
# EAST CEDAR CREEK FRESH WATER SUPPLY DISTRICT

# WATER & WASTEWATER MASTER PLAN

FINAL REPORT

**JANUARY 1997** 





ECC95301

## **TABLE OF CONTENTS**

|      |                                               | Page No. |
|------|-----------------------------------------------|----------|
| EXEC | CUTIVE SUMMARY                                | 3        |
| 1.0  | INTRODUCTION                                  | 7        |
| 1.1  | Background                                    | 7        |
| 1.2  | Master Plan Scope                             | 8        |
| 2.0  | CURRENT SYSTEM CONDITION                      | 10       |
| 2.1  | Water Treatment Plant Summary                 | 10       |
| 2.2  | Wastewater Treatment Plant Summary            | 12       |
| 3.0  | POPULATION AND FLOW PROJECTIONS               | 15       |
| 3.1  | Priority Area Development                     | 15       |
| 3.2  | Population Growth and Flow Projections        | 16       |
| 4.0  | SYSTEM MODELING                               | 23       |
| 4.1  | Water Distribution System Assessment          | 23       |
| 4.2  | Wastewater Collection System Assessment       | 23       |
| 5.0  | <b>RECOMMENDED SYSTEM IMPROVEMENTS</b>        | 25       |
| 5.1  | North Water System                            | 25       |
| 5.2  | South Water System                            | 30       |
| 5.3  | North Wastewater System                       | 35       |
| 5.4  | South Wastewater System                       | 39       |
| 6.0  | ESTIMATES OF PROBABLE COSTS                   | 44       |
| 6.1  | Preliminary Cost Estimates                    | 44       |
| 6.2  | Summary of Master Plan Costs                  | 52       |
| 6.3  | Potential Financing Options                   | 54       |
| APPE | NDIX A - TECHNICAL MEMORANDUM #1              |          |
| APPE | NDIX B - TECHNICAL MEMORANDUM #2              |          |
| APPE | NDIX C - TECHNICAL MEMORANDUM #3              |          |
| APPE | NDIX D - CURRENT SYSTEM MAPPING               |          |
| APPE | CNDIX E - MAPPING OF RECOMMENDED IMPROVEMENTS | 5        |

## **APPENDIX F - COST ESTIMATES**

## LIST OF TABLES

| Description                                                     | Page No. |
|-----------------------------------------------------------------|----------|
| TABLE 1 - Water Treatment Plant Current Conditions Summary      | 12       |
| TABLE 2 - Wastewater Treatment Plant Current Conditions Summary | 14       |
| TABLE 3 - Projected Water Demands                               | 18-19    |
| TABLE 4 - Projected Wastewater Demands                          | 21-22    |
| TABLE 5 - Preliminary Cost Estimates                            | 44       |
| TABLE 6 - Summary of Master Plan Costs                          | 53       |

#### **EXECUTIVE SUMMARY**

#### BACKGROUND

The East Cedar Creek Fresh Water Supply District (ECCFWSD) consists of two separate water distribution and wastewater collection systems, the North System and the South System. Each System is hydraulically independent and has its own water and wastewater treatment plants, elevated water storage tanks, and distribution and collection system piping. Both of the wastewater collection systems are primarily pressure systems with the North System using about half gravity sewers and the South System using mostly force main piping with a small amount of gravity sewer. Each System was evaluated as to the current condition of the collection and distributions systems and the ability to meet current Texas Natural Resource Conservation Commission (TNRCC) State Design Criteria. The systems were also evaluated as to expected future conditions for water distribution and wastewater collection.

The North District water system includes a 2.55 million gallon per day (MGD) water treatment plant, 500,000 gallon elevated storage tank, and water distribution piping. District records indicate that the North water distribution system served an average of 2,896 water connections in 1995. The North District wastewater system includes a 0.626 MGD wastewater treatment plant, 67 wastewater collection lift stations, associated house grinder pumps, wastewater force mains, and gravity piping. The North wastewater collection system served an average of 3,075 connections in 1995.

The South District water system includes an existing water treatment plant and hydropneumatic storage tank. However, a proposed 1.73 MGD water treatment plant and

300,000 gallon elevated storage tank have been designed and are under construction. Upon completion of the new facility, the existing treatment plant will be abandoned. Therefore, for the purposes of this study, the evaluation only reviewed the proposed 1.73 MGD water treatment facility, 300,000 gallon elevated storage tank, and water distribution system piping. Based on information provided by ECCFWSD, the South water system served an average of 1,960 water connections in 1995, including 200 water connections in Payne Springs that are no longer served by the District.

The South District wastewater system includes an existing wastewater treatment plant with a permitted capacity of 40,000 gallons per day (gpd), a single wastewater lift station, associated house grinder pumps, and pressure collection system piping. A 200,000 gpd wastewater treatment facility is under design and will be constructed in the near future. Upon completion of the new wastewater facility, the existing wastewater treatment plant will be abandoned. The South wastewater system served an average of 528 wastewater connections in 1995.

### FINDINGS

The East Cedar Creek Fresh Water Supply District is largely a rural community with heavy weekend and seasonal fluctuations in population and corresponding water and wastewater flows. Populations within the District are projected to steadily increase with a moderate rate of growth during the 30-year study period. The total population for the planning area is expected to grow from a current population of 11,575 to a population of 17,780 in 2026. There is also a large contingent of the population that remains unserved by wastewater systems and a small rural contingent that does not have water service.

The water treatment and distribution systems in the District have been developed by developers and previous District administrations, with only minimal advanced planning for the future. TNRCC standards require that water treament plants meet 0.6 gpm per connection for raw water pumping, high service pumping, and treatment plant capacity. TNRCC has allowed the District's water treatment plants to operate on a variance that allows them to meet 0.45 gpm per connection for these criteria. Under this variance, the distribution and treatment systems are not capable of delivering fire flows and are not approved as a "Superior" system by the TNRCC. The District is currently constructing a new water treatment plant to meet the current and future needs of their existing South water system.

The wastewater treatment and collection systems have a high rate of infiltration and inflow (I/I). The District is currently making efforts to repair the system to eliminate these I/I problems. Both wastewater collection systems are primarily pressurized systems with lift stations and grinder pump installations and individual houses. The use of the pressurized system has resulted in heavy maintenance requirements due to pump operations. The District is currently constructing a new wastewater treatment plant to meet the current and future needs of their existing South wastewater system.

### RECOMMENDATIONS

A Water and Wastewater Master Plan has been prepared to assist the District in long range planning for the defined study area. The study area does include areas currently outside the District's boundary. The Master Plan has been developed to provide the District with a plan of action to serve any part of the study. The Master Plan makes the following general recomendations:

- Future water distribution linework is planned in anticipation of meeting future flows including additional capacity for peak and seasonal flows.
- Water treament plant expansions are planned to meet TNRCC standard criteria of 0.6 gpm per connection for raw water pumping, high service pumping, and treatment plant capacity.
- The District should continue with its ongoing efforts to reduce the effects of I/I on the District's wastewater treatment plants.
- Wastewater collection system linework is planned to use as much gravity flow as possible to reduce maintenence requirements of pressurized systems.
- Wastewater treament plant expansions are planned to meet future conditions of the District's wastewater collections sytems including the addition of unserved populations.
- Unserved populations are planned to be added on to the system in yearly increments so that the total population of the study area is provided complete service within the study period.

#### **1.0 INTRODUCTION**

#### 1.1 BACKGROUND

The East Cedar Creek Fresh Water Supply District (ECCFWSD) consists of two separate water distribution and wastewater collection systems, the North System and the South System. Each System is hydraulically independent and has its own water and wastewater treatment plants, elevated water storage tanks, and distribution and collection system piping. Both of the wastewater collection systems are primarily pressure systems with the North System using about half gravity sewers and the South System using mostly force main piping with a small amount of gravity sewer. Each System was evaluated as to the current condition of the collection and distributions systems and the ability to meet current Texas Natural Resource Conservation Commission (TNRCC) State Design Criteria. The systems were also evaluated as to expected future conditions for water distribution and wastewater collection.

The North District water system includes a 2.55 million gallon per day (MGD) water treatment plant, 500,000 gallon elevated storage tank, and water distribution piping. District records indicate that the North water distribution system served an average of 2,896 water connections in 1995. The North District wastewater system includes a 0.626 MGD wastewater treatment plant, 67 wastewater collection lift stations, associated house grinder pumps, wastewater force mains, and gravity piping. The North wastewater collection system served an average of 3,075 connections in 1995.

The South District water system includes an existing water treatment plant and hydropneumatic storage tank. However, a proposed 1.73 MGD water treatment plant and 300,000 gallon elevated storage tank have been designed and are under construction. Upon completion of the new facility, the existing treatment plant will be abandoned. Therefore, for the purposes of this study, the evaluation only reviewed the proposed 1.73 MGD water treatment facility, 300,000 gallon elevated storage tank, and water distribution system piping. Based on information provided by ECCFWSD, the South water system served an average of 1,960 water connections in 1995, including 200 water connections in Payne Springs that are no longer served by the District.

The South District wastewater system includes an existing wastewater treatment plant with a permitted capacity of 40,000 gallons per day (gpd), a single wastewater lift station, associated house grinder pumps, and pressure collection system piping. A 200,000 gpd wastewater treatment facility is under design and will be constructed in the near future. Upon completion of the new wastewater facility, the existing wastewater treatment plant will be abandoned. The South wastewater system served an average of 528 wastewater connections in 1995.

#### 1.2 MASTER PLAN SCOPE

The project scope for the Water and Wastewater Master Plan includes a review of the current system conditions, field verification of treatment facilities, field verification of the collection and distribution systems, computer modeling of the collection and distribution systems, development of recommendations, development of an implementation plan for the recommendations, and presentation of a final report. Technical Memorandum #1 discussed the current system conditions and field verification portions of the project and is included in Appendix A. Technical Memorandum #2 discussed the results of the computer modeling of the collection and distribution systems and is included in Appendix B. Technical Memorandum #3 discussed the recommendations, implementation plan, and cost estimates for the recommended projects and is included in Appendix C.

#### 2.0 CURRENT SYSTEM CONDITION

The TNRCC publishes criteria for the design of water hygiene and sewerage systems in Chapters 290 (dated 10/20/95) and 317 (dated 12/19/95) of 30 Texas Administrative Code. These design criteria provide specific parameters for the design and operation of water and wastewater systems. Based on these criteria, each water and wastewater system was reviewed with respect to current regulations to determine the current condition of each system. This Section will review the results of the current conditions review and field verification for each of the District's water and wastewater treatment plants. Review of the wastewater collection and water distribution systems was conducted during the system modeling portion of the project and is discussed in Section 3.0. Maps of the District's existing water and wastewater systems are provided in Appendix D.

#### 2.1 WATER TREATMENT PLANT SUMMARY

#### 2.1.1 North Water Treatment Plant

The existing North Water Treatment Plant (WTP) is in good condition and currently produces water meeting or exceeding permitted conditions. The North WTP has historically produced high quality water and has adequate capacity to meet current system conditions. Water treatment plants are required by TNRCC design criteria to treat the anticipated maximum water demand of any day during the year. According to historical plant flow records, the North WTP treated a maximum day demand of 1.581 MGD in 1995 and is capable of treating 2.55 MGD. In addition to the criteria for maximum day demand, the TNRCC has criteria for water treatment facilities, water storage, and pumping requirements. The North WTP is capable of meeting all State Design Criteria with the exception of raw water pumping capacity, high service pumping capacity, and treatment plant capacity. Under these criteria the District is required to meet a capacity of 0.6 gpm per water connection. However, the District has received a variance from this criterion and is allowed by TNRCC to meet capacity requirements of 0.45 gpm per connection for raw water pumping, high service pumping, and treatment plant capacity. Under the variance, the North water system is capable of meeting all TNRCC requirements. However, with the variance in place, the North District cannot be approved as a "Superior" water system by TNRCC and is not rated to meet fire flow conditions. Table 1 summarizes current conditions for each water treatment plant. A more detailed discussion of the current condition of the North WTP can be found in Technical Memorandum #1 in Appendix A.

#### 2.1.2 South Water Treatment Plant

The existing South WTP was not evaluated for compliance with current TNRCC criteria, because a new South WTP is under construction and the old plant will be abandoned upon completion of the new plant. The new South WTP is rated for a maximum day flow of 1.73 MGD and meets state requirements for all treatment, storage and pumping units. According to the existing South WTP flow records, the maximum day flow for the South water system was 0.892 MGD in 1995. The South water system operates under the same variance as the North water system and is allowed by TNRCC to meet capacity requirements of 0.45 gpm per connection for raw water pumping, high service pumping, and treatment plant capacity. Under the variance, the South water system meets all TNRCC requirements.

However, with the variance in place, the South District cannot be approved as a "Superior" water system by TNRCC and is not rated to meet fire flow conditions. Table 1 summarizes current conditions for each water treatment plant. A more detailed discussion of the current condition of the South WTP can be found in Technical Memorandum #1 in Appendix A.

#### TABLE 1

#### WATER TREATMENT PLANT CURRENT CONDITIONS SUMMARY

| PLANT           | RATED PLANT<br>CAPACITY | SYSTEM D<br>AVG DAY | EMANDS<br>MAX DAY | 1995 AVERAGE #<br>OF CONNECTIONS | MAXIMUM # OF<br>CONNECTIONS<br>ALLOWED | ESTIMATED<br>SERVED<br>POPULATION |
|-----------------|-------------------------|---------------------|-------------------|----------------------------------|----------------------------------------|-----------------------------------|
| NORTH WTP       | 2.55 MGD                | 0.643 MGD           | 1.581 MGD         | 2,896                            | 3,935                                  | 6,921                             |
| PROP. SOUTH WTP | 1.75 MGD                | 0.327 MGD           | 0.892 MGD         | 1,960                            | 2,701                                  | 3,920                             |

#### 2.2 WASTEWATER TREATMENT PLANT SUMMARY

#### 2.2.1 North Wastewater Treatment Plant

The existing North Wastewater Treatment Plant (WWTP) is in good condition and currently produces effluent meeting or exceeding permitted conditions. The plant is required to meet effluent conditions of 10 mg/l of Biochemical Oxygen Demand (BOD) and 15 mg/l of Total Suspended Solids (TSS). In additions, wastewater treatment plants are required to treat the maximum average monthly flow in any year along with the maximum peak 2-hour flow in any year. According to historical plant flows at the North WWTP, the maximum average monthly flow for 1995 was 0.562 MGD and the 2-hour peak flow was 1.77 MGD. The plant is permitted to treat a maximum monthly average of 0.626 MGD and a 2-hour peak

flow of 1.872 MGD.

The North WWTP meets TNRCC design criteria and capacity requirements for all unit operations at the plant. The wastewater plant currently has permission from TNRCC to waste sludge to the existing surge storage basin in addition to the plant's existing sludge drying beds. A plate and frame sludge press building is under construction and will be completed shortly. At this time, sludge dewatering operations will be handled by the plate and frame press. The District is also planning to add final effluent filters to the wastewater plant to assist in improving plant effluent quality. Table 2 summarizes current conditions for each wastewater treatment plant. A more detailed discussion of the current condition of the North WWTP can be found in Technical Memorandum #1 in Appendix A.

#### 2.2.2 South Wastewater Treatment Plant

The existing South WWTP is not capable of meeting permitted requirements for flow or effluent quality. The District is currently designing a new South WWTP to meet the existing conditions of the South wastewater system. Therefore, the Master Plan only considered the proposed South WWTP. According to District records, the maximum monthly flow for the existing South wastewater system for 1995 was 0.17 MGD with an estimated 2-hour peak flow of 0.595 MGD. The proposed plant will be rated to meet a maximum monthly flow of 0.2 MGD with a peak flow of 0.8 MGD. Therefore, under current flow conditions, the proposed South WWTP will be capable of meeting TNRCC requirements for wastewater treatment plants. Table 2 summarizes current conditions for each wastewater treatment plant. A more detailed discussion of the current condition of the South wastewater system can be found in Technical Memorandum #1 in Appendix A.

### TABLE 2

| PLANT            | PLANT DESIG<br>MONTHLY<br>AVERAGE | N CAPACITY<br>PEAK<br>2-HOUR | SYSTEM I<br>MONTHLY<br>AVERAGE | TLOWS<br>PEAK<br>2-HOUR | 1995 AVERAGE #<br>OF CONNECTIONS | ESTIMATED<br>SERVED<br>POPULATION |
|------------------|-----------------------------------|------------------------------|--------------------------------|-------------------------|----------------------------------|-----------------------------------|
| NORTH WWTP       | 0.626 MGD                         | 1.872 MGD                    | 0.562 MGD                      | 1.77 MGD                | 3,075                            | 7,349                             |
| PROP. SOUTH WWTP | 0.2 MGD                           | 0.8 MGD                      | 0.170 MGD                      | 0.595 MGD               | 528                              | 1,056                             |

### WASTEWATER TREATMENT PLANT CURRENT CONDITIONS SUMMARY

•

#### 3.0 POPULATION AND FLOW PROJECTIONS

#### 3.1 PRIORITY AREA DEVELOPMENT

In order to determine future water demands and wastewater flows placed on the North and South systems, an estimate was made of current population in these systems. These populations were used to calculate estimates of future populations within each system. This was done by breaking each system into Priority Areas. Priority Areas were established for the North and South systems to assist in determining the priority of projects for those areas. Priority Areas were established in a manner that focused on making improvements in those areas already served by the District before making improvements in unserved areas.

Populations for each Priority Area in both the North and South systems were calculated using the population density per acre for each of the Priority Areas, as taken from the 1990 Census. The service population for both systems was established by multiplying the average number of connections anticipated for each water and wastewater system by the number of people per housing unit, based on the 1990 census, for that particular Priority Area. The difference in total population and the served population is the unserved population for a particular Priority Area. The unserved population includes any persons unserved by water or wastewater and any persons served by another water utility. For a more detailed explanation of the development of Priority Areas and estimated populations, see Technical Memorandum #2 in Appendix B.

#### 3.2 POPULATION GROWTH AND FLOW PROJECTIONS

#### 3.2.1 Population Projections

Projected populations for each Priority Area were calculated using yearly growth rates provided by the Texas Water Development Board (TWDB). The current total population of each Priority Area was estimated using 1990 census population densities. The current population of each Priority Area was then multiplied by TWDB yearly growth rates to calculate the projected population for that area for each year. The estimated population served by the District, in each Priority Area, was then calculated to establish the water or wastewater demand for that Priority Area. These served populations were used as a starting point for water and wastewater demands under current conditions. The remaining unserved populations were added to projected future populations according the area's priority ranking. This allowed for increases in service population based on population growth and the addition of unserved users to the water and wastewater systems. For a more detailed explanation of population growth projections, see Technical Memorandum #2 in Appendix B.

#### 3.2.2 Projected Water Demands

Projected water demands were developed for each Priority Area by calculating the current per-capita water demand for both the North and South systems. The calculated per-capita demands were 127 gallons-per-capita-per-day (gpcd) for the North System and 115 gpcd for the South system. The calculated per-capita demands were then multiplied by estimated future served populations for each Priority Area to determine the future water demand for that Priority Area. The maximum day water demands for each Priority Area were

calculated by multiplying the average water demand by the historical peaking factor for the system. The historical peaking factor for the North water system is 2.6. The historical peaking factor for the South water system is 2.7. Water demands for adjacent water utilities were calculated but were not included in the Districts total water demand. Table 3 shows projected water demands for the North and South water systems. For more detailed description of projected water demands, see Technical Memorandum #2 in Appendix B.

## TABLE 3

#### PROJECTED WATER DEMANDS

North Water System

| PLANACTIVETOTALSERVEDUNSERVEDDEMANDDEMANDYEARCONN.POP.POP.(MGD)(MGD)19962942626048844300.6201.61319973022637450163940.6371.65619983101648951483590.6541.70019993181660352813230.6711.74420003261671754132880.6871.78720013333681755332520.7031.82720023405691756522170.7181.86620033477701657721810.7331.90620043549711558921460.7481.94520053621721560111100.7631.9852006369373146130750.7792.0242007374774136220700.7902.0542008380175136309640.8012.0832009385576126399590.8132.1132010390977126488540.8242.1422011395778006569480.8442.1692012400678896650430.8442.1962013405479776730370.8552.22220144103                                                                                                                                                                                                                                                                             | 1010  | ii water by |       |        |            | ANODAN | N.F. A.N. N. A.N. |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------------|-------|--------|------------|--------|-------------------|
| YEARCONN.POP.POP.POP.(MGD)(MGD)19962942626048844300.6201.61319973022637450163940.6371.65619983101648951483590.6541.70019993181660352813230.6711.74420003261671754132880.6871.78720013333681755332520.7031.82720023405691756522170.7181.86620033477701657721810.7331.90620043549711558921460.7481.94520053621721560111100.7631.9852006369373146130750.7792.0242007374774136220700.7902.0542008380175136309640.8012.0832009385576126399590.8132.1132010390977126488540.8242.1422011395778006569480.8342.1692012400678896650430.8442.1962013405479776730370.8552.2272016419982436971210.8852.30220154151                                                                                                                                                                                                                                                                                      | DT AN |             | TOTAT | GEDVED | TRICEDUCED |        |                   |
| 19962942 $6260$ $4884$ $430$ $0.620$ $1.613$ 1997 $3022$ $6374$ $5016$ $394$ $0.637$ $1.656$ 1998 $3101$ $6489$ $5148$ $359$ $0.654$ $1.700$ 1999 $3181$ $6603$ $5281$ $323$ $0.671$ $1.744$ 2000 $3261$ $6717$ $5413$ $288$ $0.687$ $1.787$ 2001 $3333$ $6817$ $5533$ $252$ $0.703$ $1.827$ 2002 $3405$ $6917$ $5652$ $217$ $0.718$ $1.866$ 2003 $3477$ $7016$ $5772$ $181$ $0.733$ $1.906$ 2004 $3549$ $7115$ $5892$ $146$ $0.748$ $1.945$ 2005 $3621$ $7215$ $6011$ $110$ $0.763$ $1.985$ 2006 $3693$ $7314$ $6130$ $75$ $0.779$ $2.024$ 2007 $3747$ $7413$ $6220$ $70$ $0.790$ $2.054$ 2008 $3801$ $7513$ $6309$ $64$ $0.801$ $2.083$ 2009 $3855$ $7612$ $6399$ $59$ $0.813$ $2.113$ 2010 $3909$ $7712$ $6488$ $54$ $0.824$ $2.142$ 2011 $3957$ $7800$ $6569$ $43$ $0.844$ $2.196$ 2012 $4006$ $7889$ $6650$ $43$ $0.844$ $2.196$ 2013 $4054$ $7977$ $6730$ $37$ $0.855$ $2.222$ 2014< |       |             |       |        |            |        |                   |
| 19973022637450163940.6371.65619983101648951483590.6541.70019993181660352813230.6711.74420003261671754132880.6871.78720013333681755332520.7031.82720023405691756522170.7181.86620033477701657721810.7331.90620043549711558921460.7481.94520053621721560111100.7631.9852006369373146130750.7792.0242007374774136220700.7902.0542008380175136309640.8012.0832009385576126399590.8132.1132010390977126488540.8242.1422011395778006569430.8442.1962012400678896650430.8442.1962013405479776730370.8552.2272016419982436971210.9852.3272016419982436971210.9242.4032021440885087202140.9152.37820204385 <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>                                                                                                                                                                                                                    |       |             |       |        |            |        |                   |
| 19983101648951483590.6541.70019993181660352813230.6711.74420003261671754132880.6871.78720013333681755332520.7031.82720023405691756522170.7181.86620033477701657721810.7331.90620043549711558921460.7481.94520053621721560111100.7631.9852006369373146130750.7792.0242007374774136220700.7902.0542008380175136309640.8012.0832009385576126399590.8132.1132010390977126488540.8242.1422011395778006569430.8442.1962012400678896650430.8442.1962013405479776730370.8552.2272014410380666810320.8652.2492015415181546891260.8752.2752016419982436971210.8852.3022017424683317048190.8952.32720184292                                                                                                                                                                                                                                                                                           |       |             |       |        |            |        |                   |
| 19993181660352813230.6711.74420003261671754132880.6871.78720013333681755332520.7031.82720023405691756522170.7181.86620033477701657721810.7331.90620043549711558921460.7481.94520053621721560111100.7631.9852006369373146130750.7792.0242007374774136220700.7902.0542008380175136309640.8012.0832009385576126399590.8132.1132010390977126488540.8242.1422011395778006569480.8342.1692012400678896650430.8442.1962013405479776730370.8552.2222014410380666810320.8652.2492015415181546891260.8752.2752016419982436971210.8852.3022017424683317048190.8952.3272018429284207125170.9052.35320194338<                                                                                                                                                                                                                                                                                           |       |             |       |        |            |        |                   |
| 20003261671754132880.6871.78720013333681755332520.7031.82720023405691756522170.7181.86620033477701657721810.7331.90620043549711558921460.7481.94520053621721560111100.7631.9852006369373146130750.7792.0242007374774136220700.7902.0542008380175136309640.8012.0832009385576126399590.8132.1132010390977126488540.8242.1422011395778006569480.8342.1692012400678896650430.8442.1962013405479776730370.8552.2222014410380666810320.8652.2492015415181546891260.8752.2752016419982436971210.8852.3022017424683317048190.8952.3272018429284207125170.9052.3532019433885087202140.9152.37820204385 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                              |       |             |       |        |            |        |                   |
| 20013333681755332520.7031.82720023405691756522170.7181.86620033477701657721810.7331.90620043549711558921460.7481.94520053621721560111100.7631.9852006369373146130750.7792.0242007374774136220700.7902.0542008380175136309640.8012.0832009385576126399590.8132.1132010390977126488540.8242.1422011395778006569480.8342.1692012400678896650430.8442.1962013405479776730370.8552.2222014410380666810320.8652.2492015415181546891260.8752.2752016419982436971210.8852.3022017424683317048190.8952.3272018429284207125170.9052.3532019433885087202140.9152.3782020438585977279120.9242.40320214413 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                                                                                                                                                                                                             |       |             |       |        |            |        |                   |
| 20023405691756522170.7181.86620033477701657721810.7331.90620043549711558921460.7481.94520053621721560111100.7631.9852006369373146130750.7792.0242007374774136220700.7902.0542008380175136309640.8012.0832009385576126399590.8132.1132010390977126488540.8242.1422011395778006569480.8342.1692012400678896650430.8442.1962013405479776730370.8552.2222014410380666810320.8652.2492015415181546891260.8752.2752016419982436971210.8852.3022017424683317048190.8952.3782020438585977279120.9242.4032021441386507325100.9302.419202244688752741660.9422.449202344688752741660.9422.4492024449588                                                                                                                                                                                                                                                                                               |       |             |       |        |            |        |                   |
| 20033477701657721810.7331.90620043549711558921460.7481.94520053621721560111100.7631.9852006369373146130750.7792.0242007374774136220700.7902.0542008380175136309640.8012.0832009385576126399590.8132.1132010390977126488540.8242.1422011395778006569480.8442.1962012400678896650430.8442.1962013405479776730370.8552.2222014410380666810320.8652.2492015415181546891260.8752.2752016419982436971210.8852.3022017424683317048190.8952.3272018429284207125170.9052.3532019433885087202140.9152.3782020438585977279120.9242.4032021441386507325100.9302.419202244408701737180.9362.4342023446887                                                                                                                                                                                                                                                                                               |       |             |       |        |            |        |                   |
| 20043549711558921460.7481.94520053621721560111100.7631.9852006369373146130750.7792.0242007374774136220700.7902.0542008380175136309640.8012.0832009385576126399590.8132.1132010390977126488540.8242.1422011395778006569480.8342.1692012400678896650430.8442.1962013405479776730370.8552.2222014410380666810320.8652.2492015415181546891260.8752.2752016419982436971210.8852.3022017424683317048190.8952.3532018429284207125170.9052.3532019433885087202140.9152.3782020438585977279120.9242.4032021441386507325100.9302.419202244408701737180.9362.434202344688752741660.9422.449202444958803                                                                                                                                                                                                                                                                                               |       |             |       |        |            |        |                   |
| 20053621721560111100.7631.9852006369373146130750.7792.0242007374774136220700.7902.0542008380175136309640.8012.0832009385576126399590.8132.1132010390977126488540.8242.1422011395778006569480.8342.1692012400678896650430.8442.1962013405479776730370.8552.2222014410380666810320.8652.2492015415181546891260.8752.2752016419982436971210.8852.3022017424683317048190.8952.3272018429284207125170.9052.3532020438585977279120.9242.4032021441386507325100.9302.419202244408701737180.9362.434202344688752741660.9422.449202444958803746140.9482.464202545228855750720.9532.479                                                                                                                                                                                                                                                                                                              |       |             |       |        |            |        |                   |
| 2006369373146130750.7792.0242007374774136220700.7902.0542008380175136309640.8012.0832009385576126399590.8132.1132010390977126488540.8242.1422011395778006569480.8342.1692012400678896650430.8442.1962013405479776730370.8552.2222014410380666810320.8652.2492015415181546891260.8752.2752016419982436971210.8852.3022017424683317048190.8952.3532018429284207125170.9052.3532019433885087202140.9152.3782020438585977279120.9242.4032021441386507325100.9302.419202244408701737180.9362.434202344688752741660.9422.449202444958803746140.9482.464202545228855750720.9532.479                                                                                                                                                                                                                                                                                                               | 2004  | 3549        | 7115  |        | 146        | 0.748  | 1.945             |
| 2007374774136220700.7902.0542008380175136309640.8012.0832009385576126399590.8132.1132010390977126488540.8242.1422011395778006569480.8342.1692012400678896650430.8442.1962013405479776730370.8552.2222014410380666810320.8652.2492015415181546891260.8752.2752016419982436971210.8852.3022017424683317048190.8952.3532019433885087202140.9152.3782020438585977279120.9242.4032021441386507325100.9302.419202244408701737180.9362.434202344688752741660.9422.449202444958803746140.9482.464202545228855750720.9532.479                                                                                                                                                                                                                                                                                                                                                                       | 2005  | 3621        | 7215  | 6011   | 110        | 0.763  | 1.985             |
| 2008380175136309640.8012.0832009385576126399590.8132.1132010390977126488540.8242.1422011395778006569480.8342.1692012400678896650430.8442.1962013405479776730370.8552.2222014410380666810320.8652.2492015415181546891260.8752.2752016419982436971210.8852.3022017424683317048190.8952.3272018429284207125170.9052.3532019433885087202140.9152.3782020438585977279120.9242.4032021441386507325100.9302.419202244688752741660.9422.449202444958803746140.9482.464202545228855750720.9532.479                                                                                                                                                                                                                                                                                                                                                                                                  | 2006  | 3693        | 7314  | 6130   | 75         | 0.779  | 2.024             |
| 2009385576126399590.8132.1132010390977126488540.8242.1422011395778006569480.8342.1692012400678896650430.8442.1962013405479776730370.8552.2222014410380666810320.8652.2492015415181546891260.8752.2752016419982436971210.8852.3022017424683317048190.8952.3272018429284207125170.9052.3532019433885087202140.9152.3782020438585977279120.9242.4032021441386507325100.9302.419202244408701737180.9362.434202344688752741660.9422.449202444958803746140.9482.464202545228855750720.9532.479                                                                                                                                                                                                                                                                                                                                                                                                   | 2007  | 3747        | 7413  | 6220   | 70         | 0.790  | 2.054             |
| 2010390977126488540.8242.1422011395778006569480.8342.1692012400678896650430.8442.1962013405479776730370.8552.2222014410380666810320.8652.2492015415181546891260.8752.2752016419982436971210.8852.3022017424683317048190.8952.3272018429284207125170.9052.3532019433885087202140.9152.3782020438585977279120.9242.4032021441386507325100.9302.419202244408701737180.9362.434202344688752741660.9422.449202444958803746140.9482.464202545228855750720.9532.479                                                                                                                                                                                                                                                                                                                                                                                                                               | 2008  | 3801        | 7513  | 6309   | 64         | 0.801  | 2.083             |
| 2011395778006569480.8342.1692012400678896650430.8442.1962013405479776730370.8552.2222014410380666810320.8652.2492015415181546891260.8752.2752016419982436971210.8852.3022017424683317048190.8952.3272018429284207125170.9052.3532019433885087202140.9152.3782020438585977279120.9242.4032021441386507325100.9302.419202244408701737180.9362.434202344688752741660.9422.449202444958803746140.9482.464202545228855750720.9532.479                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2009  | 3855        | 7612  | 6399   | 59         | 0.813  | 2.113             |
| 2012400678896650430.8442.1962013405479776730370.8552.2222014410380666810320.8652.2492015415181546891260.8752.2752016419982436971210.8852.3022017424683317048190.8952.3272018429284207125170.9052.3532019433885087202140.9152.3782020438585977279120.9242.4032021441386507325100.9302.419202244408701737180.9362.434202344688752741660.9422.449202444958803746140.9482.464202545228855750720.9532.479                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2010  | 3909        | 7712  | 6488   | 54         | 0.824  | 2.142             |
| 2013405479776730370.8552.2222014410380666810320.8652.2492015415181546891260.8752.2752016419982436971210.8852.3022017424683317048190.8952.3272018429284207125170.9052.3532019433885087202140.9152.3782020438585977279120.9242.4032021441386507325100.9302.419202244408701737180.9362.434202344688752741660.9422.449202444958803746140.9482.464202545228855750720.9532.479                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2011  | 3957        | 7800  | 6569   | 48         | 0.834  | 2.169             |
| 2014410380666810320.8652.2492015415181546891260.8752.2752016419982436971210.8852.3022017424683317048190.8952.3272018429284207125170.9052.3532019433885087202140.9152.3782020438585977279120.9242.4032021441386507325100.9302.419202244408701737180.9362.434202344688752741660.9422.449202444958803746140.9482.464202545228855750720.9532.479                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2012  | 4006        | 7889  | 6650   | 43         | 0.844  | 2.196             |
| 2015415181546891260.8752.2752016419982436971210.8852.3022017424683317048190.8952.3272018429284207125170.9052.3532019433885087202140.9152.3782020438585977279120.9242.4032021441386507325100.9302.419202244408701737180.9362.434202344688752741660.9422.449202444958803746140.9482.464202545228855750720.9532.479                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2013  | 4054        | 7977  | 6730   | 37         | 0.855  | 2.222             |
| 2016419982436971210.8852.3022017424683317048190.8952.3272018429284207125170.9052.3532019433885087202140.9152.3782020438585977279120.9242.4032021441386507325100.9302.419202244408701737180.9362.434202344688752741660.9422.449202444958803746140.9482.464202545228855750720.9532.479                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2014  | 4103        | 8066  | 6810   | 32         | 0.865  | 2.249             |
| 2017424683317048190.8952.3272018429284207125170.9052.3532019433885087202140.9152.3782020438585977279120.9242.4032021441386507325100.9302.419202244408701737180.9362.434202344688752741660.9422.449202444958803746140.9482.464202545228855750720.9532.479                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2015  | 4151        | 8154  | 6891   | 26         | 0.875  | 2.275             |
| 2018429284207125170.9052.3532019433885087202140.9152.3782020438585977279120.9242.4032021441386507325100.9302.419202244408701737180.9362.434202344688752741660.9422.449202444958803746140.9482.464202545228855750720.9532.479                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2016  | 4199        | 8243  | 6971   | 21         | 0.885  | 2.302             |
| 2019433885087202140.9152.3782020438585977279120.9242.4032021441386507325100.9302.419202244408701737180.9362.434202344688752741660.9422.449202444958803746140.9482.464202545228855750720.9532.479                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2017  | 4246        | 8331  | 7048   | 19         | 0.895  | 2.327             |
| 2020438585977279120.9242.4032021441386507325100.9302.419202244408701737180.9362.434202344688752741660.9422.449202444958803746140.9482.464202545228855750720.9532.479                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2018  | 4292        | 8420  | 7125   | 17         | 0.905  | 2.353             |
| 2021441386507325100.9302.419202244408701737180.9362.434202344688752741660.9422.449202444958803746140.9482.464202545228855750720.9532.479                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2019  | 4338        | 8508  | 7202   | 14         | 0.915  | 2.378             |
| 202244408701737180.9362.434202344688752741660.9422.449202444958803746140.9482.464202545228855750720.9532.479                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2020  | 4385        | 8597  | 7279   | 12         | 0.924  | 2.403             |
| 202344688752741660.9422.449202444958803746140.9482.464202545228855750720.9532.479                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2021  | 4413        | 8650  | 7325   | 10         | 0.930  | 2.419             |
| 202444958803746140.9482.464202545228855750720.9532.479                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2022  | 4440        | 8701  | 7371   | 8          | 0.936  | 2.434             |
| 2025         4522         8855         7507         2         0.953         2.479                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2023  | 4468        | 8752  | 7416   | 6          | 0.942  | 2.449             |
| 2025         4522         8855         7507         2         0.953         2.479                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2024  | 4495        | 8803  | 7461   | 4          | 0.948  | 2.464             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2025  | 4522        | 8855  | 7507   | 2          | 0.953  | 2.479             |
| 2026 4549 8906 7552 1 0.959 2.494                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2026  | 4549        | 8906  | 7552   | 1          | 0.959  | 2.494             |

## TABLE 3 (CONT.)

## **PROJECTED WATER DEMANDS**

# South Water System

| Doutin | Water Dyst |       |        |          | AVG DAY | MAX DAY |
|--------|------------|-------|--------|----------|---------|---------|
| PLAN   | ACTIVE     | TOTAL | SERVED | UNSERVED | DEMAND  | DEMAND  |
| YEAR   | CONN.      | POP.  | POP.   | POP.     | (MGD)   | (MGD)   |
| 1996   | 1760       | 5315  | 2834   | 562      | 0.327   | 0.893   |
| 1990   | 1805       | 5435  | 2834   | 564      | 0.327   | 0.895   |
| 1997   | 1805       | 5555  | 2980   | 566      | 0.335   | 0.910   |
| 1998   | 1896       | 5675  | 3053   | 567      | 0.344   | 0.959   |
| 2000   | 1890       | 5795  | 3126   | 569      | 0.352   | 0.985   |
| 2000   | 1942       | 5916  | 3120   | 570      | 0.369   | 1.008   |
| 2001   | 2032       | 6035  | 3272   | 571      | 0.378   | 1.031   |
| 2002   | 2032       | 6154  | 3345   | 572      | 0.378   | 1.054   |
| 2003   | 2123       | 6274  | 3418   | 573      | 0.394   | 1.077   |
| 2004   | 2168       | 6393  | 3491   | 573      | 0.403   | 1.100   |
| 2005   | 2100       | 6512  | 3564   | 574      | 0.411   | 1.123   |
| 2000   | 2259       | 6632  | 3637   | 575      | 0.420   | 1.146   |
| 2008   | 2305       | 6751  | 3710   | 576      | 0.428   | 1.169   |
| 2009   | 2350       | 6870  | 3784   | 577      | 0.437   | 1.192   |
| 2010   | 2395       | 6990  | 3857   | 577      | 0.445   | 1.215   |
| 2011   | 2441       | 7109  | 3930   | 578      | 0.453   | 1.238   |
| 2012   | 2486       | 7227  | 4003   | 578      | 0.462   | 1.261   |
| 2013   | 2532       | 7346  | 4076   | 578      | 0.470   | 1.284   |
| 2014   | 2577       | 7464  | 4149   | 578      | 0.479   | 1.307   |
| 2015   | 2622       | 7583  | 4222   | 578      | 0.487   | 1.330   |
| 2016   | 2667       | 7702  | 4295   | 578      | 0.496   | 1.353   |
| 2017   | 2710       | 7820  | 4364   | 582      | 0.503   | 1.375   |
| 2018   | 2753       | 7939  | 4433   | 586      | 0.511   | 1.396   |
| 2019   | 2796       | 8057  | 4502   | 590      | 0.519   | 1.418   |
| 2020   | 2839       | 8176  | 4571   | 594      | 0.527   | 1.440   |
| 2021   | 2882       | 8294  | 4640   | 598      | 0.535   | 1.462   |
| 2022   | 2925       | 8410  | 4709   | 599      | 0.543   | 1.483   |
| 2023   | 2968       | 8526  | 4778   | 601      | 0.551   | 1.505   |
| 2024   | 3011       | 8642  | 4847   | 602      | 0.559   | 1.527   |
| 2025   | 3054       | 8758  | 4916   | 603      | 0.567   | 1.549   |
| 2026   | 3096       | 8874  | 4985   | 605      | 0.575   | 1.570   |

#### 3.2.3 Projected Wastewater Demands

Projected wastewater demands were developed for each Priority Area by calculating the current per-capita flow rate for wastewater. This was done by dividing the maximum 30day average flow for both North and South systems by the current estimated served population for that system. Yearly per-capita flowrates, minus Infiltration/Inflow (I/I) reductions, were used to calculated the maximum 30-day average flow for each system by multiplying the per-capita rate by the estimated served population. The estimated per-capita flowrate for 1996 for the North wastewater system is 108.5 gpcd. The estimated per-capita flowrate for 1996 for the South wastewater system is 197.0 gpcd.

Peak 2-hour flow rates were calculated using historical peaking factors and by using Harmon's equation for determining peak flows. The historical peaking factor for the North wastewater system is 3.13. The calculated peaking factor for the South wastewater system is 3.45. The estimated I/I reduction for each system was calculated by determining the estimated yearly I/I removal from the repair of gravity lines and manholes in the North system and repair of home septic tanks and effluent pump installations in the South system. Table 4 shows projected wastewater flows for both the North and South wastewater systems. For a more detailed explanation of wastewater flow projections see Technical Memorandum #2 in Appendix B.

### TABLE 4

#### **PROJECTED WASTEWATER FLOWS**

North Wastewater System

| 1.01.01      |                 |               |        |          | 20 0 4 1/           | DEAX  |
|--------------|-----------------|---------------|--------|----------|---------------------|-------|
| DTAN         | ACTIVE          | TOTAL         | SERVED | UNSERVED | 30 DAY<br>AVG. FLOW | PEAK  |
| PLAN<br>VEAD | ACTIVE<br>CONN. | TOTAL<br>POP. | POP.   | POP.     |                     | FLOW  |
| YEAR         |                 |               |        |          | (MGD)               | (MGD) |
| 1996         | 3125            | 6260          | 5188   | 1073     | 0.563               | 1.773 |
| 1997         | 3229            | 6374          | 5361   | 1014     | 0.579               | 1.823 |
| 1998         | 3334            | 6489          | 5534   | 955      | 0.594               | 1.872 |
| 1999         | 3438            | 6603          | 5707   | 896      | 0.610               | 1.922 |
| 2000         | 3542            | 6717          | 5880   | 838      | 0.626               | 1.971 |
| 2001         | 3638            | 6817          | 6038   | 779      | 0.640               | 2.016 |
| 2002         | 3733            | 6917          | 6197   | 720      | 0.654               | 2.061 |
| 2003         | 3829            | 7016          | 6355   | 661      | 0.669               | 2.106 |
| 2004         | 3924            | 7115          | 6514   | 601      | 0.683               | 2.151 |
| 2005         | 4020            | 7215          | 6672   | 542      | 0.697               | 2.196 |
| 2006         | 4115            | 7314          | 6831   | 483      | 0.712               | 2.241 |
| 2007         | 4196            | 7413          | 6965   | 448      | 0.723               | 2.279 |
| 2008         | 4276            | 7513          | 7099   | 414      | 0.735               | 2.316 |
| 2009         | 4357            | 7612          | 7232   | 380      | 0.747               | 2.353 |
| 2010         | 4437            | 7712          | 7365   | 346      | 0.759               | 2.390 |
| 2011         | 4511            | 7800          | 7488   | 312      | 0.769               | 2.423 |
| 2012         | 4585            | 7889          | 7611   | 278      | 0.780               | 2.457 |
| 2013         | 4658            | 7977          | 7733   | 245      | 0.791               | 2.490 |
| 2014         | 4732            | 8066          | 7855   | 211      | 0.801               | 2.524 |
| 2015         | 4806            | 8154          | 7978   | 177      | 0.812               | 2.557 |
| 2016         | 4880            | 8243          | 8100   | 143      | 0.823               | 2.591 |
| 2017         | 4942            | 8331          | 8203   | 128      | 0.831               | 2.618 |
| 2018         | 5003            | 8420          | 8306   | 114      | 0.840               | 2.646 |
| 2019         | 5065            | 8508          | 8409   | 100      | 0.849               | 2.673 |
| 2020         | 5127            | 8597          | 8511   | 86       | 0.859               | 2.705 |
| 2021         | 5168            | 8650          | 8578   | 71       | 0.866               | 2.727 |
| 2022         | 5207            | 8701          | 8644   | 57       | 0.872               | 2.748 |
| 2023         | 5246            | 8752          | 8709   | 43       | 0.879               | 2.768 |
| 2024         | 5286            | 8803          | 8775   | 29       | 0.885               | 2.789 |
| 2025         | 5325            | 8855          | 8840   | 14       | 0.892               | 2.810 |
| 2026         | 5365            | 8906          | 8906   | 0        | 0.899               | 2.831 |
|              |                 |               |        |          |                     |       |

## TABLE 4 (CONT.)

#### **PROJECTED WASTEWATER FLOWS**

# South Wastewater System

| Doutin | i abto i ato | 1 0 9 5 10 11 |        |          | 30 DAY    | PEAK  |
|--------|--------------|---------------|--------|----------|-----------|-------|
| PLAN   | ACTIVE       | TOTAL         | SERVED | UNSERVED | AVG. FLOW | FLOW  |
| YEAR   | CONN.        | POP.          | POP.   | POP.     | (MGD)     | (MGD) |
| 1996   | 536          | 5315          | 863    | 3543     | 0.170     | 0.595 |
| 1997   | 698          | 5435          | 1123   | 3381     | 0.193     | 0.676 |
| 1998   | 860          | 5555          | 1384   | 3219     | 0.216     | 0.757 |
| 1999   | 1021         | 5675          | 1644   | 3057     | 0.239     | 0.838 |
| 2000   | 1183         | 5795          | 1905   | 2895     | 0.263     | 0.919 |
| 2001   | 1345         | 5916          | 2165   | 2734     | 0.286     | 1.000 |
| 2002   | 1507         | 6035          | 2426   | 2571     | 0.309     | 1.081 |
| 2003   | 1668         | 6154          | 2686   | 2408     | 0.332     | 1.162 |
| 2004   | 1830         | 6274          | 2947   | 2246     | 0.355     | 1.243 |
| 2005   | 1992         | 6393          | 3207   | 2083     | 0.378     | 1.324 |
| 2006   | 2154         | 6512          | 3468   | 1920     | 0.401     | 1.405 |
| 2007   | 2264         | 6632          | 3645   | 1841     | 0.416     | 1.456 |
| 2008   | 2374         | 6751          | 3822   | 1762     | 0.434     | 1.517 |
| 2009   | 2484         | 6870          | 3999   | 1683     | 0.452     | 1.578 |
| 2010   | 2594         | 6990          | 4176   | 1603     | 0.470     | 1.640 |
| 2011   | 2703         | 7109          | 4353   | 1524     | 0.488     | 1.701 |
| 2012   | 2813         | 7227          | 4530   | 1444     | 0.505     | 1.763 |
| 2013   | 2923         | 7346          | 4706   | 1364     | 0.523     | 1.824 |
| 2014   | 3033         | 7464          | 4883   | 1284     | 0.541     | 1.886 |
| 2015   | 3143         | 7583          | 5060   | 1204     | 0.559     | 1.947 |
| 2016   | 3253         | 7702          | 5237   | 1124     | 0.577     | 2.008 |
| 2017   | 3345         | 7820          | 5385   | 1073     | 0.592     | 2.059 |
| 2018   | 3436         | 7939          | 5533   | 1023     | 0.607     | 2.111 |
| 2019   | 3528         | 8057          | 5680   | 972      | 0.622     | 2.162 |
| 2020   | 3620         | 8176          | 5828   | 921      | 0.636     | 2.213 |
| 2021   | 3712         | 8294          | 5976   | 871      | 0.651     | 2.264 |
| 2022   | 3803         | 8410          | 6123   | 817      | 0.666     | 2.315 |
| 2023   | 3895         | 8526          | 6271   | 764      | 0.681     | 2.366 |
| 2024   | 3987         | 8642          | 6419   | 711      | 0.696     | 2.417 |
| 2025   | 4079         | 8758          | 6566   | 657      | 0.711     | 2.468 |
| 2026   | 4170         | 8874          | 6714   | 604      | 0.726     | 2.519 |

#### 4.0 SYSTEM MODELING

#### 4.1 WATER DISTRIBUTION SYSTEM ASSESSMENT

The North and South water distribution systems were modeled using the CYBERNET computer modeling program. The program accepts input from the AutoCAD computer drafting program in the form of water distribution system mapping and is capable of providing a theoretical simulation of the water distribution system and it's capabilities. Based on distributed demands for current and future conditions, the program can aid in determining the future distribution system projects needed to provide adequate water distribution to the District's customers. The program can determine the location of low pressure areas in the system and can simulate elevated tank conditions, pump stations, and distribution piping pressures.

Based on current and projected water demands, the computer model was developed to simulate conditions for the years 1996, 2006, 2016, and 2026. For each time period, weaknesses in the system were located based on TNRCC design criteria. The linework in the system was then augmented to eliminate these weaknesses. For a more detailed explanation of the water system modeling, see Technical Memorandum #2 in Appendix B.

#### 4.2 WASTEWATER COLLECTION SYSTEM ASSESSMENT

The North wastewater collection system was modeled using the HYDRA computer modeling program. This program is very similar to CYBERNET with the exception that it is capable of modeling gravity sewer lines. Since about half of the North System is gravity sewer, it was determined that HYDRA would provide a better simulation of that system. The CYBERNET program was used for the South wastewater collection system, since this system has a very small amount of gravity sewer. Both programs are capable of providing theoretical simulations of each system and their capabilities. Based on the distributed wastewater flows for current and future conditions, both programs were able to determine future collection system projects needed to provide adequate wastewater collection and treatment to the District's customers. Both programs were able to determine areas with low and high pressure conditions which would indicate pumping problems within each system. The programs were also able to determine inadequacies in collection system piping.

Based on current and projected wastewater flows, the computer models were developed to simulate conditions for the years 1996, 2006, 2016, and 2026. For each time period, the systems were analyzed based on TNRCC design criteria and weaknesses in the systems were located. The linework and pumping capacities of the systems were then augmented to eliminate the weaknesses. For a more detailed explanation of wastewater system modeling, see Technical Memorandum #2 in Appendix B.

#### 5.0 RECOMMENDED SYSTEM IMPROVEMENTS

System improvements identified in the water and wastewater system models and plant reviews have been identified and prioritized based on their anticipated implementation dates. Each project was evaluated using a prioritization matrix based on the project's relative technical importance, regulatory importance, and economic importance. Projects were then ranked based on these evaluations and prioritized based on implementation date and ranked value. The following is the prioritized list of water and wastewater projects for each system. A brief description of each project is provided along with a project identification number which describes the project location and priority. Each project is dated with a time period in which the project should be constructed. The Master Plan projects, priorities, and construction dates may change with changing system conditions and should be updated periodically. Mapping of the recommended improvements is provided in Appendix E.

#### 5.1 NORTH WATER SYSTEM

The following improvements are recommended for the North Water System:

| Construction | Project |                                                                                             |
|--------------|---------|---------------------------------------------------------------------------------------------|
| Date         | No.     | Description                                                                                 |
| 1997         | NW1     | <u>New 12-inch Loop around Legendary Lane, Hwy, 334 and Pleasure Land</u><br><u>Street.</u> |
|              |         | To supply adequate water to the various general areas within the system,                    |
|              |         | it is recommended that the 12-inch loop around Legendary Lane, Hwy.                         |
|              |         | 334, the Bozeman Easement, and Thunderbird Streets be completed. This                       |
|              |         | will require the construction of a new 12-inch water line from the elevated                 |
|              |         | tank to Hwy. 334 and then along Hwy. 334 to an existing 12-inch water                       |
|              |         | line. A new 12-inch water line will also need to be constructed from Hwy                    |
|              |         | 334 southward down the Bozeman Easement between Pleasureland and                            |
|              |         | Welch Streets to Thunderbird Street. The project will also consist of                       |

constructing a 10-inch water line from Hwy 334 to the new elementary school, including an 8-inch line ending in a fire hydrant behind the new school. Design of this item has been completed and construction will begin soon.

| 1997      | NW2 | North WTP Expansion<br>The North Water Treatment Plant is not capable of meeting the<br>requirements of 0.6 gpm per connection for treatment plant capacity.<br>Currently the District operates under a variance which allows them to meet<br>0.45 gpm per connection. Under this variance the District cannot be<br>approved as a "Superior" water system and cannot provide fire flow<br>capability. In order to meet the 0.6 gpm per connection criteria, the<br>District will need to expand the North WTP by approximately 1 MGD to<br>give the plant a total capacity of 3.6 MGD. Since the District is operating<br>under the 0.45 gpm per connection variance, there is some leeway in the<br>time frame for this project. If the District decides to remain on the 0.45<br>gpm per connection variance, the plant should be expanded to a capacity<br>of 3.0 MGD and the expansion would not be necessary until the year 2010. |
|-----------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1997      | NW3 | North WTP High Service Pump Expansion<br>The North WTP high service pumps are not capable of providing 0.6 gpm<br>per connection of pumping capacity. Currently, the District operates under<br>a variance of 0.45 gpm per connection. Expansion of the pumps to meet<br>the 0.6 gpm per connection criteria would require the addition of a 1,100<br>gpm pump to expand the firm capacity to 3.6 MGD. Since the District is<br>operating under the 0.45 gpm per connection variance, there is some<br>leeway in the time frame for this project. If the District decides to remain<br>on the 0.45 gpm per connection variance, the pumps do not need expansion<br>until 2001, at which time they should be expanded to a firm capacity of 3.0<br>MGD.                                                                                                                                                                                  |
| 1997      | NW4 | North WTP Raw Water Pump Expansion<br>The North WTP raw water pumps are not capable of providing 0.6 gpm<br>per connection of pumping capacity. Currently, the District operates under<br>a variance of 0.45 gpm per connection. Expansion of the pumps to meet<br>the 0.6 gpm per connection criteria would require the replacement of the<br>two existing 700 gpm pumps with new 1250 gpm pumps to expand the firm<br>capacity to 3.6 MGD. Since the District is operating under the 0.45 gpm<br>per connection variance, there is some leeway in the time frame for this<br>project. If the District decides to remain on the 0.45 gpm per connection<br>variance, the pumps do not need expansion until 1999, at which time they<br>should be expanded to a firm capacity of 3.0 MGD.                                                                                                                                               |
| 1996-2006 | NW5 | New 8-inch and 6-inch Waterlines for the Remaining Priority #2 Area on<br>the East Side of the Hwy. 334 Bridge.<br>The area on the east side of the Hwy. 334 Bridge cannot currently provide<br>peak hour summer demands. It is recommended that an 8-inch water line<br>be constructed from the east side of the East Cedar Creek Reservoir to the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

HillCrest Subdivision. A 6-inch waterline will need to be constructed southward through the Oak Ridge Area and then eastward along Lago Drive in the Bonita Point Subdivision.

| 1996-2006 | NW6  | New 8-inch Waterlines to the Tamarack Area.<br>The Tamarack Area will not be capable of supplying peak summer<br>demands to the area East of the Hwy. 334 Bridge. It is recommended that<br>a new 8-inch water line be constructed from the existing 8-inch water line<br>at Trailwind Street and Hwy. 334 to the west side of the bridge at the<br>Cedar Creek Reservoir. It is also recommended that an 8-inch water line<br>be constructed from Hwy. 334 and Wildwind Street to Beaver Brush<br>Street.                                                                                                                                                                                                                                                                    |
|-----------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1996-2006 | NW7  | New 10-inch and 8-inch Waterlines to Harbor Point Area in the Northwest<br>Region of the Water System.<br>The small existing water lines in the far north part of the Harbor Point<br>Area are unable to supply peak summer demands. It is recommended that<br>an 8-inch water line be constructed northward from an existing 6-inch<br>water line at Commodore and Harbor Point Streets to First Mate and<br>Harbor Point Streets. It is also recommended that a 10-inch water line be<br>constructed from the new 12-inch water line on Hwy. 334 northward along<br>Lakeview Street to an existing 4-inch water line on Commander Street.                                                                                                                                   |
| 1996-2006 | NW8  | <u>New 6-inch Waterline Along Spanish Trail.</u><br>The area along the Cedar Creek in the Tanglewood Shores Area and the<br>Sherwood Shores and Southwind Estates Area cannot provide any<br>significant demand to these areas. It is recommended that new 6-inch<br>water lines be constructed in these areas. For the Sherwood Shores and<br>Southwind Estates Areas, a 6-inch water line should be constructed from<br>the end of the existing 8-inch water line at Clear Fork Street to the<br>intersection of Autumn Trail and Legendary Lane. For the Tanglewood<br>Shores Area, a 6-inch water line will be constructed from an existing 6-<br>inch waterline at Guadalupe Street going southward along Spanish Trail to<br>a 4-inch water line at Palo Blanco Street. |
| 1996-2006 | NW9  | <u>New 6-inch Waterline through Sandy Shores and Eastwood Island Areas.</u><br>Most of the existing waterlines within these areas are 3-inch and smaller<br>in size, and are not capable of supplying any significant demand. It is<br>recommended that a 6-inch waterline be constructed beginning at the 12-<br>inch waterline at Legendary Lane and Hwy. 334 and going west and south<br>along Southland Street. From Southland Street the 6-inch waterline should<br>be extended down to Lost Forest Street. From Lost Forest Street, it is<br>recommended that a 6-inch waterline be looped around Ocean Street to an<br>existing 4-inch waterline located on Lakeway Street.                                                                                            |
| 1996-2006 | NW10 | <u>New 6-inch Waterline from Welch Street to Harmon Street.</u><br>To meet any significant demands in the Northern Shores and Lakeview<br>Acre Areas, it is recommended that a new 6-inch waterline be constructed<br>from the intersection of Welch and Sundrift Streets to an existing 4-inch                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

|           |      | waterline at the intersection of Victor and Harmon Streets.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2006      | NW11 | Total Storage Capacity Expansion<br>TNRCC criteria require that the District have a total storage capacity equal<br>to 200 gallons of storage per connection. Based on this criterion the North<br>system will not have adequate total storage in the year 2006. The District<br>does have adequate elevated tank storage to last through the end of the<br>Master Plan study period. Therefore, expansion of the elevated tanks is<br>not required. It is therefore recommended that the total storage capacity<br>of the system be expanded by adding a new 182,000 gallon clearwell at the<br>North WTP. This additional storage will allow the District to meet total<br>storage requirements beyond the Master Plan study period. |
| 2006-2016 | NW12 | New 6-inch and 8-inch Waterlines to Serve Priority Area #3.<br>To provide service to the Priority Area #3 along Hwy 334, toward Hwy.<br>175, it is recommended that an 8-inch waterline be constructed from the<br>end of the existing 8-inch eastward approximately 4,200 linear feet. It is<br>also recommended that a 6-inch water line be constructed southward to<br>loop in the Hillcrest Shore subdivision and Oak Ridge Subdivision into an<br>existing 6-inch waterline on Lago Drive.                                                                                                                                                                                                                                        |
| 2006-2016 | NW13 | New 6-inch Waterline From Hwy. 198 to Whispering Trail.<br>Under 2016 Peak Flow Conditions, the southern part of the Tamarack area<br>will have low pressures under peak hour demands during the summer. It<br>is recommended that a 6-inch water line be constructed from Hwy. 198<br>along Spring Valley Road to an existing 8-inch water line at Beaver Brush<br>Street. This will provide a looped connection for this general area.                                                                                                                                                                                                                                                                                               |
| 2006-2016 | NW14 | <u>New 6-inch Waterline in the Oak Harbor Subdivision</u><br>The Oak Harbor Area is unable to provide adequate pressures for the 2016<br>planning period. It is recommended that a 6-inch waterline be constructed<br>along Lake Shore Drive beginning at Spanish Trail and ending at an<br>existing 6-inch waterline on Oak Harbor Street.                                                                                                                                                                                                                                                                                                                                                                                            |
| 2006-2016 | NW15 | New 6-inch Waterlines in the Mantle Manors and Sherwood Shores<br>Subdivisions.<br>The Mantle Manor and Southwind Estates Areas will not be capable of<br>providing adequate pressures under a peak 2016 demand condition. It is<br>recommended that a new 6-inch waterline be constructed along Autumn<br>Trail from Lost Forest Street to the existing 8-inch on Legendary Lane.<br>It is also recommended that a new 6-inch waterline be constructed along<br>Colleen Street to the existing 12-inch line on Willowwood. This will<br>provide a 6-inch and larger looped waterline for this area.                                                                                                                                   |
| 2006-2016 | NW16 | <u>New 6-inch Looped Waterline for the Harbor Point Subdivision.</u><br>The far north part of the Harbor Point Subdivision will not be capable of<br>supplying adequate demand under peak 2016 conditions. It is<br>recommended that a new looped 6-inch waterline be constructed from the<br>end of the existing 10-inch waterline up around Sea Breeze Road and down<br>along First Mate Street to an existing 8-inch waterline on Harbor Point<br>Street.                                                                                                                                                                                                                                                                           |

| 2016-2026 | NW17 | <u>New 10-inch Waterline Along Hwy. 334 to Hwy. 198.</u><br>To increase the water supply to the Tamarack Area, it is recommended that<br>a new 10-inch waterline be constructed from the 12-inch water line shown<br>on Hwy. 334 to the existing 8-inch and 10-inch waterline at Tamarack<br>Street and Hwy 334.                                            |
|-----------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2016-2026 | NW18 | New 6-inch Waterline Along Hwy. 334 in Priority Area #3<br>To provide adequate demands along Hwy. 334, it is recommended that a<br>6-inch water line be constructed in Priority Area #3 from the end of the<br>existing 8-inch waterline toward Hwy 175.                                                                                                    |
| 2016-2026 | NW19 | <u>New 6-inch Waterline in the Siesta Shores Area.</u><br>Under 2026 peak flow conditions, the existing waterline in this area will<br>not be capable of meeting adequate demands. It is recommended that a<br>new 6-inch waterline be constructed from Welch Street to an existing 6-<br>inch waterline at Guadalupe Street.                               |
| 2016-2026 | NW20 | <u>New 6-inch in the Harbor Point Subdivision.</u><br>To meet the 2026 demand conditions in the middle of the Harbor Point<br>Subdivision, it is recommended that a 6-inch waterline be constructed<br>along Backlash Street down to Commodore Street.                                                                                                      |
| 2016-2026 | NW21 | <u>New 6-inch Waterline Along Luther Street.</u><br>To meet future demands along Luther Street, it is recommended that a new<br>6-inch water line be constructed and tied into the system at an existing 12-<br>inch waterline near Lakeview Airfield and an existing 6-inch waterline on<br>the north side of Luther Street.                               |
| 2016-2026 | NW22 | <u>New 6-inch Waterlines in the Mantle Manors and the Southwind Estates</u><br><u>Subdivisions.</u><br>The Mantle Manor and Southwind Estates Areas will not be capable of<br>providing adequate demands under the 2026 demand conditions. It is<br>recommended that new 6-inch waterlines will be constructed along Autumn<br>Trail and Lake View Streets. |
| 2016-2026 | NW23 | <u>New 6-inch Waterline Along Whispering Trail in the Tamarack Area.</u><br>To complete a looped system in the Tamarack Area to meet peak hour<br>summer demand, it is recommended that a new 6-inch waterline be<br>constructed from Whispering Trail and Beaver Brush Street to Hwy 334.                                                                  |
| 2016-2026 | NW24 | <u>New 6-inch Looped Waterline in Bonita Subdivision.</u><br>To meet the 2026 demand condition, it is recommended that a new 6-inch<br>looped waterline be constructed along Lake Shores Drive in the Bonita<br>Subdivision.                                                                                                                                |

## 5.2 SOUTH WATER SYSTEM

## The following improvements are recommended for the South Water System:

| <b>Year</b><br>2002 | Project<br>No.<br>SW1 | Description<br>South WTP. High Service. and Raw Water Pumps Expansion<br>Based on TNRCC requirements of 0.6 gpm per connection for treatment<br>plant capacity, raw water pump capacity and high service pump capacity,<br>the new South WTP will be capable of meeting system conditions until the<br>year 2002. At this time the treatment plant, high service pumps, and raw<br>water pumps will need to be expanded to a capacity of 2.6 MGD. At this<br>capacity the plant should be capable of meeting system requirements until<br>the end of the Master Plan study period. Currently, the District operates<br>the South system under a 0.45 gpm per connection variance. Under this<br>variance the District cannot be approved as a "Superior" water system and<br>cannot provide fire flow capability. Since the District is operating under<br>the variance there is some leeway in the time frame for South WTP<br>expansion. If the District decides to remain on the variance, the plan, high<br>service pumps and raw water pumps would not require expansion until<br>2016, at which time they should be expanded to a capacity of 2.0 MGD. |
|---------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1996-2006           | SW2                   | New 12-inch and 10-inch Waterline Along Hwy. 198 to Golden Oaks<br>Addition.<br>To supply peak summer demands to the northern portion of the system, it<br>is recommended that a 12-inch waterline be constructed from the end of the<br>new 12-inch waterline along Hwy. 198 to Leisureland Drive. From<br>Leisure Land Drive it is recommended that a 10-inch waterline be<br>constructed north along Hwy 198 to the Golden Oaks and Bandera Bay<br>Subdivisions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 1996-2006           | SW3                   | New 12-inch Waterline Along Enchanted Drive, Hwy 198 and Southward<br>toward Cedar Branch Park<br>Under Existing Conditions, the South Water System cannot adequately<br>supply peak summer demands to most of the remote areas within the<br>system. It is recommended that a new 12-inch waterline be constructed<br>from the water treatment plant northward along Enchanted Drive to Hwy.<br>198 and southward to Cedar Branch Park.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1996-2006           | SW4                   | <u>New 12-inch and 8-inch Waterline Through the Cedar Branch Subdivision.</u><br>To provide adequate demands for Cedar Branch Park for the 2006<br>condition and to provide supply for the area east and south of Cedar<br>Branch Park, it is recommended that a 12-inch waterline be constructed<br>from the end of the new 12-inch waterline through Cedar Branch Park. It<br>is recommended that the southern part of the waterline within Cedar<br>Branch Park be 8-inch in size.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1996-2006           | SW5                   | New 10-inch and 8-inch Waterline through Forgotten Acres to Lakeland<br>Road.<br>To supply peak demands to the west side of the system it is recommended<br>that a 10-inch waterline be constructed from the New 12-inch waterline on<br>Hwy 198 through Forgotten Acres. It is recommended that an 8-inch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

|           |      | waterline be constructed from the west side of Forgotten Acres to the Del<br>Mar Subdivision and up to Lakeland Road.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-----------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1996-2006 | SW6  | New 8-inch and 6-inch Waterline Southward Along Enchanted Drive to<br>Enchanted Oaks.<br>To provide adequate demands to Enchanted Oaks and Indian Harbor, it is<br>recommended that an 8-inch waterline be constructed from the water<br>treatment plant southward along Enchanted Drive to Cedarwood Drive.<br>It is recommended that the 8-inch waterline be connected into two separate<br>6-inch waterlines at the north and south parts of the Indian Harbor<br>Subdivisions. From Cedarwood Drive it is recommended that a 6-inch<br>water line be constructed from the end of the 8-inch waterline down into<br>Enchanted Oaks to an existing 6-inch waterline. |
| 1996-2006 | SW7  | New 8-inch and 6-inch Waterline to Golden Oaks, Southwood Shores,<br>Bonanza Beach and Oak Shores Subdivisions.<br>To provide adequate peak summer demands to these northern subdivisions,<br>it is recommended that an 8-inch waterline be constructed from the 10-inch<br>waterline at Hwy 198 eastward along the southern part of the Golden Oaks<br>Subdivision. It is recommended that a 6-inch water line be constructed<br>northward through the Golden Oaks Subdivisions along Cartwright Street<br>to the three remaining subdivisions within the northern Priority #1 and #2<br>Areas.                                                                       |
| 1996-2006 | SW8  | <u>New 8-inch and 6-inch Waterline to Baywood Estates Area.</u><br>To provide adequate demand to the Baywood Estates Area, it is<br>recommended that a new 8-inch waterline be constructed from the end of<br>the 10-inch waterline along Hwy 198 to the Baywood Estates Area. It is<br>also recommended that a 6-inch waterline be constructed along the<br>northern side of the Baywood Estates Area.                                                                                                                                                                                                                                                                |
| 1996-2006 | SW9  | <u>New 6-inch Looped Waterline Through Bandera Bay and Oakwood Shores.</u><br>To provide adequate demands for the 2006 condition it is recommended<br>that a 6-inch looped water line be constructed from the end of the 10-inch<br>waterline on Hwy. 198 westward through Bandera Bay and then southward<br>through the Oakwood Shores Subdivision to Leisureland Drive.                                                                                                                                                                                                                                                                                              |
| 1996-2006 | SW10 | New 6-inch Looped Waterline Around Leisureland Subdivision and to<br>Three Harbors Subdivisions.<br>To provide adequate demands for the 2006 condition it is recommended<br>that a 6-inch looped water line be constructed from the new 8-inch<br>waterline at the southeast corner of the Leisureland Subdivision along<br>Lakeland Drive and around Shady Shores Road. At the southwest part of<br>the Leisureland Subdivision, it is also recommended that a 6-inch waterline<br>be constructed down into the Three Harbors Subdivision.                                                                                                                            |
| 2006-2016 | SW11 | New 6-inch and 8-inch Waterline to Provide Looped System for the Golden<br>Oaks. Southwood Shores. Bonanza Beach and Oak Shores Subdivisions.<br>To provide peak hour demands during the summer for the 2016 time period<br>to these subdivisions, it is recommended that a 6-inch waterline be<br>constructed from the 12-inch waterline on Hwy 198 up to the Golden Oaks<br>Subdivision. It is recommended that an 8-inch waterline be constructed                                                                                                                                                                                                                   |

|           |              | around Golden Oaks and up along the eastern side of the Oak Shores Subdivision.                                                                                                                                                                                                                                                                                                        |
|-----------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2006-2016 | SW12         | <u>New 6-inch Waterline to Enchanted Isles Subdivision.</u><br>To provide adequate demand on Enchanted Isles for the 2016 condition, it<br>will be necessary to construct a parallel 6-inch waterline from Cedarwood<br>Drive to Enchanted Isles.                                                                                                                                      |
| 2006-2016 | SW13         | <u>New 6-inch Waterline to Cherokee Hills Subdivision.</u><br>To provide adequate demands for the 2016 condition, it is recommended<br>that a 6-inch water line be constructed along Hwy 198 through Baywood<br>Estates to the Cherokee Hills Subdivision.                                                                                                                             |
| 2006-2016 | SW14         | <u>New 6-inch Waterline Through Oakwood Shores Subdivision.</u><br>To provide adequate demands along the shoreline around the Oakwood<br>Shores Subdivision it is recommended that a 6-inch waterline be<br>constructed Payne Springs Road to an existing 6-inch waterline on Shady<br>Shores Drive.                                                                                   |
| 2006-2016 | SW15         | <u>New 6-inch Waterline Through Del Mar Subdivision</u> .<br>To provide adequate demands along the shoreline around the Del Mar<br>Subdivision it is recommended that a 6-inch waterline be constructed<br>through the Del Mar Subdivision to an existing 6-inch waterline in the<br>Three Harbors Subdivision.                                                                        |
| 2006-2016 | SW16         | New 6-inch Waterline Through the Timber Bay, Spillview Estates and<br>Diamond Oaks Subdivisions.<br>To provide adequate demands for the 2016 condition, it is recommended<br>that a parallel 6-inch waterline be constructed along an existing 4-inch<br>waterline through these subdivisions.                                                                                         |
| 2006-2016 | <b>SW</b> 17 | Parallel 12-inch Waterline along Enchanted Drive to Hwy. 198.<br>To provide adequate water supply to the Priority #3 Area, it is<br>recommended that a 12-inch waterline be connected to the elevated storage<br>tank and run parallel to the existing 12-inch waterline (2006 condition)<br>from the treatment plant along Enchanted Drive to Hwy. 198.                               |
| 2006-2016 | SW18         | <u>New 12-inch and 10-inch Waterline Along Hwy 198 Toward Payne</u><br><u>Springs.</u><br>To provide adequate water supply to the Priority #3 Area it is<br>recommended that a 12-inch water line be extended east along Hwy 198<br>approximately 3,000 feet. From the end of the 12-inch waterline, a 10-<br>inch waterline should be constructed for approximately another 1,000 ft. |
| 2006-2016 | SW19         | <u>New 8-inch and 6-inch Waterlines Through the Southern Portion of the Resort Service Area.</u><br>To provide service to the Resort Area immediately to the east of the Cedar Branch Park Area, it is recommended that an 8-inch and 6-inch looped waterline be constructed through Cedar Branch Park and eastward to the new 8-inch waterline supplying the Payne Springs Area.      |

2006-2016

SW20

| New 8-inch Waterline a | <u>nd Booster Pu</u> | <u>imp Station to S</u> | Supply Water to the |
|------------------------|----------------------|-------------------------|---------------------|
| Southeast Parts of the | Priority #3 A        | rea including           | the Lakeshore and   |
| Carolynn CCN Areas.    | -                    | -                       |                     |

To provide adequate supply to meet peak summer demands to the Lakeshore and Carolynn CCN Areas it is recommended that an 8-inch waterline be constructed from the existing 8-inch looped waterline eastward and around Cedar Creek Lake to these remaining areas. Because of the distance from the water treatment plant, it will be necessary to construct a dedicated hydropneumatic booster pump station to provide adequate pressure for the Lakeshore and Carolynn Areas. The hydropneumatic booster pump station shall contain 2 -200 gpm pumps at a rated head of 200 ft. It is recommended that a 200,000 gallon ground storage tank be constructed at the booster pump station site, so that the remaining system will not have to supply the pump station flow during a peak summer demand condition. A 200,000 gallon tank will allow the pumps to operate for approximately 16 hours without an additional supply from the water treatment plant. The ground storage tank can be filled in the same manner as the elevated tank, during off peak times such as at night time. It is also recommended that a 6-inch line be constructed from the main 8-inch water line into each of the populated service areas along the east bank of the Cedar Creek Lake. Initially, these 6-inch waterlines will be tied into the existing water systems within these areas.

## 2006-2016 SW21 <u>New 8-inch Looped Waterline to Priority #3 Area.</u>

To provide water to Payne Springs and to supply water to the far south eastern part of the Priority #3 area, it is recommended that an 8-inch waterline be constructed beginning at the end of the 10-inch waterline on Hwy 198, going south through the current Payne Springs supply point and around to an existing 12-inch waterline in the Cedar Branch Park Subdivision.

#### 2006-2016 SW22 New 6-inch Waterline on the East Side of the Resort Area in Priority #3 Area. To provide adequate demands throughout the Resort Area, it is recommended that a 6-inch waterline be constructed from Hwy 198 along the east side of the Resort Area. SW23 2016-2026 New 6-inch Waterline in the Southwood Shores Subdivision. To provide adequate demand to the Southwood Shores Subdivision, it is recommended that a 6-inch waterline be constructed from an existing 4inch waterline along Hwy 198 along the shoreline of Southwood Shores to an existing 6-inch waterline on the north side of the Golden Oaks Subdivision. SW24 2016-2026 New 6-inch Waterline in the Baywood Estates Subdivision.

To provide a significant looped connection throughout the Baywood Estates Subdivision for adequate demands, it is recommended that a 6-inch

Subdivision. 2016-2026 SW25 New 6-inch Waterline along the Del Mar shoreline. To provide adequate demand to the southwestern portion of the Del Mar shoreline under 2026 condition, it is recommended that a new 6-inch waterline be constructed from the existing 6-inch waterline in the Del Mar Subdivision to an existing 4-inch waterline in the Three Harbors Subdivision. 2016-2026 SW26 New 6-inch Waterline Through the Wood Canyon Waters Subdivision. To provide adequate demands through the Wood Canyon Waters and Deer Island Estates Area for the 2026 condition, it is recommended that a 6-inch waterline be constructed parallel to an existing 3-inch waterline. 2016-2026 SW27 New 6-inch Waterline along the North Side of the Golden Oaks. To provide adequate peak demands to the Bonanza Beach, Oak Shores and Golden Oaks Subdivisions, it will be necessary to construct a 6-inch waterline along the north side of the Golden Oaks Subdivision. It is also recommended that a 6-inch waterline be extended from this waterline to the existing 4-inch waterline within the Golden Oaks Area. 2016-2026 SW28 New 8-inch and 6-inch Looped Waterline Along Hwy 198. To provide water system service to the remaining Payne Springs Area within the Priority #3 Area, it is recommended that an 8-inch waterline be constructed along Hwy. 198 eastward to the Priority #3 Boundary. From the end of the 8-inch waterline, it is recommended that a 6-inch waterline be constructed down to an existing 8-inch waterline along the Priority #3 Boundary. 2016-2026 SW29 New 6-inch Waterline Through the Resort Area and the Western Side of Payne Springs. To provide adequate demands for the 2026 condition to the Resort Area and to the western side of Payne Springs, it is recommended that a 6-inch waterline be constructed from an existing 12-inch waterline at the Northern Part of Cedar Branch Park eastward across the Resort Area and to an existing 8-inch waterline on the west side of Payne Springs. 2016-2026 SW30 New 6-inch Waterline in the Northeastern part of the Priority #3 Area. To provide adequate service to the northeastern part of the Priority #3 Area, it is recommended that a 6-inch looped waterline be constructed beginning at Hwy 198 going upward and over to the east side of the Golden Oaks Subdivision. 2016-2026 SW31 New 6-inch Looped Waterline in the Carolynn, Lake Shore, and Southern Resort Service Area. To provide adequate summer peak demands throughout these areas, it is recommended that 6-inch looped water lines be constructed around the Hidden Hills Road, Oak Hills Road, and around the Lake Shore and Carolynn shoreline.

waterline be constructed along the west side of the Baywood Estates

## 5.3 NORTH WASTEWATER SYSTEM

## The following improvements are recommended for the North Wastewater System:

|                     | Project     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Year</b><br>1997 | No.<br>NWW1 | Description<br>Expansion of Lift Stations #38 and #39.<br>Lift Stations #38, and #39 pump more than 90% of the total wastewater<br>flow in the North System to the wastewater treatment plant. These lift<br>stations are currently overloaded under peak flow conditions. It is<br>recommended that Lift Station #38 be expanded to have a firm pumping<br>capacity of 930 gpm. It is recommended that Lift Station #39 be expanded<br>to have a firm pumping capacity of 990 gpm. These capacities are based<br>on the projected flow to these two lift stations in the year 2016. It is<br>recommended that the existing 8" line running from LS #38 to the WWTP<br>be replaced with a 10" line. It is also recommended that the existing surge<br>basin at the North WWTP be brought back to full capacity to handle the<br>increase in peak flows from these two lift stations. |
| 2000                | NWW2        | North WWTP Expansion<br>Based on the projected increases in plant flows, it is recommended that the<br>North WWTP be expanded 0.275 MGD to a total capacity of 0.9 MGD<br>with a peak flowrate of 3.0 MGD. At this capacity the plant will be<br>capable of handling sewage flows beyond the end of the study period.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1996-2006           | NWW3        | Increase Pumping Capacity of Lift Stations #60 and #61 and Construction<br>of a Gravity Sewer to Lift Station #38.<br>Under existing conditions, Lift Stations #61 and #60 show to be<br>overloaded. It is recommended that the pumping capacity of Lift Stations<br>#61 and #60 be increased to 65 gpm and 165 gpm respectively. It is also<br>recommended that a 4-inch force main be constructed from Lift Station #60<br>to Harbor Street. An 8-inch/10-inch gravity sewer line will need to be<br>constructed from Harbor Street along an existing creek to Lift Station #38.<br>Once this gravity sewer line is constructed, Lift Station #59 can be<br>abandoned.                                                                                                                                                                                                             |
| 1996-2006           | NWW4        | Increase Pumping Capacity of Lift Stations #25, and #33.<br>Presently, the upstream Lift Stations #24 and #32 pump at a higher<br>capacity than Lift Stations #25, and #33. Increased growth will increase<br>the likelihood of overflow conditions at these downstream lift stations.<br>Therefore it is recommended that the firm pumping capacities of these lift<br>stations be increased in capacity. Lift Stations #25 and #33 will need to be<br>expanded to have a capacity of 80 gpm and 58 gpm respectively.                                                                                                                                                                                                                                                                                                                                                               |
| 1996-2006           | NWW5        | Diversion of Flow in Tamarack Area to Lift Station #56 and Construction<br>of a Gravity Sewer Line from Hwy. 198 to Lift Station #39.<br>Under the existing wastewater system layout, a series of lift stations in the<br>Tamarack area will be overloaded by the year 2006. It is recommended<br>that a 6-inch diversion line be constructed from Trailwind Street to<br>Wildwind Street and then to Spring Valley Street. It is also recommended<br>that an 8-inch force main be constructed from the force mains at the end                                                                                                                                                                                                                                                                                                                                                       |

|           |      | of Spring Valley to Lift Station #56. This will divert much of the flow in<br>the Tamarack area to Lift Station #56. Lift Station #56 will need to be<br>expanded to have a firm pumping capacity of 170 gpm. A 6-inch force<br>main will be constructed from the end of an existing 4-inch force main at<br>Bay View Street to Highway 198. From Highway 198 a 10-inch gravity<br>sewer line will be constructed to Welch Street. The force mains from Lift<br>Stations #33 and #35 will be tied into the 10-inch gravity sewer line. This<br>will reduce the high discharge head of these lift stations, which is currently<br>a problem with Lift Station #35. From Welch Street the sewer line will<br>need to be increased in size to a 12-inch sewer line and connected to Lift<br>Station #39.                                                                                                                                                                                                         |
|-----------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1996-2006 | NWW6 | Diversion of Flow from Lift Station #19 to Lift Station #29 and Expansion<br>of Lift Station #29.<br>Lift Station #19 and Lift Station #29 show to be overloaded under 2006<br>flow conditions. It is recommended that flow be diverted from Lift Station<br>#19 to Lift Station #29, and that Lift Station #29 be expanded. The<br>diversion line will be a 6-inch gravity sewer line from the Spanish Trail<br>area to Redbird Street. It is recommended that Lift Station #29 be<br>expanded to have a firm pumping capacity of 110 gpm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1996-2006 | NWW7 | New 8-inch and 6-inch Gravity Sewer Lines and Lift Stations to Serve<br>Remaining Area in Priority Area #2. East of Tamarack.<br>Currently there exists no wastewater service to the area east of Tamarack<br>Across the Hwy. 334 Bridge. New sewer facilities are described here to<br>serve the remaining Priority Area #2 within the 2006 planning period.<br>These facilities would include a 6-inch and 8-inch gravity sewer line along<br>the Lakeview Drive to the east side of the Hwy. 334 Bridge. There will<br>also need to be a new 50 gpm Lift Station and 4-inch force main along the<br>east side of the Bonita Point Subdivision. This 4-inch force main will tie-in<br>to the 8-inch gravity sewer line at the Oak Ridge Subdivision. On the east<br>side of the Hwy. 334 bridge, a new 120 gpm Lift Station will need to be<br>built to convey this area wastewater flow. It is recommended that flow<br>from this lift station be pumped to Lift Station #36 using a 4-inch force<br>main. |
| 2006-2016 | NWW8 | New 8-inch Gravity Sewer Line from Lakeview Street to Existing 10-inch<br>Gravity Sewer Line East of Harbor Street.<br>Under the 2016 conditions, Lift Stations #3 and #4 show to be overloaded.<br>It is recommended that an 8-inch gravity sewer line be constructed to divert<br>all of the flow from this area to the existing 10-inch gravity sewer line that<br>feeds into Lift Station #38. This can be done by tieing in the main 6-inch<br>lines along Lakeview Street and by pumping a reduced quantity of flow<br>from Lift Stations #3 and #4 to the new 8-inch gravity sewer line.                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2006-2016 | NWW9 | Expansion of Lift Stations #19 and #44.<br>Lift Stations #19 and #44 show to be overloaded for the 2016 flow<br>condition. It is recommended that Lift Station #19 and #44 be expanded<br>to 115 gpm and 65 gpm respectively.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

| 2006-2016 | NWW10 | <ul> <li>Expansion of Lift Station #5 and Construction of New Force Main from<br/>Lift Station #61 to Lift Station #60.</li> <li>Lift Station #5 at the intersection of Lakeview and Bayview Streets shows<br/>to be overloaded under peak 2016 flow conditions. It is recommended that<br/>this Lift Station be expanded to a capacity of 65 gpm. It is also<br/>recommended at this time that a new 4-inch force main be constructed from<br/>Lift Station #61 to Lift Station #60.</li> </ul>                                                                                                                                                                                                                                                                                                                              |
|-----------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2006-2016 | NWW11 | Expansion of Lift Station #7. and New Gravity Sewer Line From Lift<br>Station #21 and #46 to Lift Station #7.<br>Lift Stations #7 and #21 are overloaded under 2016 peak flow conditions.<br>It is recommended that an 8-inch gravity sewer interceptor be constructed<br>along Lost Forrest Street to Sunset Street and then to Lift Station #7. It is<br>also recommended that a 6-inch interceptor be constructed from Lift<br>Station #46 at Lynn Street to Lift Station #10 and then to Lift Station #7.<br>These two gravity sewer lines will allow Lift Station #21, #46 and #10 to<br>be abandoned. Lift Station #7 will need to be expanded to a capacity of<br>120 gpm. It is also recommended that a new 4-inch force main be<br>constructed from Lift Station #7 to the 8-inch gravity sewer line on Hwy.<br>334. |
| 2006-2016 | NWW12 | <u>New 6-inch Gravity Sewer Line to Serve Priority Area #3.</u><br>A new 6-inch gravity sewer line will need to be constructed along Hwy<br>334 to convey wastewater flow from Priority Area #3 to the New Lift<br>Station on the east side of the Hwy. 334 Bridge.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 2006-2016 | NWW13 | Expansion of Lift Stations #36 and #40.<br>With the additional flow from new growth and the new wastewater service<br>area on the east side of Hwy. 334, Lift Station #36 and #40 will be<br>overloaded in the 2016 flow condition. Therefore it is recommended that<br>Lift Station #36 and #40 be expanded to 230 gpm and 260 gpm capacities<br>respectively.                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2016-2026 | NWW14 | <u>New 6-inch Gravity Sewer Line Along Hwy. 198</u> .<br>It is recommended that a 6-inch gravity sewer line be constructed along<br>Hwy. 198 to handle additional flow from the area. If significant growth<br>occurs along Hwy. 198 prior to this time period, it may be necessary to<br>accelerate this project. This sewer line could also be used to relieve some<br>flow from Lift Station #40, if required at this time. Currently, system<br>analysis at this time, does not show that it will be necessary to divert flow<br>under the 2026 flow conditions from the expanded Lift Station #40.                                                                                                                                                                                                                       |
| 2016-2026 | NWW15 | New 8-inch and 6-inch gravity sewer line along Luther Street to Lift<br>Station #39.<br>Under the 2026 flow condition, the gravity sewer line along Welch Street<br>shows to be overloaded in the analysis. It is recommended that a diversion<br>gravity sewer line be constructed beginning at the end of Lift Station #40<br>6-inch force southward along Luther Street and then over to Lift Station<br>#39. It is also recommended that a new 6-inch sewer line be tie-in to the<br>proposed 8-inch sewer line along Luther Street. A diversion box will need<br>to be constructed at the beginning of this project that will allow the splitting<br>of flow in two directions to Lift Station #39.                                                                                                                      |

| 2016-2026 | NWW16 | New Gravity Sewer Line along Arbolado Street to Lift Station #24.<br>Expansion of Lift Station #24 and New 4-inch Force Main from Lift<br>Station #24 to Hwy 334.<br>The analysis shows that Lift Station #24 and the existing force main along<br>Legendary Lane will be overloaded under 2026 flow conditions. It is<br>recommended that a new 6-inch gravity sewer line be constructed to divert<br>flow from Lift Station #13 and the existing force main along Legendary<br>Lane, to Lift Station #24. The firm pumping capacity of Lift Station #24<br>will need to be expanded to a capacity of 95 gpm. It is recommended that<br>a 4-inch force main be constructed from Lift Station #24 directly to the |
|-----------|-------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2016-2026 | NWW17 | existing 12-inch gravity sewer line along Hwy 334.<br>Expansion of Lift Station #37.<br>Lift Station #37 will be overloaded under 2026 peak flow conditions. It is<br>recommended that Lift Station #37 firm pumping capacity be increased to<br>310 gpm. The current capacity of Lift Station #37 is rated at 140 gpm at<br>100 ft of head. From our analysis, it appears that the discharge head may<br>be significantly lower than 100 ft. Our analysis shows that the existing<br>pumps will operate at a point along their pump curve that will currently<br>produce about 220 gpm.                                                                                                                          |
| 2016-2026 | NWW18 | <u>New 8-inch Gravity Sewer Line along Harbor Point Road.</u><br>Our analysis showed that some of the 2-inch force mains in the<br>Northwestern Harbor Point Area, will become overloaded under peak flow<br>conditions. It is recommended that an 8-inch gravity sewer line be<br>constructed along Harbor Point Road down to the existing 8-inch gravity<br>sewer line.                                                                                                                                                                                                                                                                                                                                         |

# 5.4 SOUTH WASTEWATER SYSTEM

# The following improvements are recommended for the South Wastewater System:

| <b>Year</b><br>1997 | Project<br>No.<br>SWW1 | <b>Description</b><br><u>South WWTP Improvements</u><br>Currently, the District is designing a new 0.2 MGD South WWTP and will<br>begin construction shortly. It is recommended that the District continue<br>with these plans. Upon completion of the new plant, the existing 0.04<br>MGD South WWTP should be abandoned. It is recommended that the<br>design of the new plant include adequate land for future expansion needs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1996-2006           | SWW2                   | New 15-inch. 12-inch and 10-inch Gravity Sewer Line and Lift Station to<br>Convey Flow From the North Part of the Wastewater System.<br>To transport wastewater flow from the Oakwood Shores and Golden Oak<br>Subdivisions and Subdivisions further north, it will be necessary to<br>construct a gravity sewer line beginning at the southwest corner of the<br>Golden Oaks Subdivision and proceeding along Cedar Creek Branch<br>toward the wastewater treatment plant. It is recommended that the gravity<br>sewer line begin as a 10-inch sewer line and increase in size to a 12-inch<br>and finally a 15-inch as the line draws nearer to the plant. Because of the<br>Hydraulics of the wastewater plant, it will be necessary to construct a lift<br>station near the wastewater plant. It is recommended that this lift station<br>have an initial firm capacity of 400 gpm, and expandable to a total capacity<br>of 1400 gpm. |
| 1996-2006           | SWW3                   | New 6-inch and 4-inch Force Main to the Golden Oaks Subdivision.<br>To provide adequate service to the Golden Oaks Subdivision, it is<br>recommended that a 6-inch force main be constructed parallel to the<br>existing 4-inch force main from the 10-inch gravity sewer line to the<br>golden Oaks Subdivision. It is recommended that a 4-inch force main be<br>constructed down the middle of the Golden Oaks Subdivision. It is<br>recommended that 3-inch lateral force mains be constructed down each of<br>the major streets in the subdivision.                                                                                                                                                                                                                                                                                                                                                                                   |
| 1996-2006           | SWW4                   | New 6-inch Force Main to Enchanted Drive and North to the Mac Oaks<br>Subdivision.<br>To prevent the grinder pump stations from operating at shut-off head under<br>peak flow conditions, it is recommended that a 6-inch force main be<br>constructed parallel to an existing 4-inch force main from the wastewater<br>treatment plant to Enchanted Drive and northward to the Mac Oaks<br>Subdivision.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1996-2006           | SWW5                   | New 6-inch Force Main and Lift Station to Serve the Cedar Branch Park<br>Area.<br>To provide adequate service to the Cedar Branch Park Area, it is<br>recommended that a 6-inch force main be constructed from the beginning<br>of the new 15-inch gravity sewer line around Cedar Creek Branch and<br>down to the Cedar Branch Park Area. It is also recommended that a lift<br>station be constructed at the south end of the Cedar Branch Park Area to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

|           |       | received and repump wastewater flow from grinder stations in the Timber<br>Bay, Spillview, Diamond Oaks, Wood Canyon and Deer Island<br>Subdivisions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|-----------|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1996-2006 | SWW6  | <u>New 4-inch Force Main to the Oakwood Shores Subdivision.</u><br>To provide adequate service to the Oakwood Shores Subdivision, it is<br>recommended that a 4-inch force main be constructed from the new 10-<br>inch gravity sewer at the southwest corner of the Golden Oaks Subdivision<br>on Hwy 198 to the Oakwood Shores Subdivision. It is recommended that<br>3-inch lateral force mains be constructed down the major streets of the<br>subdivision.                                                                                                                                                                                                                                                             |
| 1996-2006 | SWW7  | <u>New 4-inch Force Main to the Baywood Estates Subdivision.</u><br>To provide adequate service to the Baywood Estates Subdivision, it is<br>recommended that a 4-inch force main be constructed from the existing 4-<br>inch force main on Hwy 198 to Baywood Estates and that 3-inch lateral<br>force mains be constructed down the major streets of the subdivision.                                                                                                                                                                                                                                                                                                                                                     |
| 1996-2006 | SWW8  | New 4-inch Force Main to the Southland Shores, Bonanza Beach, and<br>Qakshores Estates Subdivisions.<br>To provide adequate service to the far north subdivisions within the south<br>system, it is recommended that a 4-inch force main be constructed from the<br>existing 4-inch force main on Hwy 198 northeast through each of these<br>subdivisions. It is recommended that 3-inch lateral force mains be<br>constructed down the major streets within each of these subdivisions. It is<br>also recommended that a 6-inch gravity line be constructed to the south of<br>these subdivisions.                                                                                                                         |
| 1996-2006 | SWW9  | New 4-inch Force Main Along Leisureland Drive and Associated Lateral<br>Force Mains to Serve Leisureland Subdivision.<br>To provide adequate service to the Leisureland Subdivision, it is<br>recommended that a 4-inch force main be constructed along Leisureland<br>Drive beginning at Enchanted Drive. The 4-inch force main would be<br>extended along Lakeland Drive. It is recommended that 3-inch lateral<br>force mains be extended into each of the major streets in the subdivisions<br>as shown in the mapping. It is also recommended that grinder pumps with<br>shutoff heads of approximately 120 ft. be used in this subdivision.                                                                           |
| 1996-2006 | SWW10 | New 4-inch Force Main Along Forgotten Lane and Associated Lateral<br>Force Mains to Serve Del Mar and Three Harbors Subdivisions.<br>To provide adequate service to the Del Mar and Three Harbors<br>Subdivisions, it is recommended that a 4-inch force main be constructed<br>along Forgotten Lane beginning at Enchanted Drive. The 4-inch force main<br>would be extended along the south side of Lakeland Drive to King Arthur<br>Street. It is recommended that 3-inch lateral force mains be extended into<br>each of the major streets in the subdivisions as shown in the mapping. It<br>is also recommended that grinder pumps with shutoff heads of<br>approximately 120 ft. be used in theses two subdivisions. |
| 1996-2006 | SWW11 | <u>New 4-inch and 3-inch Force Main to Serve the Timber Bay. Diamond</u><br><u>Oaks. Spillview. Wood Canyon and Deer Island Subdivisions.</u><br>To provide service to these subdivisions, it is recommended that a 4-inch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

force main be constructed from the lift station at the south end of the Cedar Branch Park Subdivision southward through to the end of the Wood Canyon Subdivision. From the end of the 4-inch force main it is recommended that a 3-inch force main be constructed through Deer Island Estates. It is also recommended that 3-inch lateral force mains be constructed into each of these subdivisions.

- 1998-2006SWW12South WWTP Expansion<br/>Assuming expansion of the South Wastewater System occurs as laid out in<br/>the Master Plan, there will be additional need placed on the South WWTP<br/>due to expansion into previously unserved areas. It is therefore<br/>recommended that the 0.2 MGD South WWTP be expanded to a capacity<br/>of 0.5 MGD based on need and expansion of the South collection system.<br/>The timing of this expansion should be based on system growth.
- 2006-2016 SWW13 <u>New 8-inch Gravity Sewer Line to serve the southwestern part of Payne</u> Springs. To convey flow from the southwestern part of Payne Springs, it is

To convey flow from the southwestern part of Payne Springs, it is recommended that an 8-inch gravity sewer line be constructed down to an existing lift station at Lynn Creek.

- 2006-2016 SWW14 New 8-inch Gravity Sewer Trunk Lines Along Hwy 198 and Along the Golden Oaks Subdivision. To convey flow from the northwestern part of Payne Springs, it is recommended that these 8-inch gravity sewer lines be constructed and tied into an existing 10 inch and 12 inch ensuity conversion.
  - into an existing 10-inch and 12-inch gravity sewer line respectively. It is also recommended that the small lateral sewer lines be 6-inch gravity lines.
- 2006-2016
   SWW15
   New Parallel 6-inch Force Main to the Indian Harbor Area. To convey the 2016 peak flow from the Indian Harbor and Del Mar Subdivisions, it will be necessary to construct a parallel 6-inch force main along the existing 4-inch force main that currently exists.
- 2006-2016SWW16New Parallel 6-inch Force Main along Enchanted Drive.<br/>To convey the 2016 peak flow from the Leisureland and Forgotten Acres<br/>Subdivisions, it will be necessary to construct a parallel 6-inch force main<br/>along the existing 4-inch force main that currently exists.
- 2006-2016 SWW17 <u>New Parallel 4-inch Force Main along Lakeland Drive.</u> To convey the 2016 peak flow from the Leisureland Subdivision, it will be necessary to construct a parallel 4-inch force main along the existing 3-inch force main that currently exists. This 4-inch force main will extend the entire length of the Leisureland Subdivision.
- 2006-2016 SWW18 New 6-inch and 4-inch Force Main to Serve the Southeastern Portion of the Priority #3 Area. To provide service to the area on the south side of Lynn Creek, it is recommended that a grinder system be installed with a 6-inch running from Lynn Creek southward to Lake View Street. From Lake View Street, the force main will need to be 4-inch in size and extended southward to the end of the Priority #3 service area. A 120 gpm lift station will need to be constructed roughly in the middle of the force main route to reduce the

|           |       | total pumping head of the grinder stations in the far south part of the<br>Priority #3 Area. It is recommended that 3-inch lateral force mains be<br>constructed to each of the major streets within each of the subdivisions in<br>this area.                                                                                                                                                     |
|-----------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2006-2016 | SWW19 | New 6-inch and 4-inch force main for the Resort CCN within the Priority<br>#3 Area.<br>To provide service to the Resort CCN, it is recommended that a 6-inch and<br>4-inch force main be constructed from along the shoreline with 3-inch<br>lateral force mains. These force mains will feed into an existing lift station<br>at the southern end of the Cedar Branch Park Subdivision.           |
| 2006-2016 | SWW20 | <u>New 250 gpm Lift Station and 6-inch Force Main at Lynn Creek.</u><br>To convey flow from the southeastern part of the Priority #3 Area to the<br>wastewater treatment plant, it is recommended that a 250 gpm lift station<br>and 6-inch force main be constructed. The 6-inch force main will begin at<br>Lynn Creek and end at an existing 6-inch force main near Cedar Branch.               |
| 2016-2026 | SWW21 | New 6-inch, 8-inch and 10-inch Gravity Sewer Trunk Line through the <u>Central Part of Payne Springs</u> .<br>To convey flows from the central part of Payne Springs, it is recommended that a 6-inch, 8-inch and 10-inch gravity sewer line be constructed down to the existing lift station at Lynn Creek. It is recommended that lateral lines on this sewer interceptor all be 6-inch in size. |
| 2016-2026 | SWW22 | <u>New 6-inch Parallel Force Main Along Forgotten Lane.</u><br>To convey peak 2026 flows from the Del Mar Subdivision, it is<br>recommended that a 6-inch force be constructed along an existing 4-inch<br>force main along Forgotten Lane.                                                                                                                                                        |
| 2016-2026 | SWW23 | <u>New 6-inch Parallel Force Main to serve the Resort CCN Area.</u><br>To convey 2026 peak flows from the Resort Area, it is recommended that<br>a 6-inch force main be constructed from the lift station at Cedar Branch<br>Creek to the northern part of the Cedar Branch Park Area.                                                                                                             |
| 2016-2026 | SWW24 | <u>New 6-inch Parallel Force Main in the Southern Priority #3 Area.</u><br>To convey 2026 peak flows from the southern part of the Priority #3 Area,<br>it is recommended that a parallel 6-inch force main be constructed from the<br>middle lift station to the 6-inch force main at Hidden Hills.                                                                                               |

Each of the Master Plan projects should be evaluated for cost and environmental impact at the time of design. At this time there are no foreseen environmental problems that may hinder construction of any of the recommended projects. For more information on individual projects, environmental assessment of the Master Plan, and project prioritization, refer to Technical Memorandum #2 in Appendix B and Technical

Memorandum #3 in Appendix C. Mapping of the recommended improvements is provided in Appendix E. Layouts of the projects are preliminary and should be updated with changing system conditions.

### 6.0 ESTIMATES OF PROBABLE COSTS

### 6.1 PRELIMINARY COST ESTIMATES

Preliminary cost estimates have been provided for each recommended project. The estimates include probable construction costs, engineering fees, and contingencies. The preliminary estimates are based on the estimated quantities of linework, pumps, or treatment units for each project. The estimates showing individual costs for each project are provided in Table 5. Preliminary estimates are shown in 1996 dollars.

### TABLE 5

| Project<br>ID# | Construction<br>Date | Project<br>Description                                                                                   | Estimated<br>Cost |
|----------------|----------------------|----------------------------------------------------------------------------------------------------------|-------------------|
| NORTH WATER    | SYSTEM               |                                                                                                          |                   |
| <b>NW</b> 1    | 1997                 | New 12" loop around Legendary Lane,<br>Hwy 334, and the Bozeman Easement                                 | \$830,000         |
| NW 2           | 1997/2010            | North WTP Expansion                                                                                      | \$1,663,000       |
| NW 3           | 1997/1999            | North WTP High Service Pump Expansion                                                                    | \$31,000          |
| NW 4           | 1997/2001            | North WTP Raw Water Pump Expansion                                                                       | \$36,000          |
| NW 5           | 1996-2006            | New 8" and 6" Waterlines for the remaining<br>Priority #2 Area on the East Side of the<br>Hwy 334 Bridge | \$234,000         |
| NW 6           | 1996-2006            | New 8" Waterlines to the Tamarack Area                                                                   | \$186,000         |
| NW 7           | 1996-2006            | New 10" and 8" Waterlines to Harbor Point                                                                | \$290,000         |
| NW 8           | 1996-2006            | New 6" Waterline along Spanish Trail                                                                     | \$179,000         |

### PRELIMINARY COST ESTIMATES

| Project<br>ID# | Construction<br>Date | Project<br>Description                                                           | Estimated<br>Cost |
|----------------|----------------------|----------------------------------------------------------------------------------|-------------------|
| NW 9           | 1996-2006            | New 6" Waterlines through Sandy Shores<br>and Eastwood Island Areas              | \$235,000         |
| NW 10          | 1996-2006            | New 6" Waterline from Welch Street<br>to Harmon Street                           | \$78,000          |
| NW 11          | 2006                 | Total Storage Capacity Expansion                                                 | \$206,000         |
| NW 12          | 2006-2016            | New 6" and 8" Waterlines to serve Priority<br>Area #3                            | \$279,000         |
| NW 13          | 2006-2016            | New 6" Waterline from Hwy 198 to<br>Whispering Trail                             | \$128,000         |
| NW 14          | 2006-2016            | New 6" Waterline in the Oak Harbor<br>Subdivision                                | \$170,000         |
| NW 15          | 2006-2016            | New 6" Waterlines in the Mantle Manors<br>and Sherwood Shores Subdivisions       | \$268,000         |
| NW 16          | 2006-2016            | New 6" Looped Waterline for the Harbor<br>Point Subdivision                      | \$246,000         |
| NW 17          | 2016-2026            | New 10" Waterline Along Hwy 334 to<br>Hwy 198                                    | \$307,000         |
| NW 18          | 2016-2026            | New 6" Waterline along Hwy 334 in<br>Priority Area #3                            | \$117,000         |
| NW 19          | 2016-2026            | New 6" Waterline in the Siesta Shores<br>Area                                    | \$148,000         |
| NW 20          | 2016-2026            | New 6" Waterline in the Harbor Point<br>Subdivision                              | \$67,000          |
| NW 21          | 2016-2026            | New 6" Waterline along Luther Street                                             | \$165,000         |
| NW 22          | 2016-2026            | New 6" Waterlines in the Mantle Manors<br>and the Southwind Estates Subdivisions | \$168,000         |

| Project<br>ID# | Construction<br>Date | Project Description                                                                                        | Estimated<br>Cost |
|----------------|----------------------|------------------------------------------------------------------------------------------------------------|-------------------|
| NW 23          | 2016-2026            | New 6" Waterline along Whispering Trail<br>in the Tamarack Area                                            | \$140,000         |
| NW 24          | 2016-2026            | New 6" Looped Waterline in Bonita<br>Subdivision                                                           | \$128,000         |
| SOUTH WATER S  | SYSTEM               |                                                                                                            |                   |
| SW 1           | 2002/2016            | South WTP, High Service & Raw Water<br>Pumps Expansion                                                     | \$1,724,000       |
| SW 2           | 1996-2006            | New 12" and 10" Waterline along Hwy 198<br>to Golden Oaks Addition                                         | \$230,000         |
| SW 3           | 1996-2006            | New 12" Waterline along Enchanted<br>Drive, Hwy 198, and Southward toward<br>Cedar Branch Park             | \$528,000         |
| SW 4           | 1996-2006            | New 12" and 8" Waterline through the Cedar Branch Subdivision                                              | \$268,000         |
| SW 5           | 1996-2006            | New 10" and 8" Waterline through<br>Forgotten Acres to Lakeland Road                                       | \$205,000         |
| SW 6           | 1996-2006            | New 8" and 6" Waterline Southward along<br>Enchanted Drive to Enchanted Oaks                               | \$130,000         |
| SW 7           | 1996-2006            | New 8" and 6" Waterline to Golden Oaks,<br>Southwood Shores, Bonanza Beach, and<br>Oak Shores Subdivisions | \$396,000         |
| SW 8           | 1996-2006            | New 8" and 6" Waterline to Baywood<br>Estates Area                                                         | \$68,000          |
| SW 9           | 1996-2006            | New 6" Looped Waterline through Bandera<br>Bay and Oakwood Shores                                          | \$145,000         |
| SW 10          | 1996-2006            | New 6" Looped Waterline around Leisure-<br>land and to Three Harbors Subdivisions                          | \$223,000         |

| Project<br>ID# | Construction<br>Date | Project<br>Description                                                                                                                                       | Estimated<br>Cost |
|----------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| SW 11          | 2006-2016            | New 6" and 8" Waterline to provide looped<br>system for the Golden Oaks, Southwood<br>Shores, Bonanza Beach, and Oak Shores<br>Subdivisions                  | \$524,000         |
| SW 12          | 2006-2016            | New 6" Waterline to Enchanted Isles<br>Subdivision                                                                                                           | \$112,000         |
| SW 13          | 2006-2016            | New 6" Waterline to Cherokee Hills<br>Subdivision                                                                                                            | \$28,000          |
| SW 14          | 2006-2016            | New 6" Waterline through Oakwood Shores<br>Subdivision                                                                                                       | \$84,000          |
| SW 15          | 2006-2016            | New 6" Waterline through Del Mar<br>Subdivision                                                                                                              | \$115,000         |
| SW 16          | 2006-2016            | New 6" Waterline through the Timber Bay,<br>Spillview Estates, and Diamond Oaks<br>Subdivisions                                                              | \$73,000          |
| SW 17          | 2006-2016            | Parallel 12" Waterline along Enchanted<br>Drive to Hwy 198                                                                                                   | \$123,000         |
| SW 18          | 2006-2016            | New 12" and 10" Waterline along Hwy 198<br>toward Payne Springs                                                                                              | \$229,000         |
| SW 19          | 2006-2016            | New 8" and 6" Waterlines through the<br>Southern Portion of the Resort Area                                                                                  | \$341,000         |
| SW 20          | 2006-2016            | New 8" Waterline and Booster Pump<br>Station to supply water to the Southeast<br>parts of Priority #3 Area including the<br>Lakeshore and Carolynn CCN areas | \$1,375,000       |
| SW 21          | 2006-2016            | New 8" Looped Waterline to Priority #3<br>Area                                                                                                               | \$603,000         |
| SW 22          | 2006-2016            | New 6" Waterline on the East Side of the<br>Resort Area in Priority #3 Area                                                                                  | \$170,000         |

| Project<br>ID# | Construction Date | Project<br>Description                                                                      | Estimated<br>Cost |
|----------------|-------------------|---------------------------------------------------------------------------------------------|-------------------|
| SW 23          | 2016-2026         | New 6" Waterline in the Southwood Shores<br>Subdivision                                     | \$162,000         |
| SW 24          | 2016-2026         | New 6" Waterline in the Baywood Estates<br>Subdivision                                      | \$47,000          |
| SW 25          | 2016-2026         | New 6" Waterline along Del Mar Shoreline                                                    | \$59,000          |
| SW 26          | 2016-2026         | New 6" Waterline through the Wood<br>Canyon Waters Subdivision                              | \$75,000          |
| SW 27          | 2016-2026         | New 6" Waterline along the North Side of<br>the Golden Oaks Subdivision                     | \$173,000         |
| SW 28          | 2016-2026         | New 8" and 6" Looped Waterline along<br>Hwy 198                                             | \$389,000         |
| SW 29          | 2016-2026         | New 6" Waterline through the Resort area<br>and the Western Side of Payne Springs           | \$112,000         |
| SW 30          | 2016-2026         | New 6" Waterline in the Northeastern<br>part of the Priority #3 Area                        | \$290,000         |
| SW 31          | 2016-2026         | New 6" Looped Waterline in the Carolynn,<br>Lake Shore, and Southern Resort Service<br>Area | \$564,000         |
| NORTH WASTEN   | WATER SYSTEM      |                                                                                             |                   |
| NWW 1          | 1 <b>997</b>      | Expansion of LS38 and LS39                                                                  | \$544,000         |
| NWW 2          | 2000              | North WWTP Expansion                                                                        | \$640,000         |
| NWW 3          | 1996-2006         | Increase pumping capacity of LS60, LS61,<br>& construction of a gravity sewer to LS38       | \$285,000         |

| Project<br>ID# | Construction<br>Date | Project<br>Description                                                                                                    | Estimated<br>Cost |
|----------------|----------------------|---------------------------------------------------------------------------------------------------------------------------|-------------------|
| NWW 4          | 1996-2006            | Increase pumping capacity of LS25 and and LS33                                                                            | \$20,000          |
| NWW 5          | 1996-2006            | Diversion of flow in Tamarack Area to<br>LS56 and construction of a gravity sewer<br>line from Hwy 198 to LS39            | \$383,000         |
| NWW 6          | 1996-2006            | Diversion of flow from LS19 to LS29 and expansion of LS29                                                                 | \$26,000          |
| NWW 7          | 1996-2006            | New 8" and 6" gravity sewer lines and<br>Lift Stations to serve remaining area in<br>Priority Area #2, East of Tamarack   | \$438,000         |
| NWW 8          | 2006-2016            | New 8" gravity sewer line from Lakeview<br>Street to existing 10" gravity sewer line<br>East of Harbor Street             | \$127,000         |
| NWW 9          | 2006-2016            | Expansion of LS19 and LS44                                                                                                | \$23,000          |
| NWW 10         | 2006-2016            | Expansion of LS5 and construction of new force main from LS61 to LS60                                                     | \$64,000          |
| NWW 11         | 2006-2016            | Expansion of LS7 and new gravity sewer<br>line from LS21 and LS46 to LS7                                                  | \$184,000         |
| NWW 12         | 2006-2016            | New 6" gravity sewer line to serve<br>Priority Area #3                                                                    | <b>\$1</b> 40,000 |
| NWW 13         | 2006-2016            | Expansion of LS36 and LS 40                                                                                               | \$69,000          |
| NWW 14         | 2016-2026            | New 6" gravity sewer line along Hwy 198                                                                                   | \$92,000          |
| NWW 15         | 2016-2026            | New 8" and 6" gravity sewer line along<br>Luther Street to LS39                                                           | \$227,000         |
| NWW 16         | 2016-2026            | New gravity sewer line along Arbolado<br>Street to LS24, expansion of LS24, and<br>new 4" force main from LS24 to Hwy 334 | \$177,000         |

| Project      | Construction | Project                                                                                                                     | Estimated |  |
|--------------|--------------|-----------------------------------------------------------------------------------------------------------------------------|-----------|--|
| <u>ID#</u>   | Date         | Description                                                                                                                 | Cost      |  |
| NWW 17       | 2016-2026    | Expansion of LS37                                                                                                           | \$40,000  |  |
| NWW 18       | 2016-2026    | New 8" gravity sewer line along Harbor<br>Point Road                                                                        | \$102,000 |  |
| SOUTH WASTEW | ATER SYSTEM  |                                                                                                                             |           |  |
| SWW 1        | 1997         | South WWTP Improvements                                                                                                     | \$399,000 |  |
| SWW 2        | 1996-2006    | New 15", 12", and 10" gravity sewer line<br>and Lift Station to convey flow from the<br>North part of the wastewater system | \$619,000 |  |
| SWW 3        | 1996-2006    | New 6" and 4" force main to the Golden<br>Oaks Subdivision                                                                  | \$125,000 |  |
| SWW 4        | 1996-2006    | New 6" force main to Enchanted Drive and<br>North to the Mac Oaks Subdivision                                               | \$67,000  |  |
| SWW 5        | 1996-2006    | New 6" force main and Lift Station to serve<br>the Cedar Branch Park Area                                                   | \$325,000 |  |
| SWW 6        | 1996-2006    | New 4" force main to the Oakwood Shores<br>Subdivision                                                                      | \$89,000  |  |
| SWW 7        | 1996-2006    | New 4" force main to the Baywood Estates<br>Subdivision                                                                     | \$88,000  |  |
| SWW 8        | 1996-2006    | New 4" force main to the Southland<br>Shores, Bonanza Beach, and Oakshores                                                  | \$417,000 |  |
| SWW 9        | 1996-2006    | New 4" force main along Leisureland Drive<br>and associated lateral force mains to serve<br>Leisureland Subdivision         | \$168,000 |  |

| Project<br>ID# | Construction<br>Date | Project<br>Description                                                                                                          | Estimated<br>Cost |  |
|----------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------|-------------------|--|
| SWW 10         | 1996-2006            | New 4" force main along Forgotten Lane<br>and associated lateral force mains to serve<br>Del Mar and Three Harbors Subdivisions | \$274,000         |  |
| SWW 11         | 1996-2006            | New 4" and 3" force main to serve the<br>Timber Bay, Diamond Oaks, Spillview,<br>Wood Canyon, and Deer Island Subdivisions      | \$245,000         |  |
| SWW 12         | 1998-2006            | South WWTP Expansion                                                                                                            | \$698,000         |  |
| SWW 13         | 2006-2016            | New 8" gravity sewer line to serve the<br>Southwestern part of Payne Springs                                                    | \$204,000         |  |
| SWW 14         | 2006-2016            | New 8" gravity sewer trunk lines along<br>Hwy 198 and along the Golden Oaks<br>Subdivision                                      | \$681,000         |  |
| SWW 15         | 2006-2016            | New parallel 6" force main to the Indian<br>Harbor Area                                                                         | \$46,000          |  |
| SWW 16         | 2006-2016            | New parallel 6" force main along Enchanted<br>Drive                                                                             | \$61,000          |  |
| SWW 17         | 2006-2016            | New parallel 4" force main along Lakeland<br>Drive                                                                              | \$45,000          |  |
| SWW 18         | 2006-2016            | New 6" and 4" force main to serve the<br>Southeastern portion of Priority #3 Area                                               | \$600,000         |  |
| SWW 19         | 2006-2016            | New 6" and 4" force main for the Resort<br>CCN within the Priority #3 Area                                                      | \$272,000         |  |
| SWW 20         | 2006-2016            | New 250 gpm Lift Station and 6" force<br>main at Lynn Creek                                                                     | \$350,000         |  |
| SWW 21         | 2016-2026            | New 6", 8", and 10" gravity sewer trunk<br>line through the Central part of Payne<br>Springs                                    | \$1,258,000       |  |
| SWW 22         | 2016-2026            | New 6" parallel force main on Forgotten Ln.                                                                                     | \$47,000          |  |

| Project | Construction | Project                                                        | Estimated<br><u>Cost</u><br>\$78,000 |  |
|---------|--------------|----------------------------------------------------------------|--------------------------------------|--|
| ID#     | Date         | Description                                                    |                                      |  |
| SWW 23  | 2016-2026    | New 6" parallel force main to serve the<br>Resort CCN Area     |                                      |  |
| SWW 24  | 2016-2026    | New 6" parallel force main in the Southern<br>Priority #3 Area | \$142,000                            |  |

### 6.2 SUMMARY OF MASTER PLAN COSTS

Estimated costs for each system and the Master Plan totals have been summarized in Table 6. This summary shows the total cost of the Master Plan projects in 1996 dollars for each ten year period of the Master Plan for both water and wastewater systems. The costs for each system have been broken into costs per connection and costs per 1000 gallons of billed water use or wastewater treated. Both cost per connection and cost per 1000 gallons were then amortized at an interest rate of 5% over 20 years. These amortized costs show the required increase in the District's revenue to repay a 20-year loan with a 5% interest rate. For example, to pay for water system improvements totaling \$6,849,000 for the period of 1996-2006, the District would need to earn an additional \$1.65 in revenue for every 1,000 gallons of billed water use for a 20-year period. Wastewater costs per 1,000 gallons of wastewater treated at the District's wastewater plants to repay a 20-year loan at 5% interest. For more information regarding estimated costs, refer to Technical Memorandum #3 in Appendix C.

### TABLE 6

|                                        | 1996-2006    | 2006-2016      | 2016-2026       | TOTALS       |
|----------------------------------------|--------------|----------------|-----------------|--------------|
| NORTH WATER                            |              |                |                 |              |
| Total Costs                            | \$2,932,000  | \$1,297,000    | \$1,240,000     | \$5,469,000  |
| Amortized Cost per Connection          | \$71         | \$26           | \$23            | \$113        |
| Amortized Cost per 1000 Gallons        | \$1.08       | \$0.40         | \$0.34          | \$1.73       |
| SOUTH WATER                            |              |                |                 |              |
| Total Costs                            | \$3,917,000  | \$3,777,000    | \$1,871,000     | \$9,565,000  |
| Amortized Cost per Connection          | \$156        | \$123          | \$51            | \$315        |
| Amortized Cost per 1000 Gallons        | \$2.71       | <b>\$2.13</b>  | \$0 <b>.8</b> 9 | \$5.47       |
| WATER TOTALS                           |              |                |                 |              |
| Total Costs                            | \$6,849,000  | \$5,074,000    | \$3,111,000     | \$15,034,000 |
| Amortized Cost per Connection          | \$103        | \$63           | \$34            | \$191        |
| <u>Amortized Cost per 1000 Gallons</u> | \$1.65       | \$1_01         | \$0.55          | \$3.06       |
|                                        |              |                |                 |              |
| NORTH WASTEWATER                       |              |                |                 |              |
| Total Costs                            | \$1,792,000  | \$606,000      | \$639,000       | \$3,037,000  |
| Amortized Cost per Connection          | \$40         | \$11           | \$10            | \$55         |
| Amortized Cost per 1000 Gallons        | \$0.83       | \$0.23         | \$0.22          | \$1.19       |
| SOUTH WASTEWATER                       |              |                |                 |              |
| Total Costs                            | \$3,115,000  | \$2,260,000    | \$1,526,000     | \$6,901,000  |
| Amortized Cost per Connection          | \$175        | \$66           | \$32            | \$215        |
| Amortized Cost per 1000 Gallons        | \$4.95       | <b>\$2</b> .11 | \$1.09          | \$6.74       |
| WASTEWATER TOTALS                      |              |                |                 |              |
| Total Costs                            | \$4,907,000  | \$2,866,000    | \$2,165,000     | \$9,938,000  |
| Amortized Cost per Connection          | \$78         | \$31           | \$19            | \$114        |
| Amortized Cost per 1000 Gallons        | \$1_76       | \$0.78         | \$0.50          | \$2.77       |
| MASTER PLAN TOTALS                     |              |                |                 |              |
| Total Costs                            | \$11.756.000 | \$7,940,000    | \$5.276.000     | \$24.972.000 |

# SUMMARY OF MASTER PLAN COSTS

Note: Costs per connection and Cost per 1,000 gallons have been amortized over a 20year period at an interest rate of 5%.

All amounts are in 1996 dollars.

# 6.3 POTENTIAL FINANCING OPTIONS

There are several potential financing options the District can pursue to assist in the implementation of projects laid out in the Master Plan. These options include user service charges, taxes, Community Development Block Grants (CDBG's), Rural Utilities Service (Formerly Farmers Home Administration) grants and loans, Texas Water Development Board State Revolving Fund (SRF) programs, bond issues, EPA hardship grants, and Economic Development Administration grants. Specific funding vehicles should be determined prior to design and construction of a specific project(s). If the District qualifies, the use of grant monies would reduce the burden of payment for the improvements placed on the District. For more information regarding potential financing options, refer to Technical Memorandum #3 in Appendix C.

# **APPENDIX A**

# TECHNICAL MEMORANDUM #1

# CURRENT CONDITIONS AND FIELD VERIFICATION SUMMARY

# EAST CEDAR CREEK FRESH WATER SUPPLY DISTRICT

# WATER & WASTEWATER MASTER PLAN

# TECHNICAL MEMORANDUM #1 SUMMARY OF TASKS B & C -CURRENT CONDITIONS AND FIELD VERIFICATION

**JUNE 1996** 



ECC95301

# TABLE OF CONTENTS

# **1.0 INTRODUCTION**

- 1.1 ECCFWSD Background
- 1.2 Project Scope

3.2

# 2.0 CURRENT CONDITIONS REVIEW

- 2.1 Summary of Current Regulatory Requirements
- 2.2 Summary of Existing Service Demands
  - 2.2.1 Water Treatment and Distribution System
  - 2.2.2 Wastewater Collection and Treatment System

# 3.0 FACILITIES EXAMINATION

- 3.1 Treatment Plant Condition
  - 3.1.1 Water Treatment Plants
  - 3.1.2 Wastewater Treatment Plants
  - Compliance with TNRCC Standard Design Criteria
    - 3.2.1 Water Treatment Plants
    - 3.2.2 Wastewater Treatment Plants

# 4.0 SCHEDULED SYSTEM IMPROVEMENTS

# 5.0 SYSTEM MAPPING AND HYDRAULIC MODEL

### ATTACHMENT 1-A - Water and Wastewater Quality, Flows and Projections

ATTACHMENT 1-B - Facilities Review Calculations

# ATTACHMENT 1-C - System Mapping

# LIST OF TABLES

- TABLE 1 Water Treatment Plant Current Conditions Summary
- TABLE 2 Wastewater Treatment Plant Current Conditions Summary
- TABLE 3 Water Treatment Plant Design Criteria Summary
- TABLE 4 Wastewater Treatment Plant Design Criteria Summary

# 1.0 INTRODUCTION

#### 1.1 ECCFWSD BACKGROUND

The East Cedar Creek Fresh Water Supply District (ECCFWSD) consists of two separate water distribution and wastewater collection systems, the North System and the South System. Each System is hydraulically independent and has it's own water and wastewater treatment plants, elevated water storage tanks, and distribution and collection system piping. Both of the wastewater collection systems are primarily pressure systems with the North System using some gravity sewers and the South System using all force main piping. Each System was evaluated as to the current condition of the collection or distribution system and treatment facilities, and ability to meet current TNRCC State Design Criteria. In each case, the existing system and improvements implemented in 1996 were evaluated by this study.

The North District water system includes a 2.55 MGD water treatment plant, 500,000 gallon elevated storage tank, and water distribution piping system. The North water distribution system served an average of 2,896 water connections in 1995, based on information provided by ECCFWSD. The North District wastewater system includes a 0.626 MGD wastewater treatment plant, 67 wastewater lift stations, and associated house grinder pumps, wastewater force mains and gravity piping. The North wastewater collection system served an average of 3,075 wastewater connections in 1995, based on information provided by ECCFWSD.

The South District water system includes an existing water treatment plant and hydroneumatic storage tank. However, a proposed 1.73 MGD water treatment plant and 300,000 gallon elevated storage tank are under design and planned to be under construction in the near future. Upon completion of the new facility, the existing treatment plant will be abandoned. Therefore, for the purposes of this study, the evaluation only reviewed the proposed 1.73 MGD water treatment facility and 300,000 gallon elevated storage tank. Based on information provided by ECCFWSD, the South water system served an average of 1,960 water connections in 1995 including 200 water connections in Payne Springs that are currently unserved. Since this demand may return to the system in the future, it is assumed on-line for the purposes of the evaluation. The South District wastewater system includes an existing 40,000 gpd wastewater treatment plant, a single duplex lift station, and associated house grinder pumps and pressure collection system piping. This evaluation looked at the capacity and performance of the existing plant and the capacity of the proposed 200,000 gpd South wastewater treatment plant. The South wastewater system served an average of 528 wastewater connections in 1995, based on information provided by ECCFWSD.

### 1.2 PROJECT SCOPE

The project scope for the Water and Wastewater Master Plan includes a review of the current system conditions, field verification of treatment facilities, field verification of the collection and distribution systems, computer modeling of the collection and distribution systems, development of recommendations, development of an implementation plan for the recommendations, and presentation of a final report. This Technical Memorandum will review the status of the current conditions review and the field examination portions of the scope.

The scope for the current conditions review included review of current regulatory requirements, flow conditions, projected population, and flow demands for the District's water and wastewater treatment and collections systems. Population estimates were obtained from the Texas Water Development Board (TWDB). Projections were provided for the period 1995 to 2025. The evaluation also included a review of documents available from ECCFWSD on the existing systems, studies, mapping and design data for the District's water and wastewater treatment and collection systems.

The scope for the field verification included an examination of the existing collection and distribution systems and an examination of the existing and proposed water and wastewater treatment facilities. The system field verification consisted of taking pressure and flow measurements at various locations in the collection and distribution systems for use with the system modeling task. The facilities examination included review of existing construction record drawings, performance and regulatory reports, maintenance records, a comparison of these records with current State Design Criteria, staff interviews, and a field examination of the facility conditions.

This Technical Memorandum will discuss the results of the current conditions review and field verification portions of the Water and Wastewater Master Plan Study. It should be noted that the review of these items is in relation to the present situation in the District. Furthermore, since this is a review of present conditions, future system requirements have not been evaluated. A discussion of future requirements and recommendations will be included in Technical Memorandums 2 and 3 and in the final Master Plan report. In addition, some of the project assumptions, estimated flows, demands and resulting analysis could change as a result of the developing hydraulic model and developing 1996 flow and demand data. These changes will also be included in the final Master Plan report.

#### 2.0 CURRENT CONDITIONS REVIEW

#### 2.1 SUMMARY OF CURRENT REGULATORY REQUIREMENTS

TNRCC Design Criteria for sewerage systems requires that the wastewater collection system be capable of handling peak flows. Design Criteria for water distribution systems require the ability to maintain 20 psi pressures under fire flows during a maximum day condition. Analysis of the collection and distribution systems will be conducted during the hydraulic modeling stage (Task D) of the Master Plan Study. A discussion of the results of the hydraulic model will be given in Technical Memorandum #2 and in the final Master Plan report.

### 2.2 SUMMARY OF EXISTING SERVICE DEMANDS

#### 2.2.1 Water Treatment and Distribution System

The water demands for the North and South water systems were obtained from plant flow records for the North and South System water treatment plants. The average demand for 1994 and 1995 was obtained for both plants, as well as a maximum day demand for both systems. The maximum day demand for the North System occurred in 1995 and was found to be 1.581 MGD. The maximum day demand for the South System also occurred in 1995 and was found to be 0.892. The maximum day and average day demands were divided by the total number of water connections for the North and South Systems to get the gallons per connection per day (gcd) for each district. A summary of current water treatment capacities, connections, and flow data is provided in Table 1. Copies of the calculations for average, maximum day flows, population projections, connection projections, and flow projections are included in Attachment A.

The population served by the North and South water distribution systems were estimated based on the number of connections in each system and the estimated number of people per household, taken from 1990 census data. Data obtained from the 1990 Census indicates that the North System has approximately 2.39 people per household and the South System has approximately 2.06 people per household. These numbers were taken from the average number of people per household for Gun Barrel City and Enchanted Oaks, respectively. Based on these numbers the estimated service populations for the water distribution systems for each system were calculated by multiplying the estimated number of people per household by the number of connections in that system. The resulting estimated population served by the North water distribution system is 6,921. The resulting estimated population served by the South water distribution system is 4,037. These service populations were also projected for future years based on TWDB population projections. The North System population covers portions of Gun Barrel City and some additional rural population. The South System population includes all of Enchanted Oaks and some additional populations in Payne Springs and rural areas.

#### 2.2.2 Wastewater Collection and Treatment System

The North and South wastewater treatment and collection systems were evaluated for historical and projected average daily and 2-hour peak flows. Average daily flows were taken from historical monthly and daily flow data. The 2-hour peak flow was calculated by multiplying the maximum average 30-day flow for 1995 by a 2-hour peaking factor. The 2-hour peaking factor for the North System was developed from historical peak flow data for 1994 and 1995. The 2-hour wet weather peak flow for the North System is 1.77 MGD.

Since the highest recorded peak in the South System exceeded the chart recorder's maximum reading, the peak 2-hour flow was analyzed using three different methods. The first used Harmon's equation for determining peak flows, the second used historical plant data, and the third used historical data from the North System. Since historical flow data at the South WWTP was limited and historical flows from the North System may not be representative of the South System flows, it was determined that the 2-hour peak should be calculated using Harmon's equation. Harmon's equation is an empirical formula commonly used to develop wet weather peak flows from average flow data when peak flow data is unavailable. The 2-hour peak wet weather flow for the South System using Harmon's equation was calculated to be 0.595 MGD.

The 2-hour peak wet weather flows mentioned above are system peaks that would be expected based on flows entering the wastewater collection systems by gravity. Since the wastewater collection systems for both Systems are pressurized systems, the actual peak flows seen at the plants is based on the influent pumping capacity of the system. Therefore there are two peaks, the estimated 2-hour peak wet weather flow for the collection system and the 2-hour peak flow based on the collection system pumping capacity. The 2-hour peak pumping flow for the North System is 1.79 MGD based on the capacity of the existing system and proposed lift station improvements to stations delivering flows to the North Wastewater Treatment Plant. Since the South System is primarily a parallel system as opposed to the series system used in the North, the estimated 2-hour peak pumping flow for the South System is difficult to predict. Since the peak 2-hour flows seen at the SWWTP are comparable to the peak flow calculated by Harmon's equation, it is reasonable to assume that the pumping peak for the South System is the same as the peak flow calculated from Harmon's equation. Therefore, the pumping peak

for the South System is assumed to be 0.595 MGD.

A summary of current wastewater treatment capacities, connections, and flow data is provided in Table 2. Copies of calculations for determining average flows, peak flows, population projections, and connection and flow projections are included in Attachment A.

## **TABLE 1**

### WATER TREATMENT PLANT CURRENT CONDITIONS SUMMARY

|                  | RATED<br>PLANT | SYSTEM I  | <ul> <li>A state of the sta</li></ul> | SYSTEM<br>AVG | SYSTEM<br>MAX | 1995 AVG<br># OF      | MAX #<br>OF CONN.    | EST.<br>POP |
|------------------|----------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------|-----------------------|----------------------|-------------|
| PLANT            | CAPACITY       | AVG (MGD) | MAX (MGD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | GPCD          | GPCD          | CONNECT. <sup>1</sup> | ALLOWED <sup>2</sup> | SERVED      |
| NORTH WTP        | 2.55 MGD       | 0.643     | 1.581                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 93            | 228           | 2896                  | 3935                 | 6921        |
| EXIST. SOUTH WTP | n/a            | 0.327     | 0.892                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 83            | 228           | 1960                  |                      | 3920        |
| PROP. SOUTH WTP  | 1.75 MGD       | 0.327     | 0.892                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 83            | 228           | 1960                  | 2701                 | 3920        |

NOTES: 1 – The average number of connections in the South System includes 200 connections for Payne Springs water customers who have been previously served by the district and are assumed served for current conditions.

2 - The maximum # of connections allowed is the maximum number of connections the District can have at design capacity based on the 0.45 gpm/connection variance.

MGD – Million Gallons Per Day

GPCD - Gallons Per Capita Per Day

GPM – Gallons Per Minute

# TABLE 2

### WASTEWATER TREATMENT PLANT CURRENT CONDITIONS SUMMARY

|                   |                   | D & DESIGN                                                                                                       | - S No. 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2                                                                  | TEM FLO | ふくろうび きょうしょうえいし | the first state of the state of | 90% OF AVG. | 1. Statistics | EST. |
|-------------------|-------------------|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|---------------|------|
|                   |                   | and the second | MAX 30 DAY                                                                                                     | 1       | MAX 3 MO.       | % OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PLANT       | # OF          | POP  |
| PLANT             | <u>AVG. (MGD)</u> | PEAK (MGD)                                                                                                       | the second s | (MGD)   |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | FLOW (MGD)  | CONNECT       |      |
| NORTH WWTP        | 0.626             | 1.872                                                                                                            | 0.562                                                                                                          | 1.77    | 0.484           | 77%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.563       | 3075          | 7349 |
| EXIST. SOUTH WWTP | 0.04              | 0.1                                                                                                              | 0.170                                                                                                          | 0.595   | 0.131           | 328%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.036       | 528           | 1056 |
| PROP. SOUTH WWTP  | 0.2               | 0.8                                                                                                              | 0.170                                                                                                          | 0.595   | 0.131           | 66%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.180       | 528           | 1056 |

NOTES: 1 - The peak capacity of the North WWTP of 1.872 is the permitted peak capacity of the plant. The calculated peak capacity based on State Design Criteria is 1.94 MGD.
 2 - The Maximum 30 Day Average flow, 2-hour Peak Flow, and Maximum 3 Month Average Flow are based on average

-

monthly and daily flow data.

### 3.0 FACILITIES EXAMINATION

### 3.1 TREATMENT PLANT CONDITION

The existing water and wastewater treatment plants were evaluated for their existing conditions based on historical plant performance data and visual inspection of each plant site. Historical performance data was provided by the District and includes influent and effluent water quality data and historical flow data.

#### 3.1.1 Water Treatment Plants

The existing North Water Treatment Plant (WTP) is in good condition and currently produces water meeting or exceeding permitted conditions. The plant is a conventional treatment plant with a solids contact clarifier, dual media filters, clearwell and ground storage, chemical feed facilities and chlorination facilities. The North WTP has historically produced high quality water and has adequate capacity to meet current system needs.

The existing South WTP has historically had problems meeting required turbidity limits for water treatment and consistently breaks permitted turbidity limits. The average effluent turbidity for 1995 was 0.7 ntu. The permitted effluent turbidity limit according to State Criteria is 0.5 ntu, however the District has been granted an exception to this rule which allows the South WTP to meet 1 ntu turbidity limits. This exception is in place until construction of the new South WTP is complete. The turbidity levels appear to be due to the operation of the existing plant sedimentation tank. The sedimentation tank has limited sludge removal capability which prevents full use of the hydraulic capacity and detention time in the tank. Interviews with the plant's operations staff indicate that the filter media in the four operating filters has recently

### TM#1-12

been replaced. The District has also added two additional filters to augment the filter capacity of the plant. The plant includes an influent sedimentation tank, filters, chlorination and chemical feed, and a hydroneumatic storage tank.

Copies of historical plant flow data, influent water quality, and effluent water quality are included in Attachment A.

## 3.1.2 Wastewater Treatment Plants

The existing North Wastewater Treatment Plant (WWTP) is in good overall service condition and is capable of meeting permitted effluent requirements for BOD and TSS. The plant failed to meet TSS effluent concentrations as average monthly values on five occasions in 1994 and 1995. This has historically been a problem with TNRCC compliance reviews, however 1995 data indicates the plant is doing a much better job meeting effluent TSS requirements after improvements were made to remove a hydraulic restriction in the plant. The RAS return to the ditch is located adjacent to the clarifier influent line. This could result in some short circuiting of the RAS flow. The clarifier sludge rake may be having difficulty in fully removing solids from the clarifier. The effluent weirs on the clarifiers do not have scum baffles to prevent overflow of floatable solids into the effluent trough. Solids were visible in the troughs on the day of the visual inspection. All of these problems may have contributed to past problems with meeting effluent TSS requirements by allowing solids to escape into the plant effluent.

The existing South WWTP has had historical problems meeting BOD and 7-day average BOD effluent requirements. The plant has been cited in TNRCC compliance reviews for exceeding the 75/90 rule, indicating that design of a new facility should begin. A new 200,000 gpd plant is currently under design. The plant has also been cited for heavy I/I conditions in addition to noncompliant flows during dry weather conditions. During inspection the plant had noticeable corrosion on the plant walls and equipment. The plant clarifier had a considerable amount of solids deposition and algal growth in the effluent trough.

Copies of plant historical flow data, influent quality data, and effluent quality data are included in Attachment A.

### 3.2 COMPLIANCE WITH TNRCC STANDARD DESIGN CRITERIA

Each water and wastewater treatment plant was evaluated with respect to current TNRCC Design Criteria for treatment plants. Major treatment units for each plant were evaluated regarding adequate size and capability to meet current demands.

#### 3.2.1 Water Treatment Plants

The existing North WTP has adequate capacity for the following unit operations to meet current State Design Criteria for water treatment facilities for sedimentation basins, filter area, backwash rate of flow, clearwell storage and elevated tank storage capacity. The State Criteria for water facilities storage capacity requires that the raw water pumps, high service pumps, and water treatment plant capacity meet a capacity of 0.6 gpm per water connection. Each of these facilities currently meets a capacity of 0.5 gpm per water connection based on the average number of connections in 1995. The District has obtained a variance which allows the district to meet a capacity requirement of 0.45 gpm per connection for raw water pump, high service

pump, and treatment plant capacity. The plant does meet the state requirements for elevated storage and has adequate capacity to meet maximum day demands based on historical plant flows.

The existing South WTP was not evaluated for compliance with State Criteria, because this plant is to be abandoned upon completion of the proposed 1.73 MGD water treatment plant in the South District. The proposed 1.73 MGD water treatment plant was analyzed for compliance with current design criteria. It meets state capacity requirements for the following unit operations: sedimentation basins, filter area, backwash rate of flow, clearwell storage and elevated tank storage capacity. The State Criteria for storage capacity requires that the plant capacity, raw water pumps, and high service pumps meet a minimum of 0.6 gpm per connection. There were 1960 water connections on average in 1995 in the South District. The proposed plant is capable of meeting the State Criteria of 0.6 gpm per connection based on the average number of connections in 1995. The District also has a variance for this criteria for the South System which allows them to meet a capacity of 0.45 gpm per connection for raw water pumping, high service pumping and treatment plant capacity. The proposed plant is capable of meeting state requirements for storage capacity and has adequate treatment capacity to meet maximum day demands based on historical demands for the South District.

A summary of water treatment plant design capacities and TNRCC criteria for each unit operation is provided in Table 3. Copies of calculations for State Criteria sizing of water treatment plant unit operations are provided in Attachment B.

### 3.2.2 Wastewater Treatment Plants

The existing North WWTP meets the State Criteria and capacity requirements for all unit operations at the plant (Surge Basin Storage, Grit Removal, Bar Screens, Oxidation Ditch, Clarifiers, Chlorine Contact Basins, Sludge Drying Beds, Aeration Requirements, and Chlorinator capacity). The wastewater treatment plant currently has permission from TNRCC to waste sludge to the surge storage basin and, in recent months, has begun to augment this practice with the use of the existing sludge drying beds. The capacity of the proposed District plate and frame press for dewatering of waste sludge has been calculated at 352,000 lbs. of waste solids per year. The existing sludge drying beds at the plant are capable of dewatering approximately 276,000 lbs. of solids each year as calculated using TNRCC Design Criteria. Therefore, since the press has a greater capacity than the design capacity of the plant drying beds, use of the plate and frame press should provide adequate waste sludge dewatering capacity for the treatment plant, once operational.

The existing South WWTP was evaluated for compliance with the State Criteria based on assumed side water depths for the package treatment plant. Since there are no plans available for this plant it was assumed that the plant had a side water depth of 10 feet and operated as an extended aeration activated sludge treatment plant. Based on state criteria for aeration basin and clarifier volumes and loadings, the plant has been calculated as capable of meeting the permitted flow of 40,000 gpd. However, historical effluent data from the plant indicate that the plant has problems meeting effluent permit requirements for BOD at present flow demands. The plant also has historically had problems meeting design flows during dry weather conditions. Since a complete evaluation of the plant is not possible without plans, it is difficult to determine the cause of these problems. Based on noticeable solids deposition in the clarifier and the fact that the aeration piping has been replaced, it is possible that the plant aeration requirements are not being met or that the clarifier is not operating as it should.

The District is currently in the design phase of a new WWTP to be located at a new 177 acre site north of the existing South WWTP plant. The proposed South WWTP was reviewed for compliance with State Criteria and is capable of meeting effluent and flow requirements for all unit operations (extended air basins, clarifiers, and sludge digestion) for the design flow of 200,000 gpd. A good portion of the peak flows entering the existing South WWTP appear to be I/I related. Substantial I/I work is planned in the system to reduce loadings and flow demands on the plant, increasing it's effectiveness.

A summary of wastewater treatment plant design capacities and TNRCC criteria for each unit operation is provided in Table 4. Copies of calculations for State Criteria sizing of wastewater treatment plant unit operations are provided in Attachment B.

# TABLE 3

### WATER TREATMENT PLANT DESIGN CRITERIA SUMMARY

|           |                            | TOTAL        | LIMITING |                                   |
|-----------|----------------------------|--------------|----------|-----------------------------------|
| PLANT     | UNIT OPERATION             | CAPACITY     | CAPACITY | TNRCC CRITERIA                    |
| North WTP | Sedimentation Basin        | 2.55 MGD     | 2.55 MGD | 2-hr detention time               |
|           | Filters                    | 2.55 MGD     |          | 5 gpm per sq. ft.                 |
|           | Backwash                   | 15.8 gpm/sf  |          | 12.5-18.7 gpm/sf                  |
|           | Raw Water Pump Capacity    | 0.5 gpm/conn |          | 0.6 gpm per connect. <sup>1</sup> |
|           | Treatment Plant Capacity   | 0.5 gpm/conn | j        | 0.6 gpm per connect. <sup>1</sup> |
|           | High Service Pump Capacity | 0.5 gpm/conn | ]        | 0.6 gpm per connect. <sup>1</sup> |
|           | Clearwell Storage          | 11%          |          | 5% of plant capacity              |
|           | Total Storage              | 251 gal/conn |          | 200 gal/connection                |
|           | Elevated Tank Capacity     | 172 gal/conn |          | 100 gal/connection                |
| South WTP | Sedimentation Basin        | 1.75 MGD     | 1.75 MGD | 2-hr detention time               |
|           | Filters                    | 2.17 MGD     | l        | 5 gpm per sq. ft.                 |
|           | Raw Water Pump Capacity    | 0.6 gal/conn |          | 0.6 gpm per connect. <sup>1</sup> |
|           | Treatment Plant Capacity   | 0.6 gal/conn |          | 0.6 gpm per connect. <sup>1</sup> |
|           | High Service Pump Capacity | 0.6 gal/conn | ļ        | 0.6 gpm per connect. <sup>1</sup> |
|           | Clearwell Storage          | 19%          |          | 5% of plant capacity              |
|           | Total Storage              | 325 gal/conn |          | 200 gal/connection                |
|           | Elevated Tank Capacity     | 153 gal/conn |          | 100 gal/connection                |

Notes: 1 - The District currently has an variance which allows them to meet a minimum requirement of 0.45 gpm/connection

# TABLE 4

|            |                    | TOTAL              | LIMITING        |                                                                               |
|------------|--------------------|--------------------|-----------------|-------------------------------------------------------------------------------|
| PLANT      | UNIT OPERATION     | CAPACITY           | CAPACITY        | TNRCC CRITERIA                                                                |
| North WWTP | Surge Basin        | 5.7 MGD            |                 | 10-20% of Plant Vol.                                                          |
|            | Oxidation Ditch    | 0.626 MGD          | 0.626 MGD       | Loading Rate of 15 lb BOD/day/1000 cu ft                                      |
|            |                    |                    |                 | Minimum HRT = 20 hours                                                        |
|            |                    |                    |                 | Minimum of 2 rotors per ditch                                                 |
|            |                    |                    |                 | Minimum channel velocity of 1 fps                                             |
|            | Brush Aerators     | 0.6 MGD            |                 | Min 100 hp per 1 MG of Aeration Basin Vol                                     |
|            | Clarifiers         | 2.145 MGD Qp       |                 | Qp Surface Loading 1000 gal/day/sq ft                                         |
|            |                    |                    |                 | Peak Detention Time = 1.8 hrs                                                 |
|            |                    | 1.072 MGD Qd       |                 | Average Surface Loading 500 gal/day/sq ft                                     |
|            |                    |                    |                 | Average Detention Time = 3.6 hrs                                              |
|            |                    |                    |                 | Weir Loading Rate = 20,000 gal/d/lf (Qp)                                      |
|            | Chlorine Contact   | 1.94 MGD           | 1.94 MGD Qp     | 20 min detention time @ peak                                                  |
|            | Sludge Drying Beds | 0.773 MGD          |                 | 9.75 sf per # of BOD                                                          |
|            | Chlorinators       | 160%               |                 | 150% of highest expected dose                                                 |
| South WWTP | Aeration Basin     | 0.2 MGD            | 0 <b>.2 MGD</b> | Qd Loading Rate of 15 #BOD/day/1000 cu.ft.<br>Minimum HRT of 20 hours         |
|            | Clarifier          | 1.336 MGD Qp       |                 | Qp Surface Loading 1000 gal/day/sq ft<br>Peak Detention Time = 1.8 hrs        |
|            |                    | 0.668 MGD Qd       |                 | Average Surface Loading 500 gal/day/sq ft<br>Average Detention Time = 3.6 hrs |
|            | 1                  |                    |                 | Weir Loading Rate = $20,000 \text{ gal/d/lf (Qp)}$                            |
|            | Sludge Digester    | 0.3 MGD            |                 | Minimum SRT of 15 days                                                        |
|            | Chlorine Contact   | 0.8 MGD            | 0.8 MGD Qp      | 20 min detention time @ peak                                                  |
|            |                    | · · · · <b>·</b> · | <b>  -</b>      | C 1                                                                           |

### WASTEWATER TREATMENT PLANT DESIGN CRITERIA SUMMARY

# 4.0 SCHEDULED SYSTEM IMPROVEMENTS

Prior to review of the current conditions and field verification portions of the Master Plan study, the District implemented programs to repair several system and treatment plant inadequacies to help the District provide adequate service and maintain the system in compliance with State requirements. Most of the problems discussed in Section 3.0 are scheduled to be repaired. Deficiencies noted during the field investigation that have been declared by the District staff as rectified in more recent times are noted in this section. The following items are already scheduled for completion or have been completed by the District.

As mentioned, the existing South WTP has historically had problems meeting effluent quality for turbidity. To help eliminate these problems the District staff has implemented repairs for several items at the existing plant. These repairs included the addition of two filters to the plant to increase the plants filtration capability, installation of a static mixer in the raw water line to achieve better coagulation, removal of sheet flow drainage from the backwash pit to help eliminate storm flow to the pit, addition of baffles to aid in prevention of short circuiting in the clarifier, and relocation of turbidimeters to the filter discharge to better monitor and control filter runs. In addition to the repair items at the existing plant, the District currently has a new 1.73 MGD treatment plant under design which will be capable of meeting the South System water needs.

The District has recently repaired a construction joint leak in one aeration basin at the North WWTP, and has plans to replace the clarifier weirs and add scum removal capabilities. Also, the plate and frame press will soon be added to increase sludge handling capacity. A new South WWTP is under design that will be capable of meeting existing and future requirements for the South System. In addition to this work, the District is currently rehabilitating home grinder pump installations to reduce infiltration/inflow into the wastewater collection systems. The District also has performed rehabilitation to several wastewater lift stations in the North System and has several lift stations scheduled for rehabilitation in the near future.

.

\*5

# 5.0 SYSTEM MAPPING AND HYDRAULIC MODEL

The system mapping for the hydraulic model has been completed for the North and South water distribution and wastewater collection systems. The system Cybernet and Hydra hydraulic models for modeling of current and future flow conditions have been initiated. A copy of the system maps to be modeled are included in Attachment C. The hydraulic model will be evaluated for existing and future flow conditions and a summary of the modeling results will be presented in Technical Memorandum #2.

# **ATTACHMENT 1-A**

(WATER & WASTEWATER QUALITY, FLOWS AND PROJECTIONS)



| Title: EAST CEDAR CREEK FWSD WATER AND WASTEWATER MASTER PLAN | Date: 04/24/96 |
|---------------------------------------------------------------|----------------|
| Daily Water Quality Influent and Effluent Data - North WTP    | By: DRJ        |
| [ECC95301]V:\NWTPDATA.WK1                                     | Chkd:          |

# NORTH WATER TREATMENT PLANT 1994

| 2         8         7.9         51         0.1         8         53           3         9         7.7         51         0.1         79         55           5         9         7.7         51         0.1         8         55           6         11         7.7         47         0.1         8         55           7         8         8         50         0.1         8.6         55           9         6         7.7         50         0.2         7.9         55           10         7         7.3         50         0.1         8.1         55           11         11         7.6         53         0.1         7.9         55           11         11         7.6         53         0.1         7.9         55           13         11         7.6         53         0.1         7.8         55           15         8         7.9         49         0.1         7.8         55           16         9         7.4         48         0.1         7.8         55           16         9         7.8         52         0.23                                                                                            | DATE     |    |    | ATER ANAL |    |      | WATER AN |      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|----|----|-----------|----|------|----------|------|
| 2         8         7,9         51         0.1         8         55           4         8         7,7         51         0.1         7,9         55           6         11         7,7         51         0.1         8         55           7         8         8         50         0.1         8         55           9         7,7         50         0.2         7,9         55           9         6         7,7         50         0.2         7,9         55           10         7         7,3         50         0.1         8,1         55           11         11         7,2         52         0.1         8,1         55           13         11         7,6         51         0.1         7,9         55           14         12         7,8         8         53         0.1         7,8         55           16         9         7,4         48         0.1         8         55           16         8         7,7         8         49         0.1         8.1         55           19         7,8         52         0.23         8                                                                                   | MONTH    |    |    |           |    | NTU  |          | ALK  |
| 2         8         7,9         51         0.1         8         55           4         8         7,7         51         0.1         7,9         55           6         11         7,7         51         0.1         8         55           7         8         8         50         0.1         8         55           9         7,7         50         0.2         7,9         55           9         6         7,7         50         0.2         7,9         55           10         7         7,3         50         0.1         8,1         55           11         11         7,2         52         0.1         8,1         55           13         11         7,6         51         0.1         7,9         55           14         12         7,8         8         53         0.1         7,8         55           16         9         7,4         48         0.1         8         55           16         8         7,7         8         49         0.1         8.1         55           19         7,8         52         0.23         8                                                                                   | JANUARY  | 1  | 8  | 7.6       | 55 | 0.1  | 7.9      | 54   |
| 3         9         7.7         48         0.1         7.9         55           4         8         7.7         51         0.1         7.9         55           5         9         7.7         51         0.1         8         55           7         8         8         0.1         7.9         55         57         50         0.1         8         55           9         6         7.7         50         0.2         7.9         55           9         6         7.7         50         0.1         8.1         55           10         7         7.3         50         0.1         8.1         55           12         8         7.8         7.8         53         0.1         7.9         55           13         11         7.6         51         0.1         7.7         56         51         51         53         52         53         53         53         53         53         53         53         53         53         55         53         53         54         55         53         55         53         56         54         55         56         5                                                   |          | 2  | 8  | 7.9       | 51 | 0.1  | 8        | 53   |
| 4         8         7.7         51         0.1         7.9         5.6           6         11         7.7         47         0.1         8         5.6           7         8         8         50         0.1         8.6         55           9         6         7.7         50         0.2         7.9         55           9         6         7.7         50         0.1         8.1         55           10         7         7.3         50         0.1         8.1         55           11         11         7.2         52         0.1         8.1         55           13         11         7.6         51         0.1         7.7         55           14         12         7.8         53         0.1         7.9         55           16         9         7.4         48         0.1         8         55           18         8         8         49         0.1         8.3         55           20         8         7.8         52         0.1         8.1         55           21         8         7.8         52         0.1         <                                                                               |          | 3  |    |           |    |      |          |      |
| 5         9         7.7         61         0.1         8         55           7         8         8         50         0.1         8.6         55           9         6         7.7         50         0.1         8.6         55           9         6         7.7         50         0.2         7.9         55           10         7         7.3         50         0.1         8.1         56           11         11         7.2         52         0.1         8.1         56           13         11         7.6         53         0.1         7.7         55           14         12         7.8         53         0.1         7.8         55           15         8         7.9         49         0.1         8.8         55           16         9         7.4         48         0.1         8.3         55           18         8         8         49         0.1         8.1         55           20         8         7.8         51         0.1         7.7         52           22         9         8         52         0.23 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>  |          |    |    |           |    |      |          |      |
| 6         11         7.7         47         0.1         86         53           7         8         8         50         0.1         86         53           9         6         7.7         50         0.2         7.9         55           10         7         7.3         50         0.1         8.1         55           11         11         7.6         51         0.1         7.9         35           13         11         7.6         51         0.1         7.9         35           14         12         7.8         53         0.1         7.9         35           16         9         7.4         48         0.1         8         53           16         9         7.4         48         0.1         8.3         55           20         8         7.8         51         0.1         8.3         55           21         8         7.8         52         0.03         8         55           22         9         8         52         0.23         8         55           22         9         7.6         51         0.1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<> |          |    |    |           |    |      |          |      |
| 7         8         9         7.9         48         0.1         7.9         55           9         6         7.7         50         0.2         7.9         55           10         7         7.3         50         0.1         8.1         55           11         11         7.2         52         0.1         8.1         55           12         8         7.8         53         0.1         7.9         53           13         11         7.6         51         0.1         7.7         56           14         12         7.8         53         0.1         7.8         53           15         8         7.9         49         0.1         7.8         53           16         9         7.4         48         0.1         8.1         55           16         9         7.4         48         0.1         8.1         55           20         8         7.8         51         0.1         8.1         55           21         8         7.7         51         0.1         7.7         55           22         9         7.7         50                                                                                   |          |    | •  |           |    |      |          |      |
| 8         9         7.9         48         0.1         7.9         55           10         7         7.3         50         0.1         8.1         55           11         11         7.7         50         0.1         8.1         55           12         8         7.8         50         0.1         7.9         52           13         11         7.6         51         0.1         7.7         56           14         12         7.8         53         0.1         7.9         55           15         8         7.9         49         0.1         7.8         52           16         9         7.4         48         0.1         8         52           18         8         8         49         0.1         8.3         55           20         8         7.8         51         0.1         8.3         55           22         9         8         52         0.13         8         56           22         9         7.6         51         0.1         7.7         55           26         10         7.7         54         0.1                                                                                      |          |    |    |           |    |      | 1        |      |
| 9         6         7.7         50         0.2         7.9         54           10         7         7.3         50         0.1         8.1         55           12         8         7.8         50         0.1         7.9         55           13         11         7.6         51         0.1         7.9         55           14         12         7.8         53         0.1         7.9         55           14         12         7.8         53         0.1         7.9         55           16         9         7.4         48         0.1         8         55           16         9         7.4         48         0.1         8.1         55           19         9         8         49         0.1         8.3         55           20         8         7.8         52         0.23         8         55           22         9         8         52         0.23         8         55           22         9         7.7         50         0.1         8         55           24         8         7.7         51         0.1 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>1</td><td></td><td></td></t<> |          |    |    |           |    | 1    |          |      |
| 10       7       7.3       50       0.1       8.1       54         11       11       7.2       52       0.1       8.1       55         12       8       7.8       50       0.1       7.9       53         13       11       7.6       51       0.1       7.9       53         14       12       7.8       53       0.1       7.9       53         15       8       7.9       49       0.1       7.8       53         16       9       7.4       48       0.1       8       55         17       7       7.6       47       0.1       8       55         20       8       7.8       51       0.1       8.1       55         21       8       7.8       51       0.1       8.3       55         22       9       8       52       0.13       8       55         22       9       7.7       49       0.1       7.7       56         24       8       7.7       51       0.1       7.7       55         26       9       7.7       50       0.1       8                                                                                                                                                                                           |          |    | 9) |           | 48 | 0.1  | 7.9      | 51   |
| 11         11         7.2         52         0.1         8.1         55           12         8         7.8         50         0.1         7.9         55           14         12         7.8         53         0.1         7.9         55           15         8         7.9         49         0.1         7.8         55           15         8         7.9         49         0.1         8         55           16         9         7.4         46         0.1         8         55           18         8         49         0.1         8.1         55           20         8         7.8         51         0.1         8.1         55           22         9         8         52         0.23         8         55           22         9         8         52         0.23         8         55           22         9         8         52         0.23         8         55           22         9         7.7         50         0.1         8         55           26         10         7.7         48         0.1         7.8         55                                                                                   |          | 9  | 6  | 7.7       | 50 | 0.2  | 7.9      | 54   |
| 11         11         7.2         52         0.1         8.1         55           12         8         7.8         50         0.1         7.9         55           14         12         7.8         53         0.1         7.9         55           15         8         7.9         49         0.1         7.8         55           15         8         7.9         49         0.1         8         55           16         9         7.4         46         0.1         8         55           18         8         49         0.1         8.1         55           20         8         7.8         51         0.1         8.1         55           22         9         8         52         0.23         8         55           22         9         8         52         0.23         8         55           22         9         8         52         0.23         8         55           22         9         7.7         50         0.1         8         55           26         10         7.7         48         0.1         7.8         55                                                                                   |          | 10 | 7  | 7.3       | 50 | 0.1  | 8.1      | 54   |
| 12         8         7.8         50         0.1         7.9         55           13         11         7.6         51         0.1         7.9         53           15         8         7.9         49         0.1         7.8         53           16         9         7.4         48         0.1         8         53           17         7         7.6         47         0.1         8         53           18         8         8         49         0.1         8.1         55           20         8         7.8         51         0.1         8.1         55           21         8         7.8         52         0.23         8         55           22         9         8         52         0.23         8         55           22         9         7.7         50         0.1         7.7         55           24         8         7.7         51         0.1         7.7         55           26         10         7.7         51         0.1         8         57           25         9         7.6         51         0.1                                                                                            |          | 11 | 11 | 7.2       | 52 | 0.1  |          |      |
| 13         11         7.6         51         0.1         7.7         55           14         12         7.8         53         0.1         7.9         53           16         9         7.4         48         0.1         7.8         53           16         9         7.4         48         0.1         8         53           17         7         7.6         47         0.1         8         53           19         9         8         49         0.1         8.3         55           20         8         7.8         51         0.1         8.1         55           21         8         7.8         52         0.23         8         55           22         9         8         52         0.23         8         55           22         9         7.7         51         0.1         7.9         52           24         8         7.7         51         0.1         7.9         52           25         9         7.6         51         0.1         8         55           26         10         7.7         52         0.1 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<> |          |    |    |           |    |      |          |      |
| 14         12         7.8         53         0.1         7.9         53           15         8         7.9         49         0.1         7.8         53           16         9         7.4         48         0.1         8         53           17         7         7.6         47         0.1         8         53           19         9         8         49         0.1         8.1         55           20         8         7.8         51         0.1         8.1         55           22         9         8         52         0.23         8         55           23         7         7.8         52         0.15         8         56           24         8         7.7         51         0.1         7.7         55         56           26         10         7.7         48         0.1         8         57         57           27         9         7.7         49         0.1         8.1         56           30         11         7.8         48         0.1         8         57           31         10         7.7         5                                                                                   |          |    |    |           |    | 1    |          |      |
| 15         8         7.9         49         0.1         7.8         53           16         9         7.4         48         0.1         8         53           17         7         7.6         47         0.1         8         53           18         8         8         49         0.1         8.3         55           20         8         7.8         51         0.1         8.1         55           21         8         7.8         52         0.23         8         55           22         9         8         52         0.23         8         55           22         9         7.8         52         0.15         8         55           24         8         7.7         51         0.1         7.7         56           25         9         7.6         51         0.1         8         57           25         9         7.7         50         0.1         8         57           26         10         7.7         48         0.1         8         57           30         11         7.8         48         0.1         8 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>       |          |    |    |           |    |      |          |      |
| 16         9         7.4         48         0.1         8         55           17         7         7.6         47         0.1         8         55           19         9         8         49         0.1         8.3         55           20         8         7.8         51         0.1         8.1         55           21         8         7.8         52         0.23         8         55           22         9         8         52         0.23         8         55           23         7         7.8         52         0.1         8.5         55           24         8         7.7         51         0.1         7.7         55           26         9         7.6         51         0.1         7.7         55           27         9         7.7         49         0.1         8         55           29         9         7.7         49         0.1         8.1         55           29         9         7.7         49         0.1         8.1         55           30         11         7.8         48         0.1         8                                                                                   |          |    |    |           |    |      |          |      |
| 17         7         7.6         47         0.1         8         55           18         8         49         0.1         8.3         55           19         9         8         49         0.1         8.1         55           20         8         7.8         51         0.1         8.3         55           21         8         7.8         52         0.23         8         55           23         7         7.8         52         0.15         8         55           24         8         7.7         51         0.1         7.7         55           25         9         7.6         51         0.1         7.7         55           26         10         7.7         48         0.1         8         55           26         9         7.7         50         0.1         8         55           28         9         7.9         50         0.1         8         55           30         11         7.8         48         0.1         8         55           31         10         7.7         51         0.1         7         52<                                                                                   |          |    |    |           |    |      |          |      |
| 18         8         49         0.1         8.3         53           19         9         8         49         0.1         8.1         55           20         8         7.8         51         0.1         8.1         55           21         8         7.8         52         0.23         8         55           23         7         7.8         52         0.11         8.3         55           23         7         7.8         52         0.23         8         55           23         7         7.8         52         0.1         8         55           26         9         7.7         50         0.1         7         55           26         9         7.7         49         0.1         8.1         55           28         9         7.9         50         0.1         8         55           29         9         7.7         49         0.1         8.1         55           29         9         7.7         51         0.1         8         55           31         10         7.7         51         0.1         8         55                                                                                   |          |    |    |           |    |      | 1        |      |
| 19         9         8         49         0.1         8.1         52           20         8         7.8         51         0.1         8.1         55           21         8         7.8         52         0.23         8         55           23         7         7.8         52         0.15         8         55           23         7         7.8         52         0.15         8         55           24         8         7.7         51         0.1         7.9         55           26         10         7.7         48         0.1         7.7         55           27         9         7.7         50         0.1         8         55           28         9         7.7         49         0.1         8         55           30         11         7.8         48         0.1         8         55           31         10         7.7         51         0.1         8         55           31         10         7.7         51         0.1         8         55           5         9         7.8         53         0.1         8<                                                                                   |          |    |    |           |    |      |          |      |
| 20         8         7.8         51         0.1         8.1         53           21         8         7.8         49         0.1         8.3         55           22         9         8         52         0.23         8         55           23         7         7.8         52         0.15         8         55           24         8         7.7         51         0.1         7.9         55           25         9         7.6         51         0.1         7.7         55           26         10         7.7         48         0.1         7.7         55           28         9         7.9         50         0.1         8         55           29         9         7.7         49         0.1         8.1         55           30         11         7.8         8         0.1         8         55           31         10         7.7         51         0.1         8         56           3         12         7.8         53         0.1         8         55           9         7.8         50         0.1         8         5                                                                                   |          |    |    |           |    |      |          | 53   |
| 21         8         7.8         49         0.1         8.3         55           22         9         8         52         0.23         8         55           23         7         7.8         52         0.15         8         55           24         8         7.7         51         0.1         7.7         55           26         9         7.6         51         0.1         7.7         55           26         10         7.7         48         0.1         8         55           28         9         7.9         50         0.1         8         55           29         9         7.7         49         0.1         8.1         56           30         11         7.8         48         0.1         8         55           31         10         7.7         51         0.1         8         55           31         11         7.8         48         0.1         8         55           3         12         7.8         50         0.1         8         55           3         12         7.8         50         0.1         8<                                                                                   |          | 19 | 9  | 8         | 49 | 0.1  | 8.1      | 54   |
| 21         8         7.8         49         0.1         8.3         55           22         9         8         52         0.23         8         55           23         7         7.8         52         0.15         8         55           24         8         7.7         51         0.1         7.7         55           26         9         7.6         51         0.1         7.7         55           26         10         7.7         48         0.1         8         55           28         9         7.9         50         0.1         8         55           29         9         7.7         49         0.1         8.1         56           30         11         7.8         48         0.1         8         55           31         10         7.7         51         0.1         8         55           31         11         7.8         48         0.1         8         55           3         12         7.8         50         0.1         8         55           3         12         7.8         50         0.1         8<                                                                                   |          | 20 | 8  | 7.8       | 51 | 0.1  | 8.1      | 53   |
| 22         9         8         52         0.23         8         55           23         7         7.8         52         0.15         8         56           24         8         7.7         51         0.1         7.9         53           25         9         7.6         51         0.1         7.7         56           26         10         7.7         48         0.1         7.7         56           28         9         7.9         50         0.1         8         57           29         9         7.7         49         0.1         8.1         56           30         11         7.8         48         0.1         8         57           31         10         7.7         51         0.1         8.1         56           31         10         7.9         52         0.1         8.1         56           3         12         7.8         53         0.1         8.1         57           4         11         7.8         49         0.1         8         57           5         9         7.8         50         0.1         <                                                                               |          | 21 | 8  | 7.8       | 49 | 0.1  | 8.3      | 51   |
| 23         7         7.8         52         0.15         8         54           24         8         7.7         51         0.1         7.9         55           25         9         7.6         51         0.1         7.7         55           26         10         7.7         48         0.1         7.7         55           28         9         7.7         50         0.1         8         55           29         9         7.7         49         0.1         8.1         56           30         111         7.8         48         0.1         8         55           31         10         7.7         51         0.1         7.8         52           31         10         7.7         51         0.1         8         55           31         10         7.9         52         0.1         8.1         52           3         12         7.8         50         0.1         8         55           4         11         7.8         54         0.1         8.5         55           5         9         7.8         50         0.1                                                                                      |          |    |    |           |    |      |          |      |
| 24         8         7.7         51         0.1         7.9         53           25         9         7.6         51         0.1         7.7         55           26         10         7.7         48         0.1         7.7         55           27         9         7.7         50         0.1         8         55           28         9         7.9         50         0.1         8         55           29         9         7.7         49         0.1         8.1         56           30         11         7.8         48         0.1         8         55           31         10         7.7         51         0.1         7.8         55           3         12         7.8         53         0.1         8.1         55           3         12         7.8         50         0.1         8         55           4         11         7.6         48         0.1         7         55           4         11         7.8         50         0.1         8         55           6         8         7.7         51         0.1                                                                                            |          |    |    |           |    |      |          |      |
| 25         9         7.6         51         0.1         7.7         52           26         10         7.7         48         0.1         7.7         52           27         9         7.7         50         0.1         8         55           28         9         7.7         49         0.1         8.1         55           29         9         7.7         49         0.1         8.1         55           30         11         7.8         48         0.1         8         55           31         10         7.7         51         0.1         7.8         55           2         10         7.9         52         0.1         8.1         55           3         12         7.8         53         0.1         8.1         55           3         12         7.8         50         0.1         8         55           4         11         7.8         49         0.1         8         55           5         9         7.8         49         0.1         8.4         55           6         8         7.7         51         0.1         <                                                                               |          |    | (  |           |    |      |          |      |
| 26         10         7.7         48         0.1         7.7         52           27         9         7.7         50         0.1         8         55           28         9         7.9         50         0.1         8         55           29         9         7.7         49         0.1         8.1         55           30         11         7.8         48         0.1         8         55           31         10         7.7         51         0.1         7.8         55           31         10         7.7         51         0.1         8         55           2         10         7.9         52         0.1         8.1         55           3         12         7.8         53         0.1         8.1         55           4         11         7.8         49         0.1         8         57           5         9         7.8         50         0.1         8         57           6         8         7.7         51         0.1         8.4         57           9         11         7.6         49         0.1                                                                                            |          |    |    |           |    |      |          |      |
| 27         9         7.7         50         0.1         8         57           28         9         7.9         50         0.1         8         57           29         9         7.7         49         0.1         8.1         56           30         11         7.8         48         0.1         8         57           31         10         7.7         51         0.1         7.8         55           31         10         7.7         51         0.1         8         57           2         10         7.9         52         0.1         8.1         55           3         12         7.8         53         0.1         8         57           4         11         7.8         49         0.1         8         55           5         9         7.8         50         0.1         8         57           6         8         7.7         51         0.1         8         57           9         11         7.6         48         0.1         8.4         57           9         11         7.6         48         0.26         8.1<                                                                                   |          |    |    |           |    |      |          |      |
| 28         9         7.9         50         0.1         8         51           29         9         7.7         49         0.1         8.1         56           30         11         7.8         48         0.1         8         57           31         10         7.7         51         0.1         7.8         53           31         10         7.7         51         0.1         7.8         53           2         10         7.9         52         0.1         8.1         53           3         12         7.8         53         0.1         8.1         55           4         11         7.8         49         0.1         8         55           5         9         7.8         50         0.1         8         55           6         8         7.7         51         0.1         8         55           6         8         7.7         51         0.1         8         55           7         11         7.6         48         0.1         7.8         55           9         11         7.6         48         0.1         8.                                                                                   |          |    |    |           |    |      |          |      |
| 29         9         7.7         49         0.1         8.1         50           30         11         7.8         48         0.1         8         57           31         10         7.7         51         0.1         7.8         55           2         10         7.9         52         0.1         8.1         52           3         12         7.8         53         0.1         8.1         52           4         11         7.8         49         0.1         8         57           3         12         7.8         53         0.1         8         57           4         11         7.8         49         0.1         8         57           5         9         7.8         50         0.1         8         57           6         8         7.7         51         0.1         8         57           9         11         7.6         48         0.1         7.7         56           9         11         7.6         49         0.1         8.6         57           10         11         7.7         39         0.1         8                                                                                   |          |    |    |           |    |      |          |      |
| 30         11         7.8         48         0.1         8         55           31         10         7.7         51         0.1         7.8         55           2         10         7.9         52         0.1         8.1         55           3         12         7.8         53         0.1         8.1         55           3         12         7.8         53         0.1         8.1         55           4         11         7.8         49         0.1         8         55           5         9         7.8         50         0.1         8         55           6         8         7.7         51         0.1         8         55           7         11         7.6         48         0.1         7.7         53           9         11         7.6         48         0.1         8.4         55           9         11         7.6         49         0.1         8.4         55           9         11         7.6         49         0.1         8.4         55           10         11         7.7         39         0.1         <                                                                               |          |    |    |           |    |      | 2        |      |
| 31         10         7.7         51         0.1         7.8         53           TEBRUARY         1         11         7.8         48         0.1         8         56           2         10         7.9         52         0.1         8.1         56           3         12         7.8         53         0.1         8.1         56           4         11         7.8         49         0.1         8         57           5         9         7.8         50         0.1         8         57           6         8         7.7         51         0.1         8         57           7         11         7.6         48         0.1         7.7         53           9         11         7.6         48         0.1         7.7         55           9         11         7.6         49         0.1         8.4         53           9         11         7.6         49         0.1         8.5         53           10         11         7.7         39         0.1         8.6         53           11         14         7.8         49                                                                                    |          |    |    |           | 49 | 0.1  | 8.1      | 50   |
| TEBRUARY         1         11         7.8         48         0.1         8         50           2         10         7.9         52         0.1         8.1         52           3         12         7.8         53         0.1         8.1         52           4         11         7.8         49         0.1         8         55           5         9         7.8         50         0.1         8         55           6         8         7.7         51         0.1         8         55           7         11         7.6         48         0.1         7.7         53           8         10         8         52         0.1         7.9         57           9         11         7.6         49         0.1         8.4         55           9         11         7.6         49         0.1         8.5         55           9         11         7.6         49         0.1         8.6         57           10         11         7.7         39         0.1         8.6         57           12         9         7.8         48                                                                                        |          |    | 11 | 7.8       | 48 | 0.1  |          | 51   |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |    |    |           |    |      | 7.8      | 53   |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FEBRUARY |    |    |           |    |      |          | - 50 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | 2  |    | 7.9       | 52 | 0.1  | 8,1      | 52   |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          | 3  | 12 | 7.8       | 53 | 0.1  | 8.1      | 53   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |    | 11 |           | 49 | 0.1  | 8        |      |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |          |    |    |           |    |      |          |      |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |    |    |           | 1  |      | l        |      |
| 8         10         8         52         0.1         7.9         53           9         11         7.6         49         0.1         8.4         53           10         11         7.7         39         0.1         8.6         53           11         14         7.8         48         0.1         8         53           12         9         7.8         48         0.26         8.1         52           13         9         7.8         49         0.3         8.1         46           14         14         7.8         52         0.26         7.8         53           15         10         7.8         52         0.26         7.8         53           16         18         7.4         51         0.3         7.7         53           16         18         7.4         51         0.33         7.8         53           18         11         7.7         47         0.35         7.9         44           20         14         7.8         52         0.15         8.1         51           21         12         8         51         0.                                                                          |          |    |    |           |    |      |          |      |
| 9         11         7.6         49         0.1         8.4         53           10         11         7.7         39         0.1         8.6         51           11         14         7.8         48         0.1         8         51           12         9         7.8         48         0.26         8.1         52           13         9         7.8         49         0.3         8.1         49           14         14         7.8         49         0.2         8.1         52           15         10         7.8         52         0.26         7.8         53           16         18         7.4         51         0.3         7.7         53           16         18         7.4         51         0.33         7.8         53           18         11         7.7         47         0.33         7.8         53           19         10         7.7         47         0.33         8.1         51           21         12         8         51         0.33         8         49           22         14         7.5         47         0                                                                          |          |    |    |           |    | 1    |          |      |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |    |    |           |    |      |          |      |
| 11       14       7.8       48       0.1       8       51         12       9       7.8       48       0.26       8.1       52         13       9       7.8       49       0.3       8.1       48         14       14       7.8       49       0.2       8.1       52         15       10       7.8       52       0.26       7.8       53         16       18       7.4       51       0.3       7.7       53         17       13       7.4       51       0.33       7.8       53         18       11       7.7       47       0.33       7.8       53         19       10       7.7       47       0.35       7.9       48         20       14       7.8       52       0.15       8.1       51         21       12       8       51       0.33       8       48         22       14       7.5       47       0.15       7.7       51         23       12       7.8       51       0.1       7.5       50                                                                                                                                                                                                                                  |          |    |    |           |    |      |          |      |
| 12       9       7.8       48       0.26       8.1       52         13       9       7.8       49       0.3       8.1       48         14       14       7.8       49       0.2       8.1       52         15       10       7.8       52       0.26       7.8       53         16       18       7.4       51       0.3       7.7       53         17       13       7.4       51       0.33       7.8       53         18       11       7.7       47       0.35       7.9       48         20       14       7.8       52       0.15       8.1       51         21       12       8       51       0.33       8       48         22       14       7.5       47       0.15       7.7       57         23       12       7.8       51       0.1       7.5       57                                                                                                                                                                                                                                                                                                                                                                         |          |    | 1  |           | 1  |      |          |      |
| 13       9       7.8       49       0.3       8.1       49         14       14       7.8       49       0.2       8.1       52         15       10       7.8       52       0.26       7.8       53         16       18       7.4       51       0.3       7.7       53         17       13       7.4       51       0.33       7.8       53         18       11       7.7       47       0.35       7.9       48         20       14       7.8       52       0.15       8.1       51         21       12       8       51       0.33       8       49         22       14       7.5       47       0.15       7.7       57         23       12       7.8       51       0.1       7.5       50                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |    |    |           |    |      |          | 51   |
| 14         14         7.8         49         0.2         8.1         52           15         10         7.8         52         0.26         7.8         53           16         18         7.4         51         0.3         7.7         53           17         13         7.4         51         0.33         7.8         53           18         11         7.7         47         0.33         7.8         53           19         10         7.7         47         0.35         7.9         48           20         14         7.8         52         0.15         8.1         51           21         12         8         51         0.33         8         49           22         14         7.5         47         0.15         7.7         51           23         12         7.8         51         0.1         7.5         50                                                                                                                                                                                                                                                                                                 |          | 12 | 9  |           | 48 | 0.26 | 8.1      | 52   |
| 14         14         7.8         49         0.2         8.1         52           15         10         7.8         52         0.26         7.8         53           16         18         7.4         51         0.3         7.7         53           17         13         7.4         51         0.33         7.8         53           18         11         7.7         47         0.33         7.8         53           19         10         7.7         47         0.35         7.9         48           20         14         7.8         52         0.15         8.1         51           21         12         8         51         0.33         8         49           22         14         7.5         47         0.15         7.7         51           23         12         7.8         51         0.1         7.5         50                                                                                                                                                                                                                                                                                                 |          | 13 | 9  | 7.8       | 49 |      | 8.1      | 49   |
| 15         10         7.8         52         0.26         7.8         53           16         18         7.4         51         0.3         7.7         53           17         13         7.4         51         0.33         7.8         53           18         11         7.7         47         0.33         7.8         53           19         10         7.7         47         0.35         7.9         48           20         14         7.8         52         0.15         8.1         51           21         12         8         51         0.33         8         48           22         14         7.5         47         0.15         7.7         51           23         12         7.8         51         0.1         7.5         50                                                                                                                                                                                                                                                                                                                                                                                   |          |    |    | 7.8       |    |      |          | 52   |
| 16         18         7.4         51         0.3         7.7         53           17         13         7.4         51         0.33         7.8         53           18         11         7.7         47         0.33         7.8         53           19         10         7.7         47         0.35         7.9         48           20         14         7.8         52         0.15         8.1         51           21         12         8         51         0.33         8         48           22         14         7.5         47         0.15         7.7         51           23         12         7.8         51         0.1         7.5         50                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |    |    |           |    |      |          | 59   |
| 17         13         7.4         51         0.33         7.8         53           18         11         7.7         47         0.33         7.8         53           19         10         7.7         47         0.35         7.9         48           20         14         7.8         52         0.15         8.1         51           21         12         8         51         0.33         8         48           22         14         7.5         47         0.15         7.7         51           23         12         7.8         51         0.1         7.5         50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |    | 18 |           |    |      | 77       | 51   |
| 18         11         7.7         47         0.33         7.8         53           19         10         7.7         47         0.35         7.9         48           20         14         7.8         52         0.15         8.1         51           21         12         8         51         0.33         8         48           22         14         7.5         47         0.15         7.7         51           23         12         7.8         51         0.1         7.5         50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |          |    |    |           |    |      |          |      |
| 19         10         7.7         47         0.35         7.9         48           20         14         7.8         52         0.15         8.1         51           21         12         8         51         0.33         8         48           22         14         7.5         47         0.15         7.7         51           23         12         7.8         51         0.1         7.5         50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |    |    | 7.7       |    | 0.00 | 7.0      |      |
| 20         14         7.8         52         0.15         8.1         51           21         12         8         51         0.33         8         48           22         14         7.5         47         0.15         7.7         51           23         12         7.8         51         0.1         7.5         50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |    |    | 1.1       |    | 0.33 |          |      |
| 21         12         8         51         0.33         8         49           22         14         7.5         47         0.15         7.7         51           23         12         7.8         51         0.1         7.5         50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |          | 19 |    |           |    |      |          |      |
| 22         14         7.5         47         0.15         7.7         51           23         12         7.8         51         0.1         7.5         50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |          |    |    |           |    |      |          |      |
| 23 12 7.8 51 0.1 7.5 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |    |    | 8         |    | 0.33 | 8        |      |
| 23 12 7.8 51 0.1 7.5 50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |          |    |    | 7.5       |    | 0.15 |          | 51   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          | 23 | 12 | 7.8       |    |      |          |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |    |    | 7.4       | 49 |      | 8        | 52   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |    |    |           |    |      | -1       |      |

|       | 25 | 15 | 7.7 | 41        | 0.1  | 8   | 52         |
|-------|----|----|-----|-----------|------|-----|------------|
|       | 26 | 18 | 7.5 | 48        | 0.1  | 7.8 | 54         |
|       | 27 | 12 | 7.8 | 54        | 0.28 | 7.7 | 46         |
|       | 28 | 18 | 7.3 | 48        | 0.12 | 7.8 | 50         |
| MARCH | 1  | 17 | 8.6 | 50        | 0.1  | 8.1 | 44         |
|       | 2  | 15 | 8.7 | 51        | 0.1  | 8.1 | 46         |
|       | 3  | 15 | 7.7 | 48        | 0.2  | 8.2 | 48         |
|       | 4  | 26 | 7.8 | 43        | 0.2  | 8.4 | 46         |
|       | 5  | 14 | 7.8 | 52        | 0.1  | 8.1 | 53         |
|       | 6  | 14 | 7.6 | 46        | 0.1  | 8.1 | 54         |
|       | 7  | 17 | 7.2 | 47        | 0.1  | 7.5 | 46         |
|       | 8  | 26 | 7.1 | 46        | 0.1  | 7.7 | 51         |
|       | 9  | 23 | 7.1 | 52        | 0.1  | 8.5 | 55         |
|       | 10 | 14 | 6.9 | 43        | 0.1  | 7.9 | 49         |
|       | 11 | 23 | 7.5 | 45        | 0.1  | 8   | 48         |
|       | 12 | 17 | 7.2 | 43        | 0.1  | 8   | 48         |
|       | 13 | 16 | 7.3 | 46        | 0.1  | 8   | 51         |
|       | 14 | 20 | 7.3 | 46        | 0.1  | 7.7 | 52         |
|       | 15 | 19 | 7.4 | 42        | 0.1  | 7.8 | 48         |
|       | 16 | 18 | 7.7 | 40        | 0.1  | 8   | 48         |
|       | 17 | 26 | 7.2 | 44        | 0.1  | 7.6 | 52         |
|       | 18 | 17 | 7.2 | 45        | 0.1  | 8   | 52         |
|       | 19 | 22 | 7.5 | 44        | 0.1  | 7.8 | 48         |
|       | 20 | 19 | 7.8 | 47        | 0.1  | 8   | 53         |
|       | 21 | 16 | 7.6 | 48        | 0.1  | 8   | 51         |
|       | 22 | 19 | 7.2 | 43        | 0.1  | 7.6 | 50         |
|       | 23 | 19 | 7.4 | 46        | 0.1  | 8.3 | 52         |
|       | 24 | 18 | 7.4 | 49        | 0.13 | 8.5 | 53         |
|       | 25 | 14 | 7.4 | 45        | 0.1  | 8.1 | 49         |
|       | 26 | 21 | 7.4 | 45        | 0.1  | 7.7 | 50         |
|       | 27 | 22 | 7.5 | 50        | 0.1  | 8.2 | 55         |
|       | 28 | 24 | 7.5 | 54        | 0.1  | 7.9 | 50         |
|       | 29 | 19 | 7.5 | 45        | 0.1  | 7.9 | 50         |
|       | 30 | 12 | 7.4 | 43        | 0.1  | 7.7 | 50         |
|       | 31 | 15 | 7.6 | 43        | 0.1  | 7.7 | <u>4</u> 6 |
| APRIL | 1  | 20 | 7.7 | 43        | 0.1  | 8.6 | 51         |
|       | 2  | 15 | 7.8 | 43        | 0.1  | 8.5 | 48         |
|       | 3  | 21 | 8.4 | 57        | 0.1  | 8   | 51         |
|       | 4  | 17 | 7.6 | 53        | 0.18 | 7.8 | 51         |
|       | 5  | 15 | 7.3 | 43        | 0.15 | 8.4 | 51         |
|       | 6  | 8  | 7   | 45        | 0.1  | 8.6 | 49         |
|       | 7  | 11 | 7.2 | 43        | 0.1  | 8   | 44         |
|       | 8  | 20 | 7.3 | 46        | 0.1  | 7.6 | 50         |
|       | 9  | 19 | 8.1 | 43        | 0.1  | 8.3 | 51         |
|       | 10 | 17 | 7.4 | 51        | 0.1  | 8.2 | 52         |
|       | 11 | 14 | 7.1 | 46        | 0.1  | 8   | 52         |
|       | 12 | 19 | 7.1 | 52        | 0.1  | 7.8 | 51         |
|       | 13 | 10 | 7.2 | 45        | 0.1  | 7.7 | 49         |
|       | 14 | 18 | 7   | 45        | 0.1  | 7.3 | 48         |
|       | 15 | 11 | 8.2 | 46        | 0.1  | 8.1 | 50         |
|       | 16 | 8  | 7.1 | 46        | 0.1  | 7.8 | 49         |
|       | 17 | 37 | 7.3 | 51        | 0.15 | 8.1 | 51         |
|       | 18 | 20 | 7.5 | 47        | 0.1  | 7.8 | 53         |
|       | 19 | 21 | 7.3 | 45        | 0.1  | 8.1 | 50         |
|       | 20 | 21 | 7.1 | 49        | 0.1  | 7.9 | 50         |
|       | 21 | 23 | 7.3 | 50        | 0.1  | 7.8 | 50         |
|       | 22 | 20 | 7.3 | 48        | 0.1  | 8   | 50         |
|       | 23 | 24 | 7.2 | 50        | 0.1  | 7.1 | 51         |
|       | 24 | 20 | 7.4 | 51        | 0.1  | 7.7 | 51         |
|       | 25 | 17 | 7.4 | 49        | 0.1  | 8.1 | 51         |
|       | 26 | 11 | 7.5 | 49        | 0.1  | 8.1 | 50         |
|       | 27 | 7  | 7.8 | 48        | 0.1  | 7.8 | 51         |
|       | 28 | 15 | 7.6 | 50        | 0.1  | 7.9 | 49         |
|       | 29 | 19 | 7.2 | 48        | 0.1  | 8.4 | 53         |
| MAY   | 30 | 18 | 7.4 | <u>47</u> | 0.1  | 8.1 | <u>53</u>  |
|       | 1  | 17 | 7.4 | 51        | 0.1  | 8.1 | 51         |
|       | 2  | 15 | 7   | 49        | 0.1  | 8.1 | 51         |
|       | 3  | 17 | 7.5 | 51        | 0.1  | 7.8 | 49         |
|       | 4  | 17 | 7.3 | 47        | 0.1  | 7.6 | 54         |
|       | 5  | 15 | 7.2 | 49        | 0.2  | 7.9 | 53         |

| 1    | 6                | 13 | 7.5 | 51 | 0.1  | 8.2 | 52       |
|------|------------------|----|-----|----|------|-----|----------|
|      | 7                | 15 | 7.9 | 50 | 0.1  | 8.1 | 50       |
|      | 8                | 8  | 7   | 49 | 0.1  | 8.2 | 50       |
|      | 9                | 15 | 7.2 | 46 | 0.1  | 7.7 | 52       |
|      | 10               | 18 | 7.4 | 51 | 0.13 | 7.6 | 56       |
|      | 11               | 27 | 7.6 | 54 | 0.13 | 8   | 49       |
|      | 12               | 13 | 7.1 | 50 | 0.1  | 7.8 | 54       |
|      | 13               | 16 | 7.6 | 50 | 0.1  | 8.2 | 52       |
|      | 14               | 14 | 7.8 | 50 | 0.1  | 8.1 | 51       |
|      |                  |    | 7.0 |    |      |     |          |
|      | 15               | 13 | 7.6 | 50 | 0.1  | 8.4 | 53       |
|      | 16               | 15 | 7.3 | 50 | 0.1  | 8   | 52       |
|      | 17               | 15 | 7.1 | 50 | 0.1  | 7.5 | 52       |
|      | 18               | 13 | 7.3 | 45 | 0.1  | 7.6 | 53       |
|      | 19               | 18 | 7.3 | 45 | 0.1  | 8.5 | 48       |
|      | 20               | 16 | 7.2 | 46 | 0.1  | 8.3 | 51       |
|      | 21               | 10 | 7.4 | 51 | 0.1  | 8.2 | 56       |
|      | 22               | 12 | 7.5 | 49 | 0.1  | 8.1 | 56       |
|      | 23               | 7  | 7.4 | 44 | 0.1  | 7.9 | 51       |
|      | 24               | 5  | 7.3 | 49 | 0.1  | 7.6 | 54       |
|      | 25               | 5  | 7.5 | 47 | 0.1  | 8.3 | 50       |
|      | 20               |    |     |    |      | 7.7 |          |
|      | 26               | 8  | 7.5 | 47 | 0.43 |     | 50       |
|      | 27               | 5  | 7.1 | 45 | 0.2  | 7.5 | 46       |
|      | 28               | 10 | 7.2 | 40 | 0.2  | 7.7 | 38       |
|      | 29               | 6  | 7   | 44 | 0.13 | 7.5 | 34       |
|      | 30               | 7  | 7.2 | 44 | 0.1  | 7.9 | 41       |
|      | 31               | 8  | 7.5 | 49 | 0.1  | 7.8 | 51       |
| JUNE | 1                | 8  | 7.5 | 47 | 0.1  | 8.1 | 51       |
|      | 2                | 7  | 7.4 | 48 | 0,1  | 7.8 | 54       |
|      | 3                | 7  | 7.4 | 47 | 0.1  | 7.8 | 51       |
|      | 4                | 7  | 7.2 | 47 | 0.1  | 7.7 | 48       |
|      | 5                | 10 | 7   | 48 | 0.1  | 7.6 | 57       |
|      | 6                | 7  | 7.5 | 48 | 0.1  | 7.6 | 52       |
|      | 7                | 7  | 7.3 | 53 | 0.1  | 8.1 | 51       |
|      | 6                |    |     |    |      | 8.3 |          |
|      | 8                | 4  | 7.8 | 48 | 0.1  |     | 55       |
|      | 9                | 5  | 7.5 | 49 | 0.2  | 8.1 | 50       |
|      | 10               | 13 | 7   | 49 | 0.2  | 8.3 | 67       |
|      | 11               | 8  | 7.4 | 49 | 0.1  | 8.3 | 54       |
|      | 12               | 10 | 7.4 | 47 | 0.26 | 8.3 | 53       |
|      | 13               | 16 | 7.1 | 46 | 0.31 | 8.6 | 45       |
|      | 14               | 6  | 7.3 | 46 | 0.13 | 8.8 | 86       |
|      | 15               | 6  | 7.1 | 52 | 0.56 | 7.5 | 59       |
|      | 16               | 5  | 7   | 45 | 0.31 | 8.4 | 47       |
|      | 17               | 7  | 7   | 46 | 0.2  | 8.8 | 56       |
|      |                  | 5  | 7   |    | 0.23 |     | 54       |
|      | 18               | 5  |     | 45 |      | 8   |          |
|      | 19               | 6  | 6.8 | 46 | 0.2  | 7.4 | 55       |
|      | 20               | 7  | 7   | 48 | 0.15 | 8.8 | 54       |
|      | 21               | 6  | 7.2 | 45 | 0.1  | 7.9 | 53       |
|      | 22               | 5  | 7.6 | 48 | 0.1  | 7.8 | 50       |
|      | 23               | 5  | 7.8 | 51 | 0.1  | 7.6 | 50       |
|      | 24               | 7  | 7.7 | 46 | 0.1  | 7.4 | 50       |
|      | 25               | 5  | 7.2 | 55 | 0.1  | 7.2 | 51       |
|      | 26               | 6  | 7.1 | 55 | 0.15 | 7.8 | 54       |
| · ·  | 27               | 6  | 7.5 | 48 | 0.2  | 8.1 | 54       |
|      | 28               | 4  | 7.9 | 45 | 0.1  | 7.7 | 51       |
|      | 29               | 5  | 7.6 | 48 | 0.1  | 7.9 | 55       |
| 1    | 29<br>30         | 6  | 7.2 | 46 | 0.1  | 8.3 | 50<br>50 |
|      |                  | 5  | 7.4 | 48 | 0.1  | 8.3 | 50       |
| JULY | 1<br>2           | 5  | 7.4 |    |      | 77  |          |
|      | 2                |    |     | 53 | 0.1  | 7.7 | 60       |
|      | 3                | 6  | 6.4 | 31 | 0.1  | 7.8 | 71       |
|      | 4                | 6  | 7.7 | 45 | 0.15 | 7.6 | 51       |
|      | 5                | 5  | 7.7 | 43 | 0.1  | 7.5 | 57       |
|      | 6                | 6  | 7.3 | 48 | 0.2  | 8.8 | 58       |
|      | 7                | 6  | 7.4 | 49 | 0.1  | 8.3 | 53       |
|      | 6<br>7<br>8<br>9 | 7  | 7.5 | 51 | 0.1  | 8.4 | 51       |
|      | 9                | 7  | 7.3 | 47 | 0.1  | 7.7 | 56       |
|      | 10               | 7  | 7.8 | 47 | 0.2  | 7.9 | 59       |
|      | 11               | 8  | 7.8 | 50 | 0.3  | 7.6 | 51       |
|      | 12               | 6  | 7.0 | 52 | 0.13 | 7.7 | 51       |
|      | 12               | 3  | 7   |    |      |     |          |
| 1    | 13               |    |     | 55 | 0.1  | 7.7 | 54       |
| 1    | 14               | 4  | 7.2 | 51 | 0.1  | 8.1 | 55       |
|      |                  |    |     |    |      |     |          |

|           | 15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28 | 3<br>4<br>4<br>7<br>4<br>3<br>3<br>10<br>9<br>4<br>5<br>4<br>3<br>5 | 7.1<br>7.3<br>7.4<br>7.2<br>6.7<br>7.3<br>7.4<br>7.4<br>7.5<br>7.1<br>7.3<br>7.3<br>7.4<br>7.5        | 53<br>54<br>52<br>45<br>50<br>48<br>48<br>50<br>49<br>51<br>47<br>49<br>48<br>47             | 0.1<br>0.13<br>0.2<br>0.15<br>0.1<br>0.15<br>0.13<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1 | 8<br>8.1<br>8.2<br>7.6<br>8.4<br>8.1<br>8.1<br>8.1<br>7.7<br>7.9<br>8.1<br>8.2<br>8.7          | 51<br>49<br>53<br>64<br>65<br>53<br>50<br>51<br>51<br>51<br>55<br>51<br>53<br>59 |
|-----------|----------------------------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|
|           | 29<br>30                                                                         | 4<br>5                                                              | 7.4<br>7.4                                                                                            | 49<br>51                                                                                     | 0.1<br>0.1                                                                                         | 7.8<br>8.1                                                                                     | 52<br>52                                                                         |
| AUGUST    | 31<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10                            | 46554445435                                                         | 7.4<br>7.3<br>7.4<br>7.4<br>7.4<br>7.4<br>7.4<br>7.5<br>7.5<br>7.5<br>7.4<br>7.3                      | 48<br>47<br>48<br>50<br>48<br>50<br>48<br>48<br>48<br>48<br>48<br>48                         | 0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.13<br>0.2<br>0.2<br>0.2<br>0.2<br>0.1                  | 8.1<br>7.6<br>8.4<br>8.8<br>8.4<br>7.5<br>8.2<br>7.9<br>8.3<br>8.2<br>8.2<br>8.2               | 52<br>61<br>56<br>56<br>54<br>48<br>50<br>56<br>56<br>60                         |
|           | 11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19                               | 465654653                                                           | 7.4<br>7.3<br>7.4<br>7.5<br>7.4<br>7.4<br>7.6<br>7.4<br>7.5                                           | 49<br>50<br>51<br>50<br>47<br>50<br>51<br>50<br>50                                           | 0.15<br>0.2<br>0.1<br>0.1<br>0.1<br>0.13<br>0.1<br>0.1<br>0.1                                      | 7.9<br>8.9<br>8.5<br>8<br>8.3<br>7.9<br>7.9<br>7.1                                             | 66<br>68<br>56<br>51<br>54<br>61<br>51<br>50<br>48                               |
|           | 20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29                         | 4<br>12<br>3<br>4<br>3<br>4<br>3<br>4<br>3<br>4<br>5                | 7.5<br>7.5<br>7.4<br>7.3<br>7.2<br>7.3<br>7.4<br>7.4<br>7.3<br>7.4                                    | 49<br>49<br>48<br>49<br>50<br>50<br>48<br>48<br>48                                           | 0.1<br>0.17<br>0.15<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1                               | 8.9<br>8.5<br>8.7<br>8.6<br>8<br>8.2<br>8.2<br>8.2<br>7.9                                      | 56<br>55<br>62<br>59<br>64<br>65<br>53<br>52<br>57                               |
| SEPTEMBER | 30<br>31<br>2<br>3<br>4<br>5<br>6                                                | 5<br>4<br>6<br>5<br>5<br>4<br>5<br>6                                | 7.3<br>7.1<br>7.5<br>7.3<br>7.4<br>7.6<br>7.6<br>7.6<br>7.6<br>7.3                                    | 49<br>48<br>50<br>50<br>49<br>51<br>51<br>49<br>51                                           | 0.1<br>0.13<br>0.15<br>0.2<br>0.15<br>0.1<br>0.1                                                   | 8.2<br>8.6<br>8.7<br>8.4<br>8.4<br>8.4<br>8.6<br>8.2<br>2.2                                    | 63<br>57<br>68<br>64<br>60<br>51<br>57<br>55                                     |
|           | 7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20    | 6345556661310955                                                    | 7.4<br>7.3<br>7.4<br>7.5<br>7.4<br>7.4<br>7.4<br>7.4<br>7.5<br>7.7<br>7.1<br>7.4<br>7.5<br>7.5<br>7.5 | 50<br>50<br>47<br>50<br>48<br>45<br>49<br>53<br>49<br>53<br>49<br>54<br>51<br>50<br>44<br>48 | 0.13<br>0.2<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1                  | 8.2<br>8.5<br>8.6<br>7.9<br>8.3<br>8.4<br>8.3<br>7.4<br>8.3<br>8.3<br>8.3<br>8.3<br>8.1<br>8.5 | 61<br>62<br>54<br>49<br>57<br>58<br>53<br>50<br>51<br>52<br>63<br>55             |
|           | 20<br>21<br>22                                                                   | 10<br>6                                                             | 7.3<br>7.1                                                                                            | 48<br>45<br>51                                                                               | 0.15<br>0.3                                                                                        | 8.6<br>8.3                                                                                     | 74<br>56                                                                         |

|          | 23               | 5                     | 7.2               | 50              | 0.4                 | 8.4               | 54             |
|----------|------------------|-----------------------|-------------------|-----------------|---------------------|-------------------|----------------|
|          | 24               | 8                     | 7.6               | 48              | 0.36                | 8.6               | 61             |
|          | 25               | 12                    | 7.4               | 48              | 0.33                | 8.4               | 54             |
|          | 26               | 7                     | 7.4               | 44              | 0.2                 | 8.6               | 65             |
|          | 27               | 6                     | 7.4               | 47              | 0.2                 | 8.4               | 58             |
|          | 28               | 6                     | 7.4               | 48              | 0.2                 | 8.4               | 57             |
|          | 29               | 8                     | 7.3               | 49              | 0.2                 | 8.5               | 55             |
|          | 30<br>1<br>2     | 7<br>6                | 7.6<br>7.6<br>7.4 | 49<br>52<br>49  | 0.4<br>0.26<br>0.23 | 8.1<br>8.7<br>8.5 | 51<br>57<br>55 |
| ļ        | 3                | 6                     | 7.3               | 51              | 0.25                | 8.6               | 57             |
|          | 4                | 6                     | 7.4               | 49              | 0.16                | 8.8               | 75             |
|          | 5                | 6                     | 7.6               | 52              | 0.15                | 8.4               | 61             |
|          | 6                | 3                     | 7.6               | 51              | 0.1                 | 8.1               | 61             |
|          | 7                | 4                     | 7.6               | 51              | 0.1                 | 8.1               | 60             |
|          | 8                | 8                     | 7.5               | 47              | 0.1                 | 8.4               | 57             |
|          | 9                | 10                    | 7.6               | 48              | 0.13                | 8.3               | 55             |
|          | 10               | 6                     | 7.4               | 54              | 0.2                 | 8.1               | 53             |
|          | 11               | 4                     | 7.6               | 55              | 0.2                 | 8.2               | 54             |
|          | 12               | 5                     | 7.4               | 55              | 0.2                 | 8.3               | 67             |
|          | 13<br>14         | 6<br>3                | 7.1<br>7.4        | 53<br>60        | 0.2                 | 8.1<br>8.6        | 55<br>65       |
|          | 15<br>16         | 3                     | 7.4<br>7.5        | 51<br>53        | 0.2<br>0.2          | 8.5<br>8.4        | 60<br>56       |
|          | 17               | 6                     | 7.2               | 61              | 0.2                 | 8.6               | 53             |
|          | 18               | 3                     | 7.3               | 45              | 0.2                 | 8                 | 58             |
|          | 19               | 2                     | 7.3               | 51              | 0.1                 | 8.3               | 52             |
|          | 20<br>21         | 2<br>2<br>2<br>5<br>3 | 7<br>7.1          | 63<br>59        | 0.1<br>0.2          | 7.9<br>7.8        | 60<br>66       |
|          | 22               | 5                     | 7.3               | 52              | 0.16                | 8.2               | 50             |
|          | 23               | 3                     | 7.4               | 53              | 0.2                 | 8.3               | 57             |
|          | 24               | 9                     | 7.6               | 47              | 0.2                 | 7.9               | 49             |
|          | 25               | 8                     | 7.3               | 53              | 0.2                 | 8.2               | 55             |
|          | 26               | 6                     | 7.3               | 53              | 0.2                 | 7.7               | 55             |
|          | 27               | 6                     | 7.4               | 50              | 0.2                 | 8.3               | 53             |
|          | 28               | 6                     | 7.5               | 53              | 0.13                | 8.3               | 52             |
|          | 29               | 4                     | 7.4               | 53              | 0.1                 | 8                 | 51             |
|          | 29<br>30<br>31   | 4                     | 7.5<br>8.3        | 46<br>66        | 0.1<br>0.2<br>0.2   | 8<br>7.6          | 52<br>54       |
| NOVEMBER | 1                | 3                     | 7.7               | 59              | 0.1                 | 7.9               | 53             |
|          | 2                | 2                     | 6.6               | 55              | 0.1                 | 7.9               | 53             |
|          | 3                | 3                     | 7.2               | 55              | 0.2                 | 7.8               | 46             |
|          | 4<br>5           | 4                     | 7.8<br>7.5        | 51<br>49        | 0.33<br>0.16        | 7.8<br>7.9        | 49<br>50       |
|          | 6<br>7           | 6<br>2<br>2           | 7.5<br>7.2        | 48<br>51        | 0.13                | 7.9<br>7.6        | 52<br>52       |
|          | 8                | 2                     | 7.2               | 48              | 0.3                 | 7.8               | 50             |
|          | 9                | 3                     | 7.5               | 53              | 0.3                 | 7.9               | 49             |
|          | 10               | 3                     | 6.8               | 38              | 0.2                 | 7.4               | 51             |
|          | 11               | 4                     | 7.2               | 48              | 0.2                 | 8.1               | 53             |
|          | 12               | 4                     | 7.3               | 49              | 0.3                 | 8                 | 52             |
|          | 13               | 3                     | 7.3               | 48              | 0.4                 | 8                 | 53             |
|          | 14               | 2                     | 6.9               | 53              | 0.43                | 7.6               | 54             |
|          | 15               | 9                     | 7.1               | 48              | 0.5                 | 7.9               | 53             |
|          | 16               | 6                     | 7.3               | 47              | 0.4                 | 7.9               | 51             |
|          | 17               | 7                     | 7.7               | 47              | 0.25                | 7.9               | 51             |
|          | 18               | 7                     | 7.6               | 50              | 0.2                 | 8.1               | 51             |
|          | 19               | 6                     | 7.5               | 48              | 0.2                 | 8                 | 52             |
|          | 20               | 9                     | 7.7               | 52              | 0.15                | 7.8               | 48             |
|          | 21<br>22         | 7                     | 7.4<br>7.5        | 51<br>55        | 0.1<br>0.15         | 8.1<br>7.6        | 54<br>51       |
|          | 23<br>24         | 5<br>9                | 7.5<br>7.6        | 50<br>55        | 0.2<br>0.2          | 8<br>7.7<br>7.7   | 51<br>58       |
|          | 25               | 7                     | 7.9               | 55              | 0.2                 | 7.7               | 51             |
|          | 26               | 7                     | 7.6               | 52              | 0.2                 | 8                 | 55             |
|          | 27               | 5                     | 7.6               | 51              | 0.1                 | 8                 | 53             |
|          | 28<br>29         | 4 7                   | 7.4<br>7.3        | 51<br>44        | 0.1<br>0.1          | 7.9<br>7.6        | 49<br>44       |
| DECEMBER | <u>30</u>  <br>1 | 7                     | 7.6               | <u>51</u><br>61 | 0.1                 | 7.7               | 47<br>43       |

.

|           | 15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31                                                                                                                                  | 3<br>4<br>4<br>7<br>4<br>3<br>3<br>10<br>9<br>4<br>5<br>4<br>3<br>5<br>4<br>5<br>4<br>5<br>4<br>5<br>4             | 7.1<br>7.3<br>7.4<br>7.2<br>6.7<br>7.3<br>7.4<br>7.5<br>7.1<br>7.3<br>7.4<br>7.5<br>7.4<br>7.5<br>7.4<br>7.5<br>7.4<br>7.4<br>7.4                                                                                                                                                    | 53<br>54<br>52<br>45<br>50<br>48<br>48<br>50<br>49<br>51<br>47<br>49<br>48<br>47<br>49<br>51<br>48                                                                                                                                                                                                                                                             | 0.1<br>0.13<br>0.22<br>0.15<br>0.15<br>0.13<br>0.13<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1                                                      | 8<br>8.1<br>8.2<br>7.6<br>8.4<br>8.1<br>8.1<br>8.1<br>7.7<br>7.9<br>8.1<br>8.2<br>8.7<br>7.8<br>8.1<br>8.1<br>8.1                                                                                | 51<br>49<br>53<br>64<br>53<br>50<br>51<br>51<br>55<br>53<br>59<br>52<br>52<br>52<br>52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| AUGUST    | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31<br>31 | 6554445435465654653423434434654                                                                                    | 7.3<br>7.4<br>7.4<br>7.4<br>7.4<br>7.5<br>7.5<br>7.4<br>7.3<br>7.4<br>7.3<br>7.4<br>7.3<br>7.4<br>7.5<br>7.5<br>7.4<br>7.5<br>7.5<br>7.4<br>7.5<br>7.5<br>7.5<br>7.4<br>7.5<br>7.5<br>7.5<br>7.4<br>7.3<br>7.2<br>7.3<br>7.4<br>7.3<br>7.4<br>7.3<br>7.4<br>7.3<br>7.4<br>7.3<br>7.4 | 47<br>48<br>48<br>50<br>48<br>50<br>48<br>48<br>48<br>48<br>48<br>48<br>49<br>50<br>51<br>50<br>51<br>50<br>51<br>50<br>50<br>49<br>49<br>49<br>49<br>49<br>50<br>50<br>48<br>49<br>49<br>50<br>50<br>48<br>49<br>49<br>50<br>48<br>49<br>49<br>50<br>48<br>49<br>50<br>50<br>48<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50<br>50 | 0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.13<br>0.2<br>0.2<br>0.2<br>0.2<br>0.1<br>0.15<br>0.2<br>0.1<br>0.15<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1 | 7.6<br>8.4<br>8.8<br>8.4<br>7.5<br>8.2<br>7.9<br>8.3<br>8.2<br>7.9<br>8.3<br>8.2<br>7.9<br>8.3<br>8.2<br>7.9<br>8.5<br>8.3<br>7.9<br>7.9<br>7.9<br>7.9<br>7.9<br>7.9<br>7.9<br>7.9<br>7.9<br>7.9 | 61<br>56<br>52<br>56<br>54<br>48<br>55<br>56<br>66<br>66<br>66<br>55<br>51<br>54<br>51<br>50<br>8<br>55<br>52<br>59<br>44<br>65<br>55<br>25<br>76<br>35<br>75<br>35<br>76<br>35<br>76<br>35<br>76<br>35<br>76<br>35<br>76<br>35<br>76<br>35<br>76<br>35<br>76<br>35<br>76<br>35<br>76<br>35<br>76<br>35<br>76<br>35<br>76<br>35<br>76<br>35<br>76<br>35<br>76<br>35<br>76<br>35<br>76<br>35<br>76<br>35<br>76<br>35<br>76<br>35<br>76<br>35<br>76<br>35<br>76<br>35<br>76<br>35<br>76<br>35<br>76<br>35<br>76<br>35<br>76<br>35<br>76<br>35<br>76<br>35<br>76<br>35<br>76<br>35<br>76<br>35<br>76<br>76<br>76<br>76<br>76<br>76<br>76<br>76<br>76<br>76<br>76<br>76<br>76 |
| SEPTEMBER | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22                                                                                                             | 6<br>5<br>5<br>4<br>5<br>6<br>6<br>3<br>4<br>5<br>5<br>5<br>6<br>6<br>6<br>6<br>13<br>10<br>9<br>5<br>5<br>10<br>6 | 7.5<br>7.3<br>7.4<br>7.6<br>7.6<br>7.3<br>7.4<br>7.3<br>7.4<br>7.3<br>7.4<br>7.3<br>7.4<br>7.5<br>7.4<br>7.5<br>7.4<br>7.5<br>7.7<br>7.1<br>7.4<br>7.5<br>7.5<br>7.6<br>7.3<br>7.1                                                                                                   | 50<br>50<br>49<br>51<br>51<br>49<br>50<br>50<br>47<br>50<br>48<br>45<br>49<br>53<br>49<br>53<br>49<br>54<br>51<br>50<br>44<br>48<br>45<br>51                                                                                                                                                                                                                   | 0.13<br>0.13<br>0.15<br>0.2<br>0.15<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1                                                                      | 8.7<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.4<br>8.2<br>8.2<br>8.5<br>8.6<br>7.9<br>8.3<br>8.4<br>8.4<br>8.3<br>7.4<br>8.3<br>8.3<br>8.3<br>8.3<br>8.3<br>8.3<br>8.3<br>8.3<br>8.3<br>8.3        | 68<br>64<br>60<br>51<br>57<br>55<br>61<br>62<br>54<br>9<br>54<br>57<br>58<br>53<br>50<br>51<br>51<br>52<br>63<br>55<br>74<br>56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |



#### 

### NORTH WATER TREATMENT PLANT 1995

| DATE     |                                                                                                                                     |                                                                                                    | VATER ANA                                                                                                           |                                                                                        |                                                                                                                                | D WATER AN                                                                                     |                                                                                        |
|----------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|
| MONTH    | DAY                                                                                                                                 | NTU                                                                                                | PH                                                                                                                  | ALK                                                                                    |                                                                                                                                | рН                                                                                             | ALK                                                                                    |
|          | 1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24 |                                                                                                    |                                                                                                                     |                                                                                        | NTU                                                                                                                            |                                                                                                |                                                                                        |
| FEBRUARY | 25<br>26<br>27<br>28<br>29<br>30<br>31<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13<br>14<br>15<br>16       | 18<br>30<br>23<br>31<br>21<br>20<br>28<br>18<br>18<br>12<br>27<br>25<br>30<br>21<br>26<br>20<br>20 | 7.4<br>7.2<br>7.5<br>7.6<br>7.6<br>7.6<br>7.6<br>7.3<br>7.3<br>7.3<br>7.3<br>7.6<br>7.4<br>7.4<br>7.2<br>7.6<br>7.5 | 39<br>43<br>40<br>41<br>38<br>40<br>39<br>31<br>39<br>36<br>34<br>25<br>39<br>32<br>36 | 0.33<br>0.3<br>0.35<br>0.63<br>0.33<br>0.33<br>0.5<br>0.53<br>0.53<br>0.53<br>0.53<br>0.5<br>0.4<br>0.23<br>0.4<br>0.23<br>0.4 | 7.6<br>7.4<br>7.8<br>7.4<br>7.5<br>8.1<br>7.1<br>7.4<br>7.1<br>7.2<br>7.3<br>8.1<br>7.7<br>7.8 | 48<br>40<br>49<br>41<br>51<br>40<br>46<br>38<br>38<br>36<br>35<br>32<br>54<br>46<br>52 |
|          | 17<br>18<br>19<br>20<br>21<br>22<br>23<br>24                                                                                        | 26<br>32<br>33<br>26<br>33<br>23<br>23<br>32<br>28<br>17                                           | 7.2<br>7.7<br>7.4<br>7.1<br>7.2<br>7.6<br>7.4                                                                       | 44<br>40<br>41<br>37<br>36<br>39<br>36<br>38                                           | 0.48<br>0.6<br>0.3<br>0.23<br>0.33<br>0.23<br>0.2<br>0.3<br>0.2                                                                | 7.2<br>7.7<br>7.4<br>7.3<br>7.3<br>7.3<br>7.4<br>7.3<br>8.2                                    | 41<br>45<br>40<br>41<br>46<br>36<br>46<br>42<br>48                                     |

|       | 25<br>26<br>27                                                                                     | 34<br>29<br>17                                                                                                                                                                                             | 7.5<br>7.6<br>7.2                                                                                     | 36<br>41<br>42                                                                               | 0.3<br>0.3<br>0.2                                                                                                                | 7.6<br>7.4<br>7.6                                                                                                          | 40<br>39<br>48                                                                               |
|-------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| MARCH | 28<br>1<br>2<br>3<br>4<br>5<br>6<br>7<br>8<br>9<br>10<br>11<br>12<br>13                            | 22<br>17<br>23<br>24<br>23<br>26<br>24<br>25<br>23<br>22<br>24<br>23<br>19<br>18                                                                                                                           | 7.6<br>7.2<br>7.7<br>7.8<br>7.7<br>7.6<br>7.3<br>7.7<br>7.7<br>7.7<br>7.7<br>7.1<br>7.4<br>7.3<br>7.2 | 43<br>36<br>39<br>39<br>46<br>41<br>39<br>41<br>41<br>39<br>43<br>36<br>33                   | 0.16<br>0.23<br>0.35<br>0.2<br>0.2<br>0.2<br>0.1<br>0.1<br>0.15<br>0.16<br>0.1<br>0.1<br>0.1<br>0.1<br>0.1<br>0.2                | 7.6<br>7.7<br>8.2<br>8.4<br>7.5<br>7.4<br>7.3<br>7.5<br>7.4<br>7.4<br>7.4<br>7.4<br>7.5<br>7.4<br>7.5<br>7.4               | 43<br>44<br>45<br>45<br>40<br>40<br>40<br>43<br>44<br>44<br>47<br>46<br>43<br>41             |
|       | 14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30 | <ol> <li>33</li> <li>19</li> <li>20</li> <li>26</li> <li>30</li> <li>23</li> <li>23</li> <li>21</li> <li>29</li> <li>24</li> <li>31</li> <li>25</li> <li>28</li> <li>23</li> <li>26</li> <li>26</li> </ol> | 7.1<br>7.2<br>7.2<br>7.2<br>7.2<br>7.2<br>7.2<br>7.2<br>7.2<br>7.2<br>7.2                             | 31<br>36<br>40<br>41<br>42<br>40<br>38<br>41<br>43<br>39<br>42<br>37<br>44<br>41<br>46<br>49 | 0.33<br>0.16<br>0.26<br>0.1<br>0.1<br>0.1<br>0.13<br>0.13<br>0.13<br>0.15<br>0.15<br>0.16<br>0.15<br>0.15<br>0.15<br>0.15<br>0.2 | 7.6<br>7.7<br>8.1<br>7.5<br>7.8<br>7.3<br>7.8<br>7.3<br>7.8<br>7.9<br>7.8<br>7.6<br>7.5<br>8.3<br>7.4<br>7.7<br>7.6<br>7.8 | 46<br>48<br>48<br>45<br>43<br>48<br>46<br>47<br>60<br>50<br>47<br>48<br>46<br>51<br>53<br>50 |
| APRIL | 31<br>1<br>2<br>3<br>4                                                                             | 16                                                                                                                                                                                                         | 7.2                                                                                                   | 42                                                                                           | 0.2                                                                                                                              | 7.7                                                                                                                        | 39                                                                                           |
|       | 5<br>6<br>7<br>8<br>9                                                                              |                                                                                                                                                                                                            |                                                                                                       |                                                                                              |                                                                                                                                  |                                                                                                                            |                                                                                              |
|       | 11<br>12<br>13<br>14<br>15                                                                         |                                                                                                                                                                                                            |                                                                                                       | DATA UNA                                                                                     | /AILABLE                                                                                                                         |                                                                                                                            |                                                                                              |
|       | 16<br>17<br>18<br>19<br>20<br>21                                                                   |                                                                                                                                                                                                            |                                                                                                       |                                                                                              |                                                                                                                                  |                                                                                                                            |                                                                                              |
|       | 22<br>23<br>24<br>25<br>26                                                                         |                                                                                                                                                                                                            |                                                                                                       |                                                                                              |                                                                                                                                  |                                                                                                                            |                                                                                              |
| MAY   | 27<br>28<br>29<br>30<br>1<br>2                                                                     | 9<br>12                                                                                                                                                                                                    | 6.7<br>7.5                                                                                            | 42<br>42<br>42                                                                               | 0.1<br>0.16                                                                                                                      | 7.5<br>7.7                                                                                                                 | 57<br>54                                                                                     |
|       | 2<br>3<br>4<br>5                                                                                   | 11<br>8.4<br>8.5                                                                                                                                                                                           | 7.2<br>7.5<br>7.3                                                                                     | 42<br>41<br>43<br>36                                                                         | 0.16<br>0.2<br>0.15                                                                                                              | 7.9<br>7.5                                                                                                                 | 56<br>58                                                                                     |

|      | 6<br>7<br>8<br>9           | 10<br>9<br>17             | 7.4<br>7.3<br>7.1        | 43<br>39<br>49       | 0.1<br>0.1<br>0.16        | 8<br>8.1<br>7.7          | 56<br>54<br>46       |
|------|----------------------------|---------------------------|--------------------------|----------------------|---------------------------|--------------------------|----------------------|
|      | 9                          | 9                         | 7.2                      | 35                   | 0.15                      | 7.7                      | 40                   |
|      | 10                         | 11                        | 7.1                      | 38                   | 0.15                      | 8.2                      | 56                   |
|      | 11                         | 12                        | 6.8                      | 36                   | 0.2                       | 7.6                      | 53                   |
|      | 12                         | 15                        | 7                        | 40                   | 0.2                       | 7.7                      | 53                   |
|      | 13                         | 21                        | 7.2                      | 44                   | 0.2                       | 7.7                      | 54                   |
|      | 14                         | 16                        | 7.3                      | 39                   | 0.25                      | 8                        | 67                   |
|      | 15                         | 14                        | 7.1                      | 38                   | 0.3                       | 7.8                      | 63                   |
|      | 16                         | 14                        | 7.1                      | 38                   | 0.41                      | 7.8                      | 62                   |
|      | 17                         | 8.8                       | 8.3                      | 40                   | 0.23                      | 8                        | 54                   |
|      | 18                         | 14.5                      | 6.7                      | 40                   | 0.1                       | 8                        | 56                   |
|      | 19                         | 14                        | 7                        | 36                   | 0.2                       | 7.5                      | 49                   |
|      | 20                         | 14                        | 7.1                      | 39                   | 0.25                      | 7.9                      | 50                   |
|      | 21                         | 12                        | 7.3                      | 36                   | 0.2                       | 7.7                      | 58                   |
|      | 22                         | 11                        | 7.2                      | 37                   | 0.2                       | 7.8                      | 60                   |
|      | 23                         | 19                        | 7                        | 37                   | 0.2                       | 7.5                      | 55                   |
|      | 24                         | 18                        | 7.2                      | 35                   | 0.21                      | 8                        | 58                   |
|      | 25                         | 18                        | 7.4                      | 38                   | 0.11                      | 7.4                      | 58                   |
|      | 26<br>27<br>28<br>29<br>30 | 14<br>13<br>14<br>15      | 7.4<br>7.7<br>7.9<br>7.5 | 37<br>51<br>53<br>44 | 0.1<br>0.2<br>0.3<br>0.33 | 8.4<br>7.7<br>8<br>7.4   | 50<br>60<br>64<br>66 |
| JUNE | <u>31</u>                  | 15<br><u>11.5</u><br>11.9 | 7.6<br>7.3<br>7.6        | 46<br>44<br>39       | 0.38<br>0.43<br>0.2       | 7.7<br>7.3<br>7.2        | 59<br>44<br>58       |
|      | 2                          | 11.6                      | 7.3                      | 33                   | 0.2                       | 7.6                      | 59                   |
|      | 3                          | 7.3                       | 7.6                      | 25                   | 0.2                       | 8.6                      | 58                   |
|      | 4                          | 6.4                       | 7.4                      | 42                   | 0.2                       | 8.7                      | 57                   |
|      | 5                          | 7.4                       | 7.5                      | 44                   | 0.1                       | 8.7                      | 87                   |
|      | 6<br>7<br>8<br>9           | 16<br>16<br>8             | 7.4<br>7.6<br>7.8<br>7.7 | 32<br>39<br>52       | 0.15<br>0.1<br>0.33       | 8.3<br>8.4<br>8.7        | 65<br>64<br>70       |
|      | 10<br>11<br>12             | 12<br>12<br>19<br>9.5     | 7.7<br>7.1<br>7.6        | 52<br>48<br>53<br>32 | 0.16<br>0.1<br>0.2<br>0.2 | 8.1<br>8.2<br>8.6<br>8.6 | 64<br>67<br>70<br>80 |
|      | 13                         | 11                        | 7.3                      | 49                   | 0.16                      | 8.6                      | 64                   |
|      | 14                         | 1.2                       | 9.3                      | 47                   | 0.1                       | 7.5                      | 52                   |
|      | 15                         | 11                        | 7.4                      | 42                   | 0.1                       | 8.5                      | 71                   |
|      | 16                         | 22                        | 6.2                      | 17                   | 0.16                      | 8.7                      | 66                   |
|      | 17                         | 8                         | 7.3                      | 38                   | 0.15                      | 8.3                      | 63                   |
|      | 18                         | 10                        | 7.2                      | 40                   | 0.1                       | 8.4                      | 68                   |
|      | 19                         | 66                        | 7.6                      | 62                   | 0.15                      | 8.7                      | 65                   |
|      | 20                         | 18                        | 7.5                      | 52                   | 0.1                       | 8.6                      | 68                   |
|      | 21                         | 9                         | 7                        | 42                   | 0.13                      | 8.5                      | 69                   |
|      | 22                         | 9                         | 7.1                      | 43                   | 0.15                      | 8.4                      | 62                   |
|      | 23                         | 12                        | 7                        | 40                   | 0.15                      | 8.4                      | 67                   |
|      | 24                         | 12                        | 7.2                      | 38                   | 0.15                      | 8.5                      | 67                   |
|      | 25                         | 15                        | 6.5                      | 41                   | 0.2                       | 8.4                      | 70                   |
|      | 26                         | 5.5                       | 7.2                      | 39                   | 0.28                      | 8.3                      | 50                   |
|      | 27                         | 19                        | 7.2                      | 45                   | 0.15                      | 8.8                      | 68                   |
|      | 28                         | 18                        | 7.4                      | 42                   | 0.35                      | 8.6                      | 66                   |
|      | 29                         | 18                        | 7.8                      | 28                   | 0.2                       | 8.7                      | 70                   |
|      | 30                         | 27                        | 7.7                      | 48                   | 0.2                       | 8.8                      | 72                   |
| JULY | 1                          | 10                        | 7.6                      | 46                   | 0.36                      | 8.6                      | 68                   |
|      | 2                          | 14                        | 7.5                      | 44                   | 0.16                      | 8.6                      | 65                   |
|      | 3                          | 15                        | 7.6                      | 42                   | 0.1                       | 8.5                      | 63                   |
|      | 4                          | 12                        | 7.5                      | 43                   | 0.1                       | 8.2                      | 60                   |
|      | 5                          | 8                         | 7.2                      | 38                   | 0.1                       | 7.7                      | 58                   |
|      | 6                          | 10                        | 7.4                      | 41                   | 0.2                       | 8.6                      | 68                   |
|      | 7                          | 7                         | 6.2                      | 66                   | 0.4                       | 8.2                      | 70                   |
|      | 8                          | 8                         | 7.2                      | 55                   | 0.5                       | 7.6                      | 67                   |
|      | 9                          | 15                        | 7.2                      | 63                   | 0.5                       | 9                        | 70                   |
|      | 10                         | 5                         | 7.2                      | 44                   | 0.2                       | 8.8                      | 49                   |
|      | 11                         | 5                         | 7.1                      | 42                   | 0.35                      | 7.4                      | 46                   |
|      | 12<br>13<br>14             | 4<br>4<br>4               | 7.1<br>3.2<br>7          | 48<br>52             | 0.4<br>0.3                | 6.3<br>6.9               | 28<br>36<br>56       |

| 1         | 15       | 4           | 7          | 46       | 0.3           | 7.6        | 53       |
|-----------|----------|-------------|------------|----------|---------------|------------|----------|
|           | 16<br>17 | 7<br>5      | 7.4<br>7.3 | 44<br>48 | 0.1<br>0.2    | 7.7<br>7.3 | 60<br>60 |
|           | 18       | 7           | 6.6        | 56       | 0.35          | 7.4        | 56       |
|           | 19<br>20 | 13<br>6     | 6.7<br>7.2 | 60<br>48 | 0.25<br>0.2   | 9<br>8     | 70<br>68 |
|           | 21<br>22 | 10<br>11    | 7.2<br>7.7 | 62       | 0.4<br>0.23   | 8.2<br>8.1 | 68       |
|           | 23       | 13          | 8.3        | 60<br>48 | 0.2           | 7.2        | 59<br>60 |
|           | 24       | 9<br>12     | 8.6<br>8.4 | 48       | 0.25<br>0.2   | 8.5        | 60       |
|           | 25<br>26 | 4           | 8.3        | 50<br>44 | 0.2           | 7.9<br>9.7 | 60<br>80 |
|           | 27<br>28 | 4<br>8      | 8<br>8.3   | 45<br>44 | 0.1<br>0.25   | 9.6<br>8.8 | 78<br>70 |
|           | 29       | 2           | 7.6        | 54       | 0.35          | 7.8        | 56       |
|           | 30<br>31 | 2<br>7      | 7.7<br>7.4 | 60<br>48 | 0.35<br>0.16  | 8.5<br>7.2 | 68<br>48 |
| AUGUST    | 1        | 4.6<br>5.2  | 7.4        | 48       | 0.1           | 9          | 76       |
|           | 2<br>3   | 6.3         | 7.2<br>7.9 | 48<br>44 | 0.3<br>0.15   | 8.3<br>8.4 | 68<br>56 |
|           | 4        | 9<br>6      | 7.2<br>7.6 | 48       | 0.1           | 9<br>8.7   | 85       |
|           | 5<br>6   | 7           | 7.6        | 53<br>51 | 0.1<br>0.15   | 8.4        | 80<br>58 |
|           | 7        | 5<br>4      | 7.2<br>7.9 | 48       | 0.1           | 9.3        | 72       |
|           | 8<br>9   | 5           | 7.8        | 44<br>44 | 0.1<br>0.1    | 9.4<br>9.2 | 72<br>72 |
|           | 10       | 9           | 8.2<br>7.3 | 48       | 0.3           | 8.6        | 68       |
|           | 11<br>12 | 5<br>3<br>3 | 7.5        | 52<br>48 | 0.2<br>0.15   | 8.8<br>8.6 | 60<br>56 |
|           | 13       | 3           | 7.5        | 48       | 0.2           | 8.6        | 64       |
|           | 14<br>15 | 3<br>3      | 7.5<br>7.7 | 48<br>48 | 0.2<br>0.1    | 8.6<br>8.2 | 64<br>56 |
|           | 16       | 2.6         | 7.7        | 44       | 0.15          | 7.7        | 48       |
|           | 17<br>18 | 2.8<br>6    | 7.7<br>8   | 48<br>48 | 0.25<br>0.1   | 8.4<br>7.4 | 48<br>44 |
|           | 19       | 6           | 7.9        | 53       | 0.23          | 7.6        | 56       |
|           | 20<br>21 | 6.3<br>2.2  | 7.2<br>7.3 | 60<br>30 | 1.1<br>0.55   | 7.4<br>8.5 | 60<br>70 |
|           | 22       | 3.4         | 7.3        | 48       | 0.3           | 7.8        | 64       |
|           | 23<br>24 | 2.6<br>3    | 7.4<br>7.4 | 52<br>51 | 0.13<br>0.075 | 7.8<br>8   | 60<br>70 |
|           | 25       | 4.8         | 7.5<br>7.9 | 48       | 0.075         | 8          | 52       |
| ſ         | 26<br>27 | 5<br>5      | 7.8        | 63<br>59 | 0.1<br>0.18   | 8.1<br>7.8 | 57<br>58 |
|           | 28       | 3           | 7.6        | 44       | 0.1           | 8.6        | 68       |
|           | 29<br>30 | 4<br>3      | 7.4        | 52<br>51 | 0.1<br>0.1    | 8.7<br>8.5 | 46<br>54 |
|           | 31       | 2.7         | 7.3        | 44       | 0.16          | 7.3        | 48       |
| SEPTEMBER | 1        | 3.5         | 7.9<br>7.3 | 52<br>52 | 0.1<br>0.13   | 7.1<br>8.4 | 40<br>56 |
|           | 3        | 4<br>3.5    | 7.4<br>8.2 | 48<br>48 | 0.1<br>0.1    | 8.4<br>8.7 | 60<br>60 |
|           | 5        | 2.8         | 8.1        | 52       | 0.1           | 8.7        | 60       |
|           | 6<br>7   | 3.2<br>4    | 8.1<br>7.4 | 52<br>52 | 0.1           | 8.5<br>8.8 | 60<br>75 |
|           | 8        | 3.7         | 7.7        | 52<br>52 | 0.1<br>0.1    | 7.7        | 75<br>44 |
|           | 9<br>10  | 5.1<br>3    | 7.4<br>7.5 | 61<br>54 | 0.1<br>0.13   | 7.9<br>7.5 | 63<br>54 |
| Į         | 11       | 3.9         | 7.5        | 52       | 0.13          | 7.3        | 44       |
|           | 12<br>13 | 4.4<br>6    | 7.4<br>7.8 | 52<br>52 | 0.1<br>0.15   | 6.5<br>7.9 | 52<br>60 |
|           | 14       | 4           | 7.7        | 52<br>48 | 0.13          | 8.8        | 72       |
|           | 15<br>16 | 7<br>9      | 7.4<br>7.5 | 48<br>56 | 0.15<br>0.1   | 8.9<br>9.2 | 80<br>90 |
|           | 17       | 8           | 7.6        | 54       | 0.1           | 8.9        | 76       |
|           | 18<br>19 | 8<br>4      | 7.8<br>7.4 | 52<br>48 | 0.16<br>0.1   | 7.9<br>7.7 | 52<br>52 |
|           | 20       | 2           | 7.4        | 32       | 0.13          | 8.7        | 64       |
|           | 21<br>22 | 2<br>5      | 7.5<br>7.3 | 34       | 0.1<br>0.1    | 8.6<br>7.7 | 62       |
| I         | 22       | 2           | 1.3        | 52       | 0.1           | 7.7        | 56       |

|          | 23       | 5          | 7.2        | 48         | 0.1          | 8.9        | 64       |
|----------|----------|------------|------------|------------|--------------|------------|----------|
|          | 24       | 6          | 7.3        | 48         | 0.1          | 8.5        | 56       |
|          | 25<br>26 | 6<br>6     | 7.4<br>7.1 | 52<br>56   | 0.1<br>0.1   | 8.5<br>8.8 | 54<br>70 |
|          | 27       | 6          | 7.4        | 52         | 0.1          | 7.8        | 64       |
|          | 28       | 5          | 8          | 56         | 0.1          | 8.6        | 60       |
|          | 29<br>30 | 15<br>5    | 7.7<br>7.2 | 56<br>51   | 0.13         | 7.6<br>9   | 61<br>90 |
| OCTOBER  | 1        | 12         | 7.6        | 59         | 0.1          | 8.2        | 57       |
|          | 2<br>3   | 13<br>5    | 7.5<br>7.5 | 56<br>56   | 0.1<br>0.1   | 7.9<br>8   | 66<br>64 |
|          | 4        | 3          | 7.5        | 57         | 0.1          | 8.6        | 66       |
|          | 5        | 4          | 7.6        | 54         | 0.1          | 8.6        | 65       |
|          | 6<br>7   | 5<br>16    | 7.3<br>7.4 | 52<br>56   | 0.1<br>0.1   | 8.7<br>8.7 | 66<br>71 |
|          | 8        | 2          | 7.1        | 48         | 0.1          | 8.3        | 60       |
|          | 9        | 4          | 7          | 56         | 0.1          | 8          | 66       |
|          | 10       | 5<br>5     | 7.3        | 56         | 0.2          | 8.5        | 63       |
|          | 11<br>12 | 4          | 7.4<br>7.4 | 60<br>58   | 0.2<br>0.16  | 8.9<br>8.8 | 80<br>68 |
|          | 13       | 4          | 7.3        | 54         | 0.1          | 8.7        | 66       |
|          | 14       | 3          | 7          | 60         | 0.1          | 8.4        | 64       |
|          | 15<br>16 | 4<br>5     | 7.3<br>7.3 | 60         | 0.1          | 8.7        | 68<br>67 |
|          | 17       | 7          | 7.4        | 52<br>56   | 0.1<br>0.1   | 8.3<br>8.3 | 67<br>66 |
|          | 18       | 4          | 7.3        | 51         | 0.1          | 8.4        | 65       |
|          | 19       | 4          | 7.3        | 52         | 0.1          | 8.1        | 63       |
|          | 20<br>21 | 4          | 7.4<br>7.6 | 52<br>56   | 0.15<br>0.13 | 8.4<br>8.4 | 66<br>68 |
|          | 22       | 4          | 7.6        | 54         | 0.13         | 8          | 56       |
|          | 23       | 3          | 7.5        | 44         | 0.1          | 8.1        | 65       |
|          | 24       | 4          | 7.6        | 50         | 0.1          | 7.9        | 66       |
|          | 25<br>26 | 4          | 7.2<br>7.1 | 56<br>57   | 0.1<br>0.1   | 7.9<br>8.4 | 60<br>67 |
|          | 27       | 3          | 7.6        | 54         | 0.1          | 8          | 65       |
|          | 28       | 3          | 7.8        | 52         | 0.1          | 8.2        | 63       |
|          | 29<br>30 | 4          | 6.8<br>7.2 | 46<br>60   | 0.1<br>0.1   | 8.3<br>8   | 68<br>68 |
|          | 31       | 4<br>5     | 7.2        | 56         | 0.1          | 8.6        | 72       |
| NOVEMBER | 1        | 5.4        | 6.9<br>6.6 | 56         | 0.1          | 8.3        | 64<br>66 |
|          | 3        | 4<br>5.2   | 7.1        | 50<br>57   | 0.08<br>0.34 | 7.9<br>7.9 | 66<br>64 |
|          | 4        | 4.8        | 7.1        | 52         | 0.14         | 7.9        | 63       |
|          | 5        | 5.1        | 7          | 54         | 0.14         | 8.2        | 65       |
|          | 6<br>7   | 5<br>4.4   | 6.9<br>6.9 | 53  <br>48 | 0.19<br>0.16 | 8.3<br>8   | 66<br>65 |
|          | 8        | 5.5        | 6.8        | 48         | 0.16         | 8          | 64       |
|          | 9        | 6.3        | 7.1        | 49         | 0.1          | 7.6        | 58       |
|          | 10       | 7.5        | 6.9        | 48         | 0.16         | 7.5        | 61       |
|          | 11<br>12 | 11<br>10   | 7.2<br>6.9 | 51<br>46   | 0.2<br>0.16  | 7.5<br>7.9 | 51<br>53 |
|          | 13       | 5          | 6.9        | 48         | 0.1          | 8          | 63       |
|          | 14       | 5.5        | 7.2        | 54         | 0.16         | 7.9        | 62       |
|          | 15<br>16 | 6.3<br>6.5 | 6.9<br>6.9 | 49<br>48   | 0.16<br>0.16 | 7.9<br>7.8 | 61<br>62 |
|          | 17       | 0.5<br>7   | 7.4        | 48<br>52   | 0.16         | 8.2        | 63       |
|          | 18       | 13         | 7          | 49         | 0.2          | 8.1        | 56       |
|          | 19       | 8          | 7.6        | 56         | 0.2          | 8.1        | 50       |
|          | 20<br>21 | 11<br>10   | 6.7<br>7.3 | 43<br>54   | 0.2<br>0.23  | 8.1<br>8.3 | 65<br>63 |
|          | 22       | 8.4        | 7.3        | 48         | 0.2          | 8          | 58       |
|          | 23       | 7.6        | 7.3        | 45         | 0.2          | 7.9        | 60       |
|          | 24       | 8          | 7.4        | 49         | 0.2          | 8.3        | 65       |
|          | 25<br>26 | 15<br>10   | 7.1<br>7.2 | 46<br>48   | 0.1<br>0.1   | 8.2<br>8.2 | 63<br>63 |
|          | 27       | 10         | 7.3        | 46         | 0.1          | 8.3        | 65       |
|          | 28       | 11         | 7.7        | 51         | 0.2          | 8.5        | 66       |
|          | 29       | 12         | 7.9        | 51         | 0.2          | 7.7        | 52       |
|          | 30       | 11         | 7.5        | 35         | 0.2          | 7.7        | 58       |

.

|        | 2       | 10     | 7.5 | 40   | 0.26 | 8   | 60   |
|--------|---------|--------|-----|------|------|-----|------|
| 1      | 3       | 14     | 7.6 | 49   | 0.45 | 7.8 | 54   |
|        | 4       | 10     | 7.2 | 40   | 0.45 | 8.1 | 64   |
|        | 5       | 11     | 7.3 | 43   | 0.35 | 8   | 61   |
|        | 6       | 12     | 7.2 | 39   | 0.3  | 8.2 | 64   |
|        | 7       | 11     | 7.4 | 39   | 0.31 | 8.5 | 68   |
|        | 8       | 9      | 7.4 | 41   | 0.36 | 8.1 | 63   |
|        | 9       | 8.4    | 7.4 | 38   | 0.4  | 7.8 | 58   |
|        | 10      | 10     | 7.3 | 39   | 0.45 | 7.8 | 62   |
|        | 11      | 11     | 7.4 | 41   | 0.28 | 8.1 | 64   |
|        | 12      | 9      | 7.6 | 52   | 0.2  | 8.3 | 65   |
| Į      | 13      | 9.4    | 7.5 | 48   | 0.2  | 7.7 | 59   |
|        | 14      | 14     | 7.3 | 29   | 0.15 | 7.5 | 50   |
|        | 15      | 12     | 7.4 | 26   | 0.1  | 8.4 | 66   |
|        | 16      | 9      | 8   | 39   | 0.1  | 8.2 | 63   |
|        | 17      | 11     | 7   | 48   | 0.15 | 8.3 | 64   |
|        | 18      | 9      | 7.7 | 41   | 0.26 | 8.2 | 61   |
|        | 19      | 11     | 7.8 | 41   | 0.1  | 8.3 | 64   |
|        | 20      | 12     | 7.6 | 43   | 0.1  | 7.7 | 54   |
| [      | 21      | 11     | 7.4 | 40   | 0.1  | 8.6 | 68   |
|        | 22      | 10     | 7.7 | 44   | 0.1  | 8.8 | 80   |
|        | 23      | 5<br>3 | 7.8 | 38   | 0.1  | 8.6 | 80   |
|        | 24      | 3      | 7.6 | 41   | 0.1  | 8.7 | 62   |
|        | 25      | 2      | 6.9 | 35   | 0.15 | 8.5 | 66   |
|        | 26      | 13     | 6.9 | 33   | 0.36 | 8   | 58   |
|        | 27      | 12     | 7.5 | 38   | 0.1  | 8.4 | 65   |
|        | 28      | 10     | 7.7 | 43   | 0.1  | 8.5 | 64   |
|        | 29      | 11     | 7.8 | 40   | 0.18 | 8.1 | 59   |
|        | 30      | 12     | 7.1 | 64   | 0.1  | 8   | 60   |
|        | 31      | 12     | 7.5 | 49   | 0.1  | 7.9 | 51   |
| YEARLY | AVERAGE | 11.6   | 7.4 | 45.3 | 0.2  | 8.1 | 58.5 |
|        | MINIMUM | 1.2    | 3.2 | 0.0  | 0.1  | 6.3 | 28.0 |
| l      | MAXIMUM | 66.0   | 9.3 | 66.0 | 1.1  | 9.7 | 90.0 |

Values for Raw and Finished Water Turbidity, pH, and Alkalinity were taken from Texas Water Commission monthly operating reports. Finished water turbidity is an average of the six turbidity measurements taken for each day.

The average, minimum, and maximum values for the year are provided.



### SOUTH WATER TREATMENT PLANT 1994

| DATE     |          | BAW V    |            | YSES     | FINISHE      | WATER AN        | ALYSES   |
|----------|----------|----------|------------|----------|--------------|-----------------|----------|
| MONTH    | DAY      | NTU      | pH         | ALK      | NTU          | pН              | ALK      |
| OCTOBER  | 1        | 11       | 8.5        | 54       | 0.3          | 7.9             | 53       |
| ]        | 2        | 12       | 8.5        | 52       | 0.35         | 8.1             | 52       |
|          | 3        | 14       | 8.3        | 54       | 0.3          | 7.8             | 51       |
|          | 4        | 11       | 8.7        | 55       | 0.26         | 8.1             | 70       |
|          | 5        | 6        | 8.8        | 53       | 0.3          | 7. <del>9</del> | 57       |
|          | 6        | 7        | 8.8        | 57       | 0.3          | 8.2             | 55       |
|          | 7        | 14       | 8.9        | 66       | 0.45         | 7.4             | 57       |
|          | 8        | 21       | 8.4        | 46       | 0.25         | 7.9             | 52       |
|          | 9        | 19       | 8.5        | 48       | 0.2          | 8               | 53       |
| }        | 10       | 13       | 8.7        | 61       | 0.2          | 7.7             | 53       |
|          | 11       | 12       | 8.6        | 62       | 0.3          | 7.7             | 19       |
|          | 12       | 10       | 8.7        | 59       | 0.4          | 8.4             | 66       |
|          | 13       | 13       | 8.9        | 66       | 0.3          | 8.1             | 55       |
|          | 14       | 10       | 8.2        | 53       | 0.15         | 7.6             | 49<br>50 |
|          | 15       | 15       | 8.6        | 55       | 0.56         | 7.9             | 50       |
|          | 16<br>17 | 14<br>12 | 8.3<br>8.2 | 58<br>58 | 0.55         | 7.9<br>7.8      | 53<br>53 |
|          | 18       | 13       | 8.2<br>8.2 | 50<br>54 | 0.46<br>0.3  | 7.8<br>8.2      | 53       |
|          | 19       | 11       | 8.2        | 48       | 0.3          | 7.8             | 54       |
|          | 20       | 13       | 8.6        | 40<br>61 | 0.3          | 7.6             | 52<br>61 |
|          | 20       | 12       | 8.3        | 51       | 0.4          | 7.8             | 50       |
|          | 22       | 10       | 8.3        | 50       | 0.3          | 8.1             | 56       |
|          | 23       | 14       | 8.4        | 52       | 0.3          | 8               | 48       |
|          | 24       | 13       | 8.3        | 49       | 0.3          | 7.6             | 62       |
|          | 25       | 16       | 7.8        | 57       | 0.2          | ,.0             | 67       |
|          | 26       | 14       | 7.9        | 55       | 0.25         | 7.9             | 53       |
|          | 27       | 14       | 7.5        | 46       | 0.3          | 7.4             | 51       |
|          | 28       | 8        | 8.2        | 58       | 0.2          | 7.8             | 51       |
|          | 29       | 8        | 8.2        | 53       | 0.23         | 8               | 50       |
|          | 30       | 11       | 8.2        | 52       | 0.3          | 8.2             | 57       |
|          | 31       | 11       | 8.4        | 47       | 0.3          | 7.9             | 91       |
| NOVEMBER | - 1      | 12       | 8.1        | 49       | 0.26         | 8               | 52       |
|          | 2        | 10       | 7.7        | 50       | 0.38         | 7.7             | 68       |
| [        | 3        | 10       | 7.5        | 60       | 0.2          | 8.1             | 69       |
|          | 4        | 11       | 7.7        | 54       | 0.2          | 7.8             | 79       |
|          | 5        | 19       | 7.9        | 56       | 0.23         | 8.3             | 51       |
| ]        | 6        | 15       | 8.1        | 54       | 0.38         | 8               | 49       |
|          | 7        | 10       | 7.1        | 48       | 0.41         | 7.7             | 58       |
|          | 8        | 11       | 7.6        | 53       | 0.26         | 7.6             | 56       |
|          | 9        | 15       | 7.3        | 51       | 0.2          | 7.8             | 53       |
| 1        | 10       | 15       | 7.6        | 61       | 0.2          | 7.4             | 72       |
|          | 11<br>12 | 9        | 7.8        | 46       | 0.26         | 7.8             | 63<br>53 |
| 1        | 12       | 9        | 7.8        | 49<br>52 | 0.33         | 7.9             | 53<br>49 |
|          | 13       | 9<br>12  | 7.9<br>7.6 | 52<br>50 | 0.46<br>0.26 | 8<br>7.7        | 49<br>60 |
|          | 14       | 13       | 8.3        | 50       | 0.28         | 8               | 60<br>63 |
|          | 16       | 9        | 8.4        | 49       | 0.20         | 8               | 63       |
| 1        | 17       | 9        | 8.4        | 46       | 0.23         | 8.1             | 51       |
|          | 18       | 11       | 8.1        | 56       | 0.2          | 8.2             | 56       |
| 1        | 19       | 11       | 8.3        | 52       | 0.21         | 8               | 53       |
|          | 20       | 13       | 8.5        | 52       | 0.38         | 8.1             | 57       |
|          | 21       | 9        | 8          | 48       | 0.35         | 7.7             | 55       |
|          | 22       | 10       | 8          | 48       | 0.25         | 7.9             | 55       |
|          | 23       | 9        | 7.8        | 61       | 0.3          | 7.7             | 59       |
|          | 24       | 11       |            | 56       | 0.35         | 7.8             |          |
| •        |          |          |            |          | -            |                 | •        |

 $\rangle$ 

| 1        | 25      | 10   | 7.9 | 55   | 0.31 | 7.7 | 46   |
|----------|---------|------|-----|------|------|-----|------|
|          | 26      | 10   | 7.9 | 50   | 0.28 | 7.8 | 53   |
|          | 27      | 9    | 8.1 | 54   | 0.31 | 8   | 51   |
|          | 28      | 8    | 7.8 | 47   | 0.35 | 8.5 | 59   |
|          | 29      | 9    | 7.7 | 52   | 0.35 | 7.7 | 51   |
|          | 30      | 7    | 8   | 45   | 0.38 | 7.7 | 51   |
| DECEMBEF | 1       | 7    | 8.3 | 49   | 0.4  | 7.4 | 50   |
| 1        | 2       | 6    | 8   | 54   | 0.45 | 7.5 | 55   |
|          | 3       | 10   | 8   | 52   | 0.45 | 7.8 | 53   |
|          | 4       | 9    | 8.1 | 49   | 0.41 | 7.8 | 51   |
|          | 5       | 8    | 8   | 50   | 0.45 | 7.7 | 54   |
|          | 6       | 9    | 8.1 | 43   | 0.35 | 7.7 | 55   |
|          | 7       | 13   | 7.3 | 46   | 0.45 | 7.6 | 51   |
|          | 8       | 12   | 7.7 | 49   | 1.23 | 8   | 65   |
|          | 9       | 11   | 7.7 | 49   | 0.81 | 7.9 | 53   |
| 1        | 10      | 14   | 7.8 | 48   | 1.75 | 7.6 | 52   |
|          | 11      | 14   | 7.9 | 50   | 1.7  | 7.5 | 49   |
|          | 12      | 7    | 8.3 | 56   | 0.68 | 7.5 | 45   |
|          | 13      | 7    | 7.8 | 63   | 0.61 | 8.3 | 55   |
| 1        | 14      | 12   | 8   | 49   | 0.75 | 7.8 | 50   |
|          | 15      | 11   | 8   | 49   | 0.7  | 8.1 | 59   |
| ł        | 16      | 10   | 8.2 | 44   | 0.46 | 8   | 60   |
|          | 17      | 12   | 7.9 | 53   | 0.7  | 8.3 | 56   |
|          | 18      | 12   | 7.9 | 61   | 0.83 | 7.6 | 46   |
|          | 19      | 13   | 8.1 | 45   | 0.56 | 8.2 | 51   |
|          | 20      | 14   | 7.9 | 54   | 0.93 | 8.1 | 53   |
|          | 21      | 11   | 7.9 | 48   | 1.15 | 7.5 | 54   |
|          | 22      | 15   | 7.9 | 44   | 0.98 | 7.4 | 57   |
|          | 23      | 14   | 8.1 | 57   | 0.43 | 7.8 | 49   |
|          | 24      | 14   | 7.6 | 49   | 0.31 | 7.8 | 50   |
| J        | 25      | 14   | 7.8 | 56   | 0.3  | 7.6 | 50   |
|          | 26      | 13   | 7.6 | 50   | 0.6  | 7.8 | 50   |
|          | 27      | 12   | 7.9 | 49   | 0.46 | 7.5 | 45   |
|          | 28      | 14   | 7.9 | 54   | 0.35 | 7.6 | 48   |
| 1        | 29      | 15   | 7.6 | 43   | 0.4  | 7.4 | 30   |
| 1        | 30      | 13   | 7.3 | 46   | 0.41 | 7.4 | 4E   |
|          | 31      | 14   | 7.6 | 41   | 0.41 | 7.4 | 40   |
| YEARLY   | AVERAGE | 11.6 | 8.1 | 52.1 | 0.4  | 7.8 | 54.2 |
| 1        | MINIMUM | 6    | 7.1 | 41   | 0.15 | 7.4 | 19   |
| L        | MAXIMUM | 21   | 8.9 | 66   | 1.75 | 8.5 | 91   |

# SOUTH WATER TREATMENT PLANT 1995

| DATE    |     | RAW W | ATER ANAL | YSES | FINISHED | D WATER ANALYSES |     |  |
|---------|-----|-------|-----------|------|----------|------------------|-----|--|
| MONTH   | DAY | NTU   | pH        | ALK  | NTU      | pH               | ALK |  |
| JANUARY | 1   | 12    | 7.9       | 43   | 0.45     | 7.4              | 40  |  |
| 1       | 2   | 11    | 7.6       | 36   | 0.21     | 7.5              | 36  |  |
|         | 3   | 12    | 7.6       | 43   | 0.28     | 7.6              | 52  |  |
|         | 4   | 14    | 7.8       | 40   | 0.28     | 7.7              | 40  |  |
|         | 5   | 13    | 7.9       | 43   | 0.33     | 7.5              | 46  |  |
| í       | 6   | 13    | 7.5       | 44   | 0.35     | 7.7              | 51  |  |
| 1       | 7   | 13    | 7.6       | 43   | 0.4      | 7.6              | 41  |  |
|         | 8   | 13    | 7.8       | 35   | 0.51     | 7.4              | 41  |  |
|         | 9   | 14    | 7.6       | 39   | 0.43     | 7.6              | 49  |  |
| ĺ       | 10  | 13    | 7.8       | 47   | 0.45     | 7.6              | 64  |  |
| 1       | 11  | 14    | 7.8       | 41   | 0.41     | 7.4              | 41  |  |
|         | 12  | 15    | 8.1       | 45   | 0.33     | 7.4              | 53  |  |
| 1       | 13  | 14    | 7.6       | 41   | 0.33     | 7.5              | 41  |  |
| [       | 14  | 17    | 7.4       | 41   | 0.31     | 7.5              | 41  |  |
|         | 15  | 18    | 7.5       | 32   | 0.28     | 7.3              | 46  |  |
|         | 16  | 18    | 7.7       | 43   | 0.5      | 7.6              | 45  |  |
|         | 17  | 20    | 7.7       | 38   | 0.28     | 8                | 58  |  |
| [       | 18  | 33    | 7.6       | 37   | 0.21     | 8                | 61  |  |
|         | 19  | 20    | 7.5       | 34   | 0.43     | 7.6              | 48  |  |
|         | 20  | 19    | 7.8       | 33   | 0.45     | 7.7              | 63  |  |
| J       | 21  | 22    | 7.7       | 30   | 0.31     | 7.9              | 63  |  |
| 1       | 22  | 23    | 7.5       | 40   | 0.28     | 7.5              | 51  |  |
| ł       | 23  | 23    | 7.6       | 39   | 0.3      | 7.3              | 40  |  |
|         | 24  | 20    | 7.7       | 38   | 0.5      | 7.6              | 49  |  |

| ι        | 25                                                                       | 20                                                                         | 7.8                                                                                   | 32                                                                               | 0.35                                                                                       | 8.5                                                                                 | 49                                                                   |
|----------|--------------------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------|
|          | 26                                                                       | 17                                                                         | 7.6                                                                                   | 36                                                                               | 0.5                                                                                        | 7.5                                                                                 | 62                                                                   |
|          | 27                                                                       | 14<br>15                                                                   | 7.8<br>7.8                                                                            | 34<br>44                                                                         | 0.48                                                                                       | 7.4                                                                                 | 61<br>57                                                             |
|          | 28<br>29                                                                 | 16                                                                         | 7.7                                                                                   | 40                                                                               | 0.68                                                                                       | 7.3<br>7.3                                                                          | 57                                                                   |
|          | 30                                                                       | 15                                                                         | 8.3                                                                                   | 33                                                                               | 1.36                                                                                       | 7.5                                                                                 | 62                                                                   |
| FEBRUARY | 31                                                                       | 16<br>16                                                                   | 7.9<br>7.8                                                                            | 40                                                                               | 2.48                                                                                       | 7.4                                                                                 | 40<br>36                                                             |
| FEDRUARI | 2                                                                        | 17                                                                         | 7.9                                                                                   | 43                                                                               | 0.58                                                                                       | 7.4                                                                                 | 41                                                                   |
|          | 3                                                                        | 15                                                                         | 7.4                                                                                   | 35                                                                               | 0.53                                                                                       | 7.4                                                                                 | 41                                                                   |
|          | 4<br>5                                                                   | 16<br>17                                                                   | 7.7<br>7.5                                                                            | 40<br>40                                                                         | 0.56<br>0.66                                                                               | 7.4<br>7.4                                                                          | 36<br>39                                                             |
|          | 6                                                                        | 20                                                                         | 7.4                                                                                   | 39                                                                               | 0.68                                                                                       | 7.4                                                                                 | 39                                                                   |
|          | 7                                                                        | 20                                                                         | 7.5                                                                                   | 41                                                                               | 0.8                                                                                        | 7.6                                                                                 | 43                                                                   |
|          | 8<br>9                                                                   | 19<br>20                                                                   | 7.4<br>7.6                                                                            | 36<br>39                                                                         | 0.85<br>1.11                                                                               | 7.5<br>7.3                                                                          | 39<br>53                                                             |
|          | 10                                                                       | 20                                                                         | 7.7                                                                                   | 34                                                                               | 0.68                                                                                       | 8.2                                                                                 | 46                                                                   |
|          | 11                                                                       | 19<br>19                                                                   | 8<br>8.1                                                                              | 39<br>40                                                                         | 0.93                                                                                       | 7.4                                                                                 | 45                                                                   |
|          | 12<br>13                                                                 | 20                                                                         | 7.7                                                                                   | 38                                                                               | 0.88                                                                                       | 7.2<br>7.1                                                                          | 44<br>44                                                             |
| }        | 14                                                                       | 21                                                                         | 7.8                                                                                   | 42                                                                               | 0.96                                                                                       | 7.1                                                                                 | 42                                                                   |
|          | 15<br>16                                                                 | 21<br>22                                                                   | 7.9<br>7.9                                                                            | 42<br>46                                                                         | 0.83                                                                                       | 7.1<br>7.1                                                                          | 48<br>47                                                             |
|          | 17                                                                       | 22                                                                         | 7.8                                                                                   | 35                                                                               | 1.06                                                                                       | 7.1                                                                                 | 47                                                                   |
|          | 18                                                                       | 23                                                                         | 7.6                                                                                   | 39                                                                               | 2.08                                                                                       | 7.2                                                                                 | 44                                                                   |
|          | 19<br>20                                                                 | 23<br>23                                                                   | 7.6<br>7.4                                                                            | 37<br>41                                                                         | 1.03<br>0.41                                                                               | 7.4<br>6.9                                                                          | 40<br>44                                                             |
|          | 20                                                                       | 23                                                                         | 7.3                                                                                   | 42                                                                               | 0.68                                                                                       | 7.6                                                                                 | 61                                                                   |
|          | 22                                                                       | 21                                                                         | 7.6                                                                                   | 43                                                                               | 0.58                                                                                       | 7.5                                                                                 | 53                                                                   |
|          | 23<br>24                                                                 | 20<br>21                                                                   | 8.1<br>8.4                                                                            | 41<br>46                                                                         | 0.7<br>0.58                                                                                | 7.6                                                                                 | 58<br>43                                                             |
|          | 25                                                                       | 25                                                                         | 7.9                                                                                   | 51                                                                               | 0.8                                                                                        | 7.2                                                                                 | 40                                                                   |
|          | 26                                                                       | 26                                                                         | 7.6                                                                                   | 41                                                                               | 0.75                                                                                       | 7.4                                                                                 | 42                                                                   |
|          | 27<br>28                                                                 | 20<br>21                                                                   | 8.1<br>7.6                                                                            | 42<br>46                                                                         | 0.6<br>0.46                                                                                | 7.9<br>7.9                                                                          | 61<br>63                                                             |
| MARCH    | 1                                                                        | 20                                                                         | 7.7                                                                                   | 39                                                                               | 0.53                                                                                       | 7.6                                                                                 | 62                                                                   |
|          | 2<br>3                                                                   | 18<br>19                                                                   | 7.8<br>7.6                                                                            | 40<br>43                                                                         | 0.66<br>0.68                                                                               | 7.6<br>7.2                                                                          | 51<br>48                                                             |
|          | 4                                                                        | 18                                                                         | 7.8                                                                                   | 49                                                                               | 0.68                                                                                       | 7.4                                                                                 | 50                                                                   |
|          | 5                                                                        | 20                                                                         | 7.8                                                                                   | 46                                                                               | 0.6                                                                                        | 7.4                                                                                 | 51                                                                   |
|          | 6<br>7                                                                   | 19<br>21                                                                   | 7.7<br>7.6                                                                            | 52<br>41                                                                         | 0.68<br>0.63                                                                               | 7.5<br>7.4                                                                          | 56<br>36                                                             |
|          | 8                                                                        | 21                                                                         | 7.7                                                                                   | 33                                                                               | 0.76                                                                                       | 7.5                                                                                 | 53                                                                   |
|          | 9                                                                        | 18                                                                         | 7.9                                                                                   | 30                                                                               | 0.76                                                                                       | 7.4                                                                                 | 46                                                                   |
|          | 10<br>11                                                                 | 19<br>17                                                                   | 8<br>7.9                                                                              | 42<br>50                                                                         | 0.98<br>0.7                                                                                | 7.5<br>7.5                                                                          | 43<br>51                                                             |
|          | 12                                                                       | 22                                                                         | 7.8                                                                                   | 40                                                                               | 1.11                                                                                       | 7.6                                                                                 | 50                                                                   |
|          | 13                                                                       | 20                                                                         | 7.5                                                                                   | 38                                                                               | 1.81                                                                                       | 7.1                                                                                 | 49                                                                   |
|          | 14<br>15                                                                 | 20<br>20                                                                   | 7.7<br>7.6                                                                            | 43<br>45                                                                         | 1.51<br>0.93                                                                               | 7.4<br>7.4                                                                          | 58<br>48                                                             |
|          | 16                                                                       | 19                                                                         | 7.8                                                                                   | 46                                                                               | 0.71                                                                                       | 7.5                                                                                 | 60                                                                   |
|          | 17<br>18                                                                 | 22<br>23                                                                   | 7.6<br>7.9                                                                            | 44<br>35                                                                         | 0.8<br>0.96                                                                                | 7.3<br>7.9                                                                          | 50<br>43                                                             |
|          | 19                                                                       | 20                                                                         | 7.5                                                                                   | 32                                                                               | 1.3                                                                                        | 7.4                                                                                 | 43<br>60                                                             |
|          |                                                                          |                                                                            | 7.9                                                                                   | 34                                                                               | 0.96                                                                                       | 7.9                                                                                 | 43                                                                   |
|          | 20                                                                       | 23                                                                         |                                                                                       |                                                                                  |                                                                                            |                                                                                     |                                                                      |
|          | 21                                                                       | 26                                                                         | 7.9                                                                                   | 49                                                                               | 0.71                                                                                       | 8.3                                                                                 | 60                                                                   |
|          | 21<br>22<br>23                                                           | 26<br>20<br>19                                                             | 7.9<br>8.4<br>7.9                                                                     | 49<br>37<br>51                                                                   | 0.71<br>1.3<br>0.56                                                                        | 8.3<br>8<br>7.5                                                                     | 60<br>36<br>46                                                       |
|          | 21<br>22<br>23<br>24                                                     | 26<br>20<br>19<br>20                                                       | 7.9<br>8.4<br>7.9<br>7.4                                                              | 49<br>37<br>51<br>40                                                             | 0.71<br>1.3<br>0.56<br>0.6                                                                 | 8.3<br>8<br>7.5<br>7.6                                                              | 60<br>36<br>46<br>46                                                 |
|          | 21<br>22<br>23<br>24<br>25                                               | 26<br>20<br>19<br>20<br>18                                                 | 7.9<br>8.4<br>7.9<br>7.4<br>7.4                                                       | 49<br>37<br>51<br>40<br>34                                                       | 0.71<br>1.3<br>0.56<br>0.6<br>0.63                                                         | 8.3<br>8<br>7.5<br>7.6<br>7.5                                                       | 60<br>36<br>46<br>46<br>48                                           |
|          | 21<br>22<br>23<br>24<br>25<br>26<br>27                                   | 26<br>20<br>19<br>20<br>18<br>22<br>30                                     | 7.9<br>8.4<br>7.9<br>7.4<br>7.4<br>8.1<br>7.5                                         | 49<br>37<br>51<br>40<br>34<br>42<br>41                                           | 0.71<br>1.3<br>0.56<br>0.6<br>0.63<br>0.35<br>0.66                                         | 8.3<br>8<br>7.5<br>7.6<br>7.5<br>7.2<br>7.3                                         | 60<br>36<br>46<br>48<br>48<br>58                                     |
|          | 21<br>22<br>23<br>24<br>25<br>26<br>27<br>28                             | 26<br>20<br>19<br>20<br>18<br>22<br>30<br>21                               | 7.9<br>8.4<br>7.9<br>7.4<br>7.4<br>8.1<br>7.5<br>7.4                                  | 49<br>37<br>51<br>40<br>34<br>42<br>41<br>41                                     | 0.71<br>1.3<br>0.56<br>0.6<br>0.63<br>0.35<br>0.66<br>0.91                                 | 8.3<br>8<br>7.5<br>7.6<br>7.5<br>7.2<br>7.3<br>7.3                                  | 60<br>36<br>46<br>48<br>48<br>58<br>41                               |
|          | 21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29                       | 26<br>20<br>19<br>20<br>18<br>22<br>30<br>21<br>22                         | 7.9<br>8.4<br>7.9<br>7.4<br>8.1<br>7.5<br>7.4<br>7.7                                  | 49<br>37<br>51<br>40<br>34<br>42<br>41<br>41<br>45                               | 0.71<br>1.3<br>0.56<br>0.6<br>0.63<br>0.35<br>0.66<br>0.91<br>0.68                         | 8.3<br>8<br>7.5<br>7.6<br>7.5<br>7.2<br>7.3<br>7.3<br>8.5                           | 60<br>36<br>46<br>48<br>48<br>58<br>41<br>70                         |
|          | 21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31           | 26<br>20<br>19<br>20<br>18<br>22<br>30<br>21<br>22<br>22<br>22<br>26       | 7.9<br>8.4<br>7.9<br>7.4<br>8.1<br>7.5<br>7.4<br>7.7<br>7.7                           | 49<br>37<br>51<br>40<br>34<br>42<br>41<br>41<br>45<br>35<br>37                   | 0.71<br>1.3<br>0.56<br>0.6<br>0.63<br>0.35<br>0.66<br>0.91<br>0.68<br>0.58<br>0.41         | 8.3<br>8<br>7.5<br>7.6<br>7.5<br>7.2<br>7.3<br>7.3<br>8.5<br>8<br>8.7               | 60<br>36<br>46<br>48<br>48<br>58<br>41<br>70<br>53<br>58             |
| APRIL    | 21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>1      | 26<br>20<br>19<br>20<br>18<br>22<br>30<br>21<br>22<br>22<br>26<br>22       | 7.9<br>8.4<br>7.9<br>7.4<br>8.1<br>7.5<br>7.4<br>7.7<br>7.7<br>7.7<br>8               | 49<br>37<br>51<br>40<br>34<br>42<br>41<br>41<br>45<br>35<br>37<br>45             | 0.71<br>1.3<br>0.56<br>0.63<br>0.35<br>0.66<br>0.91<br>0.68<br>0.58<br>0.41<br>0.5         | 8.3<br>8<br>7.5<br>7.6<br>7.5<br>7.2<br>7.3<br>7.3<br>8.5<br>8<br>8.7<br>7.7        | 60<br>36<br>46<br>48<br>48<br>58<br>41<br>70<br>53<br>58<br>62       |
| APRIL    | 21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>1<br>2 | 26<br>20<br>19<br>20<br>18<br>22<br>30<br>21<br>22<br>22<br>26<br>22<br>21 | 7.9<br>8.4<br>7.9<br>7.4<br>8.1<br>7.5<br>7.4<br>7.7<br>7.7<br>7.7<br>7.7<br>8<br>7.8 | 49<br>37<br>51<br>40<br>34<br>42<br>41<br>41<br>45<br>35<br>37<br>45<br>43<br>45 | 0.71<br>1.3<br>0.56<br>0.63<br>0.35<br>0.66<br>0.91<br>0.68<br>0.58<br>0.41<br>0.5<br>0.93 | 8.3<br>8<br>7.5<br>7.6<br>7.5<br>7.2<br>7.3<br>7.3<br>8.5<br>8<br>8.7<br>7.7<br>7.9 | 60<br>36<br>46<br>48<br>48<br>58<br>41<br>70<br>53<br>58<br>62<br>66 |
| APRIL    | 21<br>22<br>23<br>24<br>25<br>26<br>27<br>28<br>29<br>30<br>31<br>1      | 26<br>20<br>19<br>20<br>18<br>22<br>30<br>21<br>22<br>22<br>26<br>22       | 7.9<br>8.4<br>7.9<br>7.4<br>8.1<br>7.5<br>7.4<br>7.7<br>7.7<br>7.7<br>8               | 49<br>37<br>51<br>40<br>34<br>42<br>41<br>41<br>45<br>35<br>37<br>45             | 0.71<br>1.3<br>0.56<br>0.63<br>0.35<br>0.66<br>0.91<br>0.68<br>0.58<br>0.41<br>0.5         | 8.3<br>8<br>7.5<br>7.6<br>7.5<br>7.2<br>7.3<br>7.3<br>8.5<br>8<br>8.7<br>7.7        | 60<br>36<br>46<br>48<br>48<br>58<br>41<br>70<br>53<br>58<br>62       |

|      | 5<br>6<br>7<br>8   | 23<br>20<br>21       | 7.2<br>7.6<br>7.9<br>7.8 | 31<br>41<br>56       | 0.51<br>0.48<br>0.68         | 7.4<br>7.8<br>7.9      | 50<br>46<br>53       |
|------|--------------------|----------------------|--------------------------|----------------------|------------------------------|------------------------|----------------------|
|      | 9<br>10<br>11      | 21<br>22<br>20<br>23 | 7.8<br>8<br>7.6          | 43<br>48<br>40<br>41 | 0.88<br>0.45<br>0.45<br>0.45 | 7<br>7.7<br>7.6<br>7.8 | 52<br>59<br>52<br>49 |
|      | 12                 | 18                   | 8.5                      | 42                   | 0.96                         | 7.7                    | 59                   |
|      | 13                 | 26                   | 7.2                      | 39                   | 1.01                         | 7.4                    | 51                   |
|      | 14                 | 24                   | 7.9                      | 41                   | 0.61                         | 7.4                    | 46                   |
|      | 15                 | 19                   | 8                        | 60                   | 0.61                         | 7.4                    | 46                   |
|      | 16                 | 21                   | 7.6                      | 46                   | 0.51                         | 8.6                    | 72                   |
|      | 17                 | 19                   | 8.5                      | 36                   | 0.46                         | 7.9                    | 54                   |
|      | 18                 | 19                   | 8                        | 36                   | 0.36                         | 7.3                    | 48                   |
|      | 19                 | 19                   | 8                        | 49                   | 0.3                          | 7.5                    | 41                   |
|      | 20                 | 17                   | 8.3                      | 44                   | 0.31                         | 7.2                    | 40                   |
|      | 21                 | 17                   | 8.3                      | 44                   | 0.35                         | 7.3                    | 44                   |
|      | 22                 | 17                   | 7.7                      | 38                   | 0.36                         | 7.5                    | 45                   |
|      | 23                 | 19                   | 7.7                      | 46                   | 0.33                         | 7.7                    | 49                   |
|      | 24                 | 15                   | 7.8                      | 49                   | 0.38                         | 8                      | 55                   |
|      | 25                 | 16                   | 8.4                      | 34                   | 0.73                         | 7.6                    | 47                   |
|      | 26                 | 17                   | 8.6                      | 34                   | 0.45                         | 7.6                    | 46                   |
|      | 27                 | 15                   | 7.6                      | 43                   | 0.28                         | 7.5                    | 63                   |
| MAY  | 28                 | 17                   | 7.9                      | 49                   | 0.20                         | 7.9                    | 56                   |
|      | 29                 | 14                   | 7.9                      | 53                   | 0.71                         | 7.8                    | 50                   |
|      | 30                 | <u>17</u>            | 7.6                      | 49                   | 0.7                          | 7.4                    | 40                   |
|      | 1                  | 15                   | 7.7                      | 36                   | 0.5                          | 8                      | 57                   |
|      | 2                  | 17                   | 7.6                      | 39                   | 0.26                         | 7.8                    | 62                   |
|      | 3                  | 27                   | 8                        | 42                   | 0.26                         | 7.4                    | 54                   |
|      | 4                  | 19                   | 7.8                      | 38                   | 0.18                         | 7.6                    | 58                   |
|      | 5                  | 17                   | 7.3                      | 37                   | 0.18                         | 7.4                    | 24                   |
|      | 6                  | 23                   | 7.7                      | 36                   | 0.2                          | 7.8                    | 59                   |
|      | 7                  | 24                   | 7.6                      | 38                   | 0.28                         | 7.8                    | 57                   |
|      | 8                  | 19                   | 7.8                      | 49                   | 0.28                         | 7.4                    | 49                   |
|      | 9                  | 16                   | 7.6                      | 31                   | 0.31                         | 7.4                    | 25                   |
|      | 10                 | 18                   | 7.7                      | 51                   | 0.19                         | 7.7                    | 69                   |
|      | 11                 | 10                   | 7.6                      | 32                   | 0.21                         | 7.8                    | 69                   |
|      | 12                 | 9.8                  | 8                        | 42                   | 0.2                          | 8                      | 71                   |
|      | 13                 | 11                   | 7.7                      | 46                   | 0.23                         | 7.9                    | 68                   |
|      | 14                 | 8                    | 7.4                      | 38                   | 0.26                         | 7.9                    | 64                   |
|      | 15                 | 11.3                 | 8.6                      | 30                   | 0.6                          | 8.2                    | 61                   |
|      | 16                 | 14.7                 | 8.4                      | 38.4                 | 0.28                         | 8.7                    | 68                   |
|      | 17                 | 16                   | 8.3                      | 44                   | 0.2                          | 7.5                    | 58                   |
|      | 18                 | 16                   | 7.6                      | 42                   | 0.33                         | 7.4                    | 42                   |
|      | 19                 | 18                   | 7.5                      | 37                   | 0.7                          | 7.2                    | 43                   |
|      | 20                 | 12                   | 7.6                      | 32                   | 0.48                         | 7.3                    | 51                   |
|      | 21                 | 4                    | 7.3                      | 42                   | 0.65                         | 7.2                    | 40                   |
|      | 22                 | 15                   | 7.2                      | 42                   | 1.35                         | 7                      | 38                   |
|      | 23                 | 13                   | 8.5                      | 46                   | 0.93                         | 7                      | 44                   |
|      | 24                 | 12                   | 7.3                      | 40                   | 1.85                         | 8.7                    | 62                   |
|      | 25                 | 18                   | 7.5                      | 41                   | 1.36                         | 8.2                    | 60                   |
|      | 26                 | 19                   | 7.4                      | 46                   | 1.51                         | 8.8                    | 58                   |
|      | 27                 | 15                   | 8.1                      | 38                   | 1.26                         | 8.8                    | 72                   |
|      | 28                 | 16                   | 8.3                      | 40                   | 0.56                         | 8.2                    | 64                   |
|      | 29                 | 15                   | 7.9                      | 48                   | 0.31                         | 8.4                    | 65                   |
| JUNE | 30<br>31<br>1<br>2 | 16<br>               | 7.9<br>7.7               | 49<br>46             | 0.7<br>2.21                  | 8.4<br>8.8             | 65<br>71             |
|      | 3<br>4<br>5<br>6   |                      |                          |                      |                              |                        |                      |
|      | 7<br>8<br>9<br>10  |                      |                          |                      |                              |                        |                      |
|      | 11<br>12<br>13     |                      |                          |                      |                              |                        |                      |

| 14<br>15<br>16<br>17<br>18<br>19<br>20<br>21<br>22<br>23<br>24<br>25<br>26<br>27<br>26<br>27<br>28<br>29<br>30 |                |                   | DATA UNA       | AILABLE              |                   |                |
|----------------------------------------------------------------------------------------------------------------|----------------|-------------------|----------------|----------------------|-------------------|----------------|
| JULY 1<br>2<br>3                                                                                               | 14<br>16<br>17 | 7.5<br>7.4<br>7.6 | 47<br>42<br>48 | 1.78<br>1.35<br>1.36 | 8.2<br>8.5<br>7.7 | 59<br>68<br>60 |
| 4<br>5<br>6                                                                                                    | 13             | 7.6<br>7<br>7.2   | 43<br>35<br>37 | 1.63<br>1.5<br>1.31  | 7.9<br>7.7<br>8.6 | 59<br>69<br>70 |
| 7                                                                                                              | 9.8<br>7       | 7.1<br>7<br>7.1   | 34<br>30<br>26 | 1.33<br>2<br>0.56    | 8.6<br>8.5<br>8.8 | 72<br>70<br>63 |
| 10                                                                                                             | 14<br>16       | 7.2               | 31<br>38       | 0.63<br>0.71         | 7.7<br>8.3        | 56<br>64       |
| 12<br>13<br>14                                                                                                 | 16             | 7.2<br>7.3<br>7.4 | 34<br>39<br>32 | 0.91<br>0.56<br>0.81 | 7.6<br>7.8<br>8.3 | 52<br>61<br>66 |
| 15<br>16<br>17                                                                                                 | 17<br>15       | 7.1<br>7.2<br>7.3 | 34<br>33<br>35 | 1.3<br>1.88<br>1.93  | 7.9<br>7.7<br>7.9 | 67<br>63<br>65 |
| 18<br>19                                                                                                       | 17<br>18       | 7.2<br>7.3        | 37<br>36       | 1.35<br>4.3          | 7.8<br>8.2        | 62<br>66       |
| 20<br>21<br>22                                                                                                 | 13             | 7.4<br>7.2<br>9   | 37<br>35<br>48 | 1.66<br>2.23<br>2.66 | 7.9<br>8.2<br>7.1 | 64<br>68<br>52 |
| 23                                                                                                             | i 10<br>10     | 8.5<br>8.2        | 48<br>46       | 2.48<br>1.9          | 7.8<br>8.1        | 56<br>60       |
| 25<br>26<br>27                                                                                                 | 10             | 7.9<br>7.9<br>7.8 | 44<br>48<br>47 | 1.25<br>0.76<br>2.48 | 8.5<br>8.6<br>8.4 | 65<br>70<br>64 |
| 28<br>29<br>30                                                                                                 | 10<br>13       | 7.6<br>7.8        | 44<br>38<br>53 | 1.11<br>1.71<br>1.28 | 8.3<br>8.5<br>8.5 | 60<br>70<br>68 |
| AUGUST 1                                                                                                       | 7.4            | 7.3               | 48             | 0.5                  | 7.6<br>7.6        | 53<br>59       |
|                                                                                                                | 9.8            | 8.6               | 54<br>62       | 0.86<br>0.8          | 7.7<br>7.5        | 52<br>54       |
| 5                                                                                                              | 2.8<br>2.5     | 7.7               | 54<br>63       | 0.78<br>0.5          | 7.8<br>7.9        | 59<br>60       |
| e<br>7                                                                                                         | 5              | 7.5               | 58<br>54       | 0.4                  | 7.5<br>7.6        | 51<br>49       |
| 8<br>9                                                                                                         | i 4.8          | 7.5               | 51<br>47       | 0.31<br>0.38         | 8.1<br>8.4        | 61<br>65       |
| 10<br>11                                                                                                       | 7.6            | 8.6               | 58<br>52       | 0.41<br>0.35         | 8.7<br>8.2        | 68<br>63       |
| 12                                                                                                             | 8 8            | 8.7               | 50<br>54       | 0.36                 | 8.3<br>8.3        | 65<br>68       |
| 14                                                                                                             | 3.5            | 8.2               | 49<br>58       | 0.26                 | 8.3<br>8.3        | 62<br>60       |
| 16                                                                                                             | 3.6            | 7.9               | 56<br>54<br>56 | 0.43                 | 7.9               | 66<br>57       |
| 18<br>19<br>20                                                                                                 | 6              | 7.4               | 61             | 1.3<br>0.7           | 8.8<br>7.6<br>7.5 | 72<br>54       |
| 21                                                                                                             | 5.5            | 7.9               | 61<br>60<br>58 | 0.51<br>0.8<br>0.38  | 7.5<br>7.6<br>7.9 | 50<br>52<br>62 |

| 1         | 23       | 5.2        | 7.7        | 52       | 0.33         | 8.2        | 64       |
|-----------|----------|------------|------------|----------|--------------|------------|----------|
|           | 24       | 5.6        | 7.9        | 56       | 0.25         | 8.3        | 65       |
|           | 25       | 5.5        | 7.7        | 53       | 0.2          | 8.5        | 68       |
|           | 26       | 6          | 7.8        | 53       | 0.2          | 8          | 60       |
|           | 27<br>28 | 6<br>4.8   | 7.7<br>7.7 | 51<br>50 | 0.3<br>0.38  | 8<br>8.2   | 60<br>60 |
|           | 20       | 5.4        | 7.8        | 51       | 0.33         | 8.1        | 58       |
| ·         | 30       | 5.1        | 7.6        | 48       | 0.2          | 8.2        | 59       |
|           | 31       | 4.8        | 7.6        | 49       | 0.2          | 8.1        | 58       |
| SEPTEMBER | 1        | 4.8        | 7.7        | 53       | 0.36         | 8.5        | 66<br>75 |
|           | 2<br>3   | 11<br>10   | 8.7<br>8.5 | 49<br>49 | 0.3<br>0.5   | 8.7<br>8.1 | 75<br>59 |
|           | 4        | 10         | 8.4        | 51       | 0.61         | 8.4        | 66       |
|           | 5        | 9.5        | 8.4        | 50       | 0.5          | 8.2        | 63       |
|           | 6        | 8.1        | 8.3        | 46       | 0.36         | 8.1        | 60       |
|           | 7        | 13<br>12   | 8.5<br>8.3 | 49       | 1.98         | 8.4<br>8.3 | 64       |
|           | 8<br>9   | 6          | 6.3<br>8   | 48<br>33 | 0.91<br>1.2  | 8.6        | 62<br>70 |
|           | 10       | 8          | 7.4        | 53       | 2.4          | 7.6        | 58       |
| ĺ         | 11       | 9          | 7.8        | 56       | 0.9          | 7.8        | 56       |
|           | 12       | 10         | 8.4        | 53       | 0.75         | 8.1        | 60       |
|           | 13       | 9          | 8.2<br>7.8 | 51       | 0.38         | 8.3        | 64       |
|           | 14<br>15 | 9<br>8     | 7.8        | 50<br>46 | 0.15<br>0.23 | 8.3<br>8.2 | 65<br>61 |
|           | 16       | 8          | 7.6        | 52       | 0.41         | 8.1        | 57       |
|           | 17       | 9          | 7.9        | 56       | 0.25         | 8          | 54       |
|           | 18       | 9          | 8.1        | 52       | 0.2          | 8.1        | 56       |
|           | 19       | 8<br>6     | 8<br>7.5   | 53<br>37 | 0.2<br>0.25  | 8.2<br>8   | 57<br>54 |
|           | 20<br>21 | 6          | 7.6        | 34       | 0.25         | 8.1        | 54       |
|           | 22       | 5          | 7.2        | 38       | 0.61         | 8.1        | 56       |
|           | 23       | 6          | 8.9        | 47       | 0.5          | 8.2        | 58       |
|           | 24       | 9          | 8          | 52       | 0.35         | 7.3        | 52       |
|           | 25       | 9          | 7.8<br>7.8 | 49       | 0.46<br>0.48 | 7.7<br>7.8 | 56<br>59 |
|           | 26<br>27 | 8.4<br>8.3 | 7.8        | 48<br>44 | 0.48         | 7.8        | 59       |
|           | 28       | 27         | 8          | 56       | 0.6          | 8.7        | 78       |
|           | 29       | 20         | 7.9        | 54       | 0.75         | 8.1        | 61       |
| OCTOBER   |          | 12<br>14   | 7.6        | 51       | 0.73         | 8.3        | 60<br>63 |
| OCTOBER   | 1        | 14         | 7.9        | 59<br>54 | 0.71         | 8.3<br>8.4 | 66       |
|           | 3        | 13         | 7.8        | 51       | 0.75         | 8          | 62       |
|           | 4        | 14         | 7.7        | 53       | 0.58         | 8.1        | 63       |
|           | 5        | 17         | 7.8        | 53       | 0.73         | 8.3        | 66       |
|           | 6<br>7   | 19<br>24   | 8<br>4.6   | 50<br>16 | 0.95<br>1.21 | 8.5<br>8.4 | 69<br>60 |
|           | 8        | 24         | 7.2        | 49       | 1.13         | 8.4        | 63       |
|           | 9        | 21         | 7.1        | 39       | 0.26         | 8.2        | 58       |
|           | 10       | 23         | 7.3        | 43       | 0.48         | 8.2        | 58       |
| 1         | 11       | 18         | 7.6        | 46       | 0.53         | 8          | 56       |
|           | 12<br>13 | 11<br>10   | 7.8<br>7.7 | 43<br>43 | 0.36<br>0.75 | 8.4<br>8.6 | 67<br>70 |
|           | 13       | 15         | 7.5        | 48       | 1.8          | 7.9        | 68       |
|           | 15       | 8.7        | 8.7        | 52       | 1.26         | 7.7        | 70       |
|           | 16       | 4          | 8.4        | 48       | 0.66         | 7.7        | 67       |
| 1         | 17       | 9          | 8.9        | 64       | 0.5          | 8.3        | 72       |
|           | 18<br>19 | 10<br>10   | 8.7<br>8.6 | 56<br>58 | 0.38<br>0.8  | 8.6<br>8.2 | 74<br>55 |
|           | 20       | 11         | 8.3        | 58       | 0.88         | 7.6        | 73       |
|           | 21       | 12         | 8.2        | 63       | 0.6          | 8.5        | 60       |
|           | 22       | 15         | 7.9        | 63       | 0.61         | 8.4        | 60       |
|           | 23       | 11         | 8.2        | 61       | 0.53         | 8.4        | 62       |
|           | 24<br>25 | 10<br>11   | 8.9<br>8.7 | 47<br>48 | 0.81<br>1.2  | 7.6<br>8.5 | 44<br>68 |
|           | 26       | 10         | 8.7        | 49       | 0.5          | 8.4        | 64       |
|           | 27       | 9          | 8.6        | 52       | 0.38         | 8.3        | 62       |
| [         | 28       | 8.5        | 8.5        | 51       | 0.41         | 8.4        | 64       |
|           | 29       | 10         | 8          | 52       | 0.65         | 7.6        | 66       |
|           | 30<br>31 | 11         | 8.7<br>8.4 | 51<br>50 | 0.91<br>0.86 | 8.4<br>7.6 | 64<br>54 |
|           | 31       | 16         | 0.4        |          | 0.00         | 7.0        |          |

|            | MAXIMUM  | 33       | 9.6        | 64       | 4.3          | 8.8        | 78       |
|------------|----------|----------|------------|----------|--------------|------------|----------|
| •• •• •_ • | MINIMUM  | 2.5      | 4.6        | 0        | 0.15         | 6.9        | 24       |
| YEARLY     | AVERAGE  | 14.7     | 7.8        | 44.7     | 0.7          | 7.9        | 56.6     |
|            | 30       | 11       | 8.3        | 61       | 0.4          | 8          | 62       |
|            | 29       | 10       | 8          | 52       | 0.4          | 7.8        | 58       |
| 1          | 28       | 12       | 7.9        | 51       | 0.46         | 7.6        | 56       |
|            | 27       | 13       | 8.1        | 48       | 0.75         | 7.8        | 58       |
|            | 26       | 11       | 7.1        | 42       | 0.93         | 7.2        | 56       |
|            | 25       | 12       | 7.4        | 44       | 0.5          | 7.9        | 58       |
|            | 24       | 9        | 7.6        | 58       | 0.41         | 8.4        | 62       |
| ļ          | 23       | 13       | 7.6        | 58       | 0.48         | 7.9        | 56       |
|            | 22       | 14       | 7.8        | 58       | 0.76         | 7.8        | 56       |
|            | 21       | 14       | 7.6        | 57       | 1.2          | 7.9        | 58       |
|            | 20       | 14       | 8.1        | 50       | 0.65         | 7.8        | 54       |
|            | 19       | 14       | 7.9        | 49       | 0.45         | 8.5        | 63       |
| }          | 18       | 14       | 8.1        | 53       | 0.43         | 8.6        | 64       |
|            | 17       | 14       | 8.3        | 51       | 0.51         | 8.4        | 65       |
|            | 16       | 13       | 8.3        | 48       | 0.40         | 8.7        | 72       |
|            | 15       | 13       | 8.2        | 49       | 0.48         | 8.3        | 64       |
|            | 14       | 14       | 8.4        | 54       | 0.4          | 8.4        | 65       |
| 1          | 13       | 13       | 8.3        | 56       | 0.40         | 8.5        | 68       |
| 1          | 12       | 13       | 7.6        | 53       | 0.5          | 8.6        | 67       |
|            | 10<br>11 | 13       | 7.6        | 43<br>56 | 0.45         | 8.4        | 71       |
|            |          | 15       | 0.2<br>8   | 52<br>43 | 0.41<br>0.45 | 8.6        | 58       |
|            | 8<br>9   | 14<br>15 | 8.4<br>8.2 | 54       | 0.35         | 8.6<br>8.5 | 70<br>58 |
| ł          | 7        | 14       | 7.9        | 49       | 0.38         | 8          | 59<br>70 |
|            | 6        | 18       | 8.1        | 57       | 0.41         | 8.5        | 68<br>50 |
|            | 5        | 16       | 7.8        | 42       | 0.75         | 8          | 63       |
|            | 4        | 12       | 7.2        | 61       | 0.51         | 8.4        | 64       |
|            | 3        | 16       | 7.8        | 40       | 0.86         | 8.3        | 65       |
|            | 2        | 17       | 7.3        | 32       | 0.3          | 8          | 63       |
| NOVEMBER   |          | 10       | 8.3        | 43       | 0.26         | 8.5        | 69       |

Values for Raw and Finished Water Turbidity, pH, and Alkalinity were taken from Texas Water Commission monthly operating reports. Finished water tubidity is an average of the six turbidity measurements taken for each day.

The average, minimum, and maximum values for the year are provided.



Simon W. Freese, P.E. 1900-1990 Marvin C. Nichols, P.E. 1896-- 1969

Date: 04/24/96

DRJ

By:

Chkd:

| Title: EAST CEDAR CREEK W/WW MASTER PLAN |
|------------------------------------------|
|                                          |

| Monthly Water Plant Historical Flow & Effluent Data |      |
|-----------------------------------------------------|------|
| [ECC95301]V:\WATERDAT.WK1                           | <br> |

# NORTH WATER TREATMENT PLANT

|              | DAILY R    | AW WATER PL | JMPAGE     | DAILY HI   | GH SERVICE P | UMPAGE           | # OF    | % OF    | # OF CL2   |
|--------------|------------|-------------|------------|------------|--------------|------------------|---------|---------|------------|
|              | AVG.       | MAX.        | MIN.       | AVG.       | MAX. MIN.    |                  | SAMPLES | SAMPLES | RESIDUAL   |
| DATE         | FLOW (MGD) | FLOW (MGD)  | FLOW (MGD) | FLOW (MGD) | FLOW (MGD)   | FLOW (MGD)       | > 5 NTU | > 5 NTU | < 0.2 mg/l |
| 1994 January | 0.524      | 0.791       | 0.406      | 0.480      | 0.580        | 0.281            | 0       | 0       | 0          |
| February     | 0.399      | 0.616       | 0.200      | 0.482      | 0.839        | 0.305            | 0       | 0       | 0          |
| March        | 0.478      | 0.727       | 0.201      | 0.483      | 0.650        | 0.286            | 0       | 0       | 0          |
| April        | 0.505      | 0.712       | 0.301      | 0.502      | 0.718        | 0.353            | 0       | 0       | 0          |
| May          | 0.488      | 0.700       | 0.381      | 0.497      | 0.708        | 0.228            | 1       | 0.5     | 0          |
| June         | 0.665      | 0.895       | 0.453      | 0.646      | 0.866        | 0.289            | 2       | 1.2     | 0          |
| July         |            | and a star  |            | 0.741      | 1.121        | 0.410            | 0       | 0       | 0          |
| August       | 0.886      | 1.282       | 0.481      | 0.794      | 1.155        | 0.475            | 0       | 0       | 0          |
| September    | 0.804      | 1.253       | 0.439      | 0.665      | 1.308        | 0.369            | 0       | 0       | 0          |
| October      | 0.730      | 1.520       | 0.364      | 0.597      | 1.056        | 0.350            | 0       | 0       | 0          |
| November     | 0.590      | 0.903       | 0.283      | 0.544      | 0.877        | 0.334            | 2       | 1.11    | 0          |
| December     | 0.483      | 0.847       | 0.316      | 0.558      | 0.828        | 0.363            | 0       | 0       | 0          |
| 1995 January |            |             |            |            |              |                  |         |         |            |
| February     | 0.467      | 0.728       | 0.258      | 0.467      | 0.728        | 0.258            | 13      | 8.3     | 0          |
| March        | 0.483      | 0.584       | 0.403      | 0.483      | 0.584        | 0.403            | 0       | 0       | 0          |
| April        |            |             |            |            |              | an star fra Mana |         |         |            |
| May          | 0.548      | 0.548       | 0.548      | 0.552      | 0.563        | 0.545            | 3       | 2       | 0          |
| June         | 0.607      | 0.948       | 0.372      | 0.593      | 1.404        | 0.245            | 1       | 0.6     | 0          |
| July         | 1.173      | 2.150       | 0.487      | 0.796      | 1.274        | 0.631            | 0       | o       | 0          |
| August       | 1.051      | 1.894       | 0.394      | 0.817      | 1.240        | 0.417            | 4       | 2.1     | 0          |
| September    | 0.893      | 1.192       | 0.517      | 0.785      | 0.997        | 0.528            | o       | o       | 0          |
| October      | 0.772      | 1.425       | 0.539      | 0.646      | 1.581        | 0.455            | 0       | 0       | 0          |
| November     | 0.810      | 1.058       | 0.452      | 0.698      | 0.925        | 0.388            | 1       | 0.5     | 0          |
| December     | 0.685      | 1.104       | 0.376      | 0.590      | 0.869        | 0.330            | 1       | 0.5     | 0          |

Average, Maximum, and Minimum Raw and High Service Pumpage and the analytical results of turbidity and chlorine residual were taken from Texas Water Commission monthly operating reports.



Simon W. Freese, P.E. 19 Marvin C. Nichols, P.E. 18

1900-- 1990 1896-- 1969

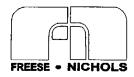
| Title: EAST CEDAR CREEK W/WW MASTER PLAN            | Date: | 04/24/96 |
|-----------------------------------------------------|-------|----------|
| Monthly Water Plant Historical Flow & Effluent Data | By:   | DRJ      |
| [ECC95301]V:\WATERDAT.WK1                           | Chkd: |          |

# SOUTH WATER TREATMENT PLANT

|              | DAILY R                                      | AW WATER PL | JMPAGE     | DAILY HI   | GH SERVICE P                            | UMPAGE                                                                                                                                                            | # 0F    | % OF              | # OF CL2   |
|--------------|----------------------------------------------|-------------|------------|------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|-------------------|------------|
|              | AVG.                                         | MAX.        | MIN.       | AVG.       |                                         |                                                                                                                                                                   |         | SAMPLES           | RESIDUAL   |
| DATE         | FLOW (MGD)                                   | FLOW (MGD)  | FLOW (MGD) | FLOW (MGD) | FLOW (MGD)                              | FLOW (MGD)                                                                                                                                                        | > 5 NTU | <u>&gt; 5 NTU</u> | < 0.2 mg/l |
| 1994 January |                                              |             |            |            |                                         |                                                                                                                                                                   |         |                   |            |
| February     |                                              |             |            |            |                                         | 1                                                                                                                                                                 |         |                   |            |
| March        |                                              |             |            |            |                                         | $q_{\rm e} \sim 8.4$                                                                                                                                              |         |                   |            |
| April        |                                              |             |            |            |                                         |                                                                                                                                                                   |         |                   |            |
| May          |                                              |             |            |            | i i e e e e e e e e e e e e e e e e e e |                                                                                                                                                                   |         |                   |            |
| June         |                                              |             |            |            |                                         | a second                                                                                                                                                          |         |                   |            |
| July         |                                              |             |            |            |                                         |                                                                                                                                                                   |         |                   |            |
| August       |                                              | 1.4         |            |            |                                         |                                                                                                                                                                   |         |                   |            |
| September    |                                              |             |            |            |                                         |                                                                                                                                                                   |         |                   |            |
| October      | 0.312                                        | 0.499       | 0.195      | 0.312      | 0.499                                   | 0.195                                                                                                                                                             | 8       | 4.3               | 0          |
| November     | 0.261                                        | 0.338       | 0.161      | 0.261      | 0.338                                   | 0.161                                                                                                                                                             | 1       | 0.6               | 0          |
| December     | 0.306                                        | 0.523       | 0.213      | 0.306      | 0.523                                   | 0.213                                                                                                                                                             | 83      | 45                | 0          |
| 1995 January | 0.247                                        | 0.348       | 0.180      | 0.247      | 0.348                                   | 0.180                                                                                                                                                             | 33      | 14.5              | 0          |
| February     | 0.293                                        | 0.424       | 0.220      | 0.293      | 0.424                                   | 0.220                                                                                                                                                             | 131     | 78                | 0          |
| March        | 0.320                                        | 0.446       | 0.200      | 0.320      | 0.446                                   | 0.200                                                                                                                                                             | 149     | 80                | 0          |
| April        | 0.283                                        | 0.338       | 0.195      | 0.283      | 0.338                                   | 0.195                                                                                                                                                             | 70      | 39                | 0          |
| Мау          | 0.319                                        | 0.707       | 0.157      | 0.319      | 0.707                                   | 0.157                                                                                                                                                             | 63      | 34                | 0          |
| June         |                                              |             |            |            |                                         | a the action<br>The Art State of the Art State<br>The Art State of the Art S | 158     | 92                | 0          |
| July         | 0.471                                        | 0.892       | 0.237      | 0.471      | 0.892                                   | 0.237                                                                                                                                                             | 168     | 90                | 0          |
| August       | 0.391                                        | 0.583       | 0,278      | 0.391      | 0.583                                   | 0.278                                                                                                                                                             | 43      | 23                | 0          |
| September    | 0.376                                        | 0.684       | 0.231      | 0.376      | 0.684                                   | 0.231                                                                                                                                                             | 68      | 38                | 0          |
| October      | 0.296                                        | 0.406       | 0.230      | 0.296      | 0.406                                   | 0.230                                                                                                                                                             | 122     | 66                | 0          |
| November     | 0.276                                        | 0.583       | 0.122      | 0.276      | 0.583                                   | 0.122                                                                                                                                                             | 43      | 23                | 0          |
| December     | en de Politico da<br>Altra <u>—</u> Altra da |             |            | 지 이 국가 관계  |                                         |                                                                                                                                                                   |         |                   |            |

Average, Maximum, and Minimum Raw and High Service Pumpage and the analytical results of turbidity and chlorine residual were taken from Texas Water Commission monthly operating reports.




| Title: EAST CEDAR CREEK W/WW MASTER PLAN           | Date: | 04/24/96 |
|----------------------------------------------------|-------|----------|
| Monthly Wastewater Historical Flow & Effluent Data | By:   | DRJ      |
| [ECC95301]V:\WASTEDAT.WK1                          | Chkd: |          |

# NORTH WASTEWATER TREATMENT PLANT

|              |                        |            | INFLU                                                                                                                                                                                                                             | ENT        |               | EFFLÜENT   |            |            |            |      |          |
|--------------|------------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---------------|------------|------------|------------|------------|------|----------|
|              | DAILY AVG.             | DAILY MAX. | AVG.                                                                                                                                                                                                                              | AVG        | AVG.          | MAX.       | AVG.       | MAX.       | MIN.       | MIN. | MAX.     |
| DATE         | FLOW (MGD)             | FLOW (MGD) | BOD (mg/l)                                                                                                                                                                                                                        | TSS (mg/l) | BOD (mg/l)    | BOD (mg/i) | TSS (mg/l) | TSS (mg/l) | CL2 (mg/l) | рН   | pН       |
| Permitted    | 0.626                  | 1.25       | n/a                                                                                                                                                                                                                               | n/a        | 10.0          | 25.0       | 15.0       | 40.0       | 1.0        | 6.0  | 9.0      |
| 1994 January | 0.561                  | 0.826      |                                                                                                                                                                                                                                   |            | 4.8           | 6.0        |            | 21.0       | 1.3        | 7.2  | 7.6      |
| February     | 0.621                  | 1.214      | n in de la seconda de la s<br>Esta de la seconda de la se |            | 17.3          | 36.0       |            | 52.0       | 1.3        | 7.0  | 7.6      |
| March        | 0.654                  | 0.910      |                                                                                                                                                                                                                                   |            | 5.0           | 10.0       | 5.8        | 17.0       | 1.0        | 6.8  | 7.6      |
| April        | 0.648                  | 0.827      |                                                                                                                                                                                                                                   |            | 6.0           | 8.0        | 5.3        | 9.0        | 1.0        | 6.6  | 7.6      |
| May          | 0.652                  | 0.908      |                                                                                                                                                                                                                                   |            | 9.0           | 17.0       | 7.3        | 16.0       | 1.2        | 6.9  | 7.4      |
| June         | 0.551                  | 0.736      |                                                                                                                                                                                                                                   |            | 10.4          | 24.0       | 66.6       | 240.0      | 2.0        | 6.9  | 7.4      |
| July         | 0.612                  | 0.744      | 220.25                                                                                                                                                                                                                            | 185.75     | 5.8           | 13.7       | 32.1       | 126.0      | 1.0        | 6.7  | 7.4      |
| August       | 0.614                  | 0.850      | 284.82                                                                                                                                                                                                                            | 220.40     | 4.1           | 7.7        | 2.7        | 5.5        | 1.0        | 6.6  | 7.4      |
| September    | 0.635                  | 0.764      | 253.93                                                                                                                                                                                                                            | 201.50     | 2.2           | 2.3        | 3.8        | 11.0       | 1.2        | 6.4  | 7.4      |
| October      | 0.715                  | 1.177      | 184.50                                                                                                                                                                                                                            | 254.00     | 3.3           | 6.2        | 10.5       | 22.0       | 0.2        | 6.5  | 7.4      |
| November     | 0.692                  | 0.967      | 226.20                                                                                                                                                                                                                            | 268.00     | 2.4           | 3.3        | 6.8        | 13.0       | 1.5        | 6.7  | 7.1      |
| December     | 0.698                  | 1.087      | 260.78                                                                                                                                                                                                                            | 259.00     | 105.5         | 214.6      | 390.8      | 824.0      | 1.6        | 6.6  | 7.4      |
| AVERAGE      | 0.638                  | 0.918      | 238.41                                                                                                                                                                                                                            | 231.44     | 14.6          | 29.1       | 47.3       | 113.0      | 1.2        | 6.7  | 7.4      |
| MINIMUM      | 0.551                  | 0.736      | 184.50                                                                                                                                                                                                                            | 185.75     | 2.2           | 2.3        | 2.7        | 5.5        | 0.2        | 6.4  | 7.1      |
| MAXIMUM      | 0.715                  | 1.214      | 284.82                                                                                                                                                                                                                            | 268.00     | <u>10</u> 5.5 | 214.6      | 390.8      | 824.0      | 2.0        | 7.2  | 7.6      |
| 1995 January | 0.555                  | 0.967      | 243.38                                                                                                                                                                                                                            | 171.50     | 3.7           | 6.8        | 4.8        | 10.0       | 1.1        | 6.5  | 7.1      |
| February     | 0.347                  | 0.438      | 220.12                                                                                                                                                                                                                            | 169.20     | 2.9           | 4.3        | 4.4        | 10.0       | 1.1        | 6.2  | 7.2      |
| March        | 0.381                  | 0.484      | 205.53                                                                                                                                                                                                                            | 143.50     | 6.1           | 11.2       | 17.0       | 44.0       | 1.1        | 6.6  | 7.3      |
| April        | 0.400                  | 0.627      | 155.88                                                                                                                                                                                                                            | 122.00     | 4.3           | 7.4        | 8.1        | 18.0       | 1.1        | 6.9  | 7.4      |
| May          | 0.510                  | 1.351      | 191.92                                                                                                                                                                                                                            | 128.40     | 3.0           | 4.5        | 6.8        | 18.0       | 1.2        | 7.0  | 7.5      |
| June         | 0.496                  | 1.055      | 203.30                                                                                                                                                                                                                            | 132.00     | 5.8           | 11.0       | 5.6        | 12.0       | 1.1        | 6.6  | 7.5      |
| July         | 0.447                  | 0.771      | 207.25                                                                                                                                                                                                                            | 211.50     | 2.9           | 5.2        | 4.5        | 10.0       | 0.8        | 6.9  | 7.5      |
| August       | 0.416                  | 0.578      | 220.60                                                                                                                                                                                                                            | 212.00     | 5.9           | 10.2       | 8.2        | 14.0       | 1.0        | 5.7  | 7.5      |
| September    | 0.416                  | 0.579      | 171.88                                                                                                                                                                                                                            | 229.00     | 2.7           | 3.8        | 5.2        | 8.0        | 1.2        | 7.0  | 7.6      |
| October      | 0.341                  | 0.485      | 195.00                                                                                                                                                                                                                            | 209.50     | 5.0           | 10.6       | 5.9        | 12.0       | 1.9        | 6.9  | 7.4      |
| November     | 0.305                  | 0.450      | 234.20                                                                                                                                                                                                                            | 192.40     | 7.4           | 15.2       | 2.8        | 5.0        |            | 7.0  | 7.2      |
| December     | 1919-1919<br>1919-1919 |            | 185.00                                                                                                                                                                                                                            | 191.50     | 3.7           | 5.7        | 4.0        | 9.0        | 2.0        | 7.1  | 7.2      |
| AVERAGE      | 0.419                  | 0.708      | 202.84                                                                                                                                                                                                                            | 176.04     | 4.4           | 8.0        | 6.4        | 14.2       | 1.2        | 6.7  | 7.4      |
| MINIMUM      | 0.305                  | 0.438      | 155.88                                                                                                                                                                                                                            | 122.00     | 2.7           | 3.8        | 2.8        | 5.0        | 0.8        | 5.7  | 7.1      |
| MAXIMUM      | 0.555                  | 1.351      | 243.38                                                                                                                                                                                                                            | 229.00     | 7.4           | 15.2       | 17.0       | 44,0       | 2.0        | 7.1  | <u> </u> |

Daily Average and Maximum Flows and Effluent Wastewater Quality Data were taken from TNRCC monthly effluent reports. Values for Influent BOD and TSS were taken from monthly lab reports for influent wastewater and averaged for each month.

The average, minimum, and maximum values for the year are provided.



| Title: EAST CEDAR CREEK W/WW MASTER PLAN           | <br>Date: 04/24/96 |
|----------------------------------------------------|--------------------|
| Monthly Wastewater Historical Flow & Effluent Data | By: DRJ            |
| [ECC95301]V:\WASTEDAT.WK1                          | Chkd:              |

#### SOUTH WASTEWATER TREATMENT PLANT

|      |           |            |                                       | INFL                                      | JENT                                                                                                                                                                                                                                                                                                                                                     |            | EFFLUENT   |              |            |            |      | , <u> </u> |  |  |  |  |
|------|-----------|------------|---------------------------------------|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------|--------------|------------|------------|------|------------|--|--|--|--|
|      |           | DAILY AVG. | DAILY MAX.                            | AVG.                                      | AVG                                                                                                                                                                                                                                                                                                                                                      | AVG.       | 7-DAY AVG  | AVG.         | MAX.       | MIN.       | MIN. | MAX.       |  |  |  |  |
| DAT  | TE.       | FLOW (MGD) | FLOW (MGD)                            | BOD (mg/l)                                | TSS (mg/l)                                                                                                                                                                                                                                                                                                                                               | BOD (mg/l) | BOD (mg/l) | TSS (mg/l)   | TSS (mg/l) | CL2 (mg/l) | pН   | pН         |  |  |  |  |
|      | Permitted | 0.04       | 0.1                                   | n/a                                       | n/a                                                                                                                                                                                                                                                                                                                                                      | 20.0       | 30.0       | n/a          | n/a        | 1.0        | n/a  | n/a        |  |  |  |  |
| 1995 | January   | 0.0810     | 0.2290                                |                                           | 이 같은 것을 못 못 했다.                                                                                                                                                                                                                                                                                                                                          | 9.2        | 20.0       | 10.8         | 20.0       | 0.0        | 6.8  | 6.9        |  |  |  |  |
|      | February  | 0.1053     | 0.1480                                |                                           |                                                                                                                                                                                                                                                                                                                                                          | 11.4       | 35.7       | 25.6         | 74.0       | 0.0        | 6.6  | 7.2        |  |  |  |  |
|      | March     | 0.1296     | 0.6000                                |                                           |                                                                                                                                                                                                                                                                                                                                                          | 23.4       | 75.0       | 67.4         | 264.0      | 0.0        | 6.7  | 6.8        |  |  |  |  |
|      | April     | 0.1241     | 0.2090                                |                                           |                                                                                                                                                                                                                                                                                                                                                          | 12.8       | 30.0       | 43.0         | 120.0      | 0.0        | 6.7  | 7.4        |  |  |  |  |
|      | May       | 0.0490     | 0.3000                                |                                           | Ne se                                                                                                                                                                                                                                                                                                                | 35.4       | 62.4       | 30.0         | 62.0       | 1.0        | 6.6  | 6.9        |  |  |  |  |
|      | June      | 0.0761     | 0.2110                                |                                           |                                                                                                                                                                                                                                                                                                                                                          | 32.3       | 115.5      | 27.0         | 66.0       | 1.2        | 6.6  | 6.9        |  |  |  |  |
|      | July      | 0.0806     | 0.1954                                |                                           |                                                                                                                                                                                                                                                                                                                                                          | 16.7       | 22.1       | 25.3         | 48.0       | 1.8        | 6.6  | 7.4        |  |  |  |  |
|      | August    | 0.0560     | 0.0840                                | 2012년 11년 11년 11년 11년 11년 11년 11년 11년 11년 |                                                                                                                                                                                                                                                                                                                                                          | 16.6       | 60.0       | 28.4         | 84.0       | 1.5        | 6.6  | 6.9        |  |  |  |  |
| 5    | September | 0.0510     | 0.0920                                | 17 T - 24                                 |                                                                                                                                                                                                                                                                                                                                                          | 5.0        | 8.9        | 8.3          | 9.0        | 2.6        | 6.7  | 7.4        |  |  |  |  |
|      | October   | 0.0403     | 0.0604                                |                                           |                                                                                                                                                                                                                                                                                                                                                          | 5.2        | 8.7        | 7.8          | 14.0       | 1.5        | 6.7  | 6.8        |  |  |  |  |
|      | November  |            |                                       |                                           |                                                                                                                                                                                                                                                                                                                                                          |            |            | a Norse al 1 |            |            |      |            |  |  |  |  |
|      | December  |            | · · · · · · · · · · · · · · · · · · · |                                           | 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 -                                                                                                                                                                                                                                          |            |            |              |            |            | ·    |            |  |  |  |  |
| A    | VERAGE    | 0.079      | 0.213                                 | la provinció de                           |                                                                                                                                                                                                                                                                                                                                                          | 16.8       | 43.8       | 27.4         | 76.1       | 1.0        | 6.7  | 7.1        |  |  |  |  |
| N    | MINIMUM   | 0.040      | 0.060                                 |                                           | 14월 등 관계에 가장한<br>18월 5일 - 18일 - 18일<br>18월 5일 - 18일 - 18g - 1<br>189 - 189 - 189 - 189 - 189 - 189 - 189 - 189 - 189 - 189 - 189 - 189 - 189 - 189 - 189 - 189 - 189 - 189 - 189 | 5.0        | 8.7        | 7.8          | 9.0        | 0.0        | 6.6  | 6.8        |  |  |  |  |
| N    | MUMIXAN   | 0.130      | 0.600                                 |                                           |                                                                                                                                                                                                                                                                                                                                                          | 35.4       | 115.5      | 67.4         | 264.0      | 2,6        | 6.8  | 7.4        |  |  |  |  |

Daily Average, and Maximum Flows and Effluent Wastewater Quality Data were taken from TNRCC monthly effluent reports. Values for Influent BOD and TSS were not available. The most recent data for South Wastewater Influent BOD and TSS showed a BOD of 191 and a TSS of 140 for the sampling date of Jan 23, 1996. Since these numbers compare favorably with average BOD and TSS for the North District in 1995, those values will be used for analyzing the SWWTP unit processes.

The average, minimum, and maximum values for the year are provided.



| Title: EAST CEDAR CREEK FRESH WATER SUPPLY DISTRICT  | Date: | 06/20/96 |
|------------------------------------------------------|-------|----------|
| Water and Wastewater Max Day and Peak 2 – Hour Flows | By:   | DRJ      |
| [ECC95301]V:\PEAKDAY.WK1                             | Chkd: |          |

### WASTEWATER TREATMENT PLANT FLOWS

|                |            |             | NORTH WWTP | )       | SOUTH WWTP |            |            |         |  |
|----------------|------------|-------------|------------|---------|------------|------------|------------|---------|--|
|                | AVG. DAILY | 3 Mo. Roll  | PEAK 2-HR  | PEAKING | AVG. DAILY | 3 Mo. Roll | PEAK 2-HR  | PEAKING |  |
| YEAR MONTH     | FLOW (MGD) | AVG (MGD)   | FLOW (MGD) | RATIO   | FLOW (MGD) | AVG (MGD)  | FLOW (MGD) | RATIO   |  |
| 1995 January   | INAC       | COURATE FLO | W MEASUREM | ENT     | 0.0810     |            |            | sa g    |  |
| February       | 0.347      |             | 1.18       | 3.40    | 0.1053     |            |            |         |  |
| March          | 0.381      |             | 1.12       | 2.94    | 0.1296     | 0.1053     | 0.50       | 3.86    |  |
| April          | 0.400      | 0.376       | 1.26       | 3.15    | 0.1241     | 0.1197     |            |         |  |
| May            | 0.510      | 0.430       | 1.35       | 2.65    | 0.0490     | 0.1009     |            |         |  |
| June           | 0.496      | 0.469       | 1.38       | 2.78    | 0.0761     | 0.0831     |            |         |  |
| July           | 0.447      | 0.484       | 1.24       | 2.77    | 0.0806     | 0.0686     | 0.15       | 1.86    |  |
| August         | 0.416      | 0.453       | 1.38       | 3.32    | 0.0560     | 0.0709     | 0.16       | 2.86    |  |
| September      | 0.416      | 0.426       | 1.34       | 3.23    | 0.0510     | 0.0625     | 0.17       | 3.33    |  |
| October        | 0.341      | 0.391       | 1.08       | 3.17    | 0.0403     | 0.0491     | 0.13       | 3.23    |  |
| November       | 0.305      | 0.354       | 1.26       | 4.14    |            |            |            |         |  |
| December       | 0.381      | 0.342       | 1.20       | 3.15    |            |            |            |         |  |
| TOTALS AVERAGE | 0.404      | 0.414       | 1.25       | 3.15    | 0.0793     | 0.0825     | 0.22       | 3.03    |  |
| MINIMUN        | 0.305      | 0.342       | 1.08       | 2.65    | 0.0403     | 0.0491     | 0.13       | 1.86    |  |
| MAXIMUN        | 0.510      | 0.484       | 1.38       | 4.14    | 0.1296     | 0.1197     | 0.50       | 3.86    |  |

\* -- Note: The 2-hr peak for the South WWTP in March 1995 exceeded the recorded level of the chart of 0.5 MGD. The actual 2-hr peak seen at the plant is unknown.

Average Daily and 3 month rolling averages are based on monthly flow records. The 30 day average and 3 month rolling averages used for system projections will be developed from the daily flow records in Attachment H.

#### WATER TREATMENT PLANT FLOWS

|        |           |            | NORTI      | H WTP   |         | SOUTH WTP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                      |                                        |                                         |  |
|--------|-----------|------------|------------|---------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------|-----------------------------------------|--|
|        |           | AVG. DAY   | MAX. DAY   | # of    | MAX DAY | AVG. DAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MAX. DAY             | # of                                   | MAX DAY                                 |  |
| YEAR   | MONTH     | FLOW (MGD) | FLOW (MGD) | CONNECT | GPCPD   | FLOW (MGD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | FLOW (MGD)           | CONNECT                                | GPCPD                                   |  |
| 1994   | 1 January | 0.480      | 0.580      | 2,865   | 202     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | E State La Participa |                                        |                                         |  |
|        | February  | 0.482      | 0.839      | 2,857   | 294     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                        |                                         |  |
|        | March     | 0.483      | 0.650      | 2,846   | 228     | The Device of the P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      |                                        |                                         |  |
|        | April     | 0.502      | 0.718      | 2,865   | 251     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                        |                                         |  |
|        | May       | 0.497      | 0.708      | 2,993   | 237     | an a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                      |                                        |                                         |  |
|        | June      | 0.646      | 0.866      | 2,866   | 302     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                        |                                         |  |
|        | July      | 0.741      | 1.121      | 2,866   | 391     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                        | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - |  |
|        | August    | 0.794      | 1.155      | 2,851   | 405     | 1994 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 1997 - 19 |                      |                                        |                                         |  |
|        | September | 0.655      | 1.308      | 2,859   | 458     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | \$                   | 1 - 11 - 11 - 11 - 11 - 11 - 11 - 11 - |                                         |  |
|        | October   | 0.597      | 1.056      | 2,881   | 367     | 0.312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.499                | 1,764                                  | 283                                     |  |
|        | November  | 0.544      | 0.877      | 2,875   | 305     | 0.261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.338                | 1,764                                  | 192                                     |  |
|        | December  | 0.558      | 0.828      | 3,014   | 275     | 0.306                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.523                | 1,625                                  | 322                                     |  |
| TOTALS | AVERAGE   | 0.582      | 0.892      | 2887    | 309     | 0.293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.453                | 1718                                   | 265                                     |  |
|        | MINIMUM   | 0.480      | 0.580      | 2846    | 202     | 0.261                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.338                | 1625                                   | 192                                     |  |
|        | MAXIMUM   | 0.794      | 1.308      | 3014    | 458     | 0.312                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.523                | 1764                                   | 322                                     |  |
| 1995   | 5 January |            |            |         |         | 0.247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.348                | 1                                      |                                         |  |
|        | February  | 0.467      | 0.728      | 2,869   | 254     | 0.293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.424                | 1,624                                  | 261                                     |  |
|        | March     | 0.483      | 0.584      | 3,018   | 194     | 0.320                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.446                | 1,626                                  | 274                                     |  |
|        | April     |            |            |         |         | 0.283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.338                | 1,624                                  | 208                                     |  |
|        | May       | 0.552      | 0.563      | 2,885   | 195     | 0.319                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.707                | 1,755                                  | 403                                     |  |
|        | June      | 0.592      | 1.404      | 2,755   | 510     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                        |                                         |  |
|        | July      | 0.796      | 1.274      | 2,916   | 437     | 0.471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.892                | 1,775                                  | 503                                     |  |
|        | August    | 0.817      | 1.240      | 2,923   | 424     | 0.391                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.583                | 1,770                                  | 329                                     |  |
|        | September | 0.785      | 0.997      | 2,905   | 343     | 0.376                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.684                | 1,775                                  | 385                                     |  |
|        | October   | 0.646      | 1.581      | 2,892   | 547     | 0.296                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.406                | 1,780                                  | 228                                     |  |
|        | November  | 0.698      | 0.925      | 2,898   | 319     | 0.276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.583                | 1,780                                  | 328                                     |  |
|        | December  | 0.590      | 0.869      | 2,901   | 300     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                                        |                                         |  |
| TOTALS | AVERAGE   |            | 1.017      | 2896    | 352     | 0.327                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.541                | 1723                                   | 324                                     |  |
|        | MINIMUM   | 0.467      | 0.563      | 2755    | 194     | 0.247                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.338                | 1624                                   | 208                                     |  |
|        | MAXIMUM   | 0.817      | 1.581      | 3018    | 547     | 0.471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.892                | 1780                                   | 503                                     |  |

The average daily and maximum daily flows and number of connections were taken from monthly operations reports and summaries. The average daily flow and max day flows are treated water flows coming from the high service pumps at each plant. GPCPD is the gallons per connection per day of flow for the max day.

The average day and max day flows will be used to project the future average and max days for both systems.



| Title: EAST CEDAR CREEK FWSD WATER & WASTEWATER MASTER PLAN | 06/20/96 |
|-------------------------------------------------------------|----------|
| Population and Flow Projections for Water and Wastewater    | DRJ      |
| recc953011V:\PROJECTN.WK1                                   |          |

#### NORTH DISTRICT PROJECTIONS

|      |      |            |            |      |      |         | TER TREAT |            |            |             |           |            |
|------|------|------------|------------|------|------|---------|-----------|------------|------------|-------------|-----------|------------|
|      | GBC  | ESTRURAL   | EST TOTAL  |      |      | AVERAGE |           |            | MAX 30 DAY | SYSTEM 2-HR | SYS. PEAK | PUMP PEAK  |
| YEAR | POP  | POP SERVED | POP SERVED |      |      |         |           | AVG. (MGD) |            | PEAK (MGD)  | RATIO     | 2-HR (MGD) |
| 1995 | 3894 | 3455       | 7349       | 3075 | 0.42 | 0.40    | 55        |            | 182.76     | 1.77        | 3.15      | 1.79       |
| 1996 | 3968 | 3496       | 7463       | 3123 | 0.42 | 0.41    | 55        |            | 182.76     | · · · · ·   | 3.15      | 1.79       |
| 1997 | 4041 | 3536       | 7577       | 3170 | 0.42 | 0.42    | 55        |            | 182.76     | 1.83        | 3.15      | 1.79       |
| 1998 | 4115 | 3576       | 7691       | 3218 | 0.42 | 0.42    | 55        |            | 182.76     |             | 3.15      | 1.79       |
| 1999 | 4188 | 3616       | 7805       | 3266 | 0.42 | 0.43    | 55        |            |            |             | 3.15      | 1.79       |
| 2000 | 4262 | 3657       | 7919       | 3313 | 0.42 | 0.44    | 55        |            | 182.76     |             | 3.15      | 1.79       |
| 2001 | 4326 | 3691       | 8017       | 3354 | 0.42 | 0.44    | 55        |            | 182.76     |             | 3.15      | 1.79       |
| 2002 | 4390 | 3725       | 8115       | 3395 | 0.42 | 0.45    | 55        |            | 182.76     | 1           | 3.15      | 1.79       |
| 2003 | 4454 | 3759       | 8213       | 3436 | 0.42 | 0.45    | 55        |            | 182.76     |             | 3.15      | 1.79       |
| 2004 | 4518 | 3793       | 8311       | 3477 | 0.42 | 0.46    | 55        |            | 182.76     |             | 3.15      | 1.79       |
| 2005 | 4582 | 3827       | 8409       | 3518 | 0.42 | 0.46    | 55        |            | 182.76     |             | 3.15      |            |
| 2006 | 4646 | 3861       | 8507       | 3559 | 0.42 | 0.47    | 55        |            | 182.76     |             | 3.15      |            |
| 2007 | 4710 | 3895       | 8605       | 3601 | 0.42 | 0.47    | 55        |            | 182.76     |             | 3.15      | 1.79       |
| 2008 | 4774 | 3929       | 8703       | 3642 | 0.42 | 0.48    | 55        |            | 182.76     |             | 3.15      | 1.79       |
| 2009 | 4838 | 3963       | 8801       | 3683 | 0.42 | 0.48    | 55        |            | 182.76     |             | 3.15      | 1.79       |
| 2010 | 4902 | 3997       | 8899       | 3724 | 0.42 | 0.49    | 55        |            | 182.76     |             | 3.15      | 1.79       |
| 2011 | 4959 | 4026       | 8985       | 3759 | 0.42 | 0.49    | 55        |            | 182.76     |             | 3.15      | 1.79       |
| 2012 | 5016 | 4054       | 9070       | 3795 | 0.42 | 0.50    | 55        |            | 182.76     |             | 3.15      | 1.79       |
| 2013 | 5073 | 4082       | 9156       | 3831 | 0.42 | 0.50    | 55        |            | 182.76     |             | 3.15      | 1.79       |
| 2014 | 5130 | 4111       | 9241       | 3867 | 0.42 | 0.51    | 55        |            | 182.76     |             | 3.15      | 1.79       |
| 2015 | 5188 | 4139       | 9326       | 3902 | 0.42 | 0.51    | 55        |            | 182.76     |             | 3.15      | 1.79       |
| 2016 | 5245 | 4167       | 9412       | 3938 | 0.42 | 0.52    | 55        |            | 182.76     | 2.27        | 3.15      | 1.79       |
| 2017 | 5302 | 4196       | 9497       | 3974 | 0.42 | 0.52    | 55        |            | 182.76     |             | 3.15      | 1.79       |
| 2018 | 5359 | 4224       | 9583       | 4009 | 0.42 | 0.53    | 55        |            | 182.76     |             | 3.15      | 1.79       |
| 2019 | 5416 | 4252       | 9668       | 4045 | 0.42 | 0.53    | 55        |            | 182.76     |             | 3.15      | 1.79       |
| 2020 | 5473 | 4280       | 9753       | 4081 | 0.42 | 0.54    | 55        |            | 182.76     |             | 3.15      | 1.79       |
| 2021 | 5506 | 4290       | 9796       | 4099 | 0.42 | 0.54    | 55        |            | 182.76     |             | 3.15      | 1.79       |
| 2022 | 5540 | 4299       | 9839       | 4117 | 0.42 | 0.54    | 55        |            | 182.76     |             | 3.15      | 1.79       |
| 2023 | 5573 | 4309       | 9882       | 4135 | 0.42 | 0.54    | 55        |            | 182.76     |             | 3.15      | 1.79       |
| 2024 | 5607 | 4319       | 9925       | 4153 | 0.42 | 0.55    | 55        |            | 182.76     | 2.39        | 3.15      | 1.79       |
| 2025 | 5640 | 4328       | 9968       | 4171 | 0.42 | 0.55    | 55        | 0.76       | 182.76     | 2.40        | 3.15      | 1.79       |

Population projections are based on an estimated 2.39 persons per wastewater connection as taken from 1990 census data. This number of people per connection is multiplied by the total number of wastewater connections in the North District to estimate the population served by the district. The population served is assumed to include all of Gun Barrel City and the remaining population is assumed to be rural. The populations for Gun Barrel City and the remaining population is assumed to be rural. The populations for Gun Barrel City and the Rural populations are projected based on TWDB population projections for Gun Barrel City and Rural Henderson County.

The current average daily flow is divided by the current number of connections to get an average gallons/connection/day.

The average g/conn/day is assumed the same for future years and is used to calculate future average daily flows. The average daily flow used

is the maximum 30 day average flow as required by TNRCC design criteria. The system peak 2-hr. flow is developed from historical plant peak flows

for 1994 & 1995. This peak flow is divided by the average daily flow to develop a peaking ratio. The peaking ratio is assumed constant for future

years and is multiplied by the projected average day for those years to develop a future peak flow. The pump peak 2-hr flow is

the peak 2-hr flow capable of being delivered to the system by the collection system lift stations. The peak 2-hr flow assumes that

each lift station directly feeding the wastewater plant is operating with only one pump and each lift station is pumping at the same time.



06/20/96 DRJ

| Title: EAST CEDAR CREEK FWSD WATER & WASTEWATER MASTER PLAN |  |
|-------------------------------------------------------------|--|
| Population and Flow Projections for Water and Wastewater    |  |
| ECC95301 V:\PROJECTN.WK1                                    |  |

#### NORTH DISTRICT PROJECTIONS

|      | NORTH DISTRICT WATER TREATMENT PLANT |            |            |         |         |         |             |           |             |  |  |  |  |
|------|--------------------------------------|------------|------------|---------|---------|---------|-------------|-----------|-------------|--|--|--|--|
| I    | GBC                                  | ESTRURAL   | EST TOTAL  | AVERAGE | CONNECT | AVERAGE | AVERAGE     | MAXIMUM   | MAXIMUM     |  |  |  |  |
| YEAR | POP                                  | POP SERVED | POP SERVED | CONNECT | PER CAP |         | G/Conn./Day | DAY (MGD) | G/Conn./Day |  |  |  |  |
| 1994 | 3820                                 | 3080       | 6900       | 2887    | 0.42    | 0.58    | 201.59      | 1.31      | 453.07      |  |  |  |  |
| 1995 | 3894                                 | 3027       | 6921       | 2896    | 0.42    | 0.64    | 222.03      | 1.58      | 545.93      |  |  |  |  |
| 1996 | 3968                                 | 3063       | 7030       | 2942    | 0.42    | 0.62    | 211.81      | 1.61      | 545.93      |  |  |  |  |
| 1997 | 4041                                 | 3098       | 7139       | 2987    | 0.42    | 0.63    | 211.81      | 1.63      | 545.93      |  |  |  |  |
| 1998 | 4115                                 | 3133       | 7248       | 3033    | 0.42    | 0.64    | 211.81      | 1.66      | 545.93      |  |  |  |  |
| 1999 | 4188                                 | 3169       | 7357       | 3078    | 0.42    | 0.65    | 211.81      | 1.68      | 545.93      |  |  |  |  |
| 2000 | 4262                                 | 3204       | 7466       | 3124    | 0.42    | 0.66    | 211.81      | 1.71      | 545.93      |  |  |  |  |
| 2001 | 4326                                 | 3234       | 7560       | 3163    | 0.42    | 0.67    | 211.81      | 1.73      | 545.93      |  |  |  |  |
| 2002 | 4390                                 | 3264       | 7654       | 3202    | 0.42    | 0.68    | 211.81      | 1.75      | 545.93      |  |  |  |  |
| 2003 | 4454                                 | 3294       | 7748       | 3242    | 0.42    | 0,69    | 211.81      | 1.77      | 545.93      |  |  |  |  |
| 2004 | 4518                                 | 3323       | 7841       | 3281    | 0.42    | 0.69    | 211.81      | 1.79      | 545.93      |  |  |  |  |
| 2005 | 4582                                 | 3353       | 7935       | 3320    | 0.42    | 0,70    | 211.81      | 1.81      | 545.93      |  |  |  |  |
| 2006 | 4646                                 | 3383       | 8029       | 3359    | 0.42    | 0.71    | 211.81      | 1.83      | 545.93      |  |  |  |  |
| 2007 | 4710                                 | 3413       | 8123       | 3399    | 0.42    | 0.72    | 211.81      | 1.86      | 545,93      |  |  |  |  |
| 2008 | 4774                                 | 3443       | 8217       | 3438    | 0.42    | 0.73    | 211.81      | 1.88      | 545.93      |  |  |  |  |
| 2009 | 4838                                 | 3473       | 8311       | 3477    | 0.42    | 0.74    | 211.81      | 1.90      | 545.93      |  |  |  |  |
| 2010 | 4902                                 | 3502       | 8404       | 3517    | 0.42    | 0.74    | 211.81      | 1.92      | 545.93      |  |  |  |  |
| 2011 | 4959                                 | 3527       | 8486       | 3551    | 0.42    | 0.75    | 211.81      | 1.94      | 545.93      |  |  |  |  |
| 2012 | 5016                                 | 3552       | 8568       | 3585    | 0.42    | 0.76    | 211.81      | 1.96      | 545.93      |  |  |  |  |
| 2013 | 5073                                 | 3577       | 8650       | 3619    | 0.42    | 0.77    | 211.81      | 1.98      | 545.93      |  |  |  |  |
| 2014 | 5130                                 | 3602       | 8732       | 3654    | 0.42    | 0.77    | 211.81      | 1.99      | 545.93      |  |  |  |  |
| 2015 | 5188                                 | 3626       | 8814       | 3688    | 0.42    | 0.78    | 211.81      | 2.01      | 545.93      |  |  |  |  |
| 2016 | 5245                                 | 3651       | 8896       | 3722    | 0.42    | 0.79    | 211.81      | 2.03      | 545.93      |  |  |  |  |
| 2017 | 5302                                 | 3676       | 8978       | 3756    | 0.42    | 0.80    | 211.81      | 2.05      | 545.93      |  |  |  |  |
| 2018 | 5359                                 | 3701       | 9060       | 3791    | 0.42    | 0.80    | 211.81      | 2.07      | 545.93      |  |  |  |  |
| 2019 | 5416                                 | 3726       | 9142       | 3825    | 0.42    | 0.81    | 211.81      | 2.09      | 545.93      |  |  |  |  |
| 2020 | 5473                                 | 3750       | 9223       | 3859    | 0.42    | 0.82    | 211.81      | 2.11      | 545.93      |  |  |  |  |
| 2021 | 5506                                 | 3759       | 9265       | 3877    | 0.42    | 0.82    | 211.81      | 2.12      | 545.93      |  |  |  |  |
| 2022 | 5540                                 | 3767       | 9307       | 3894    | 0.42    | 0.82    | 211.81      | 2.13      | 545.93      |  |  |  |  |
| 2023 | 5573                                 | 3775       | 9349       | 3912    | 0.42    | 0.83    | 211.81      | 2.14      | 545.93      |  |  |  |  |
| 2024 | 5607                                 | 3784       | 9390       | 3929    | 0.42    | 0.83    | 211.81      | 2.14      | 545.93      |  |  |  |  |
| 2025 | 5640                                 | 3792       | 9432       | 3947    | 0.42    | 0.84    | 211.81      | 2.15      | 545.9       |  |  |  |  |

Population projections are based on an estimated 2 persons per water connection. This number of people per connection is multiplied by the total number of water connections in the North District to estimate the population served by the district. The population served is assumed to include all of Gun Barrel City and the remaining population is assumed to be rural. The populations for Gun Barrel City and the Rural populations are projected based on TWDB population projections for Gun Barrel City and the Rural populations are projected based on TWDB population projections for Gun Barrel City and Rural Henderson County.

The current aveage daily flow is divided by the current number of connections to get an average gallons/connection/day.

The average g/conn/day is assumed the same for future years and is used to calculate future average daily flows. The average daily flow used is the average daily flow for the NWTP for 1995. The maximum daily flow is used to size water treatment plant capacity and is developed from the maximum daily flow for 1995. The maximum daily flow is divided by the number of connections in 1995 to get a max day gal/conn/day. This max gal/conn/day is used to calculate maximum day flows for future years.



Simon W. Freese, P.E. Marvin C. Nichols, P.E. 1900-1990 1896-1969

06/20/96 DRJ

| Title: EAST CEDAR CREEK FWSD WATER & WASTEWATER MASTER PLAN |  |
|-------------------------------------------------------------|--|
| Population and Flow Projections for Water and Wastewater    |  |
| ECC953011V:\PROJECTNWK1                                     |  |

#### SOUTH DISTRICT PROJECTIONS

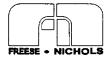
|      |          |            |            |           |         |      |           | TMENT PLAN |            |             | · · · · · · · · · · · · · · · · · · · |           |
|------|----------|------------|------------|-----------|---------|------|-----------|------------|------------|-------------|---------------------------------------|-----------|
|      | ENCH OAK | PAYNE SP.  | RURAL      | EST. POP. |         |      | AVERAGE   | AVERAGE    | MAX 30 DAY | MAX 30 DAY  | SYSTEM 2-HR                           | SYS. PEAK |
| YEAR | POP      | POP. SERV. | POP. SERV. | SERVED    | CONNECT |      | DAY (MGD) | G/Cap/Day  | AVG. (MGD) | G/Conn./Day | PEAK (MGD)                            | RATIO     |
| 1995 | 329      | 0          |            | 1056      | 528     | 0.50 | 0.079     | 75         | 0.170      | 321.97      | 0.595                                 | 3.50      |
| 1996 | 337      | 0          | 735        | 1072      | 536     | 0.50 | 0.081     | 75         | 0,1726     | 321.97      | 0.604                                 | 3.50      |
| 1997 | 345      | 0          | 744        | 1089      | 544     | 0.50 | 0.082     | 75         | 0.1752     | 321.97      | 0.613                                 | 3.50      |
| 1998 | 352      | 0          |            | 1105      |         | 0.50 | 0.083     | 75         | 0.1779     | 321.97      | 0.623                                 | 3.50      |
| 1999 |          | 0          | 761        | 1121      | 561     | 0.50 | 0.084     | 75         | 0.1805     | 321.97      | 0.632                                 | 3.50      |
| 2000 |          | 0          |            | 1137      | 569     | 0.50 | 0.085     | 75         | 0.1831     | 321.97      | 0.641                                 | 3.50      |
| 2001 | 376      | 0          | 777        | 1152      |         | 0.50 | 0.087     | 75         | 0.1855     | 321.97      | 0.649                                 | 3.50      |
| 2002 | 384      | 0          |            | 1167      |         | 0.50 | 0.088     | 75         | 0.1879     | 321.97      | 0.658                                 | 3.50      |
| 2003 | 391      | 0          |            | 1182      | 591     | 0.50 | 0.089     | 75         | 0.1903     | 321,97      | 0.666                                 | 3.50      |
| 2004 | 399      | 0          | 798        | 1197      | 599     | 0.50 | 0.090     | 75         | 0.1927     | 321.97      | 0.675                                 | 3.50      |
| 2005 |          | 0          |            | 1212      | 606     | 0.50 | 0.091     | 75         | 0.1952     | 321.97      | 0.683                                 | 3.50      |
| 2006 |          | 0          | 812        | 1227      | 614     | 0.50 | 0.092     | 75         | 0.1976     | 321.97      | 0.691                                 | 3.50      |
| 2007 | 423      | 0          |            | 1242      |         | 0.50 |           | 75         | 0.2000     | 321.97      | 0.700                                 | 3.50      |
| 2008 |          | 0          |            | 1257      | 629     | 0.50 | 0.094     | 75         | 0.2024     | 321.97      | 0.708                                 | 3.50      |
| 2009 |          | 0          | 834        | 1272      | 636     | 0.50 | 0.096     | 75         | 0.2048     | 321.97      | 0.717                                 | 3.50      |
| 2010 |          | 0          | 841        | 1287      | 644     | 0.50 | 0.097     | 75         | 0.2072     | 321.97      | 0.725                                 | 3.50      |
| 2011 | 454      | 0          | 847        | 1301      | 650     | 0.50 | 0.098     | 75         | 0.2094     | 321.97      | 0.733                                 | 3.50      |
| 2012 | 462      | 0          |            | 1315      |         | 0.50 | 0.099     | 75         | 0.2116     | 321.97      | 0.741                                 | 3.50      |
| 2013 |          | 0          | 859        | 1328      |         | 0.50 | 0.100     | 75         | 0.2138     | 321.97      | 0.748                                 | 3.50      |
| 2014 | 477      | 0          | 865        | 1342      | 671     | 0.50 | 0.101     | 75         | 0.2161     | 321.97      | 0.756                                 | 3.50      |
| 2015 | 485      | 0          | 871        | 1356      | 678     | 0.50 | 0.102     | 75         | 0.2183     | 321.97      | 0.764                                 | 3.50      |
| 2016 |          | ) 0        | 877        | 1370      | 685     | 0.50 | 0.103     | 75         | 0.2205     | 321.97      | 0.772                                 | 3,50      |
| 2017 | 501      | 0          | 883        | 1383      | 692     | 0.50 | 0.104     | 75         | 0.2227     | 321.97      | 0.779                                 | 3.50      |
| 2018 | 508      | 0          | 889        | 1397      | 699     | 0.50 | 0.105     | 75         | 0.2249     | 321.97      | 0.787                                 | 3.50      |
| 2019 | 516      | 0          | 895        | 1411      | 705     | 0.50 | 0.106     | 75         | 0.2271     | 321.97      | 0.795                                 | 3.50      |
| 2020 | 524      | 0          | 901        | 1425      | 712     | 0.50 | 0.107     | 75         | 0.2293     | 321.97      | 0.803                                 | 3.50      |
| 2021 | 532      | 0          | 903        | 1434      | 717     | 0.50 | 0.108     | 75         | 0.2309     | 321.97      | 0.808                                 | 3.50      |
| 2022 | 540      | 0          | 905        | 1444      | 722     | 0.50 | 0.108     | 75         | 0.2325     | 321.97      | 0.814                                 | 3.50      |
| 2023 | 547      | 0          | 907        | 1454      | 727     | 0.50 | 0.109     | 75         | 0.2341     | 321,97      | 0.819                                 | 3.50      |
| 2024 | 555      | 0          | 909        | 1464      | 732     | 0.50 | 0.110     | 75         | 0.2357     | 321.97      | 0.825                                 | 3.50      |
| 2025 | 563      | 0          | 911        | 1474      | 737     | 0.50 | 0.111     | 75         | 0.2372     | 321.97      | 0.830                                 | 3.50      |

The population served in the South district is not known. The population served is estimated from the existing number of connections located in Enchanted Oaks, Payne Springs, and the rural population. The same number of connections per people calculated for the North District is used to calculate the estimated population served in the South District.

The average day is the maximum 30 day average flow for 1995 as required by TNRCC criteria. This average flow is used to calculate the average gal/conn/day for 1995. This average gal/conn/day is assumed to be the same for future years and future average daily flows are calculated based on this number. The system 2-hr peak is based on the peaking factor developed from Harmon's equation for estimating peak 2-hr flows.



Simon W. Freese, P.E. Marvin C. Nichola, P.E. 1900-1990 1896-1969


| Title: EAST CEDAR CREEK FWSD WATER & WASTEWATER MASTER PLAN | 06/20/96 |
|-------------------------------------------------------------|----------|
| Population and Flow Projections for Water and Wastewater    | DRJ      |
| [ECC95301]V:\PROJECTN.WK1                                   |          |

#### SOUTH DISTRICT PROJECTIONS

|      |          |            | SOL        | JTH DISTRI | CT WATER | TREATMEN | IT PLANT  |             |           |             |
|------|----------|------------|------------|------------|----------|----------|-----------|-------------|-----------|-------------|
|      | ENCH OAK | PAYNE SP.  | RURAL      | EST. POP.  | AVERAGE  |          |           | AVERAGE     | MAXIMUM   | MAXIMUM     |
| YEAR | POP      | POP. SERV. | POP. SERV. | SERVED     | CONNECT  | PER CAP  | DAY (MGD) | G/Conn./Day | DAY (MGD) | G/Conn./Day |
| 1995 | 329      | 400        | 3191       | 3920       | 1960     | 0.50     | 0.541     | 276.02      | 0.892     | 455.10      |
| 1996 | 337      | 411        | 3228       | 3976       | 1988     | 0.50     | 0.549     | 276.02      | 0.905     | 455.10      |
| 1997 | 345      | 421        | 3265       | 4031       | 2016     | 0.50     | 0.556     | 276.02      | 0.917     | 455.10      |
| 1998 | 352      | 432        | 3303       | 4087       | 2043     | 0.50     | 0.564     | 276.02      | 0.930     | 455.10      |
| 1999 | 360      | 442        | 3340       | 4142       | 2071     | 0.50     | 0.572     | 276.02      | 0.943     | 455.10      |
| 2000 | 368      | 453        | 3377       | 4198       | 2099     | 0.50     | 0.579     | 276.02      | 0.955     | 455.10      |
| 2001 | 376      | 463        | 3409       | 4248       | 2124     | 0.50     | 0.586     | 276.02      | 0.967     | 455.10      |
| 2002 | 384      | 474        | 3440       | 4297       | 2149     | 0.50     |           | 276.02      | 0.978     | 455.10      |
| 2003 | 391      | 484        | 3472       | 4347       | 2174     | 0.50     | 0.600     | 276.02      | 0.989     | 455.10      |
| 2004 | 399      | 495        | 3503       | 4397       | 2199     | 0.50     | 0.607     | 276.02      | 1.001     | 455.10      |
| 2005 | 407      | 505        | 3534       | 4447       | 2223     | 0.50     |           | 276.02      | 1.012     | 455.10      |
| 2006 | 415      | 516        | 3566       | 4497       | 2248     | 0.50     | 0.621     | 276.02      | 1.023     | 455.10      |
| 2007 | 423      | 527        | 3597       | 4546       | 2273     | 0.50     |           | 276.02      | 1.035     | 455,10      |
| 2008 | 430      | 537        | 3629       | 4596       | 2298     | 0.50     | 0.634     | 276.02      | 1.046     | 455.10      |
| 2009 | 438      | 548        | 3660       | 4646       | 2323     | 0.50     | 0.641     | 276.02      | 1.057     | 455,10      |
| 2010 | 446      | 558        | 3692       | 4696       | 2348     | 0.50     | 0.648     | 276.02      | 1.069     | 455.10      |
| 2011 | 454      | 569        | 3718       | 4740       | 2370     | 0.50     | 0.654     | 276.02      | 1.079     | 455.10      |
| 2012 | 462      | 579        | 3744       | 4785       | 2392     | 0.50     | 0.660     | 276.02      | 1.089     | 455.10      |
| 2013 | 469      | 590        | 3770       | 4829       | 2415     | 0.50     | 0.666     | 276.02      | 1.099     | 455.10      |
| 2014 | 477      | 600        | 3796       | 4874       | 2437     | 0.50     | 0.673     | 276.02      | 1.109     | 455.10      |
| 2015 | 485      | 611        | 3822       | 4918       | 2459     | 0.50     |           | 276.02      | 1.119     | 455.10      |
| 2016 | 493      | 621        | 3849       | 4963       | 2481     | 0.50     |           | 276.02      | 1.129     | 455,10      |
| 2017 | 501      | 632        | 3875       | 5007       | 2504     | 0.50     | 0.691     | 276.02      | 1.139     | 455.10      |
| 2018 | 508      | 643        | 3901       | 5052       | 2526     | 0.50     | 0.697     | 276.02      | 1.150     | 455.10      |
| 2019 | 516      | 653        | 3927       | 5096       | 2548     | 0.50     | 0.703     | 276.02      | 1.160     | 455.10      |
| 2020 | 524      | 664        | 3953       | 5141       | 2570     | 0.50     | 0.709     | 276.02      | 1.170     | 455.10      |
| 2021 | 532      | 674        | 3962       | 5168       | 2584     | 0.50     | 0.713     | 276.02      | 1.176     | 455.10      |
| 2022 | 540      | 685        | 3971       | 5195       | 2597     | 0.50     | 0.717     | 276.02      | 1.182     | 455.10      |
| 2023 | 547      | 695        | 3979       | 5222       | 2611     | 0.50     | 0.721     | 276.02      | 1.188     | 455,10      |
| 2024 | 555      | 706        | 3988       | 5249       | 2625     | 0.50     | 0.724     | 276.02      | 1.194     | 455.10      |
| 2025 | 563      | 716        | 3997       | 5276       | 2638     | 0.50     | 0.728     | 276.02      | 1.201     | 455.10      |

The population served in the South district is not known. The population served is estimated from the existing number of connections located in Enchanted Oaks, Payne Springs, and the rural population. The same number of connections per people calculated for the North District is used to calculate the estimated population served in the South District

The current aveage daily flow is divided by the current number of connections to get an average gallons/connection/day. The average g/conn/day is assumed the same for future years and is used to calculate future average daily flows. The average daily flow used is the average daily flow for the SWTP for 1995. The maximum daily flow is used to size water treatment plant capacity and is developed from the maximum daily flow for 1995. The maximum daily flow is divided by the number of connections in 1995 to get a max day gal/conn/day. This max gal/conn/day is used to calculate maximum day flows for future years.



Simon W. Freese, P.E. Marvin C. Nichols, P.E.

Date: 04/24/96 By: DRJ Chkd: \_\_\_\_

Title: EAST CEDAR CREEK FWSD WATER & WASTEWATER MASTER PLAN Projected Populations [ECC95301]V:\POPPROJ.WK1

|      | I          |          | Henderson |          | Kaufman |          | County  |          | County  |          | Enchanted |          | Payne   |          |
|------|------------|----------|-----------|----------|---------|----------|---------|----------|---------|----------|-----------|----------|---------|----------|
| YEAR | Gun Barrel | % Growth | Mabank    | % Growth | Mabank  | % Growth | Rural   | % Growth | Total   | % Growth | Oaks      | % Growth | Springs | % Growth |
| 1990 | 3526       |          | 281       |          | 1458    |          | 37318   |          | 58543   |          | 290       |          | 606     |          |
| 1991 | 3599.6     | 2.087351 | 288.7     | 2.740213 | 1554.5  | 6.618655 | 37780.3 | 1.238812 | 59238.9 | 1.188698 | 297.8     | 2.689655 | 624.4   | 3.036303 |
| 1992 | 3673.2     | 2.044671 | 296.4     | 2.667128 | 1651    | 6.207783 | 38242.6 | 1.223653 | 59934.8 | 1.174734 | 305.6     | 2.619207 | 642.8   | 2.946828 |
| 1993 | 3746.8     | 2.003702 | 304.1     | 2.597840 | 1747.5  | 5.844942 | 38704.9 | 1.208861 | 60630.7 | 1.161095 | 313.4     | 2.552356 | 661.2   | 2.862476 |
| 1994 | 3820.4     | 1.964342 | 311.8     | 2.532061 | 1844    | 5.522174 | 39167.2 | 1.194422 | 61326.6 | 1.147768 | 321.2     | 2.488832 | 679.6   | 2.782819 |
| 1995 | 3894       | 1.926499 | 319.5     | 2.469531 | 1940.5  | 5.233188 | 39629.5 | 1.180324 | 62022.5 | 1.134744 | 329       | 2.428393 | 698     | 2.707474 |
| 1996 | 3967.6     | 1.890087 | 327.2     | 2.410015 | 2037    | 4.972945 | 40091.8 | 1.166555 | 62718.4 | 1.122012 | 336.8     | 2.370820 | 716.4   | 2.636103 |
| 1997 | 4041.2     | 1.855025 | 334.9     | 2.353300 | 2133.5  | 4.737358 | 40554.1 | 1.153103 | 63414.3 | 1.109562 | 344.6     | 2.315914 | 734.8   | 2.568397 |
| 1998 | 4114.8     | 1.821241 | 342.6     | 2.299193 | 2230    | 4.523084 | 41016.4 | 1.139958 | 64110.2 | 1.097386 | 352.4     | 2.263493 | 753.2   | 2.504082 |
| 1999 | 4188.4     | 1.788665 | 350.3     | 2.247518 | 2326.5  | 4.327354 | 41478.7 | 1.127110 | 64806.1 | 1.085474 | 360.2     | 2.213393 | 771.6   | 2.442910 |
| 2000 | 4262       | 1.757234 | 358       | 2.198115 | 2423    | 4.147861 | 41941   | 1.114547 | 65502   | 1.073818 | 368       | 2.165463 | 790     | 2.384655 |
| 2001 | 4326       | 1.501642 | 367       | 2.513966 | 2479.9  | 2.348328 | 42331.7 | 0.931546 | 66152.1 | 0.992488 | 375.8     | 2.119565 | 808.4   | 2.329113 |
| 2002 | 4390       | 1.479426 | 376       | 2.452316 | 2536.8  | 2.294447 | 42722.4 | 0.922948 | 66802.2 | 0.982735 | 383.6     | 2.075572 | 826.8   | 2.276100 |
| 2003 | 4454       | 1.457858 | 385       | 2.393617 | 2593.7  | 2.242983 | 43113.1 | 0.914508 | 67452.3 | 0.973171 | 391.4     | 2.033368 | 845.2   | 2.225447 |
| 2004 | 4518       | 1.436910 | 394       | 2.337662 | 2650.6  | 2.193777 | 43503.8 | 0.906221 | 68102.4 | 0.963792 | 399.2     | 1.992846 | 863.6   | 2.176999 |
| 2005 | 4582       | 1.416555 | 403       | 2.284263 | 2707.5  | 2.146683 | 43894.5 | 0.898082 | 68752.5 | 0.954591 | 407       | 1.953907 | 882     | 2.130616 |
| 2006 | 4646       | 1.396769 | 412       | 2.233250 | 2764.4  | 2.101569 | 44285.2 | 0.890088 | 69402.6 | 0.945565 | 414.8     | 1.916461 | 900.4   | 2.086167 |
| 2007 | 4710       | 1.377529 | 421       | 2.184466 | 2821.3  | 2.058312 | 44675.9 | 0.882236 | 70052.7 | 0.936708 | 422.6     | 1.880424 | 918.8   | 2.043536 |
| 2008 | 4774       | 1.358811 | 430       | 2.137767 | 2878.2  | 2.016800 | 45066.6 | 0.874520 | 70702.8 | 0.928015 | 430.4     | 1.845716 | 937.2   | 2,002612 |
| 2009 | 4838       | 1.340594 | 439       | 2.093023 | 2935.1  | 1.976930 | 45457.3 | 0.866939 | 71352.9 | 0.919482 | 438.2     | 1.812267 | 955.6   | 1.963294 |
| 2010 | 4902       | 1.322860 | 448       | 2.050113 | 2992    | 1.938605 | 45848   | 0.859487 | 72003   | 0.911105 | 446       | 1.780009 | 974     | 1,925491 |
| 2011 | 4959.1     | 1.164830 | 456.7     | 1.941964 | 3050.3  | 1.948529 | 46172.6 | 0.707991 | 72579.4 | 0.800522 | 453.8     | 1.748878 | 992.4   | 1.889117 |
| 2012 | 5016.2     | 1.151418 | 465.4     | 1.904970 | 3108.6  | 1.911287 | 46497.2 | 0.703014 | 73155.8 | 0.794164 | 461.6     | 1.718818 | 1010.8  | 1.854091 |
| 2013 | 5073.3     | 1.138311 | 474.1     | 1.869359 | 3166.9  | 1.875442 | 46821.8 | 0.698106 | 73732.2 | 0.787907 | 469.4     | 1.689774 | 1029.2  | 1.820340 |
| 2014 | 5130.4     | 1.125500 | 482.8     | 1.835055 | 3225.2  | 1.840916 | 47146.4 | 0.693266 | 74308.6 | 0.781748 | 477.2     | 1.661695 | 1047.6  | 1.787796 |
| 2015 | 5187.5     | 1.112973 | 491.5     | 1.801988 | 3283.5  | 1.807639 | 47471   | 0.688493 | 74885   | 0.775684 | 485       | 1.634534 | 1066    | 1.756395 |
| 2016 | 5244.6     | 1.100722 | 500.2     | 1.770091 | 3341.8  | 1.775544 | 47795.6 | 0.683785 | 75461.4 | 0.769713 | 492.8     | 1.608247 | 1084.4  | 1.726078 |
| 2017 | 5301.7     | 1.088738 | 508.9     | 1.739304 | 3400.1  | 1.744568 | 48120.2 | 0.679142 | 76037.8 | 0.763834 | 500.6     | 1.582792 | 1102.8  | 1.696790 |
| 2018 | 5358.8     | 1.077013 | 517.6     | 1.709569 | 3458.4  | 1.714655 | 48444.8 | 0.674560 | 76614.2 | 0.758044 | 508.4     | 1.558130 | 1121.2  | 1.668480 |
| 2019 | 5415.9     | 1.065537 | 526.3     | 1.680834 | 3516.7  | 1.685750 | 48769.4 | 0.670040 | 77190.6 | 0.752340 | 516.2     | 1.534225 | 1139.6  | 1.641098 |
| 2020 | 5473       | 1.054303 | 535       | 1.653049 | 3575    | 1.657804 | 49094   | 0.665581 | 77767   | 0.746723 | 524       | 1.511042 | 1158    | 1.614601 |
| 2021 | 5506.4     | 0.610268 | 542.6     | 1,420560 | 3625.4  | 1.409790 | 49203.2 | 0.222430 | 78040.5 | 0.351691 | 531.8     | 1.488549 | 1176.4  | 1.588946 |
| 2022 | 5539.8     | 0.606566 | 550.2     | 1,400663 | 3675.8  | 1.390191 | 49312.4 | 0.221936 | 78314   | 0.350459 | 539.6     | 1.466716 | 1194.8  | 1.564093 |
| 2023 | 5573.2     | 0.602909 | 557.8     | 1.381315 | 3726.2  | 1.371130 | 49421.6 | 0.221445 | 78587.5 | 0.349235 | 547.4     | 1.445515 | 1213.2  | 1.540006 |
| 2024 | 5606.6     | 0.599296 | 565.4     | 1.362495 | 3776.6  | 1.352584 | 49530.8 | 0.220956 | 78861   | 0.348019 | 555.2     | 1.424917 | 1231.6  | 1,516650 |
| 2025 | 5640       | 0.595726 | 573       | 1.344181 | 3827    | 1.334533 | 49640   | 0.220468 | 79134.5 | 0.346812 | 563       | 1.404899 | 1250    | 1.493991 |
| 2030 |            |          | 611       |          | 4079    |          | 50186   |          | 80502   |          |           |          |         |          |

Gun Barrel City, Mabank populations for Henderson and Kaufman Counties, County rural, and County totals were projected based on TWDB projected populations. Populations for Payne Springs and Encharted Oaks are projected based census data from 1980 and 1990 and assume a linear growth rate.

% Growth is the calculated percent growth in population for the previous year to the current year shown.



| Title: EAST CEDAR CREEK FWSD MASTER PLAN | Date: 06/20/96 |
|------------------------------------------|----------------|
| DAILY WASTEWATER FLOW DATA               | By: DRJ        |
| [ECC95301]V:\DAYWASTE.WK1                | Chkd:          |

|          | 1      | NC         | RTH WWTP   |                                                                                                                 | s         |                                                                                                                                 |                                                                                                                                                                                                                                         |
|----------|--------|------------|------------|-----------------------------------------------------------------------------------------------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| İ        |        |            | 30 DAY     | 90 DAY                                                                                                          |           | 30 DAY                                                                                                                          | 90 DAY                                                                                                                                                                                                                                  |
| MONTH    | DAY    | FLOW       | AVERAGE    | AVERAGE                                                                                                         | FLOW      | AVERAGE                                                                                                                         | AVERAGE                                                                                                                                                                                                                                 |
| JANUARY  | 1      | 789        |            |                                                                                                                 | 50        |                                                                                                                                 |                                                                                                                                                                                                                                         |
|          | 2      | 556        |            |                                                                                                                 | 46        |                                                                                                                                 |                                                                                                                                                                                                                                         |
|          | 3      | 668        |            | n der en er<br>An er er er                                                                                      | 64        |                                                                                                                                 |                                                                                                                                                                                                                                         |
| 1        | 4      | 685        |            |                                                                                                                 | 31        |                                                                                                                                 |                                                                                                                                                                                                                                         |
|          | 5      | 711<br>398 |            |                                                                                                                 | 74<br>33  |                                                                                                                                 |                                                                                                                                                                                                                                         |
|          | 6<br>7 | 796        |            |                                                                                                                 | 63        |                                                                                                                                 |                                                                                                                                                                                                                                         |
|          | 8      | 804        |            |                                                                                                                 | 48        |                                                                                                                                 |                                                                                                                                                                                                                                         |
|          | 9      | 619        |            |                                                                                                                 | 40<br>56  |                                                                                                                                 |                                                                                                                                                                                                                                         |
|          | 10     | 582        |            |                                                                                                                 | 46        |                                                                                                                                 |                                                                                                                                                                                                                                         |
|          | 11     | 612        |            |                                                                                                                 | 31        |                                                                                                                                 |                                                                                                                                                                                                                                         |
|          | 12     | 967        |            |                                                                                                                 | 229       |                                                                                                                                 |                                                                                                                                                                                                                                         |
|          | 13     | 821        |            |                                                                                                                 | 152       |                                                                                                                                 |                                                                                                                                                                                                                                         |
|          | 14     | 850        |            |                                                                                                                 | 63        |                                                                                                                                 |                                                                                                                                                                                                                                         |
|          | 15     | 748        |            |                                                                                                                 | 77        |                                                                                                                                 |                                                                                                                                                                                                                                         |
|          | 16     | 446        |            |                                                                                                                 | 52        |                                                                                                                                 |                                                                                                                                                                                                                                         |
|          | 17     | 372        |            |                                                                                                                 | 202       | 1711년 1월 18<br>1811년 1월 18일 - 18g - 1 |                                                                                                                                                                                                                                         |
|          | 18     | 547        |            |                                                                                                                 | 106       |                                                                                                                                 |                                                                                                                                                                                                                                         |
|          | 19     | 427        |            |                                                                                                                 | 100       |                                                                                                                                 |                                                                                                                                                                                                                                         |
|          | 20     | 418        |            |                                                                                                                 | 62        |                                                                                                                                 | E Rudan                                                                                                                                                                                                                                 |
|          | 21     | 378        |            |                                                                                                                 | 62        |                                                                                                                                 |                                                                                                                                                                                                                                         |
|          | 22     | 409        |            |                                                                                                                 | 124       |                                                                                                                                 |                                                                                                                                                                                                                                         |
|          | 23     | 386        |            |                                                                                                                 | 54        |                                                                                                                                 |                                                                                                                                                                                                                                         |
|          | 24     | 379        |            |                                                                                                                 | 46        |                                                                                                                                 | 2월 28일 원이다.<br>1997년 - 1997년 br>1997년 - 1997년 - |
|          | 25     | 352        |            |                                                                                                                 | 127       |                                                                                                                                 |                                                                                                                                                                                                                                         |
|          | 26     | 598        |            |                                                                                                                 | 105       |                                                                                                                                 |                                                                                                                                                                                                                                         |
|          | 27     | 488        |            |                                                                                                                 | 81        |                                                                                                                                 |                                                                                                                                                                                                                                         |
|          | 28     | 432        |            |                                                                                                                 | 90        |                                                                                                                                 |                                                                                                                                                                                                                                         |
|          | 29     | 272        |            |                                                                                                                 | 66        | a dest                                                                                                                          |                                                                                                                                                                                                                                         |
|          | 30     | 352        | 562        |                                                                                                                 | 82        | 81                                                                                                                              |                                                                                                                                                                                                                                         |
|          | 31     | 336        | 547        |                                                                                                                 | 95        | 82                                                                                                                              |                                                                                                                                                                                                                                         |
| FEBRUARY | 1      | 438        | 543        |                                                                                                                 | 95        | 84                                                                                                                              |                                                                                                                                                                                                                                         |
|          | 2      | 348        | 532        |                                                                                                                 | 62        | 84                                                                                                                              |                                                                                                                                                                                                                                         |
|          | 3      | 315        | 520        |                                                                                                                 | 94        | 86                                                                                                                              |                                                                                                                                                                                                                                         |
|          | 4      | 412        | 510        |                                                                                                                 | 85        | 86                                                                                                                              | de sue en la companya de la company<br>Esperando de la companya de la company     |
|          | 5      | 350        | 508        |                                                                                                                 | 137       | 90                                                                                                                              |                                                                                                                                                                                                                                         |
|          | 6      | 421        | 496        |                                                                                                                 | 126       | 92                                                                                                                              |                                                                                                                                                                                                                                         |
|          | 7      | 397<br>285 | 482<br>471 |                                                                                                                 | 138<br>98 | 95<br>96                                                                                                                        |                                                                                                                                                                                                                                         |
|          | 9      | 376        | 471        |                                                                                                                 | 98<br>77  | 96<br>97                                                                                                                        |                                                                                                                                                                                                                                         |
|          | 10     | 313        | 404        | a san ning<br>Alamatika                                                                                         | 105       | 100                                                                                                                             |                                                                                                                                                                                                                                         |
|          | 11     | 315        | 433        | a ser a la companya de la companya d | 103       | 95                                                                                                                              |                                                                                                                                                                                                                                         |
|          | 12     | 319        | 416        |                                                                                                                 | 128       | 95                                                                                                                              |                                                                                                                                                                                                                                         |
|          | 13     | 321        | 398        |                                                                                                                 | 97        | 96                                                                                                                              |                                                                                                                                                                                                                                         |
|          | 14     | 306        | 384        | der en                                                                      | 108       | 97                                                                                                                              |                                                                                                                                                                                                                                         |
|          | 15     | 378        | 381        |                                                                                                                 | 108       | 99                                                                                                                              |                                                                                                                                                                                                                                         |
|          | 16     | 302        | 379        |                                                                                                                 | 116       | 96                                                                                                                              | a a sector a<br>1919 - Alexandra Alexandra<br>1919 - Alexandra Alexandra                                                                                                                                                                |
|          | 17     | 387        |            | e e di<br>Nationalità                                                                                           | 113       | 96                                                                                                                              |                                                                                                                                                                                                                                         |
| l        |        |            |            | te d'Ar                                                                                                         |           |                                                                                                                                 |                                                                                                                                                                                                                                         |

.

| _ |       |        |            |     | para series a constant                                                                                                                             |       | i . |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---|-------|--------|------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |       | 18     | 325        | 370 |                                                                                                                                                    | 102   | 96  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |       | 19     | 315        | 367 |                                                                                                                                                    | 112   | 98  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |       | 20     | 313        | 365 |                                                                                                                                                    | 148   | 101 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |       | 21     | 417        | 365 |                                                                                                                                                    | 97    | 100 | and a start of the |
|   |       | 22     | 372        | 364 |                                                                                                                                                    | 58    | 100 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |       | 23     | 374        | 364 | 가 있는 않는 것이다.<br>지역 전체가 제품 1000                                                                                                                     | 120   | 102 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |       |        |            |     | na opieropený benjeli n<br>Problem Problem Problem                                                                                                 |       |     | e de la desta d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |       | 24     | 311        | 363 | an de lige beget for.<br>En lock de lock foren                                                                                                     | 110   | 102 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |       | 25     | 336        | 354 | n de ses debits é est<br>a la gradient de ses                                                                                                      | 114   | 102 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |       | 26     | 343        | 349 |                                                                                                                                                    | 107   | 103 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |       | 27     | 341        | 346 |                                                                                                                                                    | 122   | 104 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |       | 28     | 273        | 346 | , is a difference.<br>Alternationale alternation                                                                                                   | 74    | 104 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | MARCH | 1      | 377        | 347 | a de la compañía de l                                    | 207   | 108 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |       |        | 377        | 349 | e na seste a na seste<br>Regulto 48,8 MB regulto j                                                                                                 | 172   | 111 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |       | 2<br>3 | 284        | 343 | 2 전 11 전 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                           | · 113 | 112 | an a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   |       |        | 406        | 345 | n an bhin 1988 a Bail<br>1976 - Dhine Bailtean                                                                                                     |       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |       | 4      |            |     |                                                                                                                                                    | 142   | 114 | and the second sec                                                                                                                                                                                                                                             |
|   |       | 5      | 242        | 343 |                                                                                                                                                    | 105   | 115 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |       | 6      | 343        | 341 | n an de nebre se.<br>Seur de briter de se                                                                                                          | 97    | 115 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |       | 7      | 465        | 344 | يو مي المقاصين .<br>1965 - ويقاوي مي ال                                                                                                            | 97    | 114 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |       | 8      | 293        | 340 | 이 가지 않는 것은<br>이 가지 말했다.                                                                                                                            | 100   | 113 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |       | 9      | 334        | 338 |                                                                                                                                                    | 138   | 113 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |       | 10     | 477        | 345 |                                                                                                                                                    | 192   | 116 | a di nëdi koj j                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |       |        |            |     |                                                                                                                                                    |       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |       | 11     | 294        | 342 | a a tradición de la presidente<br>Antición de la presidente d | 96    | 117 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |       | 12     | 482        | 347 |                                                                                                                                                    | 360   | 125 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |       | 13     | 484        | 353 |                                                                                                                                                    | 167   | 127 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |       | 14     | 397        | 356 |                                                                                                                                                    | 171   | 129 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |       | 15     | 339        | 356 |                                                                                                                                                    | 162   | 131 | erade deed to an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|   |       | 16     | 349        | 358 |                                                                                                                                                    | 148   | 132 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |       | 17     | 452        | 360 | 2월 6월 19일은 영양가 한 12<br>2월 1일 2월                                                                                | 148   | 134 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |       | 18     | 365        | 362 | 이 가 나는 가 다니 것<br>다 방법 한 가 한 것                                                                                                                      | 112   | 133 | n se des de la polo.<br>Mais de la composition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   |       |        |            |     |                                                                                                                                                    |       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |       | 19     | 468        | 365 |                                                                                                                                                    | 147   | 135 | en san Aria.<br>Marina kata pera                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   |       | 20     | 356        | 366 |                                                                                                                                                    | 136   | 136 | l <sup>an</sup> - Andreadan I.<br>An an Anes an An                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   |       | 21     | 428        | 370 |                                                                                                                                                    | 167   | 138 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |       | 22     | 249        | 368 |                                                                                                                                                    | 107   | 136 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |       | 23     | 361        | 366 |                                                                                                                                                    | 150   | 138 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |       | 24     | 412        | 367 | a na saka da sa da<br>Marina                                                                                                                       | 122   | 140 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |       | 25     | 290        | 364 | e de la dependancia da la de<br>Recepción Nerver en la de                                                                                          | 138   | 141 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |       | 26     | 413        | 368 |                                                                                                                                                    | 130   | 141 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |       | 20     |            |     |                                                                                                                                                    |       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |       | 27     | 391        | 370 | e de la calencia (de la calencia)<br>En calencia calencia de la calencia                                                                           | 400   | 151 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |       | 28     | 409        | 372 | en starte de la comita<br>Prime a comitante de                                                                                                     | 128   | 152 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |       | 29     | 367        | 373 |                                                                                                                                                    | 158   | 153 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |       | 30     | 452        | 379 | ala di katatan pera                                                                                                                                | 600   | 170 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |       | 31     | 457        | 381 |                                                                                                                                                    | 121   | 167 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   | APRIL | 1      | 422        | 383 | 430                                                                                                                                                | 98    | 165 | 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   |       |        | 329        | 384 | 426                                                                                                                                                | 115   | 165 | 119                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   |       | 2<br>3 | 408        | 384 | 424                                                                                                                                                |       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |       |        |            |     |                                                                                                                                                    | 229   | 168 | 120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   |       | 4      | 480        | 392 | 421                                                                                                                                                | 91    | 168 | 122                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   |       | 5      | 486        | 397 | 418                                                                                                                                                | 150   | 169 | 123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   |       | 6      | 413        | 395 | 416                                                                                                                                                | 83    | 169 | 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   |       | 7      | 295        | 395 | 416                                                                                                                                                | 99    | 169 | 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   |       | 8      | 279        | 393 | 410                                                                                                                                                | 121   | 168 | 124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   |       | 9      | 464        | 393 | 405                                                                                                                                                | 68    | 164 | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   |       | 10     | 441        | 398 | 403                                                                                                                                                |       | 166 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |       |        |            |     |                                                                                                                                                    | 163   |     | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   |       | 11     | 368        | 394 | 401                                                                                                                                                | 98    | 158 | 127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   |       | 12     | 310        | 388 | 399                                                                                                                                                | 107   | 156 | 127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   | •     | 13     | 334        | 386 | 391                                                                                                                                                | 49    | 152 | 126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   |       | 14     | 302        | 385 | 386                                                                                                                                                | 96    | 149 | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   |       | 15     | 428        | 388 | 380                                                                                                                                                | 129   | 149 | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   |       | 16     | 235        | 380 | 376                                                                                                                                                | 136   | 148 | 126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   |       | 10     | 422        | 382 | 374                                                                                                                                                | 81    | 147 | 127                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   |       |        | 422<br>373 | 379 | 374                                                                                                                                                |       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |       | 18     |            |     |                                                                                                                                                    | 84    | 145 | 126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   |       | 19     | 433        | 382 | 373                                                                                                                                                | 104   | 144 | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|   |       | 20     | 627        | 388 | 373                                                                                                                                                | 106   | 142 | 125                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| • |       |        |            |     |                                                                                                                                                    |       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|   |       |        |            |     |                                                                                                                                                    |       |     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| - |      |        |                                  |     |       |     |       |     |
|---|------|--------|----------------------------------|-----|-------|-----|-------|-----|
|   |      | 21     | 406                              | 394 |       | 80  | 141   | 126 |
|   |      | 22     | 600                              | 402 | 375   | 209 | 143   | 126 |
|   |      | 23     | 379                              | 400 | 377   | 124 | 143   | 127 |
|   |      | 24     | 382                              | 404 | 377   | 87  | 141   | 128 |
|   |      | 25     | 307                              | 400 | 377   | 87  | 140   | 128 |
|   |      | 26     | 409                              | 401 | 377   | 75  | 129   | 128 |
|   |      | 20     | 342                              | 398 | 375   | 80  | 128   | 127 |
|   |      |        | 000                              |     |       |     |       |     |
|   |      | 28     | 329                              | 397 | 373   | 87  | 125   | 127 |
|   |      | 29     | 376                              | 395 | 372   | 68  | . 108 | 127 |
|   |      | 30     | 528                              | 397 | 373   | 68  | 106   | 127 |
|   | MAY  | 1      |                                  |     |       | 101 | 106   | 127 |
|   |      | 2<br>3 |                                  |     |       | 66  | 104   | 127 |
|   |      | 3      |                                  |     |       | 93  | 100   | 127 |
|   |      | 4      |                                  |     |       | 100 | 100   | 127 |
|   |      | 5      |                                  |     |       | 300 | 105   | 127 |
|   |      | 6      |                                  |     |       | 97  | 105   | 130 |
|   |      | 7      |                                  |     |       | 222 | 110   | 129 |
|   |      | 8      |                                  |     |       | 200 | 112   | 130 |
|   |      |        |                                  |     |       |     |       |     |
|   |      | 9      |                                  |     |       | 100 | 113   | 131 |
|   |      | 10     |                                  |     |       | 112 | 112   | 131 |
|   |      | 11     |                                  |     |       | 66  | 110   | 131 |
|   |      | 12     |                                  |     |       | 58  | 109   | 131 |
|   |      | 13     |                                  |     |       | 78  | 110   | 131 |
|   |      | 14     |                                  |     |       | 70  | 109   | 130 |
|   |      | 15     |                                  |     |       | 37  | 106   | 130 |
| • |      | 16     |                                  |     |       | 40  | 103   | 129 |
|   |      | 17     |                                  |     |       | 47  | 102   | 128 |
|   |      | 18     |                                  |     |       | 44  | 100   | 127 |
|   |      | 19     |                                  |     |       | 40  | 98    | 127 |
|   |      | 20     |                                  |     |       | 61  | 97    | 126 |
|   |      | 21     |                                  |     |       | 40  | 95    | 125 |
|   |      | 22     |                                  |     |       | 60  | 90    | 124 |
|   |      | 22     | n og seder<br>Den størret i sere |     |       | 42  | 88    | 124 |
|   |      |        |                                  |     |       | 40  | 86    | 124 |
|   |      | 24     |                                  |     |       |     |       |     |
|   |      | 25     |                                  |     |       | 40  | 84    | 123 |
|   |      | 26     |                                  |     |       | 27  | 83    | 122 |
|   |      | 27     |                                  |     |       | 105 | 84    | 121 |
|   |      | 28     |                                  |     |       | 48  | 82    | 121 |
|   |      | 29     |                                  |     |       | 15  | 81    | 120 |
|   |      | 30     |                                  |     |       | 15  | 79    | 119 |
|   |      | 31     |                                  |     |       | 15  | 76    | 117 |
|   | JUNE | 1      | 557                              |     |       | 84  | 77    | 116 |
|   |      | 2      | 550                              |     |       | 84  | 76    | 115 |
|   |      | 3      | 555                              |     |       | 84  | 76    | 115 |
|   |      | 4      | 277                              |     |       | 84  | 69    | 114 |
|   |      | 5      | 1055                             |     | a a f | 84  | 68    | 114 |
|   |      | 6      | 80                               |     |       | 84  | 63    | 114 |
|   |      | 6<br>7 | 476                              |     |       | 56  | 59    | 114 |
|   |      | 8      | 287                              |     |       | 74  | 58    | 113 |
|   |      | 9      | 649                              |     |       | 211 | 61    | 112 |
|   |      | 10     | 615                              | :   |       | 46  | 60    | 113 |
|   |      | 10     | 807                              |     |       | 106 | 62    | 109 |
|   |      |        | 294                              |     | :     | 48  |       | 109 |
|   |      | 12     |                                  |     |       |     | 61    |     |
|   |      | 13     | 445                              |     |       | 48  | 60    | 107 |
|   |      | 14     | 560                              |     |       | 50  | 61    | 106 |
|   |      | 15     | 501                              |     |       | 50  | 61    | 105 |
|   |      | 16     | 675                              |     |       | 50  | 61    | 104 |
|   |      | 17     | 675                              |     |       | 35  | 61    | 103 |
|   |      | 18     | 297                              |     |       | 79  | 62    | 102 |
|   |      | 19     | 434                              |     |       | 46  | 62    | 101 |
|   |      | 20     | 549                              |     |       | 46  | 62    | 100 |
|   |      | 21     | 304                              |     | 1     | 87  | 63    | 99  |
|   |      | •      | -                                |     | •     | , I |       | 1   |

| 1 |        | 22          | 594        |     | ľ.         | 56       | 63       | 99       |
|---|--------|-------------|------------|-----|------------|----------|----------|----------|
|   |        | 23          | 317        | .*  |            | 40       | 63       | 99<br>98 |
|   |        | 23          | 560        |     |            | 117      | 66       |          |
|   |        |             |            |     |            |          |          | 97       |
|   |        | 25          | 392        |     |            | 104      | 68<br>67 | 97       |
|   |        | 26          | 430        |     |            | 76       | 67       | 93       |
|   |        | 27          | 705        |     |            | 81       | 69       | 93       |
|   |        | 28          | 198        |     |            | 86       | 71       | 92       |
|   |        | 29          | 547        |     |            | 95       | 74       | 86       |
|   |        | 30          | 509        | 496 |            | 93       | 76       | 86       |
|   | JULY   | 1           | 383        | 489 |            | 93       | 76       | 86       |
|   |        | 2<br>3      | 177        | 476 |            | 67       | 76       | 84       |
|   |        | 3           | 596        | 487 |            | 195      | 79       | 84       |
|   |        | 4           | 483        | 467 | 2011 - 1   | 174      | 83       | 84       |
|   |        | 5<br>6<br>7 | 475        | 480 |            | 123      | 84       | 85       |
|   |        | 6           | 495        | 481 |            | 40       | 83       | 86       |
|   |        |             | 501        | 489 |            | 61       | 83       | 85       |
|   |        | 8<br>9      | 340        | 478 |            | 82       | 78       | 85       |
|   |        | 9           | 480        | 473 |            | 30       | 78       | 84       |
|   |        | 10          | 358        | 458 |            | 31       | 75       | 83       |
|   |        | 11          | 427        | 462 |            | 38       | 75       | 82       |
|   |        | 12          | 467        | 463 |            | 57       | 75       | 82       |
|   |        | 13          | 473        | 460 |            | 78       | 76       | 82       |
|   |        | 14          | 247        | 451 |            | 108      | 78       | 81       |
|   |        | 15          | 493        | 445 |            | 88       | 80       | 81       |
|   |        | 16          | 605        | 443 |            | 41       | 80       | 81       |
|   |        | 17          | 290        | 442 |            | 39       | 78       | 80       |
|   |        | 18          | 512        | 445 |            | 153      | 82       | 80       |
|   |        | 19          | 445        | 441 | t say si t | 61       | 83       | 80       |
|   |        | 20          | 304        | 441 |            |          | 82       | 80       |
|   |        |             | 304<br>395 | 441 |            | 72       |          |          |
|   |        | 21          |            |     |            | 78       | 83       | 78       |
|   |        | 22          | 419        | 438 |            | 108      | 85       | 78       |
|   |        | 23          | 405        | 433 |            | 88       | 84       | 78       |
|   |        | 24          | 474        | 436 |            | 41       | 82       | 78       |
|   |        | 25          | 469        | 437 |            | 39       | 81       | 78       |
|   |        | 26          | 711        | 437 |            | 61       | 80       | 77       |
|   |        | 27          | 331        | 442 |            | 61       | 79       | 77       |
|   |        | 28          | 480        | 439 |            | 82       | 79       | 77       |
|   |        | 29          | 460        | 438 |            | 82       | 78       | 77       |
|   |        | 30          | 502        | 440 |            | 97       | 79       | 77       |
|   |        | 31          | 463        | 443 | ti y the   | 131      | 80       | 77       |
|   | AUGUST | 1           | 463        | 452 |            | 70       | 80       | 78       |
|   |        | 2<br>3      | 322        | 443 |            | 48       | 75       | 77       |
|   |        |             | 374        | 439 |            | 40       | 71       | 74       |
|   |        | 4           | 204        | 430 |            | 61       | 69       | 74       |
|   |        | 5<br>6<br>7 | 422        | 428 |            | 58       | 69       | 72       |
|   |        | 6           | 405        | 425 |            | 69       | 70       | 70       |
|   |        |             | 477        | 429 |            | 35       | 68       | 70       |
|   |        | 8           | 416        | 427 |            | 80       | 70       | 69       |
|   |        | 9           | 439        | 430 |            | 63       | 71       | 69       |
|   |        | 10          | 370        | 428 |            | 60       | 72       | 69       |
|   |        | 11          | 361        | 424 |            | 66       | 72       | 69       |
|   |        | 12          | 459        | 424 | 5 A.A.     | 64       | 71       | 69       |
|   |        | 13          | 388        | 429 |            | 63       | 70       | 69       |
|   |        | 14          | 521        | 430 |            | 34       | 68       | 70       |
|   |        | 15          | 524        | 427 |            | 42       | 68       | 70       |
|   |        | 16          | 495        | 434 |            | 66       | 69       | 69       |
|   |        | 17          | 486        | 433 | 14 M M     | 84       | 67       | 70       |
|   |        | 18          | 364        | 430 |            | 19       | 65       | 70       |
|   |        | 19          | 533        | 438 |            | 27       | 64       | 70       |
| ĺ |        | 20          | 420        | 439 |            | 85       | 64       | 69       |
|   |        | 20<br>21    | 371        | 433 |            | 59       | 63       | 70       |
|   |        | 21          | 324        | 437 |            | 59<br>78 | 62       | 70       |
|   |        |             | 024        | 404 |            | 10       | 02       | 10       |

| 1 |           | 23               | 436 | 433 |     | 64 | 63        | 71 |
|---|-----------|------------------|-----|-----|-----|----|-----------|----|
|   |           | 23               | 510 | 434 |     | 48 | 63        | 71 |
|   |           | 25               | 368 | 423 |     | 51 | 63        | 70 |
|   |           | 25               | 418 | 423 |     | 51 |           |    |
|   |           |                  |     |     |     |    | 63        | 70 |
|   |           | 27               | 321 | 421 |     | 62 | 62        | 71 |
|   |           | 28               | 578 | 424 | 100 | 68 | 61        | 71 |
|   |           | 29               | 462 | 423 | 453 | 47 | 60        | 72 |
|   |           | 30               | 102 | 411 | 448 | 50 | 57        | 71 |
|   |           | 31               | 356 | 408 | 446 | 55 | 57        | 71 |
|   | SEPTEMBER | 1                | 237 | 405 | 442 | 52 | 57        | 71 |
|   |           | 2<br>3           | 226 | 400 | 442 | 65 | 58        | 70 |
|   | ľ         |                  | 357 | 405 | 434 | 58 | 57        | 70 |
|   |           | 4                | 312 | 401 | 437 | 93 | 59        | 70 |
|   |           | 5<br>6           | 277 | 397 | 434 | 59 | 58        | 70 |
|   |           | 6                | 330 | 392 | 435 | 53 | 59        | 70 |
|   |           | 7                | 345 | 390 | 432 | 47 | 58        | 68 |
|   |           | 8                | 126 | 379 | 426 | 67 | 58        | 68 |
|   |           | 91               | 195 | 373 | 419 | 33 | 57        | 68 |
|   |           | 10               | 313 | 372 | 420 | 68 | 57        | 68 |
|   |           | 11               | 398 | 370 | 419 | 30 | 56        | 68 |
| l | ]         | 12               | 415 | 371 | 417 | 76 | 56        | 68 |
|   |           | 13               | 378 | 366 | 416 | 23 | 56        | 68 |
|   |           | 14               | 410 | 362 | 413 | 43 | 56        | 68 |
|   |           | 15               | 218 | 353 | 408 | 30 | 55        | 68 |
|   |           | 16               | 407 | 350 | 409 | 32 | 53        | 67 |
| j |           | 17               | 311 | 348 | 408 | 52 | 54        | 67 |
| Ì |           | 18               | 352 | 342 | 406 | 68 | 56        | 67 |
| ] | 1         | 19               | 391 | 341 | 407 | 46 | 54        | 67 |
|   |           | 20               | 311 | 339 | 404 | 47 | 54        | 67 |
|   |           | 21               | 408 | 342 | 405 | 60 | 53        | 67 |
|   |           | 22               | 383 | 341 | 403 | 45 | 53        | 66 |
|   | l l       | 23               | 443 | 338 | 403 | 54 | 53        | 66 |
|   |           | 24               | 546 | 344 | 404 | 29 | 52        | 65 |
|   |           | 25               | 452 | 345 | 402 | 48 | 52        | 65 |
|   | 1         | 26               | 579 | 354 | 406 | 50 | 52        | 64 |
|   |           | 27               | 419 | 349 | 404 | 57 | 51        | 64 |
|   |           | 28               | 476 | 349 | 404 | 31 | 51        | 63 |
|   |           | 29               | 321 | 356 | 403 | 63 | - 51      | 63 |
|   |           | 30               | 453 | 360 | 404 | 61 | 51        | 63 |
|   | OCTOBER   | 1                | 479 | 368 | 407 | 11 | 50        | 63 |
|   |           | 2                | 369 | 372 | 405 | 46 | 49        | 61 |
| Í |           | 2<br>3           | 412 | 374 | 404 | 56 | 49        | 59 |
|   |           |                  | 308 | 374 | 402 | 33 | 47        | 59 |
| 1 | <b>_</b>  | 4<br>5<br>6<br>7 | 325 | 376 | 400 | 38 | 47        | 58 |
|   | l l       | 6                | 485 | 381 | 400 | 40 | 46        | 58 |
|   | l         |                  | 400 | 383 | 401 | 40 | 46        | 58 |
|   |           | 8                | 432 | 393 | 400 | 36 | 45        | 58 |
|   |           | 9                | 288 | 396 | 399 | 40 | 45        | 58 |
|   |           | 10               | 357 | 398 | 399 | 39 | 44        | 58 |
|   |           | 11               | 381 | 397 | 398 | 43 | 45        | 58 |
|   |           | 12               | 397 | 396 | 397 | 44 | 44        | 57 |
|   |           | 13               | 260 | 392 | 397 | 53 | 45        | 57 |
|   |           | 14               | 251 | 387 | 394 | 33 | 44        | 56 |
|   |           | 15               | 323 | 391 | 391 | 43 | 45        | 56 |
|   |           | 16               | 290 | 387 | 391 | 60 | 46        | 56 |
|   |           | 17               | 275 | 386 | 389 | 35 | 45        | 55 |
|   |           | 18               | 283 | 383 | 387 | 40 | 44        | 55 |
|   |           | 19               | 317 | 381 | 387 | 37 | 44        | 55 |
|   |           | 20               | 343 | 382 | 386 | 29 | 43        | 54 |
|   |           | 21               | 329 | 379 | 385 | 33 | 42        | 53 |
|   |           | 22               | 363 | 379 | 385 | 39 | 42        | 53 |
|   |           | 23               | 328 | 375 | 383 | 51 | 42        | 53 |
| I | •         |                  | I   | I   |     |    | · · · · · | 1  |

| 24         222         364         381         38         42         53           26         346         350         376         52         42         52           28         353         346         374         27         42         52           28         353         346         374         27         42         52           30         266         341         370         36         41         50           31         359         337         390         66         42         49           3         331         332         370         26         41         49           4         229         331         386         29         40         49           4         229         331         386         367         41         48           5         318         321         365         377         41         48           6         324         365         366         41         47           11         363         315         361         35         41         46           12         383         316         360         66 <td< th=""><th>_</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>               | _        |      |     |     |     |    |      |    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|------|-----|-----|-----|----|------|----|
| 26         346         350         376         52         42         52           28         353         346         374         27         42         52           28         353         346         374         27         42         52           30         266         341         370         366         41         50           31         359         337         366         21         41         50           3         331         332         970         26         41         50           3         331         332         976         24         41         49           4         269         330         966         29         40         49           5         318         324         967         53         41         49           6         324         315         360         34         41         48           9         240         312         360         34         41         48           10         428         313         361         35         40         47           11         356         312         360         6                                                                                                  |          | 24   | 222 | 364 | 381 | 38 | 42   | 53 |
| 26         346         350         376         52         42         52           28         353         346         374         27         42         52           28         353         346         374         27         42         52           30         266         341         370         366         41         50           31         359         337         366         21         41         50           3         331         332         970         26         41         50           3         331         332         976         24         41         49           4         269         330         966         29         40         49           5         318         324         967         53         41         49           6         324         315         360         34         41         48           9         240         312         360         34         41         48           10         428         313         361         35         40         47           11         356         312         360         6                                                                                                  |          | 25   | 274 | 358 | 376 | 53 | 42   | 52 |
| 27         428         351         375         49         42         552           29         343         347         373         48         41         50           30         2266         337         369         38         41         49           NOVEMBER         1         359         337         370         66         42         46           3         331         332         370         26         41         49           4         269         330         366         29         40         49           5         316         324         367         54         41         48           6         312         315         363         37         41         48           9         240         312         316         360         66         41         47           11         356         312         316         360         66         41         47           12         383         316         360         66         41         47           13         321         316         355         36         44         46           14                                                                                                      |          |      |     |     |     |    |      |    |
| 28         353         346         374         27         42         52           30         266         341         370         36         41         50           31         359         337         369         38         41         40           2         239         331         366         21         41         50           3         332         370         26         41         40           4         269         330         368         29         40         49           5         318         324         367         54         41         40           6         294         321         365         37         41         48           7         224         312         366         37         41         48           9         240         312         366         36         40         47           13         321         316         366         66         41         47           14         300         317         355         46         42         47           14         302         319         355         45         44 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>               |          |      |     |     |     |    |      |    |
| 29         343         347         373         43         41         551           31         359         337         369         38         41         90           NOVEMBER         1         359         331         368         21         41         50           3         331         332         370         26         41         49           3         331         323         370         26         41         49           4         269         330         368         29         40         49           5         318         324         367         54         41         49           6         312         315         362         34         40         48           9         240         312         316         366         66         41         47           11         356         316         346         32         317         355         39         43         46           12         383         316         360         66         41         47           13         321         318         355         38         46         42                                                                                              |          |      |     |     |     |    |      |    |
| 30         266         341         370         36         41         409           NOVEMBER         1         359         337         369         38         41         409           2         239         331         366         21         41         50           4         269         330         366         29         40         49           5         316         324         367         54         41         48           6         294         321         365         37         41         48           7         254         315         362         34         40         46           9         240         312         366         36         41         47           11         356         312         366         66         41         47           12         383         316         355         36         43         47           14         300         317         355         38         48         42           15         332         319         355         43         47           16         314         320         355                                                                                                      |          |      |     |     |     |    |      |    |
| 31         359         337         369         33         41         42         49           NOVEMBER         1         359         331         366         21         41         50           3         331         332         370         26         41         49           4         2269         330         366         29         40         49           5         316         324         367         54         41         48           6         2241         365         37         41         48           9         240         312         315         366         34         40         46           9         240         312         316         360         66         41         47           11         356         312         316         360         66         41         47           12         383         316         360         66         41         47           12         383         316         360         66         41         47           14         300         317         351         57         43         47                                                                                                         |          | 29   |     | 347 | 373 | 43 | 41   | 51 |
| 31         359         337         369         33         41         42         49           NOVEMBER         1         359         331         366         21         41         50           3         331         332         370         26         41         49           4         2269         330         366         29         40         49           5         316         324         367         54         41         48           6         2241         365         37         41         48           9         240         312         315         366         34         40         46           9         240         312         316         360         66         41         47           11         356         312         316         360         66         41         47           12         383         316         360         66         41         47           12         383         316         360         66         41         47           14         300         317         351         57         43         47                                                                                                         |          | 30   | 266 | 341 | 370 | 36 | 41   | 50 |
| NOVEMBER         1         359         337         370         69         42         49           2         239         331         382         370         26         41         49           4         269         330         385         29         40         49           5         3311         321         367         54         41         48           6         244         321         365         37         41         49           9         240         312         360         34         40         46           10         428         313         361         35         40         47           12         363         316         360         66         41         47           12         363         316         360         66         41         47           14         300         317         355         39         43         48           15         332         319         353         46         42         47           14         300         317         355         44         47         43         44           16         <                                                                                              |          |      |     |     |     |    |      |    |
| 2         239         331         332         370         26         41         49           3         259         330         365         29         40         49           5         318         324         367         54         41         48           6         294         321         355         327         41         48           7         254         315         363         377         41         48           9         240         312         360         56         41         47           11         356         313         361         35         40         48           11         356         313         361         356         43         48           11         353         316         360         66         41         47           12         383         316         350         58         48         48           11         302         317         353         49         43         47           14         300         317         345         35         44         46           20         256         318 <td< td=""><td>NOVEMBER</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>        | NOVEMBER |      |     |     |     |    |      |    |
| 3         331         332         370         26         41         49           4         269         330         368         29         40         48           6         244         321         365         37         41         48           6         244         321         365         37         41         48           7         254         315         362         34         40         46           9         240         312         360         35         40         47           11         356         322         360         66         41         47           12         383         316         360         66         41         47           13         321         318         358         78         43         47           16         314         320         352         48         43         47           16         314         321         349         35         43         47           20         256         316         347         32         44         46           22         364         341         60         44<                                                                                                  | NOVEMBER |      |     |     |     |    |      |    |
| 4         269         330         388         29         40         49           5         318         324         387         54         41         48           7         254         315         363         37         41         48           9         240         312         360         34         40         48           9         240         312         360         66         41         47           11         356         312         360         66         41         47           13         321         318         355         39         43         47           14         300         317         355         39         43         47           16         314         320         355         46         42         47           16         314         320         355         44         47           18         316         345         355         44         46           20         256         316         347         32         43           20         257         313         345         355         44         46                                                                                                           |          |      |     |     |     |    |      |    |
| 5         318         324         367         54         41         48           6         294         315         363         37         41         48           8         312         315         362         34         40         48           10         428         313         361         35         40         44           11         356         312         351         360         56         41         47           12         383         316         360         66         41         47           12         383         316         360         66         41         47           13         321         317         355         39         43         48           14         300         317         355         39         43         47           15         332         319         354         44         47         43         47           16         314         321         355         34         46         46           20         266         318         347         32         43         47           21         257                                                                                                           |          | 3    |     |     |     | 26 | 41   |    |
| 6         294         321         365         37         41         49           7         254         315         362         34         41         48           9         240         312         360         34         40         48           9         240         312         360         35         40         47           11         356         312         360         66         41         47           13         321         318         356         78         43         47           13         321         318         356         78         43         47           14         300         317         355         39         43         48           15         332         319         353         46         42         47           16         314         320         355         57         43         47           18         316         321         349         35         44         46           20         256         316         346         55         44         46           21         257         313         345                                                                                                           | 1        | 4    | 269 | 330 | 368 | 29 | 40   | 49 |
| 6         294         321         365         37         41         49           7         254         315         362         34         41         48           9         240         312         360         34         40         48           9         240         312         360         35         40         47           11         356         312         360         66         41         47           13         321         318         356         78         43         47           13         321         318         356         78         43         47           14         300         317         355         39         43         48           15         332         319         353         46         42         47           16         314         320         355         57         43         47           18         316         321         349         35         44         46           20         256         316         346         55         44         46           21         257         313         345                                                                                                           |          | 5    | 318 | 324 | 367 | 54 | 41   | 48 |
| 7         254         315         363         37         41         48           8         312         315         362         34         40         48           10         428         313         361         35         40         47           11         356         312         386         366         41         47           12         383         316         360         66         41         47           13         321         317         355         39         43         48           14         300         317         355         39         43         47           15         332         319         353         46         42         47           15         314         321         351         57         43         47           18         366         318         347         32         43         44           20         255         316         345         35         44         46           21         257         333         302         334         56         46         46           22         363         314         <                                                                                              | l        |      |     |     |     |    |      |    |
| 8         312         315         362         34         40         48           9         240         313         361         35         40         47           11         356         312         360         66         41         47           13         321         318         355         39         43         48           13         321         318         355         39         43         48           14         300         317         355         39         43         48           15         392         319         353         46         42         47           16         314         320         352         48         43         47           18         316         321         349         35         43         47           20         256         316         346         55         44         46           21         27         313         345         35         44         46           23         247         315         341         43         44         46           23         247         315         341 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                |          |      |     |     |     |    |      |    |
| 9         240         312         360         34         40         46           10         428         313         361         35         40         47           12         383         316         360         66         41         47           12         383         316         360         66         41         47           13         321         318         355         39         43         46           15         332         319         353         46         42         47           16         314         321         351         57         43         47           17         311         321         351         55         44         47           20         256         316         347         32         43         47           21         257         313         345         35         44         46           22         364         314         344         43         44         46           22         364         314         344         43         44         46           24         335         317         341         <                                                                                              |          |      |     |     |     |    |      |    |
| 10         428         313         361         35         40         47           11         356         312         360         66         41         47           13         321         318         355         78         43         47           13         321         318         355         78         43         47           16         314         320         352         48         43         47           16         314         320         352         48         43         47           18         316         621         349         35         43         48           120         256         316         346         55         44         47           21         257         313         341         60         44         46           223         247         315         341         60         44         46           225         263         314         339         54         44         46           25         263         314         339         54         46         46           26         292         300         334                                                                                                    |          |      |     |     |     |    |      |    |
| 11         356         312         360         66         41         47           12         383         316         360         66         41         47           13         321         316         355         39         43         48           14         300         317         355         39         43         48           16         314         320         352         46         43         47           16         314         320         352         48         43         44           17         311         321         351         57         43         47           20         266         316         3447         32         43         44           21         257         313         345         35         44         46           22         364         314         399         54         44         46           22         326         314         339         56         46         46           24         335         317         341         56         46         46           25         262         300         332                                                                                                      |          |      |     |     |     |    |      |    |
| 12         383         316         360         66         41         47           13         321         318         358         78         43         46           15         332         319         353         46         42         47           16         314         320         352         48         42         47           17         311         321         351         57         43         47           18         316         321         349         35         43         48           19         266         316         346         55         44         47           21         257         313         345         35         44         46           23         247         315         341         54         44         46           24         335         317         341         54         44         46           25         263         314         339         54         44         46           26         292         300         332         56         46         46           29         312         302         334                                                                                                       |          | 10   |     |     |     | 35 | 40   | 47 |
| 12         383         316         360         66         41         47           13         321         318         358         76         43         47           14         300         317         355         39         43         48           15         332         319         353         46         42         47           16         314         320         352         48         43         47           17         311         321         351         57         43         47           20         256         316         346         55         44         47           21         257         313         345         35         44         46           22         364         314         344         43         44         46           23         247         315         341         60         44         46           24         335         317         341         54         44         46           246         289         309         339         57         45         46           25         286         302         335                                                                                                      |          | 11   | 356 | 312 | 360 | 66 | 41   | 47 |
| 13         321         316         358         78         43         47           14         300         317         355         39         43         48           16         314         320         352         48         43         47           16         314         320         352         48         43         47           17         311         321         351         57         43         47           18         316         321         349         35         43         44           20         256         318         347         32         43         47           21         257         313         345         35         44         46           23         247         315         341         60         44         46           23         247         313         302         334         56         46         46           25         268         309         39         57         45         46           26         29         302         334         36         46         46           29         312         302 <t< td=""><td></td><td>12</td><td>383</td><td>316</td><td>360</td><td></td><td>41</td><td>47</td></t<>  |          | 12   | 383 | 316 | 360 |    | 41   | 47 |
| 14         300         317         355         39         43         48           15         332         319         353         46         42         47           16         314         320         352         48         42         47           17         311         321         351         57         43         47           19         266         318         347         32         43         47           20         256         316         346         55         44         47           21         257         313         345         35         44         46           22         364         314         344         43         44         46           23         247         315         341         60         44         46           243         335         317         341         54         44         46           243         3302         334         56         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46         46 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<> |          |      |     |     |     |    |      |    |
| 15         332         319         353         46         42         47           16         314         320         352         48         43         47           17         311         321         355         57         43         48           19         266         318         347         32         43         47           20         256         316         345         35         44         46           21         257         313         345         35         44         46           23         247         315         341         60         44         46           24         335         317         341         54         44         46           25         263         314         309         54         44         46           25         263         314         309         54         44         46           26         289         309         339         57         45         46           26         289         302         334         36         46         46           29         312         302         337                                                                                                       |          |      |     |     |     |    |      |    |
| 16         314         320         352         48         43         47           17         311         321         351         57         43         47           19         266         318         347         32         43         47           20         256         316         346         55         44         47           21         257         313         345         35         44         46           22         364         314         344         43         44         46           23         247         315         341         60         44         46           23         247         315         341         60         44         46           24         335         317         341         54         46         46           26         289         309         339         57         45         46           27         133         302         334         36         46         46           29         312         307         337         46         45         46           30         329         308         32         <                                                                                              |          |      |     |     |     |    |      |    |
| 17         311         321         351         57         43         47           18         316         321         349         35         43         48           19         266         316         347         32         43         47           20         256         316         346         55         44         47           21         257         313         345         35         44         46           23         247         315         341         60         44         46           23         247         315         341         54         44         46           24         335         317         341         54         44         46           25         263         314         399         54         44         46           25         269         309         339         57         45         46           26         289         300         332         26         46         46           29         312         302         334         36         46         46           30         329         306         338                                                                                                       |          |      |     |     |     |    |      |    |
| 18         316         321         349         35         43         48           19         266         318         347         32         43         47           20         256         316         346         55         44         46           21         257         313         345         35         44         46           22         364         314         344         43         44         46           23         247         315         341         60         44         46           24         335         317         341         54         44         46           25         263         314         339         57         45         46           26         289         309         332         56         46         46           28         212         300         332         36         46         46           30         450         305         335         32         46         46           30         329         308         38         42         47         45           3         329         308         337 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                 |          |      |     |     |     |    |      |    |
| 19         266         318         347         32         43         47           20         256         316         346         55         44         46           22         364         314         344         43         44         46           23         247         315         341         60         44         46           24         335         317         341         54         44         46           24         335         317         341         54         44         46           25         263         314         339         54         44         46           26         292         300         332         56         46         46           28         292         300         332         56         46         46           29         312         302         334         36         42         46         46           20         430         310         303         335         32         46         46           30         450         335         314         47         45         45         46         46         46         <                                                                                      |          | 17   | 311 | 321 | 351 | 57 | 43   | 47 |
| 19         266         318         347         32         43         47           20         256         316         346         55         44         46           22         364         314         344         43         44         46           23         247         315         341         60         44         46           24         335         317         341         54         44         46           24         335         317         341         54         44         46           25         263         314         339         54         44         46           26         292         300         332         56         46         46           28         292         300         332         56         46         46           29         312         302         334         36         42         46         46           20         430         310         303         335         32         46         46           30         450         335         314         47         45         45         46         46         46         <                                                                                      |          | 18   | 316 | 321 | 349 | 35 | 43   | 48 |
| 20         256         316         346         55         44         47           21         257         313         345         35         44         46           22         364         314         344         43         44         46           23         247         315         341         60         44         46           24         335         317         341         54         44         46           25         263         314         339         54         44         46           25         263         314         339         56         46         46           26         289         300         332         56         46         46           28         292         300         332         36         46         46           30         450         305         335         32         46         46           30         450         306         338         42         46         46           3         329         308         337         43         47         45           5         231         307         337 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                 |          |      |     |     |     |    |      |    |
| 21         257         313         345         35         44         46           22         364         314         344         43         44         46           23         247         315         341         60         44         46           24         335         317         341         54         44         46           25         263         314         399         54         44         46           25         263         314         399         57         45         46           26         289         302         334         56         46         46           27         133         302         334         36         46         46           29         312         302         335         32         46         46           30         450         305         335         32         46         46           329         308         338         42         46         46         46           4         331         310         338         31         47         45           5         231         307         337 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                 |          |      |     |     |     |    |      |    |
| 22         364         314         344         43         44         46           23         247         315         341         60         44         46           24         335         317         341         54         44         46           25         263         314         339         54         44         46           26         289         309         339         57         45         46           27         138         302         334         56         46         46           29         312         302         334         36         46         46           29         312         302         334         36         46         46           30         450         305         335         32         46         46           30         329         308         338         42         47         45           4         331         310         338         31         47         44           6         322         308         337         43         47         44           6         322         308         337 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>                |          |      |     |     |     |    |      |    |
| 23         247         315         341         60         44         46           24         335         317         341         54         44         46           25         263         309         339         57         45         46           26         289         309         339         57         45         46           27         133         302         334         56         46         46           28         292         300         332         56         46         46           29         312         302         334         36         46         46           30         450         305         335         32         46         46           30         450         305         337         46         46         46           3         329         308         338         42         47         45           4         331         310         338         31         47         44           5         231         307         337         49         46         45           6         322         308         337                                                                                                           |          |      |     |     |     |    |      |    |
| 24         335         317         341         54         44         46           25         263         314         339         54         44         46           26         289         309         334         56         46         46           27         133         302         334         56         46         46           28         292         300         332         56         46         46           30         450         305         335         32         46         46           30         450         305         337         46         45         466           3         329         308         384         42         46         46           3         329         308         3838         42         47         45           4         331         307         337         49         46         45           5         231         307         337         49         46         45           6         322         308         337         43         47         44           7         457         315         340                                                                                                           | 1        |      |     |     |     |    |      |    |
| 25         263         314         339         54         44         46           26         289         309         339         57         45         46           27         133         302         334         56         46         46           29         312         302         334         36         46         46           29         312         302         334         36         46         46           30         450         305         335         32         46         46           30         450         305         337         46         45         46           2         285         308         338         42         47         45           3         329         308         338         42         47         45           4         331         310         338         31         47         44           6         322         308         337         43         47         44           6         322         308         337         43         47         44           10         354         315         340         4                                                                                                  |          | 23   |     |     |     | 60 | 44   |    |
| 25         263         314         339         54         44         46           26         289         309         339         57         45         46           27         133         302         334         56         46         46           29         312         302         334         36         46         46           29         312         302         334         36         46         46           30         450         305         335         32         46         46           30         450         305         337         46         45         46           2         285         308         338         42         46         46           3         329         308         338         42         47         45           5         231         307         337         49         46         45           6         322         305         338         62         47         44           7         457         315         338         62         47         44           9         324         317         342         48                                                                                                  |          | 24   | 335 | 317 | 341 | 54 | 44   | 46 |
| 26         289         309         339         57         45         46           27         133         302         334         56         46         46           28         292         300         332         56         46         46           29         312         302         334         36         46         46           30         450         305         335         32         46         46           30         450         305         337         46         45         46           2         285         308         38         42         47         45           4         331         310         338         31         47         45           5         231         307         337         49         46         45           6         322         308         337         43         47         44           7         457         315         386         62         47         44           8         302         315         340         43         48         44           10         354         315         340         50<                                                                                                  |          | 25   | 263 | 314 | 339 | 54 | 44   | 46 |
| 27         133         302         334         56         46         46           28         292         300         332         56         46         46           29         312         302         334         36         46         46           30         450         305         335         32         46         46           30         322         2265         308         338         42         46         46           3         329         308         338         42         46         46           3         329         308         338         42         47         45           4         331         310         338         31         47         44           5         231         307         337         49         46         45           6         322         308         337         43         47         44           7         457         315         338         62         47         44           8         302         315         342         25         48         44           10         354         315         34                                                                                                  |          |      |     |     |     |    |      |    |
| 28         292         300         332         56         46         46           29         312         302         334         36         46         46           30         450         305         335         32         46         46           30         450         305         337         46         45         46           2         265         308         338         42         46         46           3         329         308         338         42         47         45           4         331         310         338         31         47         45           5         231         307         337         49         46         45           6         322         308         337         43         47         44           7         457         315         338         62         47         44           8         302         315         340         43         48         44           10         354         315         342         25         48         44           11         333         314         342         31<                                                                                                  |          |      |     |     |     |    |      |    |
| 29         312         302         334         36         46         46           30         450         305         335         32         46         46           2         285         308         338         42         46         46           3         329         308         338         42         46         46           4         331         310         338         31         47         45           5         231         307         337         49         46         45           6         322         308         337         43         47         44           7         457         315         338         62         47         44           7         457         315         340         43         48         44           9         324         317         342         48         44         44           10         354         315         342         25         48         44           11         333         314         340         54         46         44           13         360         313         340         50 </td <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>              | 1        |      |     |     |     |    |      |    |
| 30         450         305         335         32         46         46           DECEMBER         1         415         307         337         46         45         46           2         285         308         338         42         46         46           3         329         308         338         42         47         45           4         331         310         336         31         47         45           5         231         307         337         49         46         45           6         322         308         337         43         47         44           7         457         315         338         62         47         44           8         302         315         340         43         48         44           9         324         317         342         48         44         44           10         354         315         340         51         44         44           11         333         315         340         51         45         44           13         360         313                                                                                                           | · ·      |      |     |     |     |    |      |    |
| DECEMBER         1         415         307         337         46         45         46           2         285         308         338         42         46         46           3         329         308         338         42         47         45           4         331         310         338         31         47         45           5         231         307         337         49         46         45           6         322         308         337         43         47         44           7         457         315         338         62         47         44           8         302         315         340         43         48         44           9         324         317         342         48         44         44           10         354         315         342         25         48         44           11         333         314         342         31         47         44           12         287         311         340         51         45         44           13         360         313                                                                                                           | 1        |      |     |     |     |    |      |    |
| 2       285       308       338       42       46       46         3       329       308       338       42       47       45         4       331       310       338       31       47       45         5       231       307       337       49       46       45         6       322       308       337       43       47       44         7       457       315       338       62       47       44         8       302       315       340       43       48       44         9       324       317       342       48       48       44         10       354       315       342       25       48       44         11       333       314       342       31       47       44         12       287       311       340       54       46       44         13       380       313       340       51       45       44         14       363       315       340       50       46       44         15       333       315       341       48       46 <td></td> <td>30</td> <td>450</td> <td>305</td> <td>335</td> <td>32</td> <td>46</td> <td>46</td>                                                                                                      |          | 30   | 450 | 305 | 335 | 32 | 46   | 46 |
| 2       285       308       338       42       46       46         3       329       308       338       42       47       45         4       331       310       338       31       47       45         5       231       307       337       49       46       45         6       322       308       337       43       47       44         7       457       315       338       62       47       44         8       302       315       340       43       48       44         9       324       317       342       48       48       44         10       354       315       342       25       48       44         11       333       314       342       31       47       44         12       287       311       340       54       46       44         13       380       313       340       51       45       44         14       363       315       340       50       46       44         15       333       315       341       48       46 <td>DECEMBER</td> <td>1</td> <td>415</td> <td>307</td> <td>337</td> <td>46</td> <td>45</td> <td>46</td>                                                                                               | DECEMBER | 1    | 415 | 307 | 337 | 46 | 45   | 46 |
| 3       329       308       338       42       47       45         4       331       310       338       31       47       45         5       231       307       337       49       46       45         6       322       308       337       43       47       44         7       457       315       338       62       47       44         8       302       315       340       43       48       44         9       324       317       342       48       48       44         10       354       314       342       25       48       44         11       333       314       342       31       47       44         12       287       311       340       54       46       44         13       380       313       340       51       45       44         14       363       315       340       50       46       44         15       333       315       341       49       46       44         16       392       318       341       48       46 <td></td> <td>2</td> <td>285</td> <td>308</td> <td>338</td> <td>42</td> <td>. 46</td> <td>46</td>                                                                                                    |          | 2    | 285 | 308 | 338 | 42 | . 46 | 46 |
| 4       331       310       338       31       47       45         5       231       307       337       49       46       45         6       322       308       337       43       47       44         7       457       315       338       62       47       44         8       302       315       340       43       48       44         9       324       317       342       48       44         10       354       315       342       25       48       44         10       353       314       342       31       47       44         12       287       311       340       54       46       44         13       380       313       340       51       45       44         14       363       315       340       50       46       44         15       333       315       341       49       46       44         15       333       315       341       48       46       45         16       392       318       341       48       46       45 </td <td>1</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                               | 1        |      |     |     |     |    |      |    |
| 5         231         307         337         49         46         45           6         322         308         337         43         47         44           7         457         315         338         62         47         44           8         302         315         340         43         48         44           9         324         317         342         48         48         44           10         354         315         342         25         48         44           11         333         314         342         31         47         44           12         267         311         340         54         46         44           13         360         313         340         51         45         44           14         363         315         340         50         46         44           15         333         315         341         49         46         45           16         392         318         341         48         46         45           17         401         321         342         4                                                                                                  |          |      |     |     |     |    |      |    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |      |     |     |     |    |      |    |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |      |     |     |     |    |      |    |
| 8         302         315         340         43         48         44           9         324         317         342         48         48         44           10         354         315         342         25         48         44           11         333         314         342         31         47         44           12         287         311         340         54         46         44           13         380         313         340         51         45         44           14         363         315         340         50         46         44           15         333         315         341         49         46         44           16         392         318         341         48         46         45           17         401         321         342         48         46         44           18         449         325         343         73         47         44           19         375         329         343         38         47         45           20         363         332         343 <t< td=""><td></td><td>6</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                |          | 6    |     |     |     |    |      |    |
| 8         302         315         340         43         48         44           9         324         317         342         48         48         44           10         354         315         342         25         48         44           11         333         314         342         31         47         44           12         287         311         340         54         46         44           13         380         313         340         51         45         44           14         363         315         340         50         46         44           15         333         315         341         49         46         44           16         392         318         341         48         46         45           17         401         321         342         48         46         44           18         449         325         343         73         47         44           19         375         329         343         38         47         45           20         363         332         343 <t< td=""><td></td><td>7</td><td></td><td></td><td></td><td>62</td><td>47</td><td>44</td></t<>          |          | 7    |     |     |     | 62 | 47   | 44 |
| 9       324       317       342       48       48       44         10       354       315       342       25       48       44         11       333       314       342       31       47       44         12       287       311       340       54       46       44         13       380       313       340       51       45       44         14       363       315       340       50       46       44         15       333       315       341       49       46       44         16       392       318       341       48       46       44         16       392       318       341       48       46       44         17       401       321       342       48       46       44         18       449       325       343       73       47       44         19       375       329       343       342       47       44         21       331       335       342       42       47       44         22       391       336       342       43 <t< td=""><td></td><td></td><td>302</td><td>315</td><td>340</td><td>43</td><td>48</td><td>44</td></t<>                                                                                                 |          |      | 302 | 315 | 340 | 43 | 48   | 44 |
| 10         354         315         342         25         48         44           11         333         314         342         31         47         44           12         287         311         340         54         46         44           13         380         313         340         51         45         44           13         363         315         340         50         46         44           14         363         315         340         50         46         44           15         333         315         341         49         46         44           16         392         318         341         48         46         45           17         401         321         342         48         46         44           18         449         325         343         73         47         44           19         375         329         343         38         47         45           20         363         332         343         42         47         44           21         331         335         342                                                                                                       |          |      |     |     |     |    |      |    |
| 11333314342314744122873113405446441338031334051454414363315340504644153333153414946441639231834148464517401321342484644184493253437347441937532934338474520363332342424744213313353424247442239133634243474423210334340274644                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |          |      |     |     |     |    |      |    |
| 12       287       311       340       54       46       44         13       380       313       340       51       45       44         14       363       315       340       50       46       44         15       333       315       341       49       46       44         16       392       318       341       48       46       45         17       401       321       342       48       46       44         18       449       325       343       73       47       44         19       375       329       343       38       47       45         20       363       332       343       42       47       44         21       331       335       342       42       47       44         22       391       336       342       43       47       44         23       210       334       340       27       46       44                                                                                                                                                                                                                                                                                                                              |          |      |     |     |     |    |      |    |
| 13       380       313       340       51       45       44         14       363       315       340       50       46       44         15       333       315       341       49       46       44         16       392       318       341       48       46       45         17       401       321       342       48       46       44         18       449       325       343       73       47       44         19       375       329       343       38       47       45         20       363       332       343       42       47       44         21       331       335       342       42       47       44         22       391       336       342       43       47       44         23       210       334       340       27       46       44                                                                                                                                                                                                                                                                                                                                                                                                  |          |      |     |     |     |    |      |    |
| 14         363         315         340         50         46         44           15         333         315         341         49         46         44           16         392         318         341         48         46         45           17         401         321         342         48         46         44           18         449         325         343         73         47         44           19         375         329         343         38         47         45           20         363         332         343         42         47         44           21         331         335         342         42         47         44           22         391         336         342         43         47         44           23         210         334         340         27         46         44                                                                                                                                                                                                                                                                                                                            |          |      |     |     |     |    |      |    |
| 15       333       315       341       49       46       44         16       392       318       341       48       46       45         17       401       321       342       48       46       44         18       449       325       343       73       47       44         19       375       329       343       38       47       45         20       363       332       343       42       47       44         21       331       335       342       42       47       44         22       391       336       342       43       47       44         23       210       334       340       27       46       44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1        |      |     |     |     |    |      |    |
| 15       333       315       341       49       46       44         16       392       318       341       48       46       45         17       401       321       342       48       46       44         18       449       325       343       73       47       44         19       375       329       343       38       47       45         20       363       332       343       42       47       44         21       331       335       342       42       47       44         22       391       336       342       43       47       44         23       210       334       340       27       46       44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          | 14   | 363 | 315 | 340 | 50 | 46   | 44 |
| 1639231834148464517401321342484644184493253437347441937532934338474520363332343424744213313353424247442239133634243474423210334340274644                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |          |      |     |     |     |    |      |    |
| 17       401       321       342       48       46       44         18       449       325       343       73       47       44         19       375       329       343       38       47       45         20       363       332       343       42       47       44         21       331       335       342       42       47       44         22       391       336       342       43       47       44         23       210       334       340       27       46       44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |          |      |     |     |     |    |      |    |
| 184493253437347441937532934338474520363332343424744213313353424247442239133634243474423210334340274644                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |          |      |     |     |     |    |      |    |
| 1937532934338474520363332343424744213313353424247442239133634243474423210334340274644                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |          |      |     |     |     |    |      |    |
| 20363332343424744213313353424247442239133634243474423210334340274644                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |          |      |     |     |     |    |      |    |
| 21         331         335         342         42         47         44           22         391         336         342         43         47         44           23         210         334         340         27         46         44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |          |      |     |     |     |    |      |    |
| 22         391         336         342         43         47         44           23         210         334         340         27         46         44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          |      |     |     |     |    | 47   |    |
| 22         391         336         342         43         47         44           23         210         334         340         27         46         44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |          | 21   | 331 | 335 | 342 | 42 | 47   | 44 |
| 23 210 334 340 27 46 44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |          |      |     |     |     |    |      |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ,        |      |     |     |     |    |      |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1        |      |     |     |     |    |      |    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ľ        | 1 24 | 000 | 004 | 000 | 51 | 40   | [  |

| 26         327         337         333         55         45           27         314         343         332         44         45           28         604         354         334         45         44           29         413         357         335         55         45           30         397         355         334         67         47           31         441         356         334         67         47           2         392         362         334         39         46           3         373         364         334         32         46           4         429         370         335         32         46           3         373         364         334         32         46           4         429         370         335         33         45           6         437         374         336         45         45           7         438         379         336         45         45           4         408         383         37         43         45           4         408         388<                                                                                                                                                                                                                  |              |    |     |     |     |    | 1                                                                                                                                                                                                                                   |                                          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----|-----|-----|-----|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------|
| 27         314         343         332         44         45         44           29         413         357         335         55         45           30         397         355         334         67         47         46           31         441         356         334         39         46         4           33         373         364         334         32         46         4           4         429         370         335         33         45         4           6         477         74         336         45         45         4           7         438         379         336         45         45         4           9         408         381         337         37         45         4           10         406         383         337         37         45         4           11         319         384         336         44         45         4           13         361         382         338         340         44         4           12         325         388         340         30         44                                                                                                                                                                                                         |              | 25 | 314 | 336 | 336 | 43 | 45                                                                                                                                                                                                                                  | 44                                       |
| 28         604         354         334         45         44           29         413         357         335         55         46           30         397         355         334         67         47           JANUARY         1         401         360         334         33         46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |              | 26 | 327 | 337 | 333 | 55 | 45                                                                                                                                                                                                                                  | 44                                       |
| 28         604         354         334         45         44           29         413         357         335         55         46           30         397         355         334         55         46           31         441         356         334         37         46         -           2         392         362         334         39         46         -           3         373         364         343         32         46         -           4         429         370         335         32         46         -           4         429         370         336         45         45         -           6         437         374         336         45         45         -           9         406         381         337         73         45         -           10         408         383         337         43         45         -           11         319         384         336         44         45         -           13         361         382         341         39         44         -                                                                                                                                                                                                                       |              | 27 | 314 | 343 | 332 | 44 | 45                                                                                                                                                                                                                                  | 44                                       |
| 20         413         357         335         55         46           31         441         356         334         55         46           31         441         356         334         55         46           3         373         364         334         32         46           4         429         370         335         33         45           5         471         375         335         33         45           6         437         374         336         45         45           7         438         379         336         45         45           9         408         381         337         37         45           9         408         381         337         37         45           10         408         383         364         44         45           12         322         372         386         44         45           13         361         382         341         39         44           12         325         386         344         41         43           16         314         3                                                                                                                                                                                                                  |              |    | 604 | 354 |     |    |                                                                                                                                                                                                                                     | 44                                       |
| 30         397         355         334         55         46           31         441         356         334         67         47           JANUARY         1         401         360         334         33         46         4           2         392         362         334         39         46         4           4         429         370         335         32         46         4           4         429         370         335         32         46         5           6         437         374         336         45         45         5           7         438         379         336         45         45         5           9         406         381         337         43         44         45         4           11         319         364         342         36         44         45         4           12         322         382         340         57         44         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>44</td>                                                                                                            |              |    |     |     |     |    |                                                                                                                                                                                                                                     | 44                                       |
| 31         441         356         334         67         47           JANUARY         1         401         300         334         33         46           3         373         364         34         32         46         4           4         429         370         335         32         46         4           4         429         370         335         32         46         4           5         471         375         335         33         45         45           6         437         374         336         45         45         45           7         438         379         336         45         45         45           10         406         381         377         43         45         45           11         319         384         336         44         45         45           12         322         382         340         30         44         43         44         43         44         43         44         43         44         43         44         44         43         44         44         44         43 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                      |              |    |     |     |     |    |                                                                                                                                                                                                                                     |                                          |
| JANUARY         1         401         360         334         33         46           3         373         364         334         39         46           3         373         364         334         32         46           4         429         370         335         32         46           5         471         375         335         33         45         46           7         438         379         336         45         45         45           6         437         374         336         45         45         46           7         438         379         336         45         45         45           9         408         381         337         745         43         45         44           10         408         383         337         43         44         45         44         45         44         45         44         45         44         45         44         45         44         43         44         43         44         43         44         43         44         43         44         43         44         43 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>44</td>                                                                                           |              |    |     |     |     |    |                                                                                                                                                                                                                                     | 44                                       |
| 2         392         362         334         39         46           3         373         364         334         32         46           4         429         370         335         32         46           5         471         375         335         33         45         45           7         438         379         336         45         45         45           9         406         381         337         43         45         45           10         408         383         337         43         45         45           11         319         384         386         340         30         44         45           12         325         382         341         39         44         45         44           16         314         382         341         39         44         43         43           18         381         384         344         41         43         43         44         43         44         43         44         43         44         43         44         44         44         44         44         44 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>44</td>                                                                                                   |              |    |     |     |     |    |                                                                                                                                                                                                                                     | 44                                       |
| 3         373         364         334         32         46           4         429         370         335         32         46           5         471         375         335         33         45         45           6         437         374         336         45         45         45           9         406         381         337         37         45         45           9         408         383         337         43         45         45           10         408         383         337         43         45         45           11         319         344         336         44         45         44           12         325         382         337         43         45         44           13         361         382         344         43         44         43         44         43         44         43         44         43         44         43         44         43         44         43         44         43         44         43         44         43         44         43         44         43         44         43                                                                                                                                                                                | JANUARY      |    |     |     |     |    |                                                                                                                                                                                                                                     | 45                                       |
| 4         429         370         335         32         46           5         471         375         335         33         45           6         437         374         336         45         45           7         438         379         336         45         45           9         406         381         337         37         45           10         408         383         337         43         45           11         319         364         336         44         45           12         325         382         336         44         45           12         325         386         340         50         44           15         502         385         340         57         44           16         314         382         341         39         43           18         381         344         41         43         43           20         458         384         344         41         43           21         345         383         344         41         43           22         352                                                                                                                                                                                                                           |              | 2  | 392 | 362 | 334 | 39 | 46                                                                                                                                                                                                                                  | 44                                       |
| 4         429         370         335         32         46           5         471         375         335         33         45           6         437         374         336         45         45           7         438         379         336         45         45           9         406         381         337         37         45           10         408         383         337         43         45           11         319         364         336         44         45           12         325         382         336         44         45           12         325         386         340         50         44           15         502         385         340         57         44           16         314         382         341         39         43           18         381         344         41         43         43           20         458         384         344         41         43           21         345         383         344         41         43           22         352                                                                                                                                                                                                                           |              | 3  | 373 | 364 | 334 | 32 | 46                                                                                                                                                                                                                                  | 44                                       |
| 5         471         375         335         33         45         45           7         438         379         336         45         45         45           9         406         381         337         377         455         45           10         408         383         337         43         45         45           11         319         364         336         44         45         45           12         325         382         337         43         45         44           12         325         382         336         42         45         44           13         361         382         341         39         44         44           15         302         385         340         57         44         44           16         314         362         341         39         44         43           16         314         362         341         39         44         43           18         384         344         41         43         44         43         44         43         44         43         44                                                                                                                                                                                                   | ļ            |    |     |     |     |    |                                                                                                                                                                                                                                     | 44                                       |
| 6         437         374         336         45         45           7         438         379         336         45         45           9         406         381         337         37         45           10         406         383         337         336         44         45           11         319         364         336         44         45         45           12         325         382         337         43         45         45           13         361         382         338         42         45         44           15         302         385         340         57         44         44           16         314         382         341         39         44         43         43           20         458         384         344         41         43         43         44         43         44         43         44         43         44         43         44         43         44         43         44         43         44         43         44         43         44         44         44         43         44         44 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>44</td>                                                                                     |              |    |     |     |     |    |                                                                                                                                                                                                                                     | 44                                       |
| 7         438         379         336         45         45           9         406         381         337         37         45           10         408         383         337         43         45           11         319         384         336         44         45           12         325         382         337         43         45           13         361         382         338         42         45           14         503         386         340         30         44           15         302         385         340         57         44           16         314         382         341         39         44           17         506         384         343         43         43           19         238         380         344         41         43         43           21         345         389         346         42         43         43           22         352         389         346         42         43         43           23         376         389         346         42         43                                                                                                                                                                                                               |              |    |     |     |     |    |                                                                                                                                                                                                                                     |                                          |
| 8         322         379         336         45         45           10         408         381         337         37         45           10         408         381         337         37         45           11         319         384         336         44         45           12         325         382         337         43         45           13         361         382         388         42         45           14         503         388         300         57         44           15         302         385         340         57         44           16         314         382         341         39         43           17         506         384         344         41         43           20         455         383         344         41         43           21         345         389         346         44         43           22         352         389         346         45         43           24         318         390         346         49         43           25         349                                                                                                                                                                                                                      |              |    |     |     |     |    |                                                                                                                                                                                                                                     | 44                                       |
| 9         408         381         337         37         45           10         408         383         337         43         45           11         319         384         336         44         45           12         325         382         337         43         45           13         361         382         338         42         45           14         503         388         340         30         44           15         302         385         340         57         44           16         314         382         341         39         44         43           19         288         360         343         40         43         43           20         458         384         344         41         43         44           21         345         383         344         41         43         44           22         352         386         344         41         43         44           23         378         389         346         45         43         44           26         413         39         <                                                                                                                                                                                                      |              |    |     |     |     |    |                                                                                                                                                                                                                                     | 44                                       |
| 10         408         383         337         43         45           11         319         384         336         44         45           12         325         382         337         43         45           13         361         382         338         42         45           14         503         386         340         30         44           16         314         382         341         39         44           16         314         382         341         39         44           17         506         384         344         43         43           19         236         380         343         40         43         43           20         455         384         344         41         43         44           21         345         383         346         49         43         44           23         376         389         346         44         43         44           24         318         389         346         49         43         44           26         413         39         346                                                                                                                                                                                                              |              |    |     |     |     | 45 | 45                                                                                                                                                                                                                                  | 44                                       |
| 10         408         383         337         43         45           11         319         384         336         44         45           12         325         382         337         43         45           13         361         382         338         42         45           14         503         386         340         30         44           16         314         382         341         39         44           16         314         382         341         39         44           17         506         384         344         43         43           19         236         380         343         40         43         43           20         455         384         344         41         43         44           21         345         383         346         49         43         44           23         376         389         346         44         43         44           24         318         389         346         49         43         44           26         413         39         346                                                                                                                                                                                                              | [            | 9  | 408 | 381 | 337 | 37 | 45                                                                                                                                                                                                                                  | 44                                       |
| 11         319         384         336         44         45           12         325         382         337         43         45         45           13         361         362         388         340         30         44         44           15         302         385         340         30         44         44           16         314         382         341         39         44         43           18         381         384         344         43         43         44           19         238         380         343         40         43         43           20         456         384         344         41         43         43           21         345         383         344         41         43         44           23         378         389         346         42         43         44           24         318         389         346         349         44         42         43           26         413         385         346         39         42         44         43         44         44         44                                                                                                                                                                                               |              |    | 408 | 383 | 337 |    |                                                                                                                                                                                                                                     | 44                                       |
| 12         325         382         337         43         45           13         361         382         338         42         45           14         503         388         340         30         44           15         302         385         340         57         44           16         314         382         341         39         44           18         381         384         343         44         43           20         458         383         344         41         43         43           21         345         383         344         41         43         43           22         352         388         344         41         43         43           22         352         389         346         42         43         43           23         378         399         346         49         43         44           24         318         359         346         39         42         44           26         413         393         346         36         43         44           29         350                                                                                                                                                                                                               |              |    |     |     |     |    |                                                                                                                                                                                                                                     | 44                                       |
| 13         361         382         388         42         45           14         503         388         340         57         44           16         314         382         341         39         44           16         314         382         341         39         44           17         508         384         344         49         43           18         381         384         344         49         43           20         458         383         344         41         43           21         345         383         344         41         43           22         352         388         344         41         43           23         378         389         346         42         43           24         318         389         346         49         43           25         349         390         346         49         43           26         413         393         346         43         42           30         361         377         347         42         41           31         362                                                                                                                                                                                                                     |              |    |     |     |     |    |                                                                                                                                                                                                                                     | 44                                       |
| 14         503         386         340         30         44           15         302         365         340         57         44           16         314         392         341         39         44           17         508         364         343         44         43           18         381         384         344         43         43           20         458         364         344         41         43           21         345         363         344         41         43           22         352         368         344         41         43           23         378         389         346         45         43           24         318         369         346         49         43           25         349         300         346         49         43           26         4113         393         346         39         42         42           30         361         377         347         42         44         36           29         350         381         347         42         44         426                                                                                                                                                                                                           |              |    |     |     |     |    |                                                                                                                                                                                                                                     |                                          |
| 15         302         365         340         57         44           16         314         362         341         39         44           17         508         364         343         44         43           18         381         364         343         44         43           20         458         364         344         41         43           21         345         363         344         41         43           22         352         366         344         41         43           22         352         366         344         41         43           22         352         366         344         41         43           24         318         369         346         49         43           25         349         30         346         49         43           26         413         393         346         39         42         4           28         350         362         346         39         42         4           30         361         378         347         42         41         4                                                                                                                                                                                                                 |              |    |     |     |     |    |                                                                                                                                                                                                                                     | 44                                       |
| 16         314         382         341         39         44           17         508         384         343         44         43           18         381         384         344         43         43           19         238         380         343         40         43           20         458         384         344         41         43           21         345         383         344         41         43           22         352         386         344         41         43           23         378         389         346         45         43           24         318         393         346         49         43           25         349         390         346         49         43           26         413         393         346         39         42         4           20         350         381         347         42         41           30         361         377         347         55         41         44           426         370         350         44         426         373         45                                                                                                                                                                                                            |              |    |     |     |     |    |                                                                                                                                                                                                                                     | 44                                       |
| 16         314         382         341         39         44           17         508         384         343         44         43           18         381         384         344         43         43           19         238         380         343         40         43           20         458         384         344         41         43           21         345         383         344         41         43           22         352         386         344         41         43           23         378         389         346         45         43           24         318         393         346         49         43           25         349         390         346         49         43           26         413         393         346         39         42         4           28         350         382         346         39         42         4           30         361         377         347         42         41         4           31         363         377         347         55         41         <                                                                                                                                                                                                      | 1            | 15 | 302 | 385 | 340 | 57 | 44                                                                                                                                                                                                                                  | 44                                       |
| 17         508         384         343         44         43           18         381         384         344         39         43           20         458         384         344         41         43           21         345         383         344         41         43           22         352         386         344         41         43           22         352         386         344         41         43           23         378         389         346         42         43           24         318         393         346         49         43           26         413         393         346         39         42           28         350         382         346         39         42         4           30         361         377         437         43         42         4           30         361         377         347         55         41         4           4         426         370         350         4         4         4           31         368         372         349         4         4<                                                                                                                                                                                                          |              |    | 314 | 382 | 341 | 39 | 44                                                                                                                                                                                                                                  | 44                                       |
| 16         381         384         344         39         43           19         238         360         343         40         43           20         458         363         344         41         43           21         345         363         344         41         43           22         352         386         344         41         43           23         378         369         346         42         43           24         318         389         346         45         43           25         349         390         346         49         43           26         413         393         346         39         42         4           28         350         382         346         39         42         4           29         350         361         347         43         42         41           31         363         377         347         55         41         4           4         426         370         350         45         44         426         375         41         4         44         426 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>44</td></t<>                                                                                                               |              |    |     |     |     |    |                                                                                                                                                                                                                                     | 44                                       |
| 19         238         380         343         40         43         4           20         458         384         344         41         43         4           21         345         383         344         41         43         4           22         352         388         344         41         43         4           23         377         399         346         42         43         4           24         318         399         346         49         43         4           26         413         393         346         36         43         4           26         413         393         346         36         43         4           27         341         365         346         39         42         4           30         361         377         347         43         42         4           30         361         377         347         45         41         4           31         363         377         347         55         41         44           426         370         350         5         41                                                                                                                                                                                                        |              |    |     |     |     |    |                                                                                                                                                                                                                                     |                                          |
| 20         456         384         344         41         43         4           21         345         383         344         41         43         4           22         352         368         344         41         43         4           23         378         389         346         42         43         4           24         318         389         346         49         43         4           25         349         390         346         36         43         4           25         349         390         346         36         43         4           26         413         393         346         36         43         4           28         350         382         346         39         42         4           30         361         378         347         43         42         4           30         361         378         347         42         41         43           4         426         370         350         41         43         44         426         353         41         43         44         426 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>44</td>                                                                                                            |              |    |     |     |     |    |                                                                                                                                                                                                                                     | 44                                       |
| 21         345         383         344         41         43         42           22         352         386         344         41         43         43           23         378         369         346         42         43         44           24         318         389         346         45         43         44           25         349         390         346         49         43         44           26         413         393         346         36         43         44           28         350         382         346         39         42         44           30         361         377         347         43         42         44           30         361         377         347         55         41         44           30         361         376         349         5         41         44           42         349         376         349         5         41         44           42         367         351         5         342         367         351         5           4         426         370                                                                                                                                                                                                           |              |    |     |     |     |    |                                                                                                                                                                                                                                     | 44                                       |
| 22         352         388         344         41         43         4           23         378         389         346         42         43         4           24         318         389         346         45         43         4           26         413         393         346         39         42         4           26         413         393         346         39         42         4           26         413         393         346         39         42         4           28         350         381         347         43         42         4           30         361         378         347         42         41         4           30         361         376         349         42         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4         4 <td></td> <td></td> <td></td> <td></td> <td></td> <td>41</td> <td></td> <td>45</td>                                                                                                    |              |    |     |     |     | 41 |                                                                                                                                                                                                                                     | 45                                       |
| 23         378         369         346         42         43         4           24         318         389         346         45         43         4           25         349         390         346         49         43         4           26         413         393         346         36         43         4           27         341         365         346         39         42         4           28         350         382         346         39         42         4           30         361         378         347         42         41         4           31         363         377         347         55         41         4           4         426         370         350         5         41         4           4         426         370         350         5         41         4           4         426         370         350         5         41         4           4         426         370         350         5         41         5           5         342         367         353         5 <t< td=""><td></td><td>21</td><td>345</td><td>383</td><td>344</td><td>41</td><td>43</td><td>45</td></t<>                                                                                                         |              | 21 | 345 | 383 | 344 | 41 | 43                                                                                                                                                                                                                                  | 45                                       |
| 23         378         369         346         42         43         4           24         318         389         346         45         43         4           25         349         390         346         49         43         4           26         413         393         346         36         43         4           27         341         365         346         39         42         4           28         350         382         346         39         42         4           30         361         378         347         42         41         4           31         363         377         347         55         41         4           4         426         370         350         5         41         4           4         426         370         350         5         41         4           4         426         370         350         5         41         4           4         426         370         350         5         41         5           5         342         367         353         5 <t< td=""><td></td><td>22</td><td>352</td><td>388</td><td>344</td><td>41</td><td>43</td><td>44</td></t<>                                                                                                         |              | 22 | 352 | 388 | 344 | 41 | 43                                                                                                                                                                                                                                  | 44                                       |
| 24         318         389         346         45         43         4           25         349         390         346         49         43         4           26         413         393         346         39         42         4           27         341         385         346         39         42         4           28         350         382         346         39         42         4           30         361         378         347         43         42         4           31         363         377         347         55         41         4           31         366         372         349         5         41         4           4         426         370         350         5         41         4           4         426         370         350         5         41         4           6         325         363         352         5         41         4           6         325         363         352         5         5         41         5           10         383         363         353 <t< td=""><td>1</td><td></td><td></td><td></td><td></td><td></td><td></td><td>44</td></t<>                                                                                                                       | 1            |    |     |     |     |    |                                                                                                                                                                                                                                     | 44                                       |
| 25         349         390         346         49         43           26         413         393         346         36         43           27         341         385         346         39         42         4           28         350         382         346         39         42         4           29         350         381         347         43         42         4           30         361         378         347         42         41         4           31         363         377         347         55         41         4           31         363         377         347         55         41         4           4         426         370         350         4         4         426         370         350         4         4         4         4         4         363         352         4         4         4         363         352         4         4         4         363         353         4         4         363         353         4         4         363         353         4         4         363         353         4                                                                                                                                                                                |              |    |     |     |     |    |                                                                                                                                                                                                                                     | 44                                       |
| 26         413         393         346         36         43         4           27         341         385         346         39         42         4           28         350         382         346         39         42         4           29         350         381         347         43         42         4           30         361         378         347         42         41         4           31         363         377         347         55         41         4           31         363         376         349         4         426         370         350         5         342         367         351         5         4         4         426         370         350         5         342         367         351         5         5         342         367         351         5         5         342         363         352         5         5         342         363         353         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5                                                                                                                                                           |              |    |     |     |     |    |                                                                                                                                                                                                                                     |                                          |
| 27         341         385         346         39         42         42           28         350         382         346         39         42         42           29         350         381         347         43         42         44           30         361         378         347         42         41         44           31         363         377         347         55         41         44           31         363         376         349         44         426         376         349         44         426         376         349         44         426         376         349         44         426         370         350         41         44         426         370         350         41         44         426         370         350         41         44         426         373         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45                                                                                                                                         |              |    |     |     |     |    |                                                                                                                                                                                                                                     | 44                                       |
| 28         350         382         346         39         42         42           29         350         381         347         43         42         44           30         361         378         347         42         41         44           31         363         377         347         55         41         44           31         376         349         5         41         44           4         426         370         350         41         44           4         426         370         350         41         44           4         426         370         350         41         44           4         426         370         350         41         44           6         325         363         352         41         44           6         325         363         353         41         44         426         353         41         44         455         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>44</td>                                                                                                   |              |    |     |     |     |    |                                                                                                                                                                                                                                     | 44                                       |
| 29         350         381         347         43         42         43           30         361         378         347         42         41         44           31         363         377         347         55         41         44           2         349         376         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         341         349         355 <td></td> <td></td> <td></td> <td></td> <td>346</td> <td>39</td> <td>42</td> <td>44</td>         |              |    |     |     | 346 | 39 | 42                                                                                                                                                                                                                                  | 44                                       |
| 29         350         381         347         43         42         43           30         361         378         347         42         41         44           31         363         377         347         55         41         44           2         349         376         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         349         341         349         355 <td></td> <td>28</td> <td>350</td> <td>382</td> <td>346</td> <td>39</td> <td>42</td> <td>44</td> |              | 28 | 350 | 382 | 346 | 39 | 42                                                                                                                                                                                                                                  | 44                                       |
| 30         361         378         347         42         41         44           31         363         377         347         55         41         44           2         349         376         349         5         41         44           2         349         376         349         5         41         44           3         308         372         349         5         41         44           4         426         370         350         5         342         367         351         5         5         342         367         351         5         5         342         367         351         5         5         5         342         367         351         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5                                                                                                                                                                      |              |    | 350 | 381 | 347 | 43 |                                                                                                                                                                                                                                     | 44                                       |
| 31         363         377         347         55         41           FEBRUARY         1         376         376         349         44         426         370         350         44         426         370         350         44         426         370         350         44         426         370         350         44         426         370         350         45         44         426         370         350         45         44         426         370         350         45         44         426         370         350         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45         45                                                                                                        |              |    |     |     |     |    |                                                                                                                                                                                                                                     | 44                                       |
| FEBRUARY       1       376       376       349         2       349       376       349         3       308       372       349         4       426       370       350         5       342       367       351         6       325       363       352         7       338       364       352         8       354       362       353         9       375       361       353         10       383       363       353         11       312       362       353         12       355       362       353         13       321       356       353         14       379       359       353         15       346       360       354         16       342       354       354         17       408       355       355         18       384       360       356         20       411       355       358         21       334       355       358         21       324       352       358         22       289                                                                                                                                                                                                                                                                                                                                                      |              |    |     |     |     |    |                                                                                                                                                                                                                                     | 44                                       |
| 2       349       376       349         3       308       372       349         4       426       370       350         5       342       367       351         6       325       363       352         7       338       364       352         8       354       362       353         9       375       361       353         10       383       363       353         11       312       362       353         11       321       356       353         13       321       356       353         14       379       359       353         15       346       360       354         16       342       354       354         17       408       355       355         18       384       360       356         20       411       355       358         21       334       355       358         22       289       352       358         23       321       352       358 <td>FF DDI IA DV</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>41<br/></td> <td>- 44</td>                                                                                                                                                                                                                                                                                  | FF DDI IA DV |    |     |     |     |    | 41<br>                                                                                                                                                                                                                              | - 44                                     |
| 3       308       372       349         4       426       370       350         5       342       367       351         6       325       363       352         7       338       364       352         8       354       362       353         9       375       361       353         10       383       363       353         11       312       362       352         12       355       362       353         13       321       356       353         14       379       359       353         15       346       360       354         16       342       354       354         17       408       355       355         18       384       360       356         20       411       355       358         21       334       355       358         22       289       352       358         23       321       352       358                                                                                                                                                                                                                                                                                                                                                                                                                                 | FEBRUARY     |    |     |     |     |    |                                                                                                                                                                                                                                     |                                          |
| 4       426       370       350         5       342       367       351         6       325       363       352         7       338       364       352         8       354       362       353         9       375       361       353         10       383       363       353         11       312       362       353         12       355       362       353         13       321       356       353         14       379       359       353         15       346       360       354         16       342       354       354         17       408       355       355         18       384       360       356         20       411       355       358         21       334       355       358         22       289       352       358         23       321       352       358                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |              | 2  | 349 | 376 | 349 |    | 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가 가                                                                                                                                                                                               |                                          |
| $ \begin{bmatrix} 5 & 342 & 367 & 351 \\ 6 & 325 & 363 & 352 \\ 7 & 338 & 364 & 352 \\ 8 & 354 & 362 & 353 \\ 9 & 375 & 361 & 353 \\ 10 & 383 & 363 & 353 \\ 11 & 312 & 362 & 352 \\ 12 & 355 & 362 & 353 \\ 13 & 321 & 356 & 353 \\ 14 & 379 & 359 & 353 \\ 15 & 346 & 360 & 354 \\ 16 & 342 & 354 & 354 \\ 16 & 342 & 354 & 354 \\ 17 & 408 & 355 & 355 \\ 18 & 384 & 360 & 356 \\ 19 & 245 & 353 & 356 \\ 20 & 411 & 355 & 358 \\ 21 & 334 & 355 & 358 \\ 21 & 334 & 355 & 358 \\ 22 & 289 & 352 & 358 \\ 23 & 321 & 352 & 358 \\ \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1            | 3  |     |     |     |    | 이 이 이 가 한 것 수<br>이 이 이 이 가 한 것 수<br>이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이 이                                                                                                                                                           |                                          |
| $ \begin{bmatrix} 6 & 325 & 363 & 352 \\ 7 & 338 & 364 & 352 \\ 8 & 354 & 362 & 353 \\ 9 & 375 & 361 & 353 \\ 10 & 383 & 363 & 353 \\ 11 & 312 & 362 & 352 \\ 12 & 355 & 362 & 353 \\ 13 & 321 & 356 & 353 \\ 14 & 379 & 359 & 353 \\ 15 & 346 & 360 & 354 \\ 16 & 342 & 354 & 354 \\ 16 & 342 & 354 & 354 \\ 17 & 408 & 355 & 355 \\ 18 & 384 & 360 & 356 \\ 19 & 245 & 353 & 356 \\ 20 & 411 & 355 & 358 \\ 21 & 334 & 355 & 358 \\ 21 & 334 & 355 & 358 \\ 22 & 289 & 352 & 358 \\ 23 & 321 & 352 & 358 \\ 23 & 321 & 352 & 358 \\ \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 4  | 426 | 370 | 350 |    | 은 이 약 3.24.2<br>이 약 3.24.2                                                                                                                                                                                                          |                                          |
| $ \begin{bmatrix} 6 & 325 & 363 & 352 \\ 7 & 338 & 364 & 352 \\ 8 & 354 & 362 & 353 \\ 9 & 375 & 361 & 353 \\ 10 & 383 & 363 & 353 \\ 11 & 312 & 362 & 352 \\ 12 & 355 & 362 & 353 \\ 13 & 321 & 356 & 353 \\ 14 & 379 & 359 & 353 \\ 15 & 346 & 360 & 354 \\ 16 & 342 & 354 & 354 \\ 16 & 342 & 354 & 354 \\ 17 & 408 & 355 & 355 \\ 18 & 384 & 360 & 356 \\ 19 & 245 & 353 & 356 \\ 20 & 411 & 355 & 358 \\ 21 & 334 & 355 & 358 \\ 21 & 334 & 355 & 358 \\ 22 & 289 & 352 & 358 \\ 23 & 321 & 352 & 358 \\ 23 & 321 & 352 & 358 \\ \end{bmatrix} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              | 5  | 342 | 367 | 351 |    |                                                                                                                                                                                                                                     |                                          |
| 7       338       364       352         8       354       362       353         9       375       361       353         10       383       363       353         11       312       362       352         12       355       362       353         13       321       356       353         14       379       359       353         15       346       360       354         16       342       354       354         17       408       355       355         18       384       360       356         20       411       355       358         21       334       355       358         22       289       352       358         23       321       352       358                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1            |    |     |     |     |    |                                                                                                                                                                                                                                     | korr 🤌 🖡                                 |
| 8         354         362         353           9         375         361         353           10         383         363         353           11         312         362         352           12         355         362         353           13         321         356         353           14         379         359         353           15         346         360         354           16         342         354         354           17         408         355         355           18         384         360         356           20         411         355         358           21         334         355         358           21         334         355         358           21         334         355         358           22         289         352         358           23         321         352         358                                                                                                                                                                                                                                                                                                                                                                                                                 |              |    |     |     |     |    |                                                                                                                                                                                                                                     |                                          |
| 9         375         361         353           10         383         363         353           11         312         362         352           12         355         362         353           13         321         356         353           14         379         359         353           15         346         360         354           16         342         354         354           17         408         355         355           18         384         360         356           20         411         355         358           21         334         355         358           21         334         355         358           21         324         354         4           22         289         352         358           23         321         352         358                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |              |    |     |     |     |    |                                                                                                                                                                                                                                     |                                          |
| 10       383       363       353         11       312       362       352         12       355       362       353         13       321       356       353         14       379       359       353         15       346       360       354         16       342       354       354         17       408       355       355         18       384       360       356         20       411       355       358         21       334       355       358         21       334       355       358         22       289       352       358         23       321       352       358                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |              |    |     |     |     |    |                                                                                                                                                                                                                                     |                                          |
| 11       312       362       352         12       355       362       353         13       321       356       353         14       379       359       353         15       346       360       354         16       342       354       354         17       408       355       355         18       384       360       356         20       411       355       358         21       334       355       358         22       289       352       358         23       321       352       358                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |              |    |     |     |     |    |                                                                                                                                                                                                                                     |                                          |
| 12       355       362       353         13       321       356       353         14       379       359       353         15       346       360       354         16       342       354       354         17       408       355       355         18       384       360       356         20       411       355       358         21       334       355       358         22       289       352       358         23       321       352       358                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | 10 |     |     | 353 |    | a a ser br>Ser a ser    |                                          |
| 12       355       362       353         13       321       356       353         14       379       359       353         15       346       360       354         16       342       354       354         17       408       355       355         18       384       360       356         20       411       355       358         21       334       355       358         22       289       352       358         23       321       352       358                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | 11 | 312 | 362 | 352 |    |                                                                                                                                                                                                                                     |                                          |
| 13       321       356       353         14       379       359       353         15       346       360       354         16       342       354       354         17       408       355       355         18       384       360       356         20       411       355       358         21       334       355       358         22       289       352       358         23       321       352       358                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |    |     |     |     |    |                                                                                                                                                                                                                                     |                                          |
| 14       379       359       353         15       346       360       354         16       342       354       354         17       408       355       355         18       384       360       356         19       245       353       356         20       411       355       358         21       334       355       358         22       289       352       358         23       321       352       358                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |              |    |     |     |     |    |                                                                                                                                                                                                                                     |                                          |
| 15       346       360       354         16       342       354       354         17       408       355       355         18       384       360       356         19       245       353       356         20       411       355       358         21       334       355       358         22       289       352       358         23       321       352       358                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |              |    |     |     |     |    |                                                                                                                                                                                                                                     |                                          |
| 16         342         354         354           17         408         355         355           18         384         360         356           19         245         353         356           20         411         355         358           21         334         355         358           22         289         352         358           23         321         352         358                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |              |    |     |     |     |    | n e de la composition br>La composition de la c | 18 A.A.                                  |
| 17       408       355       355         18       384       360       356         19       245       353       356         20       411       355       358         21       334       355       358         22       289       352       358         23       321       352       358                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | [            |    |     |     |     |    | n fra de<br>Sector de la companya                                                                                                                                                                                                   | lande e 🖡                                |
| 18         384         360         356           19         245         353         356           20         411         355         358           21         334         355         358           22         289         352         358           23         321         352         358                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |              |    |     |     |     |    |                                                                                                                                                                                                                                     |                                          |
| 19         245         353         356           20         411         355         358           21         334         355         358           22         289         352         358           23         321         352         358                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              |    |     |     |     |    |                                                                                                                                                                                                                                     | Beer en di 🖡                             |
| 19         245         353         356           20         411         355         358           21         334         355         358           22         289         352         358           23         321         352         358                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |              | 18 | 384 | 360 |     |    |                                                                                                                                                                                                                                     |                                          |
| 20         411         355         358           21         334         355         358           22         289         352         358           23         321         352         358                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |              |    |     |     |     |    | an Angala<br>Angalan Angalan Angal                                                                                                                  |                                          |
| 21         334         355         358           22         289         352         358           23         321         352         358                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | l            |    |     |     |     |    | 14 (14.))<br>1 (17.)                                                                                                                                                                                                                | hinne - S                                |
| 22         289         352         358           23         321         352         358                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |              |    |     |     |     |    |                                                                                                                                                                                                                                     | tan an tan tan tan tan tan tan tan tan t |
| 23 321 352 358                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |              |    |     |     |     |    |                                                                                                                                                                                                                                     |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |    |     |     |     |    | 11 - 12 S A<br>1 - 4 - 5 A                                                                                                                                                                                                          | langar 👘                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              | 23 | 321 | 352 | 358 |    | din and s<br>Title g                                                                                                                                                                                                                |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |    |     |     |     |    |                                                                                                                                                                                                                                     |                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |              |    | · · | · · |     |    | n in the state of                                                                                                                                                                                                                   | e 📕                                      |

|       | 25            | 377         | 354        | 361               |                                                                                                                |     |                                                                                                                                                                                                                                    |
|-------|---------------|-------------|------------|-------------------|----------------------------------------------------------------------------------------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | 26            | 249         | 351        | 362               |                                                                                                                |     |                                                                                                                                                                                                                                    |
|       | 27            | 451         | 354        | 364               |                                                                                                                |     |                                                                                                                                                                                                                                    |
|       | 28            | 322         | 353        | 364               |                                                                                                                |     |                                                                                                                                                                                                                                    |
|       | 29            | 496         | 358        | 365               | · · ·                                                                                                          |     |                                                                                                                                                                                                                                    |
| MARCH | 1             | 249         | 354        | 363               |                                                                                                                |     |                                                                                                                                                                                                                                    |
|       | 2             | 346         | 353        | 363               |                                                                                                                |     |                                                                                                                                                                                                                                    |
|       | 3             | 440         | 356        | 365               |                                                                                                                |     |                                                                                                                                                                                                                                    |
|       | 4             | 211         | 353        | 363               |                                                                                                                |     |                                                                                                                                                                                                                                    |
|       | 5             | 293         | 348        | 364               | and and a second se |     |                                                                                                                                                                                                                                    |
|       | 6             | 389         | 350        | 365               |                                                                                                                |     |                                                                                                                                                                                                                                    |
|       | 7             | 237         | 347        | 362               |                                                                                                                |     |                                                                                                                                                                                                                                    |
|       | 8             | 357         | 348        | 363               |                                                                                                                |     | en en el composition de la composition<br>Composition de la composition de la comp |
|       | 9             | 296         | 346        | 363               |                                                                                                                |     |                                                                                                                                                                                                                                    |
|       | 10            | 229         | 341        | 361               | •                                                                                                              |     |                                                                                                                                                                                                                                    |
|       | 11            | 223         | 336        | 360               |                                                                                                                |     |                                                                                                                                                                                                                                    |
|       | 12            | 364         | 337        | 361               |                                                                                                                |     |                                                                                                                                                                                                                                    |
|       | 13            | 197         | 332        | 359               |                                                                                                                |     |                                                                                                                                                                                                                                    |
|       | 14            | 333         | 332        | 359               |                                                                                                                |     |                                                                                                                                                                                                                                    |
|       | 15            | 695         | 343        | 363               |                                                                                                                |     |                                                                                                                                                                                                                                    |
|       | 16            | 261         | 340        | 361               |                                                                                                                |     |                                                                                                                                                                                                                                    |
|       | 17            | 408         | 342        | 361               |                                                                                                                |     |                                                                                                                                                                                                                                    |
|       | 18            | 302         | 339        | 360               |                                                                                                                |     |                                                                                                                                                                                                                                    |
| l l   | 19            | 312         | 336        | 359               |                                                                                                                |     |                                                                                                                                                                                                                                    |
|       | 20            | 242         | 336        | 358               |                                                                                                                |     |                                                                                                                                                                                                                                    |
|       | 21            | 346         | 334        | 358               | , .<br>2                                                                                                       |     |                                                                                                                                                                                                                                    |
|       | 22            | 364         | 335        | 357               |                                                                                                                |     | a state and                                                                                                                                                                                                                        |
|       | 23            | 375         | 338        | 359               |                                                                                                                |     |                                                                                                                                                                                                                                    |
|       | 24            | 326         | 338        | 359               |                                                                                                                |     |                                                                                                                                                                                                                                    |
|       | 25            | 370         | 335<br>332 | 360               |                                                                                                                |     |                                                                                                                                                                                                                                    |
|       | 26<br>07      | 287<br>279  |            | 359               |                                                                                                                |     |                                                                                                                                                                                                                                    |
|       | 27            | 378         | 337<br>332 | 360<br>357        |                                                                                                                |     |                                                                                                                                                                                                                                    |
|       | 28<br>20      | 306         |            | 357               |                                                                                                                |     |                                                                                                                                                                                                                                    |
| }     | 29            | 333         | 332        |                   |                                                                                                                |     |                                                                                                                                                                                                                                    |
| .     | 30            | 220         | 323        | 354               | en<br>Rest                                                                                                     |     |                                                                                                                                                                                                                                    |
| L     | 31<br>MAXIMUM | 342<br>1055 | 326<br>562 | <u>353</u><br>453 | 600                                                                                                            | 170 | 131                                                                                                                                                                                                                                |

The 30 day average flow is the average of the previous 30 days. The 3 month rolling average is the average of the previous 90 days. The maximum flows for 30 and 90 days will be used to calculate peak flows and to determine permit compliance, respectively.

Attachment H - 8

# **ATTACHMENT 1-B**

FACILITIES REVIEW CALCULATIONS

| North WTP System Review                                              | By: DRJ                                        |
|----------------------------------------------------------------------|------------------------------------------------|
|                                                                      |                                                |
|                                                                      |                                                |
| North Water Treatment Plant Design                                   | p = 1,388 gP                                   |
| Sedimentation basin                                                  | - 1,200 JP                                     |
|                                                                      |                                                |
| · Criteria: 2-hrs for solids a                                       |                                                |
| 54' $\phi$ Clarifier = 2,2                                           |                                                |
| 36' & Flocculation Cone                                              | 2 (bottom dia.) = 10                           |
| 18' & (Topdia) Floc Cone<br>15' Side Water Depth                     |                                                |
| V1 = (2,290 - 1018)15 = 19,                                          |                                                |
| $V_2 = (10)8 - 254)^{10.5} = 4$                                      | 0.00 + 0.0 = 142, 12<br>$0.05 + 13^3 = 29.986$ |
| $V_2 = (1018 - 254)^{10.5/2} = 4,$<br>$V_3 = (1018 - 28.3) + 5 = 4,$ | $453 ft^3 = 33.316$                            |
| $V_{t} = 206,030$ or                                                 | al                                             |
|                                                                      |                                                |
| Detention time $\Theta_{\dot{z}} =$                                  | 2,000,000 gpd · 24 "k                          |
|                                                                      |                                                |
| $\theta_{t} = 2.47$ hr:                                              | 5.                                             |
| Qrated = 2.472 MGD                                                   |                                                |
| Dual Media Filters                                                   |                                                |
|                                                                      |                                                |
| · Criteria, Minimum 24" of med                                       | tia                                            |
| Minimum 12" of gre                                                   |                                                |
| Provided 30" of media +"                                             |                                                |
| · Criteria' Maximum Flow of 50<br>Z-15'\$ Filters Area= 1            | Jpm per Sg: Ft.                                |
| 2-15 \$ Filters Area= 1                                              | 17 sq.ft.ea.                                   |
| 1,3889pm/1775g.ft                                                    | /2 = 3.42 gpm/sq.                              |
| Qrated = 2.549 1                                                     | NGO                                            |

Backwash rate of flow • Criteria: Minimum 12.5 gpm/sg.ft. Maximum 18.7 gpm/sg.ft. Backwash pump = 2800 gpm. 2800/177 = 15.8 gpm/sg.ft.



|   | ECCEWSD Master Plan<br>North WTP System Review                                                                           | Date: <u>4-22-96</u><br>By: <u>DRJ</u><br>✓ |
|---|--------------------------------------------------------------------------------------------------------------------------|---------------------------------------------|
|   | Surface Water Facilities Capacity -                                                                                      | > 2,896 connections                         |
| · | - Treatment Plant Capacity D.6<br>- Transfer Pump Capacity O.6<br>- Clearwell Storage 5%<br>- Total Storage Capacity 200 |                                             |
|   | Raw water pump capacity = 1400 w/ la<br>2009 → 2,333                                                                     |                                             |
|   | Treatment Plant Capacity = $1,380$<br>$1,389/_{0.16}^{0.5}$ = 2,315                                                      | 5 connections                               |
|   | H.S. Pumps = 1480 gpm w<br>1480/.0.4 - 2,461                                                                             | I largest pump out of ser                   |
|   | Clearwell storage = 212,000 gol + 1<br>228,450<br>2,000,000 -> 11                                                        |                                             |
|   | Total Storage Capacity = $228,450 + 728,450/200 = 3,64$                                                                  | . 4                                         |
|   | Elevated Tank Capacity = $500,000$<br>500,000<br>100 = 5,000                                                             |                                             |



Date: <u>4/22/96</u> By: <u>DMS</u> Title: ECFWSD South Ubter System Improvements Proposed Unit Rated Capacities CLARIFIFR 5 PIAMETER 36 FT 14 FT SWD TOTAL VOLUME (PER CLARIFIER) 106,592 GAL VOLUME UNDER FLOC SKIRT  $V_{Skirt} = \frac{\pi}{4} \left( \frac{16.5}{2} \times 4 + 0.5 \right) \left( \frac{\pi}{4} \left( \frac{\pi}{2} (22)^2 + \frac{\pi}{4} \left( \frac{16.5}{4} \right)^2 \right) + \frac{6.5 \left( \frac{\pi}{4} 22^2 \right)}{4} \right)$ = 855.3 ft 3 + 1187.5 ft 3 + 2,470,9 ft 3 = 4513,7fz3 = 33,762 gal SETTLING CHAMBER VOLUME = 106, 592-33,7629. = 72,830,41 REQ'D HRT FOR SC CLARIFIER = 2 HRS Quered = 72, 8309al x 24hrs = 873, 960 gol 2 his day day - claifer Qrowl = <u>873,960 g-1</u> z clorifiers = <u>1,747,920 gal</u> = OK day-clarifier day QTrated = 1.748 MGD



Title : Date : By: DMS Ĵ, Proposed Unit Rared Capacities, Cont.

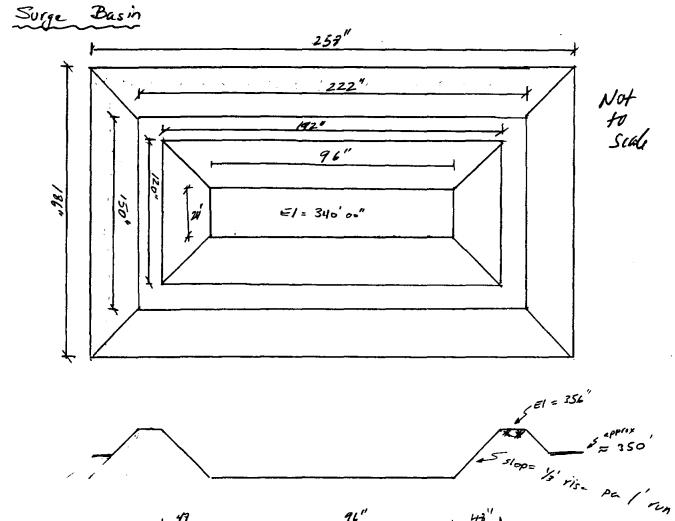
FILTERS (DUAL MEDIA)

MEDIA DEPTH REQ'D = 24" > OK MEDIA DEPTH PROVIDED= 30" > OK GRAVEL DEPTH REQ'D = 12" > OK GRAVEL DEPTH PROVIDED= 12"

NUMBER OF FILTERS - 6 DIAMETER EACH - 8 fz AREA EACH - 50.3A<sup>2</sup> DESIGN FILTRATION RATE - 5 gpm 1fz<sup>2</sup>

RATED CAPACITY (EACH) =  $\frac{59pm}{fc^2}$ ,  $\frac{50.3h^2}{50.3h^2}$ , 251.3gpm

TOTAL RATED CAPACITY = <u>Sgpm</u> <u>50.3</u>ft, bunits = 1509 gpm ft? uni- (2.17 MGD)


RATED CAPACITY OF FILTERS = 1509 gpm or 2.17MGD

Page 2 Of 3



Date: <u>4/22/96</u> By: <u>PMS</u> Title: <u>FCCFWSD</u> South System Proposont Unit cord conecisions CLEAR WELL STORAGE Total storage provided -300K - elevand 212 K > @ Plant 125 K > @ Clearmel IS 637,000 gallons NO, OF CONNECTIONS -1960 CRITERIA : COVERED CLEAR WELL STORAGE AT PLANT OF SO GALLONS PER CONNECTION CR 5.0% DAILY PLANT CAPACITY PLANT CLEARWELL STORAGE RER'D= 50 gal x 1960= 98,000gal - OK 0.05× 1,730,000 = 86,500 gal-0K 3370000001/ 1,730,000 = 1992 TOTAL STORAGE REQ'D = 200 gallins per connection OR - 200gel × 1960 = 392,000 gallons - OK 637000/200 = 3,185 connections ELEVATED STORAGE CAPACITY REQ'D = 100 gol/ connectes OR - 100 x 1960 = 196,000 gollars - OK 300,000/100 = 3,000 contections Raw Water Pump Capacity = 600 gpm Bea 1200 gpm w) one pump out Criteria=D.6 gpm/connection 1200/0.16 = 2,000 Connections Plant Capacity - Dib gpm/ connection - 1201gpm/ 10,6 = 2002 conn. H.S. Pump Capacity - O.6 gpm/connection - ? Page <u>3</u> Of <u>3</u>

|   | Title : | East Cedar Creek FWSD/North District WWTP | Date : <u>4/18/16</u> |
|---|---------|-------------------------------------------|-----------------------|
| 0 |         | * Surga Basin Dimensions and Volume       | By: <u>HIM</u>        |
|   |         |                                           |                       |



96" 47

- Info obtained ten place, sheet # 3 - Top of birm elevation = 356"--Plans indicate that ws= in basin fluctuate.

43"

" Assume minimum freeboard = 2" >> Max water depth = 16'-2" = 14"



Ó

Title -Date · By: At a clusation C 355', The surface dimensions of the surge basin are as follows: 6 These dimensions we obtained from the slope in the surge tack which are 1/3 rise foot run L = 96 + 2x 14/y = 180 355', C Elevation - $\omega^{=} 24 + 2 \times 14 = 108''$ " Volume = Averge Areas water depth  $= \frac{1}{2} \left( 24 \times 91 + \frac{103 \times 180}{152,208} \right) \times 14 = \frac{1}{152,208}$ H 1.139 ML  $\widetilde{\sim}$ criteria states that ," generally" the volume of the surge basin 10-20% of the anticipated avera flow. is about \* Applying the "20%" and "suming I' of free board indiana!

Page

Nf

Title: East Cedar Creek FUSD/North District WUTP Date: 4/13/96 \* Capauty, Volume of Oxidation Ditches - By: <u>HIM</u> By: HIM Oxidation ditch 351 352 OXIDATION DITCH NO. I CLÀR 102' 46 550 7'4" (add 3" slup the kase 37 ARI NO. OXIDATION DITCH NO.2 =x -28 +9" + 7 4" - 36" 595 00'- 6' CHAIN LINK FENCE GE of Ditch = 349.41 Sheet 7/23 WSE = 353.46 = Work Septh = 4' Wet Volume = Area x Worth depth Holone (111 = (28 × 122) ×2 + Z× (T×36 - TT×8) = 6832 + 3870 = 10,702 fi Holone / ditch = 42,808 ft = 0.3202 M Gal



Page \_\_\_\_ Of \_

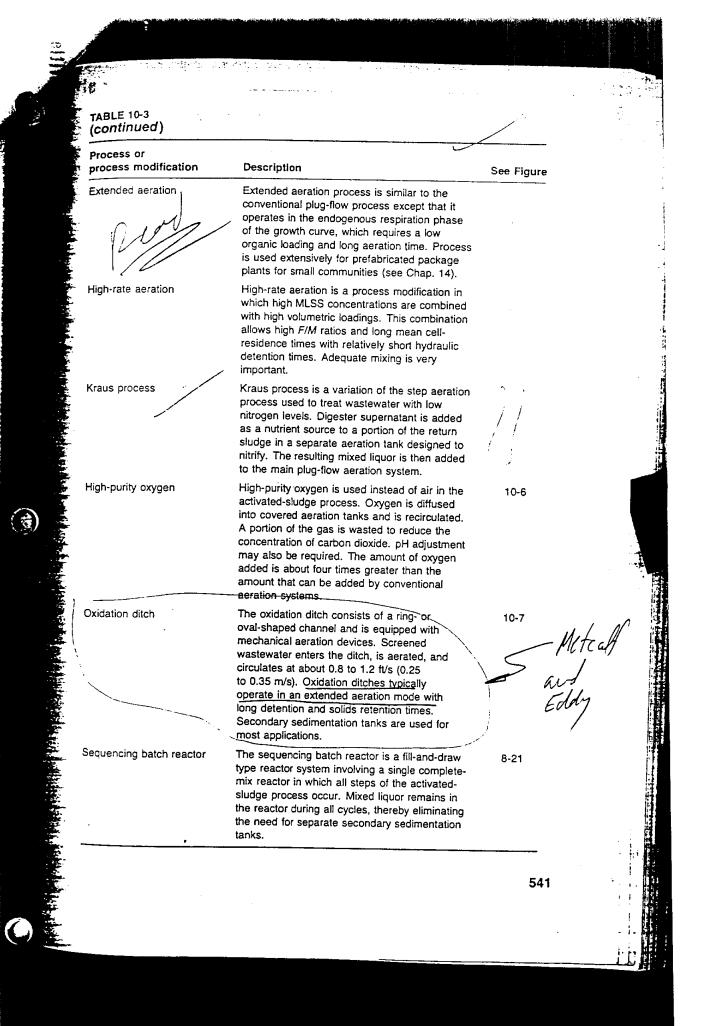

Title : \_\_\_\_\_ Date : \_ By: \_\_\_\_\_

Oxidation dich Capacity, based on TNIZCE state criteria - TNRCC criteria specifies a design organic loading rate of 15 lb BODS/day/1000 CU. Ft and a minimum bet hydraulic retention time of 20 hrs (at designition) \* - Assuming an influent BOD, - concentration = 250 mg/L which is a typical value, to the capacity of each ditch is 0.308 MGD for a total WW cupacity = 0.616 m If the influent BODs concentration is assumed at combined 200 mg/L, the overall capacity of the two oxidation ditches would be 0.770 MGD \* Capach Based on retaution time Concerts 834x0 = BOD  $C_{apacty} = 0.3202 = 0.3842 M G$  $\frac{1}{44a} = \frac{20/24}{20/24}$ 



The laver value should be selected.






Note: In order to be consistent with the Stated capacity of the WWTP, an influent BODS. concentration of 24 lie night should be assumed. This concentration would yield a combined capacity of 0.6267 MGD,



-

East Cedar Creek FWSD / North Bishout WIDTP - Find Clarfiers Caparty / TNPCC Criteria Date: 4/13/96 Title By: HIM a and a second sec Clar. hers . <u>a</u>n na analas sera analas . هم دهم بهم ان المعربين ما بهو میزاند. Circular a hun anna laad . . . . . . . ( Inside Diameter = 37' Side water Depth = 10' · · · · · · · ... • ... • ... • ... • ... Weir length = 106 . . . . . . . . . 2 clanfiers • • • • D - Arca = 1075 ft- Volume / clarific = 10752 ft = 80,425 galles THRCC has several criteri- to siging final clanfiers, some of them pertain to peak capavy and some to design copanty. Each copper critica would be discussed separately. The more critical values are selected. \* With respect to surface loading and detendion times it is assumed that the first clarifiers are extuded acrafa Clanifiers Page \_\_\_\_\_ Of \_\_\_\_\_



By: \_\_\_\_ Peak Capacity = 2.145 MGD (base on detendin time) Capacity per clarifica = 1.07. Mas C-1) Average Capacity based surface rate = 500 sol/dy/sq & Capacity = 2 clartiers × 1075 sy. ft x 500 gal/sq.ft-dy = 1.075 MGD (averyne Capacity) Averyne Capacity per clarifica = 0.54 MGD C-2) Averya Capacity based on detenter the of 3.6 les => Capacity = 2 Clarifiers × 30425 gallows, 1Mh × 24 hrs Clarific 106 gallow day 3.6 krs = 1,072 MGD

Capacity per clarific = 0:54 MGD



100 A. 100 D. 100 A. Date : . By∶\_ Bood on the overall values: - Peak capany of the clarifiers = 2.145 Mas - Average Capacity of the Clarkers= 1.072 MGD It should be noted that the loading rates and detention times for the clarifiers were based on extended air secondag clariber values. Values given for enhanced seconday, extended air seconday, or second stage nitrification were excluded. FChali - The ream it was assumed extended air is because of The high defenden time and there Metcalf and Eddy. explanation of the procor



Aeration Basin

No plans available so assume 10' SWD  

$$74' \times 12'$$
 basin  
Volume = 8,880 cm ft. = 66,427 gal  
Assume extended aeration plant with influent BODOF 200<sup>m</sup>9/e  
Use 15<sup>m</sup>8/e/1000 cm ft as design Criteria  
 $15/1000 \cdot 8880 = 0 \times 8.34 \times 200$   
Q=0.0798 MGD

= 0,113 MGD

Min detention time @ peak = 1.8 hrs

Max surface loading @ design = 500 gpd/sf = 0.056 MGD

Min detention time @ design flow = 36hrs 66,427/ -24 = .442 MGD

Wier loading = 20,000 gol/day/linear feet @ peak 10.83 & weir = 27r = 34 linear feet = 0.68 MGD Page \_\_\_\_ Of \_\_\_



### East Cedar Creek FWCD Water & Wastewater Master Plan

### North District WastewaterTreatment Plant

## Treatment Capacity Based On TNRCC State Criteria

|                  | Number | Area (sq-ft)<br>(Each) | Volume (MG)<br>(Each) | Total Average<br>Capacity (MGD) | Total Peak<br>Capacity (MGD) |
|------------------|--------|------------------------|-----------------------|---------------------------------|------------------------------|
| Aeration Tank    | 1      |                        | 0.167                 | 0.2                             |                              |
| Clarifiers       | 1      | 1336                   | 0.120                 | 0.668                           | 1.336                        |
| Sludge Digesters | 3      |                        | 0.025                 | 0.3                             |                              |

Note: Plant's Max. 30-day design flow = 0.2 It is assumed that the influent BOD concentration = 200 mg/L

[ECC95301]W:\HIM\CAP-SOUT.WK1

### East Cedar Creek FWCD Wawr & Wastewater Master Plan

#### South District Package Wastewater Treatment Plant

### Treatment Units & Criteria Summary

| ĺ                                    | Dimensions                                     | Number | Area (sq  | 1-ft) | Volume ( | cu-ft) | Volume (MG) | TNRCC Criteria                                                                                                                                                                                                                                                                    |
|--------------------------------------|------------------------------------------------|--------|-----------|-------|----------|--------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      |                                                |        | <u>(E</u> | lach) | (        | Each)  | (Each)      |                                                                                                                                                                                                                                                                                   |
| Treatment Area                       |                                                |        |           |       |          |        |             |                                                                                                                                                                                                                                                                                   |
| Aeration Tank<br>(Extended Aeration) |                                                | 1      |           |       | i        | !      | 0.167       | -Design Organic Loading Rate = 15 lb BOD/day/1000 cu ft<br>-Minimum Hydraulic Retention Time = 20 hours                                                                                                                                                                           |
| Clarifier                            | 41' 3" Diameter<br>SWD=12'<br>Weir Lenth = 247 | 1      |           | 1336  |          | 16,032 | 0.120       | <ul> <li>Peak Surface Loading Rate = 1000 gal/day/sq ft</li> <li>Peak Detention Time = 1.8 hrs</li> <li>Average Surface Loading Rate = 500 gal/day/sq ft</li> <li>Average Detention Time = 3.6 hrs</li> <li>Weir Loading Rate = 20,000 gal/day/linear foot (Peak Flow)</li> </ul> |
| Sludge Digester                      |                                                | 3      |           |       |          |        | 0.025       | -Minumum sludge retention time of 15 days<br>-Design Volume may be calculated using 20 cu-ft/11b of BOD per day                                                                                                                                                                   |

Title: ECC FWSD-Date ; \_\_\_\_\_ South District WW TI By:\_\_\_\_\_ Aurobic Disesters With respect to the Spin of slodge dyestus, the criteria specties the design volume to be calculated using 20 CV. ft /1 ll BOD · Total Volume of dyesters = 3x 25,000 sallas = 75,000 galle = 10026,7ft? \_\_\_\_\_) lbs of BOD that the directors on handle = 501.3 ft lles Assuming a concentration of 200 mp/L for BODS-, the disesters would be capable of handling flow from the following & treatment plan copacity Q Q, 834x 200 = 5013 R= O3 MKD



Title : Date : \_ By: \_\_\_\_

3-9) Daim Surface bady rate 500 Jal/day-sq. ff Carparty = 1336 At × 500 = 0.668 Mas

3-6) Design bared on average detention time  $Q = \frac{V}{\tau} \implies Coparty = \frac{1336 \times 12 \times 7.48 \times 24}{1336 \times 12 \times 7.48 \times 24}$ 3.6 hrs x 10° = 0.8 MG

03 - Averye Cogarty of final clarifia = 0.668 MGD - Peak Capacity = 1.336 MGD



Date : \_\_\_\_\_ Title : \_\_\_\_\_ By:\_\_\_\_\_ 

1- Peak Capachy back or weir loading rate  

$$\frac{Q}{L} = \frac{1}{1000} = \frac{1}{211} = \frac{1}{211} = \frac{1}{1000} = \frac{1}{21000} \times \frac{1}{211} = \frac{1}{1000} = \frac{1}{21000} \times \frac{1}{211} = \frac{1}{1000} = \frac{1}$$



|                         | educ Creek F                              |                      |                               | Date: <u>4/17/96</u>     |
|-------------------------|-------------------------------------------|----------------------|-------------------------------|--------------------------|
| Packy                   | Plant www.                                | /                    |                               | By:<br>✓                 |
| Final Clar.             |                                           |                      |                               |                          |
| TAURCE                  | has criterie                              | pertaining           | to secon                      | rdy charfiers.           |
|                         |                                           |                      | , the following               |                          |
| cyp/y                   |                                           |                      |                               |                          |
| Pau Weir loudig<br>Rate | Peak Surface<br>loading role              | Detention time       | Design Surfue<br>loading rate | Design defaution<br>time |
| 20,000 gpd/             | 1000<br>32 / day/59.ft                    | 1.8 hrs              | 500 gd/dy/sift                |                          |
|                         |                                           | 4 1                  | - 11/ 2"                      |                          |
|                         |                                           |                      | .= 41 3"                      | (plans)                  |
| => Arch                 | of the clas                               | .: <i>fiers = 13</i> | 36 77                         | . )                      |
| - Dep                   | oth of final a                            | claritie a ,         | 12" (scaled in                | L • f + )                |
| * Inner weir            | $leigth = 10^{\prime} \times 13^{\prime}$ | 2 = 170'             | To ff when I                  | expt1= 247'              |
| * Outer wer             | lept1 = 10.6x1                            | 2= 127.2             |                               |                          |



Date: 4/1/196 Title: East Cedar Creek FWCD \_\_\_\_\_ Sputh District WWTP Packye Plant By: <u>HIM</u> Arration Arca - Acrahia Volume = 167,000 gallans - WL = 111' Type = extended acratian For wetward aerotion, the criteria specifies a design organi- loading rate of 15 l's BODS- / day / 1000 cu ++ - Assuming the influent BODs (meanhatin of 220 mg/L, the capacity Q of the packye plant would be & 15, 167,000 x 1 = 334.893 Qx 834 x 220 -7.48 1000 Q= 0.1825 Mas to achieve a 0.2 MaD capacity, the In order influent BODs- concentration would have to be 200 mg/L



9250-15% of counties population Freese Cale Ken Tilman Nichols.... California DAVID JACKSON bnerokia 45.9 cuft capacity expandable to 79,1 cu.ft capacity 30% solids @ 70#/cu, ft. 1964 # per run 10 runs perdaus Cantex plant ~ ID')  $365 \times 964^{\#}$ = 351,860  $^{\#}/year$ 

### East Cedar Creek FWCD Water & Wastewater Master Plan

### North District WastewaterTreatment Plant

Treatment Capacity Based On TNRCC State Criteria

|                          | Number | Area (sq-ft)<br>(Each) | Volume (cu-ft)<br>(Each) | Volume (MG)<br>(Each) | Total Average<br>Capacity (MGD) | Total Peak<br>Capacity (MGD) |
|--------------------------|--------|------------------------|--------------------------|-----------------------|---------------------------------|------------------------------|
| Surge Tank               | 1      |                        | 152,208                  | 1,138,516             | 5.7                             |                              |
| (Flow EQ-Basin)          |        |                        |                          |                       |                                 |                              |
| Oxidation Ditches        | 2      | 10702                  | 42,808                   | 320,204               | 0.626                           |                              |
| Clarifiers               | 2      | 1075                   | 80,425                   | 601,579               | 1.072                           | 2.145                        |
| Chlorine Contact Chamber | 2      | 300                    | 1,800                    | 13,464                |                                 | 1.94                         |
| Sludge Drying Beds       | 12     | 1152                   |                          |                       | 0.773                           |                              |

Note: Plant's Max. 30-day design flow = 0.626 MGD Plant's 2-Hr Peak Design Flow = 1.872 Plant's Peaking Factor = 2.99

DRJ[ECC95301]v:capacity.wk1

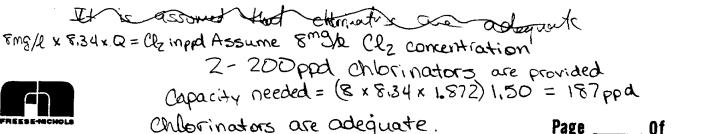
#### East Cedar Creek FWCD Water & Wastewater Master Plan

#### North District Wastewater Treatment Plant

#### Treatment Units & Criteria Summary

| [                                               | Dimensions                                           | Number      |        | Volume (cu-ft) |        |                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------|------------------------------------------------------|-------------|--------|----------------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                 |                                                      |             | (Each) | (Each)         | (Each) |                                                                                                                                                                                                                                                                                                              |
| Preliminary Treatment Units                     |                                                      |             |        |                |        |                                                                                                                                                                                                                                                                                                              |
| Grit Chamber                                    | 2' Wide x 16'-6" Lon                                 |             | 33     | N/A            |        | – Means for grit removal shall be provided<br>– Plants with a single grit chamber shall have a bypass around chamber                                                                                                                                                                                         |
| Bar Screens (Manual)                            | 1/4" Wide x 1 1/4" Opening                           |             |        |                |        | -30 deg - 60 deg slope<br>- Opening not less than 3/4"<br>- Velocity in Channel to Bar Screens > = 2fps<br>- Velocity through screen openings < 3 fps @ design flow                                                                                                                                          |
| Surge Tank<br>(Flow EQ–Basin)<br>Treatment Area |                                                      | 1           |        | 152,208        | 1.139  | <ul> <li>Aeration May be required for odor control</li> <li>when required, air supply must be sufficient to maintain 1.0 mg/L of DO</li> <li>Generally, volume = 10% to 20% of the anticipated dry weather 30-day average flow</li> </ul>                                                                    |
| Oxidation Ditches                               | 72'Wide, 4' SWD, 12" FB<br>Radius to Radius = 122'4" | 2           | 10702  | 42,808         | 0.320  | <ul> <li>Design Organic Loading Rate = 15 lb BOD/day/1000 cu ft</li> <li>Minimum Hydraulic Retention Time = 20 hours</li> <li>Minimum of 2 rotors per ditch</li> <li>Minimum channel velocity of 1 fps</li> </ul>                                                                                            |
| Clarifiers                                      | 37' Diameter<br>SWD=10'<br>Weir Lenth = 106'         | 2           | 1075   | 80,425         | 0.602  | <ul> <li>Peak Surface Loading Rate = 1000 gal/day/sq ft assuming extended aeration</li> <li>Peak Detention Time = 1.8 hrs</li> <li>Average Surface Loading Rate = 500 gal/day/sq ft</li> <li>Average Detention Time = 3.6 hrs</li> <li>Weir Loading Rate = 20,000 gal/day/linear foot (Peak Flow)</li> </ul> |
| Tertiary Treatment Area                         |                                                      |             | ł      |                |        |                                                                                                                                                                                                                                                                                                              |
| Chlorine Contact Chamber                        | 20' Long x 15' Long<br>SWD = 6 ft                    | 2           | 300    | 1,800          |        | – Detention Time = 20 Minutes @ Peak Flow                                                                                                                                                                                                                                                                    |
| Sludge Dewatering                               |                                                      |             |        |                |        |                                                                                                                                                                                                                                                                                                              |
| Sludge Drying Beds                              | 24' W x 48'                                          | 12          | 1152   |                |        | -Required Area = 9.75 sq ft/lb BOD for Henderson County                                                                                                                                                                                                                                                      |
| Equipment                                       |                                                      |             |        |                |        |                                                                                                                                                                                                                                                                                                              |
| Surface Brush Aerators<br>(For Oxidation Ditch) | 15 Hp, 1750 rpm                                      | 2 per ditch |        |                |        | -Minimum 100 Hp per 1 MG of Aeration Basin Volume<br>-Clean water transfer rates 2 lbs/Hp minimum.                                                                                                                                                                                                           |
| Blowers                                         | 500 cfm @ 63 psi<br>875 rpm, 20 Hp                   | 3           |        |                |        |                                                                                                                                                                                                                                                                                                              |
| Chlorinators                                    | Capacity: 200 ppd                                    | 2 Each      |        |                |        | - Capacity greater than the highest expected dosage to be applied.                                                                                                                                                                                                                                           |

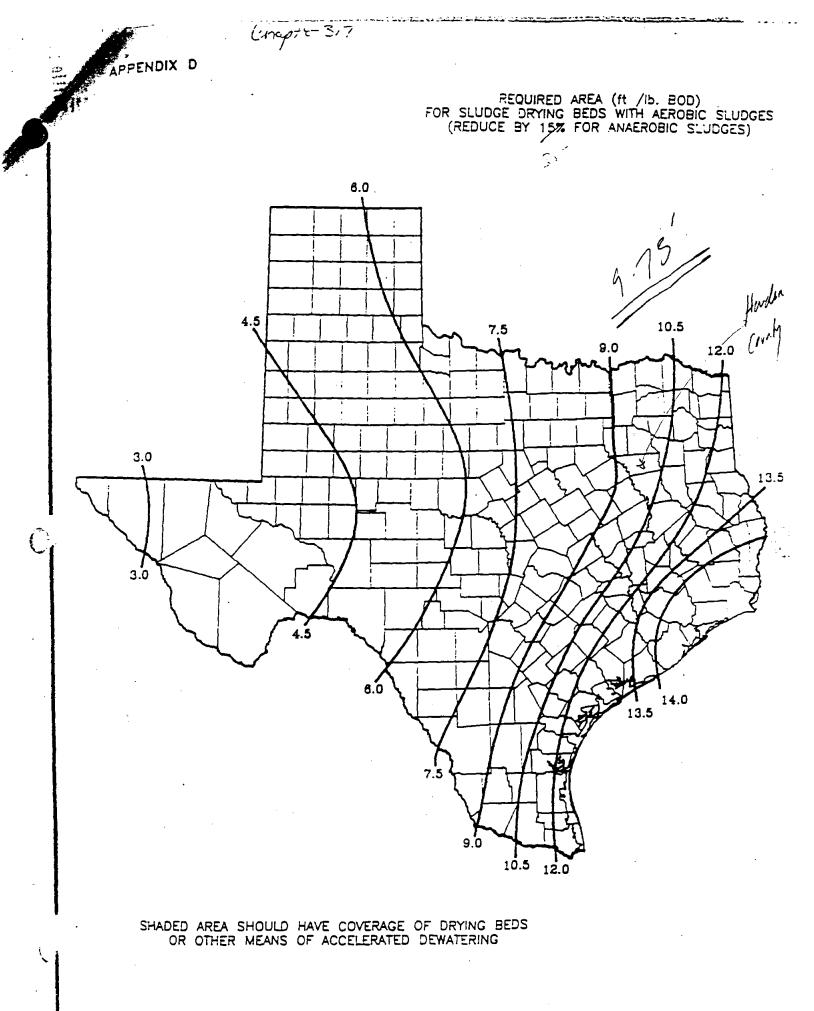
Title: East Cedar Crick /North District WWTP Date · Ininators


This section of 30 TAC Ch. 317 partains to the chlorineters

--- ---- units units remain actual Operation.

#### §317.6. Disinfection.

- General policy. Facilities for disinfection shall be provided to protect the public (a) health and as an aid to plant operation.
- **(b)** Chlorination facilities.
  - Chlorination equipment. Chlorination equipment shall be selected and (1)installed which is capable of applying desired amounts of chlorine continuously to the effluent. Chlorination equipment may also be installed to control odors and generally assist treatment. To accomplish these objectives, points of chlorine application may be established at the head of the plant for prechlorination, in the effluent chlorine contact chamber or other suitable locations.
    - Capacity. Chlorination equipment shall have a capacity greater than (A) the highest expected dosage to be applied. Chlorination systems shall be capable of operating under all design hydraulic conditions. Duplicate equipment with automatic switch over should be considered for standby service, so that continuous chlorination can be provided.
    - **(B)** Controls. Means for automatic proportioning of the chlorine amount to be applied in accordance with the rate of effluent being treated is encouraged for all plants and may be required if a maximum chlorine residual is required in the applicable discharge permit. Manual control will be permitted where the rate of effluent flow is relatively constant and for pre-chlorination applications. Consideration shall also be given to controlling chlorine feed by use of demand.
    - Measurements. A scale for determining the amount of chlorine used (C) daily, as well as the amount of chlorine remaining in the container, shall be provided.
    - (D) Safety equipment. Self contained breathing apparatus shall be available for use by plant personnel. The equipment should be located at a safe distance from the chlorine facilities to insure accessibility. Self-contained breathing apparatus shall be located outside the entrance to the chlorine facility.
    - (E) Housing. Housing of chlorination equipment and cylinders of chlorine shall be in separate rooms above ground level, with the door opening to the outside, as a measure of safety. Doors should


Printed: 12/19/95 69



Chlorinators are adequate.

Title: East Ceder Ceck FWSD North Dishit Plant Date: 4/19/96 Arrahm Seten By: HIM Acrahan System for the Oxidation Dilch TNRCC criteria Specify that acration systems shall be designed to maintain a minimum dissolved oxygen Concentration of 2.0 mg/L Misugh out the basin at the maximum discral organic loading rate and to provide Thorough mixing of the mixed liquor. Oxidatia ditch (16 02/16 600) (> Oxygen transfur efficiency of 410% -For mechanical aurations systems, a minimum of 100, horspower per million gallous of acration basin volume S(all be furnished. Volume of each oxidation ditch = 0.3202 M Gal ob Required Hp/ = 32 HP 0000 Available Hr/ditch = 30 Hr/ditch





East Code Creek FWSD /North Sichiet WD TP Sand Bed Capacity Date: <u>4//3/96</u> By: <u>47</u>M

TNRCC regulations specify that the area of Sludge drying beds to be provided will vary in accordance with the averye rainfull, averye humidity and type of trupment porcer used, The bed area siging requirements are given in appendix D-For Henderson county, the required area is 9.75 ft / 16 BOD Ref. sheet 2, 16, C There are 12 studye dryjny beds-Each drying bed is a 24' x 48' Ara/11= 1152 Sa. A = Total are = 13824 A " pounds of BOD that may be proceed = 1418 lbs Assume beds = solids/fet-ver con treat of # 4016/Jear Treat - 276 400 # 50165 / 4005 Flow (MD) × 834 × BOP5 = 1418 lb Capacity = 0.773 MCD

+ Assumed BODS carcantatia = 220 mg/L



East Cidar Creek / North District WWTP Date: 4/18/96 Chlimin Contact bain Capacity - TNRCC critish By:\_\_\_\_ Chlorine Contact Chamber Each basin is 20' 1 x 15' May WL = 5' " Volume / = 1800 ft = 13464 gellas Total Volume = 3600 ft = 26,928, gallan

Peak Capacity = 26,928 yellow x 24km = 1.94 MGD <sup>1/3</sup> hrov Kry Peak Capacity of Chlorine contact basins = 1.94 MGD

Grit Chamber Max Velocity at bar screen = 3 Fps @ DD Flowrate Velocity in Channel =  $2.89 \frac{ft^3}{5/4} = 0.72 \frac{ft^3}{5}$ Area in Channel = 1.58.ftMax Velocity = 0.72 Fps by



4/17/96 shion 1×5/cu erauga '01 - Direct weine May colculation is 40'+18'+2'+26+18'+2'=106' lines District WWTP 0] 10 call me if questions a desification at 203-887-7103. Estral.

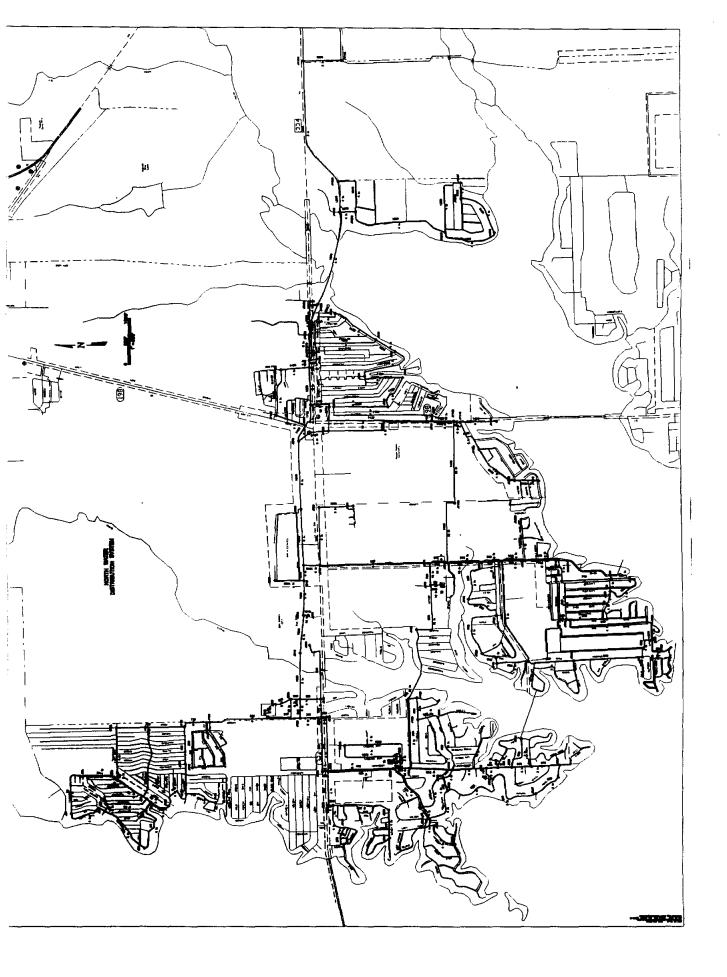
EAST CEDAR CREEK FRESH WATER SUPPLY DISTRICT P. O. BOX 309 MABANK, TEXAS 75147 PHONE: (903) 887-7103

FAX # 903-887-4299

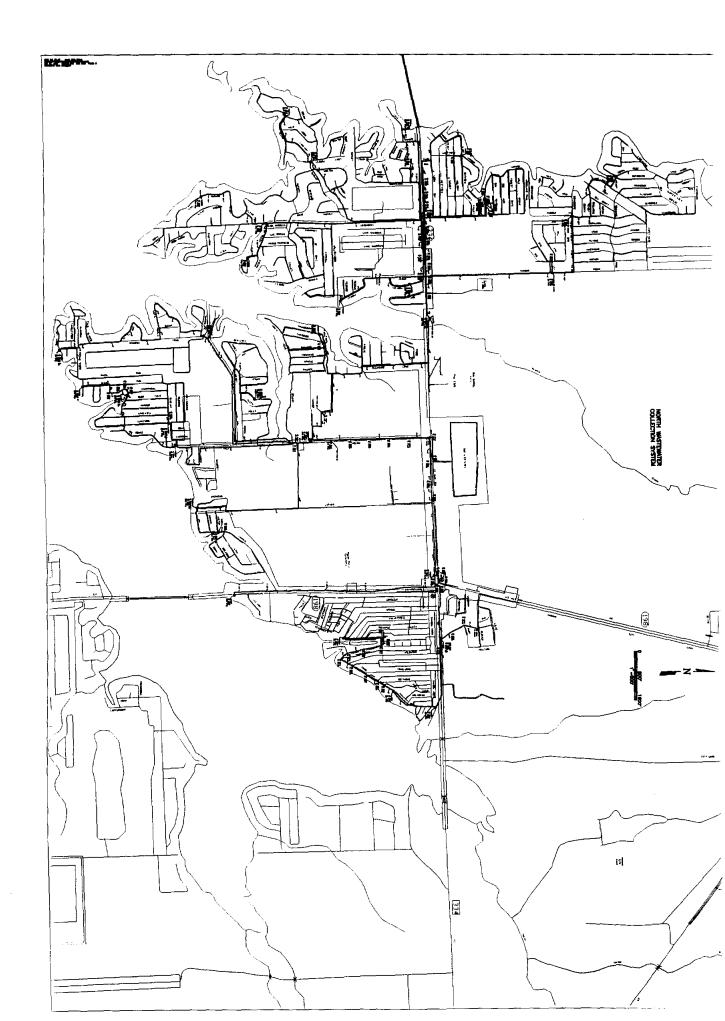
DATE FAXED: NUMBER CALLED Y TO: Q ATTN:\_\_\_ ( C FROM:\_\_\_ Υ. . TOTAL # OF PAGES INCLUDING THIS ONE. 60 57 REMARKS: A Q 0 a

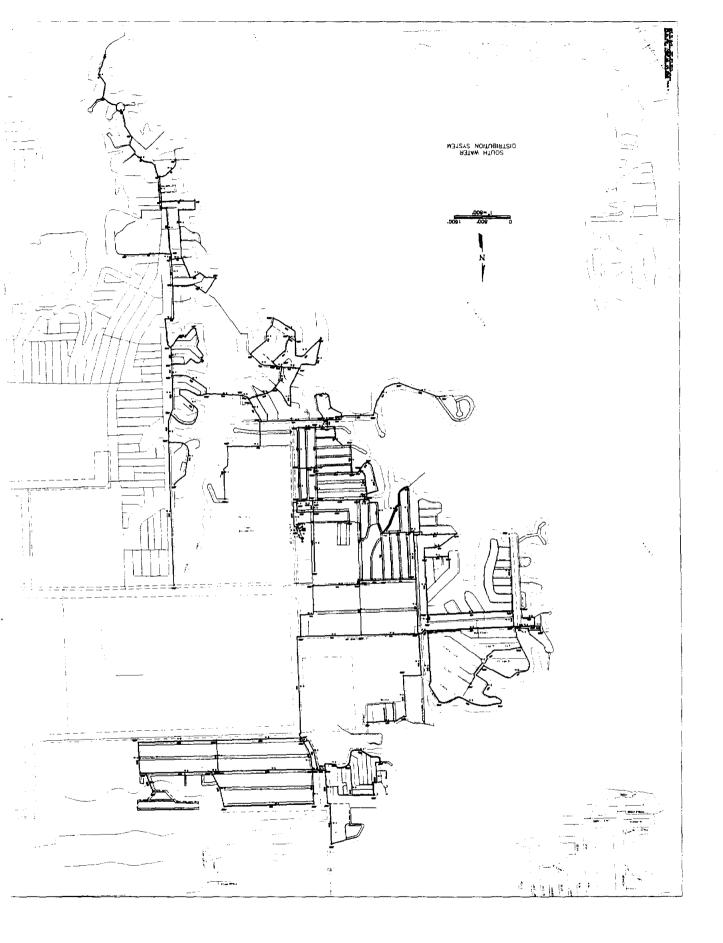
0

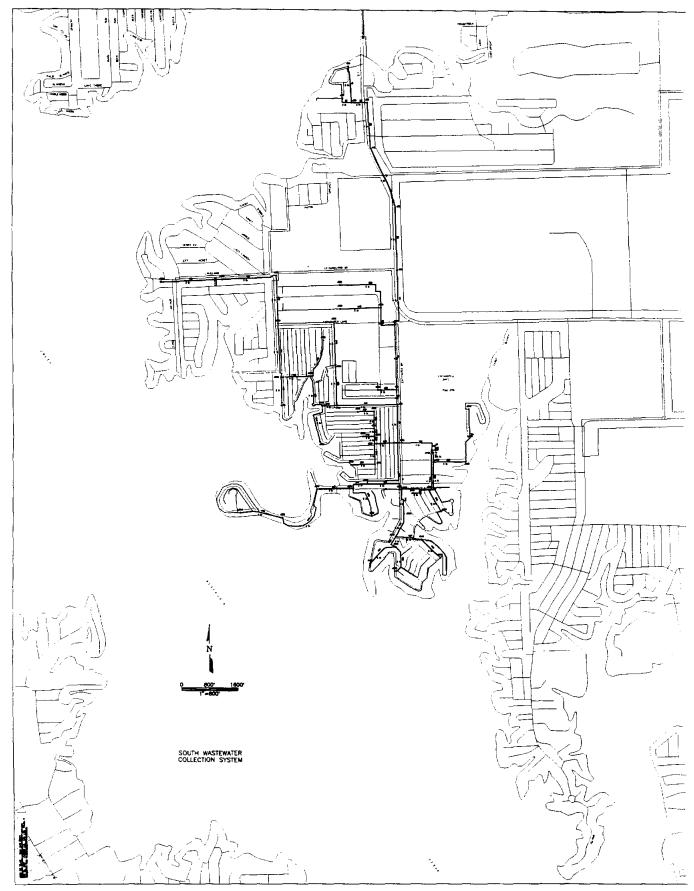
5


1096 16:43

P.01


a-peak capacity based on weir loading rate (OLR= 20,000 gal/day-lin foot or Peat flow capacity per clarifier = 20,000 × 106 = 2.12 MGD \* Total peak capacity of final clarifiers = 4.24 MW (b-1) PEak Capacity based in peak surface loading rate of 1000 gal/day/sy. ft Capacity / = 2 Clarifiers × 1075 sq. ft × 1000 gd/sq. ft-dy = 2.15 MGD = Tot for 2 clarificas @ Peak Capacity per clarition = 1.075 MGD b-2) Peak capacity based on stetentia time of "1's hrs. Capacity: 2 clarificar × 80,425 galls × Clarific MG 106 g Don day 1.8 hrs





Page \_\_\_\_ Of \_\_\_\_











# **APPENDIX B**

## TECHNICAL MEMORANDUM #2

SYSTEM MODELING SUMMARY

# EAST CEDAR CREEK FRESH WATER SUPPLY DISTRICT

## WATER & WASTEWATER MASTER PLAN

## TECHNICAL MEMORANDUM #2 SUMMARY OF TASK D - SYSTEM MODELING

•

**AUGUST 1996** 



ECC95301

## TABLE OF CONTENTS

-

|      |                                                | Page No. |
|------|------------------------------------------------|----------|
| 1.0  | INTRODUCTION                                   | 2        |
| 1.1  | Background                                     |          |
| 1.2  | Modeling Scope                                 | 2<br>3   |
| 2.0  | POPULATION AND GROWTH PROJECTIONS              | 5        |
| 2.1  | Historical Growth and System Demands           | 5        |
| 2.2  | Development of Priority Areas                  | 6        |
| 2.3  | Projected Growth and System Demands            | 7        |
|      | 2.3.1 Population Growth Projections            | 7        |
|      | 2.3.2 Projected Water Demands                  | 9        |
|      | 2.3.3 Projected Wastewater Flows               | 11       |
| 3.0  | WATER AND WASTEWATER SYSTEM EVALUATION         | 14       |
| 3.1  | Water Distribution System Assessment           | 14       |
| 3.2  | Wastewater Collection System Assessment        | 25       |
| 4.0  | <b>RECOMMENDATIONS AND IMPLEMENTATION</b>      | 36       |
| ATTA | CHMENT 2-A - Priority and Service Area Mapping |          |
| ATTA | CHMENT 2-B - Population and Flow Projections   |          |
| ATTA | CHMENT 2-C - Modeling and System Mapping       |          |

## LIST OF TABLES

|                                             | <u>Page No.</u> |
|---------------------------------------------|-----------------|
| TABLE 1 - Population and Growth Projections | 8               |
| TABLE 2 - Projected Water Demands           | 10              |
| TABLE 3 - Projected Wastewater Flows        | 13              |

#### **1.0 INTRODUCTION**

#### 1.1 BACKGROUND

The East Cedar Creek Fresh Water Supply District (ECCFWSD) consists of two separate water distribution and wastewater collection systems, the North System and the South System. Each System is hydraulically independent and has it's own water and wastewater treatment plants, elevated water storage tanks, and distribution and collection system piping. Both of the wastewater collection systems are primarily pressure systems with the North System using about half gravity sewers and the South System using mostly force main piping with a small amount of gravity sewer. Each System was evaluated as to the current condition of the collection and distributions systems and the ability to meet current TNRCC State Design Criteria. The systems were also evaluated as to expected future conditions for water distribution and wastewater collection.

The North District water system includes a 2.55 million gallon per day (MGD) water treatment plant, 500,000 gallon elevated storage tank, and water distribution piping. District records indicate that the North water distribution system served an average of 2,896 water connections in 1995. The North District wastewater system includes a 0.626 MGD wastewater treatment plant, 67 wastewater collection lift stations, associated house grinder pumps, wastewater force mains, and gravity piping. The North wastewater collection system served an average of 3,075 connections in 1995.

The South District water system includes an existing water treatment plant and hydropneumatic storage tank. However, a proposed 1.73 MGD water treatment plant and 300,000 gallon elevated storage tank have been designed and are under construction. Upon

#### TM#2-2

completion of the new facility, the existing treatment plant will be abandoned. Therefore, for the purposes of this study, the evaluation only reviewed the proposed 1.73 MGD water treatment facility, 300,000 gallon elevated storage tank, and water distribution system piping. Based on information provided by ECCFWSD, the South water system served an average of 1,960 water connections in 1995, including 200 water connections in Payne Springs that are no longer served by the District. The South District wastewater system includes an existing wastewater treatment plant with a permitted capacity of 40,000 gallons per day (gpd), a single wastewater lift station, associated house grinder pumps, and pressure collection system piping. A 200,000 gpd wastewater treatment facility is under design and will be constructed in the near future. Upon completion of the new wastewater facility, the existing wastewater treatment plant will be abandoned. The South wastewater system served an average of 528 wastewater connections in 1995.

#### 1.2 MODELING SCOPE

The project scope for the Water and Wastewater Master Plan includes a review of the current system conditions, field verification of treatment facilities, field verification of the collection and distribution systems, computer modeling of the collection and distribution systems, development of recommendations, development of an implementation plan for the recommendations, and presentation of a final report. Technical Memorandum #1 reviewed the results of the current conditions review and field verification portions of the project. This Technical Memorandum will review the computer modeling portion of the scope.

The scope for the computer modeling portion of the Master Plan included utilization

of the CYBERNET computer modeling program to perform a hydraulic analysis of the major water and wastewater lines in the North and South Systems. The model used existing mapping available from ECCFWSD to create a theoretical simulation of the systems. The computer models were used to predict the potential response of the systems to projected future demands. The scope has been amended to utilize the HYDRA modeling program for the modeling of the North wastewater system. HYDRA was used for the North wastewater collection system due to the presence of a substantial portion of existing gravity lines. Theoretical demands were determined based on projected populations and imposed on the systems to determine the future needs of the water distribution and wastewater collection systems for the years 1996 through 2026. The model was run on ten year intervals for the years 1996, 2006, 2016, and 2026.

This Technical Memorandum will discuss the results of the computer modeling portion of the Water and Wastewater Master Plan Study. This review includes the requirements for anticipated future conditions for the water distribution and wastewater collection systems in the North and South Districts. This review does not include the requirements for anticipated future conditions for the District's water and wastewater treatment plants. A discussion of the recommendations and implementation plan, including recommendations for the treatment plants, will be included in Technical Memorandum #3 and in the final Master Plan report.

#### 2.0 POPULATION AND GROWTH PROJECTIONS

#### 2.1 HISTORICAL GROWTH AND SYSTEM DEMANDS

Historically, all of the cities within the District's boundary have seen lower than 3% growth each year since 1990. Corresponding water and wastewater flows for the District's treatment plants have increased proportionally to this growth. The calculated maximum day water demand for the District's North water treatment plant (WTP) was 1.613 MGD for 1996. The calculated maximum day water demand for the District's South WTP was 0.893 MGD for 1996. The maximum day water demands were calculated based on projected populations and historical per capita water demands. The maximum day water demands are used to determine the capability of the treatment and distribution system to meet current and future needs. According to the Texas Natural Resource Conservation Commission (TNRCC) criteria for water distribution systems, the system must be capable of providing a minimum pressure of 35 pounds per square inch (psi) and 1.5 gallons per minute at all points within the distribution network. In addition to these criteria, the District's water treatment plants must be capable of providing treated water in excess of the anticipated maximum day demand for any year. A discussion of the capacities and capabilities of the water treatment plants can be found in Technical Memorandum #1.

The calculated peak 2-hour flow for the District's North wastewater treatment plant (WWTP) was 1.77 MGD for 1996. The calculated peak 2-hour flow for the District's South WWTP was 0.595 MGD for 1996. These peak flows were calculated base on historical plant flows and calculated peaking factors. TNRCC design criteria for sewerage systems requires that sewer lines be designed for estimated future service populations, plus adequate

allowance for institutional and commercial flows. In addition, the system design should provide a minimum structural life of 50 years. Typically, wastewater collection systems are designed to handle peak 2-hour flow conditions. A discussion of the capacities and capabilities of the wastewater treatment plants can be found in Technical Memorandum #1.

#### 2.2 DEVELOPMENT OF PRIORITY AREAS

Priority Areas were developed for both the North and South Systems to establish priority of any necessary improvements to the systems. Priority Areas were ranked 1 through 3 for the North System and 1 through 4 for the South System. Priority Area 1 was established for the more heavily populated locations in the system with the greatest anticipated and most immediate need for water and wastewater system improvements. Priority Area 2 was established at locations in the system with the second highest anticipated water and wastewater need and growth. Priority Areas 3 and 4 were established as the locations in the study area with the lowest anticipated need and potential for growth, typically the outlying rural areas. It was then determined that services for each Priority Area would be staged in a manner in which the areas with highest priority would be provided complete and adequate service prior to those areas with lower priority. Based on this determination it was decided that Priority Area 1 would describe service needed within the first 10 years of the 30 year study period. Priority Area 2 would describe service needed within the first 20 years of the study period. Priority Area 3 would describe service needed beyond the first 20 years of the 30 year study period. Priority Area 4 would describe service in the South System needed beyond the 30 year study period.

#### TM#2-6

Populations for each Priority Area in both the North and South Systems were calculated using the population density per acre for each of the Priority Areas, as taken from the 1990 Census. The service population for both systems was established by multiplying the average number of connections anticipated for each water and wastewater system by the number of people per housing unit, based on the 1990 census, for that particular Priority Area. The difference in the total population and the served population is the unserved population for a particular Priority Area. This unserved population includes any population served by another water utility's Certificate of Convenience and Necessity (CCN) and any potential users unserved by water or wastewater. A map of the Priority Areas and adjacent water and wastewater CCN's is included in Attachment 2-A.

#### 2.3 PROJECTED GROWTH AND SYSTEM DEMANDS

#### 2.3.1 Population Growth Projections

Projected populations for each Priority Area were calculated using yearly growth rates provided by the Texas Water Development Board (TWDB). The current total population of each Priority Area was estimated using the 1990 census population densities, as mentioned in the previous section. The current population for the Priority Area was then multiplied by the TWDB yearly growth rates to calculate the projected population for that area for each year. In the North District, the population growth rate used for Priority Areas 1 and 2 coincides with the TWDB population growth rate for Gun Barrel City. The population growth rate for Priority Area 3 coincides with the TWDB growth rate for Henderson County. This is because Priority Areas 1 and 2 include all of Gun Barrel City and Priority Area 3 is the rural area east of Gun Barrel City. In the South District, the population growth rate for Priority Areas 1, 2, and 3 coincide with the TWDB growth rate for Enchanted Oaks. The population growth rate for Priority Area 4 coincides with the TWDB growth rate for Henderson County. This is because Priority Areas 1, 2, and 3 include well developed lakeshore properties, including the City of Enchanted Oaks, and Priority Area 4 is the undeveloped rural area to the east of the South District. The projected total populations for each priority area for the years 1996, 2006, 2016, and 2026 are provided in Table 1.

|        |      | Population Projections |                       |                       |                       |                  |  |  |  |
|--------|------|------------------------|-----------------------|-----------------------|-----------------------|------------------|--|--|--|
| System | Year | Priority<br>Area<br>1  | Priority<br>Area<br>2 | Priority<br>Area<br>3 | Priority<br>Area<br>4 | System<br>Totals |  |  |  |
| NORTH  | 1996 | 3,067                  | 2,936                 | 257                   | n/a                   | 6,260            |  |  |  |
|        | 2006 | 3,591                  | 3,438                 | 285                   | n/a                   | 7,314            |  |  |  |
|        | 2016 | 4,054                  | 3,881                 | 308                   | n/a                   | 8,243            |  |  |  |
|        | 2026 | 4,386                  | 4,198                 | 322                   | n/a                   | 8,906            |  |  |  |
| SOUTH  | 1996 | 2,454                  | 586                   | 1,792                 | 482                   | 5,314            |  |  |  |
|        | 2006 | 3,036                  | 725                   | 2,217                 | 534                   | 6,512            |  |  |  |
|        | 2016 | 3,618                  | 864                   | 2,642                 | 578                   | 7,702            |  |  |  |
|        | 2026 | 4,199                  | 1,003                 | 3,067                 | 604                   | 8,873            |  |  |  |

TABLE 1 POPULATION AND GROWTH PROJECTIONS

The estimated population served by the District, in each Priority Area, was then calculated to establish the water or wastewater demand for that Priority Area. These served populations were used as a starting point for water and wastewater demands under current conditions. The remaining unserved populations for each Priority Area were then added to

the served population according to the area's priority ranking. Unserved populations for Priority Area 1 were eliminated in the first ten years of the study period. Unserved populations for Priority Area 2 were eliminated in the first 20 years of the study period. Unserved populations for Priority Area 3 were eliminated beginning in year 11 of the study period and ending in the year 30 of the study period. This was done to reduce capital expenditures in the first ten years of the study period. Priority Area 4 was eliminated after the 30 year study period. Populations inside other water and wastewater CCN's were assumed to be served by those CCN's. Projected populations, water demands, and wastewater flows in those CCN's were calculated separately from areas served by the District. A detailed copy of the population and flow projections is provided in Attachment 2-B.

#### 2.3.2 Projected Water Demands

Projected water demands were developed for each priority area by calculating the current per-capita water demand for both the North and South Systems. The calculated percapita demands were then multiplied by the estimated future served population for each Priority Area to determine the future water demand for that Priority Area. The maximum day demands for each Priority Area were calculated by multiplying the average water demand by the historical peaking factor for the system. Water demands for adjacent water utility CCN's were calculated separately and were not included in the District water demands. The projected water demands for each priority area for the years 1996, 2006, 2016, and 2026 are provided in Table 2. A detailed copy of water demand projections is provided in Attachment 2-B.

#### TM#2-9

## TABLE 2

|        |      | Water Connections     |                       |                       |                       |                  | Max Day Water Demand (MGD) |                       |                       |                       |                  |
|--------|------|-----------------------|-----------------------|-----------------------|-----------------------|------------------|----------------------------|-----------------------|-----------------------|-----------------------|------------------|
| System | Year | Priority<br>Area<br>1 | Priority<br>Area<br>2 | Priority<br>Area<br>3 | Priority<br>Area<br>4 | System<br>Totals | Priority<br>Area<br>1      | Priority<br>Area<br>2 | Priority<br>Arca<br>3 | Priority<br>Area<br>4 | System<br>Totals |
| NORTH  | 1996 | 1,442                 | 1,383                 | 118                   | n/a                   | 2,942            | 0.790                      | 0.758                 | 0.065                 | n/a                   | 1.613            |
|        | 2006 | 1,899                 | 1,647                 | 147                   | n/a                   | 3,693            | 1.041                      | 0.903                 | 0.080                 | n/a                   | 2.024            |
|        | 2016 | 2,144                 | 1,882                 | 173                   | n/a                   | 4,199            | 1.175                      | 1.032                 | 0.095                 | n/a                   | 2.302            |
|        | 2026 | 2,319                 | 2,036                 | 194                   | n/a                   | 4,549            | 1.271                      | 1.116                 | 0.106                 | n/a                   | 2.494            |
| SOUTH  | 1996 | 1,524                 | 236                   | 0                     | 0                     | 1,760            | 0.773                      | 0.120                 | 0                     | 0                     | 0.893            |
|        | 2006 | 1,886                 | 328                   | 0                     | 0                     | 2,214            | 0.956                      | 0.167                 | 0                     | 0                     | 1.123            |
|        | 2016 | 2,247                 | 420                   | 0                     | 0                     | 2,667            | 1.139                      | 0.213                 | 0                     | 0                     | 1.353            |
|        | 2026 | 2,608                 | 488                   | 0                     | 0                     | 3,096            | 1.323                      | 0.248                 | 0                     | 0                     | 1.570            |

## PROJECTED WATER DEMANDS

#### 2.3.3 Projected Wastewater Flows

Projected wastewater demands were developed for each Priority Area by calculating the current per-capita flow rate for wastewater. This was done by dividing the maximum 30-day average flow for both North and South Systems by the current estimated served population for that system. Yearly per-capita flowrates, minus Infiltration/Inflow (I/I) reductions, were used to calculate the maximum 30-day average flow for each system by multiplying the per-capita rate by the estimated served population. Peak 2-hour flow rates were calculated using historical peaking factors and by using Harmon's equation for determining peak flows.

The estimated I/I reduction for each system was calculated by determining the estimated yearly I/I removal from repair of gravity lines and manholes in the North System and repair of home septic tanks and effluent pump installations in the South System. The District has indicated that it will attempt to complete 100 repairs each year. It was assumed that there would be 50 repairs in the North District and 50 repairs in the South District. Based on information provided in the Guitierrez, Smouse & Wilmut I/I reports of 1994 and 1995 and substantiating data in Water Pollution Control Federation Manual of Practice FD-6, it was estimated that point repairs to the gravity lines, manholes, home septic tanks, and effluent pump installations could remove approximately 50% of the total I/I in the system. This I/I reduction was converted to a per-capita basis and subtracted from the previous year's per-capita flowrate. The yearly per-capita flowrate was then multiplied by the original base population (1996 population) in each system to get a base wastewater flow.

Annual population growth and unserved populations brought on-line each year were

multiplied by a per-capita wastewater rate of 101 gallons per-capita per day. This value of 101 gpcd was developed from historical flow data provided by the District and meets TNRCC minimum design requirements. This per-capita rate was then multiplied by the growth in population and added unserved population for each Priority Area to get yearly growth flowrates. The growth flowrates were added to the base flowrate to get the total estimated flows for each Priority Area for each year of the study period. The projected wastewater demands for each priority area for the years 1996, 2006, 2016, and 2026 are provided in Table 3. A detailed copy of wastewater flow projections is provided in Attachment 2-B.

## TABLE 3

.

## **PROJECTED WASTEWATER FLOWS**

| Wastewater Connections |      |                       |                       |                       |                       | Peak 2-Hr Wastewater Flow (MGD) |                       |                       |                       |                       |                  |
|------------------------|------|-----------------------|-----------------------|-----------------------|-----------------------|---------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|------------------|
| System                 | Year | Priority<br>Arca<br>1 | Priority<br>Area<br>2 | Priority<br>Area<br>3 | Priority<br>Area<br>4 | System<br>Totals                | Priority<br>Area<br>1 | Priority<br>Area<br>2 | Priority<br>Area<br>3 | Priority<br>Area<br>4 | System<br>Totals |
| NORTH                  | 1996 | 1,594                 | 1,531                 | 0                     | n/a                   | 3,125                           | 0.90                  | 0.87                  | 0                     | n/a                   | 1.773            |
|                        | 2006 | 2,163                 | 1,952                 | 0                     | n/a                   | 4,115                           | 1.18                  | 1.06                  | 0                     | n/a                   | 2.241            |
| -                      | 2016 | 2,442                 | 2,338                 | 100                   | n/a                   | 4,880                           | 1.30                  | 1.24                  | 0.05                  | n/a                   | 2.591            |
|                        | 2026 | 2,642                 | 2,529                 | 194                   | n/a                   | 5,365                           | 1.39                  | 1.33                  | 0.10                  | n/a                   | 2.831            |
| SOUTH                  | 1996 | 536                   | 0                     | 0                     | 0                     | 536                             | 0.595                 | 0                     | 0                     | 0                     | 0.595            |
|                        | 2006 | 1,886                 | 268                   | 0                     | 0                     | 2,154                           | 1.253                 | 0.153                 | 0                     | 0 ·                   | 1.405            |
|                        | 2016 | 2,247                 | 537                   | 470                   | 0                     | 3,253                           | 1.447                 | 0.305                 | 0.256                 | 0                     | 2.008            |
|                        | 2026 | 2,608                 | 623                   | 939                   | 0                     | 4,170                           | 1.652                 | 0.354                 | 0.513                 | 0                     | 2.519            |

#### 3.0 WATER AND WASTEWATER SYSTEM EVALUATION

#### 3.1 WATER DISTRIBUTION SYSTEM ASSESSMENT

The North and South water distribution systems were modeled using the CYBERNET computer modeling program. The program accepts input from the AutoCadd computer drafting program in the form of water distribution system mapping and is capable of providing a theoretical simulation of the water distribution system and its capabilities. Based on the distributed demands for current and future conditions, the program can aid in determining the future distribution system projects needed to provide adequate water distribution to the District's customers. The program can determine the location of low pressure areas in the system and can simulate elevated tank conditions, pump stations, and distribution piping pressures.

Based on current and projected water demands, the computer model was developed to simulate conditions for the years 1996, 2006, 2016, and 2026. For each time period, weaknesses in the system were located in accordance with TNRCC design criteria and the linework in the system was augmented to eliminate system weaknesses. Where new lines parallel existing lines smaller than 4-inches in size, the existing lines may be abandoned at the time of construction at the District's discretion. The system model is designed to run on the lines proposed in the Master Plan with existing parallel lines abandoned. However, the District should consider the advantage of the operational advantage of leaving the existing lines in place, in the event that future linework dictates a necessary short-term rerouting of water or wastewater flow. All new water and wastewater connections should be connected to the new, larger lines. A list of the anticipated projects needed to meet water demand conditions for each time period is provided below, along with an explanation

of each project. The projects are not listed in any particular order.

## North Water System

#### 2006 Condition

## 1. <u>New 12-inch Loop around Legendary Lane, Hwy, 334 and the Bozeman</u> Easement.

To supply adequate water to the various general areas within the system, it is recommended that the 12-inch loop around Legendary Lane, Hwy. 334, the Bozeman Easement, and Thunderbird Streets be completed. This will require the construction of a new 12-inch water line from the elevated tank to Hwy. 334 and then along Hwy. 334 to an existing 12-inch water line. A new 12-inch water line will also need to be constructed from Hwy 334 southward down the Bozeman Easement between Pleasureland and Welch Streets to Thunderbird Street. The project will also consist of constructing a 10-inch water line from Hwy 334 to the new elementary school, including an 8-inch line ending in a fire hydrant behind the new school. Design of this item has been completed and construction will begin soon.

#### 2. <u>New 8-inch Waterlines to the Tamarack Area.</u>

The Tamarack Area will not be capable of supplying peak summer demands to the area East of the Hwy. 334 Bridge. It is recommended that a new 8inch water line be constructed from the existing 8-inch water line at Trailwind Street and Hwy. 334 to the west side of the bridge at the Cedar Creek Reservoir. It is also recommended that an 8-inch water line be constructed from Hwy. 334 and Wildwind Street to Beaver Brush Street.

# 3. New 8-inch and 6-inch Waterlines for the Remaining Priority #2 Area on the East Side of the Hwy. 334 Bridge.

The area on the east side of the Hwy. 334 Bridge cannot currently provide peak hour summer demands. It is recommended that an 8-inch water line be constructed from the east side of the East Cedar Creek Reservoir to the HillCrest Subdivision. A 6-inch waterline will need to be constructed southward through the Oak Ridge Area and then eastward along Lago Drive in the Bonita Point Subdivision.

#### 4. <u>New 10-inch and 8-inch Waterlines to Harbor Point Area in the Northwest</u> Region of the Water System.

The small existing water lines in the far north part of the Harbor Point Area are unable to supply peak summer demands. It is recommended that an 8inch water line be constructed northward from an existing 6-inch water line at Commodore and Harbor Point Streets to First Mate and Harbor Point Streets. It is also recommended that a 10-inch water line be constructed from the new 12-inch water line on Hwy. 334 northward along Lakeview Street to an existing 4-inch water line on Commander Street.

#### 5. <u>New 6-inch Waterline through Sandy Shores and Eastwood Island Areas.</u>

Most of the existing waterlines within these areas are 3-inch and smaller in size, and are not capable of supplying any significant demand. It is recommended that a 6-inch waterline be constructed beginning at the 12-inch waterline at Legendary Lane and Hwy. 334 and going west and south along Southland Street. From Southland Street the 6-inch waterline should be extended down to Lost Forest Street. From Lost Forest Street, it is recommended that a 6-inch waterline be looped around Ocean Street to an existing 4-inch waterline located on Lakeway Street.

#### 6. <u>New 6-inch Waterline Along Spanish Trail.</u>

The area along the Cedar Creek in the Tanglewood Shores Area and the Sherwood Shores and Southwind Estates Area cannot provide any significant demand to these areas. It is recommended that new 6-inch water lines be constructed in these areas. For the Sherwood Shores and Southwind Estates Areas, a 6-inch water line should be constructed from the end of the existing 8-inch water line at Clear Fork Street to the intersection of Autumn Trail and Legendary Lane. For the Tanglewood Shores Area, a 6-inch water line will be constructed from an existing 6-inch waterline at Guadalupe Street going southward along Spanish Trail to a 4-inch water line at Palo Blanco Street.

## 7. <u>New 6-inch Waterline from Welch Street to Harmon Street.</u>

To meet any significant demands in the Northern Shores and Lakeview Acre Areas, it is recommended that a new 6-inch waterline be constructed from the intersection of Welch and Sundrift Streets to an existing 4-inch waterline at the intersection of Victor and Harmon Streets.

## 2016 Condition

## 1. New 6-inch Waterline From Hwy. 198 to Whispering Trail.

Under 2016 Peak Flow Conditions, the southern part of the Tamarack area will have low pressures under peak hour demands during the summer. It is recommended that a 6-inch water line be constructed from Hwy. 198 along Spring Valley Road to an existing 8-inch water line at Beaver Brush Street. This will provide a looped connection for this general area.

## 2. New 6-inch and 8-inch Waterlines to Serve Priority Area #3.

To provide service to the Priority Area #3 along Hwy 334, toward Hwy. 175, it is recommended that an 8-inch waterline be constructed from the end of the existing 8-inch eastward approximately 4,200 linear feet. It is also recommended that a 6-inch water line be constructed southward to loop in the Hillcrest Shore subdivision and Oak Ridge Subdivision into an existing 6-inch waterline on Lago Drive.

## 3. New 6-inch Waterline in the Oak Harbor Subdivision

The Oak Harbor Area is unable to provide adequate pressures for the 2016 planning period. It is recommended that a 6-inch waterline be constructed along Lake Shore Drive beginning at Spanish Trail and ending at an existing 6-inch waterline on Oak Harbor Street.

#### 4. <u>New 6-inch Waterlines in the Mantle Manors and Sherwood Shores</u> <u>Subdivisions.</u>

The Mantle Manor and Southwind Estates Areas will not be capable of providing adequate pressures under a peak 2016 demand condition. It is recommended that a new 6-inch waterline be constructed along Autumn Trail from Lost Forest Street to the existing 8-inch on Legendary Lane. It is also recommended that a new 6-inch waterline be constructed along Colleen Street to the existing 12-inch line on Willowwood. This will provide a 6-inch and larger looped waterline for this area.

## 5. <u>New 6-inch Looped Waterline for the Harbor Point Subdivision.</u>

The far north part of the Harbor Point Subdivision will not be capable of supplying adequate demand under peak 2016 conditions. It is recommended that a new looped 6-inch waterline be constructed from the end of the existing 10-inch waterline up around Sea Breeze Road and down along First Mate Street to an existing 8-inch waterline on Harbor Point Street.

#### 2026 Condition

1. <u>New 6-inch Waterlines in the Mantle Manors and the Southwind Estates</u> <u>Subdivisions.</u>

The Mantle Manor and Southwind Estates Areas will not be capable of providing adequate demands under the 2026 demand conditions. It is recommended that new 6-inch waterlines be constructed along Autumn Trail and Lake View Streets.

#### 2. <u>New 6-inch Waterline in the Siesta Shores Area.</u>

Under 2026 peak flow conditions, the existing waterline in this area will not be capable of meeting adequate demands. It is recommended that a new 6inch waterline be constructed from Welch Street to an existing 6-inch waterline at Guadalupe Street.

3. <u>New 10-inch Waterline Along Hwy. 334 to Hwy. 198.</u>

To increase the water supply to the Tamarack Area, it is recommended that a new 10-inch waterline be constructed from the 12-inch water line shown on Hwy. 334 to the existing 8-inch and 10-inch waterline at Tamarack Street and Hwy. 334.

#### 4. <u>New 6-inch Waterline Along Whispering Trail in the Tamarack Area.</u>

To complete a looped system in the Tamarack Area to meet peak hour summer demand, it is recommended that a new 6-inch waterline be constructed from Whispering Trail and Beaver Brush Street to Hwy 334.

5. <u>New 6-inch Waterline Along Luther Street.</u>

To meet future demands along Luther Street it is recommended that a new 6-inch water line be constructed and tied into the system at an existing 12-inch waterline near Lakeview Airfield and an existing 6-inch waterline on the north side of Luther Street.

6. <u>New 6-inch Looped Waterline in Bonita Subdivision.</u>

To meet the 2026 demand condition, it is recommended that a new 6-inch looped waterline be constructed along Lake Shores Drive in the Bonita Subdivision.

## 7. <u>New 6-inch in the Harbor Point Subdivision.</u>

To meet the 2026 demand conditions in the middle of the Harbor Point Subdivision, it is recommended that a 6-inch waterline be constructed along Backlash Street down to Commodore Street.

## 8. New 6-inch Waterline Along Hwy. 334 in Priority Area #3

To provide adequate demands along Hwy. 334, it is recommended that a 6inch water line be constructed in Priority Area #3 from the end of the existing 8-inch waterline toward Hwy 175.

## South Water System

## 2006 Condition

1. <u>New 12-inch Waterline Along Enchanted Drive, Hwy 198 and Southward</u> toward Cedar Branch Park

Under Existing Conditions, the South Water System can not adequately supply peak summer demands to most of the remote areas within the system. It is recommended that a new 12-inch waterline be constructed from the water treatment plant northward along Enchanted Drive to Hwy. 198 and southward to Cedar Branch Park.

2. <u>New 12-inch and 10-inch Waterline Along Hwy. 198 to Golden Oaks</u> Addition.

To supply peak summer demands to the northern portion of the system, it is recommended that a 12-inch waterline be constructed from the end of the new 12-inch waterline along Hwy. 198 to Leisureland Drive. From Leisure Land Drive it is recommended that a 10-inch waterline be constructed north along Hwy 198 to the Golden Oaks and Bandera Bay Subdivisions.

3. <u>New 10-inch and 8-inch Waterline through Forgotten Acres to Lakeland</u> <u>Road.</u>

To supply peak demands to the west side of the system it is recommended that a 10-inch waterline be constructed from the New 12-inch waterline on Hwy 198 through Forgotten Acres. It is recommended that a 8-inch waterline be constructed from the west side of Forgotten Acres to the Del Mar Subdivision and up to Lakeland Road.

#### 4. <u>New 8-inch and 6-inch Waterline Southward Along Enchanted Drive to</u> Enchanted Oaks.

To provide adequate demands to Enchanted Oaks and Indian Harbor, it is recommended that a 8-inch waterline be constructed from the water treatment plant southward along Enchanted Drive to Cedarwood Drive. It is recommended that the 8-inch waterline be connected into two separate 6-inch waterlines at the north and south parts of the Indian Harbor Subdivisions. From Cedarwood Drive it is recommended that a 6-inch water line be constructed from the end of the 8-inch waterline down into Enchanted Oaks to a existing 6-inch waterline.

#### 5. <u>New 8-inch and 6-inch Waterline to Golden Oaks</u>, Southwood Shores, Bonanza Beach and Oak Shores Subdivisions.

To provide adequate peak summer demands to these northern subdivisions it is recommended that an 8-inch waterline be constructed from the 10-inch waterline at Hwy 198 eastward along the southern part of the Golden Oaks Subdivision. It is recommended that a 6-inch water line be constructed northward through the Golden Oaks Subdivisions along Cartwright Street to the three remaining subdivision within the northern Priority #1 and #2 Areas.

## 6. New 12-inch and 8-inch Waterline Through the Cedar Branch Subdivision.

To provide adequate demands for Cedar Branch Park for the 2006 condition and to provide supply for the area east and south of Cedar Branch Park, it is recommended that a 12-inch waterline be constructed from the end of the new 12-inch waterline through Cedar Branch Park. It is recommended that the southern part of the waterline within Cedar Branch Park be 8-inch in size.

#### 7. <u>New 6-inch Looped Waterline Around Leisureland Subdivision and to Three</u> <u>Harbors Subdivisions.</u>

To provide adequate demands for the 2006 condition it is recommended that a 6-inch looped water line be constructed from the new 8-inch waterline at the southeast corner of the Leisureland Subdivision along Lakeland Drive and around Shady Shores Road. At the southwest part of the Leisureland Subdivision, it is also recommended that a 6-inch waterline be constructed down into the Three Harbors Subdivision.

#### 8. New 6-inch Looped Waterline Through Bandera Bay and Oakwood Shores.

To provide adequate demand for the 2006 condition it is recommended that a 6-inch looped water line be constructed from the end of the 10-inch waterline on Hwy. 198 westward through Bandera Bay and then southward through the Oakwood Shores Subdivision to Leisureland Drive.

9. New 8-inch and 6-inch Waterline to Baywood Estates Area.

To provide adequate demand to the Baywood Estates Area, it is recommended that a new 8-inch waterline be constructed from the end of the 10-inch waterline along Hwy 198 to the Baywood Estates Area. It is also recommended that a 6-inch waterline be constructed along the northern side of the Baywood Estates Area.

#### 2016 Condition

1. Parallel 12-inch Waterline along Enchanted Drive to Hwy. 198.

To provide adequate water supply to the Priority #3 Area, it is recommended that a 12-inch waterline be connected to the elevated storage tank and run parallel to the existing 12-inch waterline (2006 condition) from the treatment plant along Enchanted Drive to Hwy. 198.

2. New 12-inch and 10-inch Waterline Along Hwy 198 Toward Payne Springs.

To provide adequate water supply to the Priority #3 Area it is recommended that a 12-inch water line be extended east along Hwy 198 approximately 3,000 feet. From the end of the 12-inch waterline, a 10-inch waterline should be constructed for approximately another 1,000 ft.

3. New 8-inch Looped Waterline to Priority #3 Area.

To provide water to Payne Springs and to supply water to the far south eastern part of the Priority #3 area it is recommended that a 8-inch waterline be constructed beginning at the end of the 10-inch waterline on Hwy 198 going south through the current Payne Springs supply point and around to an existing 12-inch waterline in the Cedar Branch Park Subdivision.

4. <u>New 8-inch and 6-inch Waterlines Through the Southern Portion of the</u> <u>Resort Service Area.</u>

To provide service to the Resort Area immediately to the east of the Cedar Branch Park Area, it is recommended that an 8-inch and 6-inch looped waterline be constructed through Cedar Branch Park and eastward to the new 8-inch waterline supplying the Payne Springs Area. 5. <u>New 8-inch Waterline and Booster Pump Station to Supply Water to the</u> <u>Southeast Parts of the Priority #3 Area including the Lakeshore and Carolynn</u> <u>CCN Areas.</u>

To provide adequate supply to meet peak summer demands to the Lakeshore and Carolynn CCN Areas it is recommended that an 8-inch waterline be constructed from the existing 8-inch looped waterline eastward and around Cedar Creek Lake to these remaining areas. Because of the distance from the water treatment plant, it will be necessary to construct a dedicated hydropneumatic booster pump station to provide adequate pressure for the Lakeshore and Carolynn Areas. The hydropneumatic booster pump station shall contain 2 -200 gpm pumps at a rated head of 200 ft. It is recommended that a 200,000 gallon ground storage tank be constructed at the booster pump station site, so that the remaining system will not have to supply the pump station flow during a peak summer demand condition. A 200,000 gallon tank will allow the pumps to operate for approximately 16 hours without an additional supply from the water treatment plant. The ground storage tank can be filled in the same manner as the elevated tank, during off peak times It is also recommended that a 6-inch line be such as at night time. constructed from the main 8-inch water line into each of the populated service areas along the east bank of the Cedar Creek Lake. Initially, these 6-inch waterlines will be tied into the existing water systems within these areas.

6. <u>New 6-inch and 8-inch Waterline to Provide Looped System for the Golden</u> Oaks, Southwood Shores, Bonanza Beach and Oak Shores Subdivisions.

To provide peak hour demands during the summer for the 2016 time period to these subdivisions, it is recommended that a 6-inch waterline be constructed from the 12-inch waterline on Hwy 198 up to the Golden Oaks Subdivision. It is recommended that an 8-inch waterline be constructed around the Golden Oaks an up along the eastern side of the Oak Shores Subdivision.

7. <u>New 6-inch Waterline Through the Timber Bay, Spillview Estates and</u> <u>Diamond Oaks Subdivisions.</u>

To provide adequate demands for the 2016 condition, it is recommended that a parallel 6-inch waterline be constructed along an existing 4-inch waterline through these subdivisions.

8. <u>New 6-inch Waterline to Enchanted Isles Subdivision.</u>

To provide adequate demand on Enchanted Isles for the 2016 condition, it will be necessary to construct a parallel 6-inch waterline from Cedarwood

Drive to Enchanted Isles.

9. New 6-inch Waterline Through Del Mar Subdivision.

To provide adequate demands along the shoreline around the Del Mar Subdivision it is recommended that a 6-inch waterline be constructed through the Del Mar Subdivision to an existing 6-inch waterline in the Three Harbors Subdivision.

#### 10. New 6-inch Waterline Through Oakwood Shores Subdivision.

To provide adequate demands along the shoreline around the Oakwood Shores Subdivision it is recommended that a 6-inch waterline be constructed Payne Springs Road to an existing 6-inch waterline on Shady Shores Drive.

11. <u>New 6-inch Waterline to Cherokee Hills Subdivision.</u>

To provide adequate demands for the 2016 condition, it is recommended that a 6-inch water line be constructed along Hwy 198 through Baywood Estates to the Cherokee Hills Subdivision.

12. <u>New 6-inch Waterline on the East Side of the Resort Area in Priority #3</u> Area.

To provide adequate demands throughout the Resort Area, it is recommended that a 6-inch waterline be constructed from Hwy 198 along the east side of the Resort Area.

#### 2026 Condition

1. <u>New 6-inch Waterline along the Del Mar shoreline.</u>

To provide adequate demand to the southwestern portion of the Del Mar shoreline under 2026 condition, it is recommended that a new 6-inch waterline be constructed from the existing 6-inch waterline in the Del Mar Subdivision to an existing 4-inch waterline in the Three Harbors Subdivision.

2. <u>New 6-inch Waterline in the Southwood Shores Subdivision.</u>

To provide adequate demand to the Southwood Shores Subdivision, it is recommended that a 6-inch waterline be constructed from an existing 4-inch waterline along Hwy 198 along the shoreline of Southwood Shores to an existing 6-inch waterline on the north side of the Golden Oaks Subdivision.

## 3. <u>New 6-inch Waterline along the North Side of the Golden Oaks.</u>

To provide adequate peak demands to the Bonanza Beach, Oak Shores and Golden Oaks Subdivisions, it will be necessary to construct a 6-inch waterline along the north side of the Golden Oaks Subdivision. It is also recommended that a 6-inch waterline be extended from this waterline to the existing 4-inch waterline within the Golden Oaks Area.

## 4. <u>New 6-inch Waterline in the Baywood Estates Subdivision.</u>

To provide a significant looped connection throughout the Baywood Estates Subdivision for adequate demands, it is recommended that a 6-inch waterline be constructed along the west side of the Baywood Estates Subdivision.

## 5. New 8-inch and 6-inch Looped Waterline Along Hwy 198.

To provide water system service to the remaining Payne Springs Area within the Priority #3 Area, it is recommended that a 8-inch waterline be constructed along Hwy. 198 eastward to the Priority #3 Boundary. From the end of the 8-inch waterline, it is recommended that a 6-inch waterline be constructed down to an existing 8-inch waterline along the Priority #3 Boundary.

#### 6. <u>New 6-inch Waterline in the Northeastern part of the Priority #3 Area.</u>

To provide adequate service to the northeastern part of the Priority #3 Area, it is recommended that a 6-inch looped waterline be constructed beginning at Hwy 198 going upward and over to the east side of the Golden Oaks Subdivision.

#### 7. <u>New 6-inch Looped Waterline in the Carolynn, Lake Shore, and Southern</u> <u>Resort Service Area.</u>

To provide adequate summer peak demands throughout these areas, it is recommended that 6-inch looped water lines be constructed around the Hidden Hills Road, Oak Hills Road, and around the Lake Shore and Carolynn shoreline.

#### 8. <u>New 6-inch Waterline Through the Resort Area and the Western Side of</u> Payne Springs.

To provide adequate demands for the 2026 condition to the Resort Area and to the western side of Payne Springs, it is recommended that a 6-inch waterline be constructed from an existing 12-inch waterline at the Northern Part of Cedar Branch Park eastward across the Resort Area and to an existing 8-inch waterline on the west side of Payne Springs.

#### 9. New 6-inch Waterline Through the Wood Canyon Waters Subdivision.

To provide adequate demands through the Wood Canyon Waters and Deer Island Estates Area for the 2026 condition, it is recommended that a 6-inch waterline be constructed parallel to an existing 3-inch waterline.

Each of the recommended projects will be evaluated as to cost and prioritized in the Recommendations and Implementation phase of the Master Plan. A map of the proposed water system improvements is provided in Attachment 2-C.

#### 3.2 WASTEWATER COLLECTION SYSTEM ASSESSMENT

The North wastewater collection system was modeled using the HYDRA computer modeling program. This program is very similar to CYBERNET with the exception that it is capable of modeling gravity sewer lines. Since about half of the North System is gravity sewers, it was determined that HYDRA would provide a better simulation of that system. The CYBERNET program was used for the South wastewater collection system, since this system has a very small amount of gravity sewer. Both programs are capable of providing theoretical simulations of each system and their capabilities. Based on the distributed wastewater flows for current and future conditions, both programs were able to determine future collection system projects needed to provide adequate wastewater collection and treatment to the District's customers. Both programs were able to determine areas with low and high pressure conditions which would indicate pumping problems within each system. The programs were also able to determine inadequacies in collection system piping.

Based on current and projected wastewater flows, the computer models were

#### TM#2-25

developed to simulate conditions for the years 1996, 2006, 2016, and 2026. For each time period, weaknesses in the systems were located and the linework and pumping capacities of the systems were augmented to eliminate the weaknesses. Where new lines parallel existing lines smaller than 4-inches in size, the existing lines may be abandoned at the time of construction at the District's discretion. The system model is designed to run on the lines proposed in the Master Plan with existing parallel lines abandoned. However, the District should consider the advantage of the operational advantage of leaving the existing lines in place, in the event that future linework dictates a necessary short-term rerouting of water or wastewater flow. All new water and wastewater connections should be connected to the new, larger lines. A list of anticipated projects needed to meet wastewater flow conditions for each time period is provided below, along with an explanation of each project. The projects are not listed in any particular order.

## North Wastewater System

## 2006 Condition

1. Diversion of Flow from Lift Station #19 to Lift Station #29 and Expansion of Lift Station #29.

Lift Station #19 and Lift Station #29 show to be overloaded under 2006 flow conditions. It is recommended that flow be diverted from Lift Station #19 to Lift Station #29, and that Lift Station #29 be expanded. The diversion line will be a 6-inch gravity sewer line from the Spanish Trail area to Redbird Street. It is recommended that Lift Station #29 be expanded to have a firm pumping capacity of 110 gpm.

2. <u>Diversion of Flow in Tamarack Area to Lift Station #56 and Construction of a Gravity Sewer Line from Hwy. 198 to Lift Station #39.</u>

Under the existing wastewater system layout, a series of lift stations in the Tamarack area will be overloaded by the year 2006. It is recommended that

a 6-inch diversion line be constructed from Trailwind Street to Wildwind Street and then to Spring Valley Street. It is also recommended that an 8inch force main be constructed from the force mains at the end of Spring Valley to Lift Station #56. This will divert much of the flow in the Tamarack area to Lift Station #56. Lift Station #56 will need to be expanded to have a firm pumping capacity of 170 gpm. A 6-inch force main will be constructed from the end of an existing 4-inch force main at Bay View Street to Highway 198. From Highway 198 a 10-inch gravity sewer line will be constructed to Welch Street. The force mains from Lift Stations #33 and #35 will be tied into the 10-inch gravity sewer line. This will reduce the high discharge head of these lift stations, which is currently a problem with Lift Station #35. From Welch Street the sewer line will need to be increased in size to a 12inch sewer line and connected to Lift Station #39.

3. <u>New 8-inch and 6-inch Gravity Sewer Lines and Lift Stations to Serve</u> <u>Remaining Area in Priority Area #2, East of Tamarack.</u>

Currently there exists no wastewater service to the area east of Tamarack Across the Hwy. 334 Bridge. New sewer facilities are described here to serve the remaining Priority Area #2 within the 2006 planning period. These facilities would include a 6-inch and 8-inch gravity sewer line along the Lakeview Drive to the east side of the Hwy. 334 Bridge. There will also need to be a new 50 gpm Lift Station and 4-inch force main along the east side of the Bonita Point Subdivision. This 4-inch force main will tie-in to the 8-inch gravity sewer line at the Oak Ridge Subdivision. On the east side of the Hwy. 334 bridge, a new 120 gpm Lift Station will need to be built to convey this area wastewater flow. It is recommended that flow from this lift station be pumped to Lift Station #36 using a 4-inch force main.

4. Increase Pumping Capacity of Lift Stations #25, and #33.

Presently, the upstream Lift Stations #24 and #32 pump at a higher capacity than Lift Stations #25, and #33. Increased growth will increase the likelihood of overflow conditions at these downstream lift stations. Therefore it is recommended that the firm pumping capacities of these lift stations be increased in capacity. Lift Stations #25 and #33 will need to be expanded to have a capacity of 80 gpm and 58 gpm respectively.

5. Increase Pumping Capacity of Lift Stations #60 and #61 and Construction of a Gravity Sewer to Lift Station #38.

Under existing conditions, Lift Station #61 and #60 show to be overloaded. It is recommended that the pumping capacity of Lift Stations #61 and #60 be increased to 65 gpm and 165 gpm respectively. It is also recommended that a 4-inch force main be constructed from Lift Station #60 to Harbor Street. A 8-inch/10-inch gravity sewer line will need to be constructed from Harbor Street along an existing creek to Lift Station #38. Once this gravity sewer line is constructed, Lift Station #59 can be abandoned.

6. Expansion of Lift Stations #38 and #39.

Lift Stations #38, and #39 pump over 90% of the total wastewater flow in the North System to the wastewater treatment plant. These lift stations are currently overloaded under peak flow conditions. It is recommended that Lift Station #38 be expanded to have a firm pumping capacity of 930 gpm. It is recommended that Lift Station #39 be expanded to have a firm pumping capacity of 990 gpm. These capacities are based on the projected flow to these two lift stations in the year 2016.

## 2016 Condition

1. Expansion of Lift Stations #36 and #40.

With the additional flow from new growth and the new wastewater service area on the east side of Hwy. 334, Lift Station #36 and #40 will be overloaded in the 2016 flow condition. Therefore it is recommended that Lift Station #36 and #40 be expanded to 230 gpm and 260 gpm capacities respectively.

2. <u>New 6-inch Gravity Sewer Line to Serve Priority Area #3.</u>

A new 6-inch gravity sewer line will need to be constructed along Hwy 334 to convey wastewater flow from Priority Area #3 to the New Lift Station on the east side of the Hwy. 334 Bridge.

3. Expansion of Lift Stations #19 and #44.

Lift Stations #19 and #44 show to be overloaded for the 2016 flow condition. It is recommended that Lift Station #19 and #44 be expanded to 115 gpm and 65 gpm respectively.

4. <u>Expansion of Lift Station #7, and New Gravity Sewer Line From Lift Station</u> <u>#21 and #46 to Lift Station #7.</u>

Lift Stations #7 and #21 are overloaded under 2016 peak flow conditions. It is recommended that an 8-inch gravity sewer interceptor be constructed along Lost Forrest Street to Sunset Street and then to Lift Station #7. It is also recommended that a 6-inch interceptor be constructed from Lift Station

## TM#2-28

#46 at Lynn Street to Lift Station #10 and then to Lift Station #7. These two gravity sewer lines will allow Lift Station #21, #46 and #10 to be abandoned. Lift Station #7 will need to be expanded to a capacity of 120 gpm. It is also recommended that a new 4-inch force main be constructed from Lift Station #7 to the 8-inch gravity sewer line on Hwy. 334.

## 5. <u>Expansion of Lift Station #5 and Construction of New Force Main from Lift</u> Station #61 to Lift Station #60.

Lift Station #5 at the intersection of Lakeview and Bayview Streets shows to be overloaded under peak 2016 flow conditions. It is recommended that this Lift Station be expanded to a capacity of 65 gpm. It is also recommended at this time that a new 4-inch force main be constructed from Lift Station #61 to Lift Station #60.

6. <u>New 8-inch Gravity Sewer Line from Lakeview Street to Existing 10-inch</u> <u>Gravity Sewer Line East of Harbor Street.</u>

Under the 2016 conditions, Lift Station #3 and #4 show to be overloaded. It is recommended that a 8-inch gravity sewer line be constructed to divert all of the flow from this area to the existing 10-inch gravity sewer line that feeds into Lift Station #38. This can be done by tying in the main 6-inch lines along Lakeview Street and by pumping a reduce quantity of flow from Lift Stations #3 and #4 to the new 8-inch gravity sewer line.

## 2026 Condition

## 1. <u>New 8-inch and 6-inch gravity sewer line along Luther Street to Lift Station</u> #39.

Under the 2026 flow condition, the gravity sewer line along Welch Street shows to be overloaded in the analysis. It is recommended that a diversion gravity sewer line be constructed beginning at the end of Lift Station #40 6inch force southward along Luther Street and then over to Lift Station #39. It is also recommended that a new 6-inch sewer line be tie-in to the proposed 8-inch sewer line along Luther Street. A diversion box will need to be constructed at the beginning of this project that will allow the splitting of flow in two directions to Lift Station #39.

2. <u>New 6-inch Gravity Sewer Line Along Hwy. 198.</u>

It is recommended that a 6-inch gravity sewer line be constructed along Hwy. 198 to handle additional flow from the area. If significant growth occurs along Hwy. 198 prior to this time period, it may be necessary to accelerate this project. This sewer line could also be used to relieve some flow from Lift Station #40, if required at this time. Currently, system analysis at this time, does not show that it will be necessary to divert flow under the 2026 flow conditions from the expanded Lift Station #40.

3. Expansion of Lift Station #37.

Lift Station #37 will be overloaded under 2026 peak flow conditions. It is recommended that Lift Station #37 firm pumping capacity be increased to 310 gpm. The current capacity of Lift Station #37 is rated at 140 gpm at 100 ft of head. From our analysis, it appears that the discharge head may be significantly lower than 100 ft. Our analysis shows that the existing pumps will operate at a point along their pump curve that will currently produce about 220 gpm.

4. <u>New Gravity Sewer Line along Arbolado Street to Lift Station #24, Expansion of Lift Station #24 and New 4-inch Force Main from Lift Station #24 to Hwy 334.</u>

The analysis shows that Lift Station #24 and the existing force main along Legendary Lane will be overloaded under 2026 flow conditions. It is recommended that a new 6-inch gravity sewer line be constructed to divert flow from Lift Station #13 and the existing force main along Legendary Lane, to Lift Station #24. The firm pumping capacity of Lift Station #24 will need to be expanded to a capacity of 95 gpm. It is recommended that a 4-inch force main be constructed from Lift Station #24 directly to the existing 12-inch gravity sewer line along Hwy 334.

5. New 8-inch Gravity Sewer Line along Harbor Point Road.

Our analysis showed that some of the 2-inch force mains in the Northwestern Harbor Point Area, will become overloaded under peak flow conditions. It is recommended that a 8-inch gravity sewer line be constructed along Harbor Point Road down to the existing 8-inch gravity sewer line.

## South Wastewater System

## 2006 Condition

1. <u>New 6-inch Force Main to Enchanted Drive and North to the Mac Oaks</u> <u>Subdivision.</u>

To prevent the grinder pump stations from operating at shut-off head under peak flow conditions, it is recommended that a 6-inch force main be constructed parallel to an existing 4-inch force main from the wastewater treatment plant to Enchanted Drive and northward to the Mac Oaks Subdivision.

2. New 4-inch Force Main Along Forgotten Lane and Associated Lateral Force Mains to Serve Del Mar and Three Harbors Subdivisions.

To provide adequate service to the Del Mar and Three Harbors Subdivisions, it is recommended that a 4-inch force main be constructed along Forgotten Lane beginning at Enchanted Drive. The 4-inch force main would be extended along the southside of Lakeland Drive to King Arthur Street. It is recommended that 3-inch lateral force mains be extended into each of the major streets in the subdivisions as shown in the mapping. It is also recommended that grinder pumps with shutoff heads of approximately 120 ft. be used in theses two subdivisions.

3. <u>New 4-inch Force Main Along Leisureland Drive and Associated Lateral</u> Force Mains to Serve Leisureland Subdivision.

To provide adequate service to the Leisureland Subdivision, it is recommended that a 4-inch force main be constructed along Leisureland Drive beginning at Enchanted Drive. The 4-inch force main would be extended along Lakeland Drive. It is recommended that 3-inch lateral force mains be extended into each of the major streets in the subdivisions as shown in the mapping. It is also recommended that grinder pumps with shutoff heads of approximately 120 ft. be used in this subdivision.

4. <u>New 15-inch, 12-inch and 10-inch Gravity Sewer Line and Lift Station to</u> <u>Convey Flow From the North Part of the Wastewater System.</u>

To transport wastewater flow from the Oakwood Shores and Golden Oak Subdivisions and Subdivisions further north, it will be necessary to construct a gravity sewer line beginning at the southwest corner of the Golden Oaks Subdivision and proceeding along Cedar Creek Branch toward the wastewater treatment plant. It is recommended that the gravity sewer line begin as a 10inch sewer line and increase in size to a 12-inch and finally a 15-inch as the line draws nearer to the plant. Because of the Hydraulics of the wastewater plant, it will be necessary to construct a lift station near the wastewater plant. It is recommended that this lift station have an initial firm capacity of 400 gpm, and expandable to a total capacity of 1400 gpm.

5. New 4-inch Force Main to the Oakwood Shores Subdivision.

To provide adequate service to the Oakwood Shores Subdivision, it is

recommended that a 4-inch force main be constructed from the new 10-inch gravity sewer at the southwest corner of the Golden Oaks Subdivision on Hwy 198 to the Oakwood Shores Subdivision. It is recommended that 3-inch lateral force mains be constructed down the major streets of the subdivision.

## 6. New 4-inch Force Main to the Baywood Estates Subdivision.

To provide adequate service to the Baywood Estates Subdivision, it is recommended that a 4-inch force main be constructed from the existing 4-inch force main on Hwy 198 to Baywood Estates and that 3-inch lateral force mains be constructed down the major streets of the subdivision.

## 7. New 6-inch and 4-inch Force Main to the Golden Oaks Subdivision.

To provide adequate service to the Golden Oaks Subdivision, it is recommended that a 6-inch force main be constructed parallel to the existing 4-inch force main from the 10-inch gravity sewer line to the golden Oaks Subdivision. It is recommended that a 4-inch force main be constructed down the middle of the Golden Oaks Subdivision. It is recommended that 3-inch lateral force mains be constructed down each of the major streets in the subdivision.

## 8. <u>New 4-inch Force Main to the Southland Shores, Bonanza Beach, and</u> <u>Oakshores Estates Subdivisions.</u>

To provide adequate service to the far north subdivisions within the south system, it is recommended that a 4-inch force main be constructed from the existing 4-inch force main on Hwy 198 northeast through each of these subdivisions. It is recommended that 3-inch lateral force mains be constructed down the major streets within each of these subdivisions. It is also recommended that a 6-inch gravity line be constructed to the south of these subdivisions.

## 9. <u>New 6-inch Force Main and Lift Station to Serve the Cedar Branch Park</u> <u>Area.</u>

To provide adequate service to the Cedar Branch Park Area, it is recommended that a 6-inch force main be constructed from the beginning of the new 15-inch gravity sewer line around Cedar Creek Branch and down to the Cedar Branch Park Area. It is also recommended that a 250 gpm lift station be constructed at the south end of the Cedar Branch Park Area to receive and repump wastewater flow from grinder stations in the Timber Bay, Spillview, Diamond Oaks, Wood Canyon and Deer Island Subdivisions. 10. <u>New 4-inch and 3-inch Force Main to Serve the Timber Bay, Diamond Oaks.</u> Spillview, Wood Canyon and Deer Island Subdivisions.

To provide service to these subdivisions it is recommended that a 4-inch force main be constructed from the lift station at the south end of the Cedar Branch Park Subdivision southward through to the end of the Wood Canyon Subdivision. From the end of the 4-inch force main it is recommended that a 3-inch force main be constructed through Deer Island Estates. It is also recommended that 3-inch lateral force mains be constructed into each of these subdivisions.

## 2016 Condition

1. <u>New 6-inch and 4-inch Force Main to Serve the Southeastern Portion of the</u> <u>Priority #3 Area.</u>

To provide service to the area on the south side of Lynn Creek, it is recommended that a grinder system be installed with a 6-inch running from Lynn Creek southward to Lake View Street. From Lake View Street, the force main will need to be 4-inch in size and extended southward to the end of the Priority #3 service area. A 120 gpm lift station will need to be constructed roughly in the middle of the force main route to reduce the total pumping head of the grinder stations in the far south part of the Priority #3 Area. It is recommended that 3-inch lateral force mains be constructed to each of the major streets within each of the subdivisions in this area.

## 2. <u>New 250 gpm Lift Station and 6-inch Force Main at Lynn Creek.</u>

To convey flow from the southeastern part of the Priority #3 Area to the wastewater treatment plant, it is recommended that a 250 gpm lift station and 6-inch force main be constructed, The 6-inch force main will begin at Lynn Creek and end at an existing 6-inch force main near Cedar Branch.

3. <u>New 6-inch and 4-inch force main for the Resort CCN within the Priority #3</u> <u>Area.</u>

To provide service to the Resort CCN, it is recommended that a 6-inch and 4-inch force main be constructed from along the shoreline with 3-inch lateral force mains. These force mains will feed into an existing lift station at the southern end of the Cedar Branch Park Subdivision.

4. New Parallel 6-inch Force Main to the Indian Harbor Area.

To convey the 2016 peak flow from the Indian Harbor and Del Mar

Subdivisions, it will be necessary to construct a parallel 6-inch force main along the existing 4-inch force main that currently exists.

## 5. <u>New Parallel 6-inch Force Main along Enchanted Drive.</u>

To convey the 2016 peak flow from the Leisureland and Forgotten Acres Subdivisions, it will be necessary to construct a parallel 6-inch force main along the existing 4-inch force main that currently exists.

## 6. New Parallel 4-inch Force Main along Lakeland Drive.

To convey the 2016 peak flow from the Leisureland Subdivision, it will be necessary to construct a parallel 4-inch force main along the existing 3-inch force main that currently exists. This 4-inch force main will extend the entire length of the Leisureland Subdivision.

## 7. <u>New 8-inch Gravity Sewer Trunk Lines Along Hwy 198 and Along the Golden</u> <u>Oaks Subdivision.</u>

To convey flow from the northwestern part of Payne Springs, it is recommended that these 8-inch gravity sewer lines be constructed and tied into an existing 10-inch and 12-inch gravity sewer line respectively. It is also recommended that the small lateral sewer lines be 6-inch gravity lines.

## 8. <u>New 8-inch Gravity Sewer Line to serve the southwestern part of Payne</u> <u>Springs.</u>

To convey flow from the southwestern part of Payne Springs, it is recommended that a 8-inch gravity sewer line be constructed down to an existing lift station at Lynn Creek.

## 2026 Condition

1. New 6-inch Parallel Force Main in the Southern Priority #3 Area.

To convey 2026 peak flows from the southern part of the Priority #3 Area, it is recommended that a parallel 6-inch force main be constructed from the middle lift station to the 6-inch force main at Hidden Hills.

## 2. <u>New 6-inch Parallel Force Main to serve the Resort CCN Area.</u>

To convey 2026 peak flows from the Resort Area, it is recommended that a 6-inch force main be constructed from the lift station at Cedar Branch Creek to the northern part of the Cedar Branch Park Area.

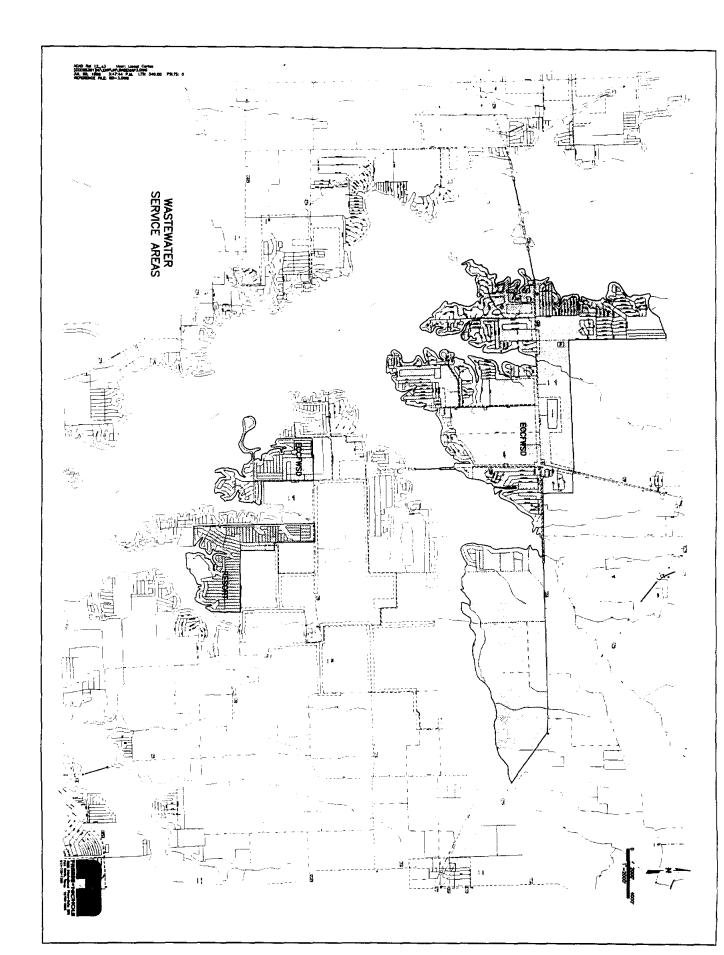
## 3. New 6-inch Parallel Force Main Along Forgotten Lane.

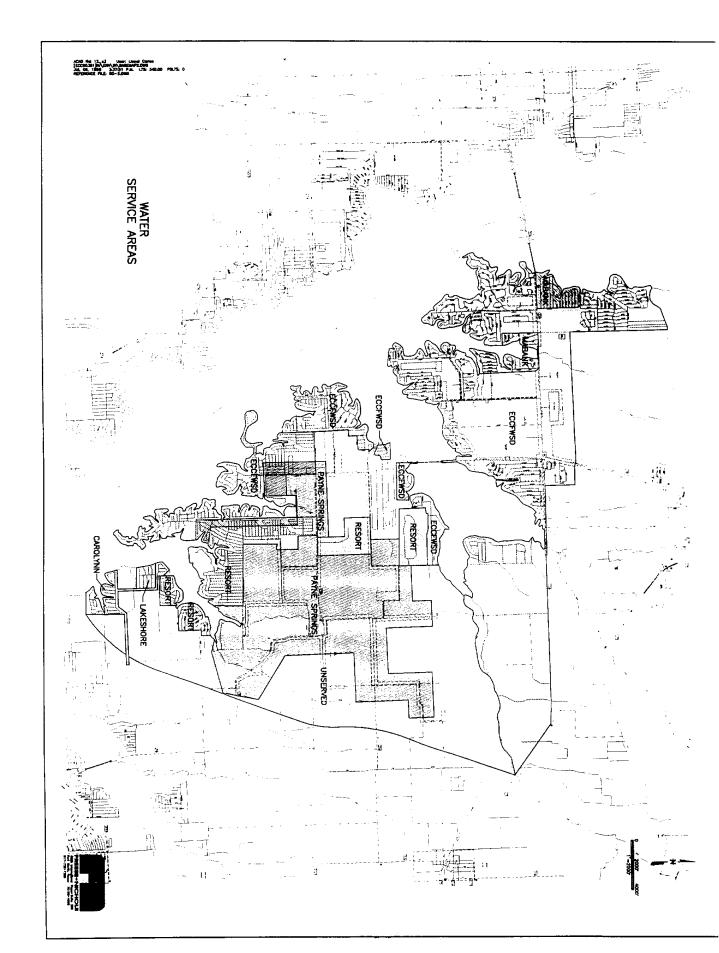
To convey peak 2026 flows from the Del Mar Subdivision, it is recommended that a 6-inch force be constructed along an existing 4-inch force main along Forgotten Lane.

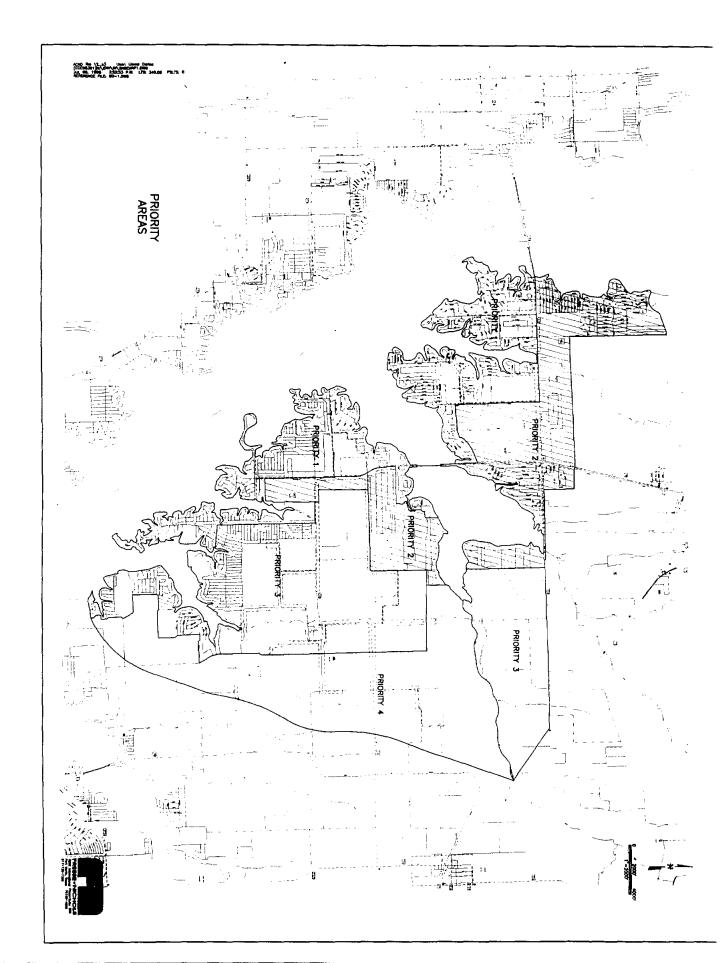
## 4. <u>New 6-inch. 8-inch and 10-inch Gravity Sewer Trunk Line through the Central</u> <u>Part of Payne Springs.</u>

To convey flows from the central part of Payne Springs, it is recommended that a 6-inch, 8-inch and 10-inch gravity sewer line be constructed down to the existing lift station at Lynn Creek. It is recommended that lateral lines on this sewer interceptor all be 6-inch in size.

Each of the recommended projects will be evaluated as to cost and prioritized in the


Recommendations and Implementation phase of the Master Plan. Currently, there is a potential change in the location of the proposed South WWTP. The exact location of the plant has not been determined. Therefore, the original planned location of the plant will be used for the purposes of this study. Once the new plant site has been selected, the South wastewater model should be rerun to determine any changes needed in the system. A map of the proposed wastewater system improvements is provided in Attachment 2-C.


## 4.0 **RECOMMENDATIONS AND IMPLEMENTATION**

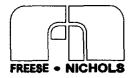

Based on the information developed in this Technical Memorandum and Technical Memorandum #1, a list of recommendations will be developed to address the present and future needs of the District's water and wastewater systems and treatment facilities. These recommendations will be grouped into phases for implementation and an implementation plan will be developed. Cost estimates will be provided for each recommended project and an environmental assessment of each project will be performed. The environmental assessment will be compiled in accordance with TWDB guidelines and will include a review of the proposed improvements for potential environmental impacts. This information will be developed and presented in Technical Memorandum #3 and the final Master Plan report.

# **ATTACHMENT 2-A**

PRIORITY AND SERVICE AREA MAPPING








## ATTACHMENT 2-B

**POPULATION AND FLOW PROJECTIONS** 

.

.



Simon W. Freese, P.E. Marvin C. Nichols, P.E. 1900 -- 1990 1896 -- 1969

Date: 08/14/96 By: DRJ Chkd:

#### Title: EAST CEDAR CREEK FWSD WATER AND WASTEWATER MASTERPLAN

| PRIORITY A | AREA PROJECTIONS NORTH DISTRICT |  |
|------------|---------------------------------|--|
| [ECC95301  | JV:\NPRIORTY.WK1                |  |

## NORTH DISTRICT WASTEWATER

#### **PRIORITY 1 PLANNING AREA**

|      |        |       |        |      |          |            | 1/1       | BASE 30 DAY | GROWTH 30 DAY |           | 90 DAY    | PEAK  |
|------|--------|-------|--------|------|----------|------------|-----------|-------------|---------------|-----------|-----------|-------|
| PLAN | ACTIVE | TOTAL | SERVED | BASE | UNSERVED | POPULATION | REDUCTION | PER CAPITA  | PER CAPITA    | AVG. FLOW | AVG. FLOW | FLOW  |
| YEAR | CONN.  | POP.  | POP.   | POP. | POP.     | GROWTH (%) | (GPCD)    | (GPCD)      | (GPCD)        | (MGD)     | (MGD)     | (MGD) |
| 1996 | 1594   | 3067  | 2646   | 2646 | 421      | 1.855      | 0.00      | 108.5       | 100.9         | 0.287     | 0.247     | 0.90  |
| 1997 | 1653   | 3124  | 2745   | 2646 | 379      | 1.821      | 0.33      | 108.2       | 100.9         | 0.296     | 0.255     | 0.93  |
| 1998 | 1713   | 3181  | 2843   | 2646 | 337      | 1.789      | 0.33      | 107.8       | 100.9         | 0.305     | 0.262     | 0.96  |
| 1999 | 1772   | 3238  | 2942   | 2646 | 295      | 1.757      | 0.33      | 107.5       | 100.9         | 0.314     | 0.270     | 0.99  |
| 2000 | 1832   | 3295  | 3041   | 2646 | 253      | 1.502      | 0.33      | 107.2       | 100.9         | 0.323     | 0.278     | 1.02  |
| 2001 | 1887   | 3344  | 3133   | 2646 | 211      | 1.479      | 0.33      | 106.9       | 100.9         | 0.332     | 0.285     | 1.05  |
| 2002 | 1942   | 3394  | 3224   | 2646 | 169      | 1.458      | 0.33      | 106.5       | 100.9         | 0.340     | 0.292     | 1.07  |
| 2003 | 1997   | 3443  | 3316   | 2646 | 127      | 1.437      | 0.33      | 106.2       | 100.9         | 0.349     | 0.300     | 1.10  |
| 2004 | 2052   | 3492  | 3407   | 2646 | 85       | 1.417      | 0.33      | 105.9       | 100.9         | 0.357     | 0.307     | 1.12  |
| 2005 | 2108   | 3542  | 3499   | 2646 | 43       | 1.397      | 0.33      | 105.5       | 100.9         | 0.365     | 0.314     | 1.15  |
| 2006 | 2163   | 3591  | 3590   | 2646 | 1        | 1.378      | 0.33      | 105.2       | 100.9         | 0.374     | 0.321     | 1.18  |
| 2007 | 2193   | 3641  | 3641   | 2646 | 0        | 1.359      | 0.33      | 104.9       | 100.9         | 0.378     | 0.325     | 1.19  |
| 2006 | 2223   | 3690  | 3690   | 2646 | 0        | 1.341      | 0.33      | 104.6       | 100.9         | 0.382     | 0.326     | 1.20  |
| 2009 | 2253   | 3740  | 3739   | 2646 | 0        | 1.323      | 0.33      | 104.2       | 100.9         | 0.386     | 0.332     | 1.22  |
| 2010 | 2282   | 3789  | 3789   | 2646 | 0        | 1.165      | 0.33      | 103.9       | 100.9         | 0.390     | 0.335     | 1.23  |
| 2011 | 2309   | 3833  | 3833   | 2646 | 0        | 1.151      | 0.33      | 103.6       | 100.9         | 0.394     | 0.339     | 1.24  |
| 2012 | 2336   | 3878  | 3877   | 2646 | 0        | 1.138      | 0.33      | 103.2       | 100.9         | 0.397     | 0.342     | 1.25  |
| 2013 | 2362   | 3922  | 3921   | 2646 | 0        | 1.126      | 0.33      | 102.9       | 100.9         | 0.401     | 0.345     | 1.26  |
| 2014 | 2389   | 3966  | 3965   | 2646 | 0        | 1.113      | 0.33      | 102.6       | 100.9         | 0.405     | 0.348     | 1.27  |
| 2015 | 2415   | 4010  | 4010   | 2646 | 0        | 1.101      | 0.33      | 102.3       | 100.9         | 0.408     | 0.351     | 1.29  |
| 2016 | 2442   | 4054  | 4054   | 2646 | 0        | 1.089      | 0.33      | 101.9       | 100.9         | 0.412     | 0.354     | 1.30  |
| 2017 | 2469   | 4098  | 4098   | 2646 | 0        | 1.077      | 0.33      | 101.6       | 100.9         | 0.415     | 0.357     | 1.31  |
| 2018 | 2495   | 4142  | 4142   | 2646 | 0        | 1.066      | 0.33      | 101.3       | 100.9         | 0.419     | 0.360     | 1.32  |
| 2019 | 2522   | 4187  | 4186   | 2646 | 0        | 1.054      | 0.33      | 100.9       | 100.9         | 0.422     | 0.363     | 1.33  |
| 2020 | 2548   | 4231  | 4230   | 2646 | 0        | 0.610      | 0.00      | 100.9       | 100.9         | 0.427     | 0.367     | 1.34  |
| 2021 | 2564   | 4257  | 4256   | 2646 | 0        | 0.607      | 0.00      | 100.9       | 100.9         | 0.429     | 0.369     | 1.35  |
| 2022 | 2579   | 4282  | 4282   | 2646 | 0        | 0.603      | 0.00      | 100.9       | 100.9         | 0.432     | 0.371     | 1.36  |
| 2023 | 2595   | 4308  | 4308   | 2646 | 0        | 0.599      | 0.00      | 100.9       | 100.9         | 0.435     | 0.374     | 1.37  |
| 2024 | 2611   | 4334  | 4334   | 2646 | 0        | 0.596      | 0.00      | 100.9       | 100.9         | 0.437     | 0.376     | 1.38  |
| 2025 | 2626   | 4360  | 4359   | 2646 | 0        | 0.592      | 0.00      | 100.9       | 100.9         | 0.440     | 0.378     | 1.39  |
| 2026 | 2642   | 4386  | 4385   | 2646 | 0        |            | 0.00      | 100.9       | 100.9         | 0.443     | 0.380     | 1.39  |



Simon W. Freese, P.E. Marvin C. Nichols, P.E.

Title: EAST CEDAR CREEK FWSD WATER AND WASTEWATER MASTERPLAN PRIORITY AREA PROJECTIONS -- NORTH DISTRICT

[ECC95301]V:\NPRIORTY.WK1

## NORTH DISTRICT WASTEWATER

#### PRIORITY 2 PLANNING AREA

|        |        |       |        |      |          |                | I/I       | BASE 30 DAY   | GROWTH 30 DAY | 30 DAY    | 90 DAY    | PEAK  |
|--------|--------|-------|--------|------|----------|----------------|-----------|---------------|---------------|-----------|-----------|-------|
| PLAN   | ACTIVE | TOTAL | SERVED | BASE | UNSERVED | POPULATION     | REDUCTION | PER CAPITA    | PER CAPITA    | AVG. FLOW | AVG. FLOW | FLOW  |
| YEAR   | CONN.  | POP.  | POP.   | POP. | POP.     | GROWTH (%)     | (GCD)     | (GPCD)        | (GPCD)        | (MGD)     | (MGD)     | (MGD) |
| 1996   | 1531   | 2936  | 2542   | 2542 | 394      | 1.855          | 0         | 108.5         | 100.9         | 0.276     | 0.237     | 0.87  |
| 1997   | 1576   | 2990  | 2616   | 2542 | 374      | 1.821          | 0.33      | 108.2         | 100.9         | 0.282     | 0.243     | 0.89  |
| 1998   | 1621   | 3045  | 2690   | 2542 | 355      | 1.789          | 0.33      | 10 <b>7.8</b> | 100.9         | 0.289     | 0.249     | 0.91  |
| 1999   | 1665   | 3099  | 2764   | 2542 | 335      | 1.757          | 0.33      | 107.5         | 100.9         | 0.296     | 0.254     | 0.93  |
| 2000   | 1710   | 3154  | 2839   | 2542 | 315      | 1.502          | 0.33      | 107.2         | 100.9         | 0.302     | 0.260     | 0.95  |
| . 2001 | 1750   | 3201  | 2906   | 2542 | 296      | 1.479          | 0.33      | 106.9         | 100.9         | 0.308     | 0.265     | 0.97  |
| 2002   | 1791   | 3249  | 2973   | 2542 | 276      | 1.458          | 0.33      | 106.5         | 100.9         | 0.314     | 0.270     | 0.99  |
| 2003   | 1831   | 3296  | 3040   | 2542 | 256      | 1.437          | 0.33      | 106.2         | 100.9         | 0.320     | 0.275     | 1.01  |
| 2004   | 1872   | 3343  | 3107   | 2542 | 237      | 1.417          | 0.33      | 105.9         | 100.9         | 0.326     | 0.280     | 1.03  |
| 2005   | 1912   | 3391  | 3174   | 2542 | 217      | 1.397          | 0.33      | 105.5         | 100.9         | 0.332     | 0.285     | 1.05  |
| 2006   | 1952   | 3438  | 3241   | 2542 | 197      | 1. <b>378</b>  | 0.33      | 105.2         | 100.9         | 0.338     | 0.291     | 1.06  |
| 2007   | 1993   | 3485  | 3308   | 2542 | 177      | 1.359          | 0.33      | 104.9         | 100.9         | 0.344     | 0.296     | 1.08  |
| 2008   | 2033   | 3533  | 3375   | 2542 | 158      | 1.341          | 0.33      | 104.6         | 100.9         | 0.350     | 0.301     | 1.10  |
| 2009   | 2074   | 3580  | 3442   | 2542 | 138      | 1.323          | 0.33      | 104.2         | 100.9         | 0.356     | 0.306     | 1.12  |
| 2010   | 2114   | 3627  | 3509   | 2542 | 118      | 1. <b>16</b> 5 | 0.33      | 103.9         | 100.9         | 0.362     | 0.311     | 1.14  |
| 2011   | 2151   | 3670  | 3571   | 2542 | 99       | 1.151          | 0.33      | 103.6         | 100.9         | 0.367     | 0.316     | 1.16  |
| 2012   | 2189   | 3712  | 3633   | 2542 | 79       | 1.138          | 0.33      | 103.2         | 100.9         | 0.372     | 0.320     | 1.17  |
| 2013   | 2226   | 3754  | 3695   | 2542 | 59       | 1.126          | 0.33      | 102.9         | 100.9         | 0.378     | 0.325     | 1.19  |
| 2014   | 2263   | 3796  | 3757   | 2542 | 40       | 1.113          | 0.33      | 102.6         | 100.9         | 0.383     | 0.330     | 1.21  |
| 2015   | 2301   | 3839  | 3819   | 2542 | 20       | 1.101          | 0.33      | 102.3         | 100.9         | 0.389     | 0.334     | 1.22  |
| 2016   | 2338   | 3881  | 3881   | 2542 | 0        | 1.089          | 0.33      | 101.9         | 100.9         | 0.394     | 0.339     | 1.24  |
| 2017   | 2363   | 3923  | 3923   | 2542 | 0        | 1.077          | 0.33      | 101.6         | 100.9         | 0.398     | 0.342     | 1.25  |
| 2018   | 2389   | 3965  | 3965   | 2542 | 0        | 1.066          | 0.33      | 101.3         | 100.9         | 0.401     | 0.345     | 1.26  |
| 2019   | 2414   | 4008  | 4008   | 2542 | 0        | 1.054          | 0.33      | 100.9         | 100.9         | 0.404     | 0.348     | 1.27  |
| 2020   | 2440   | 4050  | 4050   | 2542 | 0        | 0.610          | 0.00      | 100.9         | 100.9         | 0.409     | 0.351     | 1.29  |
| 2021   | 2455   | 4075  | 4075   | 2542 | 0        | 0.607          | 0.00      | 100.9         | 100.9         | 0.411     | 0.353     | 1.30  |
| 2022   | 2469   | 4099  | 4099   | 2542 | 0        | 0.603          | 0.00      | 100.9         | 100.9         | 0.414     | 0.356     | 1.30  |
| 2023   | 2484   | 4124  | 4124   | 2542 | 0        | 0.599          | 0.00      | 100.9         | • 100.9       | 0.416     | 0.358     | 1.31  |
| 2024   | 2499   | 4149  | 4149   | 2542 | 0        | 0.596          | 0.00      | 100.9         | 100.9         | 0.419     | 0.360     | 1.32  |
| 2025   | 2514   | 4174  | 4173   | 2542 | 0        | 0.592          | 0.00      | 100.9         | 100.9         | 0.421     | 0.362     | 1.33  |
| 2026   | 2529   | 4198  | 4198   | 2542 | 0        |                | 0.00      | 100.9         | 100.9         | 0.424     | 0.364     | 1.33  |

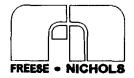
r

| Date: | 08/14/96 |
|-------|----------|
| By:   | DRJ      |
| Chkd: |          |



Title: EAST CEDAR CREEK FWSD WATER AND WASTEWATER MASTERPLAN

| PRIORITY A | REA PROJECTIONS NORTH DISTRICT |
|------------|--------------------------------|
| [ECC95301  | V:\NPRIORTY.WK1                |


## NORTH DISTRICT WASTEWATER

#### **PRIORITY 3 PLANNING AREA**

|      |        |       |        |             |          |            | 1/1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | the second s | GROWTH 30 DAY |           | 90 DAY    | PEAK  |
|------|--------|-------|--------|-------------|----------|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|---------------|-----------|-----------|-------|
| PLAN | ACTIVE | TOTAL | SERVED | BASE        | UNSERVED |            | Contraction of the second s | PER CAPITA                                                                                                     | PER CAPITA    | AVG. FLOW | AVG. FLOW | FLOW  |
| YEAR | CONN.  | POP.  | POP.   | <u>POP.</u> | POP.     | GROWTH (%) | (GCD)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (GPCD)                                                                                                         | (GPCD)        | (MGD)     | (MGD)     | (MGD) |
| 1996 | 0      | 257   | 0      | 0           | 257      | 1.167      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 108.5                                                                                                          | 100.9         | 0.000     | 0.000     | 0.00  |
| 1997 | 0      | 260   | 0      | 0           | 260      | 1.153      | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 108.2                                                                                                          | 100.9         | 0.000     | 0.000     | 0.00  |
| 1998 | 0      | 263   | 0      | 0           | 263      | 1.140      | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 107.8                                                                                                          | 100.9         | 0.000     | 0.000     | 0.00  |
| 1999 | 0      | 266   | 0      | 0           | 266      | 1.127      | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 107.5                                                                                                          | 100.9         | 0.000     | 0.000     | 0.00  |
| 2000 | 0      | 269   | 0      | 0           | 269      | 1.115      | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 107.2                                                                                                          | 100.9         | 0.000     | 0.000     | 0.00  |
| 2001 | 0      | 272   | 0      | 0           | 272      | 0.932      | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 106.9                                                                                                          | 100.9         | 0.000     | 0.000     | 0.00  |
| 2002 | 0      | 275   | 0      | 0           | 275      | 0.923      | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 106.5                                                                                                          | 100.9         | 0.000     | 0.000     | 0.00  |
| 2003 | 0      | 277   | 0      | 0           | 277      | 0.915      | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 106.2                                                                                                          | 100.9         | 0.000     | 0.000     | 0.00  |
| 2004 | 0      | 280   | 0      | 0           | 280      | 0.906      | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 105.9                                                                                                          | 100.9         | 0.000     | 0.000     | 0.00  |
| 2005 | 0      | 282   | 0      | 0           | 282      | 0.896      | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 105.5                                                                                                          | 100.9         | 0.000     | 0.000     | 0.00  |
| 2006 | 0      | 285   | 0      | 0           | 285      | 0.890      | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 105.2                                                                                                          | 100.9         | 0.000     | 0.000     | 0.00  |
| 2007 | 10     | 287   | 17     | 0           | 270      | 0.882      | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 104.9                                                                                                          | 100.9         | 0.002     | 0.001     | 0.01  |
| 2008 | 20     | 290   | 34     | 0           | 256      | 0.875      | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 104.6                                                                                                          | 100.9         | 0.003     | 0.003     | 0.01  |
| 2009 | 30     | 292   | 50     | 0           | 242      | 0.867      | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 104.2                                                                                                          | 100.9         | 0.005     | 0.004     | 0.02  |
| 2010 | 40     | 295   | 67     | 0           | 228      | 0.859      | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 103.9                                                                                                          | 100.9         | 0.007     | 0.006     | 0.02  |
| 2011 | 51     | 297   | 84     | 0           | 213      | 0.708      | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 103.6                                                                                                          | 100.9         | 0.008     | 0.007     | 0.03  |
| 2012 | 60     | 299   | 100    | 0           | 199      | 0.703      | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 103.2                                                                                                          | 100.9         | 0.010     | 0.009     | 0.03  |
| 2013 | 70     | 302   | 117    | 0           | 185      | 0.698      | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 102.9                                                                                                          | 100.9         | 0.012     | 0.010     | 0.04  |
| 2014 | 80     | 304   | 133    | 0           | 171      | 0.693      | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 102.6                                                                                                          | 100.9         | 0.013     | 0.012     | 0.04  |
| 2015 | 90     | 306   | 149    | 0           | 156      | 0.688      | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 102.3                                                                                                          | 100.9         | 0.015     | 0.013     | 0.05  |
| 2016 | 100    | 308   | 166    | 0           | 142      | 0.684      | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 101.9                                                                                                          | 100.9         | 0.017     | 0.014     | 0.05  |
| 2017 | 110    | 310   | 182    | 0           | 128      | 0.679      | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 101.6                                                                                                          | 100.9         | 0.018     | 0.016     | 0.06  |
| 2018 | 120    | 312   | 198    | 0           | 114      | 0.675      | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 101.3                                                                                                          | 100.9         | 0.020     | 0.017     | 0.06  |
| 2019 | 129    | 314   | 215    | 0           | 99       | 0.670      | 0.33                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100.9                                                                                                          | 100.9         | 0.022     | 0.019     | 0.07  |
| 2020 | 139    | 316   | 231    | 0           | 85       | 0,666      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100.9                                                                                                          | 100.9         | 0.023     | 0.020     | 0.07  |
| 2021 | 149    | 318   | 247    | 0           | 71       | 0.222      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100.9                                                                                                          | 100.9         | 0.025     | 0.021     | 30.0  |
| 2022 | 158    | 319   | 262    | 0           | 57       | 0.222      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100.9                                                                                                          | 100.9         | 0.026     | 0.023     | 30.0  |
| 2023 | 167    | 320   | 277    | 0           | 42       | 0.221      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100.9                                                                                                          | 100.9         | 0.028     | 0.024     | 0.09  |
| 2024 | 176    | 321   | 292    | 0           | 28       | 0.221      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100.9                                                                                                          | 100.9         | 0.029     | 0.025     | 0.09  |
| 2025 | 185    | 321   | 307    | 0           | 14       | 0.220      | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100.9                                                                                                          | 100.9         | 0.031     | 0.027     | 0.10  |
| 2026 | 194    | 322   | 322    | 0           | -0       |            | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100.9                                                                                                          | 100.9         | 0.033     | 0.028     | 0.10  |

Simon W. Freese, P.E. Marvin C. Nichols, P.E. 1900-1990 1896-1969

Date: 08/14/96 By: DRJ Chkd:



Simon W. Freese, P.E. Marvin C. Nichols, P.E. 1900-1990 1896-1969

Date: 08/14/96 By: DRJ Chkd:

#### Title: EAST CEDAR CREEK FWSD WATER AND WASTEWATER MASTERPLAN PRIORITY AREA PROJECTIONS -- NORTH DISTRICT (ECC95301]V:\NPRIORTY.WK1

| NORTH DISTRICT | WASTEWATER |
|----------------|------------|

#### NORTH WASTEWATER TOTALS

|              |                 |               |              |               |              |            | 1/1                                                                                                             | BASE 30 DAY | [1] F. S. K. |                | 90 DAY         | PEAK  |
|--------------|-----------------|---------------|--------------|---------------|--------------|------------|-----------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------------------|----------------|----------------|-------|
| PLAN         | ACTIVE<br>CONN. | TOTAL<br>POP. | SERVED       | BASE          | UNSERVED     | POPULATION | te de la construcción de la constru | PER CAPITA  | PER CAPITA                                       |                | AVG. FLOW      | FLOW  |
| YEAR<br>1996 | 3125            | 6260          | POP.<br>5188 | POP.<br>5188  | POP.<br>1073 | GROWTH (%) | (GCD)<br>0.00                                                                                                   | (GPCD)      | (GPCD)                                           | (MGD)<br>0.563 | (MGD)<br>0.484 | (MGD) |
| 1990         | 3125            | 6374          |              |               |              | 1.827      |                                                                                                                 | 108.5       | 100.9                                            |                |                | 1.77  |
| 1997         | 3334            |               | 5361<br>5534 | 5188          | 1014         | 1.794      | 0.33                                                                                                            | 107.9       | 100.9                                            | 0.579          | 0.497          | 1.823 |
|              |                 | 6489          |              | 5188          | 955          | 1.762      | 0.33                                                                                                            | 107.4       | 100.9                                            | 0.594          | 0.511          | 1.872 |
| 1999<br>2000 | 3438<br>3542    | 6603<br>6717  | 5707<br>5880 | 5188          | 896          | 1.732      | 0.33                                                                                                            | 106.9       | 100.9                                            | 0.610          |                | 1.922 |
|              |                 |               |              | 5188          | 838          | 1.486      | 0.33                                                                                                            | 106.4       | 100.9                                            | 0.626          | 0.538          | 1.971 |
| 2001         | 3638            | 6817          | 6038         | 5188          | 779          | 1.458      | 0.33                                                                                                            | 106.0       | 100.9                                            | 0.640          | 0.550          | 2.016 |
| 2002         | 3733            | 6917<br>7016  | 6197         | 5188          | 720          | 1.437      | 0.33                                                                                                            | 105.6       | 100.9                                            | 0.654          | 0.563          | 2.061 |
| 2003         | 3829            | 7016          | 6355         | 5188          | 661          | 1.416      | 0.33                                                                                                            | 105.2       | 100.9                                            | 0.669          | 0.575          | 2.106 |
| 2004         | 3924            | 7115          | 6514         | 5188          | 601          | 1.397      | 0.33                                                                                                            | 104.9       | 100.9                                            | 0.683          | 0.587          | 2.151 |
| 2005         | 4020            | 7215          | 6672         | 5188          | 542          | 1.377      | 0.33                                                                                                            | 104.5       | 100.9                                            | 0.697          | 0.599          | 2.196 |
| 2006         | 4115            | 7314          | 6831         | 5188          | 483          | 1.359      | 0.33                                                                                                            | 104.2       | 100.9                                            | 0.712          | 0.612          | 2.241 |
| 2007         | 4196            | 7413          | 6965         | 5188          | 448          | 1.340      | 0.33                                                                                                            | 103.9       | 100.9                                            | 0.723          | 0.622          | 2.279 |
| 2008         | 4276            | 7513          | 7099         | 5188          | 414          | 1.323      | 0.33                                                                                                            | 103.6       | 100.9                                            | 0.735          | 0.632          | 2.316 |
| 2009         | 4357            | 7612          | 7232         | 51 <b>8</b> 8 | 380          | 1.305      | 0.33                                                                                                            | 103.3       | 100.9                                            | 0.747          | 0.642          | 2.353 |
| 2010         | 4437            | 7712          | 7365         | 5188          | 346          | 1.153      | 0.33                                                                                                            | 103.0       | 100.9                                            | 0.759          | 0.652          | 2.390 |
| 2011         | 4511            | 7800          | 7488         | 5188          | 312          | 1.135      | 0.33                                                                                                            | 102.7       | 100.9                                            | 0.769          | 0.661          | 2.423 |
| 2012         | 4585            | 7889          | 7611         | 5188          | 278          | 1.122      | 0.33                                                                                                            | 102.5       | 100.9                                            | 0.780          | 0.671          | 2.457 |
| 2013         | 4658            | 7977          | 7733         | 5188          | 245          | 1.109      | 0.33                                                                                                            | 102.2       | 100.9                                            | 0.791          | 0.680          | 2.490 |
| 2014         | 4732            | 8066          | 7855         | 51 <b>8</b> 8 | 211          | 1.097      | 0.33                                                                                                            | 102.0       | 100.9                                            | 0.801          | 0.689          | 2.524 |
| 2015         | 4806            | 8154          | 7978         | 51 <b>8</b> 8 | 177          | 1.085      | 0.33                                                                                                            | 101.8       | 100.9                                            | 0.812          | 0.698          | 2.557 |
| 2016         | 4880            | 8243          | 8100         | <u>5188</u>   | 143          | 1.074      | 0.33                                                                                                            | 101.5       | 100.9                                            | 0.823          | 0.707          | 2.591 |
| 2017         | 4942            | 8331          | 8203         | 51 <b>88</b>  | 128          | 1.062      | 0.33                                                                                                            | 101.3       | 100.9                                            | 0.831          | 0.715          | 2.618 |
| 2018         | 5003            | 8420          | 8306         | 51 <b>88</b>  | 114          | 1.051      | 0.33                                                                                                            | 101.1       | 100.9                                            | 0.840          | 0.722          | 2.646 |
| 2019         | 5065            | 8508          | 8409         | 5188          | 100          | 1.040      | 0.33                                                                                                            | 100.9       | 100.9                                            | 0.849          | 0.729          | 2.673 |
| 2020         | 5127            | 8597          | 8511         | 5188          | 86           | 0.612      | 0.00                                                                                                            | 100.9       | 100.9                                            | 0.859          | 0.738          | 2.705 |
| 2021         | 5168            | 8650          | 8578         | 5188          | 71           | 0.592      | 0.00                                                                                                            | 100.9       | 100.9                                            | 0.866          | 0.744          | 2.727 |
| 2022         | 5207            | 8701          | 8644         | 5188          | 57           | 0.589      | 0.00                                                                                                            | 100,9       | 100.9                                            | 0.872          | 0.750          | 2.748 |
| 2023         | 5246            | 8752          | 8709         | 5188          | 43           | 0.585      | 0.00                                                                                                            | 100.9       | 100.9                                            | 0.879          | 0.756          | 2.765 |
| 2024         | 5286            | 8803          | 8775         | 5188          | 29           | 0.582      | 0.00                                                                                                            | 100.9       | 100.9                                            | 0.885          | 0.761          | 2.786 |
| 2025         | 5325            | 8855          | 8840         | 5188          | 14           | 0.579      | 0.00                                                                                                            | 100.9       | 100.9                                            | 0.892          | 0.767          | 2.810 |
| 2026         | 5365            | 8906          | 8906         | 5188          | 0            |            | 0.00                                                                                                            | 100.9       | 100.9                                            | 0.899          | 0.773          | 2.831 |



.

| Title: EAST CEDAR CREEK FWSD WATER AND WASTEWATER MASTERPLAN | Date: 08/14/96 |
|--------------------------------------------------------------|----------------|
| PRIORITY AREA PROJECTIONS NORTH DISTRICT                     | By: DRJ        |
| [ECC95301]V:\NPRIORTY.WK1                                    | Chkd:          |

## NORTH DISTRICT WATER

#### PRIORITY 1 PLANNING AREA

|      |        |       |        | MABANK      |          |            | PER CAPITA | AVG DAY | MAX DAY | MABANK  |
|------|--------|-------|--------|-------------|----------|------------|------------|---------|---------|---------|
| PLAN | ACTIVE | TOTAL | SERVED | SERVICE     | UNSERVED | POPULATION | WATER      | DEMAND  | DEMAND  | MAX DAY |
| YEAR | CONN.  | POP.  | POP.   | POP.        | POP.     | GROWTH (%) | (GCD)      | (MGD)   | (MGD)   | (MGD)   |
| 1996 | 1442   | 3067  | 2393   | 374         | 300      | 1.855      | 127        | 0.304   | 0.790   | 0.124   |
| 1997 | 1490   | 3124  | 2473   | 381         | 270      | 1.821      | 127        | 0.314   | 0.817   | 0.126   |
| 1998 | 1538   | 3181  | 2553   | 388         | 240      | 1.789      | 127        | 0.324   | 0.843   | 0.128   |
| 1999 | 1586   | 3238  | 2633   | 395         | 210      | 1.757      | 127        | 0.334   | 0.869   | 0.130   |
| 2000 | 1634   | 3295  | 2713   | 402         | 180      | 1.502      | 127        | 0.345   | 0.896   | 0.133   |
| 2001 | 1678   | 3344  | 2786   | 408         | 150      | 1.479      | 127        | 0.354   | 0.920   | 0.135   |
| 2002 | 1723   | 3394  | 2860   | 414         | 120      | 1.458      | 127        | 0.363   | 0.944   | 0.137   |
| 2003 | 1767   | 3443  | 2933   | 420         | 90       | 1.437      | 127        | 0.373   | 0.969   | 0.139   |
| 2004 | 1811   | 3492  | 3007   | 426         | 60       | 1.417      | 127        | 0.382   | 0.993   | 0.141   |
| 2005 | 1855   | 3542  | 3080   | 432         | 30       | 1.397      | 127        | 0.391   | 1.017   | 0.143   |
| 2006 | 1899   | 3591  | 3153   | 438         | 0        | 1.378      | 127        | 0.400   | 1.041   | 0.145   |
| 2007 | 1926   | 3641  | 3196   | 444         | 0        | 1.359      | 127        | 0.406   | 1.055   | 0.147   |
| 2008 | 1952   | 3690  | 3240   | 450         | 0        | 1.341      | 127        | 0.411   | 1.070   | 0.149   |
| 2009 | 1978   | 3740  | 3283   | 456         | 0        | 1.323      | 127        | 0.417   | 1.084   | 0.151   |
| 2010 | 2004   | 3789  | 3327   | 462         | 0        | 1.165      | 127        | 0.422   | 1.098   | 0.153   |
| 2011 | 2027   | 3833  | 3365   | 468         | 0        | 1.151      | 127        | 0.427   | 1.111   | 0.154   |
| 2012 | 2051   | 3878  | 3404   | 473         | 0        | 1.138      | 127        | 0.432   | 1.124   | 0.156   |
| 2013 | 2074   | 3922  | 3443   | 478         | 0        | 1.126      | 127        | 0.437   | 1.137   | 0.158   |
| 2014 | 2097   | 3966  | 3482   | 484         | 0        | 1.113      | 127        | 0.442   | 1.150   | 0.160   |
| 2015 | 2121   | 4010  | 3520   | 489         | 0        | 1.101      | 127        | 0.447   | 1.162   | 0.162   |
| 2016 | 2144   | 4054  | 3559   | 495         | 0        | 1.089      | 127        | 0.452   | 1.175   | 0.163   |
| 2017 | 2167   | 4098  | 3598   | 500         | 0        | 1.077      | 127        | 0.457   | 1.188   | 0.165   |
| 2018 | 2191   | 4142  | 3637   | 505         | 0        | 1.066      | 127        | 0.462   | 1.201   | 0.167   |
| 2019 | 2214   | 4187  | 3675   | 511         | 0        | 1.054      | 127        | 0.467   | 1.214   | 0.169   |
| 2020 | 2237   | 4231  | 3714   | 516         | 0        | 0.610      | 127        | 0.472   | 1.226   | 0.170   |
| 2021 | 2251   | 4257  | 3737   | 519         | 0        | 0.607      | 127        | 0.475   | 1.234   | 0.171   |
| 2022 | 2265   | 4282  | 3760   | 522         | 0        | 0.603      | 127        | 0.477   | 1.241   | 0.173   |
| 2023 | 2278   | 4308  | 3782   | 526         | 0        | 0.599      | 127        | 0.480   | 1.249   | 0.174   |
| 2024 | 2292   | 4334  | 3805   | 529         | 0        | 0.596      | 127        | 0.483   | 1.256   | 0.175   |
| 2025 | 2306   | 4360  | 3828   | 532         | 0        | 0.592      | 127        | 0.486   | 1.264   | 0.176   |
| 2026 | 2319   | 4386  | 3850   | <u>5</u> 35 | 0        |            | 127        | 0.489   | 1.271   | 0.177   |



| Title: EAST CEDAR CREEK FWSD WATER AND WASTEWATER MASTERPLAN |  |
|--------------------------------------------------------------|--|
| PRIORITY AREA PROJECTIONS NORTH DISTRICT                     |  |
| [ECC95301]V:\NPRIORTY.WK1                                    |  |

| Date: | 08/14/96 |
|-------|----------|
| By:   | DRJ      |
| Chkd: |          |

## NORTH DISTRICT WATER

| PRIORITY | 2 PLANNING | AREA |
|----------|------------|------|
|          |            |      |

|      | 2 PLANNI |       |                                                                                                                | MABANK  |                                                                                                                 |            | PER CAPITA | AVG DAY | MAX DAY | MABANK  |
|------|----------|-------|----------------------------------------------------------------------------------------------------------------|---------|-----------------------------------------------------------------------------------------------------------------|------------|------------|---------|---------|---------|
| PLAN | ACTIVE   | TOTAL | And a second | SERVICE | Contraction of the second s | POPULATION | WATER      | DEMAND  | DEMAND  | MAX DAY |
| YEAR | CONN.    | POP.  | POP.                                                                                                           | POP.    | POP.                                                                                                            | GROWTH (%) | (GCD)      | (MGD)   | (MGD)   | (MGD)   |
| 1996 | 1383     | 2936  | 2295                                                                                                           | 573     |                                                                                                                 | 1.855      | 127        | 0.292   | 0.758   | 0.189   |
| 1997 | 1411     | 2990  | 2343                                                                                                           | 583     | 65                                                                                                              | 1.821      | 127        | 0.298   | 0.774   | 0.193   |
| 1998 | 1440     | 3045  | 2390                                                                                                           | 594     | 61                                                                                                              | 1.789      | 127        | 0.304   | 0.789   | 0.196   |
| 1999 | 1468     | 3099  | 2437                                                                                                           | 604     | 58                                                                                                              | 1.757      | 127        | 0.310   | 0.805   | 0.200   |
| 2000 | 1497     | 3154  | 2484                                                                                                           | 615     | 55                                                                                                              | 1.502      | 127        | 0.316   | 0.820   | 0.203   |
| 2001 | 1522     | 3201  | 2526                                                                                                           | 624     | 51                                                                                                              | 1.479      | 127        | 0.321   | 0.834   | 0.206   |
| 2002 | 1547     | 3249  | 2567                                                                                                           | 633     | 48                                                                                                              | 1.458      | 127        | 0.326   | 0.848   | 0.209   |
| 2003 | 1572     | 3296  | 2609                                                                                                           | 643     | 44                                                                                                              | 1.437      | 127        | 0.331   | 0.861   | 0.212   |
| 2004 | 1597     | 3343  | 2650                                                                                                           | 652     | 41                                                                                                              | 1.417      | 127        | 0.337   | 0.875   | 0.215   |
| 2005 | 1622     | 3391  | 2692                                                                                                           | 661     | 38                                                                                                              | 1.397      | 127        | 0.342   | 0.889   | 0.218   |
| 2006 | 1647     | 3438  | 2733                                                                                                           | 670     | 34                                                                                                              | 1.378      | 127        | 0.347   | 0.903   | 0.221   |
| 2007 | 1672     | 3485  | 2775                                                                                                           | 680     | 31                                                                                                              | 1.359      | 127        | 0.352   | 0.916   | 0.224   |
| 2008 | 1697     | 3533  | 2817                                                                                                           | 689     | 27                                                                                                              | 1.341      | 127        | 0.358   | 0.930   | 0.22    |
| 2009 | 1722     | 3580  | 2858                                                                                                           | 698     | 24                                                                                                              | 1.323      | 127        | 0.363   | 0.944   | 0.231   |
| 2010 | 1747     | 3627  | 2900                                                                                                           | 707     | 21                                                                                                              | 1.165      | 127        | 0.368   | 0.957   | 0.234   |
| 2011 | 1769     | 3670  | 2937                                                                                                           | 716     | 17                                                                                                              | 1.151      | 127        | 0.373   | 0.970   | 0.236   |
| 2012 | 1792     | 3712  | 2974                                                                                                           | 724     | 14                                                                                                              | 1.138      | 127        | 0.378   | 0.982   | 0.23    |
| 2013 | 1814     | 3754  | 3012                                                                                                           | 732     | 10                                                                                                              | 1.126      | 127        | 0.382   | 0.994   | 0.24    |
| 2014 | 1837     | 3796  | 3049                                                                                                           | 740     | 7                                                                                                               | 1.113      | 127        | 0.387   | 1.007   | 0.24    |
| 2015 | 1859     | 3839  | 3087                                                                                                           | 749     | 4                                                                                                               | 1.101      | 127        | 0.392   | 1.019   | 0.24    |
| 2016 | 1882     | 3881  | 3124                                                                                                           | 757     | 0                                                                                                               | 1.089      | 127        | 0.397   | 1.032   | 0.250   |
| 2017 | 1902     | 3923  | 3158                                                                                                           | 765     | 0                                                                                                               | 1.077      | 127        | 0.401   | 1.043   | 0.25    |
| 2018 | 1923     | 3965  | 3192                                                                                                           | 773     | 0                                                                                                               | 1.066      | 127        | 0.405   | 1.054   | 0.25    |
| 2019 | 1943     | 4008  | 3226                                                                                                           | 782     | 0                                                                                                               | 1.054      | 127        | 0.410   | 1.065   | 0.25    |
| 2020 | 1964     | 4050  | 3260                                                                                                           | 790     | 0                                                                                                               | 0.610      | 127        | 0.414   | 1.076   | 0.26    |
| 2021 | 1976     | 4075  | 3280                                                                                                           | 795     | 0                                                                                                               | 0.607      | 127        | 0.417   | 1.083   | 0.26    |
| 2022 | 1988     | 4099  | 3300                                                                                                           | 799     | 0                                                                                                               | 0.603      | 127        | 0.419   | 1.090   | 0.264   |
| 2023 | 2000     | 4124  | 3320                                                                                                           | 804     | 0                                                                                                               | 0.599      | 127        | 0.422   | 1.096   | 0.26    |
| 2024 | 2012     | 4149  | 3340                                                                                                           | 809     | 0                                                                                                               | 0.596      | 127        | 0.424   | 1.103   | 0.267   |
| 2025 | 2024     | 4174  | 3360                                                                                                           | 814     | 0                                                                                                               | 0.592      | 127        | 0.427   | 1.109   | 0.26    |
| 2026 | 2036     | 4198  | 3379                                                                                                           | 819     | 0                                                                                                               |            | 127        | 0.429   | 1.116   | 0.270   |



| Title: EAST CEDAR CREEK FWSD WATER AND WASTEWATER MASTERPLAN |
|--------------------------------------------------------------|
| PRIORITY AREA PROJECTIONS NORTH DISTRICT                     |
| [ECC95301]V:\NPRIORTY.WK1                                    |

| Date: | 08/14/96 |
|-------|----------|
| By:   | DRJ      |
| Chkd: |          |

## NORTH DISTRICT WATER

### PRIORITY 3 PLANNING AREA

|      |        |       |        | MABANK  |          |            | PER CAPITA | AVG DAY | MAX DAY | MABANK  |
|------|--------|-------|--------|---------|----------|------------|------------|---------|---------|---------|
| PLAN | ACTIVE | TOTAL | SERVED | SERVICE | UNSERVED | POPULATION | WATER      | DEMAND  | DEMAND  | MAX DAY |
| YEAR | CONN.  | POP.  | POP.   | POP.    | POP.     | GROWTH (%) | (GCD)      | (MGD)   | (MGD)   | (MGD)   |
| 1996 | 118    | 257   | 195    | 0       | 62       | 1.167      | 127        | 0,025   | 0.065   | 0.000   |
| 1997 | 121    | 260   | 200    | 0       | 60       | 1.153      | 127        | 0.025   | 0.066   |         |
| 1998 | 124    | 263   | 205    | 0       | 58       | 1.140      | 127        | 0.026   | 0.068   |         |
| 1999 | 127    | 266   | 211    | 0       | 55       | 1.127      | 127        | 0.027   | 0.070   |         |
| 2000 | 130    | 269   | 216    | 0       | 53       | 1.115      | 127        | 0.027   | 0.071   | 0.000   |
| 2001 | 133    | 272   | 221    | 0       | 51       | 0.932      | 127        | 0.028   | 0.073   | 0.000   |
| 2002 | 136    | 275   | 225    | 0       | 49       | 0.923      | 127        | 0.029   | 0.074   |         |
| 2003 | 138    | 277   | 230    | 0       | 47       | 0.915      | 127        | 0.029   | 0.076   |         |
| 2004 | 141    | 280   | 235    | 0       | 45       | 0.906      | 127        | 0.030   | 0.077   |         |
| 2005 | 144    | 282   | 239    | 0       | 43       | 0.898      | 127        | 0.030   | 0.079   | 0.000   |
| 2006 | 147    | 285   | 244    | 0       | 41       | 0.890      | 127        | 0.031   | 0.080   | 0.000   |
| 2007 | 150    | 287   | 248    | 0       | 39       | 0.882      | 127        | 0.032   | 0.082   | 0.000   |
| 2008 | 152    | 290   | 253    | 0       | 37       | 0.875      | 127        | 0.032   | 0.084   | 0.000   |
| 2009 | 155    | 292   | 258    | 0       | 35       | 0.867      | 127        | 0.033   | 0.085   | 0.000   |
| 2010 | 158    | 295   | 262    | 0       | 33       | 0.859      | 127        | 0.033   | 0.087   | 0.000   |
| 2011 | 161    | 297   | 267    | 0       | 31       | 0.708      | 127        | 0.034   | 0.088   | 0.000   |
| 2012 | 163    | 299   | 271    | 0       | 29       | 0.703      | 127        | 0.034   | 0.089   | 0,000   |
| 2013 | 166    | 302   | 275    | 0       | 26       | 0.698      | 127        | 0.035   | 0.091   | 0.000   |
| 2014 | 168    | 304   | 279    | 0       | 24       | 0.693      | 127        | 0.035   | 0.092   |         |
| 2015 | 171    | 306   | 283    | 0       | 22       | 0.688      | 127        | 0,036   | 0.094   | 0.000   |
| 2016 | 173    | 308   | 288    | 0       | 20       | 0.684      | 127        | 0.037   | 0.095   | 0.000   |
| 2017 | 176    | 310   | 292    | 0       | 18       | 0.679      | 127        | 0.037   | 0.096   |         |
| 2018 | 178    | 312   | 296    | 0       | 16       | 0.675      | 127        | 0.038   | 0.098   | 0.000   |
| 2019 | 181    | 314   | 300    | 0       | 14       | 0.670      | 127        | 0.038   | 0.099   | 0.000   |
| 2020 | 183    | 316   | 304    | 0       | 12       | 0.666      | 127        | 0.039   | 0.100   |         |
| 2021 | 186    | 318   | 308    | 0       | 10       | 0.222      | 127        | 0.039   | 0.102   |         |
| 2022 | 188    | 319   | 311    | 0       | 8        | 0.222      | 127        | 0.040   | 0.103   |         |
| 2023 | 189    | 320   | 314    | . o     | 6        | 0.221      | 127        | 0.040   | 0.104   | 0.000   |
| 2024 | 191    | 321   | 317    | 0       | 4        | 0.221      | 127        | 0.040   | 0.105   | 0.000   |
| 2025 | 193    | 321   | 320    | 0       | 2        | 0.220      | 127        | 0.041   | 0.106   |         |
| 2026 | 194    | 322   | 322    | 0       | 0        |            | 127        | 0.041   | 0.106   | 0.000   |



Date: 08/14/96 By: DRJ Chkd:

| Title: EAST CEDAR CREEK FWSD WATER AND WASTEWATER MASTERPLAN |
|--------------------------------------------------------------|
| PRIORITY AREA PROJECTIONS NORTH DISTRICT                     |
| [ECC95301]V:\NPRIORTY.WK1                                    |

## NORTH DISTRICT WATER

#### NORTH WATER TOTALS

|      | <u>VIER IVI</u> |       |               | MABANK  |          |            | PER CAPITA | AVG DAY | MAX DAY | MABANK  |
|------|-----------------|-------|---------------|---------|----------|------------|------------|---------|---------|---------|
| PLAN | ACTIVE          | TOTAL | <b>SERVED</b> | SERVICE | UNSERVED | POPULATION | WATER      | DEMAND  | DEMAND  | MAX DAY |
| YEAR | CONN.           | POP.  | POP.          | POP.    | POP.     | GROWTH (%) | (GCD)      | (MGD)   | (MGD)   | (MGD)   |
| 1996 | 2942            | 6260  | 4884          | 947     | 430      | 1.827      | 127        | 0.620   | 1.613   | 0.313   |
| 1997 | 3022            | 6374  | 5016          | 964     | 394      | 1.794      | 127        | 0.637   | 1.656   | 0.318   |
| 1998 | 3101            | 6489  | 5148          | 982     | 359      | 1.762      | 127        | 0.654   | 1.700   | 0.324   |
| 1999 | 3181            | 6603  | 5281          | 999     | 323      | 1.732      | 127        | 0.671   | 1.744   | 0.330   |
| 2000 | 3261            | 6717  | 5413          | 1017    | 288      | 1.486      | 127        | 0.687   | 1.787   | 0.336   |
| 2001 | 3333            | 6817  | 5533          | 1032    | 252      | 1.458      | 127        | 0.703   | 1.827   | 0.341   |
| 2002 | 3405            | 6917  | 5652          | 1047    | 217      | 1.437      | 127        | 0.718   | 1.866   | 0.346   |
| 2003 | 3477            | 7016  | 5772          | 1063    | 181      | 1.416      | 127        | 0.733   | 1.906   | 0.351   |
| 2004 | 3549            | 7115  | 5892          | 1078    | 146      | 1.397      | 127        | 0.748   | 1.945   | 0.356   |
| 2005 | 3621            | 7215  | 6011          | 1093    | 110      | 1.377      | 127        | 0.763   | 1.985   | 0.361   |
| 2006 | 3693            | 7314  | 6130          | 1109    | 75       | 1.359      | 127        | 0.779   | 2.024   | 0.366   |
| 2007 | 3747            | 7413  | 6220          | 1124    | 70       | 1.340      | 127        | 0.790   | 2.054   | 0.371   |
| 2008 | 3801            | 7513  | 6309          | 1139    | 64       | 1.323      | 127        | 0.801   | 2.083   | 0.376   |
| 2009 | 3855            | 7612  | 6399          | 1154    | 59       | 1.305      | 127        | 0.813   | 2.113   | 0.381   |
| 2010 | 3909            | 7712  | 6488          | 1170    | 54       | 1.153      | 127        | 0.824   | 2.142   | 0.386   |
| 2011 | 3957            | 7800  | 6569          | 1183    | 48       | 1.135      | 127        | 0.834   | 2.169   | 0.391   |
| 2012 | 4006            | 7889  | 6650          | 1197    | 43       | 1.122      | 127        | 0.844   | 2.196   | 0.395   |
| 2013 | 4054            | 7977  | 6730          | 1211    | 37       | 1.109      | 127        | 0.855   |         | 0.400   |
| 2014 | 4103            | 8066  | 6810          | 1224    | 32       | 1.097      | 127        | 0.865   |         | 0.404   |
| 2015 | 4151            | 8154  | 6891          | 1238    | 26       | 1.085      | 127        | 0.875   |         | 0.409   |
| 2016 | 4199            | 8243  | 6971          | 1251    | 21       | 1.074      | 127        | 0.885   |         | 0.413   |
| 2017 | 4246            | 8331  | 7048          | 1265    | 19       | 1.062      | 127        | 0.895   |         | 0.418   |
| 2018 | 4292            | 8420  | 7125          | 1279    | 17       | 1.051      | 127        | 0.905   |         | 0.42    |
| 2019 | 4338            | 8508  | 7202          | 1292    | 14       | 1.040      | 127        | 0,915   |         | 0.427   |
| 2020 | 4385            | 8597  | 7279          | 1306    | 12       | 0.612      | 127        | 0.924   |         | 0.43    |
| 2021 | 4413            | 8650  | 7325          | 1314    | 10       | 0.592      | 127        | 0.930   |         | 0.434   |
| 2022 | 4440            | 8701  | 7371          | 1322    | 8        | 0.589      | 127        | 0.936   | 2.434   | 0.436   |
| 2023 | 4468            | 8752  | 7416          | 1330    | 6        | 0.585      | 127        | 0.942   |         | 0.436   |
| 2024 | 4495            | 8803  | 7461          | 1338    | 4        | 0.582      | 127        | 0.948   | 2.464   | 0.442   |
| 2025 | 4522            | 8855  | 7507          | 1346    | 2        | 0.579      | 127        | 0.953   | 2.479   | 0.444   |
| 2026 | 4549            | 8906  | 7552          | 1354    | 1        |            | 127        | 0.959   | 2.494   | 0.447   |



Simon W. Preese, P.E. 1900-1990 Marvin C. Nichols, P.E.

1896---1969

Date: 08/14/95 Bv: DRJ Chkd:

#### THE: EAST CEDAR CREEK FWSD WATER AND WASTEWATER MASTERPLAN PRIORITY AREA PROJECTIONS -- SOUTH DISTRICT [ECC95301]V:\SPRIORTY.WK1

#### SOUTH DISTRICT WASTEWATER

#### PRIORITY 1 PLANNING AREA

|      |        |       |        |      |          |      |            | N    | BASE 30 DAY | GROWTH 30 DAY | RESORT     | RESORT     | EODAY     | SOLDAY AND | RP FAK |
|------|--------|-------|--------|------|----------|------|------------|------|-------------|---------------|------------|------------|-----------|------------|--------|
| PLAN | ACTIVE | TOTAL | SERVED | BASE | UNSERVED |      | POPULATION |      | PER CAPITA  | PER CAPITA    | SO DAY     | PEAK       | AVG. FLOW | AVG. FLOW  | FLOW   |
| YEAR | CONN   | POP,  | POP.   | POP. | POP.     | POP. | GROWTH (%) |      | (GPCD)      |               | FLOW (MGD) | FLOW (MGD) |           | (MGD)      | (MGD)  |
| 1996 | 536    | 2454  | 863    | 863  | 1591     | 0    | 2.37       | 0.00 | 197.0       |               | 0          | 0          | 0.170     | 0.131      | 0.595  |
| 1997 | 671    | 2512  | 1080   | 863  | 1432     | 0    | 2.32       | 3.64 | 193.4       | 100.9         | 0          | 0          | 0.189     | 0.145      | 0.661  |
| 1998 | 806    | 2570  | 1298   | 863  | 1273     | 0    | 2.26       | 3.64 | 189.7       | 100.9         | 0          | 0          | 0.208     | 0.160      | 0.727  |
| 1999 | 941    | 2629  | 1515   | 863  | 1114     | 0    | 2.21       | 3.64 | 186,1       | 100.9         | 0          | 0          | 0.226     | 0.174      | 0.792  |
| 2000 | 1076   | 2687  | 1732   | 863  | 955      | 0    | 2.17       | 3.64 | 182.5       | 100.9         | 0          | 0          | 0.245     | 0.189      | 0.858  |
| 2001 | 1211   | 2745  | 1949   | 863  | 796      | 0    | 2.12       | 3.64 | 178.8       | 100.9         | 0          | 0          | 0.264     | 0.203      | 0.924  |
| 2002 | 1346   | 2803  | 2167   | 863  | 636      | 0    | 2.08       | 3.64 | 175.2       | 100.9         | 0          | 0          | 0.283     | 0.218      | 0.990  |
| 2003 | 1481   | 2861  | 2384   | 863  | 477      | 0    | 2.03       | 3.64 | 171.6       | 100.9         | 0          | 0          | 0.302     | 0.232      | 1.055  |
| 2004 | 1616   | 2919  | 2601   | 863  | 318      | 0    | 1.99       | 3.64 | 167.9       | 100.9         | 0          | 0          | 0.320     | 0.247      | 1.121  |
| 2005 | 1751   | 2978  | 2818   | 863  | 159      | 0    | 1.95       | 3.64 | 164.3       | 100.9         | 0          | 0          | 0.339     | 0.261      | 1.187  |
| 2006 | 1886   | 3036  | 3036   | 863  | 0        | 0    | 1.92       | 3.64 | 160.6       | 100.9         | 0          | 0          | 0.358     | 0.276      | 1.253  |
| 2007 | 1922   | 3094  | 3094   | 863  | 0        | 0    | 1.88       | 3.64 | 157.0       | 100.9         | 0          | •          | 0.361     | 0.278      | 1.262  |
| 2008 | 1958   | 3152  | 3152   | 863  | 0        | 0    |            | 0.00 | 157.0       | 100.9         | 0          | 0          | 0.366     | 0.282      | 1.283  |
| 2009 | 1994   | 3210  | 3210   | 863  | 0        | 0    | 1.81       | 0.00 | 157.0       | 100.9         | 0          | 0          | 0.372     | 0.287      | 1.303  |
| 2010 | 2030   | 3269  | 3268   | 863  | 0        | 0    | 1.78       | 0.00 | . 157,0     | 100.9         | 0          | 0          | 0.378     | 0.291      | 1.324  |
| 2011 | 2066   | 3327  | 3327   | 863  | 0        | 0    | 1.75       | 0.00 | 157.0       | 100.9         | 0          | 0          | 0.384     | 0.296      | 1.344  |
| 2012 | 2102   | 3385  | 3385   | 863  | 0        | 0    | 1.72       | 0.00 | 157.0       | 100.9         | 0          | 0          | 0.390     | 0.300      | 1.365  |
| 2013 | 2139   | 3443  | 3443   | 863  | 0        | 0    | 1.69       | 0.00 | 157.0       | 100.9         | 0          | 0          | 0.396     | 0.305      | 1.385  |
| 2014 | 2175   | 3501  | 3501   | 863  | 0        | 0    | 1.66       | 0.00 | 157.0       | 100.9         | 0          | 0          | 0.402     | 0.309      | 1.406  |
| 2015 | 2211   | 3559  | 3559   | 863  | 0        | 0    | 1.63       | 0.00 | 157.0       | 100.9         | 0          | 0          | 0.408     | 0.314      | 1.426  |
| 2016 | 2247   | 3618  | 3618   | 863  | 0        | 0    | 1.61       | 0.00 | 157.0       | 100.9         | 0          | 0          |           | 0.318      | 1.447  |
| 2017 | 2283   | 3676  | 3676   | 863  | 0        | 0    | 1,58       | 0.00 | 157.0       | 100.9         | 0          | 0          | *****     | 0.323      | 1.468  |
| 2018 | 2319   | 3734  | 3734   | 863  | 0        | 0    | 1.56       | 0.00 | 157.0       | 100.9         | 0          | 0          | 0.425     | 0.327      | 1.488  |
| 2019 | 2355   | 3792  | 3792   | 863  | 0        | 0    | 1.53       | 0.00 | 157.0       | 100.9         | 0          | 0          | 0.431     | 0.332      | 1.509  |
| 2020 | 2391   | 3850  | 3850   | 863  | 0        | 0    | 1.51       | 0.00 | 157.0       | 100.9         | 0          | 0          | 0.437     | 0.336      | 1.529  |
| 2021 | 2428   | 3909  | 3908   | 863  | 0        | 0    | 1.49       | 0.00 | 157.0       | 100.9         | 0          | 0          | 0.443     | 0.341      | 1.550  |
| 2022 | 2464   | 3967  | 3967   | 863  | 0        | 0    | 1.47       | 0.00 | 157.0       | 100.9         | 0          | 0          | 0.449     | 0.345      | 1.570  |
| 2023 | 2500   | 4025  | 4025   | 863  | 0        | 0    | 1.45       | 0.00 | 157.0       | 100.9         | 0          | 0          | 0.455     | 0.350      | 1.591  |
| 2024 | 2536   | 4083  | 4083   | 863  | 0        | 0    | 1.42       | 0.00 | 157.0       | 100.9         | 0          | 0          | 0.460     | 0.355      | 1.611  |
| 2025 | 2572   | 4141  | 4141   | 863  | 0        | 0    | 1.40       | 0.00 | 157.0       | 100.9         | 0          | 0          | 0.466     | 0.359      | 1.632  |
| 2026 | 2608   | 4199  | 4199   | 863  | 0        | 0    |            | 0.00 | 157.0       | 100,9         | 0          | 0          | 0.472     | 0.364      | 1.652  |



Simon W. Freese, P.E. Marvin C. Nichois, P.E.

1900-1990 1896-1969

Date: 08/14/96 Bv: DRJ Chkd:

# Title: EAST CEDAR CREEK FWSD WATER AND WASTEWATER MASTERPLAN PRIORITY AREA PROJECTIONS -- SOUTH DISTRICT [ECC95301]V:\SPRIORTY.WK1

#### SOUTH DISTRICT WASTEWATER

#### PRIORITY 2 PLANNING AREA

| PLAN | ACTIVE | TOTAL | SERVED | BASE | UNSERVED | RESORT | POPULATION |      | BASE 30 DAY<br>PER CAPITA | GROWTH 30 DAY<br>PER CAPITA | RESORT<br>30 DAY | RESORT<br>PEAK | 30 DAY | 90 DAY<br>AVG. FLOW | PEAK  |
|------|--------|-------|--------|------|----------|--------|------------|------|---------------------------|-----------------------------|------------------|----------------|--------|---------------------|-------|
| YEAR | CONN   | POP.  | POP    | POP  | POP.     |        | GROWTH (%) |      | (GPCD)                    |                             | FLOW (MGD)       |                | (MGD)  | (MGD)               | (MGD) |
| 1996 | 0      | 586   | 0      | 0    | 586      | 0      | 2.37       | 0.00 | 197.0                     |                             | 0                | 0              | 0.000  |                     | 0.00  |
| 1997 | 27     | 600   | 43     | 0    | 557      | 0      | 2.32       | 3.64 | 193.4                     | 100.9                       | 0                | 0              | 0.004  | 0.003               | 0.01  |
| 1998 | 54     | 614   | 86     | 0    | 527      | 0      | 2.26       | 3.64 | 189.7                     | 100.9                       | 0                | 0              | 0.009  | 0.007               | 0.03  |
| 1999 | 80     | 628   | 130    | 0    | 498      | 0      | 2.21       | 3.64 | 186.1                     | 100.9                       | 0                | 0              | 0.013  | 0.010               | 0.04  |
| 2000 | 107    | 642   | 173    | 0    | 469      | 0      | 2.17       | 3.64 | 182.5                     | 100.9                       | 0                | 0              | 0.017  | 0.013               | 0.00  |
| 2001 | 134    | 655   | 216    | 0    | 440      | 0      | 2.12       | 3.64 | 178.8                     | 100.9                       | 0                | 0              | 0.022  | 0.017               | 0.07  |
| 2002 | 161    | 669   | 259    | 0    | 410      | 0      | 2.08       | 3.64 | 175.2                     | 100.9                       | 0                | 0              | 0.026  | 0.020               | 0.09  |
| 2003 | 188    | 683   | 302    | 0    | 381      | 0      | 2.03       | 3.64 | 171.6                     | 100.9                       | 0                | 0              | 0.031  | 0.023               | 0.10  |
| 2004 | 215    | 697   | 346    | 0    | 352      | 0      | 1.99       | 3.64 | 167.9                     | 100.9                       | 0                | 0              | 0.035  | 0.027               | 0.12  |
| 2005 | 241    | 711   | 389    | 0    | 322      | 0      | 1.95       | 3.64 | 164.3                     | 100.9                       | 0                | 0              | 0.039  | 0.030               | 0.13  |
| 2006 | 268    | 725   | 432    | 0    | 293      | 0      | 1.92       | 3.64 | 160.6                     | 100.9                       | 0                | 0              |        | 0.034               | 0.15  |
| 2007 | 295    | 739   | 475    | 0    | 264      | 0      | 1.88       | 3.64 | 157.0                     | 100.9                       | 0                | 0              | 0.048  | 0.037               | 0.10  |
| 2008 | 322    | 753   | 518    | 0    | 234      | 0      | 1.85       | 0.00 | 157.0                     | 100.9                       | 0                | 0              | 0.052  | 0.040               | 0.18  |
| 2009 | 349    | 767   | 562    | 0    | 205      | 0      | 1,81       | 0.00 | 157.0                     | 100.9                       | 0                | 0              | 0.057  | 0.044               | 0.19  |
| 2010 | 376    | 781   | 605    | 0    | 176      | 0      | 1.78       | 0.00 | 157.0                     | 100.9                       | 0                | 0              | 0.061  | 0.047               | 0.21  |
| 2011 | 402    | 794   | 648    | 0    | 147      | 0      | 1.75       | 0.00 | 157.0                     | 100.9                       | 0                | 0              | 0.065  | 0.050               | 0.22  |
| 2012 | 429    | 808   | 691    | 0    | 117      | 0      | 1.72       | 0.00 | 157.0                     | 100.9                       | 0                | 0              | 0.070  | 0.054               | 0.24  |
| 2013 | 456    | 822   | 734    | 0    | 88       | 0      | 1.69       | 0.00 | 157.0                     | 100.9                       | 0                | 0              | 0.074  | 0.057               | 0.25  |
| 2014 | 483    | 836   | 777    | o    | 59       | 0      | 1.66       | 0.00 | 157.0                     | 100.9                       | 0                | 0              | 0.078  | 0.060               | 0.27  |
| 2015 | 510    | 850   | 821    | o    | 29       | 0      | 1.63       | 0.00 | 157.0                     | 100.9                       | 0                | 0              | 0.083  | 0.064               | 0.21  |
| 2016 | 537    | 864   | 864    | 0    | 0        | 0      | 1.61       | 0.00 | 157.0                     | 100.9                       | 0                | 0              | 0.087  | 0.067               | 0.30  |
| 2017 | 545    | 878   | 878    | 0    | 0        | Û      | 1.58       | 0.00 | 157.0                     | 100.9                       | 0                | 0              | 0.089  | 0.068               | 0.31  |
| 2018 | 554    | 892   | 892    | 0    | 0        | 0      | 1.56       | 0.00 | 157.0                     | 100.9                       | 0                | 0              | 0.090  | 0.089               | 0.31  |
| 2019 | 562    | 906   | 906    | 0    | 0        | 0      | 1.53       | 0.00 | 157.0                     | 100.9                       | 0                | 0              | 0.091  | 0.070               | 0.32  |
| 2020 | 571    | 919   | 919    | o    | 0        | 0      | 1.51       | 0.00 | 157.0                     | 100.9                       | 0                | 0              | 0.093  | 0.071               | 0.32  |
| 2021 | 580    | 933   | 933    | 0    | 0        | 0      | 1.49       | 0.00 | 157.0                     | 100.9                       | 0                | 0              | 0.094  | 0.073               | 0.3   |
| 2022 | 588    | 947   | 947    | 0    | 0        | 0      | 1.47       | 0.00 | 157.0                     | 100.9                       | Ó                | 0              | 0.096  | 0.074               | 0.3   |
| 2023 | 597    | 961   | 961    | 0    | 0        | 0      | 1.45       | 0.00 | 157.0                     | 100.9                       | 0                | 0              | 0.097  | 0.075               | 0.33  |
| 2024 | 606    | 975   | 975    | ō    | ō        | Ó      | 1.42       | 0.00 | 157.0                     | 100.9                       | Ō                | Ō              | 0.098  | 0.076               | 0.3   |
| 2025 | 614    | 989   | 989    | 0    | Ō        | 0      | 1.40       | 0.00 | 157.0                     | 100.9                       | ō                | Ō              | 0.100  | 0.077               | 0.3   |
| 2026 | 623    | 1003  | 1003   | o    | ŏ        | 0      |            | 0.00 | 157.0                     | 100.9                       | ō                | Ő              | 0.101  | 0.078               | 0.3   |



Date: 08/14/96

Chkd:

By: DRJ

| TIM: EAST CEDAR CREEK FWSD WATER AND WASTEWATER MASTERPLAN | _ |
|------------------------------------------------------------|---|
| PRIORITY AREA PROJECTIONS SOUTH DISTRICT                   |   |
| ECC95301]V:\SPRIORTY.WK1                                   |   |

#### SOUTH DISTRICT WASTEWATER

#### PRIORITY S PLANNING AREA

|      |        |       |        | ********** |          |        |            | — <b>И</b> |            | GROWTH 30 DAY | RESORT     | RESORT     | SO DAY    | SO DAY    | PEAK  |
|------|--------|-------|--------|------------|----------|--------|------------|------------|------------|---------------|------------|------------|-----------|-----------|-------|
| PLAN | ACTIVE | TOTAL | SERVED | BASE       | UNSERVED | RESORT | POPULATION | REDUCTION  | PER CAPITA | PER CAPITA    | 30 DAY     | PEAK       | AVG. FLOW | AVG. FLOW | FLOW  |
| YEAR | CONN.  | POP.  | POP.   | POP.       | POP.     | POP.   | GROWTH (%) | (GCD)      | (GPCD)     | (GPCD)        | FLOW (MGD) | FLOW (MGD) | (MGD)     | (MGD)     | (MGD) |
| 1996 | Ó      | 1792  | Ő      | 0          | 883      | 909    | 2.37       | 0.00       | 197.0      | 100.9         | 0.092      | 0.321      | 0.000     | 0.000     | 0.000 |
| 1997 | 0      | 1835  | 0      | 0          | 904      | 930    | 2.32       | 3.64       | 193.4      | 100.9         | 0.094      | 0.329      | 0.000     | 0.000     | 0.000 |
| 1998 | 0      | 1877  | 0      | 0          | 925      | 952    | 2.26       | 3.64       | 189.7      | 100.9         | 0.096      | 0.336      | 0.000     | 0.000     | 0.000 |
| 1999 | 0      | 1920  | 0      | 0          | 946      | 974    | 2.21       | 3.64       | 186.1      | 100.9         | 0.098      | 0.344      | 0.000     | 0.000     | 0.000 |
| 2000 | 0      | 1962  | o      | 0          | 967      | 995    | 2.17       | 3.64       | 182.5      | 100.9         | 0.100      | 0.351      | 0.000     | 0.000     | 0.000 |
| 2001 | 0      | 2005  | 0      | 0          | 988      | 1017   | 2.12       | 3.64       | 178.8      | 100.9         | 0.103      | 0.359      | 0.000     | 0.000     | 0.000 |
| 2002 | 0      | 2047  | 0      | 0          | 1009     | 1038   | 2.08       | 3.64       | 175.2      | 100.9         | 0.105      | 0.367      | 0.000     | 0.000     | 0.000 |
| 2003 | 0      | 2090  | 0      | 0          | 1030     | 1060   | 2.03       | 3.64       | 171.6      | 100.9         | 0.107      | 0.374      | 0.000     | 0.000     | 0.000 |
| 2004 | 0      | 2132  | 0      | 0          | 1051     | 1081   | 1.99       | 3.64       | 167.9      | 100.9         | 0.109      | 0.382      | 0.000     | 0.000     | 0.000 |
| 2005 | 0      | 2175  | 0      | oj         | 1072     | 1103   | 1.95       | 3.64       | 164.3      | 100.9         | 0.111      | 0.389      | 0.000     | 0.000     | 0.000 |
| 2006 | 0      | 2217  | 0      | 0          | 1093     | 1124   | 1.92       | 3.64       | 160.6      | 100.9         | 0.113      | 0,397      | 0.000     | 0.000     | 0.000 |
| 2007 | 47     | 2260  | 76     | 0          | 1038     | 1146   | 1.88       | 3.64       | 157.0      | 100.9         | 0.116      | 0.405      | 0.008     | 0.006     | 0.026 |
| 2008 | 94     | 2302  | 151    | 0          | 984      | 1168   | 1.85       | 0.00       | 157.0      | 100.9         | 0.118      | 0.412      | 0.015     | 0.012     | 0.051 |
| 2009 | 141    | 2345  | 227    | 0          | 929      | 1189   | 1.81       | 0.00       | 157.0      | 100.9         | 0.120      | 0.420      | 0.023     | 0.018     | 0.077 |
| 2010 | 188    | 2387  | 302    | 0          | 874      | 1211   | 1.78       | 0.00       | 157.0      | 100.9         | 0.122      | 0.428      | 0.031     | 0.023     | 0.103 |
| 2011 | 235    | 2430  | 378    | 0          | 820      | 1232   | 1.75       | 0.00       | 157.0      | 100.9         | 0.124      | 0.435      | 0.038     | 0.029     | 0.128 |
| 2012 | 282    | 2472  | 454    | 0          | 765      | 1254   | 1.72       | 0.00       | 157.0      | 100.9         | 0.127      | 0.443      | 0.046     | 0.035     | 0.154 |
| 2013 | 329    | 2515  | 529    | 0          | 710      | 1275   | 1.69       | 0.00       | 157.0      | 100.9         | 0.129      | 0.450      | 0.053     | 0.041     | 0.179 |
| 2014 | 376    | 2557  | 605    | 0          | 656      | 1297   | 1.66       | 0.00       | 157.0      | 100.9         | 0.131      | 0.458      | 0.061     | 0.047     | 0.205 |
| 2015 | 423    | 2600  | 680    | 0          | 601      | 1318   | 1.63       | 0.00       | 157.0      | 100.9         | 0.133      | 0.466      | 0.069     | 0.053     | 0.231 |
| 2016 | 470    | 2642  | 756    | 0          | 546      | 1340   | 1.61       | 0.00       | 157.0      | 100.9         | 0.135      | 0.473      | 0.076     | 0.059     | 0.256 |
| 2017 | 516    | 2685  | 832    | 0          | 492      | 1361   | 1.58       | 0.00       | 157.0      | 100.9         | 0.137      | 0.481      | 0.084     | 0.065     | 0.282 |
| 2018 | 563    | 2727  | 907    | 0          | 437      | 1383   | 1.56       | 0.00       | 157.0      | 100.9         | 0.140      | 0.488      | 0.092     | 0.070     | 0.308 |
| 2019 | 610    | 2770  | 983    | o          | 383      | 1405   | 1.53       | 0.00       | 157.0      | 100.9         | 0.142      | 0.496      | 0.099     | 0.076     | 0.333 |
| 2020 | 657    | 2812  | 1058   | 0          | 328      | 1426   | 1.51       | 0.00       | 157.0      | 100.9         | 0.144      | 0.504      | 0.107     | 0.082     | 0.359 |
| 2021 | 704    | 2855  | 1134   | 0          | 273      | 1448   | 1.49       | 0.00       | 157.0      | 100.9         | 0.146      | 0.511      | 0.114     | 0.088     | 0.384 |
| 2022 | 751    | 2897  | 1210   | o          | 219      | 1469   | 1.47       | 0.00       | 157.0      | 100.9         | 0.148      | 0.519      | 0.122     | 0.094     | 0.410 |
| 2023 | 798    | 2940  | 1285   | o          | 164      | 1491   | 1.45       | 0.00       | 157.0      | 100.9         | 0.150      | 0.526      | 0.130     | 0.100     | 0,436 |
| 2024 | 845    | 2982  | 1361   | o          | 109      | 1512   | 1.42       | 0.00       | 157.0      | 100.9         | 0.153      | 0.534      | 0.137     | 0.106     | 0,461 |
| 2025 | 892    | 3025  | 1436   | 0          | 55       | 1534   | 1.40       | 0.00       | 157.0      | 100.9         | 0.155      | 0.542      | 0,145     | 0.112     | 0,487 |
| 2026 | 939    | 3067  | 1512   | 0          | -0       | 1555   |            | 0.00       | 157.0      | 100.9         | 0.157      | 0.549      | 0,153     | 0.117     | 0.513 |



Date: 06/14/96

By: DRJ Chkd:

#### Title: EAST CEDAR CREEK FWSD WATER AND WASTEWATER MASTERPLAN PRIORITY AREA PROJECTIONS -- SOUTH DISTRICT [ECC95301]V:\SPRIORTY.WK1

#### SOUTH DISTRICT WASTEWATER

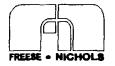
#### PRIORITY 4 PLANNING AREA

|      |        |        |        |      |            |        |            |           |        | GROWTH SO DAY | RESORT     | RESORT | SO DAY    | SO DAY    | PEAK  |
|------|--------|--------|--------|------|------------|--------|------------|-----------|--------|---------------|------------|--------|-----------|-----------|-------|
| PLAN | ACTIVE | TOTAL. | SERVED | BASE | UNSERVED   | RESORT | POPULATION | REDUCTION |        | PER CAPITA    | 30 DAY     | PEAK   | AVG. FLOW | AVG. FLOW | FLOW  |
| YEAR | CONN.  | POP.   | POP,   | POP. | POP,       | POP,   | GROWTH (%) | (GCD)     | (GPCD) | (GPCD)        | FLOW (MGD) |        | (MGD)     | (MGD)     | (MGD) |
| 1996 | 0      | 482    | 0      |      | 482        | 0      | 1.17       | 0.00      | 197.0  |               | 0.000      | 0.000  | 0.000     |           | 0.000 |
| 1997 | 0      | 488    | 0      | 0    | 488        | 0      | 1.15       | 3.64      | 193.4  | 100.9         | 0.000      | 0.000  | 0.000     | 0.000     | 0.000 |
| 1998 | 0      | 493    | 0      | 0    | 493        | 0      |            | 3.64      | 189.7  | 100.9         | 0.000      | 0.000  | 0.000     | 0.000     | 0.000 |
| 1999 | 0      | 499    | 0      | 0    | 499        | 0      | 1.13       | 3.64      | 186.1  | 100.9         | 0.000      | 0.000  | 0.000     |           | 0.000 |
| 2000 | 0      | 505    | 0      | 0    | 505        | 0      | 1.11       | 3.64      | 182.5  | 100.9         | 0.000      | 0.000  | 0.000     | 0.000     | 0.000 |
| 2001 | 0      | 510    | 0      | 0    | 510        | 0      | 0.93       | 3.64      | 178.8  | 100.9         | 0.000      | 0.000  | 0.000     | 0.000     | 0.000 |
| 2002 | 0      | 515    | 0      | 0    | 515        | 0      | 0.92       | 3.64      | 175.2  | 100.9         | 0.000      | 0.000  | 0.000     | 0.000     | 0.000 |
| 2003 | 0      | 520    | 0      | 0    | 520        | 0      | 0.91       | 3.64      | 171.6  | 100.9         | 0.000      | 0.000  | 0.000     | 0.000     | 0.000 |
| 2004 | 0      | 525    | 0      | 0    | 525        | 0      | 0.91       | 3.64      | 167.9  | 100.9         | 0.000      | 0.000  | 0.000     | 0.000     | 0.000 |
| 2005 | 0      | 529    | 0      | 0    | 529        | 0      | 0.90       | 3.64      | 164.3  | 100.9         | 0.000      | 0.000  | 0.000     | 0.000     | 0.000 |
| 2006 | 0      | 534    | 0      | 0    | 534        | 0      | 0.89       | 3.64      | 160.6  | 100.9         | 0.000      | 0.000  | 0.000     | 0.000     | 0.000 |
| 2007 | 0      | 539    | 0      | 0    | 539        | 0      | 0.88       | 3.64      | 157.0  | 100.9         | 0.000      | 0.000  | 0.000     | 0.000     | 0.000 |
| 2008 | 0      | 544    | 0      | 0    | 544        | 0      | 0.87       | 0,00      | 157.0  | 100.9         | 0.000      | 0.000  | 0.000     | 0.000     | 0.000 |
| 2009 | 0      | 548    | 0      | 0    | 548        | 0      | 0.87       | 0.00      | 157.0  | 100.9         | 0.000      | 0.000  | 0.000     | 0.000     | 0.000 |
| 2010 | 0      | 553    | 0      | 0    | 553        | 0      | 0.86       | 0.00      | 157.0  | 100.9         | 0.000      | 0.000  | 0.000     | 0.000     | 0.000 |
| 2011 | 0      | 558    | 0      | 0    | 558        | 0      | 0.71       | 0.00      | 157.0  | 100.9         | 0.000      | 0.000  | 0.000     | 0.000     | 0.000 |
| 2012 | 0      | 562    | 0      | 0    | 562        | 0      | 0.70       | 0.00      | 157.0  | 100.9         | 0.000      | 0.000  | 0.000     | 0.000     | 0.000 |
| 2013 | 0      | 566    | 0      | o    | 566        | 0      | 0.70       | 0.00      | 157.0  | 100.9         | 0.000      | 0.000  | 0.000     | 0.000     | 0.000 |
| 2014 | 0      | 570    | 0      | oi   | 570        | 0      | 0.69       | 0.00      | 157.0  | 100.9         | 0.000      | 0.000  | 0.000     | 0.000     | 0.000 |
| 2015 | 0      | 574    | 0      | ō    | 574        | 0      | 0.69       | 0.00      | 157.0  | 100.9         | 0.000      | 0.000  | 0.000     | 0.000     | 0.000 |
| 2016 | o      | 578    | Ō      | ō    | 578        | 0      | 0.68       | 0.00      | 157.0  | 100.9         | 0.000      | 0.000  | 0.000     | 0.000     | 0.000 |
| 2017 | 0      | 582    | Ö      | ō    | 582        | 0      | 0.68       | 0.00      | 157.0  | 100.9         | 0.000      | 0.000  | 0.000     | 0.000     | 0.000 |
| 2018 | 0      | 586    | Ö      | o    | 586        | 0      | 0.67       | 0.00      | 157.0  | 100.9         | 0.000      | 0.000  | 0.000     | 0.000     | 0.000 |
| 2019 | ō      | 589    | o      | ō    | 589        | Ō      | 0.67       | 0.00      | 157.0  | 100.9         | 0.000      | 0.000  | 0.000     | 0.000     | 0.000 |
| 2020 | o      | 593    | 0      | 0    | 593        | o      | 0.67       | 0.00      | 157.0  | 100.9         | 0.000      | 0.000  | 0.000     | 0.000     | 0.000 |
| 2021 | o      | 597    | ō      | ō    | 597        | Ō      | 0.22       | 0.00      | 157.0  | 100.9         | 0.000      | 0.000  | 0.000     | 0.000     | 0.000 |
| 2022 | ō      | 599    | ō      | ō    | 599        | ō      | 0.22       | 0.00      | 157.0  | 100.9         | 0.000      | 0.000  | 0.000     | 0.000     | 0.000 |
| 2023 | ō      | 600    | ň      | ō    | 600        | Ō      | 0.22       | 0.00      | 157.0  | 100.9         | 0.000      | 0.000  | 0.000     | 0.000     | 0.000 |
| 2024 | õ      | 601    | o      | ō    | 601        | Ő      | 0.22       | 0.00      | 157.0  | 100.9         | 0.000      | 0.000  | 0.000     | 0.000     | 0.000 |
| 2025 | ō      | 603    | ō      | 0    | 603        | 0      | 0.22       | 0.00      | 157.0  | 100.9         | 0.000      | 0.000  | 0.000     | 0.000     | 0.000 |
| 2026 | ŏ      | 604    | ŏ      | ŏÌ   | 604        | ő      | 0.220      | 0.00      | 157.0  | 100.9         | 0.000      | 0.000  | 0.000     | 0.000     | 0.000 |
| 2028 |        | 607    | 63     | 0    | 544        | 0      | 0.220      | 0.00      | 157.0  | 100.9         | 0.000      | 0.000  | 0.006     | 0.005     | 0.020 |
| 2030 | 78     | 609    | 126    | ő    | 483        | Ő      | 0.220      | 0.00      | 157.0  | 100.9         | 0.000      | 0.000  | 0.013     | 0.010     | 0.040 |
| 2030 | 118    | 612    | 189    | ő    | 423        | 0      | 0.220      | 0.00      | 157.0  | 100.9         | 0.000      | 0.000  | 0.019     | 0.015     | 0.060 |
| 2032 | 157    | 612    | 252    | 0    | 362        | 0      | 0.220      | 0.00      | 157.0  | 100.9         | 0.000      | 0.000  | 0.025     | 0.020     | 0.080 |
| 2034 | 196    | 615    | 252    | 0    | 362<br>302 | 0      | 0.220      | 0.00      | 157.0  | 100.9         | 0.000      | 0.000  | 0.025     | 0.020     | 0.080 |
|      |        |        |        |      |            |        |            |           |        |               |            | 0.000  | 0.032     | 0.029     | 0.100 |
| 2038 | 235    | 620    | 379    | 0    | 242        | 0      | 0.220      | 0.00      | 157.0  | 100.9         | 0.000      |        |           |           |       |
| 2040 | 274    | 623    | 442    | 0    | 181        | 0      | 0.220      | 0.00      | 157.0  | 100.9         | 0.000      | 0.000  | 0.045     | 0.034     | 0.140 |
| 2042 | 314    | 625    | 505    | 0    | 121        | 0      | 0.220      | 0.00      | 157.0  | 100.9         | 0.000      | 0.000  | 0.051     | 0.039     | 0.160 |
| 2044 | 353    | 628    | 568    | 0    | 60         | 0      | 0.220      | 0.00      | 157.0  | 100.9         | 0.000      | 0.000  | 0.057     | 0.044     | 0.181 |
| 2046 | 392    | 631    | 631    | 0    | 0          | 0      |            | 0.00      | 157.0  | 100,9         | 0.000      | 0.000  | 0.064     | 0.049     | 0.201 |



Simon W. Preese, P.E. 1900-1990 Marvin C. Nichols, P.E.

1896-1969

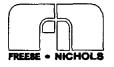

Date: 08/14/96 DRJ Bv: Chkd:

# TIN: EAST CEDAR CREEK FWSD WATER AND WASTEWATER MASTERPLAN PRIORITY AREA PROJECTIONS -- SOUTH DISTRICT [ECC95301]V:\SPRIORTY.WK1

#### SOUTH DISTRICT WASTEWATER

#### SOUTH WASTEWATER TOTALS

|      | SIEWAIE |       |        |      |          |        |            | И         | • · · · · · · · · · · · · · · · · · · · | GROWTH SO DAY | RESORT     | RESORT     | SO DAY    | 90 DAY    | PEAK  |
|------|---------|-------|--------|------|----------|--------|------------|-----------|-----------------------------------------|---------------|------------|------------|-----------|-----------|-------|
| PLAN | ACTIVE  | TOTAL | SERVED | BASE | UNSERVED | RESORT | POPULATION | REDUCTION | PER CAPITA                              | PER CAPITA    | 30 DAY     | PEAK       | AVG. FLOW | AVG. FLOW | FLOW  |
| YEAR | CONN    | POP.  | POP.   | POP. | POP.     | POP.   | GROWTH (%) | (GCD)     | (GPCD)                                  | (GPCD)        | FLOW (MGD) | FLOW (MGD) | (MGD)     | (MGD)     | (MGD) |
| 1998 | 536     | 5315  | 863    | 863  | 3543     | 909    | 2.07       | 0.00      | 197.00                                  | 100.90        | 0.092      | 0.321      | 0.170     | 0.131     | 0.595 |
| 1997 | 698     | 5435  | 1123   | 863  | 3381     | 930    | 2.03       | 3.64      | 193.36                                  | 100.90        | 0.094      | 0.329      | 0.193     | 0.149     | 0.676 |
| 1998 | 860     | 5555  | 1384   | 863  | 3219     | 952    | 1.98       | 3.64      | 189.73                                  | 100.90        | 0.096      | 0.336      | 0.216     | 0.167     | 0.757 |
| 1999 | 1021    | 5675  | 1644   | 863  | 3057     | 974    | 1.94       | 3.64      | 186.09                                  | 100.90        | 0.098      | 0.344      | 0.239     | 0.184     | 0.838 |
| 2000 | 1183    | 5795  | 1905   | 863  | 2895     | 995    | 1.90       | 3.64      | 182.46                                  | 100.90        | 0.100      | 0.351      | 0.263     | 0.202     | 0.919 |
| 2001 | 1345    | 5916  | 2165   | 863  | 2734     | 1017   | 1.82       | 3.64      | 178.82                                  | 100.90        | 0.103      | 0.359      | 0.286     | 0.220     | 1.000 |
| 2002 | 1507    | 6035  | 2426   | 863  | 2571     | 1038   | 1.79       | 3.64      | 175.19                                  | 100.90        | 0.105      | 0.367      | 0.309     | 0.238     | 1.081 |
| 2003 | 1668    | 6154  | 2686   | 863  | 2408     | 1060   | 1.75       | 3.64      | 171.55                                  | 100.90        | 0.107      | 0.374      | 0.332     | 0.256     | 1.162 |
| 2004 | 1830    | 6274  | 2947   | 863  | 2246     | 1081   | 1.72       | 3.64      | 167.92                                  | 100.90        | 0.109      | 0.382      | 0.355     | 0.273     | 1.243 |
| 2005 | 1992    | 6393  | 3207   | 863  | 2083     | 1103   | 1.69       | 3.64      | 164.28                                  | 100.90        | 0.111      | 0.389      | 0.378     | 0.291     | 1.324 |
| 2006 | 2154    | 6512  | 3468   | 863  | 1920     | 1124   | 1.66       | 3.64      | 160.65                                  | 100.90        | 0.113      | 0.397      | 0.401     | 0.309     | 1.405 |
| 2007 | 2264    | 6632  | 3645   | 863  | 1841     | 1146   | 1.63       | 3.64      | 157.01                                  | 100.90        | 0.116      | 0.405      | 0.416     | 0.320     | 1.456 |
| 2008 | 2374    | 6751  | 3822   | 863  | 1762     | 1168   | 1.60       | 0.00      | 157.01                                  | 100.90        | 0.118      | 0.412      | 0.434     | 0.334     | 1.517 |
| 2009 | 2484    | 6870  | 3999   | 863  | 1683     | 1189   | 1.58       | 0.00      | 157.01                                  | 100.90        | 0.120      | 0.420      | 0.452     | 0.348     | 1.578 |
| 2010 | 2594    | 6990  | 4176   | 863  | 1603     | 1211   | 1.55       | 0.00      | 157.01                                  | 100.90        | 0.122      | 0.428      | 0.470     | 0.362     | 1.640 |
| 2011 | 2703    | 7109  | 4353   | 863  | 1524     | 1232   | 1.49       | 0.00      | 157.01                                  | 100.90        | 0.124      | 0.435      | 0.488     | 0.375     | 1.701 |
| 2012 | 2813    | 7227  | 4530   | 863  | 1444     | 1254   | 1.46       | 0.00      | 157.01                                  | 100.90        | 0.127      | 0.443      | 0.505     | 0.389     | 1.763 |
| 2013 | 2923    | 7346  | 4706   | 863  | 1364     | 1275   | 1.44       | 0.00      | 157.01                                  | 100.90        | 0.129      | 0.450      | 0.523     | 0.403     | 1.824 |
| 2014 | 3033    | 7464  | 4883   | 863  | 1284     | 1297   | 1.42       | 0.00      | 157.01                                  | 100.90        | 0.131      | 0.458      | 0.541     | 0.417     | 1.886 |
| 2015 | 3143    | 7583  | 5060   | 863  | 1204     | 1318   | 1.40       | 0.00      | 157.01                                  | 100.90        | 0.133      | 0.466      | 0.559     | 0.430     | 1.947 |
| 2016 | 3253    | 7702  | 5237   | 863  | 1124     | 1340   | 1.38       | 0.00      | 157.01                                  | 100.90        | 0.135      | 0.473      | 0.577     | 0.444     | 2.008 |
| 2017 | 3345    | 7820  | 5385   | 863  | 1073     | 1361   | 1.36       | 0.00      | 157.01                                  | 100.90        | 0.137      | 0.481      | 0.592     | 0.456     | 2.059 |
| 2018 | 3436    | 7939  | 5533   | 863  | 1023     | 1383   | 1.34       | 0.00      | 157.01                                  | 100.90        | 0.140      | 0.488      | 0.607     | 0.467     | 2.111 |
| 2019 | 3528    | 8057  | 5680   | 863  | 972      | 1405   | 1.32       | 0.00      | 157.01                                  | 100.90        | 0.142      | 0.496      | 0.622     | 0.479     | 2.162 |
| 2020 | 3620    | 8176  | 5828   | 863  | 921      | 1426   | 1.30       | 0.00      | 157.01                                  | 100.90        | 0.144      | 0.504      | 0.636     | 0.490     | 2.213 |
| 2021 | 3712    | 8294  | 5976   | 863  | 871      | 1448   | 1.17       | 0.00      | 157.01                                  | 100.90        | 0.145      | 0.511      | 0.651     | 0.502     | 2.264 |
| 2022 | 3803    | 8410  | 6123   | 863  | 817      | 1469   | 1.16       | 0.00      | 157.01                                  | 100.90        | 0.148      | 0.519      | 0.666     | 0.513     | 2.315 |
| 2023 | 3895    | 8526  | 6271   | 863  | 764      | 1491   | 1.14       | 0.00      | 157.01                                  | 100.90        | 0.150      | 0.526      | 0.681     | 0.525     | 2.366 |
| 2024 | 3987    | 8642  | 6419   | 863  | 711      | 1512   | 1.12       | 0.00      | 157.01                                  | 100.90        | 0.153      | 0.534      | 0.696     | 0.536     | 2.417 |
| 2025 | 4079    | 8758  | 6566   | 863  | 657      | 1534   | 1.11       | 0.00      | 157.01                                  | 100.90        | 0,155      | 0.542      | 0.711     | 0.547     | 2.468 |
| 2026 | 4170    | 8874  | 6714   | 863  | 604      | 1555   | 0.06       | 0.00      | 157.01                                  | 100.90        | 0.157      | 0.549      | 0.726     | 0.559     | 2.519 |

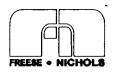



Date: 08/14/96 By: DRJ Chkd:

#### TIM: EAST CEDAR CREEK FWSD WATER AND WASTEWATER MASTERPLAN PRIORITY AREA PROJECTIONS -- SOUTH DISTRICT [ECC95301]V:\SPRIORTY.WK1

#### SOUTH DISTRICT WATER

|      | PLANNIN | IG AHEA |        |         |      |                  |         |          |            |            |                                         |          |           |        |       |       |
|------|---------|---------|--------|---------|------|------------------|---------|----------|------------|------------|-----------------------------------------|----------|-----------|--------|-------|-------|
|      |         |         |        | RESORT  | P.S. | LAKESHORE        |         |          |            | PER CAPITA | 2 C C C C C C C C C C C C C C C C C C C |          | LAKESHORE |        |       |       |
| PLAN | ACTIVE  | TOTAL   | SERVED | SERVICE |      | SERVICE          | SERVICE | UNSERVED | POPULATION |            | MAX DAY                                 | 1.5 mile | MAX DAY   | DEMAND |       |       |
| YEAR | CONN    | POP.    | POP.   | POP.    | POP. | POP.             | POP.    | POP,     | GROWTH (%) | (GCD)      | (MGD)                                   | (MGD)    | (MGD)     | (MGD)  | (MGD) | (MGD) |
| 1998 | 1524    | 2454    | 2454   |         | 0    | -                | -       | 0        | 2.37       | 115.38     | 0.000                                   | 0.000    | 0.000     | 0.000  | 0.283 | 0.773 |
| 1997 | 1560    | 2512    | 2512   | 0       | 0    | -                | 0       | 0        | 2.32       | 115.38     | 0.000                                   | 0.000    | 0.000     | 0.000  | 0.290 | 0.791 |
| 1998 | 1596    | 2570    | 2570   | 0       | 0    | 0                | 0       | 0        | 2.26       | 115.38     | 0.000                                   | 0.000    | 0.000     | 0.000  | 0.297 | 0.810 |
| 1999 | 1633    | 2629    | 2628   | 0       | 0    | [ <b>0</b> ]     | 0       | Ó        | 2.21       | 115.38     | 0.000                                   | 0.000    | 0.000     | 0.000  | 0.303 | 0.828 |
| 2000 | 1669    | 2687    | 2687   | 0       | 0    |                  | 0       | 0        | 2.17       | 115.38     | 0.000                                   | 0.000    | 0.000     | 0.000  | 0.310 |       |
| 2001 | 1705    | 2745    | 2745   | 0       | 0    | ( <sup>-</sup> 1 | 0       | 0        | 2,12       | 115.38     | 0.000                                   | 0.000    | 0.000     | 0.000  | 0.317 | 0.865 |
| 2002 | 1741    | 2803    | 2803   | 0       | 0    | 0                | 0       | 0        | 2.08       | 115.38     | 0.000                                   | 0.000    | 0.000     | 0.000  | 0.323 | 0.883 |
| 2003 | 1777    | 2861    | 2851   | 0       | 0    | 0                | 0       | 0        | 2.03       | 115.38     | 0.000                                   | 0.000    | 0.000     | 0.000  | 0.330 | 0.901 |
| 2004 | 1813    | 2919    | 2919   | 0       | 0    | 0                | 0       | 0        | 1.99       | 115.38     | 0.000                                   | 0.000    | 0.000     | 0.000  | 0.337 | 0.920 |
| 2005 | 1849    | 2978    | 2978   | 0       | 0    | 0                | 0       | 0        |            | 115.38     | 0.000                                   | 0.000    | 0.000     | 0.000  | 0.344 | 0.938 |
| 2006 | 1886    | 3036    | 3036   | 0       | 0    | -                | 0       | 0        |            | 115.38     | 0.000                                   | 0.000    | 0.000     | 0.000  | 0.350 | 0.956 |
| 2007 | 1922    | 3094    | 3094   | 0       | 0    | 0                | 0       | 0        | 1.88       | 115.38     | 0.000                                   | 0.000    | 0.000     | 0.000  | 0.357 | 0.975 |
| 2008 | 1958    | 3152    | 3152   | 0       | 0    | 0                | 0       | 0        | 1.85       | 115.38     | 0.000                                   | 0.000    | 0.000     | 0.000  | 0.364 | 0.993 |
| 2009 | 1994    | 3210    | 3210   | 0       | 0    | 0                | 0       | 0        | 1.81       | 115.38     | 0.000                                   | 0.000    | 0.000     | 0.000  | 0.370 | 1.011 |
| 2010 | 2030    | 3269    | 3268   | 0       | 0    | 0                | 0       | 0        | 1.78       | 115.38     | 0.000                                   | 0.000    | 0.000     | 0.000  | 0.377 | 1.030 |
| 2011 | 2066    | 3327    | 3327   | 0       | 0    | 0                | 0       | 0        | 1.75       | 115.38     | 0.000                                   | 0.000    | 0.000     | 0.000  | 0.384 | 1.048 |
| 2012 | 2102    | 3385    | 3385   | 0       | 0    | 0                | 0       | 0        | 1.72       | 115.38     | 0.000                                   | 0.000    | 0.000     | 0.000  | 0.391 | 1.065 |
| 2013 | 2138    | 3443    | 3443   | 0       | 0    | 0                | 0       | 0        | 1.69       | 115.38     | 0.000                                   | 0.000    | 0.000     | 0.000  | 0.397 | 1.084 |
| 2014 | 2175    | 3501    | 3501   | 0       | 0    | j oj             | 0       | · 0      | 1.66       | 115.38     | 0.000                                   | 0.000    | 0.000     | 0.000  | 0.404 | 1.103 |
| 2015 | 2211    | 3559    | 3559   | 0       | 0    | 0                | 0       | 0        | 1.63       | 115.38     | 0.000                                   | 0.000    | 0.000     | 0.000  | 0.411 | 1.121 |
| 2016 | 2247    | 3618    | 3618   | 0       | 0    | 0                | 0       | 0        | 1.61       | 115.38     | 0.000                                   | 0.000    | 0.000     | 0.000  | 0.417 | 1.139 |
| 2017 | 2283    | 3676    | 3676   | 0       | 0    | 0                | 0       | 0        | 1.58       | 115.38     | 0.000                                   | 0.000    | 0.000     | 0.000  | 0.424 | 1.158 |
| 2018 | 2319    | 3734    | 3734   | 0       | 0    | 0                | 0       | 0        | 1.56       | 115.38     | 0.000                                   | 0.000    | 0.000     | 0.000  | 0.431 | 1.176 |
| 2019 | 2355    | 3792    | 3792   | 0       | 0    | 0                | 0       | 0        | 1.53       | 115.38     | 0.000                                   | 0.000    | 0.000     | 0.000  | 0.438 | 1.194 |
| 2020 | 2391    | 3850    | 3850   | 0       | 0    | 0                | 0       | 0        | 1.51       | 115.38     | 0.000                                   | 0.000    | 0.000     | 0.000  | 0.444 | 1.213 |
| 2021 | 2428    | 3909    | 3908   | 0       | 0    | 0                | 0       | 0        | 1.49       | 115.38     | 0.000                                   | 0.000    | 0.000     | 0.000  | 0.451 | 1.231 |
| 2022 | 2464    | 3967    | 3967   | 0       | 0    | j o              | 0       | 0        | 1.47       | 115.38     | 0.000                                   | 0.000    | 0.000     | 0.000  | 0.458 | 1.249 |
| 2023 | 2500    | 4025    | 4025   | 0       | 0    | 0                | 0       | 0        | 1.45       | 115.38     | 0.000                                   | 0.000    | 0.000     | 0.000  | 0.484 | 1.268 |
| 2024 | 2536    | 4083    | 4083   | o       | 0    | 0                | o       | 0        | 1.42       | 115.38     | 0.000                                   | 0.000    | 0.000     | 0.000  | 0.471 | 1.280 |
| 2025 | 2572    | 4141    | 4141   | 0       | 0    | ) ol             | Ó       | Ō        | 1.40       | 115.38     | 0.000                                   | 0.000    | 0.000     | 0.000  | 0.478 | 1.304 |
| 2026 | 2608    | 4199    | 4199   | o       | ō    | ō                | Ő       | ō        |            | 115.38     | 0.000                                   | 0.000    | 0.000     | 0.000  | 0.485 | 1.323 |




Date: 06/14/96 By: DRJ Chkd:

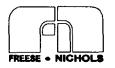
#### Title: EAST CEDAR CREEK FWSD WATER AND WASTEWATER MASTERPLAN PRIORITY AREA PROJECTIONS - - SOUTH DISTRICT [ECC95301]V:\SPRIORTY.WK1

#### SOUTH DISTRICT WATER

|      |        |      |      | RESORT  | P.S.    | LAKESHORE | CAROLYNN |      |            | PER CAPITA | RESORT | P.S.    | LAKESHORE | CAROLYNN | AVG DAY | MAX DAY |
|------|--------|------|------|---------|---------|-----------|----------|------|------------|------------|--------|---------|-----------|----------|---------|---------|
| PLAN | ACTIVE |      |      | SERVICE | SERVICE | SERVICE   | SERVICE  |      | POPULATION | WATER      |        | MAX DAY |           | DEMAND   | DEMAND  |         |
| YEAR | CONN   | POP, | POP. | POP.    | POP,    | POP.      | POP.     | POP. | GROWTH (%) | (GCD)      | (MGD)  | (MGD)   | (MGD)     | (MGD)    | (MGP)   | (MGD)   |
| 1996 | 236    | 586  | 380  | 127     | 0       | 0         | 0        | 80   | 2.37       | 115.38     | 0.040  | 0.000   | 0.000     | 0.000    | 0.044   | 0.12    |
| 1997 | 245    | 600  | 395  | 130     | 0       | 0         | 0        | 76   | 2.32       | 115.38     | 0.041  | 0.000   | 0.000     | 0.000    | 0.046   | 0.12    |
| 1998 | 254    | 614  | 409  | 133     | 0       | 0         | 0        | 72   | 2.26       | 115.38     | 0.042  | 0.000   | 0.000     | 0.000    | 0.047   | 0.12    |
| 1999 | 264    | 628  | 424  | 136     | 0       | 0         | 0        | 68   | 2.21       | 115.38     | 0.043  | 0.000   | 0.000     | 0.000    | 0.049   | 0.13    |
| 2000 | 273    | 642  | 439  | 139     | 0       | 0         | ) 0      | 64   | 2.17       | 115.38     | 0.044  | 0.000   | 0.000     | 0.000    | 0.051   | 0.13    |
| 2001 | 282    | 655  | 454  | 142     | 0       | 0         | 0        | 60   | 2.12       | 115.38     | 0.045  | 0.000   | 0.000     | 0.000    | 0.052   | 0.14    |
| 2002 | 291    | 669  | 469  | 145     | 0       | 0         | 0        | 56   | 2.08       | 115.38     | 0.046  | 0.000   | 0.000     | 0.000    | 0.054   | 0.14    |
| 2003 | 301    | 683  | 484  | 148     | 0       | 0         | 0        | 52   | 2.03       | 115.38     | 0.047  | 0.000   | 0.000     | 0.000    | 0.056   | 0.15    |
| 2004 | 310    | 697  | 499  | 151     | 0       | 0         | 0        | 48   | 1.99       | 115.38     | 0.047  | 0.000   | 0.000     | 0.000    | 0.058   | 0.15    |
| 2005 | 319    | 711  | 514  | 154     | 0       | 0         | 0        | 44   | 1.95       | 115.38     | 0.048  | 0.000   | 0.000     | 0.000    | 0.059   | 0.162   |
| 2006 | 328    | 725  | 529  | 157     | 0       | 0         | 0        | 40   | 1.92       | 115.38     | 0.049  | 0.000   | 0.000     | 0.000    | 0.061   | 0.167   |
| 2007 | 338    | 739  | 543  | 160     | 0       | 0         | 0        | 36   | 1.88       | 115.38     | 0.050  | 0.000   | 0.000     | 0.000    | 0.063   | 0.17    |
| 2008 | 347    | 753  | 558  | 163     | 0       | 0         | 0        | 32   | 1.85       | 115.38     | 0.051  | 0.000   | 0.000     | 0.000    | 0.064   | 0.170   |
| 2009 | 356    | 767  | 573  | 166     | 0       | 0         | 0        | 28   | 1.81       | 115.38     | 0.052  | 0.000   | 0.000     | 0.000    | 0.066   | 0.181   |
| 2010 | 365    | 781  | 588  | 169     | 0       | 0         | 0        | 24   | 1.78       | 115.38     | 0.053  | 0.000   | 0.000     | 0.000    | 0.068   | 0.185   |
| 2011 | 375    | 794  | 603  | 172     | . 0     | 0         | 0        | 20   | 1.75       | 115.38     | 0.054  | 0.000   | 0.000     | 0.000    | 0.070   | 0.190   |
| 2012 | 384    | 808  | 618  | 175     | 0       | 0         | 0        | 16   | 1.72       | 115.38     | 0.055  | 0.000   | 0.000     | 0.000    | 0.071   | 0.195   |
| 2013 | 393    | 822  | 633  | 178     | 0       | 0         | 0        | 12   | 1.69       | 115.38     | 0.056  | 0.000   | 0.000     | 0.000    | 0.073   | 0.199   |
| 2014 | 402    | 836  | 648  | 181     | 0       | 0         | 0        | 8    | 1.66       | 115.38     | 0.057  | 0.000   | 0.000     | 0.000    | 0.075   | 0.204   |
| 2015 | 412    | 850  | 663  | 184     | 0       | 0         | 0        | 4    | 1.63       | 115.38     | 0.058  | 0.000   | 0.000     | 0.000    | 0.076   | 0.200   |
| 2016 | 420    | 864  | 677  | 187     | 0       | 0         | 0        | 0    | 1.61       | 115.38     | 0.059  | 0.000   | 0.000     | 0.000    | 0.078   | 0.213   |
| 2017 | 427    | 878  | 688  | 190     | 0       | 0         | 0        | 0    | 1.58       | 115.38     | 0.060  | 0,000   | 0.000     | 0.000    | 0.079   | 0.217   |
| 2018 | 434    | 892  | 699  | 193     | ol      | 0         | l 0      | l o  | 1.56       | 115.38     | 0.061  | 0.000   | 0.000     | 0.000    | 0.081   | 0.220   |
| 2019 | 441    | 906  | 710  | 196     | 0       | 0         | 0        | 0    | 1.53       | 115.38     | 0.062  | 0.000   | 0.000     | 0.000    | 0.082   | 0.224   |
| 2020 | 448    | 919  | 721  | 199     | 0       | 0         | 0        | 0    | 1.51       | 115.38     | 0.063  | 0.000   | 0.000     | 0.000    | 0.083   | 0.227   |
| 2021 | 454    | 933  | 731  | 202     | 0       | 0         | 0        | 0    | 1.49       | 115.38     | 0.064  | 0.000   | 0.000     | 0.000    | 0.084   | 0.230   |
| 2022 | 461    | 947  | 742  | 205     | 0       | Ō         | Ö        | Ó    | 1.47       | 115.38     | 0.064  | 0.000   | 0.000     | 0.000    | 0.086   | 0.234   |
| 2023 | 468    | 961  | 753  | 208     | 0       | 0         | 0        | 0    | 1.45       | 115.38     | 0.065  | 0,000   | 0.000     | 0.000    | 0.087   | 0.237   |
| 2024 | 475    | 975  | 764  | 211     | Ō       | Ō         | l õ      | Ō    | 1.42       | 115.38     | 0.066  | 0.000   | 0.000     | 0.000    | 0.088   | 0.241   |
| 2025 | 481    | 989  | 775  | 214     | o       | 0         | 0        | Ŏ    | 1.40       | 115.38     | 0.067  | 0.000   | 0.000     | 0.000    | 0.089   | 0.244   |
| 2026 | 488    | 1003 | 786  | 217     | o       | ō         | i o      | 0    |            | 115.38     | 0.068  | 0.000   | 0.000     | 0.000    | 0.091   | 0.248   |



Simon W. Freezo, P.E. 1900-1990 Marvin C. Nichola, P.E. 1896-1969


> Date: 08/14/98 By: DRJ Chkd:

#### Title: EAST CEDAR CREEK FWSD WATER AND WASTEWATER MASTERPLAN PRIORITY AREA PROJECTIONS - - SOUTH DISTRICT [ECC95301]V:\SPRIORTY.WK1

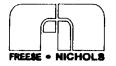
#### SOUTH DISTRICT WATER

#### PRIORITY 3 PLANNING AREA

| PHORITE      |        |              |        | ;{=;{=;{0};;T | P.S. |          | CAROLYNN   |          |              | PER CAPITA       | 1125011 | P.8.    | LAKESHORE      | CAROLYNN | AVG DAY | MAX DAY |
|--------------|--------|--------------|--------|---------------|------|----------|------------|----------|--------------|------------------|---------|---------|----------------|----------|---------|---------|
| PLAN         | ACTIVE | TOTAL        | SERVED | SERVICE       |      | SERVICE  | SERVICE    | UNSERVED | POPULATION   | WATER            | MAX DAY | MAX DAY | MAX DAY        | DEMAND   | DEMAND  | DEMAND  |
| YEAR         | CONN   | POP.         | POP.   | POP.          | POP. | POP.     | POP.       | POP,     | GROWTH (%)   | (GCD)            | (MGD)   | (MGD)   | (MGD)          | (MGD)    | (MGD)   | (MGD)   |
| 1996         | 0      | 1792         | 0      | 1162          | 337  | 71       | 222        | 0        | 2.37         | 115.38           | 0.366   | 0.106   | 0.022          | 0.070    | 0.000   | 0.000   |
| 1997         | 0      |              | 0      | 1190          | 345  | 73       | 228        | 0        | 2.32         | 115.38           | 0.375   | 0.109   | 0.023          | 0.072    | 0.000   | 0.000   |
| 1998         | 0      |              | 0      |               | 353  | 74       | 233        | 0        |              | 115.38           | 0.383   | 0.111   | 0.023          | 0.073    | 0.000   | 0.000   |
| 1999         | 0      | 1920         | 0      |               | 361  | 76       | 238        | 0        | 2.21         | 115.38           | 0.392   | 0.114   | 0.024          | 0.075    | 0.000   | 0.000   |
| 2000         | 0      | 1962         | 0      |               | 368  | 78       | 243        | 0        | 2.17         | 115.38           | 0,401   | 0.116   | 0.025          | 0.077    | 0.000   | 0.000   |
| 2001         | 0      | 2005         | 0      | 1300          | 376  | 79       | 249        | 0        | 2.12         | 115.38           | 0.409   | 0.119   | 0.025          | 0.078    | 0.000   | 0.000   |
| 2002         | 0      | 2047         | 0      | 1327          | 384  | 81       | 254        | 0        | 2.08         | 115.38           | 0.418   | 0.121   | 0.026          | 0.080    | 0.000   | 0.000   |
| 2003         | 0      | 2090         | 0      |               | 392  | 83       | 259        | 0        | 2.03         | 115.38           | 0.427   | 0.124   | 0.026          | 0.082    | 0.000   | 0.000   |
| 2004         | 0      | 2132         | 0      |               | 400  | 85       | 265        | 0        | 1.99         | 115.38           | 0.435   | 0.126   | 0.027          | 0.083    | 0.000   | 0.000   |
| 2005         | 0      | 2175         | 0      |               | 408  | 86       | 270        | 0        | 1.95         | 115.38           | 0.444   | 0.129   | 0.027          | 0.085    | 0.000   | 0.000   |
| 2006         | 0      |              | 0      |               | 416  | 88<br>90 | 275        | 0        | 1.92         | 115.38           | 0.453   | 0.131   | 0.028          | 0.087    | 0.000   | 0.000   |
| 2007         |        | 2260<br>2302 | 0      |               | 432  | 90<br>91 | 280        | 0        | 1.88         | 115.38           | 0.462   | 0.134   | 0.028<br>0.029 | 0.090    | 0.000   | 0.000   |
| 2008<br>2009 | 0      | 2302         | 0      | 1520          | 440  | 93       | 286<br>291 | 0        | 1.85         | 115.38<br>115.38 | 0.479   | 0.130   | 0.029          | 0.092    | 0.000   | 0.000   |
| 2010         | 0      | 2345         | 0      | 1548          | 448  | 95       | 296        | 0        | 1.81<br>1.78 | 115.38           | 0.479   | 0.139   | 0.030          | 0.092    | 0.000   | 0.000   |
| 2010         | ň      | 2430         | ŏ      | 1575          | 456  | 96       | 301        | 0        | 1.75         | 115.38           | 0.496   | 0.144   | 0.030          | 0.095    | 0.000   | 0.000   |
| 2012         | 0      | 2472         | o o    | 1603          | 464  | 98       | 307        | 0        | 1.73         | 115.38           | 0.505   | 0.146   | 0.031          | 0.097    | 0.000   | 0.000   |
| 2013         | ŏ      | 2515         | o      | 1631          | 472  | 100      | 312        | ň        | 1.69         | 115.38           | 0.514   | 0.149   | 0.031          | 0.098    | 0.000   | 0.000   |
| 2014         | 0      | 2557         | ō      | 1658          | 480  | 101      | 317        | ŏ        | 1.66         | 115.38           | 0.522   | 0.151   | 0.032          | 0.100    | 0.000   | 0.000   |
| 2015         | ō      | 2600         | Ō      | 1686          | 488  | 103      | 323        | Ő        | 1.63         | 115.38           | 0.531   | 0.154   | 0.032          | 0.102    | 0.000   | 0.000   |
| 2016         | Ō      | 2642         | ō      | 1713          | 496  | 105      | 328        | ŏ        | 1.61         | 115.38           | 0.540   | 0.156   | 0.033          | 0.103    | 0.000   | 0.000   |
| 2017         | 0      | 2685         | 0      | 1741          | 504  | 106      | 333        | 0        | 1.58         | 115.38           | 0.548   | 0.159   | 0.034          | 0.105    | 0.000   | 0.000   |
| 2018         | 0      | 2727         | 0      | 1768          | 512  | 108      | 338        | 0        | 1.56         | 115.38           | 0.557   | 0.161   | 0.034          | 0.107    | 0.000   | 0.000   |
| 2019         | 0      | 2770         | 0      | 1796          | 520  | 110      | 344        | 0        | 1.53         | 115.38           | 0.566   | 0.164   | 0.035          | 0.108    | 0.000   | 0.000   |
| 2020         | 0      | 2812         | 0      | 1823          | 528  | 111      | 349        | 0        | 1.51         | 115.38           | 0.574   | 0.166   | 0.035          | 0.110    | 0.000   | 0.000   |
| 2021         | 0      | 2855         | 0      | 1851          | 536  | 113      | 354        | 0        | 1.49         | 115.38           | 0.583   | 0.169   | 0.036          | 0.112    | 0.000   | 0.000   |
| 2022         | 0      | 2897         | 0      | 1879          | 544  | 115      | 359        | 0        | 1.47         | 115.38           | 0.592   | 0.171   | 0.036          | 0.113    | 0.000   | 0.000   |
| 2023         | 0      | 2940         | 0      | 1905          | 552  | 117      | 365        | 0        | 1.45         | 115.38           | 0.600   | 0.174   | 0.037          | 0.115    | 0.000   | 0.000   |
| 2024         | 0      | 2982         | 0      | 1934          | 560  | 118      | 370        | 0        | 1.42         | 115.38           | 0.609   | 0.176   | 0.037          | 0.117    | 0.000   | 0.000   |
| 2025         | 0      | 3025         | 0      |               | 568  | 120      | 375        | 0        | 1.40         | 115.38           | 0.618   | 0.179   | 0.038          | 0.118    | 0.000   | 0.000   |
| 2026         | 0      | 3067         | 0      | 1989          | 576  | 122      | 380        | 0        |              | 115.38           | 0.626   | 0.181   | 0.038          | 0.120    | 0.000   | 0.000   |



Simon W. Freese, P.E. 1900-1990 Marvin C. Nichola, P.E. 1896-1969


> Date: 08/14/96 By: DRJ Chkd: \_\_\_\_\_

#### TIM: EAST CEDAR CREEK FWSD WATER AND WASTEWATER MASTERPLAN PRIORITY AREA PROJECTIONS -- SOUTH DISTRICT [ECC95301]V:\SPRIORTY.WK1

#### SOUTH DISTRICT WATER

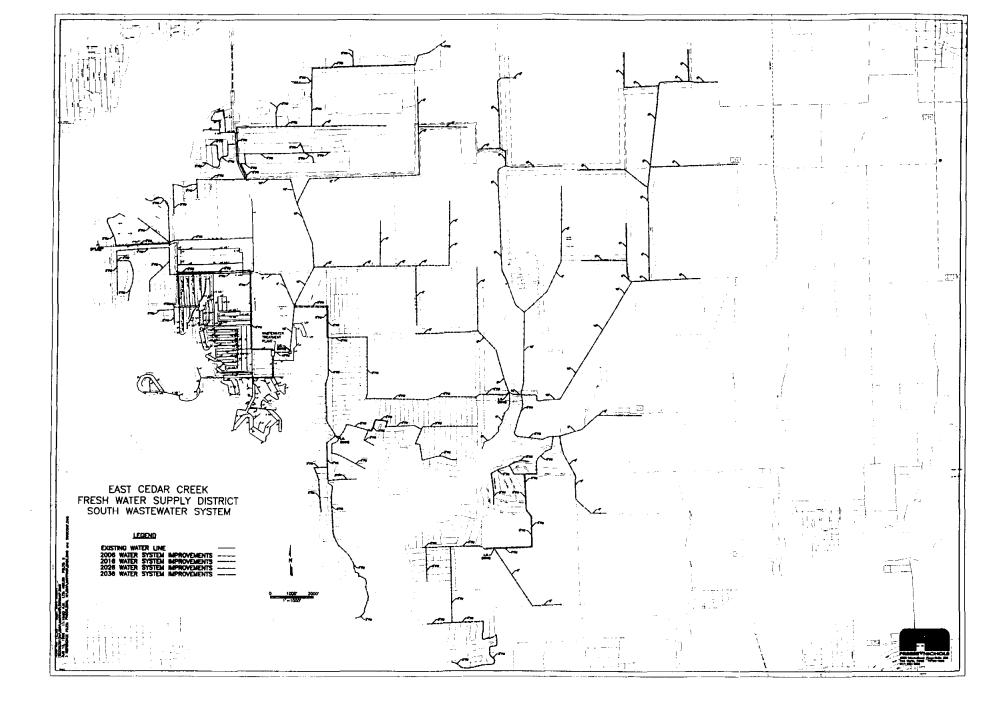
#### PRIORITY 4 PLANNING AREA

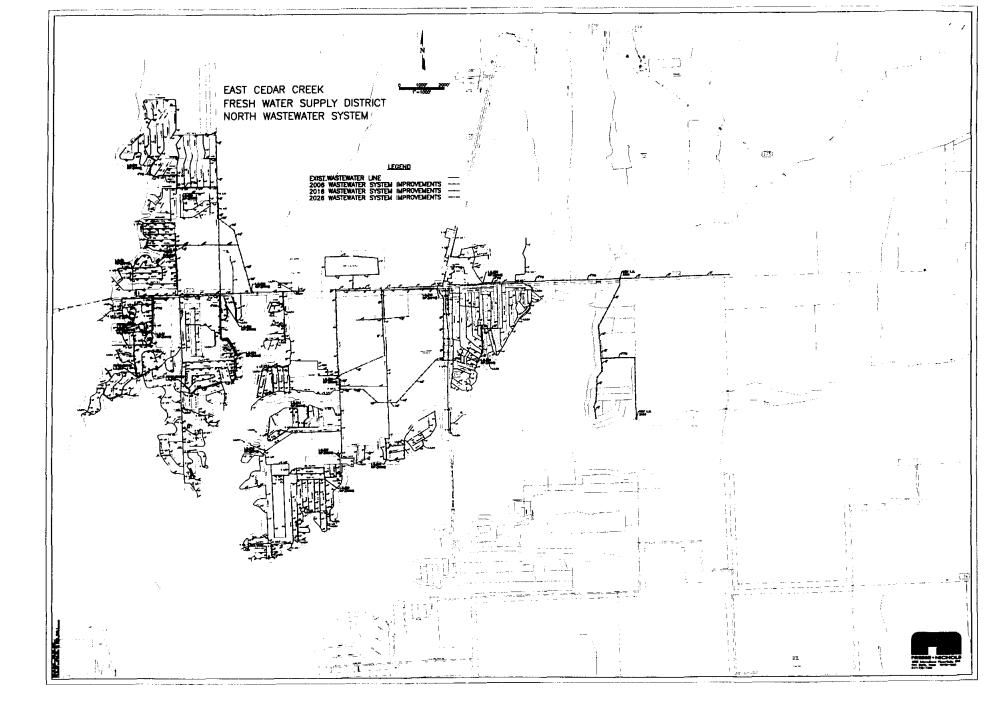
|      |        |       |        |          | P.S.    | LAKESHORE | CAROLYNN                              |          |            | PER CAPITA | RESORT  | PS      | LAKESHOR! | CAROLYNN | AVGDAY | MAX DAY |
|------|--------|-------|--------|----------|---------|-----------|---------------------------------------|----------|------------|------------|---------|---------|-----------|----------|--------|---------|
| PLAN | ACTIVE | TOTAL | SERVED | SERVICE  | SERVICE | SERVICE   | SERVICE                               | UNSERVED | POPULATION | WATER      | MAX DAY | MAX DAY | MAX DAY   | DEMAND   | DEMAND | DEMAND  |
| YEAR | CONN   | POP.  | POP    | POP.     | POP.    | POP.      | POP.                                  | POP.     | GROWTH (%) | (GCD)      | (MGD)   | (MGD)   | (MGD)     | (MGD)    | (MGD)  | (MGD)   |
| 1996 | Ō      | 482   | 0      | 0        | 0       | 0         | 0                                     | 482      | 1.17       | 115.38     | 0.000   | 0.000   | 0.000     | 0.000    | 0.000  | 0.000   |
| 1997 | Ő      |       |        | 0        | 0       | 0         | 0                                     | 488      | 1.15       | 115.38     | 0.000   | 0.000   | 0.000     | 0.000    | 0.000  | 0.000   |
| 1998 | 0      | 493   | lo     | 0        | 0       | 0         | 0                                     | 493      | 1.14       | 115.38     | 0.000   | 0.000   | 0.000     | 0.000    | 0.000  | 0.000   |
| 1999 | 0      | 499   | 0      | 0        | 0       | 0         | 0                                     | 499      | 1.13       | 115.38     | 0.000   | 0.000   | 0.000     | 0.000    | 0.000  | 0.000   |
| 2000 | 0      | 505   | . o    | 0        | 0       | 0         | 0                                     | 505      | 1.11       | 115.38     | 0.000   | 0.000   | 0.000     | 0.000    | 0.000  | 0.000   |
| 2001 | 0      | 510   | 0      | 0        | 0       | 0         | 0                                     | 510      | 0.93       | 115.38     | 0.000   | 0.000   | 0.000     | 0.000    | 0.000  | 0.000   |
| 2002 | 0      | 515   | i) O   | 0        | 0       | 0         | 0                                     | 515      | 0.92       | 115.38     | 0.000   | 0.000   | 0.000     | 0.000    | 0.000  | 0.000   |
| 2003 | 0      | 520   | 0      | 0        | 0       | 0         | 0                                     | 520      | 0.91       | 115.38     | 0.000   | 0.000   | 0.000     | 0.000    | 0.000  | 0.000   |
| 2004 | 0      | 525   | 0      | 0        | 0       | 0         | 0                                     | 525      | 0.91       | 115.38     | 0.000   | 0.000   | 0.000     | 0.000    | 0.000  | 0.000   |
| 2005 | 0      | 529   | 0      | 0        | 0       | 0         | 0                                     | 529      | 0.90       | 115.38     | 0.000   | 0.000   | 0.000     | 0.000    | 0.000  | 0.000   |
| 2006 | 0      | 534   | 0      | _0       | 0       | 0         | 0                                     |          | 0.89       | 115.38     | 0.000   | 0.000   | 0.000     | 0.000    | 0.000  | 0.000   |
| 2007 | 0      | 539   | 0      | 0        | 0       | 0         | 0                                     | 539      | 0.88       | 115.38     | 0.000   | 0.000   | 0.000     | 0.000    | 0.000  | 0.000   |
| 2008 | 0      | 544   | 0      | 0        | 0       | 0         | 0                                     | 544      | 0.87       | 115.38     | 0.000   | 0.000   | 0.000     | 0.000    | 0.000  | 0.000   |
| 2009 | 0      | 548   | 0      | 0        | 0       | 0         | 0                                     | 548      | 0.87       | 115.38     | 0.000   | 0.000   | 0.000     | 0.000    | 0.000  | 0.000   |
| 2010 | 0      | 553   | 0      | 0        | 0       | 0         | 0                                     | 553      | 0.86       | 115.38     | 0.000   | 0.000   | 0.000     | 0.000    | 0.000  | 0.000   |
| 2011 | 0      | 558   | 0      | 0        | 0       | 0         | 0                                     | 558      | 0.71       | 115.38     | 0.000   | 0.000   | 0.000     | 0.000    | 0.000  | 0.000   |
| 2012 | 0      | 562   | 0      | 0        | 0       | 0         | 0                                     | 562      | 0.70       | 115.38     | 0.000   | 0.000   | 0.000     | 0.000    | 0.000  | 0.000   |
| 2013 | 0      | 566   | 0      | ) o      | 0       | 0         | 0                                     | 566      | 0.70       | 115.38     | 0.000   | 0.000   | 0.000     | 0.000    | 0.000  | 0.000   |
| 2014 | 0      | 570   | 0      | 0        | 0       | 0         | 0                                     | 570      | 0.69       | 115.38     | 0.000   | 0.000   | 0.000     | 0.000    | 0.000  | 0.000   |
| 2015 | 0      | 574   | 0      | 0        | 0       | 0         | 0                                     | 574      | 0.69       | 115.38     | 0.000   | 0.000   | 0.000     | 0.000    | 0.000  | 0.000   |
| 2016 | 0      | 578   | ( o    | 0        | 0       | 0         | 0                                     | 578      | 0.68       | 115.38     | 0.000   | 0.000   | 0.000     | 0.000    | 0.000  | 0.000   |
| 2017 | 0      | 582   | 0      | 0        | 0       | 0         | 0                                     | 582      | 0.68       | 115.38     | 0.000   | 0.000   | 0.000     | 0.000    | 0.000  | 0.000   |
| 2018 | 0      | 586   | 0      | 0        | 0       | 0         | 0                                     | 586      | 0.67       | 115.38     | 0.000   | 0.000   | 0.000     | 0.000    | 0.000  | 0.000   |
| 2019 | 0      | 589   | 0      | 0        | 0       | 0         | 0                                     | 589      | 0.67       | 115.38     | 0.000   | 0.000   | 0.000     | 0.000    | 0.000  | 0.000   |
| 2020 | 0      | 593   | 0      | 0        | 0       | 0         | 0                                     | 593      | 0.67       | 115.38     | 0.000   | 0.000   | 0.000     | 0.000    | 0.000  | 0.000   |
| 2021 | 0      | 597   | 0      | 0        | 0       | 0         | 0                                     | 597      | 0.22       | 115.38     | 0.000   | 0.000   | 0.000     | 0.000    | 0.000  | 0.000   |
| 2022 | 0      | 599   | 0      | 0        | 0       | 0         | 0                                     | 599      | 0.22       | 115.38     | 0.000   | 0.000   | 0.000     | 0.000    | 0.000  | 0.000   |
| 2023 | 0      | 600   | 0      | 0        | 0       | 0         | 0                                     | 600      | 0.22       | 115.38     | 0.000   | 0.000   | 0.000     | 0.000    | 0.000  | 0.000   |
| 2024 | 0      | 601   | 0      | 0        | 0       | 0         | 0                                     | 601      | 0.22       | 115.38     | 0.000   | 0.000   | 0.000     | 0.000    | 0.000  | 0.000   |
| 2025 | 0      | 603   | 0      | 0        | 0       | 0         | 0                                     | 603      | 0.22       | 115.38     | 0.000   | 0.000   | 0.000     | 0.000    | 0.000  | 0.000   |
| 2026 | 0      | 604   | 0      | 0        | 0       | 0         | 0                                     | 604      | 0.22       | 115.38     | 0.000   | 0.000   | 0.000     | 0.000    | 0.000  | 0.000   |
| 2028 | 39     | 607   | 63     | 0        | 0       | 0         | 0                                     | 544      | 0.22       | 115.38     | 0.000   | 0.000   | 0.000     | 0.000    | 0.007  | 0.020   |
| 2030 | 78     | 609   | 128    | 0        | 0       | ) 0       | ( O                                   |          | 0.22       | 115.38     | 0.000   | 0.000   | 0.000     | 0.000    | 0.015  | 0.040   |
| 2032 | 118    | 612   | 189    | 0        | 0       | 0         | 0                                     | 423      | 0.22       | 115.38     | 0.000   | 0.000   | 0.000     | 0.000    | 0.022  | 0.060   |
| 2034 | 157    | 615   | 252    | 0        | 0       | 0         | 0                                     | 362      | 0.22       | 115.38     | 0.000   | 0.000   | 0.000     | 0.000    | 0.029  | 0.079   |
| 2036 | 196    | 617   | 315    | 0        | 0       | 0         | 0                                     | 302      | 0.22       | 115.38     | 0.000   | 0.000   | 0.000     | 0.000    | 0.036  | 0.099   |
| 2038 | 235    | 620   | 379    | 0        | 0       | 0         | 0                                     | 242      | 0.22       | 115.38     | 0.000   | 0.000   | 0.000     | 0.000    | 0.044  | 0.119   |
| 2040 | 274    | 623   | 442    | 0        | 0       | 0         | 0                                     | 181      | 0.22       | 115.38     | 0.000   | 0.000   | 0.000     | 0.000    | 0.051  | 0.139   |
| 2042 | 314    | 626   | 505    | 0        | 0       | 0         | 0                                     | 121      | 0.22       | 115.38     | 0.000   | 0.000   | 0,000     | 0.000    | 0.058  | 0.159   |
| 2044 | 353    |       |        | 0        | 0       | o         | 0                                     | 60       | 0.22       | 115.38     | 0.000   | 0.000   | 0.000     | 0.000    | 0.066  | 0.179   |
| 2046 | 392    |       |        | 0        | 0       | 0         | 0                                     | 0        | 0.22       | 115.38     | 0.000   | 0.000   | 0.000     | 0.000    | 0.073  | 0.199   |
| 2040 |        |       |        | <b>`</b> |         | <u> </u>  | · · · · · · · · · · · · · · · · · · · | <u>~</u> | 4          |            |         | 0.000   |           | 0.000    |        |         |

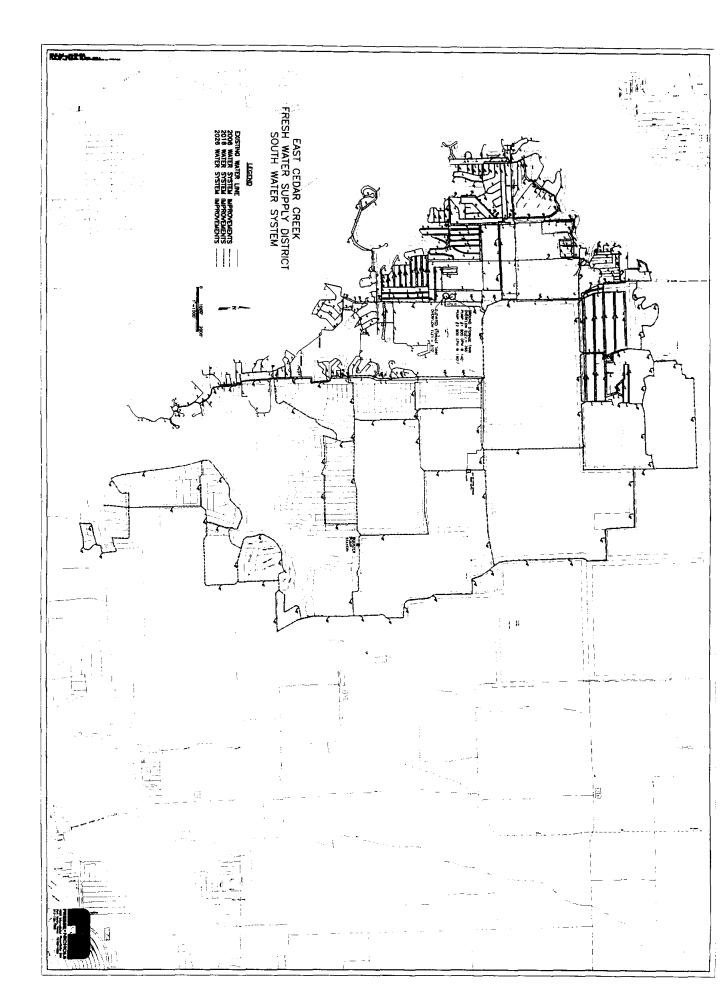


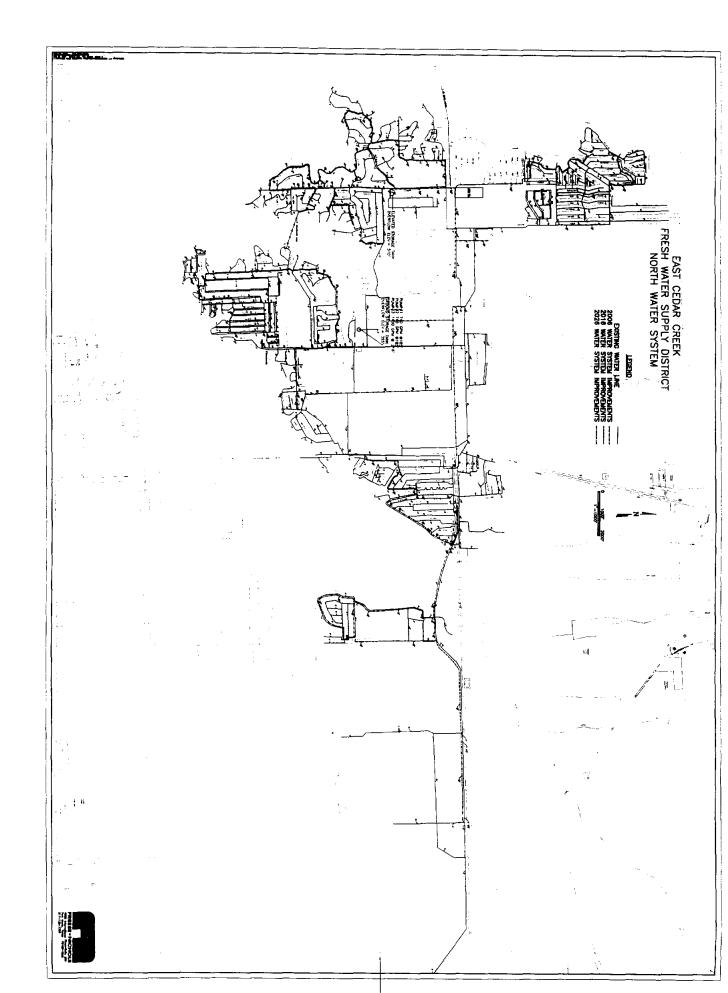
| Date: | 08/14/96 |
|-------|----------|
| By:   | DAJ      |
| Chkd: |          |

#### Title: EAST CEDAR CREEK FWSD WATER AND WASTEWATER MASTERPLAN PRIORITY AREA PROJECTIONS -- SOUTH DISTRICT [ECC95301]V:\SPRIORTY.WK1


#### SOUTH DISTRICT WATER


| SOUTH | WATER | TOTALS |  |
|-------|-------|--------|--|
|       |       |        |  |


| a an |              |              |              | RESORT       | P.S.       | LAKESHORE | CAROLYNN   |            |            | PER CAPITA       | RESORT  | P.S.           | LAKESHORE | CAROLYNN | AVG DAY | MAX DAY |
|------------------------------------------|--------------|--------------|--------------|--------------|------------|-----------|------------|------------|------------|------------------|---------|----------------|-----------|----------|---------|---------|
| PLAN                                     | ACTIVE       | TOTAL        | SERVED       | SERVICE      | SERVICE    | SERVICE   | SERVICE    | UNSERVED   | POPULATION | WATER            | MAX DAY | MAX DAY        | MAX DAY   | MAX DAY  | DEMAND  | DEMAND  |
| YEAR                                     | CONN         | POP,         | POP.         | POP.         | POP,       | POP.      | POP,       | POP,       | GROWTH (%) | (GCD)            | (MGD)   | (MGD)          | (MGD)     | (MGD)    | (MGD)   | (MGD)   |
| 1996                                     | 1760         | 5315         | 2834         | 1289         | 337        | 71        | 222        | 562        | 2.07       | 115.38           | 0.406   | 0.108          | 0.022     | 0.070    | 0.327   | 0.893   |
| 1997                                     | 1805         | 5435         | 2907         | 1319         | 345        | 73        | 228        | 564        | 2.03       | 115.38           | 0.416   | 0.109          | 0.023     | 0.072    | 0.335   | 0.910   |
| 1998                                     | 1851         | 5555         | 2980         | 1350         | 353        | 74        | 233        | 566        | 1.98       | 115.38           | 0.425   | 0.111          | 0.023     | 0.073    | 0.344   | 0.939   |
| 1999                                     | 1895         | 5675         | 3053         | 1381         | 361        | 76        | 238        | 567        | 1.94       | 115.38           | 0.435   | 0.114          | 0.024     | 0.075    | 0.352   | 0.962   |
| 2000                                     | 1942         | 5795         | 3126         | 1411         | 368        | 78        | 243        | 569        | 1.90       | 115.38           | 0.444   | 0,116          | 0.025     | 0.077    | 0.361   | 0.985   |
| 2001                                     | 1987         | 5916         | 3199         | 1442         | 376        | 79        | 249        | 570        | 1.82       | 115.38           | 0.454   | 0.119          | 0.025     | 0.078    | 0.369   | 1.008   |
| 2002                                     | 2032         | 6035         | 3272         | 1472         | 384        | 81        | 254        | 571        | 1.79       | 115.38           | 0.464   | 0.121          | 0.026     | 0.080    | 0.378   | 1.031   |
| 2003                                     | 2078         | 6154         | 3345         | 1503         | 392        | 83        | 259        | 572        | 1.75       | 115.38           | 0.473   | 0.124          | 0.026     | 0.082    | 0.386   | 1.054   |
| 2004                                     | 2123         | 6274         | 3418         | 1533         | 400        | 85        | 265        | 573        | 1.72       | 115.38           | 0.483   | 0.126          | 0.027     | 0.083    | 0.394   | 1.077   |
| 2005                                     | 2168         | 6393         | 3491         | 1564         | 408        | 86        | 270        | 573        | 1.69       | 115.38           | 0.493   | 0.129          | 0.027     | 0.085    | 0.403   | 1.100   |
| 2006                                     | 2214         | 6512         | 3564         | 1594         | 418        | 88        | 275        | 574        | 1.66       | 115.38           | 0.502   | 0.131          | 0.028     | 0.087    | 0.411   | 1.123   |
| 2007                                     | 2259         | 6632         | 3637         | 1625         | 424        | 90        | 280        | 575        | 1.63       | 115.38           | 0.512   | 0.134          | 0.028     | 0.088    | 0.420   | 1.146   |
| 2008                                     | 2305         | 6751         | 3710         | 1656         | 432        | 91        | 286        | 576        | 1.60       | 115.38           | 0.521   | 0.136          | 0.029     | 0.090    | 0.428   | 1.169   |
| 2009                                     | 2350         | 6870         | 3784         | 1686         | 440        | 93        | 291        | 577        | 1.58       | 115.38           | 0.531   | 0.139          | 0.029     | 0.092    | 0.437   | 1.192   |
| 2010                                     | 2395         | 6990         | 3857         | 1717         | 448        | 95        | 296        | 577        | 1.55       | 115.38           | 0.541   | 0.141          | 0.030     | 0.093    | 0.445   | 1.215   |
| 2011                                     | 2441         | 7109         | 3930         | 1747         | 456        | 96        | 301        | 578        | 1.49       | 115.38           | 0.550   | 0.144          | 0.030     | 0.095    | 0,453   | 1.238   |
| 2012                                     | 2486         | 7227         | 4003         | 1778         | 464        | 98        | 307        | 578        | 1.46       | 115.38           | 0.560   | 0.146          | 0.031     | 0.097    | 0.462   | 1.261   |
| 2013                                     | 2532         | 7346         | 4076         | 1808         | 472        | 100       | 312        | 578        | 1.44       | 115.38           | 0.570   | 0.149          | 0.031     | 0.098    | 0.470   | 1.284   |
| 2014                                     | 2577         | 7464         | 4149         | 1839         | 480        | 101       | 317        | 578        | 1.42       | 115.38           | 0.579   | 0.151          | 0.032     | 0.100    | 0.479   | 1.307   |
| 2015                                     | 2622         | 7583         | 4222         | 1869         | 488        | 103       | 323        | 578        | 1.40       | 115.38           | 0.589   | 0.154          | 0.032     | 0.102    | 0.487   | 1.330   |
| 2016                                     | 2667         | 7702         | 4295         | 1900         | 496        | 105       | 328        | 578        | 1.38       | 115.38           | 0.598   | 0.156          | 0.033     | 0.103    | 0.496   | 1.353   |
| 2017                                     | 2710         | 7820         | 4364<br>4433 | 1931         | 504        | 106       | 333        | 582        | 1.36       | 115.38           | 0.608   | 0.159          | 0.034     | 0.105    | 0.503   | 1.374   |
| 2018<br>2019                             | 2753<br>2796 | 7939<br>8057 | 4433         | 1961<br>1992 | 512<br>520 | 108       | 338        | 586        | 1.34       | 115.38           | 0.618   | 0.161          | 0.034     | 0.107    | 0.511   | 1.390   |
| 2010                                     | 2839         | 8176         | 4571         |              |            | 110       | 344        | 590        | 1.32       | 115.38           | 0.627   | 0.164          | 0.035     | 0.108    | 0.519   | 1.418   |
|                                          |              |              |              | 2022         | 528        | 111       | 349        | 594        | 1.30       | 115.38           | 0.637   | 0.166          | 0.035     | 0.110    | 0.527   | 1.440   |
| 2021<br>2022                             | 2882<br>2925 | 8294<br>8410 | 4640<br>4709 | 2053<br>2083 | 536<br>544 | 113       | 354        | 598<br>599 | 1.17       | 115.38<br>115.38 | 0.647   | 0.169          | 0.036     | 0.112    | 0.535   | 1.462   |
| 2022                                     | 2968         | 8526         | 4778         | 2063         | 552        | 115       | 359<br>365 |            | 1.16       |                  | 0.656   | 0.171<br>0.174 | 0.036     | 0.113    | 0.543   | 1.483   |
| 2023                                     | 3011         | 8542         | 4847         | 2114         | 560        | 117       | 305        | 601        | 1.14       | 115.38<br>115.38 | 0.666   |                | 0.037     | 0.115    | 0.551   | 1.505   |
|                                          | 3011         | 8042<br>8758 |              |              |            | 118       |            | 602        | 1.12       |                  | 0.675   | 0.176          | 0.037     | 0.117    | 0.559   | 1.527   |
| 2025<br>2026                             | 3054         | 8738         | 4916<br>4985 | 2175<br>2206 | 568<br>576 | 120       | 375<br>380 | 603<br>605 | 1.11       | 115.38           | 0.685   | 0.179          | 0.038     | 0.118    | 0.567   | 1.549   |
| 2020                                     | 3090         | 56/4         | 4965         | 2206         | 5/6        | 122       | 380        | 005        | I          | 115.38           | 0.695   | 0.181          | 0.038     | 0.120    | 0.575   | 1.570   |


## **ATTACHMENT 2-C**

## MODELING AND SYSTEM MAPPING









## **APPENDIX C**

## TECHNICAL MEMORANDUM #3

## **RECOMMENDATIONS AND IMPLEMENTATION PLAN SUMMARY**

## EAST CEDAR CREEK FRESH WATER SUPPLY DISTRICT

## WATER & WASTEWATER MASTER PLAN

**TECHNICAL MEMORANDUM #3** 

## SUMMARY OF TASKS E AND F RECOMMENDATIONS AND IMPLEMENTATION PLAN

**OCTOBER 1996** 



ECC95301

## TABLE OF CONTENTS

|     |                                                 | Page No. |
|-----|-------------------------------------------------|----------|
| 1.0 | INTRODUCTION                                    | 2        |
| 1.1 | Background                                      | 2        |
| 1.2 | Recommendations and Implementation Plan Scope   | 3        |
| 2.0 | RECOMMENDED IMPROVEMENTS                        | 5        |
| 2.1 | Distribution and Collection System Improvements | 5        |
| 2.2 | Water Treatment Plant Improvements              | 5        |
| 2.3 | Wastewater Treatment Plant Improvements         | 12       |
| 2.4 | Prioritization of Improvements                  | 17       |
| 3.0 | ENVIRONMENTAL ASSESSMENT                        | 18       |
| 3.1 | Permitting                                      | 18       |
| 3.2 | Archeological, Historical, and Cultural Surveys | 19       |
| 3.3 | Threatened and Endangered Species               | 19       |
| 4.0 | COST ESTIMATES                                  | 20       |
| 5.0 | POTENTIAL FINANCING OPTIONS                     | 32       |
|     |                                                 |          |

## ATTACHMENT 3-A - MAPPING OF PROPOSED IMPROVEMENTS

## ATTACHMENT 3-B - MATRIX EVALUATION

## ATTACHMENT 3-C - ENVIRONMENTAL ASSESSMENT

## ATTACHMENT 3-D - COST ESTIMATES

## LIST OF TABLES

|                                                     | Page No. |
|-----------------------------------------------------|----------|
| TABLE 1 - North Water Treatment Plant Capacity      | 8        |
| TABLE 2 - South Water Treatment Plant Capacity      | 11       |
| TABLE 3 - North Wastewater Treatment Plant Capacity | 14       |
| TABLE 4 - South Wastewater Treatment Plant Capacity | 16       |
| TABLE 5 - Preliminary Cost Estimates                | 21-29    |
| TABLE 6 - Master Plan Costs Summary                 | 31       |

#### **1.0 INTRODUCTION**

#### 1.1 BACKGROUND

The East Cedar Creek Fresh Water Supply District (ECCFWSD) consists of two separate water distribution and wastewater collection systems, the North System and the South System. Each System is hydraulically independent and has its own water and wastewater treatment plants, elevated water storage tanks, and distribution and collection system piping. Both of the wastewater collection systems are primarily pressure systems with the North System using about half gravity sewers and the South System using mostly force main piping with a small amount of gravity sewer. Each System was evaluated as to the current condition and expected future conditions of the treatment plants, sewage collection systems and water distribution systems and their ability to meet current TNRCC State Design Criteria.

The North District water system includes a 2.55 million gallon per day (MGD) water treatment plant, 500,000 gallon elevated storage tank, and water distribution piping. District records indicate that the North water distribution system served an average of 2,896 water connections in 1995. The North District wastewater system includes a 0.626 MGD wastewater treatment plant, 67 wastewater collection lift stations, associated house grinder pumps, wastewater force mains, and gravity piping. The North wastewater collection system served an average of 3,075 connections in 1995.

The South District water system includes an existing water treatment plant and hydropneumatic storage tank. However, a proposed 1.73 MGD water treatment plant and 300,000 gallon elevated storage tank have been designed and are under construction. Upon completion of the new facility, the existing treatment plant will be abandoned. Therefore, for the purposes of this study, the evaluation only reviewed the proposed 1.73 MGD water treatment facility, 300,000 gallon elevated storage tank, and water distribution system piping. Based on information provided by ECCFWSD, the South water system served an average of 1,960 water connections in 1995, including 200 water connections in Payne Springs that are no longer served by the District. The South District wastewater system includes an existing wastewater treatment plant with a permitted capacity of 40,000 gallons per day (gpd), a single wastewater lift station, associated house grinder pumps, and pressure collection system piping. A new wastewater treatment facility is under design and will be constructed in the near future. Upon completion of the new wastewater facility, the existing wastewater treatment plant will be abandoned. The South wastewater system served an average of 528 wastewater connections in 1995.

#### 1.2 RECOMMENDATION AND IMPLEMENTATION PLAN SCOPE

The project scope for the Water and Wastewater Master Plan includes a review of the current system conditions, field verification of treatment facilities, field verification of the collection and distribution systems, computer modeling of the collection and distribution systems, development of recommendations, development of an implementation plan, and presentation of a final report. Technical Memorandums #1 and #2 discussed the results of the current conditions review, field verification and computer modeling portions of the project.

The scope for the recommendations and implementation plan provides for the development of a list of recommendations to address the present and future needs of the District's water and wastewater systems. The recommendations will be grouped into phases for implementation. The scope also includes the development of an opinion of probable project costs for each of the recommended projects and an environmental assessment of the proposed improvements. The environmental assessment will be compiled in accordance with TWDB guidelines. The projects will be prioritized through a matrix evaluation and recommendations will be made for phasing of the projects. In addition, a brief evaluation of potential financing options will be included. This Technical Memorandum will discuss the results of the recommendations and implementation phase of the Master Plan.

### 2.0 RECOMMENDED IMPROVEMENTS

### 2.1 DISTRIBUTION AND COLLECTION SYSTEM IMPROVEMENTS

The North and South water distribution and wastewater collection systems were modeled using the CYBERNET and HYDRA computer modeling programs. The programs were used to determine the future distribution and collection system projects needed to provide adequate water and wastewater service to the District's customers. The models showed the location of deficiencies in the water and wastewater systems and were used to develop solutions to overcome those weaknesses. Water and wastewater system projects were developed based on Texas Natural Resource Conservation Commission (TNRCC) design criteria. TNRCC criteria for water systems require that the system be capable of providing a minimum pressure of 35 pounds per square inch (psi) and 1.5 gallons per minute (gpm) of flow at all points in the distribution system. TNRCC criteria for sewerage systems require that sewer lines be designed for estimated future service populations, plus adequate allowance for institutional and commercial flows. Descriptions of the proposed water distribution and wastewater collection system projects are provided in Technical Memorandum #2. Mapping of the proposed improvements is provided in Attachment 3-A.

## 2.2 WATER TREATMENT PLANT IMPROVEMENTS

Each water treatment plant was evaluated for future capacity needs, and recommendations were made for the expansion needs of each plant. Recommendations for plant expansion do not take into account flows from adjacent areas operated by another water utility. If these service areas are added to the system in the future, plant flows would increase accordingly.

### 2.2.1 North Water Treatment Plant

The current rated capacity of the North Water Treatment Plant (WTP) is 2.55 Million Gallons per Day (MGD). This capacity is dictated by design criteria established by the TNRCC and published in Chapter 290 of 30 Texas Administrative Code. Under TNRCC rules, water treatment plants are required to meet capacity criteria of 0.6 gpm per connection for raw water pumping, high service pumping, and treatment plant capacity. The District currently has a variance from this rule which allows them to meet 0.45 gpm per connection for these capacity requirements. Under this variance the District cannot be approved as a "Superior" water system by TNRCC and is not rated to meet fire flows. This variance may be removed at the discretion of the TNRCC based on the ability of the District to treat and/or distribute water of an approved quality and quantity. In order to meet adequate capacity requirements for fire flows and to be approved as a "Superior" water system, the District would need to expand the North Water Treatment Plant to meet the 0.6 gpm per connection criteria.

Based on water demand projections provided in Technical Memorandum #2, the requirement of 0.6 gpm per connection for raw water pumping, high service pumping, and treatment plant capacity has already been exceeded. Under the existing 0.45 gpm per connection variance, the District will not exceed these capacities until 1999, 2001, and 2010, respectively. TNRCC rules also require that the North water system have a total water storage capacity of 200 gallons per connection. The current storage capacity of the system is 728,450 gallons including elevated and clearwell storage tanks. This total storage requirement will be exceeded in 2006.

Based on these projections it is recommended that the District expand the capacity of the North raw water pumps, high service pumps, and water treatment plant to a capacity of 3.6 MGD prior to 1999. Expansion of the raw water pump station will likely require replacement of the two existing 700 gpm pumps with new 1250 gpm pumps. This would raise the firm capacity of the raw water pump station to 3.6 MGD. Expansion of the high service pumps would require addition of an 1100 gpm pump to expand the firm capacity to 3.6 MGD. Plant expansion would require expansion of plant treatment units including clarifiers and filters. The plant clearwells do not need to be expanded as part of the plant expansion, but will require expansion based on the need for expanded total storage in 2006. At this time a new 182,000 gallon clearwell should be added.

These expansions will meet the 0.6 gpm per connection requirement for treatment plant capacity, raw water pumping, and high service pumping until the year 2016. Since the District is operating under the 0.45 gpm per connection variance, there is some leeway in the time scale for expansion of these items. However, even under the variance, the District will need to expand the raw water pumps, high service pumps and treatment plant capacity no later than 1999, 2001, and 2010, respectively. If the District decides to design these expansions based on the 0.45 gpm per connection variance, the expanded capacity of these items will need to be only 3.0 MGD which would provide adequate capacity under the variance beyond the year 2026. The total storage capacity of the system should be expanded to 910,000 gallons in 2006. This would provide the system enough total storage to last beyond 2026. Table 1 shows the TNRCC design criteria and design life of the existing and expanded treatment units at the North WTP. Estimates for the expansion of these items are based on the 0.6 gpm per connection criteria and are included in Section 4.0: Cost Estimates.

## Table 1

## North Water Treatment Plant Capacity

| UNIT OPERATION         | DESIGN CRITERIA                       | CURRENT CAPACITY           | YEAR<br>EXCEEDED | EXPANDED CAPACITY          | EXPANDED<br>DESIGN LIFE |
|------------------------|---------------------------------------|----------------------------|------------------|----------------------------|-------------------------|
| Rated Flow             | Rated Flow Greater than Max Day Yield |                            | > 2026           | 3.6 MGD                    | > 2026                  |
| Clarifiers             | 2-hr. detention time                  | 2.55 MGD                   | > 2026           | 3.6 MGD                    | > 2026                  |
| Filters                | 5 gpm per square foot                 | 2.55 MGD                   | > 2026           | 3.6 MGD                    | > 2026                  |
| Raw Water Pumps        | 0.6 gpm per connection                | 2.01 MGD/2,333 connect.    | 1996             | 3.6 MGD/4,166 connect.     | 2016                    |
|                        | 0.45 gpm per connection               | 2.01 MGD/3,111 connect.    | 1999             | 3.0 MGD/4,629 connect.     | > 2026                  |
| Treatment Capacity     | 0.6 gpm per connection                | 2.55 MGD/2,951 connect.    | 1996             | 3.6 MGD/4,166 connect.     | 2016                    |
|                        | 0.45 gpm per connection               | 2.55 MGD/3,935 connect.    | 2010             | 3.0 MGD/4,629 connect.     | > 2026                  |
| High Service Pumps     | 0.6 gpm per connection                | 2.13 MGD/2,466 connect.    | 1996             | 3.6 MGD/4,166 connect.     | 2016                    |
|                        | 0.45 gpm per connection               | 2.13 MGD/3,288 connect.    | 2001             | 3.0 MGD/4,629 connect.     | > 2026                  |
| Clearwell Storage      | 5% of plant capacity                  | 4.57 MGD/228,450 gal.      | > 2026           | n/a                        | > 2026                  |
| Total Storage          | 200 gallons/connection                | 728,450 gal/3,642 connect. | 2006             | 910,000 gal/4,550 connect. | > 2026                  |
| Elevated Tank Capacity | 100 gallons/connection                | 500,000 gal/5,000 connect. | > 2026           | n/a                        | > <u>2026</u>           |

\* TNRCC rules require municipalities to meet a minimum of 0.6 gpm per connection for raw water pumping, high service pumping, and treatment plant capacity. The District currently has a variance from this rule which allows them to meet a minimum of 0.45 gpm per connection. Under this variance, the District cannot be rated as a "Superior" water system by TNRCC and is not rated to meet fire flows.

#### 2.2.2 South Water Treatment Plant

The rated capacity of the new South Water Treatment Plant (WTP) is 1.73 Million Gallons per Day (MGD). This capacity is dictated by design criteria established by TNRCC and published in Chapter 290 of 30 Texas Administrative Code. Based on TNRCC rules, water treatment plants are required to meet capacity requirements of 0.6 gallons per minute (gpm) per connection for raw water pumping, high service pumping, and treatment plant capacity. The District currently has a variance from this rule which allows them to meet 0.45 gpm per connection for these capacity requirements. Under this variance the District cannot be approved as a "Superior" water system by TNRCC and is not rated to meet fire flows. This variance may be removed at the discretion of the TNRCC based on the ability of the District to treat and/or distribute water of an approved quality and quantity. In order to meet adequate capacity requirements for fire flows and to be approved as a "Superior" water system, the District would need to expand the South Water Treatment Plant in 2002 to meet the 0.6 gpm per connection criteria.

Based on water demand projections provided in Technical Memorandum #2, the requirement of 0.6 gpm per connection for raw water pumping, high service pumping, and treatment plant capacities will be exceeded in 2002. Under the existing 0.45 gpm per connection variance, the District will not exceed these capacities until 2016. Based on these projections it is recommended that the District expand the capacity of the South raw water pumps, high service pumps, and water treatment plant to a capacity of 2.6 MGD prior to 2002. Expansion of the raw water pumps will likely require replacement of two of the existing 600 gpm pumps with new 1200 gpm pumps. This would raise the firm capacity of the raw water pump station to 2.6 MGD. Expansion of the high service pumps would likely require replacement of the existing high service

pumps with two 1200 gpm pumps and one 600 gpm pump to expand the firm capacity to 2.6 MGD. It is recommended that these existing pumps be replaced during plant expansion due to their age and head requirements. Plant expansion would require expansion of plant treatment units including clarifiers and filters.

These expansions will meet the 0.6 gpm per connection requirement for treatment plant capacity, raw water pumping, and high service pumping beyond the year 2024. Since the District is operating under the 0.45 gpm per connection variance, there is some leeway in the time scale for expansion of these items. However, even under the variance, the District will need to expand the raw water pumps, high service pumps and treatment plant capacity no later than 2016. If the District decides to design these expansions based on the 0.45 gpm per connection variance, the expanded capacity of these items will need to be only 2.0 MGD to provide adequate capacity under the variance beyond the year 2026. Table 2 shows the TNRCC design criteria and design life of the existing and expanded treatment units at the South WTP. Estimates for the expansion of these items are based on the 0.6 gpm per connection criteria and are included in Section 4.0: Cost Estimates.

## Table 2

## South Water Treatment Plant Capacity

| UNIT OPERATION                       | DESIGN CRITERIA            | CURRENT CAPACITY           | YEAR<br>EXCEEDED | EXPANDED CAPACITY      | EXPANDED<br>DESIGN<br>LIFE |
|--------------------------------------|----------------------------|----------------------------|------------------|------------------------|----------------------------|
| Rated Flow                           | Greater than Max Day Yield | 1.73 MGD                   | > 2026           | 2.6 MGD                | > 2026                     |
| Clarifiers                           | 2-hr. detention time       | 1.73 MGD                   | > 2026           | 2.6 MGD                | > 2026                     |
| Filters                              | 5 gpm per square foot      | 2.17 MGD                   | > 2026           | 2.6 MGD                | > 2026                     |
| Raw Water Pumps                      | 0.6 gpm per connection     | 1.73 MGD/2,000 connect.    | 2002             | 2.6 MGD/3,000 connect. | 2024                       |
|                                      | 0.45 gpm per connection    | 1.73 MGD/2,666 connect.    | 2016             | 2.0 MGD/3,086 connect. | > 2026                     |
| Treatment Capacity                   | 0.6 gpm per connection     | 1.73 MGD/2,000 connect.    | 2002             | 2.6 MGD/3,000 connect. | 2024                       |
|                                      | 0.45 gpm per connection    | 1.73 MGD/2,666 connect.    | 2016             | 2.0 MGD/3,086 connect. | > 2026                     |
| High Service Pumps                   | 0.6 gpm per connection     | 1.73 MGD/2,000 connect.    | 2002             | 2.6 MGD/3,000 connect. | 2024                       |
|                                      | 0.45 gpm per connection    | 1.73 MGD/2,666 connect.    | 2016             | 2.0 MGD/3,086 connect. | > 2026                     |
| Clearwell Storage                    | 5% of plant capacity       | 337,000 gal/6.74 MGD       | > 2026           | n/a                    | > 2026                     |
| Total Storage 200 gallons/connection |                            | 637,000 gal/3,185 connect. | > 2026           | n/a                    | > 2026                     |
| Elevated Tank Capacity               | 100 gallons/connection     | 300,000 gal/3,000 connect. | 2024             | n/a                    | 2024                       |

\* TNRCC rules require municipalities to meet a minimum of 0.6 gpm per connection for raw water pumping, high service pumping, and treatment plant capacity. The District currently has a variance from this rule which allows them to meet a minimum of 0.45 gpm per connection. Under this variance, the District cannot be rated as a "Superior" water system by TNRCC and is not rated to meet fire flows.

### 2.3 WASTEWATER TREATMENT PLANT IMPROVEMENTS

Each wastewater treatment plant was evaluated for future capacity needs, and recommendations were made for the expansion needs of each plant. Recommendations for plant expansion do not take into account flows from adjacent areas operated by another wastewater utility. If these service areas are added to the system in the future, plant flows would increase accordingly.

### 2.3.1 North Wastewater Treatment Plant

The design capacity of the North Wastewater Treatment Plant (WWTP) is 0.626 MGD. The 2 hour peak capacity of the North WWTP is 1.87 MGD. These capacities are dictated by design criteria established by TNRCC and published in Chapter 317 of 30 Texas Administrative Code. Under these rules, wastewater treatment plants are required to treat a design flowrate equal to the maximum 30-day average flow for a wet weather period, and a peak flowrate equal to the highest two-hour average flowrate expected to be delivered to the plant. In addition, Chapter 305 of 30 Texas Administrative Code requires that whenever flow measurements for any sewage treatment plant reaches 75% of the permitted average daily flow for three consecutive months, the permittee must initiate engineering and financial planning for expansion and/or upgrading of the wastewater treatment facilities.

Currently, plant flows at the North WWTP have already exceeded 75% of the permitted capacity and planning should begin on the North WWTP expansion. Based on the flow projections provided in Technical Memorandum #2, the North WWTP is capable of meeting permit requirements for the North wastewater collection system until the year 2000. At this time

the plant flow will exceed the maximum 30-day capacity of the plant and construction should be completed on an expanded plant. The expanded capacity of the plant should be 0.9 MGD with a peak capacity of 3.0 MGD. The current plant peak flowrate will be increased prior to the year 2000 by the expansion of lift stations 38 and 39. The existing plant should be capable of handling the new peak flows assuming full utilization of the existing surge basin. This can be accomplished by bringing the new plate and frame press on-line to handle sludge dewatering processes for the plant and by cleaning waste sludge out of the existing surge basin. This should bring the existing surge basin back to its full capacity of 1.1 million gallons.

Based on these projections, it is recommended that the surge basin be brought back on-line at its full capacity to handle larger peak flows expected from the expansion of lift stations 38 and 39. It is also recommended that the North WWTP be expanded before the year 2000 to a capacity of 0.9 MGD with a peak flowrate of 3.0 MGD. At this capacity the plant will be capable of providing adequate treatment capabilities beyond the year 2026. Table 3 shows the TNRCC design criteria and design life of the existing and expanded treatment units at the North WWTP. Estimates for expansion of the North WWTP are included in Section 4.0: Cost Estimates.

## Table 3

| UNIT OPERATION    | DESIGN CRITERIA                                                                                                                         | CURRENT<br>CAPACITY | YEAR<br>EXCEEDED          | EXPANDED<br>CAPACITY | EXPANDED<br>DESIGN<br>LIFE |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------------------|----------------------|----------------------------|
| Design Flow       | > Maximum 30 day average                                                                                                                | 0.626 MGD           | 2000                      | 0.9 MGD              | > 2026                     |
| Peak Flow         | > Anticipated 2-hr peak flows                                                                                                           | 1.872 MGD           | > 2000                    | 3.0 MGD              | > 2026                     |
| Pumping Peak Flow | Flowrate of all pumps pumping to plant                                                                                                  | 1.79 MGD            | Exp. Date of LS's 38 & 39 | 3.0 MGD              | > 2026                     |
| Surge Basin       | 10-20% of plant volume                                                                                                                  | 1.1 MG              | n/a                       | n/a                  | n/a                        |
| Oxidation Ditch   | Loading Rate of 15 lb BOD/day/1000 ft <sup>2</sup><br>Min. HRT = 20 hours<br>Min of 2 rotors per ditch<br>Min channel velocity of 1 fps | 0.626 MGD           | 2000                      | 0.9 MGD              | > 2026                     |
| Clarifiers        | Qp Surface Loading 1000 gal/day/ $ft^2$<br>Peak Detention Time = 1.8 hrs.<br>Weir loading rate = 20,000 gal/d/lf                        | 2.145 MGD Qp        | 2004                      | 3.0 MGD              | > 2026                     |
|                   | Average Surface Loading 500 gal/day/ $ft^2$<br>Avg. Detention time = 3.6 hrs.                                                           | 1.072 MGD Qd        | > 2026                    | >1.0 MGD             | > 2026                     |
| Chlorine Contact  | 20 min. detention time @ Qp                                                                                                             | 1.94 MGD            | > 2000                    | 3.0 MGD              | > 2026                     |
| Chlorinators      | 150% of highest expected dose                                                                                                           | 2 MGD Qp            | 2001                      | 3.0 MGD              | > 2026                     |

## North Wastewater Treatment Plant Capacity

#### 2.3.2 South Wastewater Treatment Plant

The design capacity of the existing South WWTP is 0.04 MGD with a 2-hour peak capacity of 0.1 MGD. Based on TNRCC rules, the existing South WWTP is unable to meet current design criteria for daily and peak flows currently entering the plant. The District is currently designing a new 0.2 MGD South WWTP to replace the existing plant. The new plant will be capable of handling current and anticipated future flowrates. Since the existing plant will be abandoned upon completion of the new plant, only the new plant was considered in this evaluation.

Under TNRCC rules, wastewater treatment plants are required to treat a design flowrate equal to the maximum 30-day average flow for a wet weather period, and a peak flowrate equal to the highest two-hour average flow rate expected to be delivered to the plant. Since the wastewater flows have already exceeded the existing plant's capacity, the District has begun planning to replace the plant with a larger facility. The current maximum 30-day average and peak flowrates for the South system are 0.17 MGD and 0.6 MGD respectively.

Based on the current flows and the projected expansion of the South wastewater collection system, it is recommended that the new South wastewater plant be designed for an average flow capacity of 0.2 MGD with a peak capacity of 0.8 MGD. Assuming that expansion of the South wastewater collection system occurs as laid out in the Master Plan, these flows will provide adequate treatment capacity until the year 1998. Therefore, it is recommended that the new plant design include land needed for eventual expansion of the plant to a design capacity of 0.5 MGD and a peak capacity of 1.76 MGD. Assuming that expansion of the South sewage collection system occurs as laid out in the Master Plan, the sewage collection system occurs as laid out in the Master Plan of the south sewage collection system occurs as laid out in the Master Plan, expansion of the new 0.2 MGD plant to an eventual

design capacity of 0.5 MGD would extend the plant's life until the year 2012. Since dates for expansion of the South WWTP are directly related to the actual expansion of the South wastewater collection system, these dates may vary. Costs for expansion of the South WWTP are provided in Section 4.0: Cost Estimates.

## Table 4

## South Wastewater Treatment Plant Capacity

| UNIT<br>OPERATION | DESIGN CRITERIA                  | CURRENT<br>CAPACITY | YEAR<br>EXCEEDED | EXPANDED<br>CAPACITY | EXPANDED<br>DESIGN<br>LIFE |
|-------------------|----------------------------------|---------------------|------------------|----------------------|----------------------------|
| Design Flow       | > Maximum 30 day<br>average      | 0.04 MGD            | 1996             | 0.2 MGD              | > 1998                     |
| Peak Flow         | > Anticipated 2-hr<br>peak flows | 0.1 MGD             | 1996             | 0.8 MGD              | > 1998                     |

### 2.4 PRIORITIZATION OF IMPROVEMENTS

Each project listed above and those listed in Technical Memorandum #2 were evaluated using an evaluation matrix to prioritize those projects which occur in the same general time period. Each project was evaluated on a scale of 1 to 5, with 1 being lowest and 5 highest, for three categories: technical importance, regulatory importance, and economic importance. Technical importance describes the effect of the project on the water or wastewater system operation. Those projects that have a large technical impact on system operation were rated higher than those with a smaller impact. Regulatory importance describes the regulatory impact of constructing or not-constructing the project. Those projects with a high regulatory impact, such as the construction of treatment plant improvements, were rated higher than those with a smaller impact. Economic importance evaluates the potential effects of the project on the local economy. Those projects that enhance the attractiveness of a larger industrial and commercial areas, such as the areas next to Highway 334, would be rated higher than improvements in small subdivisions.

The value of each category was added together to get the total value for each project. Projects occurring in the same time period were then ranked in order based on their total rated value. Each project was given a project identification number based on its total rating and location. For instance, the highest rated project in the North wastewater system would be identified as project number NWW1. Project dates and ratings are preliminary and should be adjusted for changes in priority in the development of the District's water and wastewater systems. Copies of the evaluation matrix for each water and wastewater project is provided in Attachment 3-B.

#### 3.0 ENVIRONMENTAL ASSESSMENT

As part of the overall Master Plan, a preliminary environmental assessment was conducted to overview the potential environmental impacts of the proposed master plan projects. The environmental assessment looked for "fatal flaws" in the layout of the potential projects. For the most part, the distribution and collection system projects are located within and adjacent to existing roadways and easements. A few ancillary lines cross cropland, pastureland, or otherwise undeveloped land. Environmental considerations identified in the preliminary analysis of the project include permitting, archeology, and endangered and threatened species. Layouts of the projects are preliminary and the District will need to conduct a detailed environmental assessment for each project prior to construction to ensure compliance with environmental guidelines.

### 3.1 PERMITTING

Section 404 of the Clean Water Act addresses impacts associated with those hydrologic areas determined to be jurisdictional waters of the U.S. These jurisdictional waters include lakes, ponds, rivers, streams, and any other water bodies as well as wetlands and special aquatic sites. Construction activities within these jurisdictional waters require authorization from the U.S. Army Corps of Engineers (Corps). Some proposed projects will cross numerous unnamed drainages which flow into Cedar Creek Reservoir and areas that may be wetlands. Construction of the pipeline crossings for these drainages and wetlands can be authorized under Nationwide Permit 12 (NWP 12) - Utility Line Backfill and Bedding. It is not necessary to notify the Corps prior to construction as long as construction activities are conducted in accordance with the guidelines of NWP 12. A definition of NWP 12 is included in Attachment 3-C.

### TM#3-18

## 3.2 ARCHEOLOGICAL, HISTORICAL, AND CULTURAL SURVEY

Prior to construction of a particular project, it may be necessary to conduct a review of the historical and archeological value of the project site. A cultural resources survey of portions of the distribution and collection lines may be required. This survey should be performed by a professional archeologist and could include historical background checks, site visits, and archeological review of the project site. The Texas Water Development Board (TWDB) has indicated that their agency will coordinate these activities. The District would need to coordinate these efforts with the TWDB for archeological resources.

## 3.3 THREATENED AND ENDANGERED SPECIES

The proposed project is located in Henderson County which is in the range of 14 threatened and endangered species. These species include the bald eagle, red-cockaded woodpecker, whooping crane, Louisiana pine snake, paddlefish, white-faced ibis, American swallow-tailed kite, Bachman's sparrow, wood stork, Texas horned lizard, northern scarlet snake, alligator snapping turtle, and timber rattlesnake. The developed conditions of a majority of the distribution and collection lines preclude any concern regarding any of these species. However, in the event any of the pipeline routes cross undeveloped areas, the District should ensure that no threatened or endangered species would be impacted.

## TABLE 5PRELIMINARY COST ESTIMATES

| Project<br>ID# | Construction<br>Date | Project<br>Description                                                                                   |                              | Estimated<br>Cost |
|----------------|----------------------|----------------------------------------------------------------------------------------------------------|------------------------------|-------------------|
| NORTH WAT      | ER SYSTEM            |                                                                                                          |                              |                   |
| * NW 1         | 1997                 | New 12" loop around Legendary Lane,<br>Hwy 334, and the Bozeman Easement                                 | 12 " WL<br>10 " WL<br>8 " WL | \$830,000         |
| * NW 2         | 1997/2010            | North WTP Expansion                                                                                      | 1 MGD                        | \$1,663,000       |
| * NW 3         | 1997/1999            | North WTP High Service Pump Expansion                                                                    | 1100 gpm                     | \$31,000          |
| * NW 4         | 1997/2001            | North WTP Raw Water Pump Expansion                                                                       | 2500 gpm                     | \$36,000          |
| NW 5           | 1996-2006            | New 8" and 6" Waterlines for the remaining<br>Priority #2 Area on the East Side of the<br>Hwy 334 Bridge | 8 " WL<br>6 " WL             | \$234,000         |
| <b>NW 6</b>    | 1996-2006            | New 8" Waterlines to the Tamarack Area                                                                   | 8 " WL                       | \$186,00          |
| NW 7           | 1996-2006            | New 10" and 8" Waterlines to Harbor Point                                                                | 10 * WL<br>8 * WL            | \$290,00          |
| NW 8           | 1996-2006            | New 6" Waterline along Spanish Trail                                                                     | 6 " WL                       | \$179,00          |
| NW 9           | 1996-2006            | New 6" Waterlines through Sandy Shores<br>and Eastwood Island Areas                                      | 6 " WL                       | \$235,00          |
| NW 10          | 1996-2006            | New 6" Waterline from Welch Street<br>to Harmon Street                                                   | 6 " WL                       | \$78,00           |
| NW 11          | 2006                 | Total Storage Capacity Expansion                                                                         | 182000 Gal                   | \$206,00          |
| NW 12          | 2006-2016            | New 6" and 8" Waterlines to serve Priority<br>Area #3                                                    | 8 " WL<br>6 " WL             | \$279,00          |
| NW 13          | 2006-2016            | New 6" Waterline from Hwy 198 to<br>Whispering Trail                                                     | 6 " WL                       | \$128,00          |
| NW 14          | 2006-2016            | New 6" Waterline in the Oak Harbor<br>Subdivision                                                        | 6 " WL                       | \$170,000         |
| NW 15          | 2006-2016            | New 6" Waterlines in the Mantle Manors<br>and Sherwood Shores Subdivisions                               | 6 " WL                       | \$268,000         |
| NW 16          | 2006-2016            | New 6" Looped Waterline for the Harbor<br>Point Subdivision                                              | 6 * WL                       | \$246,000         |
| NW 17          | 2016-2026            | New 10" Waterline Along Hwy 334 to<br>Hwy 198                                                            | 10 * WL                      | \$307,000         |
| NW 18          | 2016-2026            | New 6" Waterline along Hwy 334 in<br>Priority Area #3                                                    | 6 " WL                       | \$117,000         |

| Project<br>ID# | Construction<br>Date | Project<br>Description                                                           | Estimated<br>Cost |           |
|----------------|----------------------|----------------------------------------------------------------------------------|-------------------|-----------|
| NW 19          | 2016-2026            | New 6" Waterline in the Siesta Shores<br>Area                                    | 6 " WL            | \$148,000 |
| NW 20          | 2016-2026            | New 6" Waterline in the Harbor Point<br>Subdivision                              | 6 * WL            | \$67,000  |
| NW 21          | 2016-2026            | New 6" Waterline along Luther Street                                             | 6 * WL            | \$165,000 |
| NW 22          | 2016-2026            | New 6" Waterlines in the Mantle Manors<br>and the Southwind Estates Subdivisions | 6 " WL            | \$168,000 |
| NW 23          | 2016-2026            | New 6" Waterline along Whispering Trail<br>in the Tamarack Area                  | 6 " WL            | \$140,000 |
| NW 24          | 2016-2026            | New 6" Looped Waterline in Bonita<br>Subdivision                                 | 6 " WL            | \$128,000 |
|                |                      | Total Costs 1996-2006 = \$                                                       | 2.932.000         |           |

| 10 fotal Costs 1996-2006 = | \$2,932,000 |
|----------------------------|-------------|
| Total Costs 2006-2016 =    | \$1,297,000 |
| Total Costs 2016-2026 =    | \$1,240,000 |
|                            |             |
| North Water System         |             |
| Total Project Costs =      | \$5,469,000 |

\* Note: Project NW1 is currently under design and will be under construction shortly. Therefore it is not included in the final estimate.

Projects NW2, NW3, and NW4 are based on expansion of treatment plant and pumping capacity under TNRCC criteria for 0.6 gpm per connection.

| Project<br>ID# | Construction<br>Date | Project<br>Description                                                                                                                      |                    | Estimated<br>Cost |
|----------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------|
| SOUTH WAT      | ER SYSTEM            |                                                                                                                                             |                    |                   |
| * SW 1         | 2002/2016            | South WTP, High Service & Raw Water<br>Pumps Expansion                                                                                      | 0.864 MGD          | \$1,724,000       |
| SW 2           | 1996-2006            | New 12" and 10" Waterline along Hwy 198<br>to Golden Oaks Addition                                                                          | 12 * WL<br>10 * WL | \$230,00          |
| SW 3           | 1996-2006            | New 12" Waterline along Enchanted<br>Drive, Hwy 198, and Southward toward<br>Cedar Branch Park                                              | 12 " WL            | \$528,00          |
| SW 4           | 1996-2006            | New 12" and 8" Waterline through the<br>Cedar Branch Subdivision                                                                            | 12 " WL<br>8 " WL  | \$268,00          |
| SW 5           | 1996-2006            | New 10" and 8" Waterline through<br>Forgotten Acres to Lakeland Road                                                                        | 10 " WL<br>8 " WL  | \$205,00          |
| SW 6           | 1996-2006            | New 8" and 6" Waterline Southward along<br>Enchanted Drive to Enchanted Oaks                                                                | 8 " WL<br>6 " WL   | \$130,00          |
| SW 7           | 1996-2006            | New 8" and 6" Waterline to Golden Oaks,<br>Southwood Shores, Bonanza Beach, and<br>Oak Shores Subdivisions                                  | 8 " WL<br>6 " WL   | \$396,00          |
| SW 8           | 1996-2006            | New 8" and 6" Waterline to Baywood<br>Estates Area                                                                                          | 8 " WL<br>6 " WL   | \$68,00           |
| SW 9           | 1996-2006            | New 6" Looped Waterline through Bandera<br>Bay and Oakwood Shores                                                                           | 6 " WL             | \$145,00          |
| SW 10          | 1996-2006            | New 6" Looped Waterline around Leisure-<br>land and to Three Harbors Subdivisions                                                           | 6 " WL             | \$223,00          |
| SW 11          | 2006-2016            | New 6" and 8" Waterline to provide looped<br>system for the Golden Oaks, Southwood<br>Shores, Bonanza Beach, and Oak Shores<br>Subdivisions | 8 " WL<br>6 " WL   | \$524,00          |
| SW 12          | 2006-2016            | New 6" Waterline to Enchanted Isles<br>Subdivision                                                                                          | 6 " WL             | \$112,00          |
| SW 13          | 2006-2016            | New 6" Waterline to Cherokee Hills<br>Subdivision                                                                                           | 6 " WL             | \$28,00           |
| SW 14          | 2006-2016            | New 6" Waterline through Oakwood Shores<br>Subdivision                                                                                      | 6 " WL             | \$84,00           |
| SW 15          | 2006-2016            | New 6" Waterline through Del Mar<br>Subdivision                                                                                             | 6 " WL             | \$115,00          |

| Project<br>ID# | Construction<br>Date | Project<br>Description                                                                                                                                       |                                                     | Estimated<br>Cost |
|----------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------------|
| SW 16          | 2006-2016            | New 6" Waterline through the Timber Bay,<br>Spillview Estates, and Diamond Oaks<br>Subdivisions                                                              | 6 " WL                                              | \$73,000          |
| SW 17          | 2006-2016            | Parailel 12" Waterline along Enchanted<br>Drive to Hwy 198                                                                                                   | 12 * WL                                             | \$123,000         |
| SW 18          | 2006-2016            | New 12" and 10" Waterline along Hwy 198<br>toward Payne Springs                                                                                              | 12 " WL<br>10 " WL                                  | \$229,000         |
| SW 19          | 2006-2016            | New 8" and 6" Waterlines through the<br>Southern Portion of the Resort Service<br>Area                                                                       | 8 " WL<br>6 " WL                                    | \$341,000         |
| SW 20          | 2006-2016            | New 8" Waterline and Booster Pump<br>Station to supply water to the Southeast<br>parts of Priority #3 Area including the<br>Lakeshore and Carolynn CCN areas | 8 " WL<br>6 " WL<br>200 gpm pump<br>200000 gal tank | \$1,375,000       |
| SW 21          | 2006-2016            | New 8" Looped Waterline to Priority #3<br>Area                                                                                                               | 8 " WL                                              | \$603,000         |
| SW 22          | 2006-2016            | New 6" Waterline on the East Side of the<br>Resort Area in Priority #3 Area                                                                                  | 6 " WL                                              | \$170,000         |
| SW 23          | 2016-2026            | New 6" Waterline in the Southwood Shores<br>Subdivision                                                                                                      | 6 " WL                                              | \$162,000         |
| SW 24          | 2016-2026            | New 6" Waterline in the Baywood Estates<br>Subdivision                                                                                                       | 6 " WL                                              | \$47,000          |
| SW 25          | 2016-2026            | New 6" Waterline along Del Mar Shoreline                                                                                                                     | 6 " WL                                              | \$59,000          |
| SW 26          | 2016-2026            | New 6" Waterline through the Wood<br>Canyon Waters Subdivision                                                                                               | 6 " WL                                              | \$75,000          |
| SW 27          | 2016-2026            | New 6" Waterline along the North Side of the Golden Oaks Subdivision                                                                                         | 6 " WL                                              | \$173,000         |
| SW 28          | 2016-2026            | New 8" and 6" Looped Waterline along<br>Hwy 198                                                                                                              | 8 " WL<br>6 " WL                                    | \$389,000         |
| SW 29          | 2016-2026            | New 6" Waterline through the Resort area<br>and the Western Side of Payne Springs                                                                            | 6 " WL                                              | \$112,000         |
| SW 30          | 2016-2026            | New 6" Waterline in the Northeastern part of the Priority #3 Area                                                                                            | 6 " WL                                              | \$290,000         |

| Project<br>ID# | Construction<br>Date | Project<br>Description                         |                           | Estimated<br>Cost |
|----------------|----------------------|------------------------------------------------|---------------------------|-------------------|
| SW 31          | 2016-2026            | New 6" Looped Waterline in the Carolynn,       | 6 " WL                    | \$564,000         |
|                |                      | Lake Shore, and Southern Resort Service        |                           |                   |
|                |                      | Area                                           |                           |                   |
|                |                      |                                                |                           |                   |
|                |                      | Total Costs 1996-2006 =                        | \$3,917,000               |                   |
|                |                      | Total Costs 2006-2016 =                        | \$3,777,000               |                   |
|                |                      | Total Costs 2016-2026 =                        | \$1,871,000               |                   |
|                |                      | South Water System                             |                           |                   |
|                |                      | Total Project Costs =                          | \$9,565,000               |                   |
|                | * Note:              | Projects SW1 is based on expansion of treatmen | t plant and pumping capac | ities             |

under TNRCC criteria for 0.6 gpm per connection.

| Project Construction<br>ID# Date |               | Project<br>Description                                                                                                  |                                                                               | Estimated<br>Cost |
|----------------------------------|---------------|-------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------|
|                                  | EWATER SYSTEM | <u>موجوان میں معرف میں محمد میں منظر میں پر اپنی ہو</u> ک میں میں میں میں میں میں میں میں میں مالیا کہ ا                | <u> </u>                                                                      |                   |
| * NWW 1                          | 1997          | Expansion of LS38 and LS39                                                                                              | 930 gpm LS<br>990 gpm LS<br>10 "FM                                            | \$544,000         |
| NWW 2                            | 2000          | North WWTP Expansion                                                                                                    | 0.275 MGD                                                                     | <b>\$640,0</b> 00 |
| NWW 3                            | 1996-2006     | Increase pumping capacity of LS60, LS61, & construction of a gravity sewer to LS38                                      | 65 gpm LS<br>165 gpm LS<br>10 " Gravity<br>8 " Gravity<br>4 " FM              | \$285,000         |
| NWW 4                            | 1996-2006     | Increase pumping capacity of LS25 and and LS33                                                                          | 80 gpm LS<br>58 gpm LS                                                        | \$20,000          |
| NWW 5                            | 1996-2006     | Diversion of flow in Tamarack Area to<br>LS56 and construction of a gravity sewer<br>line from Hwy 198 to LS39          | 12 " Gravity<br>10 " Gravity<br>8 " FM<br>6 " Gravity<br>6 " FM<br>170 gpm LS | \$383,000         |
| NWW 6                            | 1996-2006     | Diversion of flow from LS19 to LS29 and expansion of LS29                                                               | 6 " Gravity<br>110 gpm LS                                                     | \$26,000          |
| NWW 7                            | 1996-2006     | New 8" and 6" gravity sewer lines and<br>Lift Stations to serve remaining area in<br>Priority Area #2, East of Tamarack | 8 " Gravity<br>6 " Gravity<br>4 " FM<br>50 gpm LS<br>120 gpm LS               | \$438,000         |
| NWW 8                            | 2006-2016     | New 8" gravity sewer line from Lakeview<br>Street to existing 10" gravity sewer line<br>East of Harbor Street           | 8 " Gravity                                                                   | \$127,000         |
| NWW 9                            | 2006-2016     | Expansion of LS19 and LS44                                                                                              | 115 gpm LS<br>65 gpm LS                                                       | \$23,000          |
| NWW 10                           | 2006-2016     | Expansion of LS5 and construction of new force main from LS61 to LS60                                                   | 65 gpm LS<br>4 "FM                                                            | <b>\$64,</b> 000  |
| NWW 11                           | 2006-2016     | Expansion of LS7 and new gravity sewer<br>line from LS21 and LS46 to LS7                                                | 120 gpm LS<br>8 " Gravity<br>6 " Gravity<br>4 " FM                            | \$184,000         |
| NWW 12                           | 2006-2016     | New 6" gravity sewer line to serve<br>Priority Area #3                                                                  | 6 " Gravity                                                                   | \$140,000         |
| NWW 13                           | 2006-2016     | Expansion of LS36 and LS 40                                                                                             | 230 gpm LS                                                                    | <b>\$69,</b> 000  |

.

| the second s | Description                             |                                                                                                                                                                                                                                                                                                                                                                      | Cost                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date 2016-2026                                                                                                 | New 6" gravity sewer line along Hwy 198 | 6 " Gravity                                                                                                                                                                                                                                                                                                                                                          | \$92,000                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2016-2026                                                                                                      | New 8" and 6" gravity sewer line along  | 8 " Gravity                                                                                                                                                                                                                                                                                                                                                          | \$227,000                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                | Luther Street to LS39                   | 6 " Gravity                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2016-2026                                                                                                      | New gravity sewer line along Arbolado   | 8 " Gravity                                                                                                                                                                                                                                                                                                                                                          | \$177,000                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                | Street to LS24, expansion of LS24, and  | 6 " Gravity                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                | new 4" force main from LS24 to Hwy 334  | 4 " FM                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                |                                         | 95 gpm LS                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2016-2026                                                                                                      | Expansion of LS37                       | 310 gpm LS                                                                                                                                                                                                                                                                                                                                                           | \$40,000                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2016-2026                                                                                                      | New 8" gravity sewer line along Harbor  | 8 " Gravity                                                                                                                                                                                                                                                                                                                                                          | \$102,000                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                | Point Road                              | 6 " Gravity                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                | Total Costs 1996-2006 =                 | \$1.792.000                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                | Total Costs 2016-2026 =                 | \$639,000                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                | South Water System                      |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                | Total Project Costs =                   | \$3,037,000                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                | 2016-2026<br>2016-2026                  | Luther Street to LS39<br>2016-2026 New gravity sewer line along Arbolado<br>Street to LS24, expansion of LS24, and<br>new 4" force main from LS24 to Hwy 334<br>2016-2026 Expansion of LS37<br>2016-2026 New 8" gravity sewer line along Harbor<br>Point Road<br>Total Costs 1996-2006 =<br>Total Costs 2006-2016 =<br>Total Costs 2016-2026 =<br>South Water System | Luther Street to LS396 " Gravity2016-2026New gravity sewer line along Arbolado<br>Street to LS24, expansion of LS24, and<br>new 4" force main from LS24 to Hwy 3348 " Gravity<br>6 " Gravity<br>95 gpm LS2016-2026Expansion of LS37310 gpm LS2016-2026New 8" gravity sewer line along Harbor<br>Point Road8 " Gravity<br>6 " GravityTotal Costs 1996-2006 =<br>Total Costs 2006-2016 =<br>\$606,000<br>Total Costs 2016-2026 =<br>\$639,000\$000<br>\$639,000 |

Therefore it is not included in the final estimate.

| Project<br>ID#          | Construction <u>Date</u> | Project<br>Description                                                                                                          |                                                            | Estimated<br>Cost |  |
|-------------------------|--------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------|--|
| SOUTH WASTEWATER SYSTEM |                          |                                                                                                                                 |                                                            |                   |  |
| * SWW 1                 | 1997                     | South WWTP Improvements                                                                                                         | 0.2 MGD                                                    | \$399,00          |  |
| SWW 2                   | 1996-2006                | New 15", 12", and 10" gravity sewer line<br>and Lift Station to convey flow from the<br>North part of the wastewater system     | 15 " Gravity<br>12 " Gravity<br>10 " Gravity<br>400 gpm LS | \$619,00          |  |
| SWW 3                   | 1996-2006                | New 6" and 4" force main to the Golden<br>Oaks Subdivision                                                                      | 6 " FM<br>4 " FM<br>3 " FM                                 | \$125,00          |  |
| SWW 4                   | 1996-2006                | New 6" force main to Enchanted Drive and<br>North to the Mac Oaks Subdivision                                                   | 6 " FM                                                     | \$67,00           |  |
| SWW 5                   | 1996-2006                | New 6" force main and Lift Station to serve<br>the Cedar Branch Park Area                                                       | 6 " FM<br>250 gpm LS                                       | \$325,00          |  |
| SWW 6                   | 1996-2006                | New 4" force main to the Oakwood Shores<br>Subdivision                                                                          | 4 " FM<br>3 " FM                                           | \$89,00           |  |
| SWW 7                   | 1996-2006                | New 4" force main to the Baywood Estates<br>Subdivision                                                                         | 4 " FM<br>3 " FM                                           | \$88,00           |  |
| SWW 8                   | 1996-2006                | New 4" force main to the Southland<br>Shores, Bonanza Beach, and Oakshores                                                      | 6 " FM<br>4 " FM                                           | \$417,00          |  |
| SWW 9                   | 1996-2006                | New 4" force main along Leisureland Drive<br>and associated lateral force mains to serve<br>Leisureland Subdivision             | 4 " FM<br>3 " FM                                           | \$168,00          |  |
| SWW 10                  | 1996-2006                | New 4" force main along Forgotten Lane<br>and associated lateral force mains to serve<br>Del Mar and Three Harbors Subdivisions | 4 " FM<br>3 " FM                                           | \$274,00          |  |
| SWW 11                  | 1996-2006                | New 4" and 3" force main to serve the<br>Timber Bay, Diamond Oaks, Spillview,<br>Wood Canyon, and Deer Island Subdivisions      | 4 " FM<br>3 " FM                                           | \$245,00          |  |
| SWW 12                  | 1998-2006                | South WWTP Expansion                                                                                                            | 0.3 MGD                                                    | \$698,00          |  |
| SWW 13                  | 2006-2016                | New 8" gravity sewer line to serve the<br>Southwestern part of Payne Springs                                                    | 8 " Gravity<br>6 " Gravity                                 | \$204,00          |  |
| SWW 14                  | 2006-2016                | New 8" gravity sewer trunk lines along<br>Hwy 198 and along the Golden Oaks<br>Subdivision                                      | 8 " Gravity<br>6 " Gravity                                 | \$681,00          |  |

.

| Project<br>D# | Construction<br>Date | Project<br>Description                                                                       |                                            | Estimated<br>Cost |
|---------------|----------------------|----------------------------------------------------------------------------------------------|--------------------------------------------|-------------------|
| SWW 15        | 2006-2016            | New parallel 6" force main to the Indian<br>Harbor Area                                      | 6 " FM                                     | \$46,00           |
| SWW 16        | 2006-2016            | New parallel 6" force main along Enchanted<br>Drive                                          | 6 " FM                                     | \$61,00           |
| SWW 17        | 2006-2016            | New parallel 4" force main along Lakeland 4 " FM<br>Drive                                    |                                            | \$45,00           |
| SWW 18        | 2006-2016            | New 6" and 4" force main to serve the<br>Southeastern portion of Priority #3 Area            | 6 " FM<br>4 " FM<br>3 " FM                 | \$600,00          |
|               |                      |                                                                                              | 120 gpm LS                                 |                   |
| SWW 19        | 2006-2016            | New 6" and 4" force main for the Resort<br>CCN within the Priority #3 Area                   | 6 " FM<br>4 " FM<br>3 " FM                 | \$272,00          |
| SWW 20        | 2006-2016            | New 250 gpm Lift Station and 6" force<br>main at Lynn Creek                                  | 250 gpm LS<br>6 " FM                       | \$350,00          |
| <b>SWW</b> 21 | 2016-2026            | New 6", 8", and 10" gravity sewer trunk<br>line through the Central part of Payne<br>Springs | 10 " Gravity<br>8 " Gravity<br>6 " Gravity | \$1,258,00        |
| SWW 22        | 2016-2026            | New 6" parallel force main on Forgotten Ln.                                                  | 6 " FM                                     | \$47,0            |
| SWW 23        | 2016-2026            | New 6" parallel force main to serve the<br>Resort CCN Area                                   | 6 " FM                                     | \$78,0            |
| SWW 24        | 2016-2026            | New 6" parallel force main in the Southern<br>Priority #3 Area                               | 6 " FM                                     | \$142,0           |
|               |                      | Total Costs 1996-2006 =                                                                      | \$3,115,000                                |                   |
|               |                      | Total Costs 2006-2016 =                                                                      | \$2,260,000                                |                   |
|               |                      | Total Costs 2016-2026 =                                                                      | \$1,526,000                                |                   |
|               |                      | South Water System Total Project Costs =                                                     | \$6,901,000                                |                   |
|               | * Note:              | Project SWW1 is currently under design and wi                                                | 11 be under construction sho               | ortly.            |
|               | T                    | herefore it is not included in the final estimate.                                           |                                            |                   |
|               |                      | TOTAL MASTER PLAN COSTS 1996-2006                                                            | \$11,756,000                               |                   |
|               |                      | TOTAL MASTER PLAN COSTS 2006-2016                                                            | \$7,940,000                                |                   |
|               |                      | TOTAL MASTER PLAN COSTS 2016-2026                                                            | \$5,276,000                                |                   |
|               |                      | TOTAL MASTED DI AN COSTS -                                                                   | \$24 072 000                               |                   |

TOTAL MASTER PLAN COSTS = \$24,972,000

A summary of the total estimated Master Plan costs is provided in Table 6. This summary shows the total cost of the Master Plan projects for each ten year period for both water and wastewater systems. The costs for each system have been broken into costs per connection and costs per 1000 gallons of billed water use or wastewater treated. The cost per connection for a ten year period is calculated by dividing the Master Plan costs for that period by the average estimated number of water or wastewater connections for that period. The cost per 1000 gallons for a ten year period is calculated by dividing the systems total cost for that period by the estimated average billed water usage or estimated wastewater treated for that same period. Billed water use is estimated by assuming that 85% of the future water demand at the District's water treated wastewater. Both cost per connection and cost per 1000 gallons were then amortized at an interest rate of 5% over 20 years. These amortized costs show the required increase in the District's revenue to repay a 20-year loan with a 5% interest rate.

The cumulative cost per 1000 gallons is the cost over each ten year period to repay all outstanding debt service based on loans of 20 years at 5% interest. For example, in the second ten-year period for the District's water systems, the cumulative cost per 1000 gallons is \$2.66. This is the total cost for repayment of the loan taken in the first ten years (\$1.65) plus the cost of the loan taken in the second ten years (\$1.01). At the end of the second ten-year period, the first 20-year loan (\$1.65) is paid off and the third 20-year loan (\$0.55) is added. This is only one example of potential amortization of the debt service for Master Plan costs. The District will need to consider individual funding options prior to design and construction of Master Plan projects.

## TABLE 6

## MASTER PLAN COSTS SUMMARY

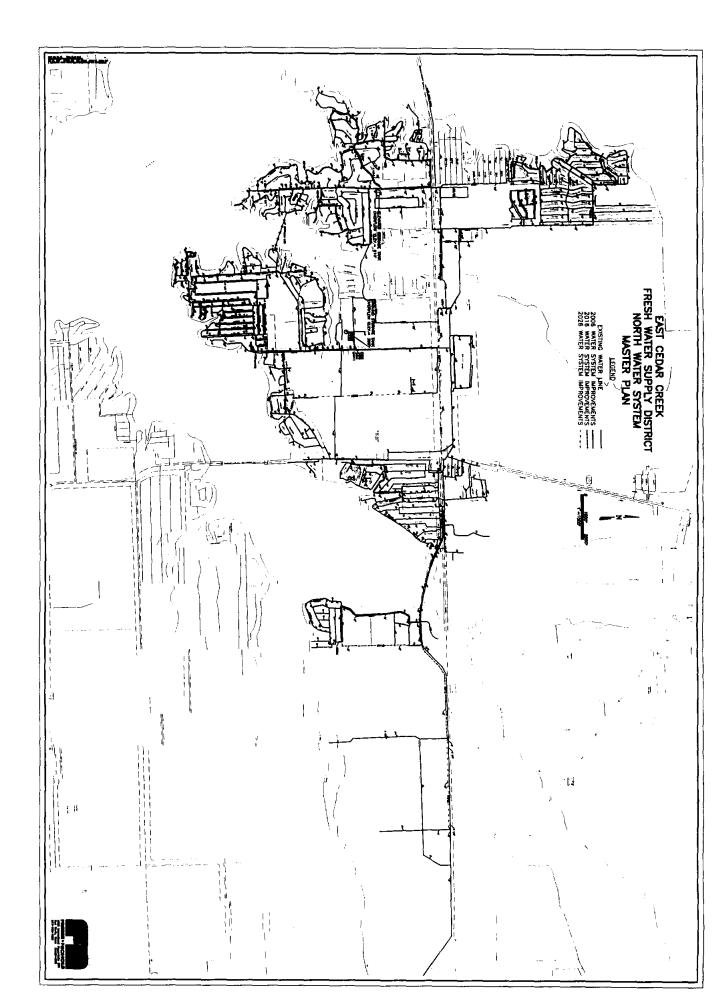
.

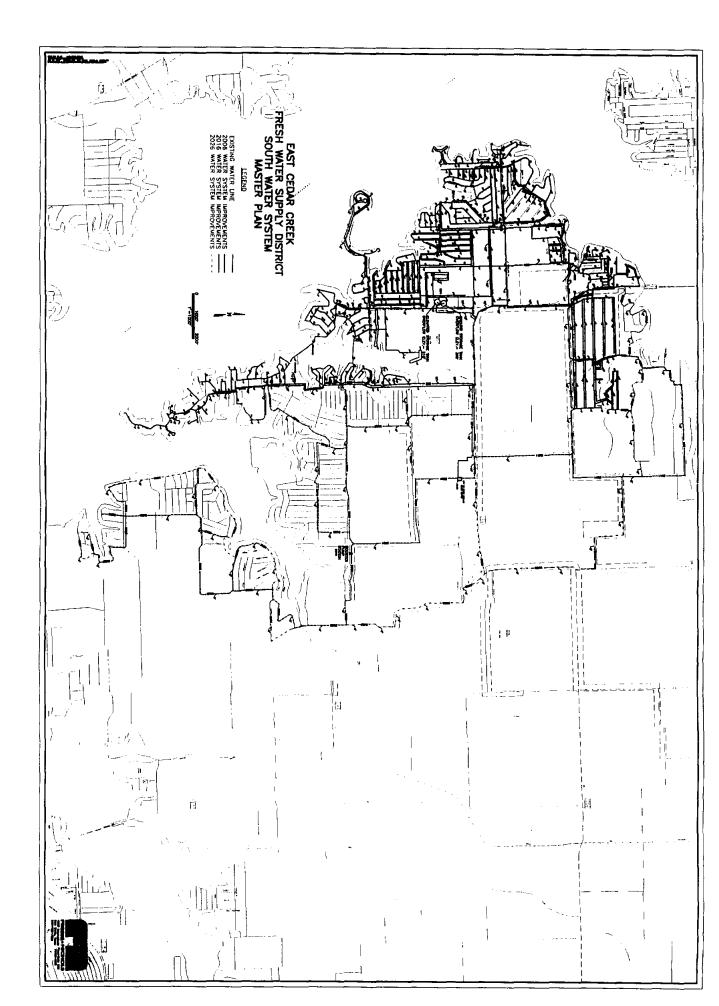
|                               | 1996-2006    | 2006-2016   | 2016-2026   | TOTALS       |
|-------------------------------|--------------|-------------|-------------|--------------|
| NORTH WATER                   |              |             |             |              |
| Total Costs                   | \$2,932,000  | \$1,297,000 | \$1,240,000 | \$5,469,000  |
| Cost per Connection           | \$71         | \$26        | \$23        | \$113        |
| Cost per 1000 Gallons         | \$1.08       | \$0.40      | \$0.34      | \$1.73       |
| SOUTH WATER                   |              |             |             |              |
| Total Costs                   | \$3,917,000  | \$3,777,000 | \$1,871,000 | \$9,565,000  |
| Cost per Connection           | \$156        | \$123       | \$51        | \$315        |
| Cost per 1000 Gallons         | \$2.71       | \$2.13      | \$0.89      | \$5.47       |
| WATER TOTALS                  |              |             |             |              |
| Total Costs                   | \$6,849,000  | \$5,074,000 | \$3,111,000 | \$15,034,000 |
| Cost per Connection           | \$103        | \$63        | \$34        | \$191        |
| Cost per 1000 Gallons         | \$1.65       | \$1.01      | \$0.55      | \$3.06       |
| Cummulative Cost per 1000 Gal | \$1.65       | \$2.66      | \$1.56      | n/a          |
| NORTH WASTEWATER              |              |             |             |              |
| Total Costs                   | \$1,792,000  | \$606,000   | \$639,000   | \$3,037,000  |
| Cost per Connection           | \$40         | \$11        | \$10        | \$55         |
| Cost per 1000 Gallons         | \$0.83       | \$0.23      | \$0.22      | \$1.19       |
| SOUTH WASTEWATER              |              |             |             |              |
| Total Costs                   | \$3,115,000  | \$2,260,000 | \$1,526,000 | \$6,901,000  |
| Cost per Connection           | \$175        | \$66        | \$32        | \$215        |
| Cost per 1000 Gallons         | \$4.95       | \$2.11      | \$1.09      | \$6.74       |
| WASTEWATER TOTALS             |              |             |             |              |
| Total Costs                   | \$4,907,000  | \$2,866,000 | \$2,165,000 | \$9,938,000  |
| Cost per Connection           | \$78         | \$31        | \$19        | \$114        |
| Cost per 1000 Gallons         | \$1.76       | \$0.78      | \$0.50      | \$2.77       |
| Cummulative Cost per 1000 Gal | \$1.76       | \$2.53      | \$1.28      | n/a          |
| MASTER PLAN TOTALS            |              |             |             |              |
| Total Costs                   | \$11,756,000 | \$7,940,000 | \$5,276,000 | \$24,972,000 |
| Cost per Connection           | \$91         | \$46        | \$26        | \$150        |
| Cost per 1000 Gallons         | \$1.69       | \$0.91      | \$0.53      | \$2.94       |
| Cummulative Cost per 1000 Gal | \$1.69       | \$2.61      | \$1.44      | n/a          |

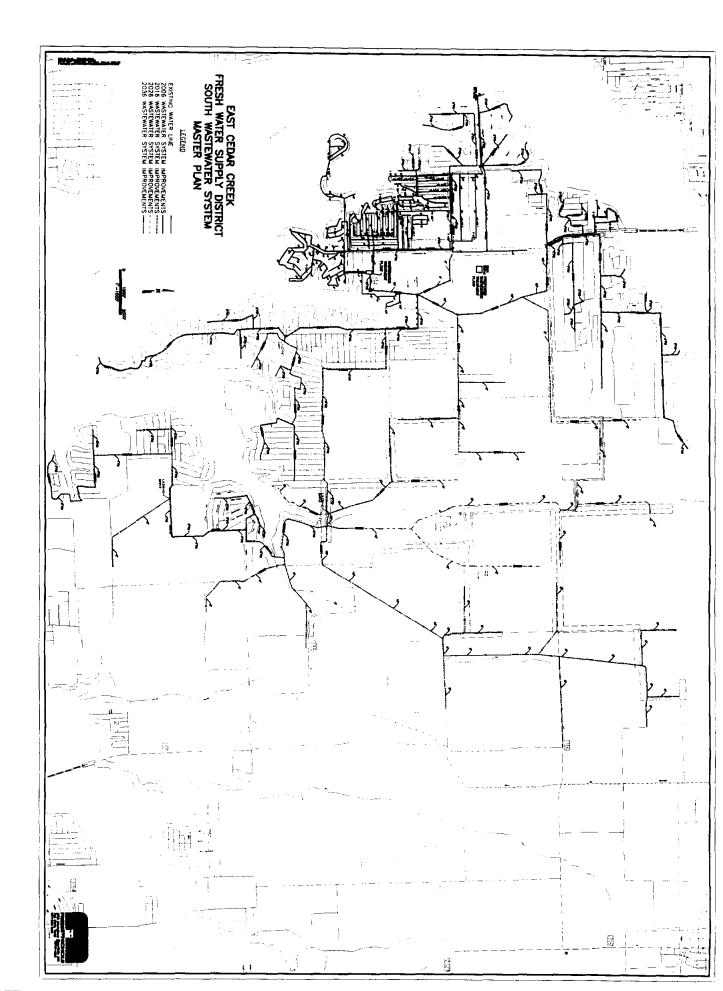
### 5.0 POTENTIAL FINANCING OPTIONS

There are several potential financing options the District can pursue to assist in the implementation of projects laid out in the Master Plan. These options include user service charges, taxes, Community Development Block Grants (CDBG's), Rural Utilities Service (formerly Farmers Home Administration, FmHA) grants and loans, State Revolving Fund (SRF) funding, bond issues, EPA hardship grants, and Economic Development Administration grants. Specific funding vehicles should be determined prior to design and construction of a specific project(s). If the District qualifies, the use of grant monies would reduce the burden of payment for the improvements placed on the District.

Increased service charges are the most common method of paying for capital improvements projects. Service charge increases are typically used in conjunction with loan programs to assist in repayment of loans over a long period of time. As indicated in Table 6, this increase in the base charge per 1,000 gallons of sewer or water service would be between \$1.30 and \$2.50 depending on the system and timing of improvements. Another option for increasing revenues without additional service charge is the implementation of some form of special service tax.


Several federal and state grant programs exist to assist small communities in paying for capital improvement programs including EDA and FmHA programs. FmHA loans and grants are provided for communities that are financially sound, but unable to obtain funds from other sources at reasonable rates. Grants covering up to 75 percent of a project's costs may be made to help reduce the repayment burden placed on the systems users. Eligible applicants include municipal service districts with priority given to communities of 5,500 or less or to projects meeting certain other criteria establishing urgent need.


The Texas Water Development Board SRF program provides a low interest, 20-year loan for 100 percent of water and wastewater treatment, water distribution and wastewater collection program costs. Funds are not released until construction begins and are disbursed as these costs are incurred. The loan amount can include costs for all three phases of a water/wastewater project - planning, design, and construction - and can include expenses for building "excess capacity" for future use, as long as needs are well documented.


The EPA has recently published draft guidelines for the Hardship Grants Program for Rural Communities. The intent of the program is to provide assistance to qualifying rural communities with fewer than 3,000 residents. Funds will be made available for improvements to wastewater systems and for alternative wastewater services, such as on-site treatment systems.

# **ATTACHMENT 3-A**

MAPPING OF PROPOSED IMPROVEMENTS







# **ATTACHMENT 3-B**

MATRIX EVALUATION

.

### EAST CEDAR CREEK FRESH WATER SUPPLY DISTRICT

### PROJECTS MATRIX EVALUATION

#### North Water System

| Project |    | Construction | Project                                       |    |    |    |        |
|---------|----|--------------|-----------------------------------------------|----|----|----|--------|
| ID#     |    | Date         | Description                                   | TI | RI | EI | TOTALS |
| NW      | 1  | 1997         | New 12" water loop                            | 5  | 5  | 5  | 15     |
| NW      | 2  | 1997/2010    | North WTP Expansion                           | 5  | 5  | 5  | 15     |
| NW      | 3  | 1997/1999    | North WTP High Service Pump Expansion         | 5  | 5  | 3  | 13     |
| NW      | 4  | 1997/2001    | North WTP Raw Water Pump Expansion            | 5  | 5  | 3  | 13     |
| NW      | 5  | 1996-2006    | New 8" and 6" WL's for E. of Hwy 334 Bridge   | 4  | 3  | 4  | 11     |
| NW      | 6  | 1996-2006    | New 8" Waterlines to the Tamarack Area        | 4  | 3  | 4  | 11     |
| NW      | 7  | 1996-2006    | New 10" and 8" Waterlines to Harbor Point     | 4  | 3  | 3  | 10     |
| NW      | 8  | 1996-2006    | New 6" Waterline along Spanish Trail          | 3  | 2  | 2  | 7      |
| NW      | 9  | 1996-2006    | New 6" WL thru Sandy Shores & Eastwood Isle   | 3  | 2  | 2  | 7      |
| NW      | 10 | 1996-2006    | New 6" WL from Welch to Harmon                | 3  | 2  | 2  | 7      |
| NW      | 11 | 2006         | Total Storage Capacity Expansion              | 5  | 5  | 3  | 13     |
| NW      | 12 | 2006-2016    | New 6" and 8" WL's to serve Priority#3        | 5  | 3  | 2  | 10     |
| NW      | 13 | 2006-2016    | New 6" WL from Hwy 198 to Whispering Trail    | 4  | 3  | 2  | 9      |
| NW      | 14 | 2006-2016    | New 6" Waterline in Oak Harbor                | 3  | 2  | 2  | 7      |
| NW      | 15 | 2006-2016    | New 6" WL in Mantle Manors & Sherwood         | 3  | 2  | 2  | 7      |
| NW      | 16 | 2006-2016    | New 6" Looped WL for the Harbor Point         | 3  | 2  | 2  | 7      |
| NW      | 17 | 2016-2026    | New 10" WL Along Hwy 334 to Hwy 198           | 3  | 2  | 2  | 7      |
| NW      | 18 | 2016-2026    | New 6" WL along Hwy 334 in Priority #3        | 2  | 2  | 2  | 6      |
| NW      | 19 | 2016-2026    | New 6" Waterline in the Siesta Shores         | 2  | 1  | 1  | 4      |
| NW      | 20 | 2016-2026    | New 6" Waterline in the Harbor Point          | 2  | 1  | 1  | 4      |
| NW      | 21 | 2016-2026    | New 6" Waterline along Luther Street          | 2  | 1  | 1  | 4      |
| NW      | 22 | 2016-2026    | New 6" WL in Mantle Manors & Southwind Est.   | 2  | 1  | 1  | 4      |
| NW      | 23 | 2016-2026    | New 6" WL along Whispering Trail in Tamarack  | 2  | 1  | 1  | 4      |
| NW      | 24 | 2016-2026    | New 6" Looped Waterline in Bonita subdivision | 2  | 1  | 1  | 4      |

TI - Technical Importance

RI - Regulatory Importance

EI - Economic Importance

Each category was rated for each individual project on a scale of 1 to 5 with 1 being lowest and 5 highest

### South Water System

| Project | Construction | Project                                           |    |    |        |             |
|---------|--------------|---------------------------------------------------|----|----|--------|-------------|
| ID#     | Date         | Description                                       | TI | RI | EI     | TOTALS      |
| SW 1    | 2002/2016    | South WTP, High Service & Raw Water Pump Expa     | 5  | 5  | 5      | 15          |
| SW 2    | 1996-2006    | New 12" and 10" WL along 198 to Golden Oaks       | 5  | 5  | 5      | 15          |
| SW 3    | 1996-2006    | New 12" WL along Enchanted Dr., 198, & Cedar      | 5  | 5  | 5      | 15          |
| SW 4    | 1996-2006    | New 12" and 8" WL through the Cedar Branch        | 4  | 4  | 4      | 12          |
| SW 5    | 1996-2006    | New 10" and 8" WL thru Forgotten Acres to Lakelan | 4  | 4  | 4      | 12          |
| SW 6    | 1996-2006    | New 8" and 6" WL along Enchanted Dr. to Ench. O   | 4  | 3  | 3      | 10          |
| SW 7    | 1996-2006    | New 8" and 6" WL to Gold Oaks, Southwood, Bona    | 3  | 3  | 2      | 8           |
| SW 8    | 1996-2006    | New 8" and 6" WL to Baywood Estates               | 3  | 3  | 2      | 8           |
| SW 9    | 1996-2006    | New 6" Loop thru Bandera Bay & Oakwood Shores     | 3  | 2  | 2      | 7           |
| SW 10   | 1996-2006    | New 6" Loop around Leisureland and Three Harbor   | 3  | 2  | 2      | 7           |
| SW 11   | 2006-2016    | New 6" and 8" loops for Gold Oaks, Southwood, Bo  | 4  | 3  | 2      | 9           |
| SW 12   | 2006-2016    | New 6" Waterline to Enchanted Isles               | 4  | 2  | 2<br>2 | 9           |
| SW 13   | 2006-2016    | New 6" Waterline to Cherokee Hills                | 4  | 2  | 2      | 8           |
| SW 14   | 2006-2016    | New 6" Waterline through Oakwood Shores           | 4  | 2  | 2      | 8           |
| SW 15   | 2006-2016    | New 6" Waterline through Del Mar                  | 4  | 2  | 2      | 8           |
| SW 16   | 2006-2016    | New 6" WL in Timber Bay, Spillview, & Diamond Oa  | 4  | 2  | 2      | 8           |
| SW 17   | 2006-2016    | Parallel 12" WL along Enchanted Dr. to 198        | 3  | 2  | 2      | 7           |
| SW 18   | 2006-2016    | New 12" and 10" WL along 198 to Payne Springs     | 3  | 2  | 2      | 7           |
| SW 19   | 2006-2016    | New 8" and 6" WL thru South Resort Area           | 3  | 1  | 2      | 6           |
| SW 20   | 2006-2016    | New 8" Waterline and Booster Pump Station         | 3  | 1  | 2      | 6           |
| SW 21   | 2006-2016    | New 8" Looped Waterline to Priority #3            | 3  | 1  | 2      | 6<br>6      |
| SW 22   | 2006-2016    | New 6" WL on East Side of Resort in Priority #3   | 3  | 1  | 1      | 5           |
| SW 23   | 2016-2026    | New 6" Waterline in the Southwood Shores          | 2  | 2  | 1      | 5           |
| SW 24   | 2016-2026    | New 6" Waterline in the Baywood Estates           | 2  | 2  | 1      | 5<br>5<br>5 |
| SW 25   | 2016-2026    | New 6" Waterline along Del Mar Shoreline          | 2  | 2  | 1      | 5           |
| SW 26   | 2016-2026    | New 6" WL through Wood Canyon Waters              | 2  | 2  | 1      | 5           |
| SW 27   | 2016-2026    | New 6" WL on North Side of Golden Oaks            | 2  | 2  | 1      | 5           |
| SW 28   | 2016-2026    | New 8" and 6" Loops along 198                     | 2  | 1  | 1      | 4           |
| SW 29   | 2016-2026    | New 6" WL in Resort & W. Payne Springs            | 1  | 1  | 1      | 3           |
| SW 30   | 2016-2026    | New 6" WL in NE part of Priority #3 Area          | 1  | 1  | 1      | 3           |
| SW 31   | 2016-2026    | New 6" Loop in Carolynn, Lakeshore, and S. Resort | 1  | 1  | 1      | 3           |

TI - Technical Importance

Ri - Regulatory Importance

EI - Economic Importance

Each category was rated for each individual project on a scale of 1 to 5 with 1 being lowest and 5 highest

.

### North Wastewater System

| Project |    | Construction | Project                                           |    |    |    |        |
|---------|----|--------------|---------------------------------------------------|----|----|----|--------|
| ID#     |    | Date         | Description                                       | TI | RI | El | TOTALS |
| NWW     | 1  | 1997         | Expansion of LS38 and LS39                        | 5  | 5  | 5  | 15     |
| NWW     | 2  | 2000         | North WWTP Expansion                              | 5  | 5  | 5  | 15     |
| NWW     | 3  | 1996-2006    | Expansion of LS60, LS61, & new GS to LS38         | 5  | 4  | 3  | 12     |
| NWW     | 4  | 1996-2006    | Increase pumping capacity of LS25 and LS33        | 5  | 3  | 3  | 11     |
| NWW     | 5  | 1996-2006    | Divert to LS 56 & GS from 198 to LS39             | 4  | 3  | 3  | 10     |
| NWW     | 6  | 1996-2006    | Divert flow from LS19 to LS29 & exp. LS29         | 4  | 3  | 3  | 10     |
| NWW     | 7  | 1996-2006    | New 8" and 6" GS & LS to serve P2, E. of Tamarac  | 4  | 2  | 3  | 9      |
| NWW     | 8  | 2006-2016    | New 8" GS from Lakeview to exist 10" E. of Harbor | 4  | 2  | 2  | 8      |
| NWW     | 9  | 2006-2016    | Expansion of LS19 and LS44                        | 4  | 2  | 2  | 8      |
| NWW     | 10 | 2006-2016    | Expand of LS5 and new FM from LS61 to LS60        | 4  | 2  | 2  | 8      |
| NWW     | 11 | 2006-2016    | Expand LS7 and new GS from LS21 and LS46 to L     | 4  | 2  | 2  | 8      |
| NWW     | 12 | 2006-2016    | New 6" gravity sewer line to serve Priority #3    | 4  | 1  | 2  | 7      |
| NWW     | 13 | 2006-2016    | Expansion of LS36 and LS 40                       | 4  | 1  | 2  | 7      |
| NWW     | 14 | 2016-2026    | New 6" gravity sewer line along Hwy 198           | 3  | 2  | 3  | 8      |
| NWW     | 15 | 2016-2026    | New 8" and 6" GS along Luther to LS39             | 3  | 2  | 1  | 6      |
| NWW     | 16 | 2016-2026    | GS on Arbolado to LS24, Expand LS24, & new 4" f   | 3  | 2  | 1  | 6      |
| NWW     | 17 | 2016-2026    | Expansion of LS37                                 | 3  | 2  | 1  | 6      |
| NWW     | 18 | 2016-2026    | New 8" gravity sewer line along Harbor Point Rd.  | 2  | 1  | 1  | 4      |

TI - Technical Importance

RI - Regulatory Importance EI - Economic Importance

Each category was rated for each individual project on a scale of 1 to 5 with 1 being lowest and 5 highest

#### South Wastewater System

| Project |    | Construction | Project                                               |    |    |    |        |
|---------|----|--------------|-------------------------------------------------------|----|----|----|--------|
| ID#     |    | Date         | Description                                           | TI | RI | EI | TOTALS |
| SWW     | 1  | 1997         | South WWTP Improvements                               | 5  | 5  | 5  | 15     |
| SWW     | 2  | 1996-2006    | New 15", 12", & 10" GS & LS to convey flow from N     | 4  | 4  | 4  | 12     |
| SWW     | 3  | 1996-2006    | New 6" and 4" force main to the Golden Oaks           | 4  | 4  | 3  | 11     |
| SWW     | 4  | 1996-2006    | New 6" FM to Enchanted Dr & North to Mac Oaks         | 4  | 4  | 3  | 11     |
| SWW     | 5  | 1996-2006    | New 6" FM & LS to serve Cedar Branch Park Area        | 4  | 4  | 3  | 11     |
| SWW     | 6  | 1996-2006    | New 4" force main to the Oakwood Shores               | 4  | 3  | 3  | 10     |
| SWW     | 7  | 1996-2006    | New 4" force main to the Baywood Estates              | 4  | 3  | 3  | 10     |
| SWW     | 8  | 1996-2006    | New 4" FM to Southland, Bonanza Beach, and Oak        | 4  | 3  | 3  | 10     |
| SWW     | 9  | 1996-2006    | New 4" FM on Leisureland Dr & laterals to Leisurela   | 4  | 3  | 3  | 10     |
| SWW     | 10 | 1996-2006    | New 4" FM on Forgotten Ln & laterals to Del Mar &     | 4  | 3  | 3  | 10     |
| SWW     | 11 | 1996-2006    | New 4" & 3" FM in Timber bay, Diamond Oaks, Spill     | 4  | 3  | 3  | 10     |
| SWW     | 12 | 1998-2006    | South WWTP Expansion                                  | 5  | 5  | 5  | 15     |
| SWW     | 13 | 2006-2016    | New 8" GS line to serve the SE part of Payne Spring   | 3  | 2  | 3  | 8      |
| SWW     | 14 | 2006-2016    | New 8" GS along 198 and Golden Oaks                   | 3  | 2  | 3  | 8      |
| SWW     | 15 | 2006-2016    | New parallel 6" force main to the Indian Harbor       | 3  | 2  | 2  | 7      |
| SWW     | 16 | 2006-2016    | New parallel 6" force main along Enchanted Drive      | 3  | 2  | 2  | 7      |
| SWW     | 17 | 2006-2016    | New parallel 4" force main along Lakeland Drive       | 3  | 2  | 2  | 7      |
| SWW     | 18 | 2006-2016    | New 6" and 4" FM to serve the SE portion of Priority  | 3  | 1  | 2  | 6      |
| SWW     | 19 | 2006-2016    | New 6" and 4" FM for the Resort CCN in Priority #3    | 3  | 1  | 2  | 6      |
| SWW     | 20 | 2006-2016    | New 250 gpm Lift Station and 6" FM at Lynn Creek      | 3  | 1  | 2  | 6      |
| SWW     | 21 | 2016-2026    | New 6", 8", and 10" GS through central Payne Sprin    | 2  | 1  | 2  | 5      |
| SWW     | 22 | 2016-2026    | New 6" parallel force main along Forgotten Lane       | 2  | 2  | 1  | 5      |
| SWW     | 23 | 2016-2026    | New 6" parallel force main to serve the Resort CCN    | 2  | 1  | 1  | 4      |
| SWW     | 24 | 2016-2026    | New 6" parallel force main in the Southern Priority # | 2  | 1  | 1  | 4      |

TI - Technical Importance

RI - Regulatory Importance

EI - Economic Importance

Each category was rated for each individual project on a scale of 1 to 5 with 1 being lowest and 5 highest

,

## **ATTACHMENT 3-C**

ENVIRONMENTAL ASSESSMENT

(Sections 10 and 404)

6. Survey Activities. Survey activities including core sampling, seismic exploratory operations, and plugging of seismic shot holes and other exploratory-type bore holes. Drilling and the discharge of excavated material from test wells for oil and gas exploration is not authorized by this nationwide permit; the plugging of such wells is authorized. Fill placed for roads, pads and other similar activities is not authorized by this nationwide permit. The discharge of drilling muds and cuttings may require a permit under Section 402 of the Clean Water Act. (Sections 10 and 404)

7. Outfall Structures. Activities related to construction of outfall structures and associated intake structures where the effluent from the outfall is authorized, conditionally authorized, or specifically exempted, or are otherwise in compliance with regulations issued under the National Pollutant Discharge Elimination System program (Section 402 of the Clean Water Act), provided that the nationwide permittee notifies the district engineer in accordance with the "Notification" general condition.

(Also see 33 CFR 330.1(e)). Intake structures per se are not included - only those directly associated with an outfall structure. (Sections 10 and 404)

8. Oil and Gas Structures. Structures for the exploration, production, and transportation of oil, gas, and minerals on the outer continental shelf within areas leased for such purposes by the Department of the Interior, Minerals Management Service. Such structures shall not be placed within the limits of any designated shipping safety fairway or traffic separation scheme, except temporary anchors that comply with the fairway regulations in 33 CFR 322.5(1). (Where such limits have not been designated, or where changes are anticipated, district engineers will consider asserting discretionary authority in accordance with 33 CFR 350.4(e) and will also review such proposals to ensure they comply with the provisions of the fairway regulations in 33 CFR 322.5(1)). Such structures will not be placed in established danger zones or restricted areas as designated in 33 CFR Part 334: nor will such structures be permitted in EPA or Corps designated dredged material disposal areas. (Section 10)

9. Structures in Fleeting and Anchorage Areas. Structures, buoys, floats, and other devices placed within anchorage or fleeting areas to facilitate moorage of vessels where such areas have been established for that purpose by the U.S. Coast Guard. (Section 10)

10. Mooring Buoys. Non-commercial, single-boat, mooring buoys. (Section 10)

11. Temporary Recreational Structures. Temporary buoys, markers, small floating docks, and similar structures placed for recreational use during specific events such as water skiing competitions and boat races or seasonal use provided that such structures are removed within 30 days after use has been discontinued. At Corps of Engineers reservoirs, the reservoir manager must approve each buoy or marker individually. (Section 10)

12. Utility Line Backfill and Bedding. Discharges of material for backfill or bedding for utility lines, including outfall and intake structures, provided there is no change in preconstruction contours. A "utility line" is defined as any pipe or pipeline for the transportation of any gaseous,

17

Liquid, liquefiable, or slurry substance, for any purpose, and any cable, line, or wire for the transmission for any purpose of electrical energy, telephone and telegraph messages, and radio and television communication. The term "utility line" does not include activities which drain a water of the United States, such as drainage tile, however, it does apply to pipes conveying drainage from another area. Material resulting from trench excavation may be temporarily sidecast (up to three months) into waters of the United States provided that the material is not placed in such a manner that it is dispersed by currents or other forces. The DE may extend the period of temporary side-casting up to 180 days, where appropriate. The area of waters of the United States that is disturbed must be limited to the minimum necessary to construct the utility line. In wetlands, the top 6" to 12" of the rench should generally be backfilled with topsoil from the trench. Excess material must be removed to upland areas immediately upon completion of construction. Any exposed slopes and streambanks must be stabilized immediately upon completion of the utility line. The utility line itself will require a Section 10 permit if in navigable waters of the United States. (See 33 CFR Part 322). (Section 404)

13. Bank Stabilization. Bank stabilization activities necessary for erosion prevention provided:

a. No material is placed in excess of the minimum needed for erosion protection:

b. The bank stabilization activity is less than 500 feet in length;

1

c. The activity will not exceed an average of one cubic yard per running foot placed along the bank below the plane of the ordinary high water mark or the high tide line:

d. No material is placed in any special aquatic site, including wetlands;

e. No material is of the type or is placed in any location or in any manner so as to impair surface water flow into or out of any wetland area;

f. No material is placed in a manner that will be eroded by normal or expected high flows (properly anchored trees and treetops may be used in low energy areas); and,

g. The activity is part of a single and complete project.

Bank stabilization activities in excess of 500 feet in length or greater than an average of one cubic yard per running foot may be authorized if the permittee notifies the district engineer in accordance with the "Notification" general condition and the district engineer determines the activity complies with the other terms and conditions of the nationwide permit and the adverse environmental impacts are minimal both individually and cumulatively. (Sections 10 and 404)

14. Road Crossing. Fills for roads crossing waters of the United States (including wetlands and other special aquatic sites) provided:

a. The width of the fill is limited to the minimum necessary for the actual crossing;

b. The fill placed in waters of the United States is limited to a filled area of no more than

### **ATTACHMENT 3-D**

COST ESTIMATES

North Water System

| Project<br>ID# | Construction<br>Date | Project<br>Description                                                                                   |                              | Estimated<br>Cost | Quantity                      | Unit<br>Cost                           | Subtotal                  | Contingency |
|----------------|----------------------|----------------------------------------------------------------------------------------------------------|------------------------------|-------------------|-------------------------------|----------------------------------------|---------------------------|-------------|
| *NW 1          | 1997                 | New 12" loop around Legendary Lane,<br>Hwy 334, and the Bozeman Easement                                 | 12 " WL<br>10 " WL<br>8 " WL | \$830,000         | 12700 LF<br>2100 LF<br>600 LF | \$42.00 //<br>\$35.00 //<br>\$28.00 // | f \$533,400<br>f \$73,500 | 1.33        |
| * NW 2         | 1997/2010            | North WTP Expansion                                                                                      | 1 MGD                        | \$1,663,000       | n/a                           | \$1.25 /g                              | gal \$1,250,000           |             |
| * NW 3         | 1997/1999            | North WTP High Service Pump Expansion                                                                    | 1100 gpm                     | \$31,000          | 1 EA                          | \$21.50 /g                             | 3pm \$23,650              |             |
| * NW 4         | 1997/2001            | North WTP Raw Water Pump Expansion                                                                       | 2500 gpm                     | \$36,000          | 1 EA                          | \$10.71 /s                             | gpm \$26,775              |             |
| NW 5           | 1996-2006            | New 8" and 6" Waterlines for the remaining<br>Priority #2 Area on the East Side of the<br>Hwy 334 Bridge | 8 " WL<br>6 " WL             | \$234,000         | 2000 LF<br>5700 LF            | \$28.00 /I<br>\$21.00 /I               |                           |             |
| NW 6           | 1996-2006            | New 8" Waterlines to the Tamarack Area                                                                   | 8 " WL                       | \$186,000         | 5000 LF                       | \$28.00 /ł                             | f \$140,000               |             |
| NW 7           | 1996-2006            | New 10" and 8" Waterlines to Harbor Point                                                                | 10 " WL<br>8 " WL            | \$290,000         | 4300 LF<br>2400 LF            | \$35.00 /ł<br>\$28.00 /ł               |                           |             |
| NW 8           | 1996-2006            | New 6" Waterline along Spanish Trail                                                                     | 6 " WL                       | \$179,000         | 6400 LF                       | \$21.00 /h                             | f \$134,400               |             |
| NW 9           | 1996-2006            | New 6" Waterlines through Sandy Shores<br>and Eastwood Island Areas                                      | 6 " WL                       | \$235,000         | 8400 LF                       | \$21.00 /ł                             | f \$176,400               |             |
| NW 10          | 1996-2006            | New 6" Waterline from Welch Street<br>to Harmon Street                                                   | 6 " WL                       | \$78,000          | 2800 LF                       | \$21.00  /I                            | f \$58,800                |             |
| NW 11          | 2006                 | Total Storage Capacity Expansion                                                                         | 182000 Gal                   | \$206,000         | 1 EA                          | \$0.85 /ş                              | gal \$154,700             |             |
| NW 12          | 2006-2016            | New 6" and 8" Waterlines to serve Priority<br>Area #3                                                    | 8 " WL<br>6 " WL             | \$279,000         | 4600 LF<br>3850 LF            | \$28.00 /l<br>\$21.00 /l               |                           |             |
| NW 13          | 2006-2016            | New 6" Waterline from Hwy 198 to<br>Whispering Trail                                                     | 6 " WL                       | \$128,000         | 4600 LF                       | \$21.00  /I                            | f \$96,600                |             |
| NW 14          | 2006-2016            | New 6" Waterline in the Oak Harbor<br>Subdivision                                                        | 6 " WL                       | \$170,000         | 6100 LF                       | \$21.00  /I                            | if \$128,100              |             |
| NW 15          | 2006-2016            | New 6" Waterlines in the Mantle Manors<br>and Sherwood Shores Subdivisions                               | 6 " WL                       | \$268,000         | 9600 LF                       | \$21.00  /I                            | lf \$201,600              |             |
| NW 16          | 2006-2016            | New 6" Looped Waterline for the Harbor<br>Point Subdivision                                              | 6 " WL                       | \$246,000         | 8800 LF                       | \$21.00  /I                            | lf \$184,800              |             |
| NW 17          | 2016-2026            | New 10" Waterline Along Hwy 334 to<br>Hwy 198                                                            | 10 " WL                      | \$307,000         | 6600 LF                       | \$35.00 //                             | f \$231,000               |             |
| NW 18          | 2016-2026            | New 6" Waterline along Hwy 334 in                                                                        | 6 " WL                       | \$117,000         | 4200 LF                       | \$21.00  /i                            | f \$88,200                |             |

#### Priority Area #3

| NW 19 | 2016-2026 | New 6" Waterline in the Siesta Shores<br>Area                                    | 6 " WL | \$148,000 | 5300 LF | \$21.00 /lf         | \$111,300 |
|-------|-----------|----------------------------------------------------------------------------------|--------|-----------|---------|---------------------|-----------|
| NW 20 | 2016-2026 | New 6" Waterline in the Harbor Point<br>Subdivision                              | 6 " WL | \$67,000  | 2400 LF | \$21.00 /lf         | \$50,400  |
| NW 21 | 2016-2026 | New 6" Waterline along Luther Street                                             | 6 " WL | \$165,000 | 5900 LF | \$21.00 /lf         | \$123,900 |
| NW 22 | 2016-2026 | New 6" Waterlines in the Mantle Manors<br>and the Southwind Estates Subdivisions | 6 " WL | \$168,000 | 6000 LF | \$21.00 <i>/</i> If | \$126,000 |
| NW 23 | 2016-2026 | New 6" Waterline along Whispering Trail<br>in the Tamarack Area                  | 6 " WL | \$140,000 | 5000 LF | \$21.00 <i>/</i> If | \$105,000 |
| NW 24 | 2016-2026 | New 6" Looped Waterline in Bonita<br>Subdivision                                 | 6 " WL | \$128,000 | 4600 LF | \$21.00 /lf         | \$96,600  |

| Total Costs 1996-2006 = | \$2,932,000 |
|-------------------------|-------------|
| Total Costs 2006-2016 = | \$1,297,000 |
| Total Costs 2016-2026 = | \$1,240,000 |

North Water System Total Project Costs = \$5,469,000

\* Note: Project NW1 is currently under design and will be under construction shortly. Therefore it is not included in the final estimate. Projects NW2, NW3, and NW4 are based on expansion of treatment plant and pumping capacity under TNRCC criteria for 0.6 gpm per connection.

#### South Water System

| Project<br>ID# | Construction<br>Date | Project<br>Description                                                                                                                      |                    | Estimated<br>Cost | Quantity            | Unit<br>Cost               | Subtotal              | Contingency |
|----------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------|---------------------|----------------------------|-----------------------|-------------|
| * SW 1         | 2002/2016            | South WTP, High Service & Raw Water<br>Pumps Expansion                                                                                      | 0.864 MGD          | \$1,724,000       | n/a                 | \$1.50 /gal                | \$1,296,000           |             |
| SW 2           | 1996-2006            | New 12" and 10" Waterline along Hwy 198<br>to Golden Oaks Addition                                                                          | 12 " WL<br>10 " WL | \$230,000         | 1700 LF<br>2900 LF  | \$42.00 /lf<br>\$35.00 /lf | \$71,400<br>\$101,500 | 1.33        |
| SW 3           | 1996-2006            | New 12" Waterline along Enchanted<br>Drive, Hwy 198, and Southward toward<br>Cedar Branch Park                                              | 12 " WL            | \$528,000         | 9450 LF             | \$42.00 /lf                | \$396,900             |             |
| SW 4           | 1996-2006            | New 12" and 8" Waterline through the<br>Cedar Branch Subdivision                                                                            | 12 " WL<br>8 " WL  | \$268,000         | 2000 LF<br>4200 LF  | \$42.00 /lf<br>\$28.00 /lf | \$84,000<br>\$117,600 |             |
| SW 5           | 1996-2006            | New 10" and 8" Waterline through<br>Forgotten Acres to Lakeland Road                                                                        | 10 " WL<br>8 " WL  | \$205,000         | 4000 LF<br>500 LF   | \$35.00 /lf<br>\$28.00 /lf | \$140,000<br>\$14,000 |             |
| SW 6           | 1996-2006            | New 8" and 6" Waterline Southward along<br>Enchanted Drive to Enchanted Oaks                                                                | 8 " WL<br>6 " WL   | \$130,000         | 2150 LF<br>1800 LF  | \$28.00 /lf<br>\$21.00 /lf | \$60,200<br>\$37,800  |             |
| SW 7           | 1996-2006            | New 8" and 6" Waterline to Golden Oaks,<br>Southwood Shores, Bonanza Beach, and<br>Oak Shores Subdivisions                                  | 8 " WL<br>6 " WL   | \$396,000         | 2600 LF<br>10700 LF | \$28.00 /lf<br>\$21.00 /lf | \$72,800<br>\$224,700 |             |
| SW 8           | 1996-2006            | New 8" and 6" Waterline to Baywood<br>Estates Area                                                                                          | 8 " WL<br>6 " WL   | \$68,000          | 1200 LF<br>850 LF   | \$28.00 /lf<br>\$21.00 /lf | \$33,600<br>\$17,850  |             |
| SW 9           | 1996-2006            | New 6" Looped Waterline through Bandera<br>Bay and Oakwood Shores                                                                           | 6 * WL             | \$145,000         | 5200 LF             | \$21.00 /lf                | \$109,200             |             |
| SW 10          | 1996-2006            | New 6" Looped Waterline around Leisure-<br>land and to Three Harbors Subdivisions                                                           | 6 " WL             | \$223,000         | 8000 LF             | \$21.00 /lf                | \$168,000             |             |
| SW 11          | 2006-2016            | New 6" and 8" Waterline to provide looped<br>system for the Golden Oaks, Southwood<br>Shores, Bonanza Beach, and Oak Shores<br>Subdivisions | 8 " WL<br>6 " WL   | \$524,000         | 10700 LF<br>4500 LF | \$28.00 /lf<br>\$21.00 /lf | \$299,600<br>\$94,500 |             |
| SW 12          | 2006-2016            | New 6" Waterline to Enchanted Isles<br>Subdivision                                                                                          | 6 " WL             | \$112,000         | 4000 LF             | \$21.00 /lf                | \$84,000              |             |
| SW 13          | 2006-2016            | New 6" Waterline to Cherokee Hills<br>Subdivision                                                                                           | 6 " WL             | \$28,000          | 1000 LF             | \$21.00 /if                | \$21,000              |             |
| SW 14          | 2006-2016            | New 6" Waterline through Oakwood Shore<br>Subdivision                                                                                       | 6 " WL             | \$84,000          | 3000 LF             | \$21.00 /if                | \$63,000              |             |
| SW 15          | 2006-2016            | New 6" Waterline through Del Mar<br>Subdivision                                                                                             | 6 " WL             | \$115,000         | 4100 LF             | \$21.00 /if                | \$86,100              |             |

| SW 16 | 2006-2016 | New 6" Waterline through the Timber Bay,<br>Spillview Estates, and Diamond Oaks<br>Subdivisions                                                              | 6 " WL                                              | \$73,000    | 2600 LF                             | \$21.00                                    | /\f             | \$54,600                                        |
|-------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------|-------------------------------------|--------------------------------------------|-----------------|-------------------------------------------------|
| SW 17 | 2006-2016 | Parallel 12" Waterline along Enchanted<br>Drive to Hwy 198                                                                                                   | 12 "WL                                              | \$123,000   | 2200 LF                             | \$42.00                                    | /\f             | \$92,400                                        |
| SW 18 | 2006-2016 | New 12" and 10" Waterline along Hwy 198<br>toward Payne Springs                                                                                              | 12 " WL<br>10 " WL                                  | \$229,000   | 3300 LF<br>950 LF                   | \$42.00<br>\$35.00                         |                 | \$138,600<br>\$33,250                           |
| SW 19 | 2006-2016 | New 8" and 6" Waterlines through the<br>Southern Portion of the Resort Service<br>Area                                                                       | 8 " WL<br>6 " WL                                    | \$341,000   | 2850 LF<br>8400 LF                  | \$28.00<br>\$21.00                         |                 | \$79,800<br>\$176,400                           |
| SW 20 | 2006-2016 | New 8" Waterline and Booster Pump<br>Station to supply water to the Southeast<br>parts of Priority #3 Area including the<br>Lakeshore and Carolynn CCN areas | 8 " WL<br>6 " WL<br>200 gpm pump<br>200000 gal tank | \$1,375,000 | 26000 LF<br>6000 LF<br>2 EA<br>1 EA | \$28.00<br>\$21.00<br>\$5,000.00<br>\$0.85 | /lf<br>ea       | \$728,000<br>\$126,000<br>\$10,000<br>\$170,000 |
| SW 21 | 2006-2016 | New 8" Looped Waterline to Priority #3<br>Area                                                                                                               | 8 " WL                                              | \$603,000   | 16200 LF                            | \$28.00                                    | /\f             | \$453,600                                       |
| SW 22 | 2006-2016 | New 6" Waterline on the East Side of the Resort Area in Priority #3 Area                                                                                     | 6 " WL                                              | \$170,000   | 6100 LF                             | \$21.00                                    | /lf             | \$128,100                                       |
| SW 23 | 2016-2026 | New 6" Waterline in the Southwood Shores<br>Subdivision                                                                                                      | 6 " WL                                              | \$162,000   | 5800 LF                             | \$21.00                                    | /I <del>f</del> | \$121,800                                       |
| SW 24 | 2016-2026 | New 6" Waterline in the Baywood Estates<br>Subdivision                                                                                                       | 6 " WL                                              | \$47,000    | 1700 LF                             | \$21.00                                    | /lf             | \$35,700                                        |
| SW 25 | 2016-2026 | New 6" Waterline along Del Mar Shoreline                                                                                                                     | 6 " WL                                              | \$59,000    | 2100 LF                             | \$21.00                                    | /lf             | \$44,100                                        |
| SW 26 | 2016-2026 | New 6" Waterline through the Wood<br>Canyon Waters Subdivision                                                                                               | 6 " WL                                              | \$75,000    | 2700 LF                             | \$21.00                                    | /lf             | \$56,700                                        |
| SW 27 | 2016-2026 | New 6" Waterline along the North Side of the Golden Oaks Subdivision                                                                                         | 6 " WL                                              | \$173,000   | 6200 LF                             | \$21.00                                    | /\f             | \$130,200                                       |
| SW 28 | 2016-2026 | New 8" and 6" Looped Waterline along<br>Hwy 198                                                                                                              | 8 " WL<br>6 " WL                                    | \$389,000   | 4300 LF<br>8200 LF                  | \$28.00<br>\$21.00                         |                 | \$120,400<br>\$172,200                          |
| SW 29 | 2016-2026 | New 6" Waterline through the Resort area<br>and the Western Side of Payne Springs                                                                            | 6 "WL                                               | \$112,000   | 4000 LF                             | \$21.00                                    | /\f             | \$84,000                                        |
| SW 30 | 2016-2026 | New 6" Waterline in the Northeastern<br>part of the Priority #3 Area                                                                                         | 6 " WL                                              | \$290,000   | 10400 LF                            | \$21.00                                    | /If             | \$218,400                                       |
| SW 31 | 2016-2026 | New 6" Looped Waterline in the Carolynn,<br>Lake Shore, and Southern Resort Service<br>Area                                                                  | 6 " WL                                              | \$564,000   | 20200 LF                            | \$21.00                                    | /if             | \$424,200                                       |

| Total Costs 1996-2006 = | \$3,917,000 |
|-------------------------|-------------|
| Total Costs 2006-2016 = | \$3,777,000 |
| Total Costs 2016-2026 = | \$1,871,000 |
|                         |             |

South Water System Total Project Costs = \$9,565,000

\* Note: Projects SW1 is based on expansion of treatment plant and pumping capacities under TNRCC criteria for 0.6 gpm per connection.

North Wastewater System

| Project<br>ID# | Construction<br>Date | Project<br>Description                                                                                        | Materials    | Estimated<br>Cost | Quantity          | Unit<br>Cost                            |             | Subtotal               | Contingency |
|----------------|----------------------|---------------------------------------------------------------------------------------------------------------|--------------|-------------------|-------------------|-----------------------------------------|-------------|------------------------|-------------|
| T NWW 1        | 1997                 | Expansion of LS38 and LS39                                                                                    | 930 gpm LS   | \$544,000         | 1 EA              | \$96.70                                 | loom        | \$89,931               | 1.33        |
|                |                      |                                                                                                               | 990 gpm LS   | •••••,000         | 1 EA              | \$96.00                                 |             | \$95,040               |             |
|                |                      |                                                                                                               | 10 FM        |                   | 6400 LF           | \$35.00                                 | <b>.</b>    | \$224,000              |             |
|                |                      |                                                                                                               | 10 114       |                   | 0100 21           | <b>\$00.00</b>                          |             | +222 1,000             |             |
| NWW 2          | 2002                 | North WWTP Expansion                                                                                          | 0.275 MGD    | \$640,000         | n/a               | \$1.75                                  | <b>/gal</b> | \$481,250              |             |
| NWW 3          | 1996-2006            | Increase pumping capacity of LS60, LS61,                                                                      | 65 gpm LS    | \$285,000         | 1 EA              | \$7,500.00                              | ea          | \$7,500                |             |
|                |                      | & construction of a gravity sewer to LS38                                                                     | 165 gpm LS   | •=•••             | 1 EA              | \$13,000.00                             |             | \$13,000               |             |
|                |                      |                                                                                                               | 10 " Gravity |                   | 3700 LF           | \$35.00                                 |             | \$129,500              |             |
|                |                      |                                                                                                               | 8 " Gravity  |                   | 1400 LF           | \$28.00                                 |             | \$39,200               |             |
|                |                      |                                                                                                               | 4 " FM       |                   | 1800 LF           | \$14.00                                 |             | \$25,200               |             |
|                |                      |                                                                                                               |              |                   |                   | ••••••                                  |             | ·,=                    |             |
| NWW 4          | 1996-2006            | Increase pumping capacity of LS25 and                                                                         | 80 gpm LS    | \$20,000          | 1 EA              | \$7,500.00                              | ea          | \$7,500                |             |
|                |                      | and LS33                                                                                                      | 58 gpm LS    | •=•;•==           | 1 EA              | \$7,500.00                              |             | \$7,500                |             |
|                |                      |                                                                                                               | 31           |                   | ,                 | ••••••                                  |             | • •                    |             |
| NWW 5          | 1996-2006            | Diversion of flow in Tamarack Area to                                                                         | 12 " Gravity | \$383,000         | 600 LF            | \$42.00                                 | /lf         | \$25,200               |             |
|                |                      | LS56 and construction of a gravity sewer                                                                      | 10 " Gravity |                   | 5700 LF           | \$35.00                                 |             | \$199,500              |             |
|                |                      | line from Hwy 198 to LS39                                                                                     | 8 " FM       |                   | 300 LF            | \$28.00                                 |             | \$8,400                |             |
|                |                      |                                                                                                               | 6 " Gravity  |                   | 800 LF            | \$21.00                                 |             | \$16,800               |             |
|                |                      |                                                                                                               | 6 " FM       |                   | 1200 LF           | \$21.00                                 |             | \$25,200               |             |
|                |                      |                                                                                                               | 170 gpm LS   |                   | 1 EA              | \$13,000.00                             |             | \$13,000               |             |
|                |                      |                                                                                                               | ine gpin co  |                   |                   | • 10,000.00                             |             | 1.0,000                |             |
| NWW 6          | 1996-2006            | Diversion of flow from LS19 to LS29 and                                                                       | 6 " Gravity  | \$26,000          | 450 LF            | \$21.00                                 | /H          | \$9,450                |             |
|                | 1000 2000            | expansion of LS29                                                                                             | 110 gpm LS   | 420,000           | 1 EA              | \$10,000.00                             |             | \$10,000               |             |
|                |                      |                                                                                                               |              |                   |                   | <b>•</b> 10,000.00                      | ••          | <b>•</b> • • •,• • • • |             |
| NWW 7          | 1996-2006            | New 8" and 6" gravity sewer lines and                                                                         | 8 " Gravity  | \$438,000         | 3700 LF           | \$28.00                                 | /\f         | \$103,600              |             |
|                |                      | Lift Stations to serve remaining area in                                                                      | 6 " Gravity  | + 100,000         | 2900 LF           | \$21.00                                 |             | \$60,900               |             |
|                |                      | Priority Area #2, East of Tamarack                                                                            | 4 " FM       |                   | 10500 LF          | \$14.00                                 |             | \$147,000              |             |
|                |                      |                                                                                                               | 50 gpm LS    |                   | 1 EA              | \$7,500.00                              |             | \$7,500                |             |
|                |                      |                                                                                                               | 120 gpm LS   |                   | 1 EA              | \$10,000.00                             |             | \$10,000               |             |
|                |                      |                                                                                                               | gpm 20       |                   |                   | • • • • • • • • • • • • • • • • • • • • |             |                        |             |
| NVVV 8         | 2006-2016            | New 8" gravity sewer line from Lakeview<br>Street to existing 10" gravity sewer line<br>East of Harbor Street | 8 * Gravity  | \$127,000         | 3400 LF           | \$28.00                                 | /hf         | \$95,200               |             |
| NIMAAA/ O      | 2006 2016            | Evenneign of LC40 and LC44                                                                                    | 115 16       | £22.000           | 1 5 4             | £10.000.00                              |             | £10.000                |             |
| NWW 9          | 2006-2016            | Expansion of LS19 and LS44                                                                                    | 115 gpm LS   | \$23,000          | 1 EA              | \$10,000.00                             |             | \$10,000               |             |
|                |                      |                                                                                                               | 65 gpm LS    |                   | 1 EA              | \$7,500.00                              | ea          | \$7,500                |             |
| NWW 10         | 2006-2016            | Expansion of LS5 and construction of new                                                                      | 65 gpm LS    | \$64,000          | 1 EA              | \$7,500.00                              | 00          | \$7,500                |             |
| 144444 10      | 2000-2010            | force main from LS61 to LS60                                                                                  | 4 " FM       | \$04,000          | 2900 LF           | \$14.00                                 |             | \$40,600               |             |
|                |                      | IDEB MARTING LOOT DESCO                                                                                       | 4 F 1VI      |                   | 2900 LF           | φ14.00                                  | /11         | 440,000                |             |
| NWW 11         | 2006-2016            | Expansion of LS7 and new gravity sewer                                                                        | 120 gpm LS   | \$184,000         | 1 EA              | \$10,000.00                             | <b>6</b> 2  | \$10,000               |             |
| LARAAA II      | 2000-2010            | line from LS21 and LS46 to LS7                                                                                | 8 " Gravity  | \$104,000         | 2800 LF           | \$10,000.00                             |             | \$78,400               |             |
|                |                      | ILIO ILOIT LOZI AILU LONO LO LOI                                                                              | 6 " Gravity  |                   | 2000 LF<br>900 LF | \$20.00<br>\$21.00                      |             | \$18,900               |             |
|                |                      |                                                                                                               | 4 " FM       |                   | 2200 LF           |                                         |             | •                      |             |
|                |                      |                                                                                                               | 4 (* 14)     |                   | 4400 LF           | \$14.00                                 | 70          | \$30,800               |             |
| NWW 12         | 2006-2016            | New 6" gravity sewer line to serve<br>Priority Area #3                                                        | 6 " Gravity  | \$140,000         | 5000 LF           | \$21.00                                 | /\f         | \$105,000              |             |

| NWW 13 | 2006-2016 | Expansion of LS36 and LS 40                                                                                               | 230 gpm LS<br>260 gpm LS                          | \$69,000  | 1 EA<br>1 EA                          | \$25,000.00<br>\$27,000.00                   |            | \$25,000<br>\$27,000                         |
|--------|-----------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------|---------------------------------------|----------------------------------------------|------------|----------------------------------------------|
| NWW 14 | 2016-2026 | New 6" gravity sewer line along Hwy 198                                                                                   | 6 * Gravity                                       | \$92,000  | 3300 LF                               | \$21.00                                      | /If        | \$69,300                                     |
| NWW 15 | 2016-2026 | New 8" and 6" gravity sewer line along<br>Luther Street to LS39                                                           | 8 " Gravity<br>6 " Gravity                        | \$227,000 | 5200 LF<br>1200 LF                    | \$28.00<br>\$21.00                           |            | \$145,600<br>\$25,200                        |
| NWW 16 | 2016-2026 | New gravity sewer line along Arbolado<br>Street to LS24, expansion of LS24, and<br>new 4" force main from LS24 to Hwy 334 | 8 " Gravity<br>6 " Gravity<br>4 " FM<br>95 gpm LS | \$177,000 | 1000 LF<br>2400 LF<br>3200 LF<br>1 EA | \$28.00<br>\$21.00<br>\$14.00<br>\$10,000.00 | /lf<br>/lf | \$28,000<br>\$50,400<br>\$44,800<br>\$10,000 |
| NWW 17 | 2016-2026 | Expansion of LS37                                                                                                         | 310 gpm LS                                        | \$40,000  | 1 EA                                  | \$30,000.00                                  | ea         | \$30,000                                     |
| NWW 18 | 2016-2026 | New 8" gravity sewer line along Harbor<br>Point Road                                                                      | 8 " Gravity<br>6 " Gravity                        | \$102,000 | 2300 LF<br>600 LF                     | \$28.00<br>\$21.00                           | • • • •    | \$64,400<br>\$12,600                         |

.

 Total Costs 1996-2006 =
 \$1,792,000

 Total Costs 2006-2016 =
 \$606,000

 Total Costs 2016-2026 =
 \$639,000

South Water System Total Project Costs = \$3,037,000

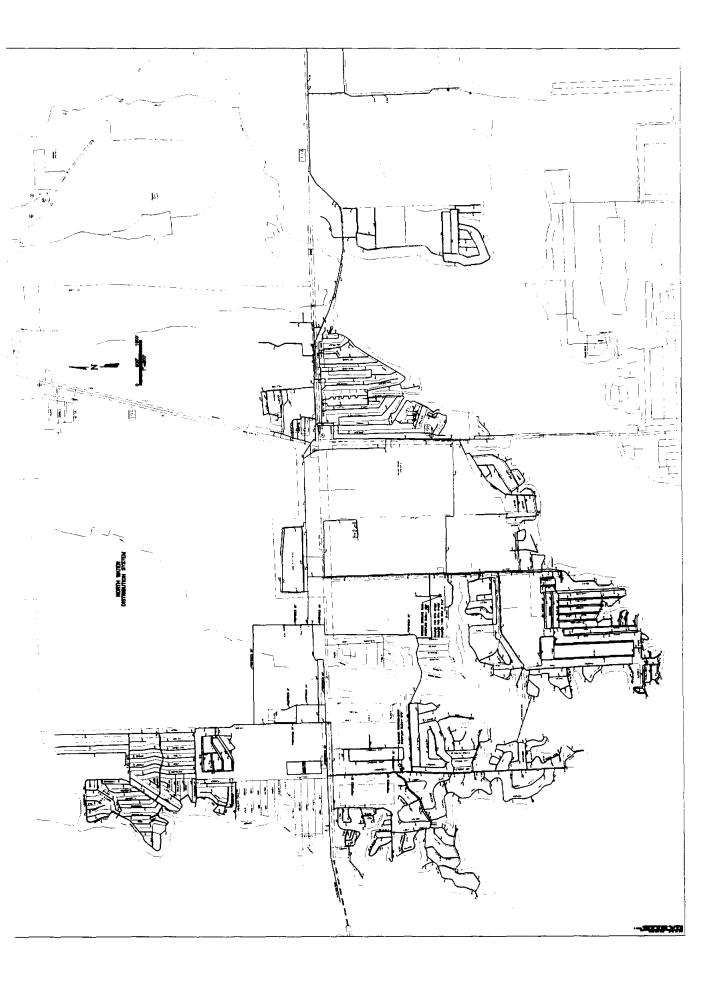
\* Note: Project NWW1 is currently under design and will be under construction shortly. Therefore it is not included in the final estimate. South Wastewater System

| Project<br>ID# | Construction<br>Date | Project<br>Description                      |              | Estimated<br>Cost | Quantity | Unit<br>Cost |      | Subtotal  | Contingency |
|----------------|----------------------|---------------------------------------------|--------------|-------------------|----------|--------------|------|-----------|-------------|
| *SWW 1         | 1997                 | South WWTP Improvements                     | 0.2 MGD      | \$399,000         | n/a      | \$1.50       | /cal | \$300,000 | 1,33        |
|                |                      |                                             |              | +,                |          | •            | -9   | ****,000  |             |
| SWW 2          | 1996-2006            | New 15", 12", and 10" gravity sewer line    | 15 " Gravity | \$619,000         | 2000 LF  | \$52.50      | /lf  | \$105,000 |             |
|                |                      | and Lift Station to convey flow from the    | 12 " Gravity |                   | 2000 LF  | \$42.00      | /lf  | \$84,000  |             |
|                |                      | North part of the wastewater system         | 10 " Gravity |                   | 6800 LF  | \$35.00      | /If  | \$238,000 |             |
|                |                      |                                             | 400 gpm LS   |                   | 1 EA     | \$38,700.00  | ea   | \$38,700  |             |
| SWW 3          | 1996-2006            | New 6" and 4" force main to the Golden      | 6 " FM       | \$125,000         | 900 LF   | \$21.00      | /If  | \$18,900  |             |
|                |                      | Oaks Subdivision                            | 4 " FM       |                   | 3500 LF  | \$14.00      | /If  | \$49,000  |             |
|                |                      |                                             | 3 " FM       |                   | 2500 LF  | \$10.50      | /If  | \$26,250  |             |
| SWW 4          | 1996-2006            | New 6" force main to Enchanted Drive and    | 6 " FM       | \$67,000          | 2400 LF  | \$21.00      | /lf  | \$50,400  |             |
|                |                      | North to the Mac Oaks Subdivision           |              |                   |          |              |      |           |             |
| SWW 5          | 1996-2006            | New 6" force main and Lift Station to serve | 6 " FM       | \$325,000         | 10400 LF | \$21.00      | /lf  | \$218,400 |             |
|                |                      | the Cedar Branch Park Area                  | 250 gpm LS   |                   | 1 EA     | \$26,000.00  | ea   | \$26,000  |             |
| SWW 6          | 1996-2006            | New 4" force main to the Oakwood Shores     | 4 " FM       | \$89,000          | 2450 LF  | \$14.00      | /lf  | \$34,300  |             |
|                |                      | Subdivision                                 | 3 " FM       |                   | 3100 LF  | \$10.50      | /If  | \$32,550  |             |
| SWW 7          | 1996-2006            | New 4" force main to the Baywood Estates    | 4 " FM       | \$88,000          | 3200 LF  | \$14.00      | /If  | \$44,800  |             |
|                |                      | Subdivision                                 | 3 " FM       |                   | 2000 LF  | \$10.50      | /lf  | \$21,000  |             |
| SWW 8          | 1996-2006            | New 4" force main to the Southland          | 6 " FM       | \$417,000         | 3400 LF  | \$21.00      | Лf   | \$71,400  |             |
|                |                      | Shores, Bonanza Beach, and Oakshores        | 4 " FM       | •••••             | 13400 LF | \$14.00      |      | \$187,600 |             |
| SWW 9          | 1996-2006            | New 4" force main along Leisureland Drive   | 4 " FM       | \$168,000         | 3900 LF  | \$14.00      | /lf  | \$54.600  |             |
| 0              | 1000 2000            | and associated lateral force mains to serve | 3 " FM       | +                 | 6800 LF  | \$10.50      |      | \$71,400  |             |
|                |                      | Leisureland Subdivision                     |              |                   |          | •••••        |      |           |             |
| SWW 10         | 1996-2006            | New 4" force main along Forgotten Lane      | 4 " FM       | \$274,000         | 8100 LF  | \$14.00      | /lf  | \$113,400 |             |
|                |                      | and associated lateral force mains to serve | 3 " FM       |                   | 8800 LF  | \$10.50      | /If  | \$92,400  |             |
|                |                      | Del Mar and Three Harbors Subdivisions      |              |                   |          |              |      | •••       |             |
| SWW 11         | 1996-2006            | New 4" and 3" force main to serve the       | 4 " FM       | \$245,000         | 9500 LF  | \$14.00      | /If  | \$133,000 |             |
|                |                      | Timber Bay, Diamond Oaks, Spillview,        | 3 " FM       |                   | 4900 LF  | \$10.50      | /If  | \$51,450  |             |
|                |                      | Wood Canyon, and Deer Island Subdivisions   |              |                   |          |              |      | •         |             |
| SWW 12         | 1998-2006            | South WWTP Expansion                        | 0.3 MGD      | \$698,000         | n/a      | \$1.75       | /gal | \$525,000 |             |
| SWW 13         | 2006-2016            | New 8" gravity sewer line to serve the      | 8 " Gravity  | \$204,000         | 3300 LF  | \$28.00      | Λf   | \$92,400  |             |
| 34444 13       | 2000-2010            | Southwestern part of Payne Springs          | 6 " Gravity  | ¥204,000          | 2900 LF  | \$21.00      |      | \$60,900  |             |
| SWW 14         | 2006-2016            | New 8" gravity sewer trunk lines along      | 8 " Gravity  | \$681,000         | 12500 LF | \$28.00      | /If  | \$350,000 |             |
|                |                      | Hwy 198 and along the Golden Oaks           | 6 " Gravity  |                   | 7700 LF  | \$21.00      |      | \$161,700 |             |
|                |                      | Subdivision                                 | <b>,</b>     |                   |          |              |      | ,         |             |
| SWW 15         | 2006-2016            | New parallel 6" force main to the Indian    | 6 " FM       | \$46,000          | 1650 LF  | \$21.00      | /lf  | \$34,650  |             |
|                |                      | ·                                           |              | •                 |          |              |      |           |             |

•

#### Harbor Area

| SWW 16 | 2006-2016 | New parallel 6" force main along Enchanted<br>Drive                                          | 6 " FM                                     | \$61,000    | 2200 LF                                | \$21.00                                      | /lf          | \$46,200                                       |
|--------|-----------|----------------------------------------------------------------------------------------------|--------------------------------------------|-------------|----------------------------------------|----------------------------------------------|--------------|------------------------------------------------|
| SWW 17 | 2006-2016 | New parallel 4" force main along Lakeland<br>Drive                                           | 4 " FM                                     | \$45,000    | 2400 LF                                | \$14.00                                      | / <b>I</b> f | \$33,600                                       |
| SWW 18 | 2006-2016 | New 6" and 4" force main to serve the<br>Southeastern portion of Priority #3 Area            | 6 " FM<br>4 " FM<br>3 " FM<br>120 gpm LS   | \$600,000   | 6300 LF<br>15000 LF<br>9400 LF<br>1 EA | \$21.00<br>\$14.00<br>\$10,50<br>\$10,400.00 | /lf<br>/lf   | \$132,300<br>\$210,000<br>\$98,700<br>\$10,400 |
| SWW 19 | 2006-2016 | New 6" and 4" force main for the Resort<br>CCN within the Priority #3 Area                   | 6 " FM<br>4 " FM<br>3 " FM                 | \$272,000   | 3300 LF<br>4500 LF<br>6900 LF          | \$21.00<br>\$14.00<br>\$10.50                | /lf          | \$69,300<br>\$63,000<br>\$72,450               |
| SWW 20 | 2006-2016 | New 250 gpm Lift Station and 6" force<br>main at Lynn Creek                                  | 250 gpm LS<br>6 " FM                       | \$350,000   | 1 EA<br>11300 LF                       | \$26,000.00<br>\$21.00                       |              | \$26,000<br>\$237,300                          |
| SWW 21 | 2016-2026 | New 6", 8", and 10" gravity sewer trunk<br>line through the Central part of Payne<br>Springs | 10 " Gravity<br>8 " Gravity<br>6 " Gravity | \$1,258,000 | 5800 LF<br>13100 LF<br>17900 LF        | \$35.00<br>\$28.00<br>\$21.00                | /lf          | \$203,000<br>\$366,800<br>\$375,900            |
| SWW 22 | 2016-2026 | New 6" parallel force main on Forgotten Ln.                                                  | 6 " FM                                     | \$47,000    | 1700 LF                                | \$21.00                                      | /If          | \$35,700                                       |
| SWW 23 | 2016-2026 | New 6" parallel force main to serve the<br>Resort CCN Area                                   | 6 " <b>FM</b>                              | \$78,000    | 2800 LF                                | \$21.00                                      | Лf           | \$58,800                                       |
| SWW 24 | 2016-2026 | New 6" parallel force main in the Southern<br>Priority #3 Area                               | 6 " FM                                     | \$142,000   | 5100 LF                                | \$21.00                                      | /ìf          | \$107,100                                      |
|        |           | Total Costs 1996-2006 =                                                                      | \$3 115 000                                |             |                                        |                                              |              |                                                |


Ĵ,

| Total Costs 1996-2006 = | \$3,115,000 |
|-------------------------|-------------|
| Total Costs 2006-2016 = | \$2,260,000 |
| Total Costs 2016-2026 = | \$1,526,000 |

South Water System Total Project Costs = \$6,901,000

\* Note: Project SWW1 is currently under design and will be under construction shortly. Therefore it is not included in the final estimate.

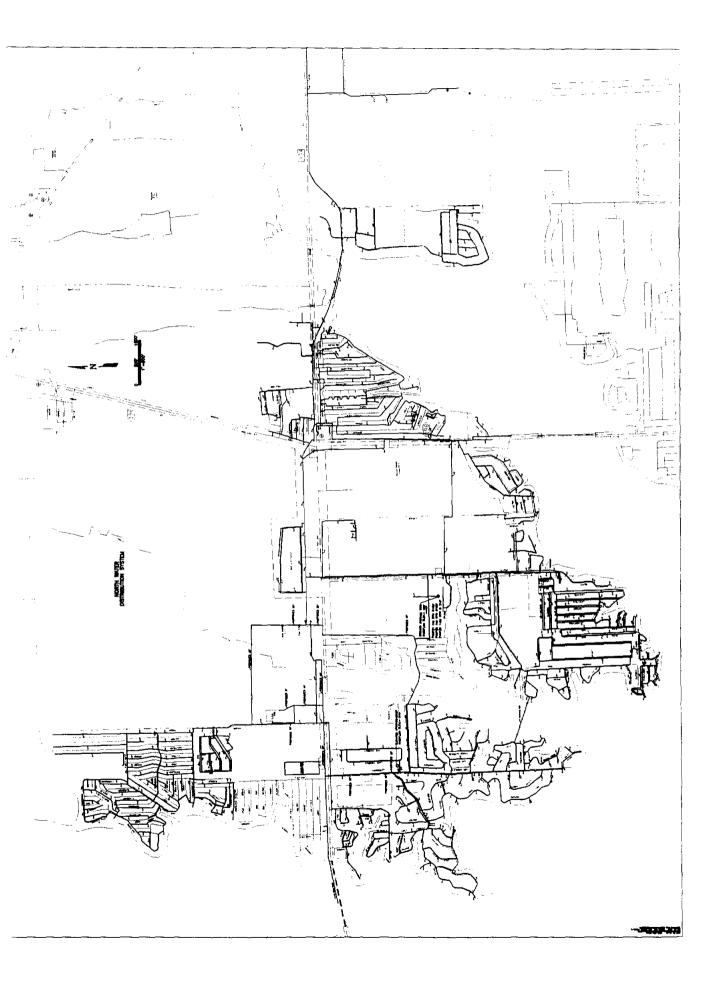
| TOTAL MASTER PLAN COSTS 1996-200 | \$11,756,000 |
|----------------------------------|--------------|
| TOTAL MASTER PLAN COSTS 2006-201 | \$7,940,000  |
| TOTAL MASTER PLAN COSTS 2016-202 | \$5,276,000  |
| TOTAL MASTER PLAN COSTS =        | \$24,972,000 |

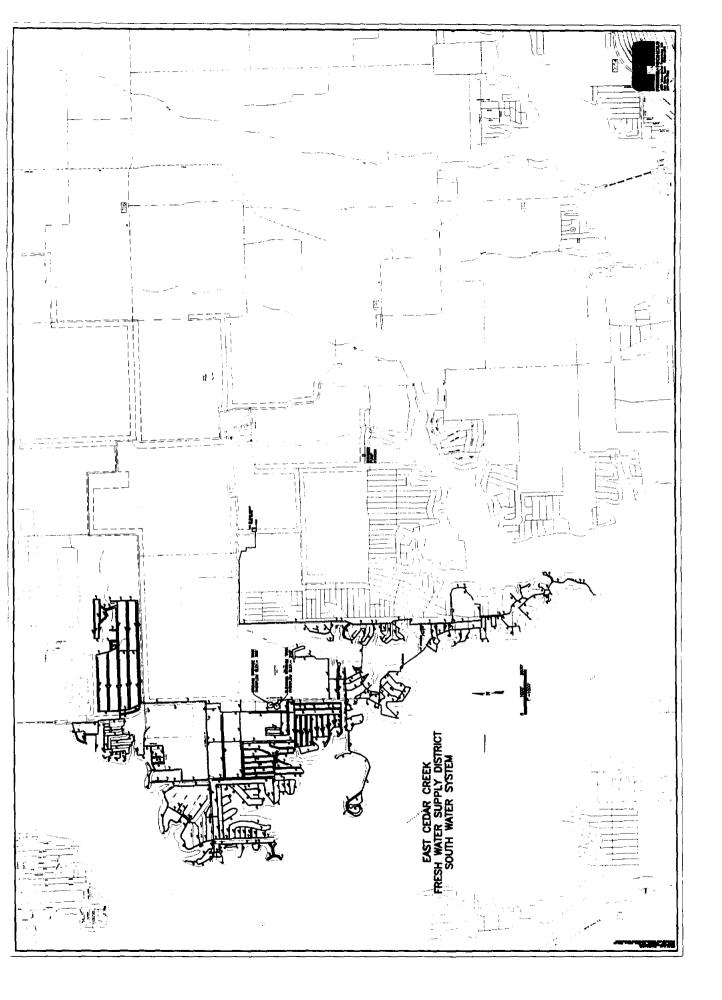


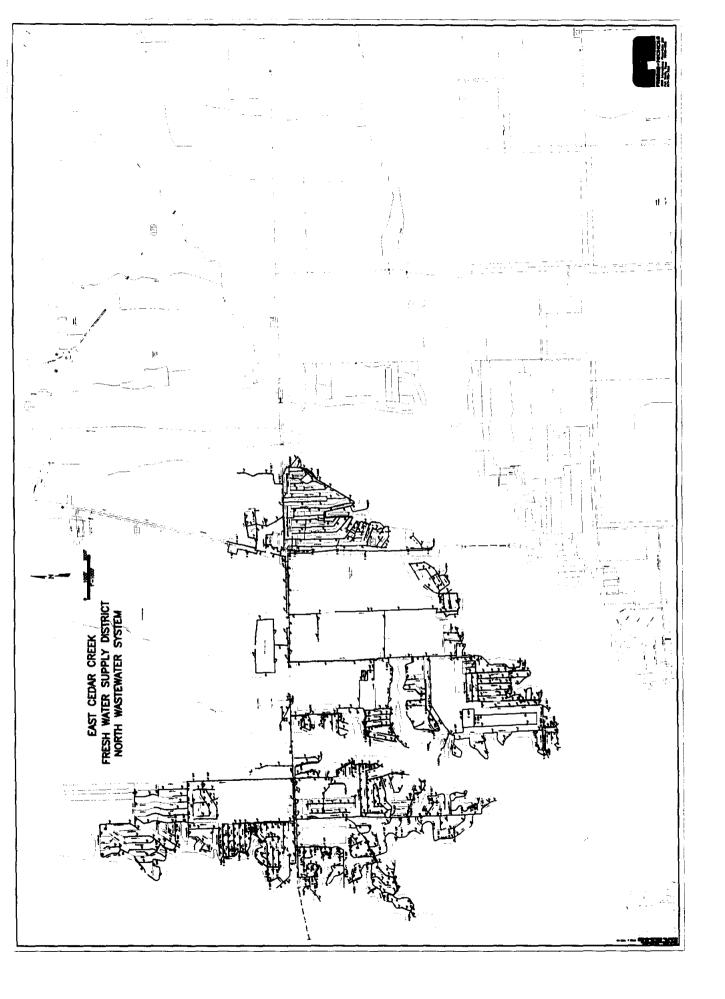
#### Harbor Area

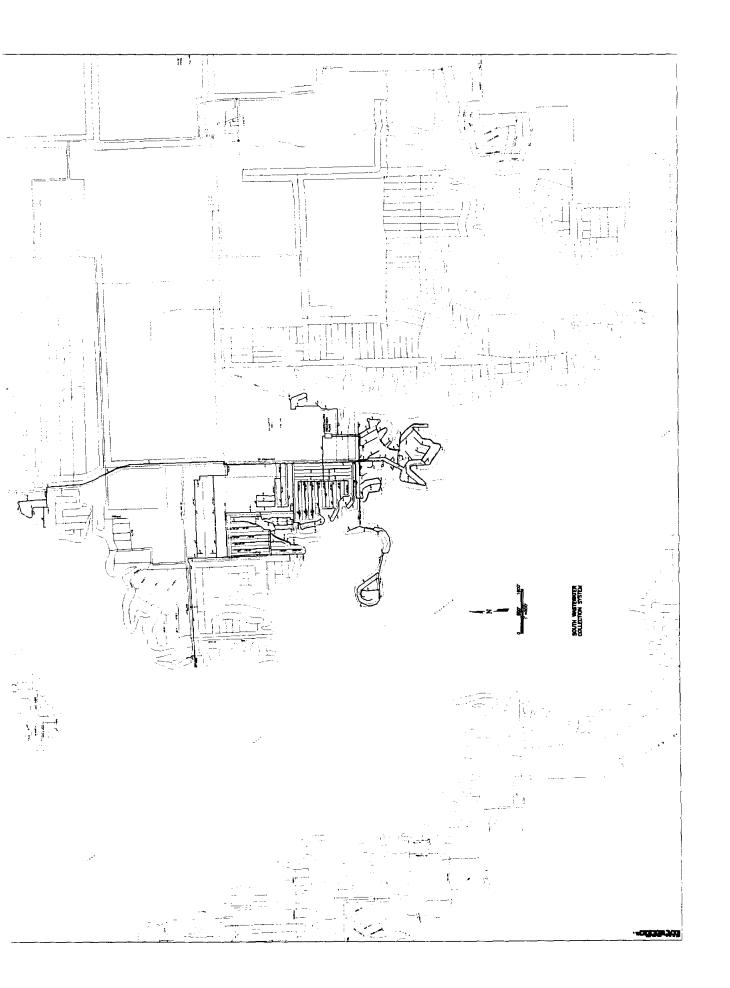
| SWW 16 | 2006-2016 | New parallel 6" force main along Enchanted<br>Drive                                          | 6 " FM                                     | \$61,000    | 2200 LF                                | \$21.00                                      | /lf        | \$46,200                                       |
|--------|-----------|----------------------------------------------------------------------------------------------|--------------------------------------------|-------------|----------------------------------------|----------------------------------------------|------------|------------------------------------------------|
| SWW 17 | 2006-2016 | New parallel 4" force main along Lakeland<br>Drive                                           | 4 " FM                                     | \$45,000    | 2400 LF                                | \$14.00                                      | /\f        | \$33,600                                       |
| SWW 18 | 2006-2016 | New 6" and 4" force main to serve the<br>Southeastern portion of Priority #3 Area            | 6 " FM<br>4 " FM<br>3 " FM<br>120 gpm LS   | \$600,000   | 6300 LF<br>15000 LF<br>9400 LF<br>1 EA | \$21.00<br>\$14.00<br>\$10.50<br>\$10,400.00 | /lf<br>/lf | \$132,300<br>\$210,000<br>\$98,700<br>\$10,400 |
| SWW 19 | 2006-2016 | New 6" and 4" force main for the Resort<br>CCN within the Priority #3 Area                   | 6 " FM<br>4 " FM<br>3 " FM                 | \$272,000   | 3300 LF<br>4500 LF<br>6900 LF          | \$21.00<br>\$14.00<br>\$10.50                | /If        | \$69,300<br>\$63,000<br>\$72,450               |
| SWW 20 | 2006-2016 | New 250 gpm Lift Station and 6" force<br>main at Lynn Creek                                  | 250 gpm LS<br>6 " FM                       | \$350,000   | 1 EA<br>11300 LF                       | \$26,000.00<br>\$21.00                       |            | \$26,000<br>\$237,300                          |
| SWW 21 | 2016-2026 | New 6", 8", and 10" gravity sewer trunk<br>line through the Central part of Payne<br>Springs | 10 " Gravity<br>8 " Gravity<br>6 " Gravity | \$1,258,000 | 5800 LF<br>13100 LF<br>17900 LF        | \$35.00<br>\$28.00<br>\$21.00                | Лf         | \$203,000<br>\$366,800<br>\$375,900            |
| SWW 22 | 2016-2026 | New 6" parallel force main on Forgotten Ln.                                                  | 6 " FM                                     | \$47,000    | 1700 LF                                | \$21.00                                      | /lf        | \$35,700                                       |
| SWW 23 | 2016-2026 | New 6" parallel force main to serve the<br>Resort CCN Area                                   | 6 " FM                                     | \$78,000    | 2800 LF                                | \$21.00                                      | Лf         | \$58,800                                       |
| SWW 24 | 2016-2026 | New 6" parallel force main in the Southern<br>Priority #3 Area                               | 6 " FM                                     | \$142,000   | 5100 LF                                | \$21.00                                      | Лf         | \$107,100                                      |
|        |           | Total Costs 1996-2006 =<br>Total Costs 2006-2016 =                                           | \$3,115,000<br>\$2,260,000                 |             |                                        |                                              |            |                                                |

South Water System Total Project Costs = \$6,901,000


\* Note: Project SWW1 is currently under design and will be under construction shortly. Therefore it is not included in the final estimate.

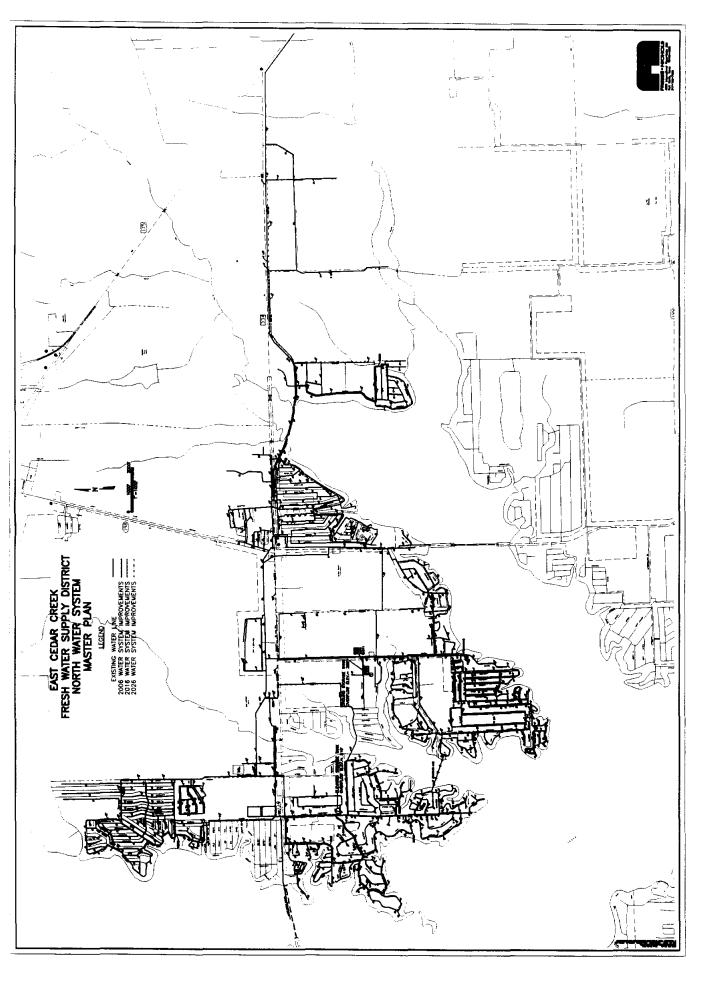

Total Costs 2016-2026 = \$1,526,000

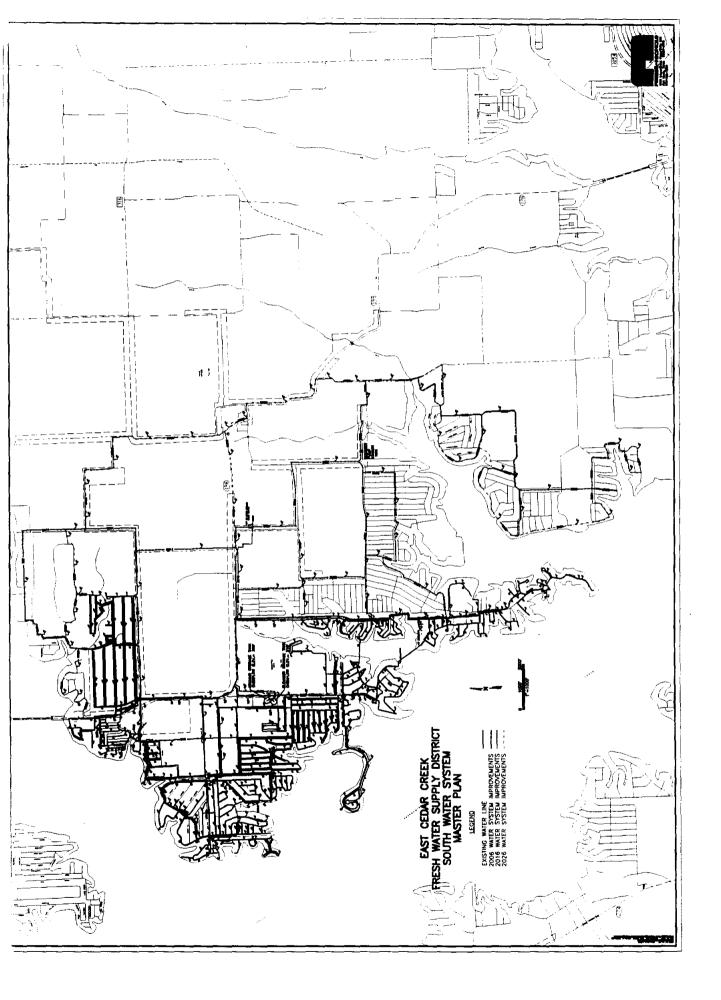

| TOTAL MASTER PLAN COSTS 1996-200 | \$11,756,000 |
|----------------------------------|--------------|
| TOTAL MASTER PLAN COSTS 2006-201 | \$7,940,000  |
| TOTAL MASTER PLAN COSTS 2016-202 | \$5,276,000  |
| TOTAL MASTER PLAN COSTS =        | \$24,972,000 |


### **APPENDIX D**

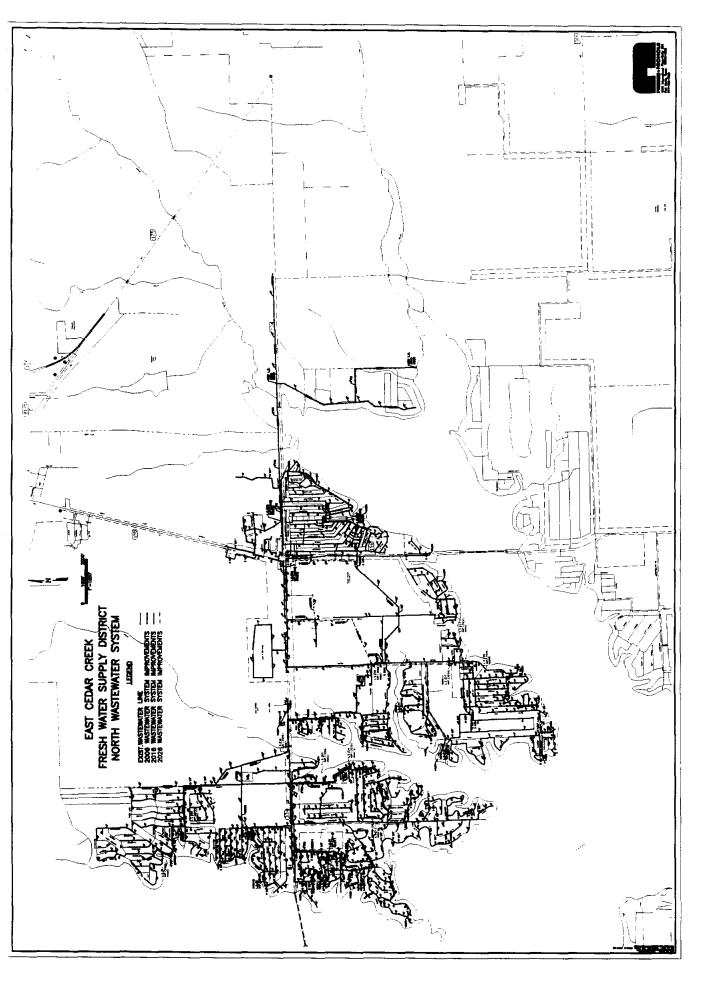
CURRENT SYSTEM MAPPING

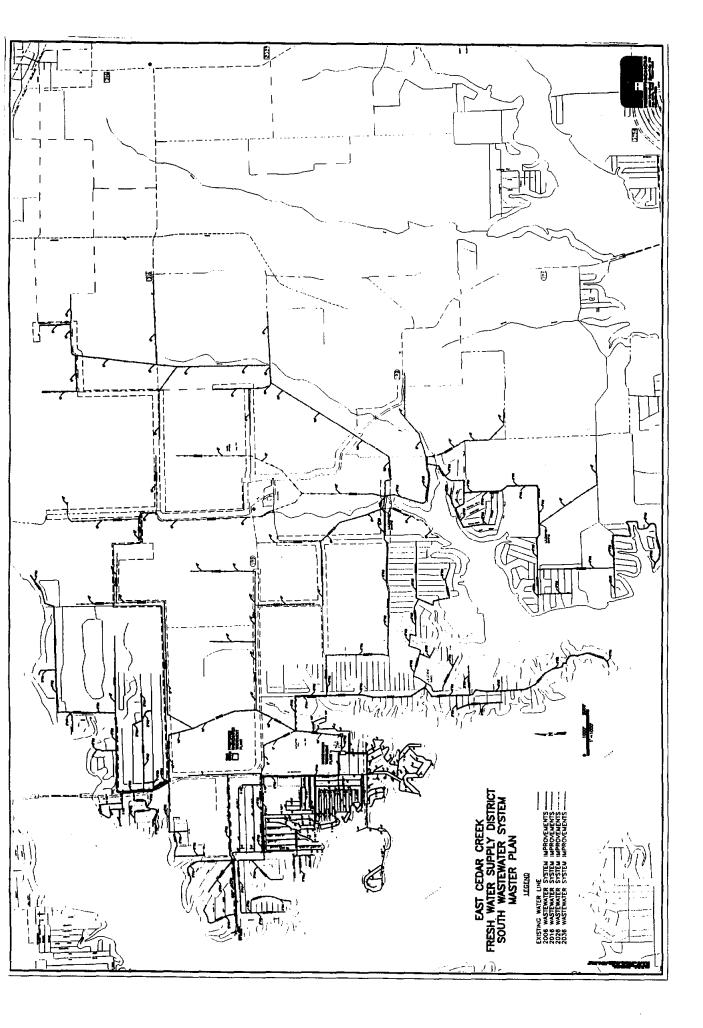








## **APPENDIX E**


PROPOSED SYSTEM MAPPING





Z





# **APPENDIX F**

.

COST ESTIMATES

#### Harbor Area

| SWW 16 | 2006-2016 | New parallel 6" force main along Enchanted<br>Drive                                          | 6 " FM                                     | \$61,000    | 2200 LF                                | \$21.00                                      | /lf        | \$46,200                                       |
|--------|-----------|----------------------------------------------------------------------------------------------|--------------------------------------------|-------------|----------------------------------------|----------------------------------------------|------------|------------------------------------------------|
| SWW 17 | 2006-2016 | New parallel 4" force main along Lakeland<br>Drive                                           | 4 " FM                                     | \$45,000    | 2400 LF                                | \$14.00                                      | /lf        | \$33,600                                       |
| SWW 18 | 2006-2016 | New 6" and 4" force main to serve the<br>Southeastern portion of Priority #3 Area            | 6 " FM<br>4 " FM<br>3 " FM<br>120 gpm LS   | \$600,000   | 6300 LF<br>15000 LF<br>9400 LF<br>1 EA | \$21.00<br>\$14.00<br>\$10.50<br>\$10,400.00 | /lf<br>/lf | \$132,300<br>\$210,000<br>\$98,700<br>\$10,400 |
| SWW 19 | 2006-2016 | New 6" and 4" force main for the Resort<br>CCN within the Priority #3 Area                   | 6 " FM<br>4 " FM<br>3 " FM                 | \$272,000   | 3300 LF<br>4500 LF<br>6900 LF          | \$21.00<br>\$14.00<br>\$10.50                | /lf        | \$69,300<br>\$63,000<br>\$72,450               |
| SWW 20 | 2006-2016 | New 250 gpm Lift Station and 6" force<br>main at Lynn Creek                                  | 250 gpm LS<br>6 " FM                       | \$350,000   | 1 EA<br>11300 LF                       | \$26,000.00<br>\$21.00                       |            | \$26,000<br>\$237,300                          |
| SWW 21 | 2016-2026 | New 6", 8", and 10" gravity sewer trunk<br>line through the Central part of Payne<br>Springs | 10 " Gravity<br>8 " Gravity<br>6 " Gravity | \$1,258,000 | 5800 LF<br>13100 LF<br>17900 LF        | \$35.00<br>\$28.00<br>\$21.00                | /If        | \$203,000<br>\$366,800<br>\$375,900            |
| SWW 22 | 2016-2026 | New 6" parallel force main on Forgotten Ln.                                                  | 6 " FM                                     | \$47,000    | 1700 LF                                | \$21.00                                      | /lf        | \$35,700                                       |
| SWW 23 | 2016-2026 | New 6" parallel force main to serve the<br>Resort CCN Area                                   | 6 " FM                                     | \$78,000    | 2800 LF                                | \$21.00                                      | /lf        | \$58,800                                       |
| SWW 24 | 2016-2026 | New 6" parallel force main in the Southern<br>Priority #3 Area                               | 6 " FM                                     | \$142,000   | 5100 LF                                | \$21.00                                      | /lf        | \$107,100                                      |
|        |           | T-t-1 0-sts 4000 2000 -                                                                      | £0.445.000                                 |             |                                        |                                              |            |                                                |

| Total Costs 1996-2006 = | \$3,115,000 |
|-------------------------|-------------|
| Total Costs 2006-2016 = | \$2,260,000 |
| Total Costs 2016-2026 = | \$1,526,000 |

South Water System Total Project Costs = \$6,901,000

\* Note: Project SWW1 is currently under design and will be under construction shortly. Therefore it is not included in the final estimate.

| TOTAL MASTER PLAN COSTS 1996-200 | \$11,756,000 |
|----------------------------------|--------------|
| TOTAL MASTER PLAN COSTS 2006-201 | \$7,940,000  |
| TOTAL MASTER PLAN COSTS 2016-202 | \$5,276,000  |
| TOTAL MASTER PLAN COSTS =        | \$24,972,000 |

#### South Wastewater System

| Project<br>ID# | Construction<br>Date | Project<br>Description                                                                                                      |                                              | Estimated<br>Cost | Quantity                      | Unit<br>Cost                  |      | Subtotal                           | Contingency |
|----------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------|-------------------------------|-------------------------------|------|------------------------------------|-------------|
| * SWW 1        | 1997                 | South WWTP Improvements                                                                                                     | 0.2 MGD                                      | \$399,000         | n/a                           | \$1.50                        | /gal | \$300,000                          | 1.33        |
| SWW 2          | 1996-2006            | New 15", 12", and 10" gravity sewer line<br>and Lift Station to convey flow from the<br>North part of the wastewater system | 15 " Gravity<br>12 " Gravity<br>10 " Gravity | \$619,000         | 2000 LF<br>2000 LF<br>6800 LF | \$52.50<br>\$42.00<br>\$35.00 | /lf  | \$105,000<br>\$84,000<br>\$238,000 |             |
|                |                      |                                                                                                                             | 400 gpm LS                                   |                   | 1 EA                          | \$38,700.00                   | ea   | \$38,700                           |             |
| SWW 3          | 1996-2006            | New 6" and 4" force main to the Golden                                                                                      | 6 " FM                                       | \$125,000         | 900 LF                        | \$21.00                       | /lf  | \$18,900                           |             |
|                |                      | Oaks Subdivision                                                                                                            | 4 " FM<br>3 " FM                             |                   | 3500 LF<br>2500 LF            | \$14.00<br>\$10.50            |      | \$49,000<br>\$26,250               |             |
| SWW 4          | 1996-2006            | New 6" force main to Enchanted Drive and<br>North to the Mac Oaks Subdivision                                               | 6 " FM                                       | \$67,000          | 2400 LF                       | \$21.00                       | /If  | \$50,400                           |             |
| SWW 5          | 1996-2006            | New 6" force main and Lift Station to serve                                                                                 | 6 " FM                                       | \$325,000         | 10400 LF                      | \$21.00                       |      | \$218,400                          |             |
|                |                      | the Cedar Branch Park Area                                                                                                  | 250 gpm LS                                   |                   | 1 EA                          | \$26,000.00                   | ea   | \$26,000                           |             |
| SWW 6          | 1996-2006            | New 4" force main to the Oakwood Shores                                                                                     | 4 " FM                                       | \$89,000          | 2450 LF                       | \$14.00                       | /lf  | \$34,300                           |             |
|                |                      | Subdivision                                                                                                                 | 3 " FM                                       |                   | 3100 LF                       | \$10.50                       | /lf  | \$32,550                           |             |
| SWW 7          | 1996-2006            | New 4" force main to the Baywood Estates                                                                                    | 4 " FM                                       | \$88,000          | 3200 LF                       | \$14.00                       | /lf  | \$44,800                           |             |
|                |                      | Subdivision                                                                                                                 | 3 " FM                                       |                   | 2000 LF                       | \$10.50                       | /\f  | \$21,000                           |             |
| SWW 8          | 1996-2006            | New 4" force main to the Southland                                                                                          | 6 " FM                                       | \$417,000         | 3400 LF                       | \$21.00                       | /lf  | \$71,400                           |             |
|                |                      | Shores, Bonanza Beach, and Oakshores                                                                                        | 4 " FM                                       |                   | 13400 LF                      | \$14.00                       | /lf  | \$187,600                          |             |
| SWW 9          | 1996-2006            | New 4" force main along Leisureland Drive                                                                                   | 4 " FM                                       | \$168,000         | 3900 LF                       | \$14.00                       | /lf  | \$54,600                           |             |
|                |                      | and associated lateral force mains to serve<br>Leisureland Subdivision                                                      | 3 " FM                                       |                   | 6800 LF                       | \$10.50                       | /lf  | \$71,400                           |             |
| SWW 10         | 1996-2006            | New 4" force main along Forgotten Lane                                                                                      | 4 " FM                                       | \$274,000         | 8100 LF                       | \$14.00                       |      | \$113,400                          |             |
|                |                      | and associated lateral force mains to serve<br>Del Mar and Three Harbors Subdivisions                                       | 3 " FM                                       |                   | 8800 LF                       | \$10.50                       | /lf  | \$92,400                           |             |
| SWW 11         | 1996-2006            | New 4" and 3" force main to serve the                                                                                       | 4 " FM                                       | \$245,000         | 9500 LF                       | \$14.00                       |      | \$133,000                          |             |
|                |                      | Timber Bay, Diamond Oaks, Spillview,<br>Wood Canyon, and Deer Island Subdivisions                                           | 3 " FM                                       |                   | 4900 LF                       | \$10.50                       | /lf  | \$51,450                           |             |
| SWW 12         | 1998-2006            | South WWTP Expansion                                                                                                        | 0.3 MGD                                      | \$698,000         | n/a                           | \$1.75                        | /gal | \$525,000                          |             |
| SWW 13         | 2006-2016            | New 8" gravity sewer line to serve the                                                                                      | 8 " Gravity                                  | \$204,000         | 3300 LF                       | \$28.00                       | /lf  | \$92,400                           |             |
|                |                      | Southwestern part of Payne Springs                                                                                          | 6 " Gravity                                  |                   | 2900 LF                       | \$21.00                       | /lf  | \$60,900                           |             |
| SWW 14         | 2006-2016            | New 8" gravity sewer trunk lines along                                                                                      | 8 " Gravity                                  | \$681,000         | 12500 LF                      | \$28.00                       |      | \$350,000                          |             |
|                |                      | Hwy 198 and along the Golden Oaks<br>Subdivision                                                                            | 6 " Gravity                                  |                   | 7700 LF                       | \$21.00                       | /lf  | \$161,700                          |             |
| SWW 15         | 2006-2016            | New parallel 6" force main to the Indian                                                                                    | 6 " FM                                       | \$46,000          | 1650 LF                       | \$21.00                       | /lf  | \$34,650                           |             |

| NWW 13 | 2006-2016 | Expansion of LS36 and LS 40                                                                                               | 230 gpm LS<br>260 gpm LS                          | \$69,000  | 1 EA<br>1 EA                          | \$25,000.00<br>\$27,000.00                   |            | \$25,000<br>\$27,000                         |
|--------|-----------|---------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------|---------------------------------------|----------------------------------------------|------------|----------------------------------------------|
| NWW 14 | 2016-2026 | New 6" gravity sewer line along Hwy 198                                                                                   | 6 * Gravity                                       | \$92,000  | 3300 LF                               | \$21.00                                      | /lf        | \$69,300                                     |
| NWW 15 | 2016-2026 | New 8" and 6" gravity sewer line along<br>Luther Street to LS39                                                           | 8 " Gravity<br>6 " Gravity                        | \$227,000 | 5200 LF<br>1200 LF                    | \$28.00<br>\$21.00                           |            | \$145,600<br>\$25,200                        |
| NWW 16 | 2016-2026 | New gravity sewer line along Arbolado<br>Street to LS24, expansion of LS24, and<br>new 4" force main from LS24 to Hwy 334 | 8 " Gravity<br>6 " Gravity<br>4 " FM<br>95 gpm LS | \$177,000 | 1000 LF<br>2400 LF<br>3200 LF<br>1 EA | \$28.00<br>\$21.00<br>\$14.00<br>\$10,000.00 | /\f<br>/\f | \$28,000<br>\$50,400<br>\$44,800<br>\$10,000 |
| NWW 17 | 2016-2026 | Expansion of LS37                                                                                                         | 310 gpm LS                                        | \$40,000  | 1 EA                                  | \$30,000.00                                  | ea         | \$30,000                                     |
| NWW 18 | 2016-2026 | New 8" gravity sewer line along Harbor<br>Point Road                                                                      | 8 " Gravity<br>6 " Gravity                        | \$102,000 | 2300 LF<br>600 LF                     | \$28.00<br>\$21.00                           |            | \$64,400<br>\$12,600                         |

Total Costs 1996-2006 = \$1,792,000 Total Costs 2006-2016 = \$606,000 Total Costs 2016-2026 = \$639,000 South Water System Total Project Costs = \$3,037,000

Project NWW1 is currently under design and will be under construction shortly. Therefore it is not included in the final estimate. \* Note:

North Wastewater System

| Project<br>ID# | Construction<br>Date | Project<br>Description                                                                                        | Materials    | Estimated<br>Cost | Quantity | Unit<br>Cost   | Subtotal  | Contingency |
|----------------|----------------------|---------------------------------------------------------------------------------------------------------------|--------------|-------------------|----------|----------------|-----------|-------------|
| * NWW 1        | 1997                 | Expansion of LS38 and LS39                                                                                    | 930 gpm LS   | \$544,000         | 1 EA     | \$96.70 /gpm   | \$89,931  | 1.33        |
|                |                      |                                                                                                               | 990 gpm LS   |                   | 1 EA     | \$96.00 /gpm   | \$95,040  |             |
|                |                      |                                                                                                               | 10 FM        |                   | 6400 LF  | \$35.00 /LF    | \$224,000 |             |
| NWW 2          | 2002                 | North WWTP Expansion                                                                                          | 0.275 MGD    | \$640,000         | n/a      | \$1.75 /gai    | \$481,250 |             |
| NWW 3          | 1996-2006            | Increase pumping capacity of LS60, LS61,                                                                      | 65 gpm LS    | \$285,000         | 1 EA     | \$7,500.00 ea  | \$7,500   |             |
|                |                      | & construction of a gravity sewer to LS38                                                                     | 165 gpm LS   |                   | 1 EA     | \$13,000.00 ea | \$13,000  |             |
|                |                      |                                                                                                               | 10 " Gravity |                   | 3700 LF  | \$35.00 /lf    | \$129,500 |             |
|                |                      |                                                                                                               | 8 * Gravity  |                   | 1400 LF  | \$28.00 /lf    | \$39,200  |             |
|                |                      |                                                                                                               | 4 " FM       |                   | 1800 LF  | \$14.00 /lf    | \$25,200  |             |
| NWW 4          | 1996-2006            | Increase pumping capacity of LS25 and                                                                         | 80 gpm LS    | \$20,000          | 1 EA     | \$7,500.00 ea  | \$7,500   |             |
|                |                      | and LS33                                                                                                      | 58 gpm LS    |                   | 1 EA     | \$7,500.00 ea  | \$7,500   |             |
| NWW 5          | 1996-2006            | Diversion of flow in Tamarack Area to                                                                         | 12 " Gravity | \$383,000         | 600 LF   | \$42.00 /lf    | \$25,200  |             |
|                |                      | LS56 and construction of a gravity sewer                                                                      | 10 " Gravity |                   | 5700 LF  | \$35.00 /lf    | \$199,500 |             |
|                |                      | line from Hwy 198 to LS39                                                                                     | 8 " FM       |                   | 300 LF   | \$28.00 /lf    | \$8,400   |             |
|                |                      |                                                                                                               | 6 " Gravity  |                   | 800 LF   | \$21.00 /lf    | \$16,800  |             |
|                |                      |                                                                                                               | 6 " FM       |                   | 1200 LF  | \$21.00 /lf    | \$25,200  |             |
|                |                      |                                                                                                               | 170 gpm LS   |                   | 1 EA     | \$13,000.00 ea | \$13,000  |             |
| NWW 6          | 1996-2006            | Diversion of flow from LS19 to LS29 and                                                                       | 6 * Gravity  | \$26,000          | 450 LF   | \$21.00 /lf    | \$9,450   |             |
|                |                      | expansion of LS29                                                                                             | 110 gpm LS   |                   | 1 EA     | \$10,000.00 ea | \$10,000  |             |
| NWW 7          | 1996-2006            | New 8" and 6" gravity sewer lines and                                                                         | 8 * Gravity  | \$438,000         |          | \$28.00 /lf    | \$103,600 |             |
|                |                      | Lift Stations to serve remaining area in                                                                      | 6 " Gravity  |                   | 2900 LF  | \$21.00 /lf    | \$60,900  |             |
|                |                      | Priority Area #2, East of Tamarack                                                                            | 4 " FM       |                   | 10500 LF | \$14.00 /lf    | \$147,000 |             |
|                |                      |                                                                                                               | 50 gpm LS    |                   | 1 EA     | \$7,500.00 ea  | \$7,500   |             |
|                |                      |                                                                                                               | 120 gpm LS   |                   | 1 EA     | \$10,000.00 ea | \$10,000  |             |
| NWW 8          | 2006-2016            | New 8" gravity sewer line from Lakeview<br>Street to existing 10" gravity sewer line<br>East of Harbor Street | 8 " Gravity  | \$127,000         | 3400 LF  | \$28.00 /lf    | \$95,200  |             |
| NWW 9          | 2006-2016            | Expansion of LS19 and LS44                                                                                    | 115 gpm LS   | \$23,000          | 1 EA     | \$10,000.00 ea | \$10,000  |             |
|                |                      |                                                                                                               | 65 gpm LS    |                   | 1 EA     | \$7,500.00 ea  | \$7,500   |             |
| NWW 10         | 2006-2016            | Expansion of LS5 and construction of new                                                                      |              | \$64,000          |          | \$7,500.00 ea  | \$7,500   |             |
|                |                      | force main from LS61 to LS60                                                                                  | 4 " FM       |                   | 2900 LF  | \$14.00 /lf    | \$40,600  |             |
| NWW 11         | 2006-2016            | Expansion of LS7 and new gravity sewer                                                                        | 120 gpm LS   | \$184,000         |          | \$10,000.00 ea | \$10,000  |             |
|                |                      | line from LS21 and LS46 to LS7                                                                                | 8 " Gravity  |                   | 2800 LF  | \$28.00 /lf    | \$78,400  |             |
|                |                      |                                                                                                               | 6 " Gravity  |                   | 900 LF   | \$21.00 /lf    | \$18,900  |             |
|                |                      |                                                                                                               | 4 " FM       |                   | 2200 LF  | \$14.00 /lf    | \$30,800  | )           |
| NWW 12         | 2006-2016            | New 6" gravity sewer line to serve<br>Priority Area #3                                                        | 6 " Gravity  | \$140,000         | 5000 LF  | \$21.00 /lf    | \$105,000 | I           |

 Total Costs 1996-2006 =
 \$3,917,000

 Total Costs 2006-2016 =
 \$3,777,000

 Total Costs 2016-2026 =
 \$1,871,000

South Water System Total Project Costs = \$9,565,000

.

\* Note: Projects SW1 is based on expansion of treatment plant and pumping capacities under TNRCC criteria for 0.6 gpm per connection.

| SW 16 | 2006-2016 | New 6" Waterline through the Timber Bay,<br>Spillview Estates, and Diamond Oaks<br>Subdivisions                                                              | 6 " WL                                              | \$73,000    | 2600 LF                             | \$21.00                                    | /lf       | \$54,600                                        |
|-------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-------------|-------------------------------------|--------------------------------------------|-----------|-------------------------------------------------|
| SW 17 | 2006-2016 | Parallel 12" Waterline along Enchanted<br>Drive to Hwy 198                                                                                                   | 12 " WL                                             | \$123,000   | 2200 LF                             | \$42.00                                    | /If       | \$92,400                                        |
| SW 18 | 2006-2016 | New 12" and 10" Waterline along Hwy 198<br>toward Payne Springs                                                                                              | 12 " WL<br>10 " WL                                  | \$229,000   | 3300 LF<br>950 LF                   | \$42.00<br>\$35.00                         |           | \$138,600<br>\$33,250                           |
| SW 19 | 2006-2016 | New 8" and 6" Waterlines through the<br>Southern Portion of the Resort Service<br>Area                                                                       | 8 " WL<br>6 " WL                                    | \$341,000   | 2850 LF<br>8400 LF                  | \$28.00<br>\$21.00                         |           | \$79,800<br>\$176,400                           |
| SW 20 | 2006-2016 | New 8" Waterline and Booster Pump<br>Station to supply water to the Southeast<br>parts of Priority #3 Area including the<br>Lakeshore and Carolynn CCN areas | 8 " WL<br>6 " WL<br>200 gpm pump<br>200000 gal tank | \$1,375,000 | 26000 LF<br>6000 LF<br>2 EA<br>1 EA | \$28.00<br>\$21.00<br>\$5,000.00<br>\$0.85 | /lf<br>ea | \$728,000<br>\$126,000<br>\$10,000<br>\$170,000 |
| SW 21 | 2006-2016 | New 8" Looped Waterline to Priority #3<br>Area                                                                                                               | 8 " WL                                              | \$603,000   | 16200 LF                            | \$28.00                                    | /lf       | \$453,600                                       |
| SW 22 | 2006-2016 | New 6" Waterline on the East Side of the<br>Resort Area in Priority #3 Area                                                                                  | 6 " WL                                              | \$170,000   | 6100 LF                             | \$21.00                                    | /\f       | \$128,100                                       |
| SW 23 | 2016-2026 | New 6" Waterline in the Southwood Shores<br>Subdivision                                                                                                      | 6 " WL                                              | \$162,000   | 5800 LF                             | \$21.00                                    | /lf       | \$121,800                                       |
| SW 24 | 2016-2026 | New 6" Waterline in the Baywood Estates<br>Subdivision                                                                                                       | 6 " WL                                              | \$47,000    | 1700 LF                             | \$21.00                                    | /lf       | \$35,700                                        |
| SW 25 | 2016-2026 | New 6" Waterline along Del Mar Shoreline                                                                                                                     | 6 " WL                                              | \$59,000    | 2100 LF                             | \$21.00                                    | /lf       | \$44,100                                        |
| SW 26 | 2016-2026 | New 6" Waterline through the Wood<br>Canyon Waters Subdivision                                                                                               | 6 " WL                                              | \$75,000    | 2700 LF                             | \$21.00                                    | /lf       | \$56,700                                        |
| SW 27 | 2016-2026 | New 6" Waterline along the North Side of the Golden Oaks Subdivision                                                                                         | 6 " WL                                              | \$173,000   | 6200 LF                             | \$21.00                                    | /lf       | \$130,200                                       |
| SW 28 | 2016-2026 | New 8" and 6" Looped Waterline along<br>Hwy 198                                                                                                              | 8 " WL<br>6 " WL                                    | \$389,000   | 4300 LF<br>8200 LF                  | \$28.00<br>\$21.00                         |           | \$120,400<br>\$172,200                          |
| SW 29 | 2016-2026 | New 6" Waterline through the Resort area<br>and the Western Side of Payne Springs                                                                            | 6 " WL                                              | \$112,000   | 4000 LF                             | \$21.00                                    | /lf       | \$84,000                                        |
| SW 30 | 2016-2026 | New 6" Waterline in the Northeastern<br>part of the Priority #3 Area                                                                                         | 6 " WL                                              | \$290,000   | 10400 LF                            | \$21.00                                    | /If       | \$218,400                                       |
| SW 31 | 2016-2026 | New 6" Looped Waterline in the Carolynn,<br>Lake Shore, and Southern Resort Service<br>Area                                                                  | 6 " WL                                              | \$564,000   | 20200 LF                            | \$21.00                                    | /lf       | \$424,200                                       |

#### South Water System

| Project<br>ID# | Construction<br>Date | Project<br>Description                                                                                                                      |                    | Estimated<br>Cost | Quantity            | Unit<br>Cost               | Subtotal              | Contingency |
|----------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------------------|---------------------|----------------------------|-----------------------|-------------|
| • SW 1         | 2002/2016            | South WTP, High Service & Raw Water<br>Pumps Expansion                                                                                      | 0.864 MGD          | \$1,724,000       | n/a                 | \$1.50 /gal                | \$1,296,000           |             |
| SW 2           | 1996-2006            | New 12" and 10" Waterline along Hwy 198<br>to Golden Oaks Addition                                                                          | 12 " WL<br>10 " WL | \$230,000         | 1700 LF<br>2900 LF  | \$42.00 /lf<br>\$35.00 /lf | \$71,400<br>\$101,500 | 1.33        |
| SW 3           | 1996-2006            | New 12" Waterline along Enchanted<br>Drive, Hwy 198, and Southward toward<br>Cedar Branch Park                                              | 12 " WL            | \$528,000         | 9450 LF             | \$42.00 <i>/</i> If        | \$396,900             |             |
| SW 4           | 1996-2006            | New 12" and 8" Waterline through the<br>Cedar Branch Subdivision                                                                            | 12 * WL<br>8 * WL  | \$268,000         | 2000 LF<br>4200 LF  | \$42.00 /lf<br>\$28.00 /lf | \$84,000<br>\$117,600 |             |
| SW 5           | 1996-2006            | New 10" and 8" Waterline through<br>Forgotten Acres to Lakeland Road                                                                        | 10 " WL<br>8 " WL  | \$205,000         | 4000 LF<br>500 LF   | \$35.00 /lf<br>\$28.00 /lf | \$140,000<br>\$14,000 |             |
| SW 6           | 1996-2006            | New 8" and 6" Waterline Southward along<br>Enchanted Drive to Enchanted Oaks                                                                | 8 " WL<br>6 " WL   | \$130,000         | 2150 LF<br>1800 LF  | \$28.00 /lf<br>\$21.00 /lf | \$60,200<br>\$37,800  |             |
| SW 7           | 1996-2006            | New 8" and 6" Waterline to Golden Oaks,<br>Southwood Shores, Bonanza Beach, and<br>Oak Shores Subdivisions                                  | 8 " WL<br>6 " WL   | \$396,000         | 2600 LF<br>10700 LF | \$28.00 /lf<br>\$21.00 /lf | \$72,800<br>\$224,700 |             |
| SW 8           | 1996-2006            | New 8" and 6" Waterline to Baywood<br>Estates Area                                                                                          | 8 " WL<br>6 " WL   | \$68,000          | 1200 LF<br>850 LF   | \$28.00 /lf<br>\$21.00 /lf | \$33,600<br>\$17,850  |             |
| SW 9           | 1996-2006            | New 6" Looped Waterline through Bandera<br>Bay and Oakwood Shores                                                                           | 6 " WL             | \$145,000         | 5200 LF             | \$21.00 /lf                | \$109,200             |             |
| SW 10          | 1996-2006            | New 6" Looped Waterline around Leisure-<br>land and to Three Harbors Subdivisions                                                           | 6 " WL             | \$223,000         | 8000 LF             | \$21.00 /lf                | \$168,000             |             |
| SW 11          | 2006-2016            | New 6" and 8" Waterline to provide looped<br>system for the Golden Oaks, Southwood<br>Shores, Bonanza Beach, and Oak Shores<br>Subdivisions | 8 " WL<br>6 " WL   | \$524,000         | 10700 LF<br>4500 LF | \$28.00 /lf<br>\$21.00 /lf | \$299,600<br>\$94,500 |             |
| SW 12          | 2006-2016            | New 6" Waterline to Enchanted Isles<br>Subdivision                                                                                          | 6 " WL             | \$112,000         | 4000 LF             | \$21.00 /lf                | \$84,000              |             |
| SW 13          | 2006-2016            | New 6" Waterline to Cherokee Hills<br>Subdivision                                                                                           | 6 " WL             | \$28,000          | 1000 LF             | \$21.00 /lf                | \$21,000              |             |
| SW 14          | 2006-2016            | New 6" Waterline through Oakwood Shore<br>Subdivision                                                                                       | 6 " WL             | \$84,000          | 3000 LF             | \$21.00 /lf                | \$63,000              |             |
| SW 15          | 2006-2016            | New 6" Waterline through Del Mar<br>Subdivision                                                                                             | 6 " WL             | \$115,000         | 4100 LF             | \$21.00 /lf                | \$86,100              |             |

North Water System

| Project<br>ID# | Construction<br>Date | Project<br>Description                                                                                   |                              | Estimated<br>Cost | Quantity                      | Unit<br>Cost                  |      | Subtotal                          | Contingency |
|----------------|----------------------|----------------------------------------------------------------------------------------------------------|------------------------------|-------------------|-------------------------------|-------------------------------|------|-----------------------------------|-------------|
| * NW 1         | 1997                 | New 12" loop around Legendary Lane,<br>Hwy 334, and the Bozeman Easement                                 | 12 " WL<br>10 " WL<br>8 " WL | \$830,000         | 12700 LF<br>2100 LF<br>600 LF | \$42.00<br>\$35.00<br>\$28.00 | /lf  | \$533,400<br>\$73,500<br>\$16,800 | 1.33        |
| * NW 2         | 1997/2010            | North WTP Expansion                                                                                      | 1 MGD                        | \$1,663,000       | n/a                           | \$1.25                        | /gal | \$1,250,000                       |             |
| * NW 3         | 1997/1999            | North WTP High Service Pump Expansion                                                                    | 1100 gpm                     | \$31,000          | 1 EA                          | \$21.50                       | /gpm | \$23,650                          |             |
| * NW 4         | 1997/2001            | North WTP Raw Water Pump Expansion                                                                       | 2500 gpm                     | \$36,000          | 1 EA                          | \$10.71                       | /gpm | \$26,775                          |             |
| NW 5           | 1996-2006            | New 8" and 6" Waterlines for the remaining<br>Priority #2 Area on the East Side of the<br>Hwy 334 Bridge | 8 " WL<br>6 " WL             | \$234,000         | 2000 LF<br>5700 LF            | \$28.00<br>\$21.00            |      | \$56,000<br>\$119,700             |             |
| NW 6           | 1996-2006            | New 8" Waterlines to the Tamarack Area                                                                   | 8 " WL                       | \$186,000         | 5000 LF                       | \$28.00                       | /lf  | \$140,000                         |             |
| NW 7           | 1996-2006            | New 10" and 8" Waterlines to Harbor Point                                                                | 10 " WL<br>8 " WL            | \$290,000         | 4300 LF<br>2400 LF            | \$35.00<br>\$28.00            |      | \$150,500<br>\$67,200             |             |
| NW 8           | 1996-2006            | New 6" Waterline along Spanish Trail                                                                     | 6 " WL                       | \$179,000         | 6400 LF                       | \$21.00                       | /lf  | \$134,400                         |             |
| NW 9           | 1996-2006            | New 6" Waterlines through Sandy Shores<br>and Eastwood Island Areas                                      | 6 "WL                        | \$235,000         | 8400 LF                       | \$21.00                       | /If  | \$176,400                         |             |
| NW 10          | 1996-2006            | New 6" Waterline from Welch Street<br>to Harmon Street                                                   | 6 " WL                       | \$78,000          | 2800 LF                       | \$21.00                       | /lf  | \$58,800                          |             |
| NW 11          | 2006                 | Total Storage Capacity Expansion                                                                         | 182000 Gal                   | \$206,000         | 1 EA                          | \$0.85                        | /gal | \$154,700                         |             |
| NW 12          | 2006-2016            | New 6" and 8" Waterlines to serve Priority<br>Area #3                                                    | 8 " WL<br>6 " WL             | \$279,000         | 4600 LF<br>3850 LF            | \$28.00<br>\$21.00            |      | \$128,800<br>\$80,850             |             |
| NW 13          | 2006-2016            | New 6" Waterline from Hwy 198 to<br>Whispering Trail                                                     | 6 " WL                       | \$128,000         | 4600 LF                       | \$21.00                       | /\f  | \$96,600                          |             |
| NW 14          | 2006-2016            | New 6" Waterline in the Oak Harbor<br>Subdivision                                                        | 6 " WL                       | \$170,000         | 6100 LF                       | \$21.00                       | /lf  | \$128,100                         |             |
| NW 15          | 2006-2016            | New 6" Waterlines in the Mantle Manors<br>and Sherwood Shores Subdivisions                               | 6 " WL                       | \$268,000         | 9600 LF                       | \$21.00                       | /lf  | \$201,600                         |             |
| NW 16          | 2006-2016            | New 6" Looped Waterline for the Harbor<br>Point Subdivision                                              | 6 " WL                       | \$246,000         | 8800 LF                       | \$21.00                       | /If  | \$184,800                         |             |
| NW 17          | 2016-2026            | New 10" Waterline Along Hwy 334 to<br>Hwy 198                                                            | 10 " WL                      | \$307,000         | 6600 LF                       | \$35.00                       | /If  | \$231,000                         |             |
| NW 18          | 2016-2026            | New 6" Waterline along Hwy 334 in                                                                        | 6 " WL                       | \$117,000         | 4200 LF                       | \$21.00                       | /lf  | \$88,200                          |             |

2

| Priority | / Area | #3 |
|----------|--------|----|
|          |        |    |

| NW 19 | <b>2</b> 016-2026 | New 6" Waterline in the Siesta Shores<br>Area                                    | 6 " WL | \$148,000 | 5300 LF | \$21.00 /lf         | \$111,300 |
|-------|-------------------|----------------------------------------------------------------------------------|--------|-----------|---------|---------------------|-----------|
| NW 20 | 2016-2026         | New 6" Waterline in the Harbor Point<br>Subdivision                              | 6 " WL | \$67,000  | 2400 LF | \$21.00 /lf         | \$50,400  |
| NW 21 | 2016-2026         | New 6" Waterline along Luther Street                                             | 6 " WL | \$165,000 | 5900 LF | \$21.00 /lf         | \$123,900 |
| NW 22 | 2016-2026         | New 6" Waterlines in the Mantle Manors<br>and the Southwind Estates Subdivisions | 6 " WL | \$168,000 | 6000 LF | \$21.00 /lf         | \$126,000 |
| NW 23 | 2016-2026         | New 6" Waterline along Whispering Trail<br>in the Tamarack Area                  | 6 " WL | \$140,000 | 5000 LF | \$21.00 /lf         | \$105,000 |
| NW 24 | 2016-2026         | New 6" Looped Waterline in Bonita<br>Subdivision                                 | 6 " WL | \$128,000 | 4600 LF | \$21.00 <i>/</i> If | \$96,600  |

.

| Total Costs 1996-2006 = | \$2,932,000 |
|-------------------------|-------------|
| Total Costs 2006-2016 = | \$1,297,000 |
| Total Costs 2016-2026 = | \$1,240,000 |
|                         |             |

North Water System Total Project Costs = \$5,469,000

Project NW1 is currently under design and will be under construction shortly. Therefore it is not included in the final estimate. \* Note: Projects NW2, NW3, and NW4 are based on expansion of treatment plant and pumping capacity under TNRCC criteria for 0.6 gpm per connection.