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1. INTRODUCTION

A mesoscale primitive equation model was developed by Djuric and
Das (Scoggins et al., 1981) for the TAMU Texas HIPLEX studies for
1979. The model was initialized using the original gridded fields of
temperature, dew point, u and v components of the wind, and heights.
After a thirty-minute run of the model, it was found that noise, in
the form of spurious waves, began to obscure the results. It was
speculated that this noise was the result of defects in the initial
data, presumably the winds. The present study was taken up with a
view of developing a procedure for the initialization of the wind
field, which, while retaining the mesoscale properties of the wind
field, will be less prone to causing the development of noise in the
numerical model.

V. Bjerknes (1904) is recognized as the first to suggest that,
given observed initial fields of mass and velocity, it would be
possible, at least in principle, to determine the mass and velocity
distribution at any future time by solving the hydrodynamical equa-
tions as an initial value problem. A new direction in meteorology,
namely numerical weather prediction, was founded upon this suggestion.

To carry out a numerical forecast, it is necessary to specify the
wind field (and fields of other variables) at the beginning of the
forecast period. These fields define the initial state from which the

system of differential equations is integrated forward in time. A



common procedure for specifying the wind field is through the inter-
polation of observed winds onto a uniformly spaced mesh by means of
some weighted averaging scheme (Bergthorsson and 0335, 1955). This
type of analysis of the wind field is quite satisfactory for numerical
prognosis with the vorticity models (Haltiner and Williams, 1980).
However, integration of the momentum equations in their primitive form
is much more sensitive to the initial state. If the wind field pre-
pared by the weighted averaging scheme is inserted directly into a
primitive equation model, cénsiderab]e noise is generated while the
mass and motion fields adjust to one another. This "shock" of data
insertion is eventually reduced to an acceptable level as adjustment
between the two fields occurs over time.

It would obviously be adVantageous if this adjustment could be
effected prior to the beginning of the forecast. Talagrand (1972)
directly filters noise contained in the initial wind field through the
addition of a divergence damping term in the momentum equation.

Shuman and Hovermale (1968) initialize their primitive equation model
by inserting analyzed geopotential fields into the balance equation
obtaining the stream function y from which the rotational wind com-
ponent may be realized. Sasaki (1958) developed a method founded on
the calculus of variations in yhich differences between the objective-
ly analyzed values and the nery adjusted values were minimized in a
least squares approximation, subject to dynamical constraints. These
constraints may include the balance equation, hydrostatic relation,

steady-state momentum equations, integral relations conserving energy



and mass, and others.

The problem of initializing a mesoscale primitive equation model
becomes especially acute since such a model aims at making short-range
prediction of phenomena on the scale of organized convection. The
organizing influence, on this scale, arises from mesoscale conver-
gence. The convergence (divergence) field is usually obtained from
the gradients of a "gridded" wind field. Grid point values of wind
are determined from the interpolation of observed (measured) winds
onto the mesh by means of a weighted averaging scheme. However, as

discussed below, there are serious flaws in this approach.
a. Nonuniqueness of Wind-Field Interpolation

A fundamental problem in numerical analysis is the nonuniqueness
of vector field interpolation (Schaefer and Doswell, 1979). This
arises because a vector, such as wind, is a directed quantity. Inter-
polation of its magnitude and direction does not yield results
jdentical to those from interpolated components. For example, con-
sider two wind observations at the end points of an east-west line,
which consist of a westerly at 10.0 m s'] at one point and a southerly

]

at 20.0 m's™ " at the other. Halfway between the two observation

points, the Tinearly interpolated directions and speeds will give an

1

interpolated southwesterly wind at 15.0 m s ', while a linear inter-

polation of components will give a south-southwesterly wind at 11.2

m s']. The differences may not be as drastic in day-to-day

situations; in a comparison of data interpolated via computer to that



interpolated manually, Williams (1976) found that wind speed estima-
tion differed by an average of 3.5 m s'], while wind directions were
roughly equivalent. But a potentially serious problem remains in a

simple-minded interpolation of winds for a mesoscale primitive equa-

tion model.
b. Noise Generated in an Interpolation Scheme

Mesoscale prediction suffers from the basic difficulty of being
supplied with inaccurate, initial grid point values of some atmospher-
ic variable. These grid point values are frequently generated by a
weighted averaging interpolation scheme. The basic methodology of
this scheme is as follows: an initial guess of the atmospheric
variable (such as climatological mean, previously analyzed values of
the variable, or a combination of these two approaches) is supplied to
the grid points; the initial guess field is modified through the
observations (weighted corrections to the initial guess field which
are functions of the distance from the observation to the grid point);
the corrected grid point values are "lightly" smoothed to remove
obvious meteorological noise.

Barnes (1964) has proven that a weighted averaging interpolation
scheme is convergent (in other words, the approximated spatial distri-
bution of some atmospheric variable as determined from a weighted
averaging scheme approaches the "real" spatial distribution of that
variable). This is true provided the independent harmonic waves

(which represent the spatial distribution of some atmospheric variable



(Sasaki, 1960)) have wavelengths greater than two mesh lengths. Un-
fortunately, all wavelengths are present in the approximated spatial
distribution of the atmospheric variable. Judicious smoothing is not
considered feasible since both short (meteorological noise) and long
(meteorologically significant) waves would be affected.

Another difficulty inherent in a weighted averaging interpolation
scheme is the insufficient number of observations to adequately
"correct" the initial guess field. Because of this problem, inertia-
gravity wave modes are poorly (erroneously) represented on the grid.
In the case of a gridded wind field, these gravity waves may generate

large and unrealistic divergence patterns (Warner et al., 1978).
c. "Roughing" Due to Finite Differences

Given a gridded data field, its further manipulation often in-
volves the determination of derivatives by finite-difference methods.
For example, the mesoscale initialization (described by Warner et al.,
1978) involves the computation of vorticity from which the stream
function and geopotential fields are derived. If the vorticities are
determined by the method of finite differences from the gridded fields
of wind components, they will be contaminated both by the nonunique-
ness of vector field interpolation and by the uncertainties of the
interpolation scheme. The inherent inaccuracies of the finite-
difference method will exacerbate the above uncertainties (Conte and
de Boor, 1980).

The foregoing discussion points to the need for a strategy for



the initialization of the wind field, in which the following should be

achieved:

1) The interpolation of a vector field should be avoided.

2) The needed interpolation of scalar fields should maximize de-
tails while suppressing unresolvable short-wave noise.

3) A minimum number of finite-difference operations be perform-

ed.

Fortunately, recent research has devoted considerable attention to the
elements needed for developing such a strategy. The two relevant
studies, although aimed at synoptic-scale analysis, are those of
Shukla and Saha (1974) and Schaefer and Doswell (1979). In principle,
the procedure suggested is as follows: in a network of wind observa-
tions, the vorticity (£) and divergence (D) are determined from a line
integral method such as that of Bellamy (1949) or Ceselski and Sapp
(1975); the scalar fields of £ and D are utilized to determine the
fields of stream function and velocity potential which, in turn, will
provide the grid point values of the rotational (Vw) and irrotational
(Vx) parts of the wind; and, the final analyzed wind field is obtained
by superposing the irrotational and nondivergent parts (V¢+X).

The purpose of the present study is to ascertain (test) the
"goodness" of the above strategy for determining the initial wind
field by means of a comparison with other accepted strategies. The
above strategy constitutes a wind field that is "reconstructed" from

fields of divergence and vorticity calculated by line integrals. The



other accepted strategies for determining the initial wind field are:
(i) a direct wind-component interpolation, and (ii) a wind field that
is "reconstructed" from fields of divergence and vorticity calculated
by centered differences. From this test, the most optimal strategy
for determining the initial wind field will be ascertained for use in

a mesoscale primitive equation model.



2. THEORETICAL AND ANALYTICAL BACKGROUND

The analytical strategy suggested by Shukla and Saha (1974) is
based on a well-known theorem of Helmholtz according to which a vector
-5

V, such as the horizontal wind, can be separated into a rotational

(Vw) and an irrotational (Vx) part as follows:

Y

> -> ->
VeV, +V =kxTu+v x , (1)

where ﬁ is a unit vertical vector, ¥ is the horizontal stream func-
tion, Vh is the horizontal gradient operator, and x is the horizontal
velocity potential. The vertical component of the curl of the above

equation gives
kv, xV=9vS=t |, (2)

where £ is the vertical component of the vorticity. The horizontal

divergence of (1) gives
>
WoV=9x=0 , (3)

where D is divergence. Now, if one is given the £ and D fields,
corresponding ¢ and x fields can be constructed by solving (2) and

(3) over a grid. The values of ¥ and x at the grid points can then be
used to construct the wind field according to (1). The advantage of
this reconstruction method will be to produce a wind field which con-

serves the kinematic properties, € and D, which are fundamental to the



original wind field. However, the advantage may or may not be mean-

ingful depending on how we construct the fields of ¢ and D.
a. Determination of Vorticity and Divergence

Given a set of wind observations, it would be quite straight-
forward to interpolate the individual wind components, u and v, in the
customary x- and y-directions to obtain their gridded fields. These
fields permit the computation of £ and D from their differential

definitions:

av/ax - au/ay (4)

(2]
"

o
1]

au/ax + av/ay . (5)

As already pointed out, however, this method involves two undesirable
operations, namely, (i) interpolation of a vector field, and (ii)
performance of a finite-difference operation.

In order to avoid the problems mentioned in the last paragraph,
an integral method, originally due to Bellamy (1949), can be used to
determine values of ¢ and D directly from the wind observations. In
Bellamy's method, a triangle is selected for the curve with vertices
at the wind observation points. The winds are then allowed to dis-
place the vertices for some time interval. Divergence is equal to the
relative increase in area, enclosed within the triangle, per unit
time. Vorticity is obtained by repeating the operation with the winds
turned 90°.

Bellamy's method is a special case of what Ceselski and Sapp
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(1975) call the "Line Integral Technique" to be referred to as LIT in
the sequel. The principle of this technique can be explained as
follows: a point value of divergence (Gauss' Theorem) is represented
as

D = lim (1/A) } V.nds |, (6)
Ao

while, from Stokes' Theorem, a point value of vorticity becomes

£ = Tim (1/A) § V.sds (7)
Aro

where A is the area of some surface that lies in the horizontal plane,

s and n are unit vectors tangent and normal to the path of integra-

tion, ds is the differential increment along the path, and § con-

strains the integration to proceed in a counterclockwise sense along a

path marking the periphery of A.

Schaefer and Doswell (1979) elucidated the dissimilarity between
the methods of Bellamy and of Ceselski and Sapp. In the Bellamy
method, the total change in area of the triangle (with the inclusion
of the vertices) is realized in the determination of divergence. The
method of Ceselski and Sapp also realizes the change in area, but ex-
cludes the expansion of the region around the vertices. Consequently,
the dissimilarity between the two methods is directly proportional to
the time increment chosen in implementing the Bellamy method.

It appears that the evaluation (determination) of kinematic

variables through the above integral methods is superior to the



1

evaluation through differentiation. An initial interpolation of winds
is not required for the implementation of integral definitions. Con-
sequently, the divergence and vorticity fields obtained by integral
methods appear to be most consistent with the original wind observa-
tions.

Finally, the "roughing" inherent in numerical differentiation is
replaced by the "smoothing" of integration (Schaefer and Doswell,

1979).
b. Construction of y and X Fields: Boundary Conditions

Once the values of vorticity and divergence are determined at
every grid point, either through the combinations of derivatives of
interpolated wind components or through the interpolation of point
values of the above kinematic 9ariab1es calculated from line
integrals, Poisson-type equations (2) and (3) need to be solved
obtaining values of y and x, respectively. Unfortunately, in
meteorological problems, no information about ¥ or x is available at
the boundaries of the computational domain. Any attempt to compute ¥

and x corresponds to various degrees of approximation that must

satisfy
~ >
neVs=y =- 3Y/as + 3x/9n (8)
~ ->
s+ V=V, =+203y/on + 3X/s (9)

at the boundary. Here n is distance on the earth normal to the
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boundary increasing outward, and s is distance on the earth along the
boundary positive in the counterclockwise sense.

Sangster (1960) gave a detailed discussion of the means of
specifying the boundary values of ¢, and brought out the necessity of
considering both ¢ and x so as to satisfy (8) and (9) at the boundary.
The method adopted in this work, which is an extension of Sangstek's

basic discussion, will be presented in-the sequel.
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3. THE DATA

The data utilized in this study originate from a mesoscale net-
work located in western Texas (Texas HIPLEX region), where measure-
ments were taken at seven radiosonde stations at 0300 GMT 28 May 1979.
Variables available include pressure, height, u and v components of

the wind, as well as range and azimuth of the balloon.
a. S-coordinates

The analysis is performed on a coordinate system in which the
vertical coordinate represents a given fraction of the local depth of
the model atmosphere from the earth's surface to the top of the model.

This will be referred to as the S-coordinate where S is defined as

<

5 = (2500) = 2o(0)) / (2 - 7(0)) - (10)

Here zo(j) and zs(j), respectively, are the heights of the surface and
of the level denoted by a constant value of S (both situated at a

given radiosonde location j), and zy is the height of the top of the
model atmosphere. The gridded surface height (which is an approxima-

tion for a topographic map of this region) is given in Fig. 1.
b. Balloon Drift

For synoptic scale observations, an upper air wind measurement is
assumed valid directly over the station. The net horizontal displace-

ment of the balloon, realized from the prevailing flow, is small



SURFACE HEIGH
102.65W (METERS) ,

/7))
/

100.39W

T T

Fig. 1. Gridded surface height analysis of the Texas HIPLEX
region, with indicated radiosonde station locations:

MA Midland PO Post
SE Seagraves LM Lamesa
BG Big Spring SY Snyder

SC Sterling City.

The positions of these stations correspond to their geographical
location, rather than their adjusted position considering balloon
drift (next section). Isopleth interval is 25.0 m.

14
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compared to station separation. For a mesoscale network, however, net
horizontal displacement of the balloon may be of the same order of
magnitude as station separation. A balloon drift correction, for a
mesoscale network, insures that the datum is "gridded up" from its
true location (realized from the prevailing flow) rather than from the
launch site. Therefore, a more representative field is provided for
the analysis of meteorological variables at all levels in the predic-
tive model. It should be emphasized that displacement data must be
interpolated from the pressure heights to the appropriate S level
heights. In other words, the height of the S level pertaining to a
given "moveable" observation must be recalculated when the balloon
moves into a region where the terrain height is different from that at -
the Taunch site.

The computational procedure is based on the assumption that all
balloons arrive simultaneously at a fixed altitude, while in fact,
balloons released from neighboring stations, generally, reach a given
altitude at different times. It is believed that this time differ-
ence, the order of several minutes, is negligible when compared to the
time scale of changes in the mesoscale environment. Fankhauser (1969)
has made analyses of mesonetwork data in cases where departures from
scheduled release times were important; accordingly, his scheme
provided for adjustment.

The computer implementation of the balloon drift calculation

procedure is detailed in Appendix A.
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4, ANALYTICAL AND COMPUTATIONAL PROCEDURE
a. Objective Analysis

A recursive weighted averaging interpolation scheme (Cressman,
1959) was utilized to obtain grid point estimates of meteorological
variables. This particular effort at objective analysis involves the
determination of these variables at grid points as the sum of the
weighted values of the individual data f(j). In the Cressman
approach, variables are interpolated onto a uniformly spaced mesh by
the application of weight factors, using successively smaller in-
fluence radii with each iteration (or "pass" through the field).
These weight factors are expressed in terms of grid length; therefore,
the detail of the analysis is limited by one's choice of grid length.
This method is suitable for objective analyses of mesoscale regions
where mesh lengths are comparatively small.

The generalized smoothed function, employed in this effort, is
given by

m

axy) = on f@) 7 L (11)
J=1 j=1

where n is the weight factor, m is the number of observation points,

and f(j) is the atmospheric variable measured at each observation j.

The influence of each datum is weighted according to its distance from

the grid point. The specific weight factor utilized for any given

"pass" through the field is
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n = exp.((- ar?) Rz) , (12)

where r is the distance from the individual observation j to the given
grid point, R is the influence radius which is expressed in terms of
grid distances, and 4 is a reliability coefficient.

In this work, four "passes" were made through the field, de-
creasing the radius of influence for each successive pass. The radii
varied from ten grid distances to one, with mesh length taken as 15.8
km. It should be noted that applications of a recursive weighted
averaging scheme require reasonably uniform data distributions to

insure stability in the results.
b. Smoothing

With the implementation of a weighted averaging scheme, disconti-
nuities will develop on the grid at a distance from an isolated
observation j where the weighting factor n is rapidly approaching
zéro. This problem is especially conspicuous near the boundary.

These discontinuities in the final output give rise to a further
depreciation in the stability of the results. This problem is
alleviated through the introduction of a smoothing scheme.

In this study, a systematic explicit smoothing is included for

the final products. The simple smoother

fi= (0)Fy + (0/2)(Fyp + F54) (13)

can be applied sequentially to the two directions (Shuman, 1957); that
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is, smooth in each dimension independently of the other dimension, to

give
z 2

(9 gt fam gt fi gt figa) /2

2
Oy g T ga T g t T ) /4

=R.,. f.. , (14)

where v is the smoothing element index and Rij is the response func-
tion. If the distribution of an atmospheric variable is represented
by a Fourier integral (Sasaki, 1960), then the corresponding response
function is obtained by inserting the simple harmonic function

(harmonic form of the dependent variable)
flx,y) = Aexp (i (kx +2y)) (15)

with k and 2 as the wavenumbers in the x and y directions, respective-
1y, and A representing wave amplitude, into (14), leaving the response

function
R(k,2) = (1 - 2v sin?(kax/2))
*(1 - 2v sinf(aay/2)) . (16)

It should be emphasized that the above smoothing routine does not

affect the wavenumber nor the phase of the original wave; only its
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amplitude.

On my grid, the interior points are smoothed using the nine point
smoother (14). Only one "pass" is made through the field employing a
smoothing element index of v = 0.10. The corresponding response

function is
R(k,2) = (1 - .2 sinz(aAh/Z)),
*(1 - .2 sinz(aAh/Z)) , (17)

provided ax = Ay = ah and k = ¢ = a. The response function illus-
trates that the smoothing is extremely light.

The border points are smoothed using the smoother illustrated in
(13). One pass is made through the boundary values employing a
smoothing element index of v= 0.45. The corresponding response

function is
R(k,g) = 1 - .9 sin’(aah/2) (18)

provided Ax = Ay = ah and k = ¢ = a. Considerable smoothing is in-

dicated by this response function.
c. Computation of Vorticity and Divergence

The computation of ¢ and D, as already indicated, is done in two
different ways for the sake of comparison. One of the methods employs
finite differencing ("Finite Difference Method") in the field of
gridded u and v components and the other uses the "Line Integral

Technique." The details of these methods are as follows:
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1) Finite Difference Method

From the interpolated wind components, the grid point values of
divergence and vorticity are computed via centered differences. The

difference expressions are

D(x,y) = (u (x+ax) - u (X-AX)) / (2ax)
+ (v (y-ay) - v (y+w)) / (2ay) (19)
and |
g(x,y) = (v (x+ax) - v (X-AX)) / (2ax)

- (u (y-ay) - u (y+Ay))/ (2ay) (20)

where ax = Ay. Note; the y axis points approximately toward the

south over this computational domain.
2) Line Integral Technique

The LIT does not require an initial interpolation of the winds.
Instead, the kinematic variables are computed from the randomly spaced
wind observations according to (6) and (7). The paths of integration
implied in these relations are triangles, each of which is defined by
three neighboring wind observations (corrected for balloon drift).
Since a minimum of three points is required to define an enclosed
area, the triangle produces the smallest scale and least areally-
smoothed information.

This technique has the ability of producing large quantities of

computed data points. The number of triangles that can be produced,



21

given n wind observations, is
n(n-1)(n-2) /7 3! . (21)

The purpose of generating data points is to assign the available in-
formation contained in the raw data to triangle centroids, which are
more densely distributed than the original observations.

The wind observations, at the end of each of the three line
segments, are utilized to compute a simple mean wind for that segment.
Eqs. (6) and (7) are evaluated from these mean winds situated along
each segment of the triangle. The divergence (or vorticity) value is
assigned to each triangle centroid. These values are then considered
as observations which can be interpolated to a uniform grid.

Both theoretical and practical considerations limit the tri-
angles for which divergence computations can be reliably made. The
process of choosing a particular subset of triangles, from the set of
all possible triangles, has an influence on the divergence calculation
since the computed divergence values are not independent. Each
represents an average divergence over its associated triangle, which
shares at least one side with adjacent triangles.

The triangles must be assigned some weighting factor that filters
areal mean divergence and vorticity values which cannot be assumed to
represent point values over the computational grid. The following

criteria should serve as a guideline:

1) Uniform triangle sizes should be used.

2) Triangles should be approximately equilateral.
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3) Area of triangles should be commensurate with that of the

grid used in the final objective analysis.

Schaefer and Doswell (1979) determined an empirical weight, equal
to the square of the tangent of the minimum angle divided by the area.
This weighting factor follows the above guidelines adequately. It
should be noted that this weighting is not used in the interpolation
(Ceselski and Sapp, 1975). Its only purpose is to choose those
candidate triangles which are closest to being ideal.

The line integrals are evaluated from all possible triangles,
with computed values of divergence and vorticity assigned to the
centroids. The weight is then applied, filtering the faulty tri-
angles. Kinematic values at the centroids of the successful tri-
angles are considered as observations, and interpolated to a uniform
grid by the weighted averaging scheme previously described.

The computer implementation of the Line Integral Technique

calculation procedure is detailed in Appendix A.
d. Construction of the Fields of y and x

The procedure for the construction of ¥ and x fields follows
from the relevant discussion in Section 2. Given the fields of D and
£, obtained either through finite differencing or from the Line In-
tegral Technique, (2) and (3) are solved by sequential relaxation
subject to the boundary conditions (8) and (9). The values of Vn and
Vs appearing in (8) and (9) are read from the original gridded wind

field, irrespective of the method used to determine D and .
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The details of the procedure to determine ¥ and x are as follows:

1) Obtain x by solving

x =D (x = 0.0 on the boundary).

2) Knowing the x values, evaluate 3x/3n at the boundary points,

and trapezoidally integrate the following equation along the boundary
aY/as = - Vn + 3x/9n

3) Knowing the values of ¥ at the boundary from 2), obtain the
field by solving

4) Evaluate 3y/3n at the boundary points, and trapezoidally in-

tegrate the following equation along the boundary
9x/9s = + VS - 9Yy/an

v 5) Knowing the values of x at the boundary from 4), obtain the X

field by solving

v2x =D

6) Repeat entire procedure three times.

Once the ¥ and x fields are known, reconstruction of the wind field is

realized through the following equations:
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- 3Y/ay + 3x/ax (22)

o
n

<
[}

+ ayp/ax + ax/ay . (23)

e. Test of Validity of the Procedure for Wind Field Reconstruction:

Computation of Root Mean Square Vector Error

When real data are analyzed, it is not possible to declare one
analysis technique to be definitely better than another as true
divergence and vorticity fields are unknown. There also is no unique
bench mark against which the wind fields, reconstructed by the various
methods, can be compared. The bench mark arbitrarily chosen in this
study is due to Shukla and Saha (1974) and is the root mean square
vector error defined by

%
, (24)

3 2 2
jz:] [(uo-ua) + (vgv,) ; /m

E =

where the subscript o stands for observed and a for analyzed; m in-
dicates the number of observation points. Bilinear interpolation is
utilized to obtain wind estimates at the observation points from the

gridded fields.
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5. RESULTS AND DISCUSSION

The results of this study can be discussed in two parts, one of
which is just a statement of the innovations implemented. The other
is a qualitative analysis of the merit of the innovative procedure.

The items of innovation that should prove useful to future

efforts in mesoscale modeling are:

1) Placement of the radiosonde observations on surfaces of
. constant S as defined in (10).

2) Implementation of a method to account for balloon drift while
developing the initial fields of dependent variables in the mesoscale
prediction scheme.

3) Systematic construction of wind fields consistent with the

observations and the fundamental dynamical constraints.

Of these items, 1) and 2) are just technical advances and are of un-
questionable value. The final evaluation of 3) can only emerge from
the application and behavior of the wind field in actual mesoscale
prediction.

The major effort in this study is the construction of the wind
field. This construction has been done in three different ways and

the results presented hereafter bring out a comparison between them.
a. Gridded Components of Observed Winds

The development of the fields of u- and v-components proceeded

as follows. At first, the radiosonde observations were processed for
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balloon drift while being vertically interpolated onto the appropriate
S-surface. The resulting observations of u and v were then indi-
vidually gridded by the weighted averaging scheme described in
Section 4. Subsequently the fields of u and v were smoothed through
the application of the smoothing operation (14) in the interior, and
(13) on the boundary.

'Figs. 2 and 3 illustrate the isotach and direction analyses de-
rived from the gridded wind field developed in the above procedure.
Of interest in the given plots is the velocity convergence situated
along a line from Big Spring to Sterling City extending northeastward.
The corresponding velocity divergence is situated southeast of Lamesa.
Velocity convergence, located northeast of Seagraves, may be deduced
from Fig. 3, with corresponding velocity divergence located west of
Post. Pronounced cyclonic curvature is evident within the Lamesa/
Snyder/Sterling City triangle. Corresponding anticyclonic curvature
is evident with the Midland/Big Spring/Lamesa triangle.

A root mean square vector error, as defined in (24), was perform-

ed on the interpolated results. The error was found to be 0.3 m s'].

b. Divergence and Vorticity by the Finite Difference Method and the
Resulting Wind Field

Given the gridded components, D and ¢ were computed by finite
differences. The divergence field (Fig. 4) shows an area of strong
convergence located along and either side of a line from Big Spring to

Sterling City. Three distinct closed-off centers are illustrated.
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Fig. 3. Wind direction analysis of the original gridded wind
field over the HIPLEX region. Size of arrowhead indicates relative
magnitude of wind speed.
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The corresponding distinct area of strong divergence is indicated
southeast of Lamesa. The above findings appear to be heuristically
consistent with the original observations. Distinct areas of con-
vergence are shown northeast of Seagraves and east of Post. It is
difficult to support this finding in view of the original observa-
tions. It is quite possible that this finding is an artifact of the
gridding scheme.

The vorticity field (Fig. 5) shows a strong distinct area of
positive vorticity in the Lamesa/Snyder/Big Spring triangle. A strong
area of negative vorticity (of approximately the same strength) lies
northeastward of Midland. An extensive area of negative vorticity is
shown, situated southeastward of Seagraves. The above findings appear
to be heuristically consistent with the original observations. A
distinct area of negative vorticity is shown northeast of Sterling
City; while a distinct area of positive vorticity is shown on the
southern boundary of the computational domain. The original observa-
tions cannot support this finding. Again, this finding may be an
artifact of the gridding scheme.

Horizontal divergence and the vertical component of vorticity are
fundamental aspects of the horizontal vector wind field. It is
clearly desirable to preserve these properties during an analytical
representation of the winds. As explained in Section 4, the calcula-
ted values of divergence and vorticity are used in solving the Poisson
type equations which yield values of x and y, respectively. The wind

components are computed through the gradients of velocity potential
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Fig. 5. Differential evaluation of vorticity, by centered
difgere?ces, for the HIPLEX region. Isopleth interval is 25.0 *
10-0 s-1,
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and stream function.

A particular subregion of the computational domain is examined in
the following presentation. This subregion includes all nine triangle
centroids (clustered within the Lamesa/Big Spring/Snyder triangle) and
six radiosonde stations (Seagraves' location deleted).

The reconstructed wind field (with D and £ determined by the
Finite Difference Method) is shown in Figs. 6 and 7, and is similar to
the original gridded wind field. The root mean square vector error

for this retrieved wind field is about 1.3 m 5'1.

It is obvious that
the original gridded wind field (Figs. 2 and 3) and the reconstructed
wind field (which preserves the divergence and vorticity aspects of
the original gridded wind field) are not identical. The reconstructed
wind field, via finite differences, recognizes a wind speed maximum
(19.3 m s']) west of Big Spring. No wind speed as strong as 19.3

m s'] was measured at the given radiosonde stations. However, conser-
vation of the kinematic fields (through finite-difference reconstruc-
tion) "forces" the existence of that wind value over this computa-

tional domain. Other dissimilarities between the original and

reconstructed wind fields may be noted.

c. Divergence and Vorticity by the Line Integral Technique and the

Resulting Wind Field

In implementing the LIT, it may be recalled, triangles are formed
with the observation points as vertices. Given the seven radiosonde

stations, thirty-five triangles are created through the combination of
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each observation with its neighbor. Areal mean values of divergence
and vorticity are determined through their integral definitions, and
assigned to all triangle centroids. Upon implementation of the tri-
angle weighting factor, nine triangles survive the filtering (Fig. 8).
These nine triangle centroids, considered as point values of the kine-
matic variables, are interpolated onto a uniformly spaced mesh by the
weighted averaging scheme previously described. The fields of
divergence and vorticity are shown in Figs. 9 and 10.

The wind field, reconstructed from the fields of divergence and
vorticity determined by the LIT, is given in Figs. 11 and 12. A root
mean square vector error computation also was performed, and was found

to be 6.9 m s-].

This is much too high. Obviously this application
of the Line Integral Technique has produced an unacceptable recon-
struction of the wind field.

The large vector errors in the reconstruction of the wind through
the LIT-determined vorticity and divergence values naturally cast
suspicion on the implementation of the LIT. In developing the results
presented above, a very stringent criterion was applied for the
selection of suitable triangles from the possible population. Of the
thirty-five triangles generated, only nine were retained for subse-
quent interpolation. Dr. Joseph T. Schaefer (personal communication)

-suggested a "relaxation of the criterion." According to his advice,
the selection criterion was relaxed, and this resulted in a retention
of thirteen additional triangles for interpolation. The results,

however, proved poor (Fig. 13) when compared to the original gridded
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Fig. 9. LIT evaluation of div?rgence for the HIPLEX region.
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Fig. 12. Wind direction analysis of the reconstructed wind
field, via LIT, for a subregion within HIPLEX. Nine triangles
retained for interpolation.



WIND SPEED (M/S)

LINE INTEGRAL
RECONSTRUCTION
S LEVEL 0.2

Fig. 13. Isotach analysis for a subregion within HIPLEX, with
twenty-two triangles retained for interpolation.

41



42

wind field (Figs. 2 and 3, pp. 27-28). The root mean square vector
error of the reconstructed wind field, developed from this version of
the LIT, was 10.7 m s™'.
Obviously, the selection criterion was "overrelaxed." A careful
scrutiny of Fig. 8 revealed that no centroids (observations) were
present in certain critical areas on the grid. In particular, cen-
troids were absent for the Seagraves/Midland/Lamesa triangle, the
Seagraves/Lamesa/Post triangle, and the Big Spring/Midland/Sterling
City triangle. The criterion was altered, so that the above critical
triangles (observations) survived the filtering. Seventeen triangles
survived and, intuitively speaking, were well distributed (Fig. 14).
The root mean square vector error, for this version of the LIT, was
5.6ms .
A final attempt was made to further reduce the vector errors for
the LIT. We may recall that the methodology for reconstructing the
wind field from the fields of divergence and vorticity entailed four
iterations (see p. 23). This particular number of iterations proved
optimal when reconstructing the wind field via the Finite Difference
Method. However, this finding may not be true for the LIT. In fact,
I found, through a trial-and-error approach, that the most optimal
results were secured with only one execution of the wind retrieval
scheme. It is obvious that the proper number of iterations (for the
wind retrieval scheme) will be realized when the root mean square

vector error between the observed and reconstructed wind is a minimum.

With one execution of the scheme, the root mean square vector error
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was reduced to 5.0 m s'].

Fig. 15 is the divergence field computed from the most recent
version of the LIT. The divergence field shows distinct areas of
strong convergence located either side of a line from Big Spring to
Sterling City. The corresponding distinct areas of divergence are
indicated either side of a 1ine from Lamesa to Big Spring. These
findings are roughly similar to those of the Finite Difference Method
(Fig. 4, p. 29). Note that the distinct areas of convergence north-
east of Seagraves and east of Post (suspicious findings in the Finite
Difference Method, see p. 30) are absent in the LIT evaluation. Ex-
cept for the area of divergence southwest of Midland, all distinct
areas of divergence (convergence) can be supported from the original
observations.

The vorticity field (Fig. 16) shows distinct areas of positive
vorticity situated south and west of Snyder. Distinct areas of
negative vorticity are shown south of Big Spring and northwest of
Lamesa. These findings appear to be heuristically consistent with the
original observations, and are roughly similar to the findings in the
differential evaluation (Fig. 5, p. 31). Note that the distinct area
of negative vorticity northeast of Sterling City and the distinct area
of positive vorticity‘on the southern boundary of the grid (suspicious
findings in the Finite Difference Method, see p. 30) are absent in the
LIT evaluation. Again, all distinct areas of negative (positive)
vorticity can be supported from the original observations. The re-

sulting wind field is illustrated in Figs. 17 and 18.
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Fig. 15. Seventeen point values of diver?ence interpolated onto
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Fig. 16. Seventeen point values of vorticity interpolated onto
the grid. Isopleth interval is 25.0 % 10-6 s-1,
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Fig. 18. Wind direction analysis of the reconstructed wind
field, realized from one execution of the wind retrieval scheme.
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d. Evaluation of Results

An appraisal of the given methods, founded solely on the magni-
tudes of their vector errors, is rather arbitrary. However, the vec-
tor error does compare the analyzed fields (realized by different
methods) with the actual observations and, as is obvious, one cannot
do better than the original observations.

Comparison of the reconstructed wind field via finite differences
(Figs. 6 and 7, pp. 33-34) with the original gridded wind field
(Figs. 2 and 3, pp. 27-28) exhibits good agreement at the Post,
Snyder, and Sterling City stations. The Finite Difference Method
computes slightly stronger wind speeds at the Big Spring and Lamesa
stations. The greatest difference between the two wind fields was
indicated at Midland, with its vector error of 2.5 m s™1. The dis-
tribution of the vector error population was negatively skewed to the
left, with a median of .6 m 5'1. The root mean square vector error
was 1.3 ms™'.

Comparison of the reconstructed wind field via the LIT (Figs. 17
and 18, pp. 47-48) with the original wind field (Figs. 2 and 3, pp.
27-28) exhibits good agreement for the Big Spring, Snyder, and Post
stations. The LIT generates stronger wind speeds at the Midland and
Sterling City stations. The greatest difference between the two wind
fields was indicated at Lamesa, with its vector error of 6.3 m s'].
The distribution of the vector error population was approximately

normal, with a median of 6.0 m s'l.

was 5.0 m s'].

The root mean square vector error
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From the preceding arguments, it appears that the Finite
Difference Method produces a more representative wind field. The root
mean square vector error was considerably lower, when compared to the
Line Integral Technique. Individual station vector errors were all
lower. However, the distribution of the vector error population was

more erratic in the finite-difference approach.
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6. SUMMARY

A computer program (Appendix B) has been developed for computing
divergence and vorticity directly from wind observations, and, thus
having available what are effectively "observed" kinematic fields.
The wind field is reconstructed so as to be consistent with these

kinematic fields.

a. Comparison between the LIT and Finite Difference Method Computa-

tions of Divergence and Vorticity

The evaluations of the kinematic variables, via line integrals
and centered differences, were applied to an actual meteorological
data set. With one exception (see p. 44), all distinct areas of
divergence (vorticity), realized through the LIT evaluation, could be
supported in view of the original observations. This support was
lacking for "certain" distinct areas of divergence (vorticity)
realized through the Finite Difference Method evaluation. These
"certain" distinct areas are suspicious, probably an artifact of the
gridding scheme.

It is not difficult to see that "certain" distinct areas of the
kinematic variables can be falsely created by the Finite Difference
Method, especially near the boundaries of the computational domain.
In the differential evaluation, it is the "change" in the grid point
values of the wind which determine divergence and vorticity. The
orientation of stations (with respect to each other) and the deter-

mination of grid point values of wind (realized through a distance-
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dependent weighting from grid point to observation) may interact in
such a fashion so as to create these "certain" distinct areas (through
falsely constructed wind gradients). The LIT does not require an
interpolation of the winds (or the gradient of the winds); therefore,
it is immune to this problem.

It is also apparent (from the plots) that integration produces
much "smoother" kinematic fields when compared to differentiation.
The term "smoother" suggests the amount (degree) of variability in the
computed values over the computational domain. This term does not
pertain to the "wiggles" inherent in the isopleths; idiosyncrasies in

the versatec plotter are not considered here.

b. Comparison between the Reconstructed Wind Fields via the LIT and

Finite Difference Method

The reconstructed wind field, via the Line Integral Technique,
was compared to a reconstructed wind field, via the Finite Difference
Method. Although the methodologies aré different, both techniques are
expected to retain the original measured winds. The observations are
the only definitive informafion on the grid. From this perspective,
the reconstruction of a wind field, by using the kinematic fields
obtained through the Finite Difference Method, appears superior to its

competitor.
¢. Future Research

A pertinent problem in the implementation of the wind retrieval
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scheme (see p. 23) was the determination of proper boundary values
(normal and tangential wind components, Vn and VS) for the subsequent
calculations. In this study, the needed winds (for the boundary) were
obtained from the original gridded wind field. Obviously, this choice
of boundary values will favor the finite-difference reconstruction of
the wind field since the kinematic variables are computed from the
derivatives of the original gridded wind field. A systematic proce-
dure is required to secure a "better" choice of boundary values for
the LIT.

The following is a suggestion:

It is a well-known fact (Shukla and Saha, 1974) that

the boundary values (V_ and V) must satisfy the
integral constraints o

Uem ah = f v ds
fAfDLIT dA = § v,ds

where A denotes the area of computation. Usually, a
residual exists from the computations such that

Eg = § vgds - fAfan dA

En = § Vyds - ]A]Dm dA

If the divergence and vorticity values are consider-
ed absolute, then the above residuals can be reduced



by suitably altering the boundary values of VS and

Vn' If we let
ES = Vs.ﬁ ds
E =V fas

where the overhead bar indicates some arbitrary
value, then

i< [ fres - [fepm] s f e

<
[

V [f Vyds - fA[ DLITdA: / § ds

Knowing the values of V_ and V,,, we can systema-
tically alter each giveﬁ boundary value of V. and
Vi (obtained from the original gridded wind ?ie]d)
by the following equations

(V;)i = (Vg - Vo)
/ -
(Vn)i = (Vn - Vn)i

where V/ and V. are the altered boundary values,

and i d&signatgs a given boundary point on the grid.
The author feels that the above suggestioh may reduce the large root
mean square vector error inherent in the LIT reconstruction of the
winds. Furthermore, this suggestion should also be applied to the
finite-difference reconstruction of the wind field for additional

refinement.
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Finally, the criterion used for the selection of suitable tri-
angles (from a given population) for the purpose of obtaining point
values of divergence and vorticity appears to be inadequate. A sub-
jective trial-and-error approach was the only means available (in this
study) for selecting a suitable "group" of point values for subsequent
interpolation (to obtain grid point values of divergence and vor-
ticity). In using this approach, the most ideal triangle was assigned
a weight identical to less ideal, but suitable, triangles for im-
plementing the interpolation phase of the LIT. Obviously, this is a
source of error. One must determine a criterion which assigns an
appropriate weight to each member of this select group of triangles
before implementing the interpolation phase. The reader is directed

to a paper by Ceselski and Sapp (1975) for additional insight.
d. Final Remarks

Dr. James R. Scoggins (personal communication) reports that the
"suspicious" distinct areas of divergence and vorticity near the grid
boundary, generated by finite-difference calculations, are usually
ignored. If this rule-of-thumb is implemented, then the wind field
reconstructed from fields of divergence and vorticity, calculated by
centered differences, is clearly superior to the other two methods in
determining the initial grid point values of wind for use in a meso-
scale primitive equation model. The method of initializing the wind
field by using grid point values of wind derived directly from the

observations (through interpolation) is inferior despite its small
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root mean square vector error. This given wind field appears likely
to be kinematically inconsistent with the derived boundary values.

The other method which consists of reconstructing the wind field from
LIT-computed fields of divergence and vorticity possesses a large root
mean square vector error. This given wind field appears to be less
consistent with the original observations when compared to the other
two methods.

It must be pointed out that the complete initialization of a
mesoscale primitive equation model was not realized in this study.
The mesoscale primitive equation model developed by Djuric and Das
(Scoggins et al., 1981) was initialized from the gridded fields of
geopotential, wind, and temperature, as derived directly from the
observations (through interpolation). It is speculated that the
vitiation in the skill of their model was the result of these initial
fields (which were not in a state of balance).

If a balanced state between mass, wind, and temperature is to be
achieved, the wind field must be reconstructed so as to (at least)
preserve its vorticity. Stream functions, computed by é relaxation
of the vorticity field (see p. 23), are utilized in a balance equa-
tion (Warner et al., 1978) for the purpose of constructing geo-
potentials consistent with the analyzed (or reconstructed) winds. The
temperature field is constructed from the hydrostatic relationship
utilizing the derived geopotentials. It is believed that these
balanced fields of geopotential, wind, and temperature (realized from

the above procedure) will reduce the problem of noise generation in
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the initial stage of a numerical model run.

Finally, it should be emphasized that Shukla and Saha (1974) have
proven that an analyzed wind field which preserved both its vorticity
and divergence always gives a better representation of the original
observed wind, than a wind field that preserves only its vorticity.

In this study, the gradients of the stream function were an order of
magnitude larger than the gradients of the velocity potentials
(computed by a relaxation of the divergence field). However, in

other cases, both gradients may have comparable magnitudes so that the

method of Shukla and Saha will be more relevant.
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A1) Balloon Drift Routine
The procedure is applied to each radiosonde station j:
1) Find the required S level height (S = 0.2) from the equation
z(3) = z,(3) + S (z, - 2,(3))

(obtained from (10), p. 13).
2) Interpolate range and azimuth values of the balloon onto the

S levels by the equation

Vg(3) = Vg(d)

(st - 70) 7 (29 - 25(3)))
3 AN

where VB and VA refer to either range or azimuth values measured at
given heights (from radiosonde calibration charts) below and above the
required S level height respectively, zp and z) refer to these given
heights (which sandwich the S level height), and Vg is the interpola-
ted value (range or azimuth). Azimuth (AZM) is the angle between true
north and balloon location. It is a horizontal direction expressed in
degrees. Range (RNG) is the 1ine-of-sight distance between balloon
and radiosonde station.

3) Determine the x and y displacements of the balloon (XDSP and
YDSP, respectively) by the equations



XDSP

(RNG)(sin(AZM)) / GD

YDSP

(RNG)(%OS(AZM)) / GD

where GD is grid distance (15.8 km).
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4) Determine the new grid locations (x/,y’) of the balloon from

its launch site (x,y) by the equations

x/ = x + XDSP

y/ =y - YDSP

The y axis points approximately toward the south.

5) Find the surface height at the new location (x”,y’). This is

realized through a bilinear interpolation of gridded surface heights
onto the new location zg(j).

6) Find the adjusted S level height (zg(j)) from the equation
25 = 249 + 8 (2 - 20)

7) Interpolate desired meteorological values onto the adjusted
S level height by the equation listed in step 2 (VB and VA infer de-

sired meteorological values).
A2) Routine for Line Integral Technique

1) Construct all thirty-five triangles by the combination of
each radiosonde observation with its neighbor. Information at the
first vertex consists of i and j grid locations (FI1, FJ1) and u and

v components of the wind (U1,V1). Information at the vertices are
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ordered as follows:

vertex] FI1, FJ1, Ut, Vi
vertex?2 F12, FJ2, U2, V2
vertex3 FI3, FJ3, U3, V3 .

This ordering is realized in the subsequent computer program (Appendix
B) through the subroutines METH1, METH2, METH3, METH4, METH5.

2) Reorder the second and third vertices (if needed) to ensure
that all subsequent summations proceed in a counterclockwise direction
(integrations commence at vertex1). This reordering is found in
Appendix B under subroutine SORT. In addition, the position of a
given vertex (situated either above or below its corresponding tri-
angle segment, defined by the remaining vertices) must be established.
This entails a test for each triangle segment (DO LOOP 7813, Appendix
B).

3) For each triangle, evaluate:

Triangle centroid (Halliday and Resnick, 1974, p. 138).
Area of triangle (Fuller, 1972, p. 167).
Slope of triangle segment (Fuller, 1972, p; 164).
Weight of triangle.
(DO LOOP 2899, Appendix B).
4) Calculate mean u and v wind components from the vertices, and
assign these values to the midpoints of the triangle segments. From

these averaged components, a wind direction (DIR) and speed (SPD) may

be realized from the equations
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DIR

n

(57.29) tan™'(v/u)

(@ + )

The x coordinate axis serves as the reference direction for the angles

(DIR).

SPD

5) Determine the tangent (VT1) and normal (VN1) components of
the mean wind which is situated at the midpoint of each triangle
segment (subroutine SIGN, Appendix B). Point values of divergence
(DIV) and vorticity (VOR) may be realized from these winds, and

assigned to the triangle centroids by the equations

DIV = ((VN])(SIDE]) + (VN2)(SIDE2) + (VN3)(SIDE3))
/ (TRIANGLE AREA) A

VOR = ((VT])(SIDE]) + (V12)(SIDE2) + (VT3)(SIDE3))
/ (TRIANGLE AREA)

where SIDE1, SIDE2, SIDE3 refer to the lengths of the triangle
segments.
| 6) Filter "bad" triangles.
7) Interpolate "good" triangles onto a uniform mesh (by the
weighted averaging scheme mentioned earlier) to obtain grid point
estimates of divergence and vorticity (subroutines GUESS, ANAL,

SMOOTH, Appendix B).
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sXa1aXa)

/3DPYIGNS
HICLEX RESEARCH
C16> CORRESDPONDS YO THE NUMBER UF TOTAL STATIUNS
< 7> CORRESONDS TG THE NUMRSER OF UPDER LEVEL STATIDNS
10> CONRRESTOMNDS YO THE NUMDER UF VARIABLES YO BE GRIDOED
<21,21> CORESPCMDS TO THE GRID S1ZE
< 8> CORRES2UNDS TC THE NUMBER OF S LEVELS INITIALIZED IN THE
DA A S5TATEMENY
VALUE(NUMBFEI CF STATUONS, LEVELS, VARIABLES) .
CHARACTER®J YE3L (35)
RZ AL DLAT (35).Fu2 (39),8 (18,18)0VT1 (35)
1o DLCN (3%),FI3 (35).C (18,18)sVNL1 (35)
2 FFY (329)sFJ3 (35), vr2 (35)
Y FEJ (35)s0TUL (3S9), VN2 (35)
Qe GP¥  (35)+D0TVY (35), vr3 (35)
S, DATA (35),D0TU2 (35), VN3 (35)
REAL DAT AL (35).DTV2 (35), AREA1( 35)
1¢ SFCHT(J5).DTU3 (35), SPDL (3S)
2y €1 (35)eDTVI (35), OIR1 (3S)
3, FJ (35)+SIDEL1(35), $PD2 (25)
4, ANGLECJ3S5)s SIDE2(35) DIR2 (35)
. WHT  (35)+SIDE3(35), © SPD3 (39)
REAL CRX (35V,A (18,18),0INR3 (35)
| 39 V ( 7+ B), CRY  (25)s AL (18413)4ANGT ( 35)
2y SCANR(3%),TCt (1841804 ANG2 (35)
34 U ( 7, 8)e Fl1 (35).7C (18.183)+ANG3 (35)
L ZS( 7. 8), FJ1l (35),TW1 (184123)yDIV  (35)
Se FI2 (33)eTW (18,i8)+VORT (35)
RE AL ANGL LLIS ) ANGL2(35), ANGL 3( 35)
RTAL E(S0616,18) VALUE(L1H, 8,10),SLVLL 8)
INTEGER MO (53)e ITIME( 6)4KDAY (23)
1eDaY s THtIPLohIFLX, [FLAG
DATA SL 'L/Ce” 04103203030 9080496500060,070/
VATA KCAr/2192€02n75270280108:05980991902190289293¢495e697914
$.15,17,18/
DATA ITIME/LG, 214+00403,127
COM"AON DATR,CA FEIoFF)oAsAlyTCoeTClo TWeTHL
COM 0N Z70LRIDILY AT o JSTART S IEND S JEND

CCHY 20N /GRICIK

OEF INE FILE 2
MIoANTY Wt ANE TG
C1H3e13) HPID WHICH
Se 6 AND

AT osSLONeMEJNTGDeM24N2
>cl"))onN},
LUCATION OF THE NORTHAEST CCRNER OF A
S CONTALINED IN THI LARGER (18,18) GRID.
1.9e5n IS THE LATITUDE AMND LCNGITUDE OF THE NORTHWEST
COPIPNER o GRID SPACING (S 40 KILOMETERS.
CUE =040
GEQ =0 .0
GO =0 «0
M1
N2
N1
N2
ISTA
IRPAR
SCALE
SMO
NTS
SCAn
NGQSCAN
ISTART

1
T
/
/
(F
1

=~ r—bfn
;4

- g st L ad
= PLEUNOSOOD~ D
.
O wO

*

ndneuae
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J=JSTARTY,, JEND
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=0.0
=040
=040
=00
=040
=00

I=1+ISTA
=00
=060
=040
=09
=049
:20e0
=0 ¢0
=040
=0.0

I1=1+NRPTS
=5CAN
=20.0
=0,0
=040
=Jde 0
=0.0
=049
=0.0
=0.0
=0.,0
=040
=040

I1=1,ISTA

00N ,0
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suehpsuunnan
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owd

Ne o

o D

[ X=X
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DO S003 J=1,LEV

DO 54503 K=1,IPAR

VALUE(1e+JsK) =0,0
S003 CONTINUE

C

D0 5004
READ (5.5

1 .
a9 oDLAT (1) DLON(1)sSFCHT(T),YESI(I)
S00 FORMAT (13 LXoF
L

XeFSe2e2XeF 42 004X9A3)
5094 CONTUINUE
DO S07S S
CALL DEGR
FFI(LST)=F]
FFIILST)=FJ
SCCS CONTINUE

IDAY = §
KTIME =9
I MON =85
IF (IDAY +GE. €) IMON = 6
IF (IDAY +GEe. 14) IMON =7
I IMON =IMON
IIDAY =KDAY (I1DAY)
11 T(ME INE(KTIME)
WRITE (6

523 FORMAT (

£0
0
o]
S04 FORMATY (¢ é
N
1
0

(LST)eDLONILST)+FI(LST)FJIILST))

O+ "HEIGHTS? s T25, 'PRESSURE 'y TA0 ¢ * TEMPERATURE * o
STS6+'DEW P W TT72,*DIRECTION? 4 T86, *SPEED?,T9S5, U WIND®,
STINGBe 'Y Wl
WRITE (6,6
61¢ FORMAT (!¢

$¢*(DEG)* TG

Os* (METERS)® oT27 4 (M3) 74T, (CELSIUS) *¢T73,
/SECY3TO6¢ *M/SEC?,T106, ' M/SEC?)

505 FORMAT('0°¢,T45,A3+T750,12) ' *
516 FORMAY (*0°*)
598 FORMAT(S 19T GeF 741 oT26sF Bl 4y TATFSel+sTSBeFGely
nr7a.r5.|.Ta7.&¢.l.r95.Fs.1.71“5'F5.1.1118.F4.2)
DD 6006 LET=1 JNTY

WRITE (e €CS) VESI(LST).NO(LST’

WRITE (5,500)

N3 = (LST=1)#11S+(IDAY~1)&S+KTIME

READ (D2'NK3) ((E(LeJelST)eI=1+80)0eJ=1s16)
00 6005 I1=1+50

WRITE (6,508) (E(T14J5LST)eJ=3,10)

6705 CONTINUE
GPMILST)=E(1+3,LST)
c €006 CONTINUE
00 5077 K=1,1ISTA
DATA (K)=SFCHT(K)
5079 CONTINUE
00 S003 LT=1,ISTA

CUE =CUE+1
GEOQ =CATA (LT)+GEO
S008 CONTINUT
GEO1 = GEQ/CUE
CALL GUEESS (AGEOL)
CALL AMNAL (ISTA,SCANR+NOSCAN, 1)
CALL SMGOTH (A,D,5M0)



ane

C

3013

510

5014

511
S012
So11
S010

501

601

S12
513

SO0t s
509
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00 59190 IPAR=3, 10
DO S011 LST=]1eNTS
=163

2 t
ZSILSToI) =€(1e3sLSTIMSLVL(I)®(ZT=E(1,3,LS7))
IF (1 «EQe 1) VALUE(LST o1 +IPARI=N (14 1PARLLST)
iF (1 +€Ge 1) GC YO %012
c0 5013 J=1eMAY
{F (2S{LSTsl) oLEe E(JIes3+LST)) GO TO S10
CONTINUE
ZS(L.STe 1) =00
GO TO %011
CALlL RATLO (ZS+EsLST sl 9Js154RANGE)
CALL RATIC (ZS.r.LST.l.J.lG.AZM)
ANG =AZM%D,017453
XD SP =( RNGE=3IN(ANG) ) /GD
Yose ={RNGEFCQOS{ANG) ) /GD
FFI(LST) =X0SO ¢+ FIL3T)
FFJ(LST) =FJ{LSY) = YDSP
CALL INTRP (AJFFILST)-FFJILST)WDINT)
GPM(LSY) =0INTY
ZSILST, 1) =GPM(LSTI+SLVLII) #(ZT=aGPM(LST))
DO 5014 J=1 ,MNY
IF (2ZS(LS7Tel) oLEe E(J»3,LST)) GO YO 511
CONT INUE
ZS{LST,1) z0.0
C3 TO S5I11
CALL RAVIN (2SeEoLSTelsJy IPAR, VLE)
VALUT (LET I 2 IPAR) =VLE
CONTINUE
CONTINVE
CONTINVE
VAITE (6.51)
FCRMAT(® 1"y AND J GRID LOCATIONS?)
WRITE (64601)
FORMAT (*0',TISy!ONSERVATION! 4 TAS, *BALLOON DRIFT?)
WATTE (6,502) (FI(LST) ,FILLST) yYESUILSTYFFLILET)ZFRFIILST ),
®_ST=1,1STA)
FOPMAT (2 * 3TLAsFCe? F6624T300A7,TA4,F6,2,F6-2)
WRITE (64%12)
EIOMAT( 1 ' *NDATA N S LEVELS®' »T4D, (D) INPLIES MISSING DATA?)
ARITE (6,S12)
FORMAT {257 qTICA'HEIGUHTI® 4 T25, *PROESSURE 4y T30 ¢ * TEMPTRATURFE ?,
1186, 0%y pClNT'.7720'DIRECT!0N'ofﬁﬁ;'SPEED"TQSQ'U WIND®,
ST‘OS.'V HWAINDS, T116, 5 LEVEL?)
&0 S01S LSI={,.NTS
WRITE (%+405) YESI(LST) s NO(LST)
wRITE (65,590)
03 5114 I=1,LEV
ARITE (Ge G0e) ZSILST: 1) o (YALUR(LST I+ IPAR) (TIPAR=4,10),SLYLL(L)

CONTYINUT
WRITE (6,506) T1M40NTEDAY,,TITIME
FORMAT (P19, INX'SUNFAZT HEIGHT ANALYSIS ON 8,12,
GO/ g EAW3INA AT 43R T34 GMTY)
CALL OuTpUTr CAs™ i M2 NLsN2sLe0,1)

IL=3
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525 (PAR=9
DO S$027 LST=1,NTS
{F (IL +EC. 9) GO TO 6000
DATA (LST)=VALUE(LST+IL,+IPAR)
NDATALILST)I=VALUE(LST .« ILs IPARHL)
$020 CONTINUE
i
CALL METH1 (L1 K1 sFFTWFFJsDATALDATALWFI1,FJLl+OTULL,DTVY,
SFI2.sFJPsOTURWDTV2,F13:FJ3,0TU3LDTVI)
CALL METH2 (Ll.Kl.FFl-FFJ.DATA.?ATAI'F(loFJloDTUloDTVl-
SFI24FJ2:sDTU24DTV2IFI3,FJI340TU3LDTV3)
CALL MITHA (L1 oK1 3FFI4FFJeDATA,DATALF11sFJ14DTULLDTVL,
SFI2:FJ2+DTU2sDTV2,FI34FJI3,0TU3NTV3)
CALL METHA (L1 4K FELFFJIDATAIDATAL I FT1eFJ1e0TULLDTVI,
SFI2+5J2.DTUZ+DIV2FI3,,FJI3,0TU3,DTV3) )
CALL METHS (L1sK1sFETeFFJeDATAGDATALFI1oFJL+DTUL,DTV1,
$FI12,FJ2 .DYJZ.J V2,F13.,FJ3,0TU3,0TV3)

CALL,SOWT (FIleFJLeDTULDTVLIFI2:FJ2+:DTU2sDTV2,FI3+FJU3,DTU3,
eDTV3
WRITE (6.,2867)
2897 FORMAT (? 19, TIO+*VERTEXL® ¢ T304 VERTEX2® ¢TS50 *VERTEX3?,
ETTN L, CENTRC IO, TN, *TRIANGLE®)
00 28929 1= 143
CcRX (I)={(FTL(I)HFI2(T)I+FI13(1))/3
CRY (O)=(FJII(I)+FI2(T1)+FI3(I1))/3
SIDEL(II=(\FII{I)wFI2C(L))>¥24(FII([)=FJI2( 1) )¥£2}8%0.5
SIOE2(I)=((FI2(1)aF I3 (1)) *%2+(FU2([)mFI3(1))232)%%C,5
SIDEINI)I=S((FISCII=FIL(I)) &322+ (FUS(I)I=FJULlI))2%2)*%0.5
S =NeS5*(SIDELL{)+SIDE2(I)I4SIDET(T))
ARZAI (T )= (ASS(SA(S~SIDEI( ) ) R(S~SINT2( 1)) «{(SwSINE3(]))))2%0,S
ANGLE (I =ARCCS(((SINE3(1)3%2)+(SINEL(1)$%2)=S5[DE21 1) %%2)/
£(2«SIDT3( 1)I*SICEICT) )
ANGL2 {1 )= ARTCS (I (SIDEI(TI) 2%2)+(SIDE2( 1) *¢2)~SIDEI(1) %2}/
E(2%S5I0EI(1ISSINER(1)))
ANGLI U= ARCOSLU(SINE2( () *%2)+(SIDE3(]1 ) **2)=SI0E1( 1) %%2)/
EL2:5IDT2(C 1IRIIBES(L)))
ANGLE( 1) =AMINLCANGLI(T) »ANGL2{T1)»ANGL3( 1))
ART CI)=ATANCANGLES(T) ) ) *42/7AREALIT)
2R99 CONTNUE
00 2909 f= 1,3
WRITSE (645121) FILULIIZWwFOLGLIeFI2CT)FI20C1DFIINII,FIIT),
SCRXLIYACRY(TI)WI
121 FORMAT (? ¢ 76055 e2¢F06e2¢T2690F6021F642¢TA61F5:2eF6e29T68,
IF302,F662¢TG53012)
290N CONTINUE
WRITE (6,122)
122 FORMAY (* 1%, TA*TRIANGLE? ¢ T21¢"SIVEL "y Tl o?SIDE2%4TA1,°SIDE3?,
STOHO s ' ASREA 'oTEO L *WEIGHT!)
D0 2901 I= 1,35
AXTTE (B59133) TeSIDSI(Y)L,SIDE2(L) +SIDEI( 1) ARTAL{T) e HHT(])
133 FORVYAT (3 ¢ ,T7,12eT20eF6062eTI0eFH602eTA0eF60026¢T59eF0020T7D4F542)
28951 CONTINUE
DO 77 I=1,3¢
UwWNDt =(CTUL (1) 4DTU2(1) )72
VWND1 =(NTVI(L) +DTV2(1)) /2
CALL DIRSPD (UWNC1,VAND1,SPDyDIR)



777

881

793

TQ4

795
293
894
895
7811
82
TEL12

c IFL

sPOl1 (1) =<0

DLRL (1) =D IR

UWND2 ={(0TU2C 1) +OTUI(T)) /2

VWNDZz =(DTV2( L) +OTVI(TL ) ) /2

CALL DIRSPD (UWND24VWND245PDsDIR)

spPp2 (1) =SPD

DIR2 (L) =CIR

U4YNO3 =(0TU3(T)+DTUL(()}) /2

VWND3 ={CTV3(1)+DTVIL(I))/2

CALL DIRS®D (URND3,VWND3,SIPD,0IR)

SPD3 (1) =SPD

DIR3 (1) =0IR

CONTINUE

WPITE (6,778)

FORMAT (1% 4 TS TRIANGLE® «T20,'WIND AT SIDE13,T4Q0,
S'WIND AT SIDEZ2°*,TGO+*wWIND AT SIDE3®)

WRITE (6+779)

FORMAT (' ¢,T21,°DIR? 4T29,°SPD*.T41,'0IR*¢TA9¢*'SPO*,
ET61s'DIR® ,TES, *'SPD*)

WRITE (6,780)

FORMAT (*0')

cn 7819 1=1+35

WRITE (6+781) 1,0IR1(1)+SPN1(I)eDIR2(I)I+SPN2(I)4DIR3I(1),SPD3(1)
FIRMAT (¢ ¢ oTG [2,T20sFSelesT28sFSe1+T40+FSelwTBsFSel sT60e¢FS5et0
ET584FS5.1)

CONTINUE

uRl*E te.881)

FORMAT (' 1% s TS, TRIANGLE® yT204+ 'ANGLE OF SIDEL®eT40,
x'ANGLE OF SIDE2',T6J4*ANGLE OF SIDE3')

00 /811 1=1,35

ANGY (1)=ATAN2(FIN(I)I=FJ2(1)FI2([)=FI1(1))¢57.2958

IF (ANG1(I) oL Te =9340 «URse ANGI(I) +GTe 90.0) GO TO 893
ANGL ([)}=90.,0mANGI(1)

IF (AN51(1) «GTe 360e0) ANGI(I)=ANGI(1)=360.0

ANG2 (1 I=ATARZ(FJI2(11eFI3( 1) FIJ([)=F12(1})*57.2958

IS (ANG2(T) +L.Ts =UG0 «0ORs ANG2(I) +GTs 923409 GO TO 894
ANG2 (1)=90.0=ANG2(1)

IF (ANGS2(1) +GT» 350.0) ANG2(I)=ANG2(])=3/.0

ANGS (T I=ATAN2(FJIB(T)I=FJUT) oFIL([)=FI3([})%57.2958

IF (AMG3(!) LLT. =90.C «ORe  ANG3(1) +GTe 9040) GO TO 895
ANG3 ([)x=G0e0=ANG3(1)

IF (ANG3(1) «GTs 360.0) ANG3{1)=2NG3{1)=3560,0

GO YO 7311

ANGLl (1)=27C«J=ANGI(T)

GO 10 793

ANG2 (1)=270.0-ANG2(1)

GO Y0 794

ANG3 (1)=270.0~ANG3( 1)

GD YO 795

CUNT INUE

cO 7812 I=1.435

WRITE (6560882) LoANGLUI) JANG2(I)4ANG3{1)

FORMAT (' 2o T9sl24T254sF5614785,F5,19T755:FSet)

CONTINUT

DO 7813 1I=1,3¢
A5 = 2 SUGGESTS THAT THE TRIANGLE (S BELOW ITS LEG

IFLAG = 2

IF (FILC(I) oLTe FI2(1)) IFLLAG = 1

IF (FI1(I) o0 FI2(L) oANDs FII(I) oGYa Fa2d ’) IFLAG=1
IF (FIL(1) «EGe FlZ(I) eANDe FJI(L) oLTe FL2(1I)) YFLAG=Z2
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ANG!(T)sDIRIC(I)IFLAG,SPD1(1)eVT,VN)
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UHNZeaNl  Zesre it Z
»e

<
-
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7813 CONT

-~ et ey 0 L [ e g e ]

S+!TRIANGLE® 4T20, *WIND AT SIDE1*5T40,
28 4TH0 +*WIND AT SIDEJ')
2
’

1+'TANY 3 T29,'NOR" yT41 4 *TAN® ;,T49,*NOR?,
'NCR‘)

-~>

MAadvweovroeww AQRMEAd AGZ~ANa~lew Q-
-} o M af e

oe » we

oVT2(1) e VN2CT I VTI(I)oVNI(T)
B8sF Sel 1 TA0eFSe10TABFSel s

POl «cO 2O v Z=~~
-f o
N~

® =we
MY W
ns -~

YNZ(!)‘SIDE‘(I))O(VNJ(I)‘
gTZ(l)tS!DEE(()l¥(V73(l)*
)
7

e mam NN e d D Ope

CONAN ] o)
e NAL~COCCme W D¢ Nwwlhe DTo

Her D AP PININTNS e
8 Del=WN=LG

6 MmN~ mmmine

es g lluh

S»ElQa.7)

5) GO YO 7292

IR= IR+
7292 COMTINUE
CALL GUESS (
catt. GUESS
CALL ANAL { NRsNOSCAN.2)
CALL SMODTH ( .
L MON, TIDAY,1ITIME
. CE AT S LEVEL *sF3¢2+% ON ¢
; et GMT?)

WRITZ{5+515)
515 FORMAY( 1t
Xel2s/7%,1



on

CALL QUTPRUT 1eN2y 12EN6, 1)
MONS IIDAY I IT IME
§16 FORMAT(*1 ', 10X AT S LEVEL ',F4.2,° ON *

Rel2e'/7%+14,3X%,
CALL QUTPUY

GMT ')

(
WRITE (64516) S
: .
( 19N2+,140E06,41)

60170 CONTINUE

401

31

32

40
41

STOP
ENO

SUGROUTINE RATY
INTEGER T.IFLA
DIMENSION ZS{
VLE=E( J=l ¢+ TolLS
SE(J=143,LST))*
RETURN

END

SUBROUT INE ANAL (NRPTS, SCANRsNOSCAN,1GO)
THIS ROUTINE ANALYZES THE REPORTEDO DATA AND PUTS THE ADJUSTED
VALLUZS AT GRID POINTS,

éO (ZS+EsLSTe14J,THVLE)

Ts8)sE(50016,16)

T O(ZS(LSTol)-E(J-loJ'LST),/(E(Jo3'LSf)‘
(ECJsToLST)mE(Jul o THLST))

’
)
E

DIMENSION TC1(18,18), SCANR({ 35)

1 Twl1(183,18)FF1 (3%)

2 TC (18418)FFJ  (35)

3, Tw (18.18)+DATAL(3S)

L3 Al (18,18) sDATA (35)

Se A (12,18) ’
COMMON DATAGCATALsFFIFFJsAsALl 2 TCrTCleTW TWE
COMMON /GRIDIJ/ (STARTsJSTARTLIEND+JEND
DO afe NSCAN=1sNOSCAN
DI 401 J=JSTAKRTJEND
0 401 I=SISTARTLIEND
TC (14J) =040
TC1 (L, J) =0.,0
TWICL oJ) =00
TW (1eJ) =0.0
NCNT =0
DO 202 K=14NKRPTS
M =1
N =1
IF (DATA (K) +EGe «0) M=2
17 (DATA1(K) -FQ. «0) N=2
IF (M +EQe¢ 2 +ANDe N +EQe 2) GO TO 402
[I=FFY1(K)

JI=FFI(K)

HMAX =SCANR(K)
IF (NRPTS J.NE. 16) GO TO 31

IF (M3CAN «EQe 1) RMAX=1800

IF (MSCAMN oEQe. 2) RMAX=10,0

IF {NSCAN +EQ. 3) RMAX= S+ 0

GO 1O 32
IF (NSCAN +ECs 1) RMAX=10,0
IF (NSCAN +EQs 2) RMAX= 5.0
IF (NSCAN +EQes 3) RMAX= 2,0
RMSQ = RMAX%&%2

NCNT = MCNT + 1

GO YO (40+41).M

CALL INTRP (A JFFI(K)sFFJ(K),DINT)
ERRORY =DATA (K)=DINT
CONTINUE
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0o

2
a3

LX)

35
a6

404
403

402

47

A0S
400

GD TO (42+43)sN
CALL INTERP  (A1,FFI(K),FFI(KD),DINTL)
ERRORI=DATAL(K)=DINTI

COMTINVE

[1=FFI(K) =« FMAX#+0.5
I12=FFTI(K) + RMAX40,5
JIZFFJI(K) = RMAX$0,S
J2=FFJIK) + KMAX+0.5

[MIN = MAXOCISTART,I1)

IMAX = MINCC(IEND 12)

JAIN = MAXQ(JUSTART,J1)

JMAX = MTINOCJENC,J2)

DO 403 JS=JMIN+JMAX

0N 404 I=IVINGIYAX

RSN = (FLOAT(])=uFFI(K))*%2 + (FLOGAT(J) « FFJ(K))*&2
IF (RSQ +GEs RMSC) GO TO 403
WGT = EXYP (=4 ,2RSC/RMSQ)

GO TO (44 ,45) .M

TC (1oJ)=TC (1,J)+WGTHERROR
TW (TeJ)=Tu (12J)+WGT

GO TO (46 4+40a) oM

CONTINUE

IF (!GO +EQ. 1) GO TO 404
TCI(14Jd)=TCl(1+J)+WGTHERRORI
Tl e d)=TRLLT 4J)+UGT
CONTINUE

CONTUNUE

STATION GCUTSICE OF THE GRID WON'T 3E CONSIDERED.
CONTIMUE
DO 40S J=JSTART,LJEND

I1=ISTART, {END
I+J) oLEe 0.,0) GO TO 47
) + TC (1,J)/TW (1.J)

GU TD 40S

s 0.0) Gn TN 40S
) 4 TC1(14I0)/7TWI(T,4I)

17

<G
=
=
&
2
CEN

€ ol ot g o~
rrne wfme o

SUNBROUT INE NECAIN (DLAT,DLONSF [ FJ)

CCM"IN /GRILJIK/Z SLATHSLONeMUNL¢GOeM2,N2

LATlfJOt AN LCHSITUDE CF THE WORTHWEST CORNER OF THE

RID IS 2S5.6CH AND 105,50W: GRID S2ACING (S 40 KILOMETERS

CNST = 2675492

COST = +71S3E£8.

CST = 57.29578

FACT =80S0,4231/6

oI =(90n5LAt)/cst

FAC2 =FACI#(Tﬁhlpﬁl/?.O)ICNST)*‘COST
ALAT ={9% emDLAT)/

® =FAC l*(TAr(ALATla.O)/CNﬁr)ttCDST
ALON =(SLCB‘0LC\)*CDST/CS

FI = MI4R#SINALON)

FJ = W1 +R*CUS(ALON)=FAC2

R:Z TURN

END
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SUBSROUTINE INTRP (A FFIFFJDINT)

DIMENSION AC18,18)

75

4]

oan

it = FF1

JJ = FFJ

D1 = FFI=-FLOAT(IT)
0J = FFJ=FLCAT(JN)
1 = A(l1.JJ)

Z2 = A(LTI¢+1,JdJ)
Z3 = A{11,JJ¢12)

Z4 = AlTI+1+JJ41)
5 =Z1#(22~21) D1
6 =Z3+(24~22) 401
DINT =25+(726a2S)*DJ
RE TURN

END

SURROUTINF SHOCTH (A.B,C

)
A GOES IN UNSMYCOTHIEDe A COMES QUT SMOOTHEDs B IS OQRIGINAL A

1

S

RT ¢ IEND ¢ JEND

DIMIINSIDONM £(10.18),8{(18,
COMMON /GOINDIJ/ ISTART,J
SMOOTH INVERIQOR POINTS

oM
2)
TA

J1 = JSTARY + 1

J2 = JEND = |

Il = ISTART + 1

{2 = JEMND = 1

C2 = C¥(1.~C)/2e

C3 = C*C/%,

C4 = le = 44%C2 = 4,%C3

DO 100 J=51.J2

00 100 I=1!1.12

BlIeJd) = CasA{ToJI)+C2¢(ALTM1,J)+A(TH+H1J)+A(T0I=l)#A(T0I41))

* PCA(ALTI=1 2 =1 ) +A( [ Lo J#1)A(T+L0 I+ L) +A(TE+1,0JI=1))
100 CONTINUE

SMOOTH BORDER POINTS

Cl = (1.0 w C)/2.0
K = JSTART
L = JEND
M = ISTART
N = 1END
DO 171 I=1X1,82
BileK) = AllsK)EC + Cl8{A(iwleK) ¢ A([+1,K))
101 G{t.L) = a(!.t)tc + CLx{ALI=lel, + A(l41L,4L))
G 102 J=Jdil.J42
AlMed) = Al(MGJIIFC ¢ CIE(A(MJIml) ¢ A(M,2¢1))
192 S(Mad) = A(NGI)IIC + CIE(A(N,J=1) + A(N,JI*1)?
SMOOTH CCw\hws
P{MeK) = ALMJKISC + CIX(A(MK+1) + A(ME]1,K))
BINsK} = A(HKI®C + Cl*(AIMwl,K) + A{N,X+1})
H{MeL) = AlHMLIXC & Cl2{A(ML=1) + A[MPILLL))
FINeL) = AINGL)IAC 4+ Cle(A(N=l,L) ¢+ A{NyL=i)]}
CALL MOVE (BoA)
RETURN
END

SUARDUTINE GUESS (A.VAL)

CUMMON /37I0T)/ 1STARTy JSTART . IEND, JEND
INITIALLIZE THE DARNES FIRST GUESS BY READING
1IN VAL AMD SSTTING A=VAL

REAL A(1a3,13)

00 1 I=137ARTL,IEND



D0 t J=JSTARTJEND
A(l+J)=VAL
1 CONTINUE
RETURN
END

SUBTOUTINE CUTPUT (AsI1,IMAXeJ1leJIJMAXs SCALE, TJIK)
DIMENSION A(18,18)+PLINE(40)

TIL =ll=l

LI MAX=TI MAX=TI1 +1

WOITE (6¢100) 11+IMAXeJ1 s JIMAXySCALE
100 FORMAT(® ', 01 = 4,02,% [MAX = $412¢" J1 = %,12¢° UMAX = ?,12,¢ SC
1ALE FACTOR = ' 4,E10.2)
oo 101 = 3e1€
DO 102 f= 1.18
PLINE(I)=%.0
IF (J LT e J1 20Re J oGTe JMAX) GO TO 102 -
" (1 oLTe I1 «0OFRe I «GT,s IMAX) GO TO 102
PLINE(T«TIL)=A{1,J)*SCALE
132 CONTINUE
7 (1JK «EGe 0) GO TO 12
URTITE (60 10) {PLINE(I)sI=1+1IMAX)
10 FORMAT(1HO,1NX ,18F640)
WRITE (H6416%)
199 FORMAT (LFk0)
GN TO 101
12 YRITE (6611) (PLINE(I),I=1,11IMAX)
11 FORMAT(? 1321F6.1
191 CONTIMUE
RETURN
EiND

SUANRDUTINE MOVE(A.B)
COMMON ZGRIDII/ ISTART JSTART, IENDs JEND
DIMIMSION Al18,18)48(18,183)
CO 1| J=JSTART L JEND
00 I I=(STAKT, lLEND
1 O(1:J)=A01,J)

RE TUIRN
EMD
SUBNROUT INE METHI1 (L1sK1FETFFJLDATADATAL FILF.ile
DTU\.DTV\.FIZ'FJZoDTUZ'WT V2,FI3,Fy3.DTU3eNDTVI)
DIMENSION FFI 5)«F11 (39) sFJIl (3%),07U8 (353 .0TV1 (35)
Ls FrJd (35)or12 (3S5)eFJ2 (3%5)eDTUZ2 (3I5) sDTV2 (35}
2 NDATA (35).F13 (35).FJ3 (35 31e4DTU3 (35),0TV3 {35)
3 DATAL1(3S)
o0 1 = 14 S
Fl1 (L)=FF1 (1)
FJ1 (L)=FFJ (1)
OTUL (L)=DATA (1)
DTVLI (L)=0ATAL(1)
1 CONTINUE
DO 2 = 6¢ 9
FI1t {L)=FF1 (2}
FJ1 (L)Y=FFJ (2)
DTUL (L)=DATA (2)
OTVL {(L)—=0\TA1(2)
2 CONMTI NUE
Do 3 L=10,12



77

< 0 ] o © ~ ~
-~ gy oy - o gy N N~ o~ o~ g o lal ot N Ll X - o Lol X T - e S ~
MmmPMm eCeqae NNV o U ®oddded * Ul el VOVvY eeJdJdd * )
wwnrw Mwswrww wwww\wew o My QPwwwww U)o o o Wwterwt Vur et @ -
- e - - - - -y - - - Lo
<<qa i q< oy < [ <~ It qQa~ S Lad L0t <= < g

Y e L Y e Y Y e e e %Y P

>

LI U T t W ek W - b Je e b W Y
LU TLLTIOUL LS LU= Ll

0=

Lo
LUSLC=D LUK~ LILCI=DULp<q~ LLlec~D L A<
LLCOL LLOOLCULWLOO wwoo LLOCJIZ LLCLIZ LLCOJZLUOOY LLLVDOXNL wiLOow
Wnnpes g nibemppi wpny Wi WP HOm GRHOT=0ERR_ B n=Onul

et el ok Ral tatal ol T T ¥ |1 E PN Y Qmman ~ o~ D men o snm o~ emrmarm e

| ol

dLddIZ AddJIZNNNYN ettt T cttonrt T emrmieioy T mtescton T oot ot vt gt F edetiotm
wwwwD0wwwwlrma=eD Jdldd 004Jdd 00JdId O00JdJy OJdJdad Oxx¥y OOXwX¥YX
vo UvwvewwQwweww UDwwwe UYUOwwwew VUlQwwew (Uweww Quveww PO wwwe
- - o - o o oo NN N NN mm mnm
~—D> D> maeaDI> NND> NND> aND > NND> aND> maa> mMD>
o = b b e D bt Y e e - e ot e e ol i i L I e o TR R Ry P Rl o
Lwao LLCO LudO uwuunod wuwcod Luoou Lenodd wuood Lkody Luoo

M < 0 0 ~ [ o



78

5)sDTVE (
S)+DTV2 (
5)40TV3 (

(35),07U1 (3
: (3
3

FEJWOATALDATALWFI1.FJl,
(35)eDTU2
(35),DTU3

3:FJI3sDTU3LDTY3)

oFJL

LI NN

-l Y
W emmm
[T T
>
Lol =
XO™~NM
& ® ot e bt
~“NWLL W
dAD e e
(T\I),\l
055 131
~ ~ 33330 < wn n
Lalalat 3 Lol o X la) gy, o W W o s ot o S o, NMmmaman Mmoo oo o S~ g g
*lddd Sl ddd [l ol o [\ e Sttt SQNNNN MMM e S I 00 *lddd
v 6((:\( (.1(( &l [ & &'+ POTSTEY o Q.((l\.( “((3(((( S
- b e ™) pn b e - - - -y
- N g~ | Aﬁ.l AA! wnplLaan q @ AA B AAI. ] <~
CW I Ve P W Jo Ve b WD - b V.lc.FDDLIJT.IF_L.IJTI.—._Y.JTTL.IJTT#rLXJTTfE
D LidC<=D LEi<q~DLy <~ w LI FFAAUFF.\“A N <R~ LU<q=
XT wutoxe FFDCKNF—ODDK w e LUSCL LLOQZULLOD uQClILZT LuLoZJdZ
HeeemflolUneeQyppd=nynnn =2z [ L ] .._..__..l..::: IR I T I T X
Pt Mmoo e b -0 - e (A f o T o TQ)))) [
L oot T wteteton T oottt [ ddnd DdddIdZ DI ST ettt ot gt ot o Lol Lo I 4
O00X¥XX O0O¥WXyX O¥yxx Z 200 O((((OD((((D?E?ZDLL.L OOLLLL o
WVOvYwww Ulwwwsw VUwwwwe Q2 vo UvwwwwDvwwwy UDwwww U
mm mm Ll e ] 0.~ fdd - bndead oo o
mMDO> mM>> mM>> =0 aO% ~—D> D> D> NNDD N D>
- il ol ke [l ol ol ainl dated X AL i bRl ad g Lt ot e nikd = et il [l e
b4 wLiLooyw LLooY LuCexIXu wnwoo c?wum Luoco Lue0l wLebD wuwcod Lucod
-\
o -t N -~ [\Y e} <
-4 -t -t



79

~ 7,\0\0’ 7)\’)\' N~
nany e Jdaad Cdod el (% o8 ol
e ()t D W~ o -~
- - - -
<<~ L X n QL gL -
bt b e D W) Y e W Y 0 b
L<d~ QLULad=D (lLag~=Dkqd~
LLOCSY LULDSOXZ LLCO¥X<cuLoxX
Wy il npge Rygunn=pnunn
A~ NN (A A
Xl R ottt T ettt et gtk
Sddd CYXUY COY¥YXXXY OxXNMY
weww Dwwww POwwwew Uwwww
oN mm nmM nm
NND> MmMma> mMO> mHd>
P S I 1S ) e Ll b alieiiiad -2
Leood LULoOX LLOOX ULULOOX

n LY

z
[:4

2
[
W
x

[=]
r4
w

L1+KLl oFFLsFFJ,DATA+DATAL FI1eFJl,

(35),07TUL (35),0TV
(35)sDTU2 (35) DTV
(35),0TU3 (35).0TV

(35).FI1
(35) oFJ2
(35),FI3

i
1
1

(
tOTU2,DTV2,FI3,7.03,DTUS,DTVI)
3S).FI1

15) F12
35)«FI3
35)

a

vitar]
N~ w N o pn
M= - gt ot ot o

wwihpgag <<
X e QD D=
w Lihasg
w e LuLoo
Tm< [ (]
-0 -~~~ -
o d2dd
Scw D~~~
[= 34 [
- -
©O% eI
D e -t Y
NOOQ eres LULOO
—-“am

CONTINCE

-t
a<g
e
<
c:
47
o] -C
] ~
-
—_DD>
Sl g
rLueo

[\

()

< <

Lo laX i - N~
MM el idd
W7 w7 oy ) P ot
- -
i <g= U <
Ll S Lo T o BTN L Ry ] )
TLdd pLL<ga~D wLug
LLLD LULLOoJ<s Lucl
BHu GntiNe HRY

Mo e

[kl

* Lt

M ~ror

NANN  arrtpg T e
NNNOD D ddd LD
— iy D wrrras (O

-~ - NN 1\
~=23> NNDD> NN D
e T e i -
Lo wuioodg wuo

]



80

-~
nny
nnm
Py -
P et
>>>
* i
- o000
- e
i e
s YOV
- MM
L] -
-
c.v._J.l..:.qJ
->T2D
Qb ts
Qo n
< s v e
OMfMa=a~
e DV
<=M
Cvww
< a
on
[SnEakidat)
LI
w euil
WM e oo
® -t~
ety NN
B ety
U N
->
L2 od
LT ]
® ® e b e
-y bl
“D e e
. - -
~uneon
~ ~ *235 IO L] ~
-~ IO, - ~ o~ alata Y Ol wea (\(MmMmaman MM o™ I~~~ ~
- secac [ I ®oialed Ll ot <9 P emtmees NONNN oY) mmme .
-~ —vrwar Y s on s iR g oy -l AL QD W - W o e (\] N o e -t e S
-t - -t - - Pe D e b ) - - -t -
[ L L L o i) Qe | qg - < g~ wigw <<y << L«g <G L S Sl i]
AT e (= b WA b W U d OO I W e bm S i e b Y T L e
Cd=onldde LEp<L=) LUgLA=ILYycI~ w Liie<< ot <€ puhdd=Ilit €<~
CHAULLCOJ LLOUYL WULOOXTUWLOLQOX w e LLQQeLt 0N WLkoQJZLuolJd U
[T U (T O T I O T T [ INTI U B (LN I ] L~z [T I TR T T T TR T T T T A T L (I (O | I 1
o~ pemmamn N edmamAm e [ X - oSN A MmN Bm AN e N
- T et s ot P e L Y A T Rk B R R P [l s DA I LTELDC temeaet Taret e -
J OJJddd O¥YyyY OUMY¥YY DXYxX T 2Q0V Cwern wMrMMOUled QJJdde OX
- Uwwew Owwsww Ulwws s Usoww X Qe [a} UewrwweolOwwww Uwwww Dw
N N Mnm me; mry D (A -t e -t aree S
> > mmo> mm3> mED> =5 60T D = D> NN [\ Ul Il ~
[ = T S S e T o] et U et Db [aie LI TINE L e e T e Rk ok B ]
04 Luood Luooy L oox FFDOKHE.SDD:LL LILCO LuL00 wLcod Leood u
-
< n 0 -

[\



81

Team
>>>

(35)eDTUL1 (35) .07
{35)+.0TUZ2 (35) ,07
(35)eDYU3 (35) DT

12,FJ3,0YU3,DTVS)

)FJ2

)oFJ1

LTFFJsDATADATAL oF 11 9FJl e

$).FJI3

(3
S
S

n
- gy
cdd I
N -
-

i R~

~

~n

Cid I

S

-
" gL~

B N J, PN g, N py S

-t e (NN NN

N Nt P g W NP W St S
-

< 3 «

~
~
-
-

<

e U SN bW Ve W ST e bt Y b
LpdI=Dplag. L itinsg

-~ Lot oY Xad C.vrw o oo
- od (o8 s n= - e didd
(X - Irw QL™
- - b orm === -
qq - L~ Lyl gahn LS
Rlsdobd Tiadnl g X J E RS TR ) a]
L= DuL Q- w gL~
LOoCYZULQCYX w e wwecd
Wm0t g Z—=Z opnaen
~am emme A >0 -~
ot 0t 2 omt e P b v - g vt
X¥X¥Y CXX¥XXX¥ 2Z 20V ClLdd
waw Uwwww O Q2 C((‘(
m>> mmd> O @mDOE llUV
e Dbty Z D [ode ol ndnl
WeoXY wLucCCwyw woo 09'_10. ntocy
-t

D L KX =D~
4L LeLQuuYsem
QLA
| 2 o1 T N

T o 2

X C
UNwww- U

- N

L3R ol B ST A AT
LA L B TR L M

Mmoo
-

Q===

mma>
) -

11UV2?UV33U
Pl et Ll et L
LLONxY E wLuedDT wLuLetuyduun

IS
m
-
w
L
N
>
P am
s 28
-
N ww
=
~ N
o >>
> b=
[ X ~ 31
- e
[Ty
e N
N oM™
- b
w
o el
- D2
S
- Cco
o s
- o~
= v
> Mm
b -
(o]
>
Lo lz
"D NN
oL
. )
-t Lanand
- N
L mv
~
>
AN
O Meese
(TRl TN 'S
[
we
Z ~Z
-0
et
o
o
x ew
orI
Doy
wea -
W e



N
D)

[M]

C THE

FI3 (35).,FJ3

(353+0TU3 (35)sDTV3 (35)

DO € I= 1,35
IF (1 «EQes 14 +CRe 1 LEQ.
IF (FI3CL) «GTe FI2(I) LAND.
IF (Fi3(1) «GTe FI2(1) <ANOD.
IF (FI3(I) LT« FI2(i) «AND.
IF (FI3(!) «LT. FI2(1) +AND.
G) TO 6
IF (FJU3(1) «LTs FJ2¢I) oAND.
IF (FJU3(1)Y 4GTe FJ2(L) <AND.
IF (FI3(T) «GTe FJ2(I) <AND.
GJ TO &
IF (FJ3C1I) «GTe FJ2(I) <AND.
I€ (FU3(I) oCGYe FU2{1I) oAND.
IF (FU3(1) LY. FJ2(I) +AND.
GO 10 o
IF (FU3(T1) «LTe FJU2(1) +AND.
IF (FJU3(1) «GTs FU2{1) <AND.
IF (F)R(1) oGV s FI2(1) +AND.
GO TO 6
1€ (FJ3{L1) +GT. FU2(1) «ANOD.
G0 1D 6 :
A =F12 (1)
B =FJ42 (1)
C =CTUL2 (1)
2] =PTv2 (1)
Al =FI3 (1)
a1 =43 (1)
C1 =0TV (1)
D1 =0TVv3 (1)
F13 (1) =A
Fo3 (1) =8
DTU3 (1) =C
DYV3 (1) =0
FI2 (1) =Al
FJ2 (1) =81
nDIU2 (1) =Ci
DYV2 (1) =01

COMTINUE
RETURN
END

SUBROUT INE OIRSPD (UsVeSPDDIR)
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ANGLES AAC DETERNMINED FROM CARTESIAM MCRTH
iF (U +EQe 0s0 oANDs V oEQs 0.0) GO 7O 2

SOD  =SORT{ULSD2IVES2)
IF (U +C0. 0.0)

IF (V +EQs Ce0)

GO Y0 S

1F (V éLT. 040)

NDIR =90.0

IF (U +LYe 0.0)

GO TO 6

DIR =ATAN?2(V.U)*57,295A
CIR =90.,2=D]IR

IF (DIR +GTe 182,00

GO TO0 3
GO T0 ¢

DIR=18C.0

DIR=270.0

OIR=DIR=180 +0

G iy 0N OB SWN-
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RETURN
END

SUBROUT INE SIGN (PHI,CHI+ IFLAGsSPD» VT, VN)
IF (CHI oLTe 9C.0 )
I (CHI oLTe. 90.0
Te 907
HI olLTe 9C.AN

HI «GT. 9060
HI «GTe 9060
HI «CTa 9749
IF (CHI «GTs 9Ce2

IF (CHI oL
IF

CALL SIGN1
RETURN
CALL SIGN2
RETURN
CALL SIGN3
PETURN
catl SIGNA
RETUSRN
CALL SIGNS
REYURN
CALL SIGN6
RETURN
CALL SIGN7?
RETURPN
CALL SiGMY
RETURN

END

e AND o PHI +EQ. 2.40
¢AND . PHE oLTe 90.0)
sANDe PHI LEQ. 90.0)
«AND o PHT «GTe 90.0)
sANDs PHI +EQes 040)
eANDe PHI +LTe 99.0)
«AND o PHI «EQes 90.9)
e AND PHI +GT»s 90,0)
(FHY sCHL, IFLAG,SPDyVT +VN)
(PHIsCHIo IFLLAGe SPDy VT, VN)
(PHI+CHL, IFLAG,SPD¢VToVN)
(FHTCHEVIFLAG,SPDsVTsVN)
{FHIJCHIZIFLAG»SPDeVT 4VN)
(PHISCHILIFLAG,SPDs VT 4VN)
{PHICH1»IFLAG:s SPDs VT4 VN)

{PUT oCHI ¢ IFLAG+SPDe VT4 VN)

SUGROUTINE SIGNL (FHI «CHIZIFLAG+SPD.VT,VN)

IF (IFLAG .f%e 2) GO TO 1

VT = SPD%CIN(CHI/ST.296)

VN =wSPN+CCS(CHI/S57296)

RETURN

vy == SPDRSIN(CHI/ST7.296)

VN = SPDSICSICFI/S574296)

RETURN

END

SUBROUT THE SIGN2 (PHISCHTI+IFLAG:SPDs VT, VN)
[F ((PH]=CHL) oLTe 90+7) GC TO 1

IF ((PHI=CFI) +GTe 90.0) GO TO 2
WEITE (64104)

FORMAT (*0°','SONMETHING IS RRONG2?')
RETURN

1 ({IFLAG +ECe 2) GG TO 10

VY = fpo*r)s((ﬂnlvcnt)/s7.296)

VM =GP CeS IN((FNI=CHI )/ S57,296)

QT TURN

vY SewSPO*CCS((FHI=CHI )/ 57.296)

v = SPDISIN((EHI[aCHI)/57.296)
RETURN

IF (IFLAG «.E%. 2) GN TO 20

vy --sbntalvt(9Ht-cul~90.0)/57.296)
VN =eSPOSCLSIPHI=CH ]I =D060)/57:296)
RE CURN

vT = SPRASINI{PHI=CHI=90.0)/57.296)

CRrEN NemdU
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VN = SPDXCOS((PHI=CHI=90,0)/57,296)
RETURN
END

SUBROUTINE SIGNI (PHIoCHlvlFLAGoSPDoVT.VN)
IF (IFLAS +ECe 2) GO
vT = SPD*CCS(CHI/S?.ZQG)

VN = SPO#SIN(CHI/S74296)
RETURN

vr ==SPDACCS(C 1/07'296)}
VN =mSPC*SIN(CHI/S57,.296)
RETURN

END

SUBROUTINE SIGAh4 (PHI-CHI.lFLAGoSPD.VT-VN)
[F (CHI +GT. Pr1) GO

IF (CHI +LTs, PHI) GO TO 2

WRITE (6,100)

FORMAT (*0C*f,*SONMETHING IS YRONG4A?)

RETURN

17 (IFLAG LEC. 2) GO TO 10

VY = SPN*COS{(CHI=PHI ) /S57.296)
vid = SPD4SIN{(CHI=PHI)/57.,296)
nETUAN

vT =wSPD*CCS( (CHI=PHI ) /57.296)
VM “-4PC*SIN((CHI-PHI)/57.296)
i TURN

{¥ (IFLAG .EQ, 2) GO TO 20

YT = SPDRCCS{(PHI~CHL)/S7,296)
v ==wSPDASIN((PHI=CHI ) /574296)
RLTUNRN

vT S=SPD*CLS{ (FHI~CHI )} /57 .296)
VN = SPO*SIN({PHI=~CHI)/S57+296)
RETURN

END

SUBROUTINE SICANS (PHU,CHI, IFLAGsSPDs VT, VN)
[F (IFLAG +ECes 2) GO TO 1
vT = SFDICOS{(CHI=PHI)/S7296)

VM = SPLKSIN((CHI=PHI)/S7.296)
RETURN

VT 2wSPN*COS((CHI=PHI )/ 574296)
M =mSPOESIN((CHI=PHI ) /D7 .296)
RE TURN

EMD

SUOROUTINE SIGNE (PHI W CHIWIFLAGsSPDs VT YN)
IF (CHT L,Cl, PF1)Y GO TO 1

IF (CHT oLTe PFI) GO.TO 2

W ITH (69 1CO)

FUORMAAT (014 'SCNVETHING IS WRONG6!)
RZTURN

1IF (IFLAG .EQ., 2) GO TO 10

vT = sprt(rS((CMI-PHI)/57.296)
Vi = SPD*SIN((CH{=PH[{)/S57,296)
RE TURN

vT =wSPC*CCS{{CHI=PH] }/57.296)
VN --SPD*SIN{(CHI-PH()/S?.ZQG)
RETUR

IF (!FLAG +€Cs 2) GO TO 29



vT = SPRRCCS({CHI=CHI)/ST.296)

VN =wSPO*¥SIN({PHI-CHY)/S57.2906])
RETURN

20 VT 2n3PD*CCS (PRI wCHI ) /57 4206)
vH = SPD*SIN{(Piil=CHI)/S57+298)
RETURH
END
SUBROUT INE S IGN7 (PHloCHIoIlLAa.oPO.VTaVN)
IF (IFLAG «€Ce 2} GO TO
VAl *-SQDMSYN((CHI*“O-O)/S?-ZQG)
VN = SPCXCCS{(CliIn90.0)/57.296)
RE TURN

1 VT = SPN*SINI(CHI=90.:D)/57:.296)

N =wSPD*CUS(ICHI=9040)/574296)
RETURN

SUBRQUTINE SIGKE (PHI CHI, IFLAGsSPD,VT s VN)
IF ((CHI=PFTI) +LTe 97°,0) GO YO 1
IF ((CHT=Frli «GTe 90,0) GO TO 2

. WRITE (€41C0)

1CD FORMAT (0, *SCIrLETHING IS WRCKRGS')

RE TUSN
1 IF (IFLAG ,EGe 2) GO YD 10
VT = SPL&COS(tUHI~OHT )/ 57.296)
VN = SPDNsSIN((CHI-PHI)/S57+296)
RETURN
10 vT =mSPDACCS{{ HTI=PHI ) /S7:,296)
v =wSPDRSIN({CHImFHI }/57.296)
RETURN
2 IF ({FLAG .EQ. ?2) 50 TO 20
vT ZwmEPCISIN(ILHioPHT290,0)/57296)
YN = SPOAXCCSU{CHIwPHI=AN D) /5T 296)
RETURIE
20 VT 2 SPUESIN(ICHI»PHI®GN,0)/57,296)
2 wGHORCCSI{CHImPHT92,0)/57,296)
RETURN
ENO
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