly in determining the cone of depression resulting from pumping a well. On the other hand, for an aquifer such as the Yegua Formation, in which the sands are lenticular and represent only a small protion of the formation as a whole, the many boundaries to the sands created by their lenticular nature must be taken into consideration in using the average coefficient of transmissibility with the nonequilibrium formula to predict drawdowns of water levels. The coefficient of transmissibility as determined from a pumping test normally represents only a short period of time during which the cone of depression extends from the well tested for no more than a few thousand feet. If the cone of depression later grows through additional, more confining boundaries, the effective coefficient of transmissibility then becomes smaller. The indications for the Yegua are that this does occur, and on that basis it is roughly estimated that the regional effective transmissibility of the Yegua is only about one-half that which may be computed by taking the average coefficient of permeability determined from pumping tests and multiplying it by the average thickness of sand in the formation.

Carrizo Sand

Because of the large changes in pumping which have occurred in the Carrizo Sand and because a large number of measurements have been made of water levels in observation wells during the period of these changes. it has been possible to measure the growth and extent of the cone of depression which has occurred in the Carrizo Sand over the past 30 years. Table 5 lists drawdowns which occurred between various dates in a number of Carrizo wells throughout the area. The table also lists computed drawdowns for the same periods of time. The assumptions on which the computations were made are given in the table. No water-bearing formation is perfectly uniform in character as required in the assumptions for the computations, and the Carrizo is no exception. It may be noted, however, that the computed drawdowns are reasonably consistent with the measured drawdowns and give faith in the use of similar computations to compute future changes in water levels that will result from additional changes in pumping from the aquifer.

For the most part, the computations given in Table 5 were made using a coefficient of transmissibility of 22,900 gallons per day per foot. The selection of this coefficient of transmissibility was originally determined by using a higher coefficient to compute drawdowns for comparison with actual drawdowns and then adjusting the coefficient downward so that the computed and actual drawdowns would more closely match, on an average, throughout the area. One of the reasons why the effective coefficient of transmissibility for the Carrizo is less than that determined from most of the

				1/
Table 5 Actual and Comp	uted Declines of Wate	r Levels in Carriz	o Wells in Angelina	a and Nacogdoches Counties 🔟

Well	Period	Actual C Decline I (feet)		Period	Actual Decline (feet)	Computed Decline (feet)	Period	Actual Decline (feet)		Tota Actual (Decline 1 (feet)	Computed Decline
TX-37-17-303	10-39 7-55	196	247	7-55 7-57	70	68				266	315
TX-37-19-902	1-44 8-55	78	77							78	77
TX-37-25-301	4-40 7-55	70	88				7-55 6-69	57	63	127	151
TX-37-27-301 ^{2/}							1-39 12-63	204	223	204	223
TX-37-27-504 <u>2</u> /							5-64 4-68	22	34	22	34
TX-37-27-505 ^{2/}							8-64 4-68	52	51	52	51
TX-37-27-506 ^{2/}							10-64 4-68	1623/	160	1623/	160
AD-37-34-201	1-48 7-55	64	50				7-55 6-69	132	150	196	200
TX-37-35-202	8-41 7-55	200	209	7-55 7-57	56	69				256	278
TX-37-35-303	3-48 2-55	244 <u>43</u> /	210	2-55 9-57	26	26	9 -57 6-69	94	74	3643/	310
TX-37-35-310	8-47 6-55	175	152	6-55 9-57	43	48				218	200
AD-37-35-401	10-39 6-55	352 <u>3</u> /	387	6-55 9 - 57	86	119	9 - 5 7 6 - 69	75	100	513 ^{3/}	606
AD-37-35-502	8-39 6-55	350 3 /	388	6-55 9-57	112	122	9-57 6-69	60	86	₅₂₂ 3/	596
AD- 37- 35- 503	9-39 6-55	357 ^{3/}	393	6-55 9 - 57	86	113	9-57 6-69	63	90	₅₀₆ 3/	596
AD- 37- 35- 506	12-39 7 - 55	305	347	7-55 9-57	102	118	9-57 6-69	69	101	476	566
AD-37-35-601	8-39 6-55	363 3 /	387	6-55 9-57	111	127	9 -57 6-69	65	92	539 <u>3</u> /	616
TX-37-35-603	12-47 6-55	2203/	198	6-55 9-57	24	30	9-57 6-69	93	97	₃₃₇ 3/	325
TX-37-36-202	10-41 7-55	146	142	7-55 7-57	34	38	7-57 6-69	69	61	249	241
TX-37-36-301	4-37 7-55	112	153				7-55 6-69	78	71	190	224
AD-37-36-403				8-55 7-57	50	53	7-57 6-69	80	69	130	122
AD-37-36-501				7-55 7-57	40	46	7-57 6-69	70	65	110	111

L/ Computed declines based on Their nonequilibrium formula. Line source of infinite length assumed to exist along northern side of Carrizo outcrop. T=22,900 gpd/ft and S=0.0001 unless otherwise noted.

2/ T of 18,000 gpd/ft and S of 0.00007 used for computing that part of decline caused by Nacogdoches wells.

3/ Decline represents difference between initial static and subsequent pumping level.

pumping tests is that the sand is thinner to the east and less transmissive. Another reason is that the computations have been made in part based on a line source of infinite length along the outcrop, whereas actually the continuity of the outcrop is terminated to the northwest, near the northwestern corner of Nacogdoches County, by a series of faults. The termination of the outcrop causes the acutal drawdown to be somewhat greater than it would be if the line source were continuous as assumed in the computations.

POSSIBLE BRACKISH WATER ENCROACHMENT

Because the original slope of the piezometric surface from the outcrop down the dip of an aquifer in this area is very gentle and because the cone of depression caused by heavy pumping extends over a wide distance and is relatively deep, the cone of depression may cause brackish water to move toward a well field from downdip. Although under equilibrium conditions all the flow lines to the area of pumping originate in the outcrop, they do not all go straight to the wells, because of the radial nature of the flow to the wells. Instead, some of the flow lines pass by on each side of the area of pumping and then turn and come back to the wells from the downdip direction. Thus, if the cone of depression has extended into the brackish water portion of the aquifer to such an extent that the slope of the piezometric surface is actually toward the wells from within that portion of the aquifer, some of these flow lines pass from the outcrop into the brackish water and then turn and come toward the area of pumping. This causes some of the brackish water to move toward the wells. This situation, of course, is most severe when the pumping is very heavy and is located very close to the brackish water. Under such conditions, brackish water may be brought into the wells in sufficient quantity to substantially change the mineralization of the water pumped from the wells.

There is no question that the cone of depression in the piezometric surface of the Carrizo Sand is causing some brackish water to move toward the Lufkin and Southland Paper Mills well fields. Although no indication has yet been shown from chemical analyses that the mineralization of the water is increasing in any of the wells, it is possible that in time there will be a noticeable increase. It should be expected that the first increases will occur in those wells belonging to Lufkin which are closest to brackish water.

The mineralization of the water from the wells cannot change greatly, however, until the water between the wells and the highly mineralized water is pumped out. In the Lufkin area the amount of water in storage in the Carrizo Sand in one square mile is probably on the order of 12,000 to 25,000 acre-feet, which is equal to pumpage for a year at a rate of about 11 to 22 million gallons per day. Considering the fact that water moves radially to the center of pumping from all directions, it will take many years for water in the Carrizo to move to the well fields from great distances. Thus, any change in mineralization should be slow and occur over a long period of time; and if periodic observations of quality of water are made, there should be ample opportunity to relocate wells or develop a supplemental supply if the mineralization of the water becomes too great.

At present, pumpage from the Wilcox and Sparta sands is so small that there is no likelihood of brackish water moving into existing fresh-water wells unless the wells are already right on the edge of the brackish water. There is more likelihood that some of the existing Yegua wells will eventually show an increase in mineralization. This is especially true of the wells at Diboll, where the large wells already produce water with more than 1,000 parts per million dissolved solids. Also, because of the interbedded character of the fresh and brackish water sands in the Yegua Formation, there may be some movement of brackish water from a brackish-water sand into an overlying or underlying fresh-water sand.

AVAILABILITY OF GROUND WATER

As stated earlier in this report, some fresh ground water is available from every formation outcropping in Angelina and Nacogdoches Counties except the Catahoula Formation. Only four formations or groups of formations, however, are capable of producing large quantities. These are the Wilcox Group, Carrizo Sand, Sparta Sand, and Yegua Formation. Of the remaining formations, the Reklaw Formation and the Queen City Sand are each slightly better than the Weches Formation, the Cook Mountain Formation, the Jackson Group, or the alluvium, but all are weak producers and should be considered only for small water supplies.

The basal Reklaw sands are hydraulically connected to the Carrizo in many places and should not be considered as a source of ground water separate from the Carrizo. Wells of small to moderate yield might be obtained in some places in the basal Reklaw, however, if there were reasons to make such wells in this sand instead of in the Carrizo. With the exception of this formation, none of the "weak-producing" formations should be expected to yield more than 50 to 100 gallons per minute to a well at any place, and even this is too much to expect in most places from the Queen City and Jackson, and certainly from the Weches and Cook Mountain Formations and the alluvium.

From the standpoint of availability of a groundwater supply, it should be pointed out that wherever the Reklaw, Queen City, and Weches contain fresh water, the sands of the Wilcox Group, Carrizo Sand, and/or Sparta Sand also exist and provide a much better source of fresh ground water. Similarly, nearly everywhere that the Cook Mountain Formation contains fresh water, the Sparta and/or Carrizo also contain fresh water. In the southern part of Angelina County, the Jackson Group and the alluvium (where it exists) are the only units which stand a chance of producing fresh ground-water supplies, and many users have had difficulty in developing even a domestic supply. In this area the availability of ground water is very limited, and the development of large supplies of ground water should not be attempted.

The following sections of the report present information on yields and the more favorable areas for development from the Wilcox, Carrizo, Sparta, and Yegua aquifers. Only water containing less than 1,000 parts per million dissolved solids is considered.

Yields of Individual Wells

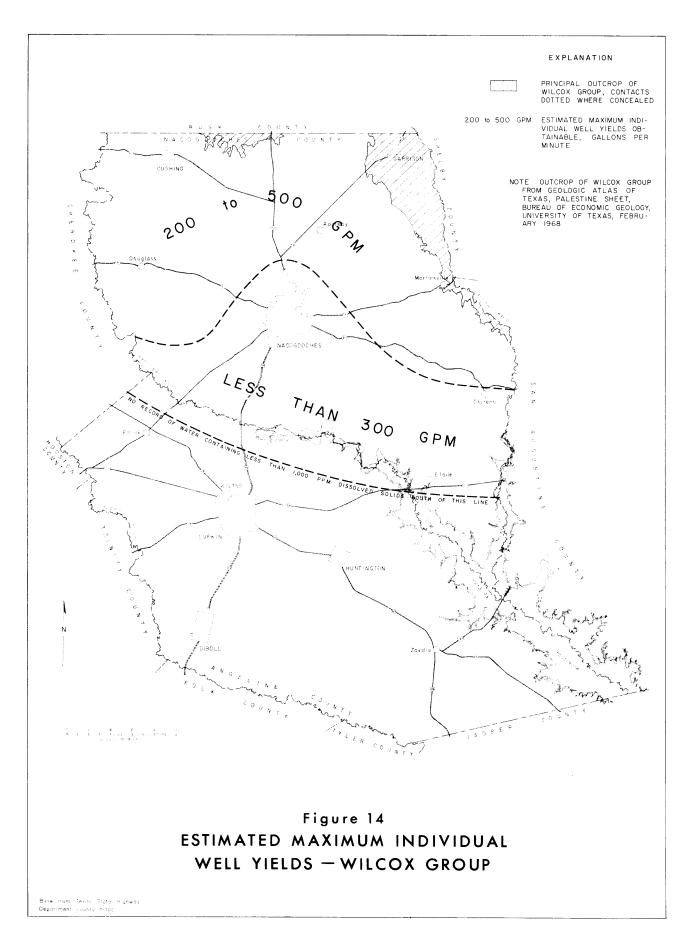
In estimating yields of wells, it is necessary to establish criteria with respect to well construction and drawdown of water level. For the following discussion on maximum individual well yields, it is assumed that the screens in the wells will be at least 8 inches in diameter and of sufficient diameter so that there will be very little head loss due to turbulent flow in the wells. It is further assumed that all the sands in the producing sections will be screened and that the wells will be constructed and developed in such a manner that they are essentially 100 percent efficient. In other words, it is assumed that there will be no extra drawdown in the wells due to restriction of water movement through the faces of the wells. Finally, it is assumed that the drawdown in a well due to its own pumping is approximately 100 feet in the first day of pumping, provided this does not draw the pumping level below the top of the producing section of the aquifer. In cases where less than 100 feet of available drawdown exists to the top of the producing section, some provision has been made for partial dewatering of the formation, and also the 1-day drawdowns have been reduced to less than 100 feet as necessary.

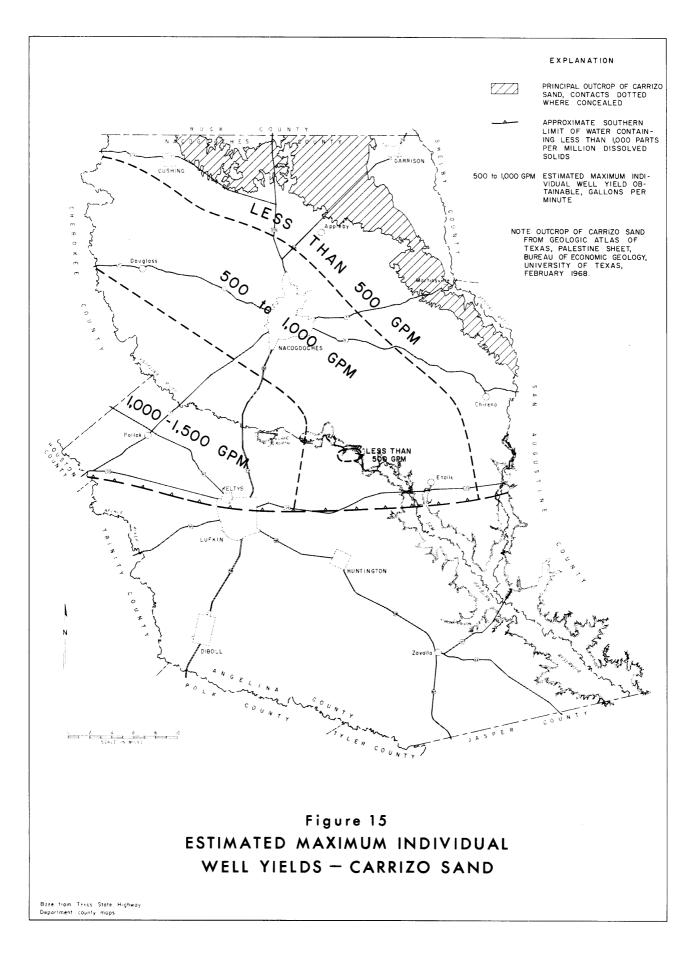
Wilcox Group

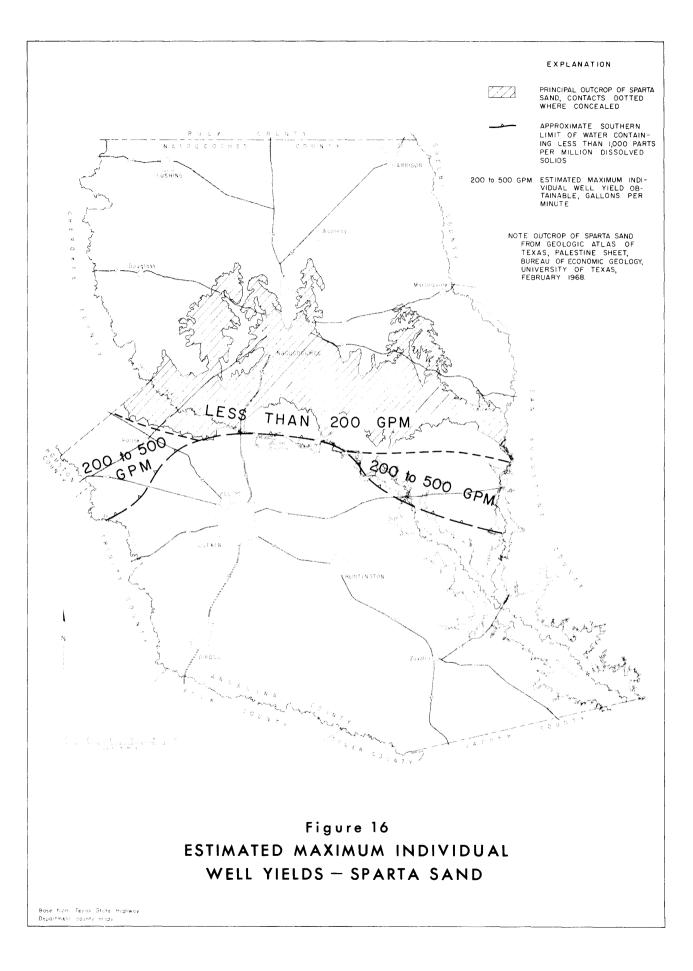
Figure 14 shows the estimated maximum yields of individual wells producing fresh water from sands of the Wilcox Group. In addition to the assumptions described above, it is assumed with respect to the Wilcox wells that no more than 400 feet of thickness of the Wilcox will be included in the developed portion of any Wilcox well. In other words, it is assumed that the distance between the top of the top screen and the bottom of the bottom screen will be no more than 400 feet. Within this limitation, it is assumed that the well will be screened in that portion of the Wilcox having the greatest amount of sand which produces fresh water, provided there is at least 100 feet of available drawdown to the top of the producing section. The principal reason for the relatively low estimates of maximum well yields from the Wilcox, no greater than 500 gallons per minute anywhere in the area, is the low permeability of the Wilcox sands. In making the estimates, an average permeability of 50 gallons per day per square foot is used.

Carrizo Sand

Estimated maximum yields of individual wells are shown for the Carrizo Sand on Figure 15. They range from zero to 1,500 gallons per minute. The data upon which this map is based are more complete than for other aquifers studied, and include well records, pumping tests made in different parts of the area, and thicknesses obtained from electric logs.


To obtain the largest yields will require gravelwalled wells with screens of at least 10 inches in diameter and preferably 12 or 14 inches. Generally the estimated maximum yields increase from northeast (near the outcrop) to the southwest. One small area just east of Southland Paper Mills' Old Well Field is shown with an estimated maximum well yield of less than 500 gallons per minute. Test drilling in this area by Southland Paper Mills showed a very thin section of Carrizo, in the range of 20 to 60 feet.


Sparta Sand


Estimated maximum yields of individual wells are shown for the Sparta Sand on Figure 16, and range from zero to 500 gallons per minute. The estimates assume an approximate effective transmissibility range of 4,000 to 10,000 gallons per day per foot for the full thickness of the Sparta. This appears reasonable in view of the wide range in transmissibility and permeability determined from the pumping tests made of Sparta wells. It discounts the greatest transmissibility determined from the pumping tests, 58,100 gallons per day per foot. That test was made on shallow wells with semi-artesian conditions, which could readily result in an apparent transmissibility that is too high, and it does not appear likely that the actual transmissibility of the Sparta Sand can be anywhere near this large at more than isolated sites.

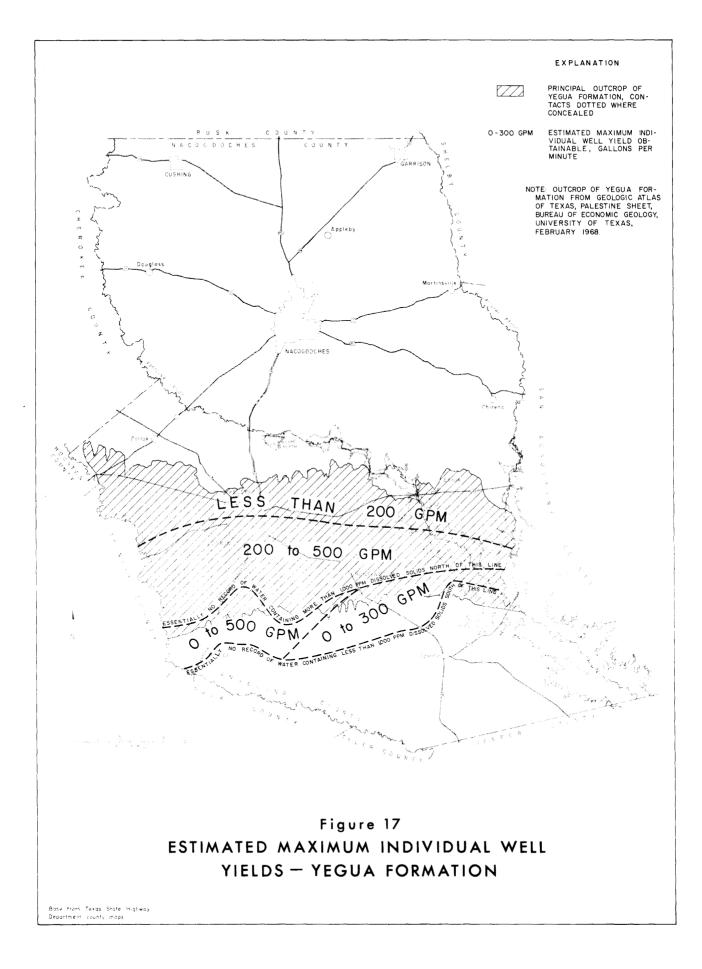
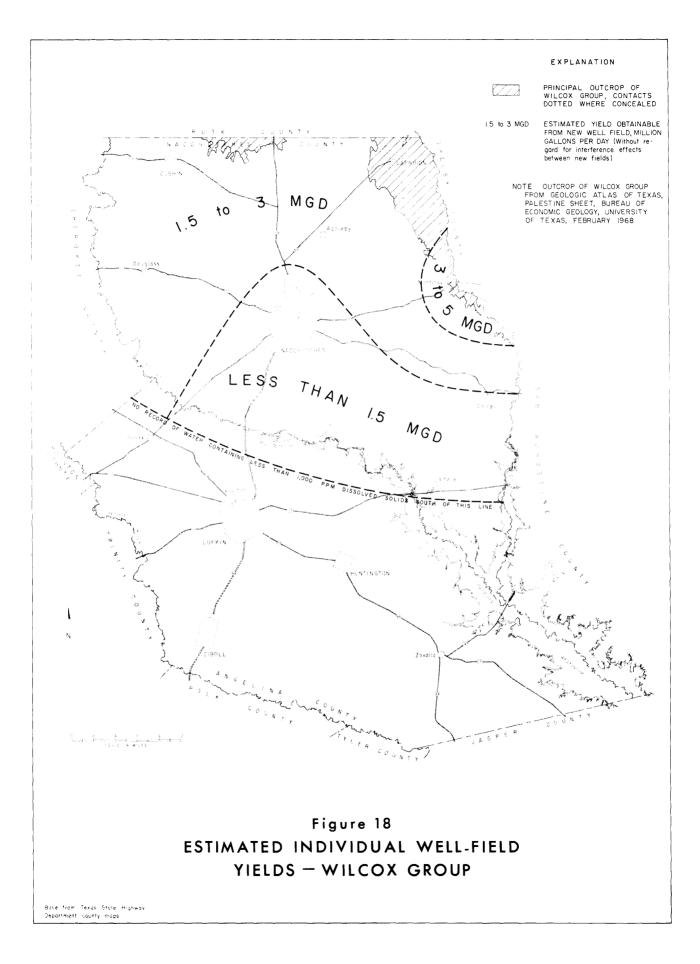

Yegua Formation

Figure 17 shows estimated maximum yields of individual wells for the Yegua Formation. These range from zero to 500 gallons per minute. Generally they become greater from north to south until the northern edge of the zone within which the water begins to change from fresh to brackish is reached. In that zone the estimated yields then decrease to zero, inasmuch as no water is considered in these estimates which contains more than 1,000 parts per million dissolved solids.

For the Yegua Formation, as for the Wilcox, it is assumed that no well will develop a section of the aquifer with more than 400 feet between the top and bottom of the screened section. Because the Yegua is nearly 1,000 feet in total thickness near the southern boundary of its outcrop, this limits the estimated maximum individual well yield to less than the theoretical amount which could be obtained from the formation as a whole.

In making estimates of transmissibility of sands in the Yegua, an average permeability of 100 gallons per day per square foot as determined from pumping tests is used, together with thicknesses determined from electric logs. Two exceptionally high yields reported for actual wells are not considered. One is a reported 1,000 gallons per minute for a well 110 feet deep at Lufkin, abandoned many years ago and for which no actual records of measurement are available. Another is a reported yield of over 800 gallons per minute from a well at Diboll, which produces water containing slightly more than 1,000 parts per million dissolved solids. These yields are considered to be anomalous exceptions, and it is felt that they should not be considered in selecting ranges of values which are most likely to be found.

Individual Well-Field Yields


Additional criteria are necessary with respect to estimating maximum yields of individual well fields. First and most importantly, no allowance is made for interference effects between one well field and another. This means that these estimates of maximum yield are, for the most part, valid for only one well field in the aquifer at the present time. Each well field will create drawdown of the piezometric surface throughout much of the aquifer, and this will have an effect on the drawdown available for use by each additional field which may be installed. Futhermore, each additional field that is installed will have an effect on the first field which was developed, thus reducing the drawdown available for it and its maximum potential yield. The effects of interference between well fields are considered in succeeding sections of this report, but for this section, the purpose of which is to estimate the maximum available yield of any one well field, it is not practicable to consider such interference effects.

Next, in estimating the yield of a well field it has been necessary to assume a maximum number of wells, spacing between wells, and the desired yields of the wells. For the estimates, therefore, it has been assumed that no well field will contain more than 10 wells and that the wells in a field will generally be spaced in a line approximately one-half mile apart. Where practicable, the yields of individual wells have been selected so that about 100 feet of drawdown will be created in each well during the first day from its own pumping. It has also been necessary to assume limits for allowable drawdown. Allowable drawdown, as used in this report, refers to the distance between the piezometric surface and either the top of the producing section in the wells or some other level considered to be a reasonable depth for pumping levels. The limits used for each aquifer are given in the following sections of the report.

Wilcox Group

Because the portion of the Wilcox Group containing fresh water sands is so thick in the northern part of Nacogdoches County, more than one well may be made at a single site, under the limitation imposed that no more than 400 feet of section will be taken into any one well. Therefore, in estimating the yield of the Wilcox Group, the Wilcox sands have been divided into separate sections. This has been done by first separating the sands considered to be hydraulically connected to the Carrizo Sand and then allocating the remainder of the fresh water Wilcox sands to one or two other sections, depending on the total remaining fresh-water thickness of Wilcox. The sands within the upper 200 feet of the Wilcox Group are assumed to be associated with the Carrizo Sand and to have a piezometric surface equivalent to that of the Carrizo. The remaining Wilcox sands are assumed to have a piezometric surface 250 feet above sea level. The allowable drawdown is assumed to be the distance between the piezometric surface and the top of the Wilcox section developed by the wells. The maximum drawdown allowed in the estimates is 500 feet. The recharge area for the upper portion of the Wilcox is considered to be along the northern edge of the Carrizo outcrop. For the remainder of the Wilcox, however, the recharge area to the north and northeast is partly shut off by the Mount Enterprise fault zone, and it is necessary in making estimates to take this into account by a system of image wells.

On the basis of these conditions and assumptions, the estimated ranges in maximum individual well-field yield are given on the map in Figure 18. For the northern portion of the area, the range is from 1.5 to 3 million gallons per day. In the eastern portion of Nacogdoches County is a locality where it is estimated that the maximum yield of a well field may range between 3 and 5 million gallons per day. For the southern portion of the area where Wilcox sands contain fresh water, the estimated maximum yield of a well field in the Wilcox is less than 1.5 million gallons per day. The estimate is lower in this locality because the fresh water section of the Wilcox is much thinner, and because much of that which exists is hydraulically connected to the Carrizo Sand for which the piezometric surface has already been drawn down a great deal, leaving less allowable drawdown than would otherwise be the case.

Carrizo Sand

The total yield of the Carrizo Sand is already nearly fully developed by pumpage from existing wells. By far the greatest portion of this pumpage comes from the well fields belonging to the cities of Lufkin and Nacogdoches and Southland Paper Mills. No large new well field can be developed in the Carrizo Sand without adversely and seriously affecting one or more of these existing fields. Yet, in order to make an estimate of the physical possibility of the yield from a new well field, Figure 19 has been prepared. This map shows the estimated maximum individual well-field yield which can be developed from the Carrizo without regard for its effects on the other fields. First, the map shows the 1968 average pumpage from each of the four principal existing fields and the estimated maximum yield which can be obtained from each of those fields without regard to the effects on other fields. Second, the map shows areas in which an additional new field might be placed and the estimated maximum yield of such an individual field without regard for its effect on any existing field or on any other new field.

Because the Carrizo aquifer is so fully developed already, a greater allowable drawdown is assumed in these estimates than for other aquifers. For this aquifer, which had an original piezometric surface slightly more than 250 feet above sea level in the vicinity of the Lufkin and Southland Paper Mills well fields, it is assumed that the pumping levels in wells can be drawn down to the top of the formation or to 400 feet below sea level, whichever is shallower, except in the Southland Paper Mills Poe Field. In that field, elevations of the tops of the liners in the wells are about 310 feet below sea level and the pumps cannot be lowered into the liners. The tops of the liners are used as the limiting depths of pumping levels. In the Nacogdoches Field all the wells are constructed and/or the pumps sized in such a manner that the pumps can be lowered to the top of the Carrizo sand. In the Southland Paper Mills Old Field and the Lufkin Field the tops of the liners are all at or below 400 feet below sea level.

The estimates of yield take into consideration the range in transmissibilities which is considered to exist in the Carrizo over the area. They also take into consideration the actual pumpage-drawdown experience over the past 30 years.

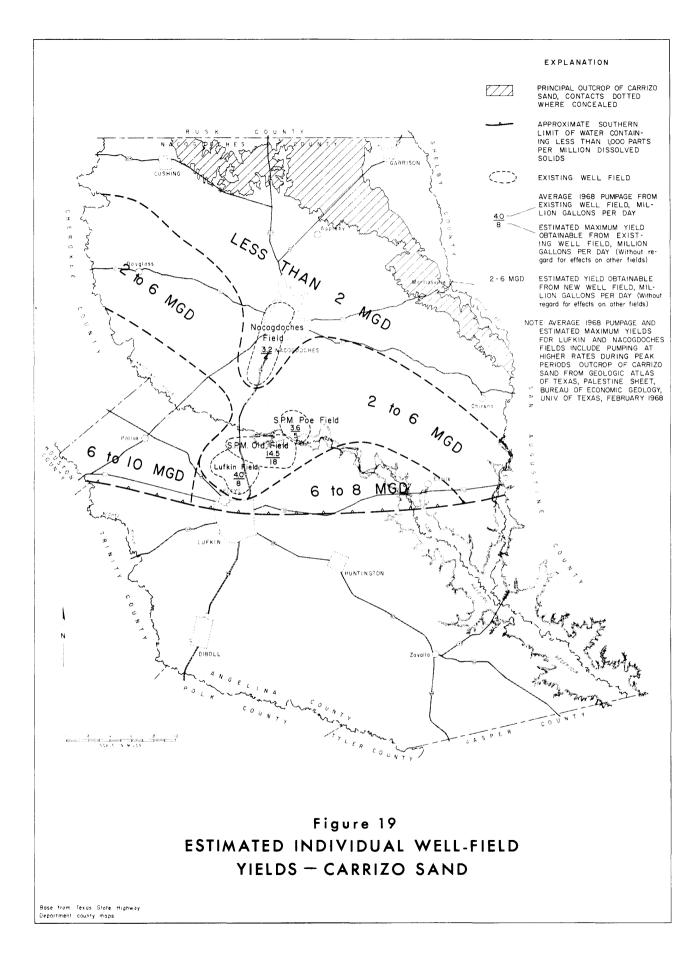
Sparta Sand

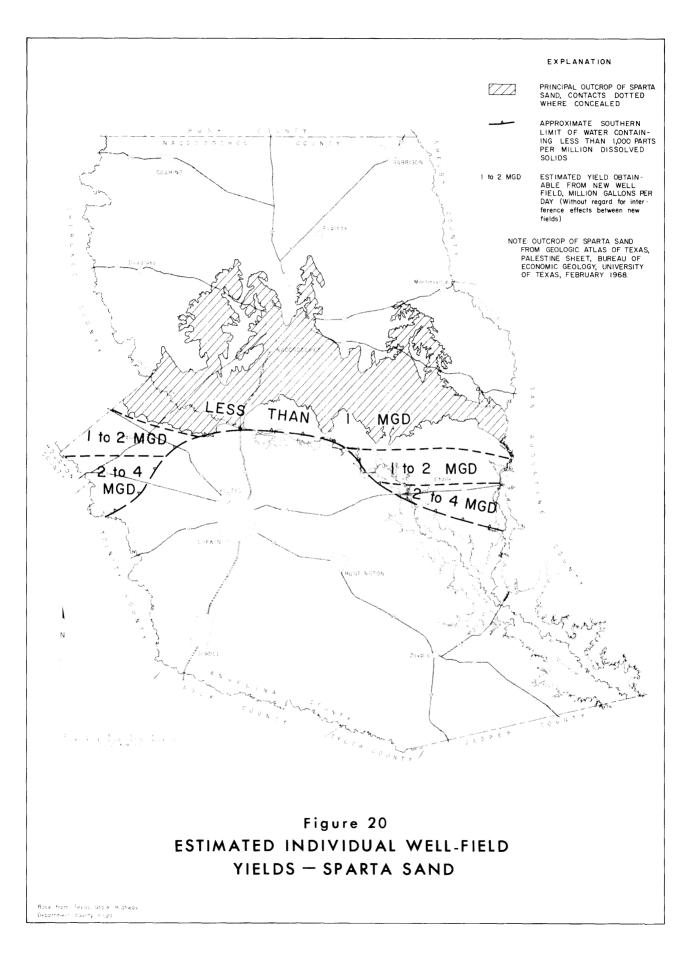
Figure 20 shows the estimated maximum individual well-field yields for the Sparta Sand. As with the other aquifers, these estimates are made for a single field without regard for interference effects between fields. The estimates range from less than 1 million gallons per day to 4 million gallons per day. The estimates are based on an allowable drawdown amounting to the distance between the present piezometric surface and the top of the Sparta Sand, up to a maximum of 500 feet.

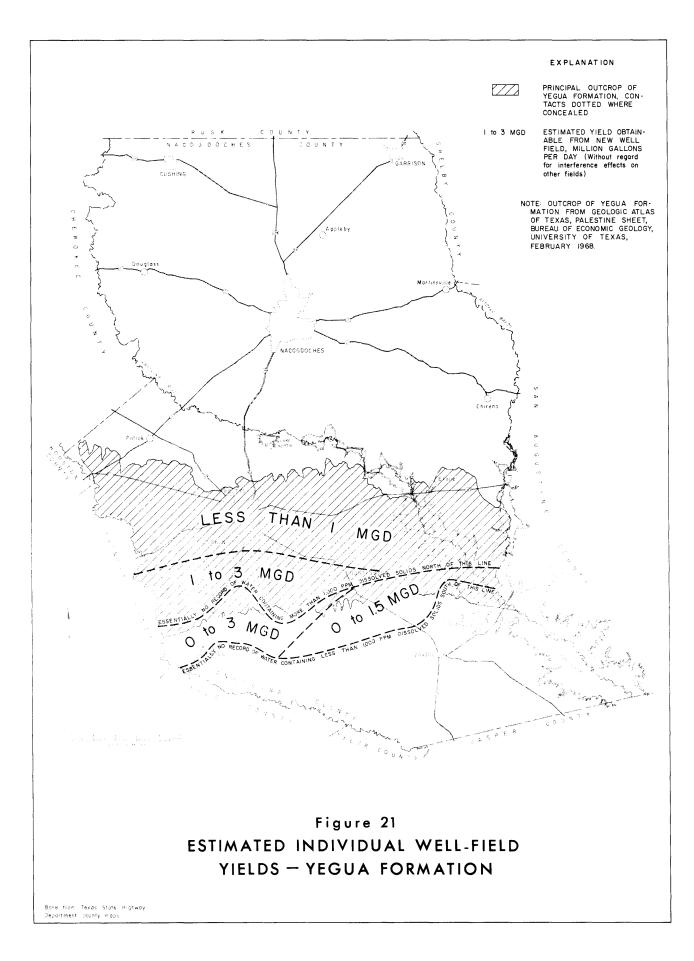
The greatest well-field yields can be obtained in the Sparta in the western and eastern portions of that area underlain by fresh water-bearing Sparta sands. In the northern and central portion of the area, essentially comprised of the outcrop, the estimates are considerably less, partly because the allowable drawdown is less and partly because the saturated thickness of the formation becomes less going northward in the outcrop. For a well field made in the outcrop, it has been assumed that no more than 3 square miles of recharge area is available to any one field, with no more than 6 inches of salvageable rejected recharge.

Yegua Formation

Figure 21 shows the estimated maximum individual well-field yield for a new field in the Yegua Formation. The estimated yield ranges from zero to 3 million gallons per day. The estimate is somewhat lower in the southern portion of the area than it would be if development of the Yegua had not already taken place in the vicinity of Diboll.


The assumed deepest allowable pumping level is the top of the producing section of the Yegua or 500 feet below the original piezometric surface, whichever is shallower. As in the case of all of the other formations, these estimates are made without considering the effects of the new field on either the existing wells in the Yegua or on any new field, and vice versa.


In making the estimates of well-field yield in the Yegua, an allowance has been made for the effects of boundaries on the individual sands in the Yegua, which tend to reduce the effective regional transmissibility of the Yegua to an amount below that computed from the actual sand thickness times the average permeability coefficient of 100 gallons per day per square foot as determined from pumping tests. Because of these boundaries, estimated maximum well-field yields are generally about two-thirds to three-fourths of those that might otherwise be calculated.


Total Availability of Ground Water Within Angelina and Nacogdoches Counties

More important and more realistic than the preceding estimates of maximum yields of individual well fields are estimates of total availability of water from each of the principal aquifers within the two counties. A summary of these estimates is given in Table 6. The assumptions on which the estimates are based are listed in the table.

Estimates of the total availability of water from existing well fields and/or new well fields of moderate size are made on the basis of locating the new fields at reasonable distances apart in the most favorable areas

Aquifer	1968 Pumpage (million gallons per day)	Supply Available under Practical Conditions, but with No Increase in Pumpage Outside These Counties 1/ (million gallons per day)	Supply Available with Ideally Located Well Fields, with No In- crease in Pumpage Out- side These Counties 2/ (million gallons per day)	Supply Available from Maximum Possible Num- ber of Wells, with Full Development Outside These Counties 2/ (million gallons per day)
Wilcox Group <u>4</u> /	0.5	8	8	13
Cerrizo Send 5/	26.7 <u>6</u> /	32	37	28
Sparta Sand	.1	7	7	8
Yegus Formation	2.8	7	7	10

- <u>1</u>/ Except for the Carrizo Sand, the figures in this column are the same as those in the adjacent column relating to ideally located well fields. For the Carrizo Sand the figure in this column is less because the present well fields are not ideally located to obtain the greatest total amount of water available from the aquifer throughout the two counties, and it is not practicel to abandon the present fields and develop others in remote areas.
- 2/ The figures in this column are based on the sum of the estimated maximum yields from well fields of smell to moderate size spaced uniformly in areas of greatest transmissibility and greatest allowable drawdown. The well fields in each equifer in Angeline and Nacogdoches Counties interfere with one another, but the estimates assume that pumpage from the respective formations in adjacent counties to the east and west will remain the same as at present, so there will be no interference from these outside counties.
- 3/ The figures in this column represent estimates of the maximum amounts of water that will flow down the dips of the respective Symmations from their outcrops into and in Angelina and Nacogdoches Counties, if the aquifers are also fully developed in adjacent counties to the east and west.
- 4/ The figures listed here for the Wilcox Group do not include the amounts stated under footnote 5/ as originating in the Wilcox.
- 5/ An estimated 10% of the water shown here as pumped and available from the Carrizo Send originates in the Wilcox. Fart of it is pumped from wells screening both aquifers and part flows into the Carrizo where the two are hydreulically interconnected. In addition, a very small portion of the water available from the Carrizo originates in the Reklaw Formation. The amount is estimated to be much smaller than that contributed by the Wilcox.
- 6/ This figure includes a small amount of pumpage directly from the Wilcox, drawn from wells screening sand in both the Wilcox and the Carrizo -- estimated at about 1 million gallons per day.

with respect to transmissibility of the aquifer and allowable drawdown of water level. They also assume that pumpage from these aquifers is not increased in adjacent counties, as no new interference is allowed for from those counties. To this extent the estimates are perhaps unrealistic and too high, for some additional development probably will occur in adjacent counties.

Except for the Carrizo Sand, the two columns on total well-field yields in Table 6, one stated to be the supply available under practical conditions and the other stated to be the supply available with ideally located well fields, show the same values. It is considered practical at this time to locate well fields in an ideal manner in each of the formations except the Carrizo. As will be described subsequently in this report, however, it is not considered practical to do this in the Carrizo Sand because of the present fields which cannot be abandoned without great economic loss to the owners.

The second method of estimating the available supply is based on full development of each aquifer throughout its extent, both inside and outside of these counties. The figures given for the available supplies are estimates of the maximum amounts of water that will flow down the dips of the formations from their outcrops to wells in Angelina and Nacogdoches Counties, under the provision that water cannot be pulled into Angelina and Nacogdoches Counties from the sides because of full development of these aquifers in those adjacent counties to the east and west. The estimates are based on the estimated effective transmissibilities of the formations, the dips of the beds, and the widths of the areas of occurrence of the aquifers in these counties.

Wilcox Group

The 1968 pumpage from the Wilcox Group is estimated at 0.5 million gallons per day. The supply available from well fields under both practical and ideal conditions, with no increase in pumpage outside these counties, is estimated at 8 million gallons per day. This water would be taken from five well fields about seven miles apart, located in areas to obtain the maximum transmissibility and maximum allowable drawdown up to 500 feet. The estimate of the maximum amount of water that can flow from the outcrop to points of withdrawal in Angelina and Nacogdoches Counties without unwatering the aquifer is 13 million gallons per day.

In estimating the amount of water available from the Wilcox Group, the effects of the Mount Enterprise fault zone are considered. Also, the amount of water which can enter the Carrizo Sand from the Wilcox sands is not included. It is estimated that about 10 percent of the water which is now pumped or available from the Carrizo originates in the Wilcox. Some of this water is pumped from wells which screen both the Carrizo and Wilcox, and some moves into the Carrizo from the Wilcox in places where the two are in hydraulic interconnection. Thus, in Table 6 about 3 million gallons per day of water assigned to the Carrizo is believed to actually originate in the Wilcox and is not included in the figures given for the Wilcox Group. The reason for assigning this water to the Carrizo and not to the Wilcox is that the wells in the Carrizo are now making use of it, and the Carrizo is likely to become fully developed before the Wilcox. Therefore, it is considered more realistic to include this water in the Carrizo estimates in order to get a truer picture of the total amount of water which can be pumped from Carrizo wells.

Carrizo Sand

The 1968 pumpage from the Carrizo, including that obtained from combination Carrizo and Wilcox wells, is estimated at 26.7 million gallons per day. Of this, 25.3 million gallons per day was pumped from the four well fields belonging to the cities of Lufkin and Nacogdoches and Southland Paper Mills. Seven wells are now in use in the city of Lufkin Field, nine in the city of Nacogdoches Field, ten in the Southland Paper Mills Old Field, and three in the Southland Paper Mills Poe Field.

The estimated allowable drawdowns below present pumping levels are 200 feet for the Lufkin Field, 120 feet for the Southland Paper Mills Old Field, 70 feet for the Southland Paper Mills Poe Field, and less than 50 feet for the Nacogdoches Field. When these allowable drawdowns are used up by interference from one or more of the existing fields or new fields, wells will begin to fail and the total yields available from the fields will be reduced. Then it will be necessary for the users to reduce pumpage from the fields and to seek water elsewhere. On the assumption that it is impractical to pump so much water from the Carrizo Sand in Angelina and Nacogdoches Counties as to create this situation. estimates of the total availability of water under practical conditions have been made on the basis that no more than the above allowable drawdowns in the existing fields will be used up by interference from new fields or by increased pumping from any of the present fields. On this basis it is estimated feasible to increase the total pumpage from the Carrizo Sand by only about 5 million gallons per day, which results in an estimated total supply of 32 million gallons per day available from the Carrizo Sand.

If it were practical to abandon the Nacogdoches Well Field entirely and to relocate parts of the other fields, it is estimated that a total of 37 million gallons per day might be obtained from well fields in the Carrizo Sand, provided no additional development of the Carrizo occurs in adjacent counties. This estimate is based on having nine relatively uniformly spaced well fields located about five miles north of the southern boundary of that portion of the Carrizo containing fresh water, and on a maximum drawdown of piezometric surface of about 600 feet from its original position. The estimated amount of water which will flow down the dip of the Carrizo Sand from the outcrop without unwatering part of the formation is about 25 million gallons per day. Adding about 3 million gallons per day for the water crossing into the Carrizo from the Wilcox makes a total estimated availability of water from the Carrizo produced in this manner of 28 million gallons per day. The Carrizo Sand is unique among the four aquifers considered in that this estimate is less than the estimate of the amount of water which can be developed from well fields. The primary reason for this is that the locations of the Carrizo well fields are such that they can draw a larger percentage of their water from adjacent counties than can fields in the other formations.

Sparta Sand

Present pumpage from the Sparta Sand is very low, amounting to an estimated 0.1 million gallons per day. The supply estimated to be available from well fields, with no additional development outside these counties, is 7 million gallons per day. Most of this water would be available from one well field each in the localities on the western and eastern sides of the area within which the Sparta contains fresh water, where the allowable drawdown is greatest. Only a small amount is considered available in the outcrop area north of the Angelina River. There would be essentially no interference between the well fields.

The estimated supply of water available from the Sparta, based on flow down the dip of the beds and assuming full development outside these counties, is 8 million gallons per day.

Yegua Formation

The 1968 pumpage from the Yegua Formation is estimated at 2.8 million gallons per day. The estimated supply of water available from well fields, assuming no increase in pumpage from the Yegua outside these counties, is 7 million gallons per day. This water is assumed to come from five well fields spaced more or less uniformly along the southern portion of that part of the Yegua containing fresh water in Angelina County. The relatively low yield of the Yegua can be roughly checked by the experience at Diboll, where at least one well has had a drawdown of static water level of nearly 300 feet as a result of pumping in that area of slightly more than 1 million gallons per day.

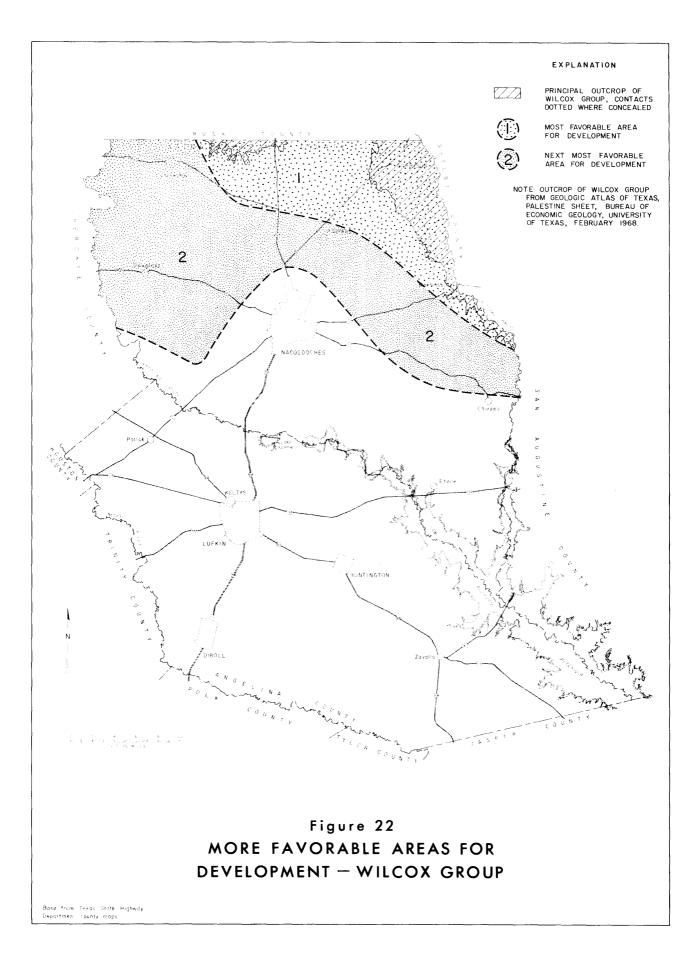
The estimated amount of water which can flow down the dip of the Yegua in Angelina and Nacogdoches Counties, assuming total development of the Yegua outside these counties, is 10 million gallons per day. In making this estimate, an allowance has been made for the effects of boundaries on the individual sands, believed to lower the effective regional transmissibility to about half that which may be computed based on the average permeability of the sand determined from pumping tests and the thickness of sand determined from electric logs.

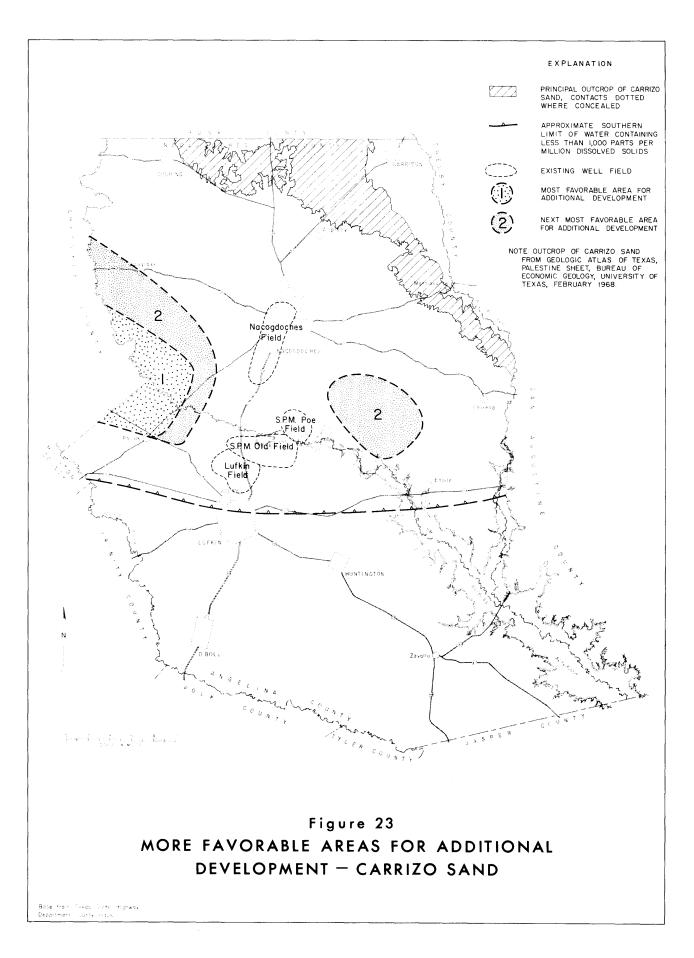
MOST FAVORABLE AREAS FOR GROUND-WATER DEVELOPMENT

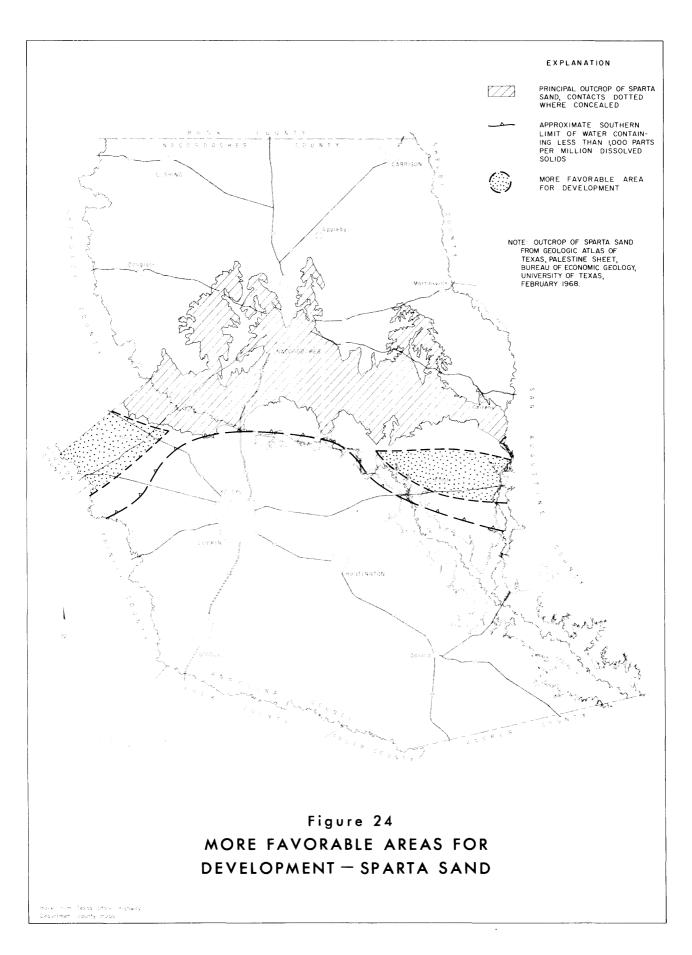
Wilcox Group

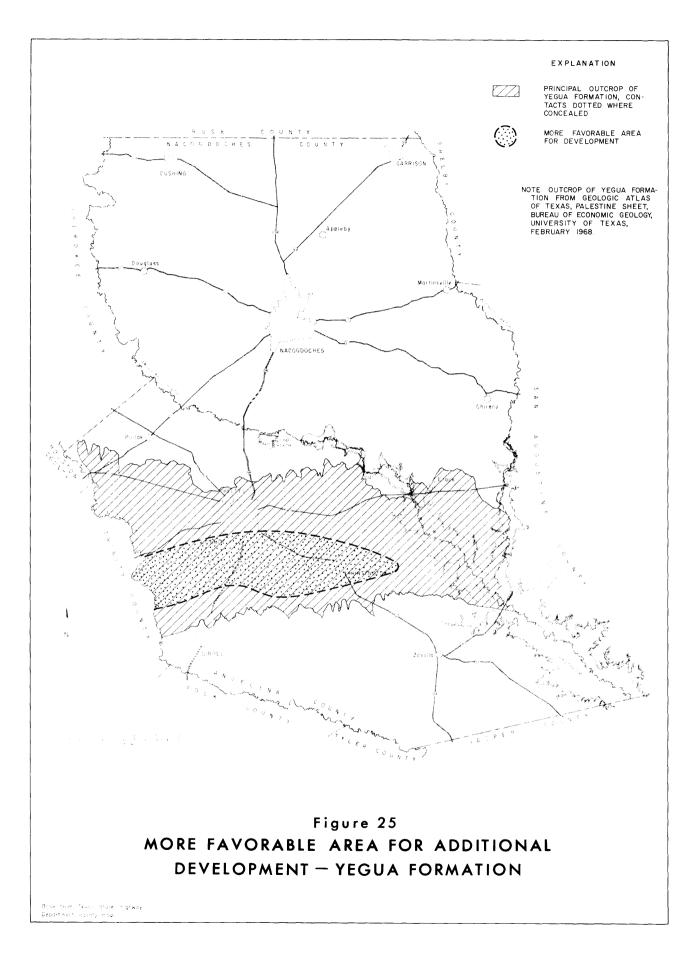
Figure 22 shows the areas which are considered to be most favorable for development of ground water from the Wilcox Group. Area 1 is the most favorable area and Area 2 the next most favorable. In selecting these areas, consideration has been given to individual well yields, well-field yields, quality of water, and interference with existing Carrizo wells. Much of the difference between Area 1 and Area 2 is the quality of water. Fresh water is available in both areas, but the water is generally less mineralized in Area 1.

Carrizo Sand


As stated earlier in this report, it is not believed that the Carrizo Sand should be developed much more in Angelina and Nacogdoches Counties. If additional development must be made, however, the areas believed to be most favorable for such development are shown on Figure 23. These areas have been selected from the standpoint of available well and well-field yields, quality of water, and the least interference with existing fields. They have been kept several miles north of the brackishwater line to minimize danger of brackish-water encroachment.


Sparta Sand


The areas considered to be more favorable for development of the Sparta Sand are shown on Figure 24. These are essentially the areas in which the water is fresh downdip from the outcrop. The areas selected have been kept north of the southern boundary of fresh water to minimize the danger of brackish-water encroachment.


Yegua Formation

The area believed to be most favorable for additional development in the Yegua Formation is shown on Figure 25. This area was selected from the standpoint of the best well yields, the best well-field yields, the best quality of water, and to some extent, to keep from interfering with the existing supply at Diboll any more than necessary.

TEST DRILLING

The estimates of well yields, well-field yields, total availability of water, and quality of water which are given in this report are believed to be the best which can be made based on the available data. There is always a possibility, however, that some differences from the estimates will be found in actual practice. In the case of the Carrizo, for example, the sand in several localities has been found by drilling to be much thinner than might have been expected (Figure 36).

In the construction of a large well in an area like Angelina and Nacodgoches Counties, it is common practice to first drill a pilot hole entirely through the water-bearing formation to be developed. From the information obtained from this hole, a decision is made whether to complete the well. If so, the well is then designed on the basis of that information. When the greatest possible yield is desired, or when the desired vield or quality of water is near the estimated limits of the ability of the aquifer to produce, it is desirable to precede the construction of wells with one or more test holes. These are small diameter holes which are drilled solely for the purpose of obtaining information, and then are abandoned. Several holes may be drilled in a particular locality to determine the variations in groundwater conditions which exist and to select the site or sites which appear best for construction of large wells.

Normally the test drilling program is conducted to obtain three types of information: (1) position and thickness of the water-bearing sands, (2) representative samples of each water-bearing sand, and (3) quality of the water contained in the sands.

The positions and thicknesses of the sands are obtained from drillers' and electric logs, and samples of sand are normally obtained as cuttings collected during the drilling of the hole. Cores are not usually taken because of the expense required to obtain representative coverage. It is important, however, that the drill cuttings be taken in a very careful manner so that they are as representative of the water-bearing sands as possible. This requires that the drilling mud entering the drill stem be kept as free as possible of sand and that the hole be cleaned of all drill cuttings prior to drilling the interval from which the sample of sand is desired. Then during the drilling of the interval to be sampled, a portion of the drilling fluid should be diverted through a large sampling box or other receptacle within which the sand. carried by the mud, can be caught to obtain a representative sample of the sand. After the bottom of the interval to be sampled is reached, drilling should stop, and circulation of the drilling fluid should be continued and the sampling process continued until all drill cuttings have returned to the surface. It is normal practice to take drill cutting samples at intervals of approximately 10 feet in all the water-bearing sands of interest. Sieve analyses are made of the samples of sand thus obtained in order to determine their range in grain

size. This information is used, together with other data obtained, in estimating the yield of water which might be obtained from a well at the site.

Quality of water information is obtained from a test hole in two ways, one by actually taking samples of the water and the other from the electric log made in the hole. An electric log, which is made under controlled conditions with proper standardized equipment, normally can be evaluated to determine the general degree of mineralization of the water. It cannot, however, be evaluated closely enough to determine the precise degree of mineralization, nor is there any way to determine the concentration of various mineral constituents in the water. Therefore, when this information is desired, it must be obtained by taking water samples.

A standard method for taking water samples from a test hole is shown in Figure 26. In this method, the original hole drilled is 6%-inches in diameter. When the hole penetrates about 15 to 30 feet into a sand from which a water sample is desired, drilling is stopped. The position and shape of the hole at that time is indicated by the drawing at the left side of Figure 26. Next, the hole is reamed to a diameter of 9-7/8 inches down to a point just above the zone selected for water sampling. Then the original 6%-inch hole is washed out to its original depth. The hole at that time is illustrated by the center drawing. Then a string of pipe with packer and screen is set in the hole, as shown at the right of this figure. The pipe is usually 4 inches in diameter, and the packer is a commercial rubber cone type, with typical dimensions of 6 by 9 by 14 inches. Often a canvas "shirt tail" is wrapped on the packer to assist in sealing. The packer is set on the shoulder between the 634-inch and the 9-7/8-inch portion of the hole. Below the packer a commercial 4-inch water well screen 10 to 20 feet long is attached to the 4-inch pipe. After the packer is seated, the temporary well thus constructed is pumped by airlift. The well is usually pumped for several hours until the water becomes clear. If pH, hydrogen sulfide, iron, and manganese are not problems, final samples for chemical analysis are taken at the end of this airlift pumping period. Otherwise, after the water becomes clear, the airline is removed from the 4-inch pipe and a small diameter turbine or hi-lift pump is installed and the temporary well is again pumped until the water becomes clear, after which the final samples are taken. In this case, the pH and hydrogen sulfide are determined in the field at the time the sample is taken. The water normally must be pumped until it is entirely clear, because even a very small amount of mud left in the water will affect the determination of iron and manganese in the water and show falsely high contents of these constituents.

At the end of the pumping, periodic measurements are made of the recovery of the water level in this temporary well, usually for about 2 hours. By study of the rate of water-level recovery, reasonably reliable estimates can usually be made of the static water level,

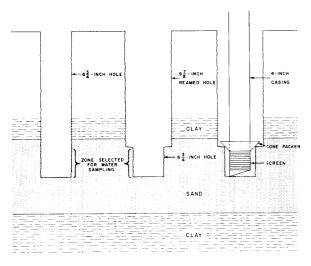


Figure 26.-Procedure for Water Sampling From Test Hole

and sometimes valuable information can be obtained concerning the transmissibility of the water-bearing sand which is screened.

The casing and screen are then pulled from the hole, and drilling of the 6³/₄-inch hole is resumed until a second water-bearing zone is encountered from which a water sample is desired, at which time the entire water-sampling process is repeated.

If a large well field is desired, the test-drilling program may be followed by the construction of a pilot production well. This is a well which is located and designed on the basis of the results of the test-drilling program and which is intended to serve as the first well in the proposed well field if successful. After the pilot production well is constructed, it is tested in a thorough manner to determine the operating characteristics of the well, the quality of the water, the coefficients of transmissibility and storage, and any local boundaries of the aguifer. From the tests, decisions are made as to whether the well yield and water quality are satisfactory for the proposed well field and what spacing will be desirable for other wells. Any necessary changes in design of the other wells also are made at this time. Should the pilot production well prove unfavorable, a decision can be made to abandon the project or change its scope before additional wells are constructed.

Large wells in the Angelina-Nacogdoches area may be constructed in a manner similar to well 8 belonging to the city of Nacogdoches, as shown on Figure 5. Diameters may be reduced to less than those shown for less yield than that available from the Carrizo Sand in which this well is made.

OBSERVATION PROGRAM

A reasonably thorough program of observation of ground-water conditions in the Carrizo Sand has been conducted during the past 30 years, primarily by Southland Paper Mills with assistance from the U.S. Geological Survey and the Texas Water Development Board. Observations have been made of water levels in wells, and records have been kept of the major pumpage from the Carrizo. In addition, records have been kept of chemical analyses of water from wells as these became available. This program now should be expanded somewhat to measure water levels in a few wells outside the interest of Southland Paper Mills and to take periodic water samples for chemical analyses in areas where the quality of water may change with continued pumping. In addition, a periodic inventory should be made of all important new wells which are drilled, and any new electric logs which become available should be compiled.

At present there is essentially no observation program underway with respect to the other waterbearing formations in Angelina and Nacogdoches Counties. One is particularly needed for the Yegua Formation, in which the development is beginning to be large in comparison to the potential yield of the formation and for which an observation program similar to that for the Carrizo would be valuable. In addition, periodic measurements should be made of water levels in a few wells in the Wilcox and Sparta sands, and a record should be kept of major pumpage from those formation. Occasional inventories should be made to obtain data on new wells. With these records as a base, the observation programs for the Wilcox and Sparta may be expanded as needed to observe the effects of any new well fields.

The results of such observation programs will make possible a continuing evaluation of the availability of ground water throughout the two counties, and provide for modifying estimates and/or conclusions as new data show this to be desirable.

PRINCIPAL CONCLUSIONS AND RECOMMENDATIONS

The principal water-bearing formations in Angelina and Nacogdoches Counties are the Carrizo Sand, Wilcox Group, Yegua Formation, and Sparta Sand, in that order. Other geologic formations in these counties are capable of producing only small quantities of fresh water.

The area within which the Carrizo Sand contains fresh water extends from its outcrop in the northeastern part of Nacogdoches County to a line running generally from west to east through the northern part of Lufkin. The major supplies of ground water which have been developed in Angelina and Nacogdoches Counties come from the Carrizo. Pumpage in 1968 is estimated at 26.7 million gallons per day. The total supply available from the Carrizo under practical conditions is estimated at 32 million gallons per day, with no increase in pumpage outside the two counties. Large wells in the formation generally have yields of 500 to 1,500 gallons per minute, and the water is of very good chemical quality. Static levels in existing wells range in depth to nearly 500 feet in wells near the center of pumping.

The area within which sands of the Wilcox Group contain fresh water extends from the northern edge of Nacogdoches County to a line trending generally eastwest between Lufkin and the Angelina River. Pumpage from wells in the Wilcox Group in 1968 is estimated at 0.5 million gallons per day, and the total supply available under practical conditions is estimated at 8 million gallons per day. The estimated maximum yield of a single well ranges from zero to 500 gallons per minute, and the estimated maximum yield of an individual well field ranges up to 5 million gallons per day, depending on location. The greatest potential yield appears to be in the eastern portion of Nacogdoches County, some 10 to 15 miles east of the city of Nacogdoches. The guality of the water is better in the northeastern portion of Nacogdoches County than farther south, where, although termed fresh, much of it is considerably more mineralized than the water obtained in that area from the overlying Carrizo Sand.

The Yegua Formation contains fresh water between the northern edge of its outcrop just north of Lufkin and a line passing generally from west to east across Angelina County between Huntington and Diboll. The quality of water within this section of the Yegua, although fresh, varies in an unpredictable manner, ranging from less than 100 parts per million total dissolved solids to the limit of fresh water, 1,000 parts per million total dissolved solids. Estimated pumpage from the Yegua in 1968 was 2.8 million gallons per day, and the estimated supply available from the formation under practical conditions is 7 million gallons per day. Estimated maximum individual well yields range up to 500 gallons per minute, and the estimated maximum individual well-field yield ranges up to 3 million gallons per day, depending on location. The greatest yields should be obtained near the southern edge of the area containing fresh water. The most development in the Yegua at present is at Diboll, where about 1.3 million gallons per day is pumped.

Fresh water is found in the Sparta Sand throughout its outcrop, which is principally in Nacogdoches County, and in two relatively small localities downdip, one in northwestern Angelina County and one in southeastern Nacogdoches County. The estimated pumpage from the Sparta Sand in 1968 was 0.1 million gallons per day, and the estimated supply available from wells under practical conditions is 7 million gallons per day. Most of this supply is available in the two downdip localities where fresh water exists. Estimated maximum vield of individual wells in the Sparta in these localities range up to 500 gallons per minute, and the estimated maximum yield of an individual well field ranges up to 4 million gallons per day. The guality of the water is guite fresh in the outcrop and through most of the two downdip areas. It becomes more highly mineralized near the southern boundaries of these two areas.

A test-drilling program would be desirable before a large development is undertaken in any of the formations in an area where test holes and/or large wells have not previously been installed or where the conditions may be borderline from the standpoint of obtaining the desired quantity or quality of water.

Continuing programs of observation of pumpage, water levels in wells, and chemical quality of water should be conducted for the Carrizo Sand and Yegua Formation and should be initiated on a limited basis for the Wilcox Group and Sparta Sand.

- Anders, R. B., 1967, Ground-water resources of Sabine and San Augustine Counties, Texas: Texas Water Devel. Board Rept. 37.
- Baker, B. B., Peckham, R. C., Dillard, J. W., and Souders, V. L., 1963. Reconnaissance investigation of the ground-water resources of the Neches River Basin, Texas: Texas Water Comm. Bull. 6308.
- Barnes, B. A., 1946, Theoretical effect of increasing present withdrawals of ground water in the Lufkin area, Texas: U.S. Geol. Survey open-file rept.
- Bookout, J. F., 1950, The geology of a part of Cushing Quadrangle, northwestern Nacogdoches and southwestern Rusk Counties, Texas: Univ. Texas thesis.
- Broadhurst, W. L., and Twitchell, Trigg, 1942, Water supply in the sandflat area and adjacent territory in Rusk, Nacogdoches, and Shelby Counties, Texas: U.S. Geol. Survey open-file rept.
- Brown, W. F., 1953, Geology of a part of the Cushing Quadrangle, Nacogdoches County, Texas: Univ. Texas thesis.
- Bureau of Economic Geology, 1951, Occurrence of oil and gas in northeast Texas: Univ. Texas Pub. 5116.

____1968, Geologic atlas of Texas, Palestine sheet: Univ. Texas, Bur. Econ. Geology map.

- Cocke, R. R., 1951, Subsurface geology, N/2 of Nacogdoches County, Texas: Univ. Texas thesis.
- Cromack, G. H., 1936, Records of wells, drillers' logs, water analyses, and map showing locations of wells in Cherokee County, Texas: Texas Board Water Engineers duplicated rept.
 - ____1937, Records of wells, drillers' logs, water analyses, and map showing locations of wells in Nacogdoches County, Texas: Texas Board Water Engineers duplicated rept.
- Dallas Morning News, 1967, Texas almanac and state industrial guide, 1968-1969: A. H. Belo Corporation.
- Darton, N. H., and others, 1937, Geologic map of Texas: U.S. Geol. Survey map.
- Deussen, Alexander, 1914, Geology and underground waters of the southeastern part of the Texas Coastal Plain: U.S. Geol. Survey Water-Supply Paper 335.
- Dillard, J. W., 1960, Memorandum report of preliminary ground-water investigation of Shelby County, Texas: Texas Board Water Engineers duplicated rept.

- Dzilsky, T. E., 1953, Queen City Formation, Nacogdoches County, Texas: Univ. Texas thesis.
- Eargle, D. H., 1959, Stratigraphy of Jackson Group (Eocene), south-central Texas: Am. Assoc. Petroleum Geologists Bull., v. 43, no. 11, p. 2623-2635.
- _____1968, Nomenclature of formations of Caliborne Group, Middle Eocene Coastal Plain of Texas: U.S. Geol. Survey Bull. 1251-D.
- Ellisor, A. C., 1933, Jackson Group of formations in Texas with notes on Frio and Vicksburg: Am. Assoc. Petroleum Geologists Bull., v. 17, no. 11, p. 1293-1350.
- Fisher, W. L., and McGowen, J. H., 1967, Depositional systems in the Wilcox Group of Texas and their relationship to occurrence of oil and gas, *in* Gulf Coast Association of Geological Societies, transactions of the 17th annual meeting, p. 105-125.
- Gatlin, Leroy, 1951, Geology of south-central portion of Cushing Quadrangle, Texas: Univ. Texas thesis.
- Guyton, W. F., 1942a, Decline in water levels in city wells at Nacogdoches, Texas, as a result of pumping from wells of Southland Paper Mills near Lufkin: U.S. Geol. Survey open-file rept.
- ____1942b, Ground-water resources in the Burke area, Angelina County, Texas: U.S. Geol. Survey open-file rept.
- _____1942c, Memorandum on the Carrizo water well supplying city of Lufkin: U.S. Geol. Survey open-file rept.
- _____1942d, Results of pumping tests of the Carrizo Sand in the Lufkin area, Texas: Am. Geophys. Union Transactions, Part 1, p. 40-48.
- Guyton, W. F., and Associates, 1957, Report on 1956 addition to Southland Paper Mills' well fields: William F. Guyton and Associates typewritten rept.
- _____1964, Ground-water conditions in the vicinity of Nacogdoches: William F. Guyton and Associates duplicated rept.
- _____1968, Availability of ground water from Carrizo Sand in vicinity of Nacogdoches, Texas: William F. Guyton and Associates duplicated rept.
- Guyton, W. F., and Rose, N. A., 1943, Progress report on test drilling and pumping in the Sparta Sand in the Lufkin area, Texas: U.S. Geol. Survey open-file rept.

- Hayes, J. F., 1951, Geology of northwest part of Cushing Quadrangle, northeastern Cherokee County and southwestern Rusk County, Texas: Univ. Texas thesis.
- Hendrickson, B. H., Devereux, R. E., and Templin, E. H., 1930, Soil survey of Nacogdoches County, Texas: U.S. Dept. Agriculture, no. 24.
- Hughes, L. S., and Leifeste, D. K., 1967, Reconnaissance of the chemical quality of surface waters of the Neches River basin, Texas: U.S. Geol. Survey Water-Supply Paper 1839-A.
- Lyle, W. M., 1937, Records of wells, drillers' logs, water analyses, and map showing location of wells in Rusk County, Texas: Texas Board Water Engineers duplicated rept.

_____1938, Records of wells and springs, drillers' logs, water analyses, and map showing locations of wells and springs in Shelby County, Texas: Texas Board Water Engineers duplicated rept.

- Payne, J. N., 1968, Hydrologic significance of the lithofacies of the Sparta Sand in Arkansas, Louisiana, Mississippi, and Texas: U.S. Geol. Survey Prof. Paper 569-A.
- Porter, C. E., 1951, Geology of east central part of Cushing Quadrangle, southern Rusk County, Texas: Univ. Texas thesis.
- Renick, B. C., 1936, The Jackson Group and the Catahoula and Oakville Formations in a part of the Texas Gulf Coastal Plain: Bur. Econ. Geology, Univ. Texas Bull. 3619.
- Scalapino, R. A., 1963, Ground-water conditions in the Carrizo Sand in Texas: Ground Water Jour. of the National Water Well Assoc., v. 1, no. 4, p. 26-32.
- Sellards, E. H., Adkins, W. S., and Plummer, F. B., 1932, The geology of Texas, v. 1, Stratigraphy: Bur. Econ. Geology, Univ. Texas Bull. 3232 [1933].
- Stenzel, H. B. 1938, The geology of Leon County, Texas: Bur. Econ. Geology, Univ. Texas Pub. 3818.
- Sundstrom, R. W., Hastings, W. W., and Broadhurst, W. L., 1948, Public water supplies in eastern Texas: U.S. Geol. Survey Water-Supply Paper 1047.
- Tarver, G. R., 1966, Ground-water resources of Houston County, Texas: Texas Water Devel. Board Rept. 18.
 - ____1968, Ground-water resources of Polk County, Texas: Texas Water Devel. Board Rept. 82.

- _____1968 Ground-water resources of Tyler County, Texas: Texas Water Devel. Board Rept. 74.
- Taylor, T. U., 1907, Underground waters of the Coastal Plain of Texas: U.S. Geol. Survey Water-Supply Paper 190.
- Texas Water Development Board, 1966, A summary of the preliminary plan for proposed water resources development in the Neches River Basin: Texas Water Devel. Board duplicated rept.
- Todd, T. W., and Folk, R. L., 1957, Basal Claiborne of Texas, record of Appalachian tectonism during Eocene: Am. Assoc. Petroleum Geologists Bull., v. 41, no. 11, p. 2545-2566.
- U.S. Department of Commerce, 1968 [and preceding years], Climatological data, annual summary: U.S. Dept. Commerce, v. 73, no. 13.
- U.S. Geological Survey, 1969 [and preceding years], Water resources data for Texas, 1968 [and preceding years], Parts 1 and 2.
- U.S. Geological Survey, (various dates), topographic quadrangle maps:

Apple Springs Bald Hill Broaddus Clawson Cushing Diboll Douglass Huntington Keltys Kennard NE Lufkin Lufkin Manning	1:24,000 1:24,000 1:62,500 1:24,000 1:62,500 1:24,000 1:24,000 1:24,000 1:24,000 1:24,000 1:24,000 1:24,000	Martinsville McGee Bend Mount Enterprise Nacogdoches Platt Pluck Redland Timpson Wakefield Wells Wells SW Wolf Hill Zavalla	1:62,500 1:62,500 1:62,500 1:24,000 1:24,000 1:24,000 1:24,000 1:24,000 1:24,000 1:24,000 1:24,000 1:24,000
Manning Manning	1:24,000 1:62,500	Zavalla	1:62,500

- Wendlandt, E. A., and Knebel, M. G., 1929, Lower Claiborne of east Texas, with special reference to Mount Sylvan dome and salt movements: Am. Assoc. Petroleum Geologists Bull., v. 13, part 2, no. 10, p. 1347-1375.
- Wesselman, J. B., 1967, Ground-water resources of Jasper and Newton Counties, Texas: Texas Water Devel. Board Rept. 59.
- White, W. N., Sayre, A. N., and Heuser, J. F., 1941, Geology and ground-water resources of the Lufkin area, Texas: U.S. Geol. Survey Water-Supply Paper 849-A.
- Winslow, A. G., and Kister, L. R., 1956, Saline-water resources of Texas: U.S. Geol. Survey Water-Supply Paper 1365.

Weill Rummber Number Alu Sf-30.1 Remmert & florrelis Co Metholicity #1 304 Earl Adh 305 Jinmile Lay 306 Sussione- field any 306 Sussione- field any 306 Sussione- field any 307 Dinmile Lay 308 Sussione- field any 309 Dinmile Lay 301 N. Mentey 401 D. M. Mentey 602 D. M. Mentey 603 John C. Champton and autice G. Champton and autice G. Champton and autice G. Champton and autice G. Champton field autice Mentey 603 John F. Scort 603 Wm F. Scort	الالله المحمد المحم المحمد المحمد المحم المحمد المحمد محمد المحمد المحممحمد المحمد ا	iriller J. R. Acre English Drilling Co. Inservity & feather Hay feather	Tear Com- Distad 1946	$\frac{d_{\rm L}}{d_{\rm L}} \frac{d_{\rm L}}{d_{\rm L}} d_$	Depth of dell (Yoet)	Castry and deer castry dereen (inches) (2/	d and Street isseter Do inchus) (f	coun lastra Nopth in Feet (Erum) (to)	find to test an tor- bearing (in th	22	atto Level 2/ Jate	and a	102.4	Lerved R. Betec Li	ethad of		Loga ou file	
	Lia Co	J. R. Arre English Drilling Co. Innersity & Lediner Huy Leubner	1946			and the second se						Hate h (3po) (1	(feat)		ALLE AND FORCE	Water N 1960 a 57	stie c/	Rection that is
		J. R. Acre English Drilling Go. Innerwity & Feadmor Noy Geatmer			6,472										1			011 tast.
	ilina Lir. Co. 월1 ma and traitor al 월1 traitor al 월1 cran	Engilad Drilling Co. Innerarity & Feddnor Nuy Leubner	1936		\$	0	36		Cook Mtn	mac oʻri	3-26-37					0 2		Historicsi water levels 1937-1940.
	iltma Lhr. Co. #1 sn and spice- truch al #1 cron #1	Inneratly & Lediner Huy Lediner	1964	300	9222	ပေးလ	či Cu Cu	0 205 205	5 Sperte		F.21-64	7-1/2 105		6-21-64	J₂≅ 1-1/2	64	a	
	ាំវីតា 15 0 ស្ព័រ 20 and 19 20- ១ - អ្វ័រ 19 20- ១ - អ្វ័រ 20-	Innerarity & Leuiner Roy Leuiner		308*													ц	uil test.
	line Lir, Co. #1 nand spice- tt ut al #1 cron #1	Roy Leubner	1965	310	242	6 8	bi cu ru	163 163 163	1 Sparte	3	11-2-65	125	ता अ	11-2-65	in S			
	27 and 12 and 12 at at 手上 12 at at デレ 12 at	Hey Leubner	3461		7,515												ੂ ਹ ਰ	Of1 test.
	10. 8.04 19:10:0- 14: 41: 91: 91: 20- 21:20: #1		1968	0L2	923 9	oы	0 0 0	0 215 825 815	5 Sparte	6.19	12-13-66	ŝ		1965	.5, К 1= 1/2	64		
	10- .rson #1		1961 1		10, 040												ф 44	011 test.
-			1964		6,934													GAN test.
		Auglish Drilling Co.	1951	350	523	b ci	ti 2E	0 165 165 175	5 Cook Man.	40.1	12-11-6%				31 rd 25 rd	а 4		
702 Anderson beit Nist.	Nut.	Ray C. White	SPACE	561	203	555	4 2-1/2 35 2-1/2 4e	o 367 355 467 4e7 507	Clartte	enoru	12-12-65				्र ग	s a		
Nul Mrs. Carrie Dean	g		ingia.		8	80	1-1/4 1-1/4 1	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 Ailavius	,					с, н			Driven weik point.
901 Humite Gil & Neffning Co Angeline Lumber Co. #1	.fining Ca		ang1		7,207						ŕ_						о Бо	041. test.
902 Ariy Semans		C. C. Innerwrity	7957	260	450	0 0	41 11	0 440 440 450) äperte						in P	A		
34-101 Sam Trant et al- McKnight #1	,		1955	19	10,531												ц Ц	Gil test.
102 H. L. Duncan		C. C. Innersrity	1968	552	172	0.0	इत न	द्येत हत्त उदा ह	Sparta	3	12-1-60				ात स्थ	с.) ай		
201 Southland taper Mills		Laуие Техва Со.	1947	*: {}	1 Ŧ		26688 44444	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	Cerrizo	4.59 1.12 1.22 1.23 1.23 1.23 1.23 1.23 1.23	12-26-47 1-12-56 6-21-55 5-66 5-4-66						9 4 3	Ouservarion well. Prillad to $1/377~{\rm fret.}$ Weter level measurements since $2\beta d'$
401 Town of Pollock		Works Progress Admin.	1935		20		15		Cock Mun.	्र न 0 हो	3-25-37 7-14-40					5° c		Blatarical water Luvela 1937-2740.
402 Mrs. N. Carson		0. B. Stevenson	1936		ŝ,	е Э.	36		Couk Mtn.	02	3-26-37 31-29-40					a.	~	Mistoricul water lavels 1937-1940.
403 Theo. Johnson		English Drilling Co.	5967	310	102		4 0 2-3/2 306	0 186 201	Sparte	6.49	12-17-68	17. 17.	100	5961	2,2 2/2	a	14	
561 aufkin State School No. 1		Layne Texas Co.	1956	*637	L, 275		13-5/8 9-5/0 4-1/2 4-1/2 1,188 4-1/2 1,188 1	0 1, 196 0 1, 186 1, 250 1, 250 1, 250	Carrizo	335 173	6-8-56 11-68				ai S	ය ද	x a	Well aufpilee Chate Witholl. Temperature 7597.
502 Central School 503 Dr. Tinkle		Frye Drilling Co. English Drilling Co.	1960 1951	450 330	464 370	80000	444 444 560 50 50 50 50 50 50 50 50 50 50 50 50 50	00040	Sparts Sparts	Ż	10-7-60				ಷ್ಟ್ ಇ ಇ. ಇ	ñ n	ದ ತ ಎ ದ	Supplies weter to athaol. Well has 15 feet of arrean.
504 Central W. C. I.	å	Texas Mater Mells	1961	4222 7	1, 275		2 8-5/8 4-1/2 1,020 4-1/2 1,020	0 1,120 0 1,120 1,265	Carrizo	, 4,28 4,90.8	428 10-6-64 490.8 12-15-68	150 44	-07 Y†4	10-6-64	न ²³ हि	P4	4 a	Drilled to 1,320 foet.
		****					4-1/2 1,26											

- 61 -

Table 7 .-- Records of Weils and Springs in Angelina County

	Renarka		Destroyed.	011 test.	Originally drilled to 523 feet in 1916, dempened in 1939. We er Level measurements since 1939.		011 test.		Destroyed.	Destroyed.	Destroyed.	Mignorical water levels 1937-1940.	Drilled to Ly268 feet.	Marer level messurements since 1939.	Temperature Blog.	Temperature 3. ⁹ 5.	Well wes drilled for fac Griffin.	Test hole, Water samples from 6 zones.	Abandoned, Historical water levels 1937-1939.	Abandoned. Historical water levels 1937-1940.	Intiled to 1,312 feet.	Oli test.	Mater level measurements since 1939.	Intilad to 1,049 feet. Water level measurements since 1939.
	aine -Flavy Bgol	a		c.a		Ω	63	a					D, E	a a	а, е С	82 G	a, d	D, E			a (1 .7	24 2	a d
	0se of Mater 196n 2/	Ω.,	z	994	Ind.	A		9		N	æ	۵	124	Ind.	Ind.	Ind.	<u>م</u>				n.		Ind.	Ind.
	férthod of Lift and Towar	a*5	,a=		의 UN 동기 동기	ब हा ह		± T					2,2 7,00	्र ह	ਸ਼ ਹ ਸ਼ੂਰ	2°0 5°	$\frac{J_{g} \mathcal{E}}{1-2/2}$		2	25	7, t,		а суз	н <i>о</i> 83
	level. Bute	6-3-63				1-65		6-30-67					7-12-67	9-19-57 1-14-69	1-11-69	1.14-69					6-22-66		9-16-57 1-14-69	69-11-T L5-LT-6
	Fampion, fuste sud te Depth	545 545						110						205 2.19							£7.4		445.5 507	452 513
	Parrie ((gps)	303				5		9					1,230	1,120 1,060	069 ⁽ T	056,1					L, 209		1,100	1,120
	1. J	6-3-63 12-19-68			+-++++0 5-125-45 1-126-50 2-1-55 7-13-59 7-13-59 7-13-59	1-65		ó- 67	4-16-37	6-11-37	6-11-37	3-26-37 11-26-40		10-26-39 1-17-44					2-5-37 2-9-39	1-26-37 11-28-40	6-22-66		8-26-39 1-16-44	
	Static Static Impth (feer)	420 471.4 12			102.12 12 12 12 12 12 12 12 12 12	99 19		96	11.2 4			13-8 8-61 11-2 3-01		56.0 10 89.9 1					12.0 3.9	т 912 516 П	421		26.0	
	Indicated Mater- Bearing Unit	Carr1zo	Cock Mtn.		Carrizo	Cock Mts.		Cook Mtn.	Yegua	Cook Mtn.	Cook Mtn.	Cook Mta.	Cartzo	Carrizo	Carrízo	Garrizo	Sparta		Cook Mtn.	Cook Mtn.	Carrizo	,	Carrizo	Carrizo
		L, 100 L, 144 L, 264			929 929 929	136 136		170 190					1, 120 1, 258	5556	889 889 889 889 889 889 889 889 889 889	860 869 869 869 869 869 869 860 986 986 986 986 986 986 986 986 986 986	346				950 950 1,005 1,100		380 938 1,004	899 899 899 1,001 1,024 1,024
:	cen fato bepth in Peet (from) (to)	1,040 1,144			0 691 686	0 156		0 TIO					0 1,128	0 102 116	0 805 803 915 915	1,026 985 985 985 985 985 985 985 985 985 985	325				0 960 1,085		0 617 616 806	0 730 595 1,016
	Gasing and Seveen Pata Casing or Dismater Depth in Seveen (inches) (frus) 2/	12-3/4 6-5/4 6-5/4	60		4-17/13 4-17/13 4-17/13	.4.42		લ્ય લ્ય	55	36	Ģ	36	10-3/4	18-5/2 10-3/4 10-3/4 10-3/4	844444	844444	4-1/2 4-1/2		36	αĵ	16 10-3/4 10-3/4 10-3/4		18 10-3/4 10-3/4 10-3/4	16-01 1/E-01 1/E-01
	Casing Casing or Screen	000	ы		0000	សហ		ບຫ	U U	υ	0	U	00	លប្រធ	000000	000000	ပ္တ		C)	ы С	0030		0000	0000
	Forth of sell (feet)	1,264	9	12,497	955	136	8, 165	190	S.	8	R	CJ CJ	1, 258	949	266	L, olio	₩₽Ê .	1,198	G	26	1,100	8,960	1,004	1,024
	Altitudu of Land Carisco (foet) J/	130			550	260		375					370	* 260	216*	*652		230			0/2		* 04 04	895*
	Year Com- pleted	5963	old	1954	6261	1965	1967	1961	olà	1932	old	0261	2961	6E.6.Y	1956	1956	1957	1937		1691	1966	5561	6661	666T
	ieri.Lher	faty Drilling Co.			layne Texas Co.	Innersrity & Leubnar		English Drilling Co.					Maty Drilling Co.	івупе Техна Со.	layne Yezas Co.	fayne Texas Co.	Layne Texas Co.	tayne Texas Co.		W. F. Arhey	Layne Texas Co.		Leyne Texas Co.	Layne Texas Co.
	vielž Owner .	Lufkin State School No. 2	: Central Schnal	Union Producing Co Feniey #1		Hes.1 Thompson	Elácid Oll Co fairchlid 41.	Rohert fulgate	R., G. Brown	T. Finley	B. Fagen	Ervia ilopper	City of Luftin No. 10	Southiand Faper Wills	Southland Paper Mills	Southland Peper Mills	I. W. Soweil	Lufkin Chamier of Commerce		4 F. Athey	City of Lafkin No. 9	American Liberty Oll Co., Webb & Knapp- Camaron heirs #1-8	Southland Pyper Mills	Southland Paper Mills
	ंस्ट्री.⊥ सि:mterr	505	506	603	602	Toż	10	502	803	192	909	901	-205 -	10trise	ात म	69 1	h04	405	406	401	80 0 7	105	205	503

Table 7.--Records of Welis and Springs in Angelina County---Continued

- 62 -

For footnotes see and of table.

Antimum Litterion Litterion <thlitterion< th=""> Litterion <thlitterion< th=""> <thlitterion< th=""> <thlit< th=""><th></th><th></th><th></th><th>Vana</th><th>Altitude ar tead</th><th></th><th>Castar</th><th>ne end So</th><th>reen hata</th><th>Table</th><th></th><th>Statle Number</th><th>NI A</th><th>sying Rate</th><th>te and here</th><th>And the second</th><th>, ta</th><th></th><th>52</th><th></th><th></th></thlit<></thlitterion<></thlitterion<></thlitterion<>				Vana	Altitude ar tead		Castar	ne end So	reen hata	Table		Statle Number	NI A	sying Rate	te and here	And the second	, ta		52		
Monotone with the field of the field o		Меіі Онпег	Driller	Lear Com- pleted	ol Land Surface (feet) L/	ueptn of Weil (feet)	casing forcen 1 2/	Dismeter (inchus)	yth In Fu rom) (tu		32		1				end Ser 2.		die Je y	Sterred #1kss	
Monde Mare Mare Mare Mare Mare Mare Mare Mar		Southiand Paper Mills	Layne Texas Co.	1939	275*	ÊQ6	ပပေးမ													Water level	
Index Index <th< td=""><td></td><td>Southland Paper Mills</td><td>Layne Texas Co.</td><td>1956</td><td>* 555</td><td>ŤČ.</td><td>0000</td><td></td><td></td><td></td><td>22</td><td></td><td>1, 25 1, 25</td><td></td><td></td><td></td><td></td><td></td><td></td><td>svel mosurements since 1956. Temperature</td><td></td></th<>		Southland Paper Mills	Layne Texas Co.	1956	* 555	ŤČ.	0000				22		1, 25 1, 25							svel mosurements since 1956. Temperature	
Model manufactures: defined manufactures: <lidefined li="" manufactures:<=""> defined manufa</lidefined>		Southiand Paper Mills	Layne Texas Co.	1939		1,000	00						90555							tion well. Frilled to 1,646 feet. Water seeurements since 1941.	
Montentential Mathematical Mathmathematical Mathematical Mathematical Mathematical		Southland Faper Mills	Layne Texas Co.	1940	170*	Ŗ	පග						0.00 0.4							ijon well. Historicsi water levels 1942-	
Matrix for the first of the first		Southland Faper Mills	Layne Texas Co.	1940	*021	55	ப ഗ				3							i-4			
Link link Jay and the fully	ŝ	Southland Faper Mills	Leyne Texas Co.	1940	*02T	15 17	o si				3							i-4			
L_{L} becomes,		Southland Paper Mills	Layne Texas Co.	1940	*0LT	92.t	сv				a,							á			
		K. L. McManry- E. R. Bolton #1		2947															110		
Contact there (1.1)	109	Scuthland Føper Mils	Layne Texas Co.	6961	25J*	1 26														svel measurements since 1939.	
andmatcher (1) fare frame (1) bare frame (1)		Southland Taper Mills	Layne Texns Co.	1956	215*	SLQ	0000				0		97 ' 7							zemaurements since 1956.	
additional hear (ML) depre frame (N) (9) $(1,1)^{\circ}$		Southland Paper Mills	Layne Texas Co.	******	*861 .	927	66 55				0 H		97.7 7							aessurements since 1976.	
		Southiand Paper Mills	Layne Texas Co.	1955		913												-43			
		City of Lufkin No. 5	ідупе Техая Со.	9 4 61		1,170	66666	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5									લંઈ			ad weren levela 1948-1961.	
			Layne Texas Co.	1949		1,221	00	16 8		Carr			3886				нo			tvel messurements since 1948.	
K. I. Mellany- Ruani Entence #, Ruani Entence #, Ruani Entence #, L. Mellany- Entence Mellany- Entence L. Mellany- Entence L. Mellany- Entence L. Mellany- Entence Mellany- Entence <td></td> <td></td> <td>Texas Water Wells</td> <td>1956</td> <td></td> <td>1,300</td> <td>0000</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>щQ</td> <td>****</td> <td>****</td> <td>to 1 MAS feet. Weter level massuromants 35.</td> <td></td>			Texas Water Wells	1956		1,300	0000										щQ	****	****	to 1 MAS feet. Weter level massuromants 35.	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		K. L. Mattenry- Fussell Estate #1		1939		1,036														.:	
u. a. Collaberganu. w. Wilter1922 gdu^* i 27.1 $4.2.6.3$ 27.1 $4.2.6.3$ i3Hetorical vactor levelaw. a. Collabergan1915191519236 $1.2.6.1$ $5.5.1$ $1.2.6.1$ 111w. a. Collabergan1954380 1.141 2 26.5 $1.2.640$ 1011city of Lufkin Ro. 9Taxaa Mater Willa1964360 1.141 $2.5.6$ $1.2.640$ 101city of Lufkin Ro. 9Taxaa Mater Willa1964360 1.141 $2.5.6$ $1.2.640$ 101city of Lufkin Ro. 9Taxaa Mater Willa1964360 1.141 $2.6.6$ 1.030 0.0136 1.3464 100city of Lufkin Ro. 9Taxaa Water Willa1964 3.20 1.141 $2.6.7$ 0.0136 0.0136 0.0136 0.0126 0.0126 0.0126 0.0126 0.0126 0.0126 0.01266 0.0126 0.0126 0.0126 0.0126 0.0126 0.0126 0.0126 0.0126 0.0126 0.0126 0.0126 0.0126 0.0126 0.01266 0.01266 0.01266 0.01266 0.01266 0.01266 0.01266 0.01266 0.01266 0.01266 0.01266 0.01266 0.01266 0.012666 0.012666 0.0126666 $0.01266666666666666666666666666666666666$	501.	city of Lufkin No. 3	Layne Texas Co.	1939	350	1,169	00000										e 0			vval messurements since 1939. ture 889F.	
u. a. Collaergen w. a. Collaergen 1915 19 C 36 1-12-37 D D Historical vector levels City of Lufkin lib. 8 Texas Water Wells 1964 320 1,141 c 16 950 1,036 0 1,361 1,361 1,360 1,262 1,360 1,360 1,260 1,360 1,260 1,360 1,270 16 0,160 0 0 1,276 0,126 0 0,200 7-13-64 0,16 0,16 0,200 1,260 <t< td=""><td></td><td>W. A. Collmorgan</td><td>W. W. Miller</td><td>1922</td><td>244 *</td><td></td><td></td><td></td><td></td><td></td><td>63</td><td></td><td>24</td><td></td><td></td><td></td><td></td><td>თ</td><td>Historic</td><td>ont water levels 1937-1944.</td><td></td></t<>		W. A. Collmorgan	W. W. Miller	1922	244 *						63		24					თ	Historic	ont water levels 1937-1944.	
City of Lutkin Ro. 8 Tease Water Weille 1964 320 1, 141 C 16 0 1,030 Carriero 1430 7-13-64 1,040 502 7-13-64 3,5 P D,E C 5-570 1,036 Carriero 1,330 1,040 502 7-13-64 2,0 20 P 200 0,050 0		W. A. Collmorgan	W. A. Collmorgen	1915		61	D	36		Cook			37					9	Histori	water levels	
		City of Lafkin No. 8		1961		1,141	ບບທບ	16 8-5/8 8-5/8 1,1									аg			to l,200 feet.	

Table 7.--Records of Wells and Springs in Angelina County--Continued

For footnotes see end of table.

[]									•																:	· · · ·		y -
Restarks	Slight sulfur oder.	Test Hole No. 2, Meter semples taken from two zones.	Trat Noie No. 1. Water samples taken from two zones.				Test hole.	Salty taste. Gas reported. When feet of acreen reported.	Ertlied to 1,165 feet.	Test hole.	Uil test,	Observation well. Drilled to 965 feet. Water level messarrements since 1955.	Test nois.	Test hole.	Test well. Absndoned	Thust well. Abandoned. Screen initially set $\ell 0$ to $\gamma 0$ feet.	Obervation well. Møter level monaurements since 1990.	Test hole.	Test well. Casing and ocrnen set to obtain water samplus, then removed.	Test hole.	Test hule.	Test hole.	Test hole.		Obervation well. Frilled to 1,081 fret. Water irvel zemaurmants since 1950.	Obervation well. Drilled to 951 feet. Water level measurements since 1950.	Gun reported in water.	Oll test.
Logs Avail- stile G/	а С	a	a			a	ω		a c	61	;a	D2 N	54)	p.j	A	۵	. a a	63	a d	sa	(24	БJ	ω		e c	ា ជ	A	63
Sae ar Mater 1962 2/	S.,			N	25	a	0	A	G.,															25			۹	
Method of Lift and Power $\frac{1}{M}$	3,8					а " г		₹, 3∕4	5 . 50															ų			a,s	
	1~2~63			1937					6-17-66			1955																
Pauglay Rate and Level te Bopth Into Faul (feet)	hhl								575																			
Fumplar Rate (gpm)	130			Flowed 2					650			52																
to C	L-2-63			1-18-37	1-18-37	1-26-67		11-22-60				8-23-55 7-13-66 5-6-66 4-4-68					7-1-50 6-29-50 5-20-50 5-20-50							5-6-69	5-1-50 7-1-55 7-1-55 7-13-60 1-16-65	10-23-50 6-23-50 6-23-60 6-23-60 6-23-60 6-23-60 6-23-50 6-23-50 6-23-50 6-23-50 6-23-50 6-23-50 6-23-50 6-23-50 6-23-50 6-23-50 6-23-50 6-23-50 6-23-50 7-1-55 7-55 7	1-13-68	~~~~~
Static Water Level Depth Dv (feet)	¢50			61.0	1 0-T+	74 J		54-2 TI				2162 275.9 275.9 275.9					104.2 131-5 215-9 215-9 235-9 235-9 235-9 235-9							5.5	79-3 98-5 137-6 137-6 1 1 137-6 1 137-6 1 137-6 1 137-6 1 137-6 1 137-6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	152.4 10 173.9 234.5 261.4 261.4 260.6	32 1	
Indicated Mater- Bearing - Unit	Carrizo			Yegua	Regua	Sparte		Sperta	Carrizo			Carrizo			Sparts	Sparta	Carrizo		Curtzo					Yegua	Garrizo, Wilcax	Carrizo	ปีรุงครรม	
Feet {to}	620'1 620'1 200'1				ŝ	277			- 680 990 1, 970	080		119			500 600 600 600 600 600 600 600 600 600		758 769 800		706 715 736						1,036 1,036 1,036 1,036 1,036 1,036 1,036		222	142
reen Datu Depth in Feet (from) (to)	о 978 1,079 1,139				0	0 577			0 009 660			0			0980	142 142	0 158 769 790		0 706 725						0 897 907 1,034		0	236
Cauling and Screen bata Cauling or Blasseter Depth in Screen (inchus) (from) 2/	8-5/8 4-1/2 4-1/2 8-2/4			1.8	ų	ର୍ୟ ସ୍ୟ		.st	10-3/4 6-5/8 6-5/8	6~5/9		4-1/2 4-1/2			our.	64 QI	2772 2772 3777 3777 3777 3777 3777 3777		3-1/2 3-1/2 3-1/2					36	1999999 1975 1975 1975 1975 1975 1975 19	200 277 26	ରା ର	ίς.
	0000			U	0	មព		U	ပေးဖ	0		00			ບຕ	Q 12	មែលពេល		លជាហ					ç	ບບລບກ:	្រហា	ບກ	Ð
Depth of Meil (feet)	т, 149	1,153	1, 243	69	700	785	1,304	306	1, 080	973	2460	1 1 1	1,021	396	210	150	109	340	172	960	596	126	1,022	8	1,056	116	247	
ar of land as Surface tod (feet)	365	329*	\$992	268*	\$692	240	260	562	062			* 102	*722	\$902	165*	¥691	*8¢1	168*	195*	*102	212*	\$03*	\$15*		, 228*	* *††?	160	
Year Com- pletod	1962	1935	3561	9161	1919	1961	1966	1960	1966	1950	1937	1955	1955	1955	1940	1940	1950	1950	1950					1934	1950	0561	1969	1938
Driller	Гаупе Техна Со.	Layne Texas Co.	Layne Texas Co.	Layne Texas Co.	Leater Jett	Innerarity & Leubner	Layne Texas Co.	Rushing	Key Water Well Drilling	Layne Texas Co.		Layne Texas Co.	Layne Texas Co.	Layne Texas Co.	Layne Texna Co.	Layne Texas Co.	Layne Texas Co.	Layne Texas Co.	Layne Texas Co.	Layne Texas Co.	Layne Texas Co.	Layne Texns Co.	Layne Texas Co.	McCoy	Leyne Texas Co.	Leyne Texas Co.	Wall Water Well	
Weil Guncr	Redland Mater Supply Corp.	City of Lufkin	City of Lufkin	City of Lufkin	City of faitkin	John Headerson	City of Lufkin	M. R. Wills	M & M Water Supply Corp.	Southland Paper Mills	K. L. M≿Henry- Harris ≢1	Southland Faper Mills	Southland Paper Milla	Southland Paper Milis	Southland Paper Mills	Southland Paper Mills	Southland Tuper Mills	Southland Faper Mills	Southierd Faper Nills	Southland Paper Mills	Southland Paper Mills	Southland Paper Mills	Southland Paper Mills	H. M. Berry	Southland Paper Mills	Southland Paper Mills	I. D. Anderson	8, 1. Kurth- I. Henderson #1
Well Number	607-35-76-09	710	711	212	213	109	êlo2	106	905	104-9E	207	¥03				404	201	205	203	504	305	905	101	201	1	R B	Eon	901

Table 7.--Records of Wells and Springs in Angelina County---Continued

For footnotes are end of table.

Rezarks	Observation well. Drilled to 1.377 feet. Water level messurements since 1941.	Observation wall.	Observation well. Historical water levels 1941- 1955. Destroyed in 1956.		011 test.		011 teat.	Teat Mole drilled to 1,160 feet.	Sormerly Angeline County Lumber Compeny.	Formerly Angelina County Lumber Company.	Historicsi water levels 1937-1940.	Some gas reported in water. Temperature 93°F.	Destroyed.	Test hele 3. Heter samples from 2 tones.	Destroyed.	Well has 20 feet of screen.		Destroyed.	Destroyed.	Destroyed.	Formerly J. J. Callins.	Reported aufur odor and taste. Tesperature 1397.	Des troyed.
Logs Avall- Süle	ы с	а " а			50	ß	a	6.8	p.	- 		ц с	H	 A		 	6	1-4 			A	D, E	8
Use of Water A 1968				a		a		D4	Ind.	Ind.	A	ы Б.	×		м	D, S	D, S	R	R	z		р В.	a z
Method of Lift and Power			z	A, E		з, г т		в, Е 1-1/2	a co	1,E LO		ia st ST	N		z	ಟ ಬ್	ы. 	м	z	*	S CA	ш Н	್. ಸ್
						8-28-67		9-1-66	1954	3-17-55		Ť.										9- 6- 63 - 6	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
1 0014						8-26		5-5	λοί	4		2-10-64										4	
Depth (feet)						100		89 1	122	53		316										9 <u>9</u> 6	
23						9		38	226			E41										500	
use Level J Date	10-22-41 4-14-50 7-1-55 5-9-65 5-9-65 5-4-68	1461	10-22-41 4-14-50 7-1-55	12-27-67		8-28-67		9-7-69	1-4-59	3-17-55	1-11-37 11-28-40	2-10-64 10-16-67				10-25-60	10-25-60	2-11-37		5-31-37	6-17-46	9-5-63	12- 4-68 5-31-37
Mater Level 3/ Depth Pate (feet)	12.0 13.0 13.0 13.0 13.0 13.0 13.0 13.0 13	+30	+66.9 1 16.3 14.3	73 Y		60		140	94	32	7.3 12.2 1	296 338 10				68 M		9.6		C 4	9 इत	126	48.5 12 50.0 5
Indicated Water- Bearing Unit	Hilcox	Sparts	Carrizo	Sparta		Yegus		Yegus	fegua	Yegua	Yegua	Carrizo	Yegus		Yegus	Yegua	Yegua	Yegua	Yegua	Yegus	Yegua	Yegun	Yegus Yegus
, Peet (to)	865 865 891 891	261 202 203 261	756 761	275 281	262	691 691		97 150	1125 1125 1125 1125 1125	19 K K			14.7 68				273 276 310 310 310			~	2000 2000 2000 2000 2000 2000	12222222222	77
Screen Lota r Dapth in Feet .) (from) (to)	0 865 885 886	0 195 285	0 756	0 275	261	0		o 8	0 170 170 195	008		1,320 1 1,320	0 th				200 200 200 200 200 200 200				280 302	538 392 392 392 392 392 392 392 392 392 392	
h Casing and 207 or Dinneter Screen (inches) 2/	8/8-2 8/8-2 8/8-2 8/8-2 8/8-2	2-3/8 2-3/8 2-3/8 2-3/8	-2-2	C4 C4	ત્ય	លល		6~5/8 4~1/2	¥ 855/8 855/8 855/8 855/8	21 72	99	तेतेते २२२२ तेतेतेते २२२२	80 40		as)	.4	20 20 FF FF 65 55		9	48	6-5/8 4-1/2 4-1/2	1/E-21 1/E-21	19 QV
uaing or I 2/ 2/	ပတာပာတ	មភពល	0 0	ലവ	ъ	00		D 10	ບພະຍະຍະຍ	မပေးအ	U U	ပပလပၻာ	පහ		υ υ	5	00000	U U	0				
Depth C of Well S (fuet)	169	162	778	262	4,528	169	1,305	120	Ĩ	26	ę.	1,410	69	2,449	195	52h	315	33	105		327	50	62 62
of Land D Surface ((feet) (<u>J</u> / (* 14	* 142.7	174*	215	*	560		325	345	340		т 350		354* J.	265				265		350	335	270 270
Year of Com- Sur pleted (1	1941	1942	1943	2 2961	1942	1961			469.4	1955 3		1961	1924r	1935 3	1930 2	1957	1957	1933	1929 2	1932	19461 39461	3	1945 21 1932 21
N O A	, end	я		ж	¥			2	ă 	э ^х		51	51	61	57	67	61	19	61	19	ମ୍ <u>ମ</u>	⁵	51
Tailt	Layne Texes Co.	Layne Texas Co.	Layne Texas Co.	Wall Water Well		English Drilling Co.		West & Rehkop Drilling Co.	Layne Texas Co.	Layne Texas Co.	Charles Brown	Layne Texas Co.	Layne Texas Co.	Layne Texas Co.	Sam Feavy	Frye Drilling Co.	Frye Drilling Co.		Sam Peavy		Leyne Texas Co.	Layne Texus Co.	
Well Owner	Southland Paper Mills	Southland Paper Mills	Southland Paper Mills	Kenneth Tresdwy	Coastel Refining Co Henderson #1	E. P. Anderson	Humble Oll & Refining Co J. L. Bonner #1-A	Lancevood Water Supply Corp.	Owens Illinois No. 4	Owens Illincis No. 5	J. W. Shearrard	Woodlawn Water Supply Corp.	Angelina Lumber Co.	City of Lufkin	Sam Peavy	Agriculture Exp. Ste.	Agriculture Exp. Sta.	Agriculture Exp. Sts.	Budson School.	sun3.	Dr. Sietz	Nudaon Water Supply Corp.	Mrs. A. G. Johnson Mrs. A. G. Johnson
Well Number	AD-37-36-902	EOS	106	306	41-201 0	301	42-101 H	201	301	302	303	n to E	305 V	306	707 P				504 B		109 109	602 11	44 201 44 101

Table 7. -- Records of Wells and Springs in Angelina County -- Continued

								Herty Commutty.					brackish, Well	lds Addition.												ica centricry.			
	Resarks					Destroyed.	Destroyed.	One of six wells supplying Herty Community.	Test hole.	Test well.	Test hole.	Test hole.	Water at 500 feet reported brackish. Well plugged back and sbandoned.	Supplies 13 homes in Reynolds Addition.			Abandoned.			Temperature 75°F.		Destroyed.	Destroyed.	Oil test.	Destroyed.	Driled to 887 feet. Suppleo cemetery	011 test.	Oil test.	Destroyed.
forn	Avail- aule 6/						ม		р, Е	ы	a*a	n, E	D, E			A		a		D, E				nd		ы д	63	52) 52)	
üse of	Mater 1968 2/	×	д	5	a	×		a.		M				a,	a	۵	R	Ω,	a	a,	£,				22	Irr.			25
Method of	Lift and Fover 1/		3,5	~	5°4	И	я	ಷ ಣ						а 'n	J,E	51 CI 19	20	3.5° °		3 3 5 1	3,8 15	И	25		н	ial en			м
	late.				*********		3-4-46											9-30-64		9-32-4	8-69					<i>1</i> 959			
f Rute an	Depth (feat)																	156		132						125			
Fumping Rete and Level	Ra te (gpu)						32											201		8	CJ A					ŝ			
2	3	5-31-37		NOCH.	0467	1-18-37	2-4-46	11-1-60						11-20-60	3-22-37	14-43-2	3-30-37	9-30-64	6-2-37	4-22-69	8-28-68	6-2-37	6-2-37		3-31-37	1-13-60			6-2-37
Stat Water I	Depth De (feet)	8.2		UC C	Pr.		138	27.4 3						60 L	18.7 B	36	7.8	20	2-5t	1 1.67	53.8 6	23.0	46.7		5.0	₫.			13.1
	Water- Bearing Unit	Yegua	Yegua	Vound V	regua	Yegua	Carrizo	Yegua		Tegua				Yegua	Yegua	Yegua	Yegua	Yegua	Yegua	Yegun	Tegun	Tegua	Yegua		Yegua	Yegua			Tegua
tæ	Depth in Feet (from) (to)		229	652	582		1,231 1,237 1,237			120	064		704 838	160 160		160 177 209		363 357		302 310 410	£22					85115128283888488	£3		
Sureen De	r Depth (from)		0		278		0 1,170 1,216 1,237			0 00 0	0.0044		0 0	0 161		1/1/ 155		0 336 357		8 252 310	8 0 325					0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	10		
Casing and Surren Heta Casing	Dismeter (inches)	36	CU I	cu e	N OJ	16	4-1/2 2-1/8 2-1/8 2-1/8	ev ca					12-1/4 7-7/8	<i>t</i> , t	36	やすす	36	たまオ	36	13-3/8 7 7	13-3/8 8-5/8 8-5/8	59	æ		94	ັດດອາດທູດດູດອອດດີ ສີ	٥		36
		сı	0	0 C) 03	0	0000	00		0 8	,		00	0 0	0	ပေးက	0	ပပသ	0	ပပပ	ပပေး	Ð	0		D	000000000000000000000000000000000000000			0
Depth	of Well (feet)	18	239	nge	3	110	1,251	500	564	190	303	555	638	226	8	512	50	744	58	412	408	31	55		53	565	5,248	5,000	3
Altitude of Land	Surface (reet)	265	230	366	9		265	280	310*	312*	300*	302*	280	315		300		320		300	580			462.4		с. К			
Year	com- Surface pieted (feet) \underline{y}	old	1965	1.04.8	n/CAT	1924	1946	1959	1943	1943	1943	1943	1965	1946	1936	1947	1917	1961	olđ	1964	1961	9661	old	1943	1930	1959	1952	1952	7922
	Driller		Innerarity & Leubner	C. C. Tunerarity	for The spinit in the	Layne Texna Co.	Layne Texas Co.	English Drilling Co.	Layne Texas Co.	Layne Texas Co.	Loyne Texas Co.	Layne Texas Co.	C. C. Innerarity	White		Taylor		C. C. Incerstity		C. C. Innersrity	C. C. Innerstity					Layne Texas Co.			
	Well Owner	Mrs. A. G. Johnson	H. L. Bulerson	Z. F. Wertshit	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	City of Lutkin	Rulen Berry	Harty Mater Company	Southland Paper Mills		Southland Paper Mills	8	Herty Water Company	Reynolds	George Korn	Dr. Tinkle	John Bennest	Angelins Mater Supply Corp.	Lee Grahan	Fuller Springs Weter Dist. No. 1 C. C. Innerarity	Fuller Springs Weter Dist. No. 2 C. C. Innerarity	G. B. Cornell	G. B. Cornell	J. R. Meekar et al- John Massingill #1	E. C. Greene	K. diguna	B. G. Bygra & E. L. Kurth- Angelina Lumber Co. #2	B. G. Myara & E. L. Kurth- Southern Plne Lumber Co. #1	W. T. Harbuck
	Well Number	AD-37-42-703	108	106			102	202	203	702		206	102	301	302	104	402	105	505	503	504	505	506	109	602	Tal	103	802	803

Table 7.---Records of Wells and Springs in Angelins County---Continued

- 66 -

For footnotes see end of table.

				00001010	<u>'</u> :	ITT REAL	aballot been	121 121 121	T		Stelle N		Pumping Mate and	and Level		08c		
	dell Owner	Drilžer	Year Com- pleted	of Land Surface J/	Depth C of Well S (feet)	h Cusing ar Diameter 5creen (inches) t) <u>2</u> /		Depth in Fort (from) (to)	Indicated Mater- b) Bearing Unit		dater level ^d Depth Date (feet)	Hate (gim)	Depth (feet)	Lin t.e	Method of Lift and Rower <u>4</u> /	: of Water 1966 2/	Logs Aveil- able <u>é</u> /	Remarks
AD-37-43-901	T. C. Murcheson	English Drilling Co.	1957	300	460	Ð	r.,		Yegua	55	8-57				3,5 1/1	0		Weil has 20 feat of screen.
206	Anna Stradt	Innerarity & Leubner	1961	290	256	មព		390 536 536	236 Yegua 256	 .#	19-1-6				3,5 1-1/2	a	ra	
44-101	Gerland Redd	Innersrity & Leubner	1965	285	133	ບສ		ा हत्य व	123 Yegua 133	56.3	12-17-69				J,E 1-1/2	0	<u>م</u>	Drilled to 233 feet. Sand at 225 feet reported saity.
501	George Davis	Innerstity & Leubner	. 1965	275	520	50	ci ci ci	210 23 220 23	210 Tegum 220						a'r	9	д	
301	Southland Faper Mills	Layne Texas Co.	1950	193*	1,101												53	Test hole.
305	Hummble Oil & Refining Co Angelina Lumber Co. #1		1961		6,800												ы	011 tent.
107	J. C. Merren		1934		775	ۍ د	48		Yegus	36.3	4-1-37				ы	z		Destroyed.
202	J. R. Raverd	Innerarity & Leubner	1961	280	237	ටෙන		0 227 227 237	7 Yegus	87	1-28-67				3,4 3/5	٩	Q	
103	0. M. Knight	English Drilling Co.	1959	210	figit	ບທ	11 0.01	0 167 181 0	7 Tegua			,			J,4 3/4	۵		
102	J. W. Freiter- Angeline Lumber Co. #1		1.942														nd	Cil test.
201	Dr. H. M. Wilson	Frank Balcar			014	ن	-1		Yegus						21	×		Destroyed.
3 7 8	fity of Hunthaton No. 7	layna Texas Co.	6. 56 11	325	07L		\$\$\$\$0\$00005555555555555555555555555555	 495 495		9. 545 72	939 	102 	360	65-55 4	ម D ម	П.,	az A	Drilled to 1.063 foot ond plugged back. Mater amples from three gones.
400	Fuur Way Mater Supply Corp.	Layne Texas Co.	196t	330	730				Aegua Coo			P F F	386	7-27-67	7, E	<u>a</u>	a'a	Drilled to $?^{25}$ feet.
603	V. C. Davis	F. H. Balcar	1934		300		6 25	0 280 280 300	0 Yegua	2.011	8-12-37	9 TP		1661				Abs ndomed.
901 F	Pearl Conner	Innersrity & Leubner	1966	295	229	පත	10 10 10	0 218 218 228	a Yeeus						्र इ.स.	a	A	
205 T	J. T. Forrest		1920		18		36		Yegua	12.0	6-3-37				з , г	A		
	Lee Johnson		cld		32		48		Yegua	16.2	6-3-37					A		
101-54	Tenne Bitner	English Drilling Co.	1966	237	206	0 10	51 53	0 196 196 206	Aegus	3	7-66				л, Е 3/4	A		Gas reparted in water.
108	L. O. McMillan- Long Bell Pet. Co. #1		956T	<u>.</u>	10, 360												$\mathbf{D}_{\mathbf{r}} \in$	013 teat.
802	B. F. Cochran	English Drilling Co.	1960		100	7 0	4		Ingua	40	1-60				а. С	۵		
803 B	Roy Fletcher		1925		50		84		Yegua	10.1	6-3-37				ж			វាប់ចលដំលាន១៥ ,
50-201 F	Frank Horton	Innerarity & Leuisner	1965	500	283			0 273 283 283	Fegua						.а, Е 1	a	a	
202	¹ . L. Flowers	Innerarity & Leubner	1967	520	241	ບ ເຊ ບ	2 231 231	142 IS 162 O	Yegua	8	3-14-67				J,E 1	۵	A	
301	Trans American Pet. Corp Ray Hambrick #1		1956		5,516												123	0Al test.
305	Burke Water Supply Corp. No. 1	Texas Water Wells	1967	265	026	0.0000	8-5/8 1-1/2 1-1/2 82 82 82 82 82 82 82 82	0 820 1201 820 820 875 920	Yegus	160	5-67	żSt	550	5-67	TIS	a.	D, E	

Table 7. -- Records of Weils and Springs in Angelina County -- Continued

۰. .

_

	fiererks			Oil test.	Well despend by F. R. Malcar to 704 feet in 1937. He 40 feet of arreen in soul from 655 feet to The variance areas at 50% Abardwood for to	Annual of the second second second second second			Temperature 70 ⁰ P.			Oil test.	Destroyed.		Temperature 72°2.	Oil test.		011 teat.	011 test.	Nepartedly pumps 35 gpa.
Lone	Avall- atle <u>6</u> /	a	A	ω		a	9	۵	а а	8	, R	je)		8	a	33		63	541	а С
	Mater 1960 2/	μ.	д.			Ind.	Ind.	Ind.	ñ.	۵	a			Ind.	Ind.		a			д.
Markend of	LLUT and $\frac{1}{4}$	01 2'E	a a a			а, в 150	52 6 3	ар Н	हत्। इन	3 T	я 0 2 2		ĸ	4, 15	1,8 15		3,5 2/2			n u
and Level	lin te	4-19-67	3-23-64			1461.	7.947	1947	ła. 30. 65		Ť967			1952	1952 h-2h-69					
	feeth (feet)	102				- S	193 T	đ.	n n n		797 T			四枝	165					
Pumpinal Rolar	Rate (gpa)	ŝ	10			303	361	1. 2. 2.	OTE:		1001			150	116					
- Verant	12 E	419.67	3-23-64 7-10-60		09-01	3-30-60 4-21-69	9-7-55	7-47 -	7-15-68	12-12-66	7-15-68		6-2-37	10-31-60	10-31-60 4-24-69		6-2-37			67-67
28	Retti Depth D (rest)	125	87 100.9		544	260 315.2	107	105	720	99	002 P00		8.9	8	11		20 16,8			\$
1 - 1 - 1	interes Bearing Unit	anBay	Yegua		Yegue	Tegun	Yegus	ze gus	Yegun	Хедия	Yegua		Tegua	Yegus	Yegun		Yegua			Yegua
		202 202 200 202 202 200 203 202 200	245 265			678 702 803	685 698 799	2022 2022 2022 2022 2022 2022 2022 202	3255555555 2555555555555555555555555555	166 198	525 525 525 525 525 525 525 525 525 525		न्ह	275 275 305	270 273 303					391 572 572
Sereen Detts	Depth in Fect {from} (to)	216 216 322 337 337 337	0 245			o 543 702	0 533 699	62255555 145555 145555 145555 145555 145555 145555 145555 145555 145555 145555 145555 145555 145555 145555 145555 145555 145555 145555 145555 145555 1455555 145555 145555 1455555 1455555 1455555 1455555 145555555 1455555555	2022200 252200 252200	0 189	5250 5250 5250 5250 5250 5250 5250 5250		C	0 275	0 100 273					343 512
R and	Dismeter (inches)	000000 666668 ttttt	-3 N		8 4-1/2	14 6-5/8 6-5/8	14 6-5/8 6-5/8	ааааааааа <i>хүүүүүүүүүүү</i> Соосаааааа	9000000 900000 9000000 9000000	N N	$\frac{1}{2} = \frac{1}{2} = \frac{1}$		94	10 6-5/8 6-5/8	10 6-5/8 6-5/8		t.			45 CI CI
Cas	canng ar I Screen (0000000	0 0		00	ପର୍ମ	ပပၥ		00000000	69	ບບກບດບຫຍ		0	000	000		0			000
-	trepts of Weill (freet)	745	265	2,650	402	509	808	Las	335	198	es es	5,297	57	302	305	5,464	071	2,510	2,330	572
Altitude	Surface $\frac{1}{2}$	265	592		+162	* 462			520	510	250				293		552	~		195
,	Tear Cum- pleted	1961	1964	1959	1907	146T	1947	2461	1965	1966	1961 -	1958	1930	1952	1952	6561	1929	1937	1948	<i>19</i> 6т
	ÊTE Ê Î.Î.K.F	Teams Water Wells	English Drilling Co.		Івупе Технь Со.	Layne Textes Co.	Layne Texas Co.	Layne Texas Co.	Layne Texas Co.	Innersrity & Leubner	fayne Texas Co.			Layne Texas Co.	Layne Texas Co.		F. Belcar			C. C. Innerarity
	Wall Duner	Burke Water Supply Corp. No. 2	Angelina Co. Airport No. 2	Southern Pice Lumber Co Southern Pire Lumber Co#1	Southern Pire Lumber Co. No. 1	Southern Fine Lamber Co. No. 2	Southern Pice fumber Do. No. 3	Southern Pice Luzber Co. Bo. 4	City of Bibell No. 2	Arthur Fowell	City of Dibbli No. 1	E. L. Kurth- Koppers Co. #1	L. G. Capps	Matural Gas Fipeline Co. of America No. 1	Matural Gas Pipeline Co. of Asserica No. 2	E. L. Kurth Trustee- Angelins Lumber Co. #7	Culldress (N. P. Stinson)	Petroleum Hest & Fower Co Southern Pine Lumber Co. #1	Hutson & Janner- Obid-Morris Eat. #1	Prairie Grove Mater Supply Corp. C. C. Innerarity
	Vell Number	303	304	109	602	ŝ	ġ	605	606	607	, ,	51-101	102	. 201	502	203	301	101	402	Eot

Table 7.--Record of Wells and Springs in Angelina County--Continued

- 68 -

Weill Mumber Weill Owner Mumber AD-37-51-014 Bownet (J. L. Russell) 501 F. W. Handerson- Soll Reads fill 502 F. W. Handerson- Reads fill 503 F. L. Kustherson- Soll Reates fill 504 Bouth fill 503 Frien Lunder Co. fill 504 Bould for Bould do. 505 Dr. Weeka 601 Stron Thougaon 503 Even Houser Bould do. 901 Strain (011ve School) 902 Elbert Haverd 52-101 R. L. Goodman 52-101 Rev. C. A. Jell 52-101 H. L. Goodman 52-101 H. L. Goodman 5202 Rev. C. A. Jell 521 Heu-Tex Foultry No. 2 522 Rev. C. A. Jell 523 Just-Fourtros 524 Just-Fourtros 521 V. L. Mellanger et al. 522 Plus-Tex Fourtry No. 2 623 Just-Fourtros 624 Foulder Plus 524 Fo	Driller Mickole Atkinaon Atkinaon Atkinaon Atkinaon Atkinaon Atkinaon Atkinaon Atkinaon Atkinaon Atkinaon Atkinaon Atkinaon Atkinaon Co. C. Innerwrity F. Balcar F. Ba	Tear Come 1,915 1,953 1,953 1,953 1,956 1,926 1,926 1,928	of Lend Surface (feet) <u>1</u> /	Dept of Mell (fee 154	<pre>b Cusing and co cor Dismeter Screen (inches)</pre>	Dismeter D (inches) (.	r Depth in Feet (from) (to)	Tudicated Water- butto	32	bric Level 2/ Late	Rate	rusping and and lave. ats Depth Date		Method of Lift and	Use of Water A	Logs Aveil- shie	Romes where
				156								(leer)		Fouer W	1961	9/9	OF ALL Y FINAL TALK
					u	8		Yegua	8,45	2-11-37						+	Destroyed.
The second se				2,492												о 	Dil test.
				4,656												0 14	011 test.
			522	451	U	¢v		Yegua	R	1991				а,г т	A		
	 P. Balcar P. Linnerbrity C. C. Innerbrity C. C. Innerbrity R. Balcar P. Balcar English brilling C English brilling C 	1920 1931 1928	542	569	000	8-5/8 3 3	0 517 56	515 Xegua 517 560	0°24 71	6-21-65 4-29-69	09	-4	69-62-4	a o	ы а,	a a'u	Drilled to 602 feet. Temperature 740%.
	 R. Balcar R. Linnerwrity C. C. Innerwrity K. Iauhm R. Balcar P. Balcar English brilling C English brilling C 	1931 1928	200	900	C	42		Tegus	+2.0	2-17-37					z		
	 C. C. Inmerarity C. C. Inmerarity & Leubn F. Balcar F. Balcar English Brilling C English Drilling C 	1928		909	ە ت	8 6 7	0 76 160 80	760 Yegun 800							Ind.		
	 C. C. Innerwrity C. C. Innerwrity & Leubn P. Balcar P. Balcar Bagliah Brilling C Bagliah Brilling C 			EI	ອ ບ	36	1	13 Jackson	6:9 1:0	6-1-37 7-17-68				J,E 1/2	a		
	 C. C. Innerwrity C. C. Innerwrity & Leubn P. Balcar P. Balcar Egilah Drilling C English Drilling C 	1932		58	э Э	36	0	28 Jackson	9.6	6-1-37				и	*******	<u>a</u>	Destroyed.
	 C. C. Inneraricy Inneraricy & Leubn P. Balcar English Brilling C English Drilling C 	1958	240	194	0 0	ה ממ	161 811 181 0	M. Yegun	89	1958				2,2	a		
and the second se	Innerwrity & Laubm F. Halcar English brilling C English Drilling C	1958		200	υ	4		Tegua	2:15	11-30-60				J, E 1-1/2	ร ฉี		
	F. Balcar English Drilling C English Drilling C	er 1965	562	222	ധത	نہ حد تب	0 222 212 222	12 Yegua	1.10	7-16-68				J,E 1/2	a		
	English Drilling C English Drilling C	1934		250		4		Yegun	60.0	1-20-37				ж		2	Abandoned.
	English Drilling C	o. 1957	250 .	135	U	CN.		Yegua						a'r	6		
		o. 1960		135	ц	4		Yegua						J, E	ω		
	. 8 1	1941		5,565												ю 4	Oll test.
	C. C. Innerstity	1968	510	655	Uw	6 6	0 635 635 635	5 Yegua	8	7-68				ല ന്ഡ	a	A	
501 J. D. Johnson	C. C. Innerarity	1958		262	0	cu		Yegus	5.0	12-13-60				3,2 2/2	<u>а</u>		
601 C. Andree III. Otis Nerrin ∦1		1952		5,465												E 01	Oil test.
602 M. M. Flournoy	F. Balcar	1936		609	υ	4		fregua	23 . 4	11-30-60				3,E 1-1/2	u	<u>ਹ</u>	Casing aeverely corroded.
603 J. M. Wren Drilling Co Dew Nerron #1		9491		2,680										-		6 а	Oil teat.
501 Carter-Kelly Lumber Co.	Ward Welly	1915	*86T	541		10	0 500	0 Yegue	26.2	72-37						4	កំបនធាជំណាខ៨ .
53-101 Rorace Gillespie	Innerarity & Leubner	ar 1965	250	225	ດ ບ ຫ	1-1/2 23 1-1/2 23	0 215 215 225	5 Tegus	77	6-1-65				J, E 1+1/2	A	a	
102 Shawnee School	Works Progress Admin.	.n. 1934		478	2	না	0 466	6 Yegus	69	7-15-37				×		Åb	Abandoned.
201 A. E. Forse	C. C. Innerarity	1958		THE	00	ମ ଅଧ	0 137 137 147	7 Yegun						ан 19	a		
202 Jack Roberts		1947		22		36		Jackson	L*4	69-9-5				4,E	A		
301 K. L. McHenry- Long Bell Pet. Co. #1		1943		5,070													Oil test.
401 Atlantic Refining Co.		1941		4th 7	7 0 (1)	24 4	0 413 433 435	3 Yegua	56.9	12-2-60			-	E CU	а д		
402 Atlantic Refining Co.		1934		452		ę		Yegua		*****				×		Ab	Abandanad .
601 Tex-Mo Drilling Co Long Bell Pet. Co. #1		3946		5,025											(4)	ю 20	013 teat.
602 Camp Perry				Buing				Jackson							×	8 El	Estimuted flow 5 gpm.

Table 7, -- Records of Wells and Springs in Angelins County -- Continued

* 8

• ••

	Rewarks	011 test.		Well has 10 foot of screen.			ča pped.	011 test.				Ges reported in water.	Canay Creek Recrestion Ares. Drilled to 820 fest.	Canuy Creek Necrestion Area.	041 test.	011 test.				Destroyed.	Well hus 12 feet of screen.	Well has 20 feet of slotted screen.	Abendoned.	Gas reported in water.	Ges reported in water. Temperature $7^{\rm th} {\rm OF}$.	011 test.			Sandy Greek Recreation Area.
	Logs Avail- able <u>6</u> /	. 50	p			54	ω	54	A			۵	a	8 G	64	54								,		ы			۵
	use of Water 1968		P	a	z	≏+	z		a,	n.,	ρ.	a	a.,	a.			a	ອ ້ ດ	8		A	a		۵ 	A		*	a	Ω.
	Method of Lift and Pouer 3/		.1, £ 3∕4	а ' а		ສ ູ			3,E 1-1/2	s, e	5, E 1-1/2	33 	व. व./ह	3,5 3/4			3,5 1/2	3,8 1/2	3.'r		$\frac{J_{1}E}{1/4}$	а. -	M	E, A	24		22	J,E 3/4	а, т Ф
	Date																				11-3-60	11-3-60							
													150	180								7							
	rumping mere and (ghu) (feet)												57	51							Flous	Flows			Flows 1/2				
	~ U		3-58	3-58					5-1-67		7-32-68	2-28-67	7-11-68				12-13-60	4-25-69	7956T		ļā:	<u>ја</u> ,	4-15-37		7-10-68 F		7-10-68	1967	1962
	uter Lever3/ Depth Date (feet)		¢.	58					5 6 1		27.6 T-	6 99	37.6 7-				94.5 12-	4 7.8	65				28.5 4-		+6.5 7		4.9 7	40	52
	Indicated Mater- Bearing (Ja ckaon	Jackson	Jackson	en j	5			 #1			Jackson	Jackson			Jackson	Jeckson	Jeckson		Ласквол	Jackson	Jackson	Jackson	Jackson		Jackson	Jackson	Ja ckaon
			156 8 2 156 8 2	Jac	Jac	Yegua	462 Yegus 715 820		262 Yegua	204 Yegun	190 Yegua	110 Yegua 120	205 Jac 205 223	205 Jac 205 223			Ĵac	Jac	135 Jac 145	14	Jac	Jac	Jac	-Jac	345 Jac 355 Jac	65	19 Jac	360 Jac	323 347 366 366
	ten lata Depth in Feet (from) (to)		~~ ಸಸ °ವೆಹೆಕ್ಕೆ				0 41 715 8		562 262	204 204	190	7 011 011	ବ କ କ ଅନ୍ୟ ଅନ୍ୟ ଅନ୍ୟ ଅନ୍ୟ ଅନ୍ୟ ଅନ୍ୟ ଅନ୍ୟ ଅନ୍ୟ	0 181 181 181					1 5ET	0					345 3 345		D	0 350 3	0 H 8248
	Lusing and Sereen Matu ing Dismeter Depth in een (inches) (from)		1 5-1/2 5-1/				8-5/8 4-1/2 4 4-1/2 7		Ci				8-5/8 4-1/2 2-1/2 2-1/2	8-5/8 4-1/2 4-1/2							2-1/2		83					63 EU	2222 7777 12662
	Casing Casing or Diam Screen (ind S/						್ನುಕುವೇ ಬಲಣ		.ನ ನ ಬ ಬ	_1 ರು ಬ ಬ	-ಸ ಸ ೮ ಣ	വ സ പ സ		ರಾವನ್ ಬಲಸ			# 0	c 36	010 010	c 48	0 5	9 0	0	0 00 0 00	0 0 0 0		с 5†		2000
	Depth Cas of Cas Well Scr (reet) 2	2,614	0 256	2	Ing	663		3, 085	272	238	otz	120	E	Ê	4 , 013	3,000	244	57	345	74	347	344	300	315	365	3,512	61	365	366
		1 ⁶		0	Spring			- fr		*******		175		061	÷	<u></u>	545		200		170	170	215		140	.e1	165	515	180
k	r of land bed Surface bed (feet) <u>1</u> /	66	85	58 250		54 340	30	9	57 1.80	56 180	06T 190		061 L90		0,	0461					T 4461	1955 T.	1915 2	1960	1961	1461	1943 10	1964 2	1965 I
-	Year Com- pleted	6E 61	1958	1958		1961	1961	1946	5 1961	1966	8 1967	1961	L961	1967	0461	ф. 	1955		1956		6r	61	61	16	19	19	19	61	
	Driiter		Frye Drilling Co.	Crews		C. C. Innerarity	C. C. Innerarity		Roy Leubner Drilling Co.	Dixon Water Well Service	Roy Leubner Drilling Co.	Dixon Water Well Service	Key Drilling Co.	Key Brilling Co.			C. C. Innerarity		C. C. Innerarity		Crevs	T. Snowden		G. W. Boykin	Bnowden			Shamous	Frye Drilling Co.
	Well Owner	K. L. MoHenry- Humble Fee #L	U. S. Forestry Service	K. P. Colevan	Texas & New Orleans H. R.	Zavalla W.C.I.D. Ho. 1	Zavelle W.C.I.D. No. 2	R. Y. Weiker- Angeline Hardwood Co. #1	Flessure Foint Estates No. 2	Plessure Foint Estates No. 1	Flessure Fuint Estates No. 3	E. T. Wilson	National Furest Service No. 1	Mational Forest Service No. 2	Arkansss Fiel 011 Co The Carter Co. #1	The Mudge Vil Co. and K. L. Neferry. Fairchild st al #1	Ernest Create	Doyle Sackon	Charle Havard	ើត៤៤នេះបា មិងរក្ខខ	Maccibar Corp. No. 1	Macobar Carp. No. 2	C. C. C. Camp 827	L. Boykin	L. R. Euberiks	K. L. Mcfeurry- Wm. Camercu Co. #1	Mary Frazier	Archie Kelly	Mational Forest Service No. 1
	Hell Number	AD-37-53-601	5	206	503	406	506	24-101	101	402	403	101	196	206	59-101	301	101-09	102	201	61~101	201	202	203	101	6.11	62-201	505	301	63-201

Table 7.--Records of Weils and Springs in Angeling County--Continued

- 70 -

~ •

Table 7, --Records of Wells and Springs in ${\it Angelling}$ County--Continued

// Altitudes which have esterishs (*) are from anerold or differential leveling surveys. All other altitudes are estimated from USAS topographic quadrangle maps having 10-foot or 20-foot contour intervals.
2/ Identifying letters used are:

C - Casing or blank liner Screen

3/ Reported water levels are given in feet; messared water levels are given in feet and tenths. + indicates water level above land aurface. M/ Identifying latters used are: Number indicates horsepower. T ~ turbine B ~ butane Z - electric H ~ none N - none sirlit cylinder centrifugal jet suhmersible ÷)) ; ; ; ≺បប៉ី≒ព

Identifying letters used are: 2

M - none P - public surply S - livestock D - domestic Ind. - industrisl Irr. - irrigation

g' D indicates drillers' kg awrinbis; E indicates electric kg swithkie. Brillers' kogs and electric kgs are in files of Faxes Weter Bevelopment Eard.

,													el zesture-	ssuremente		y sand.	c use.	nd.						rock.							
îterarko	Alandada .	Drilled to 722 feet.		Oll test.	Abendonad.	Estimated flow 8 gpm in 1936.	Cil test.		011 test.			Gil test.	Standby well. Rarely used, Water lavel zossure- ments since 1942. Temperature 710F.	Brilled to 1,302 feet. Mater level mesurements since 1961.	Mater reported in fine sand.	Destroyed. Nater reported in hard gray sand.	Destroyed. Reported unfit for domestic use.	Abandoned. Water reported in White send.	ULL test.	Uli test.	Oll test.	Absndcned.		Åbsndoned. Meter in white sand under rock.	Abandoned.		Oil test.	Abandoned.	Abandoned.	Drilled to 503 feet.	012 test.
Logs Avail- sute (/		3 °C	*******	¢			12		64			14	A	n a					741	рd	ন্দ্র						54			a a	ω
use af Mater 1965		а,	A			a		a	*******	A	a		û.	Эл	×								a			м				Ind.	
Muthud of Lift and Prover	×	a n	й		z	z		12		ຜ ຳ	а"r		ຜູ ສ	्र भ	и	×	×	×				N	И	ж	25	ಜ ಬ್ ್		55	z	8, 5 8	
 Level jate		5-6-65												6-15-59 5-14-69																	
 Pasping fute and te Depth (ret)		tor												536																	
 Pusping Bate (gpm)		52												110 101																	
્યુટ	9-i+-36	5-6-65	2-7-69		9-4-36			9-8-36		9-4-36			2-24-42 2-9-45 7-11-50 7-19-55 7-19-55 7-19-55	6-15-59 12-11-68 5-14-69	9-4-36	9-8-36	6-21-36	9-4-36				8-21-36	2-11-69	9-6-36	9-8-36			9-8-36	9-8-36		
Otatic Mater Levo Meptis (Teot)	26. ì	13	2.6		25,2			45.3		19.5			116.4 116.4 117.3 117.8 117.8 117.8 117.8 117.8 117.8 117.8	138 164.5 159.8	32.7	6-1E	14.7	44.4				20.9	8.9	43.4	竹橋			21.12	24.5		
Indian Led Mater- Bauring Unit	Reklaw	Carrizo	fueen City		Reklaw	ALLUVIAN		Queen Clty		Wlicox	xcox M		Carrizo	Wilcox	Queen City	Queen City	Heklay	Carrizo				Reklav	Carrizo	Queen City	Queen City	Carrizo		Sparta	Reklaw	Wllcox	
Fret (to)		58 88 88			~~~~								240 320	22222	8						anta an diferen									804 804 804 804 804	
 reen Data Depth in Feet (iron) (to)		0 240 240											0 950	0 998 1986 1986 1986 1986 1986 1986 1986	84															0 120 140 140	
 Chaing and Serean Data Ing r Diameter Depth in een (inches) (irum)	си -т	्रेल्न स्थि १४३	30		36			36		36	30		6 4-1/2	999999 999999 488889	6-5/8 36	36	<u>%</u>	36				36	42	36	42	.स.स		, n N	36	\$\$\$\$\$	
 Cad Ser Ser	υ	000	0		р 			0		0	0		00	000000	00	0	0	6				0	0	0	0	0 13		0	0	0000	
Depth cf wull (reut)	30	9978	전		ŝ	Spring	4,875	5	6,280	55	91	6,861	ġ,	200	42	39	2	20	6,079	7,950	8,261	52	8	£9	14.7.	342	6,720	30	æ	25tj	8, 257
 Altitude of Land (luriece (feet) $\underline{\lambda}$	325	325	305	4, 830	345	280		h_{1G}		370	330		405	405	460	510	360	375				425	hh_0	044	465	360		660	100	420	
Year Com- picted	1928	1965		9461	1924		9561	old	1953	266T	1965	1954	9 <u>1</u> 61	6561	1936	1900	1934	1932	1952	1951	1952	1890	0461	1916	1931	1969	1951	old	old	1950	1949
Detiie		Lasford Brilling Co.									Emelley		J. N Reard	Layne Texas Co.												Howeth's Well Service					
vell Ouner	Art Cranford	Sacul Water Supply Corp.	Ids Dixon	Dunigen Bros Arken Cranford #1	J. P. Furra	T. & H.D.H.H.	Coulston Drilling Co J. L. Dedman #1	A. J. Masco	Humule Oll & Refining Co - Travick Gas Unit #40	Ernie Gwens	Albrey Mutlack	Humble Dil & Refining Co Trewick Gas Unit #40	City of Custing No. 1	city of Cushing No. 2	L. S. Hing	Gele Denney	L. L. Ivy	J. F. Iwy	Humble Oil & Beilning Co Trawick Gas Unit #22	Humble Oll & Refining Co Traviek Gas Unit #8-1	Humble Oli & Rafining Co Trawick Gas Unit #28	A. McMillan	George Lewis	B. A. Birdwell	U. Cornellus	Cittord C. Wiltaker	Humble Oil & Refining Co Travick Gas Unit #13-1	J. A. Brever	T. B. Fountain	Humble Oll & Rafining Co.~ Layne Texas Co.	Humble Oli & Heffning Co Thurmon Crnvford et al 孝1
 kell Number	TX-37-09-501	202	£03	éal	602	603	901	905	105-01	301	305	701	к Ол	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	40h	405	205	502	103	603	603	604	605	701	201	E0L	106	802	Eog	106	902

Table 8. --Records of Wells and Springs in Nacogdoches County

- 72 -

Well Number	Acil Cener	Ľar£⊥i.ar	Year Com- picted	Atitude of Lond Surface (feat) <u>J</u> /	Depth of sell (roet)	Casing Casing or Screen 2/	$ \begin{array}{c} \mbox{Casing and Sorreen Matter} \\ \mbox{Casing Dispeter Markin in Four Dispeter Markin in Four Extrem (incluse) (iron) (to), \\ \mbox{\mathcal{Y}} \end{array} $	Indianted astara Hearing Unit	20	tite Lavel J	Fuering take and Level Buta Depth late (gam) (foet)	evel Maturd of Rete Lift and A	of Use ui of ui ui ui 1000	a lagy er Avell- stle	e - Premo Pica
TX-37-10-903	Humble Oll & Hefining Co Travick Gas Unit #10-1		1951		6,050									6.2	011 test.
406	Mrs. Nellie Acrey		1321	160	20	c c	36	Reklav	36.5	9-7-36		72			Abandoned,
104-11	Humble Oil & Refining Co Trewick Ges Unit #14-1		1951		6:059									12	Oll test.
405	Luke Moere		1900	1420	26	ы	30	Carrizo	5.61	6-27-36		2			Attendomed. Meter reported in hard gravel and supl.
604	A. A. Acrey	A. A. Acrey	669T	340	53	ω	36	Carrizo	6-51	8-21-36					Absndoned.
501	Mrs. P. J. Costes	E. C. Coates		544	444	Ð	30	Carrizo	40.0	0-29-36		8			Destroyed. Weter in white sand.
205	A. G. Muller				Spring			Carrizo					25		Estimated flow in 1936, legm from send.
601	Humble Gil & Hefining Co Trewick Gas Unit #43		1953		6 , 166									64	Oil test.
602	J. E. Blackturn	Galloway	1956	064	29Å	ಬು	ತ್ರಣ	Wilcox	<i>1</i> 17	1961	ТО	7,E	a 		
É03	A. J. Sleffert	Entelley	1960	1,60	5U 17	υ	30	Carrizo	15	1969		J, Е 3/4	0		-
405	H. J. Mings	Свідочву	1950	025	542	ပေးလ	-17 (7)	Willow			IO	61 ເວົ	s a	10	
102	Mumble Oll & Refining Co Truvick Unit #19		1952		8,024									ы	Oil test.
702	S. H. Watkins			9 (00 1	Spring			Reklav							Estimated flow in 1936, 1 gpm from sand.
703	S. H. Natkins		3061	927	37	υ	40	Certico	30.6	8-20-36		z			Destruyed.
704	T. Y. Elsckburn		1906	430	ЗГ	υ	54	Rekiaw	19.2	8-21-36		22			Abandoned.
507	W. W. Sitton		0661	420	42	Ð	36	Rekisw	24.8	96-7-6		23			Abundoned.
90L	R. E. Dempsey	Norris Lankford	1957	405	676	υ	ţ	WILCOX	128.2	69-6-1		19 CI	ъ'с	14	Temporarily shut down for repairs.
LOL	J. W. Caver	Dick Fenton	1959	430	30	5	36	Carrizo		1960		J,E 1/2	з ' а		
Ê01	Humble Oll & Refining Co Travick Gas Unit #35		1953		8, 340									161	Oil teat.
602	Macogdoches Industrial Foundation	layne Texas Co.	1960		1,506							22		$D_{*}E$	Test hole. Mater samples collected from five zones.
£03	Caro Lumber Co.	Mellar Drilling Co.	1938	1,00	205	0 0 0 0	6 0 266 4 240 450 4 450 500	Wilcox	54-1	2-24-42		21		A	Ausnahmed. Bistorical water levels for 1942.
703	J. L. Dedman	Marie Pretty	1941	410	240	ស្រ	\$\$ \$	Carrizo	1°4'	2-24-42			2°*2		Historical water levels for 1942.
805	L. Stephens	M. I. Stephens	plo	01/1	54	U U	4B	Carrizo	29-92 8-96	9-22-42 5-30-44		м			Abandoned. Historical water levels 1942-1944
606	Tom Crossland		old	450	ŝ	o	42	Rekiew	F.97	8-28-36		м			Destroyeà.
209	A. E. Wilburn	Smelley		4,20	100	U	30	Carrizo					ා 		
901	Caro Water Supply Corp.	Triangle Pump & Suppiy	1965	415	463	ບບທ	8-5/8 0 4/21 3-1/2 3/1 4/21 3-1/2 4/21 4/63	Wilcox	9.651	5-16-69	85 195 5-16-69	-69 5,E	*********	a a	Drilled to 552 feet.
206	Mrs. M. E. Reider	J. W. Randsil	1661	455	8	ы	36	Rekisw	13.8	96-16-9		*	*		
506	G. R. Solomon		1161	440	19	U	N F	Cerrizo	12.6	6-29-36		z	**		Water reported in red sandrock under 2-inch layer of iron rock.
406	John builey			1440	73	U	36	Carrizo	67.4	6-29-36		N			Abendoned,
305	Wilmer Scroggins	Wilmer Scroggins	1931	450	8	U	36	Carrizo	18.8	6-31-36		×			Abandoned.
906	Hollis Salomon	Chambers Water Well Service		485	565	υ	4	Wilcox				ы. Ч	0		
12-201	T. B. Lunsford			202	Spring			Carrizo				2,E	5°0		

Table 8. --Records of Wells and Springs in Nacogdoches County--Continued

Wethod uf the Logs Lift and Woter Avol Frown 298 augus Port 298 augus	N D Water reported in clay.	P Supplies Came Tonkave. Flow 0.5 cfs on 3-31-42. Est. flow 200 gram on 12-4-68. Temperature 65 ⁰ F.	N Abandoned, Weter reported in red sand. Historical vater levels 1936-1941.	N	J,E D,S Reported flow 2.5 gpm.		N Natur reported above lignite bed.	K Destroyed.		Historical water levels 1942-1944.	N S Eachimated flow 2 gpm in 1936. Temperature $72.5^{0}F$	а И И	B, E D, B D	E Diltest.	E Test hole.		3, E, D, E D	3/t D D	N N Mater reported in white sand.	ດ, E ມີເ	8 Abandoned.	1,8 P D	лу£ Р 10,Е	N Material water levels 1936-1940.	1,8 P D.3 Temperature 71.50P.	N Absadoned.	N Known as "Red Spring." Flowed 1 gram in 1936. Red color. Temperature 72 ^{DF} .	E 011 test.	R Abandoned. Water reported in gray quicksand.		J.Z D.S Heter reported in sand near buttom of well.
fumping have and Level Met Bate Dapth Date Lill (grue) (fert)								-									LU LU	6 4-27-66					120 7-10-52 123 5-13-69		49-01-6 19-06 69-51-5 190 6						
Static 3/ Water Lavel 3/ Repth Lavel Bate B (feet)	9.9 IO-5-36		22.4 10-8-36 16.7 6-17-41			30.4 10-5-36	13.3 10-5-36	32.2 10-6-36	20.2 10-6-36	30.0 9-22-42 32.5 10-10-44		41.0 10-6-36				109	80 4-1-65	152 4-27-66	28.0 10-8-36	290 1966	32.5 Io-6-36	94.8 3-11-39 130.3 5-13-69	120.0 6-21-52 105.9 12-4-68 127.9 5-13-69	15.3 10-6-36 4.6 12-4-68	82 9-10-64 93-9 5-15-69				30.8 10-12-36		6.3 12-4-68
Indicated t Mater- Bearing Unit	Wilcox	Carrizo	Carrizo	Carrizo	Carizo	Wilcox	Wilcox	Carrizo	Carrizo	Carrizo	Carrizo	Certizo	Wilcox			Wilcox	Wilcox	Wilcox	Carrizo	Wilcox	Wilcox	Wilcox	Wilcox	Wilcox	xoxtW	Wilcox	Wilcox		WILCOX	Wilcox	Wilcox
Casing and Screen Deta Casing or Diameter Depth in Peet Screen (inches) (from) (to) 2/	C 42		c 36				C 142	C 42		C 118		C 28	c 4-1/2 0 355 s 4-1/2 355 373			C 4	C 4-1/2 0 213 237	0 14 0 260 5 14 260 270	c 36		c 1/2	c 10-3/4 s 4-1/2 300 340	c 0.5/8 0.293 c 6.5/8 276 294 s 6.5/8 294 334	9† D	C 14 C 254 C 14 C 254 C 8-5/8 154 262 8-5/8 262 316 C 8-5/8 310 346 C 8-5/8 345 356	c 6 182 280			C 48	c *	c 30
Depth Ct of Well Sc (feet)	fi	gring	సే	pring	pring	Ť	19	35	53	36	Spring	4B	373	8,213	267	770	233	510	얈	200	63	340	339	R	356	260	Spring	3, 534	33	200	101
Altitude of Land Surface (feet) <u>1</u> /	490	430	064	94	7460 E	335	380	410	405		360	1,20	480		200	0 <i>L</i> †	400	520	505	145	330	06E	390	395	9 <u>2</u>	380	380		300	320	31.7
Year Com- pleted	plo.					1921	1890	1932	1934			1925	1968	1952	1950		1965	1966	1934	1955	1912	6E6T	1952	otă	1 961	TEQ1		9661	1920	1961	1965
Driller								J. H. Susmers				J. G. Fredrick	Innerarity & Leubner		Layne Texas Co.		Howeth's Water Well Service	Innerarity & Leubner		James Shoffner		Merle R. Pretty	Leyne Texas Co.		Laуne Texas Co.	Wells & Montague				English Drilling Co.	Smelley
Vett Owner	T. J. Williams	Boy Scouts of Americe	A M. Foshare	Bellevue School	Max Hart, Jr.	J. L. Williems	W. C. Lee	J. H. Summers	Hoy Grey	Mrs. G. Fluzgerald	Texas Highway Department	J. G. Fredrick	Harold Chenowerth	Humble Oil & Hefining Co Garrison Lumber Co. ∦l	Girl Scouts of America	dirl Scouts of America	Dr. L. W. Snider	W. V. Stakes	M. R. Kirk	Frank Waitze	H. C. Moore	City of Garrison No. 1	City of Garrison No. 2	City of Garrison	City of Garrison No. 3	A. G. Jones	K. Barton	J. C. Bonisas- Angeilns lumber Co. ∦l	Handers Subool	R. D. Williegs	Mike Edwards
Well Number	TX-37-12-301	104	toś	502		109	602	Tol	702	801	802	803	BOH	106	902	505	ψοé	905	906	706	13-101	101	707	403	40 4	405	406	201	tol.	702	Eol.

Table 8. .- Records of Weils and Springs in Nacogdoches County -- Continued

- 74 -

			Year	Altitude of Land	Depth	Casing	Casing and Screen Data dng	en Deta			Static Nater Level3/		Ping	and l	Method o			
Well Number	Weil Owner	Driller	flom-		of Well (feet)		Diameter Dv (inches) (1	Depth in Feet (from) (to)	et Mater-) Bearing Unit		ct) late	te Rate (gps)	Depth (feat)) Date	Power $\frac{1}{2}$	1968 2/	able 6/	Remarks
TX-37-13-704	B. Wentherly	Nettie Weatherly	1631	320	t Cu	υ	36		Wilcox		83.8 9-30-36	36			M			Lestroyed. Water reported in gray quicksand.
108	C. C. Lowrence		1926	340	61	0	42		Wilcox		14.8 10-9-36	36			N			Abandoned. Weter reported in gray sand.
802			1906	310	32	D	12		Wilcox		23.1 10-9-36	36			м			Abandoned, Water reported in clay.
£09	Billy Miller	Chambers Water Well Service	1967	340	250	ບສ	CU (U	241 246	6 Wilcox	8	10-11-67	67			а т Т	D,S		
17-201	Marren Wright- N. O. Thomas #1		6461		21045												63	Oll test.
202			1926	340	12	с	30		Queen City		14-6 B-27-36	24			22	И		Water reported in clay under shell rock.
203		Chambers Water Well Service	2561	QQE	797	0 13	લ્ય લ્ય		Carrizo	0					3 3	D, S		
301	Sun Oil Compeny- Mattle Hartless #1		1950		5,080												54	Oll test.
302	0. Thomas		1.461	1400	375	u	4		Carrizo	o 135	1965	62			J,E J	n, 5		
203	Luther Wallace		1910	395	67 -7	G	36		Queen City		26.1 8-26-36	36			a ' '	D,Ş		Mater reported in red and white clay.
304			old	014	75	Ð	42		Queen City		33.2 6-27-36	36			$d_{J} \Xi$	ي ت		Mater reported in black dirt under sand rock.
501	United Drilling Company	Roy C. White	1961	300	320	បន	mm	0 278 278 320	6 Carrizo	0 ÅD	12-19-67	67 60	0	12-19-67	×		a •	Destroyed. Supply well for all test.
109	Hemphill & Irvin- Mrs. J. K. Crossman ∉l		1957		5,250												<u>ja</u>	OAl test.
602	*****	A. L. Self	1933	340	27	· u	42		Queen City		16.9 8-26-36	36			N			Abandoned. Water reported in bluish-green sand.
603	C. E. Grimes	C.E. Grines	1929	345	53	υ	36		Queen City		11.2 8-26-36	36			N	Ω		Water reported in black sand.
604	L. R. Tucker		old	305	28	Ð	36		Queen City		12.8 8-26-36	36			и	25		Muter reported in white sand.
509	B. K. King	B. K. King	1933	320	32	c	36		queen City		28.1 8-26-36	36			N	z		Water reported in white sand.
606	J. A. Tindaily	J. A. Tindelly	1927	380	5	ç	36		Queen City		6							Abandoned.
607	Bouglass Water Supply Corp.	Layne Texas Co.	1961	365	t T2		7 3-1/2 3-1/2	0 400 320 409 460 460 460 472	0 Carrizo 20 22	0 125	49-92-6	8	691 ·	9-26-64	व 2	a,	ິ ຕໍ	Drilled to 695 feet.
608	Elmo Helton	Smelley	1955	360		ပဏ	64 64		Carrizo	a 180	0 1955 0 1968	55			с, Е 1/3	a		
109	M. M. Costa⊷ S. H. Watkins #2		1967		5,212												sul	Oil test.
802	C. Watkins		old	260	26	υ	36		Queen City		24.3 9-25-36	36			z	z		Water reported in white sand.
803	United Drilling Company	Roy C. White	1961	265	415	ပေး	in m	0 352 415	2 Carrizo 5	ci 15	10-15-67	64 64	2	10-15-67	2		۵ 	Destroyed. Supply well for oil test.
106	Fain-McGaha-Peckham- Yates #1		1942		5,530												63 	011 test.
806	Service Pipe Line Company	McMasters & Pomeroy	1940	335	250	000	তিৰৰ	0 505 1,84 506 549	66 Wilcox		63 1940 66.6 9-18-42 85.0 7-20-48 109.9 7-12-55 131.4 9-13-61 149.5 4-15-69	222222			7-1/2	*	A	Morar and pump still ip place, but well not used since 1966. Water jevel measurements since 1942.
505	W. R. Bernett		bla	350	ĩE	ti Ci	48		Queen City		23.4 9-25-36	36			N			Abandoned, Water reported in white sand.
406			1926	280	37	Ð	36		Queen City		29.9 9-23-36	36			и			Abendoned. Weter reported in red gravel.
506			plo	340	Ħ	ы	[¹ 2]		Weches		23.6 9-23-36	36			N	~		Water reported in bluish-green sand.
906	Feather Crest Farms No. 1	B. G. & R. Drillers		310	308	υ	4		Reklaw						5,E 1-1/2			
18-101	Lilbert-Looneyville Water Supply Corp.	C. C. Innererity	1966	044	56ty	0	Ł		Cerrizo	9					а ' в	a.	а ' а	
102	M. T. Free		olđ	1,440	37	U	36		Neches		26.5 8-27-36	<u>%</u>			N			Destroyed. Water reported in black sand.
EOT	W. D. Baxter		1926	14:25	22	Ð	36		Queen City		19.8 9-3-36	36			м	×		

Table 8. --Records of Wells and Springs in Nacogduches County--Continued

*#

- -

*

~-

	Nezerrka	Oll test.		Abandoned. Water reported in sand and gravel.	Harely used.	Estimated flow 1/2 gpm in 1936.			Oil test.		Destroyed. Weter reported in white sand.	Abandoned.	Oll test.	Water reported in red and gray chalky clay.		Abandoned. Water reported in black sand.	Sulfur odar.			Destroyed.	Destroyed.		Temperature 720F.		Destroyed, Reported sulfur taste. Historical vater levels 1942-1943.	011 test.	Abandoned.	Destroyed. Reported sulfur odor sud taste. Mistorical wster levels 1942-1945.	Oil test.	Destroyed.	Abendoned.	Destroyed.	Seldom used. Water reported in black sand and clay with pyrite crystals.
	Logs Avail- able <u>6</u> /	54	A						C4				ធ										а,а	a	a	õq			52				
	use of Water 1968 2/		а а		A	en	p.	ລິດ		D,3				z	Q		ы N	D,5	D, S			n, s	м	A									A
	Method of Lift and Power		a	и	N	N	ណ លំ ល	3,5 1/2		3,5	N	М		М	N	N	в, Е	5,E 1-1/2		М	æ	J,E 3/4	И	3,8 ₹∕2	N		м	N		25	M	и	*
	lete																						1949					1934					
	rusping mare and i Rats Depth (gim) (feet)		10															at					Ť.					Flowed 35					
	te te		7-22-66	9-3-36	9-3-36			1968		9-2-36	9-2-36	9-3-36		8-25-36	8-28-36	8-28-36		11-11-68		9-2-36	9-2-36			7661	10-13-36 9-18-42		8-25-36	9-18-42 7-28-45		8-25-36	9-7-36	8-19-36	9-7-36
	Static Mater Leve Depth R (feet)		002	14.6	28.3			8		30.1	24.7	22.5		ш.3	3 t-91	3.8.81		240		1.14	74.7			145	34.0 10 83.4		34.6	15-2		23.1 6	24.9	14.3 6	16.7
	Indicated Water- Bearing Unit	я	xcollW	Queen City	Queen City	Queen City	Carrizo	Sparta		Queen City	Queen City	Queen City		Queen City	Queen City	Weches	Queen City	Carrizo 2	Carrizo	Queen City	Queen City	Queen City	Carrizo	Cerrizo	Carlzo		Queen City	Carrizo, Wileox		Sparta	Reklau	Reklav	Queen City
+			242 242 242 242 242 242 242 242 242 242	<i>3</i>	3	ð	ឹ	ő		<i>ੱ</i> #	3	3		ð	Ğ	ž	<i>Ğ</i>	408 438 59	3	-3 	10	đ.	5 171 181	405 Ca	478 Ca	<u>ç</u>	ð	-00 ⁴		IS	an H	Re	ð
	reen 1875 Depth in Feet (from) (to)		5230 204 °C															0 1408					0 331 441	405 1	4,78 1,78	206							
	ig and be linueter (inches)		รรรร การการการ การการการการการการการการการการการการการก	36	36		4	36		36	36	36		36	36	36	-7	4-1/2 2	.4	36	36	30	8-5/8 4-1/2 4-1/2	<i>a</i> t -4	יםי מי		36	10		30	42	36	36
	Casing Or I Screen (2/		0000000	D	0		o	c		o	0	0		U	0	0	υ	00	ы	Ð	υ	υ	ບບກ	0 0	ပာတ	J	U	U		υ	Ð	с	υ
ŀ	Depth of Well (feet)	9,152	545	17	C1.77	pring	1408	28	8,240	37	36	31	5E5 '6	17	28	Ť	150	140	500	52	52	69	205	436	525	9,372	12	4,314	9,415	27	36	ដ	53
	Altitude of Land Surface (feet) <u>j</u> /		1 60	044	450	140	1160	610		044	1460	¥50		385	380	485	420	445	385	395	400	415	365	360	360		370	360		06tj	340	390	0L1
	Year Com- pleted	1957	19967	1934	old		1963	1954	1954	1921	1900	1912	1953	1929	1934	1912		1968	1935	1835	1916		1949	1957	163h	1951	1,926	1930	1953	old	1882	1885	1901
	Driller		Roy C. White				Frye Drilling Co.	Willie Vaught		E. S. Bredshaw				E. H. Croft		M. F. Wiltsker	B. G. & R. Drillers	Roweth Water Well Service	-			Smelley	Layne Texas Co.	Sun Pipeline Ca.	W. M. Brown & Co.		Williem Scott	J. C. MaNell				Will Murphy	
	Vell Owner	Mosser & Bintliff~ W. B. Tetes #1	B. A. Sitton	M. D. Shefner	Loy heirs	A. Birdweil.	Curtle Nence	Willie Veught	Humble Oil を Refining Co Travick Gam Unit 単6-1	E. S. Bradehav	C. Whitton	J. D. Birdwell	Humble Oil & Refining Co Sem Stripling #1	E. H. Croft	H. W. McCuistan	M. F. Whitsker	Feather Crest Farms No. 2	bon Travicz	Don Ryan	Loy heirs	T. A. Crisp	Willism Guidry	Texas Pip-time Co.	Sun Pipeline Co.	Texas Pipeline Co.	Humble 011 & Refining Co Sem B. Heyter #1	William Scott	Fearl Oil Company	Humble Oil & Refining Co Sam B. Hayter #3	Sam Hayter	J. B. Burk	Will Murphy	C. B. Matkins
	Well Number	102-91-1E-XI	202	203	102	205	206	102	301	302	303	304	-	- 105	403	101		1406	407	201	109	602	701	702	£01.	801	802	106	902	506	101-61	102	102

Table 8.--Records of Wells and Springs in Nacogdoches County--Continued

- 76 -

For footnotes see end of table,

۰,

			Year	Altitude of Land		Caalnu	Casing and	C14 AA4 444	Tudi		Water Lovel 3/		Pumping sate and hevel	- 4110 1010	Huthod o			
Well Number	Well Owner	Driller	Com- pleted	Surface (feet) J/	of Weil (feet)	or I Screen (finches)	Tron) (to)		Moter- De Bearing (1 Unit	Depth Date (feet)	te Rate (grm)	Depth (fort)	a Dete	Fover Pover	1 Water 1968 2/	r Avell- able	Resarks
TX-37-19-202	2 Mrs. J. F. Hardy		1,930	510	28	Ð	36		Meches		17.3 8-28-36	9			×			Abandoned.
301	. B. A. Hurst	Тыуле Техвя Со.	1945	, 0E1	340	ບບຫ	2-7/8 2-7/8 2-7/8	0 26 226 31 310 32	282 Carrizo 310 325		85 1945 112.0 1-8-69	v. 9.			а. г	a , a	A	
302	T. H. Hill		1903		ż	0	36		Gueet	Queen City 1.	15.0 8-31-36 11.5 7-13-40	40				D,5		Water reported in gray sand. Historical water levels 1936-1940.
303	Mary Mickenbottom		old	460	27	0	4.8		Queer	Queen City 1.	18.9 8-31-36	9			N			Destroyed.
101	Lilly Grove Water Supply Corp.	C. C. Innerarity	1965	200	165	20	8-5/8 3-1/2	0 64 64 64	488 Carrizo 490		312 8-25-65	9 720	335	8-25-65	3,5 15	Ω,	a u	Sulfur odor.
102	W. E. Eallard		old	\$00	36	uс			30 Weches		17.6 9-2-36	9			N			Absndoned.
£01	W. R. Birdwell		1906	1940 1947	T.4	с	36		Wechen		34.6 9-1-36				×			Absendonod. Weter reported in black dirt overlying rock.
501	W. J. Parmley		1931	560	30	U	30		Weches		23.4 9-7-36	9			Z			Abandoneů.
502	M. H. Dennard		1936	560	4	сı	36		Sperts		41.6 2~28-36 41.2 11-17-40	40			3 ' 2	6		Historical water levels 1936-1940.
109	н. В. Нифоза	Goad & Mettaver	7691	*2.TH	00 ⁴	υ	ŝ		Carrizo		72.9 8-6-37 73.5 7-13-40 77.5 5-25-45 69.5 7-11-50 97.5 7-11-50 97.5 7-14-52 97.5 7-14-52	honour			21 27	อ่	A	Historical water levels 1937-1953.
101	Sem Hayter		old	420	61	ы	36		Wechen		12-6 8-25-36	9			N			Abendoned.
702	Mrs. J. C. Miles			200	99	ъ	7t2		Sparta	-	33.8 9-1-36	9			н			Destroyed. Water reported in red clay.
203	W. E. BOOZET		1956	370	20	υ	30		Heches	ġ					J,E	Q		
108	B. Denforth	Roy Flentken	1936	1420	55	Ð	24		Weches		18.0 8.19-36	\$			И			Destroyed. Mater reported in hard brown sand.
802	G. E. Norwood		1896	4:00	35	o	36		Sperte		25.4 8-19-36				И			Abandoned.
106	City of Nacogdoches	Layne Texas Co.	1945	430	492	000	6-5/8 6-5/8 6-1/2 8-1/2	0 402 357 446 446 492	12 Carrizo 16 12	zo 150	0 3-29-45	80			R		a	Destroyed.
902	J. Thouse Hall		4161	02.4	2,007	ы	л	0 1,400	00 Carrizo		142.6 1-15-43 161.2 11-17-45 196.4 7-24-50 242.7 7-14-60 242.3 5-9-63 242.3 5-9-63				2	2		Casing reported alot at 540 feet. Historical vatur levels 1943-1963.
903	A. L. Whitmaire		2161	400	28	сı	36		Sparta		21.1 8-28-36 9.3 11-27-40	90			N	27		Historical water levels 1936-1940.
40 ⁶	C. S. Jones		1461	***********	550	с 10	9 9 9	0 515 515 549	5 Carrizo		114.3 9-17-42 116.4 6-26-43	0. m				8		Historical water levels 1942-1943.
305	A. E. Read		old	1 ⁴ 60	Ê	Ð	30		Sperte	~~~~~	30.0 9-1-36				3,5	a		Water reported in white sand.
20-101	Appleby Water Company	Meller	1938	0E1	302	002	000 ++1/5 +-1/5	0 234 234 256 256 282 256	Carritzo		92.2 2-24-42 95.0 5-25-45 98.9 7-11-50 109.4 6-21-55 114.6 6-30-60 114.6 6-30-67 114.6 6-30-67	NINGROP			×		9	Alundoned, Water level measurements since 1942.
102	Mollie A. Troutman		1936	420	50	5	36		Reklav		11.3 8-31-36 11.3 10-10-35	Va in			25			Abandoned. Historical water levels 1936-1938.
103	Appleby Mater Supply Corp.	C. C. Innerarity	196T	445	200		13-3/8 10-3/4 7	0 275 0 395	5 Wilcox	× 160	9-1-6 19-1-6				3° 8	ä.,	а б	00 feet of acreen reported between 395 and 500 feet. Test hole drilled to 717 feet.
104	Mrs. J. S. Troutman		4161	410	560	C	5-3/16		Wilcox	ж		40 1		1936	M			Destroyed. Reported sulfur odor. Formerly supplied Appleby.
201	D. W. Scroggins		2161	380	36	D	36		Cartzo			10			×	21		Mater reported in gray sand.
301	J. L. Scroggins	D. S. Hancock	1924	380	t t	ບ	36		Cartzo		43.1 IO-8-36	10			N			Abandoned.
101	J. N. Skeeters	Gellowey Drilling Co.	1953	380	592	ບຜ	5 7 7 7	0 240 240 292	0 Cerrizo 2	zo 155	5 1-21-69				3 5	F.		Not used since 1967.

Table 8. --Records of Mells and Springs in Nacogdoches County--Continued

- 77 -

Renarks	Absndoned.		Sulfur odar.	Drilled to 632 feet.	Drilled to 593 feet.			Destroyed.	Oli test.	Supply well for oil test. Historical water levels for 1943.					Destroyed.	Abandoned.	.handoned.		Lestroyed.	Destroyed.	Water reported in white sand.		Oil test.	Estimated flow 1 gpm from sandy clay in 1936.		Ousernation will, Brilled to 205 feet. Water level memsurmaanta aince 1989.			Mater reported in red clay. Abandoned.	Weter reported in white sand.			
Logs Avail- aute Ú					a				D, E														23			я q							
thee af Water 1968		ก	တ	žrr.	a	5 . 0	5 , 6			*	۵ 	D, G	2	a d			*******	D, 5				D, S		D,5	æ	72	22	9°a	N	×	A	×	
Nethod of Lift and Power	*	5,5 2/2	а , г	ਕ ' ਜ	а . С	5,8	5,8 3	11			5 , 8	a,c	×	ର ଜୁନ	я	12	¥.		20	25		, 3°. 7'E		N	м	21	М	×. **	н	255	લ ઉ	И	
Fumpling fiate and level Rate Repth fate (gpm) (feet)		-																															
tic Level J Date	91-36		1962	1952	1953			9-1-36		2~10-43					10-12-36	10-8-36	10-12-36	98-6-01	30-9-36	10-12-36	96-36-36	7-5-61			9-26-36	3-19-19 7-11-50 5-17-55 2-26-65 1-15-69	9-14-36.	1956	9- 14-36	9-26-36		9-14-36	
Statle Mater Leve Lepth La	1.7.		63	LG	512			39.7		152.5					T 7'ET	18, h	30.6 1	21.7	26.8	51.5 I	28.0	0.07			56.5	111.6 111.5 123.6 131.3 132.5	14.41	0.06	12.8	6.13		18.6	
Indicated Mater- Bearing (mit	Reklav	Reklau	Carrizo	Cerrizo	Carrizo	Carrizo	Carrizo	Meches		Carrizo, Wilcox	Cartizo	Wilcox	Wilcox	Wilcox	Rekisu	Carizo	Wilcox	Wilcox	Wilcox	Carlzo	Cerrizo	Wilcow		Carrizo	Wilrox	Carrizo	Reklav	Wilcox	Reklav	Carrizo	Wilcox	Currizo	
Casing and Screen Data Casing and Screen Data or Disecter Dopti in Foet Screen (inthes) (from) (to)		0			0 507 507 522					8 280 280 8 440 465 8 510 535																162 Etg							
ling and Diamet (inthe	36	03 77	01 (V	L		CJ	eu.	24		6-5/8 6-5/8 6-5/8 6-5/8	-4	. 4	4	Ţ.	1 1 1 1	36	9t	148	4,8	87	36	7			36	-4-4	36		36	36		36	
Casing or 5creen 2/	o	U	0 0	U	ပတ	U	U	o		ບສູດສ	D	U	0	0	Ð	U	0	υ	0	0	0	0			0	0 M	0		U	0		U	
Depth of Well (feet)	53	26	217	350	555	425	400	42	9,292	535	500	425	400	630	11	ಕೊ	141	36	30	63	35	091	8, 182	Spring	3	532	5 <i>1</i>	392	50	ŧ.	264	5	
Altitude of Land Surface (feet)	430	380	380	360	1480	¢00	350	044		445	600	380	360	340	325		300	410	1,00	390	300	320			310	396*	390	325	325	350	320	290	
Tear Com- pleted		pTo	456T	1952	1953	1961	1964	1933	2461	an6t	1958	1961	1956	1964	1928	old	1666	926T	1929	old	1935	6561	1945		1902	1949	1926	1956	1904	906t	1963	1930	
Priller				Norris Langford	Calloway Drilling Co.	Chambers Weter Well Service	Chambers Water Well Service						Innersrity & Leubner	Frye Drilling Co.								English Drilling Co.				Layne Toxas Co.	HO				C. C. Innerarity		
well Guner	2d Greer	J. C. Greening	J. C. Grenning	W. A. Mize	E. W. Rice	Wiley W. Saker	Allen Burgess	Tilds Farker	The Texas Company- C. W. Straimen ≢l	Crow Drilling Co.	John D. Wilson	Halberts, Inc.	Felix Berneham	George Haltom	H. T. Halton	Z. Rambin	L. D. Burks	W. L. Burkhalter	gua Young	Mrs. G. E. Stoker	I. Caldwell	Flus-Tex Foultry	Magnolia Twt. Co W. L. Rarrell #1	Moss Adams	J. M. Burt.	Southland Paper Mills, Inc.	Mrs. W. B. Turner	B. W. Covington	Renry Enris	J. D. Marcin	D. L. Durke	W. E. Marcin	
Well Number	TX-37-20-402	109	602	TOL	202	EoL	YON.	502	801	909	803	909	106	505	506	101-12	102	202	203	101	405	201	502	503	504	101	202	108	808	E09	901	205	

Table 8.--Records of Wells and Springs in Nacogdoches County--Continued

- 78 -

 Construction of the association of the association of the second sec second sec

Renorks	Reported suitur odor. Nater level messurements since 1940. Temperature 7409.	Destroyed. Weter reported in white sand.	Destroyed. Water reported in red gravel.			Top of sand at 470 feet. Screen length 20 feet.	Water reported in red gravel.	Abandoned. Water reported in white sand.		011 test.				011 test.	Historical water levels for 1943.	011 test.		Mater reported in sand under 3 feet of rock.	Water reported in white sand.	Pump inoperable since 1964.	Mater reported in red gravel.	Water level reported to have dropped 60 feet since 1956.		Destroyed.	Test sola drilled to 1.061 fest, mean ravel measurements since 1977. Temperature 7959.		Estimated flow 12 gpm in 1936 from sand and gravel.	Hell rebuilt 1922. Weber level messurements since 1937. Tempersture 14.9°P.
Logs Avail- able <u>é</u> /										50				93		64	â			A					a a			P
use of Moter 1968 2/	d.			z	ρ	D,5	×		គ		z	9°9	A				۵	×	z	*	25,	a	ം വ		Δ.	A	×	Б4
Method of Lift and Fower	ы С	N	N	и	л,Е ⊉/3	ಟ ಬ	м	25	23 07		М	ສ ິ ຕ	л, Б 1				3 ° 3	in.	М	N	12	с, в 1/3	2°2	M	н, н 125	84 57	н	3. 22
Mumping Hate and Level Rate Jepth Dute (greet) (feet)																								-	790 1963			465 323 B+B-G1
de Jete Dete	11-17-40 7-24-55 7-12-55 7-12-55 7-12-55 7-12-55 7-12-55 7-12-55 7-12-55	9-24-36	9-22-36	9-22-36	696I	5-61	9-24-36	9-24-36			9-22-36	1968			9-3-41 4-5-43		11-10-64	9-24-36	9-53-36		9-23-36	1956		9-18-36	7-11-57			+ 28-37 7-24-50 6-2-59 4-11-68
Etatic 3/ Water Level 3/ Nepth Date (feet)	81.5 132.6 132.6 194.7 194.7 194.7 194.7 194.7 194.7 194.7 194.7 194.7 194.7 194.7 194.7 194.7 194.7 194.7 194.7 194.7 194.7 194.7 195.7 1	21.7	28.7	24.7	μŢ	150	5 5-64	10.1 5			ē.	140			Flova + 4.9		CI CI	38.2	43.5		10.0	260		19.9	321.2			18.6 38.8 38.8 38.8 154.4 124.5 203.8 203.8 229.3 229.3
Indicuted Water- Fearing {	Cerrizo	Weches	Sparta	Sparta	Sparta	Carrizo	Sperta	Seches	Rekiav		Weches	Queen City	Queen City		Carrizo 1		Sparts.	Sparta	Sparts	Queen City, Carrizo, Wilcox	Sperts	Reklaw	Carrizo	Weches	Certizo	Carrizo	Sperte	Certifico
	0	ع,					67	.*	μ. 						689 100		127 5 137			8888		14e			222 141 222 222 222 222 222 222 222 222			331 152 153
en Esta epth In from) (0		0 127			539 580 580	8				0 349 502			0 391
$\begin{array}{c} \begin{array}{c} \mbox{Casing and Screen Data}\\ \mbox{Casing}\\ \mbox{or Diameter Depth in Feet}\\ \mbox{Green (inches) (from) (to)}\\ \mbox{g} \end{array}$	un,	36	36	36	36	.+	36	36	÷.		42	4	CV		-3 -3		A 7	36	36	free free free j		CU CU		30	30 24 12-3/4 12-3/4			20 10-3/4 10-3/4
Casing Casing or Screen 2/	D	o	U U	ы	U	ы	υ	υ	c		U	c	0		ပေးက		ບທ	U U	с	ບທຸບ	ມດ	00	ц	υ	00000			0 U S
Depth of Well ((reet)		26	27	20	45	530	55	2	500	10,057	53	519	290	3,520	002	1,056	137	C1 7	37	999 19	47	552	4.44	Ŕ	512	415	Spring	126
Altitude 1 of Land 1 Surface $(feet)$ $\frac{1}{2}$	* 55 65	310	544	044	1460	300	310	430	530	<u> </u>	310	370	370				240	260	260	220	310	320	66	320	*528		440	* 50 0
Year Com- picted	1936	old		1925	old	1961	1932	1927	1959	456I	old	1968	1956	1.66T	1938	1631	1964	1936	3661	1956	1922	1956	1953	olđ	1956			1929
Driller						Frye Drilling Co.			Cason & Monk			C. C. Innerarity	C. C. Innerarity				Innerarity & Leubner			V. E. West		Chasbers Mater Well Service	Smelley		Layne Texas Co.	Chembers Weter Well Service		Leyne "texes Co.
- Weil Owner	Stell Pipeline Co.	Sam Stripling	Nomer Richards	I. C. Ferguson	Cecil Myers	Ben Stripling	2. H. Johnson	R. E. Tindall	J. P. Bartin	Rumbie Oil & Refining Co A.T. & H.R. Mast et al #1	B. L. Johnson	Ben Johnson	M. L. Christopher	Humble Oil & Refining Co.~ A. T. Mast ∦i	A. T. Mast	C. C. Cciliter- Mast #i-A	Taxes Foundries Clab	Sem Stripling	A. T. Mast	E. Blount	B. M. Matlock	Willlen J. Ditts	T. F. Marvin	R. V. Devidson	City of Necogdoches No. 5	Audrey king	G. W. Tillory	City of Necogdoches No. 1
Well. Mumber	301	601	26-101	102	301	104	705	603	ਰ <i>ਕ</i>	201	205	503	ÉOI	109	202	90 <u>3</u>	102	805		901	206	£06	27-101	102	50	202	503	301

Table B.--Records of Wells and Springs in Nacogdoches County--Continued

л., н

ي ر

Γ		I	1								ا										
	Remorks	Weter level measurements since 1937. Teagersture 750P.	First hole drilled to 744 feet, wher level measure waits since 1946. Tesperature $\gamma\beta^2 p_{\rm c}$	water lavel messurements since 1950. Drilled to 738 feet. Tempersture 762P.	Abundoned. Historical water levels 1936-1948. Temperature 720F.	Ausndoned. Mistorical water levels 1939-1943.	Weter reported in red sandy clay under 6-inch layer of rock. Historical water levels 1936-1939.	Abandonad. Historical water levels 1941-1942. Temperature 740F.	Abendomed. Historicel water invels 1942-1943. Tesperature 740F.		Well reportedly sounded at hyd feet in 1963. Report- ed sulfur. Historical water levels 1937-1945. Resperature 7402.	Jestroyed. Historical water levels 1936-1940.	Test hole.	Drilled to 675 feet, Weter level messurements since 1964. Tesperature $T^{\rm OF}$.	Drilled to 720 feet. We ter level memourements since 1964.	Irtilet to 732 feet. Mater level measurements since 1964.		Estimated flow 3/4 ggm in 1936.	011 test.	Mater level measurements since 1967.	
	Logs Avail- atte 5/	â	A	а 6	A								а С	ы a	a d	а, а			હ્ય	а а	
	of Mater 1965	β.,	ρ.,	0. ₄			D, S			D,5	д.			Ω.,	α,	R _i	Ind.	и		p.,	ຮີດ
	Method of Lift and Fower 4/	a st St	87 50 1	т, г 150	×	21,		N	8	cr, E	1,E	at.	****	1,8 125	1500 1500	150 150	50 20			3,E	ສ ຕິ
nd Level		47-49	1968	4~11-69					1936		1936			8-7-68	6-7-68	8-7-68				8-7-68	
Pumping Rate and	Depth (feet)	31 4		368										101	Hot	396				054	
Pumpitr	Hate (gpm)	97 7	565	530					01		Flowed 15 gpm			910	760	860				056	
Statle 2/	1	1-11-68 7-12-50 7-12-50 7-12-50 7-12-50 7-11-68 7-11-68 7-11-68	12-12-46 7-13-55 9-11-61 5-11-61	7-24-50 7-14-55 5-6-63	9-17-36 7-14-40 3-31-44 7-21-48	12-13-39	9-16-36 7-20-39	6-2-42 6-2-42	9-18-42 1-15-43		4-30-37 7-14-40 31-17-45 5-8-63	9-16-36 11-27-40		4-11-68	4-31-68	4-11-68				4-11-68	
Sta	Mapth Depth (feat)	19.9 19.9 19.0 19.0 19.0 19.0 19.0 19.0	164.0 1 222.1 279.5 325.6 301.7	245.0 266.3 328.4	4.0 15.7 83.9	+0.7 2	1.6.9	9.91 22.9	13.5		4 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	82.1 82.1		319.2	345.8	LTE				369	
	Indicated Mater- Bearing Unit	Carries	Carrizo	Carrizo, Wilcox	Carrizo	Cerrizo	Sparta	Cartzo	Rekinv	Queen City	Cerrizo	Sparta		Carr1 20	Carriso, Milcox	Milcox Hicox	Carrizo	Sparte		Carrizo	Carrizo, Reklav?
-	Depth in Feet (from) (to)	198 198 196 196 196	415 518 528	436 548 548										324428	194 194 194 194 194 194 194 194 194 194	- 465 5550 5855 5855 5855 5855 5855 5855 58	166 504 570			88888	
Screen Ista		134 134 134	0 518 518	0 1331 1440 535										212 125 125 125 125 125 125 125 125 125	0 374 572 667 667	222522220 222522222	302 C			432 553 563 563 563 563 563 563 563 563 563	
Casing and Sc	Diamete (inches	20-3/4 10-3/4 10-3/4	1/E-01 1/E-01 1/E-01 1/E-01	20 12-3/4 10-3/4 10-3/4	15	Ģ	36	12	.4		म	36		17 19 19 19 19 19 19 19 19 19 19 19 19 19	10-37 10-37	4/5 7/5 7/5 7/5 7/5 7/5 7/5 7/5 7/5 7/5 7	6-5/8 4			4/E-21 19-23/ 19-21 19-21	4.4
		0000	0000	0000	ບທ	c	U	U	о		сn	0		000000	000000	000000000	ပပတ			00000	ບກ
	Depth of Well (feet)	†6†	đ	548	200	500	15		375	220	550	0£	739	586	682	580	572	Spring	3,650	696	660
Altitude	of Land Surface (feet) <u>J</u>	*962	370 *	386*	* 599 79					335	*aLa	310	386*	* 17 17 19	330*	*562	062	280		367*	300
	Ycar Com- picted	EE61	1946	1949	1925		1935		1906	1951	1922	1930	1961	1964	1961	1961			1956	1961	1960
	Triller	fayne Texau Co.	Leyne Texas Co.	Layne Texas Co.			Gaston Bright			Smelley			Texas Water Wells	Texes Watur Wells	Layne Texas Co.	Leyne Tuxes Co.				Leyne Texas Co.	Chambers Water Well Service
	Well Owner	City of Hecogdoches No. 2	City of Mecogdaches No. 3	Clty of Macogdochus No. 4	Southern Ice Co.	Southern Ice Co.	Morval Eright	Yubs Oll & Refining Co.	Frost Luzher Industries	G. L. Henson	Piney Moods Country Club	Hillerd Stone	City of Macogdoches	City of Macogdoches No. 6	City of Mecogdoches No. 7	City of Macogdoches No. 8	Lone Star Feed & Fertilizer Co.	Hy. Hoya	Union Froducing Co Johnson #1	City of Nacognoches No. 9	Ben De Witt
	Mell Number	TX-37-27-302	90 93	7Ê.	305	306	307	305	309		501	205	605		505	50 9	70 <u>9</u>	602	801	2009	803

Table 8. --Records of Wells and Springs in Macogdoches County--Continued

- 80 -

Well Rumber	Well Owner	briller	Year Com- pleted	Altitude of Land Surface (feet) <u>J</u> /	Depth of Well (feet)	$\frac{Casing}{or}$ or 1 $\frac{Screen}{2}$	Cosing and Screen Data Cosing Dismeter Depth in Peet Screen (inches) (from) (to) \hat{z}'	Feet (to)	Indicated Water- Bwaring Unit	inter level 2/ Depth Date (feet)		Rate De (gpm) (f	Fumping Mate and Lavel te Septh Date fma) (feet)	Method of Lift and Fower 4/	use of Mater 1968 2/	Logs Avail- sule 6/	Resarka
TX-37-27-804	Ben Ite Witt	Chambers Water Weil Service	0961	240	009	10 U	নান		Carrfro, Reklaw?					ы 0	р, в С		
106	W. A. Mize	Norris Langford	1952	240	568	υ	2		Carrizo	LLT	9-52			Т, в 30	Inr.	a	
28-301	Swift Water Supply Carp.	Westex Tool Co.	1965	280	739				Wilcox							ы	Absndoped. Well reportedly screened sands between 600 and 700 feet.
302	Swift Water Supply Corp.	Westex Tool Co.	1965	310	718											ω	Test hole.
303	Swift Water Supply Corp. No. 2	Key Water Wells	1966	300	300				Certizo, Wilcox					ୟ ମ	۵,		
304	Swift Water Supply Corp. No. 1	Key Water Wells	3961	280	347				Carrizo, Wilcox					a,e	ß4		
305	H. E. Seale	R. A. Morris	1935	340	2.B	υ	36		Queen City	6.3	9-14-36			N			Abandoned.
306	Mra. Ernest Pleasant		old	320	- 13	Ð	4.2		Queen City	14.4 10	10-13-36			м	R		Water reported in green sand.
201	E. C. Duke	Crucket Drilling Co.	1954	320	465	υa			Reklaw, Carrizo	180	1954			а °	D,5		
502	Maneas	Frye Drilling Co.	1955	340	439	υ	4		Reklav, Carrizo					a 'o	s d		
109	Bugh Jones	Reymond Smith	1957	265	327	ບ່າ	4.4		Reklav	180	1968			ਬ ਨ	ະ ເ		
602	Roy Easman		1955	545	400	Ð	17		Cartzo	106	1964			3,8 3/4	Ø		Reported sulfur taste.
69	Roy Essman		1920	545	83	0	36		Wechea	1.11	9-29-36			ж	Continue results		Desiroyed. Bine rock reported in bottom.
toL	Tilford Hunt		1935	590	59	ç	36		Sparts	53.5	10-2-36			22			Destroyed. Water reported from white sand.
801	De Witt's Hatchery	Chambers Water Well Service	1959	24:0	520	U	4		Carriso					ພ ທີ	p,6		
802	L. L. Cheever	_	old	285	\$	Ð	36		Sparta	5 E-41	95-53-36			M	И		Water reported in red clay.
803	E. King			240										3,8 7/7	D, 5		Well reported more than 200 fact duep.
408	J. P. H111		1908	240	30	U	36		Sparta	24.0	9-29-36			м	я		Water reported in red clay.
106	Woden Water Supply Corp. No. 1	Key Water Wells	1965	260	205	ບທບ	8-5/8 0 4 418 4 502	420 502 507	Carrizo			8	1965	2°5	D-1	ង ព័	
902	Woden Water Supply Corp. No. 2	Key Water Walls	1966	270	500	υ	6-5/8		Currizo	512.6]	1-1h-69			a (n	n.,		
503	Hen Oliver	_	old	265	8	0	36		Sparte	13.7 5	9-28-36			**			Destroyed.
29-101	Plus-Tex Poultry	English Drilling Co.	1960	370	300	0	ę		Cerrizo					ല്. ഗ്	5 ' a		
102	Tom Gilcresse	English Drilling Co.	1964	1440	325	េប	4 2-1/2 27h	274 302	Cartzo			35	9-6	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	<u>а</u>	а	
201	Sohio Petroleum Co A. D. Woods #1	_	1952		8,716	n		200								64	011 test.
202	J. O. Justice	Norris Langforă	1953	300	274	D	<u>r</u> -		Carrizo, Viicox	3	1953			а ' ъ	Irr.	A	
203	Lee Weat	_	old	520	92	ы	36		Sparta	20.9 I(10-13-36			И	N		
301	F. F. Fuller	_	1690	340	5	с	36		Carrizo	19.2	9-26-36			N			Destroyed. Water reported in black sandy silt.
302	Burl Black			0ħE	154				Carrizo					J, E	A		
303	Ancle Fuiler		pro	325	23	U	140		Reklau	16,8	9-26-36			×	z		
104	Meirose Oil Corp Cullus N. Wilson #2		1940		2, 329						÷					ы 1	011 test.
402	Melrose Water Supply Corp.	Key Water Wells	1965	370	352	ບບກ	6-5/8 0 4 292 4 322	318 322 352	Carrizo	218.0	12-6-68	69	2-65	5,8 7-1/2	Д.	а С	Drilled to 390 feet.
103	0. D. Hall	_	1958	390	414	с	0	÷	Carrizo					J, 2	D, S		
201	R. H. Davis	Chambers Water Well	1964	505	448				Carrizo					a,0	a, D		

Table 8.--Records of Wells and Springs in Nacogdoches County--Continued

**

-

1

~~

- 81 -

County Continued
Nacogdoches
1 u
Spr lags
and
Wells
30
8Records
e
Tabl

				Year			Casing r		la ta		Static Mater Leve.	ð,	Pusping Rate	kod I	Т	U of o			
J. C. Instant J. C. In	Well	Well Owner		Com- pleted			or Dian Treen (Inu 2/	weter Depth thes) (from	l in Feet 1) (to)		a~.	ste				and life ter 19 55			Пекия т К.в.
1.1. Like Matrix Matr	7-29-502	J. W. Kendrick	J. W. Kendrick	1161	440					Sparta		128-36						199	ter reported in red rock.
Model and the second of	503	J. B. Brown		1896	355					Weches		1-28-36					25	94	ter reported in blue rock.
Columnation Material Materia Material Material	109	Elvis Grean	Innerstity & Leubner	1966	320					Wilcox		1-8-69	12	7-2-					
More where many random in the field of		0. 0. Sect sh		1925	330					Reklav		L-25-36					7		
UUU		Attoyac Water Supply Corp.	Andreve & Foster	1961	0 4 E					Wilcox									tiled to 460 feet.
C. bill Description Description <thdescription< th=""> <thdescription< th=""> <th< td=""><td>108</td><td>M. M. King</td><td></td><td></td><td>360</td><td></td><td></td><td></td><td></td><td>Carlzo</td><td></td><td></td><td></td><td></td><td>ີ </td><td></td><td><u>م</u></td><td>Be</td><td>portedly hit 90 feet of loose send.</td></th<></thdescription<></thdescription<>	108	M. M. King			360					Carlzo					ີ 		<u>م</u>	Be	portedly hit 90 feet of loose send.
Out L. Juan <	901	E. C. Wall	Nevton Water Well Service	1962	001	376						1-3-62			٩		-		
C that the future in th	902	Scott	R. C. Duke	1926	340					Weches		-23-36					 30	Rich.	ter reported in blue rock with shells.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	£06	C. P. Little		old	340					Sparta		-29-36						Wis	ster reported in white sand.
. 1. C. Dist . 101	30-401	Plus-Tex Foultry Farm No. 4	English Drilling Co.	1959	310					Curtzo					ຫ້		а <u>(</u>		
T. Window Lumber Lumber <thlumber< th=""> <thlumber< th=""> <thlumber< td=""><td>402</td><td>J. C. King</td><td></td><td>pto</td><td>285</td><td></td><td></td><td></td><td></td><td>Carrizo</td><td></td><td>J-25-36</td><td></td><td></td><td></td><td></td><td></td><td>- File</td><td>ter reported in white sand.</td></thlumber<></thlumber<></thlumber<>	402	J. C. King		pto	285					Carrizo		J-25-36						- File	ter reported in white sand.
J, k, kaat function were singly three. The function of the f	501	Plus-Tex Foultry Farm No. 7			300	150				Wilcox					ຕ໌,	~,	10		
	502	J. M. Burd		old	590					Wilcox		F-25-36					 z	WE	ter reported in white send.
v, h , h	TOL	Chireno Mater Supply Corp.	Layne Texes Co.	1961	ŝ							12-6-68	62	ž					illed to 697 feet. Temperature 730F.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	202	E. M. Meeks		1872	350	37				Weches		+15-36				~		De	sstroyed. Mater reported in green said and gravel.
Output Lyne from (here Hills) Lyne from (c) Lyne f	EOL	D. Biggs	Thompson Bros.	506t	260	8				Carrizo		174	loved l	9-15		~~~~~	5	De 70	sstroyed. Reported sulfur taste. Temperature
Wyra Garret: Bouthand Noper WilliaJays GarrieJays GarrieJay	108	Southlate Paper Mills	Layne Texas Co.	1949	* 803 503	556						3-22-49 1-20-55 1-26-60 5-6-65 1-15-69					A.		st wail. Brillad to 247 feet. Water lavel searceants since 1949.
Borthand her Mile Lave Treas Co. Up1 TUP Up1 TUP Up1 TUP Up1 TUP Up1 Up1 Up2	808	Wayne Gerrett		1958	240	530				Carrizo					Å		50	Be	sported sulfur.
	35-101		Layne Texas Co.	2461	*012	831						12-2-41 7-24-50 7-24-50	đ	10-27		22	<u>6</u>		Observation well. Drilled to 95% feet. Historical water levels 1941-1960.
	102	Southland Paper Mills	Layne Texas Co.	1941	*T22	158						12-2-41 7-11-55 7-13-60	¢	10-21			â		Observation weil. Drilled to 410 feet. Historical water levels 1941-1960.
	104	Southland Paper Mills	Layne Texas Co.	1943	208*	133				Sparts		1-2-43 1-30-44	300	6.15	-43			Ab Ab	set vell. Historicel water levels 1943-1944. Dendoned.
Et Tuber Bruther in the transmission of the state of th	105	Southland Paper Mills	Layne Texas Co.	1943	20ù*	120				Sparts		5-21-43					a		Observation well. Drilled to 195 feet. Historical water levels 1943-1944.
Bouthlact Taper Mills Layre Trono 10. 19/1 203* 1,261 C 2 0 9/0 Wilcox 86.5 10.22.41 Flowed 19/1 5 2 978 978 978 978 976 910 1.555	106	Ed Tucker	Frank Turker	9161	190	570				Carrizo		144	'loved 35	9-17			м	¥ 6	fter 1930 well began flowing sand thought to be parts. Temperature $78^{\rm OF}$.
	102	Southland Haper Mills	Layne Roma Do.	1461		1,261					• 686.5 11 • 611.9		ltowed 15				a2		umerwation well. Drilled to l.405 feet. Laborical whier lavala 1341.1344.

- 82 -

	Remorks	Observation well. Historical water lovals 1941- 1968.	Ouservation wall. Drilled to 400 feet. Alstorical water levels 1941-1944.	Test well. Historical water levels 1943-1945. Abandoned.	Observation well. Historical water levels 1943-1945.	Test hole.	Test well. Drilled to 207 feet. Abandonud.	No longer used. Historical water levels 1947- 1959. Brilled to 904 feet.	Drilled to 900 feet Mater level massurements since 1947. Tempersture 80°P.	Drilled to 900 feet, Weter level mementation in the 1947.	Observation well. Drilled to 418 feet. Mistorical uster levels 1941-1943.	Test hole.	Test hole.	Test hole.	Test well. Temperature 65°F. Abandened.	Test well. Drilled to 218 feet. Mater amples collected by beakfilling well with growl. Temperature 70.109, Abandoned.	Observation woll. Drilled to 900 feet. Historical water levels 1947-1968.	Destroyed. Meter reported in white sond.	Water level measurements aince 1947.
	Avail. able 6/		D, E			ai	51	D, E	а а	a G	D, E	50	D3	tui	а " с		55		а А
f. of	. Hater 1965 2/							z	Ind.	Ind.									Ind.
Mathod o	Lift and Power <u>1</u> /							19 19 19 19	360 360	2 2 2					×			×	7, z 260
Level	Bate			1943					1-14-69	1-14-69	1461				9-5-4J				1-14-69
Pusping Rate and	Depth (feet)			+9Ĺ					472	454					1.tr				
Pusping	Rate D (gpm) (52					656	160	9				300				526
	ate	8-28-41 5-25-45 7-24-50 7-17-60 7-17-60 6-24-65	10-22-41 2-9-41	7-27-43 11-27-45	7-27-43 11-27-45						12-15-41 6-23-43				9-4-4-2		6-17-47 7-13-50 6-24-65 6-24-65 6-24-65 11-2-68	10-2-36	
Stefic Veter Laur	Matter Lev Depth (feet)	6.8 8-2 59-9 5-1 206-9 7-2 206-9 7-2 175-6 7-7 176-8 6-2	3-9 IC-1	7.3 7- 2.5 IL-	20.9 7-1 13.2 11-3						99-2 12- 102-3 6-1				56.9		81-5-4-7-7-9 2333-5-3 243-5-2239-6-3 243-5-2239-7-2239-7-7-2239-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7-7	29.6 JU	
indi antend	indicated Mater- D Bearing (Unit	08 24 24 24 24 24 24 24 24 24 24 24 24 24	arte	Sperta	Sparta		Sperta	Cerrizo	Carrizo	Carrizo, Wilcox	Sperte 1				Sparts	Sparte A	Carrizo, Wilcox	Sparta	Cartizo, Wilcox
		- 1999	92 165 165	n gi	110		120 165	683 692 810	559 569 569	855 <u>7</u> 2888	150 155 165				8211551556 841158 8611 8611 8611 8611 8611 8611 8611	868999868	641 641		33263583
Screen Data	Depth in Feet (from) (to)	0 H	92 97 160	o in	0 15		0 120	0 571 788 788	0 555 760 760	0 539 754 780 780	0 150 155				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 638		0 012 92 658 658 0
Casing and Sci	Dismeter (inches)	01 01	លលលល	φφ				10-3/4 10-3/4 10-3/4	18 10-3/4 10-3/4 10-3/4	10-34 10-34	04 64 64					********	m m	48	
Cas	casing or Screen $\frac{2}{2}$	ப ಖ	បែលប្យ	ບສ	សន		ပေးတ	0000	0000	004330	ພທຍ				000000000		ដេដ	U	000000000
	Depth of Well (feet)	669	166	8	οπ	902	165	610	474	009 9	165	669	126	941	210	912 219	648	35	106
Altitude	of Land Surface (feet) <u>J</u>	* 305	-202*	161*	\$01*	330*	185*	547*	246*	555* 55	322*	\$ ⁺⁰ *	302*	32 4 *	* 63 7 7 1	* Ž.†	\$06	260	* 10°
	Tear Com- pleted	1461	1461	1943	1943	1955	1942	1947	1947	7461	1941	7461	1947	7461	1947 J	1947	1947	1913	2467
	Driller	Leyne Texas Co.	Layne Texas Co.	Layne Texas Co.	Loyne Texas Co.	Layne Texas Co.	Leyne Texas Co.	імупе Техня Со.	Inyne Texas Co.	Layne Texas Co.	Løyne Texas Co.	Layne Texas Co.	Layne Texas Co.	Layne Texas Co.	Layne Texas Do.	Layne Texas Co.	Layne Texns Co.		ілупе Техав Со.
	Well Guner	Southland Paper Wills	Southland Paper Mills	Southland Paper Mills	Southland Paper Mills	Southland Paper Mills	Southland Faper Mills	Southland Fajer Mills	Southiand Faper Mills	Southland Paper Mills	Southland faper Mills	Southland Paper Mills	Southland Paper Mills	Southland Paper Mills	Southland Paper Mills	Southiand Paper Nills	Southland Paper Mills	B. B. Holtam	Southlend ther Wills
	Vell Number	202-35-302	EO2	5 50 50	502	206 5		307	89 89 80		304	305				60 E	330	TTE	

Table B.--Records of Weils and Springs in Macogdoches County--Continued

~ ...

بد ت

*

~

** -*

~...

	Loga Avail- state G	Z Test hole.	E Test hole.	D.Z Drilled to 900 feet. Water Level memotia aince 1947. Hell abandoned as production well.	D.E. Observation well. Drilled to 355 feet. Historical water levels 1941-1945.	D,E Observation well. Drilled to 407 feet. Historical water levels 1941-1947.) Observation well. Historical wear levels 1941- 1947.	8 Otservation well. Drilled to 921 feet. Historical water levels 1947-1966.	B,E Test well, Brilled to 227 feet. Historical water levels 1943-1944. Abandoned.	Observation well. Historical water levels 1943.	Test hole.		D.S. Observation well. Brilled to 1,326 feet. Historical water levels 1941.1946.	Observation well. Water level measurements since 1941.	Coservation well. Brilled to 450 feet. Historical water levels 1941-1949.	Observation well. Drilled to 190 fost. Historical water ievels 1941-1948.	Teat hole.	Water reported in white sand.	Once aupplied CCC cmap. Flow estimated at 10 gpm in 1935. Reported authur. Historical water levela 1937-1963. Temperature 70.0F.	Water reported in red gravel.		Test hole.	Water reported in yellow sand.
4 4	of L Meter Av 1966 a			a		â	8		,a		54	9	<u>.</u>		50	A	64		R		D, 5	54	23
-	Method of Method We Lift and We Power 10						<u> </u>											25	22		s,e D		
-				Q		~			en .				e4										
Providence Radia and Larvad	Deter			12-46	1961	1941			1943				2462		1941								
10 Rata	Bepth (feet)			£02					99 9														
Promo	Rete (gpu)			86	.4	ι¢			260				81		£~								
	ate -			5-6-47 7-24-50 7-14-60 5-6-65 4-5-68	11-27-45	10-22-41 9-8-47	L1-8-6 14-22-01	5-7-47 7-24-50 7-1-55 7-1-59	44-22-1 54-12-1	10-27-43			2-25-46 2-25-46	10-22-41 5-13-24 7-14-55 7-14-	10-22-41 6-22-49	10-41 7-20-48		9-29-36	4-30-37 7-13-40 3-30-44 7-20-440 7-24-50 7-24-50 7-24-50 3-14-67 3-14-67	9-30-36			9-30-36
544	Nater Leve Depth D (feet)			53.6 157.6 183.1 183.1 216.6 7 202.1	45.2 11. 45.2 11.	90.9 90.8	98.0 98.0	80.4 178.6 202.6 256.1 7	1 E.U.	50.1 IO			43.8 78.5 9	79-9 10 197-9 50 2225-5 5 322-1 1 323-9 10	101.5 10 101.8 6	94.5 95.0 7		23.4 9	4 C C C C C C C C C C C C C C C C C C C	25.6 9.			13.0 9
-	Indicated Water- Bearing Unit			Marrizo, Milcox 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Sparte	Sparte	Sparta 1	Carritzo 22 22	Sparta	Sparta		Sparta	WElcox	Carrizo Carrizo	Sparts 2	Bparts		Sparta	Partition Carter	Sparta	Carrizo		Cook Mtn.
-				596 0 598 80 7727 779 810 810 810	156 23 156	502 112 502	162 162 181 181	583 583	10 ⁸ 1	2 53		5	1770 1775 1885 1885 1885 1885 1885 1885 1885	655 670	240 Bi	136 Br 141 169 175		5	8	is.			<u></u>
at tata	Depth in Feet (from) (to)			0 614 1727 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 LL 28	0 209 214	0 165 170	574	οg	00			7770 7775 81.5 81.5 86.5 86.5	002	0 235	0 1969 1691							
the she for	01auster (Inches)	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		10-3/4 10-3/4 10-3/4 10-3/4	ଟାରାତା	ରା ସେ ରା	ru ru ru ru ru	in m	10	0, 01		36	លសលលល	CN CV	CJ CJ	01 EN 01 FU		36	<u>م</u>	36	.4		36
Cas				ບບກອດອ	ပေးပ	0 8 0	ບລບລບ	ပေးက	ပေးသ	ပေး		υ	0 2 2 2 2 2 2 2 2	ບ ຫ	ပေးအ	0000		c)	C .	0	c		ы
	Depth of Well (feet)	920	969	91 9	126	615	191	583	135	168	¶69	23	865	670	CHZ	547	0116	59	600	ħ	290	0116	61
Altitude	$\begin{array}{c} \text{af land} \\ \text{Surface} \\ (feet) \\ \underline{j} \\ \end{array}$	246*	224 *	\$00*	*162	280*	* 192	* 662	187*	249*	203*	265	*862	* 662	\$662	*662	*061	245	*0 570*	205	220	232*	250
-	Year Com- pieted	1947	146T	1946	1941	1941	TheT	1947	EH6T	1943	7461		1461	1941	1943	1461	744T	1930	2261	1871	1956	1947	old
	Driller	Layne Texas Co.	Layne Texas Co.	Iayne Texas Co.	Гауне Техва Со.	Layne Техня Со.	Layne Texas Co.	Layne Texas Co.	Layne Texas Co.	Iaуте Техая Со.	Layne Texas Co.		Layne Texas Co.	Layne Texas Co.	Leyne Texas Co.	Layne Texns Co.	Layne Texas Co.	J. H. Beard	Elliott & Fox			Isyne Texas Co.	
	Well Owner	Southland Faper Wills	Southland faper Mills	Southland Faper Mills	Southiand Faper Mills	Southland Faper Mills	Southland faper Mills	Southland Faper Mills	Southland faper Mills	Southland Faper Milla	Southland Faper Milla	R. L. Godzey	Southland Faper Milis	Southland Taper Mills	Southland Taper Mills	Southland Faper Mills	Southland Taper Mills	J. H. Beard	L. C. Jacota	Arras Daniel	Merit Cochran	Southiand faper Mills	Florie Deniel
	Well	TX-37-35-604	36-101	102	EOT	104	501	90T	Lot	108		OTT	507	305	502	รี้	505	206	301				109

Table 8, -- Records of Wells and Springs in Nacogdoches County -- Continued

- 84 -

**

For footnotes see and of table.

-

	Remerks	Mater reported in red gravel.	Meter reported in white send.	Well formerly used at sawmill. Reported sulfur odor and taste. Reported flow 2.5 grm in 1936. Temperature 72.50F.		Water-bearing send reported from ALP feet to 490 feet.	Reported sulfur tasts. Weter reported in fine white sond. Temperature 72^{0} F.			Water reported in red clay.	Dil test.	Water reported in red clay.		-	Abandoned. Water reported in white sand.	Mater reparted in red clay.	Abandoned.				Weter reported in white clay.	
 .	Loge Avsli- able <u>6</u> /				۵		*****				64								a	a		
Une	of Mater 1969 Z	и	z	z	ß	A	A	D, 3	α,	×		м	ຄື	Ω, 2		12		a	A	a	ĸ	D, S
	Method of Lift and Power $\frac{1}{2}/$	23	М	z	त्र इ	z	22.	0.E, E 1/3	60 10	ಸ		P.	3,5 3/1	з ' г	22	м	R	A, 5	Α, Ε	A, E	N	а, г
T	Date		-			5-19-61 12-10-68	10-2-36 12-10-68															
Fumping Nute and Level	Rate Depth (ggm) (feat)					Flowed 1.7 Flowed 1.0	Flowed 2.5 Flows	,														
ste a/	Hatar lavel" spin feat)	9-30-36	9-30-36	9-15-36	6-9-66	5-19-61 12-10-68	10-2-36	1961	1-8-69	10-1-36		95-30-36		1-8-69	10-1-36	10-1-36	10-1-36				10-2-36	
558250	Mater Depth (feat)	28.3	$h_{7,B}$	0.0 4	134	+10.7 + 5.7 1	+ 3.0	Lt	113.5	13.6		18.6		78.5	10.3	53.2	16.7				18.2	
	Indicated Mater- Bearing Unit	Соок Міп.	Cook Mtn.	Carrizo	Carrizo	Sparts	Sparte	Sperts	Carrizo	Sympton		Sparts	Sparts	Sparta	Cook Mtn.	Cook Mtn.	Cock Mtn.	Yegun	Sperts	Yegus	Yegun	Yegus
	Feet (to)				357 357				875 875 920										376 386	220		
Casing and Screen Lata	r Bepth in Feet) {from} (to)				0 357				0 517 875										0 376	0 220		
sing and	Diameter (inches)	36	36	ŵ,	64 CV	ci (i	ę	ŝ	at mina	30		48	.4	4	36	36	36		01.01	CI CI	ų.	
- Cer	Can Can Can Can Can Can Can Can Can Can	U	с 	0	ບທ	90	ь	υ	000	0		0	ы 	0	ы	u	ы		පහ	မဖ	U	
	Depth of Well (feet)	53	54	500	367	764	252	200	626	50	oll	5	165	300	51	8	8		366	530	Ŕ	
Altitude	of Land Surface (feet) 2/	185	260	230	310	180	185	210	â	235		540	550	280	260	510	160	200	200	*6LT	200	505
	Year Com- pleted	1920	old	9161	1966	256T	1691	1961	8961	1923	7461	old	0961	1963	1920	old	old		1968	1968	1161	aid
	Iriller	Ben Oliver			Newton Water Well Service	Chambers Water Well Service	George 2. Ginter	Chambers Water Well. Service	Frye Drilling Co.				English Drilling Co.						R. E. Dixon	R. E. Dixon	E. L. Lovery	
	Well Owner	Ben Oliver	R. J. Driver	d. M. Prince	Sterling Sanders	A. H. Wunk	Turton	W. P. Sadth	Etolle Water Supply Corp.	R. G. Atkinson	Н. И. Enowden- Grey Mast #l	Bennie Gray	Plus-Tex Foultry	Marte Gartmen	T. J. Wilson		Jim Still	Lave Patterson	Travís King	Shirley Creek Marins	Wilmer Must	Wilmer Mast
	Weill Number	TX-37-36-602	603	37-301	302	801	602	603	108 1	36-101	102	201	101	£04	TOL	702	601	45-601	46-101	401	102	£07

Altitudes which have asterisks (*) are from ameroid or differential leveling aurveys. All other altitudes are estimated from USAS topographic quadrangle maps having 10-foot or 20-foot contour intervals. Identifying latters used are:

ন লৈ

- 85 -

Casing or blank liner Screen . . C) VI

Reported water levels are given in feet; measured water levels are given in feet and tentha. + indicates water level show land surface.

Rumber indicates horsepower. turbine butane electric hand none F X F X F ក្រុស្ស siriitt cylinder centrifugal jet submersihie Identifying letters used are: Identifying latters used are: * 1 1 1 1 1 ले जे

2

none public supply livestock . . . 買品の D - domestic Ind. - industrial Irr. - irrigation

🎸 D indicates drillers' log available; E indicates electric log available. Drillers' logs and electric logs are in files of Texas Water Development Bourd.

Table 8.--Records of Weils and Springs in Nacogdoches County--Continued

THICKNESS DEPTH

Well AD-37-34-504

Owner: Central W. C. I. D. Driller: Texas Water Wells		
Red clay	30	30
Blue shale	30	60
Fine send	15	75
Blue shale	198	273
Rock	1	274
Sand	10	284
Elue shale	106	390
Sand with hard streaks	57	447
Shale and sand	28	475
Send	60	535
Shale	40	575
Sand	57	632
Shale	63	695
Shale	31	726
Shale	46	772
Sand	64	836
Hard	10	846
Sand	28	874
Sandy shale	36	910
Shale	10	920
Shale and rock	20	940
Shale and rock	11	951
Rock	1	952
Shale and rock	19	971
Shale and rock	83	1,054
Send	46	1,100
Rock	2	1,102
Shale	10	1,112
Sand	156	1,268
Shale	44	1,312
Hard	8	1,320

Well Ad-37-34-902

Owner: City of Lufkin No. 10 Driller: Katy Drilling Co.		
Clay	252	252
Tough blue shale	23	275
Sand	11	286
Soft shale	15	301
Sand, fine	8	309

	(Well AD-37-34-902 Continued)
Shale, soft	6	315
Shale, tough	55	370
Rock	4	374
Shale, tough	16	390
Sandy shale	13	403
Shale	5	408
Sand with shale strips	49	457
Shale, soft	26	483
Sand with shale strips	29	512
Shale, soft	9	521
Sand with shale strips	77	59 ⁸
Hard shale	20	618
Sand	6	624
Shale	23	647
Sand	8	655
Shale	58	713
Sand	5	718
Shale	76	794
Sand	30	824
Shale	26	850
Shale	196	1,046
Sand	207	1,253
Shale	15	1,268

Well AD-37-35-405

Owner: Lufkin Chamber of Commerce Driller: Layne Texas Co.	e	
Soil and red sandy shale	12	12
White clay	10	22
Brown shale	23	45
Green shale, shells and boulders	33	78
Sandy shale, shells, pyrite and glauconite	49	127
Light gray shale	47	174
Light gray sand	18	192
Gray shale	5	197
Sand, shale streaks	26	223
Sand	60	283
Shale	5	288
Sand and shale layers	9	297
Fine hard brown sandy shale	38	335
Green shale, shells	32	367

	THICKNESS	DEPTH
	37-35-405)	
Continued		. (0)
Hard rock	1	368
Green shale, shells	2	370
Hard rock	1	371
Green shale, shells	112	483
Send	35	518
Sandy shale and shale streaks	57	575
Sticky brown shale	63	638
Hard rock	1	639
Sticky brown shale	6	645
Hard rock	1	646
Sticky brown shale	19	665
Hard lime rock	1	666
Sticky brown shale	42	708
Brown shale	13	721
Green sandy shale	16	737
Sand	34	771
Sand, streaks of shale	18	789
Fine white sand	10	799
Sand, shale streaks	13	812
Coarse white sand	20	632
Coarse white sand and 3-inch streaks of shale at 880 feet	89	921
Shale	3	924
Coarse white sand	20	944
Sandy shale	3	947
Shale sand streaks	65	1,012
Very fine, hard-packed green sand	20	1,032
Hard shale	32	1,064
Hard shale sandy streaks	33	1,097
Sandy shale, sand streaks	28	1,125
Shale, sandy shale, sand streaks	29	1,154
Sandy shalle	44	1,198
·		-,-,
Well AD-3	7-35-710	
Owner: City of Lufkin Driller: Layne Texas Co.		
Surface sand	2	2
Red clay	24	26
Shale	10	36

Fine green sand, shale

Soft blue shale, shells

Soft rock

23

65

1

59

124 125

(Well AD-37-3 Continued		
Soft brown shale and shells	80	205
Soft brown shale and shells	20	225
Rock	1	226
Soft shale	10	236
Rock	2	238
Shale, rock at 287 feet and 304 feet	67	305
Sticky shale, rock at 325 feet	33	338
Soft brown shale	23	361
Brown shale, thin sandy layers	20	381
Brown shale, rock at 435 feet	55	436
Sand layers, shale, some lignite	28	464
Brown shale	19	483
Fine sand	9	492
Soft shale	14	506
Fine sand	57	563
Brown shale, thin layers of rock	12	575
Send	21	596
Brown shale, shells, lignite rock at 620 feet	26	622
Hard sticky shale	5	627
Rock	2	629
Soft shale, shells, lignite	4	633
Rock	2	635
Soft green shale and shells	11	646
Green sticky shale, shells	15	661
Soft green shale and shell, rock at 700 feet	51	712
Rock	2	714
Hard sticky shale	11	725
Soft green shale	10	735
Rock	1	736
Soft shale	19	755
Sand	5	760
Soft brown shale	11	771
Soft shale, thin layers of sand	16	787
Hard rock	1	788
Soft shale, thin layers of rock	16	804
Soft shale	10	814
Hard brown shale	42	856
Hard sticky shale	42	898
Soft shale	5	903

THICKNESS

DEPTH

	THICKNESS	DEPTH
(Well AI Conti	D-37-35-710) inued	
Rock	1	904
Hard sticky shale, rock at 912 f	Ceet 8	912
Rock	1	913
Sticky shale	12	925
Hard rock	1	926
Soft blue shells and shale	53	979
Sticky shele and shells	7	986
Soft shale	35	1,021
Sand	5	1,026
Hard shale	3	1,029
Soft rock	1	1,030
Shale, thin layers of sand	26	1,056
Sand	10	1,066
Water sand	23	1,089
White water sand (static head, 43 feet)	95	1,184
Soft shale	4	1,188
U-11 AT)- 37- 35- 711	
Owner: City of Lufkin	- 51- 57- 111	
Driller: Layne Texas Co.		
Surface soil and sand	10	10
Clay and some lignite	15	25
Send	32	57
Shale	38	95
Sandy shale	18	113
Sand	8	121
Shale, small rocks	37	158
Sandy shale, few boulders	125	283
Soft rock	2	285
Sandy shale and boulders	76	361
Shale	51	412
Pack sand	2	414
Shale	18	432
Rock	2	434
Shale, rock at 459 feet	83	517
Shale	7	524
Sand and shale	21	545
Shale	10	555
Sand and shale	12	567
Soft shale	8	575
Sand, water	21	596

	THICKNESS	DEPTH
(Well AD-3 Continue		
Soft shale	5	601
Sand, water	63	664
Hard blue shale	26	690
Brown shale, lignite, shells, little show of gas	36	726
Rock	1	727
Black shale, shells, thin layers or rock and lignite	5f 38	765
Soft rock, shells, and shale	8	773
Sticky shale	17	79 0
Shale	15	805
Soft gray shale	8	813
Rock	1	814
Soft green shale, some shell	11	825
Tough hard shale	25	850
Hard shale, thin layers of sand, thin rock	22	872
Hard shale	12	884
Hard sand, rock at 894 feet	5	889
Hard shale, broken with thin layers of rock, shell	16	905
Hard brown shale and thin layers of sand	16	921
Cored hard brown shale, thin layers of sand	5	926
Hard brown shale, layers of sand	5	931
Hard shale	19	950
Soft brown shale, showing of gas	61	1,011
Hard shale, layers of rock	10	1,021
Hard rock	2	1,023
Hard sticky shale	10	1,033
Hard rock	1	1,034
Hard shale	6	1,040
Hard rock	1	1,041
Hard shale	5	1,046
Hard brown shale	22	1,068
Soft shale	10	1,078
Hard and sticky light-blue shale	42	1,120
Fine gray sand	6	1,126
Fine sand	4	1,130
Soft shale	15	1,145
Hard shale with thin layers of sam	nd 18	1,163
Sticky dark-brown shale	10	1 , 173

	THICKNESS	DEPTH		THICKNESS	DEPTH
	(Well AD-37-35-711) Continued			(Well AD-37-36-902) Continued	
Pack sand (water)	70	1243	Sha Le	24	532
	Well AD-37-35-902		Hard rock	2	534
Owner: M & M Water Su			Shale	35	569
Driller: Key Water Well			Hard rock	2	571
Surface clay	140	140	Shale	10	581
Sand	12	152	Hard rock	1.	582
Shale	182	334	Shale and sandy shale	81	663
Sand	կկ	378	Sand	10	673
Shale	82	460	Shale	10	683
Sandy shale	340	800	Sand	8	691
Shale	130	930	Shale	4	695
Muddy sand	40	970	Sand	20	715
Water sand	130	1,100	Broken sand	13	728
Sandy shale	65	1,165	Good gray sand	89	817
	Well AD-37-36-902		Shale and boulders	17	834
Owner: Southland Pape			Shale and sand	12	846
Driller: Layne Texas Co			Sand	54	900
Sandy clay	23	23	Rock	1	901
Gray sand	18	41	Shale and sand layers	24	925
Sandy clay	14	55	Rock	2	927
Rock	1	56	Sand	21	948
Shale	27	83	Rock	l	949
Rock	1	84	Shale and boulders	20	969
Shale	5	89	Shale	31	1,000
Rock	1	90	Send	11	1,011
Shale	22	112	Rock	2	1,013
Sand shale and shell	21	133	Sand	9	1,022
Shale	17	150	Shale and sandy shale	36	1,058
Good gray sand	⁸ 5	235	Rock	l	1,059
Sand (thin shale layer)	43	278	Sand	17	1 , 076
Good gray sand	22	300	Rock	l	1,077
Shale	8	308	Sandy shale	13	1,090
Good gray sand	8	316	Rock	2	1,092
Shale	37	353	Sandy shale	14	1,106
Rock	3	356	Sand	12	1,118
Shale	6	3 62	Sandy shale	15	1,133
Sandy shale, lignite, and	d shell 76	438	Shale	18	1,151
Shale, sendy shale and a	shell 70	508	Sand	22	1,173
Sandy shale	16	52L	Shale	2	1,175
Soft rock	4	528	Sand	3	1,178

- 89 -

	THICKNESS	DEPTH
(Well AD-j Continu	37+36-902) 1ed	
Sandy shale	29	1,207
Rock	2	1,209
Shale and sandy shale	-06	1,289
Rock	1	1,290
Shale and sandy shale	30	1,320
Rock	2	1,322
Shale and sandy shale	35	1,357
Shale	20	1,377
Well AD-3	7-42-101	
Operator: Humble Oil & Refining Co. Fee: J. L. Bonner 1-A		
Surface and sand	12	12
Sand	8	20
Sandy shale and gravel	40	60
Sandy shale	36	96
Shale with streaks of sand	24	120
Hard grayish-brown shale with fossil fragments	33	153
Rock (brown clay ironstone)	L	154
Sandy shale, streaks of gray sand	62	216
Brown clay ironstone	l	217
Sandy shale	16	233
Frown clay ironstone	l	234
Sandy shale with streaks of gray sa	ind 22	256
Eard shale	5	261
Sandy shale, greenish with some glauconite and fossils	16	277
Hard shale	19	296
Brown shale, few streaks of sand	18	314
Rock	1.	315
Hard shale	13	328
Shale, greenish with some glauconite and fossils	2	330
Hard, dark sandy shale	11	341
Hard shale	16	357
Sticky gray shale	37	394
Rock	1	395
Sticky gray shale	5	400
Gray shale	5	405
Gray shale, boulders	14	419
Hard, sticky gray shale	30	449
Hard, sticky gray shale with fossil	.s 47	496

	THIC	KNESS	DEPT
	(Well AD-37-42- Continued	101)	
Gray-brown sticky sha glauconite, fossi		47	543
Sandy shale, streaks	of sand	21	564
Sand, rock at 564 fee	et	11	575
Sandy shale		20	5 95
Brown sand		31	626
Rock		2	628
Sandy shale		6	634
Sticky shale		15	649
Sand, streaks of lign	nite	19	668
Hard shale, shells		2	670
Brown sand, streaks o	of lignite	53	723
Hard sticky shale		15	73 8
Sand		41	779
Sticky shale		20	799
Brown sand		7	806
Sticky shale		16	822
Sand		8	830
Sticky shale		15	845
Green sand with glaud	conite	2	847
Hard shale		3	850
Green sand marl		8	8 5 -8
Soft shale with glaue	conite	10	868
Green sand marl		1	869
Soft shale with glaue	conite	32	901
Green sand with glaud	conite	8	909
Brown shale		7	916
Rock		1	917
Green sand		2	919
Brown shale		11	930
Sandy shale, oil-bear	ring	4	934
Sandy shale		5	939
Dark gray shale		20	959
Shale and boulders		8	967
Shale with glauconite	, boulders	9	976
Sand		71	1,047
Sandy shale		8	1,055
Gray sticky shale wit sandy shale	h streaks of	9	1,064
Gray sticky shale		31	1,095
Sand		3	1,098

THICKNESS DEPTH

	THICKNESS	DEPTH
(Well AD-3 Contin		
Sticky brown shale, some glauconit	se 9	1,107
Sand	2	1,109
Sticky shale	6	1,115
Rock	1	1,116
Green sand	2	1,118
Sticky shale	7	1,125
Rock	1	1,126
Shale, streaks of green sand and fossils	15	1,141
Rock	1	1,142
Brown shale, streaks of glauconite	e 62	1,204
Bluish-gray shale with some lime, fossils	4	1,208
Brown sticky shale with green sand	I 15	1,223
Send	41	1,264
Sandy shale	8	1,272
Sand, water	33	1,305
Well AD-3	17-42-306	
Owner: City of Lufkin Driller: Layne Texas Co.		
Surface sand	1	1
Red clay	30	31
Gray sandy clay	31	62
Soft clay	3	65
Yellow sand	20	85
Thin layers of rock and sand	7	92
Fine sand, layers of shale	67	159
Fine sand and lignite	14	173
Dark-brown soft shale	73	246
Soft shale and shell	32	278
Soft blue shale and shells	21	299
Hard blue shale, thin rock rock at 304 feet	10	309
Soft blue shale	34	343
Hard blue shale	15	35 8

20

7

4

2

24

37

378

385

389

391

415

452

Hard blue shale and shells

Soft shale, shells

Soft blue shale, shells

Hard blue shale and shells

Rock

Sticky blue shale and shells, thin rock at 380 feet

(Well AD-37-42- Continued	306)	
Rock		l	453
Hard shale		8	461
Send		2	463
Soft flakes and shells		52	515
Soft flakes, shale and a rock at 533 feet		29	544
Rock		2	546
Hard brown shale		19	565
Rock		l	566
Hard brown shale, shells at 580 and 592 feet		29	595
Fine sand, some lignite		25	620
Soft brown shale, shells		23	643
Sand		7	650
Soft brown shale, shells		13	663
Sand		28	691
Shale		8	699
Soft brown shale		23	722
Fine sand		24	746
Dark-brown shale, soft s at 830 and 850 feet		07	853
Hard sticky green shale		15	868
Soft rock		2	870
Soft green shale, layers	of shell	35	905
Hard green shale		9	914
Rock		1	915
Soft green shale		9	924
Hard rock		1	925
Hard sticky green shale	:	23	948
Fine gray sand	:	20	968
Hard flaky green shale	:	30	99 8
Hard rock		1	999
Soft shale		9 1	L,008
Rock		1 1	L,009
Soft shale	:	11 1	L , 020
Rock		1 1	,021
Soft brown shale	:	18 1	,039
Fine gray water sand and shale, thin layers of	hard brown sand	8 1	.,047
Hard brown shale, rock a	t 1,085 feet ;	58 1	. , 105
Green and brown sandy cl	ау	3 1	,108
Hard brown shale		9 1	,117

THICKNESS

DEPTH

THICKNESS DEPTH (Well AD-37-42-306) Continued

	continued	
Rock	l	1,118
Hard shale	5	1,120
Hard rock	2	1,122
Hard shale	6	1,128
Hard rock	2	1,130
Fard shale	9	1,139
Fard rock	l	1,140
Brown shale	8	1,148
Hard rock	l	1,149
Soft brown shale	64	1,213
Hard sticky shale	11	1,224
Soft shale	6	1,230
Green sand, water	8	1,238
Soft brown shale	26	1,264
Gand	73	1,337
Soft shale	10	1,347
Jand	24	1,371
Band, layers of shale	19	1,390
Sand	20	1,410
Soft brown shale	39	1,449

Well AD-37-42-502

Owner: Agriculture Exp. Sta. Driller: Frye Drilling Co.		
Top soil, clay and blue shale	22	22
Plue shale, some lignite	21	43
Green shale	21	64
Green shale and brown shale	20	84
Shale, rocky shale, sand	21	105
Shale, good sand	20	125
Shale and sand strips	21	146
Shale and sand strips	2C	166
Shale and sand strips	21	137
Shale	20	207
Shale and sand strips	21	228
Shele and thin send strips	20	248
Int. shale and sand strips	21	269
Int. sand - good sand	20	289
Int. sand - good sand	21	310
Int. sand	5	312

TH	IICKNESS	DEPTH
Well AD-37-1	4 - 801	
Owner: City of Huntington No. 7 Driller: Layne Texas Co.		
Surface	0	0
Soil	4	4
Sandy clay and gravel	16	20
Gray clay	44	64
Gray shale and sand streaks	128	192
Sand streaks, sandy shale and shale	25	217
Shale	47	264
Sand (cut good)	29	293
Shale and lignite	136	429
Sand	15	444
Shale and lignite	46	490
Sand	17	507
Sandy shale	18	525
Broken sand	18	543
Shale	25	568
Sand and shale streaks	22	5 90
Sandy shale	45	635
Sand (cut good)	33	668
Shale and sandy shale	232	90 0
Shale	157	1,057
Shale	35	1,092
Shale and sandy shale	35	1,127
Sandy shale	13	1,140
Sand and few shale breaks	56	1,196
Shale	21	1,217
Sand and shale breaks and lignite	73	1,290
Sandy shale	62	1,352
Hard shale, shale and lime	124	1,476
Hard shale	10	1,486
Rock	5	1,488
Shale and sandy shale	122	1,610
Hard shale	13	1,623
Hard shale and boulders	14	1,637
Hard shale	53	1,690
Sandy shale	16	1,706
Shale	ö	1,714
Sandy shale	105	1,819
Sand and streaks of shale	37	1, ô56
Shale	7	1, <i>6</i> 3

	THICKNES	SS DEP T H	
	Well AD-37-50-302		
Owner: Burke Water Su Driller: Texas Water We	apply Corp. No. 1 11s		She
Ground level	24	4	Int
Surface soil	6	10	Sha
Shale	53	63	
Sandy shale	9	72	
Shale	33	105	Owr Dri
Sand	5	110	Sui
Sand and shale	112	222	Sar
Sand	28	250	She
Shale	23	273	Wat
Sand	27	300	She
Shale	21	321	Ser
Send	19	340	
Sand and shale	1.35	475	
Shale	35	510	Owr Dri
Shale	22	532	Top
Shale	38	570	Blu
Sand	8	578	Gre
Shale	12	590	BLu
Sand	25	615	Sof
Sand and shale	48	663	Sof
Shale	62	725	Blu
Sandy shale	75	800	Yel
Shale	18	818	Blu
Sand	64	882	Blu
Shale	38	920	Goo
			Sha
	Well AD-37-50 901		Blu
Owner: City of Diboll Driller: Layne Texas Co			Sar
Shale and sand breaks	300	300	Sha
Sandy shale	25	325	Sha
Shale and sand breaks	140	465	
Fine gray sand and shale	e breaks 154	619	Sha
Shale	7	626	Sar
	Well AD-37-53-901		
Owner: U.S. Forestry			
Driller: Frye Drilling			
Top soil, red sandy clay	22	22	
Hard blue shale	21	43	
Hard sandy shale	21	64	

Continue		
Shale	20	84
Int. Sand and shale	21	105
Shale	21	126
Well AD-3	7-50-901	
Owner: National Forest Service		
Driller: Key Drilling Co.		
Surface soil and clay	55	55
Sandy shale	45	100
Shale	105	205
Water sand	18	223
Shale	547	770
Sand (salt water)	50	820
Well AD-3	7-63-201	
Owner: National Forest Service Driller: Frye Drilling Co.	e No. l	
Top soil, clay, red sandy gravel	22	22
Blue shale	21	43
Green shale, porous rock	19	62
Blue shale	17	79
Soft green shale	21	100
Soft yellow shale	20	120
Blue and yellow shale	21	141
Yellow shale	20	161
Blue and green shale	21	182
Blue medium shale	47	229
Good sand	4	233
Shale	10	243
Blue shale, medium hard	29	272
Sand, fair	6	278
Shale	6	284
Shale, with 6-feet and 3-feet sand breaks	21	305
Shale and sand breaks	20	325
Sand with shale breaks	41	366

THICKNESS

(Well AD-37-53-901)

DEPTH

	THICKNESS	DEPTH
Well TX-37-	-09-502	
Owner: Sacul Water Supply Corp. Driller: Lanford Drilling Co.		
Surface sands and clay	145	145
Massive water sand	145	290
Sandy shale	90	380
Gumbo with sand streaks	70	450
Heavy gumbo	150	600
Sandy shale	60	660
Fine tight water sand	62	722
Well TX-37-	- 10- 403	
Owner: City of Cushing No. 2 Driller: Leyne Texes Co.		
Surface	0	0
Red clay	20	20
Brown shale and streaks of rock	139	159
Sand	15	174
Hard shale and sand streaks	64	238
Sand	34	272
Shale and sandy shale	42	314
Send	16	330
Shale, sandy shale and lignite	70	400
Fine grey sand and streaks of sandy shale and lignite	48	448
Shale	12	460
Shale and sandy shale and streaks of sand and lignite	r 95	555
Shale and streaks of lignite	66	621
Fine sand	18	639
Shale and sandy shale	:24	663
Fine sand and lignite	:20	683
Sandy shale, sand streaks and ligni	te 31	714
Shale and lignite	55	769
Shale	71	840
Sand, cuts fair	58	898
Brown shale and lignite	41	939
Fine sand	10	949
Lignite and a few shale breaks	37	986
Sand and shale breaks	31	1,017
Shale and lignite and sand streaks	76	1,093
Sand, shale and lignite	9	1,102
Not logged	100	1,202

Well TX-37-10-	901	
Owner: Humble Oil & Refining Co. Driller: Layne Texas Co.		
Top soil	4	4
Clay	8	12
Fine brown send	19	31
Fine white sand	19	50
Fine gray sand	11	61
Fine gray sand with streaks of clay	62	123
Coarse gray sand	9	132
Sandy clay	38	170
Clay	73	243
Sandy shale	20	263
Rock	1	264
Sandy shale and streaks of sand	39	303
Fine gray sand	12	315
Cley	15	330
Fine gray sand and streaks of clay	48	378
Sandy shale	12	390
Fine gray sand	62	452
Clay and streaks of sand	23	475
Rock	1	476
Cley	27	503

THICKNESS

DEPTH

Well TX-37-11-802

Owner: Nacogdoches Industrial Driller: Layne Texas Co.	Foundation	
Top soil	3	3
Red clay	17	20
Gray sandy shale	55	75
White sand	20	95
Shale	5	100
Sand	138	238
Blue shale	38	276
Shale and lignite	68	344
Fine sand	20	364
Shale, hard streaks and lignite	47	411
Shale and hard lignite	55	466
Sand, cuts good	27	493
Shale	19	512
Shale and streaks of sandy lignite	e 98	610
Shale and layers of sandy shale	43	653

Weil TX-37-11-902 Shale 36 689 Over::::::::::::::::::::::::::::::::::::		THICKNESS	DEPTH		THICKNESS	DEPTH
Shale 36 689 Owner: Caro Water Supply Corp. Shale 6 695 Clay 12 12 Sandy shale and shale 50 745 Clay, red and yellow 8 20 Shale 12 757 Red sand 64 84 Sandy shale 37 794 Sandy shale 21 105 Shale 46 840 Fine white sand 45 150 Sandy shale 46 840 Gray and white sand 25 175 Shale 20 860 Gray and white sand 25 175 Shale, broken 47 907 Shale 36 210 250 Shale, broken 35 942 Sandy shale 40 250 210 Shale with hard layers 48 1,000 Sandy shale 40 310 Shale and sand layers 26 1,026 Sandy shale 20 330 Shale and streaks of sandy shale 37				Well TX-37-1	1-901	
Sandy shale and shale 50 745 Clay, red and yellow 8 20 Shale 12 757 Red sand 64 84 Sand, cuts good 37 794 Sandy shale 21 105 Sandy shale 46 840 Fine white sand 45 150 Shale 20 860 Gray and white sand 25 175 Sand, broken 47 907 Shale 35 210 Shale 35 942 Sandy shale 40 250 Shale 10 952 Fine sand 40 250 Shale with hard layers 48 1,000 Sandy shale 40 310 Shale and sand layers 26 1,026 Sand 20 330 Shale and send send send send send 37 1,063 Shale and send 20 350			689			
Shale 12 757 Red sand 64 84 Sand, cuts good 37 794 Sandy shale 21 105 Sandy shale 46 840 Fine white sand 45 150 Shale 20 860 Gray and white sand 25 175 Sandy shale 20 860 Gray and white sand 25 175 Sand, broken 47 907 Shale 35 210 Shale 35 942 Sandy shale 40 250 Shale with hard layers 10 952 Fine sand 40 310 Shale and sand layers 26 1,026 Sandy shale 20 330 Shale and sand layers 37 1,063 Shale and sand 20 350	Shale	6	695	Clay	12	12
Send, cuts good 37 794 Sandy shale 21 105 Sendy shale 46 840 Fine white sand 45 150 Shale 20 860 Gray and white sand 25 175 Sandy broken 47 907 Shale 35 210 Shale 35 942 Sandy shale 40 250 Sandy shale 10 952 Fine sand 20 270 Shale with hard layers 48 1,000 Sandy shale 40 310 Shale and sand layers 26 1,026 Sand 20 330 Sand and streaks of sandy shale 37 1,063 Shale and sand 20 350	Sandy shale and shale	50	745	Clay, red and yellow	8	20
Sendy shale 46 840 Fine white send 45 150 Shale 20 860 Gray and white send 25 175 Sand, broken 47 907 Shale 35 210 Shale 35 942 Sendy shale 40 250 Shale 10 952 Fine send 20 270 Shale with hard layers 48 1,000 Sendy shale 40 310 Shale and sand layers 26 1,026 Sand 20 330 Shale and send sendy shale 37 1,063 Shale and send 20 350	Shale	12	757	Red sand	64	84
Shale 20 860 Gray and white sand 25 175 Sand, broken 47 907 Shale 35 210 Shale 35 942 Sandy shale 40 250 Sandy shale 10 952 Fine sand 20 270 Shale with hard layers 48 1,000 Sandy shale 40 310 Shale and sand layers 26 1,026 Sand 20 330 Shale and sand layers 37 1,063 Shale and sand 20 350	Sand, cuts good	37	794	Sandy shale	21	105
Sand, broken 47 907 Shale 35 210 Shale 35 942 Sandy shale 40 250 Sandy shale 10 952 Fine sand 20 270 Shale with hard layers 48 1,000 Sandy shale 40 310 Shale and sand layers 26 1,026 Sand 20 330 Sand and streaks of sandy shale 37 1,063 Shale and sand 20 350	Sandy shale	46	840	Fine white sand	45	150
Shale 35 942 Sandy shale 40 250 Sandy shale 10 952 Fine sand 20 270 Shale with hard layers 48 1,000 Sandy shale 40 310 Shale and sand layers 26 1,026 Sand 20 330 Sand and streaks of sandy shale 37 1,063 Shale and sand 20 350	Shale	20	860	Gray and white sand	25	175
Sendy shale10952Fine send20270Shale with hard layers481,000Sendy shale40310Shale and sand layers261,026Sand20330Send and streaks of sendy shale371,063Shale and send20350	Sand, broken	47	907	Shale	35	210
Shale with hard layers481,000Sandy shale40310Shale and sand layers261,026Sand20330Sand and streaks of sandy shale371,063Shale and sand20350	Shale	35	942	Sandy shale	40	250
Shale and sand layers261,026Sand20330Sand and streaks of sandy shale371,063Shale and sand20350	Sandy shale	10	952	Fine sand	20	270
Send and streaks of sendy shale 37 1,063 Shale and send 20 350	Shale with hard layers	48	1,000	Sandy shale	40	310
	Shale and sand layers	26	1,026	Sand	20	330
	Sand and streaks of sandy shale	37	1,063	Shale and sand	20	350
Shale and same $14 1, 0$ (7 Same $10 360$	Shale and sandy shale	14	1,077	Sand	10	360
Fine sand 66 1,143 Shale and sandy shale 30 390	Fine send	66	1,143	Shale and sandy shale	30	390
Shale 5 1,148 Sand 12 402	Shale	5	1,148	Sand	12	402
Sand 16 1,164 Shale and lignite streaks 18 420	Sand	16	1,164	Shale and lignite streaks	18	420
Rock 3 1,167 Good white and gray sand 43 463	Rock	3	1,167	Good white and gray sand	43	463
Shale 18 1,185 Shaly sand 37 500	Shale	18	1,185	Shaly send	37	500
Rock 2 1,187 Sand 10 510	Rock	2	1,187	Sand	10	510
Shale and rock layers 16 1,203 Shale 10 520	Shale and rock layers	16	1,203	Shale	10	520
Sand and layers of shale 30 1,233 Sand 10 530	Sand and layers of shale	30	1,233	Sand	10	530
Shale and rock layers 17 1,250 Sandy shale 22 552	Shale and rock layers	17	1,250	Sandy shale	22	552
Shale 6 1,256	Shale	6	1,256	ניסי עדת נובא	a hob	
Sandy shale 20 1,276	Sandy shale	20	1,276		.3-404	
Hard sandy shale161,292Owner:City of Gerrison No. 3Driller:Layne Texas Co.	Hard sandy shale	16	1,292			
Sandy shale 8 1,300 Sand 3 3	Sandy shale	8	1,300	Sand	3	3
Hard shale and lignite 27 1,327 Clay, brown and white 21 24	Hard shale and lignite	27	1,327	Clay, brown and white	21	24
Sandy shale and lignite 15 1,342 Blue clay 139 163	Sandy shale and lignite	15	1,342	Blue clay	139	163
Sand with shale layers 25 1,367 Clay and streaks of sandy clay 46 209	Sand with shale layers	25	1,367	Clay and streaks of sandy clay	46	209
Shale and Lignite 30 1,397 Sand 17 226	Shale and Lignite	30	1,397	Send	17	226
Sandy shale 19 1,416 Clay 8 234	Sandy shale	19	1,416	Clay	8	234
Rock 2 1,418 Sand 12 246	Rock	2	1,418	Sand	12	246
Sendy shale and shale 12 1,430 Rock 1 247	Sandy shale and shale	12	1,430	Rock	l	247
Hard shale 10 1,440 Sand 8 255	Hard shale	10	1,440	Send	8	255
Sendy shale, send and lignite 55 1,495 Rock 1 256	Sandy shale, sand and lignite	55	1,495	Rock	1	256
Sandy shale and lignite 11 1,506	Sandy shale and lignite	11	1,506			

Table 10. -- Drillers' Logs of Representative Wells in Nacogdoches County -- Continued

	THICKNESS	DEPTH
	37-13-404)	
Continu	led	
Sand	40	296
Rock	6	302
Sandy clay	7	309
Rock	1	310
Sandy clay and sand	7	317
Sand	30	347
Sandy clay	9	356
Well TX-3	37-17-607	
Owner: Douglass Water Supply Co Driller: Layne Texas Co.	orp.	
Surface	С	0
Surface soil and sand	8	8
Fed sandy clay and iron ore	20	28
White sand	15	43
Blue shale	76	119
Sandy shale and streaks of sand	35	154
Rock	1	155
Blue shale	6	161
Rock	1	162
Blue shale	9	171
Rock	l	172
Brown sandy shale and streaks of s	and 57	229
Dry sandy shale and sand	23	252
Sandy shale	53	305
Sand and layers of shale	31	336
Sandy shale	5	341
Sand and streaks of shale	15	356
Sand	13	369
Sandy shale	6	375
Sand and lignite	34	409
Sandy clay	7	416
Sand with streaks of shale	40	456
Sandy shale and streaks of sand	35	491
Shale	35	526
Shale and streaks of sand	23	549
Sandy shale and streaks of sand	86	635
Shale and lignite	21	656
Shale, sandy shale and sand	39	695

	THICKNESS	DEPTH
Well TX-3	7-18-101	
Owner: Lilbert-Looneyville Wa Driller: C. C. Innerarity	ater Supply	Corp.
Reddish clay	20	20
Dark hard clay and soft clay	30	50
Fine gray sand	20	70
Hard dark clay	30	100
Thin sand layers	30	130
Hard blue clay	70	200
Thin rock, small sand streaks	55	255
Sand and clay streaks and soft n	rock 105	360
Rock, clay and sand	15	375
Sand	20	395
Blue clay	40	435
Send	45	480
Sand and clay streaks	16	496
	1	
Well TX-3		
Owner: Lilly Grove Water Supp Driller: C. C. Innerarity	ply Corp.	
Reddish clay formation and rock	20	20
Dark blue clay	40	60
Somewhat lighter clay with black sand streaks	60	120
Blue clay with small sand stread	ks 45	165
Blue clay with small soft rock	65	230
Blue clay with few small send streaks	130	360
Sticky blue clay	38	39 8
Sand	20	418
Blue clay	27	445
Sand	10	455
Blue c lay	35	490
Sand and clay streaks	55	545
Sand	45	590
Well TX-3	7-26-804	
Owner: Texas Foundries Club Driller: Innerarity & Leubner		
Red clay	8	8
Surface sand	9	17
Blue clay	13	30
Send	13	43

	THICKNESS	DEPTH		THICKNESS	DEPTH
(Well TX-37 Continued	- 26- 804)		Wel	1 TX-37-28-901	
Clay	12	55	Owner: Woden Water Sup Driller: Key Water Wells		
Seep sand	35	90	Surface soil	18	18
Blue clay	29	119	Water sand	20	38
Tight sand	18	137	Sandy clay	80	118
			Hard tight shale	222	340
Well TX-37-	27-504		Sandy shale	50	360
Owner: City of Nacogdoches No. 6 Driller: Texas Water Wells			Water sand 145		505
Ground level	4	4	1.1 - 1	1 my 1m oo hoo	
Yellow clay	12	1.6		1 TX-37-29-402	
Send	26	42	Owner: Melrose Water S Driller: Key Water Wells		
Sandy shale	171	213	Surface soil	10	10
Lime and pyrite	7	220	Surface sand and clay	70	80
Sandy shale	60	280	White sand	50	130
Sand	10	290	Blue shale	25	155
Shale	42	332	Oil sand	13	168
Rock	1	333	Gray shale	32	200
Shale	4	337	Sandy shale	40	240
Rock	1	338	Blue shale	12	252
Shale	28	366	Sandy shale	28	280
Rock	L	367	Salt and pepper sand	40	320
Shale	50	417	White send	40	360
Sand and shale	13	430	Shale	30	390
Sandy shale	40	470	Ma.1	1 my 27 00 602	
Sand and streaks of shale	120	590	Well TX-37-29-603 Owner: Attoyac Water Supply Corp.		
Shale and lignite	85	675	Owner: Attoyac Water S Driller: Andrews & Foste		
Well TX-37-	27-802		Shale	40	40
Owner: City of Nacogdoches No. 9			Blue shale and rock break	s 30	70
Driller: Layne Texas Co.			Brown shale	10	80
Surface	0	0	Sandy shale and rock	60	140
Sand	11	11	Sand	98	238
Red and gray clay	43	54	Shale	7	245
Clay and sendy clay	81	135	Sand	11	256
Black and brown shale	70	205	Shale	35	291
Brown shale streaks and sandy shale	62	267	Rock	1	292
Green sandy shale	31	298	Shale	10	302
Gray shale and lignite	197	495	Sand	12	314
Sandy shale	25	520	Shale	46	360
Shale and sandy shale streaks	60	580	Sand	20	380
Carrizo sand	106	686	Shale	12	392
Brown shale	10	696	Sand	13	405

(Well TX-37-29-603) ContinuedRock9414Sand11455Shale5460Well TX-37-30-701Owner: Chireno Water Supply Corp. Driller: Layne Texes Co.Surface00Clay2525Shale5176Rock379Shale and streaks of rock1190Shale and streaks of rock1154Rock54154
Sand L1 455 Shale 5 460 Well TX-37-30-701 Owner: Chireno Water Supply Corp. Driller: Layne Texas Co. Surface 0 0 Clay 25 25 Shale 51 76 Rock 3 79 Shale and streaks of rock 11 90 Shale and sandy shale 64 154
Shale 5 460 Well TX-37-30-701 Owner: Chireno Water Supply Corp. Driller: Layne Texas Co. Surface 0 Clay 25 Shale 51 Rock 3 Shale and streaks of rock 11 Shale and sandy shale 64
Well TX-37-30-701 Owner: Chireno Water Supply Corp. Driller: Layne Texas Co. Surface 0 0 Clay 25 25 Shale 51 76 Rock 3 79 Shale and streaks of rock 11 90 Shale and sandy shale 64 154
Owner:Chireno Water Supply Corp. Driller:0Driller:Layne Texas Co.Surface0Clay25Shale51Rock3Shale and streaks of rock11Shale and sandy shale64
Driller: Layne Texas Co.Surface0Clay2525Shale5176Rock379Shale and streaks of rock1190Shale and sandy shale64
Clay2525Shale5176Rock379Shale and streaks of rock1190Shale and sandy shale64154
Shale 51 76 Rock 3 79 Shale and streaks of rock 11 90 Shale and sandy shale 64 154
Rock 3 79 Shale and streaks of rock 11 90 Shale and sandy shale 64 154
Shale and streaks of rock 11 90 Shale and sandy shale 64 154
Shale and sandy shale 64 154
Rock 1 155
Shale 132 287
Sand and streaks of shale 23 310
Sandy shale 9 319
Sand (cut good) 37 356
Sendy shale 14 370
Sand (cut good) 21 391
Sandy shale 6 397
Sand 8 405
Sandy shale and streaks of sand 26 431
Shale and sandy shale 124 555
Shale and streaks of sand +3 598
Sand and streaks of shale 17 615
Rock 2 617
Shale 32 649
Sand 12 661
Shale 54 715
Sand and streaks of shale 10 725
Shale and streaks of sand 37 762
Lignite 6 768
Shale 6 774
Fine send and streaks of shale 29 803
Shale and lignite 14 817
Send and streaks of shale and lignite 26 843
Shale, streaks of rock and lignite 30 873
Send and sendy shale 12 885
Shale 12 897

Well TX-	- 37- 35- 101	
Owner: Southland Paper Mill: Driller: Layne Texas Co.	5	
Soil	l	1
Sandy clay	15	16
Sand	89	105
Sand and sandy shale	107	212
Shale lignite and shell	54	266
Rock	3	269
Shale, sandy shale, lignite, shell	1 166	435
Rock	3	438
Shale	2	440
Rock	1	441
Shale	5	446
Rock	4	450
Shale	11	461
Rock	2	463
Shale, sandy shale, lignite, she	11 65	528
Broken sand	50	578
Sand	148	726
Sandy shale	16	742
Sand	22	764
Broken sand	16	780
Send	45	825
Rock	3	828
Shale	16	844
Sandy shale	6	850
Sand (good)	12	862
Shale and sandy shale	15	877
Rock	l	878
Boulders	2	880
Shale and sandy shale	13	893
Sand	35	928
Sandy shale and shale	7	935
Sand	48	983
Rock	1	984
Well TX-	37-35-301	
Owner: Southland Paper Mill: Driller: Layne Texas Co.	3	

4

22

2

4

26

28

THICKNESS DEPTH

Clay rocks Sand

Clay

THICKNESS DEPTH

	(Well TX-37-3 Continued	5-301)	
Send		8	36
Hard shale		23	59
Sandy shale		23	82
Sand and sardy shale and	lignite	50	132
White and black speck san	d	62	194
Sandy shale		16	210
Sand and sardy shale		20	230
Hard sandy shale		150	380
Shale and sardy shale		52	432
Shale and streaks of sand	y shale	60	492
Hard shale and streaks of	sandy shale	54	546
Sandy shale, greenish		25	571
Shale		6	577
Not logged		49	626
Sandy breaks, sandy shale		12	638
Fine gray sand (cut good)		10	648
Sandy shale and sand		21	669
Hard shale, sand-lignite		21	690
Fine gray sand (cut fair)		69	759
Sand, breaks of shale		17	776
Sand and shale		29	805
Sand, sandy shale, lignit	e	46	851
Shale, streaks of sandy s	hale	53	904
	Well TX-37-36	-201	
Owner: Southland Paper Driller: Layne Texas Co.	Mills		
Sand		2	2
Red sandy clay		11	13
Gray clay		7	20
Yellow clay and sand		8	28
Yellow sand		39	67
Gray shale		29	96
Gray sand		30	126
Gray shale		7	133
Gray sand		11	144
Gray shale		5	149
Gray sand		12	161
Gray shale		3	164
Gray sand		12	176

14

Gray shale

190

	(Well TX-37-36-20) Continued	.)
Gray sand	14	204
Shale, sandy shale, sh	iell 51	255
Shale and boulders	21	276
Gray shale	42	31 8
Rock	2	320
Shale, sandy shale and	shell 28	348
Rock	1	349
Shale, lignite and she	33	382
Rock	2	384
Shale	26	410
Boulders	3	413
Shale	6	419
Rock	1	420
Shale	18	438
Shale, lignite and she	39	477
Rock	2	479
Rock	2	481
Shale	1	482
Rock	2	484
Shale	2	486
Rock	2	488
Shale	3	491
Rock	1	492
Shale	21	513
Rock (hard)	4	517
Shale	30	547
Sand and shale	16	563
Sand	37	600
Shale	4	604
Sand	3	612
Shale	5	617
Sand	107	724
Rock	1	725
Shale and shell	11	736
Rock	1	737
Shale	8	745
Rock	1	746
Sand	72	818
Sandy shale	10	828
Sand	9	837

THICKNESS DEPTH

,

THICKNESS	DEPTH

(Well TX-37-36-201) Continued

Shale and sandy shale	12	849
Sand	21	870
Rock	7	877
Shale and sandy shale	8	885
Sand	11	896
Shale and sandy shale	18	914
Fock	1	915
Shale	17	932
Send	13	945
Sandy shale and shale	37	982
Rock	1	983
Shale and sandy shale	7	990
Rock	1	991
Shale, sandy shale and shell	95	1,086
Sandy shale and sand	20	1,106
Gray sand	14	1,120
Rock	2	1,122
Gray sand	14	1,136
Shale, sandy shale and shell	73	1,209
Rock	1	1,210
Shale	2	1,212
Rock	3	1,215
Sandy shale	5	1,220
Rock	1	1,221
Sandy shale	2	1,223
Rock	1	1,224
Sandy shale	26	1,250
Rock	1	1,251
Sand	21	1,272
Shale	18	1,290
Send	26	1,316
Shele	10	1,326

(Well TX-37-46 Continued	-401)	
Hard gray sand, shale and gravel	30	50
Hard dark gray shale	25	75
Lignite	5	80
Sandy shale, water sand, sulphur	46	126
Dark brown clay and gravel	9	135
Sandy shale	20	155
Lignite and gravel	3	158
Rock, sandy shale and gravel	22	180
Sandy shale and gravel	18	198
Lignite, clay and gravel	6	204
Rock	2	206
Water sand	24	230

Well TX-37-46-401

Owner: Shirley Creek Marina Driller: R. E. Dixon		
Surface sand	2	2
Hard red clay	1,	6
Hard blue clay and gravel	10	16
Lignite	4	20

Table 11. -- Results of Chemical Analyses of Water From Wells in Angeling County

۳s

*14

...

×.,

a, 66

Hđ	8.1	a	1 U	4.8			8.5	. 0.8 0.0	8.6			0 2	- ac			8.9	8.6		·····	8.7	8.2	6.9			
Specific Conduct- ance Micro- mhos/cm @ 25 ⁶ C.	477	004.1	000	1.610	300	520	1.500	745	-			1.085	186	780			810			519		495			
Total Hard- ness as CaCO3 1	27	84	2.6	1 0°) (U	\$	2	611	. 9	74	g	K K		í	러	4	¢,	12	ee B	CU.	⁴⁵	135	TO	26	81
Dis- solved Solids	291*	870*	830.	1.040*	233*	* #91	950*	470*	522*			675*	489 189	484	1,190	432*	490		2,970*	333	660*	340*			
N1- trate (N03)	<0.4	4. V	4		× 4.	88	5.5	4. ~				5.0	0		0.	4. 4.				1.8	2.5	*.	······	1.3	0
Flu- o- (F)	0.3	1.0	J.6	1.6	9.	4.	2.4	ņ			······	œ	m	•	т.1	ņ			••••••••••••••	<i>г</i> .	ē.	۷ دیا			
Chlo- ride (Cl)	33					14	45	t‡€	Τ	10	g	78	ß	16	_	9T	17	9	1,400	10	45	ŝ	IO	9†	<u>6</u>
Sul- fate (Sout)	43	276	169	267	24	m	IO	147	56	п	9	178	118	911	336	94	106		ص حط	67	163	99	ŝ	35	4
Bicar- bonate (HCO3)	206	342	477	475	154	9	930	520	400	ŝ	4TT	318	599	310	572	238	288	9	780	201	395	173	7	10	32
Car- bon- ate (CO3)			16	ŝ	E1		20		13				2			24	55			9					
Po- tas- si- wm (K)															3.0	-				1.6					
Sodi- um 3/	96	304	304	374	88	ŝ	399	124	+79T*			240	187*	182*	435	166	186*			118	230	52			
Mag- ne- sium (Mg)	m	-:t	cu	9	₫	12	н	۵,	4.			ů.	0	0	<u>.</u>	4	r!			¢.	цЛ	14			
Cal- cium (Ca)	9	13	æ	9	∀	J6	CI	32	1.6			m	θ.	ŵ	3.5		ŝ			¢.	IO	31			
Man- ga- nese (Mn)																						•••••			
Iron (Fe)	0.3	.06	4.60	1.0	< .02	14.80	.15	ų	ŵ			.13	1.0	91.	.10	Чо	ī.			.3 ⁴⁴	.13	5.20			
Silice (S102)	16	10	6	10	15	80	13	72	91			15		ដ	T	15	13			14	10	55			
Lab- ora- 2/	HUST	HdSL	HUST	HGST	HOST	HCST	HGST	TSDH	CL	SDSU	SDSU	HUST	SDSU	JSM	USGS	HUSL	TSW	SDSU	USGS	SDSU	HUST	TSDH	USGS	SDSN	SDSN
Date of Collec- tion	12-11-68	12-11-68	12-13-68	12-11-68	12-12-68	12-11-68	12-11-68	12-12-68	12-27-47	3-25-37	3-26-37	12-17-68	5-12-60 L	2-7-63	3-7-61 U	12-13-68 T	6-3-63	1-25-37 U	1-19-37 U	8-2-49 U	12-17-68 T	12-12-68 T	4-16-37 U	e-11-37 W	e-11-37 u
cated Water- Bear- ing Unit J/	d, D	Sp	Sp	 C	Sp	A1 1	Sp]	Sp	Cz 1	Ę	en Cin	Sp 1	2 0	C22	Sp	C2 C2	Cz		۔ جو	C2	57 8	Cm 15	т 	đ	و ع
Depth C N N Our H Screened 1 Interval U (feet)	205-225	231-241	218-228	165-175	h67-507	17-20	1440-450	152-172	850-941	50	54	186-201	1,188-1,250	1,188-1,250	430-466	1,125-1,265	1,144-1,264	40	523	908-929	126-136	170-190	25	50	20
Well Owner	Jimmie Day	D. M. Manley	Jack Clark	Van B. Scott	Anderson Bait Dist.	Mrs. Carrie Dean	Arby Seamans	H. L. Duncan	Southland Paper Mills	Town of Pollock	Mrs. N. Carson	Theo. Johnson	Lufkin State School 1,	Lufkin State School 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	Central School	Central W.C.I.D. 1, 1	Lufkin State School 1,1	Central School	Gulf Fipeline Co.	Gulf Pipeline Co.	Neal. Thompson	Robert Adams	. G. Brown	T. Finley	Fagen
Well Number	AD-37-33-305	104	505	603	1 202	801	1 206	34-102 F		I TO4	402 W	#03 T	201 L	201 L	502	204 0	505 L	506 C	602 G1	602 Gr		802 Rc	803 R.	804 T.	805 B.

Table 11. .- Results of Chemical Analyses of Water From Wells in Angelins County -- Continued

Hď		8.1	3.6	8.6	8.8 0.8	2								0.53 0.53	8.7	8.7	8.7		8.6
Specific Conduct- ance Micro- mhos/cm @ 25 ⁶ C.		739				0+0 1								586		1 ⁴⁸⁴		503	
Total S Hard- C ness as as CaCO3 m	25	Ч	9	ณ	m \	D	13	14	19	12	6	18	9	r.	CJ	~1	CU.	0	CU.
Dis- Bils- Solids 4/		466	300*	561	285	т , 030	1,020*	1,020*	1,084*	645*	\$17\$	848*	902*	362	310*	333	313*	306	335*
Ni- trate (NO3)						s.0	¢.	- <u>i</u>	¢.	°,	°.	°.	0.	r				o.	
Flu- o- (F)						d. M	4·0	4.8	4.0	<u>ب</u>	d.	1.5	1.3	ар.				ų.	
Chlo- ride (Cl)	44TE .	19	6	9	9	108	134	136	162	DI	2	16	ΤĒ	12	엄	IO	10	12	12
Sul- fate (Sou,)	94	105	65	56	37	0	1	ч	Ч		44	13	~	60	33	140	31	52	32
Bicar- bonate (HCO3)	75	299	240	7/17	716	918	830	630	628	592	178	752	862	250	217	526	239	226	252
Car- bon- ate (CO3)		0		75	12		ê	53	τħ	23	JT6	62	tt.7	14	19	12	16		т6
Po- tas- C si- b um (K) (1.9	5.8	7.7	£.4	1.6	5.8	5.8					4	
Pa Sodi- ta um um (Na) ((175*	112*	93*	486	*8Th	914	415	439	263	102	344	372	142*	120*	120*	124*	118*	131*
Mag-53 ne-53 slum u (Mg) ((0	¢,	¢.		9.	4.L	с.т Т	1.6	6.	1.0	1.7	· .	0	Τr	4.	뷥	0	뵵
Cal- cium (Ca)		4.0	d.	÷	ċ	J. 2	5.9	3.5	ħ.8	е.е С	2.1	4.6	н н	4.	9.	4.	6.	¢ i	1.0
Man- ga- nese (Mn)														0.05					
Iron (Fe)		0.16	¢.	Lo.	.05	.12	.08	.19	60.	Lo.	60.	.30	.08	• 05	сi	< .05	.28	·05	72.
Silica (SiO2)		+T	19	15	12	ц	16	15	14	14	л6	12	76	er T	18	σ	Ţţ.	77	16
Lab. ora- tory 2/	SDSN	MSL	GL	CL	CL	SDSU	SDSU	USGS	SDSU	SDSN	USGS	USGS	SDSU	MSL	CL	CL	CL	USGS	CL
Date of Collec- tion	3-26-37	1-67	10-39	5-56	ł-56	5-10-61	6-30-37	7-1-37	7-2-37	7-7-37	7-8-37	7-11-37	7-13-37	2-17-67	7-39	11-19-63	9-39	8-1-61	9-39
Indi- cated Water- Bear- ing Unit	5	Gz	Cz	C C	C2 C2	5p	đ	đg	d S	œ,	CZ	Wx	Wx	0 ^{.2}	C C	N C	C2	C	N C
In Depth Ce or Me Screened in Interval Ur (feet)	S	1,128-1,258	823-944	818-915	869-1,020	325-346	226-236	226-236	291-301	757-767	822-832	1,064-1,074	1,102-1,112	960-1,085	879-998	879-998	898-1,018	898-1,018	855-977
Well Ovner	Ervin Hopper	City of Lufkin No. 10	Southland Paper Mills	Southland Paper Mills	Southland Paper Mills	I. W. Sowell	Lufkin Chamber of Commerce	City of Lufkin No. 9	Southland Faper Mills	Southland Faper Mills	Southland Faper Mills	Southland Paper Mills	Southland Paper						
Well Number	AD-37-34-901	305	T04-5E	402	403	404	405	405	405	405	404	^{‡†02}	504	8011	502	502	203	503	504

*

•••

80 at

For footnotes see and of table.

- 102 -

r																			
Hď	8.7					8.6	8.6	8.8 8.	8.9	8.7	8.8		8.4	8.5		8.6	8.5		
Specific Conduct- ance Micro- mhos/cm @ 25 ⁶ C.										636	119	860	1996 - 647 - 75			728	582		
Total Herd- ness as CaCO3	0	er er	26	68	}	· cu	Ч	Q	4	m	m	m	17	14	8	m	±.	55	13
Dis- solveč Solids 4/	276	370	105		1.361	286*	275	301	*00 00		437*	516*	1,066	340*	628*	1911	409	1,143*	*67.4
N1- trate (NO3)										< 0.4	-†. >	t		4. V					
Flu- o- ride (F)										0. P	cų	-4		ų					
Chlo- ride (Cl)	6	2	œ	19 <u>1</u>	911	Ч	ß	F	20	20	18	24	88	14	34	18	72	141	Lτ
Sul- fate (SO4)	9T	12	붭	cu	9	ŝ	14	18	6	98	\$	4TI	5	68	37	62	67	18	76
Bicar- bonate (HCO3)	215	168	L	493	345	412	\$7¢	224	521			354	956	220	538	293	249	743	274
Car- bon- ate (CO3)	5 T					Ŀ	50	TO	17				5	54	tt3	21	15 T	99	J.6
Po- tas- sodi- si- um (Na) (K)	104 <i>*</i>					108*	102*	*Lot	152*	9/1	169	197	#57*	136	272 *	168*	143*	421*	159*
Mag- ne- sium (Mg)	0.0					占	ŗ	ci	çi	ч		4		~		¢.	ņ	ci N	1.6
Cal- cium (Ca)	0.0					2.	°.	ý	1.3	н	~	rri	ίn	4	cu	2.	г. 5	5.0	2.4
Man- ga- nese (Mn)												<0.5		ŗ					
Iron (Fe)	0.1					-23		r!	¢.	.06	04.			 		-05			
Silica (Silo2)	. 6					c2	TO	15	60				18	91		> 17	14	28	21
Lab- ora- 2/	CI	Was	SPM	Meis	WdS	CL	cr	CL	Ŀ,	HUST	HCST	HUSL	G	HUSL	USGS	CL	CL	CL	CL
Date of Collec- tion	3-56	******				8-39	2-56	1-56	12-2-46	3-59	3-59	6-61	7-13-56	7-48	1-14-37 t	2 -64 c	1-3-63 C	10-30-35 C	11-11-35 C
the cated Vater-Bear-Bear-ing Unit $\underline{1}/$	CZ	5 D	Šp	Sp.	Sp	CZ	Cz	Cz	Cz, Wx	Cz, Wx	0z	Cz	Sp	Cz		CZ	CZ	Sp	CZ
Depth or Screened Intervel (feet)	760-874	80-85	50-55	40-45	170-175	823-925	738-853	808-910	1,028-1,163	1,028-1,163	1,221	1,160-1,290	570-595	1,055-1,167		1,036-1,138	1,079-1,139	267	1,188
Well Owner	Southland Paper Mills	City of Lufkin No. 5	City of Lufkin No. 5	City of Lufkin No. 6	City of Lufkin No. 7	City of Lufkin No. 7	City of Lufkin No. 3	W. A. Collmorgan	City of Lufkin No. 8	Redland Water Supply Corp.	City of Lufkin	City of Lufkin							
Well Number	AD-37-35-505	507	508	509	210	109	602	605	TOL	toL	702	203	1 203	705	1 902	708	709	710 0	1012

Table 11. -- Results of Chemical Analyses of Water From Wells in Angelina County -- Continued

* iq

- 103 -

Table 11...Results of Chemical Analyses of Water From Wells in Angelins County--Continued

Нq					<u></u>	8.7	8.6	8.3	8.0	7.7	8.8	8.9	6.4	8.7	8.7	8.8	8.5	T.1	8.6	8.1	4.7
Specific Conduct- ance Micro- mhos/cm © 25 ⁶ C.				1	0,42,6	696							1,250				2,300	<u></u>		604	230
Total St Hard- Cc ness t as Mi CaCO3 mh	18	2-	56	8	TOR	4	4	18	⁴ 5	æ	CJ	CU	184	σ,	9	CU	34			18	36
Dis- His solved folids folids	1,569*	665*		-	5,410*	Tth	356	1, 441*	2,446*	366*	*/14	339*	830*	741×	71.8*	361.*	1,460*		309	368*	135*
Ni- trate (No3)													264								9.
Flu- o- ride (F)					0.0								œ				5.8 19			4.	¢i.
Chlo- ride (Cl)	276	26	15	30	2,700	53	10	487	1,080	64	16	10	173	76	8	12	269	30	12	38	32
Sul- fate (SO4)	5	101	ŝ	~~	0	28	JT6	0	0	0	8	ΤŢ	80	0	0	55	* ~	96	36	38	15
Bicar- bonate (HCO3)	1,019	351	36	314	1,100	323	305	677	720	312	342	273	59	766	4H9	281	1,130	685	262	257	73
Car- bon- ate (CO3)	72	66				18	12	29	54	10	57	19		43	46	त्त	75		16		
Po. tes- s1- um (K)	614 *	224 *			2,120*	162*	137*	586*	*176	150*	166*	132*	186	281*	329*	144*	590			132	39
Sodi- um (Na)						e.	m. m.	1.5	6.6	9	cų	Tr		m	5.	枮				cu	3.4
Mag- ne- aium (Mg)	۲ 	-T-			ET		m	.6		5.0	2.	8.	15	5.0	2.7						8.8
Cal- cium (Ca)	7.0	2.9			N N	1.2	F1	ч. Т	†. TT	્યં	-		48	61			9			ر	
Man- ga- nese (Mn)																					
Iron (Fe)					0.58	.1	.05	.6	4.	9.	9.	<i>L</i> .	40.	.6	5	5.0	.13			.50	÷
Silica (SiO ₂)	Ŷ	<i>.</i> ‡			ц	19	Т3				18	54	30	53	4r	77	12			29	
Lab- ora- tory 2/	ΩĽ	CL	USGS	USGS	SDSU	GL	CL	CL	CL	CL	IJ	CL	HUST	ß	Γ	CL	HUSL	WAS	SPM	HUSL	ЪПL
Daté of Collec- tion	10-1-35	10-14-35	1-18-37	1-18-37	19-01-1	6-18-66	8-55	7-13-40	7-13-40	7-13-40	7-50	6-50	5-6-69	1-50	4-50	8-50	12-17-68	1949		7-19-68	9-7-66
Indi- Indi- Cated Water- Bear- Ing Unit	sp	CZ	Я	₩	Sp	Cz	CZ	đ	Sp	Sp	C2	Cz	X	22 C	Wx	Gz	Sp	Wx	Sp	ж	х
Depth Lepth W W or B B Screened 1 Interval U (feet)	580-655	1,178-1,248	63	126-400	306	990- 1, 070	148-118	205-210	60-70	145-150	758-800	706-736	52	706-768	1,034-1,045	878-899	222-238	860-891	195-291	169-189	90-120
Well Owner	City of Lufkin	City of Lufkin	City of Lufkin	City of Lufkin	M. R. Willis	M & M Water Supply Corp.	Southland Paper Mills	Southland Paper Mills	Southland Faper Mills	Southland Paper Mills	Southland Paper Mills	Southland Paper Mills		Southland Paper Mills	Southland Faper Mills	Southland Paper Mills		Southland Paper Mills	Southland Paper Mills		Lancewood Water Supply Corp.
Well Number	LL7-37-35-711	171	712	713	106	902	36-403	406	407	407	501	503	702	901	LO ⁸	802	803	902	903	102-14	42-201

For footnotes see end of table.

- 104 -

Table 11. -- Results of Chemical Analyses of Water From Wells in Angelina County -- Continued

» 10

-

Hď	6.0	6.0	6.0								a 1)			8.7	6.5	1		8.5		8.6	7.8	8.1	
Specific Conduct- ance Micro- mhos/cm © 25 ⁶ C.						1,335					ц С				680	615			280			247		
Total Sp Hard- Co ness a as Mi CaCO3 mh	136	149	193	5	32			15	. ac	183	0	28 SP	198	150	, r	184	93	123	2	75	-#		104	
	387*	413*	517*	168*	93 *	813	*121	*20	*018		535 735								378*		546*	342*		
Dis- solved Solids						 D		1,122*	. að						405	ň			μ.		-15		 	
N1- trate (NO3)					윉		77				æ.			6.2	1	4. V	ei	68	4. 7			4.	ņ.	
Flu- o- ride (F)											0.2					'n			÷			ri.	¢,	
Chlo- ride (Cl)	88	98	130	32	F3	211	ΞŢ	8	65	55	e e e	ವೆ	60	157	, 04 4	92	48	134	34	50	су С	34	56	50
Sul- fate (So4)	22	85	134	35	14	0	77 T	13	S S	200	Ę4	02.1	45 45	28	45	104	15	140	18	120	6	50	21	8
Blcar- bonate (HCO3)	92	88	67	38	18	656	34	935	660	324	533	204	200	88	244	85	17	122	294	9	351	531 531	88	0/
Car- bon- ate (CO3)						26		36.	30												24			
Po- tas- si- (K)																								
Sodi- um 3/ 3/	65*	*69	85*	23*	18 *	338*		433*	320*		116*				156*	51			24T		213*	102	t46*	
Mag- ne- sium (Mg)	8.LL	13.5	17	-4		¢.	****	\mathbf{Tr}	Tr		1. C				0	П			0		m.	in	8.3 .3	
.Cal- cium (Ca.)	35.1	37.4	49	61	60	7.5		6.1	3.3		7.8				т. 2	55			m		1.1	17	28	
Man- Ka- nese (Mn)		0.4																						
Iron (Fe)	6.0	6.0	0.7	ŝ		çi N					ŝ.				50.	.86			.13		ci.	1.86	50.	
Silica (SiO ₂)	19	19	62	36		TO		50	41		เส				13	36			28		12	51	62	
Lab- ora- tory 2/					USGS	TSW	SDSU	CL	CL	USGS	SĐSN	SOSU	SDSU	USGS	TSW	HdST	USGS	USGS	TSDH	SDSU		TSDH	SDSN	nses
Date of Collec- tion	1-4-55	1-8-55	2-10-55	2-18-55	1-11-37	2-13-64	1-11-37	12-9-35	12-9-35	1-18-37	19-11-1	1-18-37	1-18-37	5-31-37	9-4-63	12-4-68	5-31-37	5-31-37	12-6-68	1-22-37	*****	12-6-68	7-20-43	3-22-37
Indi- cated Water- Bear- Unit L/ L/	×	х	×	х	¥	CZ	¥	Sp	GZ	х	7	к	х	я	д	×	н	х	X	х	CZ	X	¥	х
Depth or Screened Interval (feet)	150-195	150-170	150-195	52-72	18	1,320-1,410	47-68	669-696	1,269-1,342	195	276-310	8	105	41	335-415	53	62	18	278-288	OTT	1,216-1,237	200	120-190	32
Well Owner	Ovens Illinois No. 4	Owens Illinois No. 4	Ovens Illinois No. 4	Owens Illinois No. 5	J. W. Sherrard	Woodlawn Water Supply Corp.	Angelina Lbr. Co.	City of Lufkin	City of Lufkin 1	Sam Peavy	Agriculture Exp. Station	Agriculture Exp. Station	Hudson School	C. A. Juergans	Hudson Water Supply Corp.	Mrs. A. G. Johnson	Mrs. A. G. Johnson	Mrs. A. G. Johnson	J. F. Wright	City of Lufkin	Eulen Berry 1,	Herty Water Co. No. 4	Southland Paper Mills	Geo. Korn
Well Number	AD-37-42-301	301	301	302	303	304	305	306	306	to1	502	203	204 1	. 205 0	602 H	W TOL	702	703	r 106	#3-101 C	201 E	202 N	204 S	302

Table 11. .- Results of Chemical Analyses of Water From Wells in Angelins County--Continued

Hq		7.3		6.8	6.9				7·8	7.7	3.6	7.8		6.6	8.1	8.3		8.2		8.7	7.9	8.6	8.7
Specific Conduct- ance Micro- minos/cm @ 25 C.		⁴⁹⁵		672	LT9				690	740	710			1,064	1,250	1,700		705		3,080	24,500	752	765
Totel S Hard- C ness as CeCO3 m CeCO3 m	92	9	OTT	98	101	96	246	213	19	<u>8</u> 2	113	113	159	305	136	50		ŝ	œ	Ħ	549	4	4
Dis- plis- solved 501ids 4/		263*		360*	412*				1,42	4 56	438	+181		740*	800*	1,000*		r29*	413*	1,674*	14,356*	1 ^{466*}	482*
Ni- trate (NO3)		4.0>	35	-*: V	4. V	25	0						<u>t</u> ,7	4. >	2.0	×.		ņ					
Flu- o- (F)		0.4		е і	્યું							ŝ		÷.	ŝ	۲.		4					
chio- ride (ci)	68	35	44	Å3	51	02	201	. 253	56	60	- 09	66	142	104	105	302	1,080	84	52	580	8,500	64	50
Sul- fate (Solt)	04	50	ŝ	93	87	8	ന	250	90	142	44	50	52	279	TTT	42	100	43	96	0	0	0	18
Elcar- bonate (HCO3)	82	151	74	1/17	176	102	120	385	300	303	288	293	462	151	4T5	530	76	315	235	732	1 91	360	361
Car- bon- ate (CO3)																				36		18	42
Po- sies- (K)									*	*	*	*								*	*	*	*
Sodi- un (Na) 3/		100		95	90				126*	134*	117 *	151*		110	249	380		TLT		÷17è	5,433*	190*	* †6T
Mag- ne- sium (Mg)		м		Ŷ	7				5.7	5.5	80	6		19	TT	ŝ		ч V			63	ભ	w.
Cal- cium (Ca)		Q		ଝ	8				23	25	35	30		6	35	цо Г		м	_,	m	911	ч Ч	1.3
Man- ga- nese (Mn)		<0.2		ದ.																			
Iron (Fe)		0.98		1.50	3.90					.95	.45			5.60	.22	.20		40 .		1.5	r.	7.	ŵ
Silice (SiO ₂)					57				62	59	29	33		62	15	12		10		70	76	15	LΤ
Lab- ora- 2/	SDSU	HUST	USGS	HUSL	HUSL	SDSU	USOS	USGS	MSL	1SM	TSW	HCHD	USGS	HCST.	TSDH	TSDH	SOSU	HdSL	SDSU	CL	CL	GL	CL
Date of Collec- tion	3-30-37	10-5-64	6-2-37	3-22-65	4-22-69	6-2-37	6-2-37	3-31-37	1-13-60	1-14-60	1-15-60	1-26-60	6-2-37	12-10-68	12-17-68	12-17-68	4-1-37	8-29-68	2-18-37	7-3-59	7-25-59	8-5-59	8-21-59
cated water- Bear- ing Unit 1/	¥	×	₽	х	₩	д	¥	м	¥	¥	¥	т	X	×	×	х	х	Я	×	ч С	ជីន ទ	≻	¥
Depth C C C C C C C C C C C C C C C C C C C	50	357-447	28	310-410	310-410	31	55	23	97-254	163-254	211-72	97-254	23	236-256	123-133	210-220	24	167-189	440	1,772-1,797	1, 153-1, 179	636-656	h95-690
Well Owner S	John Bennett	Angelina Water Supply Corp.	Lee Graham	Fuller Springs Water Dist. No. 1	Fuller Springs Water Dist. No. 1	G. B. Cornell	G. B. Cornell	E. C. Greene	M.	М.	M.	E. M. Gipson		Anne Stredt			J. C. Nerren	ò	Dr. H. M. Wilson (P. R. Wilson)	City of Huntington No. 7			
Well Number	AD-37-43-402	201	502	503	503	505	506	602	TOL	TOL	701	TOL	803	anp	101-44		104	109	702	801	801	801	801

For footnotes see end of table.

- 106 -

Table 11. -- Results of Chemical Analyses of Water From Wells in Angeline County--Continued

Hď	8.6		3.6			7.8	6.9		8.7	8.4		8.2	8.5	8.7	8.7	7.8	8.4		8.1	8.2 9	8.I	
Specific Conduct- ence Micro- mhos/cm @ 25 ⁶ C.	656		925			1,185	2,480		1,052	773			****	684	780	3,200	880				603	
Total Hard- ness as CaCO3	m	113	13	55	412	316	398	518	-1	ŝ	76	8	m	Ś	9	109	2	54	9	6	ŝ	m
Dis- solved Solids <u>4</u> /	394	800*	*0T9	:		*0LT	1,720		632	505	1, 235	1,150*	5444	644	417*	2,040*	482*		404*	397*	383*	
Ni- trate (No3)	۲.0		ņ	51	96	-#. V	5.0	486	ı.	r;	°.	*. V		····.,		-4: V	4	0	1.3	æ		г. Г
Flu- o- (F)	0.6		ņ			9.	~		4.	્ય		t.č			4.	¢.	ņ		2.	ÿ	÷.	
chio- ride (Cl)	-2 -2	105	64	02	65	85	250	450	63	33	220	200	4 8	53	27	500	40	S2 S2	ส	50	54	911
Sul- fate (SO4)	6T	522	174	44	360	168	660	60	0	56	CU	ŝ	14	14	29	500	55	50	50	33	22	120
Bicar- bonate (HCO3)	287	298	270	12	72	914	330	46	500	334	563	920	395	343	360	520	371	120	272	293	320	562
Car- bon- ate (CO3)	5 T								2lų	16	Ť		24	10	75		Ľ٦		हा	15		
Po- tas- si- um (K)																						
Sodi- um 3/	158*		112			283	420*		5¢7*	187*	*16t	τLħ	21 4 *	169*	173	710	190		142*	145*	346	
Mag- ne- slum (Mg)	0	а . 6	Ч			ର୍	29		ņ	4.	n H	м	'n	0		ŝ			÷	ŗ.	ч У	
Cal- clum (Ca)	H	30	m			m	112		т. т	сч Т	ţ.7	CU		CU	cu	35 .	m		3.4	n m	м	
Man- ga- nese (Mn)	<0.02								.02	.02							< .05					
Iron (Fe)	<0.05					< .02	.14		.05	.10	.02	.06	4	.12	.26	46.	< .02		ņ	Ļ	90.	
Silice (5102)	3th		34			52	46		19	20		8	27	54		28			1†1	35	28	t
Lab- ora- tory 2/	1SM	SDSU	TSDH	USGS	USGS	HGST	SDSU	USGS	CL	°. GL	USGS	HUST	GL	MSL	HUSI	HUSL	TSDH	USGS	0	0	HCST	SDSU
Date of Collec- tion	7-26-67	2-12-37	8-28-68	6-3-37	6-3-37	8-28-68	1-10-61	6-3-37	5-18-67	5-20-67	6-29-42	4-22-69	1-25-55	8-31-65	6-15-66	7-18-68	6-15-66	6-2-37	3-21-56	3-21-56	4-24-69	6-2-37
Indi- cated Water- Bear- ing Unit	л	ħ		×	х	х	ж	X	×	₩	ж	≻	к			×	ж	х	к	А	ж	д
Depth or Screened Interval (feet)	649-719	280-300	218-228	18	32	196-206	100	50	820-875	270-337	410L	702-803	320-495	440-520	440-520	188-198	109-061	24	275-305	273-303	273-303	044
Well Owner	Four Way Water Supply Corp.	V. C. Davis	Pearl Conner	J. T. Forrest	Lee Johnson	L. Bitner	B. F. Cochran	Roy Fletcher	Burke Water Supply Corp. No. 1	Burke Vater Supply Corp. No. 2	Southern Pine Lbr. Co. No. 1	Southern Pine Lbr. Co. No. 2	Southern Fine Lbr. Co. No. 4	City of Diboll No. 2	City of Diboll No. 2	Arthur Powell	City of Diboll No. 1	L. G. Capps	Natural Gas Pipeline Co. of America No. 1	Matural Gas Pipeline Co. of America No. 2	Natural Gas Pipeline Co. of America No. 2	Childress (R. P. Stinson)
Well Number	AD-37-44-802	803	106	902	603	45-701	802	803	50-302	303	602	603	605	909	606	209	- 106	51-102	102	505	502	301

Table 11. -- Results of Chemical Analyses of Water From Wells in Angelina County -- Continued

8.6 8.3 6**.**7 7.5 8.4 8.3 7.9 7.1 7.9 8.2 6.2 Ηđ ance Micro-mhos/cm @ 25⁶ C. Specific Conduct-1,000 1,950 1,300 1,470 1,500 1,210 1,660 428 892 æ Total Hard-ness as CaCO3 σ 32 244 504 80 18 44 173 8 ŝ 123 10 12 76 38 84 30 105 19 1,023* 1,050* 1,310* 1,173* 808* £909 800* *668 *016 253* 532* 629* 762 406 772 Dis-solved Solids ਼ N1-trate (NO3) 0.6 0 ŝ 4. 1.0 ÷. ¢. 4 e N 0 100 v V v V Flu-o-ride (F) ŝ 9 ŝ 1.1 ø, ¢. ~1 4 ч. Т. 1.9 167 62 TOT 120 39 220 96 95 160 158 IOI 33 68 360 20 Chlo-ride (Cl) ත් σ 202 250 141 152 ŝ 200 93 139 5 18 10 232 141 80 62 5 510 4 274 Ś 216 m 1,200 r-4 276 CU. Sul-fate (SO4) Bicer-bonate (HCO3) 516 571 520 ÷. v 483 432 298 570 718 802 ω 129 $_{\rm Cl}$ 541 102 364 574 434 200 356 256 bon-ate (CO3) 6 a g 33 сч Сл 14 Po-tus-si-WM 262* 278* 193* 125* 365* Sodi-um (Na) 388 376 312 340 53 334 234 0.8 <u>~</u>. ÷ æ. 2.6 Mag-ne-slum (Mg) 3 16 м m 16 2.4 2.4 2.9 ы. Т. 6.4 cal-clum (ca) 8 22 CU CU 11 19 17 Man-ga-nese (Mn) 0.0 92.05 .11 20 .30 Ő. 01 Iron (Fe) ¢, 5.0 0.2 N N Silica (SiO2) 16 18 26 28 58 13 24 33 8 33 Lab-ora-2/y USGS SDSU USGS USGS USGS HdST TSDH USGS TSDH USGS USGS **SDSU** TSDH HUST USGS UBGS USGS USGS USGS μL PTL CEL 7-16-68 7-16-68 6-5-37 6-1-37 7-17-68 1-10-61 10-30-67 2-17-37 8-27-65 2-17-37 6-30-42 6-1-37 1-20-37 19-11-1 2-22-37 2-19-37 7-17-68 5-6-69 4-16-42 1945 1-20-37 1-22-37 Date of Collec-tion Indi-cated Water-Bear-ing Unit × ⊳ ≻ı ≻ Þ Ь ≻ * ⋈ × ≻ Ь ы ≻ ы Ь ÷ Ь 760-800 137-147 413-435 512-572 635-655 478 Spring 84-104 156 906 53 28 250 609 541 5 452 517-560 184-194 212-222 413-435 Spring Depth or Screened Interval (feet) Carter-Kelly Lbr.Co. Beulah Water Supply Corp. Texas & New Orleans R.R. Prairie Grove Water Supply Temple Industries No. 2 Atlantic Refining Co. Atlantic Refining Co. Atlantic Refining Co. Lala Hill School Rev. C. A. Bell Vell Owner M. M. Flournoy Haverd (J. L. Russell) Strain (Olive School) Shawnee School U.S. Forestry Service Elbert Havard R. L. Goodman Jack Roberts A. E. Forse Sun Oil Co. Camp Perry Dr. Weeks 602 801 53-102 52-101 505 801 901 902 202 203 402 201 202 401 101 402 602 TO6 404 504 603 AD-37-51-403 Well

- 108 -

Hď	r a				c c	7.4			7.8	0.7	1.1	7.8	в. Э.Э
Specific Conduct- ance Micro- mhos/cm	2, 70k	2,300	200	7000			1		1,750		***********		
Total Hard- Hard- (ness as CaCO3 n	16	37	ñ e	105	30	27	6	57	8	13	102	16	
Dis- solved bids	1.424*	*0T4'T	1.018*	5,117*	247*	810*			1,060*	590*	192*	478*	
Ni- trate (NO3)	< 0.4	~†. V	'n	6.	59.0	1.0	38		5.5	 _:	1.0	- 1 . >	
Flu- o- (F)	1.0	1.0	ņ	ŝ	¢,	ņ			çı	<i>6</i> ,	Ę	4.	
Chlo- ride (Cl)	278	285	155	2,400	44	911	104	36	322	174	24	16	11/6
Sul- fate (So4)	196	-4 V	157	9 F	18	252	ĩn	02	~† ~	۲ ج	5	-# V	5
Bicar- bonate (HCO3)	780	1,050	544	1,169		243	9	45	540	540	133	327	
Car- bon- ate (CO3)			3†	61									
Po- Bodi- tas- um um um 3/	560	560	393	2,016	47 4	257			406	229	31	179	
Mag-Sc ne-Sc sium un (Mg) (1	ຸດ	ţ.	2.4	3.8 8.8	m	4			t	CJ	ŝ	m	
Cal- cium (Ca)	4	æ	æ	26.4	7	14				cu	32	¢.	
Man- Ea- nese (Mn)	<0.05												
Iron (Fe.)	0.46	1.16		r.	.06	91.				-95 -	.50	.16	q
Silica (Sio2)		59	·		69	45 15			53	44	77	<i>42</i>	
Lab- ora- tory 2/	HUST	HUSL	IId	IIId	HUSL	HUSL	USGS	USGS	HGST	TSDH	HUSL	HCLSI	MAS
Date of Collec- tion	2-2-66	7-12-68	2-7-67	2-14-67	4-25-69	7-10-68	6-15-37	4-15-37	5-6-69	7-10-68	7-10-68	7-10-68	12-3-62
Indi- cated Water- Bear- ing Unit	×	×	تبر	х	ŗ	Ъ	t-3	ۍ ۲	د. د	r.	5	5	г,
Depth or Screened Interval (feet)	693	190-210	205-223	770-820	⁴⁵	135-145	†r	300	315	345-355	19	350-360	323-347
Well Owner	Zavalla W.C.I.D. No. 1	Pleasure Foint Estates No. 3	National Forest Service No. 1	National Forest Service No. 1 Testhole	60-201 Doyle Snelsen	Charlie Havard	Jackson Barge	С.С.С. Свыр 827	401 L. Boykin	L. R. Eubanks	Mary Frazier	Archie Kelly	National Forest Service No. 1
Well Number	AD-37-53-904	54-403	106	901	60-20J	501	61-101	203	104	109	62-202	301	63-201

Initials used to identify water-bearing units are: ন

Al - Alluvium Qc - J - Jackson Group R - Y - Vegua Pormetion Cz - Cm - Cook Nountain Formation Wx - Sp - Sparts Sand	Queen City Sand Reklaw Formation Carrizo Sand Wilcox Group
- Allurium Jackson Group - Vegus Formstion - Cook Nountain Formstion - Sparta Sand	
	R Cz Wx
	Alluvium Jackson Group Vegua Pormation Cook Mountain Formation Sparta Sand
ur y n S g y	F F F F F F
	un v ar S g v v Al

Initials used to identify laboratories are: 2

Chemical Engineering Laboratories Curtis Laboratories Houston City Health Department Microbiology Service Laboratories Owner Pope Testing Laboratories Southland Paper Mills, Inc. Texas State Department of Health United States Geological Survey CEL CL HCHD MSL PTL PTL TTSPH USGS

Asterisk (*) indicates sodium and potassium calculated as sodium. ले ने

Asterisk (*) indicates value is calculated or estimated.

Table 11. -- Results of Chemical Analyses of Water From Wells in Angelina County--Continued

.

- 109 -

Table 12.---Results of Chemical Analyses of Water From Wells in Nacogdoches County

Hd		6.5	6.2	6.1	6.9	6.4					7.3	6.8	8.6	8.6	8.7	8.8						6.0
Specific Conduct- Buce Micro- mhos/cm @ 25 ^b C.		-	168	150	147	911					579	158	1, 626	879	69L	793						24
Total Sp Hard- Co ness a Mi es Mi caco3 mh		72	33	52	26	35		26			254	148	2	2	L	9	ส	ដ	148	ц		16
Dis- Bis- solved solids (4/	48 4		85*	*17*	*06	*61	*911	45 *	52*	54*	387*	5TT	1,030	409		521	*08	¥09	280*	62*	TO7*	33*
N1- 1 trate sc (NO3) So			< 0.4	- 1 . >	4 ⁷ .	¹					1.6	¢.										1.0
Flu- 0- (F) ((0.1	્ય	ņ	<u>.</u>					ŵ	ei.										-i v
Chlo- ride r (Cl) (7	6.E	TO	01	6	- <u>V</u>	54	f	15	Ð	Ott	H	#e	œ	æ	7	8	ដ	137	23	65	4
Sul- fate (So4)	12	53	33	52	50	10	44	<10	10	12	157	37	0	CI		ы	01>	टा	12	<10	< 10	9
Bicar- bonate (HCO3)	5l4	82	† ††	58	37	43	12	31	18	31	נננ	16	986	573	#2T	184	57	12	67	37	9	OT
Car- bon- ate (CO3)													30	18	36	18						
Po- tas- si- um (K)								*8			10	8.0 2.2	*124	234*		198*	*6	14*	52*	12*		m
Sodi- um (Na) <u>3</u> /		LT	19	78	18	TO					56					61 4.		F~4				
Mag- ne- sium (Mg)		6.4	N	ریا ا	m	CJ		¢1			2ţŧ	4 .3		.5				¢1	50	н		¢1
Cal- cium (Ca)		20.8	σ.	9	9	Ħ		2			62	12	т. 8	5-0		1.8	4		26	ц		m
Man- ga- nese (Mn)			<0.05	< .05	< .05	< .05					< .05											< -05
Iron (Fe)		0.6	.58	02.	^{†0} ,	.24					.06	1.0	2.	6.5	9.	ŀ.						.22
Silica (SiO2)		77			16	16					50	ನ	18	50		19						6
Lab- ora- 2/	WPA	PTL	HUSL	HUST	HUSL	TSDH	WPA	WPA	WPA	MPA	HUST	SDSU					WPA	WPA	WPA	WPA	MPA	HUSL
Date of Collec- tion	9-4-36	5-10-65	1-6-66	7-18-66	12-12-68	2-7-69	9-4-36	9-8-36	9-8-36	9-4-36	1-13-69	6-15-44	5-30-59	6-3-59	6-13-59	6-16-59	9-4-36	9-8-36	8-21-36	9-1-36	8-21-36	2-11-69
Indi- cated Water- Bear- ing Unit	ы	C Z	CZ	Z	CZZ	9c	щ	Ţ	e Sc	Wx	Мх	Cz C	Μx	Wx	Wx	Wx	e Ge	o O	щ	22	œ	ND
Depth C C C C C C C C C C C C C C C C C C C	30	240-285	240-285	240-285	240-285	18	34	Spring	- 25	55	91	280-320	995-1 , 005	1400-1420	368-480	368-480	42	39	। त	50	52	S
Well Owner	Art Cranford	Sacul Water Supply Corp.	Sacul Water Supply Corp.	Sacul Water Supply Corp.	Sacul Water Supply Corn.	Ida Dixon		; E	. 4	L L L		City of Cushing No. 1	City of Cushing No. 2		Ċ		i +					
Well Number	TX-37-09-501	502	502	502	502	503		200 FU3		10-301	302	405	403	403	£01	403	40h	1 T	(0+ 10 ²	2003	Jor Foli	609

For footnotes see end of table.

** **

Hđ			7.0			8.7	8.7						6.7	5.0	7.4					6.4	7.4	8.7	8.7
Specific Conduct- ence Micro- mhos/cm @ 25 ^b C.			286										103	239	408					143		1,200	1,565
Total Hard- ness as CaCO3		56	72			74		12			127	16	34	77	160		27	170		50		9	CJ
Dis- solved Solids 4/	72*	207*	165*	546*	*00 M	329*		57*	147*	37*	138*	51*	62*	161*	574 *	19*	166*	271*	68*	86*		*767	6 86
Ni- trate (NO3)			0.5										8.2	95	-†. V					8.0			
Flu- o- (F)			0.2										r.	г.	г					4			
Chlo- ride (Cl)	5 [†]	85	12	12t	74	IO		J16	72	ΤΥ	177	2	V 10	16	16	0	26	135	34	15	Q	13 13	0 M
Sul- fate (SO4)	5	48	59	12	< 10	19		15	< 10	< 10	< 10	< 10	4	*- V	46	< 10	< 10	< 32	< 10	- 1 V		0	o
Bicar- bonate (HCO3)	9	9	911	43 143	51	266		업	43	12	31	12	34	7	178	12	12	£	18	45	17	732	893
Car- bon- ate (CO3)						16										na di Arrear					A	67	82
Po- tas- tas- um um um um (K)		55*	29 II			124*		13*			*	*	9	13	25		55*	37*		7		333*	*8tħ
Mag- ne- sium (Mg)		6	12			2.		CJ			цъ	Ч	t	13	6		m	24		m			
Cal- cium (Ca)		7	6			4.6		9			뜺	ŝ	~	10	64		5	28		15		ຸດາ	ņ
Man- ga- nese (Mn)			<0.05				10.						.05	-05	.16					.05			s
Iron (Fe)	·····.		0.55 <			÷							 20. 	-10	4.40					~ 22.	5. 5	ιņ	.6
Silice (SiO2)			9T			50							11	T	7†T					16		50	53
tory (WPA	WPA	HUSL	WPA	MPA	CL	CL	WPA	WPA	WPA	WPA	WPA	HdSL	TSDH	TSDH	WPA	WPA	MPA	MPA	TSDH	TSW	, ISM	TSW
Date of Collec- tion	9-8-36	9-8-36	1-10-69	9836	9-8-36	4-20-51	6-51	9-7-36	8-21-36	8-21-36	8-29-36	8-21-36	12-6-68	2-12-69	12-6-68	8-21-36	8-20-36	8-21-36	9-7-36	2-11-69		2-12-60	2-13-60
Indi- cated Water- Bear- ing Unit <u>1</u> /	6°	9°C	Cz C	Sp	щ	Wx	Μx	ρ;	2 C	Cz	CZ	CZ	Мx	CZ	Мx	ж	Cz	ц	щ	Cz	N O	Wx	Мх
Depth or Screened Interval (feet)	84	Γή	542	30	31	420-440	420-440	20	26	25	111	Spring	462	42	345	Spring	37	31	28	30	187-208	765-779	1,105-1,126
Well Owner	B. A. Birdwell	U. Cornelius	Clifford C. Whitaker	J. A. Brewer	T. B. Fountain	Humble Oil & Refg. Co.	Humble Oil & Refg. Co.	Mrs. Nellie Acrey	Luke Moore	A. A. Acrey	Mrs. P. J. Coates	R. E. Muller	J. E. Blackburn	A. J. Sleffert	H. J. Mings	S. H. Watkins	S. H. Watkins	T. Y. Blackburn	W. W. Sitton	J. W. Caver	Nacogdoches County Industrial Foundation	Nacogdoches County Industrial Foundation	Nacogdoches County Industrial Foundation
Well Number	TX-37-10-701	702	203	802	803	106	106	406	204-11	403	201	502	602	603	604	702	203	40L	202	707	802	802	802

Table 12. .- Results of Chemical Analyses of Water From Wells in Macogdoches County -- Continued

×...

-

в н

~

Table 12 .-- Results of Chemical Analyses of Water From Wells in Mecogdoches County--Continued

Ηď	8.5	8.6			7.8	8.4	7.6					8.0	5.5		5.5	5.7			5.7				
Conduct- Conduct- Micro- mhos/cm @ 25 ⁶ C.		3, 515			191		£9†I					567	107			15			33				
Hard- Hard- as as CaCO3	17	6		148	14	14	15			64		,16 16	32			オ		ನ	10		218	8	
Dis- solved Solids $\underline{4}/$	1, 794	2,010	25*	314*	*262		296*	2,910*	55 55	50*	581*	353*	71*	31.6*		12*	32*	*64	* ña	367*	336*	56*	*35
Ni- trate (NO3)		*****			4.4							1.0	34			4. 2			5.0				
Flu- o- (F)					t.0	4	-					q	Ч.			ч. v			ר: >				
Chlo- Chlo- Chlo- (Cl)	0L4	665	T3	Si	10	п	2	225	7	19	239	9	9	60	QI	ณ	T	8	4	98	178	æ	Ц
Sul- fate (So4)	0	· 0	< 10	181 1	90	0£	33	1,806	< 10	< 10	146	19	~‡ V	150	Q	7 V	< 10	< 10	* >	45	Ħ	< 10	< 10
Bicar- bonate (HCO3)	983	1 96	9	75	245	237	256		9	ЗI		350	¢4	R	5	ຎ	18	43	5	183	67	18	31
Car- bon- ate (CO3)	484	19				19																	
$\begin{array}{c} \text{Fo-}\\ \text{Sodi-}\\ \text{un}\\ (\text{Na}) & (\text{K})\\ 3 \end{array}$	*toL	842 *		* 111	106	611	109			*7		136	9			Q		12*	m		,46 *	*01	
Mag- ne- sium (Mg)	1.7	-		13	н	1.5	Q			7		Q	9			r V			~1		ЗЪ	ŝ	
Cal- cium (Ca)	4.0	N		38	4	3.5	en			8		4	m			н		ð	ณ		37	4	
Man- ga- nese (Mn)	******	<u></u>					<0.05					< .05	< .05			< .05			<o. <br=""></o.> >				
Iron (Fe)	0.4	3.6			OI.	4	.30					.10	.10		0	40.			.90				
Silica (SiO2)	14	14			17	15	79 7					13	T			9		-	9				
Lab- ora- S tory (MSL	MSL	WPA	WPA	HUSL	IId	TSDH	WPA	WPA	MPA	WPA	HUSL	HUSL	WPA	SDSU	TSDH	WPA	MPA	TSDH	WPA	MPA	WPA	MPA
Date of Collec- tion	2-16-60	2-17-60	8-29-36	8-28-36	1-9-66	8-3-65	12-9-68	8-31-36	8-29-36	8-29-36	8-31-36	12-13-68	2-11-69	10-5-36	4-2-42	12-5-68	10-8-36	10-6-36	2-12-69	10-5-36	10-5-36	10-6-36	10-6-36
cated Water- Bear- ing Unit	Мх	Wx	Cz	В	Ωz	Wχ	Wx	щ	C2 C2	Cz	Cz	Wx	C2 C2	Wx	CZ	Cz	CZ	Gz	C2	Wx	Wx	Cz	Cz
Depth CC Or B Screened 1 Interval U (feet)	1,350-1,370	1,465-1,485	27	23	100	£9†-12†	421-463	20	19	73	27	565	Spring	19	Spring	Spring	54	Spring	Spring	34	19	35	53
Well Owner	Nacogdoches County Industrial Foundation	Nacogdoches County Industrial Foundation	L. L. Stephens	Tom Crossland	A. E. Wilburn	Caro Water Supply Corp. No. 1	.Caro Water Supply Corp. No. 1	Mrs. N. E. Reider	G. R. Solomon	John Eailey	Wilmer Scroggins	Hollis Solomon	T. D. Lunsford	T. J. Williems	Boy Scouts of America	Boy Scouts of America	A. M. Foshee	Bellevue School	Max Hart, Jr.		W. C. Lee	J. H. Summers	Roy Grey
Well Number	TX- 37- 11- 802	802	805	806	807	106	106	902	903	90h	305	906	12-201	301	101	104	501	502	503	601	602	TOL	702

For footnotes see end of table.

~

A

Table 12.--Results of Chemical Analyses of Water From Wells in Nacogdoches County--Continued

ж,

٠.,

~

H			8.6	1.1	8. 19	6.6			8.4 4	8.5		8.7				8.1	6.2				8.7		6.1	1.7	
Specific Conduct- ance Micro- mhos/cm @ 25 C.			522	366	530	398			649	622		649				870	480				198		622	353	
Total f Hard- 6 as 8 CaCO3 6	76	57	77	163	14	163		2,573	œ	13		OT	α	100		22	112	48			14		150	37	
Dis- solved Solids	54*	50*	342*	246*	334 *	303*	30*	3,869*	399	384*	5,967*	390		319*	153*	560*	301*	*717*	112*	46*	550*	58*	1413*	517*	57*
N1- trate (No3)			< 0.4	- * . V	-~~. V	- 1 . V			cu cu	- <u>+</u> .			0			۰ ، ۲۰۰	× ب.				-†. V		210	÷	
Flu- o- (F)			6.0	ŵ	cų.	÷			¢.	ņ						ņ	-				¢,		ŝ	Ч.	
Chlo- ride (Cl)	9	12	4	9	15	ŝ	13 13	1,900	14	13	1,500	ŝ	18	142	28	31	20	19	19	TO	51	27	47	σ	ê
Sul- fate (Soh)	< 10	< 10	T	56	52	126	< 10	431	2	σ.	2,479	G	946	15	ŝ	172	42	TT	19	< 10	59	Ð	30	27	< 10
Bicar- bonate (HCO3)	87 7	37	333	149	555	78	IZ	634	343	367	134	387	519	85	43	282	228	8	67	37	644	9	24	0/1	Ч Ч
Car- bon- ate (CO3)									5ţ	TO		9T									16				
Po+ tas- si- (K)									9.T																•••••••••••••••••••••••••••••••••••••••
E Sodi- E um um (Na) ((Na)	* 87	12¥	135	ET	125	16		*0T4	157	155		159*		85*		175	64	\$8 8			218		60	63	
Mag- ne- sium (Mg)	Ч		¢J.	Ť	¢ι	17		4143	0.5	¢1		0.6		2		Ŀ	5	2		*******	Q		13	m	
Cal- cíun (Ca)	5	80	Ċ	43 17	¢J	38		373	cu cu	CI		m		58		61	36	75			CJ.		38	6	,,,,,,, ,
Man- ga- nese (Mn)			<0.05	.32	< .05	.50				< .05							******	****			•05		. 05		
Iron (Fe)			1.12		- 90.				.08	- te		.18				90.	.20				.08 <		.46 <		
Silica (Sio ₂)			15	τ <i>ካ</i>	13	62			15	13		5				77	55				74		32	15	
Lab- ore- 2/	MPA	MPA	TSDH	HGSL	HGST	TSDH	WPA	WPA	usos	HGST	MPA	ISM	SDSU	MPA	WPA	HUSL	HGSL	WPA	MPA	MPA	TSDH	MPA	TSDH	TSDH	WPA
Bate of Collec- tion	10-5-36	10-6-36	1-8-69	12-9-68	12-9-68	12-9-68	10-8-36	10-6-36	9-4-44	12-4-68	10-6-36	9-10-64	6-21-37	10-6-36	10-12-36	12-4-68	12-4-68	9-30-36	10-9-36	10-9-36	1-8-69	8-27-36	1-9-69	1-9-69	8-26-36
Indi- cated Water- Bear- ing Unit	C2	C2 C2	Мx	Мx	Мx	Wx	CZ	Μx	Wx	Wx	Μx	Wx	Мx	Wχ	Wx	ŴХ	Μx	Мx	Wx	Μx	Wx	9c	C2	Cz	ეი
Depth Depth or Ecreened Interval (feet)	Spring	48	355-373	170	213-237	260-270	32	63	300-340	294-334	3	262-346	182-280	Spring	33	200	104	22	19	28	241-246	8	397	375	43
Well Owner S	Texas Hwy. Dept.	J. G. Fredrick	Harold Chenoveeth	Girl Scouts of America	Dr. L. W. Snider	W. V. Stokes	W. R. Kirk	H. C. Moore	City of Garrison No. 1	City of Garrison No. 2	City of Garrison	City of Garrison No. 3	A. G. Jones	K. Barton	Wanders School	R. D. Williems	Mike Edwards	B. Weatherly	C. C. Lowrance	H. E. Irwing	Billy Miller	Mrs. C. P. Wallace	Deward Phillips	0. Thomas	Luther Wallace
Well Number	TX-37-12-802	803	804	903	904	506	906	13-101	104	402	103	404	405	406	TOL	702	203	404	108	802	803	17-202	203	302	303

Table 12...-Results of Chemical Analyses of Water From Wells in Nacogdoches County--Continued

Hď							6.4	8.1					8.4	6.3			8.3				6.5	6.0				
Specific Conduct- ance Micro- mhos/cm @ 25 ⁶ C.			میں برور مراجع				200	562					845				755		_	_	332	215				
Total Hard- ness as CaCO3	200		51				92	53					ଖ	102			12	ដ			102	22		12		h 39
Dis- solved Solids	867*		178*	105*	*04	50*	290	494*	38*	*07	*52	172*	530*	200*	109*	60*	476*	53*	280*	37*	194*	140*	62*	* 111	62*	+ 509
N1- trate (No3)								2.0					2.6	4. >			2.0				÷	74				
Flu- o- ride (F)								0.5					ų	4			÷				٦.	ч. У				
Chlo- ride (Cl)	29	30	30	34	61	6	18	6	80	J16	19	5	9	69 69	20	19	ന	13	77	LT.	20	19 <	ET	22	26	132
Sul- fate (Sout)	554	285	61	72	<10	55	122	52	7t	< 10	11	26	5	74	48	< 10	ŝ	80	3116	< 10	32	4	31	< 10	80	293
Bicar- bonste (HCO3)	37		64	37	12	9	66	455	24t	18	37	43	540	t4	12	37	520	54	9	75	66	6		3L2	12	24
Car- bon- ate (CO3)													in													
Po- tes- tes- um (Na) (K) $\Im/$	206*		*44				e5*	188					TTZ	25			193	12*			25	6		*6		33*
Mag. ne- sium (Mg) (31		evi				1	ฒ					¢J	13			r-1				입	σ		CJ.		63
Cal- cium (Ca)	59		17				18	ŝ					ŝ	16			m	90			ដ	34		ŝ		72
Man- gs- nese (Mn)								<0.05					< .05	< .05			< .05				ŝ	< .05				
(Fe)							1.7	. 140					.10	ŝ			90.					.16				
Silica (SiO ₂)							æ	1					Ħ				13				11	7				
Lab- ora- Si tory (6	WPA	MPA	WPA	MPA	MPA	WPA	TSW	HUSL	WPA	WPA	MPA	WPA	HUSI	HUST	WPA	WPA	TSDH	WPA	WPA	WPA	TSDH	TSDH	WPA	WPA	WPA	WPA
Date of Collec- tion t	8-27-36	8-26-36	8-26-36	8-26-36	8-26-36	8-27-36	+19-72-6	1-13-69	9-25-36	9-25-36	9-23-36	9-23-36	1-13-69	10-12-66	8-27-36	9-3-36	12-19-68	9-3-36	9-3-36	9-1-36	1-14-69	2-11-69	9-2-36	9-2-36	9-3-36	8-25-36
Indi- cated Water- Bear- ing Unit	SC DC	Qc	Qc	0°	e Se	Qc	CZ	Cz	Qc	e Ge	Qc Qc	We	ei,	CZ	We	රිය	МX	o G	වල	රිය	CZ	Sp	Qc.	Qc	Qc Qc	Qc
Depth Ca Ca or Be Screened in Interval Un (feet)	51	27	23	28	35	25	409-1460		28	Ę	34	31	308	⁴⁹⁵	37	25	500-540	17	42	Spring	408	28	37	36	τ£	LT .
Well Owner	Johnny Bradshaw	A. L. Self	C. E. Grimes	L. R. Tucker	B. K. King	J. A. Tindally	Douglass Water Supply Corp.	Elmo Haltom	C. Watkins	W. R. Barnett	J. N. Craft	W. H. Butler	Feather Crest Farms No. 1	Lilbert-Looneyville Water Supply Corp.	W. T. Free	W. D. Baxter	B. A. Sitton	M. D. Shofner	Loy heirs	A. Birdwell	Curtis Nance	Willie Vaught	E. S. Bradshaw	C. Whitton	J. D. Birdvell	E. H. Croft
Well Number	TX-37-17-304	602	603	604	605	606	607	608	802	903	904	905	906	18-101	102	103	202	203	204	205	206	202	302	303	304	402

,,,

For footnotes see end of table.

- 114 -

Ħď			6.2	6.9	8.0			6.3		6.1	6.1									4.9			6.8	4.7		
Specific Conduct- Buce Micro- mhos/cm			420	267	512			135		104	190									159			250	225		
Total Hard- ness as CeCO3	286	53	163	132	19			38	151	100	30	ΤE		119		211				Tħ			57	51	2,389	119
Dis- solved Solids <u>4</u> /	309*	55*	298*	355*	306*	213*	* Co	109*	\$925	233		*792	* TC	225*	145*	234*	58*	39*	1,308*	TOF .	108*	*69	132*	154*	3, 538*	187*
N1- trate (NO3)			0.5	1.0	~7.	·		4. >	-#. V	0				•						ŵ			-4. V	ŝ		
Flu- o- (F)			0.3	ŝ	ņ			ri.	ų	લં										¢,			¢ Q	ci		
Chlo- ríde (Cl)	55	11	53	16	T	16	30	2 2 7	25	18	5T	J16	TO	22	9	130	51	770	281	12	63	12	10	10	200	28
Sul- fate (SO4)	68	< 10	139	143	99	62	0T >	18	105	85		37	10	74t	15	19	< 10	10	419	37	< 10	8	30	34	2,490	17
Blcar- bonate (HCO3)	238	49	27	134	112	122	12	31	92	100	13	250	9	64	37	24	Ξ		336	IO	75	æ	92	5	•••••••	153
Car- bon- ate (CO3)					_																			E. 11		
Po- tas- um um 3/ (K)	*2	*7	18	66	108			10	32	* 1747		*601		19*		*	*****			*11			26	26	141*	*63
Mag- ne- slum (Mg)	34	ŝ	14 T	12	cu				52	14		~		50		27				5.0			5	9	387	14
Cal- cium (Ca)	58	77	42	34	+			6	24	17		Ħ		14		4T				8.2			14	1	320	4Z
Man- ge- nese (Mn)			0.16	.16	·			< .05	¢i.							*******							< .05	< .16		
$_{(Fe)}^{\rm Iron}$			<u></u>	1.90	.18			.30	4.	20	4.1									T5			- 92.т	¥		
Silice (SiO2)			48	16	T			77	CU CV	10	여									50				30		
Lab- cra- tory 2/	WPA	MPA	HOST	TSDH	TSDH	MPA	WPA	TSDH	TSDH	USGS	MEC	WPA	MPA	IFC	MPA	MPA	MPA	WPA	WPA	SDSU	WPA	WPA	HUSL	HGST	WPA	MPA
Date of Collec- tion	8-28-36	8-28-36	1-13-69	1-10-69	1-13-69	9-2-36	9-2-36	2-11-69	1-50	6-2-61	1959	10-13-36	8-25-36	8-2-34	8-25-36	9-7-36	8-19-36	9-7-36	8-28-36	6-3-61	8-31-36	8-31-36	8-25-65	12-26-68	9-2-36	9-1-36
Indi- cated Water- Bear- ing Unit	e Ge	We	S S	CZ	CZ	പ്പ	ge	QC (CZ	CZ	CZ	Cz	QC	Cz, Wx	dğ	84	щ	Qc	We	C2	වේය	9°	CZ	CZ	We	We
Depth or Screened Interval (feet)	58	34	150	408-438	500	52	35	80	184-144	184-144	405-430	478-502	ដ		27	36	12	55	28	310-325	54	27	490-580	490-580	36	⁴¹
Well Owner	H. W. McCuistan	M. F. Whitsker	Feather Crest Farms No. 2	Don Trawick	Don Ryan	Ley heirs	T. A. Crisp	Wm. Guidry	Texas Pipeline Co.	Texas Pipeline Co.	Sun Pipeline Co.	Texas Pipeline Co.	William Scott	Pearl Oil Co.	Sam Hayter	J. B. Burk	Will Murphy	C. B. Watkins	Mrs. J. F. Hardy	B. A. Hurst	т. н. н.т.	Mary Hickenbottom	Lilly Grove Water Supply Corp.	Lilly Grove Water Supply Corp.	W. E. Ballard	W. R. Birdwell
Well Number	TX-37-18-403	101	1±05	90tt	10th	501	601	602	Tol	101	702	203	802	106	903	101-101	102	201	202	301	302	303	104	TOT	1402	103

Table 12. --Results of Chemical Analyses of Water From Wells in Nacogdoches County--Continued

ъ,

-

*

Table 12. .- Results of Chemical Analyses of Water From Wells in Macogdoches County--Continued

r																										
Hq			6.5			6.8			6.7				ۍ ۲.0	5.9		8.7	8.5			2.5			6.2	4.3	7.1	7.1
Specific Conduct- ance Micro- mhos/cm @ 25 C.			199			112			·				60	36			340			739			\$T12	237	286	285
Total Hard- ness as CaCO3		46	69	19		85	100		22	23		51	6	£~	1,919	ŤŤ	14	16		156			16	55	8	85
Dis- solved Solids 4/	296*	1th *	*60T	55*	58*	123*	177*	*36°	137*	213*	404	*64	448	*04	3,181*		*TIS	***	23 *	468*	*26	58*	266*	141*	¥277*	172*
N1- trate (NO3)			<0.4			16.0							0	4.			÷			8.0			92.5	-#: V	ŵ	1.0 T
Flu- o- (F)			1.0			г. V							0	Ņ		÷	4			¢.			۲. >	ei.	!	т. >
Chlo- ride (Cl)	132	40	60	7	54	с Т	142	77	13	12	76	372	5	4	350	6	10	18	æ	33	59	ū	53	17	J16	15
Sul- Tate (Soh)	< 10	0T >	26	< 10	< 10	10	12	< 10	ŧτ	30	< 10 <	< 10	4	4	1,958	14	12	< 10	< 10	189	< 10	2	9T	69	65	65
Bicar- bonate (HCO3)	OTT	37	68	Ч	517	73	122	러	TOT	177	18	31	1	ţ	75	190	178	18	12	162	9	18	32		63	22
Car- bon- ate (CO3)																7f	ŝ							~~~		
Po- tas- si- um (K)													3.0	1.4						******						
Sodi- um 3/			TT	*		6	33*		4;3*	78*			4	m	287*	*62	44	*TT		102			44	15	28	57
Mag- ne- sium (Mg)			IO			c0 .	17		2.3	9		Q	1.0	J.4	290	3.9	м			91			T2	8	10	10
Cal- cium (Ca)		18	7	æ		50	13		5.2			17	т.8	÷	590	11.2	t	9		31			9T	6	72	۲۲
Man- ga- nese (Mn)						<0.05																		<. 05 <	< .05	< .05
Iron (Fe)						0.78			۰.				6.6	.63		5.2	.10							13.65	ф.	л.56
Silica (S102)			10			T			70				20	23			36			9			316	18	11	13
Lab- ora- tory 2/	MPA	WPA	HUSL	WPA	WPA	HUST	WPA	WPA	CL	WPA	WPA	WPA	SDSU	SDSU	MPA	IIId	HGST	WPA	MPA	TSDH	MPA	MPA	TSDH	HUST	TSDH	HUSL
Date of Collec- tion	9-7-36	8-28-36	1-7-69	8-25-36	9-1-36	2-7-69	8-19-36	8-19-36	12-31-45	9-18-36	8-28-36	9-1-36	8-18-44	6-3-61	8-31-36	7-21-64	12-31-68	10-8-36	10-8-36	1-21-69	9-1-36	10-9-36	1-21-69	69-12-1	1-15-69	1-15-69
Indi- cated Water- Bear- ing Unit	We	Sp	Cz	We	Sp	We	We	Sp	Cz	n C	Sp	Sp	Cz	Cz	m	Мx	Μx	Cz	Cz	CZ	£4	н	ы	CZ	Cz	CZ
Depth or Screened Interval (feet)	30	71	400	19	39	50	55	32	446-492		28	33	256-282	256-282	20	200	500	36	Lτ	240-292	55	26	26	217	łt25	00†
Well Owner	W. J. Parmley	M. H. Dennard	H. B. Hudson	Sam Hsyter	Mrs. J. C. Miles	W. E. Boozer	B. Danforth	G. E. Norwood	City of Nacogdoches	J. Thomas Hall	R. L. Whitmire	A. E. Reed	Applehy Water Co.	Appleby Water Co.	Mollie A. Troutman	Appleby Water Supply Corp.	Appleby Water Supply Corp.	D. W. Scroggins	J. L. Scroggins	J. N. Skeeters	Ed Greer	J. C. Greening	J. C. Greening	J. C. Greening	Wiley W. Baker	Allen Burgess
Well Number	TX-37-19-501	502	109	101	702	203	801	802	106	902	903	305	20-101	101	102	EOT	103	201	301	401	102	109	109	602	703	Tou

H ¢		8.1	7.5	8.7								6.0			8.0		8.0			7.4						
Specific Conduct- ence Micro- mhos/cm		207	449	664								102					620			145			÷			
Total Hard- ness as CaCO3		36	13	ΤŢ		IJ		536	5	172	43	77			6	76	31		ŝ	42		55	Τħ	53		28
Dis- solved 5011ds	56*	*044	286*	419*	108*	80°	243*	1,459*	818	124 ×	127*	ToT	56*	32*	229*	164*	389*	26*	35*	113*	5 7 *	225*		53*	*08	54*
N1- trate (NO3)		5.6	5.6	2.0						~~~~		¢i.					~†.			4.						
Flu- o- (F)		7.0		ņ								¢.					ņ			4						
Chlo- ride (Cl)	π	1.8	4	ŝ	2th	ТS	77	220	30	52	13	4	L	11	17	19	16	10	TS	Ci	t	14	6	8	<u>[~-</u>	6T
Sul- fate (SO4)	< 10	55	12	σ	< 10	< 10	30	763	30	34	22	9	< 10	< 10	78	16	III	< 10	< 10	10	< 10	ŧ	37	< 10	< 10	15
Bicar- bonate (HCO3)	12	375	282	432	85	9	OTT	9		18		45	18	18	92	12	218	12	75	72	12	177	154	42	12	Ŷ
Car- bon- ate (CO3)				ŝ											ŝ											
Po- tas- tas- tas- si- um (Na) (K)		159	108	170				259*			25*	16 *			*0†	16*	131		12*	14		80 *				*6
Mag- ne- sium (Mg) (ŝ		-1		cu		н	2	19	9	0.0			10.8	TT	m		r-4			м	4.6	9		-4
Cal- 1 cium ccium (Ca)		9	m	4		5		213	34	37	8	5.5			18.0	51	2			6		6	0.6	12		4
Man- ga- nese (Mn)		≪0.05		: -05																						
Iron (Fe)		0.22 <	90.	> 01.			·					11			5, B		-22									
Silica (SiO2)		6	13	п								740 740			20		13			39						
Lab- ora- 2/ry (3	WPA	HdST	HUSL	HdST	WPA	WPA	WPA	WPA	WPA	WPA	WPA	USGS	WPA	WPA	CF	WPA	TSDH	MPA	WPA	HUSL	WPA	WPA	SDSU	WPA	WPA	WPA
Date of Collec- tion	9-1-36	1-15-69	1-21-69	1-15-69	10-12-36	10-8-36	10-12-36	10-9-36	10-9-36	10-12-36	9-26-36	7-5-61	10-8-36	9-26-36	4-26-49	9-14-36	1-9-69	9-14-36	9-26-36	1-9-69	9-14-36	10-13-36	2-8-37	9-24-36	9-22-36	9-22-36
Indi- cated Water- Bear- ing Unit	We	Cz	Wx	Μx	£C.	Cz	Wx	Wx	Wx	CZ CZ	Cz	Wx	Cz	Wx	CZ	es.	Wχ	ec.	Gz,	Wx	CZ CZ	G2 C2	CZ	We	Sp	d, C
Depth Dor Screened I Interval (feet)	42	500	425	630	17	57	41	26	30	63	32	160	Spring	62	213-234	27	392	50	74	264	24			26	27	50 .
Well Owner	Tilda Parker	John D. Wilson	Halberts, Inc.	George Haltom	H. T. Haltom	Z. Rambin	L. D. Burke	W. L. Burkhalter	Gus Young	Mrs. G. B. Stoker	I. Caldwell	Plus Tex Poultry	Moss Adams	J. W. Burt	Southland Paper Mills	Mrs. W. B. Turner	B. W. Covington	Henry Ennis	J. D. Martin	D. L. Burke	W. F. Martin	Shell Pipeline Co.	Shell Pipeline Co.	Sam Stripling	Homer Richards	I. C. Ferguson
Well Number	TX-37-20-705	803	804	902	903	21-101	201	202	203	TON	102	201	503	504	TOL	702	801	802	603	106	902	25-301	301	601	56-101	102

Table 12. .- Results of Chemical Aumityses of Water From Wells in Nacogdoches County--Continued

- ₁₀₀

•

-18

Table 12. .- Results of Chemical Analyses of Water From Wells in Macogdoches County -- Continued

r					-																			
Hď	5.8	1.6			8.3		6.7	7.8	8.0				8.0	7.0		7.0	7.2	8.9		0.7	6.1	7.5	7.1	6.1
Specific Conduct- ance Micro- mhos/cm @ 256 C.	414	644			1,133		946	908	817				980	274		281	280	452			275	069	146	329
Total Hard- ness as CaCO3	115	27			8		14	9	12	10		2	13	£		4	9	ŝ	50	IO	SI	æ	50	Ŀ
Dis- solved Solids	540*	256	33*	37*	740*	72*	\$009	573	510*	35*	78*	45*	630*	168*	292*	204		549*	*#4	941	172 172			161
Ni- trate (No3)	011	0,			5.0		4. V	3.5	6.5				5.0	~			4. *	*. >		د. بن	çi	4. V	4.	0
Flu- o- (F)	<0.1	.2			1.0		1.3	1.4	6.				ŝ	 			5	е.		< .1	••	.2	.2	.2
Chlo- ride (Cl)	75	TZ	15	14	ΤŢ	27	5	17	Ħ	6	1.8	13	T	10	22	œ	[12	ŝ	4	σ	15	Ħ	6
Sul- fate (Sout)	Ð	58	< 10	< 10	67	< 10	17	51	~† V	< 10	< 10	< 10	53	20	34	18	77	19	< 10	ದ	55	38	36	22
Bicar- bonate (HCO3)	12	105	75	18	069	37	520	508	540	24	19	Ŧ	600	131	256	242	134	207	61	127	123	383	112	2112
Car- bon- ate (CO3)		38																13						
Por tes- si- um (K)																					¢.3			3.7
Sodi- um 3/ 3/	52	426			293		235	227*	510	10*		10*	250	62		65*	62	102	10*	60	55	164	93	53
Mag- ne- sium (Mg)	15	2.8		-	-		CU.	Ŀ.	CJ.	н		QU	-1 V	гч		ċ			н	н	1.0	ч V	ณ	9.
Cal- cfum (Ca)	51	6.2			Q		¢1	1.5	Ч	m		5		~		1.2	CJ	н	19	5. 5	е. Т.	¢J	2	5.0
Man- ga- nese (Mn)	0 .05				< .05		<.05						< .05	.05			Ч. V	Ŀ.		.02		< .05	1.	
Iron (Fe)	0.06	.62			.16		.22	. Oł	.13				.13			-25	.63	, oł		1.5	.42	+12 ·	1.02	14.
Silica (SiO ₂)	13	10			13		Ţ	п	ц				Ę	F0		91				6	13			q
Lab- ora- tory 2/	HUSL	USGS	MPA	WPA	TSDH	WPA	HUST	SDSU	TSDH	MPA	MPA	WPA	TSDH	TSDH	WPA	GL	HOST	TSDH	WPA	HGST	USGS	HUST	HOST	USGS
Date of Collec- tion	2-3-69	6-2-61	9-24-36	9-24-36	2-3-69	9-22-36	1-28-69	7-5-61	1-29-69	9-24-36	9-23-36	9-23-36	1-28-69	2-3-69	9-18-36	4-20-57	11-63	12-5-63	8-20-36	2-38	2-7-45	19-41	12-63	2-7-45
Indi- cated water- Bear- ing Unit	Sp	Cz	Sp	We	щ	We	ත්	Qc	Sp	Sp	sp	Sp	<u>ж</u>	Gz	We	CZ C	Cz	Cz	Sp	CZ	CZ	Cz	C ^Z	Cz
Depth or Screened Interval (feet)	⁴⁵	530	55	20	500	25	612	290	127-137	42	48	44	552	444	54	441-502	441-502	514	Spring	391-425	391-425	391-425	391-425	381-471
Well Owner	Cecil Myers	Ben Stripling	E. H. Johnson	R. E. Tindall	J. P. Fartin	B. L. Johnson	Ben Johnson	M. L. Christopher	Texas Foundries Club	Sam Stripling	A. T. Mast	B. M. Matlock	Wm. J. Pitts	T. F. Harvin	R. V. Davidson	City of Nacogdoches No. 5	City of Nacogdoches No. 5	Audrey King	G. W. Tillory	City of Nacogdoches No. 1	City of Nacogdoches No. 2			
Well Number	TX-37-26-301	104	102	to3	101	502	503	109	804	805	806	902	903	57-101	102	201	201	202	203	301	301	301	301	20E

Ħď	2.2	6.9	7.4	7.7	7.6	6.9	6.9	6.8	0.7	6.9					в.з			,	8.3	
Specific Conduct- ance Micro- mhos/cm @ 250 C.						581		540		262					1,033				306	
Totel Hard- ness as CeCO3	81	Q	ŝ	18	18	10	77	TO	TS	TO	OT	£#3		128	27	бт	Ci	¢.	m	
Dis- solved Solids	158		169	180				152	154		151*	43 *	143*	719*	660*	184*		т70*	175 *	30*
N1- trate (N03)	< 0.4		~ 1 . V	- 1 . V	4.	4. V		т. Т	×. 	*. >					ις. Γ			°.	,t-, , t-, , v	.,
Flu- o- (F)	г. 0		т. >	ri.	ų	ri.		ci	¢i	ci					4. 4.				¢.	
chlo- ride (cl)	16	52	- 77	74	74	10	JO	9	77	6	74	20	Τţ	15	35 M	TO	я	in.	9	13
Sul- fate (SO4)	54	22	26	24	26	58	20	5	53	25	15	< 10	72	< 10	9	15	22	16	316	< 10
Bicar- bonste (HCO3)	911	127	125	128		113	LЦ Ц	102	011	109	122	18	122	818	670	7/17	189	162	163	12
Car- bon- ate (CO3)																	er T			
Po- tas- um um 3/ (K)	25	*06	58	60	59	58	54*	50 0.4	56	25	58*			259*	263	72*	100 *	*67	72	
Mag- ne- sium w (Mg) ((ત્ય	9.	m	cu	m	ret	9.	4. 4.	CJ	м	г	.4		14	ന	m	ċ			
Cal- cium (Ca)		1.5	*	t	¢J	Cù	4.5	1.6	CJ	¢J	m	PO		53	9		4	н	ч	
Man- ga- nese (Mn)	<0.05		< .05	< .05		< .01		8.	< .05						< .05				י. >	
Iron (Fe)	0.45	ŵ	ณ ณ	ŵ	21.	εζ.	9.	tł.	.66	- 73					- 55				72.	
Silica (SiO2)	10	œ	16	13			업	с Н	σ						П		15			
Lab- ora- 2/	TSDH	CL	HCSL	HUST	HGSL	TSDH	GL	SDSU	HGST	TSDH	WFA	MPA	MPA	WPA	TSDH	MPA	G	SDSU	HUSL	WPA
Date of Collec- tion	2-47	6-25-47	5-47	2-49	6-54	11-63	12-49	11-28-51	7-54	12-63	9-17-36	9-16-36	9-17-36	9-18-36	1-15-69	9-17-36	10-36	1-12-37	12-5-63	9-16-36
Indi- cated Water- Bear- ing Unit	Cz	C2	CZ	CZ CZ	CZ	02	cz, Wx	Cz, Wx	Cz, Wx	Cz, Wx	Gz	Sp	CZ	н	්ර	02 C	22	CZ	C2 C	ц С
Depth or Screened Interval (feet)	381-471	415-518	415-518	415-518	415-518	415-518	hho-535	440-535	440-535	440-535	500	15		375	220	500-550	500-550	500-550	500-550	30
Well Owner	City of Nacogdoches No: 2	City of Nacogdoches No. 3	City of Nacogdoches No. 3	City of Macogdoches No. 3	City of Nacogdoches No. 3	City of Nacogdoches No. 3	City of Nacogdoches No. 4	Southern Ice Co.	Norval Bright		Frost Lbr. Industries	G. L. Henson	Piney Woods Country Club	Piney Woods Country Club	Piney Woods Country Club	Piney Woods Country Club				
Well Number	TX-37-27-302	303	303	303	303	303	304	- 304	304	304	305	307	308	309	104	501	201	501	201	502

Table 12..-Results of Chemical Analyses of Water From Wells in Macogdoches County--Continued

For footnotes see end of table.

**

Table 12.---Results of Chemical Analyses of Water From Wells in Macogdoches County--Continued

	· · · · · · · · · · · · · · · · · · ·											-								
Hd	7.2	. 8 	8.2	6.8		t.7	8.7	8.7	8.7			2.2	.1.7	7.5	7.4	6.0	6.4			8.1
Specific Conduct- ance Micro- mins/cm @ 250 C.	270	704	369	564		334	046	945	1.140		1.045	329	270	315	261	251	510			680
Total Hard- ness as CaCO3	m	н	~	12		m	9	9	9	9	7	. og	ĥ	IO	8	, . 	56			ΤŢ
Dis- solved Solids 4/	502	247	612	746*	40 *	206	200*	\$90*	658*	668*	599*	515		210	181	170		312*	199*	433*
Ni- trate (NO3)				< 0.4			5.0	1.0	-#. V		ېن >		ŵ	Ч.			ri,			ŵ
Flu- c- ride (F)				0.2			1.5	1.3	~t.		ŗ.		ci				r.			₫.
Chlo- ríde (Cl)	L	ý	ý			¢J		9	6	12	9	Ħ	Ţ	15	T	с Т	14	18	33	ŝ
Sul- fate (SO4)	18	16	10	ŝ	< 10	7ţ	26	52	ίΛ	ŝ	6	76	50	91	38	36	ñ	165	76	18
Bicar- bonate (HCO3)	144	544	223	93	24	200	580	580	680	625	610	162	142	159	6	92	68	61	27	445
Car- bon- ate (CO3)							18	18	53	94	53									
Po- tas- sodi- si- um (Na) (K)	66 *	103*	92*	50		82*	239	239	283	278	258	62*	57	71*	46*	*0.*	38			174
	0.2		0.			0						e.	6.S	.8	3.0	2.5	4.E			н
Cal- cium cium sium (Mg)	1.0	¢.	† .	<u></u>			<u>۷</u> دیا	<u>۷</u> م	cu	1.6		6.7	7.2	5.8	6.6	5.8	4.8 8.4			 m
Man- ga- Ce nese ci (Mn) ((.05		.05			50.						
Iron E (Fe) (0.15	.06	.05	-50 0.1		4	-0 ⁴	-0 1	18 V	53.	-08 	-55	[4.	.35	æ			
Silica I (SiO ₂) (د چ	ŀ	v 			50	13	13		18		18				74				
Lab- ora- Sil tory (Si		н 	<u> </u>	HUSL	A				HO		HC	h-1		ا م.	i~1	ہ۔ 				TT H
Date of Collec- or tion to	5-15-64 CL	8-20-64 MSL	2-64 MSL	12-5-63 TS	1-36 WPA	2-15-67 MSL	2-68 TSDH	2-68 TSDH	2-17-65 TSDH	2-18-65 PTL	-10-65 TSDH	7-8-66 CL	7-19-66 PTL	3-66 CL	6-8-66 CL	6-28-66 CL	-66 PTL	9-14-36 WPA	-36 WPA	HUSL 69-
	5-1		10-12-61	12-	10-31-36	5-7	12-12-66	12-12-68	2	5-1	4 T			10-28-66			7-26-66	9-1f	10-13-36	1-14-69
cated Water- Bear- ing Unit L/	CZ	Cz, Wx	Cz, Wx	GZ	ŝ	ů	Cz, R7	Cz, R?	Μx	Мx	Ŵх	Cz, Wx	gc	Sc	R, Cz					
Depth or Screened Interval (feet)	471-571	482-667	470-565	504-570	Spring	563-680	660	600	739	739	739	300	300	300	347	347	347	1.8	12	465
Well Owner	City of Nacogdoches No. 6	City of Nacogdoches No. 7	City of Nacogdoches No. 8	Lone Star Feed & Fertilizer	Hy. Hoya	City of Nacogdoches No. 9	Ben De Witt	Ben De Witt	Swift Water Supply Corp.	Swift Water Supply Corp.	Swift Water Supply Corp.	Swift Water Supply Corp. No. 2	Swift Water Supply Corp. No. 2	Swift Water Supply Corp. No. 2	Swift Water Supply Corp. No. 1	Swift Water Supply Corp. No. 1	Swift Water Supply Corp. No. 1	H. E. Seale	Mrs. Ernest Pleasant	E. C. Duke
Well Number	TX-37-27-504	505	506	601	602	802	803	804	28-301	301	301	303	303	303	304	30 ⁴	304	305	306	501 E

- 120 -

و. من

CountyContinued
Nacogdoches
1n
Wells
From
Water
of
Analyses
Chemical
of
2Results

Table 12.

Hq	8.6	8.4	0.7			6.7		8.8				5.8	7.0	T.7			5.3		5.5	2.2	7.6			8.7		8.8
	780 8		240			609		818 8		435		190 5	230 7	547 7			38		285	300	h20 1					
Specific Conduct- snce Micro- mhos/cm @ 25 ⁶ C.	74	1,050																								1,055
Total Hard- ness as CaCO3	14	39	23			CI	48	73 73		1t		15	54	52		23	12		8	15	15			13	85	80
Dis- solved Solids <u>4</u> /	488*	¥07L	148*	178*	*111	372	105*	210*	236*	299	*T2	811	133*	346	38*	35* 80	31*	489*	181*	+6LT	252*	5tł *	58*	550*	*†TT	680*
N1- trate (NO3)	4.0>	2.5	÷			÷		2.6				•	۰. ۱4.	0.			4. 4.		≁. ∨	×، ئ	× ،4 م			~†. >		4. V
Flu- o- (F)	0.4	3.0	¢.			.6		4.					¢,	Ч.			רי. >		ci	÷	ņ			÷		÷
Chlo- ride (C1)	6	52	12	18	18	80	35	ŝ	7h	TO	36	TO	6	ส	15	22	in	48	I	10	TT	6	51	6	50	6
Sul- fate (SO4)	48	σ.	18	56	.#	20	10	41	< 10	47	< 10	29	19	48	< 10	< 10	-†- V	285	g	54	64	< 10	< 10	47	19	17
Bicar- bonate (HCO3)	844	730	106	86	12	361	1 9	495	346	194	18	50	100	273	18		JO	сЧ	133	138	150	12	31	499	73	650
Car- bon- ate (CO3)	ч	4						53																J16		30
Po- tas~ si- (K)																										
Sodi- um 3/	194	282	747			151*	5tł *	204		*96		33*	41	109*		¹ ,*	¢ι		99	62	88			221	10 *	279
Mag- ne- sium (Mg)	ר 2	80	m			°.	4	CJ		æ.		2.4	47	5.3		· 4	-1		ч Л	m	CV			~1	8	н
Cal- cium (Ca)	5	e	4			æ	12	CU		4.3		2.0	¢J	12		¢J	¢1		CI	Ч	¢υ			m	57	¢J
Man- ge- nese (Mn)																										0.16
Iron (Fe)	0.10		8.00			<i>*</i> 0.		¢.		-52		5.1		3.2					.70	1.0	1.00			51.		1.30
Silica (SiO2)	п	16	П			12		Ħ		18		74	6	19			9T		15	Ц	1			ц		16
Lab- ora- tory 2/	HUSL	TSDH	TSDH	WPA	WPA	USGS	MPA	HGST	WPA	GL	WPA	USGS	TSDH	usas	MPA	MPA	HGST	WPA	TSDH	HUSL	TSDH	WPA	WPA	TSDH	MPA	HUSL
Date of Collec- tion	1-14-69	12-11-68	1-14-69	9-29-36	10-2-36	8-1-61	9-29-36	1-14-69	9-29-36	8-16-65	9-28-36	7-5-61	1-9-69	7-5-61	10-13-36	9-26-36	1-9-69	9-26-36	12-6-68	1-14-69	1-9-69	9-28-36	9-28-36	1-8-69	9-25-36	1-9-69
Indi- cated Water- Bear- ing Unit	R, Cz	сц.	Cz	We	Sp	Cz	Sp		Sp	C Z	Sp	Cz	Cz	Cz, Wx	Sp	CZ	Cz	В	02	C Z	Cz	Sp	We	Wx	84	Wx
Depth C Or Screened Interval (feet)	439 F	327	1400	55	59	520	62		90 S	H18-502	52	300	302-352	57t4 0	26	27	154	ŝ	322-352	4T4	1448	32	31	275-285	17	365-438
Well Owner S	Maness	Hugh Jones	Roy Essman	Roy Essman	Tilford Hunt	De Witt's Hatchery	L. L. Cheever	E. King	J. P. H111	Woden Water Supply Corp. No. 1	Ben Oliver	Plus Tex Poultry	Tom Gilcrease	J. O. Justice	Lee West	F. F. Fuller	Burl Black	Ancle Fuller	Melrose Water Supply Corp.	0. D. Hall	R. H. Davis	J. W. Kendrick	J. B. Brown	Elvis Green	0. 0. Smith	Attoyac Water Supply Corp.
Well Number	TX-37-28-502				102	LOG	802	803	804	106	903	29-101	102	202	203	301	302	303	705	1t03	201	502	503	601	602	603

Table 12. --Results of Chemical Analyses of Water From Wells in Macogdoches County--Continued

Hđ	8.3	8.1			3.6		сі. .т		8.8			8.7	8.8	4.8		5.5					6.5	6, k
Specific Conduct- ance Micro- mhos/cm @ 25 C.	352	380			73		77		515				605							-		
Total Hard- ness as CaCO3	5	ŝ	208		2		2		#		27	4	2	Τů	61	144	117	10	ŗ,	20	70	63
Dis- solved Solids 4/	226*	234*	+60†	168*	20*	#9†	*17*	32*	317	91*	240*	536*	383*	470	412	168	357*				172	662
N1- trate (NO3)	< 0.4	- 1 - >			°.		-‡. -						2.6					0				
Flu- o- ride (F)	0.5	m.			~!		4						ŝ									
Chlo- ride (Cl)	ŝ	6	164	76	4	26	V	TT	æ	45	T	17	90	30	œ	12	63	133	113	52	Ę	10
Sul- fate (Soh)	25	34	< 10	с0	16	< 10	15	< 10	0	TT	59	12	15	41	Γţ	75	34	35	30	< 14	58	19
Bicar- bonate (HCO3)	193	181	183	31	0	Ŷ	0	78 T	261	9	208	500	353		98	18	256	466	442		92	16
Car- bon- ate (CO3)									31			17	~#									
Po- tas- tas- tas- tas- tas- tas- tas- (Ma) (K)	87	68	80*		3.3 2.4		ŝ	*6	126*		87*	218*	153				100*					
Mag- ne- slum (Mg)	<1	г	13		1.5 T			CV.	0			ņ					50					
Cal- cium (Ca)	¢.	-	62		ŵ		-	ч	1.5 1		TI I	1.1					14					
Man- ga- nese (Mn)										,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,												
Iron (Fe)	0.28	.16			5.4		8.40		-95			.4	.12									
Silica (SiO ₂)	ĨŢ	T			53		55		7			2th	E									
Lab- ora- S tory (HUSL	HOSL	WPA	MPA	SDSU	MPA	HUSL	WPA	NSL	MPA	WPA	CL	TSDH	SPM	SPM	WdS	WPA	USGS	SDSD	SPM	SPM	MAS
Date of Collec- tion	1-8-69	1-8-69	9-29-36	9-29-36	7-5-61	9-25-36	1-8-69	9-25-36	3-7-64	9-15-36	9-15-36	3-26-49	1-9-69	10-27-41	10-28-41		9-17-36	1-12-37	3-18-37			
Indi- cated Water- Bear- ing Unit	CZ	Cz	We	Sp	Cz	Cz	Wx	Wx	й С	We	CZ	Cz	Cz	Wx	sp.	Sp	Cz, Sp	Cz, Sp	Cz, Sp	Wx	d. S	Sp
Depth Depth 0 or or 1 Screened 1 Interval (feet)	#20	362-372	50	25	175	27	150	47	320-395	37	80	203-224	230	800-805	132-137	0-133	570 0	570 0	570 0	978-1,260	92-165	5-92
Well Owner	M. M. King	E. C. Wall	Scott	C. P. Little	Plus Tex Poultry Farm No. 4	J. C. King	Plus Tex Poultry Farm No. 7	J. W. Burd	Chireno Water Supply Corp.	E. M. Weeks	D. Biggs	Southland Paper Mills	Wayne Garrett	Southland Paper Mills	Southland Paper Mills	Southland Paper Mills	Ed Thcker	Ed Tucker	Ed Tucker	Southland Paper Mills	Southland Paper Mills	Southland Paper Mills
Well Mumber	TX-37-29-801	106	902	903	30-401	402	201	502	TOL	702.	703	801	802	35-101	102	40T	106	106	106	501	203	204

- 122 -

Ħġ		8.05		7.93	8.0	6.15						8.6	7.8	8.3	7.5	6.2	6.0	8.5	7.2
Specific Conduct- ance Micro- mhos/cm @ 25 ⁶ C.																	68		
Totel Hard- ness as CaCO3	5	9		εu	31	33	38	04	N	ŝ	13	t	99	16	16	T5	28	Ś	88
Dis- solved Solids <u>4</u> /	232	231*		*102	360						\$62	308	170	290	120	361	53*	290	74r
N1- trate (NO3)																	0.5		
Flu- o- ride (F)																	1.0		
Chlo- ride (Cl)		L	15	-4	TO	9	١'n	TT	13	13	53	15	TO	36	12	25	50	Ţ	œ
Sul- fate (SO4)		75	48	13	11	9	38	5F	74	6T	< 10	61	34	75		m	5	51	20 17
Bicar- bonste (HCO3)		206	173	18h	305	62	99	99	32	ट 4	러	24th	200	259	45 4	161	24	246	51
Car- bon- ate (CO3)		ŝ		CJ.	9							45		П				ŝ	
Po- tas- um um um (K) 3/ (K)		*68		*08							*7						Q		
Mag- ne- sium (Mg) (o.5		ų.							m						m		
Cal- 1 clum clum (Ca)		т.6		Ņ.,													~		
Man- Ea- nese (Mn)																			
Iron (Fe)		0.0		.07		16	12.5	24.5	9	01		-23			*******		₹.ħ		
Silica (SiO ₂)		74		10													18		
Lab- ora- tory 2/	SOSU	CL	SPM	CL	SPM	SPM	SPM	SPM	SPM	SPM	WPA	SPM	SPM	Was	SPM	SPM	TSDH	SPM	SPM
Date of Collec- tion		10-48		11-50		9-47	10-47	10-47	70-47	10-47	10-2-36	12-17-46					1-14-69		
Indi- cated Water- Bear- ing Unit	Sp	Cz	CZ	Cz, Wx	đĩ	Sp	Sp	gp	đg	c,	đ	Cz, Wx	Sp	di U	sp	gp	Sp	çp	Sp
Depth or Screened Interval (feet)	120-165	692-788	635-760	599-780	150-155	120-198	912-26	92-192	92-161	92-103	35	598-810	77-82	214-219	70-170	10-135	25	235-240	136-175
Well Owner	Southland Paper Mills	B. B. Holtam	Southland Paper Mills	R. L. Godsey	Southland Paper Mills	Southland Paper Mills													
Well. Number	TX- 37- 35- 207	301	302	303	304	308	309	309	309	309	311	36-102	103	104	105	107	110	203	204

For footnotes see end of table.

Table 12. --Results of Chemical Analyses of Water From Wells in Macogdoches County--Continued

30

- 123 -

Table 12. .-. Results of Chemical Analyses of Water From Wells in Macogdoches County --. Continued

Hď					8.3					8.1		8.4	0.9			0.7	2.5				7.3	4.8	7.8		7.8	
Specific Conduct- ance Micro- mhos/cm @ 25 ⁶ C.					355					712		640				543	588				975	1,036	928		870	
Total Hard- ness as CaCO3		13	5		6		23	T	5	CU	151	20	9		33	20	£	T3			312	п	44	18	7^{h}	
Dis- solved Solids <u>4</u> /	115*	243*		22*	22ù*	135*	55*	*TL	313*	456	857*	393*	618*	*16	*6L	350	356*	45*	187*	#17#	660*	*016	580*	33*	560*	
Ni- trate (NO3)					< 0.4					÷		्यः >	m			2.0	14.5				4. V	-#. V	5.0		~ * . V	
Flu- o- ride (F)					0.7					1.4		2.4 7	e.			9.	2.				9.	4	٤.		0.1	
chlo- rlde (cl)	32	10	4	69	ŝ	13	16	15	12	12	77	TI	33	35	18	12	36	T3	OTT	17	54	34	19	T3	04	
Sul- fate (Sou,)	< 10	19	52	< 10	77	< 10	æ	θ	CV F	0	< 10	-# V	ನ	ŤĈ	4	109	38	< 10	< 10	10	247	-:+ V	153	< 10	144	
Bicar- bonate (HCO3)	62	232	222	12	112	140	54	43	217	ù46	879	403	505	37	55	161	248	τe	с0 Т	57	232	066	260	18	301	
Car- bon- ate (CO3)					0							না	53													
Po- tas- wm (K)																			*****							
Sodi- um 3/ 3/		*79			85		*ET	* 42	131*	777 *	312*	154	260		19*	113*	102	3 ⁴ *			46	388	190	*L	oLT	
Mag- ne- sium (Mg)		m			CI		9	CU		÷	36	m	ŗ.		m	2.3	IO	m			23	¢1	5	4	9	
Cel- cium (Ca)					~ >			~1	¢.	ei.		m	1.6		æ	4.2	19				8	¢1	TO		50	
Man- ga- nese (Mn)																										
Iron (Fe)					0.13					.23		.13	e,				.20				.62		.20		· 34	
Silica (SiO ₂)					13					1¢		18				316	13 13				36	76	оč		35	
Leb- ore- tory 2/	MPA	WPA	SDSN	WPA	TSDH	WPA	WPA	WPA	WPA	USOS	MPA	HUST	IIId	WPA	WPA	SDSU	TSDH	WPA	WPA	WPA	HUSL	TSDH	TSDH	WPA	HUSL	
Date of Collec- tion	9-29-36	10-2-36	2-9-37	9-30-36	12-11-68	9-30-36	9-30-36	9-30-36	9-15-36	6-2-61	10-2-36	12-10-68		10-1-36	9-30-36	6-2-61	1-8-69	10-1-36	10-1-36	10-1-36	12-10-68	1-8-69	12-10-68	10-2-36	12-10-68	
Indi- cated Water- Bear- ing Unit <u>1</u> /	, D	CZ	Cz	Sp	C2 C2	E.	평	CH CH	CZ	Sp	Sp	Sp	Cz	Sp	gp	Sp	Sp	ę	5	ę	7	Sp	₩	х	<u>بر</u>	-,
I Depth or B Gcreened 1 Interval (feet)	59	400	1400	34	590	19	55	544	200	492	252	500	875-920	20	54	165	300	15	32	53		386	230	24	999-5980-5980-599 999-5980-598	
Well Owner	J. H. Beard	L. C. Jacobs	L. С. Ласорв	Anna Deniel	Merit Cochran	Florie Daniel	Ben Oliver	R. J. Driver	J. W. Prince	A. H. Munk	Tom Farton	W. P. Smith	Etoile Water Supply Corp.	R. G. Atkinson	Bennie Gray	Plus Tex Poultry	Marie Gartman	T. J. Wilson	J. T. Sowell	Jim Still	Dave Fatterson	Travis King	Shirley Creek Marina	Wilmer Mast	Wilmer Mast	
Well Number	TX- 37- 36- 206	301	301	302	303	109	602	603	37-301	801	802	803	804	38-101	201	104	403	TOL	702	801	H5-601	46-101	TOH	402	to3	

1

2

*

For footnotes see end of table.

- 124 -

ŀ) Initials used to identify water-bearing units are:

Al	-	Alluvium	Qc	-	Queen City Sand
Y	-	Yegua Formation	R	-	Reklaw Formation
Cm	-	Cook Mountain Formation	Cz	~	Carrizo Sand
Sp	-	Sparta Sand	Wx	-	Wilcox Group

- We -Weches Formation
- Initials used to identify laboratories are:
- CL -IFC -MEC -MSL -PTL -SPM -TSDH -USGS -WPA -

2/

- Curtis Laboratories International Filter Company Maintenance Engineering Corp. Microbiology Service Laboratories Pope Testing Laboratories Southland Paper Mills, Inc. Texas State Department of Health United States Geological Survey Works Progress Administration

- <u>3</u>/ Asterisk (*) indicates sodium and potassium calculated as sodium.
- 4/ Asterisk (*) indicates value is calculated or estimated.

.