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1. INTRODUCTION

A mesoscale primitive equation model was developed by Djuric and

Das (Scoggins et ajk, 1981) for the TAMU Texas HIPLEX studies for

1979. The model was initialized using the original gridded fields of

temperature, dew point, u and v components of the wind, and heights.

After a thirty-minute run of the model, it was found that noise, in

the form of spurious waves, began to obscure the results. It was

speculated that this noise was the result of defects in the initial

data, presumably the winds. The present study was taken up with a

view of developing a procedure for the initialization of the wind

field, which, while retaining the mesoscale properties of the wind

field, will be less prone to causing the development of noise in the

numerical model.

V. Bjerknes (1904) is recognized as the first to suggest that,

given observed initial fields of mass and velocity, it would be

possible, at least in principle, to determine the mass and velocity

distribution at any future time by solving the hydrodynamical equa

tions as an initial value problem. A new direction in meteorology,

namely numerical weather prediction, was founded upon this suggestion.

To carry out a numerical forecast, it is necessary to specify the

wind field (and fields of other variables) at the beginning of the

forecast period. These fields define the initial state from which the

system of differential equations is integrated forward in time. A



common procedure for specifying the wind field is through the inter

polation of observed winds onto a uniformly spaced mesh by means of
, Mil

some weighted averaging scheme (Bergthorsson and Doos, 1955). This

type of analysis of the wind field is quite satisfactory for numerical

prognosis with the vorticity models (Haltiner and Williams, 1980).

However, integration of the momentum equations in their primitive form

is much more sensitive to the initial state. If the wind field pre

pared by the weighted averaging scheme is inserted directly into a

primitive equation model, considerable noise is generated while the

mass and motion fields adjust to one another. This "shock" of data

insertion is eventually reduced to an acceptable level as adjustment

between the two fields occurs over time.

It would obviously be advantageous if this adjustment could be

effected prior to the beginning of the forecast. Talagrand (1972)

directly filters noise contained in the initial wind field through the

addition of a divergence damping term in the momentum equation.

Shuman and Hovermale (1968) initialize their primitive equation model

by inserting analyzed geopotential fields into the balance equation

obtaining the stream function i|> from which the rotational wind com

ponent may be realized. Sasaki (1958) developed a method founded on

the calculus of variations in which differences between the objective

ly analyzed values and the newly adjusted values were minimized in a

least squares approximation, subject to dynamical constraints. These

constraints may include the balance equation, hydrostatic relation,

steady-state momentum equations, integral relations conserving energy



and mass, and others.

The problem of initializing a mesoscale primitive equation model

becomes especially acute since such a model aims at making short-range

prediction of phenomena on the scale of organized convection. The

organizing influence, on this scale, arises from mesoscale conver

gence. The convergence (divergence) field is usually obtained from

the gradients of a "gridded" wind field. Grid point values of wind

are determined from the interpolation of observed (measured) winds

onto the mesh by means of a weighted averaging scheme. However, as

discussed below, there are serious flaws in this approach.

a. Nonuniqueness of Wind-Field Interpolation

A fundamental problem in numerical analysis is the nonuniqueness

of vector field interpolation (Schaefer and Doswell, 1979). This

arises because a vector, such as wind, is a directed quantity. Inter

polation of its magnitude and direction does not yield results

identical to those from interpolated components. For example, con

sider two wind observations at the end points of an east-west line,

which consist of a westerly at 10.0 m s" at one point and a southerly

at 20.0 m s" at the other. Halfway between the two observation

points, the linearly interpolated directions and speeds will give an

interpolated southwesterly wind at 15.0 m s , while a linear inter

polation of components will give a south-southwesterly wind at 11.2

m s" . The differences may not be as drastic in day-to-day

situations; in a comparison of data interpolated via computer to that



interpolated manually, Williams (1976) found that wind speed estima

tion differed by an average of 3.5 m s" , while wind directions were

roughly equivalent. But a potentially serious problem remains in a

simple-minded interpolation of winds for a mesoscale primitive equa

tion model.

b. Noise Generated in an Interpolation Scheme

Mesoscale prediction suffers from the basic difficulty of being

supplied with inaccurate, initial grid point values of some atmospher

ic variable. These grid point values are frequently generated by a

weighted averaging interpolation scheme. The basic methodology of

this scheme is as follows: an initial guess of the atmospheric

variable (such as climatological mean, previously analyzed values of

the variable, or a combination of these two approaches) is supplied to

the grid points; the initial guess field is modified through the

observations (weighted corrections to the initial guess field which

are functions of the distance from the observation to the grid point);

the corrected grid point values are "lightly" smoothed to remove

obvious meteorological noise.

Barnes (1964) has proven that a weighted averaging interpolation

scheme is convergent (in other words, the approximated spatial distri

bution of some atmospheric variable as determined from a weighted

averaging scheme approaches the "real" spatial distribution of that

variable). This is true provided the independent harmonic waves

(which represent the spatial distribution of some atmospheric variable



(Sasaki, I960)) have wavelengths greater than two mesh lengths. Un

fortunately, all wavelengths are present in the approximated spatial

distribution of the atmospheric variable. Judicious smoothing is not

considered feasible since both short (meteorological noise) and long

(meteorologically significant) waves would be affected.

Another difficulty inherent in a weighted averaging interpolation

scheme is the insufficient number of observations to adequately

"correct" the initial guess field. Because of this problem, inertia-

gravity wave modes are poorly (erroneously) represented on the grid.

In the case of a gridded wind field, these gravity waves may generate

large and unrealistic divergence patterns (Warner et al_., 1978).

c. "Roughing" Due to Finite Differences

Given a gridded data field, its further manipulation often in

volves the determination of derivatives by finite-difference methods.

For example, the mesoscale initialization (described by Warner et al.,

1978) involves the computation of vorticity from which the stream

function and geopotential fields are derived. If the vorticities are

determined by the method of finite differences from the gridded fields

of wind components, they will be contaminated both by the nonunique

ness of vector field interpolation and by the uncertainties of the

interpolation scheme. The inherent inaccuracies of the finite-

difference method will exacerbate the above uncertainties (Conte and

de Boor, 1980).

The foregoing discussion points to the need for a strategy for



the initialization of the wind field, in which the following should be

achieved:

1) The interpolation of a vector field should be avoided.

2) The needed interpolation of scalar fields should maximize de

tails while suppressing unresolvable short-wave noise.

3) A minimum number of finite-difference operations be perform

ed.

Fortunately, recent research has devoted considerable attention to the

elements needed for developing such a strategy. The two relevant

studies, although aimed at synoptic-scale analysis, are those of

Shukla and Saha (1974) and Schaefer and Doswell (1979). In principle,

the procedure suggested is as follows: in a network of wind observa

tions, the vorticity (5) and divergence (D) are determined from a line

integral method such as that of Bellamy (1949) or Ceselski and Sapp

(1975); the scalar fields of K and D are utilized to determine the

fields of stream function and velocity potential which, in turn, will

provide the grid point values of the rotational (V.) and irrotational
-*•

(V ) parts of the wind; and, the final analyzed wind field is obtained

by superposing the irrotational and nondivergent parts (V.+ ).

The purpose of the present study is to ascertain (test) the

"goodness" of the above strategy for determining the initial wind

field by means of a comparison with other accepted strategies. The

above strategy constitutes a wind field that is "reconstructed" from

fields of divergence and vorticity calculated by line integrals. The



other accepted strategies for determining the initial wind field are:

(i) a direct wind-component interpolation, and (ii) a wind field that

is "reconstructed" from fields of divergence and vorticity calculated

by centered differences. From this test, the most optimal strategy

for determining the initial wind field will be ascertained for use in

a mesoscale primitive equation model.
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2. THEORETICAL AND ANALYTICAL BACKGROUND

The analytical strategy suggested by Shukla and Saha (1974) is

based on a well-known theorem of Helmholtz according to which a vector

V, such as the horizontal wind, can be separated into a rotational

(V,) and an irrotational (V ) part as follows:
ty x

V=V^+ Vx =kxvh*+ Vh x , (1)

where k is a unit vertical vector, ty is the horizontal stream func

tion, v. is the horizontal gradient operator, and x is the horizontal

velocity potential. The vertical component of the curl of the above

equation gives

vR xV=vh2ip =K , (2)

where £ is the vertical component of the vorticity. The horizontal

divergence of (1) gives

vh •V=vh2 x=D , (3)

where D is divergence. Now, if one is given the K and D fields,

corresponding ty and x fields can be constructed by solving (2) and

(3) over a grid. The values of ty and x at the grid points can then be

used to construct the wind field according to (1). The advantage of

this reconstruction method will be to produce a wind field which con

serves the kinematic properties, € and D, which are fundamental to the



original wind field. However, the advantage may or may not be mean

ingful depending on how we construct the fields of £ and D.

a. Determination of Vorticity and Divergence

Given a set of wind observations, it would be quite straight

forward to interpolate the individual wind components, u and v, in the

customary x- and y-directions to obtain their gridded fields. These

fields permit the computation of £ and D from their differential

definitions:

5 = av/ax - au/ay , (4)

D = 3U/3X + 3V/3y . (5)

As already pointed out, however, this method involves two undesirable

operations, namely, (i) interpolation of a vector field, and (ii)

performance of a finite-difference operation.

In order to avoid the problems mentioned in the last paragraph,

an integral method, originally due to Bellamy (1949), can be used to

determine values of 5 and D directly from the wind observations. In

Bellamy's method, a triangle is selected for the curve with vertices

at the wind observation points. The winds are then allowed to dis

place the vertices for some time interval. Divergence is equal to the

relative increase in area, enclosed within the triangle, per unit

time. Vorticity is obtained by repeating the operation with the winds

turned 90°.

Bellamy's method is a special case of what Ceselski and Sapp
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(1975) call the "Line Integral Technique" to be referred to as LIT in

the sequel. The principle of this technique can be explained as

follows: a point value of divergence (Gauss' Theorem) is represented

as

D = lim (1/A)
/Wo

-»•

V • n ds , (6)

while, from Stokes' Theorem, a point value of vorticity becomes

S=lim (1/A) J> V.sds , (7)
A*o J

where A is the area of some surface that lies in the horizontal plane,
A A

s and n are unit vectors tangent and normal to the path of integra-
»

tion, ds is the differential increment along the path, and o con

strains the integration to proceed in a counterclockwise sense along a

path marking the periphery of A.

Schaefer and Doswell (1979) elucidated the dissimilarity between

the methods of Bellamy and of Ceselski and Sapp. In the Bellamy

method, the total change in area of the triangle (with the inclusion

of the vertices) is realized in the determination of divergence. The

method of Ceselski and Sapp also realizes the change in area, but ex

cludes the expansion of the region around the vertices. Consequently,

the dissimilarity between the two methods is directly proportional to

the time increment chosen in implementing the Bellamy method.

It appears that the evaluation (determination) of kinematic

variables through the above integral methods is superior to the
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evaluation through differentiation. An initial interpolation of winds

is not required for the implementation of integral definitions. Con

sequently, the divergence and vorticity fields obtained by integral

methods appear to be most consistent with the original wind observa

tions.

Finally, the "roughing" inherent in numerical differentiation is

replaced by the "smoothing" of integration (Schaefer and Doswell,

1979).

b. Construction of ij* and X Fields: Boundary Conditions

Once the values of vorticity and divergence are determined at

every grid point, either through the combinations of derivatives of

interpolated wind components or through the interpolation of point

values of the above kinematic variables calculated from line

integrals, Poisson-type equations (2) and (3) need to be solved

obtaining values of ^ and x> respectively. Unfortunately, in

meteorological problems, no information about ty or x is available at

the boundaries of the computational domain. Any attempt to compute i|>

and x corresponds to various degrees of approximation that must

sati sfy

n•V=Vn =- 3i|»/3s + 3x/3n (8)

s.v= Vs =+ 8^/3n + 9X/3s (9)

at the boundary. Here n is distance on the earth normal to the
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boundary increasing outward, and s is distance on the earth along the

boundary positive in the counterclockwise sense.

Sangster (1960) gave a detailed discussion of the means of

specifying the boundary values of ij>, and brought out the necessity of

considering both $ and x so as to satisfy (8) and (9) at the boundary.

The method adopted in this work, which is an extension of Sangster's

basic discussion, will be presented in-the sequel.
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3. THE DATA

The data utilized in this study originate from a mesoscale net

work located in western Texas (Texas HIPLEX region), where measure

ments were taken at seven radiosonde stations at 0300 GMT 28 May 1979.

Variables available include pressure, height, u and v components of

the wind, as well as range and azimuth of the balloon.

a. S-coordinates

The analysis is performed on a coordinate system in which the

vertical coordinate represents a given fraction of the local depth of

the model atmosphere from the earth's surface to the top of the model.

This will be referred to as the S-coordinate where S is defined as
<

S-(zs(j) -z0(j)) /(zt -z0(J)) . (10)

Here z (j) and zs(j), respectively, are the heights of the surface and

of the level denoted by a constant value of S (both situated at a

given radiosonde location j), and zt is the height of the top of the

model atmosphere. The gridded surface height (which is an approxima

tion for a topographic map of this region) is given in Fig. 1.

b. Balloon Drift

For synoptic scale observations, an upper air wind measurement is

assumed valid directly over the station. The net horizontal displace

ment of the balloon, realized from the prevailing flow, is small



SURFACE HEIGHT
102.65W (METERS) 100.39W

Fig. 1. Gridded surface height analysis of the Texas HIPLEX
region, with indicated radiosonde station locations:

MA Midland
SE Seagraves
BG Big Spring
SC Sterling City.

PO Post
LM Lamesa

SY Snyder

The positions of these stations correspond to their geographical
location, rather than their adjusted position considering balloon
drift (next section). Isopleth interval is 25.0 m.

14
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compared to station separation. For a mesoscale network, however, net

horizontal displacement of the balloon may be of the same order of

magnitude as station separation. A balloon drift correction, for a

mesoscale network, insures that the datum is "gridded up" from its

true location (realized from the prevailing flow) rather than from the

launch site. Therefore, a more representative field is provided for

the analysis of meteorological variables at all levels in the predic

tive model. It should be emphasized that displacement data must be

interpolated from the pressure heights to the appropriate S level

heights. In other words, the height of the S level pertaining to a

given "moveable" observation must be recalculated when the balloon

moves into a region where the terrain height is different from that at

the launch site.

The computational procedure is based on the assumption that all

balloons arrive simultaneously at a fixed altitude, while in fact,

balloons released from neighboring stations, generally, reach a given

altitude at different times. It is believed that this time differ

ence, the order of several minutes, is negligible when compared to the

time scale of changes in the mesoscale environment. Fankhauser (1969)

has made analyses of mesonetwork data in cases where departures from

scheduled release times were important; accordingly, his scheme

provided for adjustment.

The computer implementation of the balloon drift calculation

procedure is detailed in Appendix A.
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4. ANALYTICAL AND COMPUTATIONAL PROCEDURE

a. Objective Analysis

A recursive weighted averaging interpolation scheme (Cressman,

1959) was utilized to obtain grid point estimates of meteorological

variables. This particular effort at objective analysis involves the

determination of these variables at grid points as the sum of the

weighted values of the individual data f(j). In the Cressman

approach, variables are interpolated onto a uniformly spaced mesh by

the application of weight factors, using successively smaller in

fluence radii with each iteration (or "pass" through the field).

These weight factors are expressed in terms of grid length; therefore,

the detail of the analysis is limited by one's choice of grid length.

This method is suitable for objective analyses of mesoscale regions

where mesh lengths are comparatively small.

The generalized smoothed function, employed in this effort, is

given by

m m

g(x,y) - £ n f(j) /En , (11)
j=l 3=1

where n is the weight factor, m is the number of observation points,

and f(j) is the atmospheric variable measured at each observation j.

The influence of each datum is weighted according to its distance from

the grid point. The specific weight factor utilized for any given

"pass" through the field is
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n=exp ((- 4r2) /R2) , (12)

where r is the distance from the individual observation j to the given

grid point, R is the influence radius which is expressed in terms of

grid distances, and 4 is a reliability coefficient.

In this work, four "passes" were made through the field, de

creasing the radius of influence for each successive pass. The radii

varied from ten grid distances to one, with mesh length taken as 15.8

km. It should be noted that applications of a recursive weighted

averaging scheme require reasonably uniform data distributions to

insure stability in the results.

b. Smoothing

With the implementation of a weighted averaging scheme, disconti

nuities will develop on the grid at a distance from an isolated

observation j where the weighting factor n is rapidly approaching

zero. This problem is especially conspicuous near the boundary.

These discontinuities in the final output give rise to a further

depreciation in the stability of the results. This problem is

alleviated through the introduction of a smoothing scheme.

In this study, a systematic explicit smoothing is included for

the final products. The simple smoother

fj =(l-v)fj +(v/2)(fj+1 + f._}) (13)

can be applied sequentially to the two directions (Shuman, 1957); that
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is, smooth in each dimension independently of the other dimension, to

give

fid -(l-v)2 f„

+v(1-v)(f1.l +f1+1 J +fl ,.,+f, j+1)/2

+v2(fi.l j-1 +Vl j+l +fi+l j-1 +fi+l j+1> I4

Rijfij • <14>

where v is the smoothing element index and R.. is the response func-
•j

tion. If the distribution of an atmospheric variable is represented

by a Fourier integral (Sasaki, 1960), then the corresponding response

function is obtained by inserting the simple harmonic function

(harmonic form of the dependent variable)

f(x,y) =Aexp (i (kx +ly)) , (15)

with k and I as the wavenumbers in the x and y directions, respective

ly, and A representing wave amplitude, into (14), leaving the response

function

R(k,a) =(l -2v sin2(kAx/2))

*(l -2v sin2(*Ay/2)) . (16)

It should be emphasized that the above smoothing routine does not

affect the wavenumber nor the phase of the original wave; only its
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amplitude.

On my grid, the interior points are smoothed using the nine point

smoother (14). Only one "pass" is made through the field employing a

smoothing element index of v = 0.10. The corresponding response

function is

R(k,A) = (l -.2 sin2(aAh/2)\

*(l -.2 sin2(aAh/2)) , (17)

provided ax = Ay = Ah and k = a = a. The response function illus

trates that the smoothing is extremely light.

The border points are smoothed using the smoother illustrated in

(13). One pass is made through the boundary values employing a

smoothing element index of v= 0.45. The corresponding response

function is

R(k,£) =1- .9 sin2(aAh/2) , (18)

provided ax = Ay = Ah and k = a - <*. Considerable smoothing is in

dicated by this response function.

c. Computation of Vorticity and Divergence

The computation of £ and D, as already indicated, is done in two

different ways for the sake of comparison. One of the methods employs

finite differencing ("Finite Difference Method") in the field of

gridded u and v components and the other uses the "Line Integral

Technique." The details of these methods are as follows:
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1) Finite Difference Method

From the interpolated wind components, the grid point values of

divergence and vorticity are computed via centered differences. The

difference expressions are

and

D(:

+ (v (y-Ay) - v (y+Ay)| / (2Ay) , (19)

>,y) =[u(x+ax) -u(x-Ax)j /(2ax)

)
>-ax)J

-(u (y-Ay) -u(y+Ay)j

dx,y) =(v (x+ax) -v(x-Ax)j /(2ax)

(y-Ay) -u (y+Ay)l / (2Ay) , (20)

where ax = Ay. Note; the y axis points approximately toward the

south over this computational domain.

2) Line Integral Technique

The LIT does not require an initial interpolation of the winds.

Instead, the kinematic variables are computed from the randomly spaced

wind observations according to (6) and (7). The paths of integration

implied in these relations are triangles, each of which is defined by

three neighboring wind observations (corrected for balloon drift).

Since a minimum of three points is required to define an enclosed

area, the triangle produces the smallest scale and least areally-

smoothed information.

This technique has the ability of producing large quantities of

computed data points. The number of triangles that can be produced,



21

given n wind observations, is

n(n-l)(n-2) / 3! . (21)

The purpose of generating data points is to assign the available in

formation contained in the raw data to triangle centroids, which are

more densely distributed than the original observations.

The wind observations, at the end of each of the three line

segments, are utilized to compute a simple mean wind for that segment.

Eqs. (6) and (7) are evaluated from these mean winds situated along

each segment of the triangle. The divergence (or vorticity) value is

assigned to each triangle centroid. These values are then considered

as observations which can be interpolated to a uniform grid.

Both theoretical and practical considerations limit the tri

angles for which divergence computations can be reliably made. The

process of choosing a particular subset of triangles, from the set of

all possible triangles, has an influence on the divergence calculation

since the computed divergence values are not independent. Each

represents an average divergence over its associated triangle, which

shares at least one side with adjacent triangles.

The triangles must be assigned some weighting factor that filters

areal mean divergence and vorticity values which cannot be assumed to

represent point values over the computational grid. The following

criteria should serve as a guideline:

1) Uniform triangle sizes should be used.

2) Triangles should be approximately equilateral.
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3) Area of triangles should be commensurate with that of the

grid used in the final objective analysis.

Schaefer and Doswell (1979) determined an empirical weight, equal

to the square of the tangent of the minimum angle divided by the area.

This weighting factor follows the above guidelines adequately. It

should be noted that this weighting is not used in the interpolation

(Ceselski and Sapp, 1975). Its only purpose is to choose those

candidate triangles which are closest to being ideal.

The line integrals are evaluated from all possible triangles,

with computed values of divergence and vorticity assigned to the

centroids. The weight is then applied, filtering the faulty tri

angles. Kinematic values at the centroids of the successful tri

angles are considered as observations, and interpolated to a uniform

grid by the weighted averaging scheme previously described.

The computer implementation of the Line Integral Technique

calculation procedure is detailed in Appendix A.

d. Construction of the Fields of $ and x

The procedure for the construction of *J> and x fields follows

from the relevant discussion in Section 2. Given the fields of D and

S, obtained either through finite differencing or from the Line In

tegral Technique, (2) and (3) are solved by sequential relaxation

subject to the boundary conditions (8) and (9). The values of V and

V appearing in (8) and (9) are read from the original gridded wind

field, irrespective of the method used to determine D and Z.
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The details of the procedure to determine ty and x are as follows:

1) Obtain x by solving

2
v" x = D (x = 0.0 on the boundary).

2) Knowing the x values, evaluate 3x/3n at the boundary points,

and trapezoidally integrate the following equation along the boundary

3*/3s = - Vn + 3x/3n .

3) Knowing the values of ty at the boundary from 2), obtain the

field by solving

2

4) Evaluate 3<r»/3n at the boundary points, and trapezoidal ly in

tegrate the following equation along the boundary

3x/3s = + Vs - 3*/3n

5) Knowing the values of x at the boundary from 4), obtain the x

field by solving

v2x = D .

6) Repeat entire procedure three times.

Once the ^ and x fields are known, reconstruction of the wind field is

realized through the following equations:
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U = - 3^/3y + 3x/3X (22).

v = + a^/ax + 3x/3y (23)

e. Test of Validity of the Procedure for Wind Field Reconstruction:

Computation of Root Mean Square Vector Error

When real data are analyzed, it is not possible to declare one

analysis technique to be definitely better than another as true

divergence and vorticity fields are unknown. There also is no unique

bench mark against which the wind fields, reconstructed by the various

methods, can be compared. The bench mark arbitrarily chosen in this

study is due to Shukla and Saha (1974) and is the root mean square

vector error defined by

E = a)2+(v0-va)2| /m
m r

£ r°-u % (24)

where the subscript o stands for observed and a for analyzed; m in

dicates the number of observation points. Bilinear interpolation is

utilized to obtain wind estimates at the observation points from the

gridded fields.
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5. RESULTS AND DISCUSSION

The results of this study can be discussed in two parts, one of

which is just a statement of the innovations implemented. The other

is a qualitative analysis of the merit of the innovative procedure.

The items of innovation that should prove useful to future

efforts in mesoscale modeling are:

1) Placement of the radiosonde observations on surfaces of

constant S as defined in (10).

2) Implementation of a method to account for balloon drift while

developing the initial fields of dependent variables in the mesoscale

prediction scheme.

3) Systematic construction of wind fields consistent with the

observations and the fundamental dynamical constraints.

Of these items, 1) and 2) are just technical advances and are of un

questionable value. The final evaluation of 3) can only emerge from

the application and behavior of the wind field in actual mesoscale

prediction.

The major effort in this study is the construction of the wind

field. This construction has been done in three different ways and

the results presented hereafter bring out a comparison between them.

a. Gridded Components of Observed Winds

The development of the fields of u- and v-components proceeded

as follows. At first, the radiosonde observations were processed for
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balloon drift while being vertically interpolated onto the appropriate

S-surface. The resulting observations of u and v were then indi

vidually gridded by the weighted averaging scheme described in

Section 4. Subsequently the fields of u and v were smoothed through

the application of the smoothing operation (14) in the interior, and

(13) on the boundary.

Figs. 2 and 3 illustrate the isotach and direction analyses de

rived from the gridded wind field developed in the above procedure.

Of interest in the given plots is the velocity convergence situated

along a line from Big Spring to Sterling City extending northeastward.

The corresponding velocity divergence is situated southeast of Lamesa.

Velocity convergence, located northeast of Seagraves, may be deduced

from Fig. 3, with corresponding velocity divergence located west of

Post. Pronounced cyclonic curvature is evident within the Lamesa/

Snyder/Sterling City triangle. Corresponding anticyclonic curvature

is evident with the Midland/Big Spring/Lamesa triangle.

A root mean square vector error, as defined in (24), was perform

ed on the interpolated results. The error was found to be 0.3 m s .

b. Divergence and Vorticity by the Finite Difference Method and the

Resulting Wind Field

Given the gridded components, D and 5 were computed by finite

differences. The divergence field (Fig. 4) shows an area of strong

convergence located along and either side of a line from Big Spring to

Sterling City. Three distinct closed-off centers are illustrated.
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Fig. 2. Isotach analysis of the original gridded wind field
over the HIPLEX region. Isotach interval is 3.0 m s '.
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Fig. 4. Differential evaluation of divergence, by centered c
differences, for the HIPLEX region. Isopleth interval is 25.0 * 10"
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The corresponding distinct area of strong divergence is indicated

southeast of Lamesa. The above findings appear to be heuristically

consistent with the original observations. Distinct areas of con

vergence are shown northeast of Seagraves and east of Post. It is

difficult to support this finding in view of the original observa

tions. It is quite possible that this finding is an artifact of the

gridding scheme.

The vorticity field (Fig. 5) shows a strong distinct area of

positive vorticity in the Lamesa/Snyder/Big Spring triangle. A strong

area of negative vorticity (of approximately the same strength) lies

northeastward of Midland. An extensive area of negative vorticity is

shown, situated southeastward of Seagraves. The above findings appear

to be heuristically consistent with the original observations. A

distinct area of negative vorticity is shown northeast of Sterling

City* while a distinct area of positive vorticity is shown on the

southern boundary of the computational domain. The original observa

tions cannot support this finding. Again, this finding may be an

artifact of the gridding scheme.

Horizontal divergence and the vertical component of vorticity are

fundamental aspects of the horizontal vector wind field. It is

clearly desirable to preserve these properties during an analytical

representation of the winds. As explained in Section 4, the calcula

ted values of divergence and vorticity are used in solving the Poisson

type equations which yield values of x and if>, respectively. The wind

components are computed through the gradients of velocity potential
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Fig. 5. Differential evaluation of vorticity, by centered
differences, for the HIPLEX region. Isopleth interval is 25.0 *
10-6 s-1.
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and stream function.

A particular subregion of the computational domain is examined in

the following presentation. This subregion includes all nine triangle

centroids (clustered within the Lamesa/Big Spring/Snyder triangle) and

six radiosonde stations (Seagraves1 location deleted).

The reconstructed wind field (with D and 5 determined by the

Finite Difference Method) is shown in Figs. 6 and 7, and is similar to

the original gridded wind field. The root mean square vector error

for this retrieved wind field is about 1.3 m s" . It is obvious that

the original gridded wind field (Figs. 2 and 3) and the reconstructed

wind field (which preserves the divergence and vorticity aspects of

the original gridded wind field) are not identical. The reconstructed

wind field, via finite differences, recognizes a wind speed maximum

(19.3 m s" ) west of Big Spring. No wind speed as strong as 19.3

m s" was measured at the given radiosonde stations. However, conser

vation of the kinematic fields (through finite-difference reconstruc

tion) "forces" the existence of that wind value over this computa

tional domain. Other dissimilarities between the original and

reconstructed wind fields may be noted.

c. Divergence and Vorticity by the Line Integral Technique and the

Resulting Wind Field

In implementing the LIT, it may be recalled, triangles are formed

with the observation points as vertices. Given the seven radiosonde

stations, thirty-five triangles are created through the combination of
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Fig. 6. Isotach analysis of the reconstructed wind field, via
finite differences, for a subregion within HIPLEX. Isotach interval
is 3.0 m s"'.
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Fig. 7. Wind direction analysis of the reconstructed wind field,
via finite differences, for a subregion within HIPLEX.
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each observation with its neighbor. Areal mean values of divergence

and vorticity are determined through their integral definitions, and

assigned to all triangle centroids. Upon implementation of the tri

angle weighting factor, nine triangles survive the filtering (Fig. 8).

These nine triangle centroids, considered as point values of the kine

matic variables, are interpolated onto a uniformly spaced mesh by the

weighted averaging scheme previously described. The fields of

divergence and vorticity are shown in Figs. 9 and 10.

The wind field, reconstructed from the fields of divergence and

vorticity determined by the LIT, is given in Figs. 11 and 12. A root

mean square vector error computation also was performed, and was found

to be 6.9 m s" . This is much too high. Obviously this application

of the Line Integral Technique has produced an unacceptable recon

struction of the wind field.

The large vector errors in the reconstruction of the wind through

the LIT-determined vorticity and divergence values naturally cast

suspicion on the implementation of the LIT. In developing the results

presented above, a very stringent criterion was applied for the

selection of suitable triangles from the possible population. Of the

thirty-five triangles generated, only nine were retained for subse

quent interpolation. Dr. Joseph T. Schaefer (personal communication)

suggested a "relaxation of the criterion." According to his advice,

the selection criterion was relaxed, and this resulted in a retention

of thirteen additional triangles for interpolation. The results,

however, proved poor (Fig. 13) when compared to the original gridded
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Fig. 9. LIT evaluation of divergence for the HIPLEX region
Isopleth interval is 25.0 * 10"6 s-'.
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Fig. 10. LIT evaluation of vorticity for the HIPLEX region
Isopleth interval is 25.0 * 10"6 s"1.
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Fig. 11. Isotach analysis of the reconstructed wind field, via
LIT, for a subregion within HIPLEX. Nine triangles retained for
interpolation. Isotach interval is 3.0 m s-1.
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Fig. 13. Isotach analysis for a subregion within HIPLEX, with
twenty-two triangles retained for interpolation.

41



42

wind field (Figs. 2 and 3, pp. 27-28). The root mean square vector

error of the reconstructed wind field, developed from this version of

the LIT, was 10.7 m s" .

Obviously, the selection criterion was "overrelaxed." A careful

scrutiny of Fig. 8 revealed that no centroids (observations) were

present in certain critical areas on the grid. In particular, cen

troids were absent for the Seagraves/Midland/Lamesa triangle, the

Seagraves/Lamesa/Post triangle, and the Big Spring/Midland/Sterling

City triangle. The criterion was altered, so that the above critical

triangles (observations) survived the filtering. Seventeen triangles

survived and, intuitively speaking, were well distributed (Fig. 14).

The root mean square vector error, for this version of the LIT, was

5.6 m s" .

A final attempt was made to further reduce the vector errors for

the LIT. We may recall that the methodology for reconstructing the

wind field from the fields of divergence and vorticity entailed four

iterations (see p. 23). This particular number of iterations proved

optimal when reconstructing the wind field via the Finite Difference

Method. However, this finding may not be true for the LIT. In fact,

I found, through a trial-and-error approach, that the most optimal

results were secured with only one execution of the wind retrieval

scheme. It is obvious that the proper number of iterations (for the

wind retrieval scheme) will be realized when the root mean square

vector error between the observed and reconstructed wind is a minimum.

With one execution of the scheme, the root mean square vector error
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was reduced to 5,0 m s" .

Fig. 15 is the divergence field computed from the most recent

version of the LIT. The divergence field shows distinct areas of

strong convergence located either side of a line from Big Spring to

Sterling City. The corresponding distinct areas of divergence are

indicated either side of a line from Lamesa to Big Spring. These

findings are roughly similar to those of the Finite Difference Method

(Fig. 4, p. 29). Note that the distinct areas of convergence north

east of Seagraves and east of Post (suspicious findings in the Finite

Difference Method, see p. 30) are absent in the LIT evaluation. Ex

cept for the area of divergence southwest of Midland, all distinct

areas of divergence (convergence) can be supported from the original

observations.

The vorticity field (Fig. 16) shows distinct areas of positive

vorticity situated south and west of Snyder. Distinct areas of

negative vorticity are shown south of Big Spring and northwest of

Lamesa. These findings appear to be heuristically consistent with the

original observations, and are roughly similar to the findings in the

differential evaluation (Fig. 5, p. 31). Note that the distinct area

of negative vorticity northeast of Sterling City and the distinct area

of positive vorticity on the southern boundary of the grid (suspicious

findings in the Finite Difference Method, see p. 30) are absent in the

LIT evaluation. Again, all distinct areas of negative (positive)

vorticity can be supported from the original observations. The re

sulting wind field is illustrated in Figs. 17 and 18.
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Fig. 15. Seventeen point values of divergence interpolated onto
the grid. Isopleth interval is 25.0 * 10~6 s*'.
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Fig. 16. Seventeen point values of vorticity interpolated onto
the grid. Isopleth interval is 25.0 * 10-6 s"1.
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Fig. 17. Isotach analysis of the reconstructed wind field,
realized from one execution of the wind retrieval scheme. Isotach

interval is 3.0 m s"^.
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d. Evaluation of Results

An appraisal of the given methods, founded solely on the magni

tudes of their vector errors, is rather arbitrary. However, the vec

tor error does compare the analyzed fields (realized by different

methods) with the actual observations and, as is obvious, one cannot

do better than the original observations.

Comparison of the reconstructed wind field via finite differences

(Figs. 6 and 7, pp. 33-34) with the original gridded wind field

(Figs. 2 and 3, pp. 27-28) exhibits good agreement at the Post,

Snyder, and Sterling City stations. The Finite Difference Method

computes slightly stronger wind speeds at the Big Spring and Lamesa

stations. The greatest difference between the two wind fields was

indicated at Midland, with its vector error of 2.5 m s" . The dis

tribution of the vector error population was negatively skewed to the

left, with a median of .6ms" . The root mean square vector error

t o -1was 1.3 m s .

Comparison of the reconstructed wind field via the LIT (Figs. 17

and 18, pp. 47-48) with the original wind field (Figs. 2 and 3, pp.

27-28) exhibits good agreement for the Big Spring, Snyder, and Post

stations. The LIT generates stronger wind speeds at the Midland and

Sterling City stations. The greatest difference between the two wind

fields was indicated at Lamesa, with its vector error of 6.3 m s" .

The distribution of the vector error population was approximately

normal, with a median of 6.0 m s" . The root mean square vector error

was 5.0 m s" .
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From the preceding arguments, it appears that the Finite

Difference Method produces a more representative wind field. The root

mean square vector error was considerably lower, when compared to the

Line Integral Technique. Individual station vector errors were all

lower. However, the distribution of the vector error population was

more erratic in the finite-difference approach.
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6. SUMMARY

A computer program (Appendix B) has been developed for computing

divergence and vorticity directly from wind observations, and, thus

having available what are effectively "observed" kinematic fields.

The wind field is reconstructed so as to be consistent with these

kinematic fields.

a. Comparison between the LIT and Finite Difference Method Computa

tions of Divergence and Vorticity

The evaluations of the kinematic variables, via line integrals

and centered differences, were applied to an actual meteorological

data set. With one exception (see p. 44), all distinct areas of

divergence (vorticity), realized through the LIT evaluation, could be

supported in view of the original observations. This support was

lacking for "certain" distinct areas of divergence (vorticity)

realized through the Finite Difference Method evaluation. These

"certain" distinct areas are suspicious, probably an artifact of the

gridding scheme.

It is not difficult to see that "certain" distinct areas of the

kinematic variables can be falsely created by the Finite Difference

Method, especially near the boundaries of the computational domain.

In the differential evaluation, it is the "change" in the grid point

values of the wind which determine divergence and vorticity. The

orientation of stations (with respect to each other) and the deter

mination of grid point values of wind (realized through a distance-
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dependent weighting from grid point to observation) may interact in

such a fashion so as to create these "certain" distinct areas (through

falsely constructed wind gradients). The LIT does not require an

interpolation of the winds (or the gradient of the winds); therefore,

it is immune to this problem.

It is also apparent (from the plots) that integration produces

much "smoother" kinematic fields when compared to differentiation.

The term "smoother" suggests the amount (degree) of variability in the

computed values over the computational domain. This term does not

pertain to the "wiggles" inherent in the isopleths; idiosyncrasies in

the versatec plotter are not considered here.

b. Comparison between the Reconstructed Wind Fields via the LIT and

Finite Difference Method

The reconstructed wind field, via the Line Integral Technique,

was compared to a reconstructed wind field, via the Finite Difference

Method. Although the methodologies are different, both techniques are

expected to retain the original measured winds. The observations are

the only definitive information on the grid. From this perspective,

the reconstruction of a wind field, by using the kinematic fields

obtained through the Finite Difference Method, appears superior to its

competitor.

c. Future Research

A pertinent problem in the implementation of the wind retrieval
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scheme (see p. 23) was the determination of proper boundary values

(normal and tangential wind components, Vn and V ) for the subsequent

calculations. In this study, the needed winds (for the boundary) were

obtained from the original gridded wind field. Obviously, this choice

of boundary values will favor the finite-difference reconstruction of

the wind field since the kinematic variables are computed from the

derivatives of the original gridded wind field. A systematic proce

dure is required to secure a "better" choice of boundary values for

the LIT.

The following is a suggestion:

It is a well-known fact (Shukla and Saha, 1974) that
the boundary values (V and Vn) must satisfy the
integral constraints of

//lit dA •fVs

where A denotes the area of computation. Usually, a
residual exists from the computations such that

Es =IVs "(KlT dA

En =/Vnds -fj DLn dA

If the divergence and vorticity values are consider
ed absolute, then the above residuals can be reduced



by suitably altering the boundary values of V and
Vn. If we let s

Es =VJ ds

En =i?n/ds ,

where the overhead bar indicates some arbitrary
value, then

Vs-[/Vjds- /A/«LITdA]//ds

V [/Vnds-/A/fLiTdA]/fd^
Knowing the values of V and Vn, we can systema
tically alter each given boundary value of V* and
Vn (obtained from the original gridded wind field)
by the following equations

(V7). = (V -V )•
v s'i v s s'i

<»n>i = (vn -V„)1

where V'and Vn are the altered boundary values,
and i designates a given boundary point on the grid,
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The author feels that the above suggestion may reduce the large root

mean square vector error inherent in the LIT reconstruction of the

winds. Furthermore, this suggestion should also be applied to the

finite-difference reconstruction of the wind field for additional

refinement.
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Finally, the criterion used for the selection of suitable tri

angles (from a given population) for the purpose of obtaining point

values of divergence and vorticity appears to be inadequate. A sub

jective trial-and-error approach was the only means available (in this

study) for selecting a suitable "group" of point values for subsequent

interpolation (to obtain grid point values of divergence and vor

ticity). In using this approach, the most ideal triangle was assigned

a weight identical to less ideal, but suitable, triangles for im

plementing the interpolation phase of the LIT. Obviously, this is a

source of error. One must determine a criterion which assigns an

appropriate weight to each member of this select group of triangles

before implementing the interpolation phase. The reader is directed

to a paper by Ceselski and Sapp (1975) for additional insight.

d. Final Remarks

Dr. James R. Scoggins (personal communication) reports that the

"suspicious" distinct areas of divergence and vorticity near the grid

boundary, generated by finite-difference calculations, are usually

ignored. If this rule-of-thumb is implemented, then the wind field

reconstructed from fields of divergence and vorticity, calculated by

centered differences, is clearly superior to the other two methods in

determining the initial grid point values of wind for use in a meso

scale primitive equation model. The method of initializing the wind

field by using grid point values of wind derived directly from the

observations (through interpolation) is inferior despite its small



56

root mean square vector error. This given wind field appears likely

to be kinematically inconsistent with the derived boundary values.

The other method which consists of reconstructing the wind field from

LIT-computed fields of divergence and vorticity possesses a large root

mean square vector error. This given wind field appears to be less

consistent with the original observations when compared to the other

two methods.

It must be pointed out that the complete initialization of a

mesoscale primitive equation model was not realized in this study.

The mesoscale primitive equation model developed by Djuric and Das

(Scoggins et al_., 1981) was initialized from the gridded fields of

geopotential, wind, and temperature, as derived directly from the

observations (through interpolation). It is speculated that the

vitiation in the skill of their model was the result of these initial

fields (which were not in a state of balance).

If a balanced state between mass, wind, and temperature is to be

achieved, the wind field must be reconstructed so as to (at least)

preserve its vorticity. Stream functions, computed by a relaxation

of the vorticity field (see p. 23), are utilized in a balance equa

tion (Warner et al_., 1978) for the purpose of constructing geo

potential s consistent with the analyzed (or reconstructed) winds. The

temperature field is constructed from the hydrostatic relationship

utilizing the derived geopotentials. It is believed that these

balanced fields of geopotential, wind, and temperature (realized from

the above procedure) will reduce the problem of noise generation in
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the initial stage of a numerical model run.

Finally, it should be emphasized that Shukla and Saha (1974) have

proven that an analyzed wind field which preserved both its vorticity

and divergence always gives a better representation of the original

observed wind, than a wind field that preserves only its vorticity.

In this study, the gradients of the stream function were an order of

magnitude larger than the gradients of the velocity potentials

(computed by a relaxation of the divergence field). However, in

other cases, both gradients may have comparable magnitudes so that the

method of Shukla and Saha will be more relevant.
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Al) Balloon Drift Routine

The procedure is applied to each radiosonde station j:

1) Find the required S level height (S = 0.2) from the equation

zs(j) -zQ(J) + S(zt-z0{j))

(obtained from (10), p. 13).

2) Interpolate range and azimuth values of the balloon onto the

S levels by the equation

Vs(j) = VB(j)

+/(z$(j) -zB(j)j /(zA(j) -zB(j))j

*(vA(J) -vB(j)) ,

where VB and V« refer to either range or azimuth values measured at

given heights (from radiosonde calibration charts) below and above the

required S level height respectively, zg and z« refer to these given

heights (which sandwich the S level height), and Vs is the interpola

ted value (range or azimuth). Azimuth (AZM) is the angle between true

north and balloon location. It is a horizontal direction expressed in

degrees. Range (RNG) is the line-of-sight distance between balloon

and radiosonde station.

3) Determine the x and y displacements of the balloon (XDSP and

YDSP, respectively) by the equations
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XDSP =(RNGHsin(AZM)j /GD

YDSP =(RNGMcos(AZM)J /GD ,

where GD is grid distance (15.8 km).

4) Determine the new grid locations (x'.y7) of the balloon from

its launch site (x,y) by the equations

x7 = x + XDSP

y/ = y - YDSP .

The y axis points approximately toward the south.

5) Find the surface height at the new location (x/,y/). This is

realized through a bilinear interpolation of gridded surface heights

onto the new location z'(j).
o

6) Find the adjusted S level height (z'(j)) from the equation

zs'(j) -z0'(j) ♦ S(zt -z0'(j)) .
7) Interpolate desired meteorological values onto the adjusted

S level height by the equation listed in step 2 (Vg and V« infer de

sired meteorological values).

A2) Routine for Line Integral Technique

1) Construct all thirty-five triangles by the combination of

each radiosonde observation with its neighbor. Information at the

first vertex consists of i and j grid locations (FIl, FJl) and u and

v components of the wind (U1,V1). Information at the vertices are
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ordered as follows:

vertexl FIl, FJl, Ul, VI

vertex2 FI2, FJ2, U2, V2

vertex3 FI3, FJ3, U3, V3 .

This ordering is realized in the subsequent computer program (Appendix

B) through the subroutines METH1, METH2, METH3, METH4, METH5.

2) Reorder the second and third vertices (if needed) to ensure

that all subsequent summations proceed in a counterclockwise direction

(integrations commence at vertexl). This reordering is found in

Appendix B under subroutine SORT. In addition, the position of a

given vertex (situated either above or below its corresponding tri

angle segment, defined by the remaining vertices) must be established.

This entails a test for each triangle segment (DO LOOP 7813, Appendix

B).

3) For each triangle, evaluate:

Triangle centroid (Halliday and Resnick, 1974, p. 138).

Area of triangle (Fuller, 1972, p. 167).

Slope of triangle segment (Fuller, 1972, p. 164).

Weight of triangle.

(DO LOOP 2899, Appendix B).

4) Calculate mean u and v wind components from the vertices, and

assign these values to the midpoints of the triangle segments. From

these averaged components, a wind direction (DIR) and speed (SPD) may

be realized from the equations
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DIR = (57.29) tan_1(v/u)

SPD -(u2^ .
The x coordinate axis serves as the reference direction for the angles

(DIR).

5) Determine the tangent (VT1) and normal (VN1) components of

the mean wind which is situated at the midpoint of each triangle

segment (subroutine SIGN, Appendix B). Point values of divergence

(DIV) and vorticity (VOR) may be realized from these winds, and

assigned to the triangle centroids by the equations

DIV =/(VN1)(SIDE1) +(VN2)(SIDE2) +(VN3)(SIDE3)J
/ (TRIANGLE AREA)

VOR =j(VTl)(SIDEl) +(VT2)(SIDE2) +(VT3)(SIDE3) I
/ (TRIANGLE AREA)

where SIDE1, SIDE2, SIDE3 refer to the lengths of the triangle

segments.

6) Filter "bad" triangles.

7) Interpolate "good" triangles onto a uniform mesh (by the

weighted averaging scheme mentioned earlier) to obtain grid point

estimates of divergence and vorticity (subroutines GUESS, ANAL,

SMOOTH, Appendix B).
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//SOPTIONS
C HIPLEX RESEARCH
C <16> CORRESPONDS
C < 7> CORRESPONDS
C <10> CCf<REi>*'OMOS
C <2 1.2l> COrW-'ESPC
C. < 6> CORRESPONDS
C OA C* STATE**
C VALUr<NUMOr~ CF

CHARACTER*^
REAL

I*
2.
3.
4.
S.

REAL
l«
2,
3,
4,
S,

REAL
I. V ( 7,
2.
J. U C 7,
4, ZS( 7,
5.

RF. AL
RI*L E(50.l
INTEGER

1,«><VY.T.HIPL.
DATA SL L/C.
i> A 7 A K C A < / 2 i

5il*iil'/»l«/
DATA ITIME/1
COMMON DAT*.
CCM4UN /o«in
CCu<nN /GRIC
Ofc* INC F ILE

C M: 4N-"> >41 AHE TW
C < ! H,\ r» ) C.W I 3 HkMI
C 3 5, 6M AMJ l-"5.SH
C CONNER. GR10 SP

CUE =0.0
GEO = C .0
GEO! =0 .0
Ml

M2
Nl
N2
ISTA
IPAR

SCALE
SMO
NTS
SCAN
N05CAN
ISTART

TO
TO

TO
NDS

TC
ENT
STATIONS. LEVELS.

YE31 (IS)
<35),FJ2
(35).FI3
(35).FJ3
(35)*0TU1
(3*5) .OTVl
(35).DTU2

DAT A| ( 35).DTV2
SFCHT(3S).0TU3
FI (35).DTV3
FJ C35),SIDE1(
ANGLE<35), SI0E2(
VKHT (3S),SIDE3<

CRX (
B), CRV (

SCANR(
8). FII (
8), FJl <

FI?. (
ANCU.K 35). ANGL2<

6, 1 6) ,VAI.UE( 1»>, 8
NO (J5)»ITIME(

HIFLX,IFLAG
r ., 10,.20,.30..4
»?£..?'?> 27*28* 1*4.

THE NUMBER OF
THE NUMRER OF

THE NUMBER OF
TO THE GRID S
THE NUMBER OF

TOTAL STATIONS
UP;*ER LEVEL STATIONS
VARIABLES TO BE GRIOOED

IZE
S LEVELS INITIALIZED IN THE

DLA T
OLCS
FF!
rnj
GPV
DATA

VARIABLES)

35)
35)
35)
35)
35)
35)
35)
35)
35)
35)
35)
35)
35*
30)
35)
35)
3 5)
3T>)
35)
.10
6)

A

A I
TCI
TC
TW1
TW

( 18,
( 18,

10).VT1
18>*VN1

VT2
VN2
VT3
VN3

(35)
(35)
(35)
(35)
(35)
(35)

AREAK 35)
SPDl (35)
DIR1
SPD2
DIR2
SP03

( I 8,18), DI 03
( 18. tOtANGl
(18.IB >*ANG2
( 10.KD.ANG3
(18.ID),DIV
( 18.UU.V0RT

( 3S)
(35)
(35)
(35)
(35)
( 35)
(35)
(35)
( 35)
(35)

.SLVL( 8)
KDAY (23)

ANGL3( 35)

0,.5^..60 ,.70/
5,8 ^.19.21,24,2,3.4,5.6.7.14

5,ie.2«,00.03.12/
CAT A! ,J-KI,PFJ,A. Al.TC.TCl.TW.TWl
IJ/I« T AH T,J S T ARf,I END.JEND
J</ SI. AT , SLCN.M1 .Nl.GD.M2.N2
C2(d'J->.t>00*U,M'i)
'>. IJ LOCATION OF THE NORTHWEST CORNER OF A
CH Irt CONTAINED IN THE LARGER (18,18) GRID.

IS THE LATITUDE AND LONGITUDE OF THE NORTHWEST
ACING IS 40 KILOMETERS.

= 1
= 18
= 1
= 18
= 16
= 10
= 1.0
= O.l
= 7

= 3.0
= 4

= I
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5000

50--1

50 0 2

7C02

I END
JSTART
J END
ZT
LEV
NRPTS
ILM
MNY

GD
SLAT
SLON
DO 5000 1=1.NTS
DO 50 0 3 J-I.LEV
ZG(I.J) =0.0
U (I.J) =0.0
V (I*J) = 0*0
CONTINUE
DO 500 1 I=ISTART.IENO
DO 55 0 I J=JSTART.JEND
A (I*J) =0.0
Al (I.J ) = 0.0
TC (I.J) =0.0
T* (I.J) =0.0
TW1( I,J ) = 0.0
0 (I.J) = 0.0
TCK I.J ) =0.0
CONTINUE
DO 5002 1 = 1 .1STA
DATA ( t ) = 0.0
OATA1 (I ) =0.0
FFI (I) =0.0
OLAT (I) «0.0
FFJ (I) =0.0
DuON (I) -0.0
NO ( I ) =0.0
GPM (I) =0.0
SCCHT<I) = 0.0
CONTINUE
on 7O02 1=1.NRPTS
SCA.'IR( I ) = SCAN
OTU1 (I) =0.0
DTVl (I) =0.0
FIl (I ) =0.0
FJl (I) =0.0
^12 ( I ) = 0.0
F 12 (I) =0.0
FI 3 <I ) =0.0
FJ3 (I) = 0.0
CRX (i) =0.0
CRY (I) =0.0
OTU2 (I> =0.0
DTV2 (I) = 0.0
OTU3 (I) = 0.0
OTV3 (T) =0.0

SIOE1(I) =0.0
SIOE:2< I ) = 0.0
SIOE3(I) -0.0
ARcAK I ) =0.0
CONTINUE
DO 5003 1=1.rSTA

= 18
= 1
= 18
= 18000.0
= 8
=35
s I

= 50
=15.867
=33.80
=102.65
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00 5003 J=l.LEV
DO 5003 X=l,IPAR
VALUE(I.J.K) =0.0

5003 CONTINUE
C

DO 5004 I=l,ISTA
READ (5.500) NC< I) ,DLAT (I ) ,DLON( I ),SFCHT (O. YESl <I >

500 FORMAT ( I 3. IX,F4 .2,I X,F5.2.2X.F4.0.4X.A3)
5004 CONTINUE

DO 5005 LST=1.ISTA
CALL OEGRIO (DLAT (LST ) *DLON( LST) .F I ( LST) .F J(LST) )

FFI (LSD=FI(LST)
FFJ(LST)=FJ(LST>

5005 CONTINUE
C

IDAY = S
KTIME =5
IMON = 5
IF (IDAY .GE. C) IMON =» 6
IF (IDAY .GE. 14) IMON = 7
IIMON =IMON
I IDAY =KDAY (IOAY)
HUME =1TIVE(KTIME)
WRITE (6,502)

503 FORMAT (• 1' )
WRITE < 6, 50 4)

504 FORMAT (• '.Tl0,*HEIGHTS'.T25.'PRESSURE•*T40.•TEMPERATURE••
ST56.«DEV# POINT*.T72**DIRECT10N*.T86,'SPEED'.T9S**U WIND**
47 I 05. 'V WIND1)

WRITE (6,610)
610 FORMAT (• • ,T10. '(METERS)* *T27,•(MH)•.T41.'(CELSIUS)**T73.

*•(DEG)*.T86, »M/SSC'.T96. 'M/SEC ».T106.'M/SECM
C
C

505 FORMAT(«0•.T4S*A3.T50.12)
51fi FOKMAT CO*)
508 FOR*AT(* «.T 9 .F 7. I ,T?6 *F6. I ,T43.F5. I • T58.F5.1 •

#T74,F5.l*Ta7,F4.l,T95,FS.1.T10S.F5.1.TII8.F4.2)
DO 6006 LSI=l .NTS
WRITE (6.SC5) VESKLST) ,NO(LST)
wrirt <o,i06)
N3 = (LST-l )*HS+ ( IDAY-l)*5*KTIME
READ (32'N3) ((E( I.J.LST).1=I,50)♦J=I.16)
DO 6005 1=1.50
WRITE (6,508) (E(I.J.LST)*J=3*10)

6005 CONTINUE
GPM(LST)=E(I.3,LST)

• 600f: CONTINUE
OO 5070 K=l,ISTA
DATA (K)=SFCHTCK)

5070 CONTINUE
DO 5008 LT-l.ISTA
CUE =CUF+1
GEO =DATA (LT)+GEO

5008 CONTINUE
GEOl =SF0/CCIE

CALL GUESS (A.GEOl)
CALL ANAL (ISTA.SCANR.NOSCAN, I)
CALL SMCOTH (A.O.SMO)
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c

c
00
DO

DO

5010
5011
5012

!PAR=3, 10
•_ST = 1 .NTS
1=1.3

ZS(LST.I)=E(1*3.LST)+SLVL(I)*(ZT-E(1.3,LST))
IF (I .EO. 1) VALUF(LST.I ,IPAR)=r:(I.l:»AR.LSTI
IF ( I .EG. I ) GO TO 5012
DO 5013 J=l.f NY
IF (ZS(LST.I) .LE. E(J.3.LST)) GO TO S10

3013 CONTINUE
ZS(LST.I)=0.0
GO TO SOI I

510 CALL RATIO
CALL RATIO

ANG
XDSP
YDSP
FFI(LST)
FFJ(LST)

CALL INTRP
GPM(LST)
ZS(LST,I)
DO 5014 J=l
IF (ZS(LSV,() .LE. E(J.3,LST)) GO TO 511

5014 CONTINUE
ZS(LST.I) =0.0
GO TO 50 1 1

511 CALL ."*AVIO (7S.F,LST,I,J,IPAR,VLE)
VALUE" (L*:T .1 , IPAR) =VLE

S012 CONTINUE
5J11 CONTINUE
50 10 CONTINUE

W.TITE (6.5^1)
501 FORMAT(•I•,'I AND J GRID LOCATIONS')

WPITK (6, CO 1)
601 FORMAT (' 0 • ,T I 5 .» OOSF.KV AT ION', T45 , 'BALLOON DRIFT • )

tf.'HTE (6,502) (FI(LST),FJ(LST).Y«%St (LST),FF1 (LST ).FT- J (LST ).
*L^T= l, IST A)

512 FOPMAT (' • .T14.F6.2 .F6 .2 , T30,A7,T4A,F6.2,F6,2)

(?S.E.LST.I,J*15.RNGE)
(ZS.F..LST.I.J.16,AZM)

=AZM*0.0174SJ
=(RNGF*SIN(ANG))/G0
=(RNGE*COS(ANG))/GD
=XDS" ♦ FKLST)
=FJ(LST) - YDSP

(A.FFI(LST).FFJ(LST),OINT)
=DINT

=GPM(LST)+SLVL(l)*(Zr-GPM(LST>>
MNY

V.RITE (6«<>l2)
512 C.5»MAT( '1 • .'DATA ON S LEVELS' ,T4D, •( 0 ) IMPLIES MISSING DATA')

VRITE C6,«:IJ)
513 FORMAT <• 0' ,Tl O-i'HE IGHTS' .T25, •PRESSURE•.T*0••TEMPFRATURF »,

lf56,'DEV PCINT* *T72 ,'DIRECTION* • TO.S, • SPcEO',T9S. »U WIND',
STIOS.'V '* IM1S T\ 16. '3 LEVEL')

DO 5015 LS Tr-.i .NTS
WRITE (6,*:05) YESl (LST) ,N0(LST)
fi=IITE (6,506)
DO 5.1 ir; 1 = 1 .LEV
t*RIT«r (6. 50(2) ZS(LSTt I ) , ( VALUF.( L ST. I .IPAR) . I PA«=4. 10 ) . SL VL( 1)

SOIS CONTINUE
WHITS (6,'JO?) I I^ON, I (DAY, 11 TIME

509 FORMAT ( • I •, 10X• 'SURFACC HEIGHT ANALYSIS ON «.I2,
*•/• ,I4.3X, 'AT' ,3X,I4.' GMT' )

CALL OUTPUT (A,M1 ,M2.NI,N2.I.0, I )

IL=3
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520 !PAR=9
DO 50 20 LST=1.NTS
IF (1L .EC. 9) GO TO 6000
DATA (LST )--VALUE(LST,IL. IPAR)
DATAl(LST)=VALUE(LST.IL.IPAR+1)

5020 CON!INUE
Ll=l
Kl=l
CALL MF.THl (LI ,K1 ,FF I ,FF J .DATA .DATAl ,FI I ,FJ1 *DTU1 . DTVl .

SFI2,FJ?.0TU2.DTV2.FI3,FJJ,DTU3,DTV3>
CALL MF.TH2 ( LI .K 1 .FF I ,FF J .DAT A, DAT Al ,F I l.FJ I »DrU 1 *DTV 1 .

SFI2,FJ2,0TU2,DTV2.F13.FJ3.0TU3,0TV3>
CALL M^TH3 (LI .Kl .FFI.FFJ, DATA, OAT Al , F I 1. FJ l.OTU I. DTVl,

$FI2.FJ2,DTU2.OTV2.FI3.FJ3.OTU3.DTV3)
CALL NMr:TH4 (L I .K I ,FF I , FFJ . DAT A. DATA I *F I I.F J1 .OTU1 ,DTVI •

*FI2.CJ2.DTL2.DTV2.FI3.FJ3.OTU3.DTV3)
CALL MFTH5 ILI,K I ,FFI,FFJ,OATA.DATA I,FI1,FJl.DTU1.DTVl•

SFI2.FJ2.OPJ2.DTV2.FI3.FJ3.DTU3.0TV3)
CALL S3P.T (FIl.FJl *DTU1 .DTVl .F I 2 »T J2 . DTU2.DTV2 .FI 3.F J3.DTU3 ♦

&DTV3)
WRITE (6,2897)

2897 FORMAT (• 1 • ,T I 0 . • VERTEX 1',T30.•VFRTEX2*.T50,•VERTEX3• ,
f.T70,*C£NTRC. IO'.T90, 'TRIANGLE' )
00 2890 1= 1.35
CRX ( I )=(FI l( I)*FI2{ I )+FI3( I))/3
CRY (()=(FJl( I)*FJ2( I)*FJ3(I))/3

SI DEI(I)=(\FI1( I)-FI?(I))**2*(FJl(I)-FJ2( I) )**2)*f0.5
SI0£2(I)=((FI2(X)-FI3(I ))**2*(FJ2( I )-FJ3(I) )#*2)*+C5
SIDE3( I >=( (*I3( I)-FIMI ))**2+(FJ3( D-FJK I))6*2)**0.S

S =0.3*(SIDE1< I ) + SIDE2( I)+SIDF3(I ))
ARZA1 <X )= (A£S(S*(S-SXt>e 1(1) )*(S-3IOE2( I ))*(S-SI0E3( I))))**0.5
ANGLl ( I)=ARCCS(( (SIDE3( I)**2)♦(SIDEI( I)**2)«510E2( 1)**2)/

&( 2*SIDZ3( 1)*SI0E1\I)J)
ANGL2 (t )-ARCCS(( (SIOEK I)**2)+(SIDE2( I ) **2)~SIDE3( 1 ) * *2) /

& ( 2* SI OH 1 < I ) * SI OS.? ( I ) ) )
ANGL3' I )= AfcCOS* < (SIOK2( I) **2 )+( S f DE3 ( I )**2)-SlOEI< T)**2)/

&[2* SI 0:2 < I >* 3 IDE3( I ) ) )
ANGLti( 1 )-"A.'.:iNl ( AN»iLl ( I) ,ANGL2( I) ,ANGL3( 1))
WKT i I )=(TAN( ANGLE ( I )) )*'*2/AREAl( I )

2899 CONT(MJfi
00 2O00 1= 1.3E
WRIT5 (6,121) FIK I),FJl ( I>.FI2(I).FJ2( I)*FI3( I),FJ3( I).

SCUXvI),C«V(I)iI
121 FORMAT (• •,T6.F6.2.F6.2.T26.F6.2iF6.2.T46iF6»2,F6.2.T68.

IF5u2,F6.2 .T93.I2)
29CO CONTINUE

WRITE <6. 122)
122 FORMAT < • 1 • .T4,*TRIANGLE' .T21.'SI0E1• ,T31.•SI0E2•*T41,»SinE3«•

ST&O. 'A^EA »,T80.'WEIGHT1 )
DO 2901 I- I.35
/HIT'-: ( 6. 133) I .SID^1(T),SIDE2( U ,SIDE3( D.ARt'Al (I).WHT( I )

133 FORMAT <» «,T7,I2.T20.F6.2.T30.F6.2.T40.F6.2«r,.i9.FC.2,T79.F6.2)
2^01 CONTINUE

DO 777 1=1,35
UWNOl =(CTU1<I)+DTU2(I))/2
VWND1 =(0TV1(I)fDTV2(I))/2
CALL DIrtSPD (UWNOl*VW\D1*SPD*DIR)
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SPOl (I)
DtRl (I)
UWNQ2

VWN02
CALL DIRSPD
SP02 (I)
DIR2 (I)
UWN03

VWND3
CALL DIRSPD

SP03 (I) =
DIR3 (I) =
CONTINUE
WPITE (6,778)
FORMAT (•I'.T5.

S'WIND AT SIOE2'
WRITE (6.779)

779 FORMAT ( • •.T2 1
&T61, »OIR'*T69» •
W.TITE (6,780)
FORMAT ('0')
DO 7810 1=1.35
WWIT5 (6.781) I
F3RMAT <• •,T9.

6T68.F5.1)
7810 CONTINUE

RRITS (6.88 1 )
881 FORMAT ( • I' ,T5,

%• ANGLE OF SIOE2
DO /811 1=1.35
ANG1 (I)=ATAN2(
IF (ANGK I ) .LT
ANG1 (I)=90.0-A
IF ( AN^iK I ) ,GT
ANG2 (I»=ATAN2(
1= (ANG2(I) .LT
ANG2 (I)=90.0-A
IF (ANS2(I) .GT
ANG3 (t)=ATAN2(
IF (*NG3(!) .LT
ANG3 (I)-50.0-A
IF (ANG3(I) .CT
GO TO 7 311

e93 ANGl ( I ) = 27C.O-
GO TO 79 3

894 ANG2 (I)=270.0*
GO TO 794

895 ANG3 (I)=270.0»
GO TO 795

781 1 CONTINUE
CO 7812 1=1 .35
W-7ITE (6*882) I
FORMAT (• '.19.
CONTINUE
DO 78 13 l=l.3E

I FLAG = 2 SUGGESTS
IFLAG = 2
IF (FIl(I) .LT.
IF <FU(I) .CO,
IF (FIHIS .EG.

777

778

780

731

793

794

795

8*>2
7812

(UV,

(Ufc

SOD
IMR
(OTU2(I)*OTU3(I))/2
(DTV.»( I) +OTY'3( I ) )/2
N02.VWND2.5PO.D1R)
SPO
C IR
(DTU3(I)*0TU1(l))/2
(CTV3( D+DTVK I ))/2
N03,VWND 3,SPD,OIP)
SPD
OIR

•TRIANGLE*.T20,'WIND AT SfOEla*T40.
,T60**WIND AT SIDE3')

,'DIR'*T29,*SPD'.T41,»OIR*•T*9«»SPO«.
SPD' )

• OIRl(I).SPDl(I).DIR2( I),SPD2( I).DIR3( I).SP03(I)
I2,T20.F5. 1.T20.F5.1 .T40,FS.I»T48*F5.1 .T60.F5.1 •

•TRIANGLE',T20»'ANGLE OF SIOE1*.T40.
'.T60.*ANGLE OF SIDE3')

FJl(I)-FJ2(l).FI2(D-FIl(!))*57.2958
. -90.0 .UR. ANGKI) .GT. 90.0) GO TO 893
NG1 ( I )
• 360.0) ANGKI )=ANG1 (I )-360.0
PJ?( I )-FJ3( I ).FI3( I)-FI2( I))*57.2958
• -90.0 .OP. ANG2(() .GT. 90.0) GO TO 894
NG2CI)
» 360.0) ANG2( I )"^NG2( I )-3';0.0
FJ3( I )-*- J I ( ( ) ,r I I ( I)-^I3( I ))*57.2958
. -90 .C .OR. ANG3( 1 ) .GT. 90.0) GO TO 095
NG3(I)
. 360.0) ANG3(I)=ANG3(I)-360»0

ANGK I)

ANG2(I)

ANG3< I)

.ANGK I ) ,ANG2( I ) . ANG3( I )
U'.T25.F5. 1, f 45, F5. I.T65.FS.1I

THAT THE TRIANGLE IS BELOW ITS LEG

FI2(t)) IFLAG = 1
FI2(I) .AND, FJKI) .GT. FJ2(D) IFLAG=l
1-12(1) .AND. FJKI) »LT. FJ2(I)> »FLAG=2
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CALL SIGN (ANG!(I),DIRK I),IFLAG,SPDl(I).VT,VN)
VT1 (I)=VT
VN1 (I)ttVN
IFLAG = 1

IF IF 12(1) .GT. F 13(D) IFLAG=2
CALL SIGN (ANG2U) *DiR2(I). IFLAG. SPD2( l).VT*VN)
VT2 (l)=VT
VN2 (I)=VN
IFLAG = 2
IF (FI3(I) .LT. FIKI)) IFLAG=1
CALL SIGN (ANG3(I),D(R3(I).IFLAG,SPD3(D.VT.VN)
VT3 (I)=VT
VN3 (I)=VN

7813 CONTINUE
WRITE (6.409)

409 FORMAT (•1•,T5,«TRIANGLE',T20••WIND AT S!DElt*T40*
fc'WINO AT SIDE2*.T60,*WINO AT SIDE3')

WRITE (6*408)
408 FORMAT (• • . T2 1 , •TAN',T29,•NOR',T41 ,•TAN» *T49«'NOR'»

&T61. 'TAN' .T.19, 'NCR* )
WRITE (6*407)

407 FORMAT ( '0•)
DO 7713 1=1*35
WRIT? (6,406) I.VTKl)»VNl(I),VT2(I),VN2CI).VT3<I),VN3(I)

406 FORMAT (• ••TO*I 2.T20.F5.1•T28*F5.1 .T40.F5.1«T48*F5.1•
GT60-.F5.1 .T68.F5.1 )

77;3 CONTINUE
WRITE (6.123)

123 FORMAT (» 1 • , T5*•TRIANGLE' »T40. * DIVERGENCE'„T00,'VORTICITY » )
00 *022 1=1,32
SIDtl (I)=S10Fl ( I)*15800
SID«--2( I ) = SIDf£2( I > M5800
SI0t:3( I )=SIDE3( 13*15800
DIV ( I ) = ((VN1 ( I)(SIDE! (t)) + (VN2( I)*SI0E2(I))+<VN3(I )*

»SIDP.3( ( ) ) )/( AREAK I ) * 1580 0** 2)
VORT (I )=((VTK O'SIBEK I)) + (VT2( I)*SIDE2( ()) + (VT3( I)*

SSIDEK I ) ) )/( AttEAl ( f ) ftlS800V#2)
WRITE (6.102) I,01V(I),VORT(I)

102 FURMAT (• • .T9,I2.T36.E14.7,T7S,E14.7)
8022 CONTINUE

IPTS=0
IR=l
DO 7292 1=1,35
IF (WHT(() .LT. 0.05) GO TO 7292
SCANR(IR) =1.0
DATA (IR) -DIV (I)
DATAl (IR) =VURT (I)
FFI (IR) =CRX CI)
FFJ (IR) =CRY (I)
TPTSMPTSM
IR=I«+1

7292 CONTINUE
CALL GUESS (A ,0.0)
CALL GUESS (A 1.0.0)
CALL ANAL <IFTS ,SCANR,N0SCAN.2)
CALL SMOOTH (A *>3*SMO)

WRIT2(6.5 1S> SLVL( ID.I IMON,IIDAY,I I TIME
515 FOHMAT( • I • . !0X , • Dl V'iT'GENCE AT S LEVEL •«F4.2,' ON •

X.(2.'/'.IA.3X.«AT',Jy.I4,« GMT')
CALL SMCOTH (Al*»,SMO)
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CALL OUTPUT (A •M I .M2.Nl.N2.1.OE06,1)
WPtTE (6.516) SLVL(IL).IIMON*IIDAY,IITIME

516 FORMAT! •I ', 10X. 'VORTICITY AT S LEVEL ••F4•2•• ON •
#.12.'/'.I4.3X,*AT»,3X,I4.» GMT')

CALL OUTPUT (A 1 . M I , M2,N 1 ,N2,1.0E06. I )
6000 CONTINUE

STOP
ENO

SUBROUTINE RATIO (ZS,E,LST,I,J,T, VLE )
INTEGER T.IFLAG
DIMENSION ZS( 7,8)•E(50•16*16)
VLE=E(J-l,T,LST)*(ZS(LST,I)-E(J-l ,3,LST ) )/(E<J,3.LST)-

SE( J-l .3.LST))*(E(J.T.LST)-E( J-UT.LST) )
RETURN

END

401

31

32

40

41

SUBROUTIN
THIS ROUT
VALUES AT
DIMENSION

E ANAL (NRPTS,SCANR,NOSCAN,I GO)
INE ANALYZES THE REPORTEO DATA AND PUTS THE ADJUSTED
GRID POINTS.
TCK 18.18), SCANR(35)
TWK 18.18).FFI (35)
TC ( 18,10),FFJ (35)
TW ( 18,18), DATAK35)
Al ( 18,18) .DATA (35)
A (IP,18)

TA,CAT AI,FFI,FFJ,A.A1,TC,TCI.TW.TWI
RIDfJ/ (START,JSTART.IEND.JEND
SCAN=1,NOSCAN
=JSTAFT.JEND
=ISTART,IEND

=0.0
=0.0
= 0.0
= 0.0
= 0

=1,NRPTS

COMMON
COMMON
DO 400
DO 401
00 40 1
TC (I
TCKI
TWKI
TW (I
NCNT
DO 40 2
M = I
N = I
IF (DATA
IF (DATAl
IF (M .EO
II=FFI(X)
JJ=FFJ(K )
RMAX

IF (NRPTS
(M3CAN

(NSCAN

(NSCAN
TO 32
(NSCAN
(NSCAN
(NSCAN

RM5Q = RM
NCNT =i NC

IF
IF

IF
GO
IF

IF

IF

J)
J)
J)

iJ)

GO TO (40
CALL IN

ERROR =DA
CONTINUE

(K) .EC.
(K) .FO.
. 2 .AND,

0.0)
0.0)
N ,EQ,

M=2
N=2

2)

•NE. 16)
.EO, I)
•EO. 2)
•EQ. 3)

•EC. 1)
•EQ. 2)

•EQ. 3)
AX**2
NT ♦ 1

GO TO 31

RMAX=10*0
RMAX= 5.0
RMAX= 2,0

GO TO 40 2

=SCANR(K)

RMAX=1G.0
PMAX=10.0
RMAX= 5.0

.41).M

TRP (A .FFI(K),FFJ(K)*OINT)
TA (K)-OINT
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GO TO (42.43).N
42 CALL INTRP (A 1,FFI(K)*FFJCKI*DINT 1)

EKROR l=DATAKK>-OINn
43 CONTINUE

11-'sFFKK) - RMAX+0.5
12==FFl(K ) ♦ RMAX+0.5
Jl-=FFJ( K) • nw AX 1-0.5

J2 =:FFJ(K ) + KMAX+0.5
IMIN = MAXO( 1ST ART. ID
I MAX = MINC(IEN0,I2)
JMIN = MAX0(JSTART,Jl)
JMAX = MIN0(JENC.J2)

DO 40 3 J-=JMIN.JMAX
DO 404 1 == 1 WIN. I"AX

(I .J)
TO 405
TO 405

RSO = (FLOAT! I )-FFI(K))**2 + (FLOAT(J) ~FFJ<K>1**2
IF (RSO .GE. RMSC) GO TO 404
WGT - EXP(~4.*RSQ/RMS0)
GO TO (44.45).M

44 TC (!,J)=TC ( I ,J)*WGT*ERROR
TW (I.J) = TW ( I ,J)+WGT

45 GO TO (46 .404) *N
46 CONTINUE

IF (!GO .EQ. 1) GO TO 404
TCI(I .J) = TCl( I,J)*WGT*ERR0R1
TWK ( ,J)=TWl( I ,J)*WGT

404 CONTINUE
403 CONTINUE

C STATION CUTSICE OF THE GRID WON'T BE CONSIDERED,
402 CONTINUE

DO 40 5 J=JS7ART,JENO
DO 4?5 I=ISTART,IEND
IF (TW(I.J) .LF.. 0.0) GO TO 47
A (I.J) = A (I*J) •»• TC (I,J)/TW

47 IF ((GO .EC, 1 ) GO
IF (TWKI.J) .LE. 0.0) GO
Aid.J) = AKI.J) + TCKI,J)/rwi(I.J)

405 CONTINUE

400 CONTINUE
.*MTURN
END

SUOROHTINF OECRIO (DLAT.DLON.FI,FJ)
CON."JrM /GRILJK/ SLAT.SLON.Ml .Nl.G0.M2.N2

C LATITUDE AND L CC IITUDF. CF THE NORTHWEST CORNER OF THE
C GRID IS 35.6CN AND in5.50Ws GRID SPACING IS 40 KILOMETERS

CNST = .267^492
COST = ,7\S = 6tiP.
CST = 57.29578
FACl =:4450.4231/GO
PHI =(90«3LAT)/CST
FAC2 =FAC1*(TAN(PH1/2.0)/CNST)**COST
ALAT =(90 .«0LAT)/CST
R =FAC1*<TAM AL.AT/2.0)/CNST)**COST
ALON =(SLCN»DLCN)*COST/CST
FI = Ml+R*5IN(ALON)
FJ = Nl*R*COS(AL0N)«FAC2
R::TURN
END
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SUBROUTINE INTRP (A*FFI.FFJ.DlNT)
DIMENSION AI18.18)
II = FFl

JJ = FFJ

DI = FFI-FLOAT(II)
DJ = FFJ-FLCAT(JJ)
Zl = A( I I.JJ )

Z2 = A( I HI * JJ)
7.3 = A( I I»JJ+1)
Z4 = A( I 1*1,JJM)
Z5 =Zl*(Z2-Zl)*OI
Z6 = Z3+(Z4"2 3)-*OI
DINT =Z5*</6-Z5)*0J
RETURN
END

SUBROUTINE SMOCTH (A.B,C)
C A GOES IN UNSMUOTHED. A COMES OUT SMOOTHED, O IS ORIGINAL. A

DIMENSION M 18 , 18).0(10. 1 3)
COMMON /G"I01J/ ISTART.JSTART.IEND.JEND

C SMOOTH IK1ER1QR POINTS
Jl = JSTART ♦ 1
J2 = JEND - 1
11 = ISTART + 1
12 = IEND - I
C2 = C*(1.-C)/2,
c:$ = c*c/4.
C4 = 1. - 4.«C2 - 4.*C3
DO 100 J-J1.J2
OO 100 1=!1.12
0(1.J) = C4*A< I *J)+C2*(A( l~l.J)+A(l*l . J) + AM.J-l )*A( I.J+1 ))

* *C3*( A(l-l,J-l)*A(l~l,J*-l)«-A(I+l,J-M)*A( t+l,J-l ) )
100 CONTINUE

C SMOOTH BOROFR POINTS
CI = (1.0 « CI/2.0
K = JSTAPT
L = JENO
M = ISTAPT
N = 1ENO
DO 15 1 I=It,l?
fJtl.KJ = A(l,K)*C ♦ CI*(A(i-l,K) ♦ A([fl*K))

101 'i(I.L) = A(I,l. }*C + C1*(A(I~1,L> + A(l + l,L)l
DO 10 2 J=Jl.J2
<»(M.J) «= A(M,J)*C + Cl*(A<M.J-l) ♦• A(M.Jfl))

IJ2 f)(N,J) a AIN.J)*C+C1*(A(N.J-1)+A(N*J+1)}
C SMOOTH CCPMiRS

P(M,K) = 4(M.K)*C ♦ C1*(A(M,K+1) ♦ A(MM.K))
0(N,K) = A(U,K)*C + Cl*(AIN«l,K) ♦ A(N,XM!>
H(M.L) = A(M,L)*C ♦ Cl*(A(M.L-l) ♦ A(MH.D)
R(N,L) = A(,N,L)*C + C1*(A(N-1»L) ♦■ A(N,L-1))

CALL MOVE (e.A)
RETURN
END

SUBROUTINE GL'ESS (A.VAL)
common /o^ior;/ istart,jstart.ieno,jf>'d

C INITIALIZE Tf-r- KARNES FIRST GUESS BY READING
C IN VAL AND SETTING A=VAL

REAL A(18*1'3)
OO 1 lalSTART.IEND
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DO I J=JSTART,JEND
A( I ,J)=VAL

I CONTINUE
RETURN
END

SUBROUTINE OUTPUT (A,11, I MAX,J 1,JMAX,SCALE.UK I
DIMENSION A(18,18)*PLINE(40)
IIL =11-1
IIMAX=IMAX-Il+l
WPITE (6,100) ll,IMAX.Jl.JMAX,SCALE

100 FOPMATI' »,'Il = ».I2,» IMAX = »,I2*' Jl = ••I2,» JMAX = »,I2,» SC
1ALE FACTOR = '.E10.2)

DO 10 1 J ~ 3,16
DO 102 1= 1.18
PLINE(I)=0.0
IF (J .LT. Jl .OR. J .GT. JMAX) GO TO 102
IF (I .LT. II .OR. I .GT. IMAX) GO TO 102
PLINE(I"! IL )=A( I . J)*SCALE

132 CONTINUE
IF (UK .EG. OX GO TO 12
WRITE (6.10) (PLTNE(I),1=1,1IMAX)

10 FORMAT(IH0.10X.18F6.0)
WRlTE (6.199)

199 FORMAT (IhO)
GO TO 101

12 WITG (6.11) ( PL I NE( I). 1=1. 11 MAX)
11 FORMAT(' '.21F6.1)

10 1 CONTINUE
RETURN
ENO

SUBROUTINE MOVE(A.B)
COMMON /GRIOIJ/ 1START.JSTART*IEND.JEND
DIMENSION At18.1H).8(18.18)
DO I J=JSTART.JEND
OO 1 I=(STAKT.IENO

1 n< I.J)=A( I.J)
HE TUUN
END

SUBROUTINE METH1 (LI,K1,FFI.FFJ,DATA,DATAl.FI1,F.U*
DTUl,OTVl ,FI2,FJ2.DTU2,OTV2,FI3,Fj3,OMJ 3.DTV3)

(3S),DTU» 135),DTVl (35)
(3r;),DTU2 <35),DTV2 ( 3S)
(3S)«DTU3 (35),DTV3 (35>

DIMENSION1 r-f-I (35) .FI 1 (35) .FJl

I. FrJ (35) ,FI2 ( 35) .FJ2

2, DATA (35) .FI3 (35) .FJ3

3, OATAK 35)

DO 1 L= 1, S
FIl (L)= FFI (1)
FJl (L)= FFJ (1)
DTUl (L)= DATA (I)
DTVl (L)= OATAK 1)

CONTINUE
DO 2 L= 6. 9

FIl (L)= FFI (2)
FJl (L)=• FFJ (2)
DTUl (L >-=0ATA (2)
JTVl (D-'C^TAl (2)

CONTINL'E
00 3 L=10.12
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FIl (L)=FFI <3)
FJl (L)=FFJ (3)
DTUl (L)=OATA (3)
OTVl (L) = DATAK3)

CONTINUE
DO 4 L=13,14

FIl (L)=FFI (4)
FJl (L)=FFJ (4)
DTUl (L)=DATA (4)
DTVl (L)=0ATAK4)

CONTINUE
FIl (15)=FF! (S)
FJl (15)=FFJ (5)
DTUK 15)=DATA (5)
DTVt(15)=0ATAI(5)

DO 5 L= 2. 6
FI2 (LI)=FFI (L)
FJ2 (LI)=FFJ (L)
DTU2(L1)=OATA (L)
DTV2(Ll)=OATAl(L)
LI =Lltt

CONTINUE
DO 6 L= 3. 6

FI2 (L1)=FFI (L)
FJ2 (LI)=FFJ (L)
DTU2(L1)=CATA (L)
DTV2(L1 ) = OATAKL)
LI =Ll+l

CONTINUE
DO 7 L= 4, 6

FI2 (LI)=FFI (L)
FJ2 (LI)=FFJ (U)
DTU2(Ll)=CATA <L)
0TV2(Ll)=CATA1(L)
LI =Ll*l

CONTINUE
DO 8 L= S, 6

FI2 (LI)=FF1 (L)
FJ2 (LI)=FFJ (L)
OTU2(Ll)=OATA (L)
07V2(L1)=0ATA1(L)
LI =LIM

CONTINUE
FI2 (LI)=FFI (6)
FJ2 (LI)=FFJ (6)
DTU2(Ll)=CATA (61
DTV2(L1)=CATA1(6)
LI aLltl

DO 9 L= 3, 7
FI3 (Kl)-FFI (L)
FJ3 (Kl)=FFJ (L)
01U3(K1)=CATA (L)
DTV3(Kl ) = OATAKL)
Kl =KI*l

CONTINUE
OO 10 L= 4. 7

FI3 (Kl)=FFl (L)
FJ3 (K1)=FFJ (L)
DTU3(K1)=DATA (L)
DTV3(K1)=CATAl(L)
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10

ii

12

Kl =K141
CONTlNLE
DO 1l L= 5, 7

FI3 (Kl)=FFI (L)
FJ3 (Kl)=FFJ (L)
DTU3(Kl)=CATA (L)
DTV3(K1)=0ATA1(L)
Kl = K1*1

CONTlNUE
DO 12 L= 6, 7

FI3 (Kl)=FFI (L)
FJ3 (Kl)=FFJ (L)
DTU3(K1)=DATA (L)
DTV3(Kl)=CATA1(L)
Kl =K1*1

CONTINUE
FI3 (Kl)=FFI (7)
FJ3 (Kl)=FFJ (7)
0TU3(K1 )=0ATA (7)
DTV3(K1)=DATA1(7)
Kl =KKl
RETURN

SUBROUTINE M£T^2 (L I.K 1,FF I.FFJ .DAT A, OATA1 ,FH ,FJl ,
DTUl .OT VI .FI2.FJ2,DTU2.0TV2,FI3.FJ3.DTU3,DT»/3)
DIMENSION FFI (35).Fit (35).FJl (35),DTUl (35),DTVl (3S)

1* FFJ (35),FI2 (35),FJ2 (35),DTU2 ( 35),DTV2 (35)
2* DATA (3S),FI3 (35).FJ3 (35),DTU3 <35),0TV3 (353
3. DATAK35)

DO 1 L=16,10
FI 1 (I )= FFI ( 1)
FJl (L)^FFJ (I)
DTUl (L)-DATA (1)
DTVl (L)=0ATA1(1)

CONTINUE
DO 2 L=19,20

FIl (L)=FF( (2)
FJl (L>=IFJ (2)
DTUl (L)=OATA (2)
OTVl (L)=0ATA1(2)

! CONTINUE
FIl T21)"FFI (1)
FJl (2l)=FFJ (3)
DTUK21 ) = 0ATA (3)
DTVK21 )=L'ATAl (3)

DO 3 L= 3. 5
FI2 (LI )=FFI (L)
FJ2 (LI)=FFJ (L)
DTU2(Ll)=DATA (L)
DTV?(L1>=CATA1(L)
LI -Ll+1

i CONTINUE
DO 4 L= 4. 5

F12 (LI )--FFI (L)
FJ2 (LI ) = FFJ (L)
DTU2(Ll>=DATA (L)
DTV2(Ll )=OATAKL)
LI -Ll+1

CONTINUE
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FI2 (Ll)=FFI (5)
FJ2 (LI)~FFJ (5)
DTU2(L1)-CATA (5)
DTV2(L1)=OATAl(5)
LI -LI♦1

00 5 L= 5. 7
FI3 (Kl ) = FFI (L)
FJ3 (Kl>=FFJ (L)
DTU3(Kl)=DATA (L)
DTV3(K1)=DATAl(L)
Kl =Kl+l

5 CONTINUE
OO 6 L= 6, 7

FI 3 (*I >=FFI (L)
FJ3 (Kl)=FFJ (L)
0TU3(Kl)=CATA (L)
DTV3(KI)=DATA1(L)
Kl =K1+1

> CONTINUE
FI3 (KI ) = FFI (7)
FJ3 (Kl)=FFJ (7)
DTU3(Kl)=DATA (7)
DTV3(Kl)=DATA1(7)
Kl =Kl+l
RETURN

ENO

SUHROUTIME »-FTH3 (LI » Kl .FF I .FFJ , DATA.DAT Al ,FI1 ,FJ1 •
DTUI.OTV1 ,F'. 2»FJ2eDTU2,DTV2,Fl3.-J3.DTU3,DTV3)
01 MENS I CM FFI (35),FIl (35),FJl (35).DTUl (35),DTVl (35)

1, FFJ CI5).FI2 (J5).FJ2 (35)9DTU2 <35).0TV2 (35)
2, DATA (35).FI3 (35).FJ3 (35),DTU3 C35).DTV3 (35)
3, OATAK35)

DO 1 L-22,24
FIX (L)=FF( (1)
FJl (L)=FFJ (1)
Dlill (L) = CATA (1)
DTVl (L)-DATAl(I)

L CONTINUE
DO 2 L=25,26

FIl (L)=FFI (2)
FJl (L)-FFJ (2)
DTUl (L)=OATA <2)
DTVl (L)=DATAK2)

> COM 1 NUE
FIl r?/)=FFI (3)
FJl (27)=FFJ (.2)
OTUK27)=CATA (3>
OTVIf ?7)=DATAK3)

DO 3 L= 2, 4
FI2 (H)-FFI (L)
FJ2 (L1)=FFJ (L)
DTU2(Ll)=CATA (L)
DTV2(L1)=DATA1(L)
H =L1+1

3 CONTINUE
OO 4 L= 3, 4

FI2 (L1)=FFI (L)
FJ2 (LI)=FFJ (L)
0TU2(L1)-CATA JL)
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DTV2(Ll
LI

CON

FI2 (LI
FJ2 (LI
DTU2(LI
DTV2(L i
LI

DO
FI3 (Kl
FJ3 (Kl
DTU3(K 1
DTV31K1

Kl
CON

DC

FI3 (Kl
FJ3 (Kl
DTU3JK 1
OTVKK1
Kl

CO.".
FI3 (Kl
F J 3 ( K 1
DTU3CX1
DTV3( Kl
Kl
HETURN
END

SU^fTOUTINE MET14 ( LI . K 1 ,FF I ,FF J ,DATA . DATA I >FI 1 ,FJ1 ,
DTUl,DTVl,F12.FJH.0TU2,DTV2,F1J,FJ3,OTU3,OTV3)

)=OATAl
= Ll*l

TINLE
>-FFI
)= FF J
)=OATA
)-OATAl
= L1+I

5 L=
)-FFI
)=FFJ
)=OATA
)=CATAl
= K1+1

T INUE
6 L=

)*FFI
)= FFJ
)=OATA

)-OAT At
= K l + l

TTNUE
)=FFI
)=FF J
)-CATA
)=DATAl
= K1M

DIMENSION
I .

2,
3,

DO I
FI I (L ) = FFI
FJi tLi=FFJ

U.)

(4)
$4)
(4)
(4)

5, 7
(L)
(L)
(L)
(L)

ft, 7
(L)
(L)
(L)
(L)

(7)
(7)
(7)
(7)

FFI (.55) .FIl
FFJ 05),FI2
DMA (3J),FI3
DATA ! (35)
L=i8.29

( 1)
(1 )

OTU! 'L)=CATA (1)
DTVl (I. ) = CATAK1)

CONTINUE
FT I C30)=F»-1 12)
FJl ?3r >=FFJ (2)
OfUl(30»=DA7A (2)
OTVK 30 ) = 0ATA1 ( 2)

00 2 L= 2. 3
FI2 (LI)=FFI (L)
FJ?. (LI ) = FFJ (L)
DTU2(Ll)=OATA (L)
DTV2(L1 ) = 0ATA1(L)
LI =Ll*l

CONTINUE
FI2 (L! )=FF I (3)
FJi (LI)"FFJ (3)
Dl:J;-.(Li )=OATA (3)
DTV2U.1l-RATAl(3)
LI =LIM

DO 3 L= <5. 7
FI3 (Kl)-FFI (L)

( J5) .FJl
(3S).FJ2
(35) ,FJ3

(35).DTUl
( 35),DTU.l
(35).0TU3

(35). DTVl (35)
(35) ,DTV2 (35)
(3G).DTV3 (35)
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FJ3 (Kl ) = FFJ (l.)
DTU3(Kl>=OATA (L)
DTV3(KI)=PATA1<L)
Kl =K1*1

J CONTINUE
FI3 (Kl) = FFI (7)
FJ3 (Kl)=TFJ (7)
DTU3(K1)=DATA (7)
DTV3(Kl)=OATAl(7)
Kl =K1+1
RETURN

END

SUBROUTINE MFTH5 (L1.Kl .FFI.FFJ.DATA.DATAl«FI1,FJ1,
DTUl.DTVl .Fl?.FJ?».DTU2.0TV2,i=I3.FJ3.DTU3.DTV^*
DIMENSION FFI (35).FIl (3b),FJl (3S),DTU1 <35),0TV1 (35)
1. Frj (35).FI2 (35).FJ2 (35),DTU2 (35),0TV2 (35)
2. CATA (J3).FI3 (35).FJ3 (35),DTU3 (J5).DTV3 (35)
3. DATAK35)

OO 1 L= 1, 4
FIl (Ll)=Fn (L)
FJl (l.l)=FFJ (L)
DTUKL1 )= CATA (L)
DTVKL1 )=DATAKL)
LI = Ll*l

I CONTINUE
OO 2 L= 2. 5

FI2 ( ,Cl >=FFI (L)
FJ2 ( Kl )=I-T J (L)
DTU2(KI )= OATA (L)
DTV2(K1}sCATAI(L)
Kl =Kl*l

> CONTINUE
MI - 3 1

DO 3 L= 4. 7
FI3 (Ml>sFFI (L)
FJ3 ( Ml >=:-FJ (L)
DT'J3(M1 )=CATA (L)
DTV3( Ml )=-DATAl (L)
Ml =Ml+l

} CONTINUE
FIl (..:.)~FF! <l)
fji (->•:•) v FFJ ( ! )
DTUl (.-3)« CATA (1 )
DTVK 3 3^-ilATAK I )
FI2 (3'»)--.F!'I (2)
FJ2 < V«)=FFJ (2)
DTU2( 3~ 5=HATA (2)
DTV2( J >)r-r.ATAl (2 )
FI3 ( 35)=FFI ( 7)
FJ3 C-'iJ.-fHJ (7)
DTU31 3-.;)=0ATA (7)
DTV3( 3 >)-DATAl(7)
RETURN

END

SUOMOUTINF SORT (r I 1,FJ I *DTUI,DTVI,FI 2,FJ2,0TU2.DTV2,FI3?
&FJ3,DTU3,OTV3)

DIMENSION FIl (35),FJl (35),DTUl (35).DTVl (35)
1, FI2 CJ5),FJ2 (35).DTU2 (35),DTV2 (35)
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, FI3 (35).FJ3 (35) •OTU3 (35),DTV3 (35)
do e 1= I • 35

IF (1 .EQ. 14 • CR. I •EQ. 31) GO TO 6
IF (FI3(I) .GT. FI2(I) • AND. Finn • GT, *I2(I>) GO TO 1
IF (FI3(I) .GT. FI2(I) • AND. F I K I ) .Lf. FI2(D) GO TO 2
IF (FIJI I ) .LT • FI2(i) .AND. FI 1(1) • LT. FI3(D) GO TO 3
IF (FI3(I) .LT. FI2(I) • AND. FIl(I) • GT, FI3( I)) GO TO 4
G3 TO 6
IF (FJ3( I ) .LT. FJ2(I) • AND. FJKI) • GT. FJ24I)) GO TO S
IF (FJ3(I) .GT. FJ2(t) • ANO. FJK I ) • GT, FJ3<I)> GO TO 5
IF (FJ3(I) .GT. FJ2(I) • AND. FJK I ) • GT, FJ2(l)) GO TO 5
GO TO 6
IF (FJ3(I) .GT. FJ2(I) • ANO. FJKI) • GT. FJ3(D) GO TO S
IF (FJ3(I) .GT. FJ2( I) • AND. FJKI) .LT. FJ3CI)) GO TO S
IF (FJ3(I) .LT. FJ2(I) • ANO. FJK 1) • GT. FJ2(I)» GO TO 5
GO TO 6
IF (FJ3(l) .LT. FJ2(I) • AND. FJKI) • GT, FJ2(I)> GO TO 5
IF (FJ3(1) ,GT. FJ2( I) • ANO. FJKI) • LT, FJ2( I ) ) GO TO 5
IF (FJKI) .GT. FJ2( I) • ANO. FJKI) • GT, FJ2(I)} GO TO 5

GO TO 6

I«= (FJ3( I) .GT. FJ2(I) • AND. FJKI) • LT. FJ2(I)) GO TO 5
GO TO 6
A =FI2 (I)
B = FJ2 ( I)
C = 0TU2 (I)
0 = DTV2 (I)
Al =r 13 (I)
81 -F J 3 (I)
CI = 0TU3 ( I)
01 =CTV3 (I)
FI3 (I) -A

FJ3 (1) = B

DTU3 (I) =C
DTV3 (I) = 0
FI2 ( I) = A1
FJ2 (( ) = Bl
DTU2 (I) = C1
DTV2 (I) = 01

CONY [HUE
RETURN
ENO

SUBROUTINE DIRSPD (U.V.SPD.OfR)
THE ANGLES A3G DETERMINED FROM CARTESIAN NORTH

\F (U .EO. 0.0 .AND. V .EQ* 0.0) GO TO 2
SPD =S0RT(U#*2*V**2>
IF (U .EO, 0.0) GO TO 3
IF (V .EQ. 0.0) GO TO «

GO TO 5
2 DIR =0.0

GO TO 6
3 DIR =360.0

IF (V .LT. 0.0) DIR=180.0
GO TO 6

4 OIR =90.0
IF (U .LT. 0.0) DIR=270.0
GO TO 6

5 OIR =AT4N?(V,U)+57.2958
OIR =90,O-»DIR

IF (DIR .GT, ieO.0) OIR-DIR«100.0
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6 RETURN

END

SUBROUTINE S IGN (PHI.CHI. IFLAG.SPD,,VT» VN)
IF (CHI • LT. 9C.0 • AND. PHI • EO. 0.0 ) CO TO 3

IF (CHI • LT. 90.0 •ANO . PHI •LT. 90.0) GO TO 4

IF (CHI • LT. 90.0 • AND. PHI • EQ. 90.0) GO TO 1
IF (CHI • LT. 9C."> .ANO. PHI • GT. 90.0) GO TO 2

IF (CHI • GT. 90.0 • ANO. PHI •EQ. 0.0) GO TO T

IF (CHI • GT. 90.0 • AND. PHI • LT. 90.0) GO TO 8

IF (CHI • GT. 90 .0 • AND. PHI • EQ. 90.0) GO TO 5
IF (CHI • GT. 9C.0 • ANO. PHI •GT. 90.0) GO TO 6

1 CALL SIGN1 (FHI ,CHI,IFLAG.SPO.VT.VN)
RETURN

2 CALL SIGN2 (PH I ,CHI,IFLAG,SPO,VT,VN)
RfcTURN

3 CALL SIGN3 (PH I .CHI. IFLAG.SPD.VT.VN)
"ETURN

« C-*,LL SIGN4 (PHI* CHI, IFLAG. SPD. VT.VN)
RETURN

5 CALL SIGNS (PH I *CHI, IFLAG.SPD,VT,VN)
PETURN

6 CALL SIGN6 (PH I ,CHI,IFLAG,SPD,VT,VN)
RETURN

7 CALL SIGN7 (PH I ,CMI,IFLAG,SPD.VT.VN)
RFTUPN

C CALL SIGNfl JPIII.CHI .IFLAG.SPD,VT.VN)
RETURN
END

SUBROUTINE SIGM ( PH I ,CHI , IFLAG .SPD. VT , VN)
IF (IFLAG .EC. 2) GO TO I
VT = SPD*'J( N(CHI/S7.296)
VN =-SPD-i'CCS(CHl/57.296)
R.-TURN

1 VT =-SPD*niN(CMl/57.296)
VN = SPD*:CS(C)-I/57.296)
RETURN

END

SUBROUTINE 3 IGN2 (PHI.CHI,IFLAG,SPO*VT,VN)
IP ((PHI-CHI) .LT, 90.0) GO TO 1
IF ((PHI-CHI) .GT. 90.0) GO TO 2
Wf'tTE (6, IOC)

100 FORMAT ('0'.'SOMETHING IS KR0NG2')
RETURN

1 IF (IFLAG .EC, 2) GO TO 10
VT = £P0*O)S( (PMI»'CHI )/57.296)
VM =-SPC«S 1N( ( FHl-C.HI )/57.296)
RFTURN

10 VT =-SP0*CC3((CHI-CHI)/57.296)
VN = SPD*SIN((CHI-CHI)/57.296)
RETURN

2 IF (IFLAG .EC. 2 I GO TO 20
VT =-Sc*n*i[N( (PHl-CHI-»90.0)/57.296)
VN =-SPO*CCS((PHl-CMl~90.0)/57.296)
RETURN

20 VT = SPD*3:M(PHI-CHI-90.0)/57.296)
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VN = SP0*COS((PHI-CHI-90.0)/57.296)
RETURN
END

SUBROUTINE SIGN3 (PHI ,CHl*IFLAG,SPD,VT*VN)
IF (IFLAG .EC. 2) GO TO 1
VT = SP0*CCS(CHI/57.296)
VN = SPD*S1N(CHI/57.29*S)
RETURN

1 VT =-SPD*CCS(CHI/57.296).
VN =-SPC*SlN(CHl/57.296)
RETURN

END

SUBROUTINE SIGN4 (PHI.CHI *IFLAG.SPD. VT. VNl
IF (CHI .GT. PHI) GO TO 1
IF (CHI .LT. PHI) GO TO 2
WRITE (6.100)

100 FORMAT ( *0»,'SOMETHING IS WR0NG4')
RffTURN

1 IF (IFLAG .EC. 2) GO TO 10
VT = SPO*C0S((CHI-PHI )/57.296)
VN = SPD*5IN((CHI-PHI)/57.296)
RETURN

10 VT =-SPO*COS((CHI-PHI)/57.296)
VN =-SPC*SIN((CHI-PHI)/57.296)
*U£TURN

2 IF (IFLAG .EO. 2) GO TO 20
VT = SPD*CCS((PHI-CHI)/57.296)
VN =-SPO*3lN((PHI-CHI)/S7.296)
SATURN

20 VT =-SPO*CLSC(PHI-CHI)/57.296)
VN = SPO*SIN((PHI-CHI)/57.296)
RETURN

END

SUOROUTINE SICN5 (PHI,CHI.IFLAG,SPO. VT, VN )
IF (IFLAG .EC. 2) GO TO I
VT = SP0*C03((CHI-PHI)/57.296)
VH = SPC*SIN((CHI-PHI)/S7.296)
»;;iTUi»N

1 VT =-SPO*COS((CHI-PHI)/57.296)
VN =-SPD*SiN((CHi-PHI)/57.296)
RFTURN
END

SUOROUTINE SIGN6 (PHI .CHI. IFLAG.SPD*VT*VN)
IF (CHI .GT. PHI ) GO TO 1
IF (CHI .LT. PH) GO TO 2
«« ITF (6. ICO)

100 FORMAT ('0'.'SCWETHING IS WR0NG6')
RETURN

1 IF (IFLAG .EQ. 2) GO TO 10
VT = SPC*CCSt(CHI-PHI)/57.296)
VN = SPD*SIM((CHI-PHI)/57.296)
RL TURN

10 VT =-SPC*CCS((CHI-PHI)/57.296)
VN =-SPO*SIN((CHI-PHI)/57.296)
RETURN

2 IF ((FLAG .EQ. 2) GO TO 20
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VT = SPP»<CS(\PHI-CHI)/57.296)
VN =-SP0*SIN((PHI-CHI)/S7«296)
RETURN

20 VT =«3P0*CCS((FHT-CHI)/57.?96)
VN = 3P0*SIN((PHI-CHI)/57.296)
RETURN
END

SUOROUTINF SIGN7 (PHI,CHI,IFLAG.SPD. VT.VN)
IF (ITLAG .EG. 2) GO TO I
Vf =-S»D*STN(<CHI«90.0)/57.296)
VN = SPC*CCS((CHI-90.0)/57.296)
RETURN

! VT = SP0*S!N((CHI-90.0)/57.296)
VN =-SPO*CCS((CHI-90.0)/57.296)
RETURN
END

SUBROUTINE SI'JNG ( PHI .CHI , IFLAG .SPD* VT *VN)
IF ((CMI-PH) .LT. 9* .0 ) GO TO 1
IF ((CHT-Frl) .CT. 90.0) GO TO 2
vnI TE ( 6. 100)

ICO FORMAT <»0•»*StrtTHING IS WRONGS')
RETURN

1 IF (IFLAG ,£0. 2) GO TO 10
VT = SPC*COS(tCHI-OHI)/57.296)
VN = S»D*SIN((CHI-PHI)/57.296)
RETURN

10 VT =-?PD*CCS((CHI-PHI)/57.296)
VN =«»SPD'*S1N( (CHI-PHI J/S7.296)
RETURN

2 IF (iFuAG .EO. ?) 30 TO 20
VT =-SPC*S 1N(<iCHl»PHl-90,0)/57.296)
VN = SPD*CCS( (C»'l-PHl-90.0)/57.296)
RETURN

20 VT --: SP::*SIN(<CHl-PHI«90.0)/57.296)
VN = -S*'0*CCS( (CHI-PHI'«90.0)/S7,296)
RETURN
END

//3CATA
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