

OGALAAA REGIONAL WATER MANAGEMENT PLAN

INTRODUCTION

A grant proposal entitled "Regional Water Planning Needs in Texas," authored by Dr. Lloyd Urban and Mr. A. Wayne Wyatt was submitted near the end of August 1995. The grant signed in May 1996 provided one to one matching funding for work associated with the development of the Ogallala Regional Management Plan. Funds requested totaled \$600,000. The planning area includes 47 counties of which any portion overlies the Ogallala Aquifer in the High Plains of Texas. Grant applicants are the political entities within the area with water planning authority: the major cities (Amarillo, Lubbock, Plainview) Dallam County Underground Water Conservation District, High Plains Underground Water Conservation District, Mesa Underground Water Conservation District, North Plains Groundwater Conservation District, Panhandle Ground Water Conservation District, Permian Basin Underground Water Conservation District, Sandy Land Underground Water Conservation District, South Plains Underground Water Conservation District, Brazos River Authority, Canadian River Municipal Water Authority, Colorado River Municipal Authority, Red River Authority of Texas, Mackenzie Municipal Water Authority, Palo Duro River Authority and White River Municipal Water District. The High Plains Underground Water Conservation District was listed as the primary contractor and that interlocal agreements will be negotiated as various entities request financial help to develop their portions of the plan.

The Project Tasks outlined in the grant application are 1) Organize/Initiate Planning Effort; 2) Mission Statement/Planning Issues; 3) Public Participation

Procedures; 4) Baseline Information/Projections; 5) Demand/Supply Management Options; 6) Environmental Concerns; 7) Rank Options/Alternatives; 8) Select Best Plan Components; and 9) Plan Implementation.

During a drought people are more receptive to future water planning and implementation of conservation measures than they are when precipitation is plentiful. A water management plan could be developed that would give the High Plains of Texas assurance that water would be available for all needs, while warding off any take-over of the water resources of the area by state or federal agencies. Development of such a plan would necessarily examine any alternatives for better, more efficient water use, such as the use of LEPA center pivot sprinkler systems, surge valves, underground pipeline, development of plants bred for higher water-use efficiency, and research of new water-use techniques such as high-frequency low volume irrigation.

A proposed structure of the Water Management Plan was developed and designed to be flexible to allow changes as the plan developed. The adopted Mission Statement is as follows: Develop, promote, and implement water conservation, augmentation, and management strategies to provide adequate water supplies for the Ogallala region of the High Plains of Texas and to stabilize or improve the economic and social viability and longevity of the region through these activities.

The Water Management Plan will cover all or parts of 47 High Plains counties, an area of 34,450 square miles or 22,048,000 acres. According to Texas Water Development Board's Report 341, *The High Plains Aquifer System of Texas*, 1980 to 1990, Overview and Projection, September 1993, as of 1990, the Ogallala

Aquifer in the study area contained about 453 million acre-feet of water. The same report provides depletion projections by decade period. They project an annual net depletion rate for the area of 3.16 million acre-feet between 1990 and 2000.

rer.

'la

g. Public support

💳 Texas Tech University 🛁

High Plains Ogallala Area Regional Water Management Plan

Management Team

<u>Name</u>

John Abernathy Lee Arrington John Ashworth Patricia Bruno **Chester Carthel Ken Carver** Kathy Christensen **Ron Freeman Gale Henslee Donald Johnson Greg Ingham Carl King Carmon McCain Bill Nelson** Leon New Ken Rainwater James D. Rav **Dean Robbins** Y.F. Snodgrass **Jim Steiert** Lloyd V. Urban C.E. Williams John Williams **Ross Wilson** A. Wayne Wyatt

Representing

Research Single Co. Water Districts (South) TWDB **Public Interest Intermediate Municipalities Agricultural Water Use** Ag. Industry Water Use Large Municipalities **Industrial Water Use Cotton Producers Small Municipalities Corn Producers** Home Water Use Wheat Producers Ag. Water Conservation **Aquifer Modeling** Wildlife (State) Water Quality Protection **Grain Sorghum Producers** Wildlife (Public Sector) University Medium Water Districts (North) **Surface Water Providers** Livestock Industry Large Water Districts (Middle)

REGIONAL WATER RESOURCES

Trinity Group

Ø

Carrizo-Wilcox

Gulf Coast

Scale in Kilometers February 1979

TEXAS WATER DEVELOPMENT BOARD PLANNING DIVISION

6

.....

......

COUNTY SUMMARY HISTORICAL WATER USE (Units: Acre-feet)

County		Population	Municipal	Manufact.	Power	Irrigation	Mining	Livestock	Total
REGION TOT	ALS								
1950		626777							
1960		897269							
1970		876907							
					4/07-				
1974	Ground		85684	47647	14977	8227030	89389	34303	8499030
	Surface		85025	10587	4350	12541	1970	15710	130183
	Total	919830	170709	58234	19327	8239571	91359	50013	8629213
1977	Ground		94803	61889	8497	7372150	75334	41666	7654339
	Surface		86609	23332	1200	16915	3825	10869	142750
	Total	954821	181412	85221	9697	7389065	79159	52535	7797089
			1000/7			7000/40	107/0	44205	
1980	Ground		102843	4/144	8824	7028610	09300	41295	/2980/6
	Surface	000/07	97995	12/05	0400	22101	2071	9784	151120
	Total	992403	200858	59847	12290	7050711	7 431	51079	7449196
1984	Ground		114682	50187	11338	5173083	33816	55325	5438431
	Surface		97654	9228	4253	32338	52	23457	166982
	Total	1076015	212336	59415	15591	5205421	33868	78782	5605413
1005	•		100102	70/07	12470	1570700	770/5	47470	1930543
1985	Ground		04274	0979	59//	43/0/07	2294J 649	25720	4029302
	SUFTACE	1074245	205/29	7030	18/7/	33700 (40/)05	7/417	80700	5001457
	lotat	10/0203	203420	47243	10474	4004473	34013	09399	5001854
1986	Ground		101479	37570	11172	3966036	34774	55445	4206476
	Surface		94881	9044	2932	24144	768	29392	161161
	Total	1078400	196360	46614	14104	3990180	35542	84837	4367637
1097	Constant		07770	37038	11302	3/31670	32678	50080	3660630
1907	Ground		97770	7313	2616	27618	52075	23720	152220
	Total	1062200	188431	44351	13806	3459090	33363	82818	3821859
	TOLAL	1002200	100401	44354			55000	01010	0021057
1988	Ground		100035	35626	12115	3513266	30949	36270	3728261
	Surface		93906	8473	3600	6791	681	21051	134502
	Totai	1045900	193941	44099	15715	3520057	51630	57521	3862763
1080	Ground		107641	38042	13617	4690924	27212	36793	4914229
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Sucface		97208	7689	2522	31478	533	21446	160876
	Total	1011076	204849	45731	16139	4722402	27745	58239	5075105
			40700/	700//	45477	55400//	27242	(0076	67/0715
1990	Ground		10/884	20040	12173	JJ (0704 13119	577	40230	2/40312
	Surface	1017015	100907	1030	19190	5571092	222	47000	5005791
	IOTAL	1013413	200791	40404	10107	3331082	27(4)	03090	2672201
1991	Ground		104243	36912	12472	4739249	34164	41259	4968299
	Surface		101192	7717	0	11059	2937	23422	146327
	Total	1026092	205435	44629	12472	4750308	37101	64681	5114626
1002	Ground		03574	36051	12733	4433656	33642	66673	4676280
1776	Sucface		100284	7814	0	61871	2744	35139	207852
	Total	1039462	193818	43865	12733	4495527	36386	101812	4884141

(1) Data is by county in which the water is used.

Data is by county in which the water is used.
 Municipal use excludes reported industrial sales.
 Electric power cooling water is consumptive use.
 Irrigation surface water use for 1974, 1977 is on-farm use. Surface water diversion loss estimates are included after 1977.
 1989 mining data is substituted for 1990.
 1991 and 1992 surface water for power is not available.

COUNTY SUMMARY HISTORICAL WATER USE OF GROUND WATER DURING THE 1970's Average per Years Given for Decade (Units: Acre Feet)

County	Population	Municipal	Manufact.	Power	Irrigation	Mining	Livestock	: Total
Andrews		2,588.00	108.00	0.00	7,139.00	11,642.50	239.00	21,716.50
Armstrong	1,948.00	290.00	1.50	0.00	27,654.00	0.00	596.00	28,541.50
Bailey	8,368.60	1,588.00	22.50	0.00	375,437.00	1.50	586.00	377,635.00
Borden	877.00	80.00	0.00	0.00	655.00	4.00	86.50	825.50
Briscoe	2,713.33	317.50	1.00	0.00	100,134.50	1.00	333.00	100,787.00
Carson	6,471.67	935.50	1,223.50	0.00	187,177.00	900.00	850.00	191,086.00
Castro	10,453.00	1,796.50	1,538.00	0.00	518,080.00	0.00	2,803.50	524,218,00
Cochran	5,138.33	797.50	18.00	0.00	85,282.00	7,335.50	836.00	94,269,00
Collingsworth	4,715.00	660.00	1.00	0.00	12,189.00	0.00	165.00	13,015,00
Crosby	9,001.33	611.00	268.50	0.00	195,900.00	101.50	390.00	197,271.00
_Dallam	6,198.67	1,388.00	433.00	0.00	271,760.00	1.00	1,221.50	274.803.50
Dawson	16,448.67	789.00	6.00	0.00	33,622.50	1,405.50	589.00	36,412.00
Deaf Smith	19,775.33	4,222.00	2,754.50	0.00	482,399.50	5.00	4,498.00	493,879,00
Dickens	3,663.33	218.50	0.00	0.00	12,760.50	7.00	140.50	13,126,50
Donley	3,796.00	236.00	0.00	0.00	21,510,00	1.50	139.50	21,887,00
Ector	100.041.67	9,194.50	3,172.00	0.00	3,169,00	2.937.50	138.00	18.611.00
Flovd	10,589,67	1,551,50	24.00	0.00	273,700.00	4.00	696.00	275.975.50
Gaines	12.149.00	2,589,50	289.00	0.00	286,913,00	15.330.00	397.50	305.519.00
Garza	5.305.67	161.00	16.50	0.00	13.833.50	498,50	86.50	14.596.00
Glasscock	1.208.00	178.00	0.00	0.00	50.051.50	30.50	316.50	50.576.50
Grav	26.741.33	994.50	4.303.00	0.00	42.859.50	2.177.00	776.00	51.110.00
د .	35.378.67	4.475.00	2,510.00	0.00	728,088,50	1,729.50	1.586.00	738.389.00
Hansford	6,298,33	1.433.00	31.50	0.00	404,670,50	365.00	1.506.00	408.006.00
Hartley	3,190.67	713.50	17.00	0.00	206,486.00	1.00	2.242.50	209.460.00
	3,807.00	1,132.00	56.00	0.00	5,222.00	22.50	345.00	6,777.50
lockiev	21,407.00	1,643.50	84.00	0.00	272,751.00	14,630,50	465.00	289.574.00
Howard	36,043.33	797.00	123.00	0.00	2,080.00	942.00	173.00	4,115.00
Hutchinson	25,115.00	2.214.50	21,504,00	434,50	90.654.00	1,677.50	122.00	116,606.50
.amb	18,096.00	3,128.00	333.00	5,080.00	410,061.00	161.50	1,246.50	420,010.00
ipscomb	3.586.67	585.00	2.00	0.00	26,162.00	15.50	174.50	26,939.00
Lubbock	190,755.33	9,121,50	955.50	919.00	228,204.50	65.00	1,390.50	240,656.00
т.vnn	8,920.33	653.00	0.50	0.00	62,387.00	2.00	212.00	63,254.50
Áartin	4,740.33	382.00	0.00	0.00	27,662.50	524.00	215.00	28,783.50
Midland	71,438.67	4,319.00	1.007.50	0.00	33,432.00	2,043.00	400.00	41,201.50
Moore	14,950.67	3,648.50	8,333.00	888.50	326,454.00	1,270.50	1,682.50	342,277.00
fotley	2,092.00	397.50	2.00	0.00	6,999.50	0.00	345.50	7,744.50
Jchilfree	9,661.00	1,726.50	37.00	0.00	185,042.50	1,315.50	1,245.50	189,367.00
Oldham	2,266.67	2,019.00	0.00	0.00	28,344.00	89.50	694.50	31,147.00
armer	10,700.67	2,136.50	1,310.00	0.00	644,026.00	1.50	2,445.50	649,919.50
otter	93,437.67	8,612.50	3,776.00	3,106.00	21,538.50	325.50	57.50	37,416.00
Randall	61,122.00	7,109.50	56.50	0.00	97,403.50	57.50	1,212.00	105,839.00
₽ oberts	1,044.00	193.50	0.00	0.00	13,509.00	0.50	86.00	13,789.00
herman	3,474.33	761.00	19.50	0.00	315,096.50	2.50	1,649.00	317,528.50
wisher	10,131.00	1,936.50	19.00	0.00	409,314.00	2.00	2,150.50	413,422.00
Теггу	14,286.33	739.50	93.50	0.00	136,495.00	1,128.00	194.50	138,650.50
heeler	6,686.00	1,071.00	301.00	0.00	10,282.50	160.00	577.00	12,391.50
~~kum	7,685.33	1,356.50	125.50	1,309.00	124,325.50	25,088.50	86.50	152,291.50
LOTAL	933,316.60	93,491.50	54,877.00	11,737.00	7,818,918.00	94,004.00	38,388.50	8,111,416.00

COUNTY SUMMARY HISTORICAL WATER USE OF GROUND WATER DURING THE 1980's Average per Years Given for Decade (Units: Acre Feet)

County	Population	Municipal	Manufact.	Power	Irrigation	Mining	Livestock	Total
Andrews	15,443.14	3,077.29	43.14	0.00	4,971.86	4,870.29	224.86	13,187.43
Armstrong	2,030.70	311.40	0.00	0.00	8,710.57	18.86	516.14	9,556.97
Bailey	8,085.00	1,388.00	48.14	0.00	173,489.57	19.14	1,192.71	176,137.57
Borden	916.57	129.43	0.00	0.00	424.14	525.00	26.86	1,105.43
Briscoe	2,239.29	216.43	1.14	0.00	37,251.57	0.00	244.14	37,713,29
Carson	6,872.14	1,349.86	837.29	0.00	94,774.71	1,189.86	947.00	99,098.72
Castro	10,106.00	1,787.43	1,564.14	0.00	289,347.29	0.00	3,515.29	296,214,14
- Cochran	4,583.57	800.57	64.00	0.00	61,294.14	1,698.00	667.14	64,523.86
Collingsworth	4,010.00	848.86	0.00	0.00	8,214.71	0.00	60.43	9,124.00
Crosby	8,184.14	534.57	5.86	0.00	80,381.71	317.71	261.00	81,500.86
Dallam	6,218.00	1,288.29	62.86	0.00	275,969.29	0.00	1,711.14	279,031.57
Dawson	15,795.71	651.29	71.71	0.00	28,415.86	775.86	86.29	30,001,00
Deaf Smith	20,233.86	4,177.29	1,144.14	0.00	260,763.00	0.00	8,698.00	274,782,43
Dickens	2.990.43	146.00	4.57	0.00	4,685,29	13.43	56.71	4,906,00
Donley	3.979.29	94.71	12.00	0.00	8,113,86	16.29	68.29	8.305.14
Ector	127.018.43	9.859.71	1.926.00	0.00	4,116,86	5,460,14	271.71	21.634.43
Flovd	8.916.43	539.29	7.14	0.00	141.565.86	59.00	839.43	143.010.71
- Gaines	13,982,14	2.699.57	277.00	0.00	293,353,00	5,750,14	532.43	302.612.14
Garza	5.309.57	155.29	0.00	0.00	4,100,43	571.29	40.29	4.867.29
Glasscock	1.261.00	174.57	4.57	0.00	36.306.71	3.14	234.71	36,723,71
Grav	25.862.57	2,495,43	3.126.43	0.00	24,757,29	1.097.14	306.14	31,782,43
de	36.871.57	4.349.43	1.551.57	0.00	425.365.86	297.00	1.147.29	432,711,14
Hansford	6.237.00	1.360.43	35.57	0.00	219,115.00	656.71	2.633.43	223.801.14
Hartley	3,710,43	770.43	0.00	0.00	167,403,43	0.00	2.384.86	170,558,72
- Hemphill	4,796,14	1.013.43	71.43	0.00	4,907,14	0.14	337.14	6.329.28
Hockley	24,406,43	1.714.29	85.71	0.00	82,863.00	4.978.86	378.86	90.020.71
Howard	34,745,71	898.43	273.71	0.00	1.180.71	994.29	194.00	3.541.14
Hutchinson	26,796,86	3.418.00	15.976.86	98.57	57.635.71	956.71	67.14	78,153,00
Lamb	16.670.57	2.855.71	604.29	8.923.29	368,956,00	115.86	1.844.71	383,299,86
Linscomb	3.655.57	745.57	111.00	0.00	15.017.43	6.71	81.43	15,962,14
Lubbock	222,922,57	8.837.29	505,14	110.14	115,916,86	159.14	1.620.43	127,149.00
	7.522 71	646.14	14.86	0.00	38,666,29	113.43	189.86	39,630,57
Martin	4 367 71	319.00	24.43	0.00	13.020 43	695.29	239.43	14.298.57
Midland	104 022 71	10 818 43	91.43	0.00	18,419,57	867.29	309.86	30,506,57
Moore	17 250 29	3 431 43	7 355.00	244 57	274,859,29	919.14	2.628.14	289.437.57
Motley	1 754 86	331.71	3.86	0.00	3.383.00	0.00	56.00	3.774.57
Ochiltree	10.115.57	2.149.57	0.00	0.00	106.289.00	202.86	797.57	109,439.00
Oldham	2 537 29	2 593 14	0.00	0.00	9 939.43	494.86	639,86	13.667.29
Parmer	10 669 14	1 977 43	1 456.14	0.00	279.256.86	0.00	4.801.43	287,491.86
Potter	103 531 57	12 160 14	3.008.71	1.925.29	12,151,00	531.43	60.57	29,837.14
Randall	87 147 43	10 837 14	283.00	0.00	40.143.14	113.86	2,484,14	53,861.29
Roberts	1 091 43	212.86	0.00	0.00	5.853.57	6.00	55.43	6,127.86
Sherman	3.048.29	694.71	0.00	0.00	237.988.14	21.29	2,258.43	240,962.57
Swisher	8 889 71	728.29	1.29	0.00	139,181.00	5.86	3,759.57	143,676.00
Теггу	14,760,29	717.71	55.71	0.00	80,588.00	1,076.00	156.14	82,593.57
Wheeler	6.809.29	1.106.71	31.14	0.00	3,881.57	136.29	234,86	5,390.57
Yoakum	9,249.57	1,319.71	18.14	282.14	75,097.43	6,669.43	123.43	83,510.29
_TOTAL	1,067,618.69	108,732.41	40,759.12	11,584.00	4,638,086.58	42,403.74	49,984.72	4,891,550.54

COUNTY SUMMARY HISTORICAL WATER USE OF GROUND WATER DURING THE 1990's Average per Years Given for Decade (Units: Acre Feet)

	County	Population	Municipal	Manufact.	Power	Irrigation	Mining	Livestock	Total
عدي	Andrews	14,569.00	3,163.60	21.20	0.00	10,775.00	4,078.80	250.80	18,289,40
	Armstrong	2,073.20	337.80	0.00	0.00	12,889.80	18.80	699.00 /	13,945,40
	Bailey	7,110.60	1,335.20	146.00	0.00	205,042.20	22.40	1,508,40	208.054.20
	Borden	814.80	90.00	0.00	0.00	570.40	913.60	25.40	1.599.40
	Briscoe	1,953.40	182.20	0.00	0.00	35,217.20	0.00	204.00	35,603,40
	Carson	6,618.00	1,284.40	622.40	0.00	109,157.40	1,646.80	1,127.00	113.838.00
	Castro	8,966.80	1,675.80	1,949.80	0.00	349,791.40	0.00	4.935.80	358,352,80
· • •	Cochran	4,393.40	857.20	0.00	0.00	46,305.20	747.40	588.40	48.498.20
	Collingsworth	3,680,80	687.20	0.00	0.00	22,595,60	0.00	64.00	23.346.80
	Crosby	7.355.00	431.00	6.40	0.00	111.341.00	490.00	233.00	112.501.40
	Dallam	5.557.80	1.180.60	0.00	0.00	288,940,60	0.00	2.216.80	292.338.00
	Dawson	14 960.60	684.40	31.20	0.00	47,944,80	490.80	105.60	49,256,80
	Deaf Smith	19 209 40	3 951 80	917 40	0.00	266 586 60	0.00	11 298 60	282 754 40
	Dickens	2 583 00	152 80	0.00	0.00	3 817 00	12 20	61 80	4 043 80
-	Donley	3 688 60	79.60	0.00	0.00	11 192 20	17.60	72 40	11 361 80
	Ector	121 119 20	8 748 80	1 427 60	0.00	5 419 00	7 709 80	232.80	23 538 00
	Elove	8 358 60	295.00	10.80	0.00	194 751 20	63.80	1 024 60	196 145 40
	Gaines	14 266 80	2 864 00	325.80	0.00	475 469 60	3 021 80	738 40	482 419 60
	Games	5 221 40	161.80	0.00	0.00	3 578 00	571 20	38.80	402,413.00
	Glasscock	1 514 40	204.00	0.00	0.00	36 982 80	7 40	183.00	37 377 20
	Grav	24 162 20	2 4 5 3 4 0	3 652 40	0.00	23 977 80	1 107 20	230 60	32 520 40
y y 24.	andy No	24,102.00	4 723 60	1 730 20	0.00	371 233 20	1,197.20	1 250 60	379 059 60
	11C	55,212.40	4,723.00	1,730.20	0.00	202 017 20	1 047 20	2,025,60	207 427 00
	Hansioru	3,780.00	1,233.20	43.60	0.00	170.059.20	1,047.20	2,005.00	192 061 60
	Harney	3,040.40	603.00	0.00	0.00	2 2 2 2 2 2 2	0.00	2,300.40	2 504 90
·	Hemphili	3,674.60	4 725 90	2.00	0.00	2,220.00	2 510 40	405.20	3,354.00
	Hockley	24,002.80	1,725.60	4.00	0.00	119,002.00	3,510.40	495.20	125,500.00
	Howard	32,000.80	947.80	297.00	0.00	2,090.00	329.60	220.00	3,900.20
	Hutchinson	25,952.40	2,713.00	17,880.80	0.20	59,473.60	475.00	79.40	80,020.00
	Lamb	15,219.80	2,749.80	431.00	11,924.60	284,632.40	120.60	2,192.00	302,050.40
	Lipscomb	3,172.00	/48.40	95.00	0.00	15,281.60	6.00	90.20	16,221.20
	LUDDOCK	227,786.20	10,957.60	508.40	0.00	180,958.00	288.60	1,866.00	194,578.60
	Lynn	6,716.40	524.60	0.00	0.00	42,028.80	138.40	190.60	42,882.40
	Martin	5,076.40	336.80	22.80	0.00	9,285.20	1,160.20	284.00	11,089.00
	Midland	110,867.60	10,507.40	125.60	0.00	21,606.00	724.20	423.60	33,386.80
	Moore	18,427.40	3,129.40	6,547.20	298.80	342,664.20	598.00	3,365.20	356,602.80
	Motley	1,550.40	306.00	2.20	0.00	4,009.00	0.00	46.40	4,363.60
	Ochiltree	9,052.80	2,049.80	1.00	0.00	105,132.20	188.00	156.60	107,527.60
	Oldham	2,335.80	1,643.20	0.00	0.00	8,593.60	467.60	148.60	10,853.00
	Parmer	10,011.20	2,002.20	1,429.00	0.00	352,864.20	0.00	6,520.20	362,815.60
	Potter	100,499.40	12,015.80	2,124.00	1,491.00	13,194.40	705.20	74.20	29,604.60
	Randall	92,796.00	11,647.40	260.80	411.40	39,752.80	10.20	3,090.40	55,173.00
	Roberts	972.60	227.20	0.00	0.00	4,582.40	10.80	53.40	4,873.80
	Sherman	2,901.00	630.40	0.00	0.00	260,291.60	22.80	2,732.40	263,677.20
	Swisher	8,287.40	439.00	0.00	0.00	169,381.20	4.80	4,253.00	1/4,0/8.00
_	Terry	13,217.40	662.80	2.00	0.00	139,267.20	792.60	131.80	140,856.40
	Wheeler	5,786.20	903.80	0.00	0.00	2,831.00	120.20	190.60	4,045.60
	Yoakum	8,843.60	1,776.60	0.00	0.00	107,814.00	4,380.00	129.40	114,100.00
	TOTAL	1,053,171.60	107,918.80	40,624.40	14,126.00	5,304,375.20	36,232.20	58,897.20	5,562,173.80

COUNTY SUMMARY HISTORICAL WATER USE OF SURFACE WATER Average per Years Given for Decade (Units: Acre Feet)

(County	Population	Municipal	Manufact.	Power	Irrigation	Mining	Livestock	Total
T	REGIONAL	. TOTAL							
	1970s	933,299.00	83,926.00	12,559.50	9,066.00	14,971.50	2,897.50	14,076.00	137,496.50
	1980s	1,068,347.29	95,514.98	9,183.98	4,004.43	25,494.70	779.72	22,656.42	157,634.28
	1990s	1,053,171.60	101,640.40	7,625.60	603.20	27,833.60	3,445.20	31,603.20	172,751.20

(1) Data is by county in which the water is used, not necessarily the water source.

(2) Municipal use excludes reported industrial sales.

(3) Electric power cooling water is consumptive use.

- (4) Irrigation surface water use for 1974, 1977 is on-farm use. Surface water diversion loss estimates are included beginning in 1980 where applicable.
- (5) 1989 minimg data is substituted for 1990 mining data.

(6) 1991 - 1994 surface water consumption for power is not available.

COUNTY SUMMARY HISTORICAL WATER USE OF SURFACE WATER DURING THE 1970's Average per Years Given for Decade (Units: Acre Feet)

.

	County	Population	Municipal	Manufact.	Power	Irrigation	Mining	Livestock	Total
	Andrews	11,398.00	0.00	0.00	0.00	62.50	0.00	79.00	141.50
	Armstrong	1,948.00	0.00	0.00	0.00	0.00	0.00	184.00	184.00
	Bailey	8,368.60	0.00	0.00	0.00	0.00	0.00	129.00	129.00
	Borden	877.00	19.00	13.00	0.00	7.50	0.00	466.00	505.50
	Briscoe	2,713.33	0.00	1.50	0.00	888.00	0.00	317.00	1,206.50
	Carson	6,471.67	0.00	0.00	0.00	0.00	91.50	204.00	295.50
	Castro	10,453.00	. 0.00	0.00	0.00	0.00	0.00	353.50	353.50
-744	Cochran	5,138.33	0.00	0.00	0.00	0.00	0.00	161.50	161.50
	Collingsworth	4,715.00	0.00	0.00	0.00	181.00	0.00	707.50	888.50
	Crosby	9,001.33	622.00	152.00	0.00	1,000.00	318.00	125.00	2,217.00
	Dallam	6,198,67	0.00	0.00	0.00	0.00	0.00	338.00	338.00
	Dawson	16,448,67	1.867.00	82.50	0.00	0.00	0.00	145.00	2.094.50
	Deaf Smith	19,775.33	0.00	0.00	0.00	0.00	0.00	432.00	432.00
	Dickens	3.663.33	355.50	4.00	0.00	258.50	0.00	609.00	1.227.00
	Donley	3.796.00	494.50	3.00	0.00	0.00	0.00	751.50	1,249,00
	Ector	100.041.67	8,179,50	986.50	0.00	284.50	0.00	25.00	9.475.50
	Floyd	10 589 67	0.00	0.00	0 00	0.00	0.00	135 50	135.50
	Gaines	12 149 00	0.00	0.00	0.00	0.00	0.00	117 50	117 50
يعمين	Garza	5 305 67	457 50	283.00	0.00	0.00	321.00	374 00	1 435 50
	Glasscock	1 208 00	0,00	0.00	0.00	0.00	0.00	33 50	33 50
	Grav	26 741 33	3 519 00	1 038 00	0.00	0.00	447 50	451.00	5 455 50
-		35 378 67	1 826 00	42 50	0.00	90.00	0.00	240 50	2 199 00
	Hansford	6 208 33	0.00	0.00	0.00	65.00	0.00	240.50	305 50
	Hartley	3 190 67	0.00	0.00	0.00	00.00	0.00	308 50	308 50
	Hemobill	3 807 00	0.00	0.00	0.00	68.00	0.00	548.00	616.00
A	Hockley	21 407 00	1 852 00	27.00	0.00	0.00	83 50	98.50	2 061 00
	Howard	36 043 33	6 366 50	3 273 50	0.00	97.00	1 120 00	59.00	10 916 00
	Hutchinson	25 115 00	0,000.00	1 891 00	6 291 00	0.00	109 50	561 50	8 853 00
	amb	18 096 00	0.00	0.00	0,201.00	0.00	0.00	166.50	166.50
	Linscomh	3 586 67	0.00	0.00	0.00	12 50	0.00	779.50	792.00
	Lubbock	190 755 33	27 890 50	2 294 50	2 725 00	7 250 00	0.00	179 50	40 339 50
		8 920 33	AA6 50	1 00	0.00	154 00	0.00	71.00	672 50
	Martín	A 740 33	290.00	7.50	0.00	0.00	0.00	72.00	369.50
	Midland	71 /38 67	10.967.00	F00 50	0.00	1 506 50	0.00	100.00	13 264 00
• 1	Moore	14 950 67	10,307.00	000.00	0.00	1,090.00	0.00	155 50	155 50
	Motley	2 002 00	0.00	0.00	0.00	55.00	0.00	421.00	476.00
	Johiltoo	2,092.00	0.00	0.00	0.00	77.50	0.00	221.00	309.00
	Oldham	3,001.00	0.00	0.00	0.00	0.00	406.50	257.50	766.00
, سر	Dianam	2,200.07	0.00	0.00	0.00	222 50	400.00	204 00	516 50
	Patter	02 427 67	11 092 50	1 977 50	50.00	1 260 00	0.00	294.00	14 590 50
		93,437.07 61 122 00	6 205 50	1,022.00	0.00	012.00	0.00	702.50	7 854 00
، ۱	Pahada	1 044 00	0,205.50	33.00	0.00	913.00	0.00	452.00	452.00
	Shormon	1,044.00	0.00	0.00	0.00	0.00	0.00	452.00	364.00
	Shernan	3,4/4.33	0.00	0.00	0.00	92.00	0.00	272.00	335 50
-	Swisher	14,131,00	1 494 50	0.00	0.00	0.00	0.00	59.00	1 636 50
الس.	Macolor	14,200.33	1,404.30	3.00	0.00	90.00	0.00	017 00	1 073 50
	Vileeler Kockum	0,000.00	0.00	0.00	0.00	130.30	0.00	29.50	28.50
	Uakum	1,000.33	0.00	0.00	0.00	0.00	0.00	20.00	20.00
	UTAL S	933,316.60	83,926.00	12,559.50	9,066.00	14,971.50	2,897.50	14,076.00	137,496.50

COUNTY SUMMARY HISTORICAL WATER USE OF SURFACE WATER DURING THE 1980's Average per Years Given for Decade (Units: Acre Feet)

.

County	Population	Municipal	Manufact.	Power	Irrigation	Mining	Livestock	Total
Andrews	15,443.14	0.00	0.00	0.00	32.71	0.00	59.43	92.14
Armstrong	2,030.70	0.00	0.00	0.00	0.00	0.00	127.00	127.00
Bailey	8,085.00	0.00	0.00	0.00	0.00	0.00	283.14	283.14
Borden	916.57	8.14	75.71	0.00	8.00	0.00	250.29	342.14
Briscoe	2,239.29	108.43	0.00	0.00	128.71	0.00	60.57	297.71
Carson	6,872.14	0.00	0.00	0.00	0.00	129.43	225.57	355.00
Castro	10,106.00	0.00	0.00	0.00	0.00	0.00	802.71	802.71
- Cochran	4,583.57	0.00	0.00	0.00	0.00	0.00	153.71	153.71
Collingsworth	4,010.00	9.14	0.00	0.00	25.43	0.00	514.29	548.86
Crosby	8,184.14	723.57	0.00	0.00	1,498.71	143.57	64.29	2,430,14
Dallam	6,218,00	0.00	0.00	0.00	0.00	0.00	419.29	419.29
Dawson	15,795,71	1.901.86	6.71	0.00	0.00	0.00	19.86	1.928.43
Deaf Smith	20.233.86	0.00	0.00	0.00	0.00	0.00	2.002.29	2,002,29
Dickens	2,990,43	273.57	0.00	0.00	395.14	0.00	501.43	1,170,14
Donley	3 979.29	615.57	0.00	0.00	0.00	0.00	614 86	1 230 43
Ector	127 018 43	13 101.29	1.090.57	0.00	1.491.14	0.00	13.00	15 696 00
Floyd	8 916 43	637 57	2 14	0.00	1 421 71	0.00	194.86	2 256 29
Gaines	13 982 14	0.00	0.00	0.00	0.00	0.00	124.00	174 14
Garza	5 309 57	853 14	44 29	0.00	6 43	104.00	346 14	1 354 00
Glasscock	1 261 00	0 00	0.00	0.00	0.00	0 00	58 29	58 29
Grav	25 862 57	2 567 00	17 14	0.00	0.00	236 29	1 599 71	4 420 14
	36 871 57	2 108 57	29.71	0.00	806.43	0.00	254.86	3 199 57
Hansford	6 237 00	0.00	0.00	0.00	23.00	0.00	1 499 71	1 522 71
Hartley	3 710 43	0.00	0.00	0.00	0.00	0.00	1 044 57	1 044 57
Hemphill	4 796 14	0.00	0.00	0.00	31.00	0.00	985 71	1 016 71
Hockley	24 406 43	1 855 14	17 43	0.00	141 79	0.00	84.14	2 098 00
Howard	34 745 71	7 165 00	1 906 57	0.00	268.57	134 14	48 14	9 512 43
Hutchinson	26 706 86	PD0 71	2 061 14	0.00	200.07	0.00	509 43	3,012.40
	16 670 57	0.00	2,001.14	0.00	0.00	0.00	431.20	131 20
Lano	2 655 57	0.00	7.74	0.00	51 43	0.00	704 43	792 57
Lubback	222 022 57	20 590 57	1 120 71	2 465 57	51.45	0.00	272 42	20 866 86
LUDDOCK	7 500 74	30,360.37	0.00	2,405.57	0,027.07	0.00	J1 2.45	3 222 71
Montin	1,022.71	404.25	0.00	0.00	2,723.43	0.00	40.00	280.70
Warten	4,307.71	330,14	0.00	0.00	2,296,14	0.00	39.14 76.71	16 422 14
Magand	104,022.71	12,997.00	13.29	420.96	3,200.14	0.00	FOA 74	770.00
	17,200.29	0.00	24.97	139.00	105.00	9.00	505.14	635 14
Ochiltroo	1,/04.00	2.57	0.00	0.00	105.00	22.43	503.14	672 57
Ochillee	10,175.57	0.00	0.00	0.00	0.00	0.00	610.71	610 71
Olonam	2,537.29	0.00	0.00	0.00	0.00	0.00	1 029 71	4 557 57
Parmer	10,009.14	0.00	0.00	1 200 00	400,00	0.00	(,000.7) E4E 9E	1,007.07
Potter	103,531.57	9,670.71	2,468.43	1,399.00	2,447.29	0.00	540.00	10,002.29
Randall	87,147.43	6,499.57	237.86	0.00	4,318.57	0.00	500.00	11,030.00
Roberts	1,091.43	0.00	0.00	0.00	0.00	0.00	508.00	508.00
Snerman	3,048.29	0.00	0.00	0.00	59.71	0.00	J∠7.71	1 610 20
Swisner	8,889.71	/4/.43	0.00	0.00	0.00	0.00	071.00	1,019.29
i erry	14,760.29	1,424.00	0.00	0.00	399.86	0.00	37.14	1,001.00
/vneeler	6,809.29	0.00	0.00	0.00	28.57	0.00	1,499.29	1,327.00
гоакит	9,249.57	0.00	0.00	0.00	0.00	0.00	30.43	30.43
UTAL	1,067,618.69	95,514.98	9,183.98	4,004.43	25,494.70	779.72	22,656.42	157,634.28

COUNTY SUMMARY HISTORICAL WATER USE OF SURFACE WATER DURING THE 1990's Average per Years Given for Decade (Units: Acre Feet)

County	Population	Municipal	Manufact.	Power	Irrigation	Mining	Livestock	Totai
Andrews	14,569.00	0.00	0.00	0.00	0.00	0.00	62.40	62.40
Armstrong	2,073.20	0.00	0.00	0.00	0.00	0.00	174.60	174.60
Bailey	7,110.60	0.00	0.00	0.00	0.00	0.00	377.00	377.00
Borden	814.80	4.60	60.60	0.00	32.20	0.00	230.60	328.00
Briscoe	1,953.40	119.00	0.00	0.00	0.00	0.00	51.00	170.00
Carson	6,618.00	0.00	0.00	0.00	0.00	84.80	281.40	366.20
Castro	8,966.80	0.00	0.00	0.00	0.00	0.00	1,234,00	1.234.00
-Cochran	4,393.40	0.00	0.00	0.00	0.00	3.60	146.80	150.40
Collingsworth	n 3,680.80	8.20	0.00	0.00	130.20	0.00	577.00	715.40
Crosby	7,355.00	706.00	0.00	0.00	78.40	320.60	58.00	1.163.00
Dallam	5,557.80	0.00	0.00	0.00	0.00	0.00	554.00	554.00
Dawson	14,960.60	1.621.20	0.00	0.00	0.00	0.00	26.00	1.647.20
Deaf Smith	19.209.40	0.00	0.00	0.00	0.00	0.00	2.824.60	2,824,60
Dickens	2,583.00	322.20	0.00	0.00	9.80	0.00	558.20	890 20
Donley	3.688.60	549.80	0.00	0.00	0.00	0.00	652.00	1 201 80
Ector	121,119,20	14,766,60	685.80	0.00	335.20	0.00	12 20	15 799 80
Elovd	8.358.60	785 80	1 40	0.00	0.00	0.00	256.20	1 043 40
Gaines	14 266 80	0.00	0.00	0.00	0.00	0.00	184 60	184 60
Garza	5 221 40	626.80	2.00	0.00	19.80	0.00	355 20	1 003 80
Glasscock	1 514 40	0.00	0.00	0.00	0.00	0.00	45.60	45 60
Grav	24 162 80	1 881 40	0.60	0.00	0.00	0.00	2 158 20	4 040 20
	35 212 40	1,546.40	37 40	0.00	9 596 80	0.00	312 40	11 493 00
Hansford	5 760 00	0,00	0,00	0.00	0.00	0.00	3 128 40	3 128 40
Hartley	3 646 40	0.00	0.00	0.00	0.00	0.00	2 300 40	2 300 40
Hemphill	3 674 60	0.00	0.00	0.00	0.00	0.00	1 005 80	1 005 80
-lockiev	24 562 80	1 802 40	19.20	0.00	675.20	0.00	123 40	2 620 20
doward	32 665 80	6 092 60	1 390 60	0.00	528.20	1 011 60	57 20	9 080 20
Hutchinson	25 952 40	1 208 00	1,585,80	0.00	0.00	0.00	715.00	3 508 80
	15 219 80	0.00	0.00	0.00	0.00	0.00	548.00	548.00
inscomb	3 172 00	0.00	21.40	0.00	12.00	0.00	813.60	847.00
Lubbock	227 786 20	30.046.20	1 029 40	343.00	3 504 60	0.00	466.60	35 380 80
	6 716 40	427 80	1,029.40	0,00	3,504.00	0.00	47.60	4 166 20
ynn Aartin	5.076.40	208.60	0.00	0.00	34.00	0.00	71.00	403.60
Midland	110 867 60	14 124 60	45.80	0.00	4 509 60	0.00	105.80	18 875 80
Moore	18 427 40	14,124.00	20.60	0.00	4,399.00	0.00	841.40	871.00
Aotiev	1 550 40	14.80	29.00	0.00	20.40	23.80	418 20	477.20
	9 052 80	0.00	0.00	0.00	0.00	0.00	1 412 00	1 412 00
Oldham	2 335 80	0.00	0.00	0.00	0.00	0.00	1 337 40	1 337 40
	10 011 20	0.00	0.00	0.00	0.00	0.00	1 630 00	1,630,00
	100 499 40	12 700 80	2 418 20	260.20	3 162 40	0.00	669 60	19 301 20
Bandall	92 796 00	9 690 60	297.80	200.20	1 338 80	0.00	773.00	12 100 20
Roberts	92,790.00	9,090.00	297.00	0.00	1,338.60	0.00	480.60	480.60
	2 901 00	0.00	0.00	0.00	0.00	0.00	682.80	682 80
wisher	8 287 40	0.00	0.00	0.00	0.00	0.00	1 062 80	2 021 60
Terry	13 217 40	900.00 1 247 20	0.00	0.00	65.20	0.00	32 80	1 345 20
	5 786 20	0.00	0.00	0.00	00.20	0.00	1 715 40	1,715 40
oakum	8 843 60	0.00	0.00	0.00	0.00	2 000 80	32 40	2.033.20
	0,040.00	0.00				2,000.00	04.70	
IUTAL	1,053,171.60	101,640.40	7,625.60	603.20	27,833.60	3,445.20	31,603.20	172,751.20

GROUND WATER RESOURCES

VOLUME OF WATER IN STORAGE IN 1990 AND ESTIMATED RESERVES THAT WILL BE AVAILABLE IN 2000 IN MILLIONS OF ACRE-FEET "

County	Unrecoverable	1990	2000
Andrews	1.23	4.92	4.77
Armstrong	0.50	3.64	3.50
Bailey	0.81	6.28	5.50
Borden	0.01	0.17	0.16
Briscoe	0.24	1.69	1.35
Carson	0.92	13.19	12.53
Castro	1.05	11.74	9.76
Cochran	0.83	4.06	3.37
Crosby	0.53	6.62	5.86
Dallam	1.71	29.97	25.71
Dawson	0.70	6.31	5.96
Deaf Smith	1.54	10.66	9.01
Dickens	0.04	0.93	0.85
Donley	0.64	8.09	8.10
Ector	0.45	2.31	2.27
Floyd	0.99	9.37	8.23
Gaines	1.37	13.63	12.27
Garza	0.07	0.71	0.67
Glasscock	0.14	1.73	1.71
Gray	1.02	12.96	12.30
Hale	1.12	12.32	9.99
Hansford	1.06	23.27	21.36
Hartley	1.61	27.82	26.06
Hemphill	0.93	16.57	16.74
Hockley	0.88	4.40	3.68
Howard	0.39	2.01	1.92

VOLUME OF WATER IN STORAGE IN 1990 AND ESTIMATED RESERVES THAT WILL BE AVAILABLE IN 2000 IN MILLIONS OF ACRE-FEET ^{*1}

County	Unrecoverable	1990	2000
Hutchinson	0.69	10.54	9.97
Lamb	1.05	10.09	8.30
Lipscomb	0.96	20.82	20.74
Lubbock	0.80	5.11	3.97
Lynn	0.80	3.62	3.24
Martin	0.86	4.83	4.73
Midland	0.41	2.00	1.88
Moore	0.76	13.20	11.11
Motley	0.08	0.82	0.78
Ochiltree	0.90	18.57	17.67
Oldham	0.33	1.14	1.07
Parmer	0.98	9.64	7.98
Potter	0.36	3.07	2.76
Randall	0.91	4.51	4.00
Roberts	1.01	27.62	27.70
Sherman	1.05	21.88	19.79
Swisher	0.80	4.75	3.64
Теггу	0.96	5.60	4.70
Wheeler	0.58	8.45	8.36
Yoakum	0.83	5.71	5.08
Total	35.90	417.34	381.10

^{*1} Texas Water Development Board Report 341, 1993

SURFACE WATER RESOURCES

	ALLAM		SHERM CACTUS	an GRU 5	PAL HANSFO VER	,0 ★SE	DU ° PE	JRO chiltree ARMAN	LIPSCOMB	Ň
н,	ARTLEY	STR D	NRAY MOORI DUMAS	E	STI HUTCHINS	INN Son	ET	Г Roberts	HEMPHILL	
OL	DHAM		POTTER		CARSON			GRAY	WHEELER	C.
DEAF	SMITH		RANDALI		ARMSTRO	NG		DONLEY		•
PARMER	PARMER CASTR		SWI	SHER	IER BRI				_	
BAILEY	BAILEY LAMB		HALE	:	FLOYD			MOTLEY		
COCHRAN	HOCKLE	Y	LUBBOCK		CROSBY			DICKENS		
YOAKUM	YOAKUM TERRY		LYNN		GARZA				PALO RESEI	DURO RVOIR
GAIN	GAINES			AWSON BOF				 COMPLETED 1991 MAXIMUM CAPACITY CO.000 ACDE EFET 		
ANDRE	ANDREWS		ARTIN	H	OWARD					
ECTO)R	MIDI	LAND	GLASS	scock	_		★ Ŀ	CITIES SE	

								1
D	ALLAM		SHERMAN	I HANSFO	RD	OCHILTREE	LIPSCOMB	N
НА	RTLEY		MOORE	HUTCHINS	SON	ROBERTS	HEMPHILL	
OLI)HAM		POTTER	CARSON	T	GRAY	WHEELER	
DEAF	DEAF SMITH		ANDALL	ARMSTRO	NG	DONLEY		•
PARMER	PARMER CASTR		TUL Swich		MA SCOE	CKENZIE Rion		
BAILEY	BAILEY LAMB		LO(HALE	CKNEY FLOYD FLOYD	ADA	MOTLEY		
COCHRAN	HOCKLEY	,	LUBBOCK	CROSE	7	DICKENS		
YOAKUM	YOAKUM TERRY		LYNN	GARZA			MACKI RESEF	ENZIE RVOIR
GAINI	DAW	'SON	BORDEN		•	DAM COM	IPLETED 1974 (45,500 FEET	
ANDRE	ANDREWS		ŔŢĨŊ	HOWARD		•	DESIGNEI 3 MGD) TO FURNISH PER DAY
ECTO	R	MIDLA	ND GI	LASSCOCK	1	*	CITIES SE	RVED

E	DALLAM		ERMAN	HANSFORD		OCHILTREE	LIPSCOMB	Ň	
H	M	OORE	HUTCHINSON		ROBERTS	HEMPHILL			
oL	POT	ITER	CARSON		GRAY	WHEELER			
DEAF	RAN	DALL	ARMSTRONG		DONLEY				
PARMER	CAST	rro	SWISHER	BRISCOE			I		
BAILEY	LAMB	1	HALE	FLOYD		MOTLEY			
COCHRAN	HOCKLE	r lue WH	RAL BBOCK	S CR crossr RIVER		SBYTON PICKENS SPUR			
YOAKUM	M TERRY		YNN	G ∦R ZA POST		WHITE RIVER RESERVOIR			
GAINES		DAWSO	N j	BORDEN		 DAM COMPLETED 1963 CAPACITY 31,846 ACRE FEET 			
ANDREWS		MARTIN	i I	łoward					
ECTOR MI		MIDLAND	GLAS	SCOCK	$\star \text{ CITIES SERVED}$			40 50 MILES	

D	DALLAM		SHERMAN		HANSFORD		OCHILTREE	LIPSCOMB	Ņ	
H	HARTLEY		MOORE		HUTCHINSON		ROBERTS	HEMPHILL		
OLI	OLDHAM		POTTER		CARSON		GRAY	WHEELER		
DEAF	DEAF SMITH		RANDALL		ARMSTRONG		DONLEY		1	
PARMER	CAST	RO	SWISHEF		BRISCOE					
BAILEY	LAMB		HALE		FLOYD		MOTLEY			
COCHRAN	HOCKLEY	, L	LUBBOCK LUBBOCK		CROSBY		DICKENS			
YOAKUM	TERRY	AL.	lynn AN H	EN	garza IRY		LAKE	E ALAN	N HENRY	
GAINES		DAV	DAWSON BC		BORDEN		• MAXIMUM CAPACITY 116,000 ACRE FEET			
ANDREWS		MAI	MARTIN H		HOWARD		 PROJECTED TO PROVIDE AVERAGE OF 23.3 MILLION GALLONS DAILY 			
ECTOR MI			DLAND GLASSCOCK				CITIES SERVED			

PRECIPITATION

WATER CONSERVATION

AGRICULTURAL WATER CONSERVATION

Opportunities to Maximize the Utilization of Water by Irrigators

IRRIGATION SYSTEMS

Low Energy Precision Application Systems (LEPA) - 86 to 90 percent efficiency. <u>Surge Valves</u> - improve furrow irrigation efficiency by 10 to 40 percent; can cut irrigation amounts by 50 percent. Teilwater elimination

Tailwater - elimination.

<u>Underground Pipes</u> - improves efficiency 15 to 20 percent.

MANAGEMENT TOOLS

Soil Moisture Monitoring - improves irrigation management and scheduling and rainfall utilization. Potential Evapotranspiration (PET) - provides daily predicted crop water use for improved irrigation scheduling. Deficit High Frequency Irrigation - the application of a portion of the PET, under evaluation.

TILLAGE

<u>Furrow Dikes</u> - retain 10 to 15 percent more of average rainfall. <u>Conservation Tillage</u> - uses less plowing and crop residues to contain precipitation and hold existing soil moisture. <u>Ridge Till</u> - conserves soil moisture and rainfall; under evaluation.

ļ

1

İ

Ì

1

1

Ì

.

1

1.

1

URBAN WATER CONSERVATION

Opportunities for Home Owners to Maximize Water Use

<u>WATER USE HABITS</u> - promotion of water conservation practices for use in the home, this is the most readily-available and lowest cost method of water conservation promotion.

<u>NEW CONSTRUCTION</u> - installation of water conserving fixtures in all new homes and businesses.

LANDSCAPE DESIGN - promotion of xeriscape, native plants, and low water use plant materials; good lawn watering techniques and installation of efficient irrigation systems.

<u>WATER HARVESTING/GRAYWATER</u> - educate homeowners of ways to harvest precipitation for maximum use and examine use of graywater in landscape irrigation.

ECONOMICS OF CONSERVATION AND SECONDARY SOLUTIONS

Economic Considerations in Plan

- 1) Economics in Proposed Water Plan
 - Plan—Technical, Volumetric, Economics, Environment
 - Economic Which Alternatives are "Best"
 * Rank Order Options
 * Information for Decision Makers
 - Example: El Paso Water Plan
- 2) Economic Evaluation Process
 - Classification of Projects
 - Steps in Project Evaluation
 - Decision Rules (all are related)
 - Example: Furrow Diking
- 3) Private and Social Benefits and Costs
 - Private B/C and Market Functions
 - Social B/C and Market Failure
 - Solutions to Social B/C and Unique Role of UGWCD
 - Example: Weather Modification
Example: Furrow Diking

Source of Data: Avalanche-Journal, June 2, 1996, and others

Furrow Diking

- 1) Runoff = 3.00 inches without furrow diking
- 2) Benefits to furrow diking (runoff reduced by 2.00 inches)
 - Yield increases (per acre) of 2.00 inches

Cotton 100-200 lbs Sorghum 600-800 lbs Wheat 4-6 bushels

P corn = .80/lbP sorghum = 6/100 lbsP corn = 5.5/bushel

3) Costs of furrow diking = NA

Alternative (Increase Pumping 2.00 inches)

- 1) Benefits to 2.00 inches more Ogallala pumpage (see above)
- 2) Costs of increased pumping = \$3.00-4.50/inch of water for energy costs only

Evaluation Criteria

1) Payback period (undiscounted)—furrow diking

2) Cost effectiveness—furrow diking vs. increased irrigation

Example: Weather Modification Private/Social Benefits and Costs

1) Use of ground generators and/or airplanes to seed clouds with silver iodide

2) Identify private/social benefits and costs
 Benefits (10% increase in precipitation)

Private

Social

Costs (10% increase in precipitation)

Private

Social

Decision Rules (All Related)

Let $B' = \sum_{i=1}^{N} \frac{E(B)}{(1+r)^{i}}$ and $C' = \sum_{i=1}^{n} \frac{C}{(1+r)^{i}}$

- 1) NPV = B' C' yields net dollar return
- 2) Profitability or $\frac{B}{C} = \frac{B'}{C'}$ yields percentage return or profit
- 3) IRR; NPV = O or B' = C' yields internal I return (%)
- 4) Payback PB = $\frac{C'}{B'}$ yields number of years to recover I (i.e., 3.0 years)
- 5) Cost effectiveness $B_1 = B_2$ $C_1 \langle C_2$

Compare 2 or more projects with same return. Yields least cost option as choice.

Sample of Firms: Primary/Secondary Rules

	Primary	Secondary
NPV	9.8	25.8
IRR	53.6	. 14.0
B/C	2.6	2.2
PB	34.0	58.0
	100.0	100.0

Social and Private Benefits and Costs

- 1) Private
 - Costs—incurred by decision maker; includes market transactions and private opportunity costs (own labor, capital)
 - Benefits—captured by decision maker; includes market returns (P_c, P_s, P_w) and private opportunity benefits (lifestyle, environment)
- 2) Social
 - Costs—costs incurred by third parties, do not necessarily go through marketplace (pollution, depletion)
 - Benefits—benefits received by third parties, do not necessarily go through marketplace (playa management, quality)
- 3) Responses to Social Costs; Benefits
 - Government—Command and control
 - Markets—Put market incentives to incorporate SG, SB
- 4) Role of UGWCD—Regional alternative
 - Consider regional impact of decision makers
 - Rule making—to balance regional and decision makers' interests

Example: Weather Modification Private/Social Benefits and Costs

- 1) Use of ground generators and/or airplanes to seed clouds with silver iodide
- 2) Identify private/social benefits and costs

Benefits

Private

Crop yield Livestock Reduced irrigation costs Quality of water

Social

Reservoir increases Runoff increases Downwind beneficiaries Aquifer depletion reduced Higher humidity, lower evaporation Quality of water Secondary benefits (multiplier to region)

Costs

Private

Direct costs-capital, operations, maintenance

Social

"Theft of rain" Public opinion Silver iodide accumulation Local flooding Cost recovery—Who pays?

Economic Evaluation Methodology

Classification of Projects

- 1. Replacement
- 2. Cost Reduction
- 3. Safety/Environmental
- 4. Expansion
- 5. Operating

Steps in Project Evaluation

- **C** 1) Cost of Project or Alternative
- **B** 2*) Expected Net Returns or Benefits of Project

B = Bp - Bw/op

- **r** 3) Determine Appropriate Discount Rate
- \mathbf{B}' 4) Convert Net Returns into PV of Returns
 - 5) Compare PV (or B') with Costs C

*Most Difficult Part

Example: Weather Modification Private/Social Benefits and Costs

1) Use of ground generators and/or airplanes to seed clouds with silver iodide

2) Identify private/social benefits and costs
 Benefits (10% increase in precipitation)

Private

Social

Costs (10% increase in precipitation)

Private

Social

AGRICULTURE

Economics:

The economic value for harvesting one inch of precipitation currently lost to runoff if stored in the soil for crop production in the regional management area could result in substantial regional crop yield increases. As an example, for each additional inch of water above the basic water needed for plant development, cotton will yield from 30 to 40 pounds of lint per acre (\$18 to \$24); grain sorghum will yield 300 to 400 pounds per acre (\$12 to \$15); wheat will yield two to three bushels per acre (\$7 to \$10 increase); and corn 3 to 5 bushels per acre (\$7 to \$12). On the 3.2 million acres of cotton grown in the region, an increase of 35 pounds of lint per acre would have a value of \$67.2 million. On the 930 thousand acres of grain sorghum grown in the region, an increase of 350 pounds per acre of grain sorghum would have a value of \$12.5 million. On the 2.5 million acres of wheat grown in the region, an increase of 2.5 bushels per acre of wheat would have a value of \$21.2 million. On the 850 thousand acres of corn grown in the region, an increase of 4 bushels per acre of corn would have a value of \$8.0 million. There are additional varieties of crops grown in the region, which likely would have increased production, thus increasing value. The four crops listed above are major crops grown in the area. The combined increase in the value of increased production from salvaging one inch of water for the four crops would be \$108.9 million per year.

Value of Water Saved:

Lumping the acreage of the four major crops (7.48 million acres) and dividing the sum into the increased value of crops produced (\$108.9 million) with one additional inch of water, indicates an average increase of \$14.55 per acre.

Using the same value per acre inch of water for water which might be saved by

improving irrigation application efficiency, the 1 million acre-feet of water used now or in the future would return \$174.6 million.

Increasing precipitation by 2 inches over the 22 million acre (3.66 million acre-feet) regional area with a precipitation enhancement program would increase the area's water supply by 3.66 million acre-feet. Adding two inches of water to the 7,480,000 acres of the four major crops grown in the area could result in a water savings of 1.25 million acre-feet if this replaced irrigation water that would otherwise be pumped from the aquifer. The increased production made possible with this increased water supply used on the 7.480 million acres of the four major crops grown in the area at \$14.55 per acre inch would be \$217,668,000. The remaining 2.41 million acre-feet would increase production on rain-fed farming and pasture. Some would be collected in playa basins where a part would recharge the aquifer. The increased surface water supply would enhance wildlife production.

Summary:

We assumed we have a shortfall of 3.2 million acre-feet and that we could harvest one additional inch of precipitation on the 7.48 million acres currently farmed in cotton, corn, grain, sorghum, and wheat. This could reduce the shortfall by 623,333 acre-feet. We further assumed we can improve irrigation application efficiency from 70 percent to 90 percent. If we do so, then on the 5 million acre-feet pumped we could save an additional one million acre-feet of water. Also that we can implement a precipitation enhancement program that will increase the annual water supply to the area. Two inches on the 7.48 million acres of the four major crops could further reduce the shortfall by 1,246,000 acrefeet. Two inches on the remaining acreage could result in increased recharge of 100,000 acre-feet. The potential savings added together would be about 3.0 million acre-feet, which

is 200,000 acre-feet below the estimated shortfall. The estimated increase in gross agricultural products could be as much as \$500 million for the area.

Agricultural Commodities from the Texas High Plains Area

		\$ Cash Value
Cattle	3,658,000 animals	1,987,000,000
Cotton	3,400,000 acres	914,000,000
Corn	850,000 acres	329,000,000
Wheat	3,200,000 acres	186,000,000
Sorghum	1,100,000 acres	127,000,000
Others*	300,000 acres	535,000,000
Totals		4,078,000,000

* Vegetables, Soybeans, Hay, Sugarbeets, Peanuts, Alfalfa, Grapes

Commodities - Texas High Plains

Percentage of Cash Value

Agriculture provides 20% of all jobs in Texas Agriculture generates more than \$74,000,000,000 in business to Texas each year The cash value of all agricultural commodities in Texas is \$14,000,000,000

HIGH PLAINS AREA

- ✓ \$22,000,000,000 is generated each year from our agriculture commodities
- ✓ 35% of Texas agribusiness is from the 41 counties surrounding Lubbock and Amarillo
- 30% of the agricultural cash receipts for commodities in the state come from the Texas High Plains Area
- 9,000,000 acres of crops are planted in these
 41 counties (35% of Texas total)
- 20 30% of income for Lubbock and Amarillo citizens comes directly from agriculture
- 20% of the U. S. cotton crop is produced on the 20 counties around Lubbock

 \mathscr{A} 20% of U. S. cattle feedlot production is from 20 counties around Amarillo

\bigstar **PRECIPITATION ENHANCEMENT**

Precipitation Enhancement Efforts in Texas June 1996

By George W. Bomar Senior Technical Specialist Watershed Management Division Texas Natural Resources Conservation Commission

The worsening drought in Texas has prompted some organizations to consider, and implement, a program of seeding clouds to try to generate additional rainwater.

The West Texas Weather Modification Association (WTWMA) was formed in March 1996 to organize and put into operation a summerlong cloud-seeding program covering more than 5 million acres in southwest Texas. The Association is currently made up of water districts in six counties (Glasscock, Sterling, Reagan, Irion, Crockett, and Schleicher), though other nearby counties are holding meetings and may join the organization in the weeks ahead. The Association is based in Mertzon, with Dale Bates of San Angelo serving as Chairman. Bates is also the Vice-Chairman of the Irion County Underground Water Conservation District.

To date, the Association has raised \$211,000 for the cloudseeding operation. The money is being contributed by the six water districts using ad valorem taxes (\$0.04/acre). The University of Texas of the Permian Basin has contributed an additional \$50,000. The amount needed to conduct a full-fledged program for the summer and early autumn is \$411,000. At the moment, the cities of San Angelo and Midland are contemplating joining the program and contributing money. The Texas Natural Resources Conservation Commission (TNRCC) issued a permit to the Association's contractor, Weather Modification Inc of Fargo, North Dakota (WMI). The Association began cloud-seeding immediately and intends to continue the program until October 1, unless a shortage of funds (and more cooperative weather) forces it to conclude much sooner.

Another cloud-seeding project is underway in a 3,600 squaremile area in the South Plains region.

This program, sponsored and conducted by the Colorado River Municipal Water District of Big Spring (CRMWD), is in its 26th year. It is designed to put additional rainfall runoff into Lake J.B. Thomas near Snyder and E.V. Spence Reservoir at Robert Lee. The CRMWD, which pays for the program with revenues from water sales, recently received a new four-year permit from the TNRCC to conduct cloud-seeding operations in Dawson, Borden, Scurry, Howard, and Mitchell Counties.

A third cloud-seeding project is planned for much of the region underlain by the Ogallala Aquifer in northwest Texas.

The High Plains Underground Water Conservation District No. 1 of Lubbock is now doing a feasibility study of seeding clouds using ground-based silver iodide dispensers in its service area. (The CRMWD and WTWMA programs use aircraft to dispense silver iodide for cloud seeding). The District envisions getting its program in place before year's end.

Such an array of weather modification activities is

obviously being prompted by the continuing and worsening drought. Yet, it has been stressed to these organizations that the efficacy of cloud-seeding is most limited during drought spells. Obviously, more opportunities (suitable clouds) for seeding occur in normal times and certainly in wet periods. Still, it has been the experience of the TNRCC staff that even in drought, numerous occasions occur for beneficial cloud seeding to be attempted.

The TNRCC is involved in weather modification because it has a statutory mandate (Chapter 18 of the Texas Water Code) to administer the Weather Modification Act, passed by the Legislature in 1967. The act charges the agency with promoting research and development of cloud-seeding technology and with regulating the use of cloud-seeding through a licensing and permitting process.

We currently have five firms licensed in Texas by the TNRCC to perform weather modification. Permits to the CRMWD and WTWMA are valid.

What are the prospects that the seeding will have success? Simply put, quite good. For some years now, thanks to a grant from NOAA, we have been conducting research on the CRMWD's rain enhancement program.

Though funding has been enough to allow us to work in the field (Big Spring area) for only a few weeks each summer, we have accumulated (and published professionally) evidence (corroborated scientifically using measurements of clouds obtained from specifically-instrumented aircraft) that timely seeding with silver iodide enables convective clouds to live longer, process more moisture, and produce significantly more rainfall (up to 50 percent with some times of convective clouds).

There is <u>no evidence</u> that seeding causes clouds to grow taller and produce unwanted effects (such as hail, damaging winds, flash floods). To the contrary, the seeding appears, in our judgement, to contribute to more gentle, widespread, and longer-lasting rains.

We did do statistical assessments of the CRMWD program several years ago and found that rainfall (averaged over the growing season) in the area where seeding was concentrated had been increased by 20 to 30 percent during that time. We also did a similar analysis of rainfall data from a five-year cloud seeding program conducted by the City of San Angelo (1985-1989) and found that rainfall had increased 25 to 42 percent in the area where seeding was concentrated.

There is still a need to continue researching this work to learn how these rain increases are being produced. A \$70,000 grant was awarded to the WTWMA by the Texas Water Development Board on May 16 to enable research to resume at the site of the Association's cloud-seeding operation (between San Angelo and Midland) in the late summer of 1996. A research plane with scientific probes will fly through seeded and unseeded convective clouds and collect more valuable cloud-physics data. In addition, the research intends to "experiment" with a new type of flare (hygroscopic) believed to be more effective as a seeding agent in times of drought. Additional funding will be needed in autumn 1996 to have these research data thoroughly analyzed.

The new West Texas Weather Modification Association hopes to have other water districts elsewhere in West and South Texas implement similar cloud-seeding programs. Other cloud seeding nearby would undoubtedly augment the Association's efforts to positively affect the weather on a regional scale. There has been some recent discussion involving several State leaders about having the State become a partner to regional weather modification alliances to achieve such an aim.

The Mexican state of Coahuila (adjacent to the Texas Big Bend) will soon launch a cloud-seeding program to generate additional rainfall. The state government and industry in the region are sharing the cost of this projected \$1 million program, and scientists from the U.S. National Center for Atmospheric Research (NCAR) in Boulder, Colorado, have been contracted to run the program.

Also, the State of Oklahoma has designated considerable funding to initiate a study on the feasibility of a statewide drought alleviation effort using cloud-seeding.

West Texas Rain-Enhancement Project of 1996

7.2 million acres

۲<u>4</u>

Rain-Enhancement Projects since 1985

Research Findings (Big Spring: 1987-1990)

	Experin Seed (93)	nental Unit No-Seed (90)	s Ratio
	10.1	9.4	1.1
(Maximum; dBz)	45.8	45.3	1.0
(Square km)	82.2	57.6	1.4
DURATION (Minutes)	60.0	44.1	1.4
MERGERS	3.2	1.6	2.0
RAIN VOLUME (Thousands of cubic meters)	249.2	108.3	2.3
	-	· · · · · · · · · · · · · · · · · · ·	

COST:

1) Federal & State.

2) Alternatives:

Horizontal equity (equal): Landowner A & B are equal.
Vertical equity (unequal): Rural benefits vs. urban (larger pay proportion).

CONCLUSION:

\$19 benefit for the cost of 6¢ an acre. Economics look very promising.

ECONOMIC BENEFITS OF PRECIPITATION ENHANCEMENT Notes From Presentation By Dr. James Jonish Ogallala Regional Water Management Plan Meeting Texas Tech University December 6, 1996

Benefits of a precipitation enhancement program are:

PRIVATE: Crop yields. Livestock. Reduced irrigation costs. Water quality.

SOCIAL:

Increased runoff to reservoirs. Beneficiaries downwind of target area. Reduced aquifer depletion. Higher humidity and lower evaporation rates. Water quality. Secondary benefits (multiplier effect on region).

Costs associated with a precipitation enhancement program are:

PRIVATE: Direct costs: capital, operations, and maintenance.

SOCIAL: "Theft of rain." Public opinion: barrier to program. Silver iodide accumulation. Localized flooding.

Within the 46 county High Plains Ogallala region, a 10% increase in precipitation could mean the following:

Сгор	Acres	Direct Benefit	Regional Benefit
Cotton	3,465.00	\$ 162,421,500	\$ 266,371,260
Wheat	1,211.00	\$ 37,841,500	\$ 43,517,725
Sorghum	1,016.00	\$ 21,431,000	\$ 39,891,750
Corn	810.50	\$ 26,594,500	\$ 39,891,750
Total	6,502.50	\$ 248,288,500	\$ 381,891,750

* DOESN'T INCLUDE LIVESTOCK OR IRRIGATION SAVINGS.

CONSREVATION RESERVE PROGRAM

Conservation Reserve Program

Environmental Benefits Index (EBI)

The equation for signup 15 is:

EBI = Wildlife Habitat Benefits + Water Quality Benefits from Reduced Erosion, Runoff, and Leaching + On-farm Benefits of Reduced Erosion + Likely Long-Term Benefits Beyond the CRP Contract Period + Air Quality Benefits from Reduced Wind Erosion + Benefits of Enrollment in CPA's + Cost

Factor	Wildlife Habitat Benefits	Water Quality Benefits from Reduced Erosion, Runoff and Leaching	On-farm Benefits of Reduced Erosion	Likely Long-Term Benefits Beyond the CRP Contract Period	Air Quality Benefits from Reduced Wind Erosion	Benefits of Ernoll- ment in CPA's	Cost
Points	0 - 100	0 - 100	0 - 100	0 -50	0 - 25	0 - 25	1

/1 Determined after signup ends.

Wildlife	(cover factor/50) multiplied by ((Cover (0 - 50 points)) plus (endangered species
Habitat	area (0 - 15 points)) plus (wetland proximity (0 - 10 points)) plus (adjacent
Benefits	protected areas (0 - 10 points)) plus (contract size (0 - 5 points)) plus
	(upland/wetland ratio (0 - 10 points)))

Water(priority area (0 - 30 points)) plus (groundwater quality (0 - 20 points)) plusQuality(surface water quality (0 - 40 points)) plus (cropped wetlands (0 - 10 points))Benefits

On-Farm Erosion Index (0 - 100 points)

Erosion

Long Term Estimated retention period (0 - 50 points)

Air Quality Air quality component (0 - 25 points) Benefits

CPA CPA component (0 or 25 points)

Cost (Bid Factor (0 - 100 points) plus (preestablished cover factor (0-10 points))

GROUNDWATER SAVINGS DUE TO CRP ACREAGE								
COUNTY	CRP ACRES	1 AC FT/YR	10 YRS	6 AC IN/YR	10 YRS			
ANDREWS	33,870	33,870	338,700	1,6935	169,350			
ARMSTRONG	43,764	43,764	437,640	21,882	218,820			
BAILEY	100,587	100,587	1,005,870	50,293.5	502,935			
BORDEN	8,735	8,735	87,350	4,367.5	43,675			
BRISCOE	46,413	46,413	464,130	23,206.5	232,065			
CARSON	46,360	46,360	463,600	23,180	231,800			
CASTRO	51,293	51,293	512,930	25,646.5	256,465			
COCHRAN	83,981	83,981	839,810	41,990.5	419,905			
CROSBY	37,074	37,074	370,740	18,537	185,370			
DALLAM	107,301	107,301	1,073,010	53,650.5	536,505			
DAWSON	110,377	110,377	1,103,770	55,188.5	551,885			
DEAF SMITH	156,898	156,898	1,568,980	78,449	784,490			
DICKENS	44,004	44,004	440,040	22,002	220,020			
DONLEY	27,216	27,216	272,160	13,608	136,080			
ECTOR	0	0	0	0	0			
FLOYD	97,950	97,950	979,500	4,8975	489,750			
GAINES	166,388	166,388	1,663,880	83,194	831,940			
GARZA	25,050	25,050	250,500	12,525	125,250			
GLASSCOCK	13,793	13,793	137,930	6,896.5	68,965			
GRAY	38,437	38,437	384,370	19,218.5	192,185			
HALE	107,118	107,118	1,071,180	53,559	535,590			
HANSFORD	46,126	46,126	461,260	23,063	230,630			
HARTLEY	60,007	60,007	600,070	30,003.5	300,035			
HEMPHILL	19,357	19,357	193,570	9,678.5	96,785			
HOCKLEY	109,730	109,730	1,097,300	54,865	548,650			
HOWARD	44,913	•44,913	449,130	22,456.5	224,565			
HUTCHINSON	8,215	8,215	82,150	4,107.5	41,075			

LAMB	134,901	134,901	1,349.010	67,450.5	674.505
LIPSCOMB	50,202	50,202	502.020	25.101	251.010
LUBBOCK	52.620	52.620	526,200	26.310	263 100
LVNN	62.982	62.982	629.820	31,491	314 910
MARTIN	78,260	78.260	782,600	39.130	391,300
MIDLAND	16.278	16.278	162.780	8.139	81.390
MOORE	50,141	50.141	501,410	25.070.5	250.705
MOTLEY	32,600	32,600	326,000	16,300	163,000
OCHILTREE	74,565	74,565	745,650	37,282.5	372,825
OLDHAM	40,443	40,443	404,430	20,221.5	202,215
PARMER	857,322	57,322	573,220	28,661	286,610
POTTER	11,436	11,436	114,360	5,718	57,180
RANDALL	78,599	78,599.	785,990	39,299.5	392,995
ROBERTS	12,312	12,312	123,120	6,156	61,560
SHERMAN	91,573	91,573	915,730	45,786.5	457,865
SWISHER	114,719	114,719	1,147,190	57,359.5	573,595
TERRY	122,117	122,117	1,221,170	61,058.5	610,585
WHEELER	54,376	54,376	543,760	27,188	271,880
YOAKUM	76,412	76,412	764,120	38,206	382,060
TOTAL	2,846,812	2,846,812	28,468,120	1,423,406	14,234,060

÷.

	CONTRACTS	ACRES			ACRES EXP	IRING BY	YEAR	
COUNTY	TOTAL	TOTAL	1997	1999	1999	2000	2001	5805
ANDREWS	49	33,876	33,870	Ø	ø	Ø	ø	ß
ARMSTRONG	190	43,764	40.649	3.115	ø	ð	Ø	ø
BAILEY	333	100.587	100,534	ø	Ø	ø	53	· 0
BORDEN	4 E	8,735	5,661	1,729	ø	153	91Ø	284
BRISCOE	174	46,413	46,388	6	52	8	9	ø
CARSON	102	46,360	26,479	10,151	9,024	Ø	706	ø
CASTRO	180	51,293	30,711	4,707	7,146	f	729	9
COCHRAN	559	83,981	83,822	ø	159	Ņ	ø	ø
CROSBY	199	37,074	22,974	5,685	3,705	5ø7	2,307	1,896
DALLAM	275	197,301	96,111	B ,539	2,652	ø	Ø	ø
DAWSON	508	110,377	62,395	25,969	14,546	902	1,286	5,279
DEAF SMITH	430	156,898	151,811	21,183	10,050	2,107	963	785
DICKENS	536	44.004	43,434	578	ø	f	ø	ø
DONLEY	188	27,216	27,216	Ø	ø	ų	ø	6
ECTOR	Ø	ø	e	Ø	ø	Ø	ø	ø
FLOYD	472	97,950	69,157	19,365	7,263	402	1,491	363
GAINES	467	166,388	159,126	7,262	ø	g	9	ø
GARZA	135	25,050	16,669	4,219	761	1,257	1,892	1,052
GLASSCOCK	45	13,793	6,715	4.171	489	61B	843	964
GRAY	198	38,437	24,894	9,745	4,399	ø	Ø	ø
HALE	696	107,118	81,231	13,229	5,716	9	1.414	5,529
HANSFORD	179	46,126	30,077	8,482	6,248	65 0	684	66
HARTLEY	152	60.887	42,763	6,993	5,244	307	2.505	2,294
HEMPHILL	192	19.357	11.047	3.323	4,987	9	9	Ø
HOCKLEY	524	109.730	63.835	19.738	5.978	4.#89	5.780	10.311
HOWARD	241	44.913	16.401	6.155	8.609	1,425	2,800	9.523
HUTCHINSON	36	8.215	6.108	1.159	455	ø	427	65
LANB	746	134.901	106.804	18,839	6,199	2,292	2,804	5,964
LIPSCOMB	178	50.202	58.146	ø	ø	ø	56	. 6
LUBBOCK	344	52.620	26.298	7,848	4,652	2,441	4,254	7,125
LYNN	265	62,982	35,734	11,810	8,024	1,516	3,464	2,434
MARTIN	294	78.260	48,457	19,729	7,364	366	2,345	
MIDLAND	86	16.278	6.742	5,215	1,948	9	1,111	1,262
MOORE	150	50.141	41.336	2.530	5,869		138	269
MOTIEY	144	32.690	28.655	3.945	8	Ø	e	ŧ
OCHIL TREE	277	74.565	46.596	14.130	13.621	ø	218	g
OL DHAN	119	48.443	38,731	49	1.663	9	ø	g
PARMER	253	57.322	43,297	5.181	8.268	276	300	Ø
PRITER	56	11.436	5.580	3.197	2.147	Ð	- 0	642
RANDALI	200	78.599	42,95R	28.557	7.084	*	Ø	8
RUBERIC	20	12.312	8.565	2.4dA	1.346	ø	, q	a
CUEDMAN	269	Q1 573	75 202	2 454	6 487	a	A	430
CUTCUED	504	116 310	196 645	0 031	110	đ	140	33V A
JAIJUEU TEDOA	J74 6 <i>0</i> 7	124,717	104,403	10 250	10" 14 201	p a	177 401	U A
1CNAT 191651-55	596	(CC,11/	71+111	17,000	18,371	0 A	470	0 a
WHEELEK	363	39.3/6	4/,017	0,261	1,JJ4 a		لا د.	7
TUAKUM	214	/8,412	/0,00/	140	N	ų	ų	9
TOTALS	11.598	2,846.812	2,201,895	345,345	184,417	19,299	39,163	56,693
PERCENT BY YE	AR		77.3	12.1	6.5	e.7	1.4	2.0

64

·

CONSERVATION RESERVE PROGRAM (Signups 1-12) - HPUWCD #1

	CONTRACTS	ACRES			ACRES EXP	IRING BY	YEAR	
COUNTY	TOTAL	TOTAL	1997	199B	1999	2000	5001	2003
ANDREWS	49	33,870	33,870	Ø	Ø	Ð	ŧ	f
ARMSTRONG	190	43,764	48.649	3.115	ø	ð	ø	6
BAILEY	333	109,587	100,534	ø	Ø	ø	53	· 1
BORDEN	41	8,735	5,661	1,729	Ŋ	153	910	284
BRISCOE	174	46,413	46,388	8	25	9	9	1
CARSON	182	46.360	26,479	18,151	9,824	ø	706	£
CASTRO	189	51,293	38,711	4,707	7,146	f	729	4
COCHRAN	226	83,981	83,822	8	159	Ø	í	£
CROSBY	199	37,074	22,974	5,685	3,785	597	2,307	1,87
DALLAN	275	197,391	96,111	B.539	2,652	ş	8	í
DANSON	508	110,377	62,395	25,969	14,546	902	1,286	5,27
DEAF SNITH	430	156,898	121,811	21,183	10,050	2,197	963	785
DICKENS	236	44,884	43,434	578	ø	6	ø	(
DONLEY	188	27,216	27,216	Ø	8	ø	ø	í
ECTOR	ß	ø	e	ø	6	Ø.	ø	1
FLOYD	472	97.950	69,157	19,365	7,263	482	1,401	363
GAINES	469	166.388	159,126	7,262	ø	ø	ø	1
SARZA	132	25.050	16.669	4.219	761	1.257	1,092	1.05
FLASSENCY	45	13,793	6.716	4.171	487	610	843	96
GRAV	198	38.437	24,494	9,945	4.399	ø	0	
מאו כ	494	187.118	81,231	13,229	5.716		1.414	5,52
UANCENDA	179	44 124	30 077	8.492	6.248	456	684	61
NANJFUNU UADTI EV	152	10,120	62 763	4 997	5 244	247	2.545	2.29
NHAILEI UCNDUTII	142	10 357	11 467	בכבי ב	4 097	4	C,000	
NC/FRICE	574	17,337	40,005	10 700	5 070	6 400	5 794	10 21
	921	46 012	00,000 11 Adii	17,730	J.770 0 140	1 625	2 244	0 500
NUMHRU	C41 0/	94,713	10,401	1 150	455	1,400	627	, J.L.
HUICHINSUN	30	0,CIJ 134 041	146 044	14 020	L 100	2 202	2 066	5 94
	/96	[J4,701 E4 343	100,004 50 141	10,001	0,177	£1676 Ø	C,004 SL	5,70
	170	30,EVC	21 204	7 060	4 452	2 441	6 264	7 12
LUBBULK	344	10,000	25,276	11 010	9,0JC D 424	1 514	3 644	2 43
	206	20,700	40 457	10,010	7 314	244	2 245	C (70
	274	10,000	40,407	5 315	1 040	300	1 111	1 24
MIULANU	00 154	10,0/0	0,/4E	3 534	5 010	U 4	1,111	1100
	100	191,00	91,000	E,JC0 2 045	J,007 a		100	50
NUILEY	144	36,000	C0.000	3,743	10 / 51	U 4	9 110	
BCHICIKEE	2/7	/4,363	40,370	19,130	13,001		C 10	
ULDHAN	119	40,443	38,/31 (0.000	47	1,003	17/	5 744	
PARMER	523	57,322	43,29/	5,181	8,208	2/5	300	1.4
POTTER	56	11,436	0,580	3,10/	2,14/	U	9	0.5
RANDALL	299	78,599	42,958	28,227	/ 184	"	'n	I
ROBERTS	39	12,312	8,565	2,496	1,348	e	ß	_
SHERMAN	249	91,573	75,202	9,954	6,587	Ø	ø	63
SWISHER	594	114,719	184,465	9,936	160	9	147	
TERRY	503	122,117	91.777	19,253	10.591	Ø	495	
WHEELER	323	54,376	47,019	6.023	1,334	Ø	ø	
YOAKUM	214	76,412	76,267	145	I	ą	ø	
TOTALS	11.598	2.846.812	2,201,895	345,345	184.417	19,299	39,163	56,69

÷.,

65

.

Wildlife Habitat in the Texas High Plains

Givens:

* About 2 million waterfowl and 350,000 to 400,000 sandhill cranes use this area--particularly its historic wildlife use areas. Protection of historical areas is important.

* Pheasants are an economically important gamebird in irrigated areas, but their numbers have declined and fluctuate widely with weather and habitat conditions.

* Virtually all wildlife habitat in the High Plains is on privatelyowned farm and ranch land. The continued support of this land base is vital to wildlife.

* Upland game and waterfowl are a residual "crop" on farm or ranch land. Game numbers are impacted by crop and livestock culture, weather, and economics.

- * Quail and big game hunting occur mostly in range areas where rainfall is a limiting factor.
- * Pheasant and waterfowl also depend on rainfall for ideal conditions, but irrigation farming allowed them to boom. The best hunting and habitat for them is closely associated with irrigation. Decline of irrigation may also spell a decline in these species.
- * Altering management to improve habitat may mean about the same water use can allow the landowner to recover added income
- through wildlife--if the landowner will expend the effort required.
 * Practices such as leaving standing stubble, ridge-till, etc. allow
 crop residue to trap and hold more moisture in the soil. The stand
 - ing residue benefits wildlife and added moisture helps farming.
 - * Adapted species such as Afghan pheasants have had limited success in the Southern High Plains of Texas.

* You get from an enterprise in proportion to what you put in.

Number and Total Area of Playas in 39 Counties of the Southern High Plains of Texas

County	No. of Playas	Acres
Andrews	298	
Armstrong	676	14,193
Bailey	598	4,772
Briscoe	787	12,266
Carson	535	17,615
Castro	621	19,756
Cochran	395	1,815
Crosby	925	18,278
Dallam	220	2,858
Dawson	702	7.074
Deaf Smith	451	14,069
Donley	114	1,684
Floyd	1783	40,605
Gaines	65	210
Garza	283	4,676
Gray	752	12,482
Hale	1,383	23,263
Hansford	345	6,928
- Hartley	123	3,184
Hemphill	9	91
Hockley	1,171	8,388
Howard	185	3,738
Hutchinson	167	2,669
– Lamb	1,280	13,405
Lipscomb	18	235
Lubbock	934	15,503
Lynn	842	9,172
Moore	195	4,316
- Ochiltree	590	15,462
Oldham	75	2,964
– Parmer	455	9.935
Potter	69	4,840

Randall	564	16 606
Roberts	20	10,000
Sherman	219	5 058
Swisher	910	20 117
Тегту	532	3 022
Wheeler	10	5,022
Yoakum	38	187

Total

19,339 playas

341,722 acres

Areas Identified As Historically Important For Waterfowl and Sandhill Cranes Playa Lakes Region of High and Rolling Plains of Texas

- 1. Lake Rita Blanca-Coronado Feeders Lake --Dalhart area
- 2. Cactus Lake--Etter
- 3. Palo Duro Reservoir--Spearman
- 4. Lake Marvin and Canadian River--Canadian, TX
- 5. Lake Meredith--Fritch--north of Amarillo
- 6. Milkweed Playa--Vega
- 7. FSW Cattle Co. and Wildorado-area lakes--Wildorado
- 8. Amarillo-Canyon area effluent playas
- 9. Holly Sugar Ponds and Sugarland Feed Yard Playa--Hereford
- 10. Happy Feedlot--Happy
- 11. Dead Horse Lake--at Bartlett Feedyard No. 2 -- north of Hereford
- 12. Fry Lake on Frio Draw near Friona
- 13. Armstrong Playa--Dimmitt
 - 14. Simpson Lake--north of Dimmitt Feed Yard-- Dimmitt
- 15. Bud Hill Feedlot--Dimmitt
 - 16. Ivy Lake, east of Easter,--Castro County
 - 17. Beefco Cattle Feeders--near Easter
- 18. Pat Robbins pasture lake--Summerfield
 - 19. Great Plains Feedlot-- Flagg area in Castro County
- 20. Rafter 3 Feedyard, west of Dimmitt
- 21. Paco-Bovina Feedyards, Hub, and western Parmer County
- 22. Excel Packing, Friona- west of Friona
- 23. Hill Feedlot & Hart Playa--Hart
 - 24. Lake Mackenzie--Silverton
- . 25. Muleshoe NWR--Needmore
 - 26. Bull Lake--Littlefield
 - 27. Hale County Feedlot--Hale Center
- 28. Excel Packing, Plainview--Plainview
 - 29. Buffalo Springs, Ransom Canyon--Lubbock
- 30. Various City Park Lakes--Lubbock
 - 31. White River Lake--Crosbyton
 - 32. Rich & Mound Lakes--Brownfield
 - 33. Tahoka-Gordon Lakes--Tahoka
 - 34. Frost & Gooch Lakes--South of Lubbock

- 35. Cedar Lake--Seagraves
- 36. Winchester Lakes--Knox & Haskell Counties
- 37. Natural Dam & Mustang Lakes--Big Spring
- 38. Lake Pauline--Quanah
- 39. Santa Rosa & Kemp Lakes--Vernon-Wichita Falls
- 40. Millers Creek Reservoir--Wichita Falls
- 41. Stamford Lake--Haskell County
 - 42. Lake J.B. Thomas--Snyder
- 43. Lake Fort Phantom Hill--Abilene
Hunter Participation & Revenue By Species Texas Panhandle/Rolling Plains Region (Based on an expenditure of \$1022 per hunter, except for \$150 per hunter for doves.) QUAIL- 41,581 hunters VALUE: \$42,495,782 PHEASANT- 38,256 hunters VALUE: \$39,097,632 DOVES- 34,432 hunters VALUE: \$5,164,800 WATERFOWL- 5,000 hunters VALUE: \$5,110,000 SANDHILL CRANES- 1,677 hunters VALUE: \$1,713,894 DEER- 750 hunters VALUE: \$766,500 ANTELOPE- 100 hunters VALUE: \$102,200

OVERALL IMPACT FROM HUNTING: > \$94.1 MILLION