POSSUM KINGDOM REGIONAL WATER SUPPLY SYSTEM

PRELIMINARY ENGINEERING STUDY FOR

POSSUM KINGDOM WATER SUPPLY CORPORATION

ADMINISTERED BY

BRAZOS RIVER AUTHORITY

PREPARED BY

SHIMEK, JACOBS & FINKLEA
CONSULTING ENGINEERS
DALLAS, TEXAS

IN ASSOCIATION WITH

REYNOLDS - HIBBS & ASSOCIATES
CONSULTING ENGINEERS
ABILENE, TEXAS

WASTEWATER TECHNOLOGY SERVICE, INC.
ROSENBERG, TEXAS

FEBRUARY, 1994
February 15, 1994

Mr. Denis Qualls, E.I.T.
Water Resource Planner
Brazos River Authority
4400 Cobbs Drive
Waco, Texas 76714-7555

Re: Possum Kingdom Water Supply Corporation
Preliminary Engineering Study
Final Report

Dear Mr. Qualls:

We are delivering fifty-five (55) final copies of the Preliminary Engineering Study for the Possum Kingdom Regional Water Supply System prepared for the Possum Kingdom Water Supply Corporation. This document is for final distribution since it has been revised in accordance with the comments outlined in your January 21, 1994, review letter, along with the comments prepared by the Texas Water Development Board dated December 10, 1993.

This submittal completes our work as outlined in our engineering services contract with the Brazos River Authority. Our team of Shimek, Jacobs & Finklea, Reynolds-Hibbs & Associates and Wastewater Technology Service, Inc. has certainly enjoyed working with you, the Brazos River Authority and the Possum Kingdom Water Supply Corporation on this important project. The cooperation and input we received from you and the Brazos River Authority staff, Board Members of the Possum Kingdom Water Supply Corporation and local supporters of the regional study was invaluable.

Our team looks forward to assisting you and the Possum Kingdom Water Supply Corporation further as the proposed regional water system evolves.

Sincerely yours,

Ronald V. Conway, P.E.

cc: Mr. George Bailey, President, Possum Kingdom Water Supply Corporation
Reynolds-Hibbs & Associates
Wastewater Technology Service, Inc.
February 15, 1994

Mr. Denis Qualls, E.I.T.
Water Resource Planner
Brazos River Authority
4400 Cobbs Drive
Waco, Texas 76714-7555

Re: Possum Kingdom Water Supply Corporation
Preliminary Engineering Study
Final Report

Dear Mr. Qualls:

We are delivering fifty-five (55) final copies of the Preliminary Engineering Study for the Possum Kingdom Regional Water Supply System prepared for the Possum Kingdom Water Supply Corporation. This document is for final distribution since it has been revised in accordance with the comments outlined in your January 21, 1994, review letter, along with the comments prepared by the Texas Water Development Board dated December 10, 1993.

This submittal completes our work as outlined in our engineering services contract with the Brazos River Authority. Our team of Shimek, Jacobs & Finklea, Reynolds-Hibbs & Associates and Wastewater Technology Service, Inc. has certainly enjoyed working with you, the Brazos River Authority and the Possum Kingdom Water Supply Corporation on this important project. The cooperation and input we received from you and the Brazos River Authority staff, Board Members of the Possum Kingdom Water Supply Corporation and local supporters of the regional study was invaluable.

Our team looks forward to assisting you and the Possum Kingdom Water Supply Corporation further as the proposed regional water system evolves.

Sincerely yours,

Ronald V. Conway, P.E.

cc: Mr. George Bailey, President, Possum Kingdom Water Supply Corporation
Reynolds-Hibbs & Associates
Wastewater Technology Service, Inc.
POSSUM KINGDOM REGIONAL WATER SUPPLY SYSTEM

PRELIMINARY ENGINEERING REPORT

TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>EXECUTIVE SUMMARY</td>
<td></td>
</tr>
<tr>
<td>I. INTRODUCTION</td>
<td></td>
</tr>
<tr>
<td>A. Background</td>
<td>I - 1</td>
</tr>
<tr>
<td>B. Scope of Study</td>
<td>I - 3</td>
</tr>
<tr>
<td>C. Study Approach</td>
<td>I - 4</td>
</tr>
<tr>
<td>II. PROJECT PLANNING AREA</td>
<td></td>
</tr>
<tr>
<td>A. Introduction</td>
<td>II - 1</td>
</tr>
<tr>
<td>B. Location</td>
<td>II - 2</td>
</tr>
<tr>
<td>• Table 1 - Study Participants</td>
<td></td>
</tr>
<tr>
<td>• Figure 1 - Location Map of Study Participants</td>
<td></td>
</tr>
<tr>
<td>C. Growth Areas</td>
<td>II - 3</td>
</tr>
<tr>
<td>III. WATER REQUIREMENTS</td>
<td></td>
</tr>
<tr>
<td>A. Introduction</td>
<td>III - 1</td>
</tr>
<tr>
<td>B. Regional Population Projections</td>
<td>III - 1</td>
</tr>
<tr>
<td>• Table 2 - Area Population Projections</td>
<td></td>
</tr>
<tr>
<td>• Table 3 - Planning Area Population</td>
<td></td>
</tr>
<tr>
<td>C. Regional Water Use Projections</td>
<td>III - 3</td>
</tr>
<tr>
<td>• Table 4 - Commercial Water Usage Comparisons</td>
<td></td>
</tr>
<tr>
<td>• Table 5 - Regional Water Use Projections</td>
<td></td>
</tr>
<tr>
<td>(1) Commercial Operator Water Use Projections</td>
<td>III - 5</td>
</tr>
<tr>
<td>(2) Residential Water Use Projections</td>
<td>III - 6</td>
</tr>
<tr>
<td>• Table 6 - Residential Water Use Projections</td>
<td></td>
</tr>
<tr>
<td>D. Projected Demands on Water Treatment Facilities</td>
<td>III - 7</td>
</tr>
</tbody>
</table>
IV. EXISTING WATER SUPPLY SYSTEMS
A. Introduction ... IV - 1
B. Existing Water Supplies ... IV - 1
C. Existing Potable Water Production Facilities ... IV - 1
 - Table 7 - Summary of Existing Commercial Water System
 - Table 8 - Survey Summary of Commercial Water Treatment Systems

V. WATER SUPPLY AND POTABLE WATER PRODUCTION ALTERNATIVES
A. Introduction .. V - 1
B. Applicable Design Criteria .. V - 1
C. Fire Protection ... V - 2
D. Water Supply Alternatives
 (1) Local Water Supply Alternatives ... V - 2
 (2) Regional Water Supply Alternatives .. V - 3
E. Water Treatment Alternatives
 (1) General ... V - 6
 (2) Commercial Operator Treatment Facility Alternatives V - 7
 (3) Regional Treatment Facility Alternatives ... V - 9
 (4) Estimated Cost of Treatment Options ... V - 12
 - Figure No. 2 - Regional Treatment Facility Alternatives
 - Figure No. 3 - Treatment Plant Site Vicinity Map
 - Figure No. 4 - Treatment Plant Process Schematic
F. Water Distribution System Options
 (1) General ... V - 13
 (2) Distribution System Options .. V - 14
 - Table 9 - 100% Residential Participation
 - Table 10 - 50% Residential Participation
G. Non-Traditional Alternatives ... V - 23
 (1) In-Lake Installation ... V - 23
 (2) Above-Grade Installation ... V - 24
 - Table 11 - In-Lake Installation: Construct Distribution Pipe in Lake
 - Table 12 - Above-Grade Installation: Construct Distribution Pipe at Grade
 (3) Trucking Alternative ... V - 26
 (4) Average Day Alternative .. V - 27
H. Evaluation of No Action
 (1) Commercial Operations ... V - 29
 (2) Residential Systems .. V - 31
 * Table 13 - Typical Residential Water System Maintenance Cost

VI. FINANCIAL DATA
A. Introduction ... VI - 1
 B. Financial Options ... VI - 1
 (1) Economic Development Administration Grant VI - 1
 * Table 14 - Economic Comparison by County
 (2) Farmers Home Administration ... VI - 3
 (3) Private Financing .. VI - 4
 (4) Texas Water Development Board ... VI - 5
 (5) Rural Electric Administration ... VI - 5
 C. Institutions ... VI - 6
 * Table 15 - Institutions

VII. SUMMARY OF Viable ALTERNATIVES
A. Introduction ... VII - 1
 B. Regional Water Supply System
 (1) Commercial Camps/Businesses ... VII - 2
 * Table 16 - Comparison of Viable Options
 (2) Residential Customers .. VII - 3
 * Table 17 - Comparison of Viable Options (50% Residential Participation)
 C. Estimated User Cost ... VII - 5
 (1) Commercial Camps/Businesses Members VII - 5
 * Table 18 - Evaluation of Existing Commercial Treatment Facilities
 * Table 19 - Estimated Monthly Costs
 (2) Residential Customers ... VII - 7

VIII. CONCLUSIONS AND RECOMMENDATIONS
A. Introduction ... VIII - 1
 B. Role of the Possum Kingdom Water Supply Corporation VIII - 2
 C. Financial Considerations ... VIII - 3
 D. Implementation Schedule ... VIII - 4
 E. Conclusion ... VIII - 5

APPENDICES
EXECUTIVE SUMMARY

This report presents the results of studies pertaining to the development of a regional water supply system to serve the Possum Kingdom Water Supply Corporation. The report evaluates the projected water needs of the Corporation; provides a variety of alternatives to meet those needs; provides details of the recommended regional system; and provides detailed cost estimates for all options evaluated. The purpose of this study is to evaluate and recommend the most cost effective solution for a regional water supply system in the Possum Kingdom Lake Area. It is also intended that the report provide the necessary preliminary engineering data to support a pre-application for funding assistance from a variety of funding sources. Funding options are discussed in detail in Section VI.

The study area includes approximately 310 miles of shoreline around Possum Kingdom Lake located in the Brazos River Basin in Palo Pinto, Stephens and Young Counties. This area is shown more specifically on Figure No. 1, in Section II.

It is estimated that the total number of potential system connections may be as high as 3,440, generating a maximum daily water supply demand of approximately 2.96 million gallons. This number of connections includes all the existing individual leased lots around the shores of the lake, many of which are seasonal. There are approximately 54 commercial camps and businesses around the lake. We have estimated these camps and businesses account for approximately 1,640 system connections. As it seems impractical to assume that all individual leased lots will participate in a regional water supply system, this study focused on several alternatives which consider various levels of individual participation. A survey conducted by the Brazos River Authority indicated that approximately 50% of the residences around the lake are interested in participating in the regional water supply system. At a 50% individual participation level, it is estimated that there would be approximately 2,752 system connections generating a maximum day system demand of approximately 2.37 million gallons.

Due to the seasonal nature of both the commercial operators and many of the residences around the lake, it seemed appropriate to investigate a regional water supply system that addressed the needs of the seasonal community it serves. Therefore, a system was evaluated which provided treatment plant capacity for an average day demand, of 1.19 MGD, transfer pump station and booster pump station for the maximum daily demand of 2.37 MGD, and a water distribution system designed for the maximum hourly demand. The average day plant is estimated to have ample capacity for all but the heaviest use days at the lake, which are typically Memorial Day, Fourth of July and Labor Day. During these peak use times, shortfalls in treatment plant capacity is proposed to be overcome by additional ground storage located at the treatment plant site. This non-traditional approach allows the
Possum Kingdom Water Supply Corporation to trade off expensive plant capacity for more economical ground storage, saving an estimated $2,800,000 in capital cost and approximately $244,000 on an annual cost basis.

Several sources of water supply were evaluated, for both treated water and raw water, in addition to treating surface water available from Possum Kingdom Lake. Consideration was given to hauling treated water from Graham; pumping treated water from Graham, Mineral Wells or Breckenridge; pumping raw water from Graham, and developing groundwater supplies. Evaluation of these options along with the option of "no action" resulted in treated surface water from Possum Kingdom Lake as the most economical and practical option for both the long term and short term.

Just as several water supply alternatives were evaluated, a variety of water distribution and transmissions systems were considered. In most cases, the maximum hourly demands as defined by the Texas Natural Resources Conservation Commission were utilized for sizing the proposed water distribution systems. The recommended water distribution system includes approximately 67 miles of water lines ranging in size from 2-1/2" diameter to 14" diameter as shown on Figure No. 5 in the Appendix of this report.

It is important to note that in no case has the anticipated water distribution system been sized for fire protection for either the individual or commercial customers. Fire protection requires systems to be designed with a minimum of 6-inch water lines, and generally a looped water distribution system. These requirements would increase the project cost well above the feasible level.

In brief, it has been concluded in this report that a regional water supply system designed to the parameters listed below would provide the most economical system for the majority of the Possum Kingdom Water Supply Corporation:

1. Treat surface water from Possum Kingdom Lake.

2. Utilize a modular treatment plant design with advanced demineralization, located near the South D & D Public Use Area (see Figures Nos. 3 and 4).

3. Size treatment plant for the average day demand for all commercial customers and approximately half of the individual leased lots around the lake (1.19 mgd).

4. Provide excess ground storage at a centralized location to meet the peak demands of the system during seasonal high demand periods (approximately 3.5 million gallons).
5. Size the water distribution system for the maximum hourly demands.

6. Size the transfer pump station, booster pump stations and elevated storage for the maximum daily demand.

The estimated initial capital cost of the system described above is approximately $8,507,000. This system would provide potable water service to all of the commercial operators, and half of the individual leases, on the north and east sides of Possum Kingdom Lake. Adding system improvements for service to the Gaines Bend, Hog Bend and Possum Kingdom State Park brings the regional system capital cost total to an estimated $10,144,000. We have estimated the annual operation and maintenance cost for this system, including raw water cost for Possum Kingdom Lake water, to be $601,000. Amortizing the capital cost over a 20 year period at an annual rate of 6%, and including annual operation and maintenance cost, brings the total estimated annual cost of the recommended system to approximately $1,485,000 per year. These cost estimates are presented for comparison in tabular form along with the other evaluated options in Tables 16 and 17 in Section VII of this report.

Based on the implementation schedule presented in Section VII, the regional system could be in place and operational in December of 1996. Careful planning is necessary to schedule right-of-way acquisition, preliminary and final engineering, permit applications, staff recruitment, bidding, construction and start up to meet this ambitious schedule.
I - INTRODUCTION

A. BACKGROUND

Possum Kingdom Lake was completed in 1941, and since that time its water has been used for many purposes such as power development, industry, recreation, irrigation and drinking water. Many individual treatment systems have been utilized over the past 50 years to improve the quality of the lake water for consumption. Over the same period of time, drinking water regulations have become increasingly more stringent. In August of 1991, the Texas Department of Health's Water Hygiene Division, now part of the Texas Water Commission (TWC), which is now a part of the Texas Natural Resources Conservation Commission (TNRCC), began notifying some of the public water supply systems around the lake that they did not comply with the current rules and regulations. The Attorney General's office also became involved in a few of these cases.

The water from the Lake is high in chlorides, sulfates and total dissolved solids, and requires costly advanced treatment to conform to current regulations for public water supplies. In an attempt to find economical solutions to provide acceptable potable water around the lake, the Possum Kingdom Water Supply Corporation was formed. The Corporation was established by several commercial operators in the area located around Possum Kingdom Lake. The Corporation subsequently contracted with the Brazos River Authority (BRA) to manage a Preliminary Engineering Study for a regional water supply system. The study is funded by the Corporation, the Texas Water Development Board (TWDB) and with in-kind services from the BRA.

On April 21, 1992, a meeting of commercial camps/operators was held in response to enforcement actions taken by the TWC and the Attorney General. At that time, the Corporation was formed to provide the basis to conduct a regional study to investigate a solution to the common problem of the commercial camps/operators; that of noncompliance with the TWC rules and regulations for public water systems. To encourage the commercial camps/operators as well as others to participate in this feasibility study, the TWC instituted bilateral compliance agreements, which obligate the individual who signs the agreement to participate with the Corporation, or face additional enforcement actions.

Several of the water systems have Attorney General action pending, and many more have impending TWC enforcement action. Consensus of the board of the Corporation, as well as the other area water systems, is that they do not want to provide unsafe water to their customers and patrons, and over the years, each system has individually tried to find a solution to the
potable water issue. Some compensate for a lack of complete treatment by providing, or making available, bottled water and warning their customers not to drink the tap water. Some systems installed and operate full reverse osmosis systems at considerable expense. Each system is currently independent of all others, except in a few circumstances. Independent systems of such small size do not lend themselves to economy of operation, nor to quality of treatment. Most water system operators desire to "get out of the water business", and back to their primary occupation, whether it be camp manager, or retail business owner.

Each lake property lessee or owner provides their own water, generating a large number of individual systems around the lake. A majority of these individuals pump directly out of the lake to provide water for bathing, toilets, and cleaning. Drinking water is either treated through the use of an individual water softening and/or reverse osmosis system or brought in from other sources such as bottled water or water hauled and stored in bulk tanks.

Possum Kingdom Lake water has been shown to be high in chlorides, sulfates, and total dissolved solids, all violations of the TWC secondary standards applicable to potable water systems placed in service after July, 1977. Additionally, all treatment processes for surface water must achieve removal or inactivation of Giardia cysts and removal or inactivation of viruses. However, as more extensively discussed in Section V, each of these constituents (chlorides, sulfates, total dissolved solids, Giardia cysts, and viruses) have their own specific health concerns. These health aspects are the primary issue behind the TWC rules and regulations concerning the provision of water for human consumption. While each water operator is legally required to provide safe, potable water for consumption by the public which they serve, individual residences are not regulated. This does not exempt these individuals, however, from any potential ill effects from the consumption of untreated water.

As previously discussed, many commercial operators and individuals use lake water for washing, bathing and sanitary plumbing facilities, and use bottled or hauled water for drinking. However, the separate supply of water for drinking does not satisfy current TWC regulations. The TWC definition of drinking water is "all water distributed by any agency or individual, public or private, for the purpose of human consumption or which may be used in the preparation of foods or beverages or for the cleaning of any utensil or article used in the course of preparation or consumption of food or beverages for human beings." Human consumption is defined by the TWC as "uses by humans in which water can be ingested into or absorbed by the human body. Examples of these uses include, but are not limited to drinking, cooking, brushing teeth, bathing, washing hands, washing dishes, and preparing foods."
Generally, complete treatment systems are limited to commercial operators. Most treatment systems on the lake which can meet current TWC standards for drinking water contain the following equipment:

(1) Raw water supply pumps and water lines to bring the water from the lake to the treatment facilities.

(2) Conventional treatment facilities to filter the water.

(3) Advanced treatment facilities to demineralize the water.

(4) Chemical disinfection facilities.

(5) Clear water storage for treated water.

(6) Water distribution pumps.

(7) Water distribution pipelines.

(8) Elevated water storage tanks or pressure tanks to maintain system pressure.

It is the desire of the TWC that all water users in Texas have drinking water which meets current standards. However, the TWC only regulates the public water systems. The TWC regulations state that a public water system "must have a potential for at least 15 service connections or serve at least 25 individuals at least 60 days out of the year." Although the definition excludes all the individual users around the lake, and even some of the commercial suppliers, it does include many commercial suppliers at camps, motels, restaurants, etc. This report addresses the feasibility of providing potable water meeting current and anticipated future regulations for users around Possum Kingdom Lake.

B. **SCOPE OF STUDY**

Shimek, Jacobs & Finklea, in association with Reynolds-Hibbs & Associates and Wastewater Technology Service, Inc., was retained by the BRA to perform the preliminary engineering study. In general, the scope of the Preliminary Engineering Study is as follows:

(1) Audit existing water supply systems operating in the Possum Kingdom Lake vicinity.

(2) Investigate alternative sources of water supply.

(3) Evaluate treatment processes available to treated water from Possum Kingdom Lake.
(4) Evaluate water distribution system alternatives.

(5) Prepare cost estimates for potential regional water supply systems.

(6) Evaluate funding alternatives and estimated costs to water customers.

Public meetings are to be held to review the draft report and receive public comments.

C. STUDY APPROACH

The following approach was used to evaluate the feasibility of a regional water supply system for the Possum Kingdom area:

(1) Meet with the Possum Kingdom Water Supply Corporation and the BRA to confirm study parameters and objections.

(2) Obtain information from the TWC to confirm current rules and regulations for public water systems.

(3) Review existing lake water quality information.

(4) Inventory existing water treatment, transmission, distribution and storage facilities utilizing American Water Works Association audit procedures.

(5) Obtain information concerning existing large water supply systems in the region and evaluate their potential for service at the lake.

(6) Identify and evaluate water treatment alternatives.

(7) Determine existing and future water system demands and computer model potential distribution systems to serve the lake area.

(8) Meet with BRA Possum Kingdom Lake project manager to discuss potential systems.

(9) Compile data obtained during study for inclusion in report.

(10) Analyze funding alternatives and determine proposed system cost with the assistance of the BRA staff.

A substantial amount of time was spent during the study visiting each commercial operations around the lake which have public water systems as identified by the TWC. Equipment was inventoried and information was obtained concerning the system's capacity and customer use. Information obtained during the field visits is summarized in Section IV of this report and is shown in more detail in the field survey summary in the Appendix of this report.
II. - PROJECT PLANNING AREA

A. INTRODUCTION

The project planning area is defined in the Application to Texas Water Development Board, Austin, Texas, for Regional Water Supply Planning Grant for Possum Kingdom Regional Water Supply System, August, 1992, by the Brazos River Authority, to include the 310 miles of shoreline of Possum Kingdom Lake. This is located in the Brazos River Basin, specifically in Palo Pinto, Stephens, and Young Counties.

This project was initiated in response to enforcement actions by the Texas Water Commission and the Attorney General against several public water systems within the planning area. Consequently, the project area was more narrowly defined to include the systems under the TWC bilateral compliance as well as commercial contributors to the Possum Kingdom Water Supply Corporation. Residential participation is included in a generalized manner, and will need to be more fully developed in a focused feasibility study.
B. LOCATION

Table 1 lists the commercial camps/businesses which participated in the study. Participant locations are shown graphically on Figure 1, Location Map of Study Participants.

TABLE 1

STUDY PARTICIPANTS

<table>
<thead>
<tr>
<th>Map LD.</th>
<th>Commercial Operator</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Bailey's Camp</td>
</tr>
<tr>
<td>27</td>
<td>Bass Hollow Lodge</td>
</tr>
<tr>
<td>4</td>
<td>The Bend Condominiums</td>
</tr>
<tr>
<td>28</td>
<td>Bobby Holder Memorial FFA Camp</td>
</tr>
<tr>
<td>2</td>
<td>Brazos River Authority - Sheppard Dam</td>
</tr>
<tr>
<td>3</td>
<td>The Cliff</td>
</tr>
<tr>
<td>13</td>
<td>Camp Constantin</td>
</tr>
<tr>
<td>23</td>
<td>Cruse Lake Store</td>
</tr>
<tr>
<td>46</td>
<td>Erath County Electric Co-op</td>
</tr>
<tr>
<td>32</td>
<td>Faith in Action</td>
</tr>
<tr>
<td>29</td>
<td>Fox Hollow Camp</td>
</tr>
<tr>
<td>26</td>
<td>Gordon Simmons Service/Hardware Plus</td>
</tr>
<tr>
<td>11</td>
<td>Camp Grady Spruce: Main Camp and Ray Bean - YMCA</td>
</tr>
<tr>
<td>16</td>
<td>Camp Grady Spruce: Frontier Unit - YMCA</td>
</tr>
<tr>
<td>40</td>
<td>Groves Mechanical</td>
</tr>
<tr>
<td>58</td>
<td>Jessie's Acres</td>
</tr>
<tr>
<td>25</td>
<td>Jones MH Park</td>
</tr>
<tr>
<td>56</td>
<td>KOA Campground (PROPOSED)</td>
</tr>
<tr>
<td>36</td>
<td>Lakeshore Marina & RV Park</td>
</tr>
<tr>
<td>10</td>
<td>Lakeview Lodge</td>
</tr>
<tr>
<td>48</td>
<td>The Landing Condominiums</td>
</tr>
<tr>
<td>62</td>
<td>Lefty's Camp</td>
</tr>
<tr>
<td>49</td>
<td>Log Cabin Lodge</td>
</tr>
<tr>
<td>59</td>
<td>Long's Camp</td>
</tr>
<tr>
<td>45</td>
<td>Malt Shop</td>
</tr>
<tr>
<td>24</td>
<td>McDonald Investments</td>
</tr>
<tr>
<td>53</td>
<td>Ole Smokey Restaurant & Rainbow RV Park & Lodge</td>
</tr>
<tr>
<td>38</td>
<td>One Mountain Place</td>
</tr>
<tr>
<td>61</td>
<td>Pat & Uncle Herman's Camp</td>
</tr>
<tr>
<td>30</td>
<td>Phantom Hollow Marine</td>
</tr>
<tr>
<td>54</td>
<td>Pickwick Homeowner's Association</td>
</tr>
<tr>
<td>44</td>
<td>P.K. Lions Club</td>
</tr>
<tr>
<td>65</td>
<td>P.K. Lodge</td>
</tr>
<tr>
<td>51</td>
<td>Ponderosa Condominiums</td>
</tr>
<tr>
<td>31</td>
<td>Possum Hollow Camp</td>
</tr>
<tr>
<td>20</td>
<td>Possum Kingdom State Recreational Area</td>
</tr>
<tr>
<td>39</td>
<td>Possum Point Restaurant</td>
</tr>
<tr>
<td>66</td>
<td>Rock Creek Camp</td>
</tr>
<tr>
<td>18</td>
<td>Sandbar Village</td>
</tr>
<tr>
<td>5</td>
<td>Scenic Point Lodge</td>
</tr>
<tr>
<td>22</td>
<td>Shaker's Trailer Park/West Side Water Group</td>
</tr>
<tr>
<td>63</td>
<td>Sky Camp</td>
</tr>
<tr>
<td>42</td>
<td>The Trading Post</td>
</tr>
<tr>
<td>8</td>
<td>Villa Marina</td>
</tr>
<tr>
<td>57</td>
<td>Willow Beach Trailer Park & Resort</td>
</tr>
<tr>
<td>50</td>
<td>Willow Condominiums</td>
</tr>
<tr>
<td>52</td>
<td>The Winds Restaurant</td>
</tr>
</tbody>
</table>

The final study area includes only Stephens and Palo Pinto counties, since no participating commercial camps/businesses listed above are located in Young county. However, the City of Graham and Fort Belknap Water Supply Corporation, both located in Young County, are included for the option of providing potable water to the Possum Kingdom Water Supply Corporation.
C. GROWTH AREAS

Growth potential is limited around Possum Kingdom Lake. The Brazos River Authority controls leasing of the majority of the waterfront property and has indicated that there is no immediate plan to issue new leases for previously unleased property. Currently, canceled leases reverted back to the Brazos River Authority, and are not reissued. There are five future public areas planned, but once again, not in the immediate future. Privately owned areas, such as Gaines Bend, still have large amounts of undeveloped property and appear to have the largest growth potential around the lake.

Ultimate development of these areas, as well as any unused capacity of the commercial areas, have been included in the ultimate demand of a regional system. Areas with undeveloped shoreline could also be developed in the future in response to demand, if approved by the BRA.

The Brazos River Authority has indicated that only 50 to 75% of desirable shoreline has been developed (subdivided), and development of all or part of the remaining 25 to 50% could occur. It is difficult to speculate which, if any, of the potential growth areas will develop. The feasibility of a regional potable water supply system will therefore, be evaluated based on the current level of development (including any unused capacity of commercial areas) within the planning area. Future development can then be served by a regional system through properly planned phases. This approach, typically used in the development of rural water supply systems, protects the system's charter membership from the financial and operational problems associated with a system oversized to accommodate growth that never occurs.
III. - WATER REQUIREMENTS

A. INTRODUCTION
Water requirements for a regional water supply system depends on many different factors. In fact, the presence of a reliable regional water system will likely increase the population growth trends in the area and likewise the potable water requirements. Historical population and water usage records provide indications of future regional demands; however, these should be used as a trend guide only. Actual population projections and water use requirements for a system of this type require specific targets for the population to be served and for the ultimate system capacities. Therefore, it is important to analyze the water requirements accurately and concisely to properly determine the feasibility of a regional system. To that end, considerable effort has been extended to determine both water use requirements and projected system requirements within the planning area.

B. REGIONAL POPULATION PROJECTIONS
The estimating of future population growth for this region is difficult; past trends appear to be of little value since future changes in population will be influenced by many factors, including the development of adequate and reliable supplies of treated water. Additionally, population within the planning area is influenced by the BRA. Leasing of most waterfront property is controlled by the BRA, which also limits the size of commercial operations.

The Texas Water Development Board, Planning Division, Water Use and Projections Section, has expended considerable effort in projecting future population and water needs throughout the State, and their studies are currently the best information available on estimated population growth.

The rural population figures of the three county areas around Possum Kingdom Lake as developed by the Texas Water Development Board in their 1989 report are shown in Table 2. However, their projections of population were made for the purpose of arriving at overall water needs and may, or may not, be appropriate for use in designing and financing a Possum Kingdom Regional Water System.
TABLE 2

AREA POPULATION PROJECTIONS

<table>
<thead>
<tr>
<th>Year</th>
<th>Palo Pinto County</th>
<th>Stephens County</th>
<th>Young County</th>
<th>Regional Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>1985</td>
<td>10,326</td>
<td>3,093</td>
<td>6,044</td>
<td>19,463</td>
</tr>
<tr>
<td>1990</td>
<td>10,589</td>
<td>3,050</td>
<td>6,245</td>
<td>19,884</td>
</tr>
<tr>
<td>2000</td>
<td>13,122</td>
<td>3,503</td>
<td>6,967</td>
<td>23,592</td>
</tr>
<tr>
<td>2020</td>
<td>19,116</td>
<td>4,360</td>
<td>7,930</td>
<td>31,406</td>
</tr>
<tr>
<td>2040</td>
<td>22,078</td>
<td>5,366</td>
<td>8,247</td>
<td>35,691</td>
</tr>
</tbody>
</table>

There is a practical limit to the debt the Possum Kingdom Water Supply Corporation can obligate itself to serve future growth. Of course, these population estimates include areas of each County which are well outside the practical limits of the Possum Kingdom Water Supply Corporation service area. For this reason, the regional population projections for the study planning area are limited to those individual BRA leased lots immediately around Possum Kingdom Lake, businesses and developments around the lake, the Possum Kingdom State Park, Camp Constantin, the YMCA, Camp Grady Spruce and Frontier Camp.

Regional population figures, presented in Table 3, are derived from surveys of participating businesses and developments around the lake, 1992 maximum day headcount numbers at the public use facilities provided by the Brazos River Authority, and an estimated density of three (3) persons per unit on the individual leased lots. Surveys of businesses/developments participating in the study were conducted in the field using audit procedures provided by the American Water Works Association (AWWA). Population equivalents reported during the survey were verified against TWC and BRA records.

TABLE 3

PLANNING AREA POPULATION

<table>
<thead>
<tr>
<th></th>
<th>No. of Connections</th>
<th>Estimated Population Equivalent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Operators</td>
<td>1,640</td>
<td>8,794</td>
</tr>
<tr>
<td>Residential Customers</td>
<td>1,800</td>
<td>5,400</td>
</tr>
<tr>
<td>Totals</td>
<td>3,440</td>
<td>14,194</td>
</tr>
</tbody>
</table>

Again, it is important to note that the Brazos River Authority has indicated that it does not anticipate opening up any new areas in the near future for the purpose of individual leases around Possum Kingdom Lake. Further, as individual leased lots revert back to the control of the BRA, those lots are currently not available for leased use again. The BRA has indicated that
the five (5) remaining public use areas will be developed in the near future. Those areas have been included in the regional populations projections. For these reasons, the regional population projections tabulated above constitute the maximum population the Possum Kingdom Water Supply Corporation will likely serve.

C. REGIONAL WATER USE PROJECTIONS

During the course of this study, meetings were held with a representative of the Possum Kingdom Water Supply Corporation study participants to review available records and make an inspection of existing facilities. As previously discussed, AWWA audit materials were utilized during the on-site inspection of the commercial operators.

Almost all of the commercial operations that were surveyed do not maintain water use records. Similarly, since most residences provide their own water either by pumping lake water, using well water, or hauling water, there is no way to accurately identify the historical residential water use. Complicating the development of reliable water use projections is the wide fluctuation between commercial usage identified during the on-site survey and calculated usage based on TWC criteria as shown in Table 4. Additionally, a majority of residential properties around Possum Kingdom Lake are "weekend" users (estimated at 80%). Maximum demand, therefore, will most likely occur during only a few summer weekends.

<table>
<thead>
<tr>
<th>Study Participant</th>
<th>Actual Usage</th>
<th>Calculated Usage (TWC Criteria)</th>
<th>% of Calculated Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>3.4 gpm</td>
<td>29.2 gpm</td>
<td>12%</td>
</tr>
<tr>
<td>AD</td>
<td>6.9 gpm</td>
<td>25.8 gpm</td>
<td>27%</td>
</tr>
<tr>
<td>AN</td>
<td>10.4 gpm</td>
<td>17.4 gpm</td>
<td>60%</td>
</tr>
<tr>
<td>AS</td>
<td>32.7 gpm</td>
<td>91.8 gpm</td>
<td>36%</td>
</tr>
<tr>
<td>AV</td>
<td>34.5 gpm</td>
<td>90.8 gpm</td>
<td>38%</td>
</tr>
<tr>
<td>BC</td>
<td>0.7 gpm</td>
<td>2.5 gpm</td>
<td>28%</td>
</tr>
<tr>
<td>N</td>
<td>0.8 gpm</td>
<td>14.4 gpm</td>
<td>6%</td>
</tr>
<tr>
<td>Q</td>
<td>20.2 gpm</td>
<td>14.5 gpm</td>
<td>139%</td>
</tr>
<tr>
<td>R</td>
<td>< 0.1 gpm</td>
<td>0.6 gpm</td>
<td>17%</td>
</tr>
<tr>
<td>V</td>
<td>4.7 gpm</td>
<td>7.0 gpm</td>
<td>67%</td>
</tr>
<tr>
<td>W</td>
<td>35.8 gpm</td>
<td>12.8 gpm</td>
<td>280%</td>
</tr>
<tr>
<td>X</td>
<td>20.0 gpm</td>
<td>8.2 gpm</td>
<td>244%</td>
</tr>
</tbody>
</table>

Because of the variable commercial demands, it was concluded that the Texas Water Commission's minimum standards for maximum daily demands for supply and peak hourly demands for distribution be used for this study. Based on a review of the available records, this
is believed to be a conservative approach to the maximum daily and peak hourly demands on a regional water supply system.

In order to fully analyze the best approach for a regional water supply system, several alternatives were considered for the maximum number of participants in the system. In all approaches, it was assumed that 100 percent of the commercial operators such as businesses, camps, marinas, lodges and resorts will be customers of the system. Individual leased lots, representing residential use, were analyzed at participation levels of 0%, 20%, 50%, 80% and 100%.

Table 5 presents the water demand, associated with various levels of residential participation, that has been adopted for the design purposes of supply and distribution for each option evaluated. These values were determined by applying the Texas Water Commission's minimum standards to the number of potential system connections for each alternative.

TABLE 5

REGIONAL WATER USE PROJECTIONS
(All Options Assume 100% Participation by Commercial Operations)

<table>
<thead>
<tr>
<th>Alternate Number</th>
<th>Percent of Leased Lot Participation</th>
<th>Number of Equivalent System Connections</th>
<th>Maximum Day Demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100%</td>
<td>3,440</td>
<td>2.96 MGD</td>
</tr>
<tr>
<td>2</td>
<td>80%</td>
<td>3,170</td>
<td>2.74 MGD</td>
</tr>
<tr>
<td>3</td>
<td>50%</td>
<td>2,752</td>
<td>2.37 MGD</td>
</tr>
<tr>
<td>4</td>
<td>20%</td>
<td>2,686</td>
<td>2.20 MGD</td>
</tr>
<tr>
<td>5</td>
<td>0%</td>
<td>1,640</td>
<td>1.42 MGD</td>
</tr>
</tbody>
</table>

A more detailed summary of the water use calculations for each option is shown in the Appendix.

The Possum Kingdom Water Supply Corporation, with the assistance of the Brazos River Authority, conducted a survey of residential leases to evaluate the support for a regional water supply system. The survey was conducted by mail, and results received indicate the most likely scenario is a 50 percent participation level in the regional water system by individuals. For that reason, the detailed analyses have focused in on a 50% level of participation. However, analyses were performed on individual participation at levels of 0%, 20%, 80% and 100%, which will be useful for the development of a focused feasibility study when residential participation is firmly established.
(1) **Commercial Operator Water Use Projections**

The water usage of most commercial businesses/camps is limited by the Brazos River Authority through commercial lease, which establishes the number and type of units, or by water contract, which establishes the maximum amount of water allowed to be taken from Possum Kingdom Lake annually. Some of these leases and water contracts allow for additional units, such as mobile home or recreational vehicle sites. These additional units have been included in the calculated usage. Commercial water use projections are based as discussed in Paragraph C above on the TWC minimum standards for average daily demand. Projections range from a low of 0.1 gpm (144 gpd) up to a high of 91.8 gpm (132,192 gpd). Commercial camps/businesses were calculated individually to aid in the conceptual design of a regional distribution system discussed in Section V of this report.

(2) **Residential Water Use Projections**

Residential water usage in this regional study is limited to the lots leased to individuals around the shoreline of the lake by the Brazos River Authority and those lots along the shoreline in the Gaines Bend area. The Cliffs residential development, located on the southern shore of the lake, just west of Morris Sheppard Dam, is not included in the regional water use projection calculations. The Cliffs is served by a water treatment plant designed with an ultimate capacity adequate to meet the needs of the development. To develop excess capacity to serve the entire lake as a regional treatment facility would require extensive plant expansion in addition to approximately one mile of additional large diameter water line (12" to 14" diameter) and an additional lake crossing. For these reasons, it is recommended that the regional system is best served by allowing the Cliffs development to continue to operate as an individual water system, separate from the regional system. Section IV-C of this report discusses the Cliffs treatment facility in greater detail.

An attempt was made to serve every leased lot around the lake. However, the southern portion of the Caddo Creek area, located at the western end of the lake, was not included due to the isolation of the area and sparsity of subdivided lots. Utilizing the Brazos River Authority's Map of Leased Land at Possum Kingdom Lake, regional water systems were designed to reach the lots for every alternative except the scenarios which serve the commercial operators only.

The total number of individual leased lots around the shores of Possum Kingdom Lake, including the lots available for lease in the Gaines Bend area, is approximately 1,800. Using the minimum 0.6 gallons per minute (gpm) per connection (TWC regulation)
generates a maximum daily residential demand of 1,080 gallons per minute or 1.56 million gallons per day (MGD).

Of course, a substantial portion of these leased lots are seasonal in use and would not consistently contribute to the maximum daily demand. However, it is reasonable to conclude that the maximum daily demand will occur during peak recreational times at the lake and a vast majority of the leased property will be occupied during those times.

Given the numerous factors that affect residential participation (including the results of the BRA's residential survey discussed in Paragraph C above) and water use projections in a regional water system such as the one proposed for the Possum Kingdom Lake Area, the residential water use projections were difficult to predict. Therefore, several alternatives were analyzed utilizing various levels of residential participation and consequently residential maximum daily and maximum hourly demands. Table 6 summarizes the residential water usage for maximum daily and peak hourly demands for the various scenarios considered.

TABLE 6

<table>
<thead>
<tr>
<th>Option Number</th>
<th>Percent of Residential Participation*</th>
<th>No. of Residential Connections</th>
<th>Maximum Day Usage</th>
<th>Peak Hour Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100%</td>
<td>1,824</td>
<td>1.6 MGD</td>
<td>3.9 MGD</td>
</tr>
<tr>
<td>2</td>
<td>80%</td>
<td>1,548</td>
<td>1.3 MGD</td>
<td>3.3 MGD</td>
</tr>
<tr>
<td>3</td>
<td>50%</td>
<td>1,136</td>
<td>1.0 MGD</td>
<td>2.5 MGD</td>
</tr>
<tr>
<td>4</td>
<td>20%</td>
<td>723</td>
<td>0.6 MGD</td>
<td>1.6 MGD</td>
</tr>
<tr>
<td>5</td>
<td>0%</td>
<td>0</td>
<td>0 MGD</td>
<td>0 MGD</td>
</tr>
</tbody>
</table>

*NOTE: All options assume 100% participation by residential customers in the Hog Bend and Gaines Bend areas.

D. **PROJECTED DEMANDS ON WATER TREATMENT FACILITIES**

The projected demands on the water treatment facilities for the regional water supply system depends on the numerous alternatives which are under consideration in this study. In general, the calculated maximum daily water demand on the regional system ranges from a low of 1.4 MGD to a high of 3.0 MGD. In order to serve all of the commercial operations and at least half of the residential customers from a single source treatment facility, a maximum day capacity of 2.37 MGD is required. These capacities are based on the Texas Water Commissions minimum requirements for treatment capacities. In general, a maximum daily demand of 0.6 gpm per connection was used to generate the maximum day treatment capacities.
Developing a regional system to meet the varying demands of potential customers of the Possum Kingdom Water Supply Corporation provides a unique challenge. Commercial camps/businesses depend on the summer vacation months to fill their areas. Residential lots (with approximately 80% considered as "weekend" users) are also utilized more during the summer months, with peak occupancy over long holiday weekends. Peak demand is, therefore, likely to occur only 2 - 3 times per year over a 3 - 4 day period. During the winter months, particularly weekdays, the demand for potable water will be minimal.

Distribution systems must be capable of meeting peak demands. Water treatment facilities must provide adequate quantities of potable water for distribution. However, the traditional design of treatment facilities to provide maximum day demand will result in a facility that is under utilized during the majority of the year. In Section V, consideration will be given to developing the treatment facilities to meet average day demand, with increased storage to provide adequate supplies of potable water to meet maximum day conditions.
IV. - EXISTING WATER SUPPLY SYSTEMS

A. INTRODUCTION

The existing commercial operator's water supply systems were surveyed to determine their current treatment capabilities and associated deficiencies, according to the latest Texas Water Commission criteria. Materials used in the surveys were the American Water Works Association water audit forms, a preliminary survey conducted by the Brazos River Authority on commercial operators, and other available information including Texas Water Commission annual sanitary surveys.

Over 48 site interviews were conducted, as well as numerous phone calls, to obtain accurate information on each system. Information obtained in these surveys is located in various forms throughout this report. This section provides a summary of the information available on existing commercial water supply systems within the planning area. Residential systems used by individuals were not evaluated. A discussion of a "typical" residential system is presented in paragraph G.2 of Section V.

B. EXISTING WATER SUPPLIES

The commercial camps/businesses surveyed receive water from a variety of sources. Most use Possum Kingdom Lake water, treated or otherwise. A significant number of operators provide drinking water through the use of bottled water, such as Ozarka, or by hauling water from the City of Graham (water is stored in bulk storage tanks on-site). A small number of operators on the east side of Possum Kingdom Lake utilize groundwater, either primarily or as a secondary source. This groundwater is very shallow (15' to 60' in depth). Combinations of each of these sources is common, as operators try to comply with Texas Water Commission criteria, as well as provide water for the convenience of their customers.

C. EXISTING POTABLE WATER PRODUCTION FACILITIES

All water supply systems were evaluated using the latest Texas Water Commission Water Utilities Division Rules and Regulations for Public Water Systems, 1992. The first criteria applied to each system was to determine the specific type of water system. The following definitions were utilized:

PUBLIC WATER SYSTEM - "A system for the provision to the public of piped water for human consumption, which includes all uses described under the definition for drinking water. Such a system must have a potential for at least 15 service connections or serve at least 25 individuals at least 60 days out of the year"
COMMUNITY WATER SYSTEM - defined as "A public water system which has a potential to serve at least 15 residential service connections on a year-round basis or serves at least 25 residents on a year-round basis."

NON-COMMUNITY WATER SYSTEM - "Any public water system which is not a community system."

Following these guidelines, the following table summarizes the water systems at Possum Kingdom Lake.

TABLE 7

SUMMARY OF EXISTING COMMERCIAL WATER SYSTEMS

<table>
<thead>
<tr>
<th>Type Of System</th>
<th>Number Of Systems</th>
<th>Estimated Population Served</th>
</tr>
</thead>
<tbody>
<tr>
<td>Groundwater/Community</td>
<td>6</td>
<td>788</td>
</tr>
<tr>
<td>Groundwater/Noncommunity</td>
<td>2</td>
<td>287</td>
</tr>
<tr>
<td>Surface Water/Community</td>
<td>13</td>
<td>1,746</td>
</tr>
<tr>
<td>Surface Water/Noncommunity</td>
<td>25</td>
<td>5,557</td>
</tr>
<tr>
<td>Not a Public Water System</td>
<td>8</td>
<td>381</td>
</tr>
</tbody>
</table>

Identifying the type of system is important in determining which Texas Water Commission criteria is applicable. For instance, while 200 gallons per connection of ground storage is required for all surface water systems, small groundwater systems, which have less than 50 connections, are not required to have ground storage capabilities, as long as other criteria are met.

While there is no such thing as a "typical" Possum Kingdom Lake commercial water treatment system, some generalities can be made. Most of the groundwater systems have more than one well, and chlorinate the water prior to distribution. The surface water systems are more varied, and can be further divided into two types of systems: (1) surface water treatment systems using one or more raw water pump to deliver the water to pressure tanks, which is then chlorinated, occasionally filtered but with insufficient size filters, and distributed; and (2) those systems which provide "advanced" treatment. Advanced treatment includes systems which utilize a water softener, a reverse osmosis system, or both. These advanced treatment systems commonly include numerous filters, as well as bulk storage capabilities. Systems identified as not meeting the definition of a public water supply
typically have water supply systems which range from no treatment to advanced treatment using water softening/reverse osmosis technology.

A majority of the commercial systems were in place prior to June, 1977, theoretically eliminating the required compliance with secondary standards such as chlorides, sulfates, and total dissolved solids. However, if any major upgrades or expansions are implemented at any of these existing facilities, compliance with current TWC regulations for secondary treatment will be required. Of all the systems surveyed, none were found to be in total compliance with Texas Water Commission criteria. Deficiencies varied from a total lack of water treatment to easily correctable defects such as color coding pipe and placing signs restricting access around the raw water intake.

Evaluation of the effectiveness of each of the water treatment systems could not be conducted due to a lack of water quality chemical analysis results. Therefore, the conclusion is drawn that conventional treatment, properly operated, will provide water that will meet primary standards, and advanced treatment, properly operated, will provide water that will meet secondary standards. Under this assumption, systems with facilities which meet Texas Water Commission criteria will be in compliance with State law, and capable of providing safe, potable water.

Complete treatment for surface water (Section 290.42.(d)) "... provides facilities for pretreatment disinfection, taste and odor control, continuous coagulation, sedimentation, filtration, covered clearwell storage and terminal disinfection of the water with chlorine or suitable chlorine compounds." Groundwater requires only disinfection if the water meets the drinking water standards (290.42.(b)). Facilities required if the groundwater does not meet the drinking water standards may include filtration, iron and manganese removal, or terminal disinfection.

Table 8 provides a summary of the deficiencies associated with the existing commercial water supply systems.
TABLE 8
SURVEY SUMMARY OF COMMERCIAL WATER TREATMENT SYSTEMS

<table>
<thead>
<tr>
<th>Study Participant Designation</th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>D4</th>
<th>D5</th>
<th>D6</th>
<th>D7</th>
<th>D8</th>
<th>D9</th>
<th>D10</th>
<th>D11</th>
<th>D12</th>
<th>D13</th>
<th>D14</th>
<th>D15</th>
<th>D16</th>
<th>D17</th>
<th>D18</th>
<th>D19</th>
<th>D20</th>
<th>D21</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>J</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>K</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>x</td>
<td></td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>O</td>
<td>x</td>
<td></td>
</tr>
<tr>
<td>P</td>
<td></td>
</tr>
<tr>
<td>Q</td>
<td></td>
</tr>
<tr>
<td>R</td>
<td></td>
</tr>
</tbody>
</table>

D1: Inadequate flow measuring devices
D2: Inadequate chemical injection
D3: Inadequate disinfection capabilities
D4: Non flash mixing/flocculation
D5: Non continuous coagulations
D6: No sedimentation
D7: Inadequate filtration
D8: Inadequate bulk storage
D9: Inadequate pressure storage
D10: Inadequate raw water pump capacity
D11: Inadequate service pump capacity
D12: Inadequate treatment capacity
D13: No certified operator on duty or continuous chlorine/turbidity monitoring
D14: Improperly protected raw water intake
D15: Inadequate laboratory equipment
D16: Improperly protected wellhead
D17: Inadequate pressure
D18: Insufficient raw water supply
D19: Possibly under the influence of surface water
D20: No sanitary easement
D21: No well driller's lab
D22: Inadequate chlorine residual
Survey Summary of Commercial Water Treatment Systems

Table 8

<table>
<thead>
<tr>
<th>Study Participant Designation</th>
<th>D1</th>
<th>D2</th>
<th>D3</th>
<th>D4</th>
<th>D5</th>
<th>D6</th>
<th>D7</th>
<th>D8</th>
<th>D9</th>
<th>D10</th>
<th>D11</th>
<th>D12</th>
<th>D13</th>
<th>D14</th>
<th>D15</th>
<th>D16</th>
<th>D17</th>
<th>D18</th>
<th>D19</th>
<th>D20</th>
<th>D21</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>*</td>
</tr>
<tr>
<td>U</td>
<td>*</td>
</tr>
<tr>
<td>V</td>
<td>*</td>
</tr>
<tr>
<td>W</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>*</td>
</tr>
<tr>
<td>Y</td>
<td>*</td>
</tr>
<tr>
<td>Z</td>
<td></td>
</tr>
<tr>
<td>AB</td>
<td>*</td>
</tr>
<tr>
<td>AC</td>
<td>*</td>
</tr>
<tr>
<td>AD</td>
<td></td>
</tr>
<tr>
<td>AF</td>
<td>*</td>
</tr>
<tr>
<td>AG</td>
<td></td>
</tr>
<tr>
<td>AH</td>
<td></td>
</tr>
<tr>
<td>AI</td>
<td>*</td>
</tr>
<tr>
<td>AJ</td>
<td></td>
</tr>
<tr>
<td>AK</td>
<td>*</td>
</tr>
<tr>
<td>AL</td>
<td>*</td>
</tr>
</tbody>
</table>

D1: Inadequate flow measuring devices
D2: Inadequate chemical injection
D3: Inadequate disinfection capabilities
D4: Non flash mixing/flocculation
D5: Non continuous coagulations
D6: No sedimentation
D7: Inadequate filtration
D8: Inadequate bulk storage
D9: Inadequate pressure storage
D10: Inadequate raw water pump capacity
D11: Inadequate service pump capacity
D12: Inadequate treatment capacity
D13: No certified operator on duty or continuous chlorine/turbidity monitoring
D14: Improperly protected raw water intake
D15: Inadequate laboratory equipment
D16: Improperly protected wellhead
D17: Inadequate pressure
D18: Insufficient raw water supply
D19: Possibly under the influence of surface water
D20: No sanitary easement
D21: No well driller's lob
D22: Inadequate chlorine residual
TABLE 8
SURVEY SUMMARY OF COMMERCIAL WATER TREATMENT SYSTEMS

<table>
<thead>
<tr>
<th>Study Participant Designation</th>
<th>Deficiencies in Existing Public Water Supply Systems Identified During Site Visit</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN</td>
<td>D1: Inadequate flow measuring devices</td>
</tr>
<tr>
<td>AO</td>
<td>D2: Inadequate chemical injection</td>
</tr>
<tr>
<td>AP</td>
<td>D3: Inadequate disinfection capabilities</td>
</tr>
<tr>
<td>AQ</td>
<td>D4: Non flash mixing/flocculation</td>
</tr>
<tr>
<td>AR</td>
<td>D5: Non continuous coagulations</td>
</tr>
<tr>
<td>AS</td>
<td>D6: No sedimentation</td>
</tr>
<tr>
<td>AT</td>
<td>D7: Inadequate filtration</td>
</tr>
<tr>
<td>AU</td>
<td>D8: Inadequate bulk storage</td>
</tr>
<tr>
<td>AV</td>
<td>D9: Inadequate pressure storage</td>
</tr>
<tr>
<td>AW</td>
<td>D10: Inadequate raw water pump capacity</td>
</tr>
<tr>
<td>AX</td>
<td>D11: Inadequate service pump capacity</td>
</tr>
<tr>
<td>AY</td>
<td>D12: Inadequate treatment capacity</td>
</tr>
<tr>
<td>AZ</td>
<td>D13: No certified operator on duty or continuous chlorine/turbidity monitoring</td>
</tr>
<tr>
<td>BA</td>
<td>D14: Improperly protected raw water intake</td>
</tr>
<tr>
<td>BB</td>
<td>D15: Inadequate laboratory equipment</td>
</tr>
<tr>
<td></td>
<td>D16: Improperly protected wellhead</td>
</tr>
<tr>
<td></td>
<td>D17: Inadequate pressure</td>
</tr>
<tr>
<td></td>
<td>D18: Insufficient raw water supply</td>
</tr>
<tr>
<td></td>
<td>D19: Possibly under the influence of surface water</td>
</tr>
<tr>
<td></td>
<td>D20: No sanitary easement</td>
</tr>
<tr>
<td></td>
<td>D21: No well driller's lob</td>
</tr>
</tbody>
</table>
One system which was not included in the above summary is the Cliffs Water Treatment Plant. The Cliffs Water Treatment Plant currently has a capacity of 100,000 gallons per day for irrigation water. The irrigation water is treated with a reverse osmosis unit, but is not disinfected, and is therefore considered non-potable and unsuitable for drinking water purposes. The treatment facility is currently operating at 50% capacity, due to restraints in the discharge permit for the brine by-product.

Ultimately, the treatment plant is designed to be capable of processing 1.15 million gallons per day of potable water. The original design utilized 5 stages of construction. The first phase would produce 250,000 gallons per day of potable water, the second phase would add additional capability of 150,000 gallons per day, and the third, fourth, and fifth phases would add an additional 250,000 gallons per day capacity each. When originally constructed, only a portion of the first phase was completed; 100,000 gallons per day non-potable irrigation water.

The Cliffs Water Treatment Plant was designed for a total of 1,250 residential sites, a golf course, club house and marina. Currently only the golf course and club house are on site. Estimates have been made by the General Manager of the Cliffs that the development will probably utilize only 30% of the total capacity. This would leave just over 800,000 gallons per day capacity, if the plant were expanded to the fullest extent possible.

Mr. G. E. (Bud) Marsh, P.E., designer of the water treatment system, has indicated that several components would be necessary to bring the water treatment plant up to potable drinking water capabilities. This includes a settling basin, additional reverse osmosis unit, and a minimum of 3 high service pumps. Also a second 12-inch pipeline would be required to deliver potable water from the treatment facility.

The initial apparent advantage of obtaining the Cliffs water treatment plant for use by the Possum Kingdom Water Supply Corporation fades once the facility is examined in the light of providing large quantities of potable water. Purchasing the water treatment plant, if it were possible to do so, would obtain for the Possum Kingdom Water Supply Corporation the following:

- Raw water intake, with high maintenance requirements;
- Building;
- 100,000 gallon bulk storage tank;
- 1,000 gallon pressure tank; and
- Plans for completion of the water treatment plant (approximately 7 years old).
Clearly, none of the treatment processes required to provide potable water are currently in place, and must be constructed. The Cliffs project engineer estimates the cost to bring the plant up to standards would be approximately $5,500,000. Construction of a new water treatment plant capable of providing the same 800,000 gallons of potable (Possum Kingdom Lake) water would cost approximately $2,500,000. In addition, the Cliff Treatment Plant is located just south of Morris Sheppard Dam in the very southwestern quadrant of the lake. To utilize only the excess 800,000 gallon capacity in this facility would require approximately one mile of additional linear feet of 8-inch and 10-inch diameter water line, a 1,000-foot long lake crossing along with an additional transfer pump station.

Another water treatment facility, also not included in the summary, which was considered as a source of potable water was the Fort Sill Recreation Area Water Treatment Plant. This facility has been out of service for many years, and its current condition is questionable, at best. The last sanitary survey, conducted by the Texas Water Commission in 1985, indicated that the allowable treatment capacity was 45 gpm, or 64,800 gallons per day. This could feasibly serve up to 75 connections. However, deficiencies noted in 1985 include the inability to meet secondary standards, inoperable intake, which was also located too close to a public dock, and improperly sealed clearwell storage. The primary deficiency, the inability to meet secondary standards, is a significant disadvantage in utilizing this facility in the overall water system. The cost to upgrade this facility to meet secondary standards, for only 75 connections, is prohibitive.

The Sportsman's World Water Treatment Plant was not surveyed for participation in the overall water system, as they specifically declined to be included in this study.
V. - WATER SUPPLY AND POTABLE WATER PRODUCTION ALTERNATIVES

A. INTRODUCTION
The scope of this study includes investigating various water supplies, treatment and distribution alternatives, all of which are designed to meet the intent of the Texas Water Commission standards for public water systems. To that end, several water supply and production alternatives were considered and analyzed, some viable and some not so viable but considered anyway. Those alternatives are presented in general in this section with detailed system analysis and cost estimates included in the Appendix.

B. APPLICABLE DESIGN CRITERIA
The design criteria for all alternatives for supply, treatment and distribution is from the Rules and Regulations for Public Water Systems, adopted in 1992 by the Texas Water Commission, Water Utilities Division. In general, all alternatives considered utilized surface water and included over 250 connections, therefore the following criteria for each system design was applied:

- Raw Water Pump Capacity: 0.6 gpm per System Connection
- Treatment Plant Capacity: 0.6 gpm per System Connection
- High Service Pumps: 0.6 gpm per System connection
- Water Distribution System Capacity: 1.5 gpm per System Connection
- Minimum Allowable System Pressure: 35 psi
- Fire Flows: None
- Ground Storage Capacity: 100 gallons per System Connection
- Elevated Storage Capacity: 100 gallons per System Connection

<table>
<thead>
<tr>
<th>Maximum Number of Connections</th>
<th>Minimum Line Size (Inches)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>25</td>
<td>2.5</td>
</tr>
<tr>
<td>50</td>
<td>3</td>
</tr>
<tr>
<td>100</td>
<td>4</td>
</tr>
<tr>
<td>150</td>
<td>5</td>
</tr>
<tr>
<td>250</td>
<td>6</td>
</tr>
<tr>
<td>250</td>
<td>8 and Larger</td>
</tr>
</tbody>
</table>

V - 1
C. FIRE PROTECTION

It is important to note that the regional water systems under consideration in this study do not include capacities for fire protection. In addition, cost estimates do not include any appurtenances for fire protection. This is not to say that a limited degree of fire protection could not be achieved during off-peak hours. Flush valves, which are typically provided in a rural water system, can furnish water for filling fire trucks. However, it should be clear to all parties that these systems do not meet the minimum requirements for fire protection.

Fire protection to the extent that homeowners’ or commercial property owner’s insurance will be reduced would not be accomplished just by having fire hydrants. The following items are required to lower a community's "key rate", which establishes the cost for fire insurance:

- Minimum of 6-inch diameter water lines;
- A maximum distance of 10 miles (measures over roads) to an approved fire station;
- Property to be protected must be within 750 feet of a 5,000 gallon reservoir or fire hydrant;
- The fire department must not have less than 10 men, with no less than 5 responding to calls. Regular drills, not business or social meetings, must be conducted twice a month; and
- Minimum requirements for fire fighting equipment must be met.

As shown by these items, fire protection requires more than fire hydrants. Other items which would be necessary would be the "looping" of water lines, as dead end lines are undesirable in a fire protection system.

D. WATER SUPPLY ALTERNATIVES

(1) Local Water Supply Alternatives

Local water supply alternatives now currently available are:

- Possum Kingdom Lake (surface water)
- Ground Water
- Hauled water (typically from Graham)

Possum Kingdom Lake water is readily available to the waterfront Brazos River Authority lessees, and is included in the lease for the property. Possum Kingdom Lake water is also available, by contract, to Brazos River Authority lessees not located on the water, and to the owners of deeded property around the lake. Quality of water, as has been discussed in other sections of this study, is poor. Quantity of water, however, is ample.
Ground Water is utilized in several commercial camps/businesses as well as in many individual residences. This ground water is unique to the Willow Beach area, and the source of water is reportedly the "Pickwick Springs" which were in existence before Possum Kingdom Lake was constructed. Wells in the area range from 16 to 60 feet in depth, making them all fall under the Texas Water Commission definition of potentially under the influence of surface water. The shallow depth also makes these wells susceptible to contamination.

Analysis of the maps of Major Aquifers and Minor Aquifers in the state of Texas, developed by the Texas Water Development Board, reveals no major or minor aquifers located in Palo Pinto, Stephens, or Young counties. There are numerous water bearing formations in the area, however most are of a quality not generally suitable for human consumption. Of the identified formations, none appear to be suitable as a raw water source, because of poor water quality, a lack of dependable water quantity (or yield), or a combination of both. The localized nature of the existing wells, as well as the yield limitations, make Ground Water an unattractive alternative for a water supply system.

The last alternative, hauled water, is generally not utilized by itself. Most systems that do not furnish complete treatment in their system provide drinking water through the use of commercial bottled water, or by hauled water brought in from the City of Graham. Potentially, this is an unlimited source; the quantity restricted only by the physical capabilities of the hauling trucks and Graham's ability to produce potable water.

(2) Regional Water Supply Alternatives
Numerous sources for regional water supply are available for the Possum Kingdom Regional Water Supply System. Those sources which were considered in this study are discussed below:

(a) Surface Water
Obviously, surface water is readily available for treatment and distribution. The commercial operators and individuals who lease lots from the Brazos River Authority already have Possum Kingdom Lake water rights included in their lease agreements. However, the Brazos River Authority has indicated a separate Water Rights Agreement with the Possum Kingdom Water Supply Corporation will be required. The estimated average daily demand for a regional system which serves all of the commercial operators and all of the residential lots is approximately 1.5 MGD or 4.6 acre-feet per day. The Brazos River Authority has estimated the cost of Possum Kingdom raw water to be $19.15 per acre-foot ($0.06 per 1,000 gallons). Possum Kingdom surface water, being high in chlorides, sulfates and total dissolved
solids, will require costly advanced treatment to conform to current TWC regulations.

(b) **Ground Water**

Ground Water near Possum Kingdom Lake is not available in quantities or quality that make this a economical, dependable or desirable alternative for a regional water supply system for the same reasons discussed in Paragraph C.1 above. Ground Water may be, in some cases, acceptable for small individual commercial operators; however, recent TWC regulations designed to improve water quality will likely cause the cost of maintaining a well site cost prohibitive for most individual operators.

Also, the shallow depth of the wells indicates that they may be under the influence of surface water. Should this prove to be the case, regulations for surface water treatment would be applicable. This includes full treatment, including facilities for:

- Pretreatment Disinfection;
- Taste and Odor Control;
- Continuous Coagulation;
- Sedimentation;
- Filtration;
- Covered Clearwell Storage; and
- Terminal disinfection of the water with chlorine or suitable chlorine compounds.

The limited quantity, in conjunction with the possibility of the requirement of full treatment, makes Ground Water unattractive as a source of raw water.

(c) **Treated Water From the City of Graham**

Graham Water Supply District

The City of Graham is located approximately 15 miles north of the western end of Possum Kingdom Lake. The City treats surface water from Lake Graham at its 2.0 mgd plant. This source is not high in chlorides and sulfates and consequently does not require costly advanced treatment. The Graham Treatment Plant currently has excess capacity of approximately 1.0 mgd and could be expanded to meet the ultimate needs of the Possum Kingdom Regional Water Supply System.

In order to transport the ultimate maximum daily demand from the Graham treatment facilities to a delivery point on the western end of Possum Kingdom Lake, approximately 85,000 linear feet of 14" diameter water transmission main is required, generally following a route along F.M. 1287. This includes a crossing of
the Brazos River. In addition, a 2 MGD treatment plant expansion is required at the Graham plant along with a pump station at the Graham facilities with a minimum of 2 - 225 HP transfer pumps and a 150 HP booster pump station approximately 2 miles south of Bunger. The point of delivery would be into ground storage tanks located immediately west of Highway 1287 near the intersection with Highway 1148 on the east. This is an ideal location from a hydraulics viewpoint in that it is relatively high ground for the Possum Kingdom Regional Water Supply System and the ground storage receiving tanks would act as elevated storage for the Possum Kingdom Regional Water System.

For the ultimate Possum Kingdom Regional System (3.0 mgd maximum day demand), the capital improvements cost to expand the Graham plant, construct transfer and booster pump stations and construct the necessary supply lines is estimated to be $6.7 million dollars. A detailed cost estimate on this option is included in the Appendix.

Graham water is currently priced at $1.60 per 1,000 gallons treated water.

(d) Other Regional Water Supplies

Several other water supply sources were considered in this study. After review none were determined to be economically feasible nor hydraulically practical. These other sources include the City of Mineral Wells, the City of Breckenridge, Stephens County Rural Water Supply Corporation and the Fort Belknap Water Supply Corporation.

The City of Mineral Wells, located approximately 27 miles east of Possum Kingdom Lake, has surface treated water currently available for $2.56 per 1,000 gallons. However, a rate study conducted for the City indicated a rate of $3.01 per 1,000 gallons is the true cost of the water. Conversations with the previous City Manager, Natalie Kelly, indicate that the City ultimately desires to sell water at the actual cost of $3.01 per 1,000 gallons. This does not include any capital cost required to transport the water from Mineral Wells to Possum Kingdom Lake.

The City of Breckenridge, located approximately 30 miles to the southwest of Possum Kingdom Lake provides treated surface water at a rate of $1.75 per 1,000 gallons. This supply would be available to a limited portion of Possum Kingdom Lake, namely the Possum Kingdom State Park, through the Stephens County Rural Water Supply Corporation. Existing Stephens County Supply Lines range in size from 3"-4" and reach as far east as the City of Caddo. Stephens County Water
Supply Corporation charges $5.00 per 1,000 gallons for supplying Breckenridge treated water.

Ft. Belknap Water Supply Corporation buys its treated water from the City of Graham and adds on $0.25 per 1,000 gallons to Graham’s charge of $1.60 per 1,000 gallons. There appears to be no advantage in purchasing treated water from the Ft. Belknap Water Supply Corporation rather than purchasing treated water directly from the City of Graham.

E. WATER TREATMENT ALTERNATIVES

(1) General
Although the raw water in Possum Kingdom Lake has been widely used for consumption with little or no treatment, water produced and distributed by a public water system must meet all applicable standards set by the Texas Water Commission and the United States Environmental Protection Agency. The standards of the Safe Drinking Water Act of 1986 and the Surface Water Treatment Rule are those which now govern water treatment facilities. Although the water in the lake is well known for its general clarity, it is also well known for its high content of dissolved solids, primarily in the form of chlorides and sulfates. The concentration of these constituents must be reduced through a demineralization process.

All lake water distributed through a public water system must receive complete conventional treatment at a plant which provides facilities for pretreatment disinfection, taste and odor control, continuous coagulation, sedimentation, filtration, covered clearwell storage and terminal disinfection. In addition to the conventional treatment, the water from Possum Kingdom Lake requires advanced demineralization treatment. Normally the finished water pumped into the distribution system will be a blend of the filtered and demineralized water. This allows the most cost effective production of water which meets or exceeds the TWC regulations.

Finished water and approximate Possum Kingdom Lake raw water quality design values are as follows:

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Raw Water</th>
<th>Finished Water TWC Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Dissolved Solids (Mg/L)</td>
<td>1,900</td>
<td>1,000</td>
</tr>
<tr>
<td>Chlorides (Mg/L)</td>
<td>750</td>
<td>300</td>
</tr>
<tr>
<td>Sulfates (Mg/L)</td>
<td>400</td>
<td>300</td>
</tr>
</tbody>
</table>
Studies have shown that water with a total dissolved solids concentration of 1,000 Mg/L was rated between average and good. Finished water from this project should, therefore, be rated better than average by most people.

(2) Commercial Operator Treatment Facility Alternatives

Renovation of the existing commercial facilities to Texas Water Commission standards was considered. This could be performed in two different manners:

Each facility upgrade and operate independently, similar to the current situation. This is the default option if the "No Action" option is chosen by the Possum Kingdom Water Supply Corporation; or

Collectively improve each system and participate in a Water Supply Corporation for consolidation of daily operation and management responsibilities.

Since the Possum Kingdom Water Supply Corporation is in place, and is a viable legal entity, the collective system will be the one considered in this study. This collective system would utilize shared operators, as well as share in advantageous funding mechanisms which are available to the group as a whole.

There are three general types of treatment currently provided by the commercial camps/businesses, as discussed in Section IV. These include:

Typical Ground Water Systems;
Typical Surface Water Systems; and
Advanced Treatment Systems.

With these three extremely varied types of water treatment, different upgrade and operation costs exist.

By forming a single operating company, the total operating costs would be less than if each individual facility paid for the operations of each facility. Tabulated below are the estimated range of costs to upgrade the existing facilities. The variability of the costs is primarily a function of the flow rate of each facility. With a cooperative operations company, savings could be realized by purchasing chemicals and replacement parts in greater quantity. Furthermore, fewer personnel would be required to administer all of the facilities collectively versus individually.
Estimated Upgrade Costs - Commercial Treatment Systems

<table>
<thead>
<tr>
<th>Treatment System Capacity</th>
<th>1 GPM</th>
<th>1 - 14 GPM</th>
<th>15 - 29 GPM</th>
<th>30 - 44 GPM</th>
<th>45 - 60 GPM</th>
<th>60 GPM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preliminary Treatment</td>
<td>N/A</td>
<td>$70,000</td>
<td>$100,000</td>
<td>$120,000</td>
<td>$135,000</td>
<td>$150,000</td>
</tr>
<tr>
<td>Advanced Treatment</td>
<td>$15,000</td>
<td>35,000</td>
<td>80,000</td>
<td>125,000</td>
<td>190,000</td>
<td>285,000</td>
</tr>
<tr>
<td>Total</td>
<td>$15,000</td>
<td>$105,000</td>
<td>$180,000</td>
<td>$245,000</td>
<td>$325,000</td>
<td>$435,000</td>
</tr>
</tbody>
</table>

Total capital cost to upgrade the individual systems is estimated to be approximately $8,400,000 for advanced treatment systems. Operation and maintenance costs, through the use of the common Possum Kingdom Water Supply Corporation with shared employees, is estimated to be $1,670,000 annually if all systems are operating advanced treatment units.

Costs to improve the facilities is a disadvantage to utilizing existing facilities. A majority of the existing facilities were in operation prior to July 1, 1977, the effective date of the *Drinking Water Standards Governing Drinking Water Quality and Reporting Requirements for Public Water Supply Systems*. Consequently, secondary constituent levels are theoretically only recommended. These secondary constituents include:

<table>
<thead>
<tr>
<th>Constituent</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chloride</td>
<td>300 mg/l</td>
</tr>
<tr>
<td>Color</td>
<td>15 color units</td>
</tr>
<tr>
<td>Copper</td>
<td>1.0 mg/l</td>
</tr>
<tr>
<td>Fluoride</td>
<td>2.0 mg/l</td>
</tr>
<tr>
<td>Foaming agents</td>
<td>0.5 mg/l</td>
</tr>
<tr>
<td>Hydrogen Sulfide</td>
<td>0.05 mg/l</td>
</tr>
<tr>
<td>Iron</td>
<td>0.3 mg/l</td>
</tr>
<tr>
<td>Manganese</td>
<td>0.05 mg/l</td>
</tr>
<tr>
<td>Odor</td>
<td>3 Threshold Odor No.</td>
</tr>
<tr>
<td>pH</td>
<td>7.0</td>
</tr>
<tr>
<td>Sulfate</td>
<td>300 mg/l</td>
</tr>
<tr>
<td>Total Dissolved Solids</td>
<td>1,000 mg/l</td>
</tr>
<tr>
<td>Zinc</td>
<td>5.0 mg/l</td>
</tr>
</tbody>
</table>

Historically, chlorides, sulfates, and total dissolved solids in Possum Kingdom Lake water have exceeded these recommended limits. Normally to remove constituents such as these requires advanced demineralization treatment, such as reverse osmosis or electrodialysis reversal. Even though the more stringent secondary requirements are not currently applicable, the TWC requires that any facility upgrade meet current requirements for advanced treatment. In addition, Ground Water considered under the influence of surface water is required to have complete treatment and, if necessary, advanced treatment.
TREATMENT FACILITY LEGEND

A.) Adjacent to South D & D Recreation Area
B.) South of Sandbar Village
C.) Near Lakeview Marina
D.) Near Possum Kingdom State Park
E.) West Shoreline of Poor Bend
F.) East Lake South of Costello Island
G.) The Cliffs

FIGURE No. 2
Additional disadvantages to upgrading the existing facilities include the chronic and continual need for repair and replacement of equipment, constant monitoring, and a less reliable water supply system. Operation of each existing facility, even updated to Texas Water Commission criteria, will require even more extensive continual repair and replacement of equipment than each operator is currently experiencing.

Comments from numerous commercial camp/business individuals during the on site interviews indicate they are longing to get away from the daily maintenance, monitoring and testing required of their system. All these individuals treat water only as a secondary consideration to their primary enterprise, and most indicated a willingness and desire to release themselves of this constant responsibility.

The existing systems, as they are currently operated, generally have the system owner or the overall commercial camp/business caretaker as the only maintenance personnel available to repair any problems. Since these individuals remain extremely busy with the primary function of the commercial camp/business, maintenance of the water system often takes a "back seat" to other concerns. This, in addition to the relatively isolated locations of some of these commercial camps/businesses, does not provide for a reliable water supply system.

(3) **Regional Treatment Facility Alternatives**

A regional treatment facility for the Possum Kingdom Water Supply System would consist of complete conventional treatment, followed by partial demineralization and blending to obtain potable water which meets or exceeds TWC water quality criteria. Several sites were identified and reviewed for the proposed treatment plant. Sites considered around the lake were:

(a) Adjacent to the South D & D Recreation area;
(b) Just South of the Sandbar Village;
(c) Near Lakeview Marina;
(d) Near Possum Kingdom State Park;
(e) West side of Poor Bend across the lake from Sandy Beach Park;
(f) East side of the lake across from Costello Island; and
(g) The Cliffs.

These site locations are shown on Figure No. 2, Regional Treatment Facility Alternatives.
Potential sites were selected based on their close proximity to deep lake water for the intake facilities and their location near the center of the proposed water distribution system. The site at the South D & D Recreation area was selected for development of this study since it was the most centrally located and was not close to any developed lake lots. This site is shown in Figure No. 3, Treatment Plant Site Vicinity Map.

Depending on the number of customers served by the regional system, the treatment plant would need to meet an estimated maximum day demand of between 1.4 and 3.0 million gallons. The lower figure would serve all the expected business connections only. The higher figure would serve all the expected business and residential customers on the lake.

As shown in Figure No. 4, Treatment Plant Process Schematic, the major elements of the treatment facilities would be the raw water intake and pump station, chemical taste and odor control, pretreatment chemical disinfection, rapid mix, coagulation and sedimentation (solids contact), filtration, demineralization, terminal disinfection, and clearwell storage. The filtered water and demineralized water would be blended to conform to water quality criteria and pumped into the distribution system through high service pumps.

The raw water intake must be located in water of sufficient depth to provide a supply of water during periods of drought when the lake level could be substantially lower than the normal pool level. A location close to shore is preferred to minimize the cost of the intake facilities. A cast-in-place concrete pumping platform supported by steel encased drilled piers is proposed for the regional facility. Vertical turbine pumps would be installed in suction barrels with several inlet ports to allow withdrawal of water from different lake levels. This would allow withdrawal of the best quality water to be treated. The raw water pipeline would be supported by the pump station access bridge. This bridge would also support the process wastewater line from the demineralizer.

A modular design treatment plant utilizing prefabricated steel basins was studied for use for the regional treatment facility. The basins and equipment would be furnished to the plant site partially assembled, and installed in a prefabricated metal building at the plant site. Instead of traditional coagulation and sedimentation basins, the modular facilities would utilize contact clarifiers to trap and remove coagulated particles. Contact flocculation and clarification occur as the coagulated particles move through a polyethylene filter media; these processes are enhanced by repeated contact with previously trapped solids. The flow of water passes from the contact clarifiers to a mixed media sand filter. The sands are hydraulically graded from coarse to fine in the direction of the flow to allow full depth filtration and increased solids storage. Utilization of this type of "package" plant will substantially reduce the treatment plant cost, provide a
treatment facility that is easy to operate and maintain, and secured in an enclosed building. Disadvantages associated with treatment plants which eliminate traditional coagulation and sedimentation processes include additional backwash requirements and the possibility that a successful pilot study may be required to receive approval from the Texas Water Commission. In addition the Possum Kingdom Lake water may prove to be too corrosive to use the standard painted steel basins. Stainless steel or concrete basins may be required to compensate for the lake water.

Several process alternatives were considered for the demineralization equipment. These include the following:

Reverse Osmosis (RO): A process that applies pressure to feed water, forcing the water molecules through a semipermeable membrane. The membrane is constructed to selectively pass water through its pores, while leaving behind dissolved impurities in a brine solution that is discharged as waste.

Electrodialysis Reversal (EDR): A system that uses electrical power to create positive and negative charges, which in turn attract positive and negative ions through membranes. One type of membrane passes positive ions, the other type passes negative ions. The net result is that the impurities tend to concentrate in a brine that in turn is discharged as waste. With the EDR process, polarity is reversed periodically to minimize electrode corrosion and prolong the operating life between membrane cleanings.

Other demineralization processes were considered but were rejected. A distillation process where there is evaporation of water, and condensation of vapor to produce a purified product water was considered, but rejected on the basis of high energy costs and equipment cost when compared to RO or EDR. Ion exchange, commonly referred to as a zeolite process, is another process where various ions are removed from water to reduce or change ion content. The waste stream from an ion exchange process contains additive ions in high concentrations, normally sodium and chloride. This would require treatment of the waste stream which makes ion exchange neither economically nor environmentally attractive.

There are a number of RO units in service around Possum Kingdom Lake. These range in size from less than one GPM at individual residences to 60 GPM at the Sportsman World development. The RO process has proven to be successful in demineralizing Possum Kingdom Lake water.
The BRA constructed a regional water treatment plant in 1989 on Lake Granbury, a lake on the Brazos River downstream of Possum Kingdom Lake. The raw water quality in the two lakes is very similar. The Granbury plant has conventional treatment followed by EDR for demineralization. The treatment plant was originally bid with either RO or EDR to be used. The bids included an extended ten year warranty and maintenance contract for the demineralization equipment. The EDR equipment was selected through this process.

The BRA has now operated the Granbury plant for over three years, continually meeting or exceeding the TWC water quality criteria. Their staff is now well experienced in the operation of the EDR equipment, and the process of blending filtered and demineralized water. This experience will be invaluable to the operators of a regional treatment plant for treating Possum Kingdom Lake water.

(4) Estimated Cost of Treatment Options

The estimated cost of the proposed regional treatment facility was prepared utilizing construction costs from the Granbury plant and other water treatment plant improvements. In addition, manufacturers of the proposed package treatment equipment and demineralizer equipment provided estimating costs. An itemized cost estimate for a 3.0 MGD plant is as follows:

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw Water Intake and Pumps</td>
<td>$800,000</td>
</tr>
<tr>
<td>Raw Water Supply Line</td>
<td>$50,000</td>
</tr>
<tr>
<td>Treatment Facilities</td>
<td>$3,600,000</td>
</tr>
<tr>
<td>Demineralization Facilities</td>
<td>$2,400,000</td>
</tr>
<tr>
<td>Filtered Water Storage</td>
<td>$150,000</td>
</tr>
<tr>
<td>Finished Water Storage</td>
<td>$150,000</td>
</tr>
<tr>
<td>Process Waste Line</td>
<td>$60,000</td>
</tr>
<tr>
<td>Sludge Lagoons</td>
<td>$150,000</td>
</tr>
</tbody>
</table>

Subtotal $7,360,000

Miscellaneous, Contingencies and Engineering $1,840,000

Total $9,200,000

A tabulation of treatment costs for the various plant capacities considered for this report is included in the Appendix.
F. WATER DISTRIBUTION SYSTEM OPTIONS

(1) General

From the onset of this study, it was concluded that a regional water distribution system, at a minimum, should be planned which would serve all the commercial operators around the lake. Although numerous distribution system options were considered initially, it was seen rather quickly that an option that included as many individual leased lots as practical was the desirable approach. This is generally the case due to the varied locations of the commercial operators. A regional system to serve all commercial operators requires pipelines as far west as Bailey's Camp and as far east as Rock Creek Camp. These two points are approximately 13 miles apart straight line distance, and require at least one lake crossing to avoid an additional 37 miles of pipeline along the south shore line of the lake. Individual leased lots dot the lake between these commercial operations locations. In many instances, adding as many as 50 individual leased lots had no affect on the required distribution pipe size.

For each option described below, a water distribution master plan was developed and hydraulically analyzed utilizing the Cybernet Version 2.10 Water Distribution System Computer Program. System demands were calculated for every junction node in each option. In order to insure the planning of the minimum system required, the flow in each pipe was first calculated (using 1.5 gpm per connection) and the pipe sized to the minimum pipe diameter allowed per number of connections served as directed by the TWC regulations. This, of course, was not always the best hydraulic solution to the system and often this initial pipe size was increased in order to meet the minimum system pressure of 35 psi at all points in the system during the maximum hourly demands.

The following sections describe in general each option analyzed in this study. Consideration was given to size and length of pipes required, location and capacity of ground storage and elevated storage, and number of lake crossings required.

The summary tabulations included in the Appendix provide a more detailed look at the specific breakdown between residential and commercial customers and the specific number of connections included in the water system construction. In addition, a detailed cost estimate for each option considered is included in the Appendix. The regional water system cost estimate includes pipelines, pump stations, a treatment plant, ground storage and elevated storage of adequate capacity for the proposed distribution system and necessary system appurtenances.

It should be noted that these optional water distribution systems may not reflect the final system design. The size and locations of the pipe lines may vary somewhat when detailed
design of the system is completed and as any additional options develop. The primary purpose of these different analysis is to assist in determining the most cost effective approach to developing a regional water supply system. Once the best approach is determined by all parties involved, it is highly recommended that the approach be revisited and fine-tuned prior to moving into a design and construction phase of a water distribution system. It is anticipated that further analysis of the best approach will likely result in an overall system savings. However, minimizing the size of the distribution systems will result in higher delivery pressures requiring larger pumps and higher power cost. Minimizing the system's initial capital cost and long term operating and maintenance cost is the ultimate goal of this study.

Due to the segmented nature of the system and the necessity of crossing the lake several times in order to serve all customers from a single source treatment plant, consideration was given to analyzing and consequently constructing the regional distribution system in several phases. Each phase consist of areas isolated from the main eastern shoreline of the lake, such as Gaines Bend, Hog Bend and the Possum Kingdom State Park. In all options, the approach was that these remote areas could be added to the system at a later time. With the extreme expense involved in crossing the lake with water lines of adequate size to meet minimum TWC regulations, it was also assumed in all options that the participation level in these remote areas would be 100 percent of the individual leased lots. It is not practical nor economically feasible to cross the lake for partial participation in the regional system by a handful of the residents. Therefore, service to Gaines Bend, Hog Bend and Possum Kingdom State Park is considered as additive alternatives to each option presented. A detailed breakdown of each additive alternative system demand and cost estimate is included in the Appendix.

(2) Distribution System Options

Option No. 1: 100% Participation by Commercial Operators
0% Participation by Individual Leased Lots
Water Treatment Plant Near D & D - South Public Use Area

From an initial capital cost approach, this option is by far the least expensive of all the options considered. However, without the participation of any of the individual leased lot customers, the capital cost per system connection is one of the highest of the options analyzed.

This option requires a maximum daily demand of 1.42 MGD which is assumed to be provided by a single source supply consisting of a treatment facility located near D & D - South public use area. The maximum hourly demand is estimated to be 3.52 mgd. This
option includes a 1.4 MGD treatment plant, raw water intake structure, approximately 47 miles of pipe lines of various sizes, three separate lake crossings, approximately 177,000 gallons of ground storage, 165,000 gallons of elevated storage, and four booster pump stations. This system will serve approximately 1,640 customers. The estimated capital cost, including distribution system lines, lake crossings, pump stations, treatment plants, booster pumps, elevated storage and ground storage is approximately $8,270,000. These cost do not include raw water cost and annual operation and maintenance cost.

Option No. 2: 100% Participation by Commercial Operators
100% Participation by Individual Leased Lots
Water Treatment Plant Near D & D - South Public Use Area

This option is considered to be the ultimate system. It is designed to serve 100 percent of the commercial operators at their ultimate development along with all of the individual leased lots along the lake shoreline. It provides for a single source water supply located near the D & D - South public use area. Ultimate maximum daily demand for this system is approximately 2.96 MGD, with an anticipated maximum hourly demand of 6.64 MGD. This option includes a 3.0 MGD treatment plant, raw water intake structure, approximately 67 miles of water distribution lines of various sizes, four separate lake crossings, six booster pump stations, 300,000 gallons of ground storage and no less than 285,000 gallons of elevated storage. This system will serve approximately 2,839 commercial and residential connections in the initial phase and ultimately approximately 3,440 connections.

It is estimated the capital cost of the initial phase of this regional system, including plant construction, supply line, transfer pump stations, booster pump stations, elevated storage, ground storage and distribution system lines and one lake crossing is approximately $13,880,000. Adding distribution lines, lake crossings and elevated storage to serve the Possum Kingdom State Park, Gaines Bend and Hog Bend brings the system's total capital cost to $15,518,000.

Option No. 3: 100% Participation by Commercial
100% Participation by Individual Leased Lots
Single Source Supply - City of Graham Treated Water

This option is similar to Option No. 2 in that it is designed to serve the ultimate population around the shores of Possum Kingdom Lake. It differs from Option No. 2 only by the fact that the source of supply for treated water is from the City of Graham. This option requires an ultimate expansion of the Graham Water Treatment Plant on the order of
approximately 2.0 mgd. Graham has reported that it currently has an excess capacity of 1.0 mgd. Whether that capacity is available long term for use by the Possum Kingdom Water Supply Corporation has yet to be determined.

In order to transport the 2.96 mgd maximum daily demand from Graham to a point of delivery on Possum Kingdom Lake, a 15.5 mile long, 14" diameter treated water supply line is required along with a high head transfer pump station at the Graham Treatment Plant and a 150 HP booster pump station located approximately halfway between Graham and Possum Kingdom Lake.

It is estimated the capital cost of the initial phase of this regional system, including plant expansion, supply line, transfer pump stations, booster pump stations, elevated storage, ground storage and distribution system lines and one lake crossing is approximately $13,106,000. Adding distribution lines, lake crossings and elevated storage to serve the Possum Kingdom State Park, Gaines Bend and Hog Bend brings the system's total capital cost to $14,750,000. These cost do not include treated water cost and annual operation and maintenance cost.

Option No. 4:
- 100% Participation by Commercial Operators
- 100% Participation by Individual Leased Lots
- Dual Source of Supply
- City of Graham (West Lake)
- Possum Kingdom Treated Surface Water (East Lake)

This option was considered in order to evaluate the potential for cost savings by dividing the source of the treated water supply in order to eliminate some of the lake crossings, which of course, add considerable cost to the distribution systems. The system was divided into the East Lake and the West Lake (or north side). The East Lake System is proposed to receive its treated water from a 2.07 mgd treatment plant located near D & D - South public use area. The West Lake System is proposed to receive its treated water through a 10" supply line from the City of Graham. This option requires the expansion of the Graham plant and the construction of a new plant on the shores of Possum Kingdom Lake. As for lake crossings, this does eliminate the need to cross the lake near Sandy Beach, at a savings of approximately $200,000. However, these savings are lost on the fact that a treatment plant is still required at Possum Kingdom Lake and a plant expansion would ultimately be necessary at Graham, along with 15.5 miles of 10" supply line from Graham to Possum Kingdom Lake.
Other than the elimination of the one lake crossing, this option is basically the same as Nos. 2 and 3. The total maximum day demand is 2.96 mgd with a maximum hour demand of approximately 6.64 MGD. The breakdown of system demands for each separate system is more fully detailed in the summary tabulations included in the Appendix. The estimated capital cost for both the east and west initial systems combined is approximately $15,858,000. This includes construction of the required distribution systems, treatment plant and treatment plant expansion, a 10" supply line from Graham, ground storage and elevated storage facilities, two transfer pump stations, and approximately six booster pump stations. The addition of service to Possum Kingdom State Park, Gaines Bend and Hog Bend brings the two systems' capital cost to a total of $17,495,000. Again, these costs do not include the cost for raw water or the operation and maintenance cost for the treatment facilities and associated pump stations and booster pump stations.

Option No. 5: 100% Participation by Commercial Operators
50% Participation by Individual Leased Lots
Water Treatment Plant Located Near D & D - South Public Use Area

This option is considered to be the most reasonable approach for a regional water system for various reasons. First, the results of the survey of the individual leased lot owners around the lake, conducted by the Brazos River Authority, indicate that approximately half of those responding would connect onto a regional system if one was available and it was economically feasible to do so. Second, a single source supply from a treatment plant located geographically near the center of the distribution system offers economy in sizing water lines and pump cost. In addition a substantial portion of the cost of building and operating treatment facilities is fixed and does not vary with the amount of water treated. There is, therefore, a considerable economic advantage to consolidating the treatment of water at one plant. This has the effect of minimizing operating cost, as well as reducing plant construction cost to a minimum.

This system assumes a single source supply located near D & D - South public use area. The maximum daily demand is estimated to be 2.4 mgd in the initial phase, which includes capacity for Gaines Bend, Hog Bend and Possum Kingdom State Park. The estimated peak hourly demand is 5.16 mgd. The number of customers in the first phase is estimated to be 2151 connections with approximately 2752 connections in the ultimate system. This analysis includes 67 miles of distribution lines (same as Options Nos. 2 & 3), one lake crossing, 210,000 gallons of elevated storage and 210,000 gallons of ground storage and three booster pump stations in addition to the transfer pump station located at the proposed treatment plant facilities.
It is estimated the capital cost of the initial phase of this regional system, including treatment plant construction, transfer pump stations, booster pump stations, elevated storage, ground storage and distribution system lines and one lake crossing is approximately $11,302,000. Adding distribution lines, three additional lake crossings and elevated storage to serve the Possum Kingdom State Park, Gaines Bend and Hog Bend brings the system's total capital cost to $12,939,000. These cost do not include raw water cost and annual operation and maintenance cost.

Option No. 6: 100% Participation by Commercial Operators

50% Participation by Individual Leased Lot Customers

Single Source of Treated Water Supply from the City of Graham

Since the results of the survey conducted by the Brazos River Authority indicate that the most likely level of participation by individual lot lessees around the lake is at most 50%, it seemed appropriate to evaluate all reasonable options at that level of participation. This option is similar to Option No. 3 in that it assumes the source of treated water is the City of Graham. It differs from Option No. 3 by providing capacity for only 50% of the residential lot owners around the lake. The ultimate maximum day system demand for this option is 2.37 MGD. Again this option would require the expansion of the existing Graham Treatment Plant facilities by approximately 1.37 MGD, assuming of course that the additional capacity of 1.0 MGD that exists now is available.

In order to transport the 2.37 MGD maximum daily demand from Graham to a point of delivery on Possum Kingdom Lake, a 15.5 mile long 12-inch diameter treated water supply line is required along with a high head transfer pump station at the Graham Treatment Plant and a booster pump station located approximately halfway between Graham and Possum Kingdom Lake.

It is estimated the capital cost of the initial phase of this regional system, including plant expansion, supply line, transfer pump station, booster pump stations, elevated storage, ground storage, distributions system lines and one lake crossing is approximately $10,808,000. Adding distribution system lines, lake crossings, elevated storage and booster pumps to serve Possum Kingdom State Park, Gaines Bend and Hog Bend brings the system's total capital cost to $12,444,000. These cost do not include treated water cost and annual operation and maintenance cost.
Option No. 7: 100% Participation by Commercial Operators
50% Participation by Individual Leased Lot Customers
Dual Points of Supply:
(1) West Lake - Graham Treated Water
(2) East Lake - Possum Kingdom Treated Water

As in Option No. 6, this option provides for the maximum daily demand for up to 50% of the residential lot lessees and all of the commercial operators. However, in order to avoid an additional lake crossing and take advantage of the higher quality water available in nearby Graham, this option provides for treatment facilities at Possum Kingdom Lake which serve only the east lake businesses and residences and expansion of the Graham treatment facilities for those on the west side of the lake. A smaller plant could be constructed on the peninsula which would serve the east lake only and avoid the need to cross the lake with a large diameter water line, while the City of Graham treatment facilities would provide treated water for those on the west side of the lake.

The total maximum daily demand for this option is the same as Options 5, 6, and 8 at 2.37 MGD. The breakdown of each individual system is detailed more fully in the Appendix. The estimated capital cost for both the east and west systems combined is approximately $11,570,000. This includes the construction of the required distribution systems, treatment plant expansion at Graham, treatment plant construction at Possum Kingdom, a 10-inch supply line from Graham, ground storage and elevated storage facilities, two transfer pump stations, and approximately six booster pump stations. The addition of service to the Possum Kingdom State Park, Gaines Bend and Hog Bend brings the two system's estimated capital cost to a total of $13,206,000. Again, these estimated capital costs do not include the cost of raw water, or the operation and maintenance cost for the treatment facilities and associated pump stations and booster pump stations.

Option No. 8: 100% Participation by Commercial Operators
50% Participation by Individual Leased Lot Customers
Single Source of Raw Water Supply from the City of Graham

This option is similar to Option No. 6 in that the single source of supply is Graham. However, in this option, raw water from Graham is transported to the proposed treatment facilities located on the west shore of Possum Kingdom Lake. With this option, the need for advanced treatment is eliminated by treating water received from Lake Graham, thus reducing the regional treatment plant cost. A transfer pump station, booster pump station and raw water supply line is still required from the City of Graham. The estimated total initial capital cost for this option is $12,073,000. The addition of service to Possum Kingdom State Park, Gaines Bend and Hog Bend brings the system's total capital cost to approximately $13,710,000.
Option No. 9: 100% Participation by Commercial Operators
50% Participation by Individual Leased Lot Customers
Single Source of Treated Water Supply from the City of Graham

Average Day Approach: This approach is more fully detailed in Section G: Non-Traditional Alternatives - Average Day Alternative

This option is similar to Option No. 6 in that the single source of treated water is from the City of Graham. However, in this option, only the average day demand capacity is provided at the treatment plant. The balance of supply required to meet the maximum daily demand is met by an increase in storage. The estimated total initial capital cost for this option is $9,647,000. The addition of service to Possum Kingdom State Park, Gaines Bend and Hog Bend brings the total capital cost to approximately $11,284,000.

Option No. 10: 100% Participation by Commercial Operators
50% Participation by Individual Leased Lot Customers
Single Source of Treated Water Supply from Possum Kingdom Lake

Average Day Approach: This approach is more fully detailed in Section G: Non-Traditional Alternatives - Average Day Alternative

This option is similar to Option No. 5 in that the single source of treated water is from a treatment plant located near D & D - South Public Use Are. However, in this option, only the average day demand capacity is provided at the treatment plant. The balance of supply required to meet the maximum daily demand is met by an increase in storage. The estimated total initial capital cost for this option is $8,508,000. The addition of service to Possum Kingdom State Park, Gaines Bend and Hog Bend brings the total capital cost to approximately $10,144,000.

Table 9 below summarizes and compares each option and the associated capital cost for the options which include 100% participation by both commercial operators and residences. Table 10 summarizes each option and associated capital cost for those options which include 50% residential participation.
<table>
<thead>
<tr>
<th>Option No.</th>
<th>Description</th>
<th>Total Number Of System Connections</th>
<th>Maximum Daily Pumpage and Treatment Requirements</th>
<th>Estimated System Capital Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>100% Commercial Operators Participation</td>
<td>1,640</td>
<td>1.42 MGD</td>
<td>$8,270,641</td>
</tr>
<tr>
<td>2</td>
<td>100% Commercial Operators Participation</td>
<td>2,839 Conn.</td>
<td>2.96 MGD</td>
<td>$13,881,681</td>
</tr>
<tr>
<td></td>
<td>0% Individual Leased Lot Participation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Single Source of Supply & Treatment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Located near South D & D</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>100% Commercial Operators Participation</td>
<td>2,839 Conn.</td>
<td>2.96 MGD</td>
<td>$13,106,109</td>
</tr>
<tr>
<td></td>
<td>100% Individual Leased Lot Participation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Single Source of Supply and Treatment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>From Graham located near Cruse Lake Store</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>100% Commercial Operators Participation</td>
<td>2,839 Conn.</td>
<td>2.97 MGD</td>
<td>$15,857,825</td>
</tr>
<tr>
<td></td>
<td>100% Individual Leased Lot Participation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dual Supply Points</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1. West Lake – Graham</td>
<td>895</td>
<td>0.9 MGD</td>
<td>$5,533,984</td>
</tr>
<tr>
<td></td>
<td>2. East Lake – Treatment Plant</td>
<td>1,944</td>
<td>2.07 MGD</td>
<td>$10,323,841</td>
</tr>
<tr>
<td>Subtotal:</td>
<td></td>
<td>2,839</td>
<td>2.97 MGD</td>
<td>$15,857,825</td>
</tr>
<tr>
<td></td>
<td>Add Gaines Bend:</td>
<td>263</td>
<td>0</td>
<td>$648,709</td>
</tr>
<tr>
<td></td>
<td>Add Hog Bend:</td>
<td>185</td>
<td>0</td>
<td>$657,584</td>
</tr>
<tr>
<td></td>
<td>Add Possum Kingdom State Park</td>
<td>153</td>
<td>0</td>
<td>$330,000</td>
</tr>
<tr>
<td>Total System:</td>
<td></td>
<td>3,440</td>
<td>2.96 MGD</td>
<td>$17,494,118</td>
</tr>
</tbody>
</table>
TABLE 10

WATER DISTRIBUTION SYSTEM ALTERNATIVES

CAPITAL COST COMPARISON – TABULATION

50% Residential Participation

<table>
<thead>
<tr>
<th>Option No.</th>
<th>Description</th>
<th>Total Number Of System Connections</th>
<th>Maximum Daily Pumpage and Treatment Requirements</th>
<th>Estimated System Capital Cost ($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>100% Commercial Operators Participation 50% Individual Leased Lot Participation Single Source of Supply & Treatment Located near South D & D</td>
<td>2,151</td>
<td>2.37 MGD</td>
<td>$11,302,414</td>
</tr>
<tr>
<td></td>
<td>Add Gaines Bend @ 100%:</td>
<td>263</td>
<td>0</td>
<td>$648,709</td>
</tr>
<tr>
<td></td>
<td>Add Hog Bend @ 100%:</td>
<td>185</td>
<td>0</td>
<td>$657,584</td>
</tr>
<tr>
<td></td>
<td>Add Possum Kingdom State Park @ 100%</td>
<td>153</td>
<td>0</td>
<td>$330,000</td>
</tr>
<tr>
<td></td>
<td>Total System</td>
<td>2,752</td>
<td>2.37</td>
<td>$12,938,707</td>
</tr>
<tr>
<td>6</td>
<td>100% Commercial Operators Participation 50% Individual Leased Lot Participation Single Source of Treated Supply From Graham, located near Cruse Lake Store</td>
<td>2,151</td>
<td>2.37 MGD</td>
<td>$10,807,799</td>
</tr>
<tr>
<td></td>
<td>Add Gaines Bend:</td>
<td>263</td>
<td>0</td>
<td>$648,709</td>
</tr>
<tr>
<td></td>
<td>Add Hog Bend:</td>
<td>185</td>
<td>0</td>
<td>$657,584</td>
</tr>
<tr>
<td></td>
<td>Add Possum Kingdom State Park:</td>
<td>153</td>
<td>0</td>
<td>$330,000</td>
</tr>
<tr>
<td></td>
<td>Total System</td>
<td>2,752</td>
<td>2.37</td>
<td>$12,444,092</td>
</tr>
<tr>
<td>7</td>
<td>100% Commercial Operators Participation 50% Individual Leased Lot Participation Dual Supply Points: 1. West Lake – Graham 2. East Lake – Treatment Plant</td>
<td>1,490</td>
<td>1.67</td>
<td>$7,685,782</td>
</tr>
<tr>
<td></td>
<td>Subtotal:</td>
<td>2,151</td>
<td>2.37 MGD</td>
<td>$11,569,503</td>
</tr>
<tr>
<td></td>
<td>Add Gaines Bend:</td>
<td>263</td>
<td>0</td>
<td>$648,709</td>
</tr>
<tr>
<td></td>
<td>Add Hog Bend:</td>
<td>185</td>
<td>0</td>
<td>$657,584</td>
</tr>
<tr>
<td></td>
<td>Add Possum Kingdom State Park:</td>
<td>153</td>
<td>0</td>
<td>$330,000</td>
</tr>
<tr>
<td></td>
<td>Total System</td>
<td>2,752</td>
<td>2.37</td>
<td>$13,205,796</td>
</tr>
<tr>
<td>8</td>
<td>100% Commercial Operators Participation 50% Individual Leased Lot Participation Single Source of RAW water Supply From Graham, located near Cruse Lake Store</td>
<td>2,151</td>
<td>2.37 MGD</td>
<td>$12,072,799</td>
</tr>
<tr>
<td></td>
<td>Add Gaines Bend:</td>
<td>263</td>
<td>0</td>
<td>$648,709</td>
</tr>
<tr>
<td></td>
<td>Add Hog Bend:</td>
<td>185</td>
<td>0</td>
<td>$657,584</td>
</tr>
<tr>
<td></td>
<td>Add Possum Kingdom State Park:</td>
<td>153</td>
<td>0</td>
<td>$330,000</td>
</tr>
<tr>
<td></td>
<td>Total System</td>
<td>2,752</td>
<td>2.37</td>
<td>$13,709,092</td>
</tr>
<tr>
<td>9</td>
<td>100% Commercial Operators Participation 50% Individual Leased Lot Participation Single Source of Treated Water Supply From Graham Average Day Approach</td>
<td>2,151</td>
<td>1.19 MGD</td>
<td>$9,647,224</td>
</tr>
<tr>
<td></td>
<td>Add Gaines Bend:</td>
<td>263</td>
<td>0</td>
<td>$648,709</td>
</tr>
<tr>
<td></td>
<td>Add Hog Bend:</td>
<td>185</td>
<td>0</td>
<td>$657,584</td>
</tr>
<tr>
<td></td>
<td>Add Possum Kingdom State Park:</td>
<td>153</td>
<td>0</td>
<td>$330,000</td>
</tr>
<tr>
<td></td>
<td>Total System</td>
<td>2,752</td>
<td>1.19</td>
<td>$11,283,517</td>
</tr>
<tr>
<td>10</td>
<td>100% Commercial Operators Participation 50% Individual Leased Lot Participation Single Source of Treated Water Supply From PK Treatment Plant Average Day Approach</td>
<td>2,151</td>
<td>1.19 MGD</td>
<td>$8,507,839</td>
</tr>
<tr>
<td></td>
<td>Add Gaines Bend:</td>
<td>263</td>
<td>0</td>
<td>$648,709</td>
</tr>
<tr>
<td></td>
<td>Add Hog Bend:</td>
<td>185</td>
<td>0</td>
<td>$657,584</td>
</tr>
<tr>
<td></td>
<td>Add Possum Kingdom State Park:</td>
<td>153</td>
<td>0</td>
<td>$330,000</td>
</tr>
<tr>
<td></td>
<td>Total System</td>
<td>2,752</td>
<td>1.19</td>
<td>$10,144,132</td>
</tr>
</tbody>
</table>
G. NON-TRADITIONAL ALTERNATIVES

As directed by the Brazos River Authority (BRA), consideration of alternate methods of installing the distribution lines and furnishing potable water were explored.

Non-traditional methods of installing the distribution lines were examined due to the large amounts of line needing to be installed in the rock that is common to the Possum Kingdom Lake area. These include:

- In-lake installation, and
- Above-grade installation.

Non-traditional methods of furnishing potable water evaluated are:

- Trucking (Hauling) potable water from the City of Graham;
- Peak storage at each connection, with average day water use production; and
- Overall average day water use production, with centralized peak storage.

Advantages and disadvantages of each alternative are expanded upon in the following sections, as they relate specifically to the Possum Kingdom Water Supply Corporation.

(1) In-Lake Installation

Description: In-lake installation involves laying the pipe in the lake along the bank. Double-walled High Density Polyethylene (HDPE) pipe would be used. Double-walled pipe is required by the TWC Design Criteria (31 TAC 290.44 (f) (2)) to minimize the potential for contamination of the potable water by the untreated lake water. Concrete blocks would be installed around the pipe to provide anchoring to prevent the pipe from floating and minimize pipe movement due to wave action. Service taps would be made as the pipe is being installed. Service lines would be buried approximately 18 inches below grade before exiting the lake. The probable cost for this non-traditional pipeline distribution system for a residential participation level of 50 percent, is estimated to be $14,800,000. This is compared to an estimated pipeline distribution system cost of $1,770,000 for the more traditional method of pipeline construction. A detailed cost estimate for this alternative distribution pipeline construction method is shown in Table 11.

Advantages: One advantage to this method of installation is that the difficulty of laying pipe in rock is avoided. Excavating in rock requires special equipment and procedures. With trench installation the pipe bedding material would have to be imported from off-site. Also, if the pipe is installed in the lake any difficulties of right-of-way acquisition would be avoided.
Disadvantages: Disadvantages to this option include higher costs, greater potential for water contamination, and an increase in the potential for damage to the pipe.

Unit costs for double-walled HDPE pipe are approximately 10 times those of single wall pipe. Furthermore, double-walled pipe is more difficult to install than single wall pipe.

Although double-walled pipe is used there exists a greater potential for contamination of the potable water by the untreated lake water if the pipe were laid in the lake. With the transmission pipe laid in the lake, there will always exist the potential for mechanical damage to or deterioration of the pipe to occur. Therefore, a leak could easily occur in the pipe and would be difficult to detect.

Although the pipe would be laid approximately 10 feet below the lake surface, it is possible that the pipe could be damaged. Deep draft boats, boat anchors, wave action, or other actions could damage the pipe resulting in water leaking out of or into the pipe.

(2) **Above-Grade Installation**

Description: For above-grade installation the pipe is laid on the ground and covered with soil for freeze protection. The pipe would be secured to the ground as needed for thrust restraint. Also, identification signs would be placed at set intervals and at strategic locations. The probable cost for this non-traditional pipeline construction method for a residential participation level of 50 percent, is estimated to be $2,280,000. Again, this is compared to an estimated pipeline distribution system cost of $1,770,000 for a more traditional method of pipeline construction. A detailed cost estimate for this alternative distribution pipeline construction method is shown in Table 12.

Advantages: Installation of the transmission system may be easier; however, material and construction costs are generally higher. It would also be easier to locate the line in the future for taps or repairs.

Disadvantages: One of the major disadvantages is the increased risk of breakage and subsequent contamination of the potable water supply. With the pipe so readily accessible at the surface it would be extremely easy for the pipe to be damaged by vandals, varmints or accidents. In addition, roadway and driveway crossings would still require the more traditional methods of pipeline installation. At the 50 percent residential participation level, there is estimated to be 2,752 system connections. If each connection has a 10-foot wide drive, requiring 20-foot of buried pipe to cross under the drive, the distribution system would still require approximately 55,000 linear feet of buried pipe, or 20% of the total system. This estimate does not include buried pipe required to cross under other private roads, public roads or parking lots. Finally, it is unlikely that the TWC would approve such an installation due to the increased risk to human health.
TABLE 11

NON-TRADITIONAL ALTERNATIVES
IN-LAKE INSTALLATION - CONSTRUCT DISTRIBUTION PIPE IN LAKE

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Unit</th>
<th>Unit Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Material</td>
</tr>
<tr>
<td>2" Pipe</td>
<td>7,436</td>
<td>L.F.</td>
<td>$11.00</td>
</tr>
<tr>
<td>2.5" Pipe</td>
<td>40,643</td>
<td>L.F.</td>
<td>$11.00</td>
</tr>
<tr>
<td>3" Pipe</td>
<td>33,080</td>
<td>L.F.</td>
<td>$20.00</td>
</tr>
<tr>
<td>4" Pipe</td>
<td>55,031</td>
<td>L.F.</td>
<td>$38.00</td>
</tr>
<tr>
<td>6" Pipe</td>
<td>73,886</td>
<td>L.F.</td>
<td>$56.00</td>
</tr>
<tr>
<td>8" Pipe</td>
<td>43,030</td>
<td>L.F.</td>
<td>$74.00</td>
</tr>
<tr>
<td>10" Pipe</td>
<td>8,427</td>
<td>L.F.</td>
<td>$110.00</td>
</tr>
<tr>
<td>12" Pipe</td>
<td>7,228</td>
<td>L.F.</td>
<td>$146.00</td>
</tr>
<tr>
<td>14" Pipe</td>
<td>1,694</td>
<td>L.F.</td>
<td>$184.00</td>
</tr>
<tr>
<td>8" Lake Crossing</td>
<td>2,000</td>
<td>L.F.</td>
<td>$100.00</td>
</tr>
</tbody>
</table>

Subtotal $14,801,669

Contingencies @ 20% $2,960,334

Engineering @ 15% $2,220,250

Total $19,982,252

TABLE 12

NON-TRADITIONAL ALTERNATIVES
ABOVE-GROUND INSTALLATION - CONSTRUCT DISTRIBUTION PIPE AT GRADE

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Unit</th>
<th>Unit Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Material</td>
</tr>
<tr>
<td>2" Pipe</td>
<td>7,436</td>
<td>L.F.</td>
<td>$0.51</td>
</tr>
<tr>
<td>2.5" Pipe</td>
<td>40,643</td>
<td>L.F.</td>
<td>$0.51</td>
</tr>
<tr>
<td>3" Pipe</td>
<td>33,080</td>
<td>L.F.</td>
<td>$1.10</td>
</tr>
<tr>
<td>4" Pipe</td>
<td>55,031</td>
<td>L.F.</td>
<td>$1.50</td>
</tr>
<tr>
<td>6" Pipe</td>
<td>73,886</td>
<td>L.F.</td>
<td>$2.95</td>
</tr>
<tr>
<td>8" Pipe</td>
<td>43,030</td>
<td>L.F.</td>
<td>$4.90</td>
</tr>
<tr>
<td>10" Pipe</td>
<td>8,427</td>
<td>L.F.</td>
<td>$7.60</td>
</tr>
<tr>
<td>12" Pipe</td>
<td>7,228</td>
<td>L.F.</td>
<td>$10.60</td>
</tr>
<tr>
<td>14" Pipe</td>
<td>1,694</td>
<td>L.F.</td>
<td>$12.80</td>
</tr>
<tr>
<td>8" Lake Crossing</td>
<td>2,000</td>
<td>L.F.</td>
<td>$100.00</td>
</tr>
</tbody>
</table>

Subtotal $2,283,157

Contingencies @ 20% $456,631

Engineering @ 15% $342,474

Total $3,082,262
(3) **Trucking Alternative**

Another solution for the Possum Kingdom Water Supply Corporation is to purchase potable water from Graham, Breckenridge, or Mineral Wells. The water would be transported via trucks to storage tanks for distribution. Graham was chosen as the supply source due to its close proximity to the lake, and its lower cost of potable water, for comparison purposes only. This does not exclude the other sources; the other potable water sources will be examined in closer detail, should this prove to be a viable option.

For this scenario, only business connections are provided treated water. Using the Texas Water Commission criteria, the average daily demand for the businesses is calculated to be approximately 600,000 gallons. Potable water would then be distributed to the businesses from 20 storage tanks, optimally located around the lake. The average storage tank capacity is 30,000 gallons.

(i) **Trucking Contract**

The first trucking option is to contract with an independent trucking firm. Several water transport companies have quoted prices for their vehicles being used in a similar fashion. The cost is typically $1.50 per mile. The average round trip for delivering water is approximately 40 miles, for a cost of $60 per load. Tanker trucks are restricted by weight, and trailer capacity, to carry approximately 6,000 gallons each load. The average water demand requires 100 tanker truck loads a day. This translates to a minimum estimated cost of $6,000 per day.

The City of Graham currently sells potable water for $9.00 for the first 2,000 gallons and $1.60 for each additional 1,000 gallons. The cost for water for the average day usage of 600,000 gallons would be approximately $960.

Capital outlay for this option is the 20 bulk storage tanks at a cost of approximately $1,600,000. The minimal amount of distribution lines required to connect each business is included in this cost.

Combining the transportation cost, water cost and capital cost amortized over 20 years at 6% gives an approximate total of $7,480.00 a day, for an annual cost of $2,730,000.

(ii) **Trucking - In House**

The second trucking option is for the Possum Kingdom Water Supply Corporation to own and operate the transport trucks. A round trip time of 2 hours is estimated to allow the truck to drive to Graham, load with water, return to Possum Kingdom
Lake, and unload the water into the storage tanks. Using an 8 hour day, each tanker truck will be capable of 4 round trips per day. To transport 600,000 gallons, 25 tanker trucks will be required.

Following is a list of operation and maintenance costs estimated from information typical of trucking companies experienced in transporting large volumes:

Daily Costs:

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drivers (25 @ $80.00 per day)</td>
<td>$2,000</td>
</tr>
<tr>
<td>Variable Haul Costs (4,000 miles/day)</td>
<td>$3,360</td>
</tr>
<tr>
<td>Maintenance (trucks & facility)</td>
<td>$290</td>
</tr>
<tr>
<td>Vehicle Replacement Program (replace all trucks every 10 yrs)</td>
<td>$750</td>
</tr>
<tr>
<td>Potable Water</td>
<td>$960</td>
</tr>
</tbody>
</table>

Total Expense Per Day $7,360
Total Annual Expense $2,690,000

Initial capital costs must also be considered. These include the purchase of 25 trucks and trailers, a storage and maintenance facility, and a fueling terminal. Also the bulk storage tanks, which will also require pressure (pump station) capabilities, must be constructed. These costs are estimated as follows:

Initial Investment Costs:

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment (25 trucks)</td>
<td>$1,500,000</td>
</tr>
<tr>
<td>Fueling and Maintenance Facility</td>
<td>$500,000</td>
</tr>
<tr>
<td>Storage/Pressure Stations (20 @ $80,000 each)</td>
<td>$1,600,000</td>
</tr>
</tbody>
</table>

Total Capital Cost $3,600,000

These costs have been included in Table 16 for comparison with other options.

(4) **Average Day Alternative**

Another option is considered in response to the observation that while the peak day must be provided for by the water treatment facility and distribution system, the peak day will realistically only be achieved on weekends during the summer. This creates the inefficient and uneconomical predicament of a large treatment facility that will not be fully utilized during the remaining portion of the year. Discussion with the Texas Water Commission indicated that they would be willing to consider a reduction in water treatment production if balanced by an increase in storage to allow for maximum day usage.
A cost-effective solution to meet the requirements of this non-traditional system is the construction of a water treatment plant capable of meeting average day demands over a reasonable operational period with maximum day demand supplied from excess storage. The average day usage was estimated to be half of the maximum demand for commercial camps/operators and residential customers. Site visits to the individual operators indicated that extended peak water usage was generally only seen during the summer holidays; specifically, Memorial Day, Independence Day and Labor Day, which occur in conjunction with a weekend. These three day holidays created excessive demands on the individual water systems, which then tapered off for the remainder of the week. Comparing the average usage to the maximum usage, the amount of storage to allow for 3 consecutive days of usage is determined, this approach is developed as follows:

Maximum Day Demand (2752 connections x 0.6 gpm/conn.) 2.38 MGD
Treatment Plant Design Capacity .. 1.19 MGD

<table>
<thead>
<tr>
<th></th>
<th>Calculation</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business Connections</td>
<td>1,463 x 0.3 gpm</td>
<td>0.63 mgd</td>
</tr>
<tr>
<td>Individual Connections</td>
<td>688 x 0.3 gpm</td>
<td>0.30 mgd</td>
</tr>
<tr>
<td>Gaines Bend</td>
<td>263 x 0.3 gpm</td>
<td>0.11 mgd</td>
</tr>
<tr>
<td>Hog Bend</td>
<td>185 x 0.3 gpm</td>
<td>0.08 mgd</td>
</tr>
<tr>
<td>Possum Kingdom State Park</td>
<td>153 x 0.3 gpm</td>
<td>0.07 mgd</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.19 mgd</td>
</tr>
</tbody>
</table>

Difference (required to be obtained from storage) 1.19 MGD
Increased Storage Required (3 day holiday weekend) 1.19 mgd x 3 days... 3.57 MG

(a) **Individual Storage Sites**

Storage was placed at each commercial camp/operator, and was sized only for them. A pump station, including a minimum of 2 pumps, hypochlorination facilities, and pressure storage, must accompany each storage tank. Due to the varied size and capacity of each system, the following ranges are given:

<table>
<thead>
<tr>
<th></th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage Tank Capacity</td>
<td>20,000 To 200,000 Gallons</td>
</tr>
<tr>
<td>Pressure Tank Capacity</td>
<td>4.8" = 180 To 3,500 Gallons</td>
</tr>
</tbody>
</table>

These systems include:

- Bulk Storage capacity
- Pressure Tank capacity
- Service Pumps
- Housing Structure
- Installation
- Piping, Fencing, Disinfection, etc.
The range of costs for each of the commercial camps/operators storage systems is from $49,500 to $99,500 for construction only. The sum cost of all storage and pump station facilities is $2,297,000. This significantly outweighs the reduced cost for decreased water treatment plant capacity and smaller water distribution lines. There are also many disadvantages to this option, the main one being the heavy maintenance and operation responsibilities associated with over 35 pump stations.

(b) Centralized Storage

A centralized location of storage tank/pump station facilities was also explored and found to be more efficient. Due to the spread out nature of the commercial camps/operators layout, the water distribution lines would remain at their original large size. The efficiency would come from having only one large or several small storage tank at the water treatment plant. Disinfection systems can be designed to provide adequate residuals prior to distribution of water. One storage tank, large enough to hold the additional water required during a 3-day peak period, would cost less than $650,000, but would significantly reduce the capital cost of the water treatment plant. Locating the storage tank at the water treatment plant also eliminates the need of additional pump stations.

Treatment processes would be sized for average day use, while the high service distribution system pumps, as well as the distribution system lines would be sized to handle the peak day demand.

In this scenario, the operations and maintenance costs would be significantly less than for a treatment plant designed for peak day use. The treatment plant would also be more efficient. A steady flow of water closer to the design range of flow would be processed, eliminating frequent on/off operation that is costly and inefficient.

H. EVALUATION OF NO ACTION

(1) Commercial Operations

Continuing to operate all water systems as they currently exist is the "No Action" option. Under this option, each commercial camp/business continues to operate their respective water supply and distribution systems. This option has advantages and disadvantages which must be explored, since this is the "default" option for those systems which choose not to participate in the Possum Kingdom Water Supply Corporation.
There is a temporary financial advantage to the "No Action" option. If each facility continues to operate its own system, there is no additional expense for construction and operation of the new treatment, transmission, and distribution systems. Therefore, operational expenses for the short term will theoretically remain at their current levels.

Disadvantages for the "No Action" option can be grouped into three categories. These three categories are legal, economic, and health concerns.

The most significant disadvantage to the "No Action" option is the considerable legal implications for the commercial camps/businesses. The majority of the commercial camps/businesses were required to sign a bilateral compliance agreement with the Texas Water Commission. This agreement, at a minimum, generally required each commercial camp/business to:

- Provide proof of membership in the Possum Kingdom Water Supply Corporation;
- Maintain a 1.0 mg/l chlorine residual in the distribution system;
- Monitor the daily chlorine residual with a DPD test kit;
- Post notices of noncompliance with TWC standards at each water outlet; and
- Enter into a new bilateral compliance agreement after the preliminary engineering report is received by the Texas Water Commission which includes either a compliance schedule for implementing the regional plan OR an accelerated compliance schedule specific to the individual system to come into compliance with the Texas Health & Safety Code.

Legal actions by the Texas Water Commission and/or the Attorney General include the potential of fines of up to $25,000 per day per violation.

Another disadvantage for the "No Action" option which is closely related to the legal implication is the economic implications. These include increasing operating costs, in addition to the potentially significant regulatory fines as mentioned in the preceding paragraph. If each system is allowed to continue to operate, the various components of the water supply and distribution system will continue to deteriorate. Eventually, each will require replacement at significant cost to each commercial camp/business. Most importantly is the profound economic impact the severe fines would have on the individual commercial camps/businesses, as expressed by these individuals during the interviews.
Although not readily obvious to individuals residing at Possum Kingdom Lake, health concerns are also an important disadvantage of the "No Action" option. There are two types of potential health concerns for the existing systems. One is acute or immediate health impacts and the other is chronic or long-term health impacts.

Potential acute health impact include gastrointestinal diseases and toxic contamination. If the water supply becomes contaminated by human or animal wastes the potential exists for these contaminates to enter the distribution system and infect humans. Typically, these gastrointestinal infections are short term and more discomforting than life-threatening. However, acute, life threatening diseases such as dysentery and hepatitis can be transmitted through the water system and present a real risk to users of the water. These health impacts can be minimized by proper treatment of the raw water. It is also possible for toxic chemicals to contaminate the drinking water supply. Gasoline, pesticides, herbicides or many other commonly available chemicals in the area could easily contaminate the Ground Water and/or Possum Kingdom Lake water (surface water). In sufficient quantities, these types of chemicals pose an immediate threat to human and animal life.

Chronic health impacts include development of cancers and human development effects. Should the water supply become contaminated with low levels of certain chemicals and the water is ingested by humans over several years, the potential for chronic health impacts exists. Low levels of pesticides, herbicides and other commonly used chemicals are known to cause cancers in humans. Other contaminates such as nitrates (currently being tested by the Texas Water Commission in numerous Possum Kingdom water systems) and lead have been linked to methemoglobinemia and reduced brain development in children, respectively.

(2) **Residential Systems**

Advantages and disadvantages of the "No Action" option are similar for the individual systems. The short term financial advantage to the "No Action" option is applicable, since the individuals would not have to come up with the initial membership fee that will be required to join in the Possum Kingdom Water Supply Corporation. However, if an individual declines to participate in the proposed water system, and desires at a later date to join, the membership fee will be augmented with an additional tap fee.
Disadvantages for individual residential systems under this scenario include convenience, health, and economics. Currently, individual residences are using the following options, with the associated disadvantages:

- Pumping straight or filtered Possum Kingdom Lake water into the home for bathing, cleaning and sanitation purposes; Potable water must be hauled in or purchased for drinking and cooking purposes.

- Pumping straight or filtered Possum Kingdom Lake water into the home for bathing, cleaning and sanitation purposes, and utilizing a small Softener and/or Reverse Osmosis system for drinking and cooking purposes. Softeners and Reverse Osmosis systems require disproportionately high amounts of maintenance for the amount of water produced.

- Having water hauled in and stored in small (500 gallon) tanks, raised slightly off the ground to provide enough head (pressure) to distribute the water through the household plumbing; Associated problems are inadequate pressure, dependency on the water haulers to service the tank, and relatively high cost per gallon.

- Individual water well; Uncertainty of supply and potential for contamination.

All the listed types of systems have a high degree of inconvenience associated with them, either in the maintenance aspect, or the lack of capacity of potable water for such functions as automatic dishwashers, ice makers, and washing machines.

Health concerns are the same as those which were raised in the previous paragraphs. While health issues have not appeared to be an issue during the field study, there is the possibility of acute or chronic health impacts, as there is with any water of unknown quality.

Economic consequences are of primary importance to the individuals who returned surveys sent out by the Brazos River Authority in 1992. The individual systems, as outlined above, have served many residences for many years, at seemingly "no cost". However, no water supply, whether treated or untreated, is free.

Table No. 13 summarizes the annual maintenance cost for a typical private residential water system for a 15 year period.
<table>
<thead>
<tr>
<th>Material</th>
<th>Average Cost</th>
<th>Expected Life</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raw Water Pump</td>
<td>$825.00</td>
<td>5 yrs.</td>
</tr>
<tr>
<td>Water Heater</td>
<td>350.00</td>
<td>3 yrs.</td>
</tr>
<tr>
<td>Piping</td>
<td>125.00</td>
<td>5 yrs.</td>
</tr>
<tr>
<td>Treatment Systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Filters</td>
<td>850.00</td>
<td>10 yrs.</td>
</tr>
<tr>
<td>RO System</td>
<td>100.00</td>
<td>2 yrs.</td>
</tr>
<tr>
<td>Softener</td>
<td>700.00</td>
<td>15 yrs.</td>
</tr>
<tr>
<td>Electricity</td>
<td>120.00</td>
<td>1 yr.</td>
</tr>
</tbody>
</table>

Assuming 8% for inflation and interest, the total present cost for operating the system for 15 years is $4,126. This present cost, amortized over 15 years, equates to approximately $482 per year or $40 per month.
VI. - FINANCIAL DATA

A. INTRODUCTION

The finance and institutional structures portion of this report was not prepared in order to make a specific recommendation to the Possum Kingdom Water Supply Corporation. The section was prepared to describe the various alternatives available to the Possum Kingdom Water Supply Corporation in funding a regional water supply project and identifying institutional structures within the State to create a regional water supply system.

B. FINANCIAL OPTIONS

There are a variety of financing options available to fund regional water supply systems. Financing alternatives range from partial grants to loans. Financing can also range from private financing to Federal financing administered by regional and Federal agencies. There are several financing alternatives, two of which are not currently available but could be in the very near future. The alternatives presently available include the following:

- Economic Development Administration Grant
- Farmers Home Administration Loan/Grant
- Private Financing

The following subsections will briefly describe each of the financing alternatives listed above.

(1) Economic Development Administration Grant

The Economic Development Administration makes available funds to "support projects designed to alleviate conditions of substantial and persistent unemployment and underemployment in economically distressed areas and regions of the nation and to address economic dislocations resulting from sudden, major job losses." (Federal Register Vol. 57, No. 23) Economic Development Administration funding would be made available through the West Central Texas Economic Development District.

The Economic Development Administration may provide direct grants not to exceed 50% of the estimated project cost. However, under certain circumstances, the Economic Development Administration participation may amount to as much as 80% of the project cost. Applicants are required to provide a local share from acceptable sources including, but not limited to, cash, local government general obligation or
revenue bonds, Community Development Block Grant (CBDG) entitlement funds or balance of State awards, Farmers Home Administration loans, and other public and private financing, including donations. The local share is not required to be in hand at the time of the application but must be firmly committed.

To be eligible for Economic Development Assistance, a redevelopment area must be experiencing at least one of the three following economic problems:

- 24 Month Unemployment Rate: Very high unemployment - at least 12% over a two-year period, according to the Department of Labor statistics

- Per Capita Income: Low per capita income, 75% of the national average or less

- Chronic distress or failure to keep pace with average national growth trends in three of the following four criteria:

 - **Five-Year Unemployment Rate:** A five-year average rate of unemployment that is greater than the national average.

 - **Five-Year Employment Growth:** A five-year rate of employment growth that is less than the national average. The beginning and ending periods are referenced in the heading of the Long Term Economic Distress eligibility report.

 - **Percent Change in Population:** A six-year rate of growth in population that is less than the national average. If the area is in an Metropolitan Statistical Area or NECMA, the 1980 to 1986 U.S. average is 7.2%. If the area is not in an MSA or NECMA, the 1980 to 1986 U.S. average is 3.9%.

 - **Dollar Change of Per Capita Index:** A six-year absolute dollar change in the per capita income that is less than the national average. If the area is in an MSA or NECMA, the 1979 to 1985 U.S. average change is $3,794. If the area is not in an MSA or NECMA, the 1979 to 1985 U.S. Average is $2,472.

Table No. 14 summarizes the percent population change, per capita income unemployment rate and employment growth for Palo Pinto, Stephens and Young Counties.
TABLE NO. 14

ECONOMIC COMPARISON BY COUNTY

<table>
<thead>
<tr>
<th>Area</th>
<th>1982 - 1988 % Population Change</th>
<th>1987 Current Per Capita Income</th>
<th>Per Capita Income as % of U.S. 1987 Average</th>
<th>24 Month Unemployment Rate</th>
<th>12 Month Unemployment Rate</th>
<th>3 Month Unemployment Rate</th>
<th>5 Year Employment Growth</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Average</td>
<td>7.5</td>
<td>$11,924</td>
<td>--</td>
<td>7.1</td>
<td>7.4</td>
<td>6.9</td>
<td>4.6</td>
</tr>
<tr>
<td>Palo Pinto</td>
<td>-0.2</td>
<td>$9,403</td>
<td>78.9</td>
<td>8.2</td>
<td>8.7</td>
<td>8.8</td>
<td>3.3</td>
</tr>
<tr>
<td>Stephens</td>
<td>-9.3</td>
<td>$8,479</td>
<td>71.1</td>
<td>4.9</td>
<td>5.7</td>
<td>5.2</td>
<td>-12.3</td>
</tr>
<tr>
<td>Young</td>
<td>-10.0</td>
<td>$11,209</td>
<td>94.0</td>
<td>6.8</td>
<td>7.8</td>
<td>7.1</td>
<td>-3.9</td>
</tr>
</tbody>
</table>

SOURCE: GEO Summary-State-County-Large Cities Data as of December 31, 1992

The information in the above table shows that the Possum Kingdom area is not keeping pace with the national growth trends. This indicates that the Possum Kingdom area may qualify for grant assistance from the Economic Development Administration.

(2) Farmers Home Administration

The Farmers Home Administration (FmHA) has been providing funding to small towns and rural areas for a variety of projects for many years. The FmHA is authorized to provide financial assistance for water and waste disposal facilities in towns and rural areas with a population less than 10,000. The financial assistance available through the FmHA consists of loans and grants, in various combinations. The maximum grant amount possible through the FmHA is 75%, with a 25% loan. The grant amount is determined by several factors. One of the main factors is the median annual household income. The mean annual household income for Palo Pinto and Stephens Counties is below $21,634, which could qualify for the maximum grant amount. Young County's median annual household income is above the $21,634 but below $27,043, which could qualify for a 55% grant. If the entire area does not qualify for the same grant assistance amount, the grant would be proportioned to the number of connections in the areas qualifying for the various grant amounts.

<table>
<thead>
<tr>
<th>COUNTY</th>
<th>MEDIAN ANNUAL HOUSEHOLD INCOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palo Pinto</td>
<td>$20,389</td>
</tr>
<tr>
<td>Stephens</td>
<td>$19,203</td>
</tr>
<tr>
<td>Young</td>
<td>$21,710</td>
</tr>
</tbody>
</table>

Potential Percent Grant/Loan with Median Annual Household Income

<table>
<thead>
<tr>
<th>Households</th>
<th>Grant Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>75%/25%</td>
<td>< $21,634</td>
</tr>
<tr>
<td>55%/45%</td>
<td>< $27,043</td>
</tr>
</tbody>
</table>
The FmHA can provide assistance to public entities such as municipalities, counties, special districts, Indian tribes, and not for profit corporations. Priority will be given to public entities in areas smaller than 5,500 people to restore a deteriorating water supply or to improve, enlarge or modify a water facility or an inadequate waste disposal facility. Preference will also be given to requests which involve merging small facilities and those serving low-income communities. Applicants must meet the following criteria:

(a) Be unable to obtain needed funds from other sources at reasonable rates and terms;

(b) Have legal capacity to borrow and repay loans, to pledge security for loans, and to operate and maintain the facilities or services;

(c) Be financially sound and able to manage the facility effectively; and

(d) Have a financially sound facility based on taxes, assessments, revenue fees or other satisfactory sources of income to pay all facility costs, including operation and maintenance, and to retire the indebtedness and maintain reserves.

(3) **Private Financing**

Private financing would be available through almost any lending institution, such as a bank. Because the system is new the loan would be considered an unsecured loan. The life of the loan would be relatively short, approximately seven to ten years. The short life of the loan would dictate a higher monthly payment schedule. The interest rate would be slightly lower than FmHA loan rates. Banks would be wary of long-term fixed rates and would prefer a floating rate. Floors and ceilings could be negotiated into the loan agreement.

As mentioned previously, there are financing alternatives that are not currently available but may be in the very near future. Two alternatives include the Texas Water Development Board and the Rural Electric Administration. A brief description is provided in the following subsections.

(4) **Texas Water Development Board**

The Texas Water Development Board (TWDB) administers the water supply account of the water development fund. The water supply account does not currently have any
funds available but the TWDB could issue special bonds to obtain funding. The TWDB's interest rate is 50 points (1/2%) above the market rate.

Congress is also investigating the possibility of appropriating monies to fund water supply systems through a Drinking Water Revolving Fund. The funding would resemble the existing State Revolving Fund Program administered by the Texas Water Development Board. This funding mechanism may be attached to the regulations of the Clean Water Act or the Safe Drinking Water Act. It is unclear at this time whether the Environmental Protection Agency or the Corps of Engineers would administer the funding. It is possible that this funding source could be available as early as 1994.

(5) **Rural Electric Administration**

Both the House of Representatives and the Senate have passed legislation to merge the Rural Electric Administration (REA) into the Rural Development Administration. This move will broaden the Rural Electric Administration's scope of interest to include water and wastewater. The merger would make available Rural Development Administration funding available to the REA for electric, communications, water and wastewater projects.

Federal funding for water system projects may be available from other sources than the Economic Development Administration and the FmHA. The Texas Office of State-Federal Relations (TOSFR) is currently investigating alternative federal funding sources. The results of the TOSFR investigations will be made available to the Water Supply Corporation when they become available.

C. **INSTITUTIONS**

There are several institutions available to implement a regional water supply system. Each of the institutions summarized in Table No. 15, has the inherent authority to provide water services and either has the authority to provide wastewater services or can obtain that authority. The institutional structures included in the table are:

- River Authority
- Regional District
- Water Control and Improvement District
- Fresh Water Supply District
- Municipal Utility District
- Water Improvement District
Special Utility District
Water Supply Corporation (Article 1434A)

The information in Table No. 15 was taken from a report prepared for the Texas Water Development Board by Arthur Young & Company in 1987, entitled "Evaluation of Financial, Legal and Institutional Factors Affecting the Provision of Water and Sewerage Services." The information summarized in the table includes the following:

- **Type of Entity** - The name of the institution and which specific statute, special act or article in the Texas Constitution gives the entity its legal authority
- **Water/Wastewater Powers** - describes the powers each entity has with respect to the provision of water and/or wastewater services.
- **Method of Creation** - describes how each institution is formed.
- **Management Control** - describes the number and qualifications of the directors, supervisors, etc., their terms, and their method of selection.
- **Capital Financing Authority** - describes the authority each entity has to levy tax, issue revenue bonds, or combination of tax/revenue debt and what restrictions or privileges accompany that authority.
- **Operation and Maintenance Financing** - describes how each of the entities can fund its operation and maintenance through rates, maintenance taxes, standby fees, special assessment, or debt issuance.
- **Annexation** - describes the powers that are given to each entity to add territory and how this is accomplished.
- **Exclusion** - describes how service areas can be excluded.
- **Service Area Limits** - describes what limits there are in providing water/wastewater within or without each entity's boundaries and whether a certificate of convenience and necessity (CCN) is necessary.
- **Eminent Domain** - describes what powers the entity has to condemn land or acquire to land rights both within and without its boundaries.
The Arthur Young & Company sent out a survey questionnaire and conducted on-site interviews of each institutional structure in the 1987 report to the Texas Water Development Board. As a result of the on-site interviews it was found that,

"Water supply corporations and private water companies appear to experiencing the greatest amount of problems. Water supply corporations, usually located in rural areas, expressed significant concern over (1) their ability to fund improvements, (2) the need for monies necessary to put in larger line sizes to correct fire protection and supply problems caused by putting in 2-inch lines with FmHA funds, (3) their lack of exemption from ad valorem and sales taxes and (4) the high cost of servicing customers in sparsely populated areas..."

As indicated above, there are a variety of financing alternatives and institutional structures available to implement a regional water supply system. With the available financing alternatives it is possible and very likely that low-cost funding is available that will make a regional system feasible.
TABLE NO. 15

<table>
<thead>
<tr>
<th>Type of Entity</th>
<th>Water/Wastewater Power</th>
<th>Method of Creation</th>
<th>Management Control</th>
<th>Capital Financing Authority</th>
<th>Operation and Maintenance Financing</th>
<th>Annexation</th>
<th>Exclusion</th>
<th>Service Area Limits</th>
<th>Eminent Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIVER AUTHORITY</td>
<td>Generally has both water and wastewater powers</td>
<td>Generally by special act of legislature</td>
<td>Number of Qualification Determined by special act</td>
<td>Tax Debt: Generally, no authority to issue tax debt</td>
<td>Rates: Specific authority to impose rates. Rates not required by the TWC unless complaint filed by purchaser of water and if water is surface water. Wastewater rates not regulated.</td>
<td>Boundaries usually fixed by legislation with no provison for annexation</td>
<td>Usually cannot exclude land.</td>
<td>Often has specific authority to serve outside its boundaries.</td>
<td>Usually has power to acquire land or any interest therein within or without its boundaries.</td>
</tr>
<tr>
<td>Texas Constitution, Article XVI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section 59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Various Special Laws</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>REGIONAL DISTRICT</td>
<td>Has both water and wastewater powers</td>
<td>Board of two or more municipal districts may jointly petition; owner of 2,000 or more contiguous acres may petition; Commissioner courts of one or more counties may petition; or the governing body of any city may petition the TWC for creation.</td>
<td>Number and Qualification: Five directors - residents of the state and at least 21 years old</td>
<td>Tax Debt: May be issued unlimited in amount. Limits: rate 15%, term 40 years, must be approved by voters, the TWC and the Attorney General.</td>
<td>Rates: Has authority to impose all necessary charges. Maintenance Tax: Has authority to levy a maintenance tax only after approved by voters.</td>
<td>Land may be added by petition followed by hearing and board action.</td>
<td>Before final tax bond authorization election, land may be excluded upon board initiative or upon petition from a landowner.</td>
<td>May serve areas inside or outside its boundaries.</td>
<td>No specific provisions in the TWC.</td>
</tr>
<tr>
<td>Texas Constitution, Article XVI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section 59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas Water Code, Chapter 50, Subchapter M</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WATER CONTROL AND IMPROVEMENT DISTRICT</td>
<td>District has water power and may acquire wastewater power from the TWC</td>
<td>By county commissioners in counties for single county district and by the TWC for multi county districts, after hearing upon petition signed by 50% or majority in value of landowners in district.</td>
<td>Number and Qualification: Five directors - residents of the state, at least 21 years of age, own land in district and not disqualified.</td>
<td>Tax Debt: District bonds unlimited. Limits - rate 15%, term 40 years, requires voter, TWC and Attorney General approval.</td>
<td>Rates: Unlimited authority to impose charges for services rendered. Maintenance Tax: After election, has authority to levy maintenance tax.</td>
<td>Land may be added upon petition of landowners and board action, land may be added by petition of landowners in designated areas.</td>
<td>Before initial bond authorization election, must hold hearing and election and form district.</td>
<td>May serve areas inside or outside its boundaries.</td>
<td>May use eminent domain to acquire a fee simple or assessment on public or private land inside or outside the district.</td>
</tr>
<tr>
<td>Texas Constitution, Article XVI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section 59</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Texas Water Code, Chapter 51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE NO. 15

INSTITUTIONS

<table>
<thead>
<tr>
<th>Type of Entity</th>
<th>Water/Wastewater Power</th>
<th>Method of Creation</th>
<th>Management Control</th>
<th>Capital Financing Authority</th>
<th>Operation and Maintenance Financing</th>
<th>Annexation</th>
<th>Exclusion</th>
<th>Service Area Limits</th>
<th>Eminent Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>FRESH WATER SUPPLY DISTRICT
Texas Constitution Article XVI, Section 9
Texas Water Code Chapter 53</td>
<td>Has water powers; may acquire wastewater powers after election of otherwise unavailable</td>
<td>By election ordered by county commissioners court, after hearing upon petition signed by 50% or majority of landowners in district</td>
<td>Number of Qualification: Five supervisors - resident of district, owners of land in district, at least 21 years of age, and not disqualified.</td>
<td>Tax Debt: May be issued unlimited in amount. Limits: rate 15%, term 40 years, requires voter and Attorney General approval. Revenue Debt: May be issued unlimited in amount. Limits: rate 15%, term 40 years, notes do not require voter, TWC and Attorney General approval. Bonds require Attorney General approval.</td>
<td>Rates: Has authority to impose rates for the sale of water to pay for Operation and Maintenance expenses. Maintenance Tax: After election, has authority to levy maintenance tax. Standby Fees: No express authority. Special Assessment: No specific authority. Debt Insurance: Bonding authority contemplates capital improvements, but in general as nature, may be interpreted to local authority for Operation and Maintenance bonds.</td>
<td>Land may be added by board action after hearing upon petition of 50% of majority of landowners in area to be annexed, or 50% of landowners if more than 50 own land; election necessary to finalize.</td>
<td>Provision exists for exclusion of land.</td>
<td>Has authority to construct and maintain improvements inside and outside its boundaries.</td>
<td>May use eminent domain to acquire a fee simple or easement across public or private land inside or outside the district.</td>
</tr>
<tr>
<td>MUNICIPAL UTILITY DISTRICT
Texas Constitution Article XVI, Section 9
Texas Water Code Chapter 54</td>
<td>Has both water and wastewater powers</td>
<td>By TWC after hearing upon petition signed by 50% or majority in value of landowners in district.</td>
<td>Number of Qualification: Five directors - resident of state, on land or qualified voter in district, at least 21 years of age, and not disqualified.</td>
<td>Tax Debt: Unlimited amounts. Limits: rate 15%, term 40 years, requires voter, TWC and Attorney General approval. Revenue Debt: Notes/bonds may be issued in unlimited amounts. Limits: rate 15%, term 40 years, notes do not need voter approval, bonds require TWC and Attorney General approval. Combination Tax/Revenue Debt: Unlimited amounts. Limits: rate 15%, term 40 years, requires voter and Attorney General approval.</td>
<td>Rates: Has authority to impose all necessary charges. Maintenance Tax: After election, has authority to levy maintenance tax. Standby Fees: A renewable charge on undeveloped property may be adopted. Special Assessment: No specific Authority. Debt Insurance: Has authority to issue bonds for Operation and Maintenance expenses.</td>
<td>Land may be added by board action after hearing upon petition of 50% or majority of landowners in area to be annexed, election necessary to finalize.</td>
<td>Before first bond authorization, land may be excluded by board action, after hearing based upon petition or board initiative.</td>
<td>May serve areas inside and outside its boundaries.</td>
<td>May use eminent domain to acquire a fee simple or easement inside or within five miles of district boundaries.</td>
</tr>
<tr>
<td>WATER IMPROVEMENT DISTRICT
Texas Constitution Article XVI
Section 59
Texas Water Code Chapter 55</td>
<td>District has only water powers</td>
<td>Similar to water control and improvement district</td>
<td>Number of Qualification: Five directors - resident to state, own land in district, more than 11 years of age.</td>
<td>Tax Debt: District bonds unlimited. Limits - rate 15%, term 40 years, requires voter, TWC and Attorney General approval, with requirements for validation. Revenue Debt: District bonds unlimited. Limits - rate 15%, term 40 years, requires TWC and Attorney General approval. Combination Tax/Revenue Debt: District bonds unlimited. Limits - rate 15%, term 40 years, requires voter, TWC and Attorney General approval, with requirements for validation.</td>
<td>Rates: Has authority to impose charges for use and sale of water and other improvements. Maintenance Tax: No express authority. Standby Fees: No express authority. Special Assessment: Assessments may be imposed for Operation and Maintenance expenses. Debt Insurance: Has authority to issue debt for Operation and Maintenance purposes. Does require voter approval.</td>
<td>Land may be added by board action upon petition of landowner, defined area may be added by petition of 50% majority of landowners in defined area.</td>
<td>Before issuance of bonds, land may be excluded by board action after petition of landowner, land may be excluded upon petition of owner of at least 21.5% of area after election.</td>
<td>May serve areas inside or outside its boundaries.</td>
<td>May use eminent domain to condemn any property interests located inside or outside the district or private or public land.</td>
</tr>
</tbody>
</table>
TABLE NO. 15

INSTITUTIONS

<table>
<thead>
<tr>
<th>Type of Entity</th>
<th>Water/Wastewater Power</th>
<th>Method of Creation</th>
<th>Management Control</th>
<th>Capital Financing Authority</th>
<th>Operation and Maintenance Financing</th>
<th>Annexation</th>
<th>Exclusion</th>
<th>Service Area Limits</th>
<th>Eminent Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>SPECIAL UTILITY DISTRICT</td>
<td>Has both water and wastewater powers</td>
<td>By TWC upon request by board of nonprofit water supply corporation created under Article 1434a prior to January 1, 1983.</td>
<td>Number of Qualifications: Five to eleven directors at least 18 years of age, own land, user of facilities or qualified voter in district.</td>
<td>Tax Debt No Authority Revenue Debt Unlimited amounts, limits, 15%, term 40 years, requires TWC and Attorney General approval. Combination Tax/Revenue Debt No Authority.</td>
<td>Rates Specific authority to impose rates. Rates not regulated by TWC unless complaint filed by purchaser and if water is surface water, wastewater rates are regulated. Maintenance Tax No Authority Standby Fees. Specific authority to impose standby fees. Special Assessment No Authority Debt Issuance Has authority to issue revenue debt to pay operation and maintenance expenses.</td>
<td>Land may be annexed upon petition by majority of land owners in area to be annexed. Under certain circumstances, may exclude land on its own motion or on a petition filed by landowners.</td>
<td>May serve areas inside its boundaries and outside boundaries provided the district does not duplicate a service of another public agency.</td>
<td>May use eminent domain to condemn any property interests located inside or outside the district on private or public land.</td>
<td></td>
</tr>
<tr>
<td>ARTICLE 143A WATER SUPPLY CORPORATION</td>
<td>Has both water and wastewater power</td>
<td>By adoption of articles of incorporation by three or more persons and filing the Secretary of State.</td>
<td>Number of Qualifications: Any number of directors up to 21, no specific qualifications.</td>
<td>Tax Debt No Authority Revenue Debt Unlimited amounts, rates limited by statutory laws, no limit on terms. No approval necessary. Combination Tax/Revenue Debt No Authority.</td>
<td>Rates Has authority to adopt rates without approval of TWC, TWC may assume jurisdiction upon petition of rate-payers. Maintenance Tax No authority Standby Fees No specific authority Special Assessment No authority Debt Issuance Has authority to issue revenue debt for operation and maintenance expenses.</td>
<td>Not Applicable</td>
<td>Not Applicable</td>
<td>Must obtain CCN for original service area. May extend lines without CCN unless within certified area of another utility.</td>
<td>Right of eminent domain to acquire sites for plants and facilities and to acquire rights-of-way and shall have the right to use the rights-of-way of the public highways of the State for the laying of pipelines.</td>
</tr>
</tbody>
</table>
A. INTRODUCTION

A wide range of alternatives to meet the water supply needs of the project planning area have been reviewed. Alternatives for both water supply and potable water production were evaluated using current Texas Water Commission (TWC) standards for public water systems. In addition, non-traditional alternatives for meeting water supply and potable water production requirements have also been developed in this Report.

The TWC will, on a case-by-case basis, consider exceptions to current rules and regulations. To be considered for an exception, non-traditional alternatives must be technically sound and provide for the public's interest in a safe, affordable water supply. Non-traditional alternatives considered for the Possum Kingdom Water Supply Corporation (PKWSC) include:

- Alternate methods of distribution water line installation;
- Purchased potable water transported via trucks to storage tanks for distribution;
- Distribution system sized for maximum hour-day requirements, with peak demands met from regional storage systems; and/or
- Water treatment facilities designed for average-day production with maximum demands met from centralized storage.

The forth alternative, providing potable water treatment facilities capable of meeting average-day demand with maximum day requirements provided for centralized storage, has been shown to be cost effective. This non-traditional alternative meets the seasonal needs of the Possum Kingdom Water Supply Corporation of maximum water use during summer holiday weekends and minimum demands during winter months.
B. REGIONAL WATER SUPPLY SYSTEM

The focus of this Study has been to evaluate the feasibility of developing a regional water supply system to serve the commercial camps/businesses around Possum Kingdom Lake. Additionally, the impact of residential customers of varying levels of participation has been evaluated.

(1) Commercial Camps/Businesses

Traditional options and non-traditional alternatives to provide commercial camp/business operators with potable water are recapped in Table 16 below. Included in the summary table are estimated annual operation and maintenance (O&M) costs and estimated total annual costs.

TABLE 16

COMMERCIAL CAMP/BUSINESS MEMBERS

COMPARISON OF Viable ALTERNATIVES

(Excludes Residential Participation)

<table>
<thead>
<tr>
<th>Distribution System Option No.</th>
<th>Description</th>
<th>Capital Cost(1)</th>
<th>O & M(2)</th>
<th>Costs of Water(3)</th>
<th>Total Annual Cost(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Possum Kingdom Water Treatment Plant</td>
<td>$8,270,000</td>
<td>555,000</td>
<td>$15,000</td>
<td>$1,290,000</td>
</tr>
<tr>
<td>1a</td>
<td>Graham Treated Water</td>
<td>10,142,000</td>
<td>275,000</td>
<td>403,000</td>
<td>1,562,000</td>
</tr>
<tr>
<td>N/A</td>
<td>Renovation of Existing Commercial Treatment Facilities</td>
<td>8,400,000</td>
<td>1,670,000</td>
<td>N/A</td>
<td>2,400,000</td>
</tr>
<tr>
<td>N/A</td>
<td>Trucking - Contract</td>
<td>1,600,000</td>
<td>2,190,000</td>
<td>403,000</td>
<td>2,730,000</td>
</tr>
<tr>
<td>N/A</td>
<td>Trucking - "In-house"</td>
<td>3,600,000</td>
<td>2,340,000</td>
<td>403,000</td>
<td>3,060,000</td>
</tr>
<tr>
<td></td>
<td>Average Day</td>
<td>6,480,000</td>
<td>555,000</td>
<td>15,000</td>
<td>896,000</td>
</tr>
</tbody>
</table>

(1) Capital Cost are from detailed Engineer's Estimate included in the Appendix.

(2) Treatment and/or distribution costs for an average of 600,000 gallons per day as presented in the Appendix.

(3) Cost of water is based on annual average demand of 600,000 gallons/day; a raw water rate of $0.06 per 1000 gallons from Possum Kingdom; a treated water rate of $1.60 per 1000 gallons from Graham; and a 15% water loss rate.

(4) Total annual cost equals capital cost amortized over 20 years at 6%, plus annual O&M, plus cost of water.
At an estimated total annual cost of $1,290,000.00, a regional water supply system developed around a water treatment plant at Possum Kingdom Lake is approximately one-half the cost of other options evaluated.

(2) **Residential Customers**

Serving commercial camps/businesses through a regional water supply system will require an extensive distribution water line network. These water lines will be easily accessible to residential properties around Possum Kingdom Lake.

Residential property users face concerns for potable water similar to commercial camps/businesses, although without the requirement for compliance with TWC rules and regulations. Based on the Brazos River Authority's residential survey, approximately 50% of individual leased lots around the shores of Possum Kingdom Lake would be interested in connecting to a regional water supply system.

Options to include residential customers in a Possum Kingdom Regional Water Supply System are recapped in Table 17. Included in the summary table are estimated annual operation and maintenance costs and estimated total annual costs.

Gaines Bend, Hog Bend and the Possum Kingdom State Park are included in the options presented at a 100% participation level.

Due to the isolated nature and the need to construct a lake crossing in order to provide service to each of these areas, 100% residential participation is necessary for cost effective service.
TABLE 17
REGIONAL WATER SYSTEM WITH 50% RESIDENTIAL PARTICIPATION
COMPARISON OF VIABLE OPTIONS

<table>
<thead>
<tr>
<th>Option No.</th>
<th>Alternatives</th>
<th>Capital Cost (1)</th>
<th>O&M (2)</th>
<th>Costs of Water (3)</th>
<th>Total Annual Cost (4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Possum Kingdom Water Treatment Plant Average-Day Design</td>
<td>$10,144,000</td>
<td>$585,000</td>
<td>$16,000</td>
<td>$1,485,000</td>
</tr>
<tr>
<td>6</td>
<td>Treated Water From Graham</td>
<td>12,444,000</td>
<td>275,000</td>
<td>437,000</td>
<td>1,800,000</td>
</tr>
<tr>
<td>5</td>
<td>Possum Kingdom Water Treatment Plant</td>
<td>12,939,000</td>
<td>680,000</td>
<td>16,000</td>
<td>1,825,000</td>
</tr>
<tr>
<td>9</td>
<td>City of Graham, Average-Day Delivery</td>
<td>11,284,000</td>
<td>275,000</td>
<td>437,000</td>
<td>1,695,000</td>
</tr>
<tr>
<td>N/A</td>
<td>Blended Lake Graham/Possum Kingdom Water Treatment Plant Average-Day Design</td>
<td>11,550,000</td>
<td>520,000</td>
<td>72,000</td>
<td>1,600,000</td>
</tr>
<tr>
<td>7</td>
<td>Dual Supply: West Lake - Graham Treated Water</td>
<td>13,206,000</td>
<td>595,000</td>
<td>314,000</td>
<td>2,060,000</td>
</tr>
<tr>
<td>8</td>
<td>Raw Water from Graham</td>
<td>13,710,000</td>
<td>680,000</td>
<td>16,000</td>
<td>1,891,000</td>
</tr>
</tbody>
</table>

(1) Capital Cost are from Table 10, Section V and detailed Engineer's Estimate included in the Appendix. Capital Cost include Gaines Bend, Hog Bend and Possum Kingdom State Park at 100% participation.

(2) Treatment and/or distribution costs for an average of 600,000 gallons per day as presented in the Appendix.

(3) Cost of water is based on annual average demand of 600,000 gallons/day and a raw water rate of $0.06 per 1000 gallons from Possum Kingdom and a treated water rate of $1.60 per 1000 gallons from Graham.

(4) Total annual cost equals capital cost amortized over 20 years at 6%, plus annual O&M, plus cost of water.

All of these options are comparable in estimated total annual costs. Construction of a water treatment plant for treatment of Possum Kingdom Lake water, sized for meeting average-day production requirements with maximum day demands met from storage (a non-traditional alternative), is the most cost-effective option at $1,485,000 per year.

VII-4
C. ESTIMATED USER COSTS

A detailed evaluation of user cost could not be developed within the scope of this Study. As it is unknown at this time how many meters the system will ultimately have. However, general analysis of potential rate structures can be performed. Development of any rate structure should be based on the following criteria:

- Equality or Fairness
- Impact on Customers
- Avoidance of Discriminatory Relationships
- Conservation
- Legality
- Simplicity
- Implementation
- Competitiveness

The Possum Kingdom Water Supply Corporation will have a unique situation. Due to the seasonal nature of water use, revenue from water sales will be generated primarily during summer months. Debt requirements during the winter, if debt service revenue is included in the unit price of water actually used, will be met only if summer water use meets or exceeds projections. It is recommended therefore, that the Possum Kingdom Water Supply Corporation consider a rate structure which generates dept service and fixed operational costs from monthly base rates. Operation and maintenance costs associated with the production and distribution of potable water will be recovered in the cost per thousand gallons, or volume charge. This approach is a departure from rate structures typically used in urban areas, where debt service can be a significant part of water volume charges.

(1) Commercial Camps/Business Members

Development of a base rate structure for commercial camp/business members of the Possum Kingdom Water Supply Corporation must consider the wide variation in demands. Using TWC criteria, demand varies from a low of 0.1 gpm (144 gpd) up to 91.8 gpm (132,200 gpd). Any rate structure developed must consider the allocation of system capacity for each individual commercial operator. Based on capacity, six user classes for commercial operators could be utilized:

- Less than 1,500 gallons per day
- 20,001 gpd to 40,000 gpd
- 60,001 gpd to 85,000 gpd
- 1,501 gpd to 20,000 gpd
- 40,001 gpd to 60,000 gpd
- Over 85,000 gpd

Estimated costs for commercial operators to renovate their existing facilities for compliance with TWC regulations and primary/secondary drinking water standards are included in Table 16. Table 18 shows the estimated annual costs for individual treatment system renovations allocated between various user classes. Costs reflect debt service required for installation of an advanced treatment system plus estimated operation and maintenance costs.
TABLE 18
EVALUATION OF RENOVATING EXISTING COMMERCIAL TREATMENT FACILITIES
ALLOCATED USER COSTS

<table>
<thead>
<tr>
<th>Commercial User Class</th>
<th>Estimated Number In User Class 1</th>
<th>Total Annual Cost 2</th>
<th>Estimated Monthly Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 1,500 gpd</td>
<td>10</td>
<td>$37,000</td>
<td>$310</td>
</tr>
<tr>
<td>1,501 - 20,000 gpd</td>
<td>22</td>
<td>820,000</td>
<td>3,100</td>
</tr>
<tr>
<td>20,001 - 40,000 gpd</td>
<td>12</td>
<td>670,000</td>
<td>4,650</td>
</tr>
<tr>
<td>40,001 - 60,000 gpd</td>
<td>5</td>
<td>370,000</td>
<td>6,150</td>
</tr>
<tr>
<td>60,001 - 85,000 gpd</td>
<td>3</td>
<td>280,000</td>
<td>7,750</td>
</tr>
<tr>
<td>Over 85,000 gpd</td>
<td>2</td>
<td>225,000</td>
<td>9,375</td>
</tr>
<tr>
<td>Total</td>
<td>54</td>
<td>$2,402,000</td>
<td>31,335</td>
</tr>
</tbody>
</table>

(1) From field survey of study participants.
(2) Capital cost amortized over 20 years at 6% plus annual O&M costs, see Table 16, Total Annual Cost for Renovation of Existing Facilities.

The recommended option for meeting the needs of only the commercial camp/business members of the Possum Kingdom Water Supply Corporation is a regional water supply system with a central treatment plant at Possum Kingdom Lake, treating only Possum Kingdom Lake water. Estimated annual costs for the recommended option are approximately one-half of the cost required for each individual commercial operator to upgrade their facility using advanced treatment technology. General monthly costs for individual user classes can, therefore, be estimated as presented in Table 19.

TABLE 19
REGIONAL WATER SUPPLY SYSTEM - ESTIMATED MONTHLY COSTS CENTRALIZED TREATMENT FACILITIES

<table>
<thead>
<tr>
<th>Commercial User Class</th>
<th>Estimated Number In User Class 1</th>
<th>Total Annual Cost 2</th>
<th>Estimated Monthly Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 1,500 gpd</td>
<td>10</td>
<td>$37,000</td>
<td>$165</td>
</tr>
<tr>
<td>1,501 - 20,000 gpd</td>
<td>22</td>
<td>820,000</td>
<td>1,650</td>
</tr>
<tr>
<td>20,001 - 40,000 gpd</td>
<td>12</td>
<td>670,000</td>
<td>2,465</td>
</tr>
<tr>
<td>40,001 - 60,000 gpd</td>
<td>5</td>
<td>370,000</td>
<td>3,260</td>
</tr>
<tr>
<td>60,001 - 85,000 gpd</td>
<td>3</td>
<td>280,000</td>
<td>4,110</td>
</tr>
<tr>
<td>Over 85,000 gpd</td>
<td>2</td>
<td>225,000</td>
<td>4,970</td>
</tr>
</tbody>
</table>

NOTE: These costs do not include residential participation.

(1) From field survey of study participants.
(2) Capital cost amortized over 20 years at 6% plus annual O&M costs, see Table 16, Total Annual Cost for Renovation of Existing Facilities.

VII-6
It must be noted that the costs developed and presented are based on limited information and estimated financing. Additionally, costs do not reflect grant funds, if available to finance the project. Detailed projections can be developed in a focused engineering study once project variables are defined.

(2) **Residential Customers**

Residential users of a Possum Kingdom regional water system have been evaluated. The addition of residential users is advantageous to the Possum Kingdom Water Supply Corporation only if, through their involvement, project costs are reduced for commercial camp/business members. Cost reductions due to the economy of scale with residential customers are attractive.

Approximately 80% of residential properties around Possum Kingdom lake are used as weekend or vacation retreats. Typically, financing agencies will not consider these customers in calculating rate structures. Experience has shown that part-time users of regional water systems are not as reliable as permanent residents for remaining actively connected to the system. The issue of part-time users will need to be developed in a focused engineering study if residential participation is pursued.

This section has focused on the feasibility of a regional water supply system with 50% residential participation. The cost of residential participation at this level can be evaluated, using the best option, as follows:

From Table 17, it is shown that the estimated total annual cost of the most economical regional water system which serves at least half of the residential lots around the lake is $1,581,000 per year. The treatment plant for this option is sized at 1.19 MGD for average day capacity with excess storage provided to meet the maximum daily demand. Plant capacity is pro-rated between residential and commercial customers as follows:

\[
\begin{align*}
1,112 \text{ Residential Customers} \times 0.3 \text{ gpm} &= 0.48 \text{ MGD (40\%)} \\
1,640 \text{ Commercial Customers} \times 0.3 \text{ gpm} &= 0.71 \text{ MGD (60\%)} \\
&= 1.19 \text{ MGD}
\end{align*}
\]

Based on capacity of the system utilized, including 50% of the residential customers in the system would account for approximately 40% of the system is annual cost. This participation would significantly reduce the system's annual cost for the commercial customers. The estimated commercial customer's annual cost is calculated as follows:

\[
$1,581,000 \times 60\% = $943,000
\]

This annual cost is significantly less than any option presented in Table 16, where the residential participation is not included.
A. INTRODUCTION

Commercial camps/businesses around Possum Kingdom Lake are each faced with the challenge of providing potable water meeting State and Federal rules and regulations for public water systems. Most commercial camps/businesses around the lake have entered into bilateral compliance agreements with the Texas Water Commission (TWC). This Study has focused on the feasibility of providing potable water meeting current and anticipated future regulations for users around Possum Kingdom Lake.

The feasibility of developing a regional water supply system has been evaluated with both traditional options and non-traditional alternatives. This Report has shown that a regional distribution system served by a centralized treatment plant at Possum Kingdom Lake, treating Possum Kingdom Lake water, can be developed to meet the needs of commercial camps/businesses. Total annual cost for this system is estimated to be $1,290,000.

Including residential customers in the regional water system was concluded to be cost effective. If residential properties are to be served by a regional system, a non-traditional alternative of meeting average-day requirements at the treatment facility, with maximum day demands met from storage, is recommended for a residential participation level of 50%. The annual cost for this approach is estimated to be $1,581,000 and results in a potential capital cost savings of approximately $2,795,000 and an annual cost savings of approximately $244,000 over the more traditional maximum day approach.

The feasibility of developing a regional water supply system has been developed based on estimated participants, both commercial and residential. Currently, there are no "members" of the Possum Kingdom Water Supply Corporation. Membership in the Possum Kingdom Water Supply Corporation must be established before a focused engineering study can be prepared. A focused engineering study will be required by most funding agencies to establish detailed costs and rate structures based on the option developed and the number of customers to be served.
B. **ROLE OF THE POSSUM KINGDOM WATER SUPPLY CORPORATION**

The Board of Directors of the Possum Kingdom Water Supply Corporation will need to address the following questions:

- Why does the water system exist?
- To whom will it provide water?
- At what cost, to the customer, will water be provided?
- How will water be provided to customers, and under what conditions?

Answers to these questions will help define the Possum Kingdom Water Supply Corporation's "mission statement" or "statement of purpose". This provides the Board and staff with direction by providing a structure for making base decisions. In addition, defining the Corporation's mission will help maintain the Corporation's ultimate purposes, instead of focusing on daily problems, and provide each person an understanding of their role and responsibility in carrying out the objectives of the Possum Kingdom Water Supply Corporation.

As stated above, the actual number of members (and their corresponding user class) is critically important. Once a firm number of members is known, a focused engineering report should be initiated. While the focused engineering report is being prepared, the Board should begin to develop and enact rules and regulations affecting the operation of the Corporation. These rules and regulations will include:

- The conditions under which water service is provided by the system to each customer;
- The responsibilities of the water system to the customer, and
- The customers' responsibilities for receipt of service and the water system.

Also included will be such items as water rate schedules, connection fees and deposits, conditions for connecting new customers, and billing procedures.

In addition to rules and regulations, a long-range plan should be developed. This is essential to ensure that future improvements, future operation expenses, replacement of worn-out equipment, and potential emergencies are anticipated.

After financial commitments are made by those desiring to be members, and a focused engineering study identifies the specific alternative which is most cost-effective, the decision must be made by the members as to continue on with the project or not. Even after the decision is made to proceed with the design of the Possum Kingdom Public Water System and bids are
received to construct the improvements, final decision must be made by the members to actually build the project.

Once the Possum Kingdom Water Supply Corporation is a functioning organization, regularly scheduled, publicly announced meetings will be held, according to the "Open Meeting Act". It will be at these meetings the membership will be given the opportunity to vote on proceeding with the project at the appropriate times. These meetings will also provide an open forum for any comments by concerned individuals.

C. FINANCIAL CONSIDERATIONS

There are numerous economic factors affecting financing of water system improvements. The largest factor is customer demand. The area under consideration in the Study has in-place an existing demand for potable water meeting applicable regulations. Other factors to be considered include per capita water usage and how customers will react to increases in rates. After the system is established, newer areas of development (which will be attracted by the facilities) and requests for additional meters will cause additional financial burdens. These elements will play a prominent role in selecting financial alternatives.

Volume charges (cost of water per thousand gallons) are recommended to be based on costs to produce and distribute water. Because of the seasonal nature of water use around Possum Kingdom Lake, debt service requirements and fixed O&M costs should be recovered from base rates established for each user class. A seventh user class, for residential customers, will be required if non-commercial memberships are accepted by the Corporation.

The Possum Kingdom Water Supply Corporation will also need to address the following financial items while developing the focused engineering study:

- Development of a comprehensive facility master plan;
- Determination of capital requirements;
- Securing of funding source(s);
- Determination of annual revenue requirements;
- Development of a rate structure; and
- Evaluation of the financial plan on customers.
D. IMPLEMENTATION SCHEDULE

Development of a regional water supply system will require a coordinated effort between the Possum Kingdom Water Supply Corporation Board of Directors, the Texas Water Commissions, the water supply corporation's engineering consultant and attorney, and the selected funding agency(ies). It is recommended that the Possum Kingdom Water Supply Corporation Board proceed immediately with a Charter Membership drive to establish an actual number of participants for a regional system. At the close of the membership drive, a focused engineering study should be initiated by the Board.

A recommended implementation schedule for development of a regional water supply system serving the Possum Kingdom Lake area is presented below.

December, 1993 • Engineers present draft copy of this Study to the Possum Kingdom Water Supply Corporation.

Dec. 93 - Jan. 94 • Public Review and Comment Period.

February, 1994 • Final Report Submittal.

March, 1994 • The Possum Kingdom Water Supply Corporation initiates a Charter Membership drive.

September, 1994 • Charter Membership closes. The Possum Kingdom Water Supply Corporation authorizes Engineers to proceed with a focused engineering study.

• The Possum Kingdom Water Supply Corporation selects funding agency(ies) and initiates applications.

• The Possum Kingdom Water Supply Corporation begins to develop and enact rules and regulations affecting operation of the Corporation.

December, 1994 • Engineers present preliminary findings of the Focused Engineering Study to the Brazos River Authority Possum Kingdom Water Supply Corporation and/or contracted Public Agency.

Dec 94 - Feb 95 • Review of focused engineering study preliminary findings.
April, 1995 • Focused engineering study final report submittal.

May, 1995 • The Possum Kingdom Water Supply Corporation decides on the recommendation; authorized Engineers to develop preliminary design documents.

August, 1995 • Engineers present preliminary design documents.

Aug. - Oct. 1995 • Review of preliminary design documents by:
- Possum Kingdom Water Supply Corp.
- Texas Water Development Board
- Texas Natural Resource Conservation Commission
- Brazos River Authority
- Funding Agencies

November, 1995 • Treatment plant pilot study.

December, 1995 • The Possum Kingdom Water Supply Corporation authorizes final design of the Project.

September, 1996 • Engineers submit final design documents.

Sept - Nov 1996 • Final plan review and approvals.
- Possum Kingdom Water Supply Corp.
- Texas Water Development Board
- Texas Natural Resource Conservation Commission
- Brazos River Authority
- Funding Agencies

December, 1996 • The Possum Kingdom Water Supply Corporation secures financing.

Jan. - Feb., 1997 • Advertise and award bids for construction.

Apr 97 - Oct 98 • Complete Construction of the regional water supply system.
E. CONCLUSION

New systems are not immediately faced with economic factors that eventually impact the system. These factors include deterioration of the infrastructure, more stringent environmental requirements, customer demands of improvements, lack of Federal assistance, legal restrictions and the utility's procedure for addressing these changing needs. A progressive utility will find financing and a rate structure that addresses the deterioration of its facilities. These rate structures should provide the necessary funds to create a capital improvements fund to finance needed improvements. Environmental regulations continue to become more stringent which, in turn, require utility compliance. This compliance will have associated costs which will be passed on to the customer. Although federal mandates are increasing, financing from the Federal Government is declining. Customer demands for improved service will also become an increased component in capital improvements. Legal restrictions can eliminate potential financing options. The management philosophy of the utility will play a leading role in identifying components of the capital plan facilities and how these costs are to be financed and recovered from customers.

The Possum Kingdom Water Supply Corporation faces several unique challenges. In a developed area, oversizing of facilities to accommodate future growth is costly and can lead to a heavy financial burden on members if the growth does not occur. Similarly, oversizing to accommodate potential customers which choose not to participate in the Corporation as a Charter Member can result in a financial burden on members. Developing a regional system which includes residential users is further complicated for the Possum Kingdom Water Supply Corporation since approximately 80% of the residential properties are weekend or vacation retreats. These properties are typically less reliable for staying connected to a regional system than permanent residents.

Also challenging is the fact that a majority of the water front property is owned by the Brazos River Authority and leased to commercial/residential users. Funding agencies may require documentation to insure proposed debt repayment structures do not exceed lease terms.

Gaines Bend, Hog Bend and the Possum Kingdom State Park will require special attention from the Board of Directors. Potable water service to each of these areas requires an individual lake crossing. Estimates developed in this report have assumed 100% participation of potential connections in these areas. It may not be cost effective to service Gaines Bend and Hog Bend if actual connections fall significantly short of full participation.
POSSUM KINGDOM REGIONAL WATER SUPPLY SYSTEM
APPENDIX TO
PRELIMINARY ENGINEERING REPORT

TABLE OF CONTENTS

PROPOSED MASTER PLAN DISTRIBUTION SYSTEM MAP

FIELD SURVEY SUMMARY

OPTIONS 1 THRU 10:
- Analysis Summary
- Engineer's Estimate
- Tabulate Operation and Maintenance Cost

RECOMMENDED DISTRIBUTION SYSTEM
- System Map
- Hydraulic Analysis

ADDITIVE ALTERNATE - GAINES BEND
- Analysis Summary
- Engineer's Estimate
- Distribution System Map
- Hydraulic Analysis

ADDITIVE ALTERNATE - HOG BEND
- Analysis Summary
- Engineer's Estimate
- Distribution System Map
- Hydraulic Analysis

TREATMENT PLANT COST TABULATION
POSSUM KINGDOM REGIONAL
WATER SUPPLY SYSTEM

FIELD SURVEY SUMMARY

conducted for the:

POSSUM KINGDOM WATER SUPPLY CORPORATION
through the BRAZOS RIVER AUTHORITY
STUDY PARTICIPANT A

PARTICIPATION IN PRELIMINARY ENGINEERING STUDY

Participating in Study? yes
Date of Engineering Site Visit: 4/15/93
Known Site Visit by TWC: yes
Bilateral Compliance Agreement Signed with TWC: yes

EXISTING TREATMENT PROCESS: Three centrifugal pumps take water from Possum Kingdom Lake, through 3 hypochlorinators to 3 pressure tanks which feed 3 pressure sand filters. The filtered water goes through the large pressure tank, which feeds the distribution system.

CONNECTION/POPULATION ESTIMATES

Type of System: Surface water - Noncommunity serving transient accommodation units
Total Number of Connections: 49
 Number & Type of Seasonal Units: 11 cabins, 32 MH/cabins
 Number & Type of Permanent Units: 1 office/restaurant, 5 MH
Population Estimate (source of estimate): 175 (Texas Water Commission)
Recorded Water Usage: estimated 1992 peak: 150,000 gal in June
Calculated Water Demand: 30 x 18 gpd + 48 x .6 gpm = 29.2 gpm

EXISTING FEATURES OF FACILITY

Raw pump capacity: 3 - 45 gpm jet
Chlorination: peak of 58 gal/month of 10% Na hypochlorite (3 chlorinators)
Pressure Tank: 3 - 82 gal, 1 - 500 gal
Filters: 3 pressure sand, 3’Ø, 4’ tall
Service Pumps: none
Storage Capacity: none
Additional Treatment/Capabilities: none
TEXAS WATER COMMISSION REQUIREMENTS FOR FACILITY

Requirements are based on this system being classified as a Surface water - Noncommunity serving transient accommodation units system, for a total treatment capacity of 29.4 gpm.

Raw Pump Capacity: 29.4 gpm with the largest pump out of service
Transfer Pump Capacity: N/A
Pressure Tank Capacity (Elevated Storage): 490 gallons (N/A)
Filters: 29.4 gpm
Service Pumps: 2 or more service pumps with a total capacity of 49 gpm
Clearwell Storage Capacity: 1000 gallons
Total Storage Capacity: 1715 gallons (includes required 1000 gallon minimum clearwell storage)

DEFICIENCIES IN EXISTING TREATMENT PROCESS (Using TWC Criteria): Inadequate flow measuring devices, inadequate chemical injection, inadequate disinfection capabilities, no flash mixing/flocculation, no continuous coagulation, no sedimentation, inadequate filtration, inadequate bulk storage, inadequate pressure storage, inadequate raw water pump capacity, inadequate service pump capacity, inadequate treatment capacity, no certified operator on duty or continuous chlorine/turbidity monitoring, improperly protected raw water intake, inadequate laboratory equipment.
STUDY PARTICIPANT B

PARTICIPATION IN PRELIMINARY ENGINEERING STUDY

Participating in Study? yes
Date of Engineering Site Visit: 4/14/93
Known Site Visit by TWC: yes
Bilateral Compliance Agreement Signed with TWC: yes

EXISTING TREATMENT PROCESS: Two centrifugal raw water pumps deliver water, which is chlorinated, into a pressure tank which feeds the distribution system.

CONNECTION/POPULATION ESTIMATES

Type of System: Surface water - Noncommunity serving transient accommodation units
Total Number of Connections: 15
 Number & Type of Seasonal Units: 6 cabins, 7 MH
 Number & Type of Permanent Units: 1 restaurant/office/store, 1 house
Population Estimate (source of estimate): 80 (Texas Water Commission)
Recorded Water Usage: hauls approx. 3000 gal/year for restaurant/office/store
Calculated Water Demand: $30 \times 18 \text{ gpd} + 14 \times .6 \text{ gpm} = 8.8 \text{ gpm}$
EXISTING FEATURES OF FACILITY

Raw pump capacity: 1 - 30 gpm jet pump 1½ hp, and 1 back-up (same)
Chlorination: 1 gal/month 20% chlorine
Pressure Tank: 1 - 80 gal, 1 - 300 gal
Filters: none
Service Pumps: none
Storage Capacity: 1250 gal (hauled)
Additional Treatment/Capabilities: none

TEXAS WATER COMMISSION REQUIREMENTS FOR FACILITY

Requirements are based on this system being classified as a Surface water - Noncommunity serving transient accommodation units system, for a total treatment capacity of 9 gpm.

Raw Pump Capacity: 9 gpm with the largest pump out of service
Transfer Pump Capacity: N/A
Pressure Tank Capacity (Elevated Storage): 220 gallons (N/A)
Filters: 9 gpm
Service Pumps: 2 or more service pumps with a total capacity of 15 gpm per unit
Clearwell Storage Capacity: 1000 gallons
Total Storage Capacity: required 1000 gallon clearwell storage

DEFICIENCIES IN EXISTING TREATMENT PROCESS (Using TWC Criteria): Inadequate flow measuring devices, inadequate chemical injection, inadequate disinfection capabilities, no flash mixing/flocculation, no continuous coagulation, no sedimentation, inadequate filtration, inadequate bulk storage, inadequate pressure storage, inadequate raw water pump capacity, inadequate service pump capacity, inadequate treatment capacity, no certified operator on duty or continuous chlorine/turbidity monitoring, improperly protected raw water intake, inadequate laboratory equipment.
STUDY PARTICIPANT C

PARTICIPATION IN PRELIMINARY ENGINEERING STUDY

Participating in Study? yes, but not a public water system
Date of Engineering Site Visit: 5/12/93
Known Site Visit by TWC: yes
Bilateral Compliance Agreement Signed with TWC: yes

EXISTING TREATMENT PROCESS: None; raw water is pumped by a centrifugal pump, which supplies the pressure tank, providing water to the sinks and toilets

CONNECTION/POPULATION ESTIMATES

Type of System: Not a Public Water System
Total Number of Connections: 1
 Number & Type of Seasonal Units: 1
 Number & Type of Permanent Units: 0
Population Estimate (source of estimate): 35 (Texas Water Commission and conversation with Camp Coordinator)

Recorded Water Usage: unknown
Calculated Water Demand: 35 persons (average visit) x 42 gallons/person = 1.0 gpm
Study Participant C. (continued)

EXISTING FEATURES OF FACILITY

Raw pump capacity: 110 gpm, ½ hp centrifugal
Chlorination: not added
Pressure Tank: 1 - 42 gal
Filters: none
Service Pumps: none
Storage Capacity: none
Additional Treatment/Capabilities: none

TEXAS WATER COMMISSION REQUIREMENTS FOR FACILITY

This system does not meet the requirements to be a Public Water System, therefore, the current rules and regulations are not applicable.

Raw Pump Capacity: N/A
Transfer Pump Capacity: N/A
Pressure Tank Capacity (Elevated Storage): N/A (N/A)
Filters: N/A
Service Pumps: N/A
Clearwell Storage Capacity: N/A
Total Storage Capacity: N/A

DEFICIENCIES IN EXISTING TREATMENT PROCESS (Using TWC Criteria): No deficiencies; Not a Public Water System
STUDY PARTICIPANT D

PARTICIPATION IN PRELIMINARY ENGINEERING STUDY

Participating in Study? yes
Date of Engineering Site Visit: 4/28/93
Known Site Visit by TWC: no
Bilateral Compliance Agreement Signed with TWC: N/A

EXISTING TREATMENT PROCESS: Raw water is pumped from Possum Kingdom Lake to service restroom facilities.

CONNECTION/POPULATION ESTIMATES

Type of System: Surface water - Noncommunity serving other than transient accommodation units
Total Number of Connections: 1
 Number & Type of Seasonal Units: 1 public restroom
 Number & Type of Permanent Units: none
Population Estimate (source of estimate): 160 (estimated by owner's personnel)
Recorded Water Usage: unknown
Calculated Water Demand: 160 persons x 6 gallons per person = 0.7 gpm
EXISTING FEATURES OF FACILITY

Raw pump capacity: unknown
Chlorination: none
Pressure Tank: none
Filters: none
Service Pumps: none
Storage Capacity: none
Additional Treatment/Capabilities: none

TEXAS WATER COMMISSION REQUIREMENTS FOR FACILITY

Requirements are based on this system being classified as a Surface water - Noncommunity serving other than transient accommodation units system, for a total treatment capacity of 0.7 gpm.

Raw Pump Capacity: 0.7 gpm with the largest pump out of service
Transfer Pump Capacity: 0.7 gpm with the largest pump out of service
Pressure Tank Capacity (Elevated Storage): 220 gallons (N/A)
Filters: 0.7 gpm
Service Pumps: 2.1 gpm
Clearwell Storage Capacity: 480 gallons
Total Storage Capacity: N/A

DEFICIENCIES IN EXISTING TREATMENT PROCESS (Using TWC Criteria): Inadequate flow measuring devices, inadequate chemical injection, inadequate disinfection capabilities, no flash mixing/flocculation, no continuous coagulation, no sedimentation, inadequate filtration, inadequate bulk storage, inadequate pressure storage, inadequate raw water pump capacity, inadequate service pump capacity, inadequate treatment capacity, no certified operator on duty or continuous chlorine/turbidity monitoring, improperly protected raw water intake, inadequate laboratory equipment.
PARTICIPATION IN PRELIMINARY ENGINEERING STUDY

Participating in Study? yes
Date of Engineering Site Visit: 4/28/93
Known Site Visit by TWC: yes
Bilateral Compliance Agreement Signed with TWC: N/A

EXISTING TREATMENT PROCESS: Raw water is pumped from Possum Kingdom Lake to service restroom facilities.

CONNECTION/POPULATION ESTIMATES

Type of System: Surface water - Noncommunity serving other than transient accommodation units
Total Number of Connections: 1
 Number & Type of Seasonal Units: 1 public restroom
 Number & Type of Permanent Units: none
Population Estimate (source of estimate): 10 (estimated by owner's personnel)
Recorded Water Usage: unknown
Calculated Water Demand: 10 persons x 6 gallons per person = 0.1 gpm
Study Participant E, (continued)

EXISTING FEATURES OF FACILITY

Raw pump capacity: unknown
Chlorination: none
Pressure Tank: none
Filters: none
Service Pumps: none
Storage Capacity: none
Additional Treatment/Capabilities: none

TEXAS WATER COMMISSION REQUIREMENTS FOR FACILITY

Requirements are based on this system being classified as a Surface water - Noncommunity serving other than transient accommodation units system, for a total treatment capacity of 0.1 gpm.

Raw Pump Capacity: 0.1 gpm with the largest pump out of service
Transfer Pump Capacity: 0.1 gpm with the largest pump out of service
Pressure Tank Capacity (Elevated Storage): 220 gallons (N/A)
Filters: 0.1 gpm
Service Pumps: 0.3 gpm
Clearwell Storage Capacity: 30 gallons (50% of maximum daily demand)
Total Storage Capacity: N/A

DEFICIENCIES IN EXISTING TREATMENT PROCESS (Using TWC Criteria): Inadequate flow measuring devices, inadequate chemical injection, inadequate disinfection capabilities, no flash mixing/flocculation, no continuous coagulation, no sedimentation, inadequate filtration, inadequate bulk storage, inadequate pressure storage, inadequate raw water pump capacity, inadequate service pump capacity, inadequate treatment capacity, no certified operator on duty or continuous chlorine/turbidity monitoring, improperly protected raw water intake, inadequate laboratory equipment.
STUDY PARTICIPANT F

PARTICIPATION IN PRELIMINARY ENGINEERING STUDY

Participating in Study? yes
Date of Engineering Site Visit: 4/28/93
Known Site Visit by TWC: yes
Bilateral Compliance Agreement Signed with TWC: N/A

EXISTING TREATMENT PROCESS: Raw water is pumped from Possum Kingdom Lake to service restroom facilities.

CONNECTION/POPULATION ESTIMATES

Type of System: Surface water - Noncommunity serving other than transient accommodation units
Total Number of Connections: 1
 Number & Type of Seasonal Units: 1 public restroom
 Number & Type of Permanent Units: none
Population Estimate (source of estimate): 70 (estimated by owner’s personnel)
Recorded Water Usage: unknown
Calculated Water Demand: 70 persons x 6 gallons per person = 0.3 gpm
EXISTING FEATURES OF FACILITY

Raw pump capacity: unknown
Chlorination: none
Pressure Tank: none
Filters: none
Service Pumps: none
Storage Capacity: none
Additional Treatment/Capabilities: none

TEXAS WATER COMMISSION REQUIREMENTS FOR FACILITY

Requirements are based on this system being classified as a Surface water - Noncommunity serving other than transient accommodation units system, for a total treatment capacity of 0.3 gpm.

Raw Pump Capacity: 0.3 gpm with the largest pump out of service
Transfer Pump Capacity: 0.3 gpm with the largest pump out of service
Pressure Tank Capacity (Elevated Storage): 220 gallons (N/A)
Filters: 0.3 gpm
Service Pumps: 0.9 gpm
Clearwell Storage Capacity: 210 gallons
Total Storage Capacity: N/A

DEFICIENCIES IN EXISTING TREATMENT PROCESS (Using TWC Criteria): Inadequate flow measuring devices, inadequate chemical injection, inadequate disinfection capabilities, no flash mixing/flocculation, no continuous coagulation, no sedimentation, inadequate filtration, inadequate bulk storage, inadequate pressure storage, inadequate raw water pump capacity, inadequate service pump capacity, inadequate treatment capacity, no certified operator on duty or continuous chlorine/turbidity monitoring, improperly protected raw water intake, inadequate laboratory equipment.
STUDY PARTICIPANT G

PARTICIPATION IN PRELIMINARY ENGINEERING STUDY

Participating in Study? yes
Date of Engineering Site Visit: 4/28/93
Known Site Visit by TWC: no
Bilateral Compliance Agreement Signed with TWC: N/A

EXISTING TREATMENT PROCESS: Raw water is pumped from Possum Kingdom Lake to service restroom facilities.

CONNECTION/POPULATION ESTIMATES

Type of System: Surface water - Noncommunity serving other than transient accommodation units
Total Number of Connections: 1
 Number & Type of Seasonal Units: 1 public restroom
 Number & Type of Permanent Units: none
Population Estimate (source of estimate): 916 (estimated by owner's personnel)
Recorded Water Usage: unknown
Calculated Water Demand: 916 persons x 6 gallons per person = 3.8 gpm
Study Participant G. (continued)

EXISTING FEATURES OF FACILITY

Raw pump capacity: unknown
Chlorination: none
Pressure Tank: none
Filters: none
Service Pumps: none
Storage Capacity: none
Additional Treatment/Capabilities: none

TEXAS WATER COMMISSION REQUIREMENTS FOR FACILITY

Requirements are based on this system being classified as a Surface water - Noncommunity serving other than transient accommodation units system, for a total treatment capacity of 3.8 gpm.

Raw Pump Capacity: 3.8 gpm with the largest pump out of service
Transfer Pump Capacity: 3.8 gpm with the largest pump out of service
Pressure Tank Capacity (Elevated Storage): 220 gallons (N/A)
Filters: 3.8 gpm
Service Pumps: 11.4 gpm
Clearwell Storage Capacity: 2750 gallons
Total Storage Capacity: N/A

DEFICIENCIES IN EXISTING TREATMENT PROCESS (Using TWC Criteria): Inadequate flow measuring devices, inadequate chemical injection, inadequate disinfection capabilities, no flash mixing/flocculation, no continuous coagulation, no sedimentation, inadequate filtration, inadequate bulk storage, inadequate pressure storage, inadequate raw water pump capacity, inadequate service pump capacity, inadequate treatment capacity, no certified operator on duty or continuous chlorine/turbidity monitoring, improperly protected raw water intake, inadequate laboratory equipment.
STUDY PARTICIPANT H

PARTICIPATION IN PRELIMINARY ENGINEERING STUDY

Participating in Study? yes
Date of Engineering Site Visit: 4/28/93
Known Site Visit by TWC: no
Bilateral Compliance Agreement Signed with TWC: N/A

EXISTING TREATMENT PROCESS: Raw water is pumped from Possum Kingdom Lake to service restroom facilities.

CONNECTION/POPULATION ESTIMATES

Type of System: Surface water - Noncommunity serving other than transient accommodation units
Total Number of Connections: 1
 Number & Type of Seasonal Units: 1 public restroom
 Number & Type of Permanent Units: none
Population Estimate (source of estimate): 700 (estimated by owner's personnel)
Recorded Water Usage: unknown
Calculated Water Demand: 700 persons x 6 gallons per person = 2.9 gpm
EXISTING FEATURES OF FACILITY

Raw pump capacity: unknown
Chlorination: none
Pressure Tank: none
Filters: none
Service Pumps: none
Storage Capacity: none
Additional Treatment/Capabilities: none

TEXAS WATER COMMISSION REQUIREMENTS FOR FACILITY

Requirements are based on this system being classified as a Surface water - Noncommunity serving other than transient accommodation units system, for a total treatment capacity of 2.9 gpm.

Raw Pump Capacity: 2.9 gpm with the largest pump out of service
Transfer Pump Capacity: 2.9 gpm with the largest pump out of service
Pressure Tank Capacity (Elevated Storage): 220 gallons (N/A)
Filters: 2.9 gpm
Service Pumps: 8.7 gpm
Clearwell Storage Capacity: 2100 gallons
Total Storage Capacity: N/A

DEFICIENCIES IN EXISTING TREATMENT PROCESS (Using TWC Criteria): Inadequate flow measuring devices, inadequate chemical injection, inadequate disinfection capabilities, no flash mixing/flocculation, no continuous coagulation, no sedimentation, inadequate filtration, inadequate bulk storage, inadequate pressure storage, inadequate raw water pump capacity, inadequate service pump capacity, inadequate treatment capacity, no certified operator on duty or continuous chlorine/turbidity monitoring, improperly protected raw water intake, inadequate laboratory equipment.
PARTICIPATION IN PRELIMINARY ENGINEERING STUDY

Participating in Study? yes
Date of Engineering Site Visit: 4/28/93
Known Site Visit by TWC: no
Bilateral Compliance Agreement Signed with TWC: N/A

EXISTING TREATMENT PROCESS: Raw water is pumped from Possum Kingdom Lake to service restroom facilities.

CONNECTION/POPULATION ESTIMATES

Type of System: Surface water - Noncommunity serving other than transient accommodation units
Total Number of Connections: 1
 Number & Type of Seasonal Units: 1 public restroom
 Number & Type of Permanent Units: none
Population Estimate (source of estimate): 123 (estimated by owner's personnel)
Recorded Water Usage: unknown
Calculated Water Demand: 123 persons x 6 gallons per person = 0.5 gpm
Study Participant G, (continued)

EXISTING FEATURES OF FACILITY

Raw pump capacity: unknown
Chlorination: none
Pressure Tank: none
Filters: none
Service Pumps: none
Storage Capacity: none
Additional Treatment/Capabilities: none

TEXAS WATER COMMISSION REQUIREMENTS FOR FACILITY

Requirements are based on this system being classified as a Surface water - Noncommunity serving other than transient accommodation units system, for a total treatment capacity of 0.5 gpm.

Raw Pump Capacity: 0.5 gpm with the largest pump out of service
Transfer Pump Capacity: 0.5 gpm with the largest pump out of service
Pressure Tank Capacity (Elevated Storage): 220 gallons (N/A)
Filters: 0.5 gpm
Service Pumps: 1.5 gpm
Clearwell Storage Capacity: 370 gallons
Total Storage Capacity: N/A

DEFICIENCIES IN EXISTING TREATMENT PROCESS (Using TWC Criteria): Inadequate flow measuring devices, inadequate chemical injection, inadequate disinfection capabilities, no flash mixing/flocculation, no continuous coagulation, no sedimentation, inadequate filtration, inadequate bulk storage, inadequate pressure storage, inadequate raw water pump capacity, inadequate service pump capacity, inadequate treatment capacity, no certified operator on duty or continuous chlorine/turbidity monitoring, improperly protected raw water intake, inadequate laboratory equipment.
STUDY PARTICIPANT J

PARTICIPATION IN PRELIMINARY ENGINEERING STUDY

Participating in Study? yes
Date of Engineering Site Visit: 4/28/93
Known Site Visit by TWC: no
Bilateral Compliance Agreement Signed with TWC: N/A

EXISTING TREATMENT PROCESS: Raw water is pumped from Possum Kingdom Lake to service restroom facilities.

CONNECTION/POPULATION ESTIMATES

Type of System: Surface water - Noncommunity serving other than transient accommodation units
Total Number of Connections: 1
 Number & Type of Seasonal Units: 1 public restroom
 Number & Type of Permanent Units: none
Population Estimate (source of estimate): 666 (estimated by owner's personnel)
Recorded Water Usage: unknown
Calculated Water Demand: 666 persons x 6 gallons per person = 2.8 gpm
EXISTING FEATURES OF FACILITY

Raw pump capacity: unknown
Chlorination: none
Pressure Tank: none
Filters: none
Service Pumps: none
Storage Capacity: none
Additional Treatment/Capabilities: none

TEXAS WATER COMMISSION REQUIREMENTS FOR FACILITY

Requirements are based on this system being classified as a Surface water - Noncommunity serving other than transient accommodation units system, for a total treatment capacity of 2.8 gpm.

Raw Pump Capacity: 2.8 gpm with the largest pump out of service
Transfer Pump Capacity: 2.8 gpm with the largest pump out of service
Pressure Tank Capacity (Elevated Storage): 220 gallons (N/A)
Filters: 2.8 gpm
Service Pumps: 8.4 gpm
Clearwell Storage Capacity: 2000 gallons
Total Storage Capacity: N/A

DEFICIENCIES IN EXISTING TREATMENT PROCESS (Using TWC Criteria): Inadequate flow measuring devices, inadequate chemical injection, inadequate disinfection capabilities, no flash mixing/flocculation, no continuous coagulation, no sedimentation, inadequate filtration, inadequate bulk storage, inadequate pressure storage, inadequate raw water pump capacity, inadequate service pump capacity, inadequate treatment capacity, no certified operator on duty or continuous chlorine/turbidity monitoring, improperly protected raw water intake, inadequate laboratory equipment.
STUDY PARTICIPANT K

PARTICIPATION IN PRELIMINARY ENGINEERING STUDY

Participating in Study? yes
Date of Engineering Site Visit: 4/28/93
Known Site Visit by TWC: no
Bilateral Compliance Agreement Signed with TWC: N/A

EXISTING TREATMENT PROCESS: Raw water is pumped from Possum Kingdom Lake to service restroom facilities.

CONNECTION/POPULATION ESTIMATES

Type of System: Surface water - Noncommunity serving other than transient accommodation units
Total Number of Connections: 1
 Number & Type of Seasonal Units: 1 public restroom
 Number & Type of Permanent Units: none
Population Estimate (source of estimate): 210 (estimated by owner's personnel)
Recorded Water Usage: unknown
Calculated Water Demand: 210 persons x 6 gallons per person = 0.9 gpm
Study Participant K, (continued)

EXISTING FEATURES OF FACILITY

Raw pump capacity: unknown
Chlorination: none
Pressure Tank: none
Filters: none
Service Pumps: none
Storage Capacity: none
Additional Treatment/Capabilities: none

TEXAS WATER COMMISSION REQUIREMENTS FOR FACILITY

Requirements are based on this system being classified as a Surface water - Noncommunity serving other than transient accommodation units system, for a total treatment capacity of 0.9 gpm.

Raw Pump Capacity: 0.9 gpm with the largest pump out of service
Transfer Pump Capacity: 0.9 gpm with the largest pump out of service
Pressure Tank Capacity (Elevated Storage): 220 gallons (N/A)
Filters: 0.9 gpm
Service Pumps: 2.7 gpm
Clearwell Storage Capacity: 630 gallons
Total Storage Capacity: N/A

DEFICIENCIES IN EXISTING TREATMENT PROCESS (Using TWC Criteria): Inadequate flow measuring devices, inadequate chemical injection, inadequate disinfection capabilities, no flash mixing/flocculation, no continuous coagulation, no sedimentation, inadequate filtration, inadequate bulk storage, inadequate pressure storage, inadequate raw water pump capacity, inadequate service pump capacity, inadequate treatment capacity, no certified operator on duty or continuous chlorine/turbidity monitoring, improperly protected raw water intake, inadequate laboratory equipment.
STUDY PARTICIPANT L

PARTICIPATION IN PRELIMINARY ENGINEERING STUDY

Participating in Study? yes
Date of Engineering Site Visit: 4/28/93
Known Site Visit by TWC: no
Bilateral Compliance Agreement Signed with TWC: N/A

EXISTING TREATMENT PROCESS: Raw water is pumped from Possum Kingdom Lake to service restroom facilities.

CONNECTION/POPULATION ESTIMATES

Type of System: Surface water - Noncommunity serving other than transient accommodation units
Total Number of Connections: 2
 Number & Type of Seasonal Units: 1 office
 Number & Type of Permanent Units: 1 house
Population Estimate (source of estimate): 10 (estimated)
Recorded Water Usage: unknown
Calculated Water Demand: 5 persons x 18 gallons per person + 1 x 0.6 gpm = 0.7 gpm
EXISTING FEATURES OF FACILITY

Raw pump capacity: unknown
Chlorination: none
Pressure Tank: none
Filters: none
Service Pumps: none
Storage Capacity: none
Additional Treatment/Capabilities: none

TEXAS WATER COMMISSION REQUIREMENTS FOR FACILITY

Requirements are based on this system being classified as a Surface water - Noncommunity serving other than transient accommodation units system, for a total treatment capacity of 0.7 gpm.

Raw Pump Capacity: 0.7 gpm with the largest pump out of service
Transfer Pump Capacity: 0.7 gpm with the largest pump out of service
Pressure Tank Capacity (Elevated Storage): 220 gallons (N/A)
Filters: 0.7 gpm
Service Pumps: 2.1 gpm
Clearwell Storage Capacity: 480 gallons
Total Storage Capacity: N/A

DEFICIENCIES IN EXISTING TREATMENT PROCESS (Using TWC Criteria): Inadequate flow measuring devices, inadequate chemical injection, inadequate disinfection capabilities, no flash mixing/flocculation, no continuous coagulation, no sedimentation, inadequate filtration, inadequate bulk storage, inadequate pressure storage, inadequate raw water pump capacity, inadequate service pump capacity, inadequate treatment capacity, no certified operator on duty or continuous chlorine/turbidity monitoring, improperly protected raw water intake, inadequate laboratory equipment.
STUDY PARTICIPANT M

PARTICIPATION IN PRELIMINARY ENGINEERING STUDY

Participating in Study? yes
Date of Engineering Site Visit: 4/28/93
Known Site Visit by TWC: no
Bilateral Compliance Agreement Signed with TWC: N/A

EXISTING TREATMENT PROCESS: Raw water is filtered, transferred to storage for distribution for sinks, toilets, showers, etc. Bottled water is brought in for human consumption

CONNECT/POULATION ESTIMATES

Type of System: Surface water/Community
Total Number of Connections: 18
 Number & Type of Seasonal Units: 1 public restroom
 Number & Type of Permanent Units: 14 houses, 2 MH, 1 office
Population Estimate (source of estimate): 16 x 3 = 48 (permanent); 150 people (restroom, assumed) (estimated, using the BRA headcount numbers for 1992)
Recorded Water Usage: use approximately 150 3-gallon bottles a month ($700/month to Ozarka)
Calculated Water Demand: (16 x 0.6 gpm) + (1 x 18 gal/person) + (150 people x 6 gallons/person) = 10.2 gpm
Study Participant M. (continued)

EXISTING FEATURES OF FACILITY

Raw pump capacity: 2 - 9hp pumps
Chlorination: none added
Pressure Tank: none
Filters: 1 pressure sand filter, unknown capacity
Service Pumps: none
Storage Capacity: 16,000 gallons elevated storage
Additional Treatment/Capabilities: none

TEXAS WATER COMMISSION REQUIREMENTS FOR FACILITY

Requirements are based on this system being classified as a Surface water/Community system, for a total treatment capacity of 10.8 gpm.

Raw Pump Capacity: 10.8 gpm with the largest pump out of service
Transfer Pump Capacity: 10.8 gpm with the largest pump out of service
Pressure Tank Capacity (Elevated Storage): N/A (1800 gallons)
Filters: 10.8 gpm
Service Pumps: 2 or more pumps with a total capacity of 36 gpm per connection
Clearwell Storage Capacity: 900 gallons
Total Storage Capacity: 3600 gallons

DEFICIENCIES IN EXISTING TREATMENT PROCESS (Using TWC Criteria): Inadequate flow measuring devices, inadequate chemical injection, inadequate disinfection capabilities, no flash mixing/flocculation, no continuous coagulation, no sedimentation, inadequate filtration, inadequate raw water pump capacity, inadequate service pump capacity, inadequate treatment capacity, no certified operator on duty or continuous chlorine/turbidity monitoring, inadequate laboratory equipment.
PARTICIPATION IN PRELIMINARY ENGINEERING STUDY

Participating in Study? yes
Date of Engineering Site Visit: none as of this date
Known Site Visit by TWC: no
Bilateral Compliance Agreement Signed with TWC: yes

EXISTING TREATMENT PROCESS: Flow measurement, filtration, reverse osmosis, terminal disinfection, and covered clearwell storage.

CONNECTION/POPULATION ESTIMATES

Type of System: Surface water - Community
Total Number of Connections: 24
 Number & Type of Seasonal Units: 24 condominiums in 4 buildings
 Number & Type of Permanent Units: assume no permanent residents
Population Estimate (source of estimate): 72 (estimated from the number of condominiums)
Recorded Water Usage: 1214 gpd average during Nov, Dec, Jan, & part of Feb
Calculated Water Demand: 24 x 0.6 = 14.4 gpm
Study Participant N. (continued)

EXISTING FEATURES OF FACILITY

Raw pump capacity: 2 - 25 gpm
Chlorination: yes
Pressure Tank: 1 - 82 gal
Filters: unknown
Service Pumps: 1 - 18 gpm
Storage Capacity: 2 - 3500 gal
Additional Treatment/Capabilities: RO system

TEXAS WATER COMMISSION REQUIREMENTS FOR FACILITY

Requirements are based on this system being classified as a Surface water - Community system, for a total treatment capacity of 14.4 gpm.

Raw Pump Capacity: 14.4 gpm with the largest pump out of service
Transfer Pump Capacity: 14.4 gpm with the largest pump out of service
Pressure Tank Capacity (Elevated Storage): 480 gallons (N/A)
Filters: 14.4 gpm
Service Pumps: 2 or more pumps with a total capacity of 48 gpm
Clearwell Storage Capacity: 1200 gallons
Total Storage Capacity: 4800 gallons

DEFICIENCIES IN EXISTING TREATMENT PROCESS (Using TWC Criteria): Inadequate flow measuring devices, inadequate chemical injection, inadequate disinfection capabilities, no flash mixing/flocculation, no continuous coagulation, no sedimentation, inadequate pressure storage, inadequate raw water pump capacity, inadequate service pump capacity, inadequate treatment capacity, no certified operator on duty or continuous chlorine/turbidity monitoring, improperly protected raw water intake, inadequate laboratory equipment.
STUDY PARTICIPANT 0

PARTICIPATION IN PRELIMINARY ENGINEERING STUDY

Participating in Study? did not return survey
Date of Engineering Site Visit: 6/3/93
Known Site Visit by TWC: no
Bilateral Compliance Agreement Signed with TWC: no reply

EXISTING TREATMENT PROCESS: Raw water is pumped from Possum Kingdom Lake.

CONNECTION/POPULATION ESTIMATES

Type of System: Not a Public Water System
Total Number of Connections: 14
 Number & Type of Seasonal Units: 0
 Number & Type of Permanent Units: authorized for 14 MH
Population Estimate (source of estimate): 42 (estimated using 3 persons per connection per Texas Water Commission standards)

Recorded Water Usage: none
Calculated Water Demand: 14 x 0.6 gpm = 8.4 gpm
EXISTING FEATURES OF FACILITY

Raw pump capacity: unknown
Chlorination: unknown
Pressure Tank: unknown
Filters: unknown
Service Pumps: unknown
Storage Capacity: unknown
Additional Treatment/Capabilities: unknown

TEXAS WATER COMMISSION REQUIREMENTS FOR FACILITY

This system does not meet the requirements to be a Public Water System, therefore, the current rules and regulations are not applicable.

Raw Pump Capacity: N/A
Transfer Pump Capacity: N/A
Pressure Tank Capacity (Elevated Storage): N/A (N/A)
Filters: N/A
Service Pumps: N/A
Clearwell Storage Capacity: N/A
Total Storage Capacity: N/A

DEFICIENCIES IN EXISTING TREATMENT PROCESS (Using TWC Criteria): Inadequate flow measuring devices, inadequate disinfection capabilities, inadequate pressure storage, inadequate raw water pump capacity, improperly protected wellhead.
PARTICIPATION IN PRELIMINARY ENGINEERING STUDY

Participating in Study? unknown
Date of Engineering Site Visit: none as of this date
Known Site Visit by TWC: yes
Bilateral Compliance Agreement Signed with TWC: N/A

EXISTING TREATMENT PROCESS: Pretreatment disinfection, taste and odor control, filtration, RO system, covered clearwell storage, terminal disinfection, and pressure tanks, no laboratory equipment, no continuous chlorine/turbidity monitoring, or certified operator on duty when plant in operation.

CONNECTION/POPULATION ESTIMATES

Type of System: Not a Public Water System
Total Number of Connections: 10
 Number & Type of Seasonal Units: 10 condominiums
 Number & Type of Permanent Units: no permanent residents
Population Estimate (source of estimate): 30 (estimated using 3 persons per connection per Texas Water Commission standards)

Recorded Water Usage: unknown
Calculated Water Demand: $10 \times 0.6 \text{ gpm} = 6 \text{ gpm}$
Study Participant P, (continued)

EXISTING FEATURES OF FACILITY

Raw pump capacity: 1 - 21 gpm submersible, 2 - 10 gpm centrifugal
Chlorination: hypochlorinator injects chlorine prior to filters, and into ground storage
Pressure Tank: 2 - 80 gal fiberglass
Filters: 2 - 16" pressure mixed media (2 gpm/sf)
Service Pumps: 1 - 35 gpm, 1½ hp
Storage Capacity: 1200 gal
Additional Treatment/Capabilities: softener, 3000 gpd RO System

TEXAS WATER COMMISSION REQUIREMENTS FOR FACILITY

This system does not meet the requirements to be a Public Water System, therefore, the current rules and regulations are not applicable.

Raw Pump Capacity: N/A
Transfer Pump Capacity: N/A
Pressure Tank Capacity (Elevated Storage): N/A (N/A)
Filters: N/A
Service Pumps: N/A
Clearwell Storage Capacity: N/A
Total Storage Capacity: N/A

DEFICIENCIES IN EXISTING TREATMENT PROCESS (Using TWC Criteria): Inadequate chemical injection, inadequate disinfection capabilities, no flash mixing/flocculation, no continuous coagulation, no sedimentation, inadequate filtration, inadequate pressure storage, inadequate service pump capacity, inadequate treatment capacity, no certified operator on duty or continuous chlorine/turbidity monitoring, improperly protected raw water intake, inadequate laboratory equipment.
STUDY PARTICIPANT Q

PARTICIPATION IN PRELIMINARY ENGINEERING STUDY

Participating in Study? yes
Date of Engineering Site Visit: 4/20/93
Known Site Visit by TWC: yes
Bilateral Compliance Agreement Signed with TWC: N/A

EXISTING TREATMENT PROCESS: Possum Kingdom Lake water receives complete treatment plus reverse osmosis treatment

CONNECTION/POPULATION ESTIMATES

Type of System: Surface water - Noncommunity serving other than transient accommodation units
Total Number of Connections: 22
 Number & Type of Seasonal Units: kitchen, 7 cabins, 13 shower facilities
 Number & Type of Permanent Units: 1 house
Population Estimate (source of estimate): 475 (Gene Hacker, Camp Ranger)
Recorded Water Usage: peak of 904,400 gal in 6/92
Calculated Water Demand: 475 x 42 gpd + 1 x 0.6 gpm = 14.5 gpm
EXISTING FEATURES OF FACILITY

Raw pump capacity: 2 - 25 gpm at 220 TDH
Chlorination: pre- and super-; in 7/92, used 78 gal 12.5% Na hypochlorite
Pressure Tank: 30 gal (for ranger’s use, not in service)
Filters: 2 - 14 gpm pressure dual-media
Service Pumps: no (small one for ranger’s house)
Storage Capacity: 2 - 42,000 gal; 1 - 22,000 gal; all treated as elevated
Additional Treatment/Capabilities: 7/92 used 38 gal concentrated muriatic acid, RO system, superchlorinates, continuous turbidity/chlorine monitoring, automatic shutdown

TEXAS WATER COMMISSION REQUIREMENTS FOR FACILITY

Requirements are based on this system being classified as a Surface water - Noncommunity serving other than transient accommodation units system, for a total treatment capacity of 14.5 gpm.

Raw Pump Capacity: 14.5 gpm with the largest pump out of service
Transfer Pump Capacity: 14.5 gpm with the largest pump out of service
Pressure Tank Capacity (Elevated Storage): 220 gallons (N/A)
Filters: 14.5 gpm
Service Pumps: 43.5 gpm
Clearwell Storage Capacity: 10,400 gallons
Total Storage Capacity: N/A

DEFICIENCIES IN EXISTING TREATMENT PROCESS (Using TWC Criteria): None
STUDY PARTICIPANT R

PARTICIPATION IN PRELIMINARY ENGINEERING STUDY

Participating in Study? yes
Date of Engineering Site Visit: 4/12/93
Known Site Visit by TWC: yes
Bilateral Compliance Agreement Signed with TWC: unknown

EXISTING TREATMENT PROCESS: No treatment is conducted, receives treated water from Graham

CONNECTION/POPULATION ESTIMATES

Type of System: Surface water - Noncommunity serving other than transient accommodation units
Total Number of Connections: 1
 Number & Type of Seasonal Units: 0
 Number & Type of Permanent Units: 1 restaurant
Population Estimate (source of estimate): 50 (Texas Water Commission sanitary survey)
Recorded Water Usage: 2500 gal/month, during spring
Calculated Water Demand: 50 x 18 gpd = 0.6 gpm
Study Participant R. (continued)

EXISTING FEATURES OF FACILITY

Raw pump capacity: none
Chlorination: none
Pressure Tank: none
Filters: none
Service Pumps: 2 - 1/2 hp
Storage Capacity: 1 - 3000 gal; 1 - 1300 gal
Additional Treatment/Capabilities: none

TEXAS WATER COMMISSION REQUIREMENTS FOR FACILITY

Requirements are based on this system being classified as a Surface water - Noncommunity serving other than transient accommodation units system, for a total treatment capacity of 0.6 gpm.

Raw Pump Capacity: 0.6 gpm with the largest pump out of service
Transfer Pump Capacity: 0.6 gpm with the largest pump out of service
Pressure Tank Capacity (Elevated Storage): 220 gallons (N/A)
Filters: 0.6 gpm
Service Pumps: 1.8 gpm
Clearwell Storage Capacity: 450 gallons
Total Storage Capacity: N/A

DEFICIENCIES IN EXISTING TREATMENT PROCESS (Using TWC Criteria): Inadequate disinfection capabilities, inadequate pressure storage, inadequate service pump capacity, inadequate laboratory equipment, inadequate operating pressure.
STUDY PARTICIPANTS

PARTICIPATION IN PRELIMINARY ENGINEERING STUDY

Participating in Study? yes
Date of Engineering Site Visit: none as of this date
Known Site Visit by TWC: N/A
Bilateral Compliance Agreement Signed with TWC: yes

EXISTING TREATMENT PROCESS: Raw water is pumped from Possum Kingdom Lake.

CONNECTION/POPULATION ESTIMATES

Type of System: Not a Public Water System
Total Number of Connections: 5
 Number & Type of Seasonal Units: none
 Number & Type of Permanent Units: 4 houses, 1 office
Population Estimate (source of estimate): 4 x 3 + 1 x 10 = 22 (estimated using TWC criteria & assuming 10 persons in the office/day)

Recorded Water Usage: unknown
Calculated Water Demand: 4 x 0.6 gpm + 10 x 18 gpd/person = 2.5 gpm
Study Participant S. (continued)

EXISTING FEATURES OF FACILITY

Raw pump capacity: unknown
Chlorination: unknown
Pressure Tank: unknown
Filters: unknown
Service Pumps: unknown
Storage Capacity: unknown
Additional Treatment/Capabilities: none

TEXAS WATER COMMISSION REQUIREMENTS FOR FACILITY

This system does not meet the requirements to be a Public Water System, therefore, the current rules and regulations are not applicable.

Raw Pump Capacity: N/A
Transfer Pump Capacity: N/A
Pressure Tank Capacity (Elevated Storage): N/A (N/A)
Filters: N/A
Service Pumps: N/A
Clearwell Storage Capacity: N/A
Total Storage Capacity: N/A

DEFICIENCIES IN EXISTING TREATMENT PROCESS (Using TWC Criteria): Inadequate flow measuring devices, inadequate chemical injection, inadequate disinfection capabilities, no flash mixing/flocculation, no continuous coagulation, no sedimentation, inadequate filtration, inadequate bulk storage, inadequate pressure storage, inadequate raw water pump capacity, inadequate service pump capacity, inadequate treatment capacity, no certified operator on duty or continuous chlorine/turbidity monitoring, improperly protected raw water intake, inadequate laboratory equipment.
STUDY PARTICIPANT T

PARTICIPATION IN PRELIMINARY ENGINEERING STUDY

Participating in Study? yes
Date of Engineering Site Visit: none as of this date
Known Site Visit by TWC: no
Bilateral Compliance Agreement Signed with TWC: yes

EXISTING TREATMENT PROCESS: unknown

CONNECTION/POPULATION ESTIMATES

Type of System: Not a Public Water System
Total Number of Connections: 9
 Number & Type of Seasonal Units: 9 buildings
 Number & Type of Permanent Units: 0
Population Estimate (source of estimate): maximum of 45 (BRA contract) (BRA Contract limits capacity)

Recorded Water Usage: none
Calculated Water Demand: 45 x 42 gallons/person = 1.3 gpm
EXISTING FEATURES OF FACILITY

Raw pump capacity: unknown
Chlorination: unknown
Pressure Tank: unknown
Filters: unknown
Service Pumps: unknown
Storage Capacity: unknown
Additional Treatment/Capabilities: unknown

TEXAS WATER COMMISSION REQUIREMENTS FOR FACILITY

This system does not meet the requirements to be a Public Water System, therefore, the current rules and regulations are not applicable.

Raw Pump Capacity: N/A
Transfer Pump Capacity: N/A
Pressure Tank Capacity (Elevated Storage): N/A (N/A)
Filters: N/A
Service Pumps: N/A
Clearwell Storage Capacity: N/A
Total Storage Capacity: N/A

DEFICIENCIES IN EXISTING TREATMENT PROCESS (Using TWC Criteria): unknown
STUDY PARTICIPANT U

PARTICIPATION IN PRELIMINARY ENGINEERING STUDY

Participating in Study? yes
Date of Engineering Site Visit: 4/27/93
Known Site Visit by TWC: yes
Bilateral Compliance Agreement Signed with TWC: yes

EXISTING TREATMENT PROCESS: Raw water pumps deliver water to the hypochlorinator, through the pressure tank, and on to the distribution system

CONNECTION/POPULATION ESTIMATES

Type of System: Surface water - Community
Total Number of Connections: 86
 Number & Type of Seasonal Units: 11 RV, 56 MH, 10 cabin units
 Number & Type of Permanent Units: 1 home, restaurant, 2 cabins, 5 MH
Population Estimate (source of estimate): 200 (Texas Water Commission sanitary survey)
Recorded Water Usage: unknown, hauls 1000 gal approx every 3 weeks in summer
Calculated Water Demand: 0.6 gpm x 85 conn + 18 gpd/pers x 50 people = 51.6 gpm
EXISTING FEATURES OF FACILITY

Raw pump capacity: 1 - 90 gpm submersible; 1 - 5hp, 75 gpm centrifugal; 1 - 2hp, 40 gpm vertical turbine

Chlorination: 55 gal/month from AMPI
Pressure Tank: 550 gal
Filters: none
Service Pumps: none
Storage Capacity: 2 - 500 gal for hauled water
Additional Treatment/Capabilities: hauls water for cabins & restaurant

TEXAS WATER COMMISSION REQUIREMENTS FOR FACILITY

Requirements are based on this system being classified as a Surface water - Community system, for a total treatment capacity of 51.6 gpm under normal rated design flow.

Raw Pump Capacity: 51.6 gpm with the largest pump out of service
Transfer Pump Capacity: 51.6 gpm with the largest pump out of service
Pressure Tank Capacity (Elevated Storage): 1720 gallons
Filters: 51.6 gpm under normal rated design flow
Service Pumps: 2 or more pumps with a total capacity of 172 gpm
Clearwell Storage Capacity: 4300 gallons
Total Storage Capacity: 17200 gallons

DEFICIENCIES IN EXISTING TREATMENT PROCESS (Using TWC Criteria): Inadequate flow measuring devices, inadequate chemical injection, inadequate disinfection capabilities, no flash mixing/flocculation, no continuous coagulation, no sedimentation, inadequate filtration, inadequate bulk storage, inadequate pressure storage, inadequate raw water pump capacity, inadequate service pump capacity, inadequate treatment capacity, no certified operator on duty or continuous chlorine/turbidity monitoring, improperly protected raw water intake, inadequate laboratory equipment. Inadequate pressure on hauled water system.
PARTICIPATION IN PRELIMINARY ENGINEERING STUDY

Participating in Study? yes
Date of Engineering Site Visit: 4/12/93
Known Site Visit by TWC: yes
Bilateral Compliance Agreement Signed with TWC: yes

EXISTING TREATMENT PROCESS: Raw water is filtered and chlorinated and conveyed through the pressure tank. The water is transmitted to the storage tank prior to distribution.

CONNECTION/POPULATION ESTIMATES

Type of System: Surface water - Community
Total Number of Connections: 12
 Number & Type of Seasonal Units: 2 MH
 Number & Type of Permanent Units: 2 retail bldgs, 7 houses/MH, MH park
Population Estimate (source of estimate): 30 (Texas Water Commission sanitary survey)
Recorded Water Usage: max of 210,000 gal in July
Calculated Water Demand: 7.0 gpm
EXISTING FEATURES OF FACILITY

Raw pump capacity: 1 - 20 gpm at 60 psi
Chlorination: 21 gal last quarter
Pressure Tank: 120 gal
Filters: none
Service Pumps: 1 - 20 gpm
Storage Capacity: 1 - 9600 gal elevated
Additional Treatment/Capabilities: none

TEXAS WATER COMMISSION REQUIREMENTS FOR FACILITY

Requirements are based on this system being classified as a Surface water - Community system, for a total treatment capacity of 7.2 gpm.

Raw Pump Capacity: 7.2 gpm with the largest pump out of service
Transfer Pump Capacity: 7.2 gpm with the largest pump out of service
Pressure Tank Capacity (Elevated Storage): 240 gallons (1200 gallons)
Filters: 7.2 gpm
Service Pumps: 2 or more pumps with a total capacity of 24 gpm
Clearwell Storage Capacity: 600 gallons
Total Storage Capacity: 2400 gallons

DEFICIENCIES IN EXISTING TREATMENT PROCESS (Using TWC Criteria): Insufficient raw water supply. Inadequate flow measuring devices, inadequate chemical injection, inadequate disinfection capabilities, no flash mixing/flocculation, no continuous coagulation, no sedimentation, inadequate filtration, inadequate bulk storage, inadequate pressure storage, inadequate raw water pump capacity, inadequate service pump capacity, inadequate treatment capacity, no certified operator on duty or continuous chlorine/turbidity monitoring, improperly protected raw water intake, inadequate laboratory equipment.
PARTICIPATION IN PRELIMINARY ENGINEERING STUDY

Participating in Study? yes
Date of Engineering Site Visit: 4/20/93
Known Site Visit by TWC: yes
Bilateral Compliance Agreement Signed with TWC: "in compliance"

EXISTING TREATMENT PROCESS: Pretreatment disinfection, flash mixing and flocculation, filtration, covered clearwell storage, and terminal disinfection

CONNECTION/POPULATION ESTIMATES

Type of System: Surface water - Noncommunity serving other than transient accommodation units
Total Number of Connections: 33 (main)
 Number & Type of Seasonal Units: 8 rock bldgs (16/ea), 21 tents (10/ea), 4 restrooms/showers
 Number & Type of Permanent Units: 2 houses
Population Estimate (source of estimate): 440 (estimated using Texas Water Commission criteria.)
Recorded Water Usage: max flow 51,600 gpd on July 27, 1992
Calculated Water Demand: 440 x 42 gpd = 12.8 gpm
Study Participant W, (continued)

EXISTING FEATURES OF FACILITY

Raw pump capacity: 2 - 5hp, 40 gpm centrifugals
Chlorination: pre- & post-chlorination; July 92, used 176 gal
Pressure Tank: none
Filters: 2 or 4 dual media pressure
Service Pumps: 2 - 40 gpm
Storage Capacity: 2 - 21,000 gal in service; 2 - 21,000 gal tanks not plumbed in yet
Additional Treatment/Capabilities: superchlorination is planned after new tanks in service

TEXAS WATER COMMISSION REQUIREMENTS FOR FACILITY

Requirements are based on this system being classified as a Surface water - Noncommunity serving other than transient accommodation units system, for a total treatment capacity of 12.8 gpm.

Raw Pump Capacity: 12.8 gpm with the largest pump out of service
Transfer Pump Capacity: 12.8 gpm with the largest pump out of service
Pressure Tank Capacity (Elevated Storage): 220 gallons (N/A)
Filters: 12.8 gpm
Service Pumps: 38.4 gpm
Clearwell Storage Capacity: 9240 gallons
Total Storage Capacity: N/A

DEFICIENCIES IN EXISTING TREATMENT PROCESS (Using TWC Criteria): No continuous coagulation, no sedimentation, inadequate pressure storage, inadequate raw water pump capacity, inadequate service pump capacity, inadequate treatment capacity, no certified operator on duty or continuous chlorine/turbidity monitoring, improperly protected raw water intake, inadequate laboratory equipment.
STUDY PARTICIPANT X

PARTICIPATION IN PRELIMINARY ENGINEERING STUDY

Participating in Study? yes
Date of Engineering Site Visit: 4/20/93
Known Site Visit by TWC: yes
Bilateral Compliance Agreement Signed with TWC: "in compliance"

EXISTING TREATMENT PROCESS: Pretreatment disinfection, filtration, covered clearwell storage, and terminal disinfection.

CONNECTION/POPULATION ESTIMATES

Type of System: Surface water - Noncommunity serving other than transient accommodation units
Total Number of Connections: 34
 Number & Type of Seasonal Units: 28 tents (10/ea), 4 staff rentals
 Number & Type of Permanent Units: 2 staff houses
Population Estimate (source of estimate): 280 (Texas Water Commission sanitary survey)
Recorded Water Usage: max of 28,800 gpd on 8/6/92; (20 gpm)
Calculated Water Demand: 280 x 42 gpd = 8.2 gpm
Study Participant X, (continued)

EXISTING FEATURES OF FACILITY

Raw pump capacity: 2 - 7.5hp 40 gpm
Chlorination: pre- & post-(super), 74 gal in July, 92
Pressure Tank: none
Filters: 2 - 28"D x 4'high; 1 - 42"D x 5' high
Service Pumps: none
Storage Capacity: 4 - 21,000 gal
Additional Treatment/Capabilities: superchlorination

TEXAS WATER COMMISSION REQUIREMENTS FOR FACILITY

Requirements are based on this system being classified as a Surface water - Noncommunity serving other than transient accommodation units system, for a total treatment capacity of 8.2 gpm.

Raw Pump Capacity: 8.2 gpm with the largest pump out of service
Transfer Pump Capacity: 8.2 gpm with the largest pump out of service
Pressure Tank Capacity (Elevated Storage): 220 gallons (N/A)
Filters: 8.2 gpm
Service Pumps: 24.6 gpm
Clearwell Storage Capacity: 5880 gallons
Total Storage Capacity: N/A

DEFICIENCIES IN EXISTING TREATMENT PROCESS (Using TWC Criteria): No taste and odor control, flash mixing, flocculation, continuous coagulation, sedimentation, no laboratory equipment, no continuous chlorine/turbidity monitoring, or certified operator on duty when plant in operation.
STUDY PARTICIPANT Y

PARTICIPATION IN PRELIMINARY ENGINEERING STUDY

Participating in Study? yes
Date of Engineering Site Visit: 6/2/93
Known Site Visit by TWC: yes
Bilateral Compliance Agreement Signed with TWC: yes

EXISTING TREATMENT PROCESS: Raw water passes through an activated charcoal filter prior to the softener. Softened water is chlorinated and is distributed through the pressure tank.

CONNECTION/POPULATION ESTIMATES

Type of System: Surface water - Noncommunity serving other than transient accommodation units
Total Number of Connections: 4
 Number & Type of Seasonal Units: 0
 Number & Type of Permanent Units: 1 store, 1 restaurant, 1 apt, 1 MH
Population Estimate (source of estimate): 50 (Texas Water Commission sanitary survey)
Recorded Water Usage: unknown
Calculated Water Demand: 50 \times 12 \text{ gpd} + 2 \times 0.6 \text{ gpm} + 35 \times 18 \text{ gpd} = 2.1 \text{ gpm}
EXISTING FEATURES OF FACILITY

Raw pump capacity: 1 - 10 gpm submersible
Chlorination: 2 hypochlorinators
Pressure Tank: 1 - 40 gallon
Filters: 1 - 3 cf (8 gpm)
Service Pumps: none
Storage Capacity: none
Additional Treatment/Capabilities: 8 gpm softener

TEXAS WATER COMMISSION REQUIREMENTS FOR FACILITY

Requirements are based on this system being classified as a Surface water - Noncommunity serving other than transient accommodation units system, for a total treatment capacity of 2.1 gpm.

Raw Pump Capacity: 2.1 gpm with the largest pump out of service
Transfer Pump Capacity: 2.1 gpm with the largest pump out of service
Pressure Tank Capacity (Elevated Storage): 220 gallons (N/A)
Filters: 2.1 gpm
Service Pumps: 6.3 gpm
Clearwell Storage Capacity: 1500 gallons
Total Storage Capacity: N/A

DEFICIENCIES IN EXISTING TREATMENT PROCESS (Using TWC Criteria): Inadequate flow measuring devices, inadequate chemical injection, inadequate disinfection capabilities, no flash mixing/flocculation, no continuous coagulation, no sedimentation, inadequate filtration, inadequate bulk storage, inadequate pressure storage, inadequate raw water pump capacity, inadequate service pump capacity, inadequate treatment capacity, no certified operator on duty or continuous chlorine/turbidity monitoring, improperly protected raw water intake, inadequate laboratory equipment.
STUDY PARTICIPANT Z

PARTICIPATION IN PRELIMINARY ENGINEERING STUDY

Participating in Study? yes
Date of Engineering Site Visit: 4/27/93
Known Site Visit by TWC: yes
Bilateral Compliance Agreement Signed with TWC: "well"

EXISTING TREATMENT PROCESS: Well water is disinfected prior to the pressure tanks and distribution.

CONNECTION/POPULATION ESTIMATES

Type of System: Groundwater - Community
Total Number of Connections: 16
 Number & Type of Seasonal Units: 4 MH/houses
 Number & Type of Permanent Units: 11 MH/houses, 1 beer joint
Population Estimate (source of estimate): 60 (estimated using Texas Water Commission criteria)

Recorded Water Usage: none
Calculated Water Demand: 15 x 1.5 gpm + 30 x 18 gpd = 22.9 gpm
Study Participant Z, (continued)

EXISTING FEATURES OF FACILITY

Raw pump capacity: 2 - 3hp
Chlorination: 3 gal/wk bleach
Pressure Tank: 2 - 200 gal
Filters: none
Service Pumps: none
Storage Capacity: none
Additional Treatment/Capabilities: none; filtrate study performed

TEXAS WATER COMMISSION REQUIREMENTS FOR FACILITY

Requirements are based on this system being classified as a Groundwater - Community system, for size category of < 50 connections without ground storage.

Raw Pump Capacity: 24 gpm
Transfer Pump Capacity: N/A
Pressure Tank Capacity (Elevated Storage): 800 gallons (N/A)
Filters: N/A
Service Pumps: N/A
Clearwell Storage Capacity: N/A
Total Storage Capacity: N/A

DEFICIENCIES IN EXISTING TREATMENT PROCESS (Using TWC Criteria): No coagulation with direct filtration is provided, no laboratory equipment, no continuous chlorine/turbidity monitoring, or certified operator on duty when plant in operation.
STUDY PARTICIPANT AA

PARTICIPATION IN PRELIMINARY ENGINEERING STUDY

Participating in Study? yes
Date of Engineering Site Visit: 6/3/93
Known Site Visit by TWC: no
Bilateral Compliance Agreement Signed with TWC: no reply

EXISTING TREATMENT PROCESS: None provided, water supplied to the bulk tank by another study participant, is gravity feed to connections

CONNECTION/POPULATION ESTIMATES

Type of System: Surface water - Community
Total Number of Connections: 9
 Number & Type of Seasonal Units: 6 MH, potential of TOTAL of 40 MH
 Number & Type of Permanent Units: 1 MH, 2 stores
Population Estimate (source of estimate): 7 x 3 + 30 = 51 (information obtained from outside sources)
Recorded Water Usage: unknown
Calculated Water Demand: Potential of 30 x 12 gpd + 40 x 0.6 gpm = 24.3 gpm,
current 30 x 12 gpd + 7 x 0.6 gpm = 4.5 gpm
Study Participant AA, (continued)

EXISTING FEATURES OF FACILITY

Raw pump capacity: none
Chlorination: none
Pressure Tank: none
Filters: none
Service Pumps: none
Storage Capacity: 3000 gal tank
Additional Treatment/Capabilities: none

TEXAS WATER COMMISSION REQUIREMENTS FOR FACILITY

Requirements are based on this system being classified as a Surface water - Community system, for a total treatment capacity of 4.5 gpm.

Raw Pump Capacity: 4.5 gpm with the largest pump out of service
Transfer Pump Capacity: 4.5 gpm with the largest pump out of service
Pressure Tank Capacity (Elevated Storage): 180 gallons (900 gallons per connection)
Filters: 4.5 gpm
Service Pumps: 2 or more pumps with a total capacity of 18 gpm
Clearwell Storage Capacity: 450 gallons
Total Storage Capacity: 1800 gallons

DEFICIENCIES IN EXISTING TREATMENT PROCESS (Using TWC Criteria): Same as the supplier.
STUDY PARTICIPANT AB

PARTICIPATION IN PRELIMINARY ENGINEERING STUDY

Participating in Study? yes
Date of Engineering Site Visit: 4/12/93
Known Site Visit by TWC: yes
Bilateral Compliance Agreement Signed with TWC: yes

EXISTING TREATMENT PROCESS: Raw water is disinfected prior to distribution from the pressure tank.

CONNECTION/POPULATION ESTIMATES

Type of System: Surface water - Noncommunity
Total Number of Connections: 62
 Number & Type of Seasonal Units: 5 cabins, 1 meeting hall, 48 RV, 7 MH
 Number & Type of Permanent Units: 1 store/apt.
Population Estimate (source of estimate): 186 (estimated using Texas Water Commission criteria)
Recorded Water Usage: unknown
Calculated Water Demand: $61 \times 0.6 \text{ gpm} + 30 \times 18 \text{ gpd} = 37 \text{ gpm}$
EXISTING FEATURES OF FACILITY

Raw pump capacity: 1 - 5hp submersible
Chlorination: 100 gal/year (7%)
Pressure Tank: 1 - 1000 gal
Filters: none
Service Pumps: none
Storage Capacity: none
Additional Treatment/Capabilities: none

TEXAS WATER COMMISSION REQUIREMENTS FOR FACILITY

Requirements are based on this system being classified as a Surface water - Noncommunity system, for a total treatment capacity of 37 gpm.

Raw Pump Capacity: 37 gpm with the largest pump out of service
Transfer Pump Capacity: 37 gpm
Pressure Tank Capacity (Elevated Storage): 1240 gallons (6200 gallons)
Filters: 37 gpm
Service Pumps: 2 or more pumps with a total capacity of 124 gpm
Clearwell Storage Capacity: 3100 gallons
Total Storage Capacity: 12400 gallons

DEFICIENCIES IN EXISTING TREATMENT PROCESS (Using TWC Criteria): Inadequate flow measuring devices, inadequate chemical injection, inadequate disinfection capabilities, no flash mixing/flocculation, no continuous coagulation, no sedimentation, inadequate filtration, inadequate bulk storage, inadequate pressure storage, inadequate raw water pump capacity, inadequate service pump capacity, inadequate treatment capacity, no certified operator on duty or continuous chlorine/turbidity monitoring, improperly protected raw water intake, inadequate laboratory equipment.
STUDY PARTICIPANT AC

PARTICIPATION IN PRELIMINARY ENGINEERING STUDY

Participating in Study? yes
Date of Engineering Site Visit: 4/20/93
Known Site Visit by TWC: yes
Bilateral Compliance Agreement Signed with TWC: no

EXISTING TREATMENT PROCESS: Raw water is obtained from Possum Kingdom Lake by 3 submersible pumps, which discharge into 3 pressure tanks, only 1 pump/pressure tank has chlorination.

CONNECTION/POPULATION ESTIMATES

Type of System: Surface water - Noncommunity
Total Number of Connections: 33
 Number & Type of Seasonal Units: 8 cabins, 5 motel units, 3 houses (TWC counts as 10 units since each sleeps 10), 8 RV
 Number & Type of Permanent Units: 1 restaurant, 1 motel unit
Population Estimate (source of estimate): 100 (Texas Water Commission sanitary survey)
Recorded Water Usage: unknown
Calculated Water Demand: 32 x 0.6 gpm + 20 pers/day x 18 gpd = 19.5 gpm
Study Participant AC, (continued)

EXISTING FEATURES OF FACILITY

Raw pump capacity: 3 - submersible; 2 - 1½ hp, 1 - 1 hp
Chlorination: chlorine tablets used in motel unit only
Pressure Tank: 2 - 42 gal, 1 - 80 gal (in motel)
Filters: none
Service Pumps: none
Storage Capacity: none
Additional Treatment/Capabilities: none

TEXAS WATER COMMISSION REQUIREMENTS FOR FACILITY

Requirements are based on this system being classified as a Surface water - Noncommunity system, for a total treatment capacity of 19.5 gpm.

Raw Pump Capacity: 19.5 gpm with the largest pump out of service
Transfer Pump Capacity: 19.5 gpm with the largest pump out of service
Pressure Tank Capacity (Elevated Storage): 660 gallons (3300 gallons)
Filters: 19.5 gpm
Service Pumps: 2 or more pumps with a total capacity of 66 gpm
Clearwell Storage Capacity: 1650 gallons
Total Storage Capacity: 6600 gallons

DEFICIENCIES IN EXISTING TREATMENT PROCESS (Using TWC Criteria): Inadequate flow measuring devices, inadequate chemical injection, inadequate disinfection capabilities, no flash mixing/flocculation, no continuous coagulation, no sedimentation, inadequate filtration, inadequate bulk storage, inadequate pressure storage, inadequate raw water pump capacity, inadequate service pump capacity, inadequate treatment capacity, no certified operator on duty or continuous chlorine/turbidity monitoring, improperly protected raw water intake, inadequate laboratory equipment.
PARTICIPATION IN PRELIMINARY ENGINEERING STUDY

Participating in Study? yes
Date of Engineering Site Visit: 5/30/93
Known Site Visit by TWC: yes
Bilateral Compliance Agreement Signed with TWC: yes

EXISTING TREATMENT PROCESS: Filtration, water softening, Reverse Osmosis, terminal disinfection, covered clearwell storage, and pressure storage with service pumps.

CONNECTION/POPULATION ESTIMATES

Type of System: Surface water - Community
Total Number of Connections: 43
Number & Type of Seasonal Units: 7 double (4 bdrm, 2 bath) condominiums, 34 standard condominiums
Number & Type of Permanent Units: 1 MH (caretaker), 1 condominium
Population Estimate (source of estimate): 144 (Texas Water Commission sanitary survey)
Recorded Water Usage: peak day of 10,000 gallons on July 4, 1992 (6.9 gpm)
Calculated Water Demand: 43 x 0.6 gpm = 25.8 gpm
EXISTING FEATURES OF FACILITY

Raw pump capacity: 2 - 1 or 1½ hp submersible pumps
Chlorination: use 4 cups per 25 hour run, have standby chlorinator
Pressure Tank: 2 - 75 gallon
Filters: 2 cartridge filters on raw water, 1 3'Ø
Service Pumps: 2 - 1 hp = 20 gpm each
Storage Capacity: 1 - 10,000 gallon tank always in use, 2 - 2500 gallon tanks used on weekends only
Additional Treatment/Capabilities: softener, RO system (300 gal/hour), flowmeter

TEXAS WATER COMMISSION REQUIREMENTS FOR FACILITY

Requirements are based on this system being classified as a Surface water - Community system, for a total treatment capacity of 25.8 gpm.

Raw Pump Capacity: 25.8 gpm with the largest pump out of service
Transfer Pump Capacity: 25.8 gpm with the largest pump out of service
Pressure Tank Capacity (Elevated Storage): 860 gallons (4300 gallons)
Filters: 25.8 gpm
Service Pumps: 2 or more pumps with a total capacity of 86 gpm
Clearwell Storage Capacity: 2150 gallons
Total Storage Capacity: 8600 gallons

DEFICIENCIES IN EXISTING TREATMENT PROCESS (Using TWC Criteria): Inadequate treatment and pressure tank capacity, no lab test equipment and the raw water intake is located directly under the boat dock adjacent to boat launch, no laboratory equipment, no continuous chlorine/turbidity monitoring, or certified operator on duty when plant in operation.
STUDY PARTICIPANT AE

PARTICIPATION IN PRELIMINARY ENGINEERING STUDY

Participating in Study? unknown
Date of Engineering Site Visit: none as of this date
Known Site Visit by TWC: no
Bilateral Compliance Agreement Signed with TWC: no

EXISTING TREATMENT PROCESS: N/A

CONNECTION/POPULATION ESTIMATES

Type of System: Not a Public Water System
Total Number of Connections: 8
 Number & Type of Seasonal Units: 0
 Number & Type of Permanent Units: 8 MH
Population Estimate (source of estimate): 24 (estimated using Texas Water Commission criteria)
Recorded Water Usage: none
Calculated Water Demand: $8 \times 0.6 \text{ gpm} = 4.8 \text{ gpm}$
Study Participant AE. (continued)

EXISTING FEATURES OF FACILITY

Raw pump capacity: unknown
Chlorination: unknown
Pressure Tank: unknown
Filters: unknown
Service Pumps: unknown
Storage Capacity: unknown
Additional Treatment/Capabilities: unknown

TEXAS WATER COMMISSION REQUIREMENTS FOR FACILITY

This system does not meet the requirements to be a Public Water System, therefore, the current rules and regulations are not applicable.

Raw Pump Capacity: N/A
Transfer Pump Capacity: N/A
Pressure Tank Capacity (Elevated Storage): N/A (N/A)
Filters: N/A
Service Pumps: N/A
Clearwell Storage Capacity: N/A
Total Storage Capacity: N/A

DEFICIENCIES IN EXISTING TREATMENT PROCESS (Using TWC Criteria): N/A
PARTICIPATION IN PRELIMINARY ENGINEERING STUDY

Participating in Study? yes
Date of Engineering Site Visit: phone conversation 6/7/93
Known Site Visit by TWC: no
Bilateral Compliance Agreement Signed with TWC: no reply

EXISTING TREATMENT PROCESS: Raw water passes through a DE filter, and is distributed through the pressure tank to the 4 connections that are supplied.

CONNECTION/POPULATION ESTIMATES

Type of System: Not a Public Water System currently, Surface Water - Community
Total Number of Connections: 26
 Number & Type of Seasonal Units: 24 cabins
 Number & Type of Permanent Units: 2 cabins
Population Estimate (source of estimate): 26 x 3 = 78 (estimated using Texas Water Commission criteria)
Recorded Water Usage: unknown
Calculated Water Demand: 26 x 0.6 gpm = 15.6 gpm
Study Participant AF, (continued)

EXISTING FEATURES OF FACILITY

Raw pump capacity: 2 - 16 gpm
Chlorination: none
Pressure Tank: 70 gallons
Filters: DE filter of unknown size
Service Pumps: none
Storage Capacity: none
Additional Treatment/Capabilities: none

TEXAS WATER COMMISSION REQUIREMENTS FOR FACILITY

This system does not meet the requirements to be a Public Water System, therefore, the current rules and regulations are not applicable. However, the following requirements are used on the assumption of this system being classified as a Surface Water - Community system, for a total treatment capacity of 15.6 gpm.

Raw Pump Capacity: 15.6 gpm with the largest pump out of service
Transfer Pump Capacity: 15.6 gpm with the largest pump out of service
Pressure Tank Capacity (Elevated Storage): 520 gallons (2600 gallons)
Filters: 15.6 gpm
Service Pumps: 2 or more pumps with a total capacity of 52 gpm
Clearwell Storage Capacity: 1300 gallons
Total Storage Capacity: 5200 gallons

DEFICIENCIES IN EXISTING TREATMENT PROCESS (Using TWC Criteria): Inadequate flow measuring devices, inadequate chemical injection, inadequate disinfection capabilities, no flash mixing/flocculation, no continuous coagulation, no sedimentation, inadequate filtration, inadequate bulk storage, inadequate pressure storage, inadequate raw water pump capacity, inadequate service pump capacity, inadequate treatment capacity, no certified operator on duty or continuous chlorine/turbidity monitoring, improperly protected raw water intake, inadequate laboratory equipment.
STUDY PARTICIPANT AG

PARTICIPATION IN PRELIMINARY ENGINEERING STUDY

Participating in Study? yes
Date of Engineering Site Visit: 4/27/93
Known Site Visit by TWC: yes
Bilateral Compliance Agreement Signed with TWC: yes

EXISTING TREATMENT PROCESS: Groundwater is disinfected and distributed through pressure tanks

CONNECTION/POPULATION ESTIMATES

Type of System: Groundwater - Community
Total Number of Connections: 27
 Number & Type of Seasonal Units: 21 MH/cabins
 Number & Type of Permanent Units: 6 MH/cabins
Population Estimate (source of estimate): 27 x 3 = 81 (estimated using Texas Water Commission Criteria)
Recorded Water Usage: unknown
Calculated Water Demand: 27 x 1.5 gpm = 40.5 gpm
EXISTING FEATURES OF FACILITY

Raw pump capacity: 2 - 1½hp (1 per well); 2hp ruth berry pump for 3rd well or lake water
Chlorination: unknown amount, have not been using long
Pressure Tank: 4 - 120 gal
Filters: none
Service Pumps: none
Storage Capacity: none
Additional Treatment/Capabilities: none

TEXAS WATER COMMISSION REQUIREMENTS FOR FACILITY

Requirements are based on this system being classified as a Groundwater - Community system, for size category of < 50 connections without ground storage.

Raw Pump Capacity: 40.5 gpm per connection
Transfer Pump Capacity: N/A
Pressure Tank Capacity (Elevated Storage): 1350 gallons (N/A)
Filters: N/A
Service Pumps: N/A
Clearwell Storage Capacity: N/A
Total Storage Capacity: N/A

DEFICIENCIES IN EXISTING TREATMENT PROCESS (Using TWC Criteria): No coagulation with direct filtration, no flow meters, inadequate system pressure, no laboratory equipment, no continuous chlorine/turbidity monitoring, or certified operator on duty when plant in operation.
PARTICIPATION IN PRELIMINARY ENGINEERING STUDY

Participating in Study? yes
Date of Engineering Site Visit: 4/27/93
Known Site Visit by TWC: no
Bilateral Compliance Agreement Signed with TWC: "wells"

EXISTING TREATMENT PROCESS: Groundwater is distributed through use of pressure tanks.

CONNECTION/POPULATION ESTIMATES

Type of System: Groundwater - Community
Total Number of Connections: 62
 Number & Type of Seasonal Units: 20 MH, 20 RV
 Number & Type of Permanent Units: 20 MH, 1 store, 1 beauty shop
Population Estimate (source of estimate): 220 (estimated using Texas Water Commission criteria)
Recorded Water Usage: unknown
Calculated Water Demand:

 60 x .6 gpm + 40 x 12 gpd/pers = 36.3 gpm
Study Participant AH, (continued)

EXISTING FEATURES OF FACILITY

Raw pump capacity: 1 - ¾hp, 1 - 1hp one main well; 1 ¾hp on inside well
Chlorination: none
Pressure Tank: 3 - 100 gal
Filters: none in use, old one not tied in, previously used on lake system
Service Pumps: none
Storage Capacity: none
Additional Treatment/Capabilities: none

TEXAS WATER COMMISSION REQUIREMENTS FOR FACILITY

Requirements are based on this system being classified as a Groundwater - Community system, for size category of 50 - 250 connections.

Raw Pump Capacity: 36.3 gpm per connection
Transfer Pump Capacity: N/A
Pressure Tank Capacity (Elevated Storage): 1240 gallons (6200 gallons)
Filters: N/A
Service Pumps: 2 or more pumps having a total capacity of 124 gpm
Clearwell Storage Capacity: N/A
Total Storage Capacity: 12400 gallons

DEFICIENCIES IN EXISTING TREATMENT PROCESS (Using TWC Criteria): No coagulation with direct filtration and inadequate system pressure, no laboratory equipment, no chlorination, no continuous chlorine/turbidity monitoring
STUDY PARTICIPANT AI

PARTICIPATION IN PRELIMINARY ENGINEERING STUDY

Participating in Study? yes
Date of Engineering Site Visit: 6/8/93 telephone conversation
Known Site Visit by TWC: no
Bilateral Compliance Agreement Signed with TWC: N/A

EXISTING TREATMENT PROCESS: Raw water is pumped through a pressure tank to the restaurant.

CONNECTION/POPULATION ESTIMATES

Type of System: Surface water - Noncommunity serving other than transient accommodation units
Total Number of Connections: 3
 Number & Type of Seasonal Units: 0
 Number & Type of Permanent Units: 1 restaurant, 1 sheriff office, 1 MH
Population Estimate (source of estimate): 30 (assume) (estimated using Texas Water Commission criteria)
Recorded Water Usage: unknown
Calculated Water Demand: 30 x 18 gpd = 0.4 gpm
EXISTING FEATURES OF FACILITY

Raw pump capacity: unknown size
Chlorination: none, but plan to install
Pressure Tank: 1 tank of unknown size
Filters: plan to install charcoal & sand filter
Service Pumps: none
Storage Capacity: 1 600 gallon haul water tank, plan to install 1000 gallon tank (hauled)
Additional Treatment/Capabilities: none

TEXAS WATER COMMISSION REQUIREMENTS FOR FACILITY

Requirements are based on this system being classified as a Surface water - Noncommunity serving other than transient accommodation units system, for a total treatment capacity of 0.4 gpm.

Raw Pump Capacity: 0.4 gpm with the largest pump out of service
Transfer Pump Capacity: 0.4 gpm with the largest pump out of service
Pressure Tank Capacity (Elevated Storage): 220 gallons (N/A)
Filters: 0.4 gpm
Service Pumps: N/A
Clearwell Storage Capacity: N/A
Total Storage Capacity: 270 gallons

DEFICIENCIES IN EXISTING TREATMENT PROCESS (Using TWC Criteria): Inadequate flow measuring devices, inadequate chemical injection, inadequate disinfection capabilities, no flash mixing/flocculation, no continuous coagulation, no sedimentation, inadequate filtration, inadequate bulk storage, inadequate pressure storage, inadequate raw water pump capacity, inadequate service pump capacity, inadequate treatment capacity, no certified operator on duty or continuous chlorine/turbidity monitoring, improperly protected raw water intake, inadequate laboratory equipment.
STUDY PARTICIPANT AJ

PARTICIPATION IN PRELIMINARY ENGINEERING STUDY

Participating in Study? yes
Date of Engineering Site Visit: 4/16/93
Known Site Visit by TWC: yes
Bilateral Compliance Agreement Signed with TWC: "on well"

EXISTING TREATMENT PROCESS: Groundwater is chlorinated and distributed through pressure tanks

CONNECTION/POPULATION ESTIMATES

Type of System: Groundwater - Community
Total Number of Connections: 27
 Number & Type of Seasonal Units: 17 MH, 2 houses, 7 RV
 Number & Type of Permanent Units: 1 restaurant
Population Estimate (source of estimate): 26 x 3 + 30 = 108 (estimated using Texas Water Commission criteria)
Recorded Water Usage: unknown
Calculated Water Demand: 26 x 1.5 gpm + 30 x 18 gpd = 39.4 gpm
EXISTING FEATURES OF FACILITY

Raw pump capacity: 1 - 2hp & 1 standby (2hp)
Chlorination: 2 gal/wk bleach
Pressure Tank: 2 - 150 gal
Filters: none
Service Pumps: none
Storage Capacity: none
Additional Treatment/Capabilities: none

TEXAS WATER COMMISSION REQUIREMENTS FOR FACILITY

Requirements are based on this system being classified as a Groundwater - Community system, for size category of < 50 connections without ground storage.

Raw Pump Capacity: 39.4 gpm
Transfer Pump Capacity: N/A
Pressure Tank Capacity (Elevated Storage): 1350 gallons (N/A)
Filters: N/A
Service Pumps: N/A
Clearwell Storage Capacity: N/A
Total Storage Capacity: N/A

DEFICIENCIES IN EXISTING TREATMENT PROCESS (Using TWC Criteria): Possibly under the influence of surface water, no sanitary easement, no well driller’s log, no laboratory equipment, no continuous chlorine/turbidity monitoring
STUDY PARTICIPANT AK

PARTICIPATION IN PRELIMINARY ENGINEERING STUDY

Participating in Study? yes
Date of Engineering Site Visit: 4/27/93
Known Site Visit by TWC: yes
Bilateral Compliance Agreement Signed with TWC: yes

EXISTING TREATMENT PROCESS: Raw water is chlorinated and distributed through the pressure tank.

CONNECTION/POPULATION ESTIMATES

Type of System: Surface water - Noncommunity serving transient accommodation units
Total Number of Connections: 37
Number & Type of Seasonal Units: 30 RV, 2 sets restrooms (for 18 tent sites, no water), 2 cabins, 1 pavilion with sink, boat shop (currently closed)
Number & Type of Permanent Units: 1 doublewide MH, 1 store
Population Estimate (source of estimate): 160 (owner, during the site visit)
Recorded Water Usage: unknown
Calculated Water Demand: $36 \times 0.6 \text{ gpm} + 20 \times 12 \text{ gpd} = 21.8 \text{ gpm}$
EXISTING FEATURES OF FACILITY

Raw pump capacity: 1 submersible, unknown size
Chlorination: 1 gal bleach every 3 weeks during late spring
Pressure Tank: 1 - 66 gal
Filters: none
Service Pumps: none
Storage Capacity: none
Additional Treatment/Capabilities: none

TEXAS WATER COMMISSION REQUIREMENTS FOR FACILITY

Requirements are based on this system being classified as a Surface water - Noncommunity serving transient accommodation units system, for a total treatment capacity of 21.8 gpm.

Raw Pump Capacity: 21.8 gpm with the largest pump out of service
Transfer Pump Capacity: 21.8 gpm with the largest pump out of service
Pressure Tank Capacity (Elevated Storage): 370 gallons (N/A)
Filters: 21.8 gpm
Service Pumps: 2 or more service pumps with a total capacity of 37.0 gpm
Clearwell Storage Capacity: 1000 gallons
Total Storage Capacity: 1295 gallons

DEFICIENCIES IN EXISTING TREATMENT PROCESS (Using TWC Criteria): Inadequate flow measuring devices, inadequate chemical injection, inadequate disinfection capabilities, no flash mixing/flocculation, no continuous coagulation, no sedimentation, inadequate filtration, inadequate bulk storage, inadequate pressure storage, inadequate raw water pump capacity, inadequate service pump capacity, inadequate treatment capacity, no certified operator on duty or continuous chlorine/turbidity monitoring, improperly protected raw water intake, inadequate laboratory equipment. Inadequate system pressure.
STUDY PARTICIPANT AL

PARTICIPATION IN PRELIMINARY ENGINEERING STUDY

Participating in Study? yes
Date of Engineering Site Visit: phone conversation 6/7/93
Known Site Visit by TWC: no
Bilateral Compliance Agreement Signed with TWC: yes

EXISTING TREATMENT PROCESS: Raw water is pumped into pressure tanks, which distribute to the connections

CONNECTION/POPULATION ESTIMATES

Type of System: Surface water - Community
Total Number of Connections: 92
 Number & Type of Seasonal Units: 26 MH/cottages (camp), 10 MH/houses (deeded)
 Number & Type of Permanent Units: 26 MH/cabins (camp), 30 MH/houses (deeded)
Population Estimate (source of estimate): 106 (estimated using Texas Water Commission criteria)
Recorded Water Usage: unknown
Calculated Water Demand: 92 x 0.6 gpm = 55.2 gpm
EXISTING FEATURES OF FACILITY

Raw pump capacity: 3 - submersible 27 gpm/ea
Chlorination: unknown
Pressure Tank: 3 - rated at 120 gallon each
Filters: none
Service Pumps: none
Storage Capacity: none
Additional Treatment/Capabilities: none

TEXAS WATER COMMISSION REQUIREMENTS FOR FACILITY

Requirements are based on this system being classified as a Surface water - Community system, for a total treatment capacity of 55.2 gpm.

Raw Pump Capacity: 55.2 gpm with the largest pump out of service
Transfer Pump Capacity: 55.2 gpm with the largest pump out of service
Pressure Tank Capacity (Elevated Storage): 1840 gallons (9200 gallons)
Filters: 55.2 gpm
Service Pumps: 2 or more pumps with a total capacity of 184 gpm
Clearwell Storage Capacity: 4600 gallons
Total Storage Capacity: 18400 gallons

DEFICIENCIES IN EXISTING TREATMENT PROCESS (Using TWC Criteria): Inadequate flow measuring devices, inadequate chemical injection, inadequate disinfection capabilities, no flash mixing/flocculation, no continuous coagulation, no sedimentation, inadequate filtration, inadequate bulk storage, inadequate pressure storage, inadequate raw water pump capacity, inadequate service pump capacity, inadequate treatment capacity, no certified operator on duty or continuous chlorine/turbidity monitoring, improperly protected raw water intake, inadequate laboratory equipment.
STUDY PARTICIPANT AM

PARTICIPATION IN PRELIMINARY ENGINEERING STUDY

Participating in Study? yes
Date of Engineering Site Visit: none as of this date
Known Site Visit by TWC: no
Bilateral Compliance Agreement Signed with TWC: N/A

EXISTING TREATMENT PROCESS: None required, treated water is obtained from another study participant

CONNECTION/POPULATION ESTIMATES

Type of System: Surface water - Community
Total Number of Connections: 40
 Number & Type of Seasonal Units: 0
 Number & Type of Permanent Units: approx. 40 MH
Population Estimate (source of estimate): 120 (estimated using Texas Water Commission criteria)

Recorded Water Usage: unknown
Calculated Water Demand: 40 x 0.6 gpm = 24 gpm (included with another study participant)
Study Participant AM, (continued)

EXISTING FEATURES OF FACILITY

Raw pump capacity: none
Chlorination: none
Pressure Tank: none
Filters: none
Service Pumps: none
Storage Capacity: none
Additional Treatment/Capabilities: none

TEXAS WATER COMMISSION REQUIREMENTS FOR FACILITY

Requirements are based on this system being classified as a Surface water - Community system, for a total treatment capacity of 24 gpm (included with another study participant).

Raw Pump Capacity: 24 gpm with the largest pump out of service (included with another study participant)
Transfer Pump Capacity: 24 gpm (included with another study participant)
Pressure Tank Capacity (Elevated Storage): 800 gallons (4000 gallons)
Filters: 24 gpm (included with another study participant)
Service Pumps: 2 or more pumps with a total capacity of 80 gpm (included with another study participant)
Clearwell Storage Capacity: 2000 gallons (included with another study participant)
Total Storage Capacity: 8000 gallons (included with another study participant)

DEFICIENCIES IN EXISTING TREATMENT PROCESS (Using TWC Criteria): No treatment provided
STUDY PARTICIPANT AN

PARTICIPATION IN PRELIMINARY ENGINEERING STUDY

Participating in Study? yes
Date of Engineering Site Visit: 4/21/93
Known Site Visit by TWC: yes
Bilateral Compliance Agreement Signed with TWC: yes

EXISTING TREATMENT PROCESS: Raw water is chlorinated and delivered to the covered clearwell storage through pressure tanks.

CONNECTION/POPULATION ESTIMATES

Type of System: Surface water - Community
Total Number of Connections: 29
 Number & Type of Seasonal Units: 0
 Number & Type of Permanent Units: 29 MH/houses
Population Estimate (source of estimate): 60 (Texas Water Commission sanitary survey)
Recorded Water Usage: approx. 15,000 gpd in summer (amt on water contract with BRA)
Calculated Water Demand: 29 x .6 gpm = 17.4 gpm
Study Participant AN, (continued)

EXISTING FEATURES OF FACILITY

Raw pump capacity: 1 - 20 gpm submersible; 1 - 75 gpm centrifugal
Chlorination: 36 gal bleach/week
Pressure Tank: 2 - 80 gal
Filters: none
Service Pumps: 1 - 52 gpm, 5hp
Storage Capacity: 2 - 10,000 gal; 1 - 30,000 gal not in use
Additional Treatment/Capabilities: none

TEXAS WATER COMMISSION REQUIREMENTS FOR FACILITY

Requirements are based on this system being classified as a Surface water - Community system, for a total treatment capacity of 17.4 gpm.

Raw Pump Capacity: 17.4 gpm with the largest pump out of service
Transfer Pump Capacity: 17.4 gpm
Pressure Tank Capacity (Elevated Storage): 580 gallons (2900 gallons)
Filters: 17.4 gpm
Service Pumps: 2 or more pumps with a total capacity of 58 gpm
Clearwell Storage Capacity: 1450 gallons
Total Storage Capacity: 5800 gallons

DEFICIENCIES IN EXISTING TREATMENT PROCESS (Using TWC Criteria): Inadequate flow measuring devices, inadequate chemical injection, inadequate disinfection capabilities, no flash mixing/flocculation, no continuous coagulation, no sedimentation, inadequate filtration, inadequate bulk storage, inadequate pressure storage, inadequate raw water pump capacity, inadequate service pump capacity, inadequate treatment capacity, no certified operator on duty or continuous chlorine/turbidity monitoring, improperly protected raw water intake, inadequate laboratory equipment.
PARTICIPATION IN PRELIMINARY ENGINEERING STUDY

Participating in Study? yes
Date of Engineering Site Visit: none as of this date
Known Site Visit by TWC: no
Bilateral Compliance Agreement Signed with TWC: yes

EXISTING TREATMENT PROCESS: Raw water is pumped through a pressure tank to the building

CONNECTION/POPULATION ESTIMATES

Type of System: Surface water - Noncommunity serving other than transient accommodation units
Total Number of Connections: 3
Number & Type of Seasonal Units: 0
Number & Type of Permanent Units: 3
Population Estimate (source of estimate): approx. 150 ()
Recorded Water Usage: none
Calculated Water Demand: 150 x 18 gpd = 1.9 gpm
Study Participant AO, (continued)

EXISTING FEATURES OF FACILITY

Raw pump capacity: unknown
Chlorination: unknown
Pressure Tank: unknown
Filters: unknown
Service Pumps: unknown
Storage Capacity: unknown
Additional Treatment/Capabilities: unknown

TEXAS WATER COMMISSION REQUIREMENTS FOR FACILITY

Requirements are based on this system being classified as a Surface water - Noncommunity serving other than transient accommodation units system, for a total treatment capacity of 1.9 gpm.

Raw Pump Capacity: 1.9 gpm with the largest pump out of service
Transfer Pump Capacity: 1.9 gpm with the largest pump out of service
Pressure Tank Capacity (Elevated Storage): 220 gallons (N/A)
Filters: 1.9 gpm
Service Pumps: 5.7 gpm
Clearwell Storage Capacity: 1350 gallons
Total Storage Capacity: N/A

DEFICIENCIES IN EXISTING TREATMENT PROCESS (Using TWC Criteria): Inadequate flow measuring devices, inadequate chemical injection, inadequate disinfection capabilities, no flash mixing/flocculation, no continuous coagulation, no sedimentation, inadequate filtration, inadequate bulk storage, inadequate pressure storage, inadequate raw water pump capacity, inadequate service pump capacity, inadequate treatment capacity, no certified operator on duty or continuous chlorine/turbidity monitoring, improperly protected raw water intake, inadequate laboratory equipment.
STUDY PARTICIPANT AP

PARTICIPATION IN PRELIMINARY ENGINEERING STUDY

Participating in Study? yes
Date of Engineering Site Visit: 4/15/93
Known Site Visit by TWC: yes
Bilateral Compliance Agreement Signed with TWC: yes

EXISTING TREATMENT PROCESS: Raw water is chlorinated and distributed through pressure tanks.

CONNECTION/POPULATION ESTIMATES

Type of System: Surface water - Community
Total Number of Connections: 50
 Number & Type of Seasonal Units: 19 MH, 21 cabins, 1 triplex, 2 cabins, 2 rental MH
 Number & Type of Permanent Units: 3 MH
Population Estimate (source of estimate): 50 units x 3 = 150 (estimated using Texas Water Commission criteria)
Recorded Water Usage: unknown
Calculated Water Demand: 50 x 0.6 gpm = 30 gpm
Study Participant AP, (continued)

EXISTING FEATURES OF FACILITY

Raw pump capacity: 1 - 25 gpm, 3hp submersible
Chlorination: approx. 20 gal in October, 1992 (from AMPI)
Pressure Tank: Have 3, only use 2 (140 gal)
Filters: none
Service Pumps: none
Storage Capacity: none
Additional Treatment/Capabilities: none

TEXAS WATER COMMISSION REQUIREMENTS FOR FACILITY

Requirements are based on this system being classified as a Surface water - Community system, for a total treatment capacity of 30 gpm.

Raw Pump Capacity: 30 gpm with the largest pump out of service
Transfer Pump Capacity: 30 gpm with the largest pump out of service
Pressure Tank Capacity (Elevated Storage): 1000 gallons (5000 gallons per connection)
Filters: 30 gpm
Service Pumps: 2 or more pumps with a total capacity of 100 gpm
Clearwell Storage Capacity: 2500 gallons
Total Storage Capacity: 10000 gallons

DEFICIENCIES IN EXISTING TREATMENT PROCESS (Using TWC Criteria): Inadequate flow measuring devices, inadequate chemical injection, inadequate disinfection capabilities, no flash mixing/flocculation, no continuous coagulation, no sedimentation, inadequate filtration, inadequate bulk storage, inadequate pressure storage, inadequate raw water pump capacity, inadequate service pump capacity, inadequate treatment capacity, no certified operator on duty or continuous chlorine/turbidity monitoring, improperly protected raw water intake, inadequate laboratory equipment.
STUDY PARTICIPANT AQ

PARTICIPATION IN PRELIMINARY ENGINEERING STUDY

Participating in Study? yes
Date of Engineering Site Visit: 4/27/93
Known Site Visit by TWC: no
Bilateral Compliance Agreement Signed with TWC: N/A

EXISTING TREATMENT PROCESS: Taste and odor control, filtration, reverse osmosis system, covered clearwell storage, and terminal disinfection.

CONNECTION/POPULATION ESTIMATES

Type of System: Not a Public Water System
Total Number of Connections: 8
 Number & Type of Seasonal Units: 7 condos
 Number & Type of Permanent Units: 1 condo
Population Estimate (source of estimate): 8 x 3 = 24 (estimated using Texas Water Commission criteria)

Recorded Water Usage: unknown
Calculated Water Demand: 8 x 0.6 gpm = 4.8 gpm
EXISTING FEATURES OF FACILITY

Raw pump capacity: 18 gpm submersible
Chlorination: chlorinate after RO system
Pressure Tank: 2 - 75 gal
Filters: sand & cartridge filters
Service Pumps: 1 13.5 gpm
Storage Capacity: 1 - 10,000 gal
Additional Treatment/Capabilities: RO system designed for total of 40 units

TEXAS WATER COMMISSION REQUIREMENTS FOR FACILITY

This system does not meet the requirements to be a Public Water System, therefore, the current rules and regulations are not applicable.

Raw Pump Capacity: N/A
Transfer Pump Capacity: N/A
Pressure Tank Capacity (Elevated Storage): N/A (N/A)
Filters: N/A
Service Pumps: N/A
Clearwell Storage Capacity: N/A
Total Storage Capacity: N/A

DEFICIENCIES IN EXISTING TREATMENT PROCESS (Using TWC Criteria): No prechlorination due to use of RO system, no metering of water use, no flash mixing, flocculation, continuous coagulation, or sedimentation, no laboratory equipment, no continuous chlorine/turbidity monitoring, or certified operator on duty when plant in operation.
PARTICIPATION IN PRELIMINARY ENGINEERING STUDY

Participating in Study? yes
Date of Engineering Site Visit: 4/12/93
Known Site Visit by TWC: yes
Bilateral Compliance Agreement Signed with TWC: yes

EXISTING TREATMENT PROCESS: Raw water is chlorinated and filtered before distribution through pressure tanks.

CONNECTION/POPULATION ESTIMATES

Type of System: Surface water - Community
Total Number of Connections: 92
 Number & Type of Seasonal Units: 17 cabins, 4 homes, 28 camping sites, MH park (40 MH)
 Number & Type of Permanent Units: 1 restaurant, 2 homes
Population Estimate (source of estimate): 91 x 3 + 1 x 50 = 325 (estimated using Texas Water Commission criteria)
Recorded Water Usage: 1500 gpd peak (estimate by owner)
Calculated Water Demand: 91 x 0.6 gpm + 50 x 18 gpd = 55.2 gpm
Study Participant AR, (continued)

EXISTING FEATURES OF FACILITY

Raw pump capacity: 3 - 40 gpm centrifugal
Chlorination: 3 chlorinators, 55 gal/month from AMPI
Pressure Tank: 3 - 82 gal, 1 - 250 gal
Filters: 6 pressure sand filters
Service Pumps: none
Storage Capacity: 1 - 1200 gal (hauled)
Additional Treatment/Capabilities: none

TEXAS WATER COMMISSION REQUIREMENTS FOR FACILITY

Requirements are based on this system being classified as a Surface water - Community system, for a total treatment capacity of 55.2 gpm.

Raw Pump Capacity: 55.2 gpm with the largest pump out of service
Transfer Pump Capacity: 55.2 gpm with the largest pump out of service
Pressure Tank Capacity (Elevated Storage): 1840 gallons (9200 gallons)
Filters: 55.2 gpm
Service Pumps: 2 or more pumps with a total capacity of 184 gpm
Clearwell Storage Capacity: 4600 gallons
Total Storage Capacity: 18400 gallons

DEFICIENCIES IN EXISTING TREATMENT PROCESS (Using TWC Criteria): Inadequate flow measuring devices, inadequate chemical injection, inadequate disinfection capabilities, no flash mixing/flocculation, no continuous coagulation, no sedimentation, inadequate filtration, inadequate bulk storage, inadequate pressure storage, inadequate raw water pump capacity, inadequate service pump capacity, inadequate treatment capacity, no certified operator on duty or continuous chlorine/turbidity monitoring, improperly protected raw water intake, inadequate laboratory equipment.
STUDY PARTICIPANT AS

PARTICIPATION IN PRELIMINARY ENGINEERING STUDY

Participating in Study? yes
Date of Engineering Site Visit: 4/14/93
Known Site Visit by TWC: yes
Bilateral Compliance Agreement Signed with TWC: yes

EXISTING TREATMENT PROCESS: Pretreatment disinfection, taste and odor control, flash mixing, flocculation, continuous coagulation, sedimentation, filtration, covered clearwell storage, and terminal disinfection, continuous chlorine/turbidity monitoring.

CONNECTION/POPULATION ESTIMATES

Type of System: Surface water - Noncommunity
Total Number of Connections: 153
 Number & Type of Seasonal Units: 6 cabins, 1 store, 1 office, 1 maint. bldg, 58 RV, 5 restrooms (4 with showers), 61 campsites with water, 13 tentsites without water, 2 houses
 Number & Type of Permanent Units: 3 MH, 2 houses
Population Estimate (source of estimate): 200 (estimated using Texas Water Commission criteria)
Recorded Water Usage: March 1993 peak 47,100 gpd
Calculated Water Demand: 153 x 0.6 gpm = 91.8 gpm
EXISTING FEATURES OF FACILITY.

Raw pump capacity: 2 - 30 gpm 25 hp submersible
Chlorination: 50 - 75 gal/month (17.9%)
Pressure Tank: none
Filters: 2 3½' Ø pressure sand
Service Pumps: 2 - 5hp, 30 gpm
Storage Capacity: 1 - 80,000 gal
Additional Treatment/Capabilities: upflow clarifier, add alum & caustic, continuous chlorine/turbidity monitors

TEXAS WATER COMMISSION REQUIREMENTS FOR FACILITY

Requirements are based on this system being classified as a Surface water - Noncommunity system, for a total treatment capacity of 91.8 gpm.

Raw Pump Capacity: 91.8 gpm with the largest pump out of service
Transfer Pump Capacity: 91.8 gpm with the largest pump out of service
Pressure Tank Capacity (Elevated Storage): 3060 gallons (15300 gallons)
Filters: 91.8 gpm
Service Pumps: 2 or more pumps with a total capacity of 306 gpm
Clearwell Storage Capacity: 7650 gallons
Total Storage Capacity: 30600 gallons

DEFICIENCIES IN EXISTING TREATMENT PROCESS (Using TWC Criteria): Inadequate treatment capacity, cannot meet secondary standards with conventional treatment, lack of restricted access around intake.
STUDY PARTICIPANT AT

PARTICIPATION IN PRELIMINARY ENGINEERING STUDY

Participating in Study? yes
Date of Engineering Site Visit: 4/27/93
Known Site Visit by TWC: yes
Bilateral Compliance Agreement Signed with TWC: yes

EXISTING TREATMENT PROCESS: Reverse osmosis to water provided by another study participant.

CONNECTION/POPULATION ESTIMATES

Type of System: Surface water - Noncommunity serving other than transient accommodation units
Total Number of Connections: 1
 Number & Type of Seasonal Units: none
 Number & Type of Permanent Units: 1 restaurant
Population Estimate (source of estimate): 35 (Texas Water Commission sanitary survey)
Recorded Water Usage: unknown
Calculated Water Demand: 35 x 18 gallons/person = 0.4 gpm included with another study participant
Study Participant AT, (continued)

EXISTING FEATURES OF FACILITY

Raw pump capacity: none
Chlorination: $\frac{1}{2}$ cup bleach/month
Pressure Tank: none
Filters: fiber cartridge filter, followed by activated carbon cartridge filter
Service Pumps: $\frac{1}{2}$hp centrifugal pump (10 gpm)
Storage Capacity: 2 - 200 gal
Additional Treatment/Capabilities: RO system approx. 85 - 100 gpd

TEXAS WATER COMMISSION REQUIREMENTS FOR FACILITY

Requirements are based on this system being classified as a Surface water - Noncommunity serving other than transient accommodation units system.

Raw Pump Capacity: included with another study participant
Transfer Pump Capacity: included with another study participant
Pressure Tank Capacity (Elevated Storage): included with another study participant
Filters: included with another study participant
Service Pumps: included with another study participant
Clearwell Storage Capacity: included with another study participant
Total Storage Capacity: N/A

DEFICIENCIES IN EXISTING TREATMENT PROCESS (Using TWC Criteria): No pressure storage, inadequate storage facilities, no testing conducted (CI), inadequate operating pressure, no laboratory equipment, no continuous chlorine/turbidity monitoring, or certified operator on duty when plant in operation.
STUDY PARTICIPANT AU

PARTICIPATION IN PRELIMINARY ENGINEERING STUDY

Participating in Study? yes
Date of Engineering Site Visit: 4/16/93
Known Site Visit by TWC: yes
Bilateral Compliance Agreement Signed with TWC: yes

EXISTING TREATMENT PROCESS: Groundwater is chlorinated and delivered to the ground storage tank through the pressure tanks.

CONNECTION/POPULATION ESTIMATES

Type of System: Groundwater - Community
Total Number of Connections: 76
 Number & Type of Seasonal Units: 9 cabins, 12 RV, 53 MH
 Number & Type of Permanent Units: 1 MH, 1 store
Population Estimate (source of estimate): 244 (assuming 2 person for 23 double beds, 3 persons/MH) (Texas Water Commission sanitary survey)
Recorded Water Usage: unknown
Calculated Water Demand: $75 \times 0.6 \text{ gpm} + 20 \times 12 \text{ gpd} = 45.2 \text{ gpm}$
EXISTING FEATURES OF FACILITY

Raw pump capacity: 2 - 17 gpm
Chlorination: total of 4 gal/week bleach
Pressure Tank: 3 - 85 gal
Filters: none
Service Pumps: 1 - 20 gpm (pumps to ground storage tank)
Storage Capacity: 12,600 gal
Additional Treatment/Capabilities: none

TEXAS WATER COMMISSION REQUIREMENTS FOR FACILITY

Requirements are based on this system being classified as a Groundwater - Community system, for size category of 50 - 250 connections.

Raw Pump Capacity: 45.2 gpm
Transfer Pump Capacity: N/A
Pressure Tank Capacity (Elevated Storage): 1520 gallons (7600 gallons)
Filters: N/A
Service Pumps: 2 or more pumps having a total capacity of 152 gpm
Clearwell Storage Capacity: N/A
Total Storage Capacity: 15200 gallons

DEFICIENCIES IN EXISTING TREATMENT PROCESS (Using TWC Criteria): Groundwater possibly under the influence of surface water. No flowmeters, minor deficiencies with ground storage and pressure tanks, and wells, no laboratory equipment, no continuous chlorine/turbidity monitoring, or certified operator on duty when plant in operation.
PARTICIPATION IN PRELIMINARY ENGINEERING STUDY

Participating in Study? yes
Date of Engineering Site Visit: 6/3/92
Known Site Visit by TWC: yes
Bilateral Compliance Agreement Signed with TWC: yes

EXISTING TREATMENT PROCESS: Raw water is pumped by either of the 3 pumps, chlorinated and distributed through the use of the two pressure tanks. Flow meters meter the amount of pumped water.

CONNECTION/POPULATION ESTIMATES

Type of System: Surface water - Community
Total Number of Connections: 152
Number & Type of Seasonal Units: 10 cabins, 96 MH, (proposed: 30 RV sites, public restroom)
Number & Type of Permanent Units: 14 MH, 1 office/store
Population Estimate (source of estimate): 250 (Texas Water Commission sanitary survey)
Recorded Water Usage: 49,700 gallons on 7/14/1991 (34.5 gpm)
Calculated Water Demand: 151 x 0.6 gpm + 20 x 12 gpd/person = 90.8 gpm
Study Participant AV, (continued)

EXISTING FEATURES OF FACILITY

Raw pump capacity: 2 centrifugal (estimated at 2hp, 15 gpm/ea), 1 submersible, another submersible on order
Chlorination: 2 chlorinators in use, 2 standby chlorinators
Pressure Tank: 1 - 140 gallon, 1 - 87 gallons
Filters: none
Service Pumps: none
Storage Capacity: none
Additional Treatment/Capabilities: none

TEXAS WATER COMMISSION REQUIREMENTS FOR FACILITY

Requirements are based on this system being classified as a Surface water - Community system, for a total treatment capacity of 90.8 gpm.

Raw Pump Capacity: 90.8 gpm with the largest pump out of service
Transfer Pump Capacity: 90.8 gpm with the largest pump out of service
Pressure Tank Capacity (Elevated Storage): 3040 gallons (15200 gallons)
Filters: 90.8 gpm
Service Pumps: 2 or more pumps with a total capacity of 304 gpm
Clearwell Storage Capacity: 7600 gallons
Total Storage Capacity: 30400 gallons

DEFICIENCIES IN EXISTING TREATMENT PROCESS (Using TWC Criteria): Inadequate flow measuring devices, inadequate chemical injection, inadequate disinfection capabilities, no flash mixing/flocculation, no continuous coagulation, no sedimentation, inadequate filtration, inadequate bulk storage, inadequate pressure storage, inadequate raw water pump capacity, inadequate service pump capacity, inadequate treatment capacity, no certified operator on duty or continuous chlorine/turbidity monitoring, improperly protected raw water intake, inadequate laboratory equipment.
PARTICIPATION IN PRELIMINARY ENGINEERING STUDY

Participating in Study? yes
Date of Engineering Site Visit: 4/16/93
Known Site Visit by TWC: yes
Bilateral Compliance Agreement Signed with TWC: yes

EXISTING TREATMENT PROCESS: Raw water is filtered, chlorinated, and distributed with pressure tanks.

CONNECTION/POPULATION ESTIMATES

Type of System: Surface water - Noncommunity
Total Number of Connections: 45
 Number & Type of Seasonal Units: 26 rooms, 15 RV
 Number & Type of Permanent Units: 1 restaurant, 3 MH
Population Estimate (source of estimate): 115 (Texas Water Commission sanitary survey)
Recorded Water Usage: unknown
Calculated Water Demand: $44 \times 0.6 \text{ gpm} + 30 \times 18 \text{ gpd} = 26.8 \text{ gpm}$
Study Participant AW, (continued)

EXISTING FEATURES OF FACILITY

Raw pump capacity: 2 - 20 gpm submersible
Chlorination: unknown amt of chlorox bleach
Pressure Tank: 1 - 35 gal, 1 - 120 gal
Filters: 1 pressure sand, 2 inline filters after leaving pumphouse
Service Pumps: 1 - 15 gpm (hauled)
Storage Capacity: 4000 gal for hauled water
Additional Treatment/Capabilities: none

TEXAS WATER COMMISSION REQUIREMENTS FOR FACILITY

Requirements are based on this system being classified as a Surface water - Noncommunity system, for a total treatment capacity of 26.8 gpm.

Raw Pump Capacity: 26.8 gpm with the largest pump out of service
Transfer Pump Capacity: 26.8 gpm with the largest pump out of service
Pressure Tank Capacity (Elevated Storage): 900 gallons (4500 gallons)
Filters: 26.8 gpm
Service Pumps: 2 or more pumps with a total capacity of 90 gpm
Clearwell Storage Capacity: 2250 gallons
Total Storage Capacity: 9000 gallons

DEFICIENCIES IN EXISTING TREATMENT PROCESS (Using TWC Criteria): Inadequate flow measuring devices, inadequate chemical injection, inadequate disinfection capabilities, no flash mixing/flocculation, no continuous coagulation, no sedimentation, inadequate filtration, inadequate bulk storage, inadequate pressure storage, inadequate raw water pump capacity, inadequate service pump capacity, inadequate treatment capacity, no certified operator on duty or continuous chlorine/turbidity monitoring, improperly protected raw water intake, inadequate laboratory equipment.
STUDY PARTICIPANT AX

PARTICIPATION IN PRELIMINARY ENGINEERING STUDY

Participating in Study? yes
Date of Engineering Site Visit: 4/12/93
Known Site Visit by TWC: yes
Bilateral Compliance Agreement Signed with TWC: no

EXISTING TREATMENT PROCESS: Raw water is chlorinated and pumped to the pressure tank and distributed.

CONNECTION/POPULATION ESTIMATES

Type of System: Surface water - Community
Total Number of Connections: 17
 Number & Type of Seasonal Units: 12 MH/cabins
 Number & Type of Permanent Units: 5 MH
Population Estimate (source of estimate): 40 (Texas Water Commission sanitary survey)
Recorded Water Usage: unknown
Calculated Water Demand: 17 x 0.6 gpm = 10.2 gpm
Study Participant AX, (continued)

EXISTING FEATURES OF FACILITY

Raw pump capacity: 1 3hp submersible
Chlorination: 2 gal/week bleach
Pressure Tank: 1 - 100 gal
Filters: none
Service Pumps: none
Storage Capacity: none
Additional Treatment/Capabilities: none

TEXAS WATER COMMISSION REQUIREMENTS FOR FACILITY

Requirements are based on this system being classified as a Surface water - Community system, for a total treatment capacity of 10.2 gpm.

Raw Pump Capacity: 10.2 gpm with the largest pump out of service
Transfer Pump Capacity: 10.2 gpm
Pressure Tank Capacity (Elevated Storage): 340 gallons (1700 gallons)
Filters: 10.2 gpm
Service Pumps: 2 or more pumps with a total capacity of 34 gpm
Clearwell Storage Capacity: 850 gallons
Total Storage Capacity: 3400 gallons

DEFICIENCIES IN EXISTING TREATMENT PROCESS (Using TWC Criteria): Inadequate flow measuring devices, inadequate chemical injection, inadequate disinfection capabilities, no flash mixing/flocculation, no continuous coagulation, no sedimentation, inadequate filtration, inadequate bulk storage, inadequate pressure storage, inadequate raw water pump capacity, inadequate service pump capacity, inadequate treatment capacity, no certified operator on duty or continuous chlorine/turbidity monitoring, improperly protected raw water intake, inadequate laboratory equipment.
STUDY PARTICIPANT AY

PARTICIPATION IN PRELIMINARY ENGINEERING STUDY

Participating in Study? yes
Date of Engineering Site Visit: 4/16/93, 6/3/93
Known Site Visit by TWC: no
Bilateral Compliance Agreement Signed with TWC: yes

EXISTING TREATMENT PROCESS: The submersible pump delivers water to the pressure filter, which is chlorinated and delivered to the holding tank before distribution

CONNECTION/POPULATION ESTIMATES

Type of System: Surface water - Noncommunity
Total Number of Connections: 22
 Number & Type of Seasonal Units: 8 cabins, 6 MH, 8 RV
 Number & Type of Permanent Units: 0
Population Estimate (source of estimate): 66 (estimated using TWC criteria)
Recorded Water Usage: unknown
Calculated Water Demand: 22 x 0.6 gpm = 13.2 gpm
Study Participant AY, (continued)

EXISTING FEATURES OF FACILITY

Raw pump capacity: 1 submersible
Chlorination: new chlorinator
Pressure Tank: unknown
Filters: new charcoal & sand filter
Service Pumps: unknown
Storage Capacity: unknown
Additional Treatment/Capabilities: unknown

TEXAS WATER COMMISSION REQUIREMENTS FOR FACILITY

Requirements are based on this system being classified as a Surface water - Noncommunity system, for a total treatment capacity of 13.2 gpm.

Raw Pump Capacity: 13.2 gpm with the largest pump out of service
Transfer Pump Capacity: 13.2 gpm with the largest pump out of service
Pressure Tank Capacity (Elevated Storage): 440 gallons (2200 gallons)
Filters: 13.2 gpm
Service Pumps: 2 or more pumps with a total capacity of 44 gpm
Clearwell Storage Capacity: 1100 gallons
Total Storage Capacity: 4400 gallons

DEFICIENCIES IN EXISTING TREATMENT PROCESS (Using TWC Criteria): Inadequate flow measuring devices, inadequate chemical injection, inadequate disinfection capabilities, no flash mixing/flocculation, no continuous coagulation, no sedimentation, inadequate filtration, inadequate bulk storage, inadequate pressure storage, inadequate raw water pump capacity, inadequate service pump capacity, inadequate treatment capacity, no certified operator on duty or continuous chlorine/turbidity monitoring, improperly protected raw water intake, inadequate laboratory equipment.
PARTICIPATION IN PRELIMINARY ENGINEERING STUDY

Participating in Study? yes
Date of Engineering Site Visit: 4/15/93
Known Site Visit by TWC: yes
Bilateral Compliance Agreement Signed with TWC: yes

EXISTING TREATMENT PROCESS: No treatment provided except chlorination

CONNECTION/POPULATION ESTIMATES

Type of System: Surface water - Noncommunity serving other than transient accommodation units
Total Number of Connections: 2
 Number & Type of Seasonal Units: 0
 Number & Type of Permanent Units: 1 store, 1 house
Population Estimate (source of estimate): 100 (Texas Water Commission sanitary survey)
Recorded Water Usage: unknown
Calculated Water Demand: $1 \times 0.6 \text{ gpm} + 100 \times 12 \text{ gpd} = 1.4 \text{ gpm}$
EXISTING FEATURES OF FACILITY

Raw pump capacity: 1 - 10 gpm, 1 hp submersible
Chlorination: 5 gal/week chlorine bleach
Pressure Tank: 1 - 36 gal
Filters: none
Service Pumps: none
Storage Capacity: none
Additional Treatment/Capabilities: none

TEXAS WATER COMMISSION REQUIREMENTS FOR FACILITY

Requirements are based on this system being classified as a Surface water - Noncommunity serving other than transient accommodation units system, for a total treatment capacity of 1.4 gpm.

Raw Pump Capacity: 1.4 gpm with the largest pump out of service
Transfer Pump Capacity: 1.4 gpm with the largest pump out of service
Pressure Tank Capacity (Elevated Storage): 220 gallons (N/A)
Filters: 1.4 gpm
Service Pumps: 4.2 gpm
Clearwell Storage Capacity: 1000 gallons
Total Storage Capacity: N/A

DEFICIENCIES IN EXISTING TREATMENT PROCESS (Using TWC Criteria): Inadequate flow measuring devices, inadequate chemical injection, inadequate disinfection capabilities, no flash mixing/flocculation, no continuous coagulation, no sedimentation, inadequate filtration, inadequate bulk storage, inadequate pressure storage, inadequate raw water pump capacity, inadequate service pump capacity, inadequate treatment capacity, no certified operator on duty or continuous chlorine/turbidity monitoring, improperly protected raw water intake, inadequate laboratory equipment.
PARTICIPATION IN PRELIMINARY ENGINEERING STUDY

Participating in Study? yes
Date of Engineering Site Visit: 4/21/93
Known Site Visit by TWC: yes
Bilateral Compliance Agreement Signed with TWC: yes

EXISTING TREATMENT PROCESS: Groundwater is chlorinated and distributed through the storage tank.

CONNECTION/POPULATION ESTIMATES

Type of System: Groundwater - Noncommunity serving transient accommodation units
Total Number of Connections: 20
 Number & Type of Seasonal Units: 14 RV, 5 MH
 Number & Type of Permanent Units: 1 restaurant
Population Estimate (source of estimate): 87 (estimated using Texas Water Commission criteria)
Recorded Water Usage: unknown
Calculated Water Demand: $19 \times 1.0 \text{ gpm} + 30 \times 18 \text{ gpd} = 19.4 \text{ gpm}$
Study Participant BA, (continued)

EXISTING FEATURES OF FACILITY

Raw pump capacity: unknown
Chlorination: chlorinate an unknown amount
Pressure Tank: none
Filters: none
Service Pumps: none
Storage Capacity: 1 - 1000 gal
Additional Treatment/Capabilities: none

TEXAS WATER COMMISSION REQUIREMENTS FOR FACILITY

Requirements are based on this system being classified as a Groundwater - Noncommunity serving transient accommodation units system, for size category of < 100 accommodation units without ground storage.

Raw Pump Capacity: 19.4 gpm
Transfer Pump Capacity: N/A
Pressure Tank Capacity (Elevated Storage): 220 gallons (N/A)
Filters: N/A
Service Pumps: N/A
Clearwell Storage Capacity: N/A
Total Storage Capacity: N/A

DEFICIENCIES IN EXISTING TREATMENT PROCESS (Using TWC Criteria): No coagulation with direct filtration, no laboratory equipment, no continuous chlorine/turbidity monitoring
PARTICIPATION IN PRELIMINARY ENGINEERING STUDY

Participating in Study? unknown
Date of Engineering Site Visit: visited with operator 4/20/93
Known Site Visit by TWC: yes
Bilateral Compliance Agreement Signed with TWC: yes

EXISTING TREATMENT PROCESS: Raw water intake pumps, raw water pressure tank, pressure sand filter, water softener, fiber filter (Reverse Osmosis), terminal chlorination prior to storage in ground storage tanks. One service pump and one pressure tank distribute water to the system.

CONNECTION/POPULATION ESTIMATES

Type of System: Groundwater - Community
Total Number of Connections: 25
 Number & Type of Seasonal Units: 19 condominium units
 Number & Type of Permanent Units: 6 condominium units
Population Estimate (source of estimate): 75 (estimated using Texas Water Commission criteria)

Recorded Water Usage: unknown
Calculated Water Demand: 25 x 1.5 gpm = 37.5 gpm
Study Participant BB. (continued)

EXISTING FEATURES OF FACILITY

Raw pump capacity: 2 - 1½ hp submersible
Chlorination: 1½ gal/month 5.25% Na Hypochlorite, 2 chlorinators
Pressure Tank: 2 - 80 gal
Filters: 2 pressure sand filters, 2 gpm/sf allowed
Service Pumps: 1 - 25 gpm, 1hp
Storage Capacity: 2 - 2100 gal, only use 1
Additional Treatment/Capabilities: Water Softener, RO System

TEXAS WATER COMMISSION REQUIREMENTS FOR FACILITY

Requirements are based on this system being classified as a Groundwater - Community system, for size category of < 50 connections without (adequate capacity) ground storage.

Raw Pump Capacity: 37.5 gpm
Transfer Pump Capacity: N/A
Pressure Tank Capacity (Elevated Storage): 1250 gallons (N/A)
Filters: N/A
Service Pumps: N/A
Clearwell Storage Capacity: N/A
Total Storage Capacity: N/A

DEFCIENCIES IN EXISTING TREATMENT PROCESS (Using TWC Criteria): Inadequate chlorine residual, inadequate treatment plant capacity, no metering, no flocculation, continuous coagulation, or sedimentation, no laboratory equipment, no continuous chlorine/turbidity monitoring, or certified operator on duty when plant in operation.
STUDY PARTICIPANT BC

PARTICIPATION IN PRELIMINARY ENGINEERING STUDY

Participating in Study? yes
Date of Engineering Site Visit: none as of this date
Known Site Visit by TWC: yes
Bilateral Compliance Agreement Signed with TWC: yes

EXISTING TREATMENT PROCESS: unknown

CONNECTION/POPULATION ESTIMATES

Type of System: Groundwater - Noncommunity serving other than transient accommodation units
Total Number of Connections: 7
 Number & Type of Seasonal Units: 0
 Number & Type of Permanent Units: 7 businesses
Population Estimate (source of estimate): 200 (Texas Water Commission sanitary survey)
Recorded Water Usage: maximum of 1000 gpd (0.7 gpm)
Calculated Water Demand: 200 x 18 gallons/person = 2.5 gpm
EXISTING FEATURES OF FACILITY

Raw pump capacity: 1 - ½hp, 6 gpm submersible
Chlorination: 1 hypochlorinator
Pressure Tank: 1 - 42 gallon, 1 - 80 gallon
Filters: none
Service Pumps: 1 - ¾hp, 15 gpm
Storage Capacity: 1000 gallons
Additional Treatment/Capabilities: none

TEXAS WATER COMMISSION REQUIREMENTS FOR FACILITY

Requirements are based on this system being classified as a Groundwater - Noncommunity serving other than transient accommodation units system, for size category of < 300 persons per day.

Raw Pump Capacity: 2.5 gpm
Transfer Pump Capacity: N/A
Pressure Tank Capacity (Elevated Storage): 220 gallons (N/A)
Filters: N/A
Service Pumps: N/A
Clearwell Storage Capacity: N/A
Total Storage Capacity: N/A

DEFICIENCIES IN EXISTING TREATMENT PROCESS (Using TWC Criteria): unknown
UNITS SPECIFIED

FLOWRATE = million gallons/day
HEAD (HGL) = feet
PRESSURE = psig

OUTPUT OPTION DATA

OUTPUT SELECTION: THE FOLLOWING RESULTS ARE INCLUDED IN THE TABULATED OUTPUT

ALL CLOSED PIPES ARE NOTED
ALL PIPES WITH PUMPS
FOLLOWING PIPES

<table>
<thead>
<tr>
<th>10</th>
<th>20</th>
<th>30</th>
<th>40</th>
<th>50</th>
<th>60</th>
<th>70</th>
<th>80</th>
<th>90</th>
<th>100</th>
<th>101</th>
<th>102</th>
<th>103</th>
</tr>
</thead>
<tbody>
<tr>
<td>104</td>
<td>105</td>
<td>106</td>
<td>107</td>
<td>108</td>
<td>109</td>
<td>110</td>
<td>111</td>
<td>112</td>
<td>113</td>
<td>114</td>
<td>115</td>
<td>116</td>
</tr>
<tr>
<td>117</td>
<td>118</td>
<td>119</td>
<td>120</td>
<td>121</td>
<td>122</td>
<td>123</td>
<td>124</td>
<td>125</td>
<td>126</td>
<td>127</td>
<td>128</td>
<td>129</td>
</tr>
<tr>
<td>130</td>
<td>131</td>
<td>132</td>
<td>133</td>
<td>134</td>
<td>135</td>
<td>136</td>
<td>137</td>
<td>138</td>
<td>139</td>
<td>140</td>
<td>141</td>
<td>142</td>
</tr>
<tr>
<td>143</td>
<td>144</td>
<td>145</td>
<td>146</td>
<td>147</td>
<td>148</td>
<td>149</td>
<td>150</td>
<td>151</td>
<td>152</td>
<td>153</td>
<td>154</td>
<td>155</td>
</tr>
<tr>
<td>170</td>
<td>200</td>
<td>210</td>
<td>220</td>
<td>252</td>
<td>253</td>
<td>270</td>
<td>280</td>
<td>290</td>
<td>300</td>
<td>500</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FOLLOWING JUNCTION NODES

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
<td>26</td>
</tr>
<tr>
<td>27</td>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>33</td>
<td>34</td>
<td>35</td>
<td>36</td>
<td>37</td>
<td>38</td>
<td>39</td>
</tr>
<tr>
<td>40</td>
<td>41</td>
<td>42</td>
<td>43</td>
<td>44</td>
<td>45</td>
<td>46</td>
<td>47</td>
<td>48</td>
<td>49</td>
<td>50</td>
<td>51</td>
<td>52</td>
</tr>
<tr>
<td>53</td>
<td>54</td>
<td>55</td>
<td>56</td>
<td>57</td>
<td>58</td>
<td>59</td>
<td>61</td>
<td>62</td>
<td>63</td>
<td>64</td>
<td>65</td>
<td>88</td>
</tr>
<tr>
<td>100</td>
<td>110</td>
<td></td>
</tr>
</tbody>
</table>

MAXIMUM AND MINIMUM PRESSURES = 25

SYSTEM CONFIGURATION

NUMBER OF PIPES (p) = 76
NUMBER OF JUNCTION NODES(j) = 67
NUMBER OF PRIMARY LOOPS (l) = 5
NUMBER OF BOUNDARY NODES(f) = 5
NUMBER OF SUPPLY ZONES(z) = 1

**
 SIMULATION RESULTS
**
The results are obtained after 4 trials with an accuracy = 0.00019

SIMULATION DESCRIPTION

Run Description: MAXIMUM HOURLY DEMANDS (1.5 GPM PER CONNECTION)
Drawing: PIPE_50R
<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>9-1</td>
<td>0.19</td>
<td>1010.00</td>
<td>108</td>
<td>109</td>
<td>110</td>
</tr>
<tr>
<td>10-1</td>
<td>0.07</td>
<td>1020.00</td>
<td>109</td>
<td>111</td>
<td>112</td>
</tr>
<tr>
<td>11-1</td>
<td>0.03</td>
<td>1010.00</td>
<td>110</td>
<td>111</td>
<td></td>
</tr>
<tr>
<td>12-1</td>
<td>0.06</td>
<td>1010.00</td>
<td>112</td>
<td>113</td>
<td>118</td>
</tr>
<tr>
<td>13-1</td>
<td>0.03</td>
<td>1010.00</td>
<td>113</td>
<td>114</td>
<td></td>
</tr>
<tr>
<td>14-1</td>
<td>0.03</td>
<td>1015.00</td>
<td>114</td>
<td>115</td>
<td></td>
</tr>
<tr>
<td>15-F</td>
<td>0.22</td>
<td>1005.00</td>
<td>115</td>
<td>116</td>
<td></td>
</tr>
<tr>
<td>16-1</td>
<td>0.05</td>
<td>1005.00</td>
<td>116</td>
<td>117</td>
<td></td>
</tr>
<tr>
<td>17-1</td>
<td>0.33</td>
<td>1020.00</td>
<td>117</td>
<td>119</td>
<td>120</td>
</tr>
<tr>
<td>18-1</td>
<td>0.05</td>
<td>1060.00</td>
<td>118</td>
<td>119</td>
<td></td>
</tr>
<tr>
<td>19-1</td>
<td>0.03</td>
<td>1000.00</td>
<td>120</td>
<td>121</td>
<td></td>
</tr>
<tr>
<td>20-1</td>
<td>0.02</td>
<td>1040.00</td>
<td>122</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>21-1</td>
<td>0.03</td>
<td>1020.00</td>
<td>123</td>
<td>252</td>
<td></td>
</tr>
<tr>
<td>22-1</td>
<td>0.02</td>
<td>1020.00</td>
<td>10</td>
<td>123</td>
<td>124</td>
</tr>
<tr>
<td>23-1</td>
<td>0.01</td>
<td>1010.00</td>
<td>124</td>
<td>125</td>
<td>129</td>
</tr>
<tr>
<td>24-1</td>
<td>0.01</td>
<td>1020.00</td>
<td>125</td>
<td>126</td>
<td></td>
</tr>
<tr>
<td>25-1</td>
<td>0.24</td>
<td>1010.00</td>
<td>129</td>
<td>253</td>
<td></td>
</tr>
<tr>
<td>26-1</td>
<td>0.02</td>
<td>1010.00</td>
<td>126</td>
<td>127</td>
<td></td>
</tr>
<tr>
<td>27-1</td>
<td>0.05</td>
<td>1010.00</td>
<td>127</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>28-1</td>
<td>0.24</td>
<td>1025.00</td>
<td>130</td>
<td>253</td>
<td></td>
</tr>
<tr>
<td>29-1</td>
<td>0.06</td>
<td>1010.00</td>
<td>130</td>
<td>131</td>
<td></td>
</tr>
<tr>
<td>30-1</td>
<td>0.02</td>
<td>1100.00</td>
<td>131</td>
<td>132</td>
<td>136</td>
</tr>
<tr>
<td>31-1</td>
<td>0.01</td>
<td>1010.00</td>
<td>132</td>
<td>133</td>
<td>135</td>
</tr>
<tr>
<td>32-1</td>
<td>0.03</td>
<td>1010.00</td>
<td>133</td>
<td>134</td>
<td></td>
</tr>
<tr>
<td>33-F</td>
<td>0.19</td>
<td>1010.00</td>
<td>134</td>
<td>139</td>
<td></td>
</tr>
<tr>
<td>34-1</td>
<td>0.01</td>
<td>1010.00</td>
<td>135</td>
<td></td>
<td></td>
</tr>
<tr>
<td>35-1</td>
<td>0.00</td>
<td>1100.00</td>
<td>136</td>
<td>137</td>
<td>170</td>
</tr>
<tr>
<td>36-1</td>
<td>0.18</td>
<td>1010.00</td>
<td>137</td>
<td>138</td>
<td>160</td>
</tr>
<tr>
<td>37-1</td>
<td>0.02</td>
<td>1010.00</td>
<td>138</td>
<td>139</td>
<td></td>
</tr>
<tr>
<td>38-1</td>
<td>0.05</td>
<td>1020.00</td>
<td>140</td>
<td>141</td>
<td></td>
</tr>
<tr>
<td>39-1</td>
<td>0.19</td>
<td>1010.00</td>
<td>141</td>
<td>142</td>
<td></td>
</tr>
<tr>
<td>40-1</td>
<td>0.06</td>
<td>1010.00</td>
<td>142</td>
<td>143</td>
<td></td>
</tr>
<tr>
<td>41-1</td>
<td>0.15</td>
<td>1010.00</td>
<td>143</td>
<td>144</td>
<td></td>
</tr>
<tr>
<td>42-1</td>
<td>0.31</td>
<td>1005.00</td>
<td>144</td>
<td>145</td>
<td>146</td>
</tr>
<tr>
<td>43-1</td>
<td>0.02</td>
<td>1005.00</td>
<td>145</td>
<td></td>
<td></td>
</tr>
<tr>
<td>44-1</td>
<td>0.05</td>
<td>1005.00</td>
<td>146</td>
<td>147</td>
<td></td>
</tr>
<tr>
<td>45-1</td>
<td>0.11</td>
<td>1005.00</td>
<td>147</td>
<td>148</td>
<td></td>
</tr>
<tr>
<td>46-1</td>
<td>0.26</td>
<td>1010.00</td>
<td>148</td>
<td>149</td>
<td></td>
</tr>
<tr>
<td>47-1</td>
<td>0.02</td>
<td>1010.00</td>
<td>149</td>
<td>150</td>
<td></td>
</tr>
<tr>
<td>48-1</td>
<td>0.09</td>
<td>1010.00</td>
<td>150</td>
<td>151</td>
<td></td>
</tr>
<tr>
<td>49-1</td>
<td>0.08</td>
<td>1010.00</td>
<td>151</td>
<td>152</td>
<td></td>
</tr>
<tr>
<td>50-1</td>
<td>0.16</td>
<td>1005.00</td>
<td>152</td>
<td>153</td>
<td></td>
</tr>
<tr>
<td>51-1</td>
<td>0.11</td>
<td>1010.00</td>
<td>153</td>
<td>154</td>
<td></td>
</tr>
<tr>
<td>52-1</td>
<td>0.03</td>
<td>1020.00</td>
<td>154</td>
<td>270</td>
<td></td>
</tr>
<tr>
<td>53-1</td>
<td>0.02</td>
<td>1020.00</td>
<td>10</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>54-1</td>
<td>0.05</td>
<td>1020.00</td>
<td>20</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>55-1</td>
<td>0.03</td>
<td>1050.00</td>
<td>30</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>56-1</td>
<td>0.02</td>
<td>1020.00</td>
<td>40</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>57-1</td>
<td>0.03</td>
<td>1040.00</td>
<td>50</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>58-1</td>
<td>0.01</td>
<td>1050.00</td>
<td>60</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>59-1</td>
<td>0.02</td>
<td>1030.00</td>
<td>70</td>
<td>280</td>
<td></td>
</tr>
<tr>
<td>61-1</td>
<td>0.00</td>
<td>1010.00</td>
<td>80</td>
<td>90</td>
<td>105</td>
</tr>
<tr>
<td>62-1</td>
<td>0.03</td>
<td>1110.00</td>
<td>90</td>
<td></td>
<td></td>
</tr>
<tr>
<td>63-1</td>
<td>0.03</td>
<td>1020.00</td>
<td>160</td>
<td>210</td>
<td></td>
</tr>
<tr>
<td>64-1</td>
<td>0.03</td>
<td>1005.00</td>
<td>210</td>
<td>220</td>
<td></td>
</tr>
<tr>
<td>65-1</td>
<td>0.01</td>
<td>1005.00</td>
<td>220</td>
<td></td>
<td></td>
</tr>
<tr>
<td>88-1</td>
<td>0.00</td>
<td>1010.00</td>
<td>121</td>
<td>122</td>
<td>252</td>
</tr>
<tr>
<td>100-F</td>
<td>0.00</td>
<td>1010.00</td>
<td>200</td>
<td>290</td>
<td>500</td>
</tr>
<tr>
<td>110-1</td>
<td>0.00</td>
<td>0.00</td>
<td>290</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>JUNCTION NUMBER</td>
<td>MAXIMUM PRESSURES (psi)</td>
<td>JUNCTION NUMBER</td>
<td>MINIMUM PRESSURES (psi)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>-------------------------</td>
<td>-----------------</td>
<td>------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>97.03</td>
<td>1</td>
<td>31.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>96.27</td>
<td>46</td>
<td>33.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>89.30</td>
<td>7</td>
<td>33.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>88.70</td>
<td>47</td>
<td>34.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>87.90</td>
<td>48</td>
<td>35.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>86.74</td>
<td>58</td>
<td>36.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUNCTION NODE RESULTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>JUNCTION NUMBER</td>
<td>EXTERNAL DEMAND (mgd)</td>
<td>HYDRAULIC GRADE (ft)</td>
<td>JUNCTION ELEVATION (ft)</td>
<td>PRESSURE HEAD (ft)</td>
<td>JUNCTION PRESSURE (psi)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------------------</td>
<td>--------------------------</td>
<td>----------------------------</td>
<td>-----------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>1-F</td>
<td>0.00</td>
<td>1123.40</td>
<td>1050.00</td>
<td>73.40</td>
<td>31.80</td>
</tr>
<tr>
<td>2-1</td>
<td>0.05</td>
<td>1130.90</td>
<td>1020.00</td>
<td>110.90</td>
<td>48.06</td>
</tr>
<tr>
<td>3-1</td>
<td>0.03</td>
<td>1190.16</td>
<td>1010.00</td>
<td>180.16</td>
<td>78.07</td>
</tr>
<tr>
<td>4-1</td>
<td>0.15</td>
<td>1186.41</td>
<td>1010.00</td>
<td>176.41</td>
<td>76.45</td>
</tr>
<tr>
<td>5-1</td>
<td>0.19</td>
<td>1118.46</td>
<td>1030.00</td>
<td>85.46</td>
<td>38.33</td>
</tr>
<tr>
<td>6-1</td>
<td>0.03</td>
<td>1117.79</td>
<td>1030.00</td>
<td>87.79</td>
<td>38.04</td>
</tr>
<tr>
<td>7-1</td>
<td>0.12</td>
<td>1087.20</td>
<td>1010.00</td>
<td>77.70</td>
<td>34.45</td>
</tr>
<tr>
<td>8-F</td>
<td>0.36</td>
<td>1156.70</td>
<td>1040.00</td>
<td>116.70</td>
<td>50.57</td>
</tr>
<tr>
<td>9-1</td>
<td>0.19</td>
<td>1206.40</td>
<td>1010.00</td>
<td>196.40</td>
<td>85.11</td>
</tr>
<tr>
<td>10-1</td>
<td>0.07</td>
<td>1224.68</td>
<td>1020.00</td>
<td>204.68</td>
<td>88.70</td>
</tr>
<tr>
<td>11-1</td>
<td>0.03</td>
<td>1199.44</td>
<td>1010.00</td>
<td>189.44</td>
<td>82.09</td>
</tr>
<tr>
<td>12-1</td>
<td>0.06</td>
<td>1210.17</td>
<td>1010.00</td>
<td>200.17</td>
<td>86.74</td>
</tr>
<tr>
<td>13-1</td>
<td>0.03</td>
<td>1207.15</td>
<td>1010.00</td>
<td>197.15</td>
<td>85.43</td>
</tr>
<tr>
<td>14-1</td>
<td>0.03</td>
<td>1197.52</td>
<td>1015.00</td>
<td>182.52</td>
<td>79.09</td>
</tr>
<tr>
<td>15-F</td>
<td>0.22</td>
<td>1099.22</td>
<td>1005.00</td>
<td>94.22</td>
<td>40.83</td>
</tr>
<tr>
<td>16-1</td>
<td>0.05</td>
<td>1100.01</td>
<td>1005.00</td>
<td>95.01</td>
<td>41.17</td>
</tr>
<tr>
<td>17-1</td>
<td>0.33</td>
<td>1155.02</td>
<td>1020.00</td>
<td>135.02</td>
<td>58.51</td>
</tr>
<tr>
<td>18-1</td>
<td>0.05</td>
<td>1177.03</td>
<td>1060.00</td>
<td>117.03</td>
<td>50.71</td>
</tr>
<tr>
<td>19-1</td>
<td>0.03</td>
<td>1144.29</td>
<td>1000.00</td>
<td>144.29</td>
<td>62.53</td>
</tr>
<tr>
<td>20-1</td>
<td>0.02</td>
<td>1125.36</td>
<td>1040.00</td>
<td>85.36</td>
<td>36.99</td>
</tr>
<tr>
<td>21-1</td>
<td>0.03</td>
<td>1130.39</td>
<td>1020.00</td>
<td>110.39</td>
<td>47.84</td>
</tr>
<tr>
<td>22-1</td>
<td>0.02</td>
<td>1126.61</td>
<td>1020.00</td>
<td>106.61</td>
<td>46.20</td>
</tr>
<tr>
<td>23-1</td>
<td>0.01</td>
<td>1126.52</td>
<td>1010.00</td>
<td>116.52</td>
<td>50.49</td>
</tr>
<tr>
<td>24-1</td>
<td>0.01</td>
<td>1105.91</td>
<td>1020.00</td>
<td>85.91</td>
<td>37.23</td>
</tr>
<tr>
<td>25-1</td>
<td>0.24</td>
<td>1126.56</td>
<td>1010.00</td>
<td>116.56</td>
<td>50.51</td>
</tr>
<tr>
<td>JUNCTION NUMBER</td>
<td>MAXIMUM PRESSURES (psi)</td>
<td>JUNCTION NUMBER</td>
<td>MINIMUM PRESSURES (psi)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------------</td>
<td>-----------------</td>
<td>------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>97.03</td>
<td>1</td>
<td>31.80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>96.27</td>
<td>46</td>
<td>33.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>89.30</td>
<td>7</td>
<td>33.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>88.70</td>
<td>47</td>
<td>34.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>87.90</td>
<td>48</td>
<td>35.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>86.74</td>
<td>58</td>
<td>36.05</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MAXIMUM AND MINIMUM VALUES

PRESSURES
13	85.43	20	36.99
9	85.11	24	37.23
37	82.52	27	37.35
11	82.09	26	37.90
31	80.44	45	37.94
34	80.41	6	38.04
32	79.22	5	38.33
14	79.09	61	38.67
3	78.07	44	40.08
63	77.83	39	40.23
51	77.79	15	40.83
33	77.49	38	40.92
4	76.45	16	41.17
29	68.37	53	41.96
55	67.55	57	42.37
50	65.56	59	43.33
19	62.53	30	43.57
64	61.56	22	46.20
56	61.39	28	46.75

SUMMARY OF INFLOWS AND OUTFLOWS

(+) INFLOWS INTO THE SYSTEM FROM BOUNDARY NODES

(-) OUTFLOWS FROM THE SYSTEM
POSSUM KINGDOM REGIONAL WATER SUPPLY SYSTEM

OPTION NO. 1
0% Residential

I. ANALYSIS CONDITIONS
1) Single Source Supply
2) 100% Participation by Commercial Camps/Businesses
3) 0% Participation by Residential
4) Maximum Day to the Bends Condominiums
5) Maximum Day to Possum Kingdom State Park (0.13 MGD)

II. NUMBER OF SYSTEM CONNECTIONS:

<table>
<thead>
<tr>
<th>Type</th>
<th>Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Camps/Businesses</td>
<td>1,463</td>
</tr>
<tr>
<td>Bends Condominiums</td>
<td>24</td>
</tr>
<tr>
<td>Possum Kingdom State Park</td>
<td>153</td>
</tr>
<tr>
<td>Total</td>
<td>1,640</td>
</tr>
</tbody>
</table>

III. MAXIMUM DAY DEMAND:

\[1,640 \text{ conn} \times 0.6 \text{ gpm} = 984 \text{ gpm} = 1.42 \text{ MGD} \]

IV. MAXIMUM HOURLY DEMAND:

\[1,640 \text{ conn} \times 1.5 \text{ gpm} = 3.54 \text{ MGD} \]

V. STORAGE

<table>
<thead>
<tr>
<th>Type</th>
<th>Connections</th>
<th>Capacity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ground Storage</td>
<td>1,640</td>
<td>164,000 gal.</td>
</tr>
<tr>
<td>Elevated Storage</td>
<td>1,640</td>
<td>164,000 gal.</td>
</tr>
<tr>
<td>Pressure Tanks</td>
<td>1,640</td>
<td>32,800 gal.</td>
</tr>
</tbody>
</table>
POSSUM KINGDOM WATER SUPPLY CORPORATION
WATER DISTRIBUTION SYSTEM
ENGINEER’S ESTIMATE

OPTION NO: 1 Single Source Supply – Possum Kingdom Lake
100% Business Participation
0% Residential Participation

MAX DAY DEMAND: 1.42 MGD
CONNECTIONS 1640 CONN.

<table>
<thead>
<tr>
<th>Pipe Diameter</th>
<th>Quantity</th>
<th>Units</th>
<th>Unit Cost</th>
<th>Extended Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1,643</td>
<td></td>
<td>$2.50</td>
<td>$4,108</td>
</tr>
<tr>
<td>2.5</td>
<td>17,136</td>
<td>L.F.</td>
<td>$3.25</td>
<td>$55,691</td>
</tr>
<tr>
<td>3</td>
<td>42,181</td>
<td>L.F.</td>
<td>$4.50</td>
<td>$189,813</td>
</tr>
<tr>
<td>4</td>
<td>67,570</td>
<td></td>
<td>$4.00</td>
<td>$270,278</td>
</tr>
<tr>
<td>6</td>
<td>58,984</td>
<td>L.F.</td>
<td>$6.50</td>
<td>$383,397</td>
</tr>
<tr>
<td>8</td>
<td>34,483</td>
<td></td>
<td>$7.45</td>
<td>$256,897</td>
</tr>
<tr>
<td>10</td>
<td>16,049</td>
<td></td>
<td>$12.00</td>
<td>$192,588</td>
</tr>
<tr>
<td>12</td>
<td>2,648</td>
<td></td>
<td>$16.00</td>
<td>$42,368</td>
</tr>
</tbody>
</table>

6" LAKE CROSSING 2,000 L.F. $100.00 $200,000
6" LAKE CROSSING 2,000 L.F. $100.00 $200,000
6" LAKE CROSSING 2,000 L.F. $100.00 $200,000

246,693 L.F. $1,995,139

System Appurtenances 12% of Pipe Cost $239,417
2"-3" meter 64 Ea. $750.00 $48,000
ELEVATED STORAGE 164,000 GAL. $1.50 $246,000
GROUND STORAGE 165,000 GAL $0.30 $49,500
TREATMENT PLANT 1.42 MGD $2,680,000 $3,800,000
DISTRIBUTION PUMPS
 High Service Pumps 40 HP $1,500.00 $60,000
 High Service Pumps 20 HP $1,500.00 $30,000
 High Service Pumps 20 HP $1,500.00 $30,000
 Booster pumps 5 HP $2,000.00 $10,000
 Booster pumps 5 HP $2,000.00 $10,000
 Booster pumps 5 HP $2,000.00 $10,000

SUBTOTAL: $6,538,056

Contingencies 15.00% $980,708
Engineering 10.00% $751,876

TOTAL: $8,270,641
OPERATION AND MAINTENANCE COST

OPTION: Possum Kingdom Raw Water Treatment Plant

0% Residential

<table>
<thead>
<tr>
<th>Item</th>
<th>Plant</th>
<th>System</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personnel</td>
<td>$150,000</td>
<td>$100,000</td>
<td>$250,000</td>
</tr>
<tr>
<td>Utilities</td>
<td>$54,000</td>
<td>$30,000</td>
<td>$84,000</td>
</tr>
<tr>
<td>Structures/Fixed Equipment</td>
<td>$47,000</td>
<td>$20,000</td>
<td>$67,000</td>
</tr>
<tr>
<td>Vehicles</td>
<td>$4,000</td>
<td>$6,000</td>
<td>$10,000</td>
</tr>
<tr>
<td>Treatment Supplies</td>
<td>$49,000</td>
<td></td>
<td>$49,000</td>
</tr>
<tr>
<td>Office and Laboratory</td>
<td>$15,000</td>
<td>$5,000</td>
<td>$20,000</td>
</tr>
<tr>
<td>Regulatory Agency</td>
<td>$20,000</td>
<td></td>
<td>$20,000</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>$6,000</td>
<td>$4,000</td>
<td>$10,000</td>
</tr>
<tr>
<td>Insurance</td>
<td>$20,000</td>
<td>$15,000</td>
<td>$35,000</td>
</tr>
<tr>
<td>Legal and Accounting</td>
<td>$2,000</td>
<td>$3,000</td>
<td>$5,000</td>
</tr>
<tr>
<td>Equipment Rental</td>
<td>$2,000</td>
<td>$3,000</td>
<td>$5,000</td>
</tr>
<tr>
<td>Total</td>
<td>$369,000</td>
<td>$186,000</td>
<td>$555,000</td>
</tr>
</tbody>
</table>

Cost of Water: $0.060 /1000 gallons
Assume 15% loss: $0.069 /1000 gallons
POSSUM KINGDOM REGIONAL WATER SUPPLY SYSTEM

POSSUM KINGDOM TOTAL SYSTEM
OPTION NO. 2 AND OPTION NO. 3

I. ANALYSIS CONDITIONS
1) Single Source Supply
2) 100% Participation by Businesses and Individuals
3) Maximum Day to Gaines Bend (0.22 MGD)
4) Maximum Day to Hog Bend (0.16 MGD)
5) Maximum Day to Possum Kingdom State Park (0.13 MGD)
6) Gaines Bend, Hog Bend and Possum Kingdom State Park are treated as separate systems, with their own elevated storage in this analysis, the Maximum Day Demand and ground storage is provided for these areas.

II. NUMBER OF SYSTEM CONNECTIONS

<table>
<thead>
<tr>
<th>Business Connection</th>
<th>1,463 Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual Connections</td>
<td>1,376 Connections</td>
</tr>
<tr>
<td>Gaines Bend</td>
<td>263 Connections</td>
</tr>
<tr>
<td>Hog Bend</td>
<td>185 Connections</td>
</tr>
<tr>
<td>Possum Kingdom State Park</td>
<td>153 Connections</td>
</tr>
</tbody>
</table>

Total Connections = 3,440 Connections

III. MAXIMUM DAY DEMANDS

Business	1,463 conn x 0.6 gpm = 878 gpm = 1.26 MGD
Individuals	1,376 conn x 0.6 gpm = 825 gpm = 1.19 MGD
Gaines Bend	263 conn x 0.6 gpm = 158 gpm = 0.22 MGD
Hog Bend	185 conn x 0.6 gpm = 111 gpm = 0.16 MGD
Possum Kingdom State Park	153 conn x 0.6 gpm = 92 gpm = 0.13 MGD

Total Maximum Day Demand = 2.96 MGD

IV. MAXIMUM HOUR DEMAND

Business	1,463 x 1.5 gpm = 3.16 MGD
Individuals	1,376 x 1.5 gpm = 2.97 MGD
Gaines Bend	= 0.22 MGD
Hog Bend	= 0.16 MGD
Possum Kingdom State Park	= 0.13 MGD

Total Maximum Hour Demand = 6.64 MGD

V. STORAGE

| Elevated Storage | 2,839 conn x 100 gallons/conn. = 284,000 gal |
| Ground Storage | 2,839 conn x 100 gallons/conn. = 300,000 gal |
POSSUM KINGDOM WATER SUPPLY CORPORATION
WATER DISTRIBUTION SYSTEM
ENGINEER'S ESTIMATE

OPTION NO: 2
100% Participation, Single Source of Supply – Possum Kingdom Lake
100% Business Participation
100% Residential Participation

MAX DAY: 2.96 MGD
CONNECTIONS 2839 CONN.

<table>
<thead>
<tr>
<th>Pipe Diameter</th>
<th>Quantity</th>
<th>Units</th>
<th>Unit Cost</th>
<th>Extended Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>17,751</td>
<td>L.F.</td>
<td>$3.25</td>
<td>$55,690</td>
</tr>
<tr>
<td>3</td>
<td>23,742</td>
<td>L.F.</td>
<td>$4.50</td>
<td>$106,841</td>
</tr>
<tr>
<td>4</td>
<td>72,662</td>
<td>L.F.</td>
<td>$4.00</td>
<td>$290,646</td>
</tr>
<tr>
<td>6</td>
<td>87,503</td>
<td>L.F.</td>
<td>$6.50</td>
<td>$568,769</td>
</tr>
<tr>
<td>8</td>
<td>34,750</td>
<td>L.F.</td>
<td>$7.45</td>
<td>$258,888</td>
</tr>
<tr>
<td>12</td>
<td>32,153</td>
<td>L.F.</td>
<td>$16.00</td>
<td>$514,448</td>
</tr>
<tr>
<td>14</td>
<td>1,694</td>
<td>L.F.</td>
<td>$20.00</td>
<td>$33,880</td>
</tr>
<tr>
<td>8" LAKE CROSSING</td>
<td>2000</td>
<td>L.F.</td>
<td>$100.00</td>
<td>$200,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>272,255 L.F.</td>
</tr>
</tbody>
</table>

System Appurtenances
12% of Pipe Cost
$243,739

3/4" Meters
1,376 EA.
$385.00
$529,760

2"–3" Meters
64 EA.
$750.00
$48,000

ELEVATED STORAGE
284,000 GAL.
$1.50
$426,000

GROUND STORAGE
300,000 GAL
$0.30
$90,000

TREATMENT PLANT
2.96 MGD
$2,500,000
$7,360,000

DISTRIBUTION PUMPS
High Service Pumps
60 HP
$1,500.00
$90,000

High Service Pumps
40 HP
$1,500.00
$60,000

High Service Pumps
40 HP
$1,500.00
$60,000

Booster pumps
7.5 HP
$2,000.00
$15,000

Booster pumps
5 HP
$2,000.00
$10,000

Booster pumps
5 HP
$2,000.00
$10,000

SUBTOTAL:
$10,973,661

Contingencies
15.00%
$1,646,049

Engineering
10.00%
$1,261,971

TOTAL:
$13,881,681

Filename: pk_cost.wk1
POSSEUM KINGDOM WATER SUPPLY CORPORATION
WATER DISTRIBUTION SYSTEM
ENGINEER'S ESTIMATE

OPTION NO: 3 Single Source of Supply from City of Graham
100% Business Participation
100% Residential Participation

MAX DAY: 2.96 MGD
CONNECTIONS 2839 CONN.

<table>
<thead>
<tr>
<th>Pipe Diameter</th>
<th>Quantity</th>
<th>Units</th>
<th>Unit Cost</th>
<th>Extended Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>17,751</td>
<td>L.F.</td>
<td>$3.25</td>
<td>$57,690</td>
</tr>
<tr>
<td>3</td>
<td>23,742</td>
<td>L.F.</td>
<td>$4.50</td>
<td>$106,841</td>
</tr>
<tr>
<td>4</td>
<td>72,662</td>
<td>L.F.</td>
<td>$4.00</td>
<td>$290,646</td>
</tr>
<tr>
<td>6</td>
<td>87,503</td>
<td>L.F.</td>
<td>$6.50</td>
<td>$568,769</td>
</tr>
<tr>
<td>8</td>
<td>34,750</td>
<td>L.F.</td>
<td>$7.45</td>
<td>$258,888</td>
</tr>
<tr>
<td>12</td>
<td>32,153</td>
<td>L.F.</td>
<td>$16.00</td>
<td>$514,448</td>
</tr>
<tr>
<td>14</td>
<td>1,694</td>
<td>L.F.</td>
<td>$20.00</td>
<td>$33,880</td>
</tr>
<tr>
<td>8" LAKE CROSSING</td>
<td>2000</td>
<td>L.F.</td>
<td>$100.00</td>
<td>$200,000</td>
</tr>
<tr>
<td>14" SUPPLY LINE</td>
<td>85,000</td>
<td>L.F.</td>
<td>$27.00</td>
<td>$2,295,000</td>
</tr>
</tbody>
</table>

System Appurtenances 12% of Pipe Cost: $619,139
- 3/4" Meters 1,376 EA. $385.00 = $529,760
- 2"-3" Meters 64 EA. $750.00 = $48,000

ELEVATED STORAGE 285,000 GAL. $1.50 = $427,500
GROUND STORAGE 300,000 GAL $0.30 = $90,000
TREATMENT PLANT EXPANSION 2.96 MGD $1,250,000 = $3,700,000

GRAHAM SUPPLY PUMPS
- High Service Pumps 100 HP $1,500.00 = $150,000
- High Service Pumps 100 HP $1,500.00 = $150,000
- High Service Pumps 100 HP $1,500.00 = $75,000
- Booster Pumps 50 HP $2,000.00 = $100,000
- Booster Pumps 50 HP $2,000.00 = $100,000
- Booster Pumps 50 HP $2,000.00 = $100,000

DISTRIBUTION PUMPS
- Booster Pumps 5 HP $2,000.00 = $10,000
- Booster Pumps 7.5 HP $2,000.00 = $15,000
- Booster Pumps 10 HP $2,000.00 = $20,000

SUBTOTAL: $10,360,561

Contingencies 15.00% $1,554,084
Engineering 10.00% $1,191,464
TOTAL: $13,106,109
OPERATION AND MAINTENANCE COST

OPTION: Possum Kingdom Raw Water Treatment Plant

- 100% Commercial
- 100% Residential

<table>
<thead>
<tr>
<th>Item</th>
<th>Plant</th>
<th>System</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personnel</td>
<td>$250,000</td>
<td>$100,000</td>
<td>$350,000</td>
</tr>
<tr>
<td>Utilities</td>
<td>$50,000</td>
<td>$50,000</td>
<td>$100,000</td>
</tr>
<tr>
<td>Structures/Fixed Equipment</td>
<td>$75,000</td>
<td>$35,000</td>
<td>$110,000</td>
</tr>
<tr>
<td>Vehicles</td>
<td>$4,000</td>
<td>$6,000</td>
<td>$10,000</td>
</tr>
<tr>
<td>Treatment Supplies</td>
<td>$75,000</td>
<td></td>
<td>$75,000</td>
</tr>
<tr>
<td>Office and Laboratory</td>
<td>$15,000</td>
<td>$5,000</td>
<td>$20,000</td>
</tr>
<tr>
<td>Regulatory Agency</td>
<td>$25,000</td>
<td></td>
<td>$25,000</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>$6,000</td>
<td>$4,000</td>
<td>$10,000</td>
</tr>
<tr>
<td>Insurance</td>
<td>$20,000</td>
<td>$20,000</td>
<td>$40,000</td>
</tr>
<tr>
<td>Legal and Accounting</td>
<td>$2,000</td>
<td>$3,000</td>
<td>$5,000</td>
</tr>
<tr>
<td>Equipment Rental</td>
<td>$2,000</td>
<td>$3,000</td>
<td>$5,000</td>
</tr>
<tr>
<td>Total</td>
<td>$524,000</td>
<td>$226,000</td>
<td>$750,000</td>
</tr>
</tbody>
</table>

Cost of Water: $0.060 /1000 gallons

Assume 15% loss: $0.069 /1000 gallons
OPERATION AND MAINTENANCE COST

OPTION: Graham Treated Water

100% Residential

<table>
<thead>
<tr>
<th>Item</th>
<th>Plant</th>
<th>System</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personnel</td>
<td>$0</td>
<td>$100,000</td>
<td>$100,000</td>
</tr>
<tr>
<td>Utilities</td>
<td>$0</td>
<td>$75,000</td>
<td>$75,000</td>
</tr>
<tr>
<td>Structures/Fixed Equipment</td>
<td>$0</td>
<td>$35,000</td>
<td>$35,000</td>
</tr>
<tr>
<td>Vehicles</td>
<td>$0</td>
<td>$10,000</td>
<td>$10,000</td>
</tr>
<tr>
<td>Treatment Supplies</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Office and Laboratory</td>
<td>$0</td>
<td>$10,000</td>
<td>$10,000</td>
</tr>
<tr>
<td>Regulatory Agency</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>$0</td>
<td>$10,000</td>
<td>$10,000</td>
</tr>
<tr>
<td>Insurance</td>
<td>$0</td>
<td>$25,000</td>
<td>$25,000</td>
</tr>
<tr>
<td>Legal and Accounting</td>
<td>$0</td>
<td>$5,000</td>
<td>$5,000</td>
</tr>
<tr>
<td>Equipment Rental</td>
<td>$0</td>
<td>$5,000</td>
<td>$5,000</td>
</tr>
<tr>
<td>Total</td>
<td>$0</td>
<td>$275,000</td>
<td>$275,000</td>
</tr>
</tbody>
</table>

Cost of Water: $1.600 /1000 gallons
Assume 15% loss: $1.840 /1000 gallons
POSSUM KINGDOM REGIONAL WATER SUPPLY SYSTEM

OPTION NO. 4
East Lake System – 100% Participation
POSSUM KINGDOM TREATED WATER

I. ANALYSIS CONDITIONS
1) System for East Side of Lake
2) Serves 100% of Businesses
3) Serves 100% of Residential
4) Maximum Day to Hog Bend
5) Maximum Day to Gaines Bend
6) All Supply from Possum Kingdom Treatment Plant near D & D – South

II. NUMBER OF SYSTEM CONNECTIONS

East Lake
Business Connection .. . 1,068 Connections
Individual Connections .. . 876 Connections
Hog Bend .. . 185 Connections
Gaines Bend .. . 263 Connections
Total East Lake: 2,392 Connections

III. MAXIMUM DAY DEMANDS

East Lake 1,944 conn x 0.6 gpm = 1,166 gpm = 1.68 MGD
Hog Bend 185 conn x 0.6 gpm = 111 gpm = 0.16 MGD
Gaines Bend 263 conn x 0.6 gpm = 158 gpm = 0.22 MGD
Total: 2.06 MGD

IV. MAXIMUM HOUR DEMAND

East Lake 1,944 conn x 1.5 gpm = 2,916 gpm = 4.20 MGD
Hog Bend = 111 gpm = 0.16 MGD
Gaines Bend = 157 gpm = 0.22 MGD
Total: 4.58 MGD

V. STORAGE

Elevated Storage 1,944 conn x 100 gallons/conn. = 194,400 gal
Ground Storage 1,944 conn x 100 gallons/conn. = 195,000 gal
POSSUM KINGDOM REGIONAL WATER SUPPLY SYSTEM

OPTION NO. 4
West Lake System – 100% Participation

I. ANALYSIS CONDITIONS
1) System for West Side of Lake only
2) Serves 100% of Business
3) Serves 100% of Residential
4) Maximum Day to Possum Kingdom State Park
5) All Supply from Graham Treatment Plant

II. NUMBER OF SYSTEM CONNECTIONS

<table>
<thead>
<tr>
<th>Category</th>
<th>Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business Connection</td>
<td>419</td>
</tr>
<tr>
<td>Individual Connections</td>
<td>476</td>
</tr>
<tr>
<td>Possum Kingdom State Park</td>
<td>153</td>
</tr>
<tr>
<td>Total West Lake</td>
<td>1,048</td>
</tr>
</tbody>
</table>

III. MAXIMUM DAY DEMANDS

<table>
<thead>
<tr>
<th>Location</th>
<th>Connections</th>
<th>gpm</th>
<th>MGD</th>
</tr>
</thead>
<tbody>
<tr>
<td>West Lake</td>
<td>895</td>
<td>537.0</td>
<td>0.77</td>
</tr>
<tr>
<td>Possum Kingdom State Park</td>
<td>153</td>
<td>91.8</td>
<td>0.13</td>
</tr>
<tr>
<td>Total Maximum Day</td>
<td></td>
<td>628.8</td>
<td>0.90</td>
</tr>
</tbody>
</table>

IV. MAXIMUM HOUR DEMAND

<table>
<thead>
<tr>
<th>Location</th>
<th>Connections</th>
<th>gpm</th>
<th>MGD</th>
</tr>
</thead>
<tbody>
<tr>
<td>West Lake</td>
<td>870</td>
<td>1,305.0</td>
<td>1.93</td>
</tr>
<tr>
<td>Possum Kingdom State Park (Max. Day)</td>
<td>91.8</td>
<td>0.13</td>
<td></td>
</tr>
<tr>
<td>Total Maximum Day</td>
<td></td>
<td>1,396.8</td>
<td>2.06</td>
</tr>
</tbody>
</table>

V. STORAGE

<table>
<thead>
<tr>
<th>Storage Type</th>
<th>Connections</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevated Storage</td>
<td>895</td>
<td>89,500 gal</td>
</tr>
<tr>
<td>Pressure Tank</td>
<td>895</td>
<td>17,900 gal</td>
</tr>
<tr>
<td>Ground Storage</td>
<td>895</td>
<td>100,000 gal</td>
</tr>
</tbody>
</table>
POSSUM KINGDOM WATER SUPPLY CORPORATION
WATER DISTRIBUTION SYSTEM
ENGINEER'S ESTIMATE

OPTION NO: 4
Dual Source of Supply; East Lake – Possum Kingdom Supply
West Lake – Graham
100% Business Participation
100% Residential Participation
MAX DAY DEMAND: 2.07 MGD
CONNECTIONS: 1944 Conn.

EAST LAKE

<table>
<thead>
<tr>
<th>Pipe Diameter</th>
<th>Quantity</th>
<th>Units</th>
<th>Unit Cost</th>
<th>Extended Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5"</td>
<td>8,406</td>
<td>L.F.</td>
<td>$3.25</td>
<td>$27,320</td>
</tr>
<tr>
<td>3"</td>
<td>8,107</td>
<td>L.F.</td>
<td>$4.50</td>
<td>$36,482</td>
</tr>
<tr>
<td>4"</td>
<td>34,987</td>
<td>L.F.</td>
<td>$4.00</td>
<td>$139,946</td>
</tr>
<tr>
<td>6"</td>
<td>45,659</td>
<td>L.F.</td>
<td>$6.50</td>
<td>$296,784</td>
</tr>
<tr>
<td>8"</td>
<td>24,632</td>
<td>L.F.</td>
<td>$7.45</td>
<td>$183,511</td>
</tr>
<tr>
<td>12"</td>
<td>19,646</td>
<td>L.F.</td>
<td>$16.00</td>
<td>$314,336</td>
</tr>
<tr>
<td>14"</td>
<td>1,694</td>
<td>L.F.</td>
<td>$20.00</td>
<td>$33,880</td>
</tr>
<tr>
<td>3/4" meter</td>
<td>876</td>
<td>Ea.</td>
<td>385</td>
<td>$337,260</td>
</tr>
<tr>
<td>2"+ meter</td>
<td>1068</td>
<td>Ea.</td>
<td>750</td>
<td>$801,000</td>
</tr>
<tr>
<td>System Appurtenances</td>
<td>12% of Pipe cost</td>
<td>$123,871</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELEVATED STORAGE</td>
<td>194,500</td>
<td>GAL.</td>
<td>$1.50</td>
<td>$291,750</td>
</tr>
<tr>
<td>GROUND STORAGE</td>
<td>200,000</td>
<td>GAL.</td>
<td>$0.30</td>
<td>$60,000</td>
</tr>
<tr>
<td>TREATMENT PLANT</td>
<td>2.07</td>
<td>MGD</td>
<td>$2,580,00</td>
<td>$5,350,000</td>
</tr>
</tbody>
</table>

DISTRIBUTION PUMPS

- High Service Pumps: 50 HP, $1,500.00, $75,000
- High Service Pumps: 25 HP, $1,500.00, $37,500
- High Service Pumps: 25 HP, $1,500.00, $37,500
- Booster pumps: 2.5 HP, $2,000.00, $5,000
- Booster pumps: 5 HP, $2,000.00, $10,000

SUBTOTAL: $8,161,139

Contingencies: 15.00% $1,224,171
Engineering: 10.00% $938,531

TOTAL: $10,323,841
POSSUM KINGDOM WATER SUPPLY CORPORATION
WATER DISTRIBUTION SYSTEM
ENGINEER’S ESTIMATE

OPTION NO: 4 Dual Source of Supply; East Lake – Possum Kingdom Supply
West Lake – Graham

100% Business Participation
100% Residential Participation

MAX DAY DEMAND:
0.9 MGD
CONNECTIONS
895 CONN.

WEST LAKE

<table>
<thead>
<tr>
<th>Pipe Diameter</th>
<th>Quantity</th>
<th>Units</th>
<th>Unit Cost</th>
<th>Extended Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>10,357</td>
<td>L.F.</td>
<td>$3.25</td>
<td>$33,659</td>
</tr>
<tr>
<td>3</td>
<td>23,866</td>
<td>L.F.</td>
<td>$4.50</td>
<td>$107,395</td>
</tr>
<tr>
<td>4</td>
<td>30,152</td>
<td>L.F.</td>
<td>$4.00</td>
<td>$120,608</td>
</tr>
<tr>
<td>6</td>
<td>32,785</td>
<td>L.F.</td>
<td>$6.50</td>
<td>$213,105</td>
</tr>
<tr>
<td>8</td>
<td>27,174</td>
<td>L.F.</td>
<td>$7.45</td>
<td>$202,448</td>
</tr>
<tr>
<td>10" SUPPLY LINE</td>
<td>85,000</td>
<td>L.F.</td>
<td>$16.00</td>
<td>$1,360,000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>209,334</td>
</tr>
</tbody>
</table>

| 3/4" meters | 476 | Ea. | $385.00 | $183,260 |
| 2"+ meters | 419 | Ea. | $750.00 | $314,250 |

System Appurtenances 12% of Pipe Cost $244,466

ELEVATED STORAGE 87,000 GAL. $1.50 $130,500
GROUND STORAGE 100,000 GAL $0.30 $30,000
TREATMENT PLANT EXPAN. 0.9 MGD $1,250,000 $1,125,000

SUPPLY LINE PUMPS
- High Service Pumps 50 HP $1,500.00 $75,000
- High Service Pumps 25 HP $1,500.00 $37,500
- Booster pumps 50 HP $2,000.00 $100,000
- Booster pumps 25 HP $2,000.00 $50,000

DISTRIBUTION PUMPS
- High Service Pumps 10 HP $1,500.00 $15,000
- High Service Pumps 10 HP $1,500.00 $15,000
- High Service Pumps 5 HP $1,500.00 $7,500
- Booster pumps 5 HP $2,000.00 $10,000
- Booster pumps 0 HP $2,000.00 $0
- Booster pumps 0 HP $2,000.00 $0

SUBTOTAL: $4,374,691

Contingencies 15.00% $656,204
Engineering 10.00% $503,089

TOTAL: $5,533,984
OPERATION AND MAINTENANCE COST

OPTION: West Lake – Graham 0.9 MGD

East Lake – Possum Kingdom Water Treatment Plant

100% Residential

<table>
<thead>
<tr>
<th>Item</th>
<th>Plant</th>
<th>System</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personnel</td>
<td>$175,000</td>
<td>$100,000</td>
<td>$275,000</td>
</tr>
<tr>
<td>Utilities</td>
<td>$45,000</td>
<td>$60,000</td>
<td>$105,000</td>
</tr>
<tr>
<td>Structures/Fixed Equipment</td>
<td>$55,000</td>
<td>$35,000</td>
<td>$90,000</td>
</tr>
<tr>
<td>Vehicles</td>
<td>$4,000</td>
<td>$6,000</td>
<td>$10,000</td>
</tr>
<tr>
<td>Treatment Supplies</td>
<td>$56,000</td>
<td></td>
<td>$56,000</td>
</tr>
<tr>
<td>Office and Laboratory</td>
<td>$15,000</td>
<td>$5,000</td>
<td>$20,000</td>
</tr>
<tr>
<td>Regulatory Agency</td>
<td>$20,000</td>
<td></td>
<td>$20,000</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>$6,000</td>
<td>$4,000</td>
<td>$10,000</td>
</tr>
<tr>
<td>Insurance</td>
<td>$15,000</td>
<td>$20,000</td>
<td>$35,000</td>
</tr>
<tr>
<td>Legal and Accounting</td>
<td>$2,000</td>
<td>$3,000</td>
<td>$5,000</td>
</tr>
<tr>
<td>Equipment Rental</td>
<td>$2,000</td>
<td>$3,000</td>
<td>$5,000</td>
</tr>
<tr>
<td>Total</td>
<td>$395,000</td>
<td>$236,000</td>
<td>$631,000</td>
</tr>
</tbody>
</table>

Cost of Water: $1.600 /1000 gallons – Graham
Assume 15% loss: $1.840 /1000 gallons – Graham

Cost of Water: $0.060 /1000 gallons – Possum Kingdom
Assume 15% loss: $0.069 /1000 gallons – Possum Kingdom
POSSUM KINGDOM REGIONAL WATER SUPPLY SYSTEM

OPTION NO. 5, OPTION NO. 6, & OPTION NO. 8

50% Residential

I. ANALYSIS CONDITIONS

1) 50% Residential Participation
2) Maximum Day to Gaines Bend (100%) = 0.22 MGD
3) Maximum Day to Hog Bend (100%) = 0.16 MGD
4) Maximum Day to Possum Kingdom State Park (100%) = 0.13 MGD
5) All Supply from Single Source near D & D South or City of Graham

II. NUMBER OF SYSTEM CONNECTIONS

<table>
<thead>
<tr>
<th></th>
<th>Gaines Bend (100%)</th>
<th>Hog Bend (100%)</th>
<th>Possum Kingdom State Park (100%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business Connection</td>
<td>1,463 Connections</td>
<td>688 Connections</td>
<td>263 Connections</td>
</tr>
<tr>
<td>Individual Connections</td>
<td>688 Connections</td>
<td>263 Connections</td>
<td>185 Connections</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>153 Connections</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2,752 Connections</td>
</tr>
</tbody>
</table>

III. MAXIMUM DAY DEMANDS

Gaines Bend: 2,151 conn x 0.6 gpm = 1,291 gpm = 1.86 MGD
Hog Bend: 2,151 conn x 0.6 gpm = 1,291 gpm = 0.22 MGD
Possum Kingdom State Park: 2,151 conn x 0.6 gpm = 1,291 gpm = 0.13 MGD

IV. MAXIMUM HOUR DEMAND

Gaines Bend (Maximum Day): 2,151 conn x 1.5 gpm = 3,227 gpm = 4.65 MGD
Hog Bend (Maximum Day): 2,151 conn x 1.5 gpm = 3,227 gpm = 0.22 MGD
Possum Kingdom State Park (Maximum Day): 2,151 conn x 1.5 gpm = 3,227 gpm = 0.13 MGD

V. STORAGE

Elevated Storage: 2,151 conn x 100 gallons/conn. = 210,000 gal
Ground Storage: 2,151 conn x 100 gallons/conn. = 210,000 gal
POSSUM KINGDOM WATER SUPPLY CORPORATION
WATER DISTRIBUTION SYSTEM
ENGINEER'S ESTIMATE

OPTION NO: 5
Single Source Supply – Possum Kingdom Lake
100% Business Participation
50% Residential Participation

MAX DAY DEMAND: 2.37 MGD
CONNECTIONS 2151 CONN.

<table>
<thead>
<tr>
<th>Pipe Diameter</th>
<th>Quantity</th>
<th>Units</th>
<th>Unit Cost</th>
<th>Extended Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>7,436</td>
<td>L.F.</td>
<td>$2.50</td>
<td>$18,590</td>
</tr>
<tr>
<td>2.5</td>
<td>40,643</td>
<td>L.F.</td>
<td>$3.25</td>
<td>$132,089</td>
</tr>
<tr>
<td>3</td>
<td>33,080</td>
<td>L.F.</td>
<td>$4.50</td>
<td>$148,861</td>
</tr>
<tr>
<td>4</td>
<td>55,031</td>
<td>L.F.</td>
<td>$4.00</td>
<td>$220,123</td>
</tr>
<tr>
<td>6</td>
<td>73,886</td>
<td>L.F.</td>
<td>$6.50</td>
<td>$480,259</td>
</tr>
<tr>
<td>8</td>
<td>43,030</td>
<td>L.F.</td>
<td>$7.45</td>
<td>$320,572</td>
</tr>
<tr>
<td>10</td>
<td>8,427</td>
<td>L.F.</td>
<td>$12.00</td>
<td>$101,124</td>
</tr>
<tr>
<td>12</td>
<td>7,228</td>
<td>L.F.</td>
<td>$16.00</td>
<td>$115,648</td>
</tr>
<tr>
<td>14</td>
<td>1,694</td>
<td>L.F.</td>
<td>$20.00</td>
<td>$33,880</td>
</tr>
<tr>
<td>8" LAKE CROSSING</td>
<td>2,000</td>
<td>L.F.</td>
<td>$100.00</td>
<td>$200,000</td>
</tr>
<tr>
<td></td>
<td>272,455</td>
<td>L.F.</td>
<td></td>
<td>$1,771,147</td>
</tr>
</tbody>
</table>

3/4" meters 688 $385.00 $264,880
2" – 3" meters 63 $750.00 $47,250
System Appurtenances 12% of Pipe Cost $212,538
ELEVATED STORAGE 210,500 GAL. $1.50 $315,750
GROUND STORAGE 210,500 GAL $0.30 $63,150
TREATMENT PLANT 2.37 MGD $2,560,000 $6,070,000

DISTRIBUTION PUMPS
High Service Pumps 50 HP $1,500.00 $75,000
High Service Pumps 25 HP $1,500.00 $37,500
High Service Pumps 25 HP $1,500.00 $37,500
Booster pumps 10 HP $2,000.00 $20,000
Booster pumps 5 HP $2,000.00 $10,000
Booster pumps 5 HP $2,000.00 $10,000

SUBTOTAL: $8,934,714

Contingencies 15.00% $1,340,207
Engineering 10.00% $1,027,492

TOTAL: $11,302,414
POSSUM KINGDOM WATER SUPPLY CORPORATION
WATER DISTRIBUTION SYSTEM
ENGINEER'S ESTIMATE

OPTION NO: 6
Treated water from Graham
100% Business Participation
50% residential participation

MAX DAY DEMAND: 2.37 MGD
CONNECTIONS 2151 CONN.

<table>
<thead>
<tr>
<th>Pipe Diameter</th>
<th>Quantity</th>
<th>Units</th>
<th>Cost</th>
<th>Extended Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>7,436</td>
<td>L.F.</td>
<td>$2.50</td>
<td>$18,590</td>
</tr>
<tr>
<td>2.5</td>
<td>40,643</td>
<td>L.F.</td>
<td>$3.25</td>
<td>$132,089</td>
</tr>
<tr>
<td>3</td>
<td>33,080</td>
<td>L.F.</td>
<td>$4.50</td>
<td>$148,861</td>
</tr>
<tr>
<td>4</td>
<td>55,031</td>
<td>L.F.</td>
<td>$4.00</td>
<td>$220,123</td>
</tr>
<tr>
<td>6</td>
<td>73,886</td>
<td>L.F.</td>
<td>$6.50</td>
<td>$480,259</td>
</tr>
<tr>
<td>8</td>
<td>43,030</td>
<td>L.F.</td>
<td>$7.45</td>
<td>$320,572</td>
</tr>
<tr>
<td>10</td>
<td>8,427</td>
<td>L.F.</td>
<td>$12.00</td>
<td>$101,124</td>
</tr>
<tr>
<td>12</td>
<td>7,228</td>
<td>L.F.</td>
<td>$16.00</td>
<td>$115,648</td>
</tr>
<tr>
<td>14</td>
<td>1,694</td>
<td>L.F.</td>
<td>$20.00</td>
<td>$33,880</td>
</tr>
<tr>
<td>8" Lake Crossing</td>
<td>2,000</td>
<td>L.F.</td>
<td>$100.00</td>
<td>$200,000</td>
</tr>
<tr>
<td>12" Supply Line from Graham</td>
<td>85,000</td>
<td>L.F.</td>
<td>$20.00</td>
<td>$1,700,000</td>
</tr>
</tbody>
</table>

Pipeline Subtotal: 357,455 L.F. $3,471,147

3/4" meters | 688 | $385.00 | $264,880
2" - 3" meters | 63 | $750.00 | $47,250
System Appurtenances | 12% of Pipe Cost | $416,538
ELEVATED STORAGE | 210,500 GAL. | $1.50 | $315,750
GROUND STORAGE | 210,500 GAL | $0.30 | $63,150
TREATMENT PLANT EXPAN. | 2.37 MGD | $1,310,000 | $3,100,000

DISTRIBUTION PUMPS
High Service Pumps | 50 HP | $1,500.00 | $75,000
High Service Pumps | 25 HP | $1,500.00 | $75,000
High Service Pumps | 25 HP | $1,500.00 | $75,000
Booster pumps | 10 HP | $2,000.00 | $10,000
Booster pumps | 5 HP | $2,000.00 | $10,000
Booster pumps | 5 HP | $2,000.00 | $10,000

GRAHAM SUPPLY PUMPS
High Service Pumps | 100 | $1,500.00 | $150,000
High Service Pumps | 100 | $1,500.00 | $150,000
High Service Pumps | 50 | $1,500.00 | $75,000
Booster pumps | 50 | $2,000.00 | $100,000
Booster pumps | 50 | $2,000.00 | $100,000
Booster pumps | 50 | $2,000.00 | $100,000

SUBTOTAL: $8,543,714

Contingencies | 15.00% | $1,281,557
Engineering | 10.00% | $982,527
TOTAL: $10,807,799
POSSUM KINGDOM WATER SUPPLY CORPORATION

WATER DISTRIBUTION SYSTEM

ENGINEER'S ESTIMATE

OPTION NO: 8

Raw water from Graham

- 100% Business Participation
- 50% Residential Participation

MAX DAY DEMAND:

- 2.37 MGD

CONNECTIONS

<table>
<thead>
<tr>
<th>Pipe Diameter</th>
<th>Quantity</th>
<th>Units</th>
<th>Unit Cost</th>
<th>Extended Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>7,436</td>
<td>L.F.</td>
<td>$2.50</td>
<td>$18,590</td>
</tr>
<tr>
<td>2.5</td>
<td>40,643</td>
<td>L.F.</td>
<td>$3.25</td>
<td>$132,089</td>
</tr>
<tr>
<td>3</td>
<td>33,080</td>
<td>L.F.</td>
<td>$4.50</td>
<td>$148,861</td>
</tr>
<tr>
<td>4</td>
<td>55,031</td>
<td>L.F.</td>
<td>$4.00</td>
<td>$220,123</td>
</tr>
<tr>
<td>6</td>
<td>73,886</td>
<td>L.F.</td>
<td>$6.50</td>
<td>$480,259</td>
</tr>
<tr>
<td>8</td>
<td>43,030</td>
<td>L.F.</td>
<td>$7.45</td>
<td>$320,572</td>
</tr>
<tr>
<td>10</td>
<td>8,427</td>
<td>L.F.</td>
<td>$12.00</td>
<td>$101,124</td>
</tr>
<tr>
<td>12</td>
<td>7,228</td>
<td>L.F.</td>
<td>$16.00</td>
<td>$115,648</td>
</tr>
<tr>
<td>14</td>
<td>1,694</td>
<td>L.F.</td>
<td>$20.00</td>
<td>$33,880</td>
</tr>
<tr>
<td>8" Lake Crossing</td>
<td>2,000</td>
<td>L.F.</td>
<td>$100.00</td>
<td>$200,000</td>
</tr>
<tr>
<td>12" Supply Line from Graham</td>
<td>85,000</td>
<td>L.F.</td>
<td>$20.00</td>
<td>$1,700,000</td>
</tr>
</tbody>
</table>

Pipeline Subtotal: 357,455 L.F. | $3,471,147

| 3/4" meters | 688 | $385.00 | $264,880 |
| 2"-3" meters | 63 | $750.00 | $47,250 |

System Appurtenances

- 12% of Pipe Cost: $416,538

ELEVATED STORAGE

- 210,500 GAL. | $1,500 | $315,750

GROUND STORAGE

- 210,500 GAL. | $0.30 | $63,150

TREATMENT PLANT

- 2.37 MGD | $1,730,000 | $4,100,000

- (No secondary treatment)

DISTRIBUTION PUMPS

- High Service Pumps: 50 HP | $1,500 | $75,000
- High Service Pumps: 25 HP | $1,500 | $37,500
- High Service Pumps: 25 HP | $1,500 | $37,500
- Booster pumps: 10 HP | $2,000 | $20,000
- Booster pumps: 5 HP | $2,000 | $10,000
- Booster pumps: 5 HP | $2,000 | $10,000

GRAHAM SUPPLY PUMPS

- High Service Pumps: 100 | $1,500 | $150,000
- High Service Pumps: 100 | $1,500 | $150,000
- High Service Pumps: 50 | $1,500 | $75,000
- Booster pumps: 50 | $2,000 | $100,000
- Booster pumps: 50 | $2,000 | $100,000
- Booster pumps: 50 | $2,000 | $100,000

SUBTOTAL: $9,543,714

Contingencies: 15.00% | $1,431,557
Engineering: 10.00% | $1,097,527

TOTAL: $12,072,799

Filename: GRM_SORW.wk1
OPERATION AND MAINTENANCE COST

OPTION: Possum Kingdom Raw Water Treatment Plant

50% Residential

<table>
<thead>
<tr>
<th>Item</th>
<th>Plant</th>
<th>System</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personnel</td>
<td>$200,000</td>
<td>$100,000</td>
<td>$300,000</td>
</tr>
<tr>
<td>Utilities</td>
<td>$65,000</td>
<td>$40,000</td>
<td>$105,000</td>
</tr>
<tr>
<td>Structures/Fixed Equipment</td>
<td>$66,000</td>
<td>$30,000</td>
<td>$96,000</td>
</tr>
<tr>
<td>Vehicles</td>
<td>$4,000</td>
<td>$6,000</td>
<td>$10,000</td>
</tr>
<tr>
<td>Treatment Supplies</td>
<td>$69,000</td>
<td></td>
<td>$69,000</td>
</tr>
<tr>
<td>Office and Laboratory</td>
<td>$15,000</td>
<td>$5,000</td>
<td>$20,000</td>
</tr>
<tr>
<td>Regulatory Agency</td>
<td>$25,000</td>
<td></td>
<td>$25,000</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>$6,000</td>
<td>$4,000</td>
<td>$10,000</td>
</tr>
<tr>
<td>Insurance</td>
<td>$20,000</td>
<td>$15,000</td>
<td>$35,000</td>
</tr>
<tr>
<td>Legal and Accounting</td>
<td>$2,000</td>
<td>$3,000</td>
<td>$5,000</td>
</tr>
<tr>
<td>Equipment Rental</td>
<td>$2,000</td>
<td>$3,000</td>
<td>$5,000</td>
</tr>
<tr>
<td>Total</td>
<td>$474,000</td>
<td>$206,000</td>
<td>$680,000</td>
</tr>
</tbody>
</table>

Cost of Water: $0.060 /1000 gallons
Assume 15% loss: $0.069 /1000 gallons
OPERATION AND MAINTENANCE COST

OPTION: Graham Treated Water

50% Residential

<table>
<thead>
<tr>
<th>Item</th>
<th>Plant</th>
<th>System</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personnel</td>
<td>$0</td>
<td>$100,000</td>
<td>$100,000</td>
</tr>
<tr>
<td>Utilities</td>
<td>$0</td>
<td>$75,000</td>
<td>$75,000</td>
</tr>
<tr>
<td>Structures/Fixed Equipment</td>
<td>$0</td>
<td>$35,000</td>
<td>$35,000</td>
</tr>
<tr>
<td>Vehicles</td>
<td>$0</td>
<td>$10,000</td>
<td>$10,000</td>
</tr>
<tr>
<td>Treatment Supplies</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Office and Laboratory</td>
<td>$0</td>
<td>$10,000</td>
<td>$10,000</td>
</tr>
<tr>
<td>Regulatory Agency</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>$0</td>
<td>$10,000</td>
<td>$10,000</td>
</tr>
<tr>
<td>Insurance</td>
<td>$0</td>
<td>$25,000</td>
<td>$25,000</td>
</tr>
<tr>
<td>Legal and Accounting</td>
<td>$0</td>
<td>$5,000</td>
<td>$5,000</td>
</tr>
<tr>
<td>Equipment Rental</td>
<td>$0</td>
<td>$5,000</td>
<td>$5,000</td>
</tr>
<tr>
<td>Total</td>
<td>$0</td>
<td>$275,000</td>
<td>$275,000</td>
</tr>
</tbody>
</table>

Cost of Water: $1.600 /1000 gallons

Assume 15% loss: $1.840 /1000 gallons
POSSUM KINGDOM REGIONAL WATER SUPPLY SYSTEM

OPTION NO. 7
West Lake System – 50% Residential

I. ANALYSIS CONDITIONS
1) 100% Participation Business
2) 50% Participation Individual
3) Maximum Day to Possum Kingdom State Park

II. NUMBER OF SYSTEM CONNECTIONS

<table>
<thead>
<tr>
<th>Connection</th>
<th>Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business Connection</td>
<td>419</td>
</tr>
<tr>
<td>Individual Connections (50%)</td>
<td>242</td>
</tr>
<tr>
<td>Subtotal: West Lake System</td>
<td>661</td>
</tr>
<tr>
<td>Possum Kingdom State Park</td>
<td>153</td>
</tr>
<tr>
<td>Total: West Lake System</td>
<td>814</td>
</tr>
</tbody>
</table>

III. MAXIMUM DAY DEMANDS

<table>
<thead>
<tr>
<th>System</th>
<th>Demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>West Lake System</td>
<td>396.6 gpm</td>
</tr>
<tr>
<td>Possum Kingdom State Park</td>
<td>91.8 gpm</td>
</tr>
<tr>
<td>Total Maximum Day</td>
<td>488.4 gpm</td>
</tr>
</tbody>
</table>

IV. MAXIMUM HOUR DEMAND

<table>
<thead>
<tr>
<th>System</th>
<th>Demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>West Lake System</td>
<td>991.5 gpm</td>
</tr>
<tr>
<td>Possum Kingdom State Park (Use Max. Day)</td>
<td>91.5 gpm</td>
</tr>
<tr>
<td>Total Maximum Day</td>
<td>1,083.0 gpm</td>
</tr>
</tbody>
</table>

V. STORAGE

<table>
<thead>
<tr>
<th>Storage Type</th>
<th>Volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevated Storage</td>
<td>66,100 gal</td>
</tr>
<tr>
<td>Pressure Tank</td>
<td>13,220 gal</td>
</tr>
<tr>
<td>Ground Storage</td>
<td>66,100 gal</td>
</tr>
</tbody>
</table>
POSSUM KINGDOM REGIONAL WATER SUPPLY SYSTEM

OPTION NO. 7
East Lake System – 50% Residential

I. ANALYSIS CONDITIONS
1) 100% Participation Business
2) 50% Participation Leased Lots
3) Maximum Day to Gaines Bend (0.16 MGD)
4) Maximum Day to Hog Bend (0.22 MGD)

II. NUMBER OF SYSTEM CONNECTIONS

<table>
<thead>
<tr>
<th>Business Connection</th>
<th>1,044 Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual Connections (50%)</td>
<td>446 Connections</td>
</tr>
<tr>
<td>Subtotal: East Lake System</td>
<td>1,490 Connections</td>
</tr>
<tr>
<td>Hog Bend (100%)</td>
<td>185 Connections</td>
</tr>
<tr>
<td>Gaines Bend (100%)</td>
<td>263 Connections</td>
</tr>
<tr>
<td>Total: East Lake System</td>
<td>1,938 Connections</td>
</tr>
</tbody>
</table>

III. MAXIMUM DAY DEMANDS

<table>
<thead>
<tr>
<th>East Lake System</th>
<th>1,490 conn x 0.6 gpm = 894 gpm or 1.29 MGD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hog Bend (100%)</td>
<td>185 conn x 0.6 gpm = 111 gpm or 0.16 MGD</td>
</tr>
<tr>
<td>Gaines Bend (100%)</td>
<td>263 conn x 0.6 gpm = 158 gpm or 0.22 MGD</td>
</tr>
<tr>
<td>Total Maximum Day:</td>
<td>1.67 MGD</td>
</tr>
</tbody>
</table>

IV. MAXIMUM HOUR DEMAND

<table>
<thead>
<tr>
<th>East Lake System</th>
<th>1,490 conn x 1.5 gpm = 2,235 gpm or 3.22 MGD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hog Bend (Max. Day)</td>
<td>0.16 MGD</td>
</tr>
<tr>
<td>Gaines Bend (Max. Day)</td>
<td>0.22 MGD</td>
</tr>
<tr>
<td>Total:</td>
<td>3.60 MGD</td>
</tr>
</tbody>
</table>

V. STORAGE TANKS

<table>
<thead>
<tr>
<th>Elevated Storage</th>
<th>1,490 conn. x 100 gallons/conn. = 149,000 gal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure Tank</td>
<td>1,490 conn. x 20 gallons/conn. = 29,800 gal</td>
</tr>
<tr>
<td>Ground Storage</td>
<td>1,490 conn. x 100 gallons/conn. = 149,000 gal</td>
</tr>
</tbody>
</table>
POSSUM KINGDOM WATER SUPPLY CORPORATION
WATER DISTRIBUTION SYSTEM
ENGINEER'S ESTIMATE

OPTION NO: 7
Dual Source of Supply;
East Lake – Possum Kingdom Supply
West Lake – Graham
100% Business Participation
50% Residential Participation
MAX DAY DEMAND: 1.67 MGD
CONNECTIONS 1490 CONN.

<table>
<thead>
<tr>
<th>Pipe Diameter</th>
<th>Quantity</th>
<th>Units</th>
<th>Unit Cost</th>
<th>Extended Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>7,436</td>
<td>L.F.</td>
<td>$2.50</td>
<td>$18,590</td>
</tr>
<tr>
<td>2.5</td>
<td>11,926.2</td>
<td>L.F.</td>
<td>$3.25</td>
<td>$38,760</td>
</tr>
<tr>
<td>3</td>
<td>13,310</td>
<td>L.F.</td>
<td>$4.50</td>
<td>$59,895</td>
</tr>
<tr>
<td>4</td>
<td>30,014.6</td>
<td>L.F.</td>
<td>$4.00</td>
<td>$120,058</td>
</tr>
<tr>
<td>6</td>
<td>51,335</td>
<td>L.F.</td>
<td>$6.50</td>
<td>$333,678</td>
</tr>
<tr>
<td>8</td>
<td>19,964.3</td>
<td>L.F.</td>
<td>$7.45</td>
<td>$148,734</td>
</tr>
<tr>
<td>10</td>
<td>4,191</td>
<td>L.F.</td>
<td>$12.00</td>
<td>$50,292</td>
</tr>
<tr>
<td>12</td>
<td>7,128</td>
<td>L.F.</td>
<td>$16.00</td>
<td>$114,048</td>
</tr>
<tr>
<td>14</td>
<td>1,694</td>
<td>L.F.</td>
<td>$20.00</td>
<td>$33,880</td>
</tr>
<tr>
<td></td>
<td>146,999</td>
<td>L.F.</td>
<td></td>
<td>$917,935</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>System Appurtenances</th>
<th>12% of Pipe Cost</th>
<th>$110,152</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELEVATED STORAGE</td>
<td>150,000 GAL.</td>
<td>$225,000</td>
</tr>
<tr>
<td>GROUND STORAGE</td>
<td>150,000 GAL.</td>
<td>$45,000</td>
</tr>
<tr>
<td>TREATMENT PLANT</td>
<td>1.67 MGD</td>
<td>$4,400,000</td>
</tr>
</tbody>
</table>

DISTRIBUTION PUMPS
- High Service Pumps 50 HP $1,500.00 $75,000
- High Service Pumps 25 HP $1,500.00 $37,500
- High Service Pumps 25 HP $1,500.00 $37,500
- Booster pumps 15 HP $2,000.00 $30,000
- Booster pumps 2.5 HP $2,000.00 $5,000
- Booster pumps 0 HP $2,000.00 $0

SUBTOTAL: $6,075,717

Contingencies 15.00% $911,358
Engineering 10.00% $698,707

TOTAL: $7,685,782
POSSUM KINGDOM WATER SUPPLY CORPORATION
WATER DISTRIBUTION SYSTEM
ENGINEER'S ESTIMATE

OPTION NO: 7
Dual Source of Supply: East Lake — Possum Kingdom Supply
West Lake — Graham
100% Business Participation
50% Residential Participation
MAX DAY DEMAND: 0.7 MGD
CONNECTIONS: 661 CONN.

WEST LAKE

<table>
<thead>
<tr>
<th>Pipe Diameter</th>
<th>Quantity</th>
<th>Units</th>
<th>Unit Cost</th>
<th>Extended Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>21,336</td>
<td>L.F.</td>
<td>$3.25</td>
<td>$69,341</td>
</tr>
<tr>
<td>3</td>
<td>20,292</td>
<td>L.F.</td>
<td>$4.50</td>
<td>$91,313</td>
</tr>
<tr>
<td>4</td>
<td>19,249</td>
<td>L.F.</td>
<td>$4.00</td>
<td>$76,996</td>
</tr>
<tr>
<td>6</td>
<td>62,658</td>
<td>L.F.</td>
<td>$6.50</td>
<td>$407,276</td>
</tr>
<tr>
<td>8</td>
<td>562</td>
<td>L.F.</td>
<td>$7.45</td>
<td>$4,187</td>
</tr>
<tr>
<td>10" SUPPLY LINE</td>
<td>85,000</td>
<td>L.F.</td>
<td>$16.00</td>
<td>$1,360,000</td>
</tr>
</tbody>
</table>

Total: 209,096 L.F.
$2,009,112

3/4" meter
2"+ meter
System Appurtenances
ELEVATED STORAGE
GROUND STORAGE
TREATMENT PLANT EXPAN.
SUPPLY PUMPS
DISTRIBUTION PUMPS
SUBTOTAL: $3,070,135

Contingencies: 15.00%
$460,520

Engineering: 10.00%
$353,066

TOTAL: $3,883,721
MAXIMUM DIMENSIONS

<table>
<thead>
<tr>
<th>Specification</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of pipes</td>
<td>1000</td>
</tr>
<tr>
<td>Number of pumps</td>
<td>250</td>
</tr>
<tr>
<td>Number junction nodes</td>
<td>1000</td>
</tr>
<tr>
<td>Flow meters</td>
<td>250</td>
</tr>
<tr>
<td>Boundary nodes</td>
<td>100</td>
</tr>
<tr>
<td>Variable storage tanks</td>
<td>250</td>
</tr>
<tr>
<td>Pressure switches</td>
<td>250</td>
</tr>
<tr>
<td>Regulating Valves</td>
<td>250</td>
</tr>
<tr>
<td>Items for limited output</td>
<td>1000</td>
</tr>
<tr>
<td>limit for non-consecutive numbering</td>
<td>10010</td>
</tr>
</tbody>
</table>

Cybernet version 2.10d. SN: 1572030464-1000

Extended Description:

FILENAME: PIPE_50R.DWG

This run represents the ultimate PK Water Supply Corp. water distribution system at the maximum hourly demand condition. This analysis assumes 50% participation from individual lot owners and 100% participation from businesses around the lake.

The total maximum hourly demand is approximately 4.75 MGD. This is based on a max. hour demand of 1.5 gpm per each connection to the system.

The estimated maximum daily demand is approximately 1.5 MGD. This is based on a max. day demand of 0.6 gpm per each connection to the system.

In this analysis, the MAXIMUM DAILY DEMAND of 1.9 MGD is met by pumpage at the treatment plant located near lake marker 42 at Hog Bend. No additional supply from other sources is considered.

The difference in the MAX. DAY DEMAND and the MAX. HOUR DEMAND is met with elevated or ground storage. Two tanks have been included in this model:

- Tank no. 1 is located at the west end of the lake near The Cruse Lake Store.
- Tank no. 2 is located at the east end of the lake near Rock Creek Camp.
- Tank no. 3 is located at the treatment plant site.

These tanks supply approximately 2.9 MGD during the maximum hourly condition.
Summary of Original Data

Description: MAXIMUM HOURLY DEMANDS (1.5 GPM PER CONNECTION)

Drawing: PIPE_5OR

PIPELINE DATA

Status Code:
- **XX** - CLOSED PIPE
- **BN** - BOUNDARY NODE
- **PU** - PUMP LINE
- **CV** - CHECK VALVE
- **RV** - REGULATING VALVE

<table>
<thead>
<tr>
<th>PIPE NUMBER</th>
<th>NODE NOS.</th>
<th>LENGTH (ft)</th>
<th>DIAMETER (in)</th>
<th>ROUGHNESS COEFF.</th>
<th>MINOR LOSS COEFF.</th>
<th>BND-HGL (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>22 53</td>
<td>6292.0</td>
<td>6.0</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>20-PU</td>
<td>53 54</td>
<td>4887.3</td>
<td>4.0</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>54 55</td>
<td>8171.9</td>
<td>4.0</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>55 56</td>
<td>4739.9</td>
<td>3.0</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>56 57</td>
<td>4763.0</td>
<td>3.0</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>57 58</td>
<td>3272.5</td>
<td>3.0</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>58 59</td>
<td>5761.8</td>
<td>3.0</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>7 61</td>
<td>671.0</td>
<td>3.0</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>90-PU</td>
<td>61 62</td>
<td>8406.2</td>
<td>2.5</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>.00</td>
<td>1 2</td>
<td>957.0</td>
<td>4.0</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>101</td>
<td>2 3</td>
<td>4191.0</td>
<td>8.0</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>102</td>
<td>3 4</td>
<td>847.0</td>
<td>8.0</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>103</td>
<td>4 5</td>
<td>4983.0</td>
<td>4.0</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>104</td>
<td>5 6</td>
<td>2189.0</td>
<td>4.0</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>105</td>
<td>6 61</td>
<td>2580.6</td>
<td>4.0</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>.06</td>
<td>6 1</td>
<td>715.0</td>
<td>4.0</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>107</td>
<td>4 8</td>
<td>6138.0</td>
<td>6.0</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>108</td>
<td>3 9</td>
<td>3652.0</td>
<td>12.0</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>109</td>
<td>9 10</td>
<td>3476.0</td>
<td>12.0</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>110</td>
<td>9 11</td>
<td>3113.0</td>
<td>2.0</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>111</td>
<td>10 11</td>
<td>4323.0</td>
<td>2.0</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>10 12</td>
<td>1441.0</td>
<td>8.0</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>113</td>
<td>12 13</td>
<td>4158.0</td>
<td>8.0</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>114</td>
<td>13 14</td>
<td>4213.0</td>
<td>6.0</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>115</td>
<td>14 15</td>
<td>8019.0</td>
<td>4.0</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>116</td>
<td>15 16</td>
<td>990.0</td>
<td>2.5</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>117</td>
<td>16 17</td>
<td>10450.0</td>
<td>3.0</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>118</td>
<td>12 18</td>
<td>6347.0</td>
<td>8.0</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>119</td>
<td>18 17</td>
<td>4719.0</td>
<td>8.0</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>120</td>
<td>17 19</td>
<td>2211.0</td>
<td>6.0</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>121</td>
<td>19 88</td>
<td>2465.1</td>
<td>6.0</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>122</td>
<td>20 88</td>
<td>1778.7</td>
<td>3.0</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>123</td>
<td>21 22</td>
<td>1694.0</td>
<td>6.0</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>124</td>
<td>22 23</td>
<td>2684.0</td>
<td>6.0</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>23 24</td>
<td>3234.0</td>
<td>2.5</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>126</td>
<td>24 26</td>
<td>2442.0</td>
<td>2.5</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>127</td>
<td>26 27</td>
<td>1936.0</td>
<td>2.5</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td>27 20</td>
<td>6380.0</td>
<td>2.5</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>129</td>
<td>23 25</td>
<td>904.2</td>
<td>6.0</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>130</td>
<td>28 29</td>
<td>3740.0</td>
<td>6.0</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>131</td>
<td>29 30</td>
<td>2871.0</td>
<td>6.0</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>JUNCTION</td>
<td>EXTERNAL DEMAND (mgd)</td>
<td>JUNCTION DEMAND ELEVATION (ft)</td>
<td>CONNECTING PIPES</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>----------------------</td>
<td>-------------------------------</td>
<td>-----------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1-F</td>
<td>0.00</td>
<td>1050.00</td>
<td>100 106</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-1</td>
<td>0.05</td>
<td>1020.00</td>
<td>100 101 140</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3-1</td>
<td>0.03</td>
<td>1010.00</td>
<td>101 102 108</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4-1</td>
<td>0.15</td>
<td>1010.00</td>
<td>102 103 107</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5-1</td>
<td>0.19</td>
<td>1030.00</td>
<td>103 104</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6-1</td>
<td>0.03</td>
<td>1030.00</td>
<td>104 105 106</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7-1</td>
<td>0.12</td>
<td>1010.00</td>
<td>80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8-F</td>
<td>0.36</td>
<td>1040.00</td>
<td>107</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

UMP DATA

HERE IS A PUMP IN LINE

FUNCTION NODE DATA
OPERATION AND MAINTENANCE COST

OPTION: West Lake – Graham 0.7 MGD

East Lake – Possum Kingdom Water Treatment Plant

50% Residential

<table>
<thead>
<tr>
<th>Item</th>
<th>Plant</th>
<th>System</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personnel</td>
<td>$150,000</td>
<td>$100,000</td>
<td>$250,000</td>
</tr>
<tr>
<td>Utilities</td>
<td>$54,000</td>
<td>$50,000</td>
<td>$104,000</td>
</tr>
<tr>
<td>Structures/Fixed Equipment</td>
<td>$52,000</td>
<td>$30,000</td>
<td>$82,000</td>
</tr>
<tr>
<td>Vehicles</td>
<td>$4,000</td>
<td>$6,000</td>
<td>$10,000</td>
</tr>
<tr>
<td>Treatment Supplies</td>
<td>$54,000</td>
<td></td>
<td>$54,000</td>
</tr>
<tr>
<td>Office and Laboratory</td>
<td>$15,000</td>
<td>$5,000</td>
<td>$20,000</td>
</tr>
<tr>
<td>Regulatory Agency</td>
<td>$20,000</td>
<td></td>
<td>$20,000</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>$6,000</td>
<td>$4,000</td>
<td>$10,000</td>
</tr>
<tr>
<td>Insurance</td>
<td>$20,000</td>
<td>$15,000</td>
<td>$35,000</td>
</tr>
<tr>
<td>Legal and Accounting</td>
<td>$2,000</td>
<td>$3,000</td>
<td>$5,000</td>
</tr>
<tr>
<td>Equipment Rental</td>
<td>$2,000</td>
<td>$3,000</td>
<td>$5,000</td>
</tr>
<tr>
<td>Total</td>
<td>$379,000</td>
<td>$216,000</td>
<td>$595,000</td>
</tr>
</tbody>
</table>

Cost of Water: $1.600 /1000 gallons – Graham
Assume 15% loss: $1.840 /1000 gallons – Graham

Cost of Water: $0.060 /1000 gallons – Possum Kingdom
Assume 15% loss: $0.069 /1000 gallons – Possum Kingdom
POSSUM KINGDOM REGIONAL WATER SUPPLY SYSTEM

OPTION NO. 9 & OPTION NO. 10

I. ANALYSIS CONDITIONS
1) Single Source Supply from Graham or Possum Kingdom Lake
2) 50% Residential Participation
3) 100% Commercial Participation
4) Average Day Demand Approach

II. NUMBER OF SYSTEM CONNECTIONS

<table>
<thead>
<tr>
<th>Connection Type</th>
<th>Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Camps/Businesses</td>
<td>1,463</td>
</tr>
<tr>
<td>Residential Connections</td>
<td>688</td>
</tr>
<tr>
<td>Gaines Bend (100% participation)</td>
<td>263</td>
</tr>
<tr>
<td>Hog Bend (100% participation)</td>
<td>185</td>
</tr>
<tr>
<td>Possum Kingdom State Park (100% participation)</td>
<td>153</td>
</tr>
<tr>
<td>Total</td>
<td>2,752</td>
</tr>
</tbody>
</table>

III. AVERAGE DAY DEMANDS

<table>
<thead>
<tr>
<th>Connection Type</th>
<th>Demand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Commercial Camps/Businesses</td>
<td>1,463 conn x 0.30 gpm = 0.63 MGD</td>
</tr>
<tr>
<td>Residential Connections</td>
<td>688 conn x 0.30 gpm = 0.30 MGD</td>
</tr>
<tr>
<td>Gaines Bend (100%)</td>
<td>263 conn x 0.30 gpm = 0.11 MGD</td>
</tr>
<tr>
<td>Hog Bend (100%)</td>
<td>185 conn x 0.30 gpm = 0.08 MGD</td>
</tr>
<tr>
<td>Possum Kingdom State Park (100%)</td>
<td>153 conn x 0.30 gpm = 0.07 MGD</td>
</tr>
<tr>
<td>Total</td>
<td>1.19 MGD</td>
</tr>
</tbody>
</table>

IV. STORAGE

<table>
<thead>
<tr>
<th>Storage Type</th>
<th>Calculation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevated Storage</td>
<td>2,151 conn x 100 gallons/conn. = 210,000 gal</td>
</tr>
<tr>
<td>Ground Storage</td>
<td>Maximum Day Demand - Average Day Demand x 3 Days = (2.38 MGD - 1.19 MGD) x 3 days = 3.57 MGD</td>
</tr>
</tbody>
</table>
POSSUM KINGDOM WATER SUPPLY CORPORATION
WATER DISTRIBUTION SYSTEM
ENGINEER'S ESTIMATE

OPTION NO: 9

AVE DAY DEMAND: 1.19 MGD
CONNECTIONS 2,151 CONN.

<table>
<thead>
<tr>
<th>Pipe Diameter</th>
<th>Quantity</th>
<th>Units</th>
<th>Cost</th>
<th>Extended Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>7,436</td>
<td>L.F.</td>
<td>$2.50</td>
<td>$18,590</td>
</tr>
<tr>
<td>2.5</td>
<td>40,643</td>
<td>L.F.</td>
<td>$3.25</td>
<td>$132,089</td>
</tr>
<tr>
<td>3</td>
<td>33,080</td>
<td>L.F.</td>
<td>$4.50</td>
<td>$148,861</td>
</tr>
<tr>
<td>4</td>
<td>55,031</td>
<td>L.F.</td>
<td>$4.00</td>
<td>$220,123</td>
</tr>
<tr>
<td>6</td>
<td>73,886</td>
<td>L.F.</td>
<td>$6.50</td>
<td>$480,259</td>
</tr>
<tr>
<td>8</td>
<td>43,030</td>
<td>L.F.</td>
<td>$7.45</td>
<td>$320,572</td>
</tr>
<tr>
<td>10</td>
<td>8,427</td>
<td>L.F.</td>
<td>$12.00</td>
<td>$101,124</td>
</tr>
<tr>
<td>12</td>
<td>7,228</td>
<td>L.F.</td>
<td>$16.00</td>
<td>$115,648</td>
</tr>
<tr>
<td>14</td>
<td>1,694</td>
<td>L.F.</td>
<td>$20.00</td>
<td>$33,880</td>
</tr>
<tr>
<td>8" Lake Crossing</td>
<td>2,000</td>
<td>L.F.</td>
<td>$100.00</td>
<td>$200,000</td>
</tr>
<tr>
<td>10" Supply Line from Graham</td>
<td>85,000</td>
<td>L.F.</td>
<td>$16.00</td>
<td>$1,360,000</td>
</tr>
</tbody>
</table>

Pipe Diameter: 357,455 L.F. $3,131,147

3/4" meters 648 $385.00 $264,880
2"-3" meters 63 $750.00 $47,250

System Appurtenances 12% of Pipe Cost $375,738

ELEVATED STORAGE 210,500 GAL. $1.50 $315,750
GROUND STORAGE 3,570,000 GAL. $0.20 $714,000
TREATMENT PLANT EXPAN. 1.19 MGD $1,760,000 $2,100,000

DISTRIBUTION PUMPS
High Service Pumps 50 HP $1,500.00 $75,000
High Service Pumps 25 HP $1,500.00 $37,500
High Service Pumps 25 HP $1,500.00 $37,500
Booster pumps 10 HP $2,000.00 $20,000
Booster pumps 5 HP $2,000.00 $10,000
Booster pumps 5 HP $2,000.00 $10,000

GRAHAM SUPPLY PUMPS
High Service Pumps 50 $1,500.00 $75,000
High Service Pumps 50 $1,500.00 $75,000
High Service Pumps 25 $1,500.00 $37,500
Booster pumps 50 $2,000.00 $100,000
Booster pumps 50 $2,000.00 $100,000
Booster pumps 50 $2,000.00 $100,000

SUBTOTAL: $7,626,264

Contingencies 15.00% $1,143,940
Engineering 10.00% $877,020
TOTAL: $9,647,224
POSSUM KINGDOM WATER SUPPLY CORPORATION
WATER DISTRIBUTION SYSTEM
ENGINEER'S ESTIMATE

OPTION NO: 10
Single Source Supply - Possum Kingdom Lake
100% Business Participation
50% Residential Participation

Average Day Approach
AVE. DAY DEMAND:
1.19 MGD
CONNECTIONS
2151 CONN.

<table>
<thead>
<tr>
<th>Pipe Diameter</th>
<th>Quantity</th>
<th>Units</th>
<th>Unit Cost</th>
<th>Extended Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>7,436</td>
<td>L.F.</td>
<td>$2.50</td>
<td>$18,590</td>
</tr>
<tr>
<td>2.5</td>
<td>40,643</td>
<td>L.F.</td>
<td>$3.25</td>
<td>$132,089</td>
</tr>
<tr>
<td>3</td>
<td>33,080</td>
<td>L.F.</td>
<td>$4.50</td>
<td>$148,861</td>
</tr>
<tr>
<td>4</td>
<td>55,031</td>
<td>L.F.</td>
<td>$4.00</td>
<td>$220,123</td>
</tr>
<tr>
<td>6</td>
<td>73,886</td>
<td>L.F.</td>
<td>$6.50</td>
<td>$480,259</td>
</tr>
<tr>
<td>8</td>
<td>43,030</td>
<td>L.F.</td>
<td>$7.45</td>
<td>$320,572</td>
</tr>
<tr>
<td>10</td>
<td>8,427</td>
<td>L.F.</td>
<td>$12.00</td>
<td>$101,124</td>
</tr>
<tr>
<td>12</td>
<td>7,228</td>
<td>L.F.</td>
<td>$16.00</td>
<td>$115,648</td>
</tr>
<tr>
<td>14</td>
<td>1,694</td>
<td>L.F.</td>
<td>$20.00</td>
<td>$33,880</td>
</tr>
<tr>
<td>8" LAKE CROSSING</td>
<td>2,000</td>
<td>L.F.</td>
<td>$100.00</td>
<td>$200,000</td>
</tr>
</tbody>
</table>

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3/4" meters</td>
<td>688</td>
<td></td>
<td>$385.00</td>
<td>$264,880</td>
</tr>
<tr>
<td>2"-3" meters</td>
<td>63</td>
<td></td>
<td>$750.00</td>
<td>$47,250</td>
</tr>
<tr>
<td>System Appurtenances</td>
<td>12% of Pipe Cost</td>
<td>$212,538</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELEVATED STORAGE</td>
<td>210,500</td>
<td>GAL.</td>
<td>$1.50</td>
<td>$315,750</td>
</tr>
<tr>
<td>GROUND STORAGE</td>
<td>3,570,000</td>
<td>GAL.</td>
<td>$0.20</td>
<td>$714,000</td>
</tr>
<tr>
<td>TREATMENT PLANT</td>
<td>1.19</td>
<td>MGD</td>
<td>$2,700,00</td>
<td>$3,210,000</td>
</tr>
<tr>
<td>DISTRIBUTION PUMPS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Service Pumps</td>
<td>50 HP</td>
<td></td>
<td>$1,500.00</td>
<td>$75,000</td>
</tr>
<tr>
<td>High Service Pumps</td>
<td>25 HP</td>
<td></td>
<td>$1,500.00</td>
<td>$37,500</td>
</tr>
<tr>
<td>High Service Pumps</td>
<td>25 HP</td>
<td></td>
<td>$1,500.00</td>
<td>$37,500</td>
</tr>
<tr>
<td>Booster pumps</td>
<td>10 HP</td>
<td></td>
<td>$2,000.00</td>
<td>$20,000</td>
</tr>
<tr>
<td>Booster pumps</td>
<td>5 HP</td>
<td></td>
<td>$2,000.00</td>
<td>$10,000</td>
</tr>
<tr>
<td>Booster pumps</td>
<td>5 HP</td>
<td></td>
<td>$2,000.00</td>
<td>$10,000</td>
</tr>
<tr>
<td>SUBTOTAL:</td>
<td></td>
<td></td>
<td></td>
<td>$6,725,564</td>
</tr>
<tr>
<td>Contingencies</td>
<td>15.00%</td>
<td></td>
<td></td>
<td>$1,008,835</td>
</tr>
<tr>
<td>Engineering</td>
<td>10.00%</td>
<td></td>
<td></td>
<td>$773,440</td>
</tr>
<tr>
<td>TOTAL:</td>
<td></td>
<td></td>
<td></td>
<td>$8,507,839</td>
</tr>
</tbody>
</table>
OPERATION AND MAINTENANCE COST

OPTION: Possum Kingdom Raw Water Treatment Plant
Average Day Design
50% Residential

<table>
<thead>
<tr>
<th>Item</th>
<th>Plant</th>
<th>System</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personnel</td>
<td>$150,000</td>
<td>$100,000</td>
<td>$250,000</td>
</tr>
<tr>
<td>Utilities</td>
<td>$54,000</td>
<td>$40,000</td>
<td>$94,000</td>
</tr>
<tr>
<td>Structures/Fixed Equipment</td>
<td>$52,000</td>
<td>$30,000</td>
<td>$82,000</td>
</tr>
<tr>
<td>Vehicles</td>
<td>$4,000</td>
<td>$6,000</td>
<td>$10,000</td>
</tr>
<tr>
<td>Treatment Supplies</td>
<td>$54,000</td>
<td></td>
<td>$54,000</td>
</tr>
<tr>
<td>Office and Laboratory</td>
<td>$15,000</td>
<td>$5,000</td>
<td>$20,000</td>
</tr>
<tr>
<td>Regulatory Agency</td>
<td>$20,000</td>
<td></td>
<td>$20,000</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>$6,000</td>
<td>$4,000</td>
<td>$10,000</td>
</tr>
<tr>
<td>Insurance</td>
<td>$20,000</td>
<td>$15,000</td>
<td>$35,000</td>
</tr>
<tr>
<td>Legal and Accounting</td>
<td>$2,000</td>
<td>$3,000</td>
<td>$5,000</td>
</tr>
<tr>
<td>Equipment Rental</td>
<td>$2,000</td>
<td>$3,000</td>
<td>$5,000</td>
</tr>
<tr>
<td>Total</td>
<td>$379,000</td>
<td>$206,000</td>
<td>$585,000</td>
</tr>
</tbody>
</table>

Cost of Water: $0.060 /1000 gallons
Assume 15% loss: $0.069 /1000 gallons

Filename: O&M.wk1
OPERATION AND MAINTENANCE COST

OPTION: Graham Treated Water
Average Day
50% Residential

<table>
<thead>
<tr>
<th>Item</th>
<th>Plant</th>
<th>System</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personnel</td>
<td>$0</td>
<td>$100,000</td>
<td>$100,000</td>
</tr>
<tr>
<td>Utilities</td>
<td>$0</td>
<td>$75,000</td>
<td>$75,000</td>
</tr>
<tr>
<td>Structures/Fixed Equipment</td>
<td>$0</td>
<td>$35,000</td>
<td>$35,000</td>
</tr>
<tr>
<td>Vehicles</td>
<td>$0</td>
<td>$10,000</td>
<td>$10,000</td>
</tr>
<tr>
<td>Treatment Supplies</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Office and Laboratory</td>
<td>$0</td>
<td>$10,000</td>
<td>$10,000</td>
</tr>
<tr>
<td>Regulatory Agency</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>$0</td>
<td>$10,000</td>
<td>$10,000</td>
</tr>
<tr>
<td>Insurance</td>
<td>$0</td>
<td>$25,000</td>
<td>$25,000</td>
</tr>
<tr>
<td>Legal and Accounting</td>
<td>$0</td>
<td>$5,000</td>
<td>$5,000</td>
</tr>
<tr>
<td>Equipment Rental</td>
<td>$0</td>
<td>$5,000</td>
<td>$5,000</td>
</tr>
<tr>
<td>Total</td>
<td>$0</td>
<td>$275,000</td>
<td>$275,000</td>
</tr>
</tbody>
</table>

Cost of Water: $1.600 /1000 gallons
Assume 15% loss: $1.840 /1000 gallons
Operation and Maintenance Cost

Option: Graham Treated Water

0% Residential

<table>
<thead>
<tr>
<th>Item</th>
<th>Plant</th>
<th>System</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personnel</td>
<td>$0</td>
<td>$100,000</td>
<td>$100,000</td>
</tr>
<tr>
<td>Utilities</td>
<td>$0</td>
<td>$75,000</td>
<td>$75,000</td>
</tr>
<tr>
<td>Structures/Fixed Equipment</td>
<td>$0</td>
<td>$35,000</td>
<td>$35,000</td>
</tr>
<tr>
<td>Vehicles</td>
<td>$0</td>
<td>$10,000</td>
<td>$10,000</td>
</tr>
<tr>
<td>Treatment Supplies</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Office and Laboratory</td>
<td>$0</td>
<td>$10,000</td>
<td>$10,000</td>
</tr>
<tr>
<td>Regulatory Agency</td>
<td>$0</td>
<td>$0</td>
<td>$0</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>$0</td>
<td>$10,000</td>
<td>$10,000</td>
</tr>
<tr>
<td>Insurance</td>
<td>$0</td>
<td>$25,000</td>
<td>$25,000</td>
</tr>
<tr>
<td>Legal and Accounting</td>
<td>$0</td>
<td>$5,000</td>
<td>$5,000</td>
</tr>
<tr>
<td>Equipment Rental</td>
<td>$0</td>
<td>$5,000</td>
<td>$5,000</td>
</tr>
<tr>
<td>Total</td>
<td>$0</td>
<td>$275,000</td>
<td>$275,000</td>
</tr>
</tbody>
</table>

Cost of Water: $1.600 /1000 gallons

Assume 15% loss: $1.840 /1000 gallons
OPERATION AND MAINTENANCE COST

OPTION: Blended Lake
Graham/Possum Kingdom Lake Raw Water Treatment Plant
50% Residential

<table>
<thead>
<tr>
<th>Item</th>
<th>Plant</th>
<th>System</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personnel</td>
<td>$150,000</td>
<td>$100,000</td>
<td>$250,000</td>
</tr>
<tr>
<td>Utilities</td>
<td>$35,000</td>
<td>$40,000</td>
<td>$75,000</td>
</tr>
<tr>
<td>Structures/Fixed Equipment</td>
<td>$30,000</td>
<td>$30,000</td>
<td>$60,000</td>
</tr>
<tr>
<td>Vehicles</td>
<td>$4,000</td>
<td>$6,000</td>
<td>$10,000</td>
</tr>
<tr>
<td>Treatment Supplies</td>
<td>$30,000</td>
<td>$0</td>
<td>$30,000</td>
</tr>
<tr>
<td>Office and Laboratory</td>
<td>$15,000</td>
<td>$5,000</td>
<td>$20,000</td>
</tr>
<tr>
<td>Regulatory Agency</td>
<td>$20,000</td>
<td>$0</td>
<td>$20,000</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>$6,000</td>
<td>$4,000</td>
<td>$10,000</td>
</tr>
<tr>
<td>Insurance</td>
<td>$20,000</td>
<td>$15,000</td>
<td>$35,000</td>
</tr>
<tr>
<td>Legal and Accounting</td>
<td>$2,000</td>
<td>$3,000</td>
<td>$5,000</td>
</tr>
<tr>
<td>Equipment Rental</td>
<td>$2,000</td>
<td>$3,000</td>
<td>$5,000</td>
</tr>
<tr>
<td>Total</td>
<td>$314,000</td>
<td>$206,000</td>
<td>$520,000</td>
</tr>
</tbody>
</table>

Cost of Water: /1000 gallons
Assume 15% loss: /1000 gallons
OPERATION AND MAINTENANCE COST

OPTION: Blended Lake

Graham/Possum Kingdom Lake Raw Water Treatment Plant

50% Residential

Average Day

<table>
<thead>
<tr>
<th>Item</th>
<th>Plant</th>
<th>System</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personnel</td>
<td>$150,000</td>
<td>$100,000</td>
<td>$250,000</td>
</tr>
<tr>
<td>Utilities</td>
<td>$35,000</td>
<td>$40,000</td>
<td>$75,000</td>
</tr>
<tr>
<td>Structures/Fixed Equipment</td>
<td>$30,000</td>
<td>$30,000</td>
<td>$60,000</td>
</tr>
<tr>
<td>Vehicles</td>
<td>$4,000</td>
<td>$6,000</td>
<td>$10,000</td>
</tr>
<tr>
<td>Treatment Supplies</td>
<td>$30,000</td>
<td>$0</td>
<td>$30,000</td>
</tr>
<tr>
<td>Office and Laboratory</td>
<td>$15,000</td>
<td>$5,000</td>
<td>$20,000</td>
</tr>
<tr>
<td>Regulatory Agency</td>
<td>$20,000</td>
<td>$0</td>
<td>$20,000</td>
</tr>
<tr>
<td>Miscellaneous</td>
<td>$6,000</td>
<td>$4,000</td>
<td>$10,000</td>
</tr>
<tr>
<td>Insurance</td>
<td>$20,000</td>
<td>$15,000</td>
<td>$35,000</td>
</tr>
<tr>
<td>Legal and Accounting</td>
<td>$2,000</td>
<td>$3,000</td>
<td>$5,000</td>
</tr>
<tr>
<td>Equipment Rental</td>
<td>$2,000</td>
<td>$3,000</td>
<td>$5,000</td>
</tr>
<tr>
<td>Total</td>
<td>$314,000</td>
<td>$206,000</td>
<td>$520,000</td>
</tr>
</tbody>
</table>

Cost of Water: /1000 gallons - Graham

Assume 15% loss: /1000 gallons - Graham
POSSUM KINGDOM REGIONAL WATER SUPPLY SYSTEM

ADDITIVE ALTERNATE
Gaines Bend Area

I. ANALYSIS CONDITIONS
1) 100% Participation from Business
2) 100% Participation from Residential

II. NUMBER OF SYSTEM CONNECTIONS

<table>
<thead>
<tr>
<th></th>
<th>Connections</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business Connection</td>
<td>24</td>
</tr>
<tr>
<td>Individual Connections</td>
<td>239</td>
</tr>
<tr>
<td>Total</td>
<td>263</td>
</tr>
</tbody>
</table>

III. MAXIMUM DAY DEMANDS

\[
263 \text{ conn} \times 0.6 \text{ gpm} = 158 \text{ gpm} = 0.22 \text{ MGD}
\]

IV. MAXIMUM HOUR DEMAND

\[
263 \text{ conn} \times 1.5 \text{ gpm} = 395 \text{ gpm} = 0.57 \text{ MGD}
\]

V. PRESSURE TANK/ELEVATED STORAGE REQUIREMENTS

<table>
<thead>
<tr>
<th></th>
<th>[\times]</th>
<th>[\times]</th>
<th>[\times]</th>
<th>[\times]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elevated Storage</td>
<td>263</td>
<td>100</td>
<td>=</td>
<td>26,300 gal</td>
</tr>
<tr>
<td>Pressure Tank</td>
<td>263</td>
<td>20</td>
<td>=</td>
<td>5,260 gal</td>
</tr>
</tbody>
</table>
POSSUM KINGDOM WATER SUPPLY CORPORATION
WATER DISTRIBUTION SYSTEM
ENGINEER'S ESTIMATE

OPTION:

GAINES_BEND
- 100% Business Participation
- 100% Residential Participation

MAX DAY DEMAND:
- Business Participation: 0.22 MGD
- Residential Participation: 263 CONN.

Pipe Quantity Table

<table>
<thead>
<tr>
<th>Pipe Diameter</th>
<th>Quantity</th>
<th>Units</th>
<th>Unit Cost</th>
<th>Extended Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>26,269</td>
<td>L.F.</td>
<td>$4.00</td>
<td>$105,076</td>
</tr>
<tr>
<td>6</td>
<td>2,345.2</td>
<td>L.F.</td>
<td>$6.50</td>
<td>$15,244</td>
</tr>
<tr>
<td>6" LAKE CROSSING</td>
<td>2,000</td>
<td>L.F.</td>
<td>$100.00</td>
<td>$200,000</td>
</tr>
<tr>
<td>SUBTOTAL:</td>
<td>30,614</td>
<td>L.F.</td>
<td></td>
<td>$320,320</td>
</tr>
</tbody>
</table>

3/4" meters	263	Ea.	$385.00	$101,255
System Appurtenances			12% of Pipe Cost	$38,438
PRESSURE TANKS	10,000	GAL.	$1.50	$15,000
GROUND STORAGE	26,000	GAL.	$0.30	$7,800
SYSTEM TOTAL:				**$512,813**

DISTRIBUTION PUMPS

<table>
<thead>
<tr>
<th>Type of System</th>
<th>Quantity</th>
<th>Units</th>
<th>Unit Cost</th>
<th>Extended Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Service Pumps</td>
<td>10</td>
<td>HP</td>
<td>$1,500.00</td>
<td>$15,000</td>
</tr>
<tr>
<td>High Service Pumps</td>
<td>10</td>
<td>HP</td>
<td>$1,500.00</td>
<td>$15,000</td>
</tr>
<tr>
<td>High Service Pumps</td>
<td>0</td>
<td>HP</td>
<td>$1,500.00</td>
<td>$0</td>
</tr>
<tr>
<td>Booster pumps</td>
<td>0</td>
<td>HP</td>
<td>$2,000.00</td>
<td>$0</td>
</tr>
<tr>
<td>Booster pumps</td>
<td>0</td>
<td>HP</td>
<td>$2,000.00</td>
<td>$0</td>
</tr>
<tr>
<td>SUBTOTAL:</td>
<td></td>
<td></td>
<td></td>
<td>$512,813</td>
</tr>
</tbody>
</table>

- Contingencies: 15.00% = $76,922
- Engineering: 10.00% = $58,974
- **TOTAL:** = $648,709
MAXIMUM DIMENSIONS

- Number of pipes 1000
- Number of pumps 250
- Number junction nodes 1000
- Flow meters 250
- Boundary nodes 100
- Variable storage tanks 250
- Pressure switches 250
- Regulating Valves 250
- Items for limited output 1000
- limit for non-consecutive numbering .. 10010

Cybernet version 2.10d. SN: 1572030464-1000

Extended Description:

FILENAME: GAIN_B.DWG

This run represents the ultimate PK Water Supply Corp. water distribution system at the maximum hourly demand condition for the Gains Bend area. This analysis assumes 100% participation from individual lot owners and 100% participation from businesses around the lake.

The total maximum hourly demand is approximately 0.57 MGD. This is based on a max. hour demand of 1.5 gpm per each connection to the system.

The estimated maximum daily demand is approximately 0.22 MGD. This is based on a max. day demand of 0.6 gpm per each connection to the system.

In this analysis, the MAXIMUM DAILY DEMAND of 0.22 MGD is met by pumpage at the treatment plant located near lake marker 42 near D&D South. No additional supply from other sources is considered.

The difference in the MAX. DAY DEMAND and the MAX. HOUR DEMAND is met with elevated or pressure tanks.

Two tanks have been included in this model:
- Tank no. 1 is located on the east side of the Gains Bend peninsula near The Bends Condominiums
- Tank no. 2 is located at the west side of the Gains Bend peninsula near Hell's Gate.

These tanks supply approximately 0.34 MGD during the maximum hourly condition.
UNITS SPECIFIED

FLOWRATE = million gallons/day
HEAD (HGL) = feet
PRESSURE = psig

OUTPUT OPTION DATA

INPUT SELECTION: THE FOLLOWING RESULTS ARE INCLUDED IN THE TABULATED OUTPUT

ALL CLOSED PIPES ARE NOTED
ALL PIPES WITH PUMPS
FOLLOWING PIPES
 244 245 246 247 248 249 250 254 255 280 290 300
FOLLOWING JUNCTION NODES
 8 81 82 83 84 85 86 87 88 89

WARNING NUMBER REQUESTED FOR MAXIMUM AND MINIMUM PRESSURES
CANNOT EXCEED ONE HALF THE NUMBER OF JUNCTIONS

MAXIMUM AND MINIMUM PRESSURES = 5

SYSTEM CONFIGURATION

NUMBER OF PIPES(p) = 12
NUMBER OF JUNCTION NODES(j) = 10
NUMBER OF PRIMARY LOOPS(l) = 0
NUMBER OF BOUNDARY NODES(f) = 3
NUMBER OF SUPPLY ZONES(z) = 1

SIMULATION RESULTS

The results are obtained after 6 trials with an accuracy = 0.00007

SIMULATION DESCRIPTION

Run Description: MAXIMUM HOURLY DEMANDS (1.5 GPM PER CONNECTION)
District: GAINS_B

PIPELINE RESULTS

STATUS CODE: XXX - CLOSED PIPE BN - BOUNDARY NODE PU - PUMP LINE
CV - CHECK VALVE RV - REGULATING VALVE TK - STORAGE TANK
Pipe Node Results

<table>
<thead>
<tr>
<th>PIPE NUMBER</th>
<th>NODE NOS.</th>
<th>FLOWRATE</th>
<th>HEAD LOSS</th>
<th>PUMP</th>
<th>MINOR LINE</th>
<th>HL/ 1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1</td>
<td>#2</td>
<td>(mgd)</td>
<td>(ft)</td>
<td>(ft)</td>
<td>(ft)</td>
<td>(ft/s)</td>
</tr>
<tr>
<td>244</td>
<td>8</td>
<td>81</td>
<td>0.16</td>
<td>2.46</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>245</td>
<td>81</td>
<td>82</td>
<td>-0.01</td>
<td>0.08</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>246</td>
<td>81</td>
<td>83</td>
<td>0.11</td>
<td>17.30</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>247</td>
<td>83</td>
<td>84</td>
<td>0.02</td>
<td>0.51</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>248</td>
<td>84</td>
<td>85</td>
<td>-0.06</td>
<td>4.09</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>249</td>
<td>85</td>
<td>86</td>
<td>-0.13</td>
<td>17.87</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>250</td>
<td>86</td>
<td>87</td>
<td>-0.19</td>
<td>18.28</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>254</td>
<td>82</td>
<td>88</td>
<td>-0.05</td>
<td>6.11</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>255</td>
<td>88</td>
<td>89</td>
<td>-0.13</td>
<td>16.25</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>250-BN</td>
<td>8</td>
<td>0</td>
<td>0.16</td>
<td>2.46</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>290-BN</td>
<td>87</td>
<td>0</td>
<td>-0.24</td>
<td>5.49</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>300-BN</td>
<td>89</td>
<td>0</td>
<td>-0.17</td>
<td>0.02</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

Junction Node Results

<table>
<thead>
<tr>
<th>JUNCTION NUMBER</th>
<th>JUNCTION TITLE</th>
<th>EXTERNAL DEMAND (mgd)</th>
<th>HYDRAULIC GRADE (ft)</th>
<th>JUNCTION ELEVATION (ft)</th>
<th>PRESSURE HEAD (ft)</th>
<th>PRESSURE PRESSURE (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-1</td>
<td>CONSTANTINE</td>
<td>0.00</td>
<td>1130.00</td>
<td>1040.00</td>
<td>90.00</td>
<td>39.00</td>
</tr>
<tr>
<td>81-1</td>
<td>GAINS BEND</td>
<td>0.05</td>
<td>1127.54</td>
<td>1010.00</td>
<td>117.54</td>
<td>50.93</td>
</tr>
<tr>
<td>82-1</td>
<td>GAINS BEND</td>
<td>0.05</td>
<td>1127.62</td>
<td>1010.00</td>
<td>117.62</td>
<td>50.97</td>
</tr>
<tr>
<td>83-1</td>
<td>GAINS BEND</td>
<td>0.09</td>
<td>1110.24</td>
<td>1010.00</td>
<td>100.24</td>
<td>43.44</td>
</tr>
<tr>
<td>84-1</td>
<td>GAINS BEND</td>
<td>0.08</td>
<td>1109.73</td>
<td>1010.00</td>
<td>99.73</td>
<td>43.21</td>
</tr>
<tr>
<td>85-1</td>
<td>GAINS BEND</td>
<td>0.08</td>
<td>1113.82</td>
<td>1010.00</td>
<td>103.82</td>
<td>44.99</td>
</tr>
<tr>
<td>86-1</td>
<td>GAINS BEND</td>
<td>0.06</td>
<td>1131.69</td>
<td>1020.00</td>
<td>111.69</td>
<td>48.40</td>
</tr>
<tr>
<td>87-1</td>
<td>THE BEND CON</td>
<td>0.05</td>
<td>1149.98</td>
<td>1030.00</td>
<td>99.98</td>
<td>43.32</td>
</tr>
<tr>
<td>88-1</td>
<td>GAINS BEND</td>
<td>0.08</td>
<td>1133.73</td>
<td>1050.00</td>
<td>83.73</td>
<td>36.28</td>
</tr>
<tr>
<td>89-1</td>
<td>GAINS BEND</td>
<td>0.04</td>
<td>1149.99</td>
<td>1050.00</td>
<td>99.99</td>
<td>43.33</td>
</tr>
</tbody>
</table>

Maximum and Minimum Values

Pressures

<table>
<thead>
<tr>
<th>JUNCTION NUMBER</th>
<th>MAXIMUM PRESSURES (psi)</th>
<th>JUNCTION NUMBER</th>
<th>MINIMUM PRESSURES (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>82</td>
<td>50.97</td>
<td>88</td>
<td>36.28</td>
</tr>
<tr>
<td>81</td>
<td>50.93</td>
<td>8</td>
<td>39.00</td>
</tr>
<tr>
<td>86</td>
<td>48.40</td>
<td>84</td>
<td>43.21</td>
</tr>
<tr>
<td>85</td>
<td>44.99</td>
<td>87</td>
<td>43.32</td>
</tr>
<tr>
<td>83</td>
<td>43.44</td>
<td>89</td>
<td>43.33</td>
</tr>
</tbody>
</table>

Summary of Inflows and Outflows

(+) Inflows into the system from boundary nodes
(-) Outflows from the system into boundary nodes
SUMMARY OF ORIGINAL DATA

Function: MAXIMUM HOURLY DEMANDS (1.5 GPM PER CONNECTION)

Iawing: GAINS_B

PIPELINE DATA

STATUS CODE: XX -CLOSED PIPE BN -BOUNDARY NODE PU -PUMP LINE

CV -CHECK VALVE RV -REGULATING VALVE

<table>
<thead>
<tr>
<th>PIPE NUMBER</th>
<th>NODE NOS.</th>
<th>LENGTH (ft)</th>
<th>DIAMETER (in)</th>
<th>ROUGHNESS COEFF.</th>
<th>MINOR LOSS COEFF.</th>
<th>BND-HGL (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>244</td>
<td>8 81</td>
<td>2345.2</td>
<td>6.0</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>245</td>
<td>81 82</td>
<td>2526.7</td>
<td>4.0</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>246</td>
<td>81 83</td>
<td>4083.2</td>
<td>4.0</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>247</td>
<td>83 84</td>
<td>3385.8</td>
<td>4.0</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>248</td>
<td>84 85</td>
<td>3576.1</td>
<td>4.0</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>249</td>
<td>85 86</td>
<td>3245.0</td>
<td>4.0</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>86 87</td>
<td>1652.2</td>
<td>4.0</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>254</td>
<td>82 88</td>
<td>5137.0</td>
<td>4.0</td>
<td>130.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>255</td>
<td>88 89</td>
<td>2663.0</td>
<td>4.0</td>
<td>130.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>280-BN</td>
<td>8 0</td>
<td>0.1</td>
<td>6.0</td>
<td>140.00</td>
<td>0.00</td>
<td>1130.00</td>
</tr>
<tr>
<td>290-BN</td>
<td>87 0</td>
<td>10.0</td>
<td>6.0</td>
<td>140.00</td>
<td>0.00</td>
<td>1150.00</td>
</tr>
<tr>
<td>300-BN</td>
<td>89 0</td>
<td>10.0</td>
<td>6.0</td>
<td>140.00</td>
<td>0.00</td>
<td>1150.00</td>
</tr>
</tbody>
</table>

JUNCTION NODE DATA

<table>
<thead>
<tr>
<th>JUNCTION NUMBER</th>
<th>JUNCTION TITLE</th>
<th>EXTERNAL DEMAND (mgd)</th>
<th>JUNCTION ELEVATION (ft)</th>
<th>CONNECTING PIPES</th>
</tr>
</thead>
<tbody>
<tr>
<td>8-1</td>
<td>CONSTANTINE/</td>
<td>0.00</td>
<td>1040.00</td>
<td>244 280</td>
</tr>
<tr>
<td>81-1</td>
<td>GAINS BEND</td>
<td>0.05</td>
<td>1010.00</td>
<td>244 245 246</td>
</tr>
<tr>
<td>82-1</td>
<td>GAINS BEND</td>
<td>0.05</td>
<td>1010.00</td>
<td>245 254</td>
</tr>
<tr>
<td>83-1</td>
<td>GAINS BEND</td>
<td>0.09</td>
<td>1010.00</td>
<td>246 247</td>
</tr>
<tr>
<td>84-1</td>
<td>GAINS BEND</td>
<td>0.08</td>
<td>1010.00</td>
<td>247 248</td>
</tr>
<tr>
<td>85-1</td>
<td>GAINS BEND</td>
<td>0.08</td>
<td>1010.00</td>
<td>248 249</td>
</tr>
<tr>
<td>86-1</td>
<td>GAINS BEND</td>
<td>0.06</td>
<td>1020.00</td>
<td>249 250</td>
</tr>
<tr>
<td>87-1</td>
<td>THE BEND CON</td>
<td>0.05</td>
<td>1050.00</td>
<td>250 290</td>
</tr>
<tr>
<td>88-1</td>
<td>GAINS BEND</td>
<td>0.08</td>
<td>1050.00</td>
<td>254 255</td>
</tr>
<tr>
<td>89-1</td>
<td>GAINS BEND</td>
<td>0.04</td>
<td>1050.00</td>
<td>255 300</td>
</tr>
<tr>
<td>PIPE NUMBER</td>
<td>FLOWRATE (mgd)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>----------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>0.16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>290</td>
<td>0.24</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>0.17</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NET SYSTEM INFLOW = 0.57
NET SYSTEM OUTFLOW = 0.00
NET SYSTEM DEMAND = 0.57

**** CYBERNET SIMULATION COMPLETED ****

DATE: 6/9/1993
TIME: 13:26:47
POSSUM KINGDOM REGIONAL WATER SUPPLY SYSTEM

ADDITIVE ALTERNATE
Hog Bend Area

I. ANALYSIS CONDITIONS

1) 100% Participation Business
2) 100% Participation Residential

II. NUMBER OF SYSTEM CONNECTIONS

All Residential .. 185 Connections

III. MAXIMUM DAY DEMANDS (Pumpage)

185 x 0.6 gpm = 111 gpm = 0.16 MGD

IV. MAXIMUM HOUR DEMAND

185 x 1.5 gpm = 277.5 gpm = 0.40 MGD

V. PRESSURE TANK/ELEVATED STORAGE REQUIREMENTS (TWC)

Elevated Storage 185 x 100 = 18,500 gal
Pressure Tank 185 x 20 = 3,700 gal
POSSUM KINGDOM WATER SUPPLY CORPORATION
WATER DISTRIBUTION SYSTEM
ENGINEER'S ESTIMATE

OPTION:
HOG BEND
100% Business Participation
100% Residential Participation
0.16 MGD
185 CONN.

MAX DAY DEMAND:
CONNECTIONS

<table>
<thead>
<tr>
<th>Pipe Diameter</th>
<th>Quantity</th>
<th>Units</th>
<th>Unit Cost</th>
<th>Extended Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>2,341.9</td>
<td></td>
<td>$3.25</td>
<td>$7,611</td>
</tr>
<tr>
<td>3</td>
<td>10,921.9</td>
<td>L.F.</td>
<td>$4.50</td>
<td>$49,149</td>
</tr>
<tr>
<td>4</td>
<td>22,496.1</td>
<td>L.F.</td>
<td>$4.00</td>
<td>$89,984</td>
</tr>
<tr>
<td>6</td>
<td>2,362.8</td>
<td></td>
<td>$6.50</td>
<td>$15,358</td>
</tr>
</tbody>
</table>

6" LAKE CROSSING
2,000 L.F.
$100.00
$200,000
40,123 L.F.
$362,102

3/4" meters
185 Ea.
$385.00
$71,225

System Appurtenances
12% of Pipe Cost
$43,452

PRESSURE TANKS
5,000 GAL.
$1.50
$7,500

GROUND STORAGE
18,500 GAL
$0.30
$5,550

TREATMENT PLANT
0 MGD
$3,500,000
$0

DISTRIBUTION PUMPS
High Service Pumps
10 HP
$1,500.00
$15,000

High Service Pumps
10 HP
$1,500.00
$15,000

High Service Pumps
0 HP
$1,500.00
$0

Booster pumps
0 HP
$2,000.00
$0

Booster pumps
0 HP
$2,000.00
$0

Booster pumps
0 HP
$2,000.00
$0

SUBTOTAL:
$519,830

Contingencies
15.00%
$77,974

Engineering
10.00%
$59,780

TOTAL:
$657,584
MAXIMUM DIMENSIONS

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of pipes</td>
<td>1000</td>
</tr>
<tr>
<td>Number of pumps</td>
<td>250</td>
</tr>
<tr>
<td>Number junction nodes</td>
<td>1000</td>
</tr>
<tr>
<td>Flow meters</td>
<td>250</td>
</tr>
<tr>
<td>Boundary nodes</td>
<td>100</td>
</tr>
<tr>
<td>Variable storage tanks</td>
<td>250</td>
</tr>
<tr>
<td>Pressure switches</td>
<td>250</td>
</tr>
<tr>
<td>Regulating Valves</td>
<td>250</td>
</tr>
<tr>
<td>Items for limited output</td>
<td>1000</td>
</tr>
<tr>
<td>limit for non-consecutive numbering</td>
<td>10010</td>
</tr>
</tbody>
</table>

Cybernet version 2.10d. SN: 1572030464-1000

Extended Description:

FILENAME: HOG_BEND.DWG

This run represents the ultimate PK Water Supply Corp. water distribution system at the maximum hourly demand condition for the Hog Bend area. This analysis assumes 100% participation from individual lot owners and 100% participation from businesses around the lake. The total maximum hourly demand is approximately 0.40 MGD. This is based on a max. hour demand of 1.5 gpm per each connection to the system.

The estimated maximum daily demand is approximately 0.16 MGD. This is based on a max. day demand of 0.6 gpm per each connection to the system.

In this analysis, the MAXIMUM DAILY DEMAND of 0.16 MGD is met by pumpage at the treatment plant located near lake marker 42 at Hog Bend. No additional supply from other sources is considered.
UNITS SPECIFIED

FLOWRATE = million gallons/day
HEAD (HGL) = feet
PRESSURE = psig

OUTPUT OPTION DATA

I) PUT SELECTION: THE FOLLOWING RESULTS ARE INCLUDED IN THE TABULATED OUTPUT

ALL CLOSED PIPES ARE NOTED
ALL PIPES WITH PUMPS
FOLLOWING PIPES
230 231 232 233 234 235 236 237 240 241 242 243 251
280 290 310
FOLLOWING JUNCTION NODES
15 66 67 68 69 70 71 72 73 74 75 76 77 78

WARNING NUMBER REQUESTED FOR MAXIMUM AND MINIMUM PRESSURES
CANNOT EXCEED ONE HALF THE NUMBER OF JUNCTIONS
MAXIMUM AND MINIMUM PRESSURES = 7

SYSTEM CONFIGURATION

NUMBER OF PIPES (p) = 16
NUMBER OF JUNCTION NODES (j) = 14
NUMBER OF PRIMARY LOOPS (l) = 0
NUMBER OF BOUNDARY NODES (f) = 3
NUMBER OF SUPPLY ZONES (z) = 1

SIMULATION RESULTS

Results are obtained after 5 trials with an accuracy = 0.00305

SIMULATION DESCRIPTION

Cy erNet Version 2.10d. Copyright 1991,92 Haestad Methods Inc.
Ri: Description: MAXIMUM HOURLY DEMANDS (1.5 GPM PER CONNECTION)
Drawing: HOG_BEND

PIPELINE RESULTS

STATUS CODE: XX -CLOSED PIPE BN -BOUNDARY NODE PU -PUMP LINE
<table>
<thead>
<tr>
<th>PIPE NUMBER</th>
<th>NODE NOS.</th>
<th>FLOWRATE</th>
<th>HEAD LOSS</th>
<th>PUMP HEAD</th>
<th>MINOR HEAD</th>
<th>LINE LOSS</th>
<th>VELO. 1000</th>
<th>HL/LINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>#1#2</td>
<td></td>
<td>(mgd)</td>
<td>(ft)</td>
<td>(ft)</td>
<td>(ft)</td>
<td>(ft/s)</td>
<td>(ft/ft)</td>
<td></td>
</tr>
<tr>
<td>230</td>
<td>15 74</td>
<td>0.10</td>
<td>1.13</td>
<td>0.00</td>
<td>0.00</td>
<td>0.80</td>
<td>0.48</td>
<td></td>
</tr>
<tr>
<td>231</td>
<td>74 66</td>
<td>0.10</td>
<td>3.96</td>
<td>0.00</td>
<td>0.00</td>
<td>1.82</td>
<td>3.50</td>
<td></td>
</tr>
<tr>
<td>232</td>
<td>66 67</td>
<td>0.07</td>
<td>4.87</td>
<td>0.00</td>
<td>0.00</td>
<td>1.29</td>
<td>1.85</td>
<td></td>
</tr>
<tr>
<td>233</td>
<td>68 69</td>
<td>-0.03</td>
<td>4.93</td>
<td>0.00</td>
<td>0.00</td>
<td>0.86</td>
<td>1.22</td>
<td></td>
</tr>
<tr>
<td>234</td>
<td>69 70</td>
<td>0.04</td>
<td>11.02</td>
<td>0.00</td>
<td>0.00</td>
<td>1.59</td>
<td>4.70</td>
<td></td>
</tr>
<tr>
<td>235</td>
<td>69 71</td>
<td>-0.12</td>
<td>13.29</td>
<td>0.00</td>
<td>0.00</td>
<td>2.17</td>
<td>4.84</td>
<td></td>
</tr>
<tr>
<td>236</td>
<td>71 72</td>
<td>-0.14</td>
<td>21.08</td>
<td>0.00</td>
<td>0.00</td>
<td>2.52</td>
<td>6.40</td>
<td></td>
</tr>
<tr>
<td>237</td>
<td>72 73</td>
<td>-0.17</td>
<td>21.34</td>
<td>0.00</td>
<td>0.00</td>
<td>3.05</td>
<td>9.13</td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>74 75</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.02</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>241</td>
<td>75 76</td>
<td>-0.05</td>
<td>8.20</td>
<td>0.00</td>
<td>0.00</td>
<td>1.45</td>
<td>3.20</td>
<td></td>
</tr>
<tr>
<td>242</td>
<td>76 77</td>
<td>-0.08</td>
<td>35.04</td>
<td>0.00</td>
<td>0.00</td>
<td>2.39</td>
<td>8.12</td>
<td></td>
</tr>
<tr>
<td>243</td>
<td>77 78</td>
<td>-0.09</td>
<td>7.88</td>
<td>0.00</td>
<td>0.00</td>
<td>1.61</td>
<td>2.79</td>
<td></td>
</tr>
<tr>
<td>251</td>
<td>68 67</td>
<td>-0.02</td>
<td>0.70</td>
<td>0.00</td>
<td>0.00</td>
<td>0.40</td>
<td>0.21</td>
<td></td>
</tr>
<tr>
<td>280-BN</td>
<td>15 0</td>
<td>-0.15</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.20</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>290-BN</td>
<td>78 0</td>
<td>-0.11</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>0.87</td>
<td>0.56</td>
<td></td>
</tr>
<tr>
<td>310-BN</td>
<td>73 0</td>
<td>-0.19</td>
<td>0.01</td>
<td>0.00</td>
<td>0.00</td>
<td>1.48</td>
<td>1.48</td>
<td></td>
</tr>
</tbody>
</table>

JUNCTION NODE RESULTS

<table>
<thead>
<tr>
<th>JUNCTION NUMBER</th>
<th>JUNCTION TITLE</th>
<th>EXTERNAL DEMAND (mgd)</th>
<th>HYDRAULIC GRADE (ft)</th>
<th>JUNCTION ELEVATION (ft)</th>
<th>PRESSURE HEAD (ft)</th>
<th>JUNCTION PRESSURE (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-1 PUBLIC USE</td>
<td>L</td>
<td>0.05</td>
<td>1100.00</td>
<td>1005.00</td>
<td>95.00</td>
<td>41.17</td>
</tr>
<tr>
<td>66-1 BRA LEASED</td>
<td>L</td>
<td>0.03</td>
<td>1094.91</td>
<td>1005.00</td>
<td>89.91</td>
<td>38.96</td>
</tr>
<tr>
<td>67-1 BRA LEASED</td>
<td>L</td>
<td>0.05</td>
<td>1090.04</td>
<td>1005.00</td>
<td>85.04</td>
<td>36.85</td>
</tr>
<tr>
<td>68-1 BRA LEASED</td>
<td>L</td>
<td>0.05</td>
<td>1089.34</td>
<td>1005.00</td>
<td>84.34</td>
<td>36.55</td>
</tr>
<tr>
<td>69-1 BRA LEASED</td>
<td>L</td>
<td>0.06</td>
<td>1094.27</td>
<td>1005.00</td>
<td>89.27</td>
<td>38.68</td>
</tr>
<tr>
<td>70-1 BRA LEASED</td>
<td>L</td>
<td>0.04</td>
<td>1083.25</td>
<td>1005.00</td>
<td>78.25</td>
<td>33.91</td>
</tr>
<tr>
<td>71-1 BRA LEASED</td>
<td>L</td>
<td>0.02</td>
<td>1107.56</td>
<td>1005.00</td>
<td>102.56</td>
<td>44.44</td>
</tr>
<tr>
<td>72-1 BRA LEASED</td>
<td>L</td>
<td>0.03</td>
<td>1128.64</td>
<td>1005.00</td>
<td>123.64</td>
<td>53.58</td>
</tr>
<tr>
<td>73-1 BRA LEASED</td>
<td>L</td>
<td>0.01</td>
<td>1149.99</td>
<td>1005.00</td>
<td>144.99</td>
<td>62.83</td>
</tr>
<tr>
<td>74-1 BRA LEASED</td>
<td>L</td>
<td>0.00</td>
<td>1098.87</td>
<td>1005.00</td>
<td>93.87</td>
<td>40.68</td>
</tr>
<tr>
<td>75-1 BRA LEASED</td>
<td>L</td>
<td>0.05</td>
<td>1098.87</td>
<td>1005.00</td>
<td>93.87</td>
<td>40.68</td>
</tr>
<tr>
<td>76-1 BRA LEASED</td>
<td>L</td>
<td>0.03</td>
<td>1107.07</td>
<td>1005.00</td>
<td>102.07</td>
<td>44.23</td>
</tr>
<tr>
<td>77-1 BRA LEASED</td>
<td>L</td>
<td>0.01</td>
<td>1142.11</td>
<td>1005.00</td>
<td>137.11</td>
<td>59.42</td>
</tr>
<tr>
<td>78-1 BRA LEASED</td>
<td>L</td>
<td>0.02</td>
<td>1149.99</td>
<td>1005.00</td>
<td>144.99</td>
<td>62.83</td>
</tr>
</tbody>
</table>

MAXIMUM AND MINIMUM VALUES

<table>
<thead>
<tr>
<th>JUNCTION NUMBER</th>
<th>MAXIMUM PRESSURES (psi)</th>
<th>JUNCTION NUMBER</th>
<th>MINIMUM PRESSURES (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>78</td>
<td>62.83</td>
<td>70</td>
<td>33.91</td>
</tr>
<tr>
<td>73</td>
<td>62.83</td>
<td>68</td>
<td>36.55</td>
</tr>
<tr>
<td>77</td>
<td>59.42</td>
<td>67</td>
<td>36.85</td>
</tr>
<tr>
<td>PIPE NUMBER</td>
<td>FLOWRATE (mgd)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>280</td>
<td>0.15</td>
<td></td>
<td></td>
</tr>
<tr>
<td>290</td>
<td>0.11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>310</td>
<td>0.19</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SUMMARY OF INFLOWS AND OUTFLOWS

(←) INFLOWS INTO THE SYSTEM FROM BOUNDARY NODES
(→) OUTFLOWS FROM THE SYSTEM INTO BOUNDARY NODES

NET SYSTEM INFLOW = 0.45
NET SYSTEM OUTFLOW = 0.00
NET SYSTEM DEMAND = 0.45

**** CYBERNET SIMULATION COMPLETED ****

DATE: 6/9/1993
TIME: 11:27:36
SUMMARY OF ORIGINAL DATA

Run Description: MAXIMUM HOURLY DEMANDS (1.5 GPM PER CONNECTION)
Drawing: HOG_BEND

PIPELINE DATA

STATUS CODE: XX -CLOSED PIPE BN -BOUNDARY NODE FU -PUMP LINE
CV -CHECK VALVE RV -REGULATING VALVE

<table>
<thead>
<tr>
<th>PIPE NUMBER</th>
<th>NODE NOS.</th>
<th>LENGTH (ft)</th>
<th>DIAMETER (in)</th>
<th>ROUGHNESS COEFF.</th>
<th>MINOR LOSS COEFF.</th>
<th>BND-HGL (ft)</th>
</tr>
</thead>
<tbody>
<tr>
<td>230</td>
<td>15 74</td>
<td>2362.8</td>
<td>6.0</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>231</td>
<td>74 66</td>
<td>1130.8</td>
<td>4.0</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>232</td>
<td>66 71</td>
<td>2635.6</td>
<td>4.0</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>233</td>
<td>68 69</td>
<td>4042.5</td>
<td>3.0</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>234</td>
<td>69 70</td>
<td>2341.9</td>
<td>2.5</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>235</td>
<td>69 71</td>
<td>2746.7</td>
<td>4.0</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>236</td>
<td>71 72</td>
<td>3292.3</td>
<td>4.0</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>237</td>
<td>72 73</td>
<td>2338.6</td>
<td>4.0</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>240</td>
<td>74 75</td>
<td>4242.7</td>
<td>4.0</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>241</td>
<td>75 76</td>
<td>2564.1</td>
<td>3.0</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>242</td>
<td>76 77</td>
<td>4315.3</td>
<td>3.0</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>243</td>
<td>77 78</td>
<td>2821.5</td>
<td>4.0</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>251</td>
<td>68 67</td>
<td>3287.9</td>
<td>4.0</td>
<td>140.00</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>280-BN</td>
<td>15 0</td>
<td>0.1</td>
<td>6.0</td>
<td>140.00</td>
<td>0.00</td>
<td>1100.00</td>
</tr>
<tr>
<td>290-BN</td>
<td>78 0</td>
<td>10.0</td>
<td>6.0</td>
<td>140.00</td>
<td>0.00</td>
<td>1150.00</td>
</tr>
<tr>
<td>310-BN</td>
<td>73 0</td>
<td>10.0</td>
<td>6.0</td>
<td>140.00</td>
<td>0.00</td>
<td>1150.00</td>
</tr>
</tbody>
</table>

JUNCTION NODE DATA

<table>
<thead>
<tr>
<th>JUNCTION NUMBER</th>
<th>JUNCTION TITLE</th>
<th>EXTERNAL DEMAND (mgd)</th>
<th>JUNCTION ELEVATION (ft)</th>
<th>CONNECTING PIPES</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-1</td>
<td>PUBLIC USE L</td>
<td>0.05</td>
<td>1005.00</td>
<td>230 280</td>
</tr>
<tr>
<td>66-1</td>
<td>BRA LEASED L</td>
<td>0.03</td>
<td>1005.00</td>
<td>231 232</td>
</tr>
<tr>
<td>67-1</td>
<td>BRA LEASED L</td>
<td>0.05</td>
<td>1005.00</td>
<td>232 251</td>
</tr>
<tr>
<td>68-1</td>
<td>BRA LEASED L</td>
<td>0.05</td>
<td>1005.00</td>
<td>233 251</td>
</tr>
<tr>
<td>69-1</td>
<td>BRA LEASED L</td>
<td>0.06</td>
<td>1005.00</td>
<td>233 234 235</td>
</tr>
<tr>
<td>70-1</td>
<td>BRA LEASED L</td>
<td>0.04</td>
<td>1005.00</td>
<td>234</td>
</tr>
<tr>
<td>71-1</td>
<td>BRA LEASED L</td>
<td>0.02</td>
<td>1005.00</td>
<td>235 236</td>
</tr>
<tr>
<td>72-1</td>
<td>BRA LEASED L</td>
<td>0.03</td>
<td>1005.00</td>
<td>236 237</td>
</tr>
<tr>
<td>73-1</td>
<td>BRA LEASED L</td>
<td>0.01</td>
<td>1005.00</td>
<td>237 310</td>
</tr>
<tr>
<td>74-1</td>
<td>BRA LEASED L</td>
<td>0.00</td>
<td>1005.00</td>
<td>230 231 240</td>
</tr>
<tr>
<td>75-1</td>
<td>BRA LEASED L</td>
<td>0.05</td>
<td>1005.00</td>
<td>240 241</td>
</tr>
<tr>
<td>76-1</td>
<td>BRA LEASED L</td>
<td>0.03</td>
<td>1005.00</td>
<td>241 242</td>
</tr>
<tr>
<td>77-1</td>
<td>BRA LEASED L</td>
<td>0.01</td>
<td>1005.00</td>
<td>242 243</td>
</tr>
<tr>
<td>78-1</td>
<td>BRA LEASED L</td>
<td>0.02</td>
<td>1005.00</td>
<td>243 290</td>
</tr>
</tbody>
</table>
POSSUM KINGDOM WATER SUPPLY CORPORATION
TREATMENT PLANT CAPACITY
COST COMPARISON

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
<th>1.2 MGD</th>
<th>1.4 MGD</th>
<th>1.7 MGD</th>
<th>2.1 MGD</th>
<th>2.4 MGD</th>
<th>3.0 MGD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Raw Water Intake & Pumps</td>
<td>$450,000</td>
<td>$600,000</td>
<td>$600,000</td>
<td>$700,000</td>
<td>$800,000</td>
<td>$800,000</td>
</tr>
<tr>
<td>2</td>
<td>Raw Water Supply Line</td>
<td>$30,000</td>
<td>$40,000</td>
<td>$40,000</td>
<td>$45,000</td>
<td>$50,000</td>
<td>$50,000</td>
</tr>
<tr>
<td>3</td>
<td>Treatment Facilities</td>
<td>$1,400,000</td>
<td>$1,680,000</td>
<td>$2,040,000</td>
<td>$2,520,000</td>
<td>$2,880,000</td>
<td>$3,600,000</td>
</tr>
<tr>
<td>4</td>
<td>Demineralization</td>
<td>$1,000,000</td>
<td>$1,120,000</td>
<td>$1,360,000</td>
<td>$1,680,000</td>
<td>$1,920,000</td>
<td>$2,400,000</td>
</tr>
<tr>
<td>5</td>
<td>Filtered Water Storage</td>
<td>$90,000</td>
<td>$100,000</td>
<td>$100,000</td>
<td>$115,000</td>
<td>$120,000</td>
<td>$150,000</td>
</tr>
<tr>
<td>6</td>
<td>Finished Water Storage</td>
<td>$90,000</td>
<td>$100,000</td>
<td>$100,000</td>
<td>$115,000</td>
<td>$120,000</td>
<td>$150,000</td>
</tr>
<tr>
<td>7</td>
<td>Process Waste Line</td>
<td>$55,000</td>
<td>$60,000</td>
<td>$60,000</td>
<td>$60,000</td>
<td>$60,000</td>
<td>$60,000</td>
</tr>
<tr>
<td>8</td>
<td>Sludge Lagoons</td>
<td>$95,000</td>
<td>$100,000</td>
<td>$100,000</td>
<td>$115,000</td>
<td>$120,000</td>
<td>$150,000</td>
</tr>
</tbody>
</table>

TOTALS: $3,210,000 | $3,800,000 | $4,400,000 | $5,350,000 | $6,070,000 | $7,360,000

NOTE: These costs are for plants requiring secondary treatment and do not include contingencies or engineering.
POSSUM KINGDOM WATER SUPPLY CORPORATION
TREATMENT PLANT CAPACITY

COST COMPARISON

<table>
<thead>
<tr>
<th>Item No.</th>
<th>Description</th>
<th>1.2 MGD</th>
<th>1.4 MGD</th>
<th>1.7 MGD</th>
<th>2.1 MGD</th>
<th>2.4 MGD</th>
<th>3.0 MGD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Raw Water Intake & Pumps</td>
<td>$450,000</td>
<td>$600,000</td>
<td>$600,000</td>
<td>$700,000</td>
<td>$800,000</td>
<td>$800,000</td>
</tr>
<tr>
<td>2</td>
<td>Raw Water Supply Line</td>
<td>$30,000</td>
<td>$40,000</td>
<td>$40,000</td>
<td>$45,000</td>
<td>$50,000</td>
<td>$50,000</td>
</tr>
<tr>
<td>3</td>
<td>Treatment Facilities</td>
<td>$1,400,000</td>
<td>$1,680,000</td>
<td>$2,040,000</td>
<td>$2,520,000</td>
<td>$2,880,000</td>
<td>$3,600,000</td>
</tr>
<tr>
<td>4</td>
<td>Demineralization</td>
<td>$1,000,000</td>
<td>$1,120,000</td>
<td>$1,360,000</td>
<td>$1,680,000</td>
<td>$1,920,000</td>
<td>$2,400,000</td>
</tr>
<tr>
<td>5</td>
<td>Filtered Water Storage</td>
<td>$90,000</td>
<td>$100,000</td>
<td>$100,000</td>
<td>$115,000</td>
<td>$120,000</td>
<td>$150,000</td>
</tr>
<tr>
<td>6</td>
<td>Finished Water Storage</td>
<td>$90,000</td>
<td>$100,000</td>
<td>$100,000</td>
<td>$115,000</td>
<td>$120,000</td>
<td>$150,000</td>
</tr>
<tr>
<td>7</td>
<td>Process Waste Line</td>
<td>$55,000</td>
<td>$60,000</td>
<td>$60,000</td>
<td>$60,000</td>
<td>$60,000</td>
<td>$60,000</td>
</tr>
<tr>
<td>8</td>
<td>Sludge Lagoons</td>
<td>$95,000</td>
<td>$100,000</td>
<td>$100,000</td>
<td>$115,000</td>
<td>$120,000</td>
<td>$150,000</td>
</tr>
<tr>
<td>TOTALS:</td>
<td></td>
<td>$3,210,000</td>
<td>$3,800,000</td>
<td>$4,400,000</td>
<td>$5,350,000</td>
<td>$6,070,000</td>
<td>$7,360,000</td>
</tr>
</tbody>
</table>

NOTE: These costs are for plants requiring secondary treatment and do not include contingencies or engineering.