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Both the vertically-integrated (ADCIRC-2DDI) and the fully three-dimensional 
(ADCIRC-3D) versions of ADCIRC solve a vertically-integrated continuity equation for water 
surface elevation. To avoid the spurious oscillations that are associated with a primitive Galerkin 
finite element formulation of this equation, ADCIRC utilizes the Generalized Wave Continuity 
Equation (GWCE) formulation. The weighted residual statement for the GWCE used in 
ADCIRC is: 
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s = free surface departure from still water 

u, v = horizontal velocities 
h = bathymetric water depth 

C/J; = linear basis function 

x,y,z = horizontal and vertical coordinates with z = 0 at the free surface 
t = time coordinate 
p = time and spatially varying density of water due to salinity and temperature variations 

Po = reference density of water 

Q" = positive inward normal flux per unit width along the boundary 

To = primitive continuity equation weighting parameter 

Tsx, Tsy = imposed surface stresses 
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rbx, r by = bottom stress components, suitably defined 

p, = atmospheric pressure at the sea surface 

1] = Newtonian equilibrium tide potential 

M x, My = vertically-integrated horizontal stresses 

Eh = horizontal eddy viscosity 

Dx,Dy = momentum dispersion terms. ADCIRC-2DDI assumes DX'Dy = O. 

B X' By = vertically-integrated buoyancy terms 
NE; 

(1,9i) n == L f l¢i dQ = horizontal integration over the elements surrounding node i 
n=10n 

fr[ ] dr = boundary integral 

ADCIRC uses the shallow water form of the momentum equations (including the 
Boussinesq and hydrostatic pressure approximations). ADCIRC-2DDI solves the vertically­
integrated version of these equations while ADCIRC-3D solves the full three-dimensional set. 

The weighted residual statements for the momentum equations used in ADCIRC-2DDI 
are: 
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The momentum equations use a different rule for horizontal integration than the GWCE: 

(1'¢;)n ==_1_I:~ f 1¢;dQ for temlS containing horizontal gradients 
NE; ,,=1 A" no 

(1,¢;) n == _1_. I: ~ Ii f ¢; dQ =1; for terms that do not contain horizontal gradients. 
NE, n=1 An no 
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The weighted residual statements for the momentum equations used in ADCIRC-3D are: 

(4) 

(5) 

where, 

E z = vertical eddy viscosity that can be specified or computed using a MY 2.5 closure 
2 

(y, If/ k) Z == L J y If/ kdz = vertical integration over the elements on either side of vertical node k 
,,=1 Zn 

/ Y ifJ) = the horizontal integration as described for the 2DDI momentum equations. 
\ ' I n 

Prior to ADCIRC version 35, the buoyancy terms shown above have not been included in 
the GWCE or either the 2DDI or 3D momentum equations. These have now been implemented 
for both the 2DDI and 3D versions of the code to provide ADCIRC with the capability for 
baroclinic forcing. We note that to avoid problems with the baroclinic pressure gradient near 
areas of steep topography, the density field is interpolated in the vertical and the buoyancy terms 
(i.e., hX'hy in Eqs (4)-(5)) are evaluated along level coordinate surfaces. 

An initial test case was run to exercise the buoyancy terms in both 2D and 3D. A closed 
rectangular basin was set up with dimensions 48km long x 16km wide x 10m deep. Nodes were 
evenly spaced in the horizontal with Ax = ~y = lkm. For the 3D tests, twenty-one sigma levels 
were used over the vertical. The now was specified as initially at rest with a vertically uniform 
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density field that increased linearly from 1000 kg I m3 at one end to 1036 kg 1m3 at the other. 
This density field was held constant for the duration of the simulation. Upon initiation of the 
run, the horizontal density gradient created a now toward the low-density end of the channel. 

At steady state in two dimensions a balance will exist between the density gradient and 
the free surface slope with the depth-averaged velocity equal to zero. An analytical solution can 
easily be found for the steady state condition: 

as hap 
-=---ax 2 ax 

For ap lax = 7 .5xlO-7 the free surface slopes from 0.09m at the low-density end of the channel to 
-0.09m at the high-density end of the channel. Figure I presents a time series of elevation at the 
low-density end of the channel and indicates oscillatory, asymptotic convergence to the analytical 
solution. Oscillations occur due to the relatively week int1uence of bottom friction in the 
problem (Cd =0.(25). Convergence can be accelerated by using a larger bottom friction 
coefficient. 

Figure I. Comparison between numerical and analytical 2DDI water level solutions for the 
density driven test case. The transient ADCIRC solution is shown by the solid line and the 
steady state analytical solution is shown by the dashed line. 
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At steady state in three dimensions a balance will exist between the density gradient, the 
free surface slope and friction. The baroclinic pressure gradient is greatest at the bottom of the 
channel and consequently a now is driven in the lower part of the water column toward the low­
density end of the channel. The analytical solution for a linearized bottom slip and vertically 
constant E z is 

Figure 2 presents the vertical profile of along channel velocity in the middle of the 
channel at approximately steady state conditions (U = 2xl 0-5mi s ) for E z =0.05 m2 Is, a linear 

bottom slip coefficient k=0.005 S-l and a longitudinal density gradient dp Idx = 7.5xlO-7
• As 

indicated by Figure 2, the numerical velocity profile is nearly identical to the corresponding 
analytical solution. 

-
./ 

Figure 2. Comparison between steady state numerical and analytical 3D solutions 
for the density driven test case. The solid line indicates the analytical solution and 
the "x" symbols indicate the ADCIRC solution. 
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