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Abstract 

UTBEST is a bays and estuaries simulator developed at the Center for Subsurface Modeling (CSM), 
University of Texas at Austin. This numerical simulator models long wavelength phenomena such as tidal 
waves in shallow coastal systems. It solves the shallow water equations numerically using a Godunov-type 
finite volume method and unstructured triangular meshes. The physical variables such as fluid depth and 
fluid velocities/discharges are represented as piece-wise constants or Iinears on each triangle. The Riemann 
shock-tube problem at each cell edge is solved in an approximate manner using Roe's technique. First-order 
and second-order Runge-Kutta time discretizations have been implemented. The lateral eddy diffusivity 
terms are incorporated using mixed/hybrid finite element method and lowest-order Raviart-Thomas spaces. 
The numerical algorithm can handle both supercritical and subcritical flows. In addition, it is also ca
pable of handling wetting and drying of coastal boundaries. The program is easy to use and numerical 
experimentation has shown the method to be robust, accurate and efficient. 

1 INTRODUCTION 

UTBEST is a bays and estuaries simulator developed at the Center for Subsurface Modeling (CSM) , Univer

sity of Texas at Austin. It is based on a Godunov-type finite volume algorithm and solves the local Riemann 

shock-tube problem at the cell interface in an approximate manner using Roe's technique. It is based on 

unstructured triangular meshes and represents physical variables such as fluid depth and fluid velocity by 

piecewise constants or piecewise Iinears. The numerical algorithm implements lateral diffusion terms in 

a time-implicit manner using the mixed/hybrid finite element method and lowest-order Raviart-Thomas 

spaces. The algorithm can handle all types of flows, i.e., both supercritical and subcritical flows. Further, it 

is also capable of handling wetting and drying of coastal boundaries. 

The primary purpose of this document is to serve as user's manual for UTBEST version 1.0. The 

mathematical model is described in §2 and the numerical algorithm is described in §3. Inputs to the 

numerical code are described in §4. The various outputs that can be obtained from the code are expained 

in §5 and some concluding remarks are given in §6. 
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2 MATHEMATICAL MODEL 

UTBEST solves numerically the 2-D shallow water equations (SWE), which themselves are derived by 

vertically averaging the 3-D incompressible Navier-Stokes equations along with assumptions of vertically 

uniform velocity profiles and hydrostatic pressure distribution. The SWE can be used to study important 

physical phenomena such as tidal surges, tidal fluctuations, tsunami waves and contaminant and salinity 

transport. The primary variables are the fluid depth H, and the fluid velocities u = (u, v). The water-air 

interface (free surface) deflection from the mean sea level (MSL) is denoted by I; and is related to total fluid 

depth as: I; = H - hb, where hb is the bathymetric depth. The definition of 1;, hb and H are shown in 

Fig.I. The fluid discharge is defined as velocity times the fluid depth, and is written as: U = uH, V = vH. 

Chosing 1;, and U = (U, V) as our primary dependent variables, the SWE are given by: 

al; at + \1 . U = 0, and (1) 

au (UU) at + \1. H + gH\11; + Th/U + 10 k xU = Eh b,. U + gH\1 (Ct1J - Pal + Tw.· (2) 

Eq.1 represents conservation of mass, and Eq.2 represents conservation of momentum. The definitions of 

the various variables that appear in the above equations are given in Appendix A. As is obvious from the 

above equations, the shallow water equations are a set of conservation equations that are highly nonlinear 

and subject to various types of external forcings. Eventhough they are derived from incompressible Navier

Stokes equations, the shallow water equations themselves exhibit compressible behaviour. In analogy with 

compressible gas dynamics, the fluid depth H plays the role of density and the pressure can be written as: 

9 (H2 - hg) /2. Gravity wave plays the role of sound wave and its speed is approximately: y'gH. 
Land, open sea and river are some of the commonly encountered boundaries. In the case of a land 

boundary we apply a no normal flux condition in the following manner: 

\11; . // = 0, U· // = 0, and \1 (U . T) . // = O. (3) 

On the open sea, due to lack of better data, we apply a dirichlet condition on the elevation (1;). The velocity 

boundary conditions are adhoc and the hope is that error introduced by inaccurate boundary conditions 

does not propagate too far into the interior of the domain. The open sea boundary conditions are: 

I; = e, and \1 (U) . // = O. (4) 

A river boundary is nothing but an inflow boundary with dirichlet boundary conditions for all variables 

written as: 

I; = e, U·// = U", and U· T = UT' (5) 

In addition to the above physical conditions, some times an artificial radiation-type boundary condition may 

have to be specified. These boundaries arise from truncation of physical domains. Radiation-type boundaries 

are also referred to as absorbing or non-reflecting boundaries. 

In addition to boundary conditions appropriate initial conditions need to be specified. Shallow water 

systems are dynamic systems and to obtain a complete state of the system is very difficult. It is common 

practice to start with the system completely at rest, i.e. with zero velocities and free surface deflections, 
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Figure 1: Definition of elevation, bathymetry and fluid depth. 
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everywhere in the domain and to introduce the boundary conditions and body forces in a gradual manner 

through the use of a ramp function. This is commonly referred to as a cold start as against hot start, where 

the initial velocity and elevation field throughout the domain is specified. 

3 NUMERICAL ALGORITHM 

The numerical algorithm used in UTBEST is a Godunov-type finite volume method and unstructured trian

gular grids. On each triangle, the physical variables (~, U, V) are approximated as piecewise polynomials that 

are not necessarily continuous across the cell edges. Both, piecewise constants and piecewise linears have 

been implemented in the current version of UTBEST. At the cell interface, the flow field is discontinuous and 

the numerical flux is computed by solving Riemann shock-tube problem. The Godunov-type finite volume 

method is described next. This is followed by a description of higher-order extensions and incorporation of 

viscous terms through mixed/hybrid finite element method. 

3.1 Godunov-type finite volume method 

Dropping viscous terms, which are second-order in space, reduces the shallow water equations to a first-order 

hyperbolic system of conservation laws that can be written in the following form: 

where, 

C= 

and, 

v 
uv 
H 

!J:. - ~g (H2 - h~) 

h = ( -TO!U + leV + g~~ + g~ ~I,; (a71) -I,;Pa~ + Tw ." ) • 

-TO! V - leU + g~~ + gH l Jy (a71) - JyPa) + Tw • y 

(6) 

(7) 

(8) 

The primary variables (~, U, V) are discretized as piece-wise constants within the area enclosed by the linear 

triangles, as shown in Fig.2. These element averages are updated each time step through the fluxes crossing 

the element edges and the body forces acting on the volume of the element. The integral formulation for 

the hyperbolic system (Eq.6) is given by: 

(9) 

where, fn = fnx+gny is the normal flux crossing the boundary of the control volume. In the above equations, 

n. and r. are, respectively, the area and the boundary of the element, n = (n", ny) is the outward pointing 

unit normal vector of the boundary r e. 

For triangular control volumes such as that shown in Fig.2, the time discretized equations would be: 

n+1 n ;=3 
c. A-C' n.+L:(f,7,r;)=h"ne . 

t ;=1 
(10) 
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Figure 2: Typical control volume 

The superscript represents the time level, and the element averages of the primary variables are updated 

explicitly each time step, once the normal fluxes at the element edges are known. In Godunov method, the 

variables are approximated as averages within the element volumes, and the advective flux at the cell interface 

is computed by solving the Riemann shock-tube problem. Thus, the fluxes computed at the element edges 

are the exact analytical fluxes we would have had if there were two constant states to either side of the edge. 

The discontinuities propagate with the right velocities and without any spurious oscillations. All variables 

are locally conserved and the classical Godunov approach gives us a stable, monotonic numerical algorithm 

(LeVeque 1992). It is possible to solve the Riemann problem at the cell interface exactly. However, this often 

requires the solution of a set of nonlinear algebraic equations which can be time consuming. Moreover, the 

higher order accuracy obtained through the exact calculation of the fluxes is lost due to the cell averaging 

done at the end of the flux calculation, since the primary variables are only represented as averages within 

cell volumes. Thus, a number of approximate Riemann solvers have been constructed to solve the Riemann 

problem in an efficient manner and Roe's approximation is one of them. In UTBEST, the Riemann problem 

at the cell interface is solved in an approximate manner using Roe's technique. 

Before getting into Roe's approximation, it is worthwhile to look at the quasi-linear form and the eigen 

system that arises in the context of shallow water equations. The quasi-linear form of the hyperbolic system 

(Eq.6) is given by: 
ac + A ac + B ac = h (11) at ax ay 

where A = ~!, and B = ~. This is a nonlinear problem with A and B being functions of c. Note that, 

the quantity of interest in the integral formulation (Eq.9) is the normal flux (fn) crossing the cell interface. 

The normal Jacobian matrix An is found to be: 

An = [ n" (a~ - ~:) - nyuv 
ny (a - v ) - n" uv 

n" ny ] 
2n"u + nyv nyu 

n",v 2nyv + n",u 
(12) 

where, a 2 = gH. The eigenvalues and the corresponding eigenvectors for the normal Jacobian (An) are 
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given by: 

r1 = { 
1 } U - ygHn" (13) 

v - ygHny 

r2 = { 
0 } -ny (14) 

n" 

(15) 

In the case of a pure I-D problem, we would have only the eigenvalues: (un -.,f9H, un+.fiJl). An additional 

eigenvalue equal to Un arises in the case of 2-D. Eigenvalues >'1 and >'3 result in either a compression wave 

(shock) or a rarefaction wave depending on the left and right states. All primary variables are discontinuous 

across the shock and continuous across rarefaction waves. The eigenvalue >'2 is linearly degenerate and gives 

rise to a contact discontinuity, where, only the tangential velocity is discontinuous and the normal velocity 

and fluid depth are continuous. 

In Roe's approximation, the nonlinear problem is linearized at the cell interface (Roe 1981, LeVeque 

1992). At the cell interface we have a discontinuity with state CL on the left side and state CR on the right 

side. In Roe's approximation, Eq.ll is linearized as follows: 

Bc - Bc - Bc 
at +A(CL,CR) Bx +B(CL,CR) By =h (16) 

where, A and:8 are linearized forms of A and B, respectively. Eventhough there is more than one way to 

compute the linearized matrices A and :8, it is desired that the linearized matrices satisfy certain properties. 

Important among them is that the Rankine-Hugoniot jump conditions be satisfied across the disconituity, 

i.e., 

(17) 

where, [ 1 represents the jump across the interface. Going through the procedure described by Roe (Roe 

1981, LeVeque 1992), we find that if the following type of averaging is done, then the resulting linearized 

matrices preserve the jump conditions at the interface. 

H- 1/ 2 + H- 1/ 2 
C _ L CL R CR 

- H- 1/ 2 + H- 1/ 2 
L R 

(18) 

The Roe-linearized normal Jacobian matrix An is found to be: 

[

On" 
- -2 -2 - - - -An = n" (~2 -~) - ny~~ 2n"u +. nyv 

ny (a - v ) - n"uv n"v 
(19) 

where, a2 = 9 (HL + HR) /2. The Roe-linearized normal Jacobian matrix (An) is same as the original 

nonlinear Jacobian matrix (An), except that the Roe-linearized velocities and fluid depth are used in place 

of the actual values. Thus, the eigenvalues and the eigenvectors have the same form as that given by 

Eqs.13-15, with the Roe-linearized variables used in place of the actual values. 
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Once the cell interface problem has been linearized, it is a simple matter to compute the normal flux 

fn . It is well known from the theory of linear hyperbolic systems that an initial state that is discontinuous 

across an interface evolves in time in such a manner that the discontinuities propagate with the characteristic 

speeds given by the eigenvalues. The evolution of the cell interface problem in time is shown schematically 

in Fig.3. The following relations give the relation between the various states across the discontinuities: 

Knowing CL and CR, the weighting factors Q1, Q2 and Q3 can be computed and are found to be: 

Q1 = at:· (HR - HL) - ~ (UR - UL) - ~ (VR - Vd, 
a2 = (unll - fin",) (HR - HL) - nil (UR - Ud + n", (VR - Vd, and 
a3 = a2:·(HR-HL)+~(UR-Ud+~(VR-Vd. 

Knowing the weighting factors the Roe-Riemann flux at the interface is given by: 

p=3 

in (CL' CR) = fn (CL) + L.\; Qprp 

p=l 

(20) 

(21) 

(22) 

(23) 

(24) 

where, A; = min(Ap, 0). Once the numerical fluxes are computed, the state at the next time level is easily 

determined in an explicit fashion through Eq.10. Since this is a completely explicit procedure, the time step 

is limited by the eFL condition stated as: 

A • I h. ut~m -,-
;'\maz 

(25) 

where, the infimum is taken over all numerical elements in the domain, h. is a suitable measure of the size 

of the cell, and Ama", is the maximum eigenvalue for the cell. 

3.2 Higher-order extension 

The basic Godunov method, as described above is conservative and monotone, but is only first-order accurate 

in space and time. In this section, we discuss the extension of the basic Godunov-type finite volume method 

described above to higher-order spatial accuracy, without losing the conservative and monotone property of 

the numerical scheme. 

First-order upwind methods are monotone and resolve discontinuities without producing any oscillations. 

However, in smooth portions of the flow, the first-order accuracy is not sufficient. Second-order methods 

based on central-difference type approximations give good accuracy in smooth portions of the flow, but 

produce oscillations in the vicinity of discontinuities, and thus are not monotone. Several high resolution 

methods have been constructed that give higher-order accuracy in smooth portions of the flow but reduce 

to a first-order method near discontinuities. In this manner, higher-order (that is better than first-order) 

monotone methods can be constructed. UTBEST uses a slope-limiter approach to construct higher-order 

total variation bounded (TVB) schemes. 
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Figure 3: Evolution of the linearized cell interface problem 

L.··········· 
, ~R 

~L: 
~L ........ : 

~R·········· 

...... 
..... 

Figure 4: The left and right states at a cell interface. 

In this method, the basic numerical algorithm remains the same as described in the previous section. It 

aims to increase the accuracy of the flux calculations at the cell interface by getting a better estimate of 

the left state and the right state as shown in Fig.4. Linear approximations within each cell gives a better 

approximation of the left and right states at the cell interface resulting in a more accurate flux calculation, 

which ultimately increases the accuracy of the numerical scheme. The numerical algorithm is same as that 
described in the previous section. The only additional calculation is the reconstruction of slopes from cell 

averages and the use of this reconstructed flow field in computing the numerical flux at the cell interface. 

Construction of piecewise linears for a scalar variable (say e) is described next. The slope computation can 

be thought to consist of two steps, namely, the reconstruction step, and the limiting step. The reconstruction 

is as follows. Within each cell, e is expressed as a piecewise linear function of the following form: 

(26) 

where, ef is the reconstructed field, (i is the cell-average, and (Xi, iii) is the centroid of the cell. The subscript 

i denotes the cell number, and the superscript R stands for the reconstructed field. The piecewise constant 

field is constructed in such a way that when averaged over the cell we get back the original cell-average, 
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Figure 5: The patch used for computing slopes 

thus maintaining the conservative property of the overall numerical scheme. The slopes are computed using 

cell-averages in the neighboring cells (Fig.5) with the following constraints: 

(27) 

where in are neighbouring elements (Fig.5) and N is the total number of neighboring elements of element 

i. Since typically we have more constraints than unknowns, the slopes are computed through least-squares 

minimization. 

This reconstruction step is followed by a limiting step. The reconstructed field is checked to see that 

no new extrema are created in the domain. In the case of piecewise linears, the extrema occur at the cell 

vertices. In each triangle, the reconstructed field is checked to verify that no new extrema are created at 

its vertices, and if necessary the slopes are adjusted by iterating over the vertices. The reconstruction step 

and the limiting step together give a second-order method that is conservative and total variation bounded 

(TVB). 
A straight forward extension of the above procedure to each of the primary variables in the case of a 

system of conservation laws might not always work. After extensive testing the following procedure was 

found. Piecewise linear reconstruction for elevations ~ can be done as described above. The slopes for U 

and V are calculated as follows: 

au aH au aH av aH av aH 
ax = "a;; ay = "ay; ax = v ax; ay = Vay' (28) 

The slopes for fluid depth H are obtained by adding bathymetric depth slopes to elevation slopes. The 

bathymetric depth itself, being physical data, is approximated as continuous piecewise linears. This type 

of slope calculations for U and V imply that the velocities are still piecewise constant within each element. 
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This also implies that the velocity field is both divergence free and vorticity free. It is believed that it is this 

important property that stabilizes the higher-order reconstruction. 

The slope reconstruction procedure as described above results in a Godunov-type finite volume proce

dure that is spatially second-order accurate in smooth portions of the flow, and first order accurate near 

discontinuities. To make the scheme truly second-order, the temporal accuracy needs to be increased as well 

and this is done using the two step Runge-Kutta procedure proposed by Shu and Osher (1989). Let L(c) 

represent the linear operator consisting of the higher-order fluxes obtained after slope reconstruction and 

the body forces. The SWE system can then be represented as: 

oe 
8t =L(e). (29) 

The two step Runge-Kutta procedure can then be written as: 

Predictor step: 

(30) 

Corrector step: 

(31) 

3.3 Treatment of Viscous Terms 

In the discussion so far, the second-order viscous terms have been dropped which reduces the shallow 

water equations to a system of first-order hyperbolic conservation laws. In most physical situations bottom 

friction dominates lateral diffusion and dispersion and this is a reasonable assumption. In certain flows, 

especially those involving recirculations, lateral diffusion is an important process and needs to be modeled. 

In UTBEST, the viscous terms are handled through a mixed/hybrid finite element method and lowest-order 

Raviart-Thomas spaces. 

The viscous terms are decoupled from advection terms through operator splitting. Within each time 

step, there are two smaller steps. In the first step all terms except the diffuion terms are handled in 

a manner described previously using Godunov finite volume method and an intermediate discharge field 

un+! = ([rn+l, vn+!) is computed. To this intermediate discharge field, the viscous terms are added in a 

time-implicit manner and the final discharge field U n +1 = (Un+!, vn+!) is computed. The diffusion step 

can be written as: 

(32) 

Note that, the eddy diffusion coefficient Eh could have spatial variations. In the present implementation 

of UTBEST, only a spatially constant Eh is considered. It is expected that spatially varying Eh would be 

implemented in future releases of UTBEST. Since viscous terms are incorporated in time-implicit manner, 

this step poses no additional limitations on the size of time step D.t. 

The central idea of a mixed finite element method is to replace a second-order system with a first-order 

system through the use of additional intermediate variables. The viscous step given by Eq.32 can be rewritten 

as a first-order system in the following manner: 

= (33) = 
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Figure 6: Lowest-order Raviart Thomas Spaces on triangles 

In the above system, z is the diffusion fl ux of discharge field U. Note that z is a second-order tensor. In 

lowest-order Raviart-Thomas spaces, U is approximated as piecewise constant within each triangle, whereas 

the diffusion flux z is approximated as piecewise linears within each triangle with only the normal components 

of the diffusion fluxes being continuous across the cell edges. Let [( and [(' be triangles that share an edge 

as shown in Fig.6. AK and AK' are the areas of the triangles [( and [(' respectively. 8[( and 8[(' are the 

boundaries of triangles [( and [('. 1,2 and 3 are vertices of element [(, with 1', 2' and 3' being the vertices 

of element [('. The edges are also numbered, with edge 1 being the edge opposite to node 1, and so on. The 

lengths of the edges are denoted by Ii and the outward pointing normals are denoted by ni, with subscript 

j taking values 1, 2 and 3 in element [(, and values 1', 2' and 3' in element [('. Further, we have nl = -n~. 
The fluid discharges are represented as piecewise constants in each triangle in the following manner: 

The diffusion flux is represented as piecewise linears within each element in the following manner: 

3 

zlK = L (ZK . Di) Ni. 
;=1 

The shape functions Ni are vector functions and are given the following variation: 

Ni = { Cti + Pi:t: } 
'"Ii + PiY 

The parameters Cti, Pi and '"Ii can be determined from the 3 x 3 system: 

Solving the above 3 x 3 system, Cti, Pi and '"Ii are found to be given by: 

Cti = _bl..i... 
2AK 

Pi = ...l.....-
2A~ 

'"Ii _.1!.i.!.L 
2AK 

(34) 

(35) 

(36) 

(37) 

(38) 

In addition to fluid discharges and diffusion fluxes, a new variable that A = (Au, Av) that only lives on 

the edges of triangle is introduced in the following manner: 
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where, 

3 

AIK = LAiJJi 
i=l 

1 on edge i of element K 
o otherwise. 

(39) 

(40) 

The Ai'S are Lagrange multipliers which ensure continuity of diffusion fluxes along edge i. This use of 

Lagrange multipliers is referred to as hybrid finite element method, and thus the numerical method is 

referred to as mixed/hybrid finite element method. The continuiuty of normal diffusion flux across the cell 

edges ensures that the numerical scheme is conservative. 

The weak form of the viscous step over element K is given by; 

(un+1 1) K , K = (U[(+I) K - ~t('V. z,I)K ( 41) 

(E- I n+1 N) 
h ZK ' i K = (UI/ I, 'V. N i) K - < An+! , Ni . DK >iiK (42) 

< [zn+! . DIl, 1 >iiKnliK' = 0 (43) 

[ZI/I . Dll = ZK . DI - ZK' . DI = 0 is the jump in diffusion flux across edge 1. The unknowns are Un+l, Z 

and A which need to be solved from the above system. However, U and Z can be eliminated from the above 

system resulting is a global system that needs to be solved for A. Knowing A, U can be easily computed 

from the above system. 

4 DESCRIPTION OF INPUT 

The input consists of run parameters, grid data and edge data. Each of this data is read from separate disk 

files and is decribed in the next 3 subsections. 

4.1 RUN PARAMETERS 

Run parameters are read from unit 15. The default input file is set to fort.15. The input parameters that 

are read from this file as well as the FORTRAN-77 format statements used are given below; 

READ(15,'(A32)') RUNDES ; a 32 character alpha-numeric description of the model run. 

READ(15,'(A24)') RUNID ; a 24 character alpha-numeric description of the model run identification. 

READ(15, *) IHOT ; selection of either hot start or cold start. If IHOT equals 0, cold start is chosen and 

the initial conditions for velocities and elevation are set to zero everywhere in the domain. If IHOT 

is not 0, then hot start is chosen. If hotstart is chosen, the initial values of the free surface deflection 

and velocities are read from a file. If IHOT equals 67, then the initial state is read from fort.67 and 

if IHOT equals 68, then the initial state is read forl.68. This comes in especially handy, if for some 

reason the simulation crashes during a run. Then using IHOT, one can restart from where the program 

crash occurred instead of starting from the beginning again. It should be mentioned that the hot-start 

features of the code have not been tested. Further, the program does n't store a copy of its simulation 

state on the disk file. So, it would be safe to use only cold-start in the current version of UTBEST. 

The hot-start version will be implemented and tested in later versions of UTBEST. 
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READ(15, *) ICS : to chose between cartesian or spherical co-ordinate system. If ICS equals 1, cartesian 

co-ordinate system is chosen and the code expects to read x and y co-ordinates from the grid file. If 

ICS equals 2, a spherical co-ordinate system is chosen, and the code expects to read latitudes (SFEA) 

and longitudes (SLAM) in degrees from the grid file. If spherical co-ordinate system is chosen, the 

code uses a Carte-Parallelogram Projection (CPP) centered about a reference point (SLAMO,SFEAO), 

to project the spherical grid onto a plane surface. The latitudes and longitudes are calculated into 

equivalent x and y coordinates on this plane. This mapping results in certain corrections, which need to 

be accounted for in the calculation of normals, areas and gradients. It is expected that these corrections 

are small. In the present implementation of UTBEST, the CPP projection is implemented but the 

resulting corrections are not implemeneted in the calculation of areas and gradients. 

READ(15, *) NOLIBF : to chose linear or non-linear bottom friction. Linear bottom friction is chosen 

if NOLIBF equals 0, and a non-linear bottom friction coefficient is chosen if it equals 1. The linear 

friction coefficient is named TAU, and is read in later. The nonlinear bottom friction is implemented 

using Chezy's equations and the friction coefficient is named CF and read in later. 

READ( 15, *) NWP : spatial variation of the bottom friction coefficient and the lateral diffusion coeffi

cient. If NWP equals 0, then they are spatially invariant. If NWP equals 1, then they are spatially 

varying and their nodal values need to be read from a separate file. The spatially varying bottom 

friction and diffusion coefficients have not been tested and are not recommended at this time. 

READ(15,*) NCOR : spatial variation of the Coriolis parameter. If NCOR equals 0, then a spatially 

constant Coriolis parameter is used. This is fairly accurate for small fluid domains. If NCOR equals 

1, then the Coriolis parameter is spatially varying and is computed as 20 sin,p, where 0 is the angular 

speed of earth's rotation and ,p is the latitude. A spatially varying Coriolis acceleration is appropriate 

for large fluid domains. Note that if a spatially varying Coriolis acceleration is chosen, it is preferable 

to chose CPP coordinate system. 

READ (15, *) NTIP : to select Newtonian tide potential, which arises from variations in the value of the 

gravitational acceleration due to changing positions of moon, sun and planets. If NTIP equal 0, then 

this feature is turned off. If NTIP equals 1, then the Newtonian tide potential is turned on. Normally, 

the tidal forces are imposed as boundary conditions at the open ocean boundaries. This is accurate 

enough in small fluid domains. In very large fluid domains however, the Newtonian tide potential 

phenomena is important and cannot be neglected. The number of tidal potential frequencies is read in 

later. It is recommended that CPP coordinates be used when Newtonian tide potential is turned on. 

READ(15, *) NWS : to turn on wind stress. If NWS equals 0, then wind stress is turned off. If NWS 

equals 1, then it is turned on. The wind stresses themselves are read from a forl.22 disk file. The wind 

stress feature has not been completely tested and is not recommended at this time. 

READ(15, *) NRAMP : to turn on ramping function. When a cold start is chosen it is desirable to 

impose the boundary conditions and body forces in a gradual manner. This feature is turned on when 

NRAMP equals 1 and turned off when it equals 0. The gradual ramping is done using a hyperbolic 

tan genet function and the ramping time in days is read in later. 

READ(15,*) G : is the gravitational acceleration. The value specified for G determines the physical 

units employed. Moreover, when CPP coordinate system is chosen or when variable Coriolis force or 
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Newtonian tide potential is chosen, only SI units are allowed. 

READ(15, *) NQUAD : number of Gaussian quadrature points to be used in integrations over the tri

angular elements. 

READ(15, *) XI(I), YI(I), W(I) : the quadrature points and weights. 

READ(15,*) NDTVAR : variable time step selection parameter. A constant pre-determined time step 

is taken if NDTVAR equals O. If NDTVAR equals 1, then the code choses time step automatically 

based on the CFL criteria. 

READ(15,*) DT : time step size, and is specified in seconds. DT is unchanged if NDTVAR equal O. 

Otherwise, it is recalculated within the code every time step such that DT equals the maximum 

possible time step size based on stability criteria. 

READ(15,*) STATIM: the starting time for the model run, and is specified in days. 

READ(15,*) REFTIM : the reference time in days. 

READ(15, *) RNDAY : the total length of the simulation in days. 

READ(15,*) IRK: selection of Runge-Kutta time stepping scheme. If IRK equals 1, first-order Runge

Kutta which is nothing but explicit Euler forward scheme is chosen. If IRK equals 2, second-order 

2-step Runge-Kutta scheme is chosen. In this version, these are the only schemes that have been 

implemented. The diffusion terms are added through simple first-order operating. 

READ(15,*) ISLOPE : selection of slope reconstruction. If ISLOPE equals 0, then the basic first

order Godunov finite volume method is chosen and all physical variables are approximated as piece

wise constants within each cell. If ISLOPE equals 1, then the physical variables are represented 

as discontinuous piece-wise linears, and the slopes themselves are reconstructed from cell averages 

through least-squares and slope limiting, so that we obtain second-order spatial accuracy without 

losing monotonicity in the viciuity of discontinuities. It is recommended that if slope reconstruction is 

chosen that 2-step Runge-Kutta time stepping scheme be hosen so that we have second-order accuracy 

both in space and time. 

READ(15,*) ITRANS : stedy-state or transient simulation. If ITRANS equals 0, then a transient 

simulation is chosen and the code will run for the total length of RNDAY days. If ITRANS equals 1, 

then steady-state simulation is chosen and the code runs untill the convergence criteria (CONVCR) is 

met or untill the total length of simulation equals RNDA Y days. 

READ(15,*) CONVCR : convergence criteria used in stopping steady-state simulations. 

READ(15,*) DRAMP : ramping period in days. At the end of DRAMP days, the ramp function equals 

0.96 approximately and approaches 1.0 for times greater than DRAMP. 

READ(15, *) HO : the minumum fluid depth allowed. If fluid depth in a cell falls below HO, then it is 

reset to HO and the velocities in that cell are set to zero. This condition is checked every time step. 

READ(15, *) SLAMO, SFEAO : the reference co-ordinates in degrees for CPP projection. 

READ(15,*) TAU: the linear bottom friction coefficient. 

READ(15, *) CF ; the non-linear (Chezy's) bottom friction coefficient. 
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READ(15,*) NVISC : selection of lateral eddy viscosity. If NVISC equals 0, the lateral eddy viscosity is 

neglected. Otherwise, the lateral eddy viscosity is accounted for through mixed/hybrid finite element 

method. 

READ(15,*) ESL : the lateral eddy (kinematic) viscosity with units length square per unit time. 

READ(15, *) CORI : the Coriolis parameter. If spatially varying Coriolis is chosen this is not used, and 

the CoriIois parameter is computed internally within the code. 

READ(15, *) NTIF : number of tidal potential forcing frequencies. NTIF can be greater than zero only 

when NTIP equals 1, i.e., only when Newtonian tide potential feature is turned on. 

READ(15,'(A5)') TIPOTAG(I) : an alpha-numeric descripton of the tidal constituent. 

READ(15,*) TPK(I),AMIGT(I),ETRF(I),FFT(I),FACET(I) : the tidal potential amplitude, fre-

quency, earth tide potential reduction factor, nodal factor and equlibrium argument in degrees. 

READ(15, *) NBFR : number of tidal forcing frequencies on the open boundaries. 

READ(15,'(A5)') BOUNTAG(I) : an alpha-numeric description of each tidal constituent. 

READ(15,*) AMIG(I), FF(I), FACE(I) : forcing frequency, nodal factor and equilibrium argumnet 

in degrees for tidal forcing on open ocean boundaries. 

READ(15,*) NO UTE, TOUTSE, TOUTFE, NSPOOLE : If NOUTE equals 1, interpolated eleva

tions at elevation recording stations are spooled to unit 61 every NSPOOLE time steps starting from 

time TOUTSE untill time TOUTFE. If NO UTE equals 0, no elevation recordings are not spooled. 

READ(15, *) NSTAE : total number of elevation recording stations. 

READ(15,*) XEL(I), YEL(I) : the input coordinates of elevation recording stations. This input state

ment is executed only when cartesian coordinate system is chosen (ICS=I). 

READ(15,*) SLEL(I), SFEL(I) : when spherical coordinate system is chosen, the latitudes and longi

tudes of elevation recording stations are read. 

READ(15,*) NOUTV, TOUTSV, TOUTSV, NSPOOLV : If NOUTV equals 1, interpolated veloc

ities at velocity recording stations are spooled to unit 62 every NSPOOLV time steps starting from 

time TOUTSV untill time TOUTFV. If NOUTV equals 0, no velocity recordings are not spooled. 

READ(15,*) NSTAV : total number of velocity recording stations. 

READ(15,*) XEV(I), YEV(I) : the input coordinates of velocity recording stations. This input state

ment is executed only when cartesian coordinate system is chosen (ISC=I). 

READ(15, *) SLEV(I), SFEV(I) : when spherical coordinate system is chosen, the latitudes and longi

tudes of velocity recording stations are read. 

READ(15,*) NOUTGE, TOUTSGE, TOUTFGE, NSPOOLGE : if NOUTGE equals 1, global el

evation is spooled to unit 63 every NSPOOLGE time steps between times TOUTSGE and TOUTFGE. 

If NOUTGE equals 0, no global elevation is spooled. 

READ(15,*) NOUTGV, TOUTSGV, TOUTFGV, NSPOOLGV : if NOUTGV equals 1, global 

velocity field is spooled to unit 64 every NSPOOLGV time steps between times TOUTSGV and TOUT

FGV. If NOUTGV equals 0, no global velocity field is spooled. 
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READ(15, *) NHSTAR, NHSINC : if NHSTAR equals 1, the hot start file is generated every NHSINC 

time steps. If NHSTAR equals 0, no hot start file is generated. 

4.2 NUMERICAL GRID 

READ(14,'(A24)') AGRID : an alphanumeric description of the grid. 

READ(14,*) NE, NP : number of elements and number of nodes. 

READ(14,*) JKI, X(JKI), Y(JKI), DP(JKI) : the x and y coordinates and the bathymetric depth. 

This read statement used if ICS equals 1, i.e., is cartesian coordinate system chosen. 

READ(14,*) JKI, SLAM(JKI), SFEA(JKI), DP(JKI) : the longitude and latitude (in degrees) and 

the bathymetric depth. This read statement used if ICS equals 2, i.e., if spherical coordinates along 

with CPP projection is chosen. 

READ(14,*) JKI, NHY, NM(l,JKI), NM(2,JKI), NM(3,JKI) : the global connectivity table. NM(I,JKI), 

NM(2,JKI), and NM(3,JKI) are the three vertices of element JKI and are ordered in counter-clockwise 

direction. NHY is the number of vertices for element JKI. Since the mesh composes of 3 node triangular 

elements everywhere, NHY should be set to 3. No other types of elements are supported in this release 

ofUTBEST. 

4.3 EDGE RELATED DATA STRUCTURES 

READ(17,*) NEDGES : number of edges. 

READ(17,*)J,NEDNO(1,J),NEDNO(2,J),NEDEL(1,J),NEDEL(2,J) : the two vertices and the 

two elements on either side of the edge J. In case of boundary edges an element is present only on 

the interior side and this is stored in NEDEL(I,J) and NEDEL(2,J) is set to zero. The order order of 

NEDNOO and NEDELO should be such a way that the normal is pointing into NEDEL(2,J). 

READ(17,*) J ,NELED(1,J),NELED(2,J),NELED(3,J) : the three edges of element J. The ordering 

should in counter-clockwise direction. 

READ(17,*) NIEDS : number of interior edges. 

READ(17,*) J,NIEDN(J) : the global edge number of interior edge J. 

READ(17, *) NLEDS : number of land edges. 

READ(17,*) J,NLEDN(J) : the global edge number of land edge J. 

READ(17,*) NRAEDS : number of edges with radiation-type boundary conditions. 

READ(17,*) J,NRAEDN(J) : global edge number of radiation edge J. 

READ(17,*) NRIEDS : number of river edges. 

READ(17, *) J, NRIEDN(J) : number of river edges. 

READ(17,*) J,NRIEDN(J),ETRI(J),UNRI(J),UTRI(J) : global edge number, the free surface de

flection, the normal flow rate and the tangential flow rate of river edge J. 

READ(17,*) NSEDS : number of open sea boundary edges. 
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READ(17,*) J, NSEDN(J) : global edge number of sea edge J. 

READ(17,*) EMO(I,J),EFA(I,J) : amplitude and phase (in degrees) of the harmonic forcing function 

at the open ocean boundaries for frequency I and open ocean bounday edge J. 

5 DESCRIPTION OF OUTPUT 

The main types of output are the station recordings and the complete global field. The elevation station 

recordings are spooled to unit 61 and the default file is fort.61. The velocity station recordings are spooled 

to unit 62 with a default file name of fort.62. The station values are interpolated within the element in 

which the station is physically present. In case, the station does n't fall within any element, then the values 
at the station are obtained by extrapolation from the nearest element. 

The global elevation is spooled to unit 63 with a default file name fort.63, and the global velocity field 

is spooled to unit 64 with default file name fort. 64. The global output comprises of values at the vertices of 

the triangular elements. 

For the purpose of plotting, the global solution is spooled to unit 71 with a default file name xy.out. First 

the initial velocity and elevation field is spooled. Later, global solution is spooled every NSPOOLGE time 

steps between times TOUTSGE and TOUTFGE. If higher-order Godunov method is chosen, i.e., piecewise 

linears instead of piecewise constants, slopes of elevations and velocities are spooled to unit 72 with default 

file name slope. out. This slope output is between times TOUTSGE and TOUTFGE and is spooled every 

NSPOOLGE time steps. In addition, we often need to know the maximum and minimum wave heights 

that occurred in a time interval. The maximum and minimum wave heights between times TOUTSGE and 

TOUTFGE are computed and to unit 73 with default file name wave. out. 

6 CONCLUDING REMARKS 

UTBEST has been used to simulate a wide variety of flows. It has been used in studying supercritical 

channel flows encountering change in cross-section area resulting in the formation of hydraulic jumps and 

rarefaction waves (Chippada, Dawson, Martinez and Wheeler; 1996). 

UTBSET has also been used to simulate coastal flow problems. Among the problems studied were tidal 

flows in the vicinity of Bahamas islands, Galveston Bay, GulfofMexico and the entire east coast of the United 

States. Comaprisons were made with ADCIRC, a finite element simulator based on wave formulation. The 

results obtained using UTBEST were of comparable accuracy as that obtained using ADCIRC (Chippada, 

Dawson, Martinez and Wheeler; 1990). 

UTBEST can be improved in several ways. From modeling point-of-view, there is a need for incorporating 

transport of scalar species such as thermal, salinity and contaminants. Also needed is the three-dimensional 

modeling capability, and incorporation of turbulence models. From programming point-of-view there are 

certain things that need to be improved. Some of the features such as hot start, spatially varying viscosity, 

wind stress and atmospheric pressure gradients, and spherical coordinate systems need to be incorporated 

and properly tested. Also, the user interface may have to be improved. 
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A Nomenclature 

Eh Lateral eddy diffuivity coefficient [L 2T- 1
] 

Ie Coriolis acceleration = 2n sin <p, where n is the angular speed of earth's rotation about its axis and <p is 

the latitude [T-I] 

g acceleration due to gravity [LT-2] 

H total water column [L] 

hb bathymetric depth [L] 

k local unit normal vector pointing upwards aligned with the gravitational vector 

Pa atmospheric pressure as water column [L] 

t time [T] 

u (u,v), velocity vector [LT-l] 

U (U, V), discharge vector [L2T-I] 

u velocity in x-direction [LT- 1] 

U uH, fluid dischrage in x-direction [L2T-l] 

V V H, fluid dischrage in y-direction [L2T-I] 

v velocity in y-direction [LT-l] 

x (x, y), the position vector [L] 

x horizontal co-ordinate [L] 

y horizontal co-ordinate [L] 

a Effective earth elasticity factor (Rl 0.69) 

'1/ Newtonian equlibrium tide potential [L] 

II local normal vector 

e Deflection of water-air interface from mean sea level [L] 

T local tangential vector 

Tbl bottom friction coefficient [T-l] 

Tws wind stress [L2T-2] 
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